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Preface

This volume consists of a collection of essays on geometry from a historical
viewpoint, addressed to the general mathematical community interested in the
history of ideas and their evolution.

In planning this book as editors we went with the conviction that writing
on the basic geometrical concepts from a historical perspective is an essential
element of our science literature, and that geometrico-historical surveys constitute
an important ingredient, alongside purely mathematical and historical articles, for
the development of the subject. We have also held, for many years, that we need
such articles written by mathematicians, dealing with topics and ideas that they are
directly engaged with and consider as fundamental, and it was our endeavour to
put together an ensemble of articles of this variety on a broad spectrum of topics
that constitute the general area of geometry. It actually turned out to be a nontrivial
task to find colleagues capable and willing to write on the history of their field, but
perseverance eventually led to this volume coming to fruition. We warmly thank all
the authors of this volume for their contribution. We also thank all the referees, who
shall stay anonymous, for their critical comments and constructive suggestions that
helped substantially in improving the quality of the volume, and Elena Griniari for
her editorial support.

The work on this book was completed during a stay of the second editor at the
Yau Mathematical Center of Tsinghua University (Beijing).

Mumbai, India S. G. Dani
Strasbourg, France Athanase Papadopoulos
November 2018
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Introduction

Comprehension of shapes has played a pivotal role, alongside of numbers, in the
progress of civilizations, from the beginning. Significant engagement with shapes,
or geometry,1 is seen in the ancient cultures of Egypt, Mesopotamia, India, China,
etc., from the very early times. A systematic approach to the subject, turning it into
a discipline with an axiomatic foundation, was developed by the ancient Greeks,
which served crucially as a basis to later rewritings and developments at the hands
of Arab mathematicians during the Middle ages and in turn to the modern advent.
The Greeks also addressed various philosophical issues associated with the subject
that have been very influential in the later developments.

From the point of view of the subject of history of mathematics, there is a
need for viewing the historical development of ideas of geometry as an integral
whole. The present endeavour is seen by the editors as a limited attempt in that
direction, focusing mainly on the historical antecedents of modern geometry and
the internal relations within the latter.2 In the overall context, the editors also felt
the need to concentrate on bringing out the perspective of working mathematicians
actively engaged with the ideas involved, in their respective areas, as against that
of historians of mathematicians viewing developments in mathematics from the
outside, a pursuit in which the issues involved and the flavour of the output are
different from what we seek to explore in this project.

Mathematicians build upon the works of their predecessors, which they regularly
reshape, refine and reinterpret (sometimes misinterpret). There are countless exam-
ples of ideas discovered concurrently and independently and of others that stayed
in the dark until being rediscovered and used much later. This makes the history
of mathematical ideas a living and intricate topic, and any attempt to say something

1Although the term geometry is etymologically associated with earth measurement, it was clear
since the times of Plato that this field, from the moment it became mature, is more concerned with
shape than with measurement.
2The present editors had organized a conference on the same theme, “Geometry in History,” at the
University of Strasbourg during 9–10 June 2015; the deliberations at the conference and the overall
experience of the event have served as an inspirational precursor to bringing out this volume.
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viii Introduction

significant in this domain requires, on the one hand, a deep knowledge of the subject
and also, on the other hand, a comprehensive vision of history. In the perception
of the editors of this volume, the mathematical community is in acute need of
articles presenting major geometrical ideas in a right historical perspective, paying
attention also to the philosophical issues around the activity. This was a motivation
for bringing out this volume, and we are happy to see that many of the essays in it
have turned out to be a confluence of mathematics, history and philosophy, together
with state-of-the-art mathematical research.

The book is divided into two parts. The first one, consisting of seven chapters,
is concerned with topics that have roots in Greek antiquity and ramifications all
through the history of mathematics. The second part, consisting of 12 chapters,
treats more modern topics. We now describe briefly the themes dealt with in the
individual chapters.

The opening essay by Stylianos Negrepontis is on a topic from the fourth
century BCE, namely, Plato’s theory of anthyphairesis, an idea that would serve
as a precursor of continued fractions. It may be worthwhile to recall here that Plato
was above all a mathematician and that his conceptualization of the world is deeply
rooted in mathematics. The goal of this article is to explain the anthyphairetic
nature of Plato’s dialectics which is at the foundation of his theories of Ideas, of
true Beings, of knowledge and of the distinction he draws between intelligible
and sensible Beings. Negrepontis defends the thesis that the whole of Plato’s
philosophical system is based on the concept of periodic anthyphairesis. He also
provides an explanation of Plato’s praise of geometry and his criticism of its practice
by the geometers. Plato criticized the axiomatic method, by which mathematicians
rely on hypotheses that, according to him, have nothing to do with true knowledge.
He was at the same time critical of the geometers’ use of diagrams and of topics
such as Eudoxus’ theory of ratios (on which the theory of Dedekind cuts is based),
of Archytas’ theory of quadratic and cubic incommensurabilities and of the use
of the notion of “geometric point” in the foundations of geometry. Instead, Plato
claims that the method of Division and Collection—a philosophical expression of
the periodic anthyphairesis—should be the only one to be used in the acquisition of
all knowledge in geometry, in particular in the construction of numbers and of the
straight line. At the same time, the author also proposes an explanation as to why
geometry was so important to Plato.

The whole essay is based on a new analysis and a novel reading of several
difficult dialogues of Plato, in particular the Parmenides, Sophist, Statesman,
Timaeus and Phaedo.

The second chapter, written by Athanase Papadopoulos, is an exposition of René
Thom’s visionary ideas in his interpretation of the work of Aristotle—especially
his treatises on biology—from a topological point of view. Thom was a dedicated
reader of Aristotle. With his penetrating intuition as a mathematician, he gave a
completely new explanation of some passages in the writings of the Stagirite, finding
there the ideas of genericity, stratification, boundary, the Stokes formula and other
topological notions. He completely adhered to Aristotle’s theory of form which the
latter expanded in his zoological treatises, and he highlighted the importance of
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these ideas in biology, and more particularly in embryology, namely, the idea of
a form tending to its own realization. Thom’s contribution to the interpretation of
Aristotle’s writings, an outcome of many years of reflection, constitutes a new link
between science in Greek antiquity and modern mathematics.

In Chap. 3, Yuri Manin describes a continuous chain of ideas in mathematical
thought that connects Greek antiquity to the modern times. He uses this chain as
an argument for his thesis that the notion of “paradigm shifts”, as an approach in
the history of science promoted by the philosopher Thomas Kuhn (1922–1996), to
the effect that radical changes in the objects of interest characterize the transitions
from one epoch to another, does not apply to mathematics. On the contrary, says
Manin, mathematical thought and the mathematically interesting questions evolve
in a continuous manner. The ideas on which his argument is based involve the
mathematics of space, time and periodicity, and he takes us through some episodes
from the history of this subject, starting with Ptolemy’s dynamical model of the solar
system until the modern probabilistic models of elementary particles, Schrödinger’s
quantum mechanics amplitude interference and Feynman integrals, passing through
the work of Fourier, and Mendeleev’s table of chemical elements. In this description
of the history, quantum mechanics, in Manin’s words, becomes “a complexification
of Ptolemy’s epicycles”.

In Chap. 4, Athanase Papadopoulos reviews the appearances of the notion of
convexity in Greek antiquity, more specifically in the classical texts on mathematics
and optics, in the writings of Aristotle and in art. While convexity was to turn into
a mathematical field in the early twentieth century, at the hands of Minkowski,
Carathéodory and others, this notion is found in mathematical works all the way
from those of the Greeks. The thinking in many mathematical arguments of Euclid,
Apollonius, Archimedes, Diocles and others is seen to be based on convexity
considerations, even when the concept had not attained its maturity. In optics, the
notion played an important role on account of convex and concave mirrors and
lenses, the latter relating also to astronomy. Convexity also features in Aristotle’s
theories on a variety of topics and in ancient Greek art. This chapter puts the
evolution of the notion of convexity in perspective.

Chapter 5, by Arkady Plotnitsky, is again concerned with the question of
continuity of ideas in mathematics. Starting with the question of “what is a
curve”, and taking as a starting point the curves formed by images drawn 32,000
years ago on the curved walls of the Chauvet-Pont-d’Arc cave in the South of
France, the author reflects on the evolution of mathematics, on the relation between
mathematics and art and on the notion of modernity and the difference between
“modernity” and “modernism”, both in art and science. Modernism in mathemat-
ics, he argues, is essentially a conception characterized by the algebraization of
spatiality while adhering to geometrical and topological thinking. The exposition
wanders through the works of Fermat and of Descartes—where the notion of
algebraization of geometry became essential—through a reflection on the role of
experimentation in physics, and through the ideas of Heidegger on modern science
as being essentially mathematical. A crisis concerning the “irrationality” of quantum
mechanics and its “rationalization” by Werner Heisenberg is compared to the crisis
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of the incommensurable which traversed ancient Greek mathematics. The author
also comments on John Tate’s principle: “Think geometrically, prove algebraically”,
extending it to: “Think both intuitively geometrically and space-like geometrically,
and prove algebraically”, and taking examples in the modern works of Weyl, Weil,
Grothendieck, Langlands and Tate.

The aim of Chap. 6, by Annette A’Campo and Athanase Papadopoulos, is to draw
a continuous path from the theory of curves in Greek antiquity until the modern
synthetic differential geometry of Busemann–Feller and Alexandrov. The route
passes through the work of Huygens on evolutes, through that of Euler on curvature
of surfaces embedded in 3-space and then through the developments made by the
French school founded by Monge. These works, together with the background of
the respective periods and of the authors concerned, are discussed extensively in this
chapter. The evolution shows a return, in the twentieth century, to the fundamental
methods of geometry that eschew the differential calculus.

Chapter 7, by Toshikazu Sunada, is a historical exposition of the development of
geometry from ancient times until the modern period, with a view of this field as
a tool for describing the shape of the universe. The account involves unavoidably
questions of cosmology and of philosophy of space and time, and it takes us deep
into the worlds of differential and projective geometry, topology and set theory,
discussing notions like the infinite, infinitesimal, curvature, dimension and others.

The next two chapters are concerned with configuration theorems, that is,
theorems of projective geometry whose statements involve finite sets of points and
arrangements of lines.

Configuration theorems form a coherent subject which is again rooted in
Greek antiquity, more precisely in the theory of conics, whose main founders are
Apollonius, Pappus and Ptolemy. The subject continued to grow in the works of
Pascal, Desargues, Brianchon, Poncelet, Steiner and others, and it has still a great
impact on current research. A famous example of a configuration theorem is Pappus’
theorem which concerns the alignment of three points: given two triples of aligned
pointsA,B,C and a, b, c in the plane, the three intersection points of the three pairs
of lines AB,Ba, Ac,Ca and Bc,Cb are also aligned. Another example is Pascal’s
theorem stating that if we take arbitrarily six points on a conic and if we join them
pairwise so as to form a convex hexagon, then the three pairs of opposite sides of
this hexagon meet in three points that lie on the same line. In the case where the
conic degenerates to a pair of lines, Pascal’s theorem reduces to Pappus’ theorem.
Thus, Pascal’s theorem is a good example of a theorem discovered in the seventeenth
century which is a generalization of a much earlier theorem.

In this volume, configuration theorems are considered in Chaps. 8 and 9.
Chapter 8, written by Victor Pambuccian and Celia Schacht, is concerned with

the significance of Pappus’ and Desargues’ and other configuration theorems de-
rived from them in the axiomatic foundation of geometry and with the interrelation
of this topic with algebra and first-order logic. From a historical point of view, it
has taken quite long for the wealth of significance of the theorems of Pappus and
Desargues to be recognized. The recognition came only in the twentieth century,
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spurring with it also a flurry of activity in the general stream of configuration
theorems, the genre they represent. The authors consider the article a story of
“adventure through which their true importance became revealed”.

Chapter 9, by Serge Tabachnikov, is a survey on the impact of configuration
theorems and results inspired by them in modern dynamics, namely, in a series of
iterated construction theorems motivated by configuration theorems, in the study of
maps of the circle and self-similarity, in the study of actions of the modular group,
in the theory of billiards in ellipses and in the study of caustics. Identities in the
Lie algebra of motions of Euclidean and non-Euclidean geometries are interpreted
as configuration theorems. The author also surveys the work of R. Schwarz on the
pentagram map and the theory of skewers, recently developed by himself, which
provides a setting for space analogues of plane configuration theorems.

In Chap. 10, Ken’ichi Ohshika shows how Poincaré’s work on topology and
geometry led him to the philosophy of science that he formulated in the various
books he published. At the same time, he reviews some important points in
Poincaré’s work: the foundation of homology theory, the construction of 3-
manifolds by gluing polyhedra or by using complex algebraic equations in three
variables and the first results on what later became known as Morse theory, used by
Poincaré in his classification of closed surfaces. Other questions raised by Poincaré
that led to the development of topology are also mentioned in this chapter. Besides,
Ohshika addresses the question as to why mathematicians of the stature of Poincaré
are interested in the philosophy of science. This serves as an occasion for him to
mention, briefly, the approaches of several philosophers in this field, including Kant,
Frege, Husserl, Russell and Althusser. The latter talked about the “spontaneous
philosophy of scientists” and at the same time insisted on the necessity of drawing
a line separating science from ideology.

Chapter 11, by Alain Chenciner, is about the applications of the study of the
dynamics of the iterates of a map obtained by perturbing the germ of the simplest
map of the plane: a planar rotation at the origin. The author recalls how such a
study led to the Andronov–Hopf–Neimark–Sacker bifurcation theory, concerned
with invariant curves under a radial hypothesis of weak attraction (or repulsion)
for generic diffeomorphisms with elliptic fixed points, and then to the Kolmogorov–
Arnold–Moser (KAM) theory which deals with area-preserving maps. He brings out
the relation with the so-called non-linear self-sustained oscillation theory of Lord
Rayleigh and Van der Pol, and the theory of normal forms developed by Poincaré
in his 1879 thesis in connection with the three-body problem, and he also mentions
the relation with what he calls the “averaging of perturbations” technique, used by
astronomers since the eighteenth century, which generalizes to the non-linear setting
the Jordan normal form of a matrix. He concludes with a result of his own which
interrelates several ideas presented earlier in the chapter.

Chapter 12, by François Laudenbach, starts with Gromov’s h-principle, a princi-
ple that gives conditions under which a manifold carrying a geometric structure in a
weak sense (e.g. an almost-complex structure, an almost symplectic structure, etc.)
carries a genuine geometric structure (a complex structure, an almost symplectic
structure, etc.,). At the same time, the author highlights a principle formulated
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by René Thom in 1959 which he calls a homological h-principle, and which is a
precursor of the first h-principle that appeared in 1971 in a paper by Eliashberg
and Gromov. Thom gave only a sketch of proof of his principle, a sketch which,
as the author recalls, did not entirely convince the mathematical community. In his
chapter, Laudenbach explains some combinatorial aspects of Thom’s outline that
may eventually lead to the completion of the proof of this theorem, highlighting
the relations between this result and other results of various authors, including the
sphere eversion by Smale and the Eliashberg–Mishachev holonomic approximation
theorem. In this chapter, a special emphasis is laid on the relation between Thom’s
result and Thurston’s jiggling lemma (1974), a result considered as an h-principle
for foliations, which was crucial in the proof of Thurston’s celebrated existence
theorem in foliation theory.

The theme of Chap. 13, by Yakov Eliashberg, is flexibility and rigidity phenom-
ena in symplectic geometry. The author starts by declaring that the study of these
phenomena, as two general research directions, coexists in any mathematical field
and that in symplectic topology these two directions are especially close to each
other. This idea is further developed in the essay. The exposition starts with what
the author calls “Poincaré’s dream”, namely, the fact that the qualitative properties
of a Hamiltonian system are due to the existence of a symplectic form preserving
its phase flow. Eliashberg states that this dream was realized in the 1960s, with the
emergence of symplectic topology, and more particularly in the works of Arnold
and Gromov. He makes a list of open problems formulated in the 1960s and 1970s
that were foundational to some of the major work done in this field later. Several
of these problems were solved by Gromov, thanks to his h-principle for contact
and symplectic structures and his later introduction of J -holomorphic curves in
symplectic topology. Eliashberg then discusses the current status of these problems,
mentioning the relations with symplectic packing inequalities, Legendrian knots,
Legendrian homology algebra and developments due to Donaldson, Bennequin,
McDuff, Hofer and others.

Chapter 14 by William Goldman is a historical survey on the theory of locally
homogeneous geometric structures. The theory was started by Charles Ehresmann,
who laid its foundations in his 1936 paper Sur les espaces localement homogènes
and in subsequent papers. In particular, Ehresmann introduced the notions of
developing map, holonomy representation, normal structure and other related
notions which led to what Goldman calls the “Thurston holonomy principle”, or
the “Ehresmann–Weil–Thurston holonomy principle”. This principle establishes
a relation between the classification of geometric structures on a manifold and
the representation variety of its fundamental group into a Lie group, a topic of
extensive activity today. Goldman talks about “Ehresmann’s vision” which set
the context for Thurston’s geometrization program for 3-manifolds. He mentions
the relation between the works of Poincaré, Lie, Klein and Elie Cartan and the
later developments in the theories of discrete subgroups of Lie groups, complex
projective structures, flat conformal manifolds and others.

Chapter 15 by Marc Chaperon is also closely related to the work of Ehresmann,
this time in connection with that of Elie Cartan, on the development of differential
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geometry. While Cartan’s contributions to the field include the concepts of frame
bundle, canonical Pfaffian system, Cartan system (or canonical contact structure)
and integral manifolds, those of Ehresmann include the theories of jets, fibre
bundles, regular infinitesimal structures, connections, pseudogroups and groupoids.
Ehresmann’s space of jets is also mentioned in relation to the work of Thom,
with Gromov’s h-principle and with Smale’s classification of immersions. The
Cartan formula for differential forms leads to the so-called Poincaré lemma, to the
first-order theory of partial differential equations, to the Gauss–Manin connection
associated with a proper submersion and to the notion of monodromy.

Chapter 16, by Katsuhiro Shiohama and Bankteshwar Tiwari, is concerned with
the comparison between Finsler and Riemannian geometries. The stress is on the
asymmetry of the distance function associated with a Finsler manifold and in par-
ticular on the notions of reversibility constant, forward cut locus, forward injectivity
radius, forward conjugate locus, forward pole, forward Busemann function, etc.
Works in this domain by Blaschke, Whitehead, Myers, Rademacher, Busemann,
Klingenberg, Berger, Omori, Weinstein and others are mentioned.

Chapters 17 and 18 are concerned with the topology of 3- and 4-manifolds,
respectively.

Chapter 17, by Valerii Berestovskii, is centred on the work done in the twentieth
century around the three-dimensional Poincaré conjecture. The geometrization
conjecture and its proof by Perelman remain in the background, while the author
reviews, instead, several topics related to the work done around the conjecture,
including various characterizations of the 3-sphere that were formulated in the
attempt to prove it, the relation with 4-manifolds, the group-theoretic equivalent
forms of the conjecture, and recent works on the manifold recognition problem and
the (simplicial) triangulation conjecture for topological manifolds of dimension at
least five. The use of methods introduced by Busemann for dealing with questions
closely related to the three-dimensional Poincaré conjecture is highlighted. The
author emphasizes the fact that the history of the proof of the Poincaré conjecture
and of other related conjectures once again demonstrates the unity of mathematics
and at the same time the fruitfulness of ideas originating in mathematical physics.

Chapter 18, by Valentin Poénaru, is a survey of the important problems on four-
dimensional manifolds. Two features of this dimension are highlighted: (1) the
gap (the author refers to it as the “big abyss”) between the differentiable and the
topological categories, which is special to this dimension, exemplified by the fact
that there are manifolds homeomorphic to four-dimensional Euclidean space but
not diffeomorphic to it, and (2) the role played by mathematical physics. Several
notions of special interest are highlighted, including the Whitehead manifold and
Casson handles, which turned out to be fundamental in the theory. Works of several
mathematicians, including Bing, Smale, Mazur, Milnor, Kervaire and Stallings,
are mentioned. This is also the occasion for the author to talk about fundamental
questions in the topology of manifolds that are solved in the particular dimension
considered, and not in others. This is exemplified by the smooth four-dimensional
Schoenflies conjecture which is still open. The chapter also mentions some episodes
from the history of the proof of the Poincaré conjecture in higher dimensions.
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The book ends with Chap. 19 which is an autobiographical account by Valentin
Poénaru, of the period where he set out to be a mathematician. The author gives
a vivid description of the problems he worked on, the people he met and others
with whom he corresponded. The article gives us a glimpse of what the life of a
mathematician was like in the Eastern part of Europe, at a time when the continent
was divided by an iron curtain. A feeling emerges that mathematics is a space of
liberty.

A word of conclusion is in order.
From its beginnings at the hands of the Ancients, the subject of geometry has now

grown into a magnificent edifice of immense dimensions, and in this book, we have
tried to trace out some of the representative developments and their interrelations,
from a historical point of view, but from the perspective of the practitioners. The
edifice, which is perpetually under construction, needs a large number of builders,
many with specific skills, but the reader may notice that among these builders, a few
names appear recurrently in the various chapters of this book: Poincaré, Ehresmann,
Thom, Busemann, Alexandrov, Thurston and Gromov. Thus, while rooted in the
broader objectives, our endeavour has also turned to be a celebration of the towering
achievements in the area and of the major achievers.

This book project was undoubtedly circumscribed by the availability of expertise
on various themes and of experts (known to us) willing to spare their time and effort
to participate in such an endeavour. It is however hoped that enough ground has
been covered towards the indicated objectives, so that this volume will serve as a
meaningful step in building up further towards them.

Mumbai, India S. G. Dani
Strasbourg, France Athanase Papadopoulos
November 2018
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Chapter 1
Plato on Geometry and the Geometers

Stelios Negrepontis

θεὰ σκέδασ΄ ἠέρα, εἴσατο δὲ χθών·
Odusseia, Book XIII, line 352

[G]oddess [Athena] dispersed the mist, and the land was recognized.

Abstract The present paper aspires to explain fully both the supreme importance
of Geometry for Plato, and also the nature of the serious ongoing criticism that
Plato (and the Academy) directs against the geometers, an explanation that has
eluded modern scholars of Plato (since M. Ficino in the fifteenth century to our
present day). In order to understand the criticism, it is necessary first to have a
true understanding of the nature of Plato’s philosophy. The most crucial concept in
understanding Plato’s philosophy, and essentially the only one, is the geometrical
concept of periodic anthyphairesis of two magnitudes, say line segments, estab-
lished with the Logos criterion (Sect. 1.2).

The Platonic true Being, the intelligible Platonic Idea, is a dyad of opposite parts
in the philosophic analogue, Division and Logos-Collection, in close imitation of
periodic anthyphairesis. Plato in effect isolates a method for acquiring full and
complete knowledge, as it exists in a small but vital part of Geometry, namely
in incommensurability by periodic anthyphairesis, and develops a general theory
of knowledge, Division and Collection, of the Platonic Ideas, in close imitation to
the complete acquisition of knowledge provided by the Logos criterion in periodic
anthyphairesis.

The anthyphairetic nature of Platonic intelligible Beings was examined in detail
by the author in earlier publications and is outlined in the present paper: the One of
the second hypothesis of the Parmenides and its close relation to Zeno’s arguments
and paradoxes (outlined in Sect. 1.3) and the Division and Collection in the
Sophistes and Politicus, where the genera and kinds in the Division are considered
as hypotheses (outlined in Sect. 1.5). Furthermore, we establish in the present paper
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that the dialectics of the Politeia coincide with Division and Collection-Logos
(Sect. 1.4), described also equivalently in analysis fashion as ascent from hypotheses
to the “anhupotheton”, the hypothesis-free (531d-e, 532a-b,d-e, 534b-d) (Sect. 1.6).

Without understanding the anthyphairetic nature of Plato’s dialectics it is im-
possible to understand Plato’s praise of Geometry and criticism of its practice by
geometers.

Criticism I: the rejection by Plato of the indivisible geometric point in favor of the
“indivisible line”, according to Aristotle’s Metaphysics 992a, 19–22, coincides
with the rejection of the One of the first hypothesis as a true Being, a One similar
to the geometric point, and the adoption of the One of the second hypothesis as
a true Being, a One described by Zeno, Plato, and Xenocrates in terms akin to
those of the indivisible line, in the Parmenides (Sect. 1.7).

Criticism II: the rejection by Plato of the use of hypotheses (namely basic defini-
tions and postulates on lines, circles, angles in geometry, on units and numbers
in Arithmetic) as principles, and not as stepping stones towards the true Being,
the anhupotheton. The rejection of the axiomatic method on epistemological
grounds, since hypotheses, namely definitions and postulates, are arbitrarily
accepted and hence these, with all its consequences, cannot be known; knowl-
edge, by Division and Collection, is achieved only when the generation of these
hypotheses, the basic geometric (lines, circles, angles) and arithmetical (units,
numbers) concepts and their Postulates, takes place within the Platonic true
Beings, something possible because of their periodic anthyphairetic structure in
the Politeia(510–511, 527a-b) (Sects. 1.8, 1.9, 1.11, and 1.12).

Praise of Geometry: Plato makes the extraordinary claim that the method of Divi-
sion and Collection must be the method employed for the acquisition of true
knowledge for all of Geometry (in place of Euclidean axiomatics). With this
method he constructs the numbers, the straight line, and the circle (Sect. 1.10),
and the three kinds of angle (Sect. 1.11).

Criticism III: the use of geometric diagrams is rejected by Plato, not simply
because they are visible/sensible, but because they are sensible representations
not provoking to the mind, as they should be, if they were represented as
true sensibles, participating anthyphairetically in the intelligible by means of
the receptacle/diakena, as presented analytically in the Timaeus 48a-58c and in
preliminary manner in the Politeia 522e–525a. The geometers fall into this faulty
use of geometric diagrams, as a result of their “dianoia” way of constructing their
arguments (Criticism II) (Sects. 1.13 and 1.14).

Criticism IV: the rejection by Plato [1] of Archytas’ non-anthyphairetic proofs of
quadratic and cubic incommensurabilities (based on the arithmetical Book VIII
of the Elements and eventually on the arithmetical Proposition VII.27 of the Ele-
ments), possibly expressed in the distinction between the eristic and dialectic way
of going to infinity in the Philebus 16d-e, replacing Theaetetus’ anthyphairetic
proofs of quadratic incommensurabilities, [2] of Eudoxus’ Dedekind-like theory
of ratios of magnitudes (Book V of the Elements), expressed clearly in the second
part of Scholion In Euclidem X.2, replacing Theaetetus’ anthyphairetic one, and
thus moving away from Plato’s philosophy based on periodic anthyphairesis,
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and [3] of Archytas’ non-anthyphaireic stereometric solution of the problem of
the duplication of the cube, in the Politeia 527d-528e (Sect. 1.15).

All of Plato’s criticisms of the geometers have a common strain: the practice of
geometers is distancing away from periodic anthyphairesis and from Platonic true
Beings, based on periodic anthyphairesis.

1.1 Introduction

According to a story of late antiquity there was an inscription in the entrance of the
Academy proclaiming

Let no one enter who is ignorant of geometry.1

The lateness of antiquity makes the authenticity of this story suspect; there is
however a point in the Politeia where, speaking of his ideal city, Plato makes an
essentially equivalent statement:

“we must order in the strongest possible terms (“malista prostakteon”) that the men of your
Ideal City shall in no way (“medeni tropoi”) neglect (“aphexontai”) geometry”. (Politeia
527c1-2)2

It is a strong understatement that the modern students of Plato (since Marsilio
Ficino in the fifteenth century to our days) have not been able to explain why
Geometry was so supremely important for Plato; and this cannot but be due to their
failure to understand the real content of Plato’s dialectics.

At the same time Plato is highly critical, mostly in the Politeia, of the way
geometers employ and form their arguments about Geometry:

[the geometers] do not deign to render a Logos (“logon. . . didonai”) of [their hypotheses]
to themselves or others, taking it for granted that they are obvious to everybody (“hos panti
phaneron”). They take their start from these. . . (in 510c3-d5)
this science [Geometry] is in direct contradiction (“pan tounantion echei”) with the
formation of arguments employed in it by its adepts (“tois en autei logois legomenois”).
(in 527a1-8)

The present paper aspires to explain fully both the supreme importance of
Geometry for Plato, and also the nature of the serious criticism that Plato directs
against the geometers, the cause of their faulty practice, and the means he proposes
to correct it and ascend to the intelligible Geometry.
[Section 1.2 The Mathematics of Anthyphairesis.] The most crucial concept in
understanding Plato’s philosophy, and essentially the only one, is the geometrical

1Joannes Philoponus, In Aristotelis libros de anima Commentaria 15,117,26-27 Πυθαγόρειος δὲ
ὁ Πλάτων, οὗ καὶ πρὸ τῆς διατριβῆς ἐπεγέγραπτο ‘ἀγεωμέτρητος μὴ εἰσίτω’. Olympiodoros,
Prolegomena (tes Logikes) 9,1 ἐπιγεγράφθαι ἐν τῷ τοῦ Πλάτωνος μουσείῳ ‘ἀγεωμέτρητος
μηδεὶς εἰσίτω’.
2“μάλιστα προστακτέον ὅπως οἱ ἐν τῇ καλλιπόλει σοι μηδενὶ τρόπῳ γεωμετρίας ἀφέξονται.”
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concept of periodic anthyphairesis of two magnitudes, say line segments.3 The
Mathematics of this concept, precursor of the modern theory of continued frac-
tions, is closely connected with the great discovery of incommensurability by the
Pythagoreans (who discovered the anthyphairesis of the diameter to the side of
a square, and deduced incommensurability by employing Proposition X.2 of the
Elements), and the subsequent great progress on the (palindromically) periodic
anthyphairesis of quadratic irrationals by Theodorus and Theaetetus.4 It is crucial
to realize that the proofs of incommensurability of a to b, by establishing the Logos
criterion for periodicity, in reality not only prove incommensurability but provide
full knowledge of the ratio a to b.

Let us note that even though the method employed by the Pythagoreans is a
contested topic in the History of Mathematics, there must be no doubt that the
Pythagoreans proved the incommensurability by computing the anthyphairesis of
the diameter to the side of a square, finding that its sequence of quotients is
[1, 2, 2, 2, . . .], thus infinite, and employing Proposition X.2 of the Elements. In
favor of such a method we can mention

(a) the knowledge by the Pythagoreans of the side and diameter numbers, the
precursor of the convergents of square root of 2,

(b) the stories about Hippasus that involve his drowning into the sea, confused but
clearly symbolizing the infinite nature of incommensurability, and

(c) the adoption of infinite and finite as the two basic principles of their philosophy;
the infinite was essentially the infinity of the anthyphairesis, and the finite the
preservation of the Gnomons, by which at a finite stage complete knowledge of
(the anthyphairesis of) the diameter to the side is achieved.

(d) the fact that Zeno’s arguments and paradoxes are based on periodic anthyphaire-
sis and are related to the incommensurability of the diameter to the side of a
square.

[Sections 1.3–1.6. Platonic Division and Collection, in the Parmenides, Sophistes,
Politicus and Politeia, is a philosophic version of periodic anthyphairesis.] The
whole of Plato’s philosophical system is based on the geometrical concept of
periodic anthyphairesis of two lines. In fact the Platonic true Being, the intelligible
Platonic Idea is a dyad of opposite parts in the philosophic analogue, in imitation,
as Plato himself clearly states,5 of periodic anthyphairesis.

Plato’s theory is a direct continuation of the philosophy of the Pythagoreans (and
of Zeno’s arguments, themselves concocted in order to support the new theory of

3A “magnitude” is used to render “megethos” in the Elements, meaning line, surface, or volume,
and in opposition to ‘number’ (“arithmos”), which is always a natural number starting with 1 (or
in fact with 2, as strictly speaking 1 is the unit generating all the numbers).
4Negrepontis [23].
5“ΣΩ. ῎Ιθι δή—καλῶς γὰρ ἄρτι ὑφηγήσω—πειρῶ μιμούμενος τὴν περὶ τῶν δυνάμεων
ἀπόκρισιν, ὥσπερ ταύτας πολλὰς οὔσας ἑνὶ εἴδει περιέλαβες, οὕτω καὶ τὰς πολλὰς ἐπιστήμας
ἑνὶ λόγῳ προσειπεῖν.” Theaetetus 148d4-7.
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his teacher, Parmenides, on the distinction between the way of Truth, realized by a
Monad, a One, and the way of opinion, in which we live, borrowing heavily from
the Pythagoreans).

Plato presents his theory (in practically all his dialogues, but in a more systematic
way) in the second hypothesis of the Parmenides (outlined in Sect. 1.3),6 in
the dialogues Sophistes and Politicus (outlined in Sect. 1.5),7 and in the Politeia
(examined in Sects. 1.4 and 1.6).
[Section 1.3. The One of the second hypothesis in the Parmenides and Zeno’s true
Being, are similar philosophical versions of periodic anthyphairesis.] Parmenides
was the first philosopher to propound the thesis that there are true unchanging
monadic Beings, while our world is a changing world of mere opinion, the precursor
of Plato’s fundamental distinction between intelligible and sensible Beings. As we
have gradually realized, Zeno accomplished a great synthesis of Pythagorean math-
ematics and Parmenidean philosophy, used the Pythagorean discoveries in service of
a new form of the Parmenidean duality truth vs. opinion, in which infinite periodic
anthyphairesis plays a key role, and has influenced Plato heavily, as can be seen
from a comparison of Zeno’s arguments and paradoxes with Plato’s Parmenides.

In order to reach an understanding of Plato’s criticism of the geometers and praise
of a truly intelligible Geometry, it is necessary to reach first a clear understanding
of the nature of the intelligible Platonic Beings.

This first step toward such an understanding is an outline of our study of the
One of the second hypothesis in the Parmenides 142b-155e, the paradigmatical true
Platonic Being. Our basic discovery is that the One becomes known by the method
of Division and Collection, and that this method is the philosophic analogue of
periodic anthyphairesis (a mathematical notion explained in Sect. 1.2): Division is
infinite anthyphairetic division of the initial indefinite dyad One and Being, and
Collection is the Logos criterion leading to periodicity, and the equalization of the
parts One and Being. Progress in the study of Plato’s philosophy has been greatly
hampered by a lack of understanding of the anthyphairetic nature of Division and
Collection.
[Section 1.4. Dialectics in the Politeia is Division and Collection.] We present
the considerable evidence that the dialectics in the Politeia is, as in the second
hypothesis of the Parmenides, exactly Division and Collection. Two descriptions
of Division and Collection, (a) 531d9-e6, 532a5-b3, d8-e3 and (b) 534b3-d2, make
this especially clear. To “provide Logos” is, as explained in Sect. 1.3, precisely to
provide the philosophic analogue of the Logos Criterion for the establishment of
periodicity in anthyphairesis. Thus the structure of the real intelligible Being in the
Politeia coincides with the One of the second hypothesis in the Parmenides.
[Section 1.5. Genera of the Division and Collection in the Sophistes and Politicus
as Hypotheses.] In the dialogues Sophistes and Politicus Plato carefully exhibits

6Negrepontis [24]. That Plato was greatly influenced by Zeno is attested by the comparison of
Zeno’s Fragments and paradoxes with Plato’s Parmenides.
7Negrepontis [22, 23].
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the method of Division and Collection, but in the abbreviated, in Zeno’s tree-like
dichotomy, assuming the form

G = a + b, (a = b + a1 is omitted),

b = a1 + b1, (a1 = b1 + a2 is omitted),

b1 = a2 + b2, (a2 = b2 + a3 is omitted),

and so on, ad infinitum.

For completeness sake, we provide the first of these divisions, that of the Angler (in
the beginning pages of the Sophistes). For details see [22, 23].

We also note that in these two dialogues Plato systematically treats the new parts-
genera introduced in the division steps as “hypotheses”. The systematic use of such
a terminology might at first seem odd, until we realize that Plato, as Proclus8 tells
us, was extremely fond of the heuristic method of Analysis.

The abbreviated form of the Division makes it quite reasonable to think of
Division as Analysis, and of the successive genera of the Division as higher
hypotheses: starting from G, in analysis fashion we look for a higher hypothesis:
we divide the initial genus G into a and b, and then decide that of the two a,b, the
suitable higher hypothesis from which G follows is b, and so on, in quite the same
way that geometrical analysis, such as the one by Pappus in the Collection 634,11–
636,14, is described as a process proceeding from hypotheses to higher hypotheses.

The very abbreviated form of Division and Collection is precisely the Analysis
in the direction of Division, starting with G,G follows from b, b follows from
b1, b1 follows from b2, . . . , bn−1 follows from bn, ending into something known bn
exactly when the Logos criterion, say an/bn = a1/b1, and Collection is achieved;
and also the Synthesis and Deduction, in the direction opposite to Division, namely

bn −→ bn−1 −→ · · · −→ b2 −→ b1 −→ G.9

Thus an advantage of the abbreviated form of the Division is to connect it with
Analysis and Synthesis and to make reasonable the use of the terminology “hypothe-
ses” for the parts-genera of the Division. This will be crucial for understanding the
further description of Division and Collection as hypotheses-“anhupotheton” in the
Politeia, examined in Sect. 1.6.
[Section 1.6. The Ascent from hypotheses to the anhupotheton is another descrip-
tion of Division and Collection.] According to the Politeia 510b6-9, 511b3-c2,
533c7-d3 passages, the ascent, a further terminology of analysis origin, from
hypotheses to the “anhupotheton,” the hypothesis-free, coincides with Division and
Collection.

8In Euclidem 211,18–22.
9More details can be found in Negrepontis and Lamprinidis [26].
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In order to achieve this identification, arguments are presented in favor of
interpreting the phrase “tas hupotheseis anairousa” in 533c8 as “dividing the
hypotheses” rather than some sort of “destroying the hypotheses”. Division of
hypotheses makes sense in view of our remarks in Sect. 1.5, and is explicitly
mentioned in the Phaedo 107b5-9. Thus the ascent to higher hypotheses is achieved
by the division of hypotheses.

The aim of Division of hypotheses is to reach the “anhupotheton”. This unusual
terminology can probably be understood as follows: hypothesis is identified with a
part-genus of the infinite anthyphairesis of the initial dyad, and as such a hypothesis
is divisible; the anhupotheton, the hypothesis-free is the division-free entity, the
indivisible, that is obtained by the Logos and Collection. Thus “anhupotheton” has
the same force as “indivisible”, precisely as the indivisible line, identified with the
One of the second hypothesis in the Parmenides, as we will see in the next Sect. 1.7.

Thus hypotheses are related to Division, anhupotheton to Collection and Logos,
and we have just another description of Division and Collection.

Summarising Sects. 1.3–1.6, Plato’s paramount concern in his philosophy is
knowledge (“episteme”); just like a periodic anthyphairesis becomes fully known
when the Logos Criterion, signifying the completion of an anthyphairetic period, a
Platonic Being becomes fully known, by the method of Division and Collection by
means of Logos, in close imitation of the geometric method. Thus Plato’s theory
of Ideas, of true Beings is built in close imitation of the mathematics of periodic
anthyphairesis, and full knowledge of true Beings, is achieved by the method of
Division and Collection-Logos.
[Sections 1.7–1.9. Criticism I on the non-foundational role of the geometric point;
Criticism II on the mistaken use of the hypotheses on numbers and figures.] Plato
is not at all satisfied with the state of knowledge of the whole of Geometry, as
it has developed by its practitioners, the geometers. The gist of his Criticism is
against the axiomatisation of Geometry and Arithmetic for epistemological reasons.
What geometers at the time of Plato regarded as the foundation of Geometry cannot
be very different from the foundation presented in the Elements. The axiomatised
foundation of Geometry, presented in Book I of the Elements, can be summarized
in the basic Definitions of the geometric point, the straight line (segment), the
circle, the three kind of angle, and the five Postulates, while the only foundation
of Arithmetic, presented in Book VII of the Elements, consists in the Definitions of
unit and number. Plato’s main concern was that the axiomatisation, consisting of the
basic definitions and postulates, all accepted and assumed as true by the geometers,
who build all their consequences in the form of propositions, in no way provides
knowledge (“episteme”), since the hypotheses, on which everything else depends,
are arbitrary and unknown.10

10Aristotle in Analytics, 72b5-73a5 mentions some unnamed, avoiding to name Plato explicitly,
who have such an objection to axiomatisation (“Ενίοις μὲν οὖν διὰ τὸ δεῖν τὰ πρῶτα ἐπίστασθαι
οὐ δοκεῖ ἐπιστήμη εἶναι”). Aristotle rejects this objection, because it would lead, by introducing
higher and higher axioms, to a regress to infinity, something impossible (“ἀδύνατον γὰρ τὰ ἄπειρα
διελθεῖν΄). Cf. also “ὲἰ γὰρ εἰσὶν ἀρχαί, οὔτε πάντ΄ ἀποδεικτὰ οὔτ΄ εἰς ἄπειρον οἷόν τε βαδίζειν”
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How can this be corrected? As we have already mentioned, the only method for
the acquisition of knowledge that Plato regards as valid, Division and Collection,
is an imitation of results in a small but important part of Geometry, the proofs
of quadratic incommensurabilities developed by the Pythagoreans, Theodorus and
Theaetetus. But what can be done for obtaining true knowledge of the Geometry as a
whole? Plato’s daring hypothesis is that the method of Division and Collection must
somehow be applied to all of Geometry. But how can this be done? The argument
roughly runs as follows:

Plato takes, in the Politeia 511c-d, as hypotheses (basic definitions and Postulates
for Geometry and Arithmetic) the straight line and the circle, the three kinds of
angle, and the numbers.
[Section 1.7. Criticism I: The geometric point, employed by the geometers, for the
foundation of Geometry should be rejected, in favor of the indivisible line.] We
cannot fail at this point to note the notable absence, among Plato’s hypotheses, of
the geometric point. According to Aristotle, in the Metaphysics 992a19-22, Plato,
most surprisingly, rejects altogether the most emblematic concept in Geometry, that
of the geometric point, from having any role in a true foundation of Geometry.
Plato’s rejection of the geometric point, going back to Zeno, essentially occurs in
the Parmenides. The point, essentially the partless One of the first hypothesis in
the Parmenides (137c-142a), is a rival One, failing to be a Platonic Being (141e4-
142a2), to the One of the second hypothesis in the Parmenides (142b-155e), the
paradigmatical true Platonic Being (155d3-5). Thus Plato’s Geometry is without
points, and is generated in a Platonic Being.
[Section 1.8. Criticism II: The hypotheses, on numbers in Arithmetic, and on
lines, circles, and the three kinds of angle in Geometry that are taken as prin-
ciples, should be replaced by dialectical hypotheses that are steps towards the
anhupotheton.] The reason for Plato’s difficulty with Geometry is epistemological,
has to do with his concept of true knowledge. Plato, in 510c2-d3, criticizes the
geometers/mathematicians, for employing the axiomatic method, a method that
takes the hypotheses (in particular the definitions on numbers in Arithmetic and the
definitions and postulates on lines circles, and the three kinds of angle in Geometry)
as principles and is thus defective in knowledge (since these are arbitrarily accepted
and not really known), and can only move downward in deductive fashion (so that
all further “knowledge” depends on the arbitrary initial hypotheses and is thus
problematic). But Plato goes much further, not simply criticizing but introducing
a daring proposal for the acquisition of true knowledge in Mathematics; he

(a) isolates a small but vital part of Geometry, in which the acquisition of full
and complete knowledge is possible, namely the Pythagorean and Theaetetean
method of proving quadratic incommensurabilities, by establishing the Logos
criterion and anthyphairetic periodicity (cf. Sect. 1.2);

84a32-33; “ἔτι αἱ ἀρχαὶ τῶν ἀποδείξεων ὁρισμοί, ὧν ὅτι οὐκ ἔσονται ἀποδείξεις δέδεικται
πρότερον—ἢ ἔσονται αἱ ἀρχαὶ ἀποδεικταὶ καὶ τῶν ἀρχῶν ἀρχαί, καὶ τοῦτ΄ εἰς ἄπειρον βαδιεῖται,
ἢ τὰ πρῶτα ὁρισμοὶ ἔσονται ἀναπόδεικτοι.” 90b24-27.
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(b) develops a philosophical theory of knowledge of the true Beings, the Platonic
Ideas, the method of Division and Collection, in close imitation to the complete
acquisition of knowledge provided for pairs of lines in quadratic incommensu-
rability, by the Logos criterion and periodic anthyphairesis (cf. Sects. 1.3–1.6);
and

(c) finally makes the extraordinary claim, expressed in the Politeia passages 511c3-
d5 and 533b6-c6, that this method of Division and Collection must be the
method employed for the acquisition of knowledge for all of Geometry and
Mathematics. He thus sets in opposition the geometric hypothesis with the
dialectical-philosophic hypothesis, and criticizes the geometers for failing to
take as hypothesis a part-genus in the Division of a Platonic being, and thus to
have an opposite part-genus, forming with it an anthyphairetic dyad, thereby
being able to divide and generate higher hypotheses, and eventually receive
Logos and periodicity, achieve Collection (by the self-similarity of periodicity)
and full knowledge.

[Section 1.9. Criticism II, continued. The geometers are compelled to use hypothe-
ses as principles because they need hypotheses to proceed to actions/geometric
constructions.] The compulsion that geometers have to use hypotheses as principles
is mentioned hand in hand with the role that the sensible diagrams play in Geometry
in the 510b4-6, 511a3-b2, 511c6-8 passages, and this creates the impression that
the use of these diagrams is the cause, the compulsion of the geometers to the
wrong use of hypotheses. But in the final 527a1-b2 passage the compulsion
that geometers have is explained by means of their need for intelligible/dianoia
constructions in their deductive arguments (in this crucial passage visible diagrams
are not mentioned). The following chain of causes and effects is then formed
according to 527a1-b2: The geometers view geometry as a deductive science with
proofs; proofs form their arguments with actions/geometric constructions; obtaining
actions/geometric constructions compels the geometers to employ hypotheses as
principles, namely compels the geometers to a “dianoia way” of forming their
arguments. Thus the reason the geometers are compelled to proceed downwards,
treating hypotheses as principles, and not as steps of ascent, lies with their thesis
that Geometry is a deductive science, it is about proofs of propositions. A proof
requires geometric constructions/actions, and actions depend on fixed geometric
hypotheses, Definitions and Postulates, considered as principles. Thus the reason for
the compulsion of the geometers to use hypotheses in a defective way, as principles,
is purely intelligible and has nothing to do with the fact that the geometers employ
visible/sensible diagrams (examined in Sects. 1.13 and 1.14). Roughly speaking, the
geometers have adopted the axiomatic method because they think of Geometry as a
deductive science, a science seeking proofs, deductions, for deductions and proofs
constructions are needed, and constructions are themselves postulates (as Postulates
I, II, III, V) or need postulates and definitions.
[Section 1.10. Praise of Geometry. Intelligible Foundation of Geometry. Straight
lines are generated dialectically by Division, and circles by Collection.]
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[Section 1.11 Criticism II on the faulty use of the hypothesis of the three kinds
of angle, and praise of the dialectic generation of angle, explained by Proclus.]
Plato never explains what would be the dialectical treatment of the three kinds
of angle, but Proclus does, in his illuminating comments in In Euclidem 131,3-
134,7 and 188,20-189,12, referring specifically to the Politeia passage 510c2-d3.
The true Being in which the intelligible three kinds of angle are generated is, not the
general Platonic intelligible Being but, rather the “diameter itself to the side itself
of a square”, a true Being, since it is a dyad in periodic anthyphairesis. It appears
that these three kinds of angle were understood dialectically by the Pythagoreans,
earlier, before Plato’s general theory, and explained in terms of the anthyphairetic
approximants, the so called side and diameter numbers, in full agreement with the
general approach. A pivotal role is played by the side and diameter numbers, their
Pell equation

y2 = 2x2 ± 1,

and Propositions II.12 and 13 of the Elements.
[Section 1.12. Criticism II+ for the axiomatic status of the Fifth Postulate is
expressed by Proclus, who attempts unsuccessfully to derive it from a principle of
finiteness, reminiscent of Eudoxus’ principle, definition V.4 of the Elements.]
[Sections 1.13 and 1.14. Sensibles according to Timaeus 48a-58c, provoking and
non-provoking perceptions in the Politeia 522e-525a, Plato’s Criticism III on the
use of geometric diagrams by the geometers].
[Section 1.13. Sensibles according to the Timaeus 48a-58c.] Plato’s theory of the
sensibles and their participation in the intelligibles, is presented mainly in the
Timaeus, and uses the, ill-understood by students of Plato, receptacle/hollow space
(48a-58c). This section is of independent interest, because we aim at a radically
new interpretation of the receptacle, in terms of anthyphairesis.11 In modern terms,
anthyphairesis of a dyad of two line segments has its modern counterpart in the
continued fraction of a real number, and a sensible, participating in an intelligible by
essentially being an anthyphairetic approximation of it, corresponds to the modern
convergent of that real number.

In the Timaeus theory, Plato, in order to express the participation of the sensibles
to the infinite Division of the intelligible and at the same time to preserve his
version of the traditional Greek physiology in terms of only four elements (earth,
fire/air/water), a task that at first sight seems impossible, resorts to the, essentially
mathematical, strategy of the receptacle/hollow space (the two identified as a result
of our study, but we mostly refer to the hollow space). The idea is to express an
anthyphairetic relation, say

a = kb + c, c < b,

11Negrepontis [21] and Negrepontis and Kalisperi [25].
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equivalently, by the tight inequality kb < a < (k + 1)b. In fact all steps of
the anthyphairesis of a to b may equivalently be expressed by alternating tight
anthyphairesis inequalities involving only the original magnitudes a and b, of the
form

(T2n − 1)a < S2nb < T2na, or S2n−1b < T2n−1a < (S2n−1 + 1)b,

where S2n−1, S2n, T2n−1, T2n are suitable natural numbers, tight in the sense that
either a multiple of a or b is sandwiched between a multiple of b or a, respectively,
and of its immediate successor, thus making the b’s look like the a’s or conversely.
[Section 1.14. Plato’s Criticism III on the use of geometric diagrams by the
geometers 510d5-511a2, and the distinction in perceptions provoking and non-
provoking to the mind 522e-525a.] The geometers employment of visible geometric
diagrams for their study of Geometry, itself an intelligible activity (even if relegated
to the lower kind of “dianoia”), might be thought the reason for Plato’s criticism
(Criticism III, as we call it) in 510b4-6, 511a3-b2, 511c6-8. But in fact, Plato
is careful to distinguish between two kinds of perceptions, those provoking and
those non-provoking to the mind (522e-525a), a distinction that cannot be really
understood without obtaining first a full description of the sensibles as presented
in the Timaeus 48a-58c (and studied in Sect. 1.13). But in fact, as far as I know,
the provoking/non-provoking distinction of the perceptions has not been correlated
before in the study of the role of the visible geometric diagrams.

The sensible according to the Timaeus, as analysed in Sect. 1.13, is a “con-
founded” dyad, say water with earth, in which one element of the dyad is the
dominating and the other the dominated, assuming a form similar to the dominating;
and the perceptions that are provoking to the mind are those that make clear this
structure of a sensible, while the non-provoking are those that obscure this structure.
It is clear that the visible geometric diagrams are non-provocative to the mind; the
geometric representation of a line segment, is like the finger in 523c-524e, not as a
confounded dyad, but as something isolated without suggesting its opposite.

This might give the impression that these diagrams, because of being non-
provoking, are guilty of compelling the geometers to the use of hypotheses as
principles. But the source of this compulsion has already been identified (in
Sect. 1.9), mostly with the help of the passage 527a-b, with the need of the
geometers to obtain actions/constructions in their proofs of propositions, and it is of
a purely intelligible source and origin. Thus the geometric diagrams have nothing to
do with the compulsion of the geometers to use hypotheses as principles.

The reason why the geometers employ visible geometric diagrams that are non-
provoking to the mind is understood mostly from the passage 510d5-511a2. The
geometers form their arguments for the sake of dianoia, namely for the sake
of actions/constructions, but the arguments are about the visible diagrams. Thus
the perception of these diagrams must be compatible, auxiliary to the dianoia
reasoning of the geometers. As auxiliary to dianoia the visible diagrams cannot
be perceptions provoking to the mind, because if they were, they would lead to the
use of hypotheses as steps upwards, something that would go against the “dianoia”
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way of thinking to which the geometers are committed. Thus the diagrams used by
“dianoia” thinking geometers, must definitely be non-provoking, perceptions (522e-
525a)—as they are indeed.

In fact the way non-provoking perceptions are described as defective, namely
as a perception in which the opposite perception is not suggested, in 522e-525a, is
analogous to the way the hypotheses of the geometers are described as defective.

[Section 1.15. Criticism IV on the non-anthyphairetic, Dedekind-like theory of
ratios of magnitudes by Eudoxus, the non-anthyphairetic proofs of quadratic and
cubic incommensurabilities by Archytas, the duplication of the cube by Archytas.]
There is a further criticism of the manner geometers study solid Geometry and
in particular the duplication of the cube, in the Politeia 527d-528e, that fits
well in the general framework of his criticism of (plane) Geometry. Here the
geometers involved although not named are certainly Archytas and Eudoxus.
Archytas succeeded in discovering elementary non-anthyphairetic proofs of the
quadratic incommensurabilities, proved by Theaetetus by palindromically periodic
anthyphairesis, a success certain to have had Plato’s disapproval. Archytas’ success
prompted Eudoxus to obtain the theory of ratios of magnitudes, presented by Euclid
in Book V of the Elements, in terms of Dedekind cuts, as we realize today, distancing
himself from the anthyphairetic theory developed by Theaetetus and reported by
Aristotle in Topics 158b-159a, a theory that certainly had Plato’s strong disapproval.
In turn Archytas used Eudoxus’ theory to construct, by the Hippocratean method
of the two means, a stereometric solution to the duplication of the cube. Plato,
most probably under the false impression, that the anthyphairesis of a to b, in case
a3/b3 = 2/1, is periodic, criticized Archytas for not finding a solution that would
reveal this imagined periodicity.

1.2 Periodic Anthyphairesis

1.2.1 The Concept of Anthyphairesis

Let a, b be two natural numbers or magnitudes (e.g. line segments or volumes), with
a > b.We measure the great a with the small b, and we find how many small b’s are
needed to cover the large a. There are then a natural number k1, the quotient, and
c1, the remainder, such that

a = k1b + c1,with c1 < b.

This is the first step of the anhyphairesis of a to b. If c1 is zero, this is the end of the
process. Otherwise a new pair of great and small is formed, namely the pair b > c1.

Notice that the role of b is reversed: in the first step b is small, in the second step
b is great. We repeat the process. There are a natural number k2 and c2, such that

b = k2c1 + c2,with c2 < c1.
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We continue in this way:

c1 = k3c2 + c3,with c3 < c2,

. . .

cn = kn+2cn+1 + cn+2,with cn+2 < cn+1

. . .

Anthypharesis is the precursor of modern continued fractions.

1.2.2 Finite and Infinite Anthyphairesis

– If this process ends at some point (namely for some index n, cn is zero, hence
cn−2 = kncn−1), then the anthyphairesis of a to b is finite. This is always the case
if a, b are natural numbers, and the last non-zero remainder cn−1 is the greatest
common measure-divisor of a and b (Propositions VII.1 and 2 of the Elements).

– If this process does not end, then the anthyphairesis of a to b is infinite. This can
happen only if a and b are magnitudes. It is then proved that a and b do not have
any common measure, that a and b are incommensurable:

Proposition (Proposition X.2 of the Elements) If a, b are magnitudes, a > b, and
the anthyphairesis of a to b is infinite, then a and b are incommensurable.

Note that in this case there is an infinite, strictly decreasing sequence of remainders:

a > b > c1 > c2 > c3 > . . . > cn > cn+1 > . . . .

1.2.3 Periodic Anthyphairesis

The most important case of infinite anthyphairesis is the periodic one. An anthy-
phairesis is periodic if the sequence of quotients

k1, k2, k3, . . . , kn, kn+1, . . .

of natural numbers is a periodic sequence of numbers.
An anthyphairesis, not necessarily infinite a priori, is recognized as periodic

according to the following

‘Logos’ criterion If there is an index n such that a/b = cn/cn+1 then the
anthyphairesis of a to b is periodic.
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It then follows that

b/c1 = cn+1/cn+2,

c1/c2 = cn+2/cn+3,

. . . ,

and hence that the ratios of successive parts-remainders

a/b, b/c1, c1/c2, c2/c3, . . . , cn/cn+1, . . . .

is a periodic sequence of ratios.

1.2.4 Pythagorean & Theaetetean Incommensurabilities;
Theaetetus’ Anthyphairetic Theory of Ratios of Lines
Commensurable in Square

The great discovery by the Pythagoreans that made this theory possible was the
incommensurability of the diameter to the side of a square. Although the method
employed by the Pythagoreans is a contested topic in the History of Mathematics,
there is strong evidence that the Pythagoreans proved the incommensurability by
computing the anthyphairesis of the diameter to the side of a square, finding that
its sequence of quotients is [1, 2, 2, 2, . . .], thus infinite, and employing Proposition
X.2 of the Elements.

Proposition (Pythagoreans) If a, b are line segments such that b is the side of a
square and a is the diameter (or diagonal, as we now call it) of the square, then

(a) a2 = 2b2 (by the Pythagorean theorem),
(b) a = b + c1, b = 2c1 + c2, and b/c1 = c1/c2 (the Logos Criterion), and
(c) the anthyphairesis of the diameter a to the side b of the square is Anth(a, b) =

[1, 2, 2, 2, . . .] (infinite anthyphairesis),

hence (by Proposition X.2 of the Elements) a, b are incommensurable.

In favor of an anthyphairetic reconstruction we can mention

(a) the knowledge by the Pythagoreans of the side and diameter numbers, the
precursor of the convergents of square root of 2,

(b) the stories about Hippasus that involve his drowning into the sea, confused but
clearly symbolizing, according to Pappus, the infinite nature of incommensura-
bility, and

(c) the adoption of infinite and finite as the two basic principles of their philosophy;
the infinite was essentially the infinity of the anthyphairesis, and the finite the
preservation of the Gnomons, by which at a finite stage complete knowledge of
(the anthyphairesis of) the diameter to the side is achieved.
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(d) the fact that Zeno’s arguments and paradoxes are based on periodic anthyphaire-
sis and relate to the incommensurability of the diameter to the side of a square.

1.2.5 Theaetetean Incommensurabilities and Anthyphairesis

Later, according to the Theaetetus 147d-148b, Theodorus proved that if a2 = Nb2,
N a non-square number, and 3 ≤ N ≤ 17, then the anthyphairesis of a to b

is periodic; and, Theaetetus proved that if a2 = Nb2, and N is a non-square
number, then the anthyphairesis of a to b is palindromically periodic, and thus by
Preposition X.2 of the Elements, a and b are incommensurable. That the method
is indeed anthyphairetic has been established in Negrepontis [23], by analyzing
the philosophical imitation by Plato of Theaetetus’ mathematical discoveries in the
dialogues Sophistes and Politicus.

These discoveries greatly increased the class of incommensurable ratios and
prompted the need for a theory of ratios of magnitudes. As Aristotle informs us
in Topics 158b-159a, such a theory, based on the definition that

a/b = c/d iff Anth(a, b) = Anth(c, d),

was developed; and there should be no doubt that the creator of the theory was
Theaetetus. But what is not so well understood (cf. Knorr [14], Acerbi [2]), is that
Theaetetus’ theory was concerned not with general ratios but only with ratios whose
squares are commensurable, or in fact rational ratios with respect to a given line (in
the sense of Definition X.3 of the Elements). This can be seen from

(a) the fact that the anthyphairetic theory of ratios of magnitudes defined for all
magnitudes needs Eudoxus condition, but the anthyphairetic theory of ratios
of magnitudes defined for ratios commensurable in power only does not need
Eudoxus condition, because of the anthyphairetic periodicity of these ratios,
precisely by Theaetetus theorem on incommensurabilities,

(b) the fact that in the Theaetetean Book X of the Elements an “alogos” line
(literally, a line without ratio) is defined as one incommensurable in square
with respect to an assumed line (cf. Sect. 1.4.5), while, as can be proved, only
quadratic ratios are needed in Book X, and

(c) the Scholion In Euclidem X.2, which sharply criticizes Eudoxus’ general theory
and differentiates it from the earlier theory of ratios only for quadratic ratios.

A forthcoming publication by Negrepontis and Protopapas [27] will deal with this
subject.
Note. Since the Pythagoreans did not have a theory of ratios of magnitudes, the
Pythagorean formulation of this definition would be in terms not of ratios, but,
equivalently, in terms of square gnomons (appearing in Book II of the Elements).
By definition, the dyad diameter a, side b of a square is a true Platonic being, since
the condition b/c1 = c1/c2 is the Logos criterion for anthyphairetic periodicity.
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The modern concept, essentially equivalent to the ancient anthyphairesis, is
the continued fraction of a (positive) real number. The theory was developed
during sixteenth, seventeenth (Fermat, Wallis), eighteenth (Euler), and nineteenth
century (Lagrange, Galois, Gauss). Fowler [10], in his book on the Mathematics
in Plato’s Academy, brings out the connection between modern continued fractions
and ancient anthyphairesis.

1.3 The One of the Second Hypothesis in the Parmenides

The One of the second hypothesis in the Parmenides consists of a dyad, the
One and the Being, in (a philosophic analogue of) periodic anthyphairesis.
The dialectic meaning of Logos is the Logos criterion, the cause of periodic
anthyphairesis.

According to the paper [24] of the present author, it is shown in the Parmenides
142d9-144e3 that the One of the second hypothesis in the Parmenides consists
of two parts, the One and the Being, in a philosophic analogue of periodic
anthyphairesis. We outline in this Section the results of [24].

1.3.1 The Infinite Anthyphairesis of the Dyad One and Being

In the first part, 142d9-143a3, it is shown that the dyad One Being is in infinite
anthyphairetic division:

One = Being +One1, Being > One1,

Being = One1 + Being1,One1 > Being1,

. . .

Onen = Beingn +Onen+1, Beingn > Onen+1,

Beingn = Onen+1 + Beingn+1,Onen+1 > Beingn+1

. . .

Thus there is then an infinite multitude of remainders-parts of the anthyphairetic
division:

One > Being > One1 > Being1 > . . . > Onen > Beingn > . . .

1.3.2 The Logos Criterion and Anthyphairetic Periodicity

In the sequel, the passage 144c2-d4 is concerned with the presence of the One in
the Being, setting the dilemma whether the presence of the One in each part of the
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Being be the presence of a part of the One or of the whole One. It has similarities to
the passage 130e4-131e7 in the Introduction of the Parmenides, posing the question
(the dilemma of participation) whether the presence of the One, be as part or as
whole, in each of the sensible that participates in the One.

The presence as “whole” is rejected in both 144c-d and 130e-131e, but the
presence as “part” only in the 130e-131e. Because of this crucial difference, we
are led to conclude that the “part” leg of the dilemma must have been found
acceptable somewhere in the dialogue in between. And indeed the place discovered
is 138a3-7, where it is stated that the presence in question is realized by a circle of
“touchings” (“hapseis”). A “touching”, as explained in the passage 148d5-149d7,
occurs between parts of the dyad One, Being, successive in their order of generation,
and touchings generate numbers according to the formula

number of parts-units = touchings+ 1,

whose origin is clearly musical with terms-chords and musical intervals in place of
parts-units and touchings, respectively. This correspondence suggests the interpre-
tation that a “touching” in 138a3-7 is meant to be a ratio of consecutive parts. In
view of the earlier statement that the division of the One to Being is anthyphairetic,
this interpretation is tantamount to the statement that the anthyphairesis of One to
Being satisfies the “logos” criterion and thus, in analogy to the mathematics of
Sect. 1.2, finally the dyad One Being satisfies a philosophic analogue of periodic
anthyphairesis.

The interpretation is strengthened by the realization that the Philebus 15a1-c3
sets a whole-part dilemma precisely as in the Parmenides 144c2-d4, and that this is
followed by Philebus 15d4-5, a veritable replica of 138a3-7, with “logoi”-ratios in
place of touchings.

1.3.3 Equalisation of Parts, in Consequence of Periodicity

The equalization of the One with the Being now proceeds smoothly, in the passage
144d4-e3 as follows:

the number of parts of the One=logoi between successive parts (from One on)+1,

a finite number, since the “logoi” will be different till a complete circle-period of
ratios is achieved, and there will be no other ratios. The periodicity then implies that

the number of parts of the One=the number of parts of the Being,

on which equality the equalisation of One and Being rests.
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1.3.4 Introduction of True Number, in Consequence
of Equalisation

The equalisation of One and Being allows for the definition of a true number Two,
namely a Two with equal(ised) units. The premature explanation given in 143c1-d5
in terms of logos, now becomes fully understandable. This definition of the Platonic
number Two makes fully understandable the related comments by Aristotle in the
Metaphysics (1081a14-15, 1081a23-25, 1083b30-32, 1091a24-29).

Note also that the highest number generated in the One is the number of ratios
forming a complete period+1; no greater number can be formed. Thus a near
paradox occurs in the One of the second hypothesis in the Parmenides: the parts
of the One are infinite in multitude, while the parts of the One are finite in number.
We will come back to this feature of the One in Sect. 1.4.

1.3.5 The Self-Similar Property of One and Many

The two basic features of the One of the second hypothesis are summarized by the
statement that the One of the second hypothesis is both One and Many, in the sense
that

– the One is divided anthyphairetically into Many, in fact an infinite multitude of,
parts, and

– each part of the Many is equalized by the periodicity of the anthyphairesis, and
thus the One of the second hypothesis is indeed a One in the sense of self-
similarity, namely that each part is the same as the whole (144e8-145a2).

1.3.6 The One of the Second Hypothesis in the Parmenides
Is the Paradigmatical True Intelligible Being

The One of the second hypothesis is declared, in 155d3-6, to be a true intelligible
Being, a Platonic Idea. The One of the second hypothesis, although infinite in
structure is nevertheless fully knowable, possesses “episteme” 155d6, since full
knowledge of the One is achieved when a full period of the Logoi is completed.

1.3.7 The True Platonic Being Is Knowable by Name and
Logos, Equivalently by Division and Collection

Plato refers in 155d8-e1 to the One and Many by “Name and Logos”: by Name
the Division into Many (names) is meant, and by Logos, the logos criterion for the
periodicity in anthyphairesis is meant. Plato, by the expression “Name and Logos”,
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refers, in the Theaetetus 201d8-202c5 and the Sophistes 218b5-c5, to the method of
Division and Collection. Thus the One satisfies “Name and Logos”, and becomes
knowable, acquires “episteme”, by the method of, Division and Collection.

1.3.8 Properties of the One of the Second Hypothesis
of the Parmenides: It Has Beginning, Middle and End;
the Straight Line and the Circle Are Generated in It; It Is
in Motion and at Rest

Some consequences of One and Many are the following:

– The One has Beginning, Middle, End (145a4-b1), in the sense that the period of
the One has Beginning, Middle, and End.

– The two figures, the straight line and the circle, defined in 137e1-4, are generated
in the One (145b1-5).
The straight is generated in the One by the infinite division, the circle by the
anthyphairetic periodicity. The Platonic definition of the straight line and the
generation of the two figures in the One will be explained later, in Sect. 1.9.

– The One is in the other (“en alloi”), and thus in infinite motion (“aei kineisthai”),
and is in itself (“en heautoi”), and thus always at rest (“hestanai”) (145e7-146a8).
The One is in infinite motion by the Division, and is always at rest, because of
self-similarity. The motion and rest of the One will play an important role later
(Sects. 1.5 and 1.10.4).

1.4 The Dialectics of the Politeia Is Division
and Logos-Collection; True Being in the Politeia
Coincides with the One of the Second Hypothesis in the
Parmenides

We present here the considerable evidence that the dialectics in the Politeia is
Division and Collection, exactly as in the second hypothesis of the Parmenides.
This step is necessary, since we intend to apply our interpretation of the Parmenides
Division and Collection as periodic anthyphairesis, outlined in Sect. 1.3, to the
Politeia.12

12Most Platonists fail to associate the Politeia dialectics with Division and Collection. Stenzel [31]
had rejected the association, while Cornford [8] and Hare [12] do associate Politeia dialectics with
Division and Collection; but again do not have an anthyphairetic interpretation of Division and
Collection. Furthermore the anthyphairetic interpretation of Logos in the Parmenides, Sophistes-
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1.4.1 Division According to Kinds vs. Division According
to Name in the Politeia 454a4-9

owing to their inability to study the subject under consideration by dividing according to
kinds (“kat’ eide diairoumenoi”), but pursueing the opposition to each other by dividing
according to name itself (“kat’ auto to onoma”), in eristic, not dialectic manner (Politeia
454a4-9)

The dialectic method is described in Politeia 454a4-9 by “Division according
to kinds” (“kat’ eide diairoumenoi”), set in opposition to the eristic method,
which consists in proceeding with division according to name [only] (“kat’auto
to onoma”). Division according to kinds clearly refers to the method of Division
and Collection; in fact, in the Sophistes 252b1-6 and 253d1-e3, Politicus 285a7-
b6, Division and Collection is repeatedly described as Division according to kinds
(cf. Sect. 1.5). On the other hand, as we have seen, in the Theaetetus 201d8-202c5
and the Sophistes 218b5-c5, Division and Collection is equivalently described as
“not only Name, but Logos as well”. And in the Philebus 16c5-17a5, the dialectic
method of Division and Collection is opposed to the eristic method of Division only.

Thus in the present Politeia passage, dialectic Division and Collection is opposed
to eristic Division only.

1.4.2 Division and Logos in the Politeia

1.4.2.1 Dialectics as Knowledge of True Beings by Division into Kinds
and Logos in the Politeia 531d9-e6, 532a5-b3 and d8-e3

For you surely do not suppose that experts in these matters are dialecticians (‘dialektikoi’)?
‘No, by Zeus,’ he said, ‘except a very few whom I have met.’ “But have you ever supposed,’
I said, ‘that men who could not give and receive logos (“dounai te kai apodexasthai logon”,
531e4-5) would ever know (“eisesthai”) anything of the things we say must be known
(“hon. . . dein eidenai”, 531e5)?’ ‘No’ is surely the answer to that too. (531d9-e6)

In like manner, when anyone by dialectics (“dialegesthai”) attempts by means of logos (“dia
tou logou”, 532a6-7) and apart from all perceptions of sense to find his way (“horman”) to
the true essence of each thing and does not desist till (“me apostei prin”13) he apprehends by
thought itself the nature of the good in itself, he arrives at the end (“telei”) of the intelligible.
(532a5-b3)
Tell me, then, what is the nature of this faculty of dialectic (“tou dialegesthai”) ? Into what
kinds has it been divided (“kata poia eide diesteken”)? And what are its roads (“hodoi”)?
For it is these, it seems, that would bring us to the place where we may, so to speak, rest
on the road (“hodou”) and then come to the end (“telos”) of our journeying (“poreias”).
(532d8-e3).

Politicus and Politeia passages has not, to the best of my knowledge, been considered by any
modern student of Plato.
13Cf. “he must not desist till (‘me proaphistasthai prin’, 285b1-2)” in the description of Division
and Collection in the Politicus 285a4-b6.
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From these two passages it follows that the knowledge of the intelligible Beings is achieved
by Division into Kinds and Logos.

1.4.2.2 Division and Logos in the Politeia 534b3-d2

And do you not also give the name dialectician to the man who is able to receive the essential
logos (“ton logon lambanonta”, 534b3) of each true Being? And will you not say that the
one who is unable to do this, in so far as he is incapable of rendering logos (“logon didona”,
534b5) to himself and others, does not possess intelligence about the matter?

“How could I say that he does?” he replied. “And is not this true of the Good likewise14–
that the man who is unable to define by means of logos (“diorisasthai toi logoi”, 534b9) and
subtracting from all other things (“apo ton alon panton aphelion”) the idea of the Good,
and who cannot, as it were in battle (“en machei”), running the gauntlet of all tests (“dia
panton elegchon diexion”), and striving to test everything (“prothumoumenos elegchein”)
by essential reality and not by opinion, hold on his way through all this unwaveringly (“en
pasi toutois aptoti diaporeuetai”) by means of logos (“toi logoi”, 534c3)—the man who
lacks this power, you will say, does not really know (“eidenai”, 534c4) the good itself or
any particular good” (534b3-d2)

Thus knowledge of every idea, and of the idea of the good in particular, is
obtained by subtracting the idea from all other things as if in battle, and holding
on unwaveringly to logos.

Unmistakenly this is a description of obtaining knowledge by Division and
Collection. The following table shows the great emphasis given in the passages
shown (examined in Sect. 1.4.2) in the Logos and the resulting obtainment of
knowledge of the true Being:

passage Logos knowledge

531d9-e6 531e4-5 531e5

532a5-b3 532a6-7

533b6-c3

534b3-d2
534b3, 534b5, 534b9,

534c3
534b9, 534c4

The passages should be compared with similar descriptions of Division and
Collection in the Sophistes and the Politicus.

14In this passage the idea of the Good is, like any other true Being (“hosautos”), knowable by
the method of Division and Collection. It is then difficult to reconcile its description as “epekeina
ousias”, beyond Being, in the Politeia 509b. Perhaps Plato regarded, apparently only in the Politeia,
the Idea of the Good as the supreme true Being, in the senses of an intelligible analogue of
the “apokatastatikos arithmos” for the visible universe, according to which there is a periodic
restoration of the cosmic cycle (cf. Proclus, Eis Politeian 2, 15–19): when the (anthyphairetic)
period of the Idea of the Good is completed, then the (anthyphairetic) period of every true Being
will be completed as well, and there will be universal restoration.
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let us divide in two (“schizontes dichei”) the genus (“genos”) we have taken up for
discussion, and proceed always by way of the right-hand part of the thing divided (“meros
tou tmethentos”), clinging close to the company to which the sophist belongs, until, having
subtracted him of all the common kinds (“ta koina panta”) and left him only his own
(“oikeian”) nature, we shall show him plainly first to ourselves and secondly to those who
are most closely akin to the dialectic method. (Sophistes 264d10-265a1)
Where, then, shall we find the statesman’s path? For we must find it, and, subtracting
(“aphelontas”) it from the others (“apo ton allon”), imprint upon it the seal of a single
class (Politicus 258c1-3)
It is a very fine thing to separate (“diachorizein”) the object of our search (“to zetoumenon”)
at once from the others (“apo ton allon”), if the separation can be made correctly (Politicus
262b2-3)
subtracting (“aphairountes”) the Hellenic genus as one from all the others (“apo pan-
ton”) (262d2-3)
cutting (“apotemnomenos”) a myriad from all the others (“apo panton”), separating
(“apochorizon”) as one kind (262d7-e1)
We suspected a little while ago that although we might be outlining a sort of kingly shape
we had not yet perfected an accurate portrait of the statesman, and could not do so until, by
removing (“perielontes”) those who crowd about him and contend with him for a share in
his herdsmanship, we separated (“chorisantes”) him from them (“ap’ ekeinon”) and made
him stand forth alone and uncontaminated.(Politicus 268c5-10)
“A person might think that the definition of the art of weaving (“huphantiken”) was
adequate, not being able to realise that, although it has been separated (“apemeristhe”) from
many other kindred arts, nevertheless it has not yet been distinguished (“oupo dioristai”)
from the closely co–operative arts.” (Politicus 280a8-b3)
“We shall certainly be undertaking a hard task in separating (“apochorizontes”) this genus
(“genos”) from (“apo”) the others (“ton allon”) (Politicus 287d6-7)

1.4.3 Collection in One in the Politeia 531c9-d4, 537b8-c8

1.4.3.1 Politeia 531c9-d4

In 531c9-d4 it is stated that “if the investigation of all these studies goes far enough
to bring out their community (“koinonia”) and kinship (“suggeneia”) with one
another, and to infer their affinities (“oikeia”), then to busy ourselves with them
contributes to our reaching the desired end, and the labor taken is not lost; but
otherwise it is vain.”

1.4.3.2 Politeia 537b8-c8

In 537b8-c8 it is stated that “they will be required to collect (“sunakteon”) the
studies which as children in their former education they pursued in a disordered
manner (“cheden”) into a comprehensive survey (“sunopsin”) of their affinities
(“oikeiotetos”) with one another and with the nature of things.”. . . “And it is also,”
said I, “the chief test of the dialectical nature and its opposite. For he who can view
things comprehensively (“sunoptikos”) is a dialectician; he who cannot, is not.”
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It is clear that both statements refer to the Collection of the Many into One.
In the 537b8-c8 passage, “chuden” is contrasted with Collection; in the Phaedrus
264b3-c5, “chuden” is contrasted with the existence of middle and extremes—a
consequence, as we saw (in Sect. 1.4), in the second hypothesis of the Parmenides,
of Collection (Parmenides 145a8-b1). The Collection is described in the Sophistes
253d5-e7, Politicus 285a7-b6 in terms of “koinonein”, in Politicus 285a7-b6
in terms of “oikeia”, in Politicus 308c6, 311a1, Phaedrus 266b4 in terms of
“sunagoge”.

1.4.4 Politeia 533c3-6: The True Being Has Beginning,
Middle, and End

The part 533c3-6 of the crucial passage 533b6-d3 (which will be discussed as a
whole in Sect. 1.9) shows that the true Being of the Politeia has Beginning, Middle,
and End, as the One of the second hypothesis in the Parmenides 145a8-b1.15

“For where the beginning (“arche”) is something that the geometer does not know, and the
end (“teleute”) and all that is in between (“metaxu”) is interwoven (“sumpeplektai”) is not
truly known, what possibility is there that assent in such practice can ever become true
knowledge (“episteme”)?” “None,” said he. (533c3-6)

As we saw in Sect. 1.3, this statement was a consequence of the Division and
Collection, expressing the anthyphairetic periodicity. The passage connects the
presence of Beginning, Middle, and End of the true Being, essentially a restatement
of anthyphairetic periodicity, with knowledge of this Being.

1.4.5 Geometric Irrational Lines vs. Dialectic Logos in 534d3-7

“But, surely,” said I, “if you should ever nurture in fact your children whom you are now
nurturing and educating in logos (“toi logoi”), you would not suffer them, I presume, to
hold rule in the state, and determine the greatest matters, being themselves as irrational
(“alogous”) as the lines (“grammas”), so called in geometry.” “Why, no,” he said. (534d3-7)

This is, not just a silly linguistic quip, as some Platonists think but, a quite
revealing passage that contrasts the philosophic ‘logos’ to the geometric “alogoi”
lines. According to the definition, which is due to Theaetetus and appears in Book X
of the Elements, a line a is “alogos” (literally, “ratio–less”) with respect to a given
(“protetheisa”) line b if a2 and b2 are incommensurable. This terminology strongly
suggests that the pre-Eudoxian, and almost certainly Theaetetean, theory of ratios,
reported by Aristotle in Topics 158b–159a, was limited to rational lines only (cf.
Sect. 1.2.5). In the dialogue Theaetetus, Theaetetus, upon hearing the lesson on
quadratic incommesnsurabilities by Theodorus, had the idea and in fact succeeded in

15Cf. the comment in Sect. 1.8.3.2 about the Phaedrus 264b3-c5 passage.
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proving the following quite substantial proposition: if two lines a, b, a > b, satisfy
the condition

〈a/b incommensurable, a2/b2 commensurable〉,

commensurability in power only for short, then the anthyphairesis of a to b is
periodic, and in fact palindromically periodic (cf. Sect. 1.2.3). The comments of
the anonymous Scholion In Euclidem X.2 are revealing.

In the subsequent two dialogues, Sophistes and Politicus, on the Platonic trilogy
on Division and Collection and episteme (knowledge of true Beings) Plato is imitat-
ing Theaetetus’ mathematical theory to dialectics. The imitation may be described
briefly as follows: the philosophic analogue of a pair of lines a,b commensurable in
power only is a Platonic Idea; the philosophic analogue of periodic anthyphairesis
is the Platonic method of Division and Collection; and, the philosophic analogue
of Theaetetus’ proposition stating that a commensurable in power only pair of lines
possesses periodic anthyphairesis is the fundamental statement in Platonic dialectics
that a Platonic Idea possesses, and becomes knowable by Division and Collection.
In fact the structure of the Politicus, coupled with the contents of Book X, leaves
no doubt that Theaetetus had in fact proved not only periodicity but palindromic
periodicity. We can now appreciate the contrast between philosophic dialectic logos
and the geometric “alogos” lines. An “alogos” line is outside the realm of known
anthyphairetic periodicity, and thus outside the geometry on which the Platonic
method of Division and Collection is based, and is thus to be avoided, and not to be
allowed that these “alogos” lines take control of the city (“ouk easai archontas en
tei polei kurious ton megiston einai”).

1.5 The Dialectic Meaning of “Hypothesis” in the Division
and Collection of the Sophistes and Politicus. In the
Abbreviated Form of the Division, the Parts-Genera Are
Called “Hypotheses”

1.5.1 Division and Collection in the Sophistes and Politicus

The method of Division and Collection is the exclusive topic of the Platonic trilogy
Theaetetus-Sophistes-Politicus. A study of these dialogues provides an independent
confirmation that Division and Collection is a philosophic analogue of periodic
anthyphairesis (cf. Negrepontis [22, 23], where older references by the author
can be found). There is an interesting difference between the way a philosophic
anthyphairesis is described in the Parmenides and in the Sophistes-Politicus. In the
Parmenides 142d-143a all the steps of the anthyphairesis are given (say

B = a + b, a = b + a1, b = a1 + b1, a1 = b1 + a2, b1 = a2 + b2, and so on,
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till the Logos criterion a/b = ak/bk for some stage k) (cf. Sect. 1.3), but in the
Sophistes-Politicus, the anthyphairesis appears in abbreviated, tree-like form (say

B = a + b, b = a1 + b1, b1 = a2 + b2, and so on,

till the Logos criterion a/b = ak/bk for some stage k).

1.5.2 Example: The Division and Collection of the Platonic
Being 〈the Angler〉 (Sophistes 218b-221c)

1.5.2.1 Division

In this Definition there are ten clearly described division steps (D1-D10); these are
always binary divisions of a genus into two species opposite to each other, and in the
immediately next step the one of these two species, which contains the final, under
definition species of the art of Angling, is considered itself as the new genus and is
further defined as before. These ten steps are summarized in a table as follows:

Table. Division and Collection for the Angler

1.5.2.2 Collection

Collection is achieved by Logos. In order to understand Logos, we must consider
carefully Plato’s comments for the Division steps D7 and D10.
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These are his comments for step D10:

Plato’s first comment for division step D10
[220e3]
that part

which proceeds
downward

from above,
because
tridents

are chiefly used in it,
tridentry,
I suppose

[221a2]
proceeds in opposition

from below
upwards,

being pulled up by twigs and rods

Plato’s second comment for division step D10
[221b7]
the part
in which

the blow is pulled
from below

upwards
at an angle

It is clear, from the two comments of Plato for the division step D10, that the
opposing species of tridentry and angling are described in a satisfactory way by the
ratio from above downward to from below upwards. Schematically

tridentry/angling = from above downward barb-hunting/from below upwards
barb-hunting.
Here are Plato’s comment for step D7:

Plato’s comment for division step D7
[221b5]
that part

which proceeds
from below

was
fishing

It is clear, from Plato’s comment for the division step D7, that the opposing
species of fowling and fishing are described in a satisfactory way by the ratio from
above downward to from below upwards. Schematically

fowling/fishing = from above downward water-animal hunting/from below up-
wards water-animal hunting.
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The transitivity relation for the equality of ratios now implies that
tridentry/angling = fowling/fishing

clearly a philosophic version of the Logos Criterion for periodic anthyphairesis!

1.5.3 The Very Abbreviated Genus-Species Scheme of Division
and Collection

The Division, as perceived by the soul, consists in the Abbreviated scheme,
omitting, as mentioned in Sect. 1.5.1, the even-numbered steps, a scheme still rich
enough to preserve intact the process of finding the Logos and thus achieving
Collection.

Plato however presents a still further abbreviated form of the Division consisting
in restricting attention only in the right-hand side of the given Division, going only
from the genus to that species which will be further divided. Let us call this scheme
the Very Abbreviated Genus-Species scheme of the Division and Collection. Thus
for the Angler the Very Abbreviated Genus-Species scheme is the following:

of the art
as a whole half
was acquisitive,
and of the acquisitive half was coersive,
and of the coercive half was hunting,
and of hunting half was animal hunting,
and of animal hunting half was half was water hunting,
and of water hunting [half] was fishing,
and of fishing half was striking,
and of striking half was barb-hunting,
and of barb-hunting [half] was angling. (Sophistes 221a7-c3)

A similar Very Abbreviated Genus-Species scheme has been given for the
Sophist (Sophistes 268c5-d5).

Three basic things should be noted about the Very Abbreviated Genus-Species
scheme:

(a) each entity in the Very Abbreviated scheme plays the role of a Genus to the
immediately next entity which lays the role of a Species, hence each step
is like a logical consequent followed by a logical antecedent; for example,
in the case of the scheme for the Angler, a Genus-consequent is the art of
hunting, the immediately next entity, the Species-antecedent, is the art of animal
hunting, and, indeed, every “animal hunting”, is certainly a “hunting”. Hence
every movement from an entity in the Very Abbreviated scheme is an inverse
implication, while the inverse scheme is a chain of logical implications, and,
thus, has the structure of a mathematical proof;

(b) the scheme is however something more that just the counter of a sequence of
logical implications, since the steps in it, being determined by the Division
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process of a Platonic Being (the Angler in this case), are in natural order and
succession; and,

(c) the Logos, present in the Abbreviated Division scheme, is lost in this scheme,
since the successive difference of each genus or species is missing, and so the
Very Abbreviated Genus-Species scheme does not have, by itself, the power to
provide true knowledge, but, with proper dialectical ingenuity and heuristics,
logos and knowledge may be recaptured.

The Very Abbreviated Genus-Species scheme plays a fundamental role in our
Platonic-anthyphairetic interpretation of Analysis and Synthesis (cf. Sect. 1.6.3,
1.10.4, 1.10.5) and in the Platonic generation of the straight line in Zeno-like fashion
(cf. Sect. 1.10.2).

1.5.4 The Parts Generated in the Division and Collection in the
Sophistes and Politicus Are Called and Treated as
Hypotheses

There are two distinct advantages in presenting the abbreviated, tree-like form of
Division and Collection, of which one is the following16: it makes Division appear
a process very similar to Analysis, as practiced by the geometers.

In fact, starting with genus G, in analysis fashion, we regard it as hypothesis
and look for a higher hypothesis from which G will follow; we divide G into a
and b, and then we decide that of a, b, the suitable higher hypothesis is b, and so
on, till we reach something known, in this case the Logos criterion that turns the
hypothesis into a true intelligible Being, in quite the same way that geometrical
Analysis, such as the one described by Pappus in the Collection, is a process
proceeding from hypotheses to higher hypotheses, till we reach something known
to be (mathematically) true.

We will return to this point in Sect. 1.6.2 in connection with passage 511b3-c2.
We should not be surprised, then, to find that the parts-species in every step of the
Divisions in the Sophistes-Politicus are presented as hypotheses (with words such
as “thesomen”, “theteon”, etc.). Exactly in this sense, in every Division step of the
method of Division and Collection, what is being divided is always a hypothesis.

Here is a reasonably complete, but not exhaustive, list of the use of hypothesis in
connection with the examples of Division and Collection.

1.5.4.1 Parts of the Division as Hypotheses in the Sophistes

shall we “thesomen” the angler as a man with an art or without an art (219a4-6)
in which species, acquisitive or productive, shall we “tithomen” the angler? (219d1-3)

16The second advantage of the abbreviated, tree-like Division will be discussed in Sect. 1.10.2 in
connection with the generation of the intelligible line.
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“thentas” the open species–part fighting and the secret one hunting (219e1-2)
which of the two is it “theteon” that the angler is just a man or a man with an art?, shall
we “thesomen” that he is just a man or a sophist?, which art will it be “theteon” that he
possesses? (221c-d)
but “thes” whatever you like, either “titheis” that there is no tame animal,. . . or (222b2–c2)
“tithentas” one species the competitive and the other the pugnacious (225a2–6)
“tithemenous” one species of the pugnacious violent (225a8–b2)
controversy “theteon” into two species (225b3–11)
that part of argumentation, which deals with business contracts. . . but carried on informally
and without rules of art “theteon” a separate species (225b12–c10)
“themena”, “theteon”, “theteon” (227d13-228e5)
the sophist “theteon” in the species of juggler and imitator (235a)
I was uncertain in which of the two species, the likeness–making and the fantastic, the
sophist “theteon” (236c-d)
to which of the two species, the likeness–making and the fantastic should we “thesomen”
the sophist? (264c)
but I “theso” the species of things made by divine art and the species of things mad by
human art) (265e)
I “tithemi” two species of production, each of which is twofold (266d)
and what division can we “thesomen” greater than that which separates knowledge and
ignorance? (267b)
shall we “thesomen” one species the simple imitator and the other the dissembling imitator?
(268a)
we “ethemen” the sophist in the ignorant species (268b-c).

1.5.4.2 Parts of the Division as Hypotheses in the Politicus

“theteon” him also among those who have a science, or not? (258b4)
“thesomen” that the statesman, king, master, and householder too, for that matter, are all
one, to be grouped under one title, or shall we say that there are as many arts as names?
(258e9)
Now to which of these two classes is the kingly man “theteon”? “thesomen” him to the art
of judging, as a kind of spectator, or rather to the art of commanding, inasmuch as he is a
ruler? (260c1–3)
“thentes” kings to the science of giving orders of one’s own, disregarding all the rest and
leaving to someone else the task of “thesthai” a name ? (260d11–e8)
“themenos” one name to all the rest (262e1)
“thomen” him out alone as herdsman and tender of the human herd, while countless others
dispute his claim? (268b8–c3)
Well then, “thomen” the whole arts of fulling and mending be no part of the care and
treatment of clothes, or shall we declare that these also are entirely included in the art of
weaving? (281b5)
Will our definition of the art of weaving (I mean the part of it we selected) be satisfactory
if we “tithomen” all the activities connected with woollen clothing be the noblest and the
greatest? (281d1)
Just as in the previous case, you know, “etithemen’ all the arts which furnished tools for
weaving as contingent causes (287c6)
For all the arts furnish any implement, great or small, for the state, “theteon” as contingent
causes; for without them neither state nor statesmanship could ever exist, and yet I do not
suppose “thesomen” any of them as the work of the kingly art. (287d1-4)
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And shall we not “thesomen” a sixth class of that which furnishes to all these the materials
of which and in which all the arts we have mentioned fashion their works, a very various
class, the offspring of many other arts? (288d4-5)
And property in food and all the things which, mingling parts of themselves with parts of
the body, have any function of keeping it in health, we may say is the seventh class, and
we “thesthai” it collectively our nourishment, unless we have some better name to give it.
(288e8-289a3)
All this “hupotithentes” to the arts of husbandry, hunting, gymnastics, medicine, and
cooking more properly than to that of statesmanship (289a3-5)
there was the primary possession, which ought in justice to “tethen” first, and after this the
instrument, receptacle, vehicle, defence, plaything, nourishment (289a9-b2)
but to the rule of the many “etithemen” then only a single name, democracy; now, however,
that “theteon” divided (302d3-5)
We, then, not “thesomen” the art of the generals statesmanship, since it is subservient
(305a8)
Among all the parts we must look for those which we call excellent but “tithemen” in two
opposite classes. (306c7-8)

Consequently, we will have no difficulty to accept the divisibility of hypotheses
in the context of Division and Collection of an intelligible Being.

1.6 Politeia 510b6-9, 511b3-c2, 533c7-d3: The
Ascent-Analysis from the Divisible Hypotheses to the
Indivisible “anhupotheton” Coincides with the Method of
Division and Collection

Our next step, after it has been shown that Politeia dialectics is Division and
Collection, is to show (making use of the fact, noted in Sect. 1.5, that the “parts”—
genera, generated in the steps of the abbreviated form of Division, in the Sophistes
and Politicus, are called there “hypotheses”) that the ascent from the hypotheses to
the “anhupotheton” is just another description of Division and Logos-Collection.
We will examine three passages: Politeia 510b6-9, 511b3-c2, and the most crucial
533c7-d3.

1.6.1 Politeia 510b6-9

“while there is another section in which it advances from an assumption (“ex hupotheseos”)
to a beginning or principle that transcends assumption (“ep’ archen anhuotheton”), and
in which it makes no use of the images employed by the other section, relying on
ideas (“autois eidesi”) only and progressing systematically through ideas (“di’ auton”).”
(510b6-9)

This passage introduces the unfamiliar term “anhupotheton”—hypotheses-free.
The intelligible proceeds from hypotheses to the hypothesis free, without any
recourse to sensible images, but by means of kinds. It is reasonable to assume, by
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Sects. 1.3, 1.4 and 1.5, that the intelligible hypotheses are the parts-genera of the
true Being.

1.6.2 Politeia 511b3-c2

“Understand then,” said I, “that by the other section of the intelligible I mean that which
Logos itself (“autos o logos”) is in contact with (“haptetai”) the power of dialectics (“di-
alegesthai”), treating its hypotheses not as beginnings (“archas”) but truly as hypotheses,
footings (“epibaseis”), and springboards (“hormas”) so to speak, to enable it to rise
to the “anhupotheton”, which is the beginning (“archen”) of the all, achieving contact
(“hapsamenos”) with it (511b3-7)
again (“palin”) having as parts the parts of it [the beginning], so to proceed downward
(“katabainei”)
to the end (“epi teleuten”),
making no use whatever of but only of pure ideas moving on through kinds (“eidesi autois”)
to kinds (“eis auta”) and ending with kinds (“teleuta eis eide”).” (511b7-c2)

This is an important and difficult passage; it consists of two parts. The first part
(511b3-7) is a repetition of the first passage (510b6-9), but with the addition that it
is “Logos itself” that treats the hypotheses-parts in such way that they ascend to the
“anhupotheton”. This strongly suggests that Plato is talking here about Division and
Collection, and that anhupothteton is just another name for the intelligible Platonic
being, and the One of the second hypothesis (Parmenides 145a8-b1).

The second part (511b7-c2) is still about the Logos. The Logos starting now
from the beginning principle and proceeding in a purely intelligible manner, from
kinds through kinds comes to the end. Thus Logos starts from the beginning, passes
through the middle, and comes to the end. This is the beginning–middle–end of a
full anthyphairetic period, a basic feature of the One of the second hypothesis.

This interpretation of the ascension of hypotheses to the anhupotheton, by means
of Logos identifies it with Division and Collection.

1.6.3 Politeia 533c7-d3

The most crucial passage concerning the dialectics in the Politeia is passage 533c7-
d3

“Then,” said I, “is not dialectics the only process of inquiry that advances in this manner,
“anairousa”17 the hypotheses, towards the principle itself in order to find confirmation
there? And it is literally true that when the eye of the soul is sunk in the barbaric slough,
dialectic gently draws it forth and leads it up (“anagei ano”).” (533c7-d3)

We proceed to an interpretation of passage 533c7-d3

17We leave this crucial term untranslated for the moment, yet uncommitted as to its meaning, and
discuss it below in this section.
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1.6.3.1 “tas hupotheseis anairousa”, 533c8: “anairesis” Is Used with the
Meaning of “Division” in Kinds by Aristotle and Commentators
and in Two Significant Passages by Proclus

Robinson [29, pp. 166–167] offered this explanation for “anairousa”:

And what is “destroying” hypotheses? The latter question is so difficult that many readers
take the text for unsound, and emend. . . .What could dialectic possibly destroy with regard
to all hypotheses? Why, precisely their hypothetical character, of course.

Robinson’s interpretation was adopted by Annas [3, p.287]:

Dialectic proceeds by “destroying the hypotheses”. We have seen that this means destroying
their hypothetical nature,

and reached the status of a consensus by Mueller [19, p.188]:

Some later Platonists used this passage to belittle mathematics, and modern scholars have
debated what Socrates could have in mind by destroying the hypotheses of mathematics. I
think it is fair to say that there is now consensus that the only destruction Socrates has in
mind is the destruction of the hypothetical character of mathematical hypotheses through
subsumption under an unhypothetical starting point.

There has not been much progress since Robinson. In a recent work on the
Politeia, Benson [5, Footnote 61, p. 256], writes:

I here follow what Mueller (1992, 188) calls the “consensus that the only destruction
Socrates has in mind is the destruction of the hypothetical character of mathematical
hypotheses through subsumption under an unhypothetical starting point.” See also, e.g.,
Robinson (1953, 161) and Annas (1981, 278). Against the consensus, see, e.g. McLarty
(2005,128-29). Most recently, Bailey (2006, 125) offers a reading in keeping with the
consensus but which avoids reading “anairousa” as “destroying.”

Reeve [28, p. 219]:

Dialectic thus becomes the philosopher’s peculiar craft or science, since it is “the only
method of inquiry that, doing away with hypotheses, journeys to the first principle itself in
order to be made secure” (533c8–d1).

But in fact a good meaning of “anairesis” is subtraction-“division” (in kinds),
as the following passages indicate. We start with some passages by Aristotle and
Commentators.

“diairesin e anairesin” (Aristotle’s Sophistici Elenchi 183a11, 11-12),
“anairesin”. . . ”touto hos ephermeneutikon tes diaireseos” (Scholia in Aristotelis Sophisti-
cos Elenchos 33),
“hen anairesin autos diairesin ekalesen” (Ammonius, Aristotelis librum de interpretatione
commentaries 27,1),
“antanairesis” (Aristotle, Topics 158b33; Alexander, In Topics 545,17)

We note that here, the term used, “antanairesis” was the earlier name for
“anthyphairesis”, and thus “anairesis” here had the same force as “huphairesis”,
subtraction.
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We continue with two Proclus passages:

Persephone has that name . . . because of dividing the kinds (“dia to diakrinein ta eide”)
and separating them from each other (“chorizein allelon”), since “phonos” hints at
(“ainittomenou”) “anairesis”, . . . (Proclus, Commentary to Cratulus 173,1-5).

The explanation of this revealing Proclus passage is as follows:
Plato, in the Cratulus 404c7-d1, tells us that the name of the godess Phersphone

is fearful (“deinon”), at the same time showing that the goddess is wise (“sophen”).
It is simple enough to understand why the name was a cause of fear to the people:
the second part “phone” of the name “Persephone” is directly related to “phonos”,
meaning murder and death.

It is less clear why the name of “Persephone” shows that she is wise. Proclus
gives a number of explanations, of which one is imaginative: we continue with
“phonos”; the word “phonos” is hinting at the (more general) word “anairesis”, a
meaning of which is an action causing death, slaying, putting to death, practically
synonymous with “phonos”.

But now Proclus considers another meaning of “anairesis”, namely ‘diairesis’,
and the most wise “diairesis” is the Platonic “diairesis kat’ eide”, another name for
Division and Collection. Thus Persephone, being an expert in philosophical Division
and Collection, is wise. But even if a meaning of “anairesis” is division, why do we
end up being reminded of “division in kinds”? The only place, where Plato might
associate “anairesis” with Division and Collection, is at the Politeia 533c8, “tas
hupotheseis anairousa”. It is then clear that Proclus regards

– the word “anairesis” as a word that can serve as a description of the method of
Division in kinds, and

– the phrase “tas hupotheseis anairousa”, 533c8, as a phrase describing “Division
of hypotheses”.

A second is the method of diairesis (“diairetike”), dividing (“diairousa”) into its natural
parts (“kat’ arthra”) the genus (“genos”) proposed, and which [method of diairesis ]
provides a starting point (“aphormen”) for the demonstration (“tei apodeixei”) of the
construction (“tes kataskeues”)
of the proposed [genus] by means of the division (“anaireseos”) of the other [genera]
(Proclus, In Euclidem 211, 23–27).

Thus, the method of Division according to species, to be exact according to
“arthra”, by dividing the given genus, provides a starting point (“aphormen”) for
the proof of the construction of the initial Genus, by the “anairesis” of the other
(genera). Here “anairesis” of a genus has again the meaning of “division” of this
genus. But the claim that this division of the genera provides a starting point for
the demonstration of the construction of the initial genus is not clear and requires
explanation.

Proclus here, clearly, adopts the abbreviated tree-like form of the Division and
Collection:

B = a + b, b = a1 + b1, b1 = a2 + b2, and so on,
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till the Logos criterion a/b = ak/bk for some stage k.
The Logos turns the hypothesis bk into something true, given, since it is a part in

a true Being (remember that a true Being is a philosophic periodic anthyphairesis),
and thus forms the starting point for the demonstration of the construction of the
initial genus G.

The demonstration of the construction of the initial genus G runs as follows:
bk is true, given. But bk obviously implies bk−1, since the part-hypothesis bk−1

is a greater part than bk−1, and thus bk−1 is true, given, too.
Continuing in this way, we conclude that the genus G is true, given, and

constructed. Of course the demonstration:

bk given; if bk given, then bk−1 given; hence bk−1 given; . . . , hence G given,

is the synthesis of the analysis that results from the abbreviated Division in kinds:
let G be a hypothesis;

b1 is a higher hypothesis, from which G follows;

b2 is a higher hypothesis from which b1 follows;
. . .

bk, because of the Logos Criterion, is no longer a hypothesis,

but something true and given, an “anhupotheton”.

Thus there is in every intelligible Being, intelligible analysis and intelligible
synthesis. In this way Plato is able to subsume the mathematical method of proof
from an antecedent to a consequent, and the mathematical method of analysis and
synthesis within the context of the dialectical method of the (abbreviated, tree–like)
diaeresis-division in an intelligible Being.

As we saw, in Sect. 1.6.2, this analysis and ascent is the content of the Politeia
511b3-c2 passage.

Cherniss [12, p. 418, Footnote 54], accepts the divisive meaning of “anaireseos”
in Proclus, In Euclidem, pp. 211, 23–27, and interprets it as referring “to the
separating-off” of the privative term in dichotomy, in agreement with our inter-
pretation. But Cherniss’ footnote is continued in relation to the appearance of the
expression “tas hupotheseis anairousa” in the Politeia 533c8, and will return to it
later, in Sect. 1.6.3.4.
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1.6.3.2 “tas hupotheseis anairousa”, 533c8: Is in Opposition of “tas
hupotheseis akinetous”, 533c2, Indicating Intelligible Motion
and Division of the Hypotheses

Hypotheses, as practiced in Mathematics (geometry, arithmetic), cannot achieve true
knowledge (“episteme”), because the geometers use hypotheses in the wrong way:

they keep the hypotheses unmoved,
and being unmoved these hypotheses cannot be provided with logos;
and because the hypotheses have not been provided with logos,
they do not form a true Being,
and the knowledge attained does not have beginning, middle, end,
and is thus not true knowledge.

By contrast the dialectic method is the only one that proceeds by “anairousa” the
hypotheses (533c8), towards the first principle and true being.

The crucial word here is “anairousa”. It is clear that “hypoheseis anairoumenai”,
is in contrast, in opposition to “hypotheseis akinetous”, hypotheses unmoved, and
thus “anairousa” must carry a meaning of motion, in fact intelligible motion. Thus it
is natural to believe that “anairesis” is not a destruction but a motion of hypotheses.
Now we have seen, in Sect. 1.3, that intelligible motion is in terms of the Division;
and thus “anairousa” should be rendered in terms of division.

Thus from the two possible meanings, “dividing” vs. “destroying”, of
“anairousa”, preferable is “dividing” them.

1.6.3.3 “tas hupotheseis anairousa”, 533c8: In Agreement with “tas
hupotheses dielete” in the Phaedo 107b7

We finally examine two key passages in the Phaedo, closely related to the Politeia
533b6-d3.

and when you had to give “logos” of the hypothesis, you would give it in the same way
by hypothesizing some other hypothesis which of the higher ones (“ton anothen”) seemed
best, and so on until you reached something adequate (“hikanon”). (Phaedo 101d5-e1)
the first hypotheses ought to be more carefully examined, even though they seem to you to
be certain. And if you divide them (“autas . . . dielete”) sufficiently (“hikanos”) you will, as
it seems to me, follow by “logos”, so far as it is possible for man to do so. And if this is
made clear (“saphes”), you will seek no farther. (Phaedo 107b5-9)

It is clear that both of these passages are about ascent, to something “adequate”
in the Phaedo, to the “anhupotheton” in the Politeia.18

In the first passage we go to higher and higher hypotheses, till we achieve
something adequate, in the second we divide the hypotheses till we achieve the

18Proclus, In Parmeniden 622,29-623,28 and 655,16-656,2, clearly identifies “hikanon” and
“anhupotheton”. “hikanos” in the Sophistes 221b2 also fits perfectly (cf. Sect. 1.5.2).
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adequate; so it seems that we go from a hypothesis to a higher hypothesis, by
division of the initial hypothesis in two, and from these two we choose the suitable,
best one.

But the first passage also sets as the purpose of the procedure to give “logos”
to the initial hypothesis, while the second also mentions the attainment of “logos”.
Thus we aim to divide the hypotheses, till we reach something adequate, at which
point we will presumably have succeeded in giving “logos” to the hypothesis.
The description can be described succinctly as Division and Logos, and is thus
essentially a description of the method of Division and Collection, but where the
parts of the indefinite dyad undergoing Division and Collection are now called
“hypotheses”.

But it can also be described as ascent to the adequate/anhupotheton. We reach
the preliminary conclusion that the ascent to the anhupotheton coincides with the
method of Division and Collection.

We summarise the arguments given in Sects. 1.6.3.2 and 1.6.3.3: 533c8 “tas
hupotheseis anairousa” is habitually translated as “doing away with hypotheses”, but
that is not satisfactory. The greater passage 533b6-d7 contrasts geometry as prac-
ticed by geometers, who “leave the hypotheses at rest” (“hupotheseis. . . akinetous
eosi”), thereby unable to provide “logos” (“me dunamenai logon didonai”) and ob-
tain true knowledge “idein”), vs. the dialectic method, the only one that “anairei” the
hypotheses, and ascends to the “anhupotheton” principle, obtaining true knowledge
(“episteme”).

The “anairesis” of the hypotheses should, by Sect. 1.6.3.2, be contrasted to
the hypotheses staying at rest, and this is hardly achieved by doing away with,
destroying, them. The opposite of staying at rest is moving, and moving is certainly
associated with Division.

In fact, as we saw in Sect. 1.6.3.3, the Phaedo 107b5-9 refers to the “adequate”
(“hikanos”) division of hypotheses, meaning till we obtain something adequate
(“hikanon”), namely the anhupotheton, and providing logos and episteme corre-
sponds to the first hypothesis.

1.6.3.4 In Conclusion

– “tas hupotheseis anairousa”, 533c8, should be rendered as “dividing the hypothe-
ses”;19

– the passage 533c7-d3 consists in a description of Division and Collection, in the
form Division (“anairousa”) and Logos, where the Division of the true Being is

19Thus the second part of Cherniss [6, p. 418, Footnote 54], claiming that “tas hupotheseis
anairousa” in the Politeia 533c8 is not a reference to division in kinds, is not correct; furthermore
his claim, that Robinson’s [29, p. 171]) notion that “Proclus seems to have understood division as
belonging to the upward path.” is mistaken, is also incorrect. Indeed, Proclus, in both In Euclidem
211, 23-27, and Commentary to Cratulus 173,1-5, identifies Division with “anairesis”, and regards
Division in the upward path.
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the (binary, anthyphairetic) division of hypotheses into higher hypotheses; and
the Logos, the logos of periodicity, by which Collection is achieved is a Logos
given to a hypothesis; and,

– the passage 533c7-d3 is explicitly an ascent from the hypotheses to the anhupo-
theton 533d2-3.

Thus, our analysis of the passage Politeia 533c7-d3 shows that

– the “anhupotheton” is identical with the one of the second hypothesis in the
Parmenides,20

– the Ascent from hypotheses to higher hypotheses is identical with the abbreviated
Division of parts into more divisions, and

– the “Logos provided to the hypothesis” is the logos of periodicity and Collection.

This unusual terminology “anhupotheton” can be understood as follows: hy-
pothesis is identified with a part–genus of the infinite anthyphairesis of the initial
dyad, and as such a hypothesis is divisible; the anhupotheton, the hypothesis-
free is the division-free entity, the indivisible, that is obtained by the Logos and
Collection. Thus “anhupotheton” has the same force as “indivisible”,21 precisely
as the indivisible line, identified with the One of the second hypothesis in the
Parmenides (in the next Sect. 1.7).

1.7 Plato’s Criticism I of the Geometers

The geometric point, the One of the first hypothesis of the Parmenides is
rejected as a foundational concept of Geometry, in favor of the indivisible line,
the One of the second hypothesis of the Parmenides.

The first definition in Book I of Euclid’s Elements is that of a geometric point.

Def. I. A point is that which has no part. (Σημεῖόν ἐστιν, οὗ μέρος οὐθέν.)

The attentive reader of Plato will doubtlessly note that there is no mention of
geometric point (although he talks about numbers, straight lines, circles, angles) in
his dialogues. Aristotle in Metaphysics 992a19-2222 states that Plato

(i) rejected the concept of the partless geometric point (“stigme”) as a foundational
concept of geometry, and

(ii) opted instead for the concept of the “indivisible line” (“atomous grammas”).

20This identification is explicitly confirmed by Proclus, In Parmeniden 1033,32–35.
21Cf. ἀλλὰ γὰρ ἡμῖν ἔτι καὶ τοῦτο σκεπτέον, ἆρ’ ἄτομον ἤδη ἐστὶ πᾶν ἤ τινα ἔχον διαίρεσιν
ἀξίαν ἐπωνυμίας. Sophistes 229d5-6.
22ἔτι αἱ στιγμαὶ ἐκ τίνος ἐνυπάρξουσιν; τούτῳ μὲν οὖν τῷ γένει καὶ διεμάχετο Πλάτων ὡς ὄντι
γεωμετρικῷ δόγματι, ἀλλ΄ ἐκάλει ἀρχὴν γραμμῆς—τοῦτο δὲ πολλάκις ἐτίθει—τὰς ἀτόμους
γραμμάς.
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It is very difficult to conceive of geometry without the concept of geometric point,
but Plato suggests just that. Furthermore he replaces it with something mysterious,
and seemingly contradictory, the indivisible line. We will try to make sense out of
both, quite unexpected and difficult to comprehend, statements (i) and (ii), which in
fact go back to Zeno.

The mystery is substantially illuminated when we realise that the point corre-
sponds to the absolutely partless One of the first hypothesis of the Parmenides, and
this is replaced by the indivisible line, which is identified with the One of the second
hypothesis, as a true Being and as the true foundation of geometry.

1.7.1 The Geometric Point Is Rejected by Zeno and Plato as a
True Being

First of all, we learn from Simplicius, in Physics 138,29-139,3, that Zeno, although
convinced that true Being is some sort of One, was puzzled, mystified (“eporei”) as
to what sort of One would be suitable. He was nevertheless rejecting the point as
the suitable One. At this point Simplicius cites Zeno’s Fragment B2 (139, 11–15)
according to which something that has no magnitude (“megethos”), but is absolutely
partless, cannot be a true Being. Now a similar rejection can be seen with the One
of the first hypothesis in Plato’s Parmenides; thus the One of the first hypothesis is
absolutely partless (137c4-d3), like a geometric point, and is decidedly rejected as
true Being in Plato’s Parmenides (141e7-142a6).

Thus it appears that the rejection (i) must be understood as follows: Plato believes
that the foundations of Geometry must rest on true Beings, and the point, not being
a true Being, cannot serve as such foundation.

1.7.2 The Indivisible Line Is Accepted by Zeno, Plato and
Xenocrates as a True Being

Next, Zeno, in his argument against the Many (assuming, for the purpose of
contradiction, that each of the many sensibles satisfies properties of the true Being)
does reveal the nature of Zeno’s true Being. We outline the nature of Zeno’s
arguments.
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1.7.2.1 [One and Many] Zeno’s Fragment B1 on True Being Agrees with
the One Is Many, Namely the Infinite Anthyphairetic Division of
the One Being and the Many Are One, Namely the Equalization of
Parts in the One of the Second Hypothesis in the Parmenides
142d9-143a3

One half of Zeno’s Fragment B1 (Simplicius, in Physics 141, 2–8) is the following
[in brackets the notation according to our interpretation]:

it is necessary that each part [B] has magnitude and thickness (“pachos”) and one part [b] is
deficient (“apechein”) with respect to the other part [a]. And concerning the part in excess
(“prouchontos”) [a] the same statement. Because this [a] too will have magnitude and some
part [b] of it will be in excess (“proexei”) [with respect to the other part a1]. And the same
holds if stated once (“hapax”) and if stated for ever (“aei”).

Because there is no part [an , or bn, resp.] that does not have a part in excess [bn, or an+1,
resp.], and there is no part [an, or bn, resp.] which does not consist of one part and another
part [an = bn + an+1, or bn = an+1 + bn+1, resp.].

Thus the following relations are produced

B = a + b, b < a,

a = b + a1, a1 < b,

. . .

an = bn + an+1, an+1 < bn,

bn = an+1 + bn+1, bn+1 < an+1

. . .

and an infinite anthyphairetic division is described starting with a dyad 〈a, b〉 in
a whole B. Thus, corresponding to the infinite anthyphairetic division of the One
Being in the Parmenides 142d9-143a3, we have that Zeno’s true Being consists of
a dyad 〈a, b〉 in infinite dichotomic anthyphairesis (Simplicius, eis Phusica 140,34).

In the other half of Fragment B1, presumably using the corresponding Fragment
B3, concludes that [in Zeno’s true Being] “each part of the many is identical
(“tauton”) to itself and One” (Simplicius, in Physics 139, 18–19), thus the Many
are One (in the self-similar sense that each of the many is equalized to the One).
This is confirmed by Parmenides 129d8, and also by the Simplicius, in Physics
138,18–139,3 a passage, according to which Zeno’s true Being

– is not only One (as the geometric point is),
– is not only Many (as the sensible are),
– is One (as Parmenides would wish), and Many (as Parmenides would not wish),

exactly as the One of the second hypothesis in the Parmenides. It follows that Zeno’s
true Being is One and Many in precisely the same way that Plato’s One of the second
hypothesis of the Parmenides is One and Many (Parmenides 144d4-e1, e1-3).
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1.7.2.2 [Infinite and Finite] Zeno’s Fragment B3 on True Beings
Essentially Coincides with the Infinity of the Multitude of the
Parts of the One, and the Finiteness of the Number of Parts of the
One in the Second Hypothesis of the Parmenides 144d4-e1

The infinity of the multitude of the parts in Fragment B3 coincides essentially with
the corresponding anthyphairetic infinity in Fragment B1. The crucial statement in
part of Zeno’s Fragment B3 (Simplicius, in Physics 140,29-31) states:

It is necessary (“anagke”) that
[the parts of one part] are as many (“tosauta”) as (“hosa”) [the parts of the other part], and
neither more (“oute pleiona”) nor less (“oute elattona”) than they.
And if [the parts of one part] are as many (“tosauta”) as (“hosa”) [the parts of the other
part], then they would be finite (“peperasmena”).

Thus Zeno’s Fragment B3 can be seen to be practically identical in wording to
the Parmenides 144d4-e1:

“And it is necessary (“anagke”) that the divisible (“meriston”) “[One] must be as many
parts (“tosauta”) as (“hosa”) the parts [of the being].” “It is necessary (“anagke”).” “Then
what we said just now—that the Being was divided into in an infinite number (“pleista”) of
parts—was not true for it is not divided, you see, into any more (“pleio”) parts than one,
but, as it seems, into equal (“isa”) as the one.”

Thus, according to Zeno’s Fragment B3 (Simplicius, eis Phusica 140, 27), Zeno’s
true Being consists of a dyad a, b, such that the number of parts of a is equal to the
number of parts of b.

It follows that Zeno’s true Being is Infinite and Finite in precisely the same way
that Plato’s One of the second hypothesis of the Parmenides is Infinite and Finite
(Parmenides 144d4-e1, e1-3).

1.7.2.3 The Identification of Zeno’s True Being with Plato’s True Being

On the basis of Sects. 1.7.2.1 and 1.7.2.2, Zeno’s true Being has the same anthy-
phairetic structure with, and satisfies practically all the statements that hold, for the
One of the second hypothesis, and thus we have no hesitation to identify Zeno’s true
Being with the One of the second hypothesis in the Parmenides, namely with Plato’s
true Being.

This identification is further confirmed by comparing Zeno’s arguments and para-
doxes with the properties of the One of the second hypotheseis in the Parmenides.
According to Zeno’s third paradox of motion (Aristotle’ Physics 239b30) and the
Parmenides 129e1, Zeno’s true Being is in motion and at rest. The corresponding
statement for Plato’s true Being is in the Parmenides145e7-146a8. According to the
Parmenides 127e3, 129b1-2, Zeno’s true Being is similar and dissimilar, exactly
as the One of the second hypothesis in the Parmenides 147c1-148d4, and this is
essentially equivalent to saying that it is Infinite and Finite (Parmenides 144e8-
145a4 and 158e1-159a4).
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1.7.2.4 The Description of Plato’s True Being as an Indivisible Line

Zeno’s term “amegethes” (“outhen echei megethos”), without magnitude, in Frag-
ment B1 and Xenocrates’ term “atomos”, indivisible, line refer to the same entity.
According to Simplicius, in Physics 140,6-18, 142,16-27, Xenocrates, being a
“geometric and wise man”, could not contradict the geometric principle and did
not ignore the nature of magnitude [namely the infinite divisibility of magnitudes,
“ten ep’ apeiron tomen”]; by “indivisible line” he meant a line that, even though it
was divisible ad infinitum, nevertheless was not divisible in kind [“oude toi eidei
diairetton”], namely the number of kinds was finite.

According to Proclus, eis Timaion 2,245,23-246,7, by indivisible line Xenocrates
did not mean the mathematical line but the ratio of the line showing true Being (“ton
logon tes grammes ton ousiode”).

Although Plato never explains or even really uses the term “indivisible”, still,
rather unexpectedly an interesting and revealing occurrence of the term comes up in
a division step in the Sophistes, where it is being asked

ἆρ’ ἄτομον ἤδη ἐστὶ πᾶν ἤ τινα ἔχον διαίρεσιν ἀξίαν ἐπωνυμίας.
whether it [the last kind] is already indivisible or still admits of division worthy of a name
Sophistes 229d5-623

It is clear that what Plato really asks at this point is whether we have reached the
Logos criterion for establishing periodicity, at which point the ratio is repeated, and,
although division is being continued ad infinitum, no new kinds are being produced.

Thus the near paradox that occurs in the “indivisible line”, namely that the parts
of the “indivisible line” are infinite in multitude, while the kinds (“eide”) are only
finite, practically coincides with the near paradox we have observed (in Sect. 1.3)
in the One of the second hypothesis in the Parmenides, namely that the parts of the
One are infinite in multitude, while the parts of the One are finite in number.

We have no difficulty to identify the “indivisible line” with the One of the second
hypothesis in the Parmenides, possibly in a somewhat degraded form, as it might be
thought of as a geometric, and not a purely dialectic entity.

The Metaphysics statement is now fully understandable: according to Plato,
Geometry must be founded on what he regards as true Being, whose paradigm is
the One of the second hypothesis in the Parmenides, and which essentially coincides
with the indivisible line,24 and not on the geometric point, which coincides with the
One of the first hypothesis in the Parmenides. A byproduct of our analysis was the
(anthyphairetic) interpretation of Zeno’s three Fragments B1, B2,B3, and the close
relation they have with the one of the second hypothesis in the Parmenides.

The detailed arguments of the present Sect. 1.7 can be found in [24].

23Cf. ἀλλὰ γὰρ ἡμῖν ἔτι καὶ τοῦτο σκεπτέον, ἆρ΄ ἄτομον ἤδη ἐστὶ πᾶν ἤ τινα ἔχον διαίρεσιν
ἀξίαν ἐπωνυμίας. Sophistes 229d5-6.
24One may conjecture that the name “indivisible line” was given, by Platonic circles, so as to make
the indivisible line (which according to Plato replaces the point in the foundation of Geometry)
appear as closely as possible similar to the partless, indivisible point.
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1.7.3 Proclus’ Compromise Between Plato and Euclid in In
Euclidem 85,1-96,15: Proclus’ “Point” Is, in Fact, the
Indivisible Line; and, the Flow (“rhesis”) of the “Point”
Is the Motion of the Indivisible Line

Plato, as we have seen, had rejected the geometric point as having a foundational
role in geometry, opting instead for the indivisible line. But Euclid in the Elements
does take the point as having a foundational role. Proclus, a Platonist, in his
Commentary on Euclid’s Elements is then in a difficult situation. He must either
criticize Plato, something impossible, or Euclid, something difficult. He then
chooses a compromise: he comments on the point, as if it were the point introduced
in the Elements, but in fact his comments are not about the partless point but about
the indivisible line.

Proclus several times describes the point as a mixture of the Infinite and the
Finite, e.g.

the point (“semeion”). . . although it is being determined by the Finite (“peras”), it secretly
(“kruphios”) contains the Infinite (“apeiron”) power, by virtue of which it generates all the
line intervals (“diastemata”). (88,2-5)

This brings Proclus’ conception of point much closer to the One of the second
hypothesis, and thus to the indivisible line; and thus it brings Proclus, as expected,
much closer to Plato’s view about the true foundation of Geometry. It seems clear
that for Proclus the geometric point is (a lower form of) the One of the second
hypothesis.

The geometric point, being partless, is like the One of the first hypothesis in
the Parmenides; and the One of the fist hypothesis is not in motion (139b2-3). (As
mentioned in Sect. 1.4, the point and the partless One have been correlated by Zeno,
Simplicius, and probably by Plato). Thus the partless geometric point cannot be in
motion. But Proclus in 97,9-12 talks about the flow (“rhusis”) of the point.

but that which calls it the flowing of a point (“semeiou rhusin”) appears to explain it in
terms of its generative cause (“aitias gennetikes”) and sets before us not line in general but
the immaterial25 (“aulon”) line. (97, 9-12)

Since the indivisible point is for Proclus the Platonic indivisible line, and this is
as we already analysed, a (degraded) One of the second hypothesis, and since the
One of the second hypothesis is in motion 145e7-146a8, a motion that is a direct
consequence of Division and Collection, it follows that the Proclean point does
have a motion, the flow of point. This motion is intelligible, it is related to Division
(and Collection), and it does generate, by Division, new intervals (as in the 88,
2-5 passage). It is instrumental in producing in the intelligible Being the first three
Postulates of Euclidean geometry (in Sect. 1.10.4 below). For the third Postulate the
periodic nature of the One is also needed.

25Morrow [20, p. 79], changes “aulon”–“immaterial” to its opposite “enulon”–“material”, which
involves a serious misunderstanding.
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1.8 Plato’s Criticism II: Hypotheses, Such as Numbers,
Lines, Circles, Angles and Their Postulates, Are
Employed by Mathematicians as Principles, Are Not
Divided, Are Not Moved and Do Not Attain Logos
(510c2-d3, 511c3-d5, 533b6-c6)

At this point, after Sect. 1.7, we have a general interpretation of ascent from intel-
ligible hypotheses to the “anhupotheton”, in terms of the Division and Collection
of an intelligible Being, namely in terms of (the philosophical version of) periodic
anthyphairesis. Plato’s criticism II of the geometers, expressed in the three Politeia
passages 510c2-d3, 511c3-d5, and 533b6-c6, sets in opposition geometric hypothe-
ses with the dialectical-philosophic hypotheses: while the geometric hypotheses are
about intelligible entities, nevertheless they are not employed as stepping stones
to ascend to higher hypotheses and eventually to the “anhupotheton”, they do not
provide “Logos” for them, and therefore they cannot obtain true knowledge of them,
but instead they leave them unmoved and are compelled to follow a descent from
them. These Platonic claims will be fully explained in terms of our anthyphairetic
interpretation.

1.8.1 Politeia 510c2-d3: Against the Geometers’ Axiomatic
Method of Mathematics, Because in This Method Logos
Cannot Be Provided of Theses Hypotheses

“For I think you are aware that students of geometry and reckoning (“logismous”) and such
subjects first set as hypotheses (“hupothemenoi”) the odd and the even (“to te peritton
kai to artion”) and the figures (“ta schemata”) and three kinds of angle (“gonion tritta
eide”) and other things akin to these in each branch of science, regard them as known
(“hos eidotes”), and, treating them as hypotheses (“hupotheseis”), do not deign to render
a Logos (“logon. . . didonai”) of them to themselves or others, taking it for granted that
they are obvious to everybody (“hos panti phaneron”). They take their start from these, and
pursuing the inquiry from this point on consistently, conclude (“teleutosin”) with that for
the investigation of which they set out (“hormesosi”).” “Certainly,” he said, “I know that.”
(510c2-d3)

This passage (510c2-d3) is important, because in it Plato clarifies how he views
the hypotheses of the geometers. He mentions three specific hypotheses, the odd and
the even, the figures, and the three kinds of angle. We take it that Plato by “odd and
even” means numbers, by “figures” the straight line and the circle, and of course by
the “three kinds of angle” the acute, obtuse, and right angle. Usually scholars take
these three hypotheses as meant to be just examples of geometric hypotheses, but we
will argue that in fact they are much more, they represent in fact nothing less than
the totality of the concepts needed for the foundation of geometry and arithmetic.
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At this point it will help if we are reminded of the basic Definitions and Postulates
appearing in Books I and VII of Euclid’s Elements. By “basic” we mean the
definitions that cannot be derived from earlier definitions. I suggest that the basic
Definitions in the Elements are: the geometric point (Def. I.1), the straight line
(Def. I.4.),26 the circle (Def. I.15),27 the right (Def. I.10), obtuse (Def. I.11), and
acute angle (Def. I.12).28

Now if we take into account that, as we have seen in Sect. 1.7, the point has
been replaced by the indivisible line in Plato’s foundation of Geometry, all the other
basic concepts of Euclidean geometry are included in the two geometric hypotheses
that Plato mentions here. The same is true with Arithmetic, as here the only basic
definitions are that of unit (Def. VII.1) and number (Def. VII.2).29

There have been heated arguments among scholars of Plato on whether his
hypotheses are definitions or postulates. Plato by hypotheses cannot mean only
Postulates, since the hypothesis about the odd and the even is a hypothesis about
numbers, and there are no arithmetical Postulates. Moreover it is clear that the
foundation of Geometry needs both Definitions and Postulates, and it is equally clear
that the ascent from the hypotheses to the (dialectic) principle will have as a result
to subsume the whole foundation of Geometry in Plato’s dialectics, in Division and
Logos-Collection. Thus there must be no question that by hypotheses Plato means
all that is needed for the foundation of Geometry, and this must include both the
basic geometric and arithmetic definitions and the geometric Postulates.30

Thus Plato criticizes the geometers for their axiomatic method, as it appears in
the Elements, taking as arbitrary principles the basic definitions and postulates of
geometry and arithmetic, rejects it, and instead proposes hypotheses that are parts-
genera in the Division of a Platonic Being, and thus can proceed upward in the
Division and Collection scheme of this Platonic Being and attain “logos”.

26Def. I.4. A straight line is a line which lies evenly with the points on itself.
27Def. I.15. A circle is a plane figure contained by one line such that all the straight lines falling
upon it from one point among those lying within the figure are equal to one another;
28Def. I.10. When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right, and the straight line standing on the other is called a
perpendicular to that on which it stands.
Def. I.11. An obtuse angle is an angle greater than a right.
Def. I. 12. An acute angle is an angle less than a right angle.
29Def. VII.1. An unit is that by virtue of which each of the things that exist is called one.
Def. VII.2. A number is a multitude composed of units.
30Post. I.1.- To draw a straight line from any point to any point.
Post. I.2. To produce a finite straight line continuously in a straight line.
Post. I.3. To describe a circle with any centre and distance.
Post. I.4. That all right angles are equal to one another.
Post. I.5. That, if a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.
There are no arithmetic Postulates.
(Translation of basic definitions and Postulates following Heath [13]).
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1.8.2 Politeia 511c3-d5: Against the Geometers’ Hypotheses,
Because They Cannot Ascend to the Indivisible
Anhupotheton

“I understand,” he said; “not fully, for it is no slight task that you appear to have in mind,
but I do understand that you mean to distinguish the aspect of reality and the intelligible,
which is contemplated by the power of dialectic, as something truer and more exact than
the object of the so-called arts and sciences whose hypotheses are arbitrary starting-points
(“hai hupotheseis archai”).

And though it is true that those who contemplate them are compelled to the use of
understanding and not of the senses (“dianoiai men anagkazontai alla me aisthesesin”,
511c7), yet because they do not ascend to the beginning (“me ep’ archen anelthontes”)
in the study of them but start from hypotheses (“ex hupotheseon”) you do not think
they possess true intelligence about them although the things themselves are intelligibles
(“noeton onton”) when apprehended in conjunction with a first principle (‘meta arches’).
And I think you call the mental habit of geometers and their like understanding (“dianoian”)
and not intelligence (“noun”) because you regard understanding (“dianoian”) as something
intermediate between opinion and intelligence.” (511c3-d5)

The passage 511c3-d5 states in a clear and detailed manner criticism II of the
geometers by Plato, in that they use hypotheses as principles not as steps for higher
hypotheses.

A notable statement here is that the geometers are compelled (“anagkazontai”)
to use the lower intelligible part and not their senses, when they study hypotheses as
principles. The explanation of the use of “anagkazontai” (511c7), completed with
three more uses of this term (510b5, 511a4, 527a6), is deferred for Sect. 1.9. In the
present section we are content with the meaning of the use of hypothesis as starting
principle, and not as stepping stone for higher hypotheses and the anhupotheton.

1.8.3 Politeia 533b6-c6

Passage 533b6-d3 is sandwiched between passages 531d9-e6, 532a5-b3 and d8-e3,
a description of Division and Collection, as discussed in Sect. 1.4.2.1, and passage
534b3-d2, a description of Division and Collection, discussed in Sect. 1.4.2.2.

Thus, it is natural to consider that the in between passage 533b6-d3 is about
Division and Collection, as well.

1.8.3.1 Politeia 533b6-c3: Against the Geometers’ Hypotheses Because
They Are Left Unmoved and ‘Logos’ Is Not Given of Them

the rest which we said did in some sort lay hold on true Being (“ontos”)—geometry and the
studies that accompany it—are, as we see, dreaming about true Being, but the clear waking
vision of it is impossible for them as long as they leave the hypotheses (“hupothesesi”)
which they employ unmoved (“akinetous”) and cannot give “logos” (“logon didonai”) of
them. (533b6-c3).
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In the 533b6-c3 passage the mathematical hypotheses are said to be unable to
move, namely to move upward by division to higher hypotheses, and also unable to
be given Logos, the formation of ratio of a part with the immediately succeeding
in its anthyphairetic generation part, which then satisfies the Logos criterion for
anthyphairetic periodicity.

1.8.3.2 Politeia 533c3-6: Against the Geometers’ Hypotheses Because, Not
Having “Beginning, Between and End” These Hypotheses Are Not
Known

For where the beginning (“arche”) is something that the geometer does not know, and the
end (“teleute”) and all that is in between (“metaxu”) is interwoven (“sumpeplektai”) is not
truly known, what possibility is there that assent in such practice can ever become true
knowledge (“episteme”)?” “None,” said he. (533c3-6)

The Politeia passage 533c3-6 points to an intelligible Being knowable by
Division and Collection. This is so, because the passage should be compared to
the Parmenides 145a8-b1 concerning the One of the second hypothesis:

“Then the One, it appears, will have a beginning (“archen”), an end (“teleuten”), and a
middle (“meson”).” “It will.”,

which was a direct consequence of the Division and Collection of the One
(144e8-145a4), namely of periodic anthyphairesis; as we mentioned in Sect. 1.3,
“beginning, middle–“metaxu”, end” refers to the beginning, middle, and end of the
period.

In Phaedrus 263e-264e, a dialogue whose dialectic is definitely Division and
Collection, a truly living Being must have beginning, middle, end, unlike Lysias’
speech, and for that criticized.

Thus the fact that true knowledge (“episteme”), unlike that knowledge supplied
by the geometers (533c3-6), must possess Beginning–Middle–End is consistent with
knowledge attained by means of Division and Collection, as with the One of the
second hypothesis.

We note that according to 533b6-c6

(a) the geometers keep their hypothesis unmoved [by division of hypotheses] and
therefore cannot achieve logos (533b6-c3),

(b) their knowledge does not have beginning, middle and end (533c3-6) [since they
do not achieve logos and periodicity], and

(c) they are unable to ascend [to logos] by division of the hypotheses (533c6-d3).
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1.8.4 The Nature of Plato’s Criticism II Against
the Axiomatisation of Mathematics

It is important to understand how the dialectic knowledge proposed by Plato re-
places the mathematical knowledge. The axiomatic method of the mathematicians,
criticized in the Politeia passages (examined in Sects. 1.8.1–1.8.3), accepts the truth
of the hypotheses, definitions (in the sense that e.g. a straight line is a true and
correct concept as defined) and postulates; once these are accepted, then everything
follows, is deduced by pure logic, by the rules of inference. The weak point is that
the definitions and postulates themselves are not known in any satisfactory sense,
but in fact are arbitrary, hence in a sense nothing is known in Mathematics. Thus
Plato rejects the axiomatic method of the geometers because this method is not
founded on, and hence cannot lead to, knowledge.

Plato’s method accepts as true Beings those dyads, mathematical or philosophic,
that are in a periodic anthyphairesis. True Beings become known by the method of
(anthyphairetic) Division and Collection—equalisation of parts by means of Logos,
an analogue of the Logos criterion for periodic anthyphairesis. The hypotheses are
simply the parts-genera in the Division of this true Being and they are true and
known only by receiving Logos (the ratio of the part—genus to its immediately next
in generation is one in the finite, because of anthyphairetic periodicity, sequence
of ratios). Thus, true knowledge is imparted upon the hypotheses, according to
Plato, only by the method of Division and Collection (Sects. 1.3–1.6); hence Plato’s
insistence that hypotheses are not isolated, as in mathematics, but are parts of
a true Being. Thus Plato believes that true knowledge may be obtained only
within a true Being, namely a dyad satisfying the philosophic analogue of periodic
anthyphairesis.

The three Politeia passages 510c2-d3, 511c3-d5, and 533b6-c3, considered in
the present section, explain only the meaning of Plato’s criticism II, that they use
hypotheses as principles, not as steps toward “anhupotheton”.

From these passages it is clear that the geometers, unlike the dialecticians, take
the three fundamental hypotheses given in Politeia 510c2-d3 as starting principles,
and, for this reason, move downwards. The geometers’ hypotheses are not parts-
genera of the Division of a true Being, but are considered in isolation, and thus
cannot be divided, cannot give their place to higher hypotheses, and thus have no
way to be provided with “logos”, lose their hypothetical status, and become true and
known. This is the problem of the geometrical hypotheses: they cannot be provided
with “logos”, the “logos” of anthyphairetic periodicity that, according to Plato, alone
bestows its recipients with intelligible existence and knowledge. Without “logos” a
hypothesis is just that, a hypothesis, an arbitrary, not itself not known and therefore
not able to produce knowledge, starting principle. And since, according to the
axiomatic method every proposition and construction in Mathematics is deduced
from these initial arbitrary and unknown principles, all mathematical knowledge is
open to doubt.
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1.9 Criticism II: The Reason the Geometers Are Compelled
to Proceed Downwards Treating Hypotheses as Principles

1.9.1 The Geometers Are Compelled to Use Hypotheses as
Principles (510b4-6, 511a3-b2, 511c6-8)

On the other hand the geometer is compelled to consider hypotheses as starting
principles, not as steps for ascending to higher hypotheses, eventually to the
anhupotheton.31

the soul is compelled (“anagkazetai”, 510b5) to investigate starting from hypotheses (“ex
hupotheseon”),
by using as images (“hos eikosin”) the things imitated in the former division, proceeding
not up to a principle (“ep’archen”) but down to a conclusion (“epi teleuten”) (510b4-6)
“This then is the class that I described as intelligible (“noeton eidos”),
it is true, but with the reservation that
the soul is compelled (“anagkazomenen”, 511a4) to employ hypotheses (“hupothesesi”)
in the investigation of it, not proceeding to a principle (“ep’ archen”), because of its
inability to step out of (“ekbainein”) and rise above (“iousan. . . anotero”) its hypotheses
(“ton hupotheseon”), and using as images or likenesses the very objects that are themselves
copied and adumbrated by the class below them, and that in comparison with these latter
are esteemed as clear and held in honor.” (511a3-b2)
those who contemplate them are compelled to use their understanding and not their senses
(“dianoiai men anagkazontai alla me aisthesesin”, 511c7)(511c6-8).32

1.9.2 The Reason That the Geometers Are Compelled to
Employ Hypotheses as Principles Is That They Form
Their Arguments for the Sake of Actions/Geometric
Constructions (527a1-b2)

“This at least,” said I, “will not be disputed by those who have even a slight acquaintance
with geometry, that
this science is in direct contradiction (“pan tounantion echei”) with the formation of
arguments employed in it by its adepts (“tois en autei logois legomenois”).”
“How so?” he said.
“Their language is most ludicrous (“mala geloios”), though necessary (“anagkaios”,
527a6),
for (“gar”, 527a7)

31ψυχὴ ζητεῖν ἀναγκάζεται ἐξ ὑποθέσεων, οὐκ ἐπ΄ ἀρχὴν πορευομένη ἀλλ’ ἐπὶ τελευτήν
(510b4-6); ὑποθέσεσι δ’ ἀναγκαζομένην ψυχὴν χρῆσθαι 511α4 περὶ τὴν ζήτησιν αὐτοῦ,
οὐκ ἐπ’ ἀρχὴν ἰοῦσαν, ὡς οὐ δυναμένην τῶν ὑποθέσεων ἀνωτέρω ἐκβαίνειν (511a3-b2).
32τὸ ὑπὸ τῶν τεχνῶν καλουμένων, αἷς αἱ ὑποθέσεις ἀρχαὶ καὶ διανοίᾳ μὲν ἀναγκάζονται
ἀλλὰ μὴ αἰσθήσεσιν αὐτὰ θεᾶσθαι οἱ θεώμενοι 511c6-8, in the passage 511c3-d5, examined
in Sect. 1.8.2.
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they construct all their arguments (“pantas tous logous poioumenoi”)
as if they were acting (“prattontes”) and
for the sake of action (“praxeos heneka”, 527a7).
For all their talk is of squaring (“tetragonizein”) and extending (“parateinein”) and adding
(“prostithenai”) and the like,
whereas in fact the entire study in mathematics (“mathema”) is
for the sake of pure knowledge (“gnoseos heneka”, 527b1).”
“That is absolutely true,” he said. (527a8-b2)

Passage 527a1-b2 is crucial, because it is the only one that not simply describes,
but explains why the geometers are compelled to employ hypotheses as principles.
So we are justified in looking closely at the passage. At first Plato states that the
geometers, when forming their arguments, are in opposition, in contradiction, with
the nature of Geometry. Here what is meant no doubt is the often previously stated
criticism that the geometers proceed downwards and not upwards as they should, in
the opposite direction of the correct one, another way of stating that the geometers
employ the hypotheses as principles and not as steps for proceeding upwards to the
anhupotheton (527a2-4).

Next he states that the geometers are compelled into this “ridiculous” situation:
“anagkaios”, 527a6.

Next he sets to provide the reason why (“gar”, 527a7) the geometers are
compelled to proceed downwards. The reason is that the geometers form their
arguments for the sake of action (“praxeos heneka”, 527a7) and not for the sake
of pure knowledge (“gnoseos heneka”, 527b1), as they should. We thus have here
a causal connection (“gar”) between the compulsion of the geometers to employ
hypotheses as principles (the essence of Criticism II) and the fact that the geometers
form their arguments for the sake of actions. By pure knowledge we well understand
that Plato means the knowledge of the logos of periodicity, the method of Division
and Collection, as already explained. But we must look more carefully at the unusual
term “praxis”. Fortunately, Plato provides us with a rather detailed explanation
of what exactly he means by “praxis” (527a6-9); he mention three examples of
“actions”: squaring (of a line),33 adding (two lines),34 extending (a line) to a greater
line.35 We realize that all three examples of action are geometric constructions. We
then must come to the conclusion that by “action”-praxis-Plato means geometric
construction.

Indeed constructions are basic in Euclidean geometry. In a typical Euclidean
Proposition, the proof of the proposition is naturally divided into two parts: first
are the required constructions on the visible diagram related to the proposition, next

33“tetragonizein” (squaring): possible by the hypothesis Proposition I.46.
34“prostithenai” (adding): possible by the hypotheses Postulate 2, Proposition I.2.
35“parateinein” (extending, stretching): possible by the hypothesis Postulate 5. The usual transla-
tion is “applying”, presumably in the sense of application of areas (Propositions VI.28,29, where
the term used is “parabalein”), presumably because Plato in Meno 87a5 is using “parateinein” in
exactly this sense. But “parateinein” has the principal meaning of “stretching out along”, “extend”,
cf. [17, p. 1327].
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are the deductive steps, making use of these constructions, in which there is no need
of the visible diagram. Thus Plato by actions, refers to the first part of the proof, in
which the necessary geometrical constructions are set forth. The rest of the proof is
“pure logic”, rules of inference.

But these intelligible constructions/actions are possible only by employing the
geometric hypotheses, the basic Definitions and Postulates of Euclidean Geometry.
In mentioning the three specific actions of squaring, extending, adding, Plato might
have in mind the (Pythagorean) Proposition II.10, perhaps the only proposition in
the Elements where all these three actions appear. This diagram starts with a straight
line, and is completed gradually with actions, such as addition of straight lines,36

forming squares with given side,37 (in Proposition II.10). extension of non-parallel
(by Postulate 5) lines till they meet.38

Thus the reason the geometers are compelled to proceed downwards, treating
hypotheses as principles, and not as steps of ascent, lies with the thesis of the
geometers that Geometry is a deductive science, it is about proofs of propositions.
A proof requires geometric constructions/actions, and actions depend on geometric
hypotheses, Definitions and Postulates. Thus the reason of the compulsion of the
geometers to use hypotheses in a defective way, as principles, is purely intelligible
and has nothing to do with the fact that the geometers employ visible/sensible
diagrams. Roughly speaking, the geometers have adopted the axiomatic method
because they think of Geometry as a deductive science, for deductions and proofs
constructions are needed, and constructions are themselves postulates or need
postulates.

1.10 The Ascent from Intelligible Hypotheses to the
Anhupotheton Generates Intelligible Number, Straight
Line, and Circle (Parmenides 137e, 142b-145b, Politeia
522b8-526c8). Plato’s Praise of Geometry (Politeia
527b3-c2)

At this point we have completed our interpretation of Platonic dialectics: Pla-
tonic Ideas, of which the One of the second hypothesis in the Parmenides is
the pararadigm, are knowable by means of Division and Collection, which is
a philosophic analogue of Logos criterion, periodic anthyphairesis and resulting
equalization of parts (Sect. 1.3); while the ascent from hypotheses to the anhupo-
theton in the Politeia was found to be just another description of Division and

36“προστεθῇ”, “τῇ προσκειμένῃ”, “προσκείσθω” (in Proposition II.10).
37“tetragonizein” (squaring): “τὸ ἀπὸ τῆς ὅλης”, “τὸ ἀπὸ τῆς προσκειμένης”, “τὰ συναμφότερα
τετράγωνα”, “τὰ ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα”, “ἀπὸ τῶν ΑΓ, ΓΔ τετραγώνων” (in Proposition
II.10).
38 “ἐκβαλλόμεναι”, “ἐκβεβλήσθωσαν” (in Proposition II.10).
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Collection, where the hypotheses are the parts-species of the Division, ascending by
division to the anhupotheton, the Logos of periodicity and the resulting Collection
(Sect. 1.5 and 1.6).

We are now well prepared to explain what Plato regards as the intelligible
numbers, and the intelligible straight line and circle, and how they receive Logos.
We will deal with the three kinds of angle in Sect. 1.11.

1.10.1 Intelligible Numbers (Parmenides 142b1-145 and
Politeia 522b8-526c8). The Mathematical Hypothesis of
the Even and the Odd (Definitions VII.1, 2 of Unit and
Number in the Elements), and the Ascent by Division
and Collection from Hypotheses to Anhupotheton
Leading to Intelligible Numbers (Parmenides, Philebus
16c-17a and Politeia 522b8-526c8)

Dialectic numbers have been adequately treated in the second hypothesis in the
Parmenides (outlined in Sect. 1.3). In order to generate the dialectic numbers we
start with the indefinite dyad that exists in any intelligible true Being, the One
and the Being, for the paradigmatical one in the Parmenides. The anthyphairetic
Division produces an infinite multitude of parts, the ever higher hypotheses,
ascending, after a finite number of stages, to the Logos criterion of anthyphairetic
periodicity, the anhupotheton of the Politeia, and the true intelligible numbers,
consisting of equalized units, and indivisible in the sense of Xenocrates, explained
in Sect. 1.7.

A dialectic number has been defined as follows:

Definition Let

One > Being > One1 > Being1 > . . . > Onen−1 > Beingn−1 > Onen > . . . ,

denote the infinite sequence of remainders of the anthyphairesis of the indefinite
dyad One, Being of the one of the second hypothesis in the Parmenides, and let k
be the least natural number satisfying the Logos criterion for the periodicity of the
anthyphairesis of a to b:

One/Being = Onek/Beingk.

A dialectic (intelligible) number is a number consisting of units the parts of the
initial segment

One > Being > One1 > Being1 > . . . > Onek−1 > Beingk−1.
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The same ascent to the anhupotheton and the intelligible numbers has been
described in the Politeia 522b-526c. There, the quest for the intelligible numbers
starts from a lower starting point, from the sensible (provoking) images of the
intelligibles, which will be described in Sect. 1.14 below. But once the soul realizes
the ascending jump from the sensible provoking image to the intelligible indefinite
dyad, the remaining steps towards the full ascent to the anhupotheton, in the Politeia,
are exactly the same as those described in the second hypothesis in the Parmenides,
with which we attain the logos of periodicity, the resulting equalization of parts,
so that the Many are One, and the achievement of dialectic number, with equalized
units. Here are the corresponding statements:

(a) The One is One and infinite in multitude

The One, then, split up by Being, is many and infinite multitude (Parmenides
144e3-5).
For we see the same thing at once as one and as an infinite multitude (Politeia 525a4-6).

(b) Units of number equal to each other

[Being is divided] into the same finite number of parts as One, for Being is not wanting
to the One, nor the One to Being, but being two equalised throughout (Parmenides
144d5-e3).
My good friends, what numbers are these you are talking about, in which the one is
such as you postulate, each unity equal to every other without the slightest difference
(Politeia 526a1-4)

(c) If both make the number two, then each is One

“And if things are two, must not each of them be one?” “Certainly” “Then since the
units of these pairs are together two, each must be individually one.” “That is clear”
(Parmenides 143d1-4).
“And if it appears to be two, each of the two is a distinct unit.” “Yes.” (Politeia 524b7-
9).

Since the process in the Politeia 522b8-526c8, explicitly an ascent (sphodra ano
agei, 525b11-d7), necessarily to the anhupotheton, coincides from a certain point
on with the Division and Collection of the One of the second hypothesis in the
Parmenides, we obtain a confirmation that:
the intelligible hypotheses of the Politeia coincide with the parts of the One Being,
the ascent corresponds to the anthyphairetic division of the hypotheses-parts, and
the anhupotheton is achieved by the logos of periodicity in anthyphairesis.

1.10.2 The Intelligible Straight Line Generated by the Division
of the One of the Second Hypothesis in the Parmenides
(Parmenides 137e, 142b-145b)

Plato defines the intelligible straight line in the

“And the straight (“euthu”), again, is that of which the middle (“to meson”) is in front of
(“epiprosthen”) both the extremes (“eschatoin”).” “It is” (Parmenides 137e3-4).
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The definition of the straight line can naively be thought as being inspired from
sense experience, such as the eclipse of the sun, the impossibility of communication
between sun and earth, being caused by the obstruction of the light from the sun
to the earth by the intervening moon (Proclus, In Euclidem 109,25–110,4). But
Plato’s definition has a deeper intelligible meaning, based on a dialectical meaning
of ‘communication’, the equalisation.

In the progress from the causes (“apo ton aition”) in the true Beings (“en tois ousi”),
the middle (“ta mesa”) become divisive (“diairetiika”) of the mutual communication
(“koinonias”) of the extremes (“ton akron”) (Proclus, In Euclidem 110,4–8).

In order that the beginning and the end be able to communicate and be equalized
with each other, periodicity and circularity is needed. The absence of Logos and
periodicity leaves us only with infinite anthyphairetic Division, in which no
equalization and communication takes place, and this characterizes straightness.

The vague Definition I.4 of the Elements

A straight line (“eutheia gramme“) is a line which lies (“keitai”) equally, evenly (“ex isou”)
in relation to the points on itself (“tois eph’ heautois semeiois”).

can be thought of as derivative from the Platonic one:
the straight line lies equally, evenly in relation to the points on it
exactly because
the end points in a straight line cannot communicate with each other (as the remarks
in John Philoponus, Comments to Categories 13, 1, 154, 24–155, 8).

Plato shows, as we saw in Sect. 1.3, that the intelligible straight line is generated
in the One of the second hypothesis in the Parmenides 145b1-5, as a consequence
of the Division and Collection. Proclus’ comments make it clear that the intelligible
straight line is the product of the Infinite, namely of the infinite anthyphairetic
division, in contrast to the circle that is the product of Collection, and anthyphairetic
periodicity (cf. Proclus, In Euclidem 104,11-14; 107,11-15; 107,20-108,2).

The second advantage of the abbreviated Division, in the Sophistes-Politicus
style, first mentioned in Sect. 1.5 (in connection with the description of the parts-
species of the Division as hypotheses), is its use in the generation of the intelligible
straight line.

The Division in the One of the second hypothesis in the Parmenides, namely
the infinite anthyphairetic division of the dyad One Being, described in Sect. 1.3,
abbreviated by considering only the odd stages of the anthyphairesis, induces a
dichotomy scheme, as in the Divisions in the Sophistes and the Politicus, and this
dichotomy scheme generates the intelligible straight line, as in Zeno’s first paradox
of motion, as described in Simplicius, eis Phusica 453,30–454,9, and outlined as
follows:
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Division, intelligible motion of
the one of the second hypothesis Generation of intelligible straight line
Whole = One + Being We start with the whole B, which consists of two parts

One and Being,

B = One + Being

we leave the part One undivided (corresponding to the
distance covered by the runner after the first stage of
Zeno’s paradox)

Being = One1 + Being1 and recall the division of the part Being in two parts
One1 and Being1,

Being = One1 + Being1;

we leave the part One1 undivided, and

we add it to the previous undivided part One,

One+ One1

(corresponding to the distance covered by the runner
after the second stage of Zeno’s paradox),

. . . . . .

Beingk = Onek+1 + Beingk+1 and recall the division of the part Beingk in two parts
Onek+1 and Beingk+1,

Beingk+1 = Onek+1 + Beingk+1;

we leave the part Onek+1 undivided

we add it to the previous undivided parts

One +One1 + . . . +Onek +Onek+1

(corresponding to the distance covered by the runner in
the (k + 1)th stage of Zeno’s paradox),

. . . . . .

The intelligible straight line is thus generated from the Division, by going
from parts to “higher” parts, namely parts generated in higher stages of the
anthyphairesis; and since, as we saw in Sect. 1.5, the intelligible hypotheses are
precisely the parts in the anthyphairetic division of the One Being, the straight line
is generated by going from hypotheses to higher hypotheses. The parts-hypotheses
are in fact stepping stones (“epibaseis”, 511b6) for higher parts-hypotheses. It is
clear that the ascent is realized by division. The intelligible straight line is generated
without reaching the Logos, Collection, and “anhupotheton”.39

39Platonists seem to believe that the intelligible straight line is itself a true Being that can somehow
be conceived as perfect straight line, without any imperfections of a sensible straight line; but, as
we have found, the intelligible straight line is present in every intelligible true Being, and is the
manifestation of its anthyphairetic Division.
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1.10.3 The First Three Postulates of Geometry
in the Intelligible One

The first three Postulates in the Elements are:

Let the following be postulated:
[Postulate I]. To draw a straight line from any point to any point.
[Postulate II]. To produce a finite straight line continuously in a straight line.
[Postulate III]. To describe a circle with any centre and distance.

Proclus, In Euclidem suggests that these Postulates follow from the definitions of
the point, the straight line, and the circle, and the motion of a point:

The drawing of a line from any point to any point [Postulate I] follows from the conception
of the line as the flowing (“rhesin”) of a point and of the straight line as its uniform
(“homalen”) and undeviating (“aparegkliton”) flowing (“rhesin”). (185,8-12)
And if we take a straight line as limited by a point (“semeioi peratoumenes”) and similarly
imagine its extremity (“to peras”) as moving uniformly over the shortest route, the second
postulate will have been established. (185,15-18)
And if we think of a finite line as having one extremity moving about this stationary point,
we shall have produced the third postulate. (185,19-21)

But as we have explained in Sect. 1.7, Proclus’ point behaves like the indivisible
line and the One of the second hypothesis in the Parmenides, and Proclus’ motion
and rest of a point like the motion and rest of the One of the second hypothesis,
explained in Sect. 1.3, are really the Division and the self-similarity of the One of
the second hypotheses, respectively.

We leave to the reader to explore the details on the manner in which Proclus
establishes the validity of the first three Postulates from the definition and the motion
of the point.

1.10.4 The Intelligible Circle Is Generated by the
Anthyphairetic Periodicity and Resulting Collection of
the One of the Second Hypothesis in the Parmenides

“The round (“stroggulon”), of course, is that of which the extremes (“ta eschata”) are
everywhere equally distant (“ison apechei”) from the middle (“apo tou mesou”).” “Yes”
(Proclus, In Euclidem 110,4-8).

The Definitions I.15,16 of the Elements is not substantially different from Plato’s,
except that Plato avoids the use of the term “kentron” (center), preferring “meson”
(middle).

Plato shows, as we saw in Sect. 1.3, that the intelligible circle is generated in the
one of the second hypothesis in the Parmenides 145b1-5, as a consequence of the
anthyphairetic periodicity and resulting Collection. Proclus makes it perfectly clear
that the intelligible circle is indeed produced from the Division and Collection. We
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emphasise that the intelligible circle is exactly a consequence of the anthyphairetic
periodicity.40

Let us once more ascend from these details to the contemplation of their paradigms. Let
us think among them of the center, with its unitary, indivisible, and steadfast superiority
in every instance; the distances from the center [rays], as the ways in which the One
issues forth as far as possible into infinite plularity [Division of One into Many]; and the
circumference of the circle, as the element through which, in the return to the center by the
things that have gone forth from it, the multitude of powers are collected (“elissestai”)
into their own union (“henosin”), all pressing toward it and desiring activity around it.
[Collection of Many into One]. (Proclus, In Euclidem 153,12-22, translation based on
Morrow [20, pp. 121–122])

Thus, the center of the intelligible circle is the intelligible One, not a point
of course but still an indivisible entity, the rays of the intelligible circle are the
intelligible straight lines generated by the infinite anthyphairetic Division-motion of
the One, and the circumference of the intelligible circle generated by anthyphairetic
periodicity.

Thus, the same initial indefinite dyad One Being generates, by anthyphairetic
Division-ascent the parts-hypotheses, and, as we saw in Sect. 1.10.2, the straight
line, while the Logos of Periodicity and Collection—equalisation lead to ascent to
the “anhupotheton”.

If we consider the equalization that results from periodicity, then we obtain the
units for the intelligible numbers, as we saw in Sect. 1.10.1, but if consider just
periodicity itself, then we obtain the intelligible circle.

Platonic analysis and synthesis, in relation to Aristotelian division-definition-
analysis and synthesis-deduction, in the Analytica Protera, and Hustera, and the
Nicomachean Ethics,, and Pappus’ theoretical account of theoreic and problematic
geometric analysis and synthesis, in the Collection, has been studied in Negrepontis-
Lamprinidis [26] and Lamprinidis [15]. A rough outline of the intelligible ascent and
descent has been given in Sect. 1.6.3, in connection with the Proclus, In Euclidem
211, 23-27 passage. We will expend no space to deal with it in more detail.

Note that in this passage the ascent is from hypotheses to higher hypotheses, and
the ascent and descent is by kinds (“eide”); thus, the hypotheses are “eide”, con-
firming our interpretation of intelligible hypotheses as parts-kinds in the Division,
given in Sect. 1.5.

40Platonists seem to believe that the intelligible circle is itself a true Being that can somehow be
conceived as perfect circle, without any imperfections of a sensible circle (cf. Annas [3, p. 251]:
“mathematicians talk about circles and lines, not about the physical diagrams that illustrate them,
nor about the unique Form of Circle and Form of Line”); but, as we have found, the intelligible
circle is in every intelligible true being, and is the manifestation of its anthyphairetic periodicity
and Collection.
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1.10.5 Plato’s Praise of Geometry (527b3-c2)

We have explained so far that the intelligible structure of true Beings generates basic
mathematical notions at a purely intelligible level. The sole structure is Division and
Collection, and, as we have seen, is modeled after periodic anthyphairesis. In such
a true Being we have seen that the intelligible numbers, the intelligible straight line
and circle (with the first three Postulates), and intelligible analysis and synthesis-
demonstration are generated (and, as we will see below in Sect. 1.11, the intelligible
angles of three kinds are also generated).

It is then quite natural that Plato, in the Politeia 527b-c, expresses his admiration
for Geometry, calling it a subject concerned with true Beings and true knowledge.
The last statement is strongly reminiscent of the legendary “motto” that was
supposed to stand at the entrance of the Academy:

“And must we not agree on a further point?” “What?” “That it is the knowledge (“gnoseos”)
about the eternally existent (“tou aei ontos”), and not about something which at some time
comes into being and passes away.” “That is readily admitted,” he said, “for geometrical
knowledge (“geometrike gnosis”) is about the eternally existent (“tou aei ontos”).” “Then,
my good friend, it would tend to draw (“holkon”) the soul to truth, and would be productive
(“apergastikon”) of a philosophic attitude of mind (“philosophou dianoias”), directing
upward the faculties that now wrongly are turned earthward.” “Nothing is surer,” he said.
“Then”, said I, “we must order in the strongest possible terms (“malista prostakteon’)
that the men of your Ideal City shall in no way (‘medeni tropoi’) neglect (‘aphexontai’)
geometry”. (527b3-c2)

1.11 Proclus’ Completion of Criticism II and Praise
of the Pythagoreans for Their Success to Derive
the Three Kinds of Angles Dialectically

Plato does not explain at some point what would be the dialectical treatment of the
three kinds of angle, he has mentioned in the Politeia 510c2-d3. But fortunately Pro-
clus In Euclidem 131,3-134,7 and 188,20-189,12 has quite illuminating comments,
indicating that the dialectical treatment of the three kind of angle in terms of the
side and diameter numbers, their satisfaction of the Pell equation y2=2x2± 1, and
Propositions II.12 and 13 in the Elements, is an early Pythagorean discovery.

1.11.1 The Three Kinds of Angles in the Elements

The Euclidean definitions of the three kinds of angles Definitions 10–12 in the first
Book of the Elements define the right, obtuse and acute angle, respectively.

Def. I.10. When a straight line set up on a straight line makes the adjacent angles equal to
one another, each of the equal angles is a right angle. . . .
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Def. I.11. An obtuse angle is an angle greater than a right angle.
Def. I.12. An acute angle is an angle less than a right angle.

1.11.2 Politeia 510c2-6: The Geometers Do Not ‘Provide
Logos’ for the Hypothesis ‘the Three Kinds of Angles’

Plato, in the Politeia 510c2-d3 criticizes, as we have seen in Sect. 1.8, these
definitions as being ‘from hypothesis’ (‘ex hupotheseos’), according to the practice
of the geometers, and there is need to ascend from hypotheses to the “anhupotheton”
and thus to be able to ‘provide Logos’ to the hypothesis. As we have seen in
Sect. 1.6, the ascent will be realized by Division and Collection of a true Being.

1.11.3 Proclus: The Pythagoreans ‘Provide Logos’ for the
Three Kinds of Angles

Proclus’ illuminating comments in In Euclidem 131,3-134,7 explain how this
happens with the special case of the hypotheses of the three angles.

These are the three kinds of angle that Socrates in the Politeia [510c2-6] says are accepted
as hypotheses by geometers,. . . the right, the obtuse, and the acute. . . .
Most geometers are unable to provide “logos” for this classification but take it as a
hypothesis that there are three angles; and if we demand a cause [for this classification],
they deny that we have a right to ask it of them. (Proclus, In Euclidem 131, 17-21)

We have seen that the dialectical-Platonic expression “to provide Logos” refers
to the Logos criterion with which periodic anthyphairesis is established.

Proclus further explains that the Pythagoreans are able to ‘provide Logos’ to this
hypothesis by employing their principles of Infinite and Finite. (The Pythagoreans
would not use the Logos terminology, but rather its equivalent precursor, the
preservation of Gnomons).

But the Pythagoreans, who refer the solution of this triple distinction to first principles,
have no difficulty in giving the causes of this difference among rectilinear angles. . . For
one of their principles is constituted by the finite (‘peras’) which is the cause (“aitia”)
of definiteness (“horou”) and self-identity (“tautotetos”) of all things that have come into
completion, of equality (“isotetos”) and of everything in the better of the two columns of
contraries;
their other principle is the infinite (“apeiron”) which produces progression to infinity
(“ep’ apeiron proodon”), increase and diminution (“auxesin kai meiosin”), inequality
(“anisoteta”), and every sort of difference (“heteroteta”) among the things it generates, and
in general is the head of the inferior column. (Proclus, In Euclidem 131, 21-132, 6)
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The Pythagorean principle of the Infinite coincides with the infinite anthyphaire-
sis and Division, and the principle of the Finite with the preservation by means of
Gnomons of the same equation of application of areas in excess, the precursor of
the Logos criterion, and Collection.

The Pythagoreans provide Logos by appealing to the two principles of the Infinite
and the Finite. Such an appeal is essentially an appeal, in Plato’s language, to
Division and Collection. But an appeal to Division and Collection has meaning only
in connection with a dyad in periodic anthyphairesis, geometrical or philosophical.
In fact Plato, in the Politeia 510d5-e1, refers to the square itself and the diameter
itself (“tou tetragonou autou. . . kai diametrou autes”) right next to 510c2-6; indeed
the dyad <diameter, side of a square> is in periodic anthyphairesis, and thus,
according to our analysis of intelligible Platonic Beings in Sects. 1.3–1.6, qualifies
as a true intelligible Platonic Being. For the Pythagoreans, the only entity on which
they employed these principles would be the diameter to the side of the square.
For this entity the Logos of periodicity has been described in Sect. 1.2.4. Thus we
conclude that Proclus in these comments has in mind the diameter to the side of a
square.

1.11.4 Proclus Connects the Dyad < Acute, Obtuse Angle> with
the Infinite and the Right Angle with the Finite

But next Proclus, In Euclidem 132, 8-17, connects the principle of the Infinite,
namely the Division of the diameter to the side of a square, with the acute and
obtuse angles, and the principle of the Finite, namely the Logos and Collection of
the diameter to the side of a square, with the right angle:

The idea which proceeds from the finite (“peratos”) should produce the right angle (“orthen
gonian”), one (“mian”), ruled by equality (“isoteti”) and similarity (“homoioteti”) to every
other right angle, always determinate (“horismenen”) and staying the same (“ten auten
hestosan”), not admitting of either growth (“auxesin”) or diminution (“meiosin”);
whereas the idea that comes from the infinite (“apeirias”), being second in rank and
dyadic (“duadikos”), reveals a pair of angles divided about the right angle by inequality
(“anisoteti”) according to the greater and smaller (“kata to meizon kai elasson”), and subject
to infinite motion (“aperanton kinesin”) according to the more and less (“kata to mallon kai
hetton”), the one becoming obtuse (“amblunomenes”) more and less, the other becoming
acute (“oxunomenes”). (Proclus, In Euclidem 132, 8-17)

Thus Proclus connects the dyad < acute, obtuse angle> with the anthyphairetic
Division of the diameter to the side of a square, and the right angle with Logos
and Collection. These connections might appear to make little sense and call for an
explanation. But we will show now that they make, indeed, perfect sense.
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1.11.5 Side and Diameter Numbers, the Ancient Convergents,
and the Solution of Pell’s Equation for N = 2

Instrumental for our interpretation is the sequence, Pythagorean in origin, of side
and diameter numbers. It is known that the Pythagoreans, following the discovery of
the incommensurability of the diameter to the side of a square, outlined in Sect. 1.2,
proceeded with the introduction and study of the side and diameter numbers, the
ancient precursors of the convergents of the square root of 2, and, based on them,
with the solution of Pell’s equations

x2 = 2y2 + 1 and x2 = 2y2 − 1.

These important discoveries are recounted by the neo-pythagoreans Theon
Smyrneus, eis Platona 43,1-45,8 and Iamblichus, eis Nikomachon 91,4-93,7, and
by Proclus, eis Politeian 2,24,16-25,13;2,27,1-29,4.

1.11.5.1 Anthyphairetic Definition of the Side and Diameter Numbers

Definition For every natural number n, the nth side pn and the nth diameter qn
number are the unique natural numbers such that

Anth(qn, pn) = [1, 2, 2, 2, . . . (n− 1 times)]

(namely equal to the initial segment of length n of the infinite anthyphiresis of the
diameter to the side of a square), and qn, pn are relatively prime.

Since Anth(qn, pn) = [1, 2, 2, . . . , 2(n− 1 times)] equals to the initial sequence of
n elements of the sequence of quotients of the anthyphairesis of the diameter to the
side of a square, the anthyphairetic Division of the diameter to the side of a square
up to stage n can be described equivalently by the side and diameter numbers, the
ancient convergents, of level n.

Thus the infinite anthyphairetic Division

Anth( diameter, side of a square) = [1, 2, 2, 2, . . . ]

is described equivalently by the whole approximating sequence (qn, pn) of side and
diameter numbers.
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1.11.5.2 Recursive Definition of the Side and Diameter Numbers

The definition of the side and diameter numbers is preserved by Nicomachus,
Iamblichus, and Proclus, in an equivalent recursive form as follows:

p1 = 1 = q1, pn+1 = pn + qn, qn+1 = qn + 2pn for every natural number n.

The recursive definition is a consequence of the anthyphairetic definition. We omit
the rather straightforward proof of this implication.

1.11.5.3 Pell Property of the Side and Diameter Numbers

The recursive definition together with Proposition II.10 of the has been used by the
Pythagoreans for an inductive proof of the following

Proposition (The Fundamental Pell Property of Side and Diameter Numbers)

q2
n =

{
2p2

n − 1 if n is odd, and

2p2
n + 1 if n is even.

It has been strongly contested by scholars whether these neo-pythagorean authors
really describe a strict (inductive) proof. (Freudenthal [11], van der Waerden [34]
argued in favor, Fowler [10], Unguru [33, p. 286], Acerbi [1, p.72]) against). The
present author has novel arguments in favor of the inductive character of this proof.
Details can be found in Chapter 8 of the book by S. Negrepontis and V. Farmaki,
History of ancient Greek Mathematics, Vol. I, 2019 (in Greek).

1.11.6 Pell Property and the Dyad of Acute and Obtuse Angles

The Pell property is instrumental for the dialectical treatment of the three kinds of
angles.

Definition For any natural number n let pn, qn denote the side and diameter
numbers of level n. We form the isosceles triangle AnBnCn, approximating the
rectangular triangle, with sides AnBn = AnCn = pn, and BnCn = qn, and we
let hn denote the angle BnAnCn, approximating the right angle.

Proposition The angle hn is acute if n is odd, and obtuse if n is even.

Proof By the Pell property of side and diameter number for n odd and even number,
and the Propositions II.12 and 13 of the Elements applied to the triangle AnBnCn.
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1.11.7 Dialectical Definition of the Three Kinds of Angle

Now Proclus’ comments become well understood in the context of the Division and
Collection of the diameter to the side of a square. Indeed

– the acute and obtuse angles are higher and higher hypotheses generated in the
infinite anthyphairetic Division of the diameter to the side, while

– the ascent to the right angle is realized by the Logos criterion of periodicity and
Collection of the diameter to the side.

It follows from the approximating nature of the sequence of side and diameters
numbers that we can define and determine all acute and obtuse angles by the side
and diameter numbers.

Since the infinite anthyphairetic Division of the diameter to the side determines
the side and diameter numbers, it follows that the infinite anthyphairetic Division of
the diameter to the side determines all acute and obtuse angles.

Definition (Dialectical Definitions of Acute And Obtuse Angle) An angle h is
acute if and only if angle h < angle hn for some odd number n, and an angle h is
obtuse if and only if angle h > angle hn for some even number n.

The relation of the right angle with the principle of the Finite and the Logos
Criterion. The first two steps of the anthyphairesis of the diameter a to the side
b are

a = b + c1, b = 2c1 + c2, hence c1 = a − b, c2 = b − 2c1 = 3b − 2a.

The Logos criterion b/c1 = c1/c2, equivalently, the condition b.c2 = c1
2, is

attained, since the condition is equivalent to a2 = 2b2, defining a right angle
isosceles triangle by Pythagoras theorem and heir converses (Propositions I.47, II.12
and 13 of the Elements).

Thus Proclus’ illuminating comments in In Euclidem 131,3-134,7 lead unmis-
takenly to the conclusion that the ascent of the status of the three kind of angles is
realized not in any true Being in general, as was the case with numbers and line and
circle, but in specific true Being diameter itself and the side itself.

1.11.8 The Fourth Postulate and Its Dialectical Content

We will consider the Fourth Postulate in Euclid’s Elements.

Postulate IV. And that all right angles are equal to one another.

It is remarkable that Proclus, just before these philosophic comments, in 188,20-
189,12, produces a proof of the Fourth Postulate, perfectly valid in fact, and agreeing
in essence with the proof given in the Hilbert axiomatisation of Euclidean Geometry,
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concluding with the comment “this proof has been given by other commentators and
required no great study.”

It is clear then that the value of the Fourth Postulate is mostly philosophical,
simply strengthening the dialectic status of the right angle.

This postulate also shows that the rightness of the angles is akin to the equality, as the
acuteness and obtuseness are akin to the inequality. The rightness is in the same column with
the equality, for both of them belong under the Finite. . . But the acuteness and obtuseness
are akin to the inequality. . . ; for all of them are the offspring (“ekgonoi”) of the Infinite.
(Proclus, In Euclidem 191, 5-11)

Thus, according to Proclus, for the Pythagoreans and Plato, the equality of the
right angles in the Fourth Postulate is a consequence of the principle of the Finite,
namely of the Logos and Collection in the (intelligible Being) diameter to the
side, by which the parts-hypotheses of the anthyphairesis of diameter to side are
equalized. This is the only meaning of the dialectic equality.

1.12 Completion of Criticism II by Proclus: The Geometers’
Failure to Derive the Fifth Postulate from a Platonic
Principle of Finiteness

The stubborn belief by the ancient Platonists, expressed epigrammatically by
Proclus

This [the Fifth Postulate] ought to be struck altogether (“pantelos diagraphein”) from the
postulates (191, 21-22)

on the derivability of the Fifth Postulate (Proclus, In Euclidem 191,16-193,9), a
postulate of Pythagorean origin,41 appeared to rest on the general conviction that all
Geometry was under the umbrella of Platonic philosophy.

It was realised that the fifth postulate is a principle of the finitisation of infinity.
In fact Proclus, In Euclidem 394,8-400,16 describes the paradoxical nature of
Proposition I.35, indicating that there is a similarity between Platonic Beings and
Proposition I.35, or in fact of Propositions III.21,31, in the sense that they both
exhibit a finitisation of infinity. From a mathematical point of view, it is clear that,
while both the Fifth Postulate and periodic anthyphairesis, the basis for Plato’s
dialectics, are finitisations of infinity, nevertheless they are quite different sort of
finitisations, e.g. there is no indication of periodicity as the cause of the Fifth
Postulate.

Still Platonists, like Ptolemy or Proclus, thought that it would be possible to
deduce in some sense the Fifth Postulate from some principle of the Finite. More
specifically, Proposition I.30, shows that “parallelism” is “similarity of position”

41Since the Pythagoreans used it in the proof of Proposition I.32 of the Elements, according to
Eudemus in Proclus, In Euclidem 379,1-18 (in contrapositive form), and in the proof of Proposition
II.10 of the Elements, according to Proclus, eis Politeian 2.24-28 (in direct form).
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(373,5-23) and that the Fifth Postulate is for parallelism what the Enallax property
is for analogy (357,9-16). The attempted proof of the Fifth Postulate by Ptolemy
(365,5-368,26) relies on some kind of alternation, reminiscent of the Enallax
property, while Proclus’attempted proof, on an appeal to Aristotle’s philosophic
principle of the finite, proceeds in the same way that the Enallax property for
magnitudes is proved in Book V (Proposition V.16), by an appeal to the Eudoxian
principle (Definition V. 4 and Proposition V.8).

But in reality there was never a satisfactory account of the Fifth Postulate from
the Platonic principles of Infinite and Finite, equivalently, the method of Division
and Collection. The Fifth postulate has always been Achilles’ heel of Plato’s
approach to Geometry.

1.13 The Sensibles in Plato’s Timaeus 48a2-58c4

Back to Plato’s dialectics. We wish to gain an essential understanding of the
way Plato views the relation of Geometry with the sensible figures and diagrams
geometers use in their proofs (to be studied in Sect. 1.14). For this it is first necessary
to obtain a deep and correct understanding of the way Plato views the sensibles.
There are some indications about them in various dialogues but the main source for
Plato’s sensibles is the Timaeus 48a-58c, where he introduces the receptacle and
the hollow spaces. The present section has independent interest in that it outlines
an original interpretation of the sensibles and the receptacle/hollow space. The
basic ideas for the anthyphairetic interpretation of the sensibles, by means of the
Timaeus’ “diakena”-receptacle have been outlined in initial form in Negrepontis
[21]; in detailed form they will appear in a forthcoming work by Negrepontis and
Kalisperi [25].

1.13.1 The True Opinion of an Intelligible Being Is Identified
with an Initial Finite Segment of the Anthyphairesis of
the Intelligible Being

The sensibles participating in an intelligible Being are routinely described as copies,
images, incomplete approximations of the intelligible in which they participate. But
our interpretation of the nature of the intelligible Being and its knowledge by means
of Division and Collection in terms of (anthyphairetic) Division and Collection (by
means of Logos, establishing periodic anthyphairesis) makes possible a deeper and
precise understanding.

Equivalent descriptions of Division and Collection-Logos are

(a) Name and Logos (Parmenides 155d8-e1, Theaetetus 201e2-202b5, Sophistes
218c1-5, 221a7-b2, 268c5-d5),
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(b) true opinion (“alethes doxa”) and Logos (Symposium 202a2-10, 209e5-211d1,
Meno 97e2-98c4 (where instead of “logos”, the equivalent expression “logis-
mos aitias” is employed), Theaetetus 201c8-d3, 202b8-d7, Timaeus 27d5-28a5,
51d3-e6).

Furthermore, true opinion is described as

– alogos (Symposium 202a6, Theaetetus 201d1, Timaeus 28a3, 51e4), and
– finite in nature (Sophistes 264b1, Scholia In Euclidem X.2, 1-6).

It now follows, from our anthyphairetic interpretation of Division and Collection,
that a true opinion of an intelligible Being is the knowledge provided by some first
finite steps of the anthyphairetic Division of the intelligible Being.42

1.13.2 The Knowledge of a Sensible Participating in an
Intelligible Platonic Being Is Identified with a True
Opinion of the Intelligible Being

Once the basic nature of an intelligible being has been clarified (in Sects. 1.3–
1.6), the sensibles participating in an intelligible being, the philosophic analogue
of periodic anthyphairesis, there seems to be little choice for the sensibles, being
described as copies, images, incomplete approximations of the intelligible to which
they participate, but to be, in one way or another, the philosophic analogue of the
anthyphairetic finite initial approximations, the modern “convergents”, of the full
infinite periodic anthyphairesis of the intelligibles. The model of the sensibles is
the sequence of side and diameter numbers, indeed an initial segment of the full
anthyphairesis of the intelligible diameter to the side of a square.

In view of our remarks in Sect. 1.13.1, this is confirmed

– in the Politeia 475e6-480a13 especially 479d3-10 (“doxaston” 478a11, b2,
b3, e3, 479d7), and used in the analogy of the Divided Line 509d1-510b1
(“doxaston” 510a9), repeated briefly in the Timaeus 29c and

– in the Timaeus 27d5-28a4 (and 28b8-c2) (“doxaston” 28a3), and 51d3-52a7, on
the need of the receptacle,

because in these passages the knowledge of a sensible that participates in an
intelligible Platonic being is squarely equated with a true opinion of that intelligible
Being.

It follows that the knowledge of a sensible that participates in an intelligible
Platonic being is equated with the knowledge provided by some first finite steps of
the anthyphairetic Division of the intelligible Being.

42Details are given in Negrepontis [22, Section 7].
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The relation of participation of a sensible in an intelligible entity will, then, be
completely analogous to the relation between a pair of diameter and side numbers
to the diameter to the side of a square.43

1.13.3 The Geometrisation of the Sensibles in the Timaeus

1.13.3.1 The Association of the Four Elements of the Sensible World,
Earth, Fire, Air, Water, with the Canonical Polyhedra Cube,
Pyramid, 8hedron, 20hedron of Book XIII of the Elements,
Respectively (Timaeus 55d-56c)

We now turn to the Timaeus.
In, the model of the perceptible world, as presented in the Timaeus, Plato,

following the Greek physiology tradition, conceives of the sensible world as
consisting of four elements, earth, water, air, fire. But to this tradition, he introduces
a bold and unexpected geometrisation, exploiting the theory of regular solids, most
likely completed not long before the writing of the Timaeus by Theaetetus, in the
form presented in Book XIII of the Elements; according to it earth consists of cubes,
fire of pyramids, air of octahedra, water of icosahedra (55d-56c).

1.13.3.2 The Fundamental Role of the Two Basic Triangles a and b for the
Surfaces of the Four Polyhedral (Timaeus 53c4-54b5)

The most remarkable and in fact crucial consequence of this Platonic geometrisation
is that the three of the four polyhedra involved, namely fire-pyramid, air-octahedron,
water-icosahedra have their surface consisting entirely of equilateral triangles, while
the fourth element, earth, has its surface consisting of squares.

Furthermore, a square consists of two rectangular isosceles triangles, called
hereafter triangle a, and an equilateral triangle consists of two equal rectangular
non-isosceles triangles, called hereafter triangle b (53c4-54b5). The importance of
this consequence in the Platonic theory of sensibles will be analysed below.

43and in modern terms, analogous to the relation between the convergents of a continued fraction
and the continued fraction itself.
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1.13.4 The Incommensurability Between the Areas of the
Triangles a and b, and Their Canonical Comparison by
Equating Their Hypotenuses

1.13.4.1 The Incommensurability of the Areas of the Triangles a and b

Plato states, in 56d6-e7, that

fire, air, water are freely exchangeable at the rational rate 4:8:20, namely at the rates
corresponding to the respective numbers of triangles b covering the surface of each of these
three solids,

while, in 54b6-c5,44 and 56d1-645 that

it is impossible that earth will ever turn into one of the other three elements.

It is natural to assume, and we do assume, that the impossibility of exchange of
earth into the other three elements is explainable, as well, in terms of the surfaces of
the solids corresponding to these surfaces, namely in terms of the impossibility of
exchange of triangle a into triangle b.

Let us first state precisely the impossibility of the exchange of triangle a into
triangle b: it means that any multiple Ma of the area of a cannot be equal to any
multiple Nb of the area of b. Thus there are no numbers M and N such that the
two areas are equal Ma = Nb. But we realize that this statement is precisely the
statement that the area of the triangle a is incommensurable to the area of the
triangle b.

Now triangle b is the constituent of the pyramid, and in 54d5-55a4 the construc-
tion of a pyramid from triangle b is outlined. This construction is closely related with
the construction in Proposition XIII.13, where it is also shown that the pyramid is
comprehended, inscribed in a given sphere, and that the square on the diameter of
the sphere is one and a half times the (square) on the side of the pyramid.
Proposition [XIII.13]
Πυραμίδα συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ καὶ δεῖξαι, ὅτι ἡ τῆς
σφαίρας διάμετρος δυνάμει ἡμιολία ἐστὶ τῆς πλευρᾶς τῆς πυραμίδος.

44τὰ γὰρ τέτταρα γένη δι’ ἀλλήλων εἰς ἄλληλα ἐφαίνετο πάντα γένεσιν ἔχειν, -οὐκ ὀρθῶς
φανταζόμενα· γίγνεται μὲν γὰρ ἐκ τῶν τριγώνων ὧν προῃρήμεθα γένη τέτταρα, τρία μὲν ἐξ
ἑνὸς τοῦ τὰς πλευρὰς ἀνίσους ἔχοντος, τὸ δὲ τέταρτον ἓν μόνον ἐκ τοῦ ἰσοσκελοῦς
τριγώνου συναρμοσθέν.
οὔκουν δυνατὰ πάντα εἰς ἄλληλα διαλυόμενα ἐκ πολλῶν σμικρῶν ὀλίγα μεγάλα καὶ
τοὐναντίον γίγνεσθαι, τὰ δὲ τρία οἷόν τε·(Timaeus 54b6-c5).
45γῆ μὲν συντυγχάνουσα πυρὶ διαλυθεῖσά τε ὑπὸ τῆς ὀξύτητος αὐτοῦ φέροιτ΄ ἄν, εἴτ΄ ἐν αὐτῷ
πυρὶ λυθεῖσα εἴτ’ ἐν ἀέρος εἴτ’ ἐν ὕδατος ὄγκῳ τύχοι, μέχριπερ ἂν αὐτῆς πῃ συντυχόντα τὰ
μέρη, πάλιν συναρμοσθέντα αὐτὰ αὑτοῖς, γῆ γένοιτο—οὐ γὰρ εἰς ἄλλο γε εἶδος ἔλθοι
ποτ΄ ἄν (Timaeus 56d1-6).
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To construct a pyramid, to comprehend it in a given sphere, and to prove that the
square on the diameter of the sphere is one and a half times the square on the side
of the pyramid.

Thus in a given sphere of diameter D, a pyramid is constructed with side p,
comprehended in the given sphere, and D2 = (3/2)p2. The hypotenuse of the
triangle b constituent to the constructed pyramid is the side p.

In the same way the triangle a is the constituent of the cube, and in 55b3-c4
the construction of a cube from triangle a is outlined. This construction is closely
related with the construction in Proposition XIII.15, where it is also shown that the
cube, like the pyramid (“ᾗ καὶ τὴν πυραμίδα”), is comprehended, inscribed in a
given sphere, and that the square on the diameter of the sphere is three times the
(square) on the side of the cube.
Proposition [XIII.15]
Κύβον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν, ᾗ καὶ τὴν πυραμίδα, καὶ δεῖξαι, ὅτι
ἡ τῆς σφαίρας διάμετρος δυνάμει τριπλασίων ἐστὶ τῆς τοῦ κύβου πλευρᾶς.
To construct a cube and comprehend it in a sphere, like the pyramid; and to prove
that the square on the diameter of the sphere is triple of the square on the side of the
cube.

Thus in a given sphere of diameter D, a cube is constructed with side k,
comprehended in the given sphere, and D2 = 3k2. The hypotenuse of the triangle a
constituent to the constructed cube is the diameter q of the square with side k.

This suggests the way of the “canonical” comparison of the areas of the triangles
a and b. Triangle a will be compared to triangle b, when triangle a is considered
as constituent part of a cube and triangle b is considered as constituent part of a
pyramid, AND these two solids, the cube and the pyramid are comprehended by the
same sphere, as in fact in Proposition XIII.18.

We obtain, as a consequence, the following

Proposition The hypotenuse p of the triangle b, namely the side of the pyramid,
and the hypotenuse of the triangle a, namely the diameter q of the square side of the
cube, when the pyramid and the cube are comprehended in the same sphere, are
equal, p = q .

Proof Indeed, in this common sphere of diameter say D, the side p of the pyramid
satisfies, by Proposition XIII.13, p2 = 2/3D2, and the side k of the cube satisfies,
by Proposition XIII.15, k2 = 1/3D2. This allows for the canonical comparison
of triangle a and triangle b. The hypotenuse of the triangle b is the side p. The
hypotenuse q of the triangle a is the diameter of the square side, hence satisfies
q2 = 2k2. Thus we have

p2 = 2/3D2 = 2(1/3D2) = 2k2 = q2.

Hence p = q.
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We are then fully justified in comparing the areas of triangles a and b by
identifying their hypotenuses.46

1.13.4.2 Comparison of the Areas of the Triangles a and b

Let us assume for convenience that the common hypotenuse has length 2. The
surface of the earth-cube consists of squares, equivalently of rectangular isosceles
triangles (with sides in ratio

√
2,
√

2, 2, and area 1), while the surface of the
fire-pyramid consists of equilateral triangles, equivalently of rectangular scalene

triangles of type b (with sides in ratio 1,
√

3, 2, and area
√

3
2 ).

1.13.4.3 The Anthyphairesis of Ma to Nb, for Any Numbers M,N, Is
Periodic

The relation of any conglomeration of earth, consisting say of M elements, and
having total surface area M.1, to any conglomeration of fire, consisting say of N

elements, and having total surface area N.
√

3
2 is, thus, always incommensurable

(ibid. 54b-d, 56b-e); and, from what was said above, we expect that the interaction
of earth and fire will be anthyphairetic, and in fact following the anthyphairesis of

M to N.
√

3
2 .

The simplest (M=N=1) is

Anth(area of triangle a, area of triangle b) = Anth(2,
√

3) = [
1, period(6, 2)

]
,

but these anthyphaireses get quite complicated, e.g.

Anth(area of triangles 4a, area of triangles 17b) = Anth(8, 17
√

3) =[
3, period

(
1, 2, 7, 1, 1, 1, 3, 35, 1, 28, 2, 8, 1, 1, 3, 6, 1, 1, 5,7,

5, 1, 1, 6, 3, 1, 1, 8, 2, 28, 1, 35, 3, 1, 1, 1, 7, 2, 1,6
)]
.

In fact there is an infinite variety of combinations, Ma to Nb, as noted in 57c7-d6
but always remaining commensurable in power, hence, according to Theaetetus’
theorem, with palindromically periodic anthyphairesis.47

46In retrospect we realize that the reason why Plato takes the half-square triangle a, and the
half isopleuron triangle b, is for the purpose of having two right angled triangles with equal
hypotenuses.
47Negrepontis [23].
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On the other hand, the interactions between any two of the three fire, air, water
is of the form Mb to Nb for any numbers M,N, and is thus governed by finite
anthyphairesis.

So according to Plato’s Timaeus the really different elements in the material
world are just two, the earth on one side, whose surface elements consist of triangles
of the type a, and the fire-air-water on the other, whose surface elements consist of
triangles of the type b, a dyad of opposites.

1.13.5 The Problem of Participation of the Sensibles
in the Intelligibles

On the one hand, we expect that the sensibles are governed by their participation in
the intelligible. In the Timaeus 51b6-52a7, and also in the Philebus 29a6-d6, Plato
expressly introduces the intelligible fire and earth, and states that the sensible fire
and earth participate in the intelligible fire and earth.48 According to our analysis of
intelligible Beings, the intelligible Being that shapes the material world consists of
a dyad of opposites (opposite line segments), the intelligible Fire B and Earth A, in
periodic anthyphairesis. It is clear that the anthyphairesis of the intelligible A to B
must be equal to the anthyphairesis of the area of the triangle a to the area of the
triangle b. Thus, the Platonic idea in which the four elements participate is the idea
with the dyad

〈 ideal earth A, ideal fire B〉,

with A, B line segments, such that the ratio

A/B = ratio area of triangle a/ area of triangle b.

(Such lines A,B can be constructed by choosing a “protetheisa” line, say r , use
Proposition I.44 of the Elements to find lines A,B such that a = rA, b = rB,
and finally use the pivotal Proposition VI.1 of the Elements, to conclude that
A/B = a/b. Then, according to the Theaetetus approach to the theory of ratios
of magnitudes, reported by Aristotle in the Topics 158b-159a, the anthyphairesis
of A to B equals the anthyphairesis of a to b, hence (parindromically) periodic;
thus the dyad A,B is a Platonic idea). The sensibles participate into the intelligible,
as explained in Sect. 1.13.2, by means of an initial segment of the full infinite
periodic intelligible anthyphairesis.

48ἔστιν τι πῦρ αὐτὸ ἐφ΄ ἑαυτοῦ καὶ πάντα περὶ ὧν ἀεὶ λέγομεν οὕτως αὐτὰ καθ΄ αὑτὰ
ὄντα ἕκαστα. (Timaeus 51b6-52a7).
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On the other hand, in the model of the physical world with only four, and for
Plato, in fact, essentially only two, elements, actual anthyphairesis in the form of
successive divisions is immediately seen to be impossible: for, if a is earth-cube and
b is fire-pyramid, then the successive remainders in their anthyphairetic intercourse,
in fact infinitely many because of incommensurability, will necessarily correspond
to ever new elements, beyond the initial ones. Thus if

a = k1b + a1, with a1 < b,

is the first step in the anthyphairetic division of a to b, the remainder a1 is a new
element, different from earth a, and different from fire/air/water b.

Plato specifically rejects the possibility that the world is made up of an infinite
multitude of elements, or “kosmous” (55c7-d6).49

Thus the triangles a and b cannot interact by anthyphairetic division.
[The triangles a and b on the other hand are divisible in only one way, that does

not change their shape: the isosceles rectangular triangle of type a is divisible in
two smaller isosceles rectangular triangle also of type a [dichotomy] (55b4-7), and
the non-isosceles rectangular triangle of type b is divisible in three smaller non-
isosceles rectangular triangle also of type b [trichotomy] (54d5-e3).]

At this point we face a seemingly impossible situation:
the traditional Greek theory, to which as we saw Plato subscribes, that all sensibles
are produced from (only) the four elements (55c7-d8) appears to be incompatible
and at odds with the anthyphairetic interpretation of the sensible world, which, as a
consequence of our anthyphairetic interpretation of the participation of the sensibles
in the intelligible, confirmed by the incommensurability of earth to fire (56d5-6)
requires the generation of an infinity of new parts.

1.13.6 The Purpose of the Receptacle/Hollow Space Is to
Transform the Intelligible Anthyphairetic Division into
Equivalent Tight Inequalities (Timaeus 56c8-57c6,
57d7-58c4)

Mathematically there is a way out of this seemingly impossible situation: we can
replace the infinitely many cuts and divisions, ever producing new elements, of
the anthyphairetic Division by an equivalent sequence of tight double inequalities

49cf. Proclus, eis Timaion 2,49,29-50,2 on the meaning of “kosmous”:
καὶ ταῦτα τῷ τε Πλάτωνι συμφωνότατά ἐστι, νῦν μὲν λέγοντι τὸν οὐρανὸν ἐκ τῶν τεττάρων

εἶναι στοιχείων ἀναλογίᾳ συνδεδεμένων καὶ ὅλον τὸν κόσμον συνεστάναι, μικρὸν δὲ ὕστερον
τὰ πέντε σχήματα πλάττοντι καὶ πέντε κόσμους ἀποκαλοῦντι (ταῦτα γὰρ καὶ πέμπτην οὐσίαν
τῷ οὐρανῷ δίδωσι καὶ τὴν τῶν στοιχείων εἰσάγει τετρακτύν) καὶ τῇ ἀληθείᾳ συνερχόμενα.
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expressible in terms of only the two initial elements, intelligible earth A and intel-
ligible fire B. Plato’s philosophical strategem of the receptacle/hollow space in the
Timaeus serves precisely this purpose and function: the intelligible anthyphairetic
Division of A to B is turned into a sequence of tight inequalities (involving triangles
a and b), occurring in the receptacle/hollow space and generating the sensible entity.

We have expressed the proposition mostly in the language of the Timaeus50 in
order to indicate the close agreement of Plato’s description of the receptacle/hollow
space with the mathematical content of the proposition.

Proposition (Fundamental Proposition of Receptacle/Hollow Space) (Timaeus
56c8-57c6, 57d7-58c4). There is a sequence of natural numbers Sn, Tn, such
that every sensible entity is a confounded51 dyad of opposites, resulting from the
entrance and compression52 of a conglomeration of the small triangles b’s into the
hollow spaces of a conglomeration of the large triangles a’s, formed alternatingly

either
for every odd stage 2n − 1 of the intelligible anthyphairesis by a

tight53/compressed inequality of the type

S2n−1b < T2n−1a < (S2n−1 + 1) b,

not leaving even one single empty hollow space54 b, sandwitching the conglom-
eration of the triangle a’s by the conglomeration of the triangle b’s, with the

50The revolution (“periodos”) of the All, since it comprehends the Kinds, tightens (“sfiggei”) them
all, seeing that it is circular (“kukloteres”) and tends naturally to come together to itself; and thus
it suffers not even a single (“outhemian”) hollow space (“kenoteta”) to be left. Wherefore, fire
most of all has permeated (“dielekuthen”) all things, and in a second degree air, as it is by nature
second in fineness; and so with the rest; for those that have the largest constituent parts have the
largest hollow space left in their construction, and those that have the smallest the least. Thus
the tightening of the compression (“pileseos sunodos”) forces together the small bodies into the
hollow space (“diakena”) of the large. Therefore, when small bodies are placed beside large, and
the smaller disintegrate (“diakrinein”) the larger while the larger unite (“sugkrinei”’) the smaller.
(58a4-b7).
51Μέγα μὴν καὶ ὄψις καὶ σμικρὸν ἑώρα, φαμέν, ἀλλ’ οὐ κεχωρισμένον ἀλλὰ συγκεχυμένον τι.
Politeia 524c3-4.
52ἡ δὴ τῆς πιλήσεως σύνοδος τὰ σμικρὰ εἰς τὰ τῶν μεγάλων διάκενα συνωθεῖ. 58b4-5
“pilesis” 58b4-5 compression LSJ 1404,
“sunothein” 53a6, 58b5, force together, compress LSJ 1730.
53ἡ τοῦ παντὸς περίοδος, ἐπειδὴ συμπεριέλαβεν τὰ γένη, κυκλοτερὴς οὖσα καὶ πρὸς αὑτὴν
πεφυκυῖα βούλεσθαι συνιέναι, σφίγγει πάντα 58a4-7
“sphiggein” 58a7 bind tight, tighten LSJ 1741.
54κενὴν χώραν οὐδεμίαν ἐᾷ λείπεσθαι, 58a7. Note that our rendering of “outhemia” is not as “and
thus it suffers no void place to be left” (as translated by W.R.M. Lamb. Cambridge, MA, Harvard
University Press; London, William Heinemann Ltd. 1925), but “and thus it suffers not even one
single hollow space to be left”, treating the hollow space of B or of A, as unit. Consider a similar
meaning of “outhen” in the Parmenides 144c3.
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b’s winning, while the a’s are defeated, forcing the a’s to become dissimilar to
themselves and similar to them,55 thus disintegrating them,56 and stay with the b’s,57

or
for every even stage 2n of the intelligible anthyphairesis by a tight/compressed
inequality of the type

(T2n−1) a < S2nb < T2na ,

not leaving even one single empty hollow space a, sandwitching the conglomeration
of the triangle b’s by the conglomeration of the triangle a’s, with the a’s winning,
while the b’s are defeated, forcing the b’s to become dissimilar to themselves and
similar to them, thus uniting them,58 and stay with the a’s.

Thus, even though the dyad 〈triangle a, triangle b〉 cannot satisfy the intelligible
anthyphairesis of the dyad 〈A,B〉, for the reasons explained in Sect. 1.13.5, it still
does satisfy the equivalent tight anthyphairetic inequalities, and participation is
rescued.

Proof Every sensible entity participates in the intelligible entity with dyad 〈A,B〉.
Let the intelligible dyad 〈A,B〉 have (infinite periodic) anthyphairesis

A = k0B + A1, A1 < B,

B = m0A1 + B1, B1 < A1,

. . .

An = knBn + An+1, An+1 < Bn,

Bn = mnAn+1 + Bn+1, Bn+1 < An+1

. . .

Claim. There is a double sequence Sn, Tn of numbers, such that the first 2n − 1
intelligible anhtyphairetic relations are equivalent to the tight/compressed inequality
of receptacle/hollow space

S2n−1b < T2n−1a < (S2n−1 + 1) b;

55νικηθέντα. . . ὅμοιον τῷ κρατήσαντι γενόμενον, they are defeated and, instead, assume one
form similar to the victorious Kind 57b6-7; τὰ δὲ ἀνομοιούμενα ἑκάστοτε ἑαυτοῖς, ἄλλοις δὲ
ὁμοιούμενα, those corpuscles which from time to time become dissimilar to themselves and similar
to others 57c3-4.
56τῶν ἐλαττόνων τὰ μείζονα διακρινόντων, 58b6-7.
57αὐτοῦ σύνοικον μείνῃ, stay dwelling therewith as a united family 57b7.
58τῶν δὲ μειζόνων ἐκεῖνα [elattona] συγκρινόντων 58b7.
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and the first 2n intelligible anhtyphairetic relations are equivalent to the
tight/compressed inequality of receptacle/hollow space

(T2n − 1) a < S2nb < T2na.

Proof of the claim. We indicate the first two steps of the proof.
The first intelligible anthyphairetic relation

A = k0B + A1, A1 < B,

is obviously equivalent to a tight inequality

S0B < T0A < (S0 + 1) B, with S0 = k0, T0 = 1,

involving only the initial indefinite dyad A,B, and with no presence of the
remainder A1. Since A/B = a/b, hence Anth(A,B) = Anth(a, b), we obtain the
tight/compressed inequality of receptacle/hollow space

S0b < T0a < (S0 + 1) b

The first two intelligible anthyphairetic relations

A = k0B + A1, A1 < B,

B = m0A1 + B1, B1 < A1

[are expressed equivalently as S0B < T0A < (S0 + 1)B, and k1A1 < B <

(k1 + 1)A1, and upon substituting A1 by its equal A − k1B, and performing
elementary manipulations we obtain that] are equivalent to a tight inequality

(T1 − 1)A < S1B < T1A, with T1 = m0

((
m0 + 1

)
k0 + 1

)
− 1,

S1 = (m0k0 + 1)
((
m0 + 1

)
k0 + 1

)
.

Since A/B = a/b, hence Anth(A,B) = Anth(a, b), we obtain the
tight/compressed inequality of receptacle/hollow space

(T1 − 1)a < S1b < T1a. ��

A similar transformation from division to equivalent double inequalities, involving
only the two elements a and b, is possible inductively for the anthyphairetic relations
of any order. We omit the details of the interesting computations involved.
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An excellent example of the fundamental proposition is in the formation of the
flesh and the bone; both flesh (74c5-d20) and bone (73e1-5) are generated by mixing
earth vs. fire/water, but with different outcomes in the mixture.

Wherefore, with this intent, our modeler mixed and blended together water and fire and
earth, and compounding a ferment of acid and salt mixed it in therewith, and thus molded
flesh full of sap and soft. (Timaeus 74c5-d2)

The flesh is produced by, and consists of, an anthyphairetic dyad of opposites,
earth vs. fire/water; the winner of this mixture is apparently the soft and watery
conglomeration forming a tight inequality of the form

Sb < T a < (S + 1)b,

where S many elements b of water/fire have entered into T many elements a
of earth, maximally, that is anthyphairetically, namely not allowing emptiness
even by one hollow space of water. Thus the mixture assumes the form of the
winner, according to the sandwiched tight inequality, a form that is soft and watery
(“ἔγχυμον καὶ μαλακὴν”).

And bone he compounded in this wise. Having sifted earth till it was pure and smooth, he
kneaded it and moistened it with marrow; then he placed it in fire, and after that dipped it
in water, and from this back to fire, and once again in water; and by thus transferring
it many times from the one element to the other he made it so that it was soluble by
neither. (Timaeus 73e1-5)

The bone is produced by, and consists of, an anthyphairetic dyad of opposites,
earth vs. fire/water; the winner of this mixture is apparently the insoluble hard
conglomeration forming a double inequality of the form

(T − 1)a < Sb < T a,

where S elements b of water/fire have entered into T elements a of earth, maximally,
that is anthyphairetically, namely not allowing emptiness even by one hollow space
of earth. Thus the mixture assumes the form of the winner, according to the
sandwiched tight inequality, a form that is hard and insoluble.

1.13.7 The Sensibles Participating in the Intelligible Platonic
Being F Are Sometimes F and Sometimes Not-F

The anthyphairetic description of the intelligibles in the second hypothesis of the
Parmenides coupled with the description of the sensibles that participate in an
intelligible in the Timaeus in terms of anthyphairetic inequalities make clear the
repeated claim of Plato that
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the sensibles participating in say the idea of the beautiful are sometimes beautiful
B and sometimes not-beautiful not-B (Symposium 210e2-211b5,59 Politeia 479a5-
b860).

Indeed the idea of the Beautiful consists of a dyad 〈B, not B〉 in periodic
anthyphairesis, while the sensibles participating in the idea are alternately either
of the form

S. not B < T.B < (S + 1). not B

or of the form

(T − 1).B < S. not B < T.B.

The first form of sensible appears as not-Beautiful, while the second form of sensible
appears as beautiful. Paradigmatical case is the side and diameter numbers.

1.13.8 The Identification of the “Receptacle” (“hupodoche”,
48e-53c) with the “Hollow Space”

At this point it becomes evident that the earlier and rather mysterious concept of
“receptacle” (“hupodoche”, 48e-53c), coincides with the hollow space (“diakena”).

and that the Nurse of Becoming (τιθήνην), being liquefied (ὑγραινομένην) and ignified
(πυρουμένην) and receiving also the forms of earth and of air, and submitting (πάσχουσαν)
to all the other affections (πάθη) which accompany these, but owing to [the Receptacle]

59Symposium 210e2-211b5.
ὃς γὰρ ἂν μέχρι ἐνταῦθα πρὸς τὰ ἐρωτικὰ παιδαγωγηθῇ, θεώμενος ἐφεξῆς τε καὶ ὀρθῶς τὰ
καλά, πρὸς τέλος ἤδη ἰὼν τῶν ἐρωτικῶν ἐξαίφνης κατόψεταί τι θαυμαστὸν τὴν φύσιν καλόν,
τοῦτο ἐκεῖνο, ὦ Σώκρατες, οὗ δὴ ἕνεκεν καὶ οἱ ἔμπροσθεν πάντες πόνοι ἦσαν, [1] πρῶτον μὲν
ἀεὶ ὂν καὶ οὔτε γιγνόμενον οὔτε ἀπολλύμενον, [2] οὔτε αὐξανόμενον οὔτε φθίνον, [3] ἔπειτα
οὐτῇ μὲν καλόν, τῇ δ’ αἰσχρόν, [4] οὐδὲ τοτὲ μέν, τοτὲ δὲ οὔ, [5] οὐδὲ πρὸς μὲν τὸ καλόν,
πρὸς δὲ τὸ αἰσχρόν, [6] οὐδ΄ ἔνθα μὲν καλόν, ἔνθα δὲ αἰσχρόν, [7] ὡς τισὶ μὲν ὂν καλόν, τισὶ δὲ
αἰσχρόν· [8] οὐδ΄ αὖ φαντασθήσεται αὐτῷ τὸ καλὸν οἷον πρόσωπόν τι οὐδὲ χεῖρες οὐδὲ ἄλλο
οὐδὲν ὧν σῶμα μετέχει, [9] οὐδέ τις λόγος οὐδέ τις ἐπιστήμη, [10] οὐδέ που ὂν ἐν ἑτέρῳ τινι,
οἷον ἐν ζώῳ ἢ ἐν γῇ ἢ ἐν οὐρανῷ ἢ ἔν τῳ ἄλλῳ, ἀλλ’ αὐτὸ καθ’ αὑτὸ μεθ’ αὑτοῦ μονοειδὲς
ἀεὶ ὄν, τὰ δὲ ἄλλα πάντα καλὰ ἐκείνου μετέχοντα τρόπον τινὰ τοιοῦτον, οἷον [1] γιγνομένων
τε τῶν ἄλλων καὶ ἀπολλυμένων μηδὲν ἐκεῖνο [11] μήτε τι πλέον μήτε ἔλαττον γίγνεσθαι [12]
μηδὲ πάσχειν μηδέν.
60Politeia 479a5-b8.
Τούτων γὰρ δή, ὦ ἄριστε, φήσομεν, [1] τῶν πολλῶν καλῶν μῶν τι ἔστιν ὃ οὐκ αἰσχρὸν
φανήσεται; [2] καὶ τῶν δικαίων, ὃ οὐκ ἄδικον; [3] καὶ τῶν ὁσίων, ὃ οὐκ ἀνόσιον; Οὔκ, ἀλλ’
ἀνάγκη, ἔφη, [1] καὶ καλά πως αὐτὰ καὶ αἰσχρὰ φανῆναι, καὶ ὅσα ἄλλα ἐρωτᾷς. Τί δὲ [4] τὰ
πολλὰ διπλάσια; ἧττόν τι ἡμίσεα ἢ διπλάσια φαίνεται; Οὐδέν. [5] Καὶ μεγάλα δὴ καὶ σμικρὰ [6]
καὶ κοῦφα καὶ βαρέα μή τι μᾶλλον ἃ ἂν φήσωμεν, ταῦτα προσρηθήσεται ἢ τἀναντία;Οὔκ, ἀλλ’
ἀεί, ἔφη, ἕκαστον ἀμφοτέρων ἕξεται.
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being filled quite full (ἐμπίμπλασθαι) with powers that are neither similar (μήθ΄ ὁμοίων
δυνάμεων) nor balanced (μήτε ἰσορρόπων), is not balanced (ἰσορροπεῖν) in not even one
of her parts (κατ΄ οὐδὲν αὐτῆς, 52e3) but sways (ταλαντουμένην) unequable (ἀνωμάλως)
everywhere (πάντῃ) and is herself moved (σείεσθαι) by these [powers] (52d4-e5)

In this passage, the receptacle is described as “formless” (like gold 50a5-c2,
“ekmageion” 50c2-e4), as being moved—changed by the triangles that enter, and as
itself moving the triangles (like “plokanon” 52e5-53a1), depending on the outcome
of the ‘battle’. We do not need here the detailed argument for this fundamental
identification; it will appear in the forthcoming paper [25].

1.14 Plato’s Criticism III of the Geometers: The Geometers
Employ Sensible Geometric Figures That Are
Non-provoking to the Mind (510d5-511a2, 522e5-525a2)

1.14.1 Plato’s Criticism III of the Geometers, Employment
of Visible Diagrams in Their Study of Geometry

The geometers employment of visible geometric diagrams for their study of
Geometry, itself an intelligible activity (even if relegated to the lower kind of
“dianoia”), might be thought the reason, in view of Plato’s low regard for visible,
sensible entities, for his criticism (Criticism III, as we call it) in 510b4-6, 511a3-
b2, 511c6-8. But in fact, Plato, in the subsequent passage 522e-525a, is careful
to distinguish between two kinds of perceptions, those provoking and those non-
provoking to the mind, a distinction that cannot be really understood without
obtaining first a full description of the sensibles as presented in the Timaeus 48a-
58c (and studied in Sect. 1.13). So it becomes immediately clear that Plato is not
rejecting all perceptions, and that the use of sensible images by the geometers is not
automatically something negative for Plato.

Thus before determining the nature of Plato’s criticism about the use of visible
diagrams, it is best to look into this distinction into provoking and non-provoking
perceptions.

In fact, as we shall see, Criticism III has been misunderstood by modern
Platonists,

(a) because they have failed to connect criticism III with the division of the
representation of sensibles to provoking and non-provoking the mind to ascent
in the Politeia 522e5-525a261; and,

61Platonists in general failed to realize the significance of provoking perceptions in connection
with the geometers reliance on sensible images, e.g. Annas [3] writes in p. 278: “Mathematics
has two defects compared with dialectic. It relies on visible diagrams, and it does not question its
assumptions. Plato never indicates that, or how, these two defects are connected”.
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(b) because they failed to obtain the true meaning of the sensibles and of the
participation of the sensibles in the intelligibles in Plato’s philosophy, as
presented in the Timaeus 48a-58e (examined in Sect. 1.13).

1.14.2 Politeia 522e5-523b7: Perceptions Provoking
and Non-provoking the Mind to Ascent

Plato in the Politeia 522e5-524d6 is drawing a distinction of perceptions, dividing
them in

– perceptions that provoke (“parakalounta”) the soul to ascend to the intelligible
(that draw the mind to essence and reality (“ton pros noesin agonton”, “helktikoi
pros ousian”), that are conducive (“agoga”) to such ascent), and

– perceptions that are non-provoking.

In the introductory section 522e5-523b7, the distinction is described thus:

it is one of those studies which we are seeking that naturally conduce to the awakening
of thought (“ton pros noesin agonton’), but that no one makes the right use of it, though it
really does tend to draw the mind to essence and reality (“helktikoi pros ousian”). (523a1-3)
the things I distinguish in my mind as being or not being conducive (“agoga te. . . kai me”)
to our purpose (523a6)
if you can discern that some reports of our perceptions do not provoke thought to
reconsideration (“ou parakalounta ten noesin eis episkepsin”) because the judgment of them
by sensation seems adequate. (523a10-b4)

1.14.3 The Perception of a Sensible Is Provoking If It Can Be
Considered at the Same Time as Its Opposite, and Non
Provoking, If It Cannot Be So Considered
(523b8-525a2)

Plato then proceeds to explain this distinction. The introductory section is followed
by more detailed sections, one on non-provoking perceptions 523b8-e7:

The perceptions that do not provoke thought (“ou papakalounta”) are those that do not at
the same time step out (“me ekbainei”) to an opposite (“enantian”) perception.
Those that step out (“ta d’ ekbainonta”) I set down as provocatives (“parakalounta”), when
the perception no more manifests one thing than its opposite (“to enantion”). (523b9-c3)
For in none of these cases is the soul of most men impelled to question the reason and to
ask what in the world is a finger, since the faculty of sight never signifies to it at the same
time (“hama”) that the finger is the opposite (“tounantion”) of a finger. (523d3-6)

and another on provoking perceptions 523e7-524c12:

In the first place, the sensation that is set over (“tetagmene”) the hard is of necessity set over
(“tetachthai”) also to the soft, and it reports to the soul that the same thing (“tauton”) is both
hard and soft to its perception.”“It is so,” he said. “Then,” said I, “is not this again a case
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where the soul must be at a loss as to what significance for it the sensation of hardness has,
if the sense reports the same thing (“to auto”) as also soft? And, similarly, as to what the
sensation of light and heavy means by light and heavy, if it reports the heavy as light, and
the light as heavy?” “Yes, indeed,” he said, “these communications to the soul are strange
(“atopoi”) and invite reconsideration (“episkepseos deomenai”).” (524a1-b2)

The description ends with a concluding section 524c13-d6:

defining as provocative (“parakletika”) things that impinge (“empiptei”) upon the senses
together (“hama”) with their opposites (“tois enantiois”). (524d2-6)

Example of the non-provoking type, is the perception of a finger, as finger,
since there is nothing to suggest that the finger can also be seen as non-finger. The
provoking (“parakletika”) type is a perception coupled with its opposite perception,
such as the smallness of fingers with the greatness of fingers, or thickness with
thinness, or softness and hardness, or heaviness with lightness. Thus it is provoking,
if we see three fingers the small, the middle, and the large, because the middle
finger is at the same time perceived as great (with respect to the small) and as small
(with respect to the great). A feature of provocative perceptions, by no means fully
explained, is described as follows:

“Sight too saw the great and the small, we say, not separated (“achoristos”) but confounded.
(“sugkechumene”) “Is not that so?” “Yes.” (524c3-5)

Furthermore perception provoking to ascent to the intellect, as described in
524e2-525a2.

But if some opposition (“enantioma”) is always seen coincidentally with it, so that it no
more appears to be one than the opposite (“tounantion”), there would forthwith be need of
something to judge between them, and
it would compel (“anagkazoit’ an”) the soul to be at a loss and to inquire, by arousing
thought in itself (“kinousa en heaute ten ennoian”), and to ask, whatever then is the one
as such, and thus the study of unity will be one of the studies that guide (“agogon”) and
convert (“metastreptikon”) the soul to the contemplation of true Being.(524e2-525a2).

1.14.4 The Perceptions That Are Provoking to the Mind, as
Described in the Politeia 522e-525a, Coincide with the
True Representations of Sensibles, as Described in the
Timaeus 48a-58e

At this point we will compare the provoking and non-provoking representations of
sensibles given in the Politeia (Sects. 1.14.2–1.14.3) with the nature of the sensibles,
as described in the Timaeus. In fact this is the reason we have inserted Sect. 1.13 on
the nature and the structure of the sensibles in the Timaeus.

It is clear that a sensible, if it is to ascend to the intelligible, cannot but ascend to
the intelligible to which it participates; and the participation of the sensibles to the
intelligible is, as we have seen in Sects. 1.13.1–1.13.2, the participation of a finite
initial anthyphairesis of the intelligible dyad to the whole infinite anthyphairesis.
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But why does Plato single out the property of a sensible able to provoke ascent of
the soul to the intelligible to be the almost contradictory compresence of a property
with its opposite in a confounded sort of dyad?

The intelligible is, as we have seen in Sects. 1.3–1.6, a dyad of opposites in
periodic anthyphairesis, and by means of periodicity, the two elements of the dyad,
are equalized, “separated” in the sense that each of the parts is a unit (by the
equalisation) and together they form the intelligible number two, exactly as with
the paradigmatical true Being, the One of the second hypothesis in the Parmenides,
outlined in Sect. 1.3. The intelligible dyad in the Timaeus is 〈 earth, water 〉, and the
periodic anthyphairesis is between a number of triangles of type a to a number of
triangles of type b.

According to the interpretation of the sensibles in the Timaeus, outlined in
Sect. 1.13, a sensible (participating in this intelligible) is an anthyphairetic dyad,
a “confounded” dyad, with anthyphairesis a finite approximating initial segment
of the infinite anthyphairesis of the intelligible indefinite dyad 〈 earth, water 〉. A
sensible is an anthyphairetic dyad with finite anthyphairesis, in the form of one of
two double inequalities.

A typical sensible is a mixture of water and earth, in the sense that the parts of
water Sb have entered and filled the hollow spaces/diakena of earth T a. In case this
results in “sugkrisis”

(T − 1)a < Sb < T a

this mixture will take the solid form of earth, and in case it results in “diakrisis”

Sb < T a < (S + 1)b,

the mixture takes the fluid form of water. Thus, this true sensible entity is “a
confounded” dyad (since the diakena of earth are filled with the parts of water), and
not a separated, namely intelligible, dyad, as described in 524c3-4. Furthermore a
true sensible is perceived simultaneously as A and not A, as described in 523b8-
525a2.

Indeed, this entity is both earth and not earth (or both water and not water);
and also, it is earth in the present stage that may be transformed into water in the
next stage (or conversely), by passing from sugkrisis to diakrisis (or conversely),
which happens when a sensible which is described by a 2n-th anthyphairetic
approximation is transformed into the (2n + 1)-th anthyphairetic approximation
(or from the (2n − 1)-th to the 2n-th, resp.). Thus we have the true explanation
of why a sensible entity is always “such as” earth, or “such as” water (and not
“this” earth or “this” water), as described in the Timaeus 49c7-50b5. The question
was discussed by Cherniss in [7], but not answered in a satisfactory manner. The
anthyphairetic approximations of the sequence of side and diameter numbers to the
side and diameter of a square, and the corresponding approximations of the right
angle by an infinite sequence of alternating approximations of acute and obtuse
angles, as studied in Sect. 1.11, mathematically equivalent forms of describing a
sensible entity, are confounded dyads, and of the form both A and not A.
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We can thus see that a representation, a perception, of a sensible is provoking the
mind towards the intelligible, according to 522e-525a, if it represents truthfully and
faithfully a sensible, as described according to the Timaeus 48a-58e.

1.14.5 The Visible Geometric Diagrams Are Not-Provoking
the Mind Upwards

Now the natural question, in relation to Plato’s Criticism III, appears to be: do the
visible geometric diagrams constitute provoking or non-provoking representations
of sensibles?

The provoking sensible is, in some way, present with its opposite (a straight line
with a greater straight line, or conversely, an acute angle with its opposite obtuse
or conversely), or equivalently as a confounded dyad, in terms of tight inequalities,
leaving not a single hollow space, as described in the Timaeus, participating in the
Division scheme of a Platonic Being.

But in the geometric diagrams a straight line is represented as one, isolated line
segment between joining two points; and an acute angle is presented as an isolated
angle, without its opposite obtuse.These representations are very much like the one,
isolated finger, in Plato’s discussion in 523b8-524d6 (cf. Sect. 1.13.3), and thus they
qualify as non-provocative representations of the sensibles, representations that do
not provoke toward true intelligible knowledge.

The distinction of perceptions in provoking and non provoking the soul to ascent
brings the blame for the failure of the geometers to ascend to the intelligible to
the geometers themselves: it is not the geometers’ fault that they are using visible
diagrams, but it is their fault that, they are not using visible diagrams and perceptions
correctly (in fact, “no one is using them correctly”, 523a1-3), that they are using
non-provoking instead of provoking visible diagrams.

1.14.6 The Representations of the Sensibles That Are Not
Provoking Towards Ascent to the Intelligible Are
Analogous to the Geometric Hypotheses That Do Not
Ascend to the Anhupotheton

In fact the way non-provoking perceptions are described, as a perception in
which the opposite perception is not suggested, in 522e-525a, is analogous to the
way the hypotheses of the geometers are described. What makes a hypothesis
geometric and non-dialectical is that it is isolated, without an opposite, forming
an anthyphairetic dyad, as in the definitions of the Sophistes or Politicus; and, what
makes a representation of a sensible non-provoking the mind upwards is the almost
contradictory compresence of an opposite, forming an anthyphairetic dyad.
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1.14.7 The Non-provoking Representation of Sensibles in the
Geometric Diagrams Is Not the Cause for the
Compulsion of the Geometers to Employ Hypotheses in
a Dianoia Non-Dialectical Way

This close analogy between non-provoking representations of sensibles and non-
dialectic hypotheses might now give the impression that the visible geometric
diagrams, because of being non-provoking, are guilty of compelling the geometers
to the use of hypotheses as principles. But the source of this compulsion has already
been identified (in Sect. 1.9), mostly with the help of the passage 527a-b, with the
need of the geometers to obtain actions/constructions in their proofs of propositions,
and it is of a purely intelligible source and origin. Thus the geometric diagrams have
nothing to do with the compulsion of the geometers to use hypotheses as principles.

1.14.8 The Geometers Form Their Arguments for the Sake of
Intelligible Beings (Studied by Means of Dianoia), but
About the Visible Diagrams of These Beings
(510d5-511a2)

The 510d5-511a2 passage is important because in it Plato defines carefully the rela-
tion of the intelligible dianoia type hypotheses and the related actions/constructions
role with the sensible/visible diagrams play in Geometry.

“And do you not also know that they [the geometers] further make use of the visible forms
(“tois horomenois eidesi”) and construct their arguments (“tous logous poiountai”) about
(“peri”) them,
though they are arguing by means of “dianoia” (“dianooumenoi”)
not about them [visible forms]
but about those things of which they are a likeness,
constructing their arguments (“tous logous poioumenoi”)
for the sake (“heneka”) of the square itself (“tou tetragonou autou”) and the diagonal itself
(“tes diametrou autes”), and
not for the sake (“heneka”) of the image of it which they draw?
And so in all cases.
The very things which they mould and draw, which have shadows and images of themselves
in water, these things they treat in their turn as only images (“eikosin chromenoi”), but what
they really seek is to get sight of those intelligible beings, which can be seen only by means
of “dianoia”.” “True,” he said. (510d5-511a2)

Thus, the geometers construct their arguments (“tous logous poiountai”, “tous
logous poioumenoi”) about (“peri”) these visible diagrams, even though these
arguments are for the sake of (“heneka”) intelligible real, Platonic Beings, such
as the square itself and the diameter itself, understood though by the (imperfect)
method of “dianoia”, namely by taking hypotheses as principles. The present
passage, examined together with 527a1-b2 (analysed in Sect. 1.9.2), in which there
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is no mention of sensibles, but where it is stated that the geometers are compelled
to employ hypotheses in a defective way because they form their arguments for the
sake of geometric constructions.

Thus the visible representations of the diagrams must be compatible, auxiliary
to the dianoia reasoning of the geometers. As auxiliary to dianoia the visible
diagrams cannot be perceptions provoking the mind upwards, because if they were,
they would lead to the use of hypotheses as steps upwards, something that would
go against the “dianoia” way of thinking to which the geometers are committed.
Thus the diagrams used by “dianoia” thinking geometers, must definitely be non-
provoking, perceptions (522e-525a)—as they are indeed.

1.14.9 The Geometric Diagrams Are Non-Provoking the Mind,
Because the Geometers Form Their Arguments by
Means of Dianoia and the Diagrams Are in Accordance
with “dianoia” Way of Thinking

Plato’s non-provoking representations of geometric entities in the geometric di-
agrams is thus seen as a consequence rather than as a cause of the use by
the geometers of hypotheses that are principles, and of a geometry that moves
down, deductively. The non-provoking visible geometric diagrams are used by the
geometers because they are in close accord with the use of geometric hypotheses,
conceived in “dianoia” non-dialectic way of thinking, not conversely.

1.15 Criticism IV of the Academy: Criticism of Eudoxus’
Theory of Ratios of Magnitudes (Scholion In Euclidem
X.2) and Archytas’ Duplication of the Cube (527d-528e)

Our interpretation of Plato’s view of (plane) Geometry, and its relation to philosoph-
ical true Beings and Ideas, sheds considerable light on Plato’s view on Stereometry
and his criticism on the solution of the problem of the Duplication of the Cube
provided by Archytas, in the Politeia 527d-528e.

Inspired from music and epimoric ratios, Archytas was the first to conceive
of arithmetical, non-anthyphairetic proofs of quadratic incommensurabilities, first
shown in terms of periodic anthyphairesis by Theaetetus (as mentioned in Sect. 1.2).
His proofs were based on Proposition VII.27 (if a, b are relatively prime numbers,
then a2, b2 are relatively prime as well), and their derivative Proposition VIII.14,
on the existence of an arithmetical mean proportional. One feature of these proofs
is that they readily generalize to cubic incommensurabilities, since by VII.27, if
a, b are relatively prime numbers, then a3, b3 are relatively prime as well and
Proposition VIII.14 holds for two arithmetical mean proportionals. Despite the
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mistaken claim in the Theaetetus 148b2 (“καὶ περὶ τὰ στερεὰ ἄλλο τοιοῦτον”,
“and similarly in the case of solids”), Theaetetus’ anthyphairetic method of proof
on quadratic incommensurabilities does not extend to cubic incommensurabilities.

Since historically the development of a theory of ratios of magnitudes was
closely associated with incommensurabilities, the discovery by Archytas of non-
anthyphairetic proofs of incommensurabilities, and not only quadratic, but cubic
as well, not covered by Theaetetus’ theory of ratios of magnitudes (mentioned in
Sect. 1.2), made necessary and pressed forward for a non-anthyphairetic theory of
ratios of magnitudes. This is precisely the feat of Eudoxus, exposed in Book V of
the Elements, who realized that instead of determining the ratio of two magnitudes
by its position between the odd below and the even above arithmetical ratios of the
convergents, one can simply pass, by the grace of Eudoxus-Archimedean condition,
to Dedekind cuts.

Next, the new theory of ratios by Eudoxus made possible Archytas’ most ingen-
uous duplication of the cube by means of constructing two mean proportionals (as
initially conceived by Hippocrates). It is generally not realized that this construction
must come AFTER a general theory of ratios of magnitudes has been given, that
Theaetetus’ theory was inadequate to deal with cubic ratios, and thus necessarily
after Eudoxus’ theory. Thus for a given line b, he constructed line a, such that
a3 = 2b3, by constructing two mean proportionals lines m and a between 2b and b,
namely 2b/m = m/a = a/b; then, indeed,

a3/b3 = (2b/m).(m/a).(a/b)= 2b/b = 2/1.

By Proposition VI.14 of the Elements (based on Eudoxus’ fundamental proposition
V.9 and on Proposition VI.1), m and a must be constructed so that both m2 = 2ab
(parabola) and ma = 2b2 (hyperbola) are satisfied, the point of intersection of two
conic sections.

While the non-anthyphairetic proofs of the quadratic incommensurabilities could
well be considered as inferior to the anthyphairetic (in that they do not provide full
knowledge of the ratio involved), and thus would not cause any great concern to the
mathematical and philosophical supporters of an anthyphairetic approach (Plato’s
annoyance is likely expressed in the distinction between the eristic, not producing
numbers and thus not making use of periodic anthyphairesis and logos, and the
dialectic way of attaining infinity (namely by means of periodic anthyphairesis) in
the Philebus 16d-e), Eudoxus’ theory and Archytas’ duplication of the cube were
certainly casus belli for Plato. The annoyance of the Academy with Eudoxus’ new
and general theory of ratios can be seen in Scholion In Euclidem X.2. In the second
part of this Scholion, it is lamented that if Eudoxus theory of ratios of magnitudes
(Book V of the Elements) is adopted, then the difference between alogon and rheton,
that is fundamental in the earlier Theaetetean theory of magnitudes, is obliterated
and destroyed.

Εἰ πάντα τὰ μεγέθη τὰ πεπερασμένα δύναται πολλαπλασιαζόμενα ἀλλήλων ὑπερέχειν
(τοῦτο δὲ ἦν τὸ λόγον ἔχειν,ὡς ἐν τῷ πέμπτῳ μεμαθήκαμεν), τίς μηχανὴ τὴν τῶν
ἀλόγων ἐπεισφέρειν διαφοράν;
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As we have mentioned in Sect. 1.2.4, Theaetetus’ anthyphairetic theory of
ratios of magnitudes was only for a limited class of magnitudes, related to lines
commensurable in square, and certainly not for general magnitudes.

Plato in the Politeia 527d-528e is generally considered to have in mind the
problem of the duplication of the cube.

The right way is next in order after the second dimension to take the third (μετὰ δευτέραν
αὔξην τρίτην λαμβάνειν). This, I suppose, is the dimension of cubes and of everything
that has depth.” (ἔστι δέ που τοῦτο περὶ τὴν τῶν κύβων αὔξην καὶ τὸ βάθους
μετέχον) 528b2-3.

The duplication of the cube is then criticized because the seekers of such
duplication are arrogant, and do not know the great value that logoi, presumably the
logoi leading to anthyphairetic periodicity, would have in relation to this problem.

Seekers in this field would be too arrogant
(οι περὶ ταῦτα ζητητικοὶ μεγαλοφρονούμενοι) 528c1

the seekers, not knowing why “logoi” would be useful
(ὑπὸ δὲ τῶν ζητούντων λόγον οὐκ ἐχόντων καθ΄ ὅτι χρήσιμα) 528c5-6

Plutarch, Quaestiones Convivales 718 Β8-F4, deals at length with the matter, and
in what appears to be the main criticism, he states62:

[geometry], according to Philolaus, is the chief and principal of all, and does bring back
and turn the mind, as it were, purged and gently loosened from sense. For this reason Plato
himself also reproached Eudoxus, Archytas, Menaechmus and their followers for trying to
lead away the problem of the duplication of a solid into constructions that use instruments
and that are mechanical, just as if they were trying to obtain the two mean proportionals
apart from “logos” in whatever way it was practicable. For by this means all that was good
in geometry would be lost and corrupted, it falling back again to sensible things, and not
rising upward and considering immaterial and immortal images, in which God being versed
is always God.

Plato must have believed, or hoped, that the anthyphairesis of a, b, for a3 =
2b3, would be periodic, and thus “have logos” of periodicity, as is the case of
the duplication of the square, with a2 = 2b2, and thus constitute a dyad of a
true Platonic Being, since Anth(a, b) = [1, 2, 2, 2, . . .].63 Under this mistaken,

62 μάλιστα δὲ γεωμετρία κατὰ τὸν Φιλόλαον ἀρχὴ καὶ μητρόπολις οὖσα τῶν ἄλλων
ἐπανάγει καὶ στρέφει τὴν διάνοιαν, οἷον ἐκκαθαιρομένην καὶ ἀπολυομένην ἀτρέμα
τῆς αἰσθήσεως. διὸ καὶ Πλάτων αὐτὸς ἐμέμψατο τοὺς περὶ Εὔδοξον καὶ
Ἀρχύταν καὶ Μέναιχμον εἰς ὀργανικὰς καὶ μηχανικὰς κατασκευὰς τὸν τοῦ
στερεοῦ διπλασιασμὸν ἀπάγειν ἐπιχειροῦντας, ὥσπερ πειρωμένους δίχα λόγου
δύο μέσας ἀνὰ λόγον, ᾗ παρείκοι, λαβεῖν. ἀπόλλυσθαι γὰρ οὕτω καὶ διαφθείρεσθαι
τὸ γεωμετρίας ἀγαθὸν αὖθις ἐπὶ τὰ αἰσθητὰ παλινδρομούσης καὶ μὴ φερομένης ἄνω
μηδ΄ ἀντιλαμβανομένης τῶν ἀιδίων καὶ ἀσωμάτων εἰκόνων, πρὸς αἷσπερ ὢν ὁ θεὸς ἀεὶ
θεός ἐστιν (718E4-F4).

63It is not realized by students of the Meno, that in the Meno 82a7-86c3 the recollection
(ἀνάμνησις) achieved is the recollection, i.e. repetition, of the logos of periodicity of the duplication
of the square, and not simply the Pythagorean theorem for the orthogonal isosceles triangle,
resulting in the complete knowledge (ἐπιστήμη) of the duplication ratio.
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as it turned out, belief, the duplication of the cube by Archytas could not be
considered satisfactory at all by Plato, since by his construction Archytas did not
prove periodicity of anthyphairesis and did not provide the full knowledge of the
true Being involved. It is clear, in view of our analysis that the reproach of Plato,
echoed in Plutarch, is that Eudoxus and Archytas are “trying to obtain the two mean
proportionals” necessary for the duplication of the cube “apart from logos” (“δίχα
λόγου”), namely apart from the logos of periodicity in anthyphairesis, the only one
bestowing true existence, and therefore “not rising upward”.

Little [16] prefers the reading “δι’ ἀλόγου” in place of the reading “δίχα λόγου”,
and adds the following Footnote in p. 272:

ὥσπερ πειρωμένους δι’ ἀλόγου δύο μέσας ἀνὰ λόγον, ᾗ παρείκοι, λαβεῖν’ The δι’ ἀλόγου
is hard to translate and may not even be what Plutarch originally wrote. This specific phrase
has a rather large number of textual issues as evidenced by the variant readings discussed
in the Loeb Classical Library/Perseus version of the Plutarch text. At least one editor has
suggested that the whole phrase should be omitted from the text!.

However, “δίχα λόγου” (“apart from logos”) and “δι΄ ἀλόγου” (“by means of
something lacking logos”) are practically synonymous, and both fit well with our
anthyphairetic interpretation.

1.16 Epilogue. The Un-Platonic Victory of Axiomatization:
From Euclid to Peano and Hilbert

It is clear that Plato thought that Geometry and in fact all Mathematics flowed from
the true Platonic Beings, and thus Geometry was subservient to Platonic philosophy
and dialectics. It is ironic that the vehicle, through which this superiority was
claimed, was a purely mathematical concept, periodic anthyphairesis, elevated to
the status of supreme philosophic principle.

Euclid, a geometer of Platonic inclination, followed a middle ground between
mathematics and Platonic philosophy, providing definitions for the point, the
straight line, and the arithmetical unit that were philosophically meaningful but
mathematically useless. Surprisingly for a Platonist his treatment of anthyphairesis
is rudimentary in Book X and fully suppressed in Book V.

Peano in 1889 and Hilbert in 1899 provided axiomatic foundation of Arithmetic
and of Euclidean Geometry, respectively, free from any philosophic supervision,
formalizing the emancipation of modern era Mathematics. Hilbert achieved this
by refusing to give definitions of the basic concepts (point, line, plane) and
of their basic relations (incidence, betweeness, application). Hilbert’s approach
served as the model for the axiomatisation of set theory by Zermelo-Fraenkel,
in principle comprising all Mathematics. Godel, a professed Platonist, with his
incompleteness theorem in 1931, brought fourth some crucial shortcomings of
Peano’s axiomatisation, but these were not at all in line with Plato’s.
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Translation of Ancient Sources

† The translation of the ancient passages is based on the following works, with
modifications by the author
Euclid, Elements–T. L. Heath, The thirteen books of Euclid’s elements. Cam-
bridge: Cambridge University Press. (First edition 1908, Second Edition 1926,
Reprinted by Dover Publications, New York, 1956).
Plato, Phaedo–H. N. Fowler; Introduction by W.R.M. Lamb. Cambridge, MA,
Harvard University Press; London, William Heinemann Ltd. 1966.
Plato, Politeia–P. Shorey; Cambridge, MA, Harvard University Press; London,
William Heinemann Ltd. 1969.
Plato, Parmenides, Theaetetus, Sophistes, Politicus–H. N. Fowler; Cambridge,
MA, Harvard University Press; London, William Heinemann, 1921.
Plato, Timaeus–W.R.M. Lamb. Cambridge, MA, Harvard University Press;
London, William Heinemann Ltd. 1925.
Plutarch, Quaestiones Convivales- Moralia, Volume IX, Table-talk, Books 7-9.
Dialogue on Love, ed. E. L. Minar, Jr.,F. H. Sandbach, W. C. Helmbold, with
an English translation, Loeb Classical Library 425, Harvard University Press,
Mass., 1961.
Proclus, In Euclidem–G. R. Morrow, Proclus A Commentary on the First Book of
Euclid’s Elements. Translated, with Introduction and Notes, Princeton University
Press, Princeton, 1970.
Simplicius, On Aristotle’s Physics 1.3-4–P. Huby and C.C.W. Taylor, Blooms-
bury, London, 2011.
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Chapter 2
Topology and Biology: From Aristotle
to Thom

Athanase Papadopoulos

Abstract René Thom discovered several refined topological notions in the writings
of Aristotle, especially the biological ones. More generally, he understood that some
assertions made by philosophers from Greek antiquity have a definite topological
content, even if they were stated more than two and a half millennia before the field
of topology was born. He adhered completely to Aristotle’s theory of form which
the latter developed especially in his biological treatises. Thom emphasized the
importance of these ideas in biology, and more particularly in embryology, namely,
the idea of a form tending to its own realization. In this article, we expand on these
ideas of Thom. At the same time, we highlight some major ideas in the works of
Aristotle and Thom in biology and we comment on their conceptions of mathematics
and more generally of science.
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2.1 Introduction

Bourbaki, in his Éléments d’histoire des mathématiques, at the beginning of the
chapter on topological spaces, writes [16, p. 175]:

The notions of limit and continuity date back to antiquity; one cannot make their
complete history without studying systematically, from this point of view, not only the
mathematicians, but also the Greek philosophers, and in particular Aristotle, and without
tracing the evolution of these ideas through the mathematics of the Renaissance and the
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beginning of differential and integral calculus. Such a study, which would be interesting to
carry on, would have to go much beyond the frame of the present note.1

We notice that in this quote, the reference is to “Greek philosophers” rather
than “Greek mathematicians.” One may recall in this respect that at that time,
mathematics was closely related to philosophy, even though there was a clear
distinction between the two subjects. Many mathematicians were often philosophers
and vice-versa, and mathematics was taught at the philosophical schools. A promi-
nent example is Plato who, in his Academy, was essentially teaching mathematics.
We may recall here a note by Aristoxenus, the famous fourth century BCE music
theorist who, reporting on the teaching of Plato, writes that the latter used to entice
his audience by announcing lectures on the Good or similar philosophical topics,
but that eventually the lectures turned out to be on geometry, number theory or
astronomy, with the conclusion that “the Good is One” [15, p. 98]. Aristotle was
educated at Plato’s academy, where he spent 20 years, learning mathematics in the
pure Pythagorean tradition, and he was one of the best students there—Plato used
to call him “the Brain of the School”. This is important to keep in mind, since
Aristotle’s mathematical side, which is one of the main topic of the present article,
is usually underestimated.

Over half a century since Bourbaki made the statement we quoted, a systematic
investigation of traces of topology in the works of the philosophers of Greek
antiquity has not been conducted yet. One problem for realizing such a program
is that the ancient Greek texts that survive are generally analyzed and commented
on by specialists in philosophy or ancient languages with little knowledge of
mathematics, especially when it comes to topology, a field where detecting the
important ideas requires a familiarity with this topic. In particular, it often happens
in this context that the translation of terms conveying topological ideas does not
render faithfully their content; this is the well-known problem of mathematical texts
translated by non-mathematicians.

Thom offers a rare, even unique, and important exception. He spent a great deal
of his time reading (in Greek) the works of Aristotle and detecting the topological
ideas they contain. He also pointed out a number of mistakes in the existing
translations and proposed more precise ones. In his 1991 article Matière, forme et
catastrophes [48, p. 367], he declares that his past as a mathematician and initiator
of catastrophe theory probably confers upon him a certain capacity of noticing
in the work of Aristotle aspects that a traditional philosophical training would
have put aside. He writes in his article Les intuitions topologiques primordiales
de l’aristotélisme [45] (1988) that the earliest terms of Greek topology available

1“Les notions de limite et de continuité remontent à l’antiquité ; on ne saurait en faire une histoire
complète sans étudier systématiquement de ce point de vue, non seulement les mathématiciens,
mais aussi les philosophes grecs et en particulier Aristote, ni non plus sans poursuivre l’évolution
de ces idées à travers les mathématiques de la Renaissance et les débuts du calcul différentiel et
intégral. Une telle étude, qu’il serait certes intéressant d’entreprendre, dépasserait de beaucoup
le cadre de cette note.” [For all the translations that are mine, I have included the French text in
footnote.]
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in the Greek literature are contained in Parmenides’ poem, On Nature, and he
notes, in particular, that the word sunekhes (συνεχές) which appears there is usually
translated by continuous, which is a mistake, because this word, in that context,
rather refers to (arcwise) connectedness. This is not only a matter of terminology;
it is part of a quest for a comprehension of what are exactly the topological
notions that are present in the literature of Ancient Greece. In order to make such
a comment, and, especially given that no precise topological terminology existed in
antiquity, a definite understanding of the topological ideas and intuitions involved
in the writings of that epoch, together with the precise terminology of modern
topology, is required. There are many other examples of statements of the same
kind by Thom, and we shall note a few of them later in our text. Thanks to Thom’s
translation and interpretation of Aristotle and of other Greek philosophers, certain
passages that were obscure suddenly become clearer and more understandable for a
mathematician. This is one of the themes that we develop in this article.

In several of his works, Thom expressed his veneration for the philosophers of
Greek antiquity. He started quoting them extensively in his books and articles that
he wrote in the beginning of the 1960s, a time when his mathematical work became
part of a broader inquiry that included biology and philosophy. In the first book he
published, Stabilité structurelle et morphogenèse : Essai d’une théorie générale des
modèles, written in the period 1964–1968, he writes [38, p. 9]2:

If I have quoted the aphorisms of Heraclitus at the beginning of some chapters, the reason is
that nothing else could be better adapted to this type of study. In fact, all the basic intuitive
ideas of morphogenesis can be found in Heraclitus: all that I have done is to place these in a
geometric and dynamic framework that will make them someday accessible to quantitative
analysis. The “solemn, unadorned words,”3 like those of the sibyl that have sounded without
faltering throughout the centuries, deserve this distant echo.

Aristotle, to whom Thom referred constantly in his later works, placed biology
and morphology, the science of form, at the basis of almost every field of human
knowledge, including physics, psychology, law and politics. Topology is involved,
often implicitly but also explicitly, at several places in his writings. Bourbaki, in
the passage cited at the beginning of this article, talks about limits and continuity,
but Thom highlighted many other fundamental topological questions in the works
of the Stagirite. Among them is the central problem of topology, namely, that
of reconstructing the global from the local. He noted that Aristotle saw that this
problem, which he considered mainly from a morphological point of view, is solved
in nature, especially in the vegetal world, where one can reconstruct a plant from
a piece of it. Even in the animal world, where this phenomenon is exceptional—in
general, one cannot resurrect an animal from one of its parts—he saw that if we

2We quote from the English translation, Structural stability and morphogenesis. An outline of a
general theory of models published in 1975.
3Thom refers here to Heraclitus, Fragment No. 12: “And the Sibyl with raving mouth, uttering
words solemn, unadorned, and unsweetened, reaches with her voice a thousand years because of
the god in her.” (Transl. A. Fairbanks, In: The First Philosophers of Greece, Scribner, 1898).
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amputate certain mollusks, crustaceans and insects of one of their organs, they can
regenerate it. Furthermore, Aristotle understood that it is possible to split certain
eggs to obtain several individuals.

In the foreword to his Esquisse d’une sémiophysique, a book published in 1988
and which carries the subtitle Physique aristotélicienne et théorie des catastrophes,4

Thom writes [47, p. viii]5: “It was only quite recently, almost by chance, that I
discovered the work of Aristotle. It was fascinating reading, almost from the start.”
More than a source of inspiration, Thom found in the writings of the Stagirite a
confirmation of his own ideas. On several occasions, he expressed his surprise at
seeing in these writings statements that he himself had come up with, in slightly
different terms, without being aware of their existence. He declares in his 1991
article Matière, forme et catastrophes [48, p. 367]: “In the last years, in view of my
writing of the Semiophysics, I was led to go more thoroughly into the knowledge of
the work of the Stagirite.”6 He found in that work the idea that, because we cannot
understand everything in nature, we should concentrate our efforts on stable and
generic phenomena. Aristotle formulated the difference between a generic and a
non-generic phenomenon as a difference between a “natural phenomenon” and an
“accident.” Interpreting this idea (and related ones) in terms of modern topology is
one of the epistemological contributions of Thom. He writes in his Esquisse [47,
p. 12] (p. ix of the English translation):

[. . . ] If I add that I found in Aristotle the concept of genericity (ὡς ἐπὶ τὸ πολύ), the
idea of stratification as it might be glimpsed in the decomposition of the organism into
homeomerous and anhomeomerous parts by Aristotle the biologist, and the idea of the
breaking down of the genus into species as images of bifurcation, it will be agreed that
there was matter for some astonishment.

The notion of “homeomerous” (ὁμοιομερής), to which Thom refers in this
passage, occurs in Aristotle’s History of animals, his Parts of animals, and in his
other zoological writings. It contains the idea of self-similarity that appears in
modern topology. The Aristotelian view of mathematics, shared by Thom, tells us
in particular that mathematics emerges from our daily concepts, rather than being
some Platonist ideal realm. Among the other topological ideas that Thom found in
Aristotle’s writings, we mention the notions of open and closed set, of cobordism,
and the Stokes formula. We shall quote the explicit passages below.

Thom published several articles on topology in Aristotle, including Les intuitions
topologiques primordiales de l’aristotélisme (The primary intuitions of Aristotelian-
ism) [45] (1988) which is an expanded version of a section in Chapter 7 of the
Esquisse [43], Matière, forme et catastrophes (Matter, form and catastrophes) [48]
(1991), an article published in the proceedings of a conference held at the UNESCO

4We quote from the English translation published in 1990 under the title Semio Physics: A Sketch,
with the subtitle Aristotelian Physics and Catastrophe Theory.
5Page numbers refer to the English translation.
6Ces dernières années, en vue de la rédaction de ma Sémiophysique, j’ai dû entrer plus profondé-
ment dans la connaissance de l’œuvre du Stagirite.
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headquarters in Paris at the occasion of the 23rd centenary of the Philosopher,
Aristote topologue (Aristotle as a topologist) [53] (1999) and others. It results from
Thom’s articles that even though Aristotle did not build any topological theory in the
purely mathematical sense, topological intuitions are found throughout his works.
Thom writes in [45, p. 395]: “We shall not find these intuitions in explicit theses and
constructions of the theory. We shall find them mostly in some ‘small sentences’
that illuminate the whole corpus with their brilliant concision.”7

Thom considered that mathematics is a language that is adequate for philosophy.
He expressed this in several papers, and in particular in the article Logos phenix
[40] and others that are reprinted in the collection Modèles mathématiques de
la morphogenèse [41]. We shall elaborate on this below, but let us note right
away that beyond the discussion that we conduct here concerning topological
notions in philosophy, we are aware of the fact that the question of how much
philosophical notions carrying a mathematical name (infinity, limit, continuity, etc.)
differ from their mathematical counterparts is debatable. Indeed, one may argue
that mathematics needs precise terms and formal definitions. Such a position is
expressed by Plotnitsky in his essay published in the present volume [31], in which
he writes:

What made topology a mathematical discipline is that one can associate algebraic structures
(initially numbers, eventually groups and other abstract algebraic structures, such as rings)
to the architecture of spatial objects that are invariant under continuous transformations,
independently of their geometrical properties.

Plotnitsky also quotes Hermann Weyl from his book The continuum [57], where
the latter writes that the concepts offered to us by the intuitive notion of continuum
cannot be identified with those that mathematics presents to us. Thom had a different
point of view. For him, mathematics and our intuition of the real world are strongly
intermingled. In the article Logos phenix [41, p. 292], he writes: “How can we
explain that mathematics represents the real world? The answer, I think, is offered
to us by the intuition of the continuous.”8 For him, it is the geometrical notion of
continuous that gives a meaning to beings that would have needed infinitely many
actions. He mentions the paradox of Achilles and the tortoise that allows us to
give a meaning to the infinite sum 1/2+1/4+1/8+. . . He writes that here, “the infinite
becomes seizable in action.”9 Conversely, he says, the introduction of a continuous
underlying substrate allows us to explain the significant—non-trivial—character of
many mathematical theorems [41, p. 293].

Beyond philosophy, Thom used the mathematics that he developed in order to
express natural phenomena. On several occasions, he insisted on the fact that the

7Ces intuitions, on ne les trouvera pas dans les thèses et les constructions explicites de la théorie.
On les trouvera surtout dans quelques “petites phrases”, qui illuminent tout le corpus de leur
éclatante concision.
8Comment expliquer que les mathématiques représentent le réel ? La réponse, je crois, nous est
offerte par l’intuition du continu.
9L’infini devient saisissable en acte.
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mathematical concepts need not be formalized or rigorously expressed in order to
exist. He recalls in [14] that “rigor” is a Latin word that reminds him of the sentence
rigor mortis (the rigor of a dead body). He writes that rigor is “a very unnecessary
quality in mathematical thinking.” In his article [44], he declares that anything which
is rigorous is not significant.10

Our aim in the next few pages is to expand on these ideas. A collection of essays
on Thom and his work appeared in print recently, [30].

2.2 D’Arcy Thompson

Before talking more thoroughly about Aristotle and Thom, I would like to say a
few words on the mathematician, biologist and philosopher who, in many ways,
stands between them, namely, D’Arcy Thompson.11 On several occasions, Thom
referred to the latter’s book On growth and form (1917), a frequently quoted work
whose main object is the existence of mathematical models for growth and form
in animal and vegetable biology at the level of cells, tissues and other parts of a
living organism. D’Arcy Thompson emphasized the striking analogies between the
mathematical patterns that describe all these parts, searching for general laws based
on these patterns. This was new, compared to the contemporary approach to biology
which relied on comparative anatomy and which was influenced by Darwin’s theory
of evolution.

In reading On growth and form, Thom had the same reaction he had when he read
Aristotle: he was amazed by the richness of the ideas expressed in this book, and
by their closeness to his own ideas. In turn, Thompson had a boundless admiration
for Aristotle who had placed biology at the center of his investigations. In an article
titled On Aristotle as biologist, Thompson calls the latter “the great biologist of
Antiquity, who is maestro di color che sanno,12 in the science as in so many other
departments of knowledge.” [54, p. 11] Likewise, Thom, in his articles Les intuitions
topologiques primordiales de l’aristotélisme and Matière, forme et catastrophes,

10Tout ce qui est rigoureux est insignifiant.
11D’Arcy Wentworth Thompson (1860–1948) was a Scottish biologist with a profound passion
for mathematics and for Greek science and philosophy. He was also an accomplished writer and
his magnum opus, On growth and form, is an authentic literary piece. He is known as the first
who found a relation between the Fibonacci sequence and some logarithmic spiral structures
in the animal and vegetable life (mollusk shells, ruminant horns, etc.), but this is only a minor
achievement compared to the rest of his work, and in particular, the development of the general field
of mathematical morphology, which had an enormous impact on mathematicians and on biologists.
D’Arcy Thompson’s writings were influential on several twentieth century thinkers including C.
H. Waddington, Alan Turing, Claude Lévi-Strauss and Le Corbusier and on artists such as Richard
Hamilton and Eduardo Paolozzi. D’Arcy Thompson translated Aristotle’s History of animals, a
translation which is still authoritative.
12The quote is from Dante’s Inferno, in which Aristotle is mentioned: “I saw the master of those
who know.”
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refers to Aristotle as “the Master” (“le Maître”). Thompson writes in On growth
and form [55, p. 15]:

[Aristotle] recognized great problems of biology that are still ours today, problems of
heredity, of sex, of nutrition and growth, of adaptation, of the struggle for existence, of
the orderly sequence of Nature’s plan. Above all he was a student of Life itself. If he was
a learned anatomist, a great student of the dead, still more was he a lover of the living.
Evermore his world is in movement. The seed is growing, the heart is beating, the frame
breathing. The ways and habits of living things must be known: how they work and play,
love and hate, feed and procreate, rear and tend their young; whether they dwell solitary,
or in more and more organized companies and societies. All such things appeal to his
imagination and his diligence.

Before Thom, D’Arcy Thompson foresaw the importance of topology in biology.
He writes, in the same treatise [55, p. 609 ff]:

[. . . ] for in this study of a segmenting egg we are on the verge of a subject adumbrated
by Leibniz, studied more deeply by Euler, and greatly developed of recent years. [. . . ]
Topological analysis seems somewhat superfluous here; but it may come into use some
day to describe and classify such complicated, and diagnostic, patterns as are seen in the
wings of a butterfly or a fly.

D’Arcy Thompson refers to the Aristotelian precept of studying the generic and
to discard the accident as a mathematician’s approach. He writes [54, p. 1032]:
“ [. . . ] we must learn from the mathematician to eliminate and to discard; to keep
the type in mind and leave the single case, with all its accidents, alone; and to find
in this sacrifice of what matters little and conservation of what matters much one of
the particular excellences of the method of mathematics.”13

The question of the relation between the local and the global, which is dear to
topologists, is addressed in On growth and form in several ways. D’Arcy Thompson
refers to Aristotle and to other nineteenth century biologists. He writes (p. 1019):

The biologist, as well as the philosopher, learns to recognize that the whole is not merely
the sum of its parts. It is this, and much more than this. For it is not a bundle of parts
but an organization of parts, of parts in their mutual arrangement, fitting one with another,
in what Aristotle calls “a single and indivisible principle of unity”; and this is no merely
metaphysical conception, but is in biology the fundamental truth which lies at the basis of
Geoffroy’s (or Goethe’s) law of “compensation,” or “balancement of growth.”

It is of course not coincidental that Thompson mentions Goethe and Geoffroy-
Saint-Hilaire and it is well worth to recall here that Goethe was also a passionate
student of biology, in particular, of form and morphology. He wrote an essay on the
evolution of plants based on their form. To him is generally attributed the first use
of the word “metamorphosis” in botanics—even though the concept was present in
Aristotle, who studied the metamorphosis of butterflies, gnats and other insects.

Isidore Geoffroy Saint-Hilaire, the other naturalist to whom D’Arcy Thompson
refers, wrote an important treatise in three volumes titled Histoire naturelle générale

13D’Arcy Thompson refers to W. H. Young’s address at the 1928 Bologna ICM (1928), titled “The
mathematical method and its limitations.”
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des règnes organiques (General natural history of organic worlds) in which he
carries out a classification of animals that is still used today. In commenting on
Aristotle, Geoffroy writes in this treatise [22, vol. I, p. 19 ss.]:

He is, in every branch of human knowledge, like a master who develops it alone. He reaches,
he extends, the limit of all sciences, and at the same time he penetrates their intimate depths.
From this point of view, Aristotle is an absolutely unique exception in the history of human
thought, and if something here is amazing, it is not the fact that this exception is unique,
but that there exists one, as such a meeting of faculties and of knowledge is surprising
for anyone who wants to notice it psychologically. [. . . ] Among his multiple treatises, the
History of animals and the Parts are the main monuments of his genius.14

The biologist Thomas Lecuit, newly appointed professor at the Collège de
France, gave his first course, in the year 2017–2018, on the problem of morpho-
genesis. He started his first lecture by a tribute to D’Arcy Thompson, emphasizing
the latter’s contribution to the problem of understanding the diversity of forms, the
mathematical patterns underlying them and their transformations, and highlighting
the continuing importance of his 100 years old book On growth and form. The
book is now among the few most important books that formed the basis of modern
science. In 2017, a 1-week workshop dedicated to that book was held at the Lorentz
Center (Leiden) and the Institute for Advanced Studies (University of Amsterdam).
The talks were on the impact of this work on mathematics, biology, philosophy, art
and engineering.

D’Arcy Thompson addressed at the same time biologists and mathematicians.
He writes, in the Epilogue of On growth and form: “While I have sought to shew
the naturalist how a few mathematical concepts and dynamical principles may help
and guide him, I have tried to shew the mathematician a field of his labour—a field
which few have entered and no man has explored.”

Let me end this section by emphasizing the fact that On growth and form is
not only a scholarly book, but also a magnificent literary piece. D’Arcy Thompson
himself was proud of his literary gifts. In an obituary notice, Clifford Dobell quotes
him saying the following: “To spin words and make pretty sentences is my one
talent, and I must make the best of it. And I am fallen on an age when not one man
in 20,000 knows good English from bad, and not one in 50,000 thinks the difference
of any importance. [. . . ] The little gift of writing English which I possess, and try to
cultivate and use, is, speaking honestly and seriously, the one thing I am a bit proud
and vain of—the one and only thing.” [20, p. 612]

14Il est, dans chaque branche du savoir humain, comme un maître qui la cultiverait seule; il atteint,
il recule les limites de toutes les sciences, et il en pénètre en même temps les profondeurs intimes.
Aristote est, à ce point de vue, une exception absolument unique dans l’histoire de l’esprit humain,
et si quelque chose doit nous étonner ici, ce n’est pas qu’elle soit restée unique, c’est qu’il en
existe une : tant une semblable réunion de facultés et de connaissances est surprenante pour qui
veut s’en rendre compte psychologiquement. [. . . ] Entre ses nombreux traités, les deux monuments
principaux de son génie sont l’Histoire des animaux et le Traité des parties.
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2.3 Aristotle, Mathematician and Topologist

Aristotle is very poorly known as a mathematician, a situation which is unfair.
Although he did not write any mathematical treatise (or, rather, there is no indication
that such a treatise existed), Aristotle had an enormous influence on mathematics, by
his thorough treatment of first principles, axioms, postulates and other foundational
notions of geometry, by his classification of the various kinds of logical reasonings,
his reflections on the use of motion (that is, what we call today isometries) in axioms
and in proofs, and on the consequences of that use, etc. There are may ways in which
Aristotle preceded Euclid, not in compiling a list of axioms, but in his profound
vision and thoughts on the axiomatic approach to geometry. We refer in particular
to his discussions of first principles in his Posterior analytics,15 to his insistence
in the Metaphysics16 on the fact that a demonstrative science is based on axioms
that are not provable, to his discussion of the reductio ad absurdum reasoning in the
same work,17 and there are many other ideas on the foundations of mathematics in
his work that one could mention. Besides that, several mathematical propositions
are spread throughout his works. In particular, we find results related to all the
fundamental problems of mathematics of that epoch: the parallel problem in the
Prior analytics,18 the incommensurability of the diagonal of a square19 and the
squaring of the circle (by means of the squaring of lunules) in the same treatise,20

etc. There is an axiom in the foundations of geometry that was given the name
Aristotle’s axiom; see Greenberg’s article [23]. In Book III of On the heavens,
talking about form, one of his favorite topics, and commenting on a passage of
Plato’s Timaeus in which regular polyhedra are associated with the four sublunar
elements (earth, water, air, fire), Aristotle states that there are exactly three regular
figures that tile the plane, namely, the equilateral triangle, the square and the regular
hexagon, and that in space, there are only two: the pyramid and the cube.21 It is
possible that this passage is the oldest surviving written document in which this
theorem is stated.22 One may also consider Aristotle’s Problems,23 a treatise in 38
books, assembled by themes, one of the longest of the Aristotelian corpus. It consists
of a list of commented (open) problems, of the kind mathematicians are used to edit,

15Posterior analytics, [4] 74b5 and 76a31-77a4.
16Metaphysics [8] 997a10.
17Posterior analytics, [4] 85a16ff.
18Prior analytics [2] 65a4–9, 66a11-15.
19Prior analytics [2] 65b16-21.
20Prior analytics [2] 69a20-5.
21On the heavens [7] 306b1-5.
22The reason why Aristotle makes this statement here is not completely clear, but it is reasonable
to assume that it is because Plato, in the Timaeus conjectured that the elementary particles of the
four elements have the form of the regular polyhedra he associated to them; hence the question
raised by Aristotle concerning the tiling of space using regular polyhedra.
23The translations below are from [5].
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with the difference that Aristotle’s problems concern not only mathematics but all
subjects of human knowledge: psychology, biology, physics, acoustics, medicine,
ethics, physiology, etc. In total, there are 890 problems. They generally start with
the words “Why is it that. . . ” For instance, Problem 48 of Book XXVI asks: Why
is it that the winds are cold, although they are due to movement caused by heat?
Problem 19 of Book XXXI asks: Why is it that when we keep our gaze fixed on
objects of other colours our vision deteriorates, whereas it improves if we gaze
intently on yellow and green objects, such as herbs and the like? Problem 20 of the
same book asks: Why is it that we see other things better with both eyes, but we
can judge of the straightness of lines of writing better with one eye? Some of the
problems concern mathematics. For instance, Problem 3 of Book XV asks: Why do
all men, Barbarians and Greek alike, count up to 10 and not up to any other number,
saying for example, 2, 3, 4, 5 and then repeating then, “one-five”, “two-five”, just
as they say eleven, twelve? Problem 5 of the same book starts with the question:
Why is it that, although the sun moves with uniform motion, yet the increase and
decrease of the shadows is not the same in any equal period of time? Book XVI
is dedicated to “inanimate things.” Problems 1 and 2 in that book concern floating
bubbles. Problem 2 asks: Why are bubbles hemispherical?24 Problem 5 asks: Why
is it that a cylinder, when it is set in motion, travels straight and describes straight
lines with the circles in which it terminates, whereas a cone revolves in a circle, its
apex remaining still, and describes a circle with the circle in which it terminates?
Problem 5 of the same book concerns the traces of oblique sections of a cylinder
rolling on a plane. Problem 6 concerns a property of straight lines: Why is it that
the section of a rolled book, which is flat, if you cut it parallel to the base becomes
straight when unrolled, but if it is cut obliquely becomes crooked?

Another mathematical topic discussed in detail in Aristotle’s works is that of
infinity, for which the Greeks, at least since Anaximander (sixth century BCE) had
a name, apeiron (ἄπειρον), meaning “boundless.” This notion, together with that of
limit, is discussed in the Categories, the Physics, the Metaphysics, On the heavens,
and in other writings. In the Physics,25 Aristotle mentions the two occurrences of
the infinite in mathematics: the infinitely large, where, he says, “every magnitude is
surpassed” and the infinitely small, where “every assigned magnitude is surpassed

24D’Arcy Thompson was also fascinated by the questions of form and transformation of floating
bubbles, in relation with the question of growth of a living cell submitted to a fluid pressure (cf. On
growth and form, Chapters V–VII). On p. 351, he talks about “the peculiar beauty of a soap-bubble,
solitary or in collocation [..] The resulting form is in such a case so pure and simple that we come
to look on it as well-nigh a mathematical abstraction.” On p. 468, he writes: “Bubbles have many
beautiful properties besides the more obvious ones. For instance, a floating bubble is always part
of a sphere, but never more than a hemisphere; in fact it is always rather less, and a very small
bubble is considerably less than a hemisphere. Again, as we blow up a bubble, its thickness varies
inversely as the square of its diameter; the bubble becomes a 150 times thinner as it grows from an
inch in a diameter to a foot.” Later in the same chapter, Thompson talks about clustered bubbles
(p. 485). He quotes Plateau on soap-bubble shapes.
25Physics, [1] 201a-b.
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in the direction of smallness.” He disliked the “unbounded infinite” and his interest
lay in the second kind. He writes in the same passage:

Our account does not rob the mathematicians of their science, by disproving the actual
existence of the infinite in the direction of increase, in the sense of the untraversable. In
point of fact they do not need the infinite and do not use it. They postulate only that the
finite straight line may be produced as far as they wish.

This is a reference to the occurrence of the infinitely large in the axioms of
geometry (predating Euclid). It is interesting to note that Descartes considered
that only the infinitely small appears in mathematics. The infinitely large, in his
conception, belongs to metaphysics only.26

Aristotle, in his discussion of infinity, makes a clear distinction between the cases
where infinity is attained or not. In a passage of the Physics,27 he provides a list of
the various senses in which the word “infinite” is used: (1) infinity incapable of being
gone through; (2) infinity capable of being gone through having no termination; (3)
infinity that “scarcely admits of being gone through”; (4) infinity that “naturally
admits of being gone through, but is not actually gone through or does not actually
reach an end.” He discusses the possibility for an infinite body to be simple infinite
or compound infinite.28 In the same passage, he talks about form, which, he says,
“contains matter and the infinite.” There is also a mention of infinite series in the
Physics.29

One should also talk about the mathematical notion of continuity in the writings
of the Philosopher.

In the Categories, Aristotle starts by classifying quantities into discrete or
continuous. 30 He declares that some quantities are such that “each part of the whole
has a relative position to the other parts; others have within them no such relation
of part to part,” a clear reference to topology. As examples of discrete quantities, he
mentions number (the integers) and speech. As examples of continuous quantities,
he gives lines, surfaces, solids, time and place (a further reference to topology).
He explains at length, using the mathematical language at his disposal, why the set
of integers is discrete. According to this description, two arbitrary integers “have
no common boundary, but are always separate.” He declares that the same holds
for speech: “there is no common boundary at which the syllables join, but each
is separate and distinct from the rest.” This is a way of saying that each integer
(respectively each syllable) is isolated from the others, the modern formulation of
discreteness. Aristotle writes that a line is a continuous quantity “for it is possible
to find a common boundary at which its parts join.” He declares that space is a
continuous quantity “because the parts of a solid occupy a certain space, and these
have a common boundary; it follows that the parts of space also, which are occupied

26See the comments by R. Rashed in his article Descartes et l’infiniment petit [33].
27Physics, [1] 204a.
28Physics, [1] 204b10.
29Physics [1] 206a25-206b13.
30Categories [10] 4b20.
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by the parts of the solid, have the same common boundary as the parts of the
solid.” Time, he writes, is also a continuous quantity, “for its parts have a common
boundary.” The notion of boundary is omnipresent in this discussion. Thom was
fascinated by this fact and he emphasized it in his writings. We shall discuss this in
more detail later in this paper.

In another passage of the Categories, Aristotle discusses position and relative
position, notions that apply to both discrete and continuous quantities: “Quantities
consist either of parts which bear a relative position each to each, or of parts which
do not.”31 Among the quantities of the former kind, he mentions the line, the plane,
the solid space, for which one may state “what is the position of each part and what
sort of parts are contiguous.” On the contrary, he says, the parts of the integers do not
have any relative position each to each, or a particular position, and it is impossible
to state what parts of them are contiguous. The parts of time, even though the latter
is a continuous quantity, do not have position, because, he says, “none of them
has an abiding existence, and that which does not abide can hardly have position.”
Rather, he says, such parts have a relative order, like for number, and the same
holds for speech: “None of its parts has an abiding existence: when once a syllable
is pronounced, it is not possible to retain it, so that, naturally, as the parts do not
abide, they cannot have position.” In this and in other passages of Aristotle’s work,
motion and the passage of time are intermingled with spatiality. It is interesting
to see that Hermann Weyl, in his book Space, time and matter, also insisted on the
importance of the relation between, on the one hand, motion, and, on the other hand,
space, time and matter [58, p. 1]: “It is in the composite idea of motion that these
three fundamental conceptions enter into intimate relationship.”

Talking about position, we come to the important notion of place.
Several Greek mathematicians insisted on the difference between space and

place, and Aristotle was their main representative. They used the word khôra (χώρα)
for the former and topos (τόπος) for the latter. Again, Thom regards Aristotle’s
discussion from a mathematician’s point of view, and he considers it as readily
leading to a topological mathematization, although it does not use any notational
apparatus (which, at that time, was nonexistent) or the technical language of
topology to which we are used today. In the Physics, Aristotle gives the following
characteristics of place32: (1) Place is what contains that of which it is the place.
(2) Place is no part of the thing. (3) The immediate place of a thing is neither less
nor greater than the thing. (4) Place can be left behind by the thing and is separable.
(5) All place admits of the distinction of up and down, and each of the bodies is
naturally carried to its appropriate place and rests there, and this makes the place
either up or down.

This makes Aristotle’s concept of place close to our mathematical notion of
boundary. Furthermore, it confers to the notion of place the status of a “relative”
notion: a place is defined in terms of boundary, and the boundary is also the

31Categories [10] 5a10.
32Physics, [1] 211a ff.
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boundary of something else. At the same time, this is not too far from the notion
of “relative position” that was formalized later on in Galilean mechanics. All this
is an indication of the fact that the notion of place in Aristotle’s writings is a broad
subject, and there is a wide literature on it. Aristotle himself considered place as a
difficult subject. He writes in the same passage:

We ought to try to make our investigations such as will render an account of place, and
will not only solve the difficulties connected with it, but will also show that the attributes
supposed to belong to it do really belong to it, and further will make clear the cause of the
trouble and of the difficulties about it.

Aristotle then introduces a dynamical aspect in his analysis of place. He
discusses motion and states that locomotion and the phenomena of increase and
diminution involve a variation of place. The notion of boundary is omnipresent in
this discussion. In the same passage of the Physics, he mentions the notion of “inner
surface” which surrounds a body, an expression on which Thom insisted, as we shall
see later. Aristotle writes:

When what surrounds, then, is not separate from the thing, but is in continuity with it, the
thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole.
But when the thing is separate or in contact, it is immediately “in” the inner surface of the
surrounding body, and this surface is neither a part of what is in it nor yet greater than its
extension, but equal to it; for the extremities of things which touch are coincident.

Regarding place and its relation to boundary, we mention another passage from
the Physics33: “Place is [. . . ] the boundary of the containing body at which it
is in contact with the contained body. (By the contained body is meant what
can be moved by way of locomotion).” Thom commented on this passage on
several occasions. In his paper Aristote topologue [53], he discusses the relation,
in Aristotle’s writings, between topos and eschata (ἔσχατα), that is, the limits, or
extreme boundaries. We shall elaborate on this below.

The overall discussion of place in Aristotle’s work, and its relation with shape
and boundary is involved, and the various translations of the relevant passages in his
writings often differ substantially from each other and depend on the understanding
of the translator. This not a surprise, and the reader may imagine the difficulties
in talking in a precise manner about a notion of boundary that does not use the
language of modern topology. Aristotle emphasized the difficulty of defining place.
In the Physics, he writes:

Place is thought to be something important and hard to grasp, both because the matter and
the shape present themselves along with it, and because the displacement of the body that
is moved takes place in a stationary container, for it seems possible that there should be an
interval which is other than the bodies which are moved. [. . . ] Hence we conclude that the
innermost motionless boundary of what contains is place. [. . . ] Place is thought to be a kind
of surface, and as it were a vessel, i.e. a container of the thing. Further; place is coincident
with the thing, for boundaries are coincident with the bounded.34

33Physics, [1] 211b5-9.
34Physics [1] 212a20.
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Place is also strongly related to form. Aristotle states that form is the boundary
of the thing whereas place is the boundary of the body that contains the thing. Thom
interpreted the texts where Aristotle makes a distinction between “the boundary of
a thing” and “the boundary of the body that contains it”—a structure of “double
ring” of the eschata, as he describes it—using homological considerations. More
precisely, he saw there a version of the Stokes formula. We shall review this in
Sect. 2.4 below.

Let us quote a well-known text which belongs to the Pythagorean literature,
written by Eudemus of Rhodes (fourth century BCE), in which the latter quotes
Archytas of Tarentum. This text shows the kind of questions on space and place that
the Greek philosophers before Aristotle addressed, e.g., whether space is bounded
or not, whether “outer space” exists, and the paradoxes to which this existence leads
(see [25, p. 541]):

“But Archytas,” as Eudemus says, “used to propound the argument in this way: ‘If I arrived
at the outermost edge of the heaven [that is to say at the fixed heaven], could I extend my
hand or staff into what is outside or not?’ It would be paradoxical not to be able to extend
it. But if I extend it, what is outside will be either body or place. It doesn’t matter which,
as we will learn. So then he will always go forward in the same fashion to the limit that is
supposed in each case and will ask the same question, and if there will always be something
else to which his staff [extends], it is clear that it is also unlimited. And if it is a body, what
was proposed has been demonstrated. If it is place, place is that in which body is or could
be, but what is potential must be regarded as really existing in the case of eternal things,
and thus there would be unlimited body and space.” (Eudemus, Fr. 65 Wehrli, Simplicius,
In Ar. Phys. iii 4; 541)

Let us now pass to other aspects of mathematics in Aristotle. We mentioned in
the introduction his notion of homeomerous. This is used on several occasions in his
works, and especially in his zoological treatises. He introduces it at the beginning
of the History of animals [12], where he talks about simple and complex parts. A
part is simple, he says, if, when divided, one recovers parts that have the same form
as the original part, otherwise, it is complex. For instance, a face is subdivided into
eyes, a nose, a mouth, cheeks, etc., but not into faces. Thus, a face is a complex
(anhomeomorous) part of the body. On the other hand, blood, bone, nerves, flesh,
etc. are simple (homeomorous) parts because subdividing them gives blood, bone,
nerves, flesh, etc. Anhomeomorous parts in turn are composed of homeomerous
parts: for instance, a hand is constituted of flesh, nerves and bones. The classification
goes on. Among the parts, some are called “members.” These are the parts which
form a complete whole but also contain distinct parts: for example, a head, a leg,
a hand, a chest, etc. Aristotle also makes a distinction between parts responsible of
“act”, which in general are anhomeomorous (like the hand) and the others, which are
homeomorous (like blood) and which he considers as “potential parts.” In D’Arcy
Thompson’s translation, the word “homeomerous” is translated by “uniform with
itself,” and sometimes by “homogeneous.” We mention that the term homeomoerous
was also used in geometry, to denote curves that are self-similar in the sense that
any part of them can be moved to coincide with any other part. Proclus, the fifth
century mathematician, philosopher and historian of mathematics, discusses this
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notion in his Commentary on the First Book of Euclid’s Elements. He gives as an
example of a homeomerous curve the cylindrical helix, attributing the definition to
Apollonius in his book titled On the screw, a work which does not survive. Among
the curves of similar shape that are not homeomerous, he gives the example of
Archimedes’ (planar) spiral, the conical helix, and the spherical helix (see p. 95
of ver Eecke’s edition of his Commentary on the First Book of Euclid’s Elements
[32]). In the same work, Proclus attributes to Geminus a result stating that there are
only three homeomerous curves: the straight line, the circle and the cylindrical helix
[32, p. 102].

Aristotle was a mathematician in his unrelenting desire for making exhaustive
classifications and of finding structure in phenomena: after all, he introduced
his Categories for that purpose. In the History of animals, like in several other
treatises he wrote, the sense of detail is dizzying. He writes (D’Arcy Thompson’s
translation)35:

Of the substances that are composed of parts uniform (or homogeneous) with themselves,
some are soft and moist, others are dry and solid. The soft and moist are such either
absolutely or so long as they are in their natural conditions, as, for instance, blood, serum,
lard, suet, marrow, sperm, gall, milk in such as have it flesh and the like; and also, in a
different way, the superfluities, as phlegm and the excretions of the belly and the bladder.
The dry and solid are such as sinew, skin, vein, hair, bone, gristle, nail, horn (a term which
as applied to the part involves an ambiguity, since the whole also by virtue of its form is
designated horn), and such parts as present an analogy to these.

Thom, in Chapter 7 of his Esquisse, comments on Aristotle’s methods of
classification developed in the Parts of animals, relating it to his own work as a
topologist. He recalls that Aristotle

attacks therein the Platonic method of dichotomy, suggesting in its place an interrogative
method for taking the substrate into consideration. Thus, if we propose to attain a definition
characterizing the “essence” of an animal, we should not, says Aristotle, pose series of
questions bearing on “functionally independent” characteristics. For example, “Is it a
winged or a terrestrial animal?” or “Is it a wild animal or a tame one?” Such a battery
of questions bearing on semantic fields—genera—unrelated one to the other, can be used
in an arbitrary order. The questionnaire may indeed lead to a definition of sorts, but it will
be a purely artificial one. It would be more rational to have a questionnaire with a tree
structure, its ramification corresponding to the substrate. For instance, after the question:
“Is the animal terrestrial?”, if the answer is yes, we will ask, “Does the animal have legs?”
If the answer is again yes, we then ask, “Is the foot all in one (solid), or cloven, or does
it bear digits?” Thus we will reach a definition which is at the same time a description
of the organism in question. Whence a better grasp of its essence in its phenomenal aspect.
Aristotle observes, for instance, that if one poses a dilemma bearing on a private opposition,
presence of A, absence of A, the natural posterity of the absence of A in the question-tree
is empty. In a way the tree of this questionnaire is the reflection of a dynamic inside the
substrate. It is the dynamic of the blowing-up of the centre of the body (the soul), unique in
potentiality, into a multitude of part souls in actuality. In a model of the catastrophe type, it
is the “unfolding” dynamics.

35History of animals [12] 487a.
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It may be fitting to cite also the following passage from the History of animals, on
the mysteries of embryology, and more precisely on the relation between the local
and the global that plays a central role in this domain36:

The fact is that animals, if they be subjected to a modification in minute organs, are liable to
immense modifications in their general configuration. This phenomenon may be observed
in the case of gelded animals: only a minute organ of the animal is mutilated, and the
creature passes from the male to the female form. We may infer, then, that if in the primary
conformation of the embryo an infinitesimally minute but absolutely essential organ sustain
a change of magnitude one way or the other, the animal will in one case turn to male
and in the other to female; and also that, if the said organ be obliterated altogether, the
animal will be of neither one sex nor the other. And so by the occurrence of modification
in minute organs it comes to pass that one animal is terrestrial and another aquatic, in
both senses of these terms. And, again, some animals are amphibious whilst other animals
are not amphibious, owing to the circumstance that in their conformation while in the
embryonic condition there got intermixed into them some portion of the matter of which
their subsequent food is constituted; for, as was said above, what is in conformity with
nature is to every single animal pleasant and agreeable.

To close this section, I would like to say a few more words on Aristotle as
a scientist, from Thom’s point of view, and in particular, regarding the (naive)
opposition that is usually made between Aristotelian and Galilean science, claiming
that the mathematization of nature, as well as the so-called “experimental method”
started with Galileo and other moderns, and not before, and in any case, not with
Aristotle.

The lack of “mathematization” in Aristotle’s physics, together with the absence
of an “experimental method” are due in great part to the lack of measurements, and
this was intentional. In fact, Aristotle, like Thom, was interested in the qualitative
aspects of phenomena, and not the quantitative. This is a mathematician’s approach.
We may quote Thurston: “Ultimately, what we seek when we study mathematics is
a qualitative understanding.” [56, p. 74] Furthermore, like Thom after him, Aristotle
was reluctant to think in terms of a “useful science”: he was the kind of scholar
who was satisfied with doing science for the pleasure of the intellect. Thom’s vision
of Aristotelian science was completely different from the commonly accepted one,
and the fact that Aristotle was a proponent of the qualitative vs. the quantitative
was in line with his own conception of science. Let us quote him, from his article
Aristote et l’avènement de la science moderne : la rupture galiléenne (Aristotle and
the advent of modern science: the Galilean break), published in 1991 [49, p. 489]:

I would be tempted to say that one can see frequently enough a somewhat paternalistic
attitude of condescension regarding Aristotle in the mouth of contemporary scholars. I think
that this attitude is not justified. It is usually claimed that the Galilean epistemological break
brought to science a radical progress, annihilating the fundamental concepts of Aristotelian
physics. But here too, one must rather see the effect of this brutal transformation as
a scientific revolution in the sense of Kuhn, that is, a change in paradigms, where the
problems solved by the ancient theory stop being objects of interest and disappear from
the speculative landscape. The new theory produces new problems, which it can solve more

36History of animals [12] 589b30 ff.
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or less happily, but above all, it leads to an occultation of all the ancient problematics which
nevertheless continues its underground journey under the clothing of new techniques and
new formalisms.

I think that very precisely, maybe since ten years, one can see in modern science the
reappearance of a certain number of themes and methods that are close to the Aristotelian
doctrine, and I personally welcome this kind of resurgence that I will try to describe for
you. What I will talk to you about may not belong as much to Aristotle, of whom, by the
way, I have a poor knowledge, than to certain recent evolutions of science that recall, I
hope without excessive optimism, certain fundamental ideas of Aristotelian physics and
metaphysics.37

In his development of these ideas, Thom talks about Aristotelian logic, closely
linked to his ontology, making science appear as a “logical language”, forming an
“isomorphic image of natural behavior.” He also talks about the “mathematization
of nature” that the so-called Galilean break brought as a hiatus between the math-
ematical and the common languages, and about the disinterest in the Aristotelian
notion of formal causality that characterizes modern science and which would have
been so useful in embryology. He gives examples from Aristotelian mechanics, in
particular his concept of time, which he links to ideas on thermodynamics, entropy
and Boltzmann’s H-Theorem which describes the tendency of an isolated ideal gas
system towards a thermodynamical equilibrium state.

Even if Thom’s point of view is debatable, it has the advantage of making history
richer and giving it a due complexity.

As a final remark on mathematics in Aristotle, I would like to recall his reluctance
to accept the Pythagorean theories of symbolism in numbers, which he expressed at
several places in his writings.38 Incidentally, mathematicians tend to refer to Plato
rather than to Aristotle, because the former’s conception of the world gives a more
prominent place to mathematics. But whereas for Plato, mathematics has an abstract
nature and is dissociated from the real world, for Aristotle, it is connected with

37Je serais tenté de dire qu’une attitude de condescendance un peu paternaliste se remarque assez
fréquemment dans la bouche des savants contemporains à l’égard d’Aristote. Et je pense que
cette attitude n’est pas justifiée. Il est courant de dire que la rupture épistémologique galiléenne
a amené en science un progrès radical, réduisant à néant les concepts fondamentaux de la physique
aristotélicienne. Mais là aussi, il faut voir l’effet de cette transformation brutale plutôt à la manière
d’une révolution scientifique au sens de Kuhn, c’est-à-dire comme un changement de paradigmes :
les problèmes résolus par l’ancienne théorie cessant d’être objet d’intérêt et disparaissant du champ
spéculatif. La nouvelle théorie dégage des problèmes neufs, qu’elle peut résoudre avec plus ou
moins de bonheur, mais surtout elle conduit à occulter toute la problématique ancienne qui n’en
poursuit pas moins son cheminement souterrain sous l’habillement des nouvelles techniques et des
nouveaux formalismes.

Je pense que très précisément, depuis peut-être une dizaine d’années, on voit réapparaître
dans la science moderne un certain nombre de thèmes et de méthodes proches de la doctrine
aristotélicien, et je salue quant à moi cette espèce de résurgence que je vais essayer de vous
décrire. Ce dont je vous parlerai ce n’est donc peut-être pas tant d’Aristote, que je connais mal
d’ailleurs, que de certaines évolutions récentes de la science qui me semblent évoquer, sans
optimisme excessif, j’espère, certaines idées fondamentales de la physique et de la métaphysique
aristotélicienne.
38Cf. for instance Metaphysics [8] 1080b16-22.



106 A. Papadopoulos

nature. The latter’s point of view is consistent with the one of Thom. In his paper
Logos phenix published in the book Modèles mathématiques de la morphogenèse
[41] which we already mentioned, he writes: “What remains in me of a professional
mathematician can hardly accept that mathematics is only a pointless construction
without any connection to reality.”39

We shall talk more about Thom’s view on Aristotle in the next sections.

2.4 Thom on Aristotle

Chapter 5 of Thom’s Esquisse is titled The general plan of animal organization and
is in the lineage of the zoological treatises of Aristotle, expressed in the language
of modern topology. Thom writes in the introduction: “This presentation might be
called an essay in transcendental anatomy, by which I mean that animal organisation
will be considered here only from the topologists’ abstract point of view.” He then
writes: “We shall be concerned with ideal animals, stylized images of existing
animals, leaving aside all considerations of quantitative size and biochemical
composition, to retain only those inter-organic relations that have a topological and
functional character.” In Section B of the same chapter, Thom returns to Aristotle’s
notion of homeomerous and anhomeomerous, in relation with the stratification of
an animal’s organism, formulating in a modern topological language the condition
for two organism to have the same organisation.

An organisms, in Thom’s words, is a three-dimensional ball O equipped with a
stratification, which is finite if we decide to neglect too fine details. For example,
when considering the vascular system, Thom stops at the details which may be seen
with the naked eye: arterioles and veinlets. He writes: “We will thus avoid introduc-
ing fractal morphologies which would take us outside the mathematical schema of
stratification.” Seen from this point of view, the homeomerous parts are the strata of
dimension three (blood, flesh, the inside of bones. . . ), the two-dimensional strata are
the membranes: skin, mucous membrane, periosteum, intestinal wall, walls of the
blood vessels, articulation surfaces, etc., the one-dimensional strata are the nerves:
vessel axes, hair, etc., and the zero-dimensional strata are the points of junction
between the one-dimensional strata or the punctual singularities: corners of the lips,
ends of hair, etc.

39Ce qui reste en moi du mathématicien professionnel admet difficilement que la mathématique ne
soit qu’une construction gratuite dépourvue de toute attache au réel.
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Homeomorphisms preserving stratifications, from D’Arcy Thompson’s On growth and form

Thom says that two organisms O and O ′ “have the same organisation” if
there exists a homeomorphism h : O → O ′ preserving this stratification. He
claims that such a formalism generalizes D’Arcy Thompson’s famous diagrams
and makes them more precise. The reference here is to Thompson’s sketches
from On growth and Form which describe passages between various species of
fishes using homeomorphisms that preserve zero-dimensional, one-dimensional,
two-dimensional and three-dimensional strata.

Thom developed his ideas on the stratification of the animal body in the series
of lectures given in 1988 at the Solignac Abbey, a medieval monastery in the
Limousin (South of France). The lectures are titled Structure et fonction en biologie
aristotélicienne (Structure and function is Aristotelian biology) and the lecture notes
are available [46]. On p. 7 of these notes, he addresses the question of when two
animals have isomorphic stratifications, and he uses for that the notion of isotopy
between stratified spaces: two sets E1, E2 have isotopic stratifications if there
exists a stratification of the product E × [0, 1] such that the canonical projection
p : E × [0, 1] → [0, 1] is of rank one on every stratum of E, with E1 = p−1(1)
and E2 = p−1(2). He considers that this notion is implicitly used by Aristotle in
his classification of the animals, insisting on the fact that the latter neglected all
the quantitative differences and was only interested in the qualitative ones. In the
same passage, he recalls that D’Arcy Thompson, who translated Aristotle’s History
of Animals, acknowledged that he found there the idea of his diagrams.
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Chapter 7 of Thom’s Esquisse is called Perspectives in Aristotelian biology. The
first part concerns topology and bears the title The primordial topological intuitions
of Aristotelianism: Aristotle and the continuum. It starts as follows [47, p. 165]:

We shall present here those intuitions which we believe sub-tend all Aristotelianism. They
are ideas that are never explicitly developed by the author, but which—to my mind—are the
framework of the whole architecture of his system. We come across these ideas formulated
“by the way” as it were, condensed into a few small sentences that light up the whole corpus
with their bright concision.

Thom highlights and comments on several citations from Aristotle which show
that the latter was aware of the basic notions of topology. He declares in particular
that a careful reading of Aristotle’s Physics shows that the Philosopher understood
the topological distinction between a closed and an open set. He writes [47, pp. 167–
168]:

Careful reading of the Physica leaves little doubt but that [Aristotle] had indeed perceived
this difference. “It is a whole and limited; not, however, by itself, but by something other
than itself”40 could hardly be interpreted except in terms of a bounded open set. In the same
vein, the affirmation: “The extremities of a body and of its envelope are the same”41 can be
identified, if the envelope is of a negligible thickness, with the well-known axiom of general
topology: “Closure of closure is closure itself” expressed by Kuratowski at the beginning
of this century. This allows the Stagirite to distinguish two infinites: the great infinite that
envelops everything and the small infinite that is bounded. This latter is the infinite of the
continuum, able to take an infinity of divisions (into parts that are themselves continuous).
Whence the definition he proposes: “The infinite has an intrinsic substrate, the sensible
continuum.”42

In his 1988 article Les intuitions topologiques primordiales de l’aristotélisme
[45] and in his 1991 article Matière, forme et catastrophes [48], Thom returns to
these matters, explaining that the modern topological distinction between an open
and a closed set is expressed in Aristotle’s philosophical distinctions between form
and matter and between actuality and potentiality. He gives an explanation for the
difference between the notion of bounded and unbounded open set in Aristotle’s
philosophical system: the former may exist as a substrate of being whereas the
latter cannot [45, p. 396]. He highlights the presence of the notion of boundary in
formulae such as: “Form is the boundary of matter,” [45, p. 398] and “Actuality
is the boundary of potentiality” ([45, p. 399] and [48, p. 380]). He recalls that
the paradigmatic substance for Aristotle is the living being, which is nothing else
than a ball in Euclidean space whose boundary is a sphere (provided, Thom says,
one neglects the necessary physiological orifices), that is, a closed surface without
boundary. Shapeless matter is enveloped by form—eidos—in the same way as the
boundary of a bronze statue defines its shape. The boundary of a living organism
is its skin, and its “interior” exists only as a potentiality. A homeomerous part
of an animal has generally a boundary structure constituted by anhomeomerous

40Physics [1] 207a24-35.
41Physics [1] 211b12.
42Physics [1] 208a.
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parts. Thus, the substrate of a homeomerous part is not closed.43 Mathemat-
ics, philosophy and biology are intermingled in this interpretation of a living
organism, following Aristotle, with formulae like: “The opposition homeomerous-
anhomeomerous is a ‘representation’ (a homomorphic image) of the metaphysical
opposition: potentiality-act. As the anhomeomerous is part of the boundary of a
homeomerous of one dimension higher, we recover a case of the application of act
as boundary of the potentiality.”44

Thom refers to Chapter 16 of Book Z of the Metaphysics, interpreting a sentence
of the Metaphysics on entelechy (ἐντελέχεια) (the “creative principle”, by which
being passes from potentiality to action): “Entelechy separates”, as the opposition
between an open and a closed set, more precisely, by the fact that “a closed segment
is ‘actual’ as opposed to the semi-open interval which exists only as a potentiality.”45

He writes again, in the same passage [48, p. 381]: “An open substrate characterizes
potential entity. A closed substrate is required for the acting being.”46

In a passage of the Esquisse, Thom talks about Aristotle as “the philosopher
of the continuous” [47, p. viii], and he considers that his chief merit was that he
was “the only one who thought in terms of the continuous” for hundreds, may be
thousands of years. In his article Logos phenix, Thom writes: “How can we explain
that mathematics represents the real? The response, I think, is offered to us by
the intuition of the continuous. [. . . ] The introduction of an underlying continuous
substrate allows us henceforth to explain the significant—non-trivial—character of
several mathematical theorems.”47 [41, p. 292ff].

In the book Prédire n’est pas expliquer [50, pp. 81–82], turning to the distinction
that the Greek philosophers made between the discrete and the continuous, he
declares: “For me, the fundamental aporia of mathematics is certainly the opposition
between the discrete and the continuous. And this aporia at the same time dominates
all thought. [. . . ] The origin of scientific thinking, we find it in the apories of Zeno
of Elea: the story of Achilles and the tortoise. Here, we find the crucial opposition
between the discontinuous and the continuous.”48 Thom says that this aporia, or

43Une partie homéomère a en général un bord constitué d’anhoméomères ; ainsi le substrat d’un
homéomère n’est pas—en général—un ensemble fermé au sens de la topologie moderne [45,
p. 398]
44L’opposition homéomère-anhoméomère est une “représentation” (une image homomorphe) de
l’opposition métaphysique : puissance-acte. Comme l’anhoméomère est partie du bord d’un
homéomère de dimension plus grande, on retrouve ainsi un cas d’application de l’acte bord de
la puissance [45, p. 400].
45Le segment fermé est “actuel” par opposition à l’intervalle semi-ouvert qui n’est qu’en puissance.
46Un substrat ouvert caractérise l’entité en puissance. Un substrat fermé est requis pour l’être en
acte.
47Comment expliquer que les mathématiques représentent le réel ? La réponse, je crois, nous
est offerte par l’intuition du continu. [. . . ] L’introduction d’un substrat continu sous-jacent
permet dès lors de s’expliquer le caractère signifiant—non trivial—de bien des théorèmes de la
mathématiques.
48Pour moi, l’aporie fondamentale de la mathématique est bien dans l’opposition discret-continu.
Et cette aporie domine en même temps toute la pensée. [. . . ] L’origine de la pensée scientifique, on
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fundamental opposition, which he also calls the “foundational contradiction”49

received illusory solutions,50 in particular, the one which pretends to generate the
continuous out of the discrete: Thom refers here to the mathematical generation
of the real numbers out of the rationals, by the two competing and essentially
equivalent methods: Cauchy sequences and Dedekind cuts, whose highly non-
constructive character makes them, from his point of view, illusory and fantasmic,
despite the fact that they are useful from a purely mathematical (technical) point of
view. In reality the discussion concerns the philosophical status of the concept of
continuity. Thom declares in the book, Prédire n’est pas expliquer [50], concerning
this side of the concept of continuity and the distinction between the continuous and
the discrete:

The continuous is in some way the universal substrate of thought, and in particular of
mathematical thought. But we cannot think of anything in an effective way without having
something like the discrete in the continuous flow of mental processes: there are words,
sentences, etc. The logos, discourse, is always discrete; these are words, coming in with
a certain order, but they are discrete words. And the discrete immediately calls down
the quantitative. There are points: we can count them; there are words in a sentence: we
can classify them quantitatively by the grammatical function they occupy in a sentence.
However there is an undeniable multiplicity.”51

On the same subject, in his article Logos phenix, Thom writes [41, p. 294]:

Meaning is always tied to the attribution of a place of spatial nature to an expression
formally encoded. There should always be, in any meaningful message, a discontinuous
component tied to the generative mechanisms of language—to symbols—, and a continuous
component, a substrate, in which the continuous component cuts out a place.52

In the foreword to the Esquisse, Thom writes that Aristotle’s geometrical insight
was founded uniquely on an intuition of the continuous, where a segment of a
straight line is not made out of points but of sub-segments. Neither Dedekind nor
Cantor, he says, have taken that road. He writes that the single isolated point (the
one we consider when we take a point O on the x ′x-axis), exists only “potentially.”

la trouve dans les apories de Zénon d’Élée : l’histoire d’Achille et de la tortue. Il y a là l’opposition
cruciale entre discontinu et continu.
49Thom talks of a “contradiction de base”; cf. his paper Un panorama des mathématiques [51].
50Thom talks in [51] of “fantasmatic” solutions.
51Le continu est en quelque sorte le substrat universel de la pensée, et de la pensée mathématique
en particulier. Mais on en peut rien penser de manière effective sans avoir quelque chose comme
le discret dans ce déroulement continu de processus mentaux : il y a des mots, il y a des phrases,
etc. Le logos, le discours, c’est toujours du discret ; ce sont des mots entrant dans une certaine
succession, mais des mots discrets. Et le discret appelle immédiatement le quantitatif. Il y a des
points : on les compte ; il a des mots dans une phrase : on peut les classer quantitativement par la
fonction grammaticale qu’ils occupent dans la phrase, mais il n’empêche qu’il y a une incontestable
multiplicité.
52Le sens est toujours lié à l’attribution d’une place de nature spatiale à une expression
formellement codée. Il y aurait toujours, dans tout message signifiant, une composante discontinue
liée aux mécanismes génératifs de la langue—aux symboles—, et une composante continue, un
substrat, dans lequel la composante continue découpe une place.
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Such a point, according to him, aspires to actuality by duplicating itself into two
points O1,O2, O1 adhering to the left, O2 to the right. “These two points then
being distinct even though they are together (ἅμα), the two half-segments so limited
attain full existence, being in actuality.” [47, p. viii] Thom refers for that to the
Metaphysics 139a3-7.53 The question is also that of knowing what expressions like
“is made of” or “are part of”, applied to points and lines, mean. In his Solignac
1988 notes, quoting a passage from Aristotle’s Parts of animals in which the latter
compares an animal vascular system to a garden irrigation ditch,54 Thom notes that
the Philosopher goes as far as to say that blood is not part of the organism,55 because
it is dense there, and that this does not belong to the definition of “being part of”
[46, p. 7].

In the same foreword to his Esquisse, Thom recalls that Aristotle considered that
the underlying substrate of both matter and form is continuous [47, p. viii]:

I knew of course that the hylomorphic schema—of which I make use in the catastrophe
formalism—originated in the Stagirite’s work. But I was unaware of the essential fact that
Aristotle had attempted in his Physics to construct a world theory based not on numbers but
on continuity. He had thus (at least partly) realized something I have always dreamed of
doing—the development of mathematics of the continuous, which would take the notion
of continuum as point of departure, without (if possible) any evocation of the intrinsic
generativity of numbers.

On the same subject, Thom recalls in the Esquisse that Aristotle’s decision to quit
Plato’s Academy is due to a disagreement with his master concerning the notion of
continuity. He explains this in a long passage [47, p. 166]:

The Ancients knew that the moving point generates a curve, that a moving curve generates
a surfaces, and that the movement of a surface generates a volume. It seems that the aging
Plato—or his epigones—considered this generation to be of the type of discrete generativity,
that of the sequence of natural integers. So the point, which is a pure “zero”, could not
serve as a base of this construction—whence the necessity of “thickening” the point into a
“unsecable length” (ἄτομος γραμμή), which was the generating principle of the straight line
(ἀρχὴ γραμμῆς). The Timaeus’ demiurge could then use this unsecable length to construct
the polygons and polyhedrons which constitute the elements. It is odd to note that this kind
of hypothesis still haunts our contemporary physicists; the elementary length (10−33 cm)
below which space no longer has a physical meaning, or that absolute spatial dimension
given by the confinement of quarks in nuclear physics, are so many absolute “lengths”
associated with physical agents. Why did Aristotle reject this sort of hypothesis? No doubt
because he held number generativity in disregard. His revolt against Plato is that of the
topologist against the arithmetic imperialism, that of the apostle of the qualitative against
the quantitative. Aristotle basically postulates the notion of continuity (συνεχές), and it is in
the name of the divisibility of the continuum that he refuses the “indivisible lines.” A priori

53In a footnote, Thom refers to a passage in Dieudonné’s Pour l’Honneur de l’esprit humain [18]
as a “fine example of modern incomprehension of the Aristotelian point of view.” In p. 229 of this
book, Dieudonné criticizes Aristotle for his view of infinity, on the basis of the passage 231a21-
232a22 of the Physics where he discusses points on a straight line, describing his reasoning as an
example of “mental confusion.”
54Parts of animals [13] 668a10-13.
55Parts of animals [13] 636b21.
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this is a paradoxical position. Indeed, Aristotle never admitted the existence of space in
the sense in which we have considered it since Descartes. We know why: his substantialist
metaphysics required that extent is made a predicate of the substance (the topos); in no
way could substance, matter, be a predicate of space. For Aristotle space is never generated
by some intrinsic generative mechanism as our Cartesian space is generated by the R

3

additive group of translations; at the most it is the place of some entity (ousia), for it is
never empty. This decision to relegate space to a kind of total ostracism led him, by a
singular rebound, to multiply the kinds of matter. Each time of change (μεταβολή), each
genus (γένος), requires a specific matter. But all these matters have one thing in common:
they are continua (συνεχές); in this sense they all have the character of spatial extension.

Needless to say, the question of the discreteness or continuity of the ultimate
constitution of nature has been at the edge of philosophical thought, at least since the
fifth century BC. One thinks of Empedocles, who developed the theory of the four
original elements (earth, water, air and fire), assuming the existence of indivisibles,
and of Leucippus and Democritus (who was the latter’s disciple), who shaped the
oldest known theories of stable atoms of various sizes living in an otherwise infinite
vacuum. Although these thinkers (like many others) founded schools and had
followers, their atomistic theories were soon overshadowed by the aura of Aristotle
and Plato whose theories postulated a continuous substrate for matter.56 One may
also mention here Anaxagoras, the fifth century BCE philosopher who was known
to be Socrates’ teacher, who is described by Clerk Maxwell as the thinker to whom
“we are indebted for the most important service to the atomic theory, which, after
its statement by Democritus, remained to be done.” Maxwell explains this assertion
by adding that “Anaxagoras, in fact, stated a theory which so exactly contradicts the
atomic theory of Democritus that the truth or falsehood of the one theory implies
the falsehood or truth of the other. The question of the existence or non-existence
of atoms cannot be presented to us with greater clearness than in the alternative
theories of these two philosophers” [27]. In the same article, Maxwell talks about
the notion of homeomerous in Anaxagoras’ thinking. He writes in particular: “The
essence of the doctrine of Anaxagoras is that the parts of a body are in all respects
similar to the whole. It was therefore called the doctrine of Homoiomereia.” We note
by the way that Maxwell refers to the Greek philosophers in several of his works.

Atomism, in Europe, as an active school of thought, was revived only by the
end of the Middle Ages. Among the mathematicians from the modern period,
we mention Riemann who addressed again in a dramatic way the question of
discreteness of continuity in his Habilitation lecture Über die Hypothesen, welche
der Geometrie zu Grunde liegen (On the hypotheses that lie at the bases of
geometry) [34] (1854) (see also the discussion in [29]), and Hermann Weyl, who
continued Riemann’s tradition.

56Diogenes Laërtius, in his Lives and Opinions of Eminent Philosophers, writes: “Aristoxenus, in
his Historical Commentaries, says that Plato wished to burn all the writings of Democritus that he
was able to collect; but that Amyclas and Cleinias, the Pythagoreans, prevented him, as it would do
no good; for that copies of his books were already in many hands. And it is plain that that was the
case; for Plato, who mentions nearly all the ancient philosophers, nowhere speaks of Democritus,
not even in those passages where he has occasion to contradict his theories” [19, §38].
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Aristotle, in a passage of the Topics,57 quotes Plato’s definition of a straight line.
The latter disliked the notion of point, considering that it has no geometric meaning.
To compensate for this, he used the notion of “unsecable”, that is, “indivisible”
length. At several places in his writings, Aristotle discusses the relation between a
point and a line. For him, a line is a continuous object and as such it cannot be neither
a collection of points nor a collection of indivisible objects of any kind. A point may
only be the start, or the end, or a division point of a line, but it is not a magnitude.
The question of the nonexistence of indivisibles is so important for him that it is
treated in several of his writings.58 There exists a treatise called On indivisible
lines, belonging to the Peripatetic school (may be to Aristotle), in which the author
criticizes item by item the arguments of the disciples of indivisible lines [9].

In his treatise On the heavens, Book III, Chapter 1, Aristotle discusses the
analogous question in higher dimensions, that is, the impossibility of a surface to
be a collection of lines, and of a solid to be a collection of surfaces, unless, he says,
we change the axioms of mathematics, and he adds that this is not advisable. Talking
of a change in the axioms in such a setting is a typical attitude of Aristotle acting as
a mathematician.

Nikolai Luzin, the founder of the famous Moscow school of topology and
function theory (1920s), at the beginning of his book Leçons sur les ensembles
analytiques et leurs applications [26] writes: “The goal of set theory is to solve
the following question of highest importance: can we consider the linear extent in
an atomistic manner as a set of points, a question which by the way is not new, and
goes back to the Eleats.”59

Entering into the question of whether a geometric line, or, more generally, a
geometric body, is constituted of its points, and if yes, in what sense this is so,
leads us deep into considerations which several philosophers of Ancient Greece have
thoroughly considered (we mentioned Plato and Aristotle, but these questions were
extensively studied before them, especially by Zeno of Elea). One may think of the
axiomatization of the real line based on the rational numbers, realized in the nine-
teenth century by Cantor, Dedekind and others, which, as we recalled, was described
by Thom as “illusory” and “fantasmic”. Let me quote here a sentence by Plotnitsky
in the present volume [31] which expresses the current viewpoint: “In sum, we do
not, and even cannot, know how a continuous line, straight or curved (which does
not matter topologically), is spatially constituted by its points, but we have algebra
to address this question, and have a proof that the answer is rigorously undecidable.”

In quoting Plato while talking about Aristotle, a general comment is in order,
regarding the relation between the two philosophers and on their respective attitudes

57Topics, [3] 148b27.
58Physics [1] 215b12-22, 220a1-21 et 231b6, On generation and corruption [11] 317a11, On the
heavens [7] III. 1, 299a10 ff.; there are other passages.
59Le but de la théorie des ensembles est de résoudre la question de la plus haute importance: si
l’on peut considérer ou non l’étendue linéaire d’une manière atomistique comme un ensemble de
points, question d’ailleurs peu nouvelle et remontant aux éléates.
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toward mathematics and natural science. The easiest way to deal with this subject is
to oppose the points of view of the two philosophers concerning many topics. This is
the general trend that is followed by many modern specialists of Aristotle or of Plato,
and the result is a magnification of the differences between the two philosophers.
But despite the fact that Plato and Aristotle had different points of view on the
nature of mathematical objects, there are important principles on which they both
agreed, and some apparent conflicts between them or contradictions between their
thoughts deserve to be treated with the most careful consideration. Thom writes, in a
note on p. 186 of his Esquisse: “The relations between Plato and Aristotle constitute
one of the topoi of philosophical erudites. [. . . ] My own position on the question
is that of an autodidact.”60 There is an essay, written by Aristotle (or his school),
called Περὶ ἰδεῶν (Peri ideōn, On ideas), of which a fragment survives, in which
the Stagirite criticizes some arguments of his master on forms. The reader interested
in the question of how Aristotle understood Plato’s ideas on form should consult the
critical edition of excerpts of this work, accompanied by thorough commentaries,
published by Gail Fine [21].

In an appendix to the present article, Stelios Negrepontis collected some notes
on the attitudes of Plato and Aristotle toward some of the questions that we address
in this paper.

Let us return to the notion of boundary.
It is interesting to see that this notion is included in Euclid’s Elements among the

elementary notions, at the same level as “point”, “line”, “angle,” etc. The boundary,
there, is what defines a figure. Definition 14 of Book I says: “A figure is that which
is contained by any boundary or boundaries [24].” This may be put in parallel with
Thom’s idea, following Aristotle, that a form is defined by its boundary. Euclid
also uses the notion of boundary when he talks about the measure of angles (not
only rectilinear angles). Proclus, in his Commentary on the First Book of Euclid’s
Elements, writes that the notion of boundary belongs to the origin of geometry since
this science originated in the need to measure areas of pieces of land. Aristotle, in
the Physics, says that a body may be defined as being “bounded by a surface.”61

The notion of form, since the origin of geometry, is closely related to the
notion of boundary, and it is not surprising to see that the mathematical notion
of boundary which was essential in Thom’s mathematical work, is also central in
his philosophical thought. He declares in the interview La théorie des catastrophes
conducted in 1992 [52]:

All the unity of my work is centered at the notion of boundary, since the notion of cobordism
is only one of its generalizations. The notion of boundary seems to me the more important
today since I am interested in Aristotelian metaphysics. For Aristotle, the boundary is an

60Thom gives, as references to this subject, the books [35] by Robin and [17] by Cherniss.
61Physics [1] 204b.
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individualisation principle. The marble statue is matter, in the block from where the sculptor
extracted it, but it is its boundary which defines its form.62

Thom also talks about the unity of his work in the series of interviews Prédire
n’est pas expliquer. He declares (1991, [50], pp. 20–21):

Truly, there exists a real unity in my reflections. I can see it only today, after I pondered a lot
about it, at the philosophical level. And this unity, I find it in the notion of boundary. That
of cobordism is related to it. The notion of boundary is all the more important since I was
immersed into Aristotelian metaphysics. For Aristotle, a being, in general, is what is here,
separated. It possesses a boundary, it is separated from the ambient space. In other words,
the boundary of an object is its form. A concept has also a boundary, viz. the definition
of that object. On the other hand, this idea that the boundary defines the object is not
completely exact for a topologist. It is only true in the usual space. But the fact remains
that, starting from this notion of boundary, I developed a few mathematical theories that
were useful to me; then I looked into the applications, that is, on the possibilities of sending
a space into another one, in a continuous manner. From here, I was led to study cusps and
folds, objects that have a mathematical meaning.63

Let us return to the Stokes formula. It establishes a precise relation between
a domain and its boundary. In his article Aristote topologue [53] (1999), Thom
writes that one can interpret a passage of Aristotle’s Physics in which he talks about
the “minimal limit of the enveloping body”64 as the homological Stokes formula:
d ◦ d = 0, the dual of the usual Stokes formula, concerning differential forms
and expressing the fact that the boundary of the boundary is empty. “This formula,
he writes, essentially expresses the closed character of a human being. Because
if there is boundary, then there is blood loss, with a threat to life. Hence the role
of the operator d2 = 0 from homological algebra as an ontology detector, and
its profound biological interpretation.”65 This identification of the Stokes formula

62Toute l’unité de mon travail tourne autour de la notion de bord, car la notion de cobordisme n’en
est qu’une généralisation. La notion de bord me paraît d’autant plus importante aujourd’hui que je
m’intéresse à la métaphysique aristotélicienne. Pour Aristote, le bord est principe d’individuation.
La statue de marbre est matière dans le bloc d’où le sculpteur l’a tirée, mais c’est son bord qui
définit sa forme.
63En vérité, il existe une réelle unité dans ma réflexion. Je ne la perçois qu’aujourd’hui, après y
avoir beaucoup réfléchi, sur le plan philosophique. Et cette unité, je la trouve dans cette notion de
bord. Celle de cobordisme lui est liée. [. . . ] La notion de bord est d’autant plus importante que j’ai
plongé dans la métaphysique aristotélicienne. Pour Aristote, un être, en général, c’est ce qui est
là, séparé. Il possède un bord, il est séparé de l’espace ambiant. En somme, le bord de la chose,
c’est sa forme. Le concept, lui aussi, a un bord : c’est la définition de ce concept. Cette idée que
le bord définit la chose n’est d’ailleurs pas tout à fait exacte pour un topologue. Ce n’est vrai que
dans l’espace usuel. Il reste que, partant de cette notion de bord, j’ai développé quelques théories
mathématiques qui m’ont servi ; puis je me suis penché sur les applications, c’est-à-dire sur les
possibilités d’envoyer un espace dans un autre, de manière continue. J’en ai été amené à étudier
les fronces et les plis, objets qui ont une signification mathématique.
64Physics [1] 211b11.
65La formule explique essentiellement le caractère clos de l’être vivant. Car s’il y a un bord, il y
a perte de sang, avec menace pour la vie. D’où le rôle de détecteur d’ontologie qu’est l’opérateur
bord d2 = 0 de l’algèbre homologique et de sa profonde interprétation biologique.
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with a formula in Aristotle was already carried out in his 1991 article Matière,
forme et catastrophes [48, p. 381]. In the series of interviews Prédire n’est pas
expliquer (1991), he also talks about the homological Stokes formula d2 = 0
and his biological interpretation: “The boundary of the boundary is empty; this
is the great axiom of topology and of differential geometry in mathematics, but
it is an expression of the spacial integrity of the boundary of the organism.”66 [50,
p. 111] We recall incidentally that the Stokes formula is the basic tool in the proof
of the theorem stating that the characteristic numbers of two cobordant manifolds,
computed from the tangent bundles, coincide, and that the great theorem of Thom,
the one for which he was awarded the Fields medal, is the converse of this one.

We should also talk about the relation between the local and the global in biology,
and in particular, the problems of “local implies global” type.

Thom was fascinated by the relation between the local and the global. He declares
in his 1992 interview on catastrophe theory [52] that the big problem of biology is
the relation between the local and the global, that this is a philosophical problem
which has to do with “extent” and that, at the same time, it is the object of topology.
Catastrophe theory has something to say about the common features of the evolution
of the form of a wave, of a cloud, of a living cell, of a fish and of any other living
being, but also about the question of how does morphogenesis—the birth of form—
affect the development of a form. This is the biological counterpart of the question
of how the local implies the global. Thom, in the interview, recalls that topology is
essentially the study of the ways that make a relation between a given local property
and a global property to be found, or conversely: given a global property of a space,
to find its local properties, around each point. He concludes by saying that there is
a profound methodological unity between topology and biology.

In mathematics, Thom considered that the basic theorems of analysis (and they
are very few, he says, “may be five or six”) are concerned with the relation between
the local and the global [51, p. 187]. One example of a passage “global⇒ local” is
the implicit function theorem where, from a set defined by a non-singular equation
of the form F(x1, . . . , xn) = 0, one deduces local properties of the space of
solutions. Another example is the Taylor formula, which gives a more precise
equation valid in the neighborhood of a point, out of a global equation. Regarding
the passage “local ⇒ global,” Thom discusses in his paper [51] several occurrences
of the notion of analytic continuation, including the flat universal deformations of
germs intrinsically defined by local algebras that are used in catastrophe theory.

Talking about Aristotle in a mathematical context, one is tempted to say a few
words about the logic he founded, the so-called Aristotelian logic. This is different
from the abstract mathematical logic—a nineteenth century invention. Thom had
his own ideas on the matter, and, needless to say, if the question of which among
the two logics is more suitable to science may be raised, Thom’s preference goes

66Le bord du bord est vide ; c’est le grand axiome de la topologie, de la géométrie différentielle en
mathématiques, mais cela exprime l’intégrité spatiale du bord de l’organisme.
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to Aristotelian logic. We leave to him the final word of this section, from his article
Aristote et l’avènement de la science moderne, [49, p. 489]:

Aristotle had perfectly understood that there is no pertinent logic without an ontology which
serves for it as foundations. In other words, if a logic may serve to describe in an efficient
way certain aspects of the real world, if logical deduction is a reflexion of the behavior
of real phenomena, then, that logic must necessarily be connected with the reality of the
external world. And indeed, it is very clear that Aristotle’s logic was one with his physics.
[. . . ] I will say in the most formal way that the so-called progress of logic, realized since the
appearance in the 19th century of formal logic with Boole were in fact Pyrrhic progresses,
in the sense that what we gained from the point of view of rigor, we lost it from the point of
view of pertinence. Logic wanted to be separate from any ontology, and, for that, it became
a gratuitous construction, in some way modeled on mathematics, but such an orientation is
even less justified than in the case of mathematics.67

2.5 On Form

Thom was thoroughly involved in questions of morphogenesis. In his article
Matière, forme et catastrophes, he recalls that it was in 1978 that for the first time
he made the connection between catastrophe theory and Aristotle’s hylemorphism
theory. In the foreword to his Esquisse, he writes [47, p. VIII]: “I knew of course
that the hylomorphic schema—of which I make use in the catastrophe formalism—
originated in the Stagirite’s work.” Aristotle’s theory of hylemorphism is discussed
thoroughly in the Esquisse. According to that theory, every being (whether it is
an object or a living being) is composed in an inseparable way of a matter (hylé,
ὕλη)68 and form (morphê, μορφή). Matter, from this point of view, is a potentiality,
a substrate awaiting to receive form in order to become a substance—the substance
of being, or being itself. In the Metaphysics, we can read: “I call form the essential
being and the primary substance of a thing.”69 In the treatise On the soul, Aristotle
states that the soul is the form of a human being.70 In the Physics, he writes that

67Aristote avait parfaitement compris qu’il n’y a pas de logique pertinente sans une ontologie qui
lui sert de fondement. Autrement dit, si une logique peut servir à décrire efficacement certains
aspects du réel, si la déduction logique est un reflet du comportement des phénomènes réels, eh
bien, c’est que la logique doit nécessairement avoir un rapport avec la réalité du monde extérieur.
Et il est bien clair en effet que la logique d’Aristote faisait corps avec sa physique. [. . . ] Je serai
tout à fait formel en disant que les prétendus progrès de la logique, réalisés depuis l’apparition de
la logique formelle avec Boole au XIXe siècle, ont été en fait des progrès à la Pyrrhus, en ce sens
que ce qu’on a gagné du point de vue de la rigueur, on l’a perdu du point de vue de la pertinence.
La logique a voulu se séparer de toute ontologie et, de ce fait, elle est devenue une construction
gratuite, un peu sur le même modèle que les mathématiques, mais une telle orientation est encore
moins motivée que dans le cas des mathématiques.
68The word ὕλη, before Aristotle, designated shapeless wood, and the introduction of this word in
philosophy is due to Aristotle himself.
69Metaphysics [8] 1032b1-2.
70On the soul, [6] 412a11.
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the φύσις (nature) of a body is its form,71 and that flesh and bone do not exist
by nature until they have acquired their form.72 Matter and form also make the
difference between the domain of interest of a physicist and that of a mathematician.
The former, according to Aristotle, studies matter and form,73 whereas the latter is
only concerned with form.74 In the Metaphysics, he writes that mathematical objects
constitute a class of things intermediate between forms and sensibles.75 In another
passage of the Physics,76 he writes that “matter desires form as much as a female
desires a male.” Form, according to him, is what contains, and it may even contain
the infinite: “For the matter and the infinite are contained inside what contains them,
while it is form which contains.”77 It appears clearly in these writings that Aristotle
did not conceive form as a self-contained entity which lives without matter.

The paper L’explication des formes spatiales : réductionnisme ou platonisme
(The explanation of spacial forms: reductionism or platonism) (1980) [43] by
Thom concerns the notion of form and its classification. Thom tried there to give
a mathematical basis to phenomenological concepts. In this setting, the substrate
of a morphology is the four-dimensional Euclidean space, and a form is then a
closed subset of space-time78 up to a certain equivalence relation, and one of the
fundamental problems in morphology is to make precise, from the mathematical
point of view, this equivalence relation. In biology, Thom talks about a “congruence
in the sense of D’Arcy Thompson” [55]. The last chapter of D’Arcy Thompson’s
book On growth of form is titled the theory of transformations, or the comparison
of related forms and it contains sketches of that congruence, in various animal
and human settings. The relation satisfies certain metrical constraints which, Thom
says, “are generally impossible to formalize.” This is, he says, the problem that
biometrics has to solve: for instance, to characterize a certain bone of a given animal
species. The problem is obviously open, but Thom adds that often, some subtle
psychological mechanisms of form recognition will allow one to decide almost
immediately whether two objects have the same form or not.

71Physics [1] 193a30.
72Physics [1] 193b.
73Metaphysics [8] 1037a16-17 and Physics [1] 194a15.
74Posterior analytics [4], 79a13.
75Metaphysics [8] 1059b9.
76Physics [1] 192a24.
77Physics [1] 207a35.
78Thom speaks of space-time in the classical sense, that is, a four-dimensional space whose first
three coordinates represent space and the fourth one time. This is not the space-time that is used in
the theory of relativity.



2 Topology and Biology 119

Examples of D’Arcy Thompson congruences, from his book On growth and form: transformations
between carapaces of various crabs

Like biology, linguistics was, for Thom, part of the general theory of forms.
In the introduction of his 1980 Solignac course [42], he writes that biology
is a morphological discipline, concerned with form, and topology, as a branch
of mathematics which involves the study of form, is at the basis of theoretical
biology. From his point of view, there are two steps in a morphological discipline:
the classification—giving names to the various forms, the identification of stable
forms, etc.—and, after that, the theorization, namely, building a theory which is
“generative” in the sense that it confers to certain forms (or aggregates of form) a
certain power of determining other forms which are close to them. This program,
says Thom, is partially realized in linguistics, which he considers as a morphological
discipline. In 1971, he published an essay on the subject, Topologie et linguistique79

[37] in which he develops a general theory of linguistics based on topology and
where the accent is on morphology, again in a pure Aristotelian tradition. For

79This article was published 5 years later in Russia, with an introduction by Yuri Manin.
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Thom, a sentence, a phrase, whether it is written or oral, is a form. More than that,
morphology is what unifies language—a complicated process whose study pertains
at the same time to physiology, psychology, sociology, and other fields.

In his article Aristote et l’avènement de la science moderne (1991), discussing
the relation between Aristotle and modern science, Thom writes [49, p. 491ff]:

I belong to those who think that the hylemorphic schema is still valid, because it is
equivalent to the classifying role of concept in the verbal description of the world. [. . . ]
I am convinced that during the last years, in several disciplines, there appeared situations
that can be explained by the presence of local fields or forms and that absolutely justify the
old Aristotelian hylemorphic model, according to which nature is in some sense captured
by form. Of course, I do not pretend the fact that here, Aristotelian form, the “eidos”, was
a being that had nothing mathematical. It was an entity that carried its own “energeia”, its
activity, and it is clear that, for Aristotle, form did not have the status of a mathematical
object that would have led him to a certain form of Platonism. The fact remains that the
Aristotelian “eidos” has a certain efficient virtue which, anyway, one has to explain, and
in the theories of modern science which I am alluding to, the efficiency of the “eidos” is
expressed in mathematical terms, for instance using structural stability.80

The book Structural stability and morphogenesis starts with a Program in which
Thom presents the problem of succession of forms as one of the central problems of
human thought. He writes:

Whatever is the ultimate nature of reality (assuming that this expression has a meaning), it
is indisputable that our universe is not chaos. We perceive beings, objects, things to which
we give names. These beings or things are forms or structures endowed with a degree
of stability; they take up some part of space and last for some period of time. [. . . ] we
must concede that the universe we see is a ceaseless creation, evolution, and destruction of
forms and that the purpose of science is to foresee this change of form, and, if possible, to
explain it.

In his article Aristote et l’avènement de la science moderne, [49] Thom declares
that since the advent of Galilean physics, which emphasizes motion in a world in
which there is no place for generation and corruption,81 considerations on form
disappeared from physics, even though morphology is present in biology. Modern

80Je suis de ceux qui croient que le schème hylémorphique garde toute sa valeur, car il est
l’équivalent du rôle classificateur du concept dans la description verbale du monde. [. . . ] Je suis
convaincu que ces dernières années ont vu dans un assez grand nombre de disciplines réapparaître
des situations qu’on peut expliquer par la présence de champs locaux ou de formes et qui justifient
tout à fait à mon avis le vieux modèle hylémorphique d’Aristote, selon lequel la matière en
quelque sorte est capturée par la forme. Bien entendu, je ne me dissimule pas qu’ici la forme
aristotélicienne, l’“eidos”, était un être qui n’avait rien de mathématique. C’était une entité qui
portait en elle son “energeia”, son activité, et il est clair que, pour Aristote, la forme n’avait
pas un statut de caractère mathématique qui l’aurait obligé à une certaine forme de platonisme.
Mais il n’en demeure pas moins que l’“eidos” aristotélicien a une certaine vertu efficace qu’il faut
expliquer de toute façon, et dans les théories de la science moderne auxquelles je fais allusion,
l’efficace de l’“eidos” s’exprime en termes mathématiques, par la théorie de la stabilité structurelle
par exemple.
81This is also a reference to Aristotle’s On generation and corruption [11].
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science, he says, is characterized by the disappearance of this central notion of form,
which played a central role in Aristotle’s ontology [49, p. 491].82

Ovid’s Metamorphoses starts with the line: “I want to speak about bodies
changed into new forms [28].” In Book I, the author recounts how gods ended
the status of primal chaos, a “raw confused mass, nothing but inert matter, badly
combined, discordant atoms of things, confused in the one place.” In Hesiod’s
Theogony, chaos is the name of the first of the primordial deities. Then come, in
that order, Gaia (Earth), Tartarus (at the same time a place, the Deep abyss), and
Eros (love).

Chapter 2 of Structural stability and morphogenesis is titled Form and structural
stability. It starts with the question: what is form? Thom declares that the answer is
beyond his task. One may mention here D’arcy Thompson, who writes in On growth
and form [55, p. 1032]: “In a very large part of morphology, our essential task lies
in the comparison of related forms rather than in the precise definition of each.”

From the purely mathematical point of view, saying that a form is a geometric
figure may be a good start, but then one has to agree on what is a “geometric
figure.” Aristotle, in On the soul, [6] 414b19, considers it useless to try to define
a “figure”, saying that it is a “sort of magnitude” (425a18). We already noted that
Euclid defines a figure as “that which is contained by any boundary or boundaries”
(Definition 14 of Book I of the Elements). Thus, we are led again to the notion
of boundary. In the same trend, Plato, defines a figure as the boundary of a solid
(Meno 76A). Furthermore, one has to introduce an equivalence relation between
forms—for instance, it is natural to assume that two figures in the plane which
differ by a translation “have the same form”—and, technically speaking, this should
also depend on what kind of geometry we are talking about: Euclidean, projective,
etc. Topological equivalence (homeomorphism) is certainly too weak, and metric
equivalence (isometry) too restrictive. For example, we would naturally consider
that a homothety preserves form. But Thom notes that there are instances where a
square drawn in a plane such that two of its sides are horizontal (and the other two
vertical) does not have the same “form” as a square placed in such a way that its sides
make an angle of 45◦ with the horizontal. The development of the theory of forms
depends on the use that one wants to make of it, and for Thom, the main use of this
theory is in biology. This is indeed the main subject of his book Structural stability
and morphogenesis. Topology is an adequate language for describing spaces of
forms and Thom’s tools are the notions of stability, bifurcation, attractor, singularity,
envelope, etc. He considers equivariant Hausdorff metrics on spaces of form.

In the article Structuralism and biology [39], which was published the same year
as the French version of Structural stability and morphogenesis, Thom writes that
the foundations of a structure requires a precise lexicon of elementary chreods and

82Le monde de Galilée est un monde de mouvement, mais où génération et corruption n’ont point
de place, d’où la disparition quasi totale en physique moderne des considérations de forme ; il n’y
a pas de morphologie inanimée. Bien entendu, en biologie, il y a par contre de la morphologie.
Mais alors, il n’y a plus de mathématique, au moins en tant qu’instrument de déduction. C’est cette
disparition de la notion centrale de forme qui caractérise la science moderne, alors que cette notion
jouait un rôle central dans l’ontologie d’Aristote.
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the introduction of the notion of conditional chreod, and that catastrophe theory
gives the mathematical models for such structures.

One of Thom’s aims in his book Structural stability and morphogenesis was
to introduce in biology the language of differential topology, in particular basic
notions such as differentiable manifolds, vector fields, genericity, transversality,
universal unfolding, etc. In the introduction, he mentions two predecessors in this
domain, D’Arcy Thompson whom we already mentioned on several occasion, and
C. H. Waddington, whose concepts of “chreod” and “epigenetic landscape” played
a germinal part in Thom’s work.83 The image represented here is extracted from
Waddington’s Strategy of the Genes (1957) [59] where the gene is represented as a
small ball rolling in a golf field. The idea expressed by this representation is that a
tiny change in the initial conditions leads to drastic changes in the path the rolling
ball will take. Waddington’s main idea was that the development of a cell or an
embryo does not depend only on its origin, but also on the landscape that surrounds
it. In his Esquisse (1988), Thom returns to Waddington’s epigenetic landscape,

An epigenetic landscape, from C. H. Waddington, The Strategy of the Genes, George Allen &
Unwin, 1957, p. 29

83Conrad Hal Waddington (1905–1975), to whom Thom refers, was a well-known biologist,
working on developmental biology, that is, the study of growth and development of living
organisms. The term “chreod” which he introduced in this field (from the Greek χρή, which means
“it is necessary to” and ὁδός, which means “way”) designates the transformations underwent by a
cell during its development, until it finds its place as part of the organism. During this development,
the cell is subject to an incredible amount of forces exerted on it from its environment to which
it is permanently adjusting. An “epigenetic landscape” is a representation of a succession of
differentiation phenomena that a cell undergoes by hills and valleys.
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describing it as a “metaphor which played a primordial role in catastrophe theory.”
[47, p. 19]

Waddington wrote two prefaces to Thom’s Structural stability and morphogen-
esis, one for the first French edition, and another one for the English edition. He
writes in the first one [38, p. xix]:

I cannot claim to understand all of it; I think that only a relatively few expert topologists
will be able to follow all his mathematical details, and they may find themselves less at
home in some of the biology. I can, however, grasp sufficient of the topological concepts
and logic to realise that this is a very important contribution to the philosophy of science
and to theoretical general biology in particular. [. . . ] Thom has tried to show, in detail and
with precision, just how the global regularities with which biology deals can be envisaged
as structures within a many-dimensional space. He not only has shown how such ideas as
chreods, the epigenetic landscape, and switching points, which previously were expressed
only in the unsophisticated language of biology, can be formulated more adequately in
terms such as vector fields, attractors, catastrophes, and the like; going much further
than this, he develops many highly original ideas, both strictly mathematical ones within
the field of topology, and applications of these to very many aspects of biology and of
other sciences. [. . . ] It would be quite wrong to give the impression that Thom’s book
is exclusively devoted to biology. The subjects mentioned in his title, Structural stability
and morphogenesis, have a much wider reference; and he related his topological system of
thought to physical and indeed to general philosophical problems. [. . . ] In biology, Thom
not only uses topological modes of thought to provide formal definitions of concepts and a
logical framework by which they can be related; he also makes a bold attempt at a direct
comparison between topological structures within four-dimensional space-time, such as
catastrophe hypersurfaces, and the physical structures found in developing embryos. [. . . ]
As this branch of science [theoretical biology] gathers momentum, it will never in the future
be able to neglect the topological approach of which Thom has been the first significant
advocate.

Another mathematician who could have been invoked in the preceding pages is
Leonardo da Vinci, who is the model—probably the supreme model—for a rare
scientist/artist combination. Leonardo is also the prototype of a scholar who spent
all his life learning. He was a theoretician of form. In his notebooks, he captured
the dynamics of form in nature and in various situations. At an advanced age, he
became thoroughly involved in biology, in particular, in exploring the ideas of birth
and beginning of life. His approach to form in biology, like those of Goethe and
D’Arcy Thompson after him, was greatly motivated by an aesthetic awareness and
appreciation of nature. He introduced some of the first known theories on the fetus,
and one of his notebooks is entirely dedicated to embryology. He had personal ideas
on the role of the umbilical cord and he developed theories on the nutritional and
respiratory aspects of the embryo, as well as on its rate of change in form during the
various phases of its growth.

Leonardo was famous for taking a long time for the execution of the works that
the various patrons ordered to him, and, as a matter of fact, he was blamed for
spending more time on studying mathematics than on painting. Gabriel Séailles, his
well-known nineteenth century biographer, in his book Léonard de Vinci, l’artiste
et le savant : 1452–1519 : essai de biographie psychologique [36], quotes a letter
from the Reverend Petrus de Nuvolaria to Isabelle d’Esté, Duchess of Milan, who
was a leading figure of the Italian Renaissance, in which he says about Leonardo:
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“His mathematical studies were, for him, the cause of such a disgust for painting
that he barely stands holding a brush.”84 Séailles also quotes Sabba da Castiglione, a
writer and humanist who was his contemporary, who writes in his memoirs: “Instead
of dedicating himself to painting, he gave himself fully to the study of geometry,
architecture and anatomy.”

Leonardo was a dedicated reader of Aristotle. The Renaissance was, in great
part, a return to the Greek authors and in this sense, Thom was, like Leonardo, the
prototype of a Renaissance man. Not only he participated in the renewed interest in
Aristotle’s work, but he shed a new light on it, helping us better understanding his
biology and his mathematics.
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Appendix to the article Topology and biology: From Aristotle
to Thom by A. Papadopoulos

Stelios Negrepontis

I would like to make a few comments on three subjects that Thom addresses
in his writings: (1) indivisible (unsecable) lines; (2) homeomerous and non-
homeomeomerous; (3) topos and chora.

1. Zeno and Plato: Geometric Point and Indivisible Line Parmenides hypothe-
sized the existence of true entities, unchangeable monads, higher than the sensible
changing multiple entities. The nature of these monads was not clear from the
description Parmenides gave in his poem. Parmenides had two students, Zeno and
Melissus, who adopted completely diverging interpretations of these monads. For
Melissus, a monad is partless, like a geometric point. But Zeno, influenced by the
Pythagoreans, accepted as monad the self-similar one that results from the infinite
anthyphairesis/continued fraction of diameter to the side of a square (square root of
two). This is a One in a self-similar sense. This monad was adopted by Plato as well,
improved by the periodic nature of more general quadratic incommensurabilities,
proved in the meantime by Theodorus and Theaetetus. This is in essence the Platonic
Idea.

Later, Xenocrates called the Platonic Idea an indivisible line. But an indivisible
line is not literally indivisible as Thom seems to think. It is a line like every other
geometric line, infinitely divisible. It is indivisible only in the following sense:
a = k1b + c1, b = k1c1 + c2, c1 = k3c2 + c3, . . . , cn = kn+2cn+1 + cn+2, . . . If
this anthyphairesis is periodic then there will be an m so that a/b = cm/cm+1. After
stage m, the division continues but does not produce new logoi and new species,
because of the repetition of the logoi by periodicity.

Thus, Zeno and Plato were totally committed to infinite divisibility and in this
sense to the continuum.

The divisions of Plato in the Sophistes and the Politicus that are attacked by
Aristotle are imitations of the above periodic anthyphairesis, and not finite Linneus
type biological divisions.

2. Self-similarity (Homeomerous and Non-homeomeomerous) The difference
between homeomerous and non-homeomeomerous parts is of central interest in
Plato’s philosophy, since he treats a Platonic Idea, which is an imitation of a dyad
of lines in periodic anthyphairesis, as a self similar One, monad. One such recurring
monad for Plato is Virtue (arête). This, being a Platonic Idea consists of two initial
opposite parts, bravery (andreia) and prudence (sophrosune).

Now the high point in the dialogue Protagoras is when Socrates asks Protagoras
(329d): How do you think these two are parts of virtue, in the sense that nose, eyes,
mouth, ears are parts of face, or in the sense of gold? Protagoras gives the wrong
answer, not realizing the need for self-similarity.
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That the Oneness of a true intelligible Being in Plato’s philosophy is the self-
similar nature of a dyad in periodic anthyphairesis is argued in my papers [2, 3].

3. Topos and Chora: The Boundary Determines the Content What Aristotle
says about topos and chora is related to Plato’s idea of a receptacle/hollow space
in the Timaeus, occurring after Timaeus 48. There, in Timaeus 48-63, the four
elements: earth, fire, air, water are correlated (not identified) with the cube (hex-
ahedron), pyramid (tetrahedron), octahedron, icosahedron. But all interconnection,
interaction, motion and change in nature occurs by the interaction (anthyphairesis)
between their respective boundaries. Thus, Plato, here, is again the first one to insist
on the fact that form-boundary determines content. (He does so of course for his own
reasons, because only by considering the bounding surfaces he can get essentially a
dyad, instead of four elements, and in fact a dyadic periodic anthyphairesis.)

An outline of the importance of the form of the boundary of the canonical
polyhedra in the Timaeus can be found in Section 12 of my paper [1] in this volume.

Needless to say, Thom’s mathematical discoveries in Aristotle are most fas-
cinating. One can nevertheless regret that Thom, who was a true philosopher-
mathematician and a thorough reader of Aristotle, probably relied, for what
concerns Plato, on scholars that did not have a real understanding of the latter’s
writings. Incidentally, D’Arcy Thompson had written, back in 1928, a paper Excess
and Defect; or the little more and the little less, in the journal Mind, that was perhaps
to find, together with the Plato scholar A. E. Taylor, traces of anthyphairesis in the
Epinomis—something that they never followed up.
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Abstract I briefly consider the Kuhnian notion of “paradigm shifts” applied to
the history of mathematics and argue that the succession and intergenerational
continuity of mathematical thought was undeservedly neglected in the historical
studies. To this end, I focus on the history of mathematical theory of time
and periodicity, from Ptolemy’s epicycles to Schrödinger’s quantum amplitudes
interference and contemporary cosmological models.
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3.1 Introduction

In his influential treatise [9], Thomas Kuhn developed an approach to the history
of natural science(s) based upon the assumption that this history can be naturally
subdivided into periods. According to Kuhn, the transitions from one period to
the next one (called “revolutions”) are characterised by a radical change of the
basic assumptions, experimental and observational practices, and acceptable types
of argumentation. Any such set of assumptions is shared by the learned community
during each development phase of “normal science”, and its change is called a
“paradigm shift”.

Kuhn himself was reluctant about extending this view to the history, philosophy,
religion, and much of the social science(s). He believed that they are formed rather
by a “tradition of claims, counterclaims, and debates over fundamentals.”
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The motivation of this brief essay was a desire to discuss the applicability
of the Kuhnian view on history of mathematics. I argue that the succession and
intergenerational continuity of mathematical thought was undeservedly neglected
in the science studies. To this end, I focus on the history of the mathematical
theory of time and periodicity, from Ptolemy’s epicycles to Schrödinger’s quantum
amplitudes interference and Feynman integrals.

According to the concise description in [2], my essay lands somewhere in
the uncharted territory between History of Science and Science Studies. Kuhn’s
book originated Science Studies “as a self-conscious field of inquiry” [2, p. 801].
Hence this article belongs to it. But it focuses on the intrinsic continuity and
the peculiarities of forms of historical legacy in understanding space, time, and
periodicity that, for many historians, might be completely outside their fields of
vision.

If one rejects, as I do here, the assumption about (this particular flow of) history
as a sequence of revolutions, then the idea of paradigm shifts cannot claim anymore
its leading role.

I accept here the more general viewpoint that Mathematics has a position
mediating, or bridging, daily life, common sense, philosophy, and physics. Those
fragments of mathematical knowledge that can become subjected to “reality tests”
part are more sensitive to respective “revolutions” or “paradigm shifts”, whereas
those parts that are closer to “pure mathematics” show rather a kind of continuous
development as is argued in this paper.

Also, some light on my position can be thrown by comparison of the history of
developing knowledge on the scale of civilisations (cf. [5], [14], [15], [17]) with
the history of development of cognition in the individual brain of a growing human
being (cf. [12]).

oritur sol et occidit et ad locum suum revertitur
lustrans universa in circuitu pergit spiritus et in circulos suos revertitur

VULGATA CLEMENTINA, Ecclesiastes 1:5–1:6
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3.2 Brief Summary and Plan of Exposition

I will start with a few words about notions and formulas summarising some basic
mathematical tools used in the contemporary discussions of time and periodicity.

Fundamental is the fact that these tools are subdivided into two complementary
parts: geometric ones involving space/time intuition (as in Euclid’s Elements) and
algebraic/calculus ones involving formulae and computations and generally having
linguistic character. Arguably (cf. [10] and references therein) this is one reflection
of the general dynamic patterns of interactions between right and left brain.

Start with an Euclidean plane P endowed with Euclidean metric. Then a choice
of a point 0, of a line L passing through it, and of its orientation, determines an
identification of the set of all points of this line with the set of real numbers R: this
is its “coordinatisation”. Call it the x-line and denote now by Lx .

Choose now another line passing through the same point, oriented, and orthogo-
nal to the x-line; call it y-line Ly . Now we can construct a “coordinatisation” of the
whole plane P i.e., the identification of the set of points of P with the set of ordered
pairs of real numbers R2.

At this point, we can start describing various figures, actors of plane Euclidean
geometry, by equations and inequalities between various algebraic expressions
involving x and y. So, for example, a circle of radius r whose center is a point
(x0, y0), is the set of all points (x, y) whose coordinates satisfy the equation
(x − x0)

2 + (y − y0)
2 = r2.

We may call it Cartesian picture of geometry.
Similarly, using three coordinates one gets an algebraic picture of Euclidean

geometry of space; passing to four coordinates, with time axis added to three
space axes, we get the scene for Newtonian mechanics. But some fragments of this
scene were already recognisable in the world pictures going back to the times of
Archimedes and Ptolemy, as the celebrated Antikythera mechanism modeling the
movement of heavens and relating them to the chronological dating of historical
events [7].

Arguably, one important contribution of history of “periodicity” to mathematics
was the crystallisation of the notions of “definition”, initially emerging as secondary
to the notions of “axiom” and “theorem” as in Euclid’s “Elements”.

The less obvious one was a “reification” of the idea of symmetry: statements and
proofs of most theorems of Euclidean geometry are not dependent on the choice
of origin of coordinates and therefore invariant with respect to parallel shifts of
the whole space, and also with respect to rotations, conserving angles. Thanks to
this, one can introduce “Cartesian” coordinates also on the space of all Euclidean
symmetries of a Euclidean plane/space.

Finally, I must mention that, using the terminology of one of the schools of
Science Studies, when I briefly quote and/or interpret mathematical intuition and
historical data, I appeal mostly to “ethnomathematics in the European context”
leaving aside many interesting achievements and inputs that came from Eastern,
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Chinese and other regions of the global world. For a much more complete and
balanced treatment, see e.g. [18].

3.3 Mathematics and Physics of Periodicity

3.3.1 Antiquity: Euclidean Geometry, Ptolemy’s Epicycles,
Antikythera Mechanism

This book I bought in Venice for one ducat in the year 1507
Albrecht Dürer inscription in Euclid’s book

from his library
Before starting the central themes of our discussion, I must say explicitly that

accumulation and intergenerational transmission of knowledge, became possible
only at a certain stage of development of human language(s), and somewhat later,
of written languages.

Moreover, as I argued in [11], pp. 159–167 and 169–189, the most important
new functions of emerging language consisted not in the transmission of concrete
information about “here and now” (“in this grove a deer is grazing”), but rather in
creation of “spaces of possibilities”. Gods, heavens and netherworlds powerfully
influenced human’s collective behaviour, even if they could never be located here
and now.

Since the concept of here and now itself later entered physical theories as coordi-
nate origin, it would be interesting to trace its history as far back in time as possible.
I am grateful to Andreea Calude who informed me that deep reconstruction (to
about 15 · 103 years back from now) seemingly recovers old common Indoeuropean
roots for “now” but not for “here”, cf. [13]. Perhaps, a psychologically motivated
substitution for “here” was furnished by very old (“ultraconserved”) words for “I”
and “you”.

Passing now to the real origins of modern scientific knowledge about the Solar
System and the Universe in the Greco-Roman and Hellenistic worlds, we see that
its foundations were laid between 300 BCE and 200 CE and connected in particular
with the names of Euclid, Archimedes, and Ptolemy. The history of “here and
now”, however, must alert us to the tracing also of the background history of the
development of various new “languages of science”, of translations and mutual
interactions between these languages, and their intergenerational functioning.

Euclid of Alexandria conjecturally lived and worked during about 325 BCE–270
BCE in the south Mediterranean Greek colonial city. He created the richest and
at that time logically perfect axiomatic description of two- and three-dimensional
spaces with metric and their symmetry groups that were made explicit only many
centuries later when the language of coordinates was created and one could speak
about geometry using languages of algebra/calculus etc. Still, perception of Euclid’s
“Elements” as the foundational, almost sacral treatise survived till the nineteenth
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century: in particular new editions and translations of his Elements after spreading
of printing were second only to the Bible.

See a very remarkable book [1] by Oliver Byrne, “surveyor of her Majesty’s
settlements in the Falkland Islands and author of numerous mathematical works”,
where he keeps texts of all his geometric chapters but rewrites all of Euclid’s
definitions (axioms), statements and proofs in pseudo-algebraic formulas in which
letters a, d, c, . . . , x, y, z that traditionally (for us) serve as notations for variables,
constants, functions etc. are replaced by coloured pictures of angles, triangles et al.

Claudius Ptolemy conjecturally was born about 85 CE in Egypt and died about
165 CE in Alexandria, Egypt. His greatest achievement described in the “Almagest”
is a dynamical model of the Solar System. This model is geocentric. This is
justified by the fact that all our observation of planets and Sun are made from the
Earth. It represents the visible movements of the planets and the sun as complex
combination of uniform circular motions along epicycles, whose centres also move
uniformly along their “secondary” epicycles, and finally various centres themselves
are cleverly displaced from their expected ideal positions.

We do not know much about the computational devices that were used in antiq-
uity in order to make Ptolemy’s model and other models of observable periodicities
such as lunar phases quantitatively comparable with observations. However, one
remarkable archaeological discovery was made in 1900 when a group of sponger
fishers from Greece during of bad weather anchored their boats near the island
Antikythera and while they were diving discovered at a depth of 42 m an ancient
shipwreck. Besides bronze and marble statues, it contained a very corroded lump of
bronze. All these remnants were transferred to the National Archaeological Museum
in Athens, and after several decades of sophisticated studies and reconstructions, a
general consensus arose summarised in [16] as follows:

The Antikythera mechanism is an ancient astronomical calculator that contains a lunisolar
calendar, predicts eclipses, and indicates the moon’s position and phase. Its use of multiple
dials and interlocking gears eerily foreshadows modern computing concepts from the fields
of digital design, programming, and software engineering.

For a description of continuing disagreements about details of the reconstruction,
see [3].

Digression 1: The Number π In the history of geometric models of periodicity,
the number π plays a crucial role. Since Babylonian and Egyptian times, π was
considered (“defined”) as the ratio of the length of a circle to its diameter that
can be measured in the same way as other physical constants are measured. So
in order to get an (approximate) value of π , one can first say, draw a circle using
compasses, and then measure its length using a string. Independence of the result on
the diameter is also an experimental fact which very naturally appears during land
surveying. Finally, the approximate values are always rational numbers, or rather,
names of some rational numbers, that can be transferred by means acceptable in the
relevant culture: see a very expressive account by Ph. E. B. Jourdain [8] written at
the beginning of the twentieth century.
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Arguably, the first modern approach to π was found by Archimedes (about 287–
212 BCE). This approach consisted in approximating π from below by the values
of perimeters of inscribed regular n-gons (diameter is for simplicity taken as unit of
length). Manageable and fast converging formulas for consecutive approximations
are obtained by passing from an N-gon to 2N-gon etc.

3.3.2 Fourier Sums and Fourier Integrals: Epicycle Calculus

As we reminded in Sect. 3.2, after choosing orthogonal coordinates and scale
identifying an Euclidean plane with R2, one can describe the circle of radius r0
with centre (x0, y0) as the set of points (x, y) such that (x − x0)

2 + (y − y0)
2 = r2

0 .

The variables change x = r0(x0+ sin 2πt), y = r0(y0+ cos 2πt) describes then the
movement of a point along this circle, with angular velocity one, if t is interpreted
as time flow. Replacing t by v0t we can choose another velocity.

In turn, we can put in the formulae above x0 = r1(x1 + sin 2πv1t), y0 =
r1(y1 + cos 2πv1t), in order to make the centre (x0, y0) move along another circle
with uniform angular velocity, etc. We get thus an analytic description of Ptolemy’s
picture, or rather its projection on a coordinate plane in our space, which can be
complemented by projections on other planes.

In order to use it for computational purposes, we must input the observable values
of (xi, yi) and vi , i = 0, 1, . . . , for, say, planetary movements. The Antikythera
mechanism served as a replacement of these formulae for which the language
was not yet invented and developed. This language in its modern form and the
analytic machinery were introduced only in the eighteenth to nineteenth centuries:
i.e. Fourier sums/series

∑
i (ai sin it + bi cos it) and more sophisticated Fourier

integrals were initiated by Jean-Baptiste Joseph Fourier (1768–1830).
Joseph Fourier had a long and complicated social and political career, starting

with education in the Convent of St. Mark, and including service in the local
Revolutionary Committee during the French Revolution, imprisonment during the
Terror time, travels with Napoleon to Egypt, and office of the Prefect of the
Department of Isère (where Joseph Fourier was born).

Returning briefly to Fourier’s mathematics, I would like to stress also an analogy
with Archimedes legacy, namely, observational astronomy and mathematics of his
“Psammit” (“The Sand Reckoner”). Archimedes wanted to estimate the size of the
observable universe giving an estimate of the number of grains of sand needed to
fill it. Among other difficulties he had to overcome, was the absence of language
(system of notation) for very large (in principle, as large as one wishes) integers. He
solved it by introducing inductively powers of 10, so that any next power might be
equal to the biggest number, defined at the previous step.
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Digression 2: The Number e and “Computational Mentality” The famous Euler
number e = 2.7182818284590 . . . and his series

ex = 1+
∞∑
n=1

xn

n!

were only the last steps of a convoluted history, with decisive contributions due to
John Napier (1550–1617, Scotland), Henry Briggs (1561–1630, England), Abraham
de Moivre (1667–1754, France), among others, and finally Leonhard Euler (1707,
Basel, Switzerland–1783, St Petersburg, Russia).

As already with Archimedes, and later with the Masters of the Antikythera
mechanism, one of the great motivations of the studies in this domain was the
necessity to devise practical tools for computations with big numbers and/or
numbers whose decimal notation included many digits before/after the decimal
point/comma: this is what I call here “computational mentality”. This ancient urge
morphed now into such ideas as “Artificial intellect” and general identification of
the activity of neural nets with computations.

So, for example, Briggs logarithm tables allowing to efficiently replace (approx-
imate) multiplications by additions consisted essentially in the tables of numbers
107 · (1 − 10−7)N ,N = 1, 2, 3, . . .107. The future Euler’s number e was hidden
here as a result of passing to the limit e−1 = lim(1−N−1)N ,N →∞,which Briggs
never made explicit. However, the way Napier approached logarithms included
approximate calculations of logarithms of the function sin, which may be considered
as the premonition of the Euler formula eix = cos x + i sin x that later played the
key role in mathematical foundations of quantum mechanics.

3.3.3 Quantum Amplitudes and Their Interference

As we have seen, the basic scientific meta-notions of “observations” and “math-
ematical models” explaining and predicting results of observations, go back to
deep antiquity. The total body of scientific knowledge accumulated since then,
was enriched during the nineteenth and twentieth centuries also by recognition
that “scientific laws”, that is, the central parts of mathematical models explaining
more or less directly the results of observations, are qualitatively different at various
space/time scales: see a comprehensive survey [6], in particular, the expressive table
on pp. 100–101.

A breakthrough in understanding physics at the very large scale Universe
(cosmology) was related to Einstein’s general relativity (or gravity) theory, whereas
on the very small scale, the respective breakthrough came with quantum mechanics
and later quantum field theory. Bridging these two ways of understanding Nature
still remains one of the main challenges for modern science.
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One can argue that an “observable” bridge between these two scales is the
existence and cognitive activities of Homo Sapiens on our Earth (and possibly else-
where), but the discussion of the current stage of “observations” and “explanations”
in biology would have taken us too far away from the subject of this short essay;
cf. [12]. Anyway, the key idea of scientific observation includes some understanding
of how a subject of human scale can interact with objects of cosmic/micro scales.

Studying the small scale physics unavoidably involved the necessity of working
out mathematical models of probabilistic behaviour of elementary particles that
was observed and justified in multiple experiments. It was preceded by a remark-
able cognitive passage: from the observable properties of chemical reactions to
Mendeleev’s intellectual construct of the Periodic Table to the images of atoms of
the Chemical Elements as analogs of the Solar System with nucleus for Sun and
electrons orbiting like planets. This cognitive passage might be compared with the
evolution of astronomy from antiquity to Copernicus, Galileo and Newton.

When experimental methods were developed for working quantitatively with
unstable (radioactive) atoms, small groups of electrons, etc., a new theoretical
challenge emerged: observable data involved random, probabilistic behaviour, but
the already well developed mathematical tools for describing randomness did not
work correctly in the microworld!

The emergent quantum mechanics postulated that “probabilities” of classical
statistics, expressed by real numbers between 0 and 1, must be replaced in the
microworld by probability amplitudes, whose values are complex numbers that after
some normalisation become complex numbers lying in the complex plane on the
circle of radius 1 and centre 0. It must be then explained how to pass from the hidden
quantum mechanical picture to the observable classical statistical picture. Many
different paths along this thorny way were discovered in the 20s of the twentieth
century, in particular, in classical works of Werner Heisenberg, Wolfgang Pauli,
Erwin Schrödinger, et al. One way of looking at “quantization” of the simplest
classical system, point-like body in space, is this. Any classical trajectory of this
system is a curve in the space of pairs (position, momentum). Here position and
momentum can be considered as Cartesian coordinate triples whose values, of
course, pairwise commute. To the contrary, in the quantum mechanical space, the
commutator between position and momentum is not zero. This can be envisioned
as a replacement of possible classical trajectories of such a system by their wave
functions which are not localised. Probabilistic data occur when one adds, say, one
more point-like body and/or interaction with a macroscopic environment created by
an experimenter.

Mathematical descriptions of all this are multiple and all represent a drastic break
with “high school”, or “layman”, intuition. One remarkable example of pedagogical
difficulties of quantum physics can be glimpsed in the famous Lectures on Quantum
Mechanics by the great Richard Feynman.

In our context, the most essential is the fact that quantum interaction in the
simplest cases of quantum mechanics is described via Fourier sums, series, and
integrals in (finite dimensional) complex spaces endowed with Hermitean metrics,
in place of real Euclidean space with real metric.
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The quantum mechanical amplitudes are given by Fourier sums or series of the
form

∑
n ane

it where an are complex numbers, and t is time, whereas probabilities
in classical statistic descriptions are given by the similar sums with real an, and it
replaced by inverse (also real) temperature−1/T .

In this sense, quantum mechanics is a complexification of Ptolemy’s epicycles.
In the currently acceptable picture, our evolving Universe can be dissected

into “space sections” corresponding to the values of global cosmological time
(e.g. in the so called Bianchi cosmological models) to each of which a specific
temperature of background cosmic radiation can be ascribed. Going back in time,
our Universe becomes hotter, so that at the moment of the Big Bang (time = 0) its
temperature becomes infinite. This provides a highly romantic interpretation of the
correspondence−1/T ↔ it .
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Chapter 4
Convexity in Greek Antiquity

Athanase Papadopoulos

Abstract We consider several appearances of the notion of convexity in Greek
antiquity, more specifically in mathematics and optics, in the writings of Aristotle,
and in art.

AMS Classification: 01-02, 01A20, 34-02, 34-03, 54-03, 92B99

4.1 Introduction

The mathematical idea of convexity was known in ancient Greece. It is present in
the works on geometry and on optics of Euclid (c. 325–270 BCE), Archimedes
(c. 287–212 BCE), Apollonius of Perga (c. 262–190 BCE), Heron of Alexandria
(c. 10–70 CE), Ptolemy (c. 100–160 CE), and other mathematicians. This concept
evolved slowly until the modern period where progress was made by Kepler,
Descartes and Euler, and convexity became gradually a property at the basis of
several geometric results. For instance, Euler, in his memoir De linea brevissima in
superficie quacunque duo quaelibet puncta jungente (Concerning the shortest line
on any surface by which any two points can be joined together) (1732), gave the
differential equation satisfied by a geodesic joining two points on a differentiable
convex surface.

Around the beginning of the twentieth century, convexity acquired the status of
a mathematical field, with works of Minkowski, Carathéodory, Steinitz, Fenchel,
Jessen, Alexandrov, Busemann, Pogorelov and others.

My purpose in this note is to indicate some instances where the notion of
convexity appears in the writings of the Greek mathematicians and philosophers of
antiquity. The account is not chronological, because I wanted to start with convexity
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in the purely mathematical works, before talking about this notion in philosophy,
architecture, etc.

The present account of the history of convexity is very different from the existing
surveys on the subject. For sources concerning the modern period, I refer the reader
to the survey by Fenchel [12].

4.2 Geometry

Euclid uses convexity in the Elements, although he does not give any precise
definition of this notion. In Proposition 8 of Book III, the words concave and
convex sides of a circumference appear, and Euclid regards them as understood.
Propositions 36 and 37 of the same book also involve convexity: Euclid talks about
lines falling on the convex circumference. The constructibility of certain convex
regular polygons is extensively studied in Book IV of the same work. Books XI,
XII and XIII are dedicated to the construction and properties of convex regular
polyhedra. The word “convex” is not used there to describe a property of these
polyhedra, but Euclid relies extensively on the existence of a circumscribed sphere,
which (in addition to the other properties that these polyhedra satisfy) implies that
the polyhedra are convex. Such a sphere is also used by him for addressing the
construction question: to construct the edge length of a face of a regular polyhedron
in terms of the radius of the circumscribed sphere.

There is a rather long passage on the construction and the properties of the regular
convex polyhedra derived from their plane faces in Plato’s Timaeus,1 written about
half-a-century before Euclid’s Elements appeared, and it is commonly admitted that
Plato learned this theory from Theaetetus, a mathematician who was like him a
student of the Pythagorean geometer Theodorus of Cyrene. Actually, Plato in the
Timaeus, was mainly interested in the construction of four out of the five regular
polyhedra that he assigned to the four elements of nature, namely, the tetrahedron,
the octahedron, the icosahedron and the cube. In particular, he shows how the faces
of these polyhedra decompose into known (constructible) triangles, he computes
angles between faces, etc. [23, p. 210ff]. The regular convex polyhedra were part
of the teaching of the early Pythagoreans (cf. [16]). All this was discussed at
length by several authors and commentators, see in particular Heath’s notes in
his edition of the Elements [14] and Cornford’s comments in his edition of the
Timaeus.

Apollonius, in the Conics, uses the notion of convexity, in particular in Book IV
where he studies intersections of conics. For instance, he proves that two conics
intersect in at most two points “if their convexities are not in the same direction”
(Proposition 30).2 Proposition 35 of the same book concerns the tangency of conics

1Timaeus, [23], 53C-55C.
2The Conics, Book IV, [3, p. 172].
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with convexities in opposite directions.3 Proposition 37 concerns the intersection
of a hyperbola with another conic, with convexities in opposite directions,4 and
there are several other examples where convexity is involved. We note that conics
themselves are convex—they bound convex regions of the plane.

In the works of Archimedes, considerations on convexity are not limited to conics
but they concern arbitrary curves and surfaces. Right at the beginning of his treatise
On the sphere and the cylinder [13, p. 2], Archimedes introduces the general notion
of convexity. The first definition affirms the existence of “bent lines in the plane
which either lie wholly on the same side of the straight line joining their extremities,
or have no part of them on the other side.”5 Definition 2 is that of a concave curve:

I apply the term concave in the same direction to a line such that, if any two points on it are
taken, either all the straight lines connecting the points fall on the same side of the line, or
some fall on one and the same side while others fall on the line itself, but none on the other
side.

Definitions 3 and 4 are the two-dimensional analogues of Definitions 1 and 2.
Definition 3 concerns the existence of surfaces with boundary6 whose boundaries
are contained in a plane and such that “they will either be wholly on the same side
of the plane containing their extremities,7 or have no part of them on the other side.”
Definition 4 is about concave surfaces, and it is an adaptation of the one concerning
concave curves:

I apply the term concave in the same direction to surfaces such that, if any two points on
them are taken, the straight lines connecting the points either all fall on the same side of the
surface, or some fall on one and the same side of it while some fall upon it, but none on the
other side.

After the first definitions, Archimedes makes a few assumptions, the first one
being that among all lines having the same extremities, the straight line is the
shortest. The second assumption is a comparison between the lengths of two
concave curves in the plane having the same endpoints, with concavities in the same
direction, and such that one is contained in the convex region bounded by the other
curve and the line joining its endpoints:

Of other lines in a plane and having the same extremities, [any two] such are unequal
whenever both are concave in the same direction and one of them is either wholly included
between the other and the straight line which has the same extremities with it, or is partly
included by, and is partly common with, the other; and that [line] which is included is the
lesser.

3The Conics, Book IV, [3, p. 178].
4The Conics, Book IV, [3, p. 183].
5The quotations of Archimedes are from Heath’s translation [13].
6“Terminated surfaces”, in Heath’s translation.
7In this and the next quotes, since we follow Heath’s translation, we are using the word
“extremities”, although the word “boundary” would have been closer to what we intend in modern
geometry.
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The third and fourth assumptions are analogues of the first two in respect of area
instead of length. Assumption 3 says that among all surfaces that have the same
extremities and such that these extremities are in a plane, the plane is the least in
area. Assumption 4 is more involved:

Of other surfaces with the same extremities, the extremities being in a plane, [any two]
such are unequal whenever both are concave in the same direction and one surface is either
wholly included between the other and the plane which has the same extremities with it, or
is partly included by, and partly common with, the other; and that which is included is the
lesser [in area].

Almost all of Book I (44 propositions) of Archimedes’ treatise On the sphere
and the cylinder uses in some way or another the notion of convexity. Several
among these propositions are dedicated to inequalities concerning length and area
under convexity assumptions. For instance, we find there inequalities on the length
of polygonal figures inscribed in convex figures. Archimedes proves the crucial
fact that the length of a convex curve is equal to the limit of polygonal paths
approximating it, and similar propositions concerning area and volume, in particular
for figures inscribed in or circumscribed to a circle or a sphere. His booklet On
measurement of a circle is on the same subject. His treatise On the equilibrium of
planes is another work in which convexity is used in a fundamental way. Postulate 7
of Book I of that work says that “in any figure whose perimeter is concave in one
and the same direction, the center of gravity must be within the figure.”

Another discovery of Archimedes involving the notion of convexity is his
list of thirteen polyhedra that are now called semi-regular (Archimedean) convex
polyhedra. These are convex polyhedra whose faces are regular polygons of a not
necessarily unique type but admitting a symmetry group which is transitive on the
set of vertices.8 The faces of such a polyhedron may be a mixture of equilateral
triangles and squares, or of equilateral triangles and regular pentagons, or of regular
pentagons and regular hexagons, etc. It turns out that the Archimedean polyhedra are
finite in number (there are essentially thirteen of them, if one excludes the regular
ones). Archimedes’ work on this subject does not survive but Pappus, in Book V of
the Collection, reports on this topic, and he says there that Archimedes was the first
to give the list of 13 semi-regular polyhedra [19, pp. 272–273].

Proclus (411–485) uses the notion of convexity at several places of his Commen-
tary on the first book of Euclid’s Elements; see e.g. his commentary on Definitions
IV, VIII and XIX in which he discusses the angle made by two circles, depending
on the relative convexities of the circles [25, pp. 97, 115, and 141].

Ptolemy, in Book I of his Almagest, establishes a necessary and sufficient
condition for a convex quadrilateral to be inscribed in a circle in terms of a
single relation between the lengths of the sides and those of the diagonals of that
quadrilateral.9 The relation, known as Ptomely’s relation, has always been very
useful in geometry.

8We are using modern terminology.
9Ptolemy’s proof with the reference to Heiberg’s edition is quoted in Heath’s edition of Euclid [14,
Vol. 2 p. 225].
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4.3 Mirrors and Optics

Convex and concave mirrors are traditionally associated with imagination and
phantasies, because they distort images. There are many examples of visual illusions
and deceptions caused by convex and concave mirrors. Plato, in the Republic (in
particular, in the well-known cave passage),10 uses this as an illustration of his view
that reality is very different from sensible experience. According to him, reason,
and especially mathematics, allows us to see the real and intelligible world of which
otherwise we see only distorted shadows.

The Roman writer Pliny the elder (first c. CE) at several places of his Natural
history refers to the concept of concave or convex surface. In a passage on mirrors,
he writes [24, Vol. VI, p. 126]:

Mirrors, too, have been invented to reflect monstrous forms; those, for instance, which have
been consecrated in the Temple at Smyrna. This, however, all results from the configuration
given to the metal; and it makes all the difference whether the surface has a concave form
like the section of a drinking cup, or whether it is [convex] like a Thracian buckler; whether
it is depressed in the middle or elevated; whether the surface has a direction transversely
or obliquely; or whether it runs horizontally or vertically; the peculiar configuration of the
surface which receives the shadows, causing them to undergo corresponding distortions:
for, in fact, the image is nothing else but the shadow of the object collected upon the bright
surface of the metal.

Regarding surfaces receiving shadows, let me also mention the sundials used in
Greek antiquity that have the form of a convex surface (see Fig. 4.1). The curve
traced by the shadow of the extremity of a bar exposed to the sun has an interesting
mathematical theory. The seventeenth-century mathematician Philippe de la Hire,
in his treatise titled Gnomonique ou l’art de tracer des cadrans ou horloges
solaires sur toutes les surfaces, par différentes pratiques, avec les démonstrations
géométriques de toutes les opérations (Gnomonics, or the art of tracing sundials
over all kind of surfaces by different methods, with geometrical proofs of all the
operations) [10], conjectured that the theory of conic sections originated in the
practical observations of sundials. Otto Neugebauer, in his paper The Astronomical
Origin of the Theory of Conic Sections [18], made the same conjecture. This is also
discussed in the article [1] in the present volume.

With mirrors, we enter into the realm of optics, where convexity is used in an
essential way. The propagation properties of light rays, including their reflection and
their refraction properties on convex and concave mirrors, were studied extensively
by the Greek mathematicians. Catoptrics, the science of mirrors, was considered as
a mathematical topic and was closely related to the theory of conic sections. (The
Greek word katoptron, κάτοπτρον means mirror.) Since ancient times, the study

10Actually, in the cave passage ([22], Book VII, 514a–521d), not only images are distorted because
the walls are not planar, but also one sees only shadows, apparent contours. Thom, in his Esquisse
d’une sémiophysique ([34, p. 218] of the English translation) sees there the mathematical problem
of reconstructing figures from their apparent contours.
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Fig. 4.1 A Greek sundial with convex plate, from Ai Khanoum (Afghanistan), third to second c.
BCE

in this field involved, not only plane mirrors, but curved ones as well, concave
or convex. A few books on catoptrics dating from Greek antiquity have reached
us, some only in Arabic or Latin translation. There is a treatise with a possible
attribution to Euclid, compiled and amplified by Theon of Alexandria (fourth c. CE),
containing reflection laws for convex and concave mirrors; cf. [11]. In particular, the
author studies there the position of the focus of a concave mirror, that is, the point
where sun rays concentrate after reflection, so as to produce fire.

The geometry of mirrors is related to conic sections. Book III of Apollonius’
Conics addresses the question of reflection properties of these curves. A treatise by
Heron of Alexandria which survives in the form of fragments is concerned with
the laws of reflection on plane, concave and convex mirrors and their applications.
In another treatise on catoptrics, attributed to Ptolemy, whose third, fourth and
fifth Books survive, the author studies the reflection properties on plane, spherical
convex and spherical concave mirrors. A book titled Catoptrics by Archimedes does
not survive but is quoted by later authors, notably by Theon of Alexandria in his
Commentary on Ptolemy’s Almagest (I.3). One should also mention the work of
Diocles (third to second c. BCE) which survives in the form of fragments, citations
by other authors, and translations and commentaries by Arabic mathematicians.
Diocles was a contemporary of Apollonius and his work on optics is inseparable
from the theory of conics. To him is attributed the first investigation of the focal
property of the parabola. (Heath in his edition of the Conics [2, p. 114] notes
that Apollonius never used or mentioned the focus of a parabola.) Diocles studied
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mirrors having the form of pieces of spheres, paraboloids of revolution, ellipsoids
of revolution, and other surfaces. His work was edited by Rashed in [26], a book
containing critical editions of Arabic translations of Greek texts on the theory of
burning mirrors, in particular those by Diocles on elliptical and parabolic burning
mirrors.11 The questions of finding the various shapes that a mirror can take in
order to concentrate sun rays onto a point and produce fire at that point, and
conversely, given a mirror, to find (possibly) a point where sun rays reflected on that
mirror concentrate and produce fire, are recurrent in the Greek treatises on optics.
There are proposition in Euclid’s Catoptrics [11] dealing with burning mirrors. The
introductory chapter of Lejeune’s Recherches sur la catoptrique grecque d’après les
sources antiques et médiévales (Researches on Greek catoptrics following antique
and medieval sources) [17] contains an interesting brief history of this subject.

Optics is related to astronomy, in particular because of lenses. Convex lenses
were already used in Greek antiquity to explore the heavens. There is a famous pas-
sage of the Life of Pythagoras written by Iamblichus, the Syrian neo-Pythagorean
mathematician of the third century CE, in which the author recounts that Pythagoras,
at the moment he made his famous discovery of the relation between ratios of
integers and musical intervals, was pondering on the necessity of finding a device
which would be useful for the ear in the same manner as the dioptre is useful for the
sight [16, p. 62]. Dioptres are a kind of glasses used to observe the celestial bodies.

4.4 Billiards in Convex Domains

A question raised by Ptolemy is known since the Renaissance as Alhazen’s
problem.12 This problem, in its generalized form, concerns reflection in a convex
mirror, and, in the modern terminology, it can be regarded as a problem concerning

11The Latin word focus means fireplace, which led to the expression “burning mirror.”
12The name refers to Ibn al-Haytham, the Arab scholar from the Middle Ages known in the Latin
world as Alhazen, a deformation of the name “Al-Haytham.” Ibn al-Haytham is especially famous
for his treatise on Optics (Kitāb al-manāzir), in seven books (about 1400 pages long), which
was translated into Latin at the beginning of the thirteenth century, and which was influential
on Johannes Kepler, Galileo Galilei, Christiaan Huygens and René Descartes, among others. An
important part of what survives from his work in geometry and optics was translated and edited
by Rashed [27, 28]. Ibn al-Haytham is the author of an “intromission” theory of vision saying
that it is the result of light rays penetrating our eyes, contradicting the theories held by Euclid and
Ptolemy who considered, on the contrary, that vision is the result of light rays emanating from
the eye (“extramission” theory). It is possible though that Euclid, as a mathematician, adhered to
the theory where visual perception is caused by light rays traveling along straight lines emitted
from the eye that strike the objects seen, in order to develop his mathematical theory of optics
as an application of Euclidean geometry. This also explains the fact that Euclid’s optics does not
include any physiological theory of vision, nor any physical theory of colors, etc. Needless to say,
besides this rough classification into an intromission theory and an extramission theory of light,
there is a large amount of highly sophisticated and complex theories of vision and of light that were
developed by Greek authors, which were related to the various philosophical schools of thought,
and at the same time to the mathematical theories that were being developed.
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trajectories in a convex billiard table. In its original form, the problem asks for the
following: given a circle and two points that both lie outside or inside this circle, to
construct a point on the circle such that the two lines joining the given points to that
point on the circle make equal angles with the normal to the circle at the constructed
point. Ibn al-Haytham,13 in his Kitāb al-Manāzir, found a geometrical solution of
the problem using conic sections and asked for an algebraic solution. He referred to
Ptolemy while writing on his problem, and in fact, a large part of his work on optics
was motivated by Ptolemy’s work on this subject, which he criticized at several
points. A. I. Sabra published an edition of Ibn al-Haytham’s Optics [30], and wrote
a paper containing an account of six lemmas used by Ibn al-Haytham in his work
on the problem [29, 31–33].

A number of prominent mathematicians worked on Alhazen’s problem. We
mention in particular Christiaan Huygens, who wrote several articles and notes on
it; they are published in Volumes XX and XXII of his Complete Works edition [15].
J. A. Vollgraff, the editor of Volume XXII of these works, writes on p. 647: “At
the beginning of 1669, we can see Huygens absorbed by mathematics. He was
busy with Alhazen’s problem. This is one of the problems of which he always
strived to find, using conic sections, the most elegant solution.”14 Volume XX
of the Complete Works contains a text read by Huygens in 1669 or 1670 at the
Royal Academy of Sciences of Paris on this problem titled Problema Alhaseni
(p. 265). There is also a note titled Construction d’un Problème d’Optique, qui est
la XXXIXe Proposition du Livre V d’ Alhazen, et la XXIIe du Livre VI de Vitellion
(Construction of a problem on optics, which is Proposition XXXIX of Book V
of Alhazen and Proposition XXII of Book VI of Vitellion)15 and a note (p. 330)
titled Problema Alhazeni ad inveniendum in superficie speculi sphaerici punctum
reflexionis (Alhazen’s problem on finding the reflection point on the surface of
a spherical mirror), in the same volume. Vol. XXII of the Complete Works [15]
contains an article dating from 1673 titled Constructio et demonstratio ad omnes
casus Problematis Alhazeni de puncto reflexionis (Construction and proof of all
the cases of Alhazen’s reflection point problem). There are other pieces related to
Alhazen’s problem in Huygens’ complete works. Among the other mathematicians
who worked on this problem, we mention the Marquis de l’Hôpital and Isaac
Barrow. Leonardo da Vinci conceived a mechanical device to solve the problem.
Talking about Leonardo, let us note that he also conceived devices to draw conics;
cf. [20].

13See Footnote 12.
14Au commencement de 1669 nous voyons Huygens absorbé par la mathématique. Il s’occupa du
problème d’Alhazen. C’est là un des problèmes dont il a toujours eu l’ambition de trouver, par les
sections coniques, la solution la plus élégante.
15Vitellion is the name of a thirteenth-century mathematician who edited works of Alhazen on
optics.
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4.5 Aristotle

Aristotle mentions convex and concave surfaces at several places in his writings,
usually in his explanations of metaphysical ideas, and generally as an illustration of
the fact that the same object may have two very different appearances, depending
on the way one looks at it; like the circle, which may seem concave or convex,
depending on the side from which one sees it.

In the Nicomachean Ethics [6],16 talking about the soul, Aristotle discusses the
fact that it has a part which is rational and a part which is irrational. He asks whether
this distinction into two parts is comparable to the distinction between the parts of
a body or of anything divisible into parts, or whether these two parts are “by nature
inseparable, like the convex and concave parts in the circumference of a circle.” The
latter response is, according to him, the correct one, because the soul is one, and
the fact that it has rational and irrational behaviors are different phases of the same
thing.

Convexity is also mentioned in the Meteorology [5]. Here, Aristotle explains the
origin of rivers and springs. He writes17:

For mountains and high ground, suspended over the country like a saturated sponge, make
the water ooze out and trickle together in minute quantities but in many places. They receive
a great deal of water falling as rain (for it makes no difference whether a spongy receptacle
is concave and turned up or convex and turned down: in either case it will contain the same
volume of matter) and, they also cool the vapour that rises and condense it back into water.

Chapter 9 of Aristotle’s Physics [8] is concerned with the existence of void,
and it is an occasion for the Philosopher to discuss actuality and potentiality, in
various instances. Convexity and concavity are again used as metaphorical entities.
He writes18:

For as the same matter becomes hot from being cold, and cold from being hot, because it
was potentially both, so too from hot it can become more hot, though nothing in the matter
has become hot that was not hot when the thing was less hot; just as, if the arc or curvature
of a greater circle becomes that of a smaller—whether it remains the same or becomes
a different curve—convexity has not come to exist in anything that was not convex but
straight.

Thus, he says, something which becomes cold and hot was potentially cold or
hot, like a thing which is convex: it may become more convex, because it was
potentially convex, but it cannot become straight. Chapter 13 of the same treatise
is concerned with the meaning of different words related to time. Aristotle writes19:

Since the “now” is an end and a beginning of time, not of the same time however, but the
end of that which is past and the beginning of that which is to come, it follows that, as the

16Nicomachean Ethics [6], 1102a-30.
17Meteorology [5], 350a10.
18Physics [8], 217a30-b5.
19Physics [8], 222b1.
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circle has its convexity and its concavity, in a sense, in the same thing, so time is always at
a beginning and at an end.

Thus, again like a circle, depending on the side from which one looks at it, may
seem concave or convex, the term “now”, depending on the side from which we
look at it, may be the beginning or the end of time.

Besides talking about the convex and the concave as two sides of the same thing,
Aristotle liked to give the example of the convex and the concave, while he talked
about opposites. In the Mechanical problems [9], talking about the lever, and the
fact that with this device, a small force can move a large weight, he writes20:

The original cause of all such phenomena is the circle; and this is natural, for it is in no
way strange that something remarkable should result from something more remarkable,
and the most remarkable fact is the combination of opposites with each other. The circle
is made up of such opposites, for to begin with it is composed both of the moving and of
the stationary, which are by nature opposite to each other.[. . . ] an opposition of the kind
appears, the concave and the convex. These differ from each other in the same way as the
great and small; for the mean between these latter is the equal, and between the former is
the straight line.

Aristotle’s fascination for the circle is always present in his works. In another
passage of the same treatise, he writes21:

[the concave and the convex] before they could pass to either of the extremes, so also the
line must become straight either when it changes from convex to concave, or by the reverse
process becomes a convex curve. This, then, is one peculiarity of the circle, and a second is
that it moves simultaneously in opposite directions; for it moves simultaneously forwards
and backwards, and the radius which describes it behaves in the same way; for from
whatever point it begins, it returns again to the same point; and as it moves continuously
the last point again becomes the first in such a way that it is evidently changed from its first
position.

Book V of Aristotle’s Problems [7] is titled Problems connected with fatigue.
Problem 11 of that book asks: “Why is it more fatiguing to lie down on a flat than
on a concave surface? Is it for the same reason that it is more fatiguing to lie on
a convex than on a flat surface?” As usual in Aristotle’s Problems, the question is
followed by comments and partial answers, some of them maybe due to Aristotle,
and others presumably written by students of the Peripatetic school. The comments
on this problem include a discussion on the pressure exerted on a convex line, saying
that it is greater than that exerted on a straight or concave line. They start with:

For the weight being concentrated in one place in the sitting or reclining position causes
pain owing to the pressure. This is more the case on a convex than on a straight surface, and
more on a straight than on a concave; for our body assumes curved rather than straight lines,
and in such circumstances concave surfaces give more points of contact than flat surfaces.
For this reason also couches and seats which yield to pressure are less fatiguing than those
which do not do so.

20Mechanical problems [9], 847b.
21Mechanical problems [9], 848a.
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Book XXXI of the same work is titled Problems connected with the eyes, and
Problem 25 of that book involves a discussion of convexity in relation with vision.
The question is: “Why is it that though both a short-sighted and an old man are
affected by weakness of the eyes, the former places an object, if he wishes to see it,
near the eye, while the latter holds it at a distance?” In the comments, we read:

The short-sighted man can see the object but cannot proceed to distinguish which parts
of the thing at which he is looking are concave and which convex, but he is deceived on
these points. Now concavity and convexity are distinguished by means of the light which
they reflect; so at a distance the short-sighted man cannot discern how the light falls on the
object seen; but near at hand the incidence of light can be more easily perceived.

The treatise On the Gait of Animals is a major biological treatise of Aristotle, and
it concerns motion and the comparison of the various ways of motion for animals
(including human beings). In Chapter 1, Aristotle writes22:

Why do man and bird, though both bipeds, have an opposite curvature of the legs? For
man bends his legs convexly, a bird has his bent concavely; again, man bends his arms and
legs in opposite directions, for he has his arms bent convexly, but his legs concavely. And
a viviparous quadruped bends his limbs in opposite directions to a man’s, and in opposite
directions to one another; for he has his forelegs bent convexly, his hind legs concavely.

In Chapter 13 of the same treatise, we read23:

There are four modes of flexion if we take the combinations in pairs. Fore and hind may
bend either both backwards, as the figures marked A, or in the opposite way both forwards,
as in B, or in converse ways and not in the same direction, as in C where the fore bend
forwards and the hind bend backwards, or as in D, the opposite way to C, where the
convexities are turned towards one another and the concavities outwards.

4.6 Architecture

The Parthenon, Erechteum and Theseum columns, and more generally, Doric
columns, are not straight but convex. Several explanations for this fact have
been given, but none of them is definitive. F. C. Penrose published a book titled
An investigation of the principles of Athenian architecture; or, the results of a
survey conducted chiefly with reference to the optical refinements exhibited in the
construction of the ancient buildings at Athens [21], whose object he describes as
(p. 22)

the investigation of various delicate curves, which form the principal architectural lines of
certain of the Greek buildings of the best period; which lines, in ordinary architecture, are
(or are intended to be) straight. In the course of our inquiries we shall perhaps be enabled
in some degree to extend and correct our views of the geometry and mathematics of the
ancients, by establishing the nature of the curves employed [. . . ] The most important curves

22On the Gait of Animals [4], 704a15.
23On the Gait of Animals [4], 712a.
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Fig. 4.2 A drawing of the Parthenon, from F. C. Penrose’s Investigation of the Principles of
Athenian Architecture

in point and extent are those which form the horizontal lines of the buildings where they
occur; such as the edges of the steps and the lines of the entablature, which are usually
understood to be straight level lines, but in the steps of the Parthenon and some other of the
best examples of Greek doric, are convex curves [. . . ].

For instance, the columns of the Parthenon (see Fig. 4.2) are “in wonderful
agreement at all points” with a piece of a parabola [21, p. 41].

Penrose says that the first mention of the curvature properties in Greek architec-
ture was made by the Roman historian of architecture Vitruvius. Referring to him
again on p. 39 of his essay [21], Penrose writes that this phenomenon, called entasis
(from a Greek word meaning to stretch a line, or to bend a bow), is the

well-known increment or swelling given to a column in the middle parts of the shaft for the
purpose of correcting a disagreeable optical illusion, which is found to give an attenuated
appearance to columns formed with straight sides, and to cause their outlines to seem
concave instead of straight. The fact is almost universally recognized by attentive observers,
though it may be difficult to assign a conclusive reason why it should be so.

One possible explanation which Penrose gives is “simply an imitation of the
practice of Nature in giving almost invariably a convex outline of the limbs of
animals” (p. 116) and “of the trunks and branches of trees” (p. 105).

This leads us to the question of architecture and art as an imitation of Nature,
whose lines are seldom straight, and sometimes intricately curved. Curved are also
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the roads of poetic creation. The first lines of Canto I of Dante’s Inferno read:

Midway upon the journey of our life
I found myself within a forest dark,
For the straightforward pathway had been lost.24

The roads of mathematical discovery are even more curved; they are twisted, and
very lengthy.
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Chapter 5
On the Concept of Curve: Geometry
and Algebra, from Mathematical
Modernity to Mathematical Modernism

Arkady Plotnitsky

Abstract We consider the concept of curve in the context of the transition from
mathematical “modernity” to mathematical “modernism,” the transition defined, the
article argues, by the movement from the primacy of geometrical to the primacy of
algebraic thinking. The article also explores the ontological and epistemological
aspects of this transition and the connections between modernist mathematics and
modernist physics, especially quantum theory, in this set of contexts.

AMS Classification: 00A30, 01A65, 01A60, 81P05

5.1 Prologue

The frescoes of the Chauvet-Pont-d’Arc Cave in southern France, painted roughly
32,000 years ago, and the subject of Werner Herzog’s 3-D documentary, The Cave
of Forgotten Dreams (2010), are remarkable not only because of the extraordinary
richness and quality of their paintings, or how well they are preserved, or, closer to
my subject here, their prehistorical images of curves, which are found in other, some
earlier, cave paintings, but also and especially because these curves, delineating
animal figures (there is only one human figure), are drawn on the intricately curved
surfaces of the cave. This unfolding curved-surface imagery compelled Herzog to
use 3-D technology for his film. The resulting cinematography, the temporal image
of curves and curved surfaces, the curved image of time (Herzog’s theme as well) is
remarkable phenomenologically, aesthetically, and, for a geometer, mathematically.
The access to the cave, discovered in 1994, is severely limited, and Herzog was
lucky to get permission to enter and film in it. But one could imagine what the likes
of Gauss, Lobachevsky, Riemann and Poincaré (who spent a lifetime thinking about
curves on surfaces) would have thought if they had had a chance to see the cave,
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which seems, by its very existence, to challenge Euclid, nearly our contemporary on
this 30,000-year-old time scale. Almost, but not quite! One needs to know and, first,
to invent a great deal of mathematics to think of this challenge, and the mathematics
as developed, along with science, philosophy, and art, by the ancient Greeks brings
them and us together as contemporaries.

There is an immense intervening history between these paintings and us, a
history that has erased beyond recovery most of the thinking that created them,
and whatever comments one can make concerning this thinking are bound to be
conjectural. It is unlikely that mathematics existed at the time, although this may
depend on how one understands what mathematics is. What may be said with more
confidence is that human thinking, thanks to the neurological structure of the human
brain, had by then (50,000–100,000years ago is a current rough estimate for when
this structure emerged) a component that led to the rise of mathematical thinking
and eventually to mathematics itself. Concerning the longer prehistory one can
only invent evolutionary fables, akin to those concerning the origins of thinking,
consciousness, language, logic, music, or art, which may be plausible and useful
but are unlikely to ever be confirmed.1 Art is one endeavor where we might be
close to the cave painters in the Chauvet Cave and elsewhere. But then, is art
possible without some mathematical thinking, or mathematics without some artistic
thinking, or thinking in general without either, or without philosophical thinking?
This is doubtful, as my argument in this article will suggest, without, however,
making a definitive claim to that effect, which may not be possible given where
our understanding (neurological, psychological, or philosophical) of the nature of
thinking stands now.

5.2 From Mathematical Modernity to Mathematical
Modernism

While, inevitably, invoking earlier developments, in particular ancient Greek math-
ematics, the history I address here begins with mathematics at the rise of modernity,
especially the work of Fermat and Descartes, crucial to our concept of curve as
well, but having a much greater significance for all subsequent mathematics. One
can assess the character of mathematical thinking then more reliably because this
character is close to and has decisively shaped the character of our mathematical
thinking now. I then move to Riemann and, finally, to mathematical modernism,
which emerged sometime around 1900, shaped by the preceding development of
nineteenth-century mathematics, roughly, from K. F. Gauss on, with Riemann as
the most crucial figure of this development and, in the present view, conceptually,
already of modernism. Thus, even this shorter trajectory, curve, of the idea of curve

1G. Tomlinson’s book on the prehistory of music, with the revealing title “A Million Years of
Music,” confirms this view, even if sometimes against its own grain [64].
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will be sketched by way of a discrete set of points, which would hopefully allow the
reader to envision or surmise the curve or curves (for there are, again, more than one
of them) connecting the dots. This uncircumventable circumstance notwithstanding
(the metaphor of a curve invades this sentence, too), I do aim to offer a thesis
concerning the idea of curve in mathematics and a thesis concerning mathematics
itself, as defined by mathematical modernism as fundamentally algebraic, and to
offer a historical and conceptual argument supporting this thesis.

I shall more properly outline my key concepts in the next section, merely sketch-
ing them in preliminary terms here, beginning with modernity and modernism.
Modernity is a well-established broad cultural category, defined by a set of cultural
transformations, “revolutions,” that extends, roughly, from the sixteenth century to
our own time. The rise of modernity has been commonly associated with the concept
of Renaissance, especially in dealing with its cultural aspects, such as philosophy,
mathematics and science, and literature and art. We are more cautious in using the
rubric of Renaissance now, and prefer to speak of the early modern period, implying
a greater continuity with the preceding as well as subsequent history. This caution
is justified. On the other hand, in the present context, invoking the Renaissance is
not out of place either, as referring to the rebirth of the ways of thinking, not the
least the mathematical thinking, of ancient Greece. The rise of modernity was in
part shaped by new mathematics, such as analytic geometry, algebra, and calculus,
and new, experimental-mathematical sciences of nature, beginning with the physics
of Kepler, Descartes, Galileo and Newton, a set of developments often referred to
as the Scientific Revolution.

By contrast, modernism is a well-established, even if not uniquely defined,
denomination only when applied to literature and art, while a recent and infrequent
denomination when applied to mathematics or science, a denomination, moreover,
commonly borrowed from its use in literature and art, as by H. Mehrtens and
J. Gray, my main references here [26, 44]. Historically, both phenomena, modernist
literature or art and modernist mathematics or science, are commonly understood as
belonging to the same period, roughly from the 1890s to the 1940s, but as in various
ways extending to and, certainly, continuing to impact our own time. Both forms of
modernism are considered to be defined by major transformations in their respective
domains, and there is a consensus that significant changes in both domains did
take place during that time. However, the complex and multifaceted nature of these
transformations makes it difficult to conclusively ascertain their nature and causality.
Some of these transformational effects had multiple causes, and conversely, some
of these causes combine to produce single effects. It is hardly surprising, then, that,
conceptually, the thinking concerning modernism in any field is diverse and, in
each case, only partially reflects the nature of modernism in a given field or the
relationships, on modernist lines, between different fields, even between modernist
mathematics and modernist physics.

This is an unavoidable limitation, and it cannot be circumvented by the con-
ception of mathematical modernism to be offered in this article, which intersects
with other such conceptions, but, to the best of my knowledge, does not coincide
with any of them. I can only argue that this type of mathematical thinking emerged
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during the historical period in question, but not that it exhausts what can be termed
mathematical modernism, let alone capture the development of mathematics during
that period. Not all of this mathematics was modernist by any definition I am
familiar with. Indeed, it cannot be captured by any single definition, any more
than mathematics in general. While I find the term mathematical modernism useful
and historically justified, more important are key conceptual formations that, I
argue, decisively, even if not uniquely, characterize the mathematics or science that
emerged during that period. I am, however, ready to admit that these formations
could be given other denominations. One cannot hope for a unique name here
(any more than in general), which is a good thing, because new names open new
trajectories of thought.

Mathematical modernism will be primarily understood here as mathematical
thinking that gives mathematics a fundamentally algebraic character. By way of
broad preliminary definitions, I understand algebra as the mathematical formaliza-
tion of the relationships between symbols, arithmetic as the mathematical practice
dealing specifically with numbers, geometry as the mathematical formalization
of spatiality, especially (although not exclusively) in terms of measurement, and
topology as the mathematization of the structure of spatial or spatial-like objects
apart from measurements, specifically in terms of continuity and discreteness.
The corresponding mathematical fields are algebra, number theory, geometry,
and topology. Analysis deals with the questions of limit, and related concepts
such as continuity (where it intersects with topology), differentiation, integration,
measurement, and so forth. There are multiple intersections between these fields,
and there are numerous subfields and fields, like arithmetic algebraic geometry, that
branched off these basic fields.

Defining algebra as the mathematical formalization of the relationships between
symbols makes it part of all mathematics, at least all modern mathematics. Ancient
Greek geometry was grounded, at least expressly, in arithmetic, although one
might detect elements of symbolism there as well, especially at later stages of its
development, certainly by the time of Diaphantus, sometimes called “the father of
algebra.” Geometrical and topological mathematical objects always have algebraic
components as part of their structure, while algebraic objects may, but need not
have geometrical or topological components. Two other, narrower or field-specific,
considerations of algebra are important for my argument as well. The first, standing
at the origins of algebra as a mathematical discipline, is that of algebra as the study
of algebraic (polynomial) equations, is important also because all equations are
in effect forms of algebra, which includes equations associated with calculus and
then differential equations, crucial to the history of mathematics from mathematical
modernity to mathematical modernism. The second is that defined by algebraic
structures, such as groups or associative algebras (groups, especially symmetry
groups, are also crucial to geometry and topology). These two senses of algebra
bring into the landscape of mathematical modernity and then modernism, and the
transition from one to the other, the figure of Galois who was the first to connect
these two senses of algebra, which he did in a radically revolutionary way (also by
introducing the concept of group). Galois is, arguably, the most notable figure, next
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to Riemann, in this history and is an even earlier (proto)modernist than Riemann
was, although the limits of this article will allow me to comment on Galois only
in passing. All these aspects of algebra are part of the algebraization defining
mathematical modernism and the concepts of curve that come with it.

What gives the present conception of mathematical modernism its bite is that it
applies fundamentally, rather than merely operationally, across modernist mathe-
matics: It defines not only fields, such as analysis or mathematical logic that, while
not disciplinarily classified as algebra, are governed by structures that are algebraic,
but also fields like geometry and topology, that, while having technical algebraic
aspects, are conceptually and disciplinarily juxtaposed to algebra. According to
the present view, it is not only a matter of having an algebraic component as part
of the mathematical structure of their objects but also and primarily a matter of
defining these objects algebraically. Without aiming thus to contain the nature of
mathematics (which is impossible in any event), one might say that the following
three elements are always found in mathematics: concepts, structures, and logic,
each generally more rigorously formalized than when they are found elsewhere,
especially when mathematics is not used, the way it is used in physics, for example.
While, however, structures and logic always entail one or another form of algebra,
this is not necessarily so in the case of concepts, which may be strictly geometrical
or topological. My argument here is that mathematical modernism brings algebra
into the architecture of mathematical concepts, including those found in geometry
or topology, even though algebra in turn accommodates the disciplinary demands of
these fields.

An emblematic case is algebraic topology (a revealing denomination in itself),
a field important for my argument here on several accounts, especially given its
significance for algebraic geometry and Grothendieck’s work.2 Algebraic topology
does have an earlier history (extending from Leibniz and, more expressly, Euler)
preceding the rise of the discipline as such with Riemann, Poincaré, and others. This
history, however, is not comparable to that of geometry from the ancient Greeks
on, until modernism. By contrast, from modernism on, geometry and topology
developed equally and in interaction with each other, and with differential topology,
a field that emerged along with algebraic topology. What makes algebraic topology a
mathematical discipline is that one can associate algebraic structures (initially num-
bers, eventually groups and other abstract algebraic structures, such as rings) to the
architecture of spatial objects that are invariant under continuous transformations,
independently of their geometrical properties, such as those associated, directly or
implicitly, with measurements. This makes topology topo-logy vs. geo-metry. By
the same token, in retrospect, topology is almost inherently categorical. It relates,
functorially, the objects of topological and algebraic categories, a form of algebraic

2I will be less concerned with general or point-set topology, which has a different and much longer
history, extending, arguably, to the ancient Greek thinking, although my claim concerning the
modernist algebraization of mathematics could still be made in this case. See A. Papadopoulos’
contribution to this volume for an illuminating discussion of the topological aspects of Aristotle’s
philosophy, via Thom’s engagement with Aristotle [48].
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thinking that is one of the culminating conceptions of mathematical modernism, for
example and in particular, in Grothendieck’s algebraic geometry.

This is not to say that the spatial (geometrical or topological) character of
mathematical objects defined in modernist geometry and topology in terms of
algebra disappears. It remains important at least on two counts, both of which are,
however, consistent with my argument. First, the algebra defining these objects has
a special form that may be called “spatial algebra.”3 Spatial algebra arises from
algebraic structures that mathematically define geometrical or topological objects
and reflects their proximity to R

3 and mathematical spatial objects there, that are
close to our phenomenal intuition and the geometry and topology associated with
this intuition. This proximity may be, and commonly is, left behind in rigorous
mathematical definitions and treatments of such objects, beginning with R

3 itself.
The same type of algebra may also be used to define mathematical objects that
are no longer available to our phenomenal intuition, apart from using the latter to
create heuristic metaphorical images of such space. Among characteristic examples
of such objects are a projective space (a set of lines through the origin of a vector
space, such as R2 in the case of the projective plane, with projective curves defined
algebraically, as algebraic varieties) and an infinite-dimensional Hilbert space (the
points of which are typically square-integrable functions or infinite series, although
a Euclidean space of any dimension is a Hilbert space, too). In sum, spatial algebra is
an algebraization of spatiality that makes it rigorously mathematical, topologically
or geometrically, as opposed to something that is phenomenally intuitive or is
defined philosophically, even in the case of spatial objects in R

3. As such, it also
allows us to define spatial-algebraic objects across a broad mathematical spectrum,
and by doing so to extend the fields of topology and geometry.

At the same time, and this is the second count on which mathematical objects
defined by spatial algebra retain their connections to geometrical and topological
thinking, analogies with R

3 continue to remain useful and even indispensable. Such
analogies may be rigorous (and specifically algebraic) or metaphorical, with both
types sometimes used jointly. Thus, the analogues of the Pythagorean theorem
or parallelogram law in Euclidean geometry, which holds in infinite-dimensional
Hilbert spaces over eitherR or C, are important, including in applications to physics,
especially quantum theory, the mathematical formalism of which is based in Hilbert
spaces (of both finite and infinite dimensions) over C. More generally, our thinking
concerning geometrical and topological objects is not entirely translatable into
algebra. This was well understood by D. Hilbert in his axiomatization of Euclidean
geometry, even though this axiomatization had a spatial-algebraic character, in the

3Finding a good term poses difficulties because such, perhaps more suitable, terms as “geometric
algebra” and “algebraic geometry,” are already in use for designating, respectively, the Clifford
algebra over a vector space with a quadratic form and the study of algebraic varieties, defined
as the solutions of systems of polynomial equations. This object and this field, however, equally
exemplify the modernist algebraization of mathematics.
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present sense, including in establishing an algebraic model (the field C) of his
system of axioms in order to prove its consistency [34]. According to D. Reed:

[A]fter a chapter in which [Hilbert] provides himself with more tools like geometry and
algebra [in this following Descartes], he goes on to demonstrate in a truly spectacular way:

(*) a “theory of plane area can be derived from the axioms” (but not a theory of volume);
(*) Desargues’ theorem, which states that if two triangles are situated in a plane so that

pairs of corresponding sides are parallel then the lines joining the corresponding sides pass
through one and the same point or are parallel, expresses a criterion for a “plane” geometry
to form part of “space” geometry; and

(*) Pascal’s theorem, which states that if A,B,C, and A1, B1, C1 are two sets of points
on two intersecting lines and if AB1 is parallel to BC1 and AA1 is parallel to CC1 then
BA1 is parallel to CB1, is dependent in a very specific way on the so-called Axiom of
Archimedes.

None of these statements can be given a simple unequivocal expression in the realm of
algebra even though models from “analytic geometry” are used in the demonstrations. In
other words, while algebra is useful as a tool in the demonstration of geometrical statements
it is not useful in formulating the statements themselves. [59, pp. 33–34]

Reed is right in arguing for the significance of geometrical thinking and
expression in mathematics. On the other hand, his claim concerning algebra as
not being useful in formulating geometrical statements is an over-simplification,
whether as a general claim or as reflecting Hilbert’s thinking, even in Euclidean
geometry, where our geometrical intuition is more applicable and where certain
proofs, such as many of those supplied by the Elements could be geometrical
[22].4 Thus, as Hilbert was well aware, a more natural setting for Desargues’ and
Pascal’s theorems is projective geometry, which these theorems helped to usher
in, in a setting, however, that we cannot visualize and that is spatial-algebraic. In
other words, making a symmetrical assessment, while (Euclidean) geometrical and
topological intuitions are helpful and even irreducible, spatial algebra and, thus,
algebra itself, at least since Fermat and Descartes, or Diaphantus, if not Euclid, is
irreducible in turn even in topology and geometry.

One can get further insight into this situation by considering a related principle
due to J. Tate, whose thinking bridged number theory and algebraic geometry in
highly original and profound ways: “Think geometrically, prove algebraically.”
It was introduced in the book (co-authored with J. Silverman) on “the rational

4This may remain true in low-dimensional geometry or topology. I would argue, however, that
spatial algebra is still irreducible there because one commonly converts topological operations into
algebraic ones. This conversion in low dimensions was essential to the origin of algebraic topology.
On the other hand, the recent development of low-dimensional topology, following, among others,
W. Thurston’s work, from the 1970s on, is a more geometrically oriented trend that, to some
degree, counters the twentieth-century modernist algebraic trends and returns to Riemann’s and
Poincaré’s topological thinking, but only to a degree, because the algebraic structures associated
with these objects remain crucial. Some of the most powerful (modernist) algebraic tools of
algebraic topology and algebraic geometry have been used and sometimes developed during this
more geometrical stage of the field. These areas have important connections to quantum field
theory and then string theory, as in E. Witten’s work, which, especially in quantum field theory, are
fundamentally algebraic, in part by virtue of their probabilistic nature.



160 A. Plotnitsky

points of elliptic curves,” a context that is more expressly modernist as far as the
algebraization of the geometrical is concerned and as such is more illuminating
in the present context. The title-phrase combines algebra (“rational points”) and
geometry (“curves”), and implies that geometry, at least beyond that of R3 and even
there, requires algebra to be mathematically rigorous. According to Silverman and
Tate:

It is also possible to look at polynomial equations and their solutions in rings and fields
other than Z or Q or R or C. For example, one might look at polynomials with coefficients
in the finite field Fp with p elements and ask for solutions whose coordinates are also in the
field Fp . You may worry about your geometric intuition in situations like this. How can one
visualize points and curves and directions in A2 when the points of A2 are pairs (x, y) with
x, y ∈ Fp? There are two answers to this question. The first and most reassuring one is that
you can continue to think of the usual Euclidean plane, i.e., R2, and most of your geometric
intuition concerning points and curves will still be true when you switch to coordinates
in Fp . The second and more practical answer is that the affine and projective planes and
affine and projective curves are defined algebraically in terms of ordered pairs (r, s) or
homogeneous triples [a, b, c] without any reference to geometry. So, in proving things
one can work algebraically using coordinates, without worrying at all about geometrical
intuitions. We might summarize this general philosophy as: Think geometrically, prove
algebraically. [62, p. 277]

Affine and projective planes and curves, no longer available to our phenomenal
intuition, can in principle be defined without any reference to ordinary language
and concepts. The latter are more difficult and perhaps impossible to avoid in
geometry, at least in the kind of intuitive geometry Silverman and Tate refer
to, rather than what I call spatial algebra, which, I argue, ultimately defines
(nearly) all geometry rigorously. Even in these more intuitively accessible cases,
we still think algebraically, too, by using spatial algebra, if with the help of
geometrical intuitions, except, as noted, possibly in dealing with low-dimensional
topological and geometrical objects, where more immediately spatial (topological
and geometrical) arguments could be used more rigorously. It is also true that a
mathematician can develop and use intuition in dealing with discrete geometries
as such, say, that of the Fano plane of order 2, which has the smallest number of
points and lines (seven each). However, beyond the fact that they occur in the two-
dimensional regular plane, the diagrammatic representations of even the Fano plane
are still difficult to think of as other than spatial algebra, in this case, combinatorial
in character. While useful and even indispensable, our Euclidean intuitions are
limited even when we deal with algebraic curves in the Euclidean plane, let alone in
considering something like a Riemann surface as a curve overC, or curves and other
objects of finite or projective geometries, abstract algebraic varieties, Hilbert spaces,
the spaces of noncommutative geometry, or geometric groups, a great example of
the extension of spatial algebra to conventionally algebraic objects.

Paul Dirac, recognized as the greatest algebraic virtuoso among the founding
figures of quantum theory, was, nevertheless, reportedly fond of referring to geomet-
rical thinking in quantum mechanics and quantum field theory, both mathematically
based in Hilbert spaces, of both finite and infinite dimensions over C, and the
algebras of Hermitian operators there (e.g., [23]). It is difficult to surmise, especially
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just from reported statements, what Dirac, famous for his laconic style, exactly had
in mind. If, however, one is to judge by his writings, they appear to suggest that
at stake are the algebraic properties and relations, and methods of investigations
they suggest, modeled on those found in geometrical objects, defined by algebraic
structures, in short, spatial algebra, as just explained, working with which was
part of Dirac’s algebraic virtuosity. Indicatively, notwithstanding his insistence
on the role of geometry in Dirac’s quantum-theoretical thinking, O. Darigold’s
analysis of this thinking shows the significance of algebra there [16]. Thus, as
he says, “roughly, Dirac’s quantum mechanics could be said to be to ordinary
mechanics what noncommutative geometry is to intuitive geometry” [16, p. 307].
Noncommutative geometry, however, the invention of which was in part inspired by
quantum mechanics, is a form of spatial algebra ([13, p. 38]; [53, pp. 112–113]).
One encounters similar appeals to geometrical thinking in referring to transfers of
geometrical methods and techniques to spatially algebraic or just algebraic objects
(thus making them spatially algebraic), such as in dealing with groups and group
representations in quantum mechanics, initially developed in a more geometrical
context beginning with S. Lie and F. Klein or in using the idea of metrics in
geometric group theory.

In what sense, then, apart from being defined by spatial algebra, may such
spaces be seen as spaces, in particular, as relates to our phenomenal intuition,
including visualization? The subject is complex and it is far from sufficiently
explored in cognitive psychology and related fields, an extensive research during
recent decades notwithstanding, including as concerns cultural or technological
(digital technology in particular) factors affecting our spatial thinking. It would
be difficult to make any definitive claims here. It does appear, however, that,
these factors notwithstanding, our three-dimensional phenomenal intuition is shared
by us cognitively and even neurologically in shaping our sense of spatiality.
Part of this sense appears to be Euclidean, insofar as it corresponds to what is
embodied in R

3 (again, a mathematical concept), keeping in mind that the idea
of empty space, apart from bodies of one kind or another defining or framing
it, is an extrapolation, because we cannot have such a conception phenomenally
or, as Leibniz argued against Newton, physically. We can have a mathematical
conception of space itself. To what degree our phenomenal spatiality is Euclidean
remains an open question, for example, in dealing with the visual perception
of extent and perspective (e.g., [21, 25, 63]). It is nearly certain, however, that,
when we visualize spatial-algebraically defined objects or even more conventional
geometrical spaces or geometries once the number of dimensions is more than three,
we visualize only three- (or even two-) dimensional configurations and supplement
them by algebraic structures and intuitions. R. Feynman instructively explained
this process in describing visual intuition in thinking in quantum theory, as cited
in S. Schweber [61, pp. 465–466]. Obviously, such anecdotal evidence is not
sufficient for any definitive claim. It appears, however, to be in accord with the
current neurological and cognitive-psychological research, as just mentioned, which
suggests the dependence of our spatial intuition, including visualization, on two-
and three-dimensional phenomenal intuition. This was arguably why Kant thought
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of this intuition, which he saw as that of Euclidean three-dimensional spatiality, as
given to us a priori. That this intuition is entirely Euclidean or that it is given to us
a priori, rather than developed by experience (we would now say, neurologically),
may be and has been challenged. On the other hand, its three-dimensional character
appears to be reasonably certain.

As Tate must have been aware, mathematical thinking concerning geometrical
and topological objects cannot be reduced to our naïve Euclidean intuitions, even
though it may not be possible or desirable to exclude them. Silverman and Tate’s
example from differential calculus (given to further illustrate their philosophy of
thinking geometrically but proving algebraically), that of finding a tangent line
to a curve, confirms this point [62, pp. 377–378]. The invention of calculus,
an essentially algebraic form of mathematics, was not so much about proving
algebraically, as the standard of proof then was geometry. Newton, was compelled
to present his mechanics in terms of geometry rather than calculus in his 1687
Principia, in part, as he explained, to assure a geometrical demonstration of his
findings, also in the direct sense of showing something by means of phenomenal
visualization, rather than in terms of the algebra of calculus [45]. Calculus was about
thinking algebraically, as was especially manifested in Leibniz’s version, rather than
about rigorous proofs.

Calculus was a decisive development in understanding the geometry of curves
as continuous objects, a major rethinking of the nature of curve and curvature,
with, artistically and culturally, deep connections to the Baroque, the style, or
more accurately, the mode of thought, defined by the ideas of curve and inflection,
with Leibniz being the defining philosopher of the Baroque as well as, in his case
correlatively, the coinventor of calculus [17, 51]. “Inflection is the ideal genetic
element of the variable curve,” G. Deleuze says in The Fold: Leibniz and the
Baroque [17, p. 15]. Baroque thinking was also thinking in terms of infinite
variations of curves, reminding one of moduli spaces of curves, yet another of
Riemann’s major discoveries. For the moment, one might argue that it is not in fact
possible to understand the concept of continuous curve mathematically apart from
calculus or some form of proto-calculus (as in Archimedes, for example), and the
subject, accordingly, should have been given more consideration here. However,
even in enabling this understanding, calculus was a new form of algebra, as is,
again, especially manifested in Leibniz’s version of it, but found in Newton as well.
Fermat, the founding father of the study of elliptic curves (which led him to his
famous “last” theorem), played a key role in this history, too, even if he fell short
of inventing calculus. Mathematical modernism, I argue, is ultimately defined by
thinking in terms of algebra rather than in terms of continuity, even in thinking
of continuity itself, for example, and in particular, in considering differentiable
objects, differentiable manifolds, as we define them, following Riemann. The field
known as “differential algebra” (introduced in the 1950s) is another confirmation
of this modernist view in one of its later incarnations, and, as it may be argued
to have a Leibnizian genealogy, the connection, via algebra, between modern
and modernist mathematics. An earlier modernist example of this connection
was “symbolic differentiation” for Hilbert space operators (infinite-dimensional
matrices) in quantum mechanics by M. Born and P. Jordan [9, 52, p. 121].
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My conception of modernist mathematics as an algebraization of mathematics,
even in the case of topology and geometry, is an extension of Tate’s principle.
This extension retains its second part but modifies the first: “Think both Intuitively
Geometrically and Spatially-Geometrically: Prove Algebraically.” In this form the
principle could sometimes apply in algebra as well, which has benefited from the
introduction of spatial-algebraic objects from Fermat and Descartes to Grothendieck
and beyond, for example, in the case of geometric group theory, the study of which
was founded by M. Gromov, one of the more intuitive contemporary geometers, on
this type of principle. But then proving something is thinking, too, as Tate would
surely admit.

The history of mathematical thinking concerning curves or straight lines
(a special class of curves) is part of the origin, if not a unique origin, of this
philosophy “Think both Intuitively Geometrically and Spatially-Geometrically:
Prove Algebraically,” which, in modernity, begins with Fermat and Descartes.
Their thinking and work, which overshadow Silverman and Tate’s passage just
cited, bridge modern and modernist mathematics and physics, from the birth of
modern mathematics. Silverman and Tate’s statement that “in proving things one
can work algebraically using coordinates, without worrying at all about geometrical
intuitions” could have been made by Descartes, and it was one of his main points in
his analytic geometry. The concept of an elliptic curve, especially when considered
in its overall conceptual architecture, presented in their book, is strictly modernist,
as is in fact is all algebraic geometry. This concept has other modernist dimensions,
for example, by virtue of its Riemannian genealogy as (a) belonging to the theory
of functions of a complex variable; (b) as, for each such a curve, both a two-
dimensional topological (real) manifold and a one-dimensional complex manifold,
to Riemann’s theory of manifolds, central to the history of modernist geometry, and
(c) as, topologically, a torus, a figure at the origin of topology, as a mathematical
discipline. Both (b) and (c) manifest the modernist algebraization of geometry and
topology, via spatial algebra, expressly, but it is found in (a), too, even if in a more
oblique and subtler way. It might be added that a major part of Grothendieck’s
work in algebraic geometry, his theory of étale cohomology, discussed below,
originates in Riemann’s ideas of a covering space over a Riemann surface, one of
Riemann’s several great inventions. Algebraic curves, beginning with elliptic curves
(the simplest abelian varieties) were the objects for which étale cohomology groups
were established first, by an elegant calculation, exemplary of the mathematical
technologies to which modernism gave rise [4, 5]).

Although their manifestation in Silverman and Tate’s passage cited here is
particularly notable because of echoing Descartes, these historical connections to
the rise of modern algebra and analytic geometry (which algebraic geometry brings
to its, for now, ultimate form) are not surprising. As all conceptions or undertakings,
no matter how innovative, the modernist algebraization of mathematics has a history.
While more prominent in the nineteenth century, the history of algebraization, at the
very least, again, by way of practice, although it has, especially with Descartes, deep
philosophical roots as well, begins with the mathematics at the outset of modernity,
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such as that of Fermat and Descartes.5 Geometry was then still more dominant
than algebra, and it had continued to be dominant for quite a while, even though
this dominance diminished with the shift, often noted, of interest from geometry
to algebra and number theory from around the time of Gauss, a key figure in this
shift. Gauss’ work was also central to the development of geometry during the same
period and a major influence on Riemann’s thinking concerning geometry, which,
however, only testify to the rising significance of the relationships between algebra
and geometry during the period leading to modernism. In any event, the possibility
of making geometry algebraic (in either sense, that of algebraic geometry and the
present one) entered mathematical thinking with Fermat and Descartes.

In some respects, the view of mathematics as fundamentally algebraic returns to a
Pythagorean view of mathematics, which is not the same as the Pythagoreans’ view,
which was more arithmetical, although arithmetic is a form of algebra in its broad
modern sense (the mathematical field-specificity of arithmetic or number theory,
say, from Gauss on, is a separate issue). Geometry was of course a key part of
Pythagorean mathematics. For one thing, it appears that these were the Pythagoreans
(who exactly, is conjectural) who discovered the existence of incommensurable
magnitudes by considering the diagonal of the square and thus in geometry, in effect
by means of what I call spatial algebra, or proto-spatial algebra. (The “irrationals”
in our algebraic language and, with it, our sense, are borrowed from Latin, and not
Greek.) This discovery led to the crisis of ancient Greek mathematics. According to
Heath’s commentary: The “discovery of incommensurability must have necessitated
a great recasting of the whole fabric of elementary geometry, pending the discovery
of the general theory of proportion applicable to incommensurable as well as to
commensurable magnitudes” (“Introductory Note,” [22, v. 3, p. 1]; [53, pp. 416–
417]). Thus, the history of mathematical modernism defined by algebra is very old,
possibly as old as mathematics itself. On the other hand, thus combining, as history
often does, the continuous and the discontinuous along different lines, the specific
form this definition takes in modernism is a break with the past.

At stake, thus, is the rethinking of the very nature and practice of mathematics by
making algebra a fundamental part of it, including topology and geometry, even in
the cases of mathematicians whose thinking has a strong geometrical or topological
orientation, such as Riemann, who figures centrally in this history. Riemann is,
arguably, a unique case of a modernist combination of geometrical, topological,
and algebraic thinking, further combined with real and complex analysis, and with
number theory (the ζ -function and the distribution of primes) added to the mix,
even though, as might be expected, various aspects of this Riemannian synthesis are
found in the work on his predecessors, such as Gauss, Cauchy, Abel, and Dirichlet.
I am referring not only to the multifaceted character of Riemann’s work and his
contributions to the interrelationships of these diverse fields in his work, but also and
primarily to the significance of these interrelationships for modernism, which could,

5Descartes’ La Géométrie was originally published as an appendix to his Discourse on Method,
and it was part of a vast philosophical agenda that encompassed mathematics [18].
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nevertheless, still be defined, in these relationships, in terms of the algebraization of
mathematics. This situation makes Riemann’s position in the history of modernism
more complex, especially because of strong geometrical and topological dimensions
of his thinking that resist algebraization, without, as I shall argue, diminishing his
importance in this history but instead reflecting the complexity of this history and
of modernism itself.

I shall further argue that this algebraization was often accompanied or even
codefined by three additional, often interrelated, features, which are, along with
the algebraization of the mathematics used, equally found in modernist physics. It is
possible to define modernism in mathematics and physics by the presence of all four
features. Doing so, however, would narrow modernism too much, as against seeing
it in terms of modernist algebraization of mathematics, possibly accompanied by
some or all of these additional features. These features are as follows.

The first feature, which gradually emerged throughout the nineteenth century,
with Gauss, Abel, and Galois, as notable early examples, was a movement toward
the independence and self-determination of mathematics as a field, especially its
independence from physics and, with it, from the representation of natural objects.
This feature has been seen as central to mathematical modernism by commentators
who used the rubric and even defined it accordingly by Merthens and, following
him, Gray [26, 44]. As will be seen presently, however, modernist mathematics,
either in this or the present (algebraically oriented) definition, acquired a new,
nonrepresentational, role in physics with quantum theory. This feature was closely
related to the development of algebra, beginning with Gauss, Abel, and Galois; new,
sometimes related, areas of analysis, such as the theory of elliptic functions; and
then projective and finite geometries, in part following Riemann’s work. Riemann’s
own thinking, as that of his teacher Gauss, retained close connections to physics,
testifying to the complex nature of this history. As I explain below, this indepen-
dence is also related to the independence of mathematics’ from ordinary language
and concepts, with which algebra could dispense more easily than geometry. This
independence becomes crucial for modernist physics as well, especially quantum
theory, which is essentially algebraic in character, in contrast to more geometrically
oriented classical physics and relativity.

The second feature, discussed most explicitly in the final section of this article,
is the role of technological thinking, in this case in considering mathematical
technology in mathematics itself and in physics (where the use of mathematics
is technological), in contrast to the dominance of ontological or realist thinking,
defined by claims concerning how what exists or is claimed to exist actually exists.
The “ontological” and “realist” are not always seen as the same, but their shared
aspects allow these terms to be used interchangeably in the present context. On the
other hand, the nouns “ontology” and “reality” will be used differently, because, as I
shall explain presently, “reality” may be defined as disallowing ontology or realism.

The third feature, the emphasis on which, arguably, distinguishes most the
present understanding of mathematical modernism from other concepts of math-
ematical modernism, is a radical form of epistemology linked to and in part enabled
by the combination of other modernist trends: the modernist algebraization of
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mathematics, a movement toward the independence of mathematics from physics,
and, especially, a shift from more ontological to more technological thinking, in the
case of quantum theory (in the present interpretation) to the point of abandoning
or even precluding ontological thinking altogether. As will be seen, ontological
thinking (in this case concerning the ontology of thought rather than matter) retains
a greater role in mathematics itself. In physics this epistemology, again, extends
to the point of placing the ultimate constitution of reality (referring, roughly, to
what exists) beyond a representation or even beyond conception, and thus beyond
ontology, referring, as just noted, to such a representation or at least conception of
the constitution of reality or existence, rather than merely to the fact that something
exists. In this view, quantum objects or something in nature that compels us to think
of quantum objects is assumed to exist, while no representation or even conception
of what they ultimately are or how they exist is possible. That does not preclude
thinking and knowledge in quantum theory or elsewhere, along with and in part
enabled by surface-level ontologies (physical, mathematical, conceptual, and so
forth) which enable this thinking and knowledge. On the other hand, any knowledge
or even conception concerning and thus any ontology of the ultimate nature of
reality is precluded. Thinking and knowledge would concern certain surface levels
of reality, surface ontologies. Indeed, the unknowable or even unthinkable ultimate
nature of reality is inferred from the effects it has at these surface levels. Importantly,
however, this conception of reality as that which is beyond thought is still the
product of thought. This conception is, moreover, interpretive in nature and the
justification for assuming it is practical, and applicable only insofar as things stand
now rather than is theoretically guaranteed to be true.

This epistemology, too, can be traced to Riemann’s Habilitation lecture of 1854,
“The Hypotheses That Lie at the Foundations of Geometry” [60], one of the
founding works of mathematical modernism, as Riemann’s view of the foundations
of geometry is a radical reconceptualization of mathematics, pursued, correlatively,
in his other works as well, such as that on the concept of a Riemann surface. In his
Habilitation lecture, Riemann uses a remarkable phrase “a reality underlying space”
[60, p. 33]. This phrase implies, on Kantian lines, that this reality may not be spatial
in the sense of our usual phenomenal sense of spatiality: it could be discrete, for
example. I am not contending that Riemann saw this reality as beyond representation
(discrete or continuous, flat or curved, or three- or more-dimensional, all of which
possibilities he entertained), let alone conception, any more than did Kant, a key
figure in this history. While, in defining his epistemology by distinguishing noumena
or things-in-themselves, as objects, and phenomena or representations appearing in
our thought, Kant places things-in-themselves beyond representation or knowledge,
he allows that a conception of them could be formed and, if logical, accepted
for practical reasons, and even in principle be true, although this truth cannot be
guaranteed [35, p. 115]. In its most radical form, the modernist epistemology, as
defined in this article, in principle excludes that such as a conception can be formed,
keeping in mind the qualifications just noted to the effect that this conception of
reality as that which is beyond conception is still human and is only practically
justified.
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Both Riemann and then Einstein appear to have thought that an adequate
mathematical representation of the ultimate nature of physical reality, a conception
ideally close to the truth of nature, is, in principle, possible, as deduced from our
experience and knowledge. This, for example, would allow one to conclude, against
Kant’s view, the geometry of the space is not Euclidean and its physics is not
Newtonian, although of all people Kant might have been more open to this view
than others, given new mathematics and science. A similar, more mathematically
grounded, view was found in Heisenberg’s later works. Heisenberg argued there
that “the ‘thing-in-itself’ is for the atomic physicist, if he uses this concept at all,
finally a mathematical structure; but this structure is—contrary to Kant—indirectly
deduced from experience” [33, p. 91]. Kant’s view was more complex and more
open. It is impossible to know what Kant would have thought if he’d had been
confronted with quantum physics, or, again, non-Euclidean geometry or relativity.
If anything, his epistemology is closer to the one advocated here than just about any
modern philosopher, apart from Nietzsche.

In any event, neither Riemann nor Einstein thought that the ultimate constitution
of physical reality could be beyond conception altogether. This is the position
adopted here in view of quantum mechanics and following Heisenberg (in his
early work, as opposed to his later thinking) and N. Bohr, although neither might
have assumed that quantum objects and behavior are beyond conception rather
than only beyond representation and knowledge.6 As I explain below, however,
Heisenberg’s and Bohr’s positions are still different from that of Kant concerning
phenomena vs. things-in-themselves, in this case, defining phenomena as what is
observed in measuring instruments and objects as quantum objects, which cannot
be observed, as effects they have on measuring instruments by interacting with
the latter. Bohr, it could be noted in passing, was influenced in his interpretation
of quantum mechanics in terms of what he called complementarity (a mutually
exclusive nature of certain experiments we can perform and, correlatively, certain
concepts we can use) by the concept of a Riemann surface as a way of dealing with
multivalued functions of a complex variable [50, pp. 235–238].

Heisenberg’s and Bohr’s epistemology arises in part in view of the algebraic
rather than, as in classical physics or relativity, geometrical, relationship between
the mathematics of a physical theory and physical reality in its ultimate constitution,
assumed by theory. This algebraic relationship between a (mathematical) physical
theory and physical reality was no longer representational, because, in Bohr’s words,
“In contrast to ordinary mechanics, the new quantum mechanics does not deal with
a [geometrical] space-time description of the motion of atomic particles,” while,
nevertheless, providing probabilistic or statistical predictions that are fully in accord
with the available experimental evidence [8, v. 1, p. 48]. Eventually, Bohr argued,
more radically, that “in quantum mechanics, we are not dealing with an arbitrary
renunciation of a more detailed analysis of atomic [quantum] phenomena, but with
a recognition that such an analysis is in principle excluded” [8, v. 2, p. 62]. The

6For a detail discussion of the subject, see the companion article by the present author [56].
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true meaning of this statement is brought out by Bohr’s view of the (irreducible)
difference, following but ultimately reaching beyond Kant, between quantum
phenomena, defined by what is observed in measuring instruments, and quantum
objects, responsible for these phenomena, as effects of the interactions between
quantum objects and measuring instruments, effects manifested in the measuring
instruments. Bohr’s statement, then, means that there could be no analysis that
would allow us to represent, physically or mathematically, quantum objects and
behavior, although Bohr might not have thought that they are beyond conception,
which is an interpretation adopted here. It is, again, important that at stake here are
interpretations, those of the type, indeed two types, just defined, amidst still other
interpretations (some of which are realist) of quantum theory, and not the ultimate
truth of nature, which we do not know and may never know or even conceive of,
concerning which this article makes no claims.

It is worth noting that probability theory is fundamentally algebraic, as is,
accordingly, its use in physics or elsewhere. Indeed, that probability theory is
defined by the role of events, either in the real world or some model world,
makes it akin to physics and its use of mathematics, in the case of quantum
theory, in nonrealist interpretations, in effect making the latter a form of probability
theory. The origin of probability theory, in the work of G. Cardano, B. Pascal
and Fermat (who thus makes yet another appearance in the history of algebra)
coincides with the emergence of algebra, as part of the rise of modernity. As
I. Hacking persuasively argued in explaining why the theory emerged in the
seventeenth century rather than earlier, some form of algebra was necessary for
probability theory [28]. Quantum mechanics, however, at least, again, in nonrealist
interpretations, reshaped, the relationships between the algebra of probability and
the algebra of theoretical physics, as against previous uses of probability, for
example, in classical statistical physics. There the relationships between them is
underlain by a geometrical picture of the behavior of the individual constituents of
the systems considered, assumed to follow the (causal) laws of classical mechanics.
By contrast, as became apparent beginning with M. Planck’s discovery of quantum
phenomena in 1900, even elementary individual quantum objects and the events
they give rise to had to be treated probabilistically. One needed to find a new theory
to make correct probabilistic or statistical predictions concerning them. Heisenberg
was able to accomplish this task with quantum mechanics, which only predicted
the probabilities of what was observed in measuring instruments, considered as
quantum phenomena, without representing the behavior of quantum objects, even
the elementary ones, an imperative that had previously defined fundamental physics,
including relativity.7 This mathematics, never previously used in physics, was

7That, again, does not exclude either realist or causal interpretations of quantum mechanics or
alternative theories of this behavior that are realist or causal. The so-called Bohmian mechanics
is one example of such an alternative theory. Unlike quantum mechanics, however, Bohmian
mechanics expressly violates the requirement of locality, which entered physics with relativity
theory and which dictates that the instantaneous transmission of physical influences between
spatially separated systems is forbidden.
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essentially (Heisenberg did not initially use these terms) that of infinite-dimensional
Hilbert spaces over C, a modernist concept.

As I shall discuss later in this article, related epistemological considerations are
relevant in considering modernist mathematics itself, as became apparent beginning
at least with G. Cantor’s set theory and became more pronounced in subsequent
developments, such as those leading to K. Gödel’s incompleteness theorems and
P. Cohen’s proof of the undecidability of Cantor’s continuum hypothesis. In
mathematics, moreover, it may not be possible to speak of the ultimate nature of
reality, however inconceivable, as existing independently of thought, in the way
one is able to do in quantum physics. There one might more readily assume the
ultimate reality of matter that exists independently of us, say, as something that
has existed before we were here and will continue to exist when we are no longer
here, even if any conception concerning this reality or the impossibility of forming
such a conception is a product of our thought and thus can only exist insofar as
we exist.8 On the other hand, while one might easily accept what we think of as
real in our thought, assuming the existence of a single nonmaterial reality existing
independently of our individual thinking is a more complicated matter. This is not
to say that this type of assumption has not been made in mathematics, philosophy,
or art, from Parmenides and Plato to the mathematical Platonism of the twentieth
century (which was important to the project of the independence of mathematics
and to mathematical modernism), with numerous Platonisms, whether so named or
not, between them or after mathematical Platonism. Not many of them, certainly not
twentieth-century mathematical Platonism, are the same as Plato’s own Platonism.

The concept of curve, as it emerged in modernist mathematics, is, I argue here,
exemplary, in some respects even uniquely exemplary, of the modernist situation
outlined here, beginning with the modernist extension of the view of Riemann
surfaces as curves over C, which is only possible if one thinks of them spatial-
algebraically. The mathematics of complex numbers was, especially, again, in and
following Gauss’ work, itself a crucial part of the history that eventually brought
modern mathematics to modernist mathematics. This mathematics, too, is traceable
to the origin of modern algebra, in considering the roots of polynomial equations,
essentially related to the algebra of curves. However, the view that something
(topologically) two-dimensional is a curve is essentially modernist. But then, as
noted, in modernist mathematics, even something topologically zero-dimensional
may be a curve, a situation anticipated by Riemann as well in considering discrete
manifolds in his Habilitation lecture.

Between his work on Riemann surfaces, which are both (differentiable) mani-
folds and, while topologically two-dimensional, curves, and his ideas concerning
the foundations of geometry, which properly grounded non-Euclidean, curved,

8The so-called many-worlds interpretation of quantum mechanics, which aimed to resolve some
of the paradoxes of the theory in a realist and causal way, does not affect this point, because this
kind of material reality is still retained within each world involved, and there are no connections
between these worlds.
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geometries, Riemann becomes a key figure for our understanding of the idea
of curve, as he is for many developments of modernist mathematics. Riemann’s
thinking figures in quantum theory, too, by virtue of his introduction of the idea of
an infinite-dimensional manifold, of which Hilbert spaces are examples. Riemann
is the highest point of the arc, a curve, from Fermat and Descartes to our own time,
via A. Weil, Grothendieck, and their followers, making the work of each of these
figures, in Nietzsche’s phrase, the mathematical “philosophy of the future,” a subtitle
of his 1888 Beyond Good and Evil: A Prelude to a Philosophy of the Future [46].
As most of Nietzsche’s works, it belongs to the time around the rise of modernism,
which it influenced in philosophy, and literature and art, or even in mathematics, as
in the case of F. Hausdorff [26, p. 222], and physics, as, likely, in the case of Bohr
[54, p. 116].

5.3 Fundamentals of Mathematical Modernism

I would like now to establish more firmly the key concepts that ground my view of
mathematical modernism, as sketched in the Introduction, beginning with modernity
and modernism. “Modernity” is customarily seen, and will be seen here, as a broad
cultural category. It refers to the period of Western culture extending from about the
sixteenth century to our own time: we are still modern, although during the last 50
years or so, modernity entered a new stage, sometimes known as postmodernity,
defined by the rise of digital information technology.9 Modernity is defined by
several interrelated transformations, sometimes known as revolutions, although each
took a while. Among them are scientific (defined by the new cosmological thinking,
beginning with the Copernican heliocentric view of the Solar system, and the
introduction by Descartes, Galileo, and others, of the mathematical-experimental
science of nature); industrial or, more broadly, technological (defined by the
transition to the primary role of machines in industrial production and beyond);
philosophical-psychological (defined by the rise of the concept of the individual
human self, beginning with Descartes’ concept of the Cogito); economic (defined
by the rise of capitalism); and political (defined by the rise of Western democracies).

One might add to this standard list, in which Descartes figures prominently
already, the mathematical revolution, which is rarely expressly discussed as such,
although it figures in discussions of the rise of modernity as part of the scien-
tific revolution and, occasionally, because of the invention of calculus and then
probability theory, both seen as defined by a modern way of thinking. The rise
of algebra was, however, equally important in this revolution and conceptually
fundamental because algebra was also crucial to the discoveries and developments
of calculus and probability theory, in which calculus came to play a major role as

9Thus, postmodernity was also epistemologically shaped by certain developments in mathematics
and science, most of which are modernist in the present sense (e.g., [37]).
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well. Algebra was the defining aspect of modern mathematics and physics, although
geometry remained dominant for a quite while in both and has never, including in
modernism, entirely lost its independence and importance. Thus, while the laws of
classical mechanics, embodied in its equations, are algebraic (all equations are),
they are grounded in a geometrical picture of the world, including the curved
motion of classical bodies, such as, paradigmatically, planets moving around the
Sun, although analytic geometry or algebraic laws of classical mechanics added
algebra to this geometry. This type of modern geometrical thinking will continue
to define physics, including Einstein’s relativity (although it does have modernist
aspects as well), until quantum mechanics and its modernist algebraic approach,
introduced by Heisenberg.

As I noted at the outset, in contrast to modernity, “modernism” has been primarily
used as an aesthetic category, referring to certain developments in literature and art
in the first half of the twentieth century, from roughly the 1900s on, represented
by such figures as Stéphane Mallarmé, W. B. Yeats, Ezra Pound, James Joyce,
Franz Kafka, Reiner M. Rilke, Virginia Woolf, and Jorge Luis Borges in literature;
Pablo Picasso, Wassily Kandinsky, and Paul Klee, in art; and Arnold Schoenberg
and Igor Stravinsky in music. On occasion, it has been applied to the philosophy
of, roughly, the same period, such as that of Nietzsche, Bergson, Husserl, and
Heidegger. Gray considers Husserl in the context of the foundations of mathematics
and mentions Nietzsche because of Hausdorff’s interest in him [26, p. 222], but
he does not discuss modernism in philosophy. The denomination has rarely been
used in considering mathematics and physics, or science, as opposed to “modern,”
used frequently, but with different periodizations. In mathematics, “modern” tends
to refer to the mathematics that had emerged in the nineteenth century, with the likes
of Gauss, Abel, Cauchy, and Galois, and then developed into the twentieth century,
thus overlapping with modernist mathematics in the present definition. In fact, the
term “modern algebra” was introduced, referring essentially to abstract algebra
(presented axiomatically), as late as 1930 by van der Waerden in his influential
book under this title, based on the lectures given by Emil Artin and E. Noether
[65]. In physics it refers to all mathematical-experimental physics, from Galileo
and Descartes on, which is fitting because this physics emerged along with and
shaped the rise of modernity as a cultural formation, as just explained, making
it fundamentally scientific. After the discovery of relativity and quantum theory,
the term “classical physics” was adopted for the preceding physics, still considered
modern, by virtue of its mathematical-experimental character. The present article,
by contrast, uses the designation modern for the mathematics emerging at the same
time. If modernity is scientific, it is also because it is mathematical. As Heidegger
argued in commenting on Galileo and Descartes, “modern science is experimental
because of its mathematical project” [29, p. 93]. Thus, it was the concept of
the second-degree curve that supported and even defined the experimental basis
of physics and astronomy, in Kepler, Galileo, and Descartes, who gave these
mathematics “coordinates,” the concept central to all modern and then modernist
physics.
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Using of the term “modernism” in considering, historically and conceptually,
mathematics and science is, as noted, still quite infrequent. Two most prominent
examples, mentioned from the outset of this article, are H. Mehrtens’ 1990 Moderne
Sprache, Mathematik: Eine Geschichte des Streits um die Grundlagen der Disziplin
und des Subjekts formaler Systeme [44] and, in part following Mehrtens’ book (but
also departing from it in several key respects), Gray’s 2007 Plato’s Ghost: The
Modernist Transformation of Mathematics [26]. Gray’s conception of modernism
covers developments in topology, set theory, abstract algebra, mathematical logic,
and foundations of geometry that had reached their modernist stage around 1900,
focusing most on geometry, with Hilbert’s Foundations of Geometry as his con-
ceptual center in this regard, and on logical, especially set-theoretical, foundations
of mathematics, where Hilbert again, figures centrally. In sum, for Gray, the most
representative figure of mathematical modernism is Hilbert. By contrast, in the
present view of modernism (defined differently), it is Riemann, while still by and
large respecting the chronology of modernism adopted by Gray, a chronology
contemporaneous with the rise of literary or artistic modernism.10

Gray briefly comments on literary and artistic modernism, and his title comes,
not coincidentally, from that of a poem by Yeats, one of the major modernist poets.
Gray only minimally considers these connections (e.g., [26, p. 185]). He prefers
to focus on mathematics and the philosophy of mathematics. He could in my view

10The modernist aspects of Riemann’s work, equally in Gray’s definition of modernism, pose
difficulties for Gray, because Riemann preceded modernism by several decades [26, p. 5]. It is
not a problem for the present argument, firstly, because the present view of modernism is different,
and, secondly, because modernism is seen here as more continuous with modern mathematics
from Fermat and Descartes on, a longer history in which Riemann’s work is a decisive juncture.
This continuity is recognized by Gray, but it seems to worry him because it disturbs the stricter
chronology he considers. The present view emphasizes, in part following G. W. F. Hegel, the
conceptual over the chronological, even in historical considerations. Gray, in addition, appears
to see the axiomatic, not central for Riemann (in contrast to Hilbert), rather than the conceptual,
as more characteristic of modernism. In the present view, modernism is more about concepts and
their history than about the chronology of events or developments, such as those associated with the
spreading of modernist thinking or practices. This chronology cannot of course be disregarded, but
a concept or a form of practice in a given field can precede a chronologically defined state of this
field, with which this concept or practice would be in accord. This accord is not an “anticipation”
but a determinate quality of a concept or a form of practice. Riemann’s concepts and practice
are modernist, in the present (or, with some differences, Gray’s) definition, and a similar claim
could be made, helped by his revolutionary algebraic thinking, concerning Galois. The degree or
even the existence of such an accord, or to what degree this accord reflects the understanding of
this concept by its inventor, is a matter of interpretation, which could be contested. Riemann’s
thinking has complexities when it comes to the role of algebra there because of the topological and
geometrical aspects of his thinking, which often take the center stage, while algebra, when still
present, appears in a supporting role. This is, however, only so in a more narrow or technical sense,
as opposed to the broader sense assumed here as defining modernism. Riemann’s work, as noted,
is defined by the joint workings of geometry, topology, algebra, and analysis in his mathematics,
added by philosophical and physical, aspects of his thinking. Hilbert made major contributions in
all these areas as well (apart from topology), but one does find the same type of fusion of different
fields dealing with a given subject that one finds in Riemann, as in the case of Riemann surfaces.
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have given more attention to physics, especially quantum theory, which he by and
large bypasses. (Gray does comment on relativity.) Unfortunately, especially given
the role of the image of the curve in modernist art, such as that of Klee (e.g., [17,
pp. 14–15]), I cannot address the connections between modernist mathematics or
sciences and modernist literature and art in detail either. I would, however, argue,
more strongly than Gray, for the validity of these connections in sharing some of the
key conceptual features. This view follows Bohr, who said, in speaking of quantum
theory: “We are not dealing here with more or less vague analogies, but with an
investigation of the conditions for the proper use of our conceptual means shared
by different fields” [8, v. 2, p. 2]. It is not merely a matter of traffic, for example,
metaphorical, between fields, but of parallel situations in each that justifies the use
of the term modernism in considering them. Indeed, this article explores this type
of parallel between modernist mathematics and quantum theory, mathematically
equally defined by the role of algebra in them.11 That does not of course mean
that the specificity of each field, such as that of mathematics vs. physics, or that of
either vs. that of literature and art (or that of literature vs. that of art) is dissolved
even in considering such parallel situations, let alone in general. Such parallels
often give new dimensions to this specificity, for example, as I argue, in the case
of modernist mathematics and modernist physics in bringing out the fundamentally
algebraic character of both.

Although Gray’s concept of mathematical modernism is different from the
one adopted here, there are relationships between them. These relationships are
complex and considering them in detail would be difficult. While Gray offers a
discussion of modernist algebra (which would of course be impossible to avoid),
he does not address, except occasionally and mostly by implication, the modernist
algebraization of mathematics, including geometry and topology. In fact, some key
developments in modernist algebra, too, are not given by Gray the attention they
deserve, such as Noether’s work in algebra, one of the great examples of mathe-
matical modernism, central to more abstract developments of algebraic topology
(as in H. Hopf’s work) and a bridge between R. Dedekind and Grothendieck,
helpfully discussed by C. McLarty [42]. Gray also largely bypasses epistemological
considerations central to the present analysis. Gray acknowledges the connections in
mathematical modernism in the case of relativity [26, p. 324, n. 28]. But he misses
nonrealist thinking found in quantum theory, which connects physical reality in
its ultimate constitution with mathematics without recourse to realism. In fairness,
related epistemological aspects of modernism are suggested by Gray in the context

11The nature of these connections and, in part correlatively, the effectiveness of using the term
modernism, specifically by Mehrtens and Gray, have been questioned, for example, by S. Feferman
[24] and L. Corry [15]. While both articles (that of Feferman is a review of Gray’s book)
make valid points, I don’t find them especially convincing on either count, in part because
their engagement with modernist art is extremely limited and because neither considers the
epistemological dimensions of modernism, which are, in my view, important in addressing these
connections. For an instructive counter argument to Mehrtens, challenging his historical claims,
specifically those concerning F. Klein, see [6].
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of Cantor’s set theory and logical foundations of mathematics, especially Cantor’s
continuum hypothesis and Gödel’s theorems. There is no discussion of quantum
theory either.

On the other hand, the project of the independence and self-determination of
mathematics is central to Gray, as it was to Mehrtens (whose views I shall put
aside). This trend had, as I said, been gradually emerging throughout the nineteenth
century. This independence is especially manifested as an independence from
physics or, more generally, from considering mathematical objects as idealizations
from natural objects, the type of idealization that was central to physics and its
use of mathematics from Descartes and Galileo on. As I argue here, however,
quantum theory, by its algebraic nature, also established new, nonrepresentational,
relationships between mathematics and physics, and thus mathematics and nature,
by using modernist mathematics. It was, echoing the literary parallel, the end of
realism and the beginning of modernism, and not only echoing because similar
relationships between representation and reality emerged in literary or artistic
modernism. Quantum mechanics did not diminish faith in the classical ideal.
Einstein or E. Schrödinger, the coinventor of quantum mechanics (and Einstein,
too, made momentous contributions to quantum theory), never relinquished the
hope that this ideal would be eventually restored to fundamental physics. Their
uncompromising positions have served as inspirations for many others who share
this hope, in fact a majority among physicists and philosophers alike. Einstein won
this philosophical part of his debate with Bohr. Physics is a different matter. The
question, which was the main question in the Bohr-Einstein debate, is whether
nature would allow us a return to realism. While Einstein thought that it should,
Bohr thought that it might not, which is not the same as it never will. As our
fundamental theories are manifestly incomplete, especially given that of quantum
field theory, our best theory of the fundamental forces of nature (electromagnetism,
the weak force, and the strong forces) apart from gravity, and general relativity, our
best theory of gravity, are inconsistent with each other, the question remains open,
and the debate concerning it continues with undiminished intensity.

By contrast, mathematical realism and, especially, mathematical Platonism (a
modernist development, which is, as I said, only superficially related to Plato’s
thought) has been important for the project of the independence of mathematics.
This project had been developing as part of modern mathematics, but by 1900,
with the rise of mathematical modernism, it reached the stage of breaking with
connections representing or idealizing natural objects in all areas of mathematics,
notably in geometry, making it “profoundly counterintuitive.” “This realization,”
Gray contends, “marks a break with all philosophy of mathematics that present
mathematical objects as idealizations from natural ones: it is characteristic of
modernism” [26, p. 20].

The history of realization is much longer and, to some degree or in some of
its aspects, it began even with the emergence of mathematics itself, including
geometry, but it was certainly quite advanced by 1800 or thereabout, with non-
Euclidean geometry as part of it (e.g., [27]). Indeed, this history may also be
seen as that of divorcing mathematical concepts from our general phenomenal
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intuition as well, culminating in modernism and more characteristic of it (than
a break with the view of mathematical objects as idealization from natural ones,
although there are connections between these two breaks). In this divorce, algebra,
including spatial algebra, has, I argue, played a major role. This divorce was stressed
by H. Weyl, himself a major figure of mathematical modernism. Weyl made his
point in his 1918 book, The Continuum [69], following closely his 1913 book
on Riemann surfaces [73], and followed even more closely by his 1918 classic
on the mathematics of relativity, Space Time Matter [68].12 All three books were
linked by their shared modernist problematic, as defined here, keeping in mind that
Weyl’s own position was realist, which was, however, common among mathematical
modernists. The idea of curve, too, was equally crucial in all three contexts—
Riemann surfaces, the continuum, and, again, via Riemann, Einstein’s general
relativity. According to Weyl: “the conceptual world of mathematics is so foreign
to what the intuitive continuum presents to us that the demand for coincidence
between the two must be dismissed as absurd” [69, p. 108]. “Coincidence” is not
the same as “relations,” which, as noted above, are unavoidable, at least insofar as
it is difficult to think of continuity, spatially, apart from one or another phenomenal
intuition of it. Even algebra involves general phenomenal intuition, even a spatial
one, for example, in considering matrices as arrangements of symbols, which was
crucial to Heisenberg’s discovery of quantum mechanics, in the course of which
he reinvented matrix algebra through so arranging certain mathematical elements
involved [52, pp. 30–31]. On the other hand, it is entirely possible to define a given
continuum, such as that of a line or curve, algebraically. This situation emerged
with Cantor’s introduction of set theory, and the multiplicity of infinities, the
infinity of infinities, there, and his continuum hypothesis, and then the discovery of
esoteric objects, such as Peano’s curve, and related developments leading to Gödel’s
incompleteness theorem, and finally Cohen’s proof of the undecidability of the
continuum hypothesis, which brought new, ultimately irresolvable, complexity to
the idea of continuum.13 In sum, we do not, and even cannot, know how a continuous
line, straight or curved (which does not matter topologically), is spatially constituted
by its points, but we have algebra to address this question, and have a proof
that the answer is rigorously undecidable. I shall further address the philosophical
underpinning of this situation in the final section of this article. This history and
related modernist developments, such as the concept of dimension (which Cantor’s
rethinking of the concepts of continuum required) is extensively considered by Gray,
confirming Weyl’s point, made as part of his own important contribution to this
history in The Continuum.

Weyl’s point concerning the conceptual world of mathematics as unavailable to
our general phenomenal intuition or, by implication, ordinary language, exceeds
the question of the continuum, and pertains to most of modernist mathematics

12Weyl’s classic book had undergone several editions, some of them with significant revisions. I
cite here the last edition.
13Intriguingly, Cohen ultimately thought that the hypothesis was likely to be false [12, p. 151].
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or physics, such as relativity and quantum theory, which was even able to take
advantage of this divorce between mathematics and our general phenomenal
intuition, or a representation of natural objects. Weyl added to his statement cited
above: “Nevertheless, those abstract schemata supplied us by mathematics must
underlie the exact sciences of domains of objects in which continua play a role” [69,
p. 108]. This comment was undoubtedly made with Einstein’s relativity in mind,
as Weyl’s next book, Space Time Matter, was already in the works [68]. While
his careful formulation implies the representational role of such schemata, it has
a modernist twist given that those abstract schemata are, mathematically, divorced
to one degree or another from our common phenomenal intuition, which entails
the use of algebra, in the case of Einstein’s general relativity, based in Riemannian
geometry of differentiable manifolds as a form of spatial algebra.

This type of divorce, I argue, has been equally at work in modernist mathematics
and modernist physics, and, while prepared by previous developments, such as
analytical mechanics and Maxwell’s electromagnetism, it reaches its modernist
stage with relativity, beginning with special relativity, and especially quantum
mechanics. Both used modernist mathematics, respectively, that of Riemannian
geometry (Minkowski’s spacetime of special relativity is a pseudo-Riemannian
manifold) and that of infinite-dimensional Hilbert spaces, equally mathematically
divorced, as abstract continuous schemata, from our general phenomenal intuition.
Relativity still did this in a realist way, as the break from our phenomenal intuition
does not entail a divorce from realism or ontology, because the latter could be
mathematical. In fact, this ontology has been mathematical in all modern physics
from Descartes and Galileo on, even when it is supplemented by or, in classical
mechanics, originates in our phenomenal intuition. In addition, as noted above, one
could still use one’s phenomenal, including geometrical, intuition heuristically, to
help our thinking, or, to return to Tate’s principle, one could still think geometrically,
as well as spatial-algebraically, while proving things or (which is not the same)
making more rigorous arguments and calculations in physics, algebraically. Still,
relativity entailed a radical departure from classical physics. For one thing, as
Weyl was of course aware, the relativistic law of addition of velocities (defined
by the Lorentz transformation) in special relativity, s = (v + u)/(1 + 1

c2 vu), for
collinear motion (c is the speed of light in a vacuum), runs contrary to any intuitive
(geometrical) representation of motion that we can have. This concept of motion
is, thus, no longer a mathematical refinement of a daily concept of motion in the
way the classical concept of motion is. Relativity was the first physical theory that
defeated our ability to form a phenomenal conception of an elementary physical
process. But it still allowed for a mathematical and conceptual representation of
physical reality.

Quantum mechanics, by contrast, only used mathematics for providing prob-
abilistic predictions concerning the outcomes of quantum experiments, quantum
events, without providing a representation or even conception of the processes
responsible for these events, in which case geometrical intuitions are of no help to us
at all. At most we can have spatial algebra. This gives an entirely new role to abstract
continuous schemata, such as those of Hilbert spaces, in physics, that of predicting,
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probabilistically, the outcome of irreducibly discrete events. These predictions are,
moreover, made possible by rules added to the formalism rather than being part
of it, such as Born’s rule, which relates, essentially by using complex conjugation,
complex quantities of formalism to real numbers corresponding to the probabilities
of quantum events. Basically, one takes the square moduli of the eigenvalues of
the operators associated with quantum variables, such as position, momentum, or
energy (or equivalently, multiply these eigenvalues by their complex conjugates),
which gives one real numbers, corresponding, once suitably normalized, to the
probabilities of observed events, associated with the corresponding measurements.
The standard rule for adding the probabilities of alternative outcomes is changed to
adding the corresponding amplitudes and deriving the final probability by squaring
the modulus of the sum. The algebra of probabilities changes!

The modernist situation just outlined bears significantly on the question of
language in quantum theory and in mathematics itself. It is helpful to briefly
consider first this role in mathematics, beginning with geometry, where ordinary
language or ordinary concepts have always played a greater role than in algebra,
beginning with Euclid’s Elements and its very first definition: “A point is that which
has no part” [22, v. 1, p. 15]. At the same time, there is a movement, enabled by and
enabling mathematics, away from ordinary language and concepts, because what
makes “points,” or “lines,” part of geometry as mathematics are not their definition
but the relationships between and among them in Euclidean geometry, a fact on
which Hilbert capitalized two millenia later. Descartes’ “geometry,” as presented
in La Géométrie, offers an important contrast to both Euclid and Hilbert alike. It
is not axiomatic but “problematic,” as well as, correlatively, algebraic. It primarily
deals with problems (some of which may be theorems in the usual sense), thus
nearly erasing Euclid’s distinction, which is difficult to sustain, between problems
and theorems. There is an affinity with Riemann in this regard. But there is also
a major difference. Riemann thinks in terms of concepts [55]. Descartes thinks
in terms of equations, and points and lines are understood accordingly. Modern
algebraic geometry will eventually bring Descartes and Riemann together, with
Grothendieck’s work as the culmination of this history.

While not axiomatic, Descartes’ thinking suggests the possibility of a different,
more algebraic, axiomatization, which was part of the project of mathematical
modernism (both in the present and in Gray’s definition), as manifested in Hilbert’s
Foundations of Geometry, first published in 1899. Hilbert’s often cited earlier
remark, apparently made in 1891, offers an intriguing angle: “One must be able
to say at all times—instead of points, straight lines, and planes—tables, chairs,
and beer mugs” [71, p. 635]. What Hilbert exactly had in mind is not entirely
certain and has been interpreted in a variety of ways. Without attempting to give
it a definitive interpretation, my reading would be as follows, in accordance with
Weyl’s point concerning the conceptual world of mathematics as foreign to that
of our general phenomenal intuition. Hilbert uses his example only to indicate
that both sets are that of connected entities, and that one should properly speak
of neither “points, straight lines, and planes,” as geometry did from Euclid on,
nor “tables, chairs, and beer mugs,” nor anything else referred to by means of
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ordinary language, but instead use algebraic symbols and algebraic relationships
between them, without referring to any objects in the world represented by ordinary
language.14 Ordinary language, however, still plays an important role and, arguably,
cannot be entirely dispensed with. While we can replace points, straight lines,
and planes, and relationships between them with symbols, it may be difficult for
our thought, at least our unconscious thought, but perhaps even our conscious
thought, to replace them with tables, chairs, and beer mugs. As explained earlier,
a decade later, Hilbert’s Foundations of Geometry tells us as much. Still, with
modernism, mathematics and physics break with ordinary language or thinking
more deliberately and radically, as expressed in Weyl’s 1918 remark just considered.
In physics, this break, although gradually emerging earlier as well, becomes
pronounced with quantum mechanics, where it became complete in considering
quantum objects and behavior, in nonrealist interpretations.

According to Heisenberg, “it is not surprising that our language [or concepts]
should be incapable of describing the processes occurring within atoms, for . . .
it was invented to describe the experiences of daily life, and these consist only
of processes involving exceedingly large numbers of atoms. It is very difficult to
modify our language so that it will be able to describe these atomic processes,
for words can only describe things of which we can form mental pictures, and
this ability, too, is a result of daily experience” [32, p. 11]. Words can do more,
including make the statement that tells us that words cannot describe the processes
occurring within atoms, which, however, does not undermine Heisenberg’s main
point. It follows that, while classical physics, at least classical mechanics, may
rely on, and was born from, a mathematical refinement of our daily phenomenal
intuition, concepts, and language, atomic physics can no longer do so. However,
as Heisenberg realized in his discovery of quantum mechanics, it can still use
mathematics. As just discussed in considering Weyl’s argument, relativity and the
preceding quantum theory, or even some developments of classical physics have,
with the help of mathematics, already broken, at least in part, with our daily
intuition and concepts. Heisenberg clearly realized this. As he said, following
the passage just cited: “Fortunately, mathematics is not subject to this limitation,
and it has been possible to invent a mathematical scheme—the quantum theory
[e.g., quantum mechanics]—which seems entirely adequate for the treatment of
atomic processes” [32, p. 11]. Mathematics allows one to circumvent the limits of
our phenomenal representational intuition, also involving visualization, sometimes
used, including by Bohr, to translate the German word for intuition, Anschaulichkeit.
“Visualization” and its avatars are often invoked by Bohr, by way of this translation,
in considering quantum objects and behavior, as being beyond our capacity to
phenomenally represent them (e.g., [8, v. 1, pp. 51, 98–100, 108, v. 2, p. 59]).
Ultimately, Bohr came to see quantum objects and behavior as being beyond any
representation, if not conception (a view adopted here), including a mathematical

14I borrow the juxtaposition between Hilbert’s remark and Euclid’s definition of a point from G.
E. Martin [40, p. 140], who, however, only states this juxtaposition without interpreting it.
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one, a view adopted by Heisenberg at the time of the comments just cited. By
contrast, as I noted, in his later thinking Heisenberg appears to be more open to
the possibility of a mathematical representation of the ultimate structure of matter,
still, however, in the absence of a physical representation of it, a form of strictly
mathematical realism or Platonism. (e.g., [33, pp. 91, 147–166]).

That Heisenberg found a mathematical scheme that could predict the data in
question was as fortunate as that mathematics is free of this limitation, for, as
just noted and as Heisenberg must have realized, this freedom is also at work
in relativity or even classical physics, beginning at least with Lagrange’s and
Hamilton’s analytical mechanics. It is true that matrix algebra was introduced in
mathematics before Heisenberg, who was, again, unaware of it and reinvented it,
although the unbounded infinite matrices that he used were not previously studied
in mathematics and were given a proper mathematical treatment by M. Born and
P. Jordan later [9]. But, even if Heisenberg had been familiar with it, his scheme
would still have needed to be invented as a mathematical model dealing with
quantum phenomena. Heisenberg discovered that this was possible to do in terms
of probabilistic or statistical predictions in the absence of any representation or
even conception of quantum objects and their behavior. Indeed, mathematics now
becomes primary in an even more fundamental sense than in its previous use
in physics. This is because, given that we have no help from physical concepts,
mathematics is our only means to develop the formalism we need. Quantum physics
does contain an irreducible nonmathematical remainder because no mathematics
can apply to quantum objects and behavior. But then, nothing else, physics or
philosophy, for example, could apply either. Heisenberg’s key physical intuition
was that there could be no physical intuition that could apply to quantum objects and
processes, while one could use mathematics to predict the outcomes of experiments,
thus redefining the relationships between mathematics and physics.

This redefinition was grounded in the primacy of algebra, moreover, not only as
against classical physics and relativity but also as against the preceding quantum
theory, specifically, Bohr’s 1913 atomic theory, initially, as that of the hydrogen
atom. The theory retained a geometrical, orbital, representation of electrons’ motion
in so-called stationary states, even though it renounced any mechanical conception
of transitions between such states. It had its Keplerian, “Harmonia-Mundi,” appeal
(Bohr’s orbits were elliptical, too) in defining the ultimate microscopic constitution
of nature. Developed by Bohr and others to apply to more complex atoms, the theory
had major successes over the next decade. However, it ran into formidable problems
and proved to be inadequate as a fundamental theory of atomic constitution. To
rectify the situation Heisenberg made an extraordinary move, unanticipated at the
time, because nearly everyone was expecting a return to a more geometrical picture
partially abandoned by Bohr’s theory. Against these expectations, in Heisenberg’s
scheme there were no orbits anymore but only states of quantum objects, states,
moreover, never accessible as such and hence not available to a theoretical rep-
resentation, but only manifested in their effects on measuring instruments. This,
however, still allowed his theory to predict the probabilities of what can be
observed in quantum experiments, which became the core of Heisenberg’s approach.
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Even before his paper announcing his discovery was published [31], Heisenberg
explained this “more suitable” concept as follows: “What I really like in this
scheme is that one can really reduce all interactions between atoms and the external
world . . . to transition probabilities” between quantum measurements (Heisenberg,
Letter to Kronig, 5 June 1925; cited in [43, v. 2, p. 242]; emphasis added). It was
Heisenberg’s renunciation of any geometrical representation of quantum objects and
behavior, thus replacing the geometry of curves with the algebra of probabilities,
that led him to the discovery of quantum mechanics.

As he says at the outset of his paper: “in quantum theory it has not been possible
to associate the electron with a point in space, considered as a function of time,
by means of observable quantities. However, even in quantum theory it is possible
to ascribe to an electron the emission of radiation” [31, p. 263; emphasis added].
The effect of such an emission could be observed in a measuring instrument and
its occurrence can be assigned probability or (if the experiment is repeated many
time) statistics. My emphasis reflects the fact that, in principle, a measurement could
associate an electron with a point in space, but not by linking this association to a
function of time representing the continuous motion of this electron, in the way
it is possible in classical mechanics. If one adopts a nonrealist interpretation, one
cannot assign any properties to quantum objects themselves, not even single out
such properties, such as that of having a position, rather than only certain joint ones,
which are precluded by the uncertainty relations. One could only assign physical
properties to the measuring instruments involved. On the other hand, Heisenberg’s
approach put into question the privileged position that the position variable had
previously occupied in physics. Heisenberg described his next task as follows, which
shows the genealogy of his derivation in Bohr’s atomic theory:

In order to characterize this radiation we first need the frequencies which appear as functions
of two variables. In quantum theory these functions are in the form:

ν(n, n − α) = 1/h{W(n) −W(n− α)}

and in classical theory in the form

ν(n, α) = αν(n) = α/h(dW/dn)

[31, p. 263]

This difference leads to a difference between classical and quantum theories
as regards the combination relations for frequencies, which, in the quantum case,
correspond to the Rydberg-Ritz combination rules, again, reflecting, in Heisenberg’s
words, “the discrepancy between the calculated orbital frequency of the electrons
and the frequency of the emitted radiation.” However, “in order to complete the
description of radiation [in correspondence, by the mathematical correspondence
principle, with the classical Fourier representation of motion] it is necessary to
have not only frequencies but also the amplitudes” [31, p. 263]. On the one hand,
then, by the correspondence principle, the new, quantum-mechanical equations
must formally contain amplitudes, as well as frequencies. On the other hand, these
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amplitudes could no longer serve their classical physical function (as part of a
continuous representation of motion) and are instead related to discrete transitions
between stationary states. (Nor ultimately do frequencies because of the non-
classical character of the Rydberg-Ritz combination rules.) In Heisenberg’s theory
and in quantum theory since then, these “amplitudes” are no longer amplitudes of
physical motions, which makes the name “amplitude” itself an artificial, symbolic
term. Linear superposition in quantum mechanics is of a fundamentally different
nature from any superposition found in the classical wave theory. In nonrealist
interpretations, this superposition is not even physical: it is only mathematical. In
classical physics this mathematics represents physical processes; in quantum me-
chanics it does not. Amplitudes are instead linked to the probabilities of transitions
between stationary states: they are what we now call probability amplitudes. The
corresponding probabilities are derived, from Heisenberg’s matrices, by a form of
Born’s rule for this limited case. (Technically, one needs to use the probability
density functions, but this does not affect the main point in question.) One can
literally see here a conversion of the classical continuous geometrical picture of
oscillation or wave propagation, as defined by frequencies and amplitudes, into the
algebra of probabilities of transitions between discrete quantum events.

Algebra, in part as the spatial algebra of Hilbert spaces, was the mathematical
technology of predictions concerning the outcomes of quantum experiments, even-
tually, with quantum field theory, in high energy (relativistic) quantum regimes,
in the absence of mathematical ontology of the ultimate reality, defined by the
quantum constitution of nature, an ontology found in relativity or classical physics
before it. Quantum electrodynamics is the best experimentally confirmed physical
theory ever. It was the triumph of “the Heisenberg [algebraic] method,” as Einstein
characterized it in 1936, while still skeptical about its future, a decade of major
successes of quantum mechanics notwithstanding. Even apart from the fact that
Einstein’s unwavering discontent with quantum mechanics and his debate with
Bohr concerning it were a decade long by then as well, Einstein’s assessment of
Heisenberg’s algebraic method was hardly unexpected given Einstein’s preference
for realism and geometry. As he said: “[P]erhaps the success of the Heisenberg
method points to a purely algebraic method of description of nature, that is, to the
elimination of continuous functions from physics. Then, however, we must give up,
in principle, the space-time continuum [at the ultimate level of reality]. It is not
unimaginable that human ingenuity will some day find methods which will make it
possible to proceed along such a path. At present however, such a program looks
like an attempt to breathe in empty space” [20, p. 378]. For some, by contrast,
beginning with Bohr, Heisenberg’s method was more like breathing fresh mountain
air. The theory has been extraordinarily successful and remains our standard theory
of quantum phenomena in both low and high-energy quantum regimes, governed by
quantum mechanics and quantum field theory respectively.

A few qualifications are in order, however. First of all, one must keep in mind
the complexity of this algebra, which involves objects that are not, in general,
discontinuous, although certain key elements involved are no longer continuous
functions, such as those used in classical physics, and are replaced by Hilbert-space
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operators (over C). Some continuous functions are retained, because the Hilbert
spaces involved are those of such functions, considered as infinite-dimensional
vectors in dealing with continuous variables such as position and momentum,
keeping in mind that these variables themselves are represented by operators. These
functions, vectors, are those of complex (rather than, as in classical physics, real)
variables and the vector spaces that they comprise, or associated objects such as
operator algebras, have special properties, such as, most crucially, noncommuta-
tivity. These vectors, of which Schrödinger’s wave function is the most famous
example, play an essential role in calculating (via Born’s rule) the probabilities of
the outcomes of quantum experiments. In fact, given that they deal with Hilbert
spaces, quantum mechanics and quantum field theory involve mathematical objects
whose continuity is denser than that of regular continua such as the (real number)
spacetime continuum of classical physics or relativity. In contrast to these theories,
however, the continuous and differential mathematics used in quantum theory, along
with the discontinuous algebraic one, relates, in terms of probabilistic predictions,
to the physical discontinuity defining quantum phenomena, which are discrete in
relation to each other, while, at least in nonrealist interpretations, quantum objects
and their behavior are not given any physical or mathematical representation or even
conceptions—continuous or discontinuous.

Thus, as Bohr was the first to fully realize, Heisenberg’s algebraic method brings
about a radical change of our understanding of the nature of physical reality, an
understanding ultimately depriving us not of reality but of realism, which was, for
Einstein, the most unpalatable implication of Heisenberg’s method. In saying that
“we must give up, in principle, the space-time continuum,” Einstein must have had
in mind the spacetime continuum in representing, by means of the corresponding
theory, the ultimate reality considered, and possibly in attributing the spacetime
continuum to this reality, something, defining his geometrical philosophy of physics
(embodied in general relativity), that Einstein was extremely reluctant to give up.
The idea that this reality may ultimately be discrete had been around for quite a
while by then. In particular, it was, as noted, proposed by Riemann as early as
1854, speaking of “the reality underlying space” [60, p. 33]. It was Riemann’s
concept of continuous (actually, differentiable) manifolds and Riemannian geometry
this concept defined that grounded Einstein’s general relativity and his view of
the ultimate nature of physical reality as the spacetime continuum, threatened by
quantum theory. The idea of the discrete nature of ultimate reality has acquired new
currency in view of quantum mechanics and quantum field theory, as advocated
by, among others, Heisenberg in the 1930s, and is still around. In the present view,
the ultimate nature of physical reality is beyond representation and even conception
(neither Bohr nor Heisenberg might, again, have been ready to go that far) and,
as such, may not be seen as either continuous or discontinuous. Discreteness
only pertains to quantum phenomena, observed in measuring instruments, while
continuity has no physical significance at all. It is only a feature of the formalism
of quantum mechanics, which at the same time relates to discrete phenomena by
predicting the probabilities or statistics of their occurrence.
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While Kant’s philosophy may be seen as an important precursor to this episte-
mology, beginning with the difference between objects and phenomena as its basis,
in its stronger form, which places the ultimate nature of reality beyond concep-
tion (rather than only beyond representation or knowledge), this epistemology is
manifestly more radical than that of Kant. This because, as I explained, in Kant’s
epistemology, noumena or objects as things-in-themselves are, while unknowable,
still in principle conceivable and that conception might even be true, even though
there is no guarantee that it is true [35, p. 115]. Even if Bohr adopted a weaker
view, which only precludes a representation of quantum objects and behavior, it
is still more radical than that of Kant, because, while a conception of quantum
objects and behavior is in principle possible, it cannot be unambiguously used in
considering quantum phenomena, at least as things stand now. I am not saying that
the stronger view is physically necessary, but only that it is interpretively possible.
There does not appear to be experimental data that would compel one to prefer
either view. These views are, however, different philosophically because they reflect
different limits that nature allows our thought in reaching its ultimate constitution.
“As things stand now” is an important qualification, equally applicable to the strong
view adopted here, even though it might appear otherwise, given that this view
precludes any conception of the ultimate reality not only now but also ever, by
placing it beyond thought altogether. This qualification still applies because a return
to realism is possible, either on experimental or theoretical grounds even for those
who hold this view. This return may take place because quantum theory, as currently
constituted, may be replaced by an alternative theory that allows for or requires a
realist interpretation, or because either the weak or the strong nonrealist view in
question may become obsolete, even for those who hold this view, with quantum
theory in place in its present form. It is also possible, however, that this view,
in either the weak or strong version, will remain part of our future fundamental
theories.

It is reasonable to assume that something “happens” or “changes,” for example,
that an electron changes its quantum state in an atom, say, from one energy level to
another, between observations that then register this change. But, if one adopted the
present interpretation, one could do so only if one keeps in mind the provisional
nature of such words as “happen,” “change,” or “atom,” which are ultimately
inapplicable in this case, as are any other words or concepts. Quantum objects are
defined by their capacity to create certain specific effects observed in measuring
instruments and changes in what is so observed from one measurement to the other,
changes described in language with the help of mathematics, without allowing one
to represent or even conceive of what they are or how they change. According to
Heisenberg:

There is no description of what happens to the system between the initial observation and the
next measurement. . . . The demand to “describe what happens” in the quantum-theoretical
process between two successive observations is a contradiction in adjecto, since the word
“describe” [or “represent”] refers to the use of classical concepts, while these concepts
cannot be applied in the space between the observations; they can only be applied at the
points of observation. [33, pp. 47, 145]
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The same, it follows, must apply to the word “happen” or any word we use, and
we must use words and concepts associated with them, even when we try to restrict
ourselves to mathematics as much as possible. There can be no physics without
language, but quantum physics imposes new limitations on using it. Heisenberg
adds later in the book: “But the problem of language is really serious. We wish to
speak in some way about the structure of the atoms and not only about ‘facts’—
the latter being, for instance, the black spots on a photographic plate or the water
droplets in a cloud chamber. But we cannot speak about the atoms in ordinary
language” [33, pp. 178–179]. Nor, by the same token, can we use, in referring
to the atoms, ordinary concepts, from which our language is not dissociable, or
for that matter philosophical or physical concepts. Heisenberg’s statements still
leave space for the possibility of representing “the structure of atoms” and thus
the ultimate constitution of matter mathematically, without providing a physical
description of this constitution. Indeed, as I said, this was the position adopted by
Heisenberg by the time of these statements [33, pp. 91, 147–166]. At the time of
his discovery of quantum mechanics, he saw the quantum-mechanical formalism
strictly as the means of providing probabilistic predictions of the outcomes of
quantum experiments. Physically, it was only assumed that “it [was] possible to
ascribe to an electron the emission of radiation [a photon] [the effect of which
could be observed in a measuring instrument],” without providing any physical
mechanism for this emission [31, p. 263].

Language remains unavoidable and helpful in mathematics and physics alike. In
physics, this significance of language is more immediate, as Bohr, again, observed
on many occasions. Thus, he said: “[W]e must recognize above all that, even when
the phenomena transcend the scope of classical physical theories, the account of
the experimental arrangement and the recording of observations must be given
in plain language, suitably supplemented by technical physical terminology. This
is a clear logical demand, since the very word ‘experiment’ refers to a situation
where we can tell others what we have done and what we have learned” [8,
v. 2, p. 72; emphasis added]. This also ensures the objective and (objectively)
verifiable nature of our measurements or predictions, just as in classical physics.
The fundamental difference in this regard between classical and quantum physics
is that in quantum physics, we deal with objects, quantum objects, which cannot
be observed or represented, in contradistinction to quantum phenomena, defined by
what is observed in measuring instruments as the impact of unobservable quantum
objects. This difference in principle exists in classical mechanics as well, just as it
does in our observations of the world, as was realized by Kant, who introduced his
epistemology in the wake of Newton, whose mechanics was crucial to Kant, along
with and correlatively to Euclidean geometry. There, however, as Bohr noted on
the same occasion, the interference of observation “may be neglected,” which is no
longer the case in quantum physics [8, v. 2, p. 72].15 Thus, paradigmatically, we can

15Classical statistical physics introduces certain complications here, which are, however not
essential because the behavior of individual constituents of the systems considered there is
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observe how planets move along the curves of their orbits, without our observational
process having any effect. Not so in quantum mechanics. Nobody has ever observed,
at least thus far, an electron or photon as such, in motion or at rest, to the degree that
either concept ultimately applies to them, or any quantum objects, qua quantum
objects, no matter how large (and some could be quite large). It is only possible to
observe traces, such as spots on photographic plates, left by their interactions with
measuring instruments. Hence, Bohr invokes “the essential ambiguity involved in a
reference to physical attributes of [quantum] objects when dealing with phenomena
where no sharp distinction can be made between the behavior of the objects
themselves and their interaction with the measuring instruments” [8, v. 2, p. 61].
It follows that any meaningful (“unambiguous”) representations or even conception
of quantum objects and their independent behavior is “in principle excluded” [8,
v. 2, p. 62]. On the other hand, each such trace in measuring instruments or a specific
configuration of such traces can be treated as a permanent record, which can be
discussed, communicated, and so forth. In this sense, such traces or our predictions
concerning them are, again, as objective as they are in classical physics or relativity,
except that quantum records are only verifiable as probabilistic or statistical records
in all quantum physics, which is only the case in classical statistical physics.
Classical mechanics or relativity give ideally exact predictions, which are not
possible in quantum mechanics, because identically prepared quantum experiments
in general lead to different outcomes. Only the statistics of multiple identically
prepared experiments are repeatable. It would be difficult, if not impossible, to do
science without being able to reproduce at least the statistical data and thus to verify
the prediction of a given theory, which is possible in quantum physics.

Bohr’s qualification, “plain language, suitably supplemented by technical physi-
cal terminology,” introduces an additional subtlety, which extends to the mathemat-
ics of quantum theory and to mathematics itself. In the latter case, however, Bohr’s
formulation may be reversed to “technical terminology, suitably supplemented
by plain language,” although it may be a matter of balance, especially when
philosophical considerations are involved. Thus, Riemann’s Habilitation lecture
famously contains only one real formula, which did not prevent it from decisively
shaping the subsequent history of geometry, dominated, especially from modernism
on, by technical, sometimes nearly impenetrably technical, algebraic treatments.

Consider his defining concept, that of manifold—Mannigfaltigkeit. Riemann’s
German is important. Although the term “Mannigfaltigkeit” was not uncommon
in German philosophical literature, including in Leibniz and Kant, it is worth
noting that the German word for the Trinity is “Dreifaltigkeit,” thus, etymologically,
suggesting a kind of “three-folded-ness,” which could not have been missed by
Riemann, or, for that matter, Leibniz and Kant. It is the “folded-ness” that is of
the main significance here in shaping Riemann’s concept philosophically. English

governed by the deterministic laws of classical mechanics. In quantum mechanics, even elementary
individual objects (the so-called elementary particles) can only be handled probabilistically, and in
the present view, their behavior is beyond representation or even conception.
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“manifold” picks it up, as does French “multiplicité” [pli] which was initially
used to translate Riemann’s term, but is no longer, being replaced by variété
(English “variety” is used for algebraic varieties), perhaps because, unlike German
Mannigfaltigkeit and English manifold, it also refers to multiplicity in general.16

Different general (or philosophical) concepts implied by terminological fluctuations
of these terms do shape their mathematical choices and uses. These concepts add
important dimensions to our understanding of these choices or their intellectual
and cultural significance in a given case, such as that of Riemann’s concept of
Mannigfaltigkeit [55]. On the other hand, a mathematical definition of a manifold
allows us to dispense with these connections or, again, from its connection to
intuitive geometrical thinking, and also extend this concept in mathematics or in
physics. This is something Riemann’s lecture gives us as well, even though some of
this mathematics is still expressed verbally, which would be quite uncommon now
and has been uncommon for quite a while, uncommon but not entirely absent.

Thus, one finds this type of approach in Poincaré’s work, as in parts of his series
of papers on the curves defined by differentials published in the 1880s and related
work [57], which also led him to the so-called qualitative theory of differential
equations.17 Poincaré’s strategy in these papers was also novel (and exhibited a
contrast to or even a reversal of algebraic modernist trends emerging at the time) in
that, in Gray’s words, it was to consider “the solutions as curves, not as functions,
and to consider the global behavior of these curves” [26, p. 254]. Gray adds: “Two
kinds of topological thinking entered this early work: the algebraic topological ideas
of the genus of a surface and the recognition that many surfaces are characterized
by their genus alone; and the point-set topological idea of everywhere dense and
perfect sets, which though not original with Poincaré, are put to novel uses” [26,
p. 254]. Among many remarkable outcomes of this thinking was Poincaré’s analysis
of curves and flows on a torus, an elliptic curve, if considered over C. Poincaré’s
work is a chapter in its own right in the modernist history of the concept of curve.
His “conventionalism” in physics is also important for the history of modernist

16See [3, pp. 523–524] on Grothendieck’s use of the term “multiplicity,” which is, on the one
hand, specific (close to what is now called “orbifold”), and on the other hand, is clearly chosen
to convey the multiple, plural nature of the objects considered. This is also true concerning
Riemann’s concept of manifold. I would argue that Riemann and Grothendieck share thinking
in terms of multiplicities as their primary mathematical philosophy, a modernist trend that is
especially pronounced in their thinking. As will be seen, this philosophy, manifested already in
Grothendieck’s early work in functional analysis, drives his use of sheaves and category theory
(both concepts of the multiple), and then his concept of topos. Nothing is ever single. Everything
is always positioned in relation to a multiplicity, is “sociological,” and is defined and studied as
such, which is itself a trend characteristic of modernism.
17While, the concept of “qualitative” is of much interest in the context of this article, it would
require a separate treatment. I might note, however, that, while the qualitative could be juxtaposed
to the quantitative, it has more complex relationships with the algebraic, which is not the same as
the quantitative, just as the geometrical is not the same the qualitative. Still the genus of a surface,
which is a number and thus is quantitative, is important in a qualitative approach to its topology or
geometry. See note 4 above.
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epistemology, from relativity to quantum mechanics, even though his position was
ultimately realist. I cannot unfortunately address either subject within my scope.

Poincaré, however, joins Fermat, Descartes, Gauss, Riemann, and Hilbert in
reminding us that curves are still curves, and while they may and even must be
replaced by or rather translated into algebra, their geometry never quite leaves
our thought and our work and exposition of mathematics. Riemann makes an
extraordinary use of this situation in his work, again, nearly unique, even next
to other great figures just mentioned, in mixing geometry, topology, analysis,
and algebra with each other and all of them with philosophical concepts, general
phenomenal intuition, and the power of language, in turn intermixed as well. It
is, I might add, not a matter of inventing evocative metaphors, but rather of using
these multiple, manifold, means for creating new mathematical and physical (and
sometimes philosophical) concepts, such as that of Mannigfaltigkeit [55, pp. 341–
342].

I close this section with a more general point central for my argument concerning
the modernist transformation of mathematics and, in part via this mathematics,
modernist physics, into essential algebraic mathematical theories, keeping in mind
other components of this transformation to which this qualification equally pertains.
As discussed from the outset, we still depend on and are helped by a more conven-
tional geometrical or topological thinking in modernist, fundamentally algebraic,
thinking; general phenomenal intuition; ordinary language and concepts, or other
general aspects of human thinking or cognition, such as narrative, for example.18

On the other hand, these aspects of our thinking may also become limitations in
mathematics and physics alike, and, as Heisenberg argued, in quantum mechanics,
modernist mathematics frees us from these limitations, or at least gives us more
freedom from them. Technically, so does all mathematics, geometry and topology
included, vis-à-vis other components just listed, but algebra and, with it, modernist
mathematics extends this freedom. Making a curve an algebraic equation, as in
Fermat and Descartes; extending the concept of curve in mathematics to include
(topologically speaking) surfaces by making them curves over C, as (at least in

18On narrative in mathematics, see [19]. Of particular interest in the present context, as part of the
history leading to the modernist algebraization of mathematics, is B. Mazur’s contribution there,
which offers a discussion of L. Kronecker’s “dream, vision, and mathematics” in “Visions, Dreams,
and Mathematics” [41]. It might be added that Kronecker’s “dream, vision, and mathematics,”
also decisively shaped those full-fledged modernist ideas of Weil. It may also be connected to
Grothendieck’s work. See the article by A’Campo et al for a suggestion concerning this possibility,
as part of a much broader network, opened by Grothendieck’s work on Galois theory (“the
absolute Galois group”), which confirms Galois’ work as a key juncture of the trajectory leading
from modernity to modernism in mathematics [2, p. 405, also n. 12]. These themes could be
conceptually linked to quantum field theory, via M. Kontsevitch’s work on the “Cosmic Galois
Group” (Cartier 2001), noted below (note 19). The article by A’Campo et al is also notable for a
remarkable narrative trajectory of Grothendieck’s work it traces. This confirms the role of narrative
as part of mathematics itself and the philosophy of mathematics rather than only of the history of
mathematics, a key theme of Mazur’s and other articles in [19]. The present author’s contribution
to this volume deals with the epistemology of narrative, along the lines of this article [53].
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effect) in Riemann, or even more so making a curve, or even just a point, a topos
in Grothendieck; and using infinite-dimensional Hilbert spaces as the predictive
mathematical technology of quantum mechanics (in the absence of a representation
of quantum objects and behavior, which would depend on physical concepts) in
Heisenberg, are all examples of taking advantage of this freedom. This freedom
may not be complete, but it makes possible pursuits of previously insurmountable
tasks.

5.4 Curves from Modernity to Modernism: Three Cases

5.4.1 Curves as Algebra: Descartes/Fermat/Diophantus

I shall now discuss three cases shaping the idea of curve, and geometry and
mathematics in general from modernity to modernism. For the reasons explained
in the Introduction, I leave aside most of the relevant earlier history and begin
with Fermat and Descartes. Then I move to Riemann, and finally, to Weil and
Grothendieck, with Riemann still as a key background figure.

Fermat’s work is both remarkable and seminal historically, also in influencing
Descartes’ work and the development of calculus, and, of course, especially
in view of his famous, “last,” theorem, the study of algebraic and specifically
elliptic curves. The deeper mathematical nature of elliptic curves was ultimately
revealed by unexpected connections, via the Taniyama-Shimura conjecture (now
the “modularity theorem”) and related developments, to Fermat’s last theorem,
which enabled Wiles’ proof of the theorem, as a consequence of the modularity
theorem for semistable elliptic curves, which he proved as well. These connections
could not of course have been anticipated by Fermat. On the other hand, his ideas
concerning elliptic curves remain relevant, and are a powerful manifestation of
the algebraization and number-theorization of the geometrical ideas then emerging.
Thus, according to Weil, first commenting on Fermat’s last theorem and Fermat’s
famous remark “that he discovered a truly remarkable proof for [it] ‘which this
margin is too narrow to hold,’ ” and then on Fermat’s study of elliptic curves:

How could he have guessed that he was writing for eternity? We know his proof for
biquadrates . . . ; he may well have constructed a proof for cubes, similar to the one which
Euler discovered in 1753 . . . ; he frequently repeated those two statements . . . , but never
the more general one. For a brief moment perhaps, and perhaps in his younger days . . . , he
must have deluded himself into thinking that he had the principle of a general proof; what
he had in mind on that day can never be known.

On the other hand, what we possess of his methods for dealing with curves of genus
1 is remarkably coherent; it is still the foundation for the modern theory of such curves.
It naturally falls into two parts; the first one, directly inspired by Diophantus, may
conveniently be termed a method of ascent, in contrast with the descent which is rightly
regarded as Fermat’s own. Our information about the latter, while leaving no doubt about its
general features, is quite scanty in comparison with Fermat’s testimony about the former . . . .
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and the abundant (and indeed superabundant) material collected by Billy in the Inventum
Novum.

In modern terms, the “ascent” is nothing else than a method of deriving new solutions
for the equations of a curve of genus 1. What was new here was of course not the principle of
the method: it has been applied quite systematically by Diophantus. . . and, as such, referred
to, by Fermat as well as by Billy, as “methodus vulgaris.” The novelty consisted in the vastly
extended use which Fermat made of it, giving him at least a partial equivalent of what we
would obtain by the systematic use of the group theoretical properties of the rational points
on a standard cubic. Obviously Fermat was quite proud of it; writing for himself on the
margins of his Diophantus, he calls it “nostro invention,” and again, writing to Billy: “it has
astonished the greatest experts.” [67, pp. 104–105]

It still does, which was Weil’s point as well. The epoch of algebraization and
spatial algebraization of elliptic curves and of mathematical curves in general had
commenced, with the arc from Fermat to Wiles through many points of modern and
then modernist algebraic geometry. Weil’s own work was one these points, even a
trajectory of its own, leading him to his rethinking of algebraic geometry, which had
a momentous impact on Grothendieck, who, however, also radically transformed it
in turn. It would, again, be more accurate to speak of a network of trajectories,
manifested in Wiles’ proof, which brings together so many of them. It is hard,
however, to abandon the metaphor of a curve when dealing with the history of the
idea of curve itself.

Descartes took full advantage of this algebraization and gave it its modern
coordinate form, still very much in use, thus, as I said, making his project of analytic
geometry an intimation of modernist thinking in mathematics and physics at the
heart of modernity. This project has its history, too, as part of the history of algebra,
especially the concept of equation that, as we just saw, emerged in ancient Greek
mathematics, especially with Diophantus (around the third century CE), whose ideas
were, again, central to Fermat. Analytic geometry, however, by expressly making
geometry algebra, gave mathematics its, in effect, independence of physics and
of material nature, thus, along with the work of Descartes’ contemporary fellow
algebraists, again, in particular Fermat, initiating mathematical modernism within
modernity.

In the simplest possible terms, analytic geometry did so because the equation
corresponding to a curve, say, X2 − 1 = 0 for the corresponding parabola, could be
studied as an algebraic object, independently of its geometrical representation or its
connection to physics, which eventually enabled us to define curves even over finite
fields and thus as discrete objects, as considered above. A curve becomes, in its
composition, defined by its equation, divested from its representational geometrical
counterpart. It no longer geometrically idealizes the reality exterior to it. It only
represents itself, is its own ontology, akin to a line of poetry. The equation, algebra,
is the poetry of the curve, confirming and amplifying a separation of a mathematical
curve from any curve found in the world, which defines all mathematics. When we
say in mathematics, “consider a curve X,” we separate it from every curved object
in the world, in the way poetry separates its words and ideas from those denoted by
ordinary language and the world they represent, as A. Badiou noted in commenting
on Mallarmé’s theory of poetry, based in this separation [7, p. 47]. This poetry of
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algebra can define a discrete curve, or can make a curve a surface, or a surface a
curve, give it an even more complex spatial algebraic architecture, or, to continue
with my artistic metaphor, an ever-more complex composition, such as that of a
moduli space, the Teichmüller space (also the Teichmüller curve), Grothendieck’s
or Hilbert’s scheme and representable-functors, . . . we are as yet far from exhausting
the limits of this “poetry” of Riemann surfaces/curves (e.g., [1]).

5.4.2 Curves as Surfaces, Surfaces as Curves:
Riemann/Riemann/Riemann

The idea of a Riemann surface is one of Riemann’s (many) great contributions to
modern and eventually modernist mathematics. In Papadopoulos’ cogent account:

In his doctoral dissertation, Riemann introduced Riemann surfaces as ramified coverings of
the complex plane or of the Riemann sphere. He further developed his ideas on this topic in
his paper on Abelian functions. This work was motivated in particular by problems posed
by multi-valued functions w(z) of a complex variable z defined by algebraic equations of
the form

f (w, z) = 0,

where f is a two-variable polynomial in w and z.
Cauchy, long before Riemann, dealt with such functions by performing what he called

“cuts” in the complex plane, in order to obtain surfaces (the complement of the cuts)
on which the various determinations of the multi-valued functions are defined. Instead,
Riemann assigned to a multi-valued function a surface which is a ramified covering of the
plane and which becomes a domain of definition of the function such that this function,
defined on this new domain, becomes single-valued (or “uniform”). Riemann’s theory also
applies to transcendental functions. He also considered ramified coverings of surfaces that
are not the plane. [47, p. 240]

The idea of a Riemann surface gains much additional depth and richness when
considered along with, and in terms of, Riemann’s concept of manifold, his other
great invention, introduced, around the same time, in his Habilitation lecture [60].
Riemann did not do so himself, although he undoubtedly realized that Riemann
surfaces were manifolds, and they have likely been part of the genealogy of the
concept of manifold. Riemann’s surfaces were first expressly defined as manifolds
by Weyl in The Concept of a Riemann Surface [73]. Understanding the concept
of a Riemann surface as a complex curve is helped by this perspective. It is an
intriguing question whether Riemann himself thought of them as curves, but it
would not be surprising if he had. Weyl undoubtedly did, although the point does
not figure significantly in his book, focused on the “surface” nature of Riemann
surfaces, defined, however, in spatial-algebraic terms. This may be surprising. But
then, Weyl was not an algebraic geometer. The work of É. Picard, a key figure in the
history of algebraic geometry would be more exemplary in considering this aspect of
Riemann’s concept [47, 49]. However, that a Riemann surface (with which a family
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of algebraic curves could be associated) is a manifold is crucial for “making it” both
a surface and a curve.

Weyl’s argumentation leading him to his definition is an application of a
principle very much akin to Tate’s “Think geometrically, prove algebraically” or its
extension here, “Think both Intuitively Geometrically and Spatially-Geometrically:
Prove Algebraically.” It is also a manifestation of the spirit of Riemann’s thinking
in which, as noted earlier, geometry and algebra, indeed geometry, topology,
algebra, and analysis, come together in a complex mixture of the rigorous and the
intuitive, algebraic and spatial-algebraic, mathematical and physical, mathematical
and philosophical, and so forth. His work on his ζ -function and number theory could
be brought into this mix as well. According to Weyl:

It was pointed out . . . that one’s intuitive grasp of an analytic form [an analytic function to
which a countable number of irregular elements have been added] is greatly enhanced if
one represents each element of the form by a point on a surface F in space in such a way
that the representative points cover F simply and so that every analytic chain of elements
of the form becomes a continuous curve on F . To be sure, from a purely objective point of
view, the problem of finding a surface to represent the analytic form in this visual way may
be rejected as nonpertinent; for in essence, three-dimensional space has nothing to do with
analytic forms, and one appeals to it not on logical-mathematical grounds, but because it is
closely associated with our sense perception. To satisfy our desire for pictures and analogies
in this fashion by forcing inessential representation of objects instead of taking them as they
are could be called an anthropomorphism contrary to scientific principles. [73, p. 16]

I note in passing a criticism, apparent here, of the logicist philosophy of math-
ematics, which theorized mathematics as an extension of logic and, championed
by, among others, Bertrand Russell, was in vogue at the time. This is, however,
a separate subject. Weyl will now proceed, again, in the spirit of Riemann, to
his definition of a two-dimensional manifold and eventually Riemann’s surface,
intrinsically, rather than in relation to its ambient three-dimensional space. Riemann
was building on Gauss’ ideas concerning the curvature of a surface and his, as
he called it, “theorema egregium,” which states that the curvature of a surface,
which he defined as well, was intrinsic to the surface. It is also this concept and
the corresponding spatial algebra that enables one to define a Riemann surface as
a curve over C. This intrinsic and abstract, spatial-algebraic, view of a Riemann
surface was often forgotten by Riemann’s followers, especially at earlier stages of
the history of using Riemann’s concept. According to Papadopoulos, who in part
follows Klein’s assessment:

Riemann not only considered Riemann surfaces as associated with individual multi-valued
functions or with meromorphic functions in general, but he also considered them as objects
in themselves, on which function theory can be developed in the same way as the classical
theory of functions is developed on the complex plane. Riemann’s existence theorem
for meromorphic functions with specified singularities on a Riemann surface is also an
important factor in this setting of abstract Riemann surfaces. Riemann conceived the idea of
an abstract Riemann surface, but his immediate followers did not. During several decades
after Riemann, mathematicians (analysts and geometers) perceived Riemann surfaces as
objects embedded in three-space, with self-intersections, instead of thinking of them
abstractly. They tried to build branched covers by gluing together pieces of the complex
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plane cut along some families of curves, to obtain surfaces with self-intersections embedded
in three-space. [47, p. 242]

According to Weyl (whom Papadopoulos cites): “Thus, the concept ‘two-
dimensional manifold’ or ‘surface’ will not be associated with points in three-
dimensional space; rather it will be a much more general abstract idea,” in effect a
spatial-algebraic one in the present definition, and thus is modernist. Weyl’s position
concerning the nature of mathematical reality is a different matter. As is clear from
his philosophical writings (e.g., [72]), Weyl was ultimately a realist (albeit not
a Platonist) in mathematics and physics alike, his major contribution to quantum
mechanics notwithstanding, contributions also dealing with the role of group theory
there, yet another modernist trend in mathematics and physics alike [70]. This aspect
of the situation is, however, secondary for the moment, although one might still ask
whether if considering a given Riemann surface as either a (topologically) real two-
dimensional surface or a curve over C, deal with the same mathematical object.
Weyl continued as follows:

If any set of objects (which will play the role of points) is given and a continuous coherence
between them, similar to that in the plane, is defined we shall speak of a two-dimensional
manifold. Since all ideas of continuity may be reduced to the concept of neighborhood, two
things are necessary to specify a two-dimensional manifold:

(1) to state what entities are the “points” of the manifold;
(2) to define the concept of “neighborhood.” [73, pp. 16–17]

One hears here an echo, deliberate or not, of Hilbert’s “tables, chairs, and beer
mugs,” for “points, straight lines, and planes,” mentioned above. In the present view,
this means one should define entities, such as points, lines, neighborhoods, by using
algebraic symbols and algebraic relationships between them, without referring to
any objects in the world represented by ordinary language, even if still using this
language, as the concept of a Riemann surface as a curve and then its avatars
such as Gromov’s concept of a pseudoholomorphic curve (a smooth map from a
Riemann surface into an almost complex manifold) exemplify. Its connections to
our phenomenal sense of surface are primarily, if not entirely, intuitive, when it
comes to the idea of continuity, for example, as defined by Weyl here, in terms of the
concept of neighborhood. In any event, a Riemann surface is certainly not a curve
in any phenomenal sense. As defined by Weyl, in a pretty much standard way, the
concept of manifold is a spatial-algebraic one in the present definition. Weyl’s more
technical definition, again, pretty much standard, given next, and then his analysis
of Riemann surfaces only amplified this point.

This multifaceted nature of Riemann surfaces equally and often jointly defined
the history of complex analysis, the main initial motivation for Riemann’s intro-
duction of the concept of a Riemann surface, and the history of algebraic curves,
both building on this concept, and other developments, for example, in abstract
algebra and number theory, including Riemann’s work on the ζ -function and the



5 On the Concept of Curve 193

distribution of primes.19 All these developments were unfolding towards modernism
during the period between Riemann and Weyl, whose book initiated the (modernist)
treatment of the concept of a Riemann surface that defines our understanding of the
concept. This history explains my triple subtitle, “Riemann/Riemann/Riemann”—
the Riemann of the concept of manifold, the Riemann of the concept of Riemann
surfaces, the Riemann of complex analysis. A few more Riemanns could be added.
This multiple and entangled history shaped algebraic geometry, eventually leading
to the work of A. Weil, Grothendieck, M. Artin, J. Tate, and others, ultimately
extending mathematical modernism to our own time.

5.4.3 Curves as Discrete Manifolds:
Grothendieck/Weil/Riemann

One of the great examples of this extension is the concept of algebraic curve or
algebraic variety in general over a finite field and the study of such objects by
the standard tools of algebraic topology, in particular homotopy and cohomology
theories, which have previously proven to be effective tools, technologies, for the
study of complex algebraic varieties.

The origin of this project goes back to Weil, a key figure of the later stage of
mathematical modernism, especially in bringing together algebra, geometry, and
number theory, in which he was a true heir of Fermat (and he probably saw himself
as one), as well as of Kronecker (in this case, Weil certainly saw himself as one).
Riemann is still a key figure in the history leading to Weil’s work in algebraic
geometry, first of all, again, in view of his concepts of a Riemann surface and a
covering space, but also the least by virtue of introducing the concept of a discrete
manifold in his Habilitation lecture. (Riemann, thus, was instrumental in the history
of both discrete and infinite-dimensional spaces of modernism.) G. Fano, one of
the founders of finite geometry, belonged to the Italian school of geometry (1880s–
1930s), contemporary with and an important part of the history of mathematical

19For an extensive historical account of the history of complex function theory, only mentioned in
passing here, see [10], which considers at length most key developments conjoining geometry and
complex analysis, from Cauchy to Riemann and then of Riemann’s work [10, pp. 189–213, 259–
342]. Intriguingly, the algebra of quantum field theory found the way to use Riemann’s algebraic
work, his work and his hypothesis concerning the ζ -function (one of the greatest, if not the greatest,
of yet unsolved problems of mathematics). The ζ -function plays an important role in certain
versions of higher-level quantum field theory. See P. Cartier’s discussion, which introduces an
intriguing idea of the “Cosmic Galois group” [11] and A. Connes and M. Marcoli’s book [14],
which explores the role of Riemann’s differential geometry in this context. The latter is a long
and technical work in noncommutative geometry, which uses Grothendieck’s motive cohomology
theory, but see p. 10 for an important definition of “the Riemann-Hilbert correspondence.” This is
yet another testimony to the fact that much of modernism in mathematics and even in physics takes
place along the trajectory or again, a network of trajectories between Riemann and Grothendieck.
See note 16.
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modernism (Fano was a student of F. Enriques), strongly influenced by Riemann’s
thought. Representatives of the Italian school (quite a few of them, even counting
only major figures) made major contributions to many areas of geometry, especially
algebraic geometry, which formed an important part of the very rich and complex
(modernist) history, leading to Weil’s work under discussion. Weil suggested
that a cohomology theory for algebraic varieties over finite fields, now known
as Weil cohomologies, could be developed, by analogy with the corresponding
theories for complex algebraic varieties or topological manifolds in general. Weil’s
motivation was a set of conjectures (these go back to Gauss), known as the Weil
conjectures, concerning the so-called local ζ -functions, which are the generating
functions derived from counting numbers of points on algebraic varieties over finite
fields. These conjectures, Weil thought, could be attacked by means of a proper
cohomology theory, although he did not propose such a theory himself.

In order to be able to do so, one needed, first, a proper topology, which was
nontrivial because the objects in question are topologically discrete. A more “native”
topology that could be algebraically defined by them, known as Zariski’s topology,
did not work, because it had too few open sets. The decisive ideas came from
Grothendieck, helped by the sheaf-cohomology theory and category theory, known
as “cohomological algebra,” by then the standard technology of algebraic topology.
Using these tools, a hallmark of Grothendieck’s thinking throughout his career, and
his previous concepts, such as that of “scheme,” eventually led him to topos theory,
arguably the culminating example of spatial algebra, and étale cohomology, as a
viable candidate for Weil’s cohomology, which it had quickly proven to be. By
using it, Grothendieck (with Artin and J.-L. Verdier) and P. Deligne (his student)
were able to prove Weil’s conjectures, and then Deligne, who previously proved
the Riemann hypothesis conjecture (considered the most difficult one), found and
proved a generalization of Weil’s conjectures. Grothendieck’s key, extraordinary,
insight, also extending what I call here spatial algebra in a radically new direction,
was to generalize, in terms of category theory, the concept of “open set,” beyond
a subset of the algebraic variety, which was possible because the concept of sheaf
and of the cohomology of sheaves could be defined by any category, rather than
only that of open sets of a given space. Étale cohomology is defined by this type
of replacement, specifically by using the category of étale mappings of an algebraic
variety, which become “open subsets” of the finite unbranched covering spaces of
the variety, a vast and radical generalization of Riemann’s concept of a covering
space. Grothendieck was also building on some ideas of J.-P. Serre. Part of the
origin of this generalization was the fact that the fundamental group of a topological
space, say, again, a Riemann surface, could be defined in two ways: it can either
be defined more geometrically, as a group of the sets of equivalence classes of the
sets of all loops at a given point, with the equivalence relation given by homotopy
(itself an example of the history of the idea of curve); or it can be defined even
more algebraically, as a group of transpositions of covering spaces. In this second,
algebraic, definition, the fundamental group is analogous to the Galois group of
the algebraic closure of a field. Serre was the first to consider for finite fields,
importantly for Grothendieck’s work on étale cohomology, a concept that, thus, has
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its genealogy in both Galois’ and Riemann’s thought. (The connection has been
established in the case of Riemann surfaces long before then [e.g., [73, p. 58]].)
Grothendieck’s concept of étale mappings gives a sufficient number of additional
open sets to define adequate cohomology groups for some coefficients, for algebraic
varieties over finite fields. In the case of complex varieties, one recovers the standard
cohomology groups (with coefficients in any constructible sheaf).

Some of the most elegant calculations concern algebraic curves over alge-
braically closed fields, beginning with elliptic ones [4, 5]. These calculations are also
important because they are the initial step in calculating étale cohomology groups
for other algebraic varieties by using the standard means of algebraic topology,
such as spectral sequences of a fibration. My main point at the moment is that
(spatial) algebra makes algebraic curves over such finite fields fully mathematically
analogous to standard algebraic curves, beginning, again, with elliptic curves, as
studied by Fermat, again, a major inspiration for Weil.

Now, the category of étale mapping is a topos, a concept that is, for now, the most
abstract form of what I call here spatial algebra. Although, as became apparent later,
étale cohomologies could be defined for most practical uses in simpler settings, the
concept of topos remains crucial, especially in the present context, because it can be
seen as the concept of a covering space over a Riemann surface converted into the
(spatial-algebraic) concept of topology of the surface itself, and then generalized
to any algebraic variety. The concept of topos also came to play a major role
in mathematical logic, a major development of mathematical modernism, thus
bringing it together with the modernist problematic considered here. The subject
cannot, however, be addressed here, except by noting that mathematical logic
is already an example of modernist algebraization of mathematics, with radical
epistemological implications concerning the nature of mathematical reality, or the
impossibility of such a concept. On the other hand, Grothendieck’s use of his
topoi in algebraic geometry is essentially ontological rather than logical, although
his overall philosophical position concerning the nature of mathematical reality
remains somewhat unclear, for example, whether it conforms or not to mathematical
Platonism, and the subject will be put aside here as well. In any event, it does not
appear that Grothendieck was ever thinking of his topoi or in general in terms of
breaking with the ontological view of mathematics. My main focus here is the
mathematical technologies that the concept of topos, whatever its ontological status,
enables, such as étale cohomology. Such technologies may suggest a possible break
with the possibility of the ultimate ontological description of mathematical reality,
again, assuming that any ultimate reality, say, again, of the type considered in
physics, is even possible in mathematics.

It would not be possible here to present topos theory in its proper abstractness
and rigor, prohibitive even for those trained in the field of algebraic geometry.
The essential philosophical nature of the concept, briefly indicated above, may,
however, be sketched in somewhat greater detail, as an example of both a rich
mathematical concept in its own terms and of the modernist problematic in question
here. First, very informally, consider the following way of endowing a space with a
structure, generalizing the definition of topological space in terms of open subsets,
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as mentioned above. One begins with an arbitrarily chosen space, X, potentially any
given space, which may initially be left unspecified in terms of its properties and
structure. What would be specified are the relationships between spaces applicable
toX, such as mapping or covering one or a portion of one, by another. This structure
is the arrow structure Y → X of category theory, where X is the space under
consideration and the arrow designates the relationship(s) in question. One can also
generalize the notion of neighborhood or of an open subspace of (the topology of)
a topological space in this way, by defining it as a relation between a given point
and space (a generalized neighborhood or open subspace) associated with it. This
procedure enables one to specify a given space not in terms of its intrinsic structure
(e.g., a set of points with relations among them) but “sociologically,” throughout its
relationships with other spaces of the same category, say, that of algebraic varieties
over a finite field of characteristic p [38, p. 7]. Some among such spaces may
play a special role in defining the initial space, X, and algebraic structures, such
as homotopy and cohomology, as Riemann in effect realized in the case of covering
spaces over Riemann surfaces, which, as I explained, was one of the inspirations for
Grothendieck’s concept of topos and more specifically of an étale topos.

To make this a bit more rigorous (albeit still quite informal), I shall briefly sketch
the key ideas of category theory. It was introduced as part of cohomology theory in
algebraic topology in 1940 and, as I said, later extensively used by Grothendieck in
his approach to cohomological algebra and algebraic geometry, eventually leading
him to the concept of topos.20 Category theory considers multiplicities (which need
not be sets) of mathematical objects conforming to a given concept, such as the
category of differential manifolds or that of algebraic varieties, and the arrows
or morphisms, the mappings between these objects that preserve this structure.
Studying morphisms allows one to learn about the individual objects involved, often
to learn more than we would by considering them only or primarily individually. In
a certain sense, in his Habilitation lecture, Riemann already thinks categorically.
He does not start with a Euclidean space. Instead, the latter is just one specifiable
object of a large categorical multiplicity, here that of the category of differential or,
more narrowly, Riemannian manifolds, an object marked by a particularly simple
way we can measure the distance between any two points. Categories themselves
may be viewed as such objects, and in this case one speaks of “functors” rather
than “morphisms.” Topology relates topological or geometrical objects, such as
manifolds, to algebraic ones, especially, as in the case of homotopy and cohomology
groups, introduced by Poincaré. Thus, in contrast to geometry (which relates its
spaces to algebraic aspects of measurement), topology, almost by its nature, deals

20One of his important, but rarely considered, contributions is his work on Teichmüller space, the
genealogy of which originates in Riemann’s moduli problem, powerfully recast by Grothendieck
in his framework. Especially pertinent in the present context is the idea of a “Teichmüller curve”
and then Grothendieck’s recasting of it, another manifestly modernist incarnation of the idea of
curve, via Riemann. Conversely, the theory provided an important case for Grothendieck to use his
new technology. Étale cohomology came next. This is yet another modernist trajectory extending
from Riemann and Grothendieck. For an excellent account, see A’Campo et al. [1].
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with functors between categories of topological objects, such as manifolds, and
categories of algebraic objects, such as groups.

A topos in Grothendieck’s sense is a category of spaces and arrows over a given
space, used especially for the purpose of allowing one to define richer algebraic
structures associated with this space, as explained above. There are additional
conditions such categories must satisfy, but this is not essential at the moment.
To give one of the simplest examples, for any topological space S, the category
of sheaves on S is a topos. The concept of topos is, however, very general and
extends far beyond spatial mathematical objects (thus, the category of finite sets is
a topos); indeed, it replaces the latter with a more algebraic structure of categorical
and topos-theoretical relationships between objects. On the other hand, it derives
from the properties of and (arrow-like) categorical relationships between properly
topological objects. The conditions, mentioned above, that categories that form
topoi must satisfy have to do with these connections.

Beyond enabling the establishing of a new cohomology theory for algebraic
varieties, as considered above, topos theory allows for such esoteric constructions
as nontrivial or nonpunctual single-point “spaces” or, conversely, spaces (topoi)
without points (first constructed by Deligne), sometimes slyly referred to by
mathematicians as “pointless topology.” Philosophically, this notion is far from
pointless, especially if considered within the overall topos-theoretical framework. In
particular, it amplifies a Riemannian idea that “space,” defined by its relation to other
spaces, is a more primary object than a “point” or, again, a “set of points.” Space
becomes a Leibnizean, “monadological” concept, insofar as points in such a space
(when it has points) may themselves be seen as a kind of monad, thus also giving a
nontrivial structure to single-point spaces. These monads are certain elemental but
structured entities, spaces, rather than structureless entities (classical points), or at
least as entities defined by (spatial) structures associated with and defining them [1].
Naturally, my appeal to monads is qualified and metaphorical. Leibniz’s monads are
elemental souls, the atoms of soul-ness, as it were. One might, however, also say,
getting a bit more mileage from the metaphor, that the space thus associated with
a given point is the soul of this point, which defines its nature. In other words,
not all points are alike insofar as the mathematical (and possibly philosophical)
nature of a given point may depend on the nature or structure of the space or topos
to which it belongs or with which it is associated in the way just described. This
approach gives a much richer architecture to spaces with multiple points, and one
might see (with caution) such spaces as analogous to Leibniz’s universe composed
by monads. It also allows for different (mathematical) universes associated with
a given space, possibly a single-point one, in which case a monad and a universe
would coincide. Grothendieck’s topoi are possible universes, possible worlds, or
com-possible worlds in Leibniz’s sense, without assuming, like Leibniz (in dealing
with the physical world), the existence of only one of them, the best possible.

One might also think of this ontology as an assembly of surface ontologies
(Grothendieck’s concept of topos is, again, ontological, rather than logical, as in
his logical followers), in the absence of any ultimate ontology, or even, as against
physics, any ultimate mathematical or otherwise mental reality, thus connecting
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on modernist lines the multiple and the unthinkable. Topoi are multiple universes,
defined ontologically, in the absence of a single ultimate reality underlying them;
they are investigated by means of technologies such as cohomologies or homotopies
(which can be defined for them as well). I shall not consider Grothendieck’s topos
as such from this perspective, which, again, does not appear to be Grothendieck’s
own. Instead, I shall discuss next the ontological and epistemological architecture
of modernism mathematics more generally in relation to the concept of technology,
conceived broadly so as to include the means by which mathematics studied itself;
and I shall briefly comment on topos theory in this context. Quantum theory will, yet
again, serve as a convenient bridge, in this case as much because of the differences
as the similarities between physics and mathematics.21

5.5 Mathematical Modernism Between Ontologies
and Technologies

While, roughly speaking, technology is a means of doing something, enabling us
to get “from here to there,” as it were, the concept of mathematical technology
that I adopt extends more specifically the concept of “experimental technology”
in modern, post-Galilean, physics, defined, as explained, by its jointly experimental
and mathematical character. I note, first, that experimental technology is a broader
concept than that of measuring instruments, with which it is most commonly
associated in physics. It would, for example, involve devices that make it possible to
use the measuring instruments, a point that, as will be seen, bears on the concept of
technology in mathematics. Thus, the experimental technology of quantum physics,
from Geissler tubes and Ruhmkorrf coils of the nineteenth century to the Large
Hadron Collider of our time, enables us to understand how nature works at the
ultimate level of its constitution. In the present interpretation, this technology
allows us to know the effects this constitution produces on measuring devices
(described, along with these effects themselves, by classical physics), without
allowing us to represent or even conceive of the character of this constitution. The
character of these effects is, however, sufficient for creating theories, defined by
their mathematical technologies, such as quantum mechanics and quantum field
theory, that can predict these effects. Thus, quantum physics is only about the
relationships between mathematical and experimental technologies used, vis-à-
vis classical physics or relativity, or mathematics itself. All mathematics used in
quantum physics is technology; in mathematics, or in classical physics or relativity,
some mathematics is also used ontologically. Quantum objects themselves are
not technology; they are a form of reality that technology helps us to discover,
understand, work with, and so forth, but in this case, at least in the present

21The discussion to follow is partly adopted from [54, pp. 265–274]. My argument here is
essentially different, however.
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interpretation, without assuming or even precluding any ontological representation
of this reality. Quantum objects can of course become part of technology, beginning
with the quantum parts of measuring instruments through which the latter interact
with quantum objects, or as parts of devices we use elsewhere, such as lasers,
electronic equipment, MRI machines, and so forth.

In the wake of Heisenberg’s discovery and Born and Jordan’s work in 1925 [9,
31], Bohr commented as follows:

In contrast to ordinary mechanics, the new quantum mechanics does not deal with a space-
time description of the motion of atomic particles. It operates with manifolds of quantities
which replace the harmonic oscillating components of the motion and symbolize the
possibilities of transitions between stationary states [manifested in measuring instruments].
These quantities satisfy certain relations which take the place of the mechanical equations
of motion and the quantization rules [of the preceding quantum theory]. . . .

It will interest mathematical circles that the mathematical instruments created by the
higher algebra play an essential part in the rational formulation of the new quantum
mechanics. Thus, the general proofs of the conservation theorems in Heisenberg’s theory
carried out by Born and Jordan are based on the use of the theory of matrices, which go
back to Cayley and were developed especially by Hermite. It is to be hoped that a new era
of mutual stimulation of mechanics and mathematics has commenced. To the physicists it
will at first seem deplorable that in atomic problems we have apparently met with such a
limitation of our usual means of visualization. This regret will, however, have to give way
to thankfulness that mathematics in this field, too, presents us with the tools to prepare the
way for further progress. [8, v. 1, pp. 48, 51; emphasis added]

Bohr’s appeal to “the rational formulation of the new quantum mechanics”
merits a brief digression, especially in conjunction with his several invocations of
the “irrationality” inherent in quantum mechanics, a point often misunderstood.
The “irrationality” invoked here and elsewhere in Bohr’s writings is not any
“irrationality” of quantum mechanics, which Bohr, again, sees as a “rational” theory
[8, v. 1, p. 48]. Bohr’s invocation of “irrationality” is based on an analogy with
irrational numbers, reinforced perhaps by the apparently irreducible role of complex
numbers and specifically the square root of −1, i (an irrational magnitude in the
literal sense because it cannot be presented as a ratio of two integers) in quantum
mechanics, or quantum field theory. It is part of the history of the relationships
between algebra (initially arithmetic) and geometry, from the ancient Greeks
on. As noted earlier, the ancient Greeks, who discovered the (real) irrationals,
could not find an arithmetical, as opposed to geometrical, form of representing
them. The Greek terms were “alogon” and “areton,” which may be translated as
“incommensurable” and “incomprehensible,” the latter especially fitting in referring
to quantum objects and processes. The problem was only resolved, by essentially
modernist mathematical means (algebra played a major role), in the nineteenth
century, after more than 2000 years of effort, with Dedekind and others, albeit, in
view of the undecidability of Cantor’s continuum hypothesis, perhaps only resolved
as ultimately unresolvable. It remains to be seen whether quantum mechanical
“irrationality” will ever be resolved by discovering a way to mathematically or
otherwise represent quantum objects and processes. As thing stand now, quantum
mechanics is a rational theory of something that is irrational in the sense of being
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inaccessible to a rational representation or even to thinking itself. In other words,
at stake is a replacement of a rational representational theory, classical mechanics,
with a rational probabilistically or statistically predictive theory. This replacement
is the rational quantum mechanics introduced by Heisenberg, a reversal of what
happened in the crisis of the incommensurable in ancient Greek mathematics, which
compelled it to move from arithmetic to geometry.

Heisenberg’s thinking revolutionized the practice of theoretical physics and
redefined experimental physics or reflected what the practice of experimental
physics had in effect become in dealing with quantum phenomena. The practice
of experimental physics no longer consists of tracking what happens or what would
have happened independently of our experimental technology, but in creating new
configurations of this technology, which allows us to observe effects of quantum
objects and behavior manifested in this technology.22 This practice reflects the
fact that what happens is unavoidably defined by what kinds of experiments
we perform, and how we affect quantum objects, rather than by tracking their
independent behavior, although their independent behavior does contribute to what
happens. The practice of theoretical physics no longer consists in offering an
idealized mathematical representation of quantum objects and their behavior, but
in developing mathematical technology that is able to predict, in general (in
accordance with what obtains in experiments) probabilistically, the outcomes of
always discrete quantum events, observed in the corresponding configurations of
experimental technology.

Taking advantage of and bringing together two meanings of the word “experi-
ment” (as a test and as an attempt at an innovative creation), one might say that
the practice of quantum physics is the first practice of physics that is both, jointly,
fundamentally experimental and fundamentally mathematical. That need not mean
that this practice has no history; quite the contrary, creative experimentation has
always been crucial to mathematics and science, as the work of all key figures
discussed in this article demonstrates. Galileo and Newton, are two great examples
in classical physics: they were experimentalists, both in the conventional sense (also
inventors of new experimental technologies, new telescopes in particular) and, in
their experimental and theoretical thinking alike, in the sense under discussion at
the moment. Nevertheless, this experimentation acquires a new form with quantum
mechanics and then extends to higher level quantum theories, and, as just explained,
a new understanding of the nature of experimental physics. The practice of quantum
physics is fundamentally experimental because, as just explained, we no longer
track, as we do in classical physics or relativity, the independent behavior of the
systems considered, and thus track what happens in any event, by however ingenious

22I qualify by “unavoidably” because we can sometimes define by an experiment what will happen
in classical physics, say, by rolling a ball on a smooth surface, as Galileo did in considering inertia.
In this case, however, we can then observe the ensuing process without affecting it. This is not so in
quantum physics, because any new observation essentially interferes with the quantum object under
investigation and defines a new experiment and a new course of events. Only some observations
do in classical physics.
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experiments. We define what will happen in the experiments we perform, by how
we experiment with nature by means of our experimental technology.

By the same token, quantum physics is fundamentally mathematical, because
its mathematical formalism is equally not in the service of tracking, by way
of a mathematical representation, what would have happened anyhow, which
tracking would shape the formalism accordingly, but is in the service of predictions
required by experiments. Indeed, quantum theory experiments with mathematics
itself, more so and more fundamentally than does classical physics or relativity.
This is because quantum theorists invent, in the way Heisenberg did, effective
mathematical schemes of whatever kind and however far they may be from our
general phenomenal intuition, rather than proceeding by refining mathematically
our phenomenal representations of nature, which limits us in classical physics or
even (to some degree) in relativity. One’s choice of a mathematical scheme becomes
relatively arbitrary insofar as one need not provide any representational physical
justification for it, but only need to justify this scheme by its capacity to make correct
predictions for the data in question. It is true that in Heisenberg’s original work the
formalism of quantum mechanics extended (via the correspondence principle) from
the representationally justified formalism of classical mechanics. Heisenberg and
then other founders of the theory (such as Born and Jordan, or Dirac) borrowed
the equations of classical mechanics. However, they replaced the variables used in
these equations with Hilbert-space operators, thus using modernist mathematics,
which was no longer justified by their representational capacity but, in Heisenberg’s
words, by “the agreement of their predictions with the experiment” [32, p. 108].
One’s mathematical experimentation may, thus, be physically motivated, but it is
not determined by representational considerations, the freedom from which also
liberates one’s mathematical creativity. Rather than with the equations of classical
mechanics, one could have started directly with Hilbert-spaces and derived the
necessary formalism by certain postulates, as was done by von Neumann in his
classical book, admittedly, with quantum mechanics already in place [66]. Other
versions of the formalism, such as the C*-algebra version and, more recently, the
category-theory version are products of this type of mathematical experimentation.
It is true that all these versions have thus far been essentially mathematically
equivalent, and in particular, the role of complex numbers appears to be unavoidable.
It is difficult, however, to be entirely certain that this will remain the case in the
future, even if no change is necessary because of new experimental data. The
invention of quantum theory was essentially modernist in its epistemology and its
spirit of creative experimentation (which it shared with contemporary modernist
literature and art) alike, as well as in its use of modernist mathematics. Heisenberg
was the Kandinsky of physics.

One could indeed think of the technological functioning of mathematics even in
mathematics itself: certain mathematical instruments, such as homotopy or coho-
mology groups, are technologies akin to measuring instruments in physics, with the
role of reality taken in each case by the corresponding topological space. According
to J.-P. Marquis, who borrows his conception of mathematical technology from
quantum physics “they provide information about the corresponding topological
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space. . . . [T]hey are epistemologically radically from . . . transformation [symmetry]
groups of a space. They do not act on anything. The purpose of these geometric
devices is to classify spaces by their different homotopy [or cohomology] types.”
By contrast, fibrations, for example, important for using homotopy and cohomology
groups, including, as noted, in étale cohomologies, are not “measuring instruments,”
but rather “devices that make it possible to apply measuring instruments [such
as cohomology and homotopy groups] and other devices” [39, p. 259]. The key
point here is that the invention and use of mathematical technologies is crucial for
mathematics, in modernism from Riemann’s concept of the genus of a Riemann
surface to Grothendieck’s invention of étale cohomology, with the whole history of
algebraic topology between them, keeping in mind that any technology can and is
eventually likely to become obsolete, as Marquis notes [39, p. 259]. In quantum
theory, all mathematics used is technology (vs. classical physics or relativity where
it can also be used ontologically) and it can become obsolete, too, as that of classical
physics became in quantum physics. Ontologies can become obsolete, too, such as,
at least for some, that of set theory, replaced by category theory, which redefines,
for example, the concept of topological space. On the other hand, the concept of
physical reality is unlikely to go away any time soon. (The name may change, and
“matter” has sometimes been used instead.) Could the same be said about some
form of mathematical reality? I would like to offer a view that suggests that it is
possible to answer this question in the negative, thus fundamentally differentiating
mathematical and physical reality.

First, I note that, in parallel with the experimental and mathematical technology
used in quantum physics, the mathematical technology in mathematics may not
only be used to help us to represent mathematical reality (although it may be used
in this way, too) but also to enable us to experiment with this reality, without
representing it. In mathematics, moreover, where all our ontologies and technologies
are mental (although they can be embodied and communicated materially), one
need not assume the independent reality, shared or not, of the type assumed,
as material reality, in physics, beyond representation or even conception as the
ultimate character of this reality may be assumed to be, as it is in quantum
theory in nonrealist interpretations. Technically, it follows that, if this reality is
beyond representation or even conception, it is not possible to rigorously claim
that this reality as such is single any more than multiple. The “sameness” of
this reality is itself an effect ascertainable by our measuring instruments, which,
however, compel us to assume that we deal with the same types of quantum
objects (electrons, photons, and so forth) and their composites, regardless where
and when we perform our experiments. In any event, mathematical realities are
always multiple, a circumstance of which, as we have seen, Grothendieck’s topos
theory takes advantage, as it also experiments with and even creates them. In fact,
as I shall now suggest, mathematical realities always belong to individual human
thinking, although they may be related to each other. Indeed, they always are so
related, to one degree or another, which prevents them from being purely subjective.
On the other hand, they can acquire a great degree of objectivity because they can
be (re)constructed, for example in checking mathematical proofs. This situation is
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parallel to that of quantum physics, too, where, as explained earlier, this objectivity
is provided by quantum phenomena, observed in measuring instrument, while,
however, the ultimate material reality is still assumed.

The nature of mathematical reality, representable or not, has been debated since
Plato, whose ghost still overshadows this debate in modernist mathematics, as Gray
rightly suggests, and the differences between his and the present view of modernism
do not affect this point [26]. Mathematical Platonism assumes the existence of math-
ematical reality, whether representable by our mathematical concept or not (there are
different views on this point within mathematical Platonism), as independent of our
thinking. I shall not enter these debates, including those concerning mathematical
Platonism, apart from noting that the questions of the domain, “location,” of this
reality have, in my view, never been adequately answered. It is difficult to think of
that which is not material and yet is outside human thought, unless it is divine,
which, however, is not a common assumption among those who subscribe to
mathematical Platonism. In any event, I only assume here the reality of human
thought, thus, generally, different for each of us, as the only domain in relation
to which one can speak of the reality of mathematical objects and concepts, in
juxtaposition to the material reality of nature in physics. It is possible to assume
that the Platonist mathematical reality is a potentiality—the same, even if multiply
branched, potentiality—in principle realizable by human thought. I shall comment
on this possibility presently.

What could be claimed to exist, ontologically, in our thought without much
controversy are mathematical specifications, from strict definitions to partial and
indirect characterizations (implying more complete or direct future specifications).
Such specifications would involve concepts, structures, logical propositions, or still
others elements, which could be geometrical or topological, as well as algebraic.
In this respect, there is no difference between geometrical (or topological) and
algebraic specifications. All such specifications can, at least in principle, be
expressed and presented in language, verbally or in writing, visually, digitally for
example, in other words technologically. While algebra helps our mathematical
writing (to paraphrase Tate, “think geometrically, write algebraically!”), digital
technology helps our geometrical specifications and expression. The computer-
generated images of chaos theory are most famous, but low-dimensional topology
and geometry have been similarly helped by digital technology.

The question, then, is whether anything else exists in our thought beyond
such specifications and the local ontologies they define, at least in our conscious
thought, because we can unconsciously think of other properties of a given object
or field, which either may eventually be made conscious or possibly never become
conscious and thus known. This qualification does not, however, change the nature
of the question, because one could either claim that the unconscious could still
only contain such specifications or that the object or broader reality in question,
as different or exceeding such specifications, somehow exists there. In other
words, essentially the same alternative remains in place. On the other hand, some
unconscious specifications may never become conscious. It is quite possible that
some mathematics, even very great mathematics, or for that matter poetry, never left
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the unconscious, and there are accounts by mathematicians or poets of dreaming
of mathematics or poetry which could not be remembered as what it actually was,
although sometimes it can. Only our memory of dreams is conscious, but never
dreams themselves. By the same token, whatever is in our unconscious can at
some point enter our consciousness: if the Chauvet Cave is the cave of dreams,
it is because the consciousness of those who painted them realized their previously
unconscious thinking, even though some parts of these painting were, undoubtedly,
still manifestations of the unconscious. It is beyond doubt also that our unconscious
does a great deal of mathematical thinking, as it does most of our thinking in general,
and some of it may never be realized by our conscious thought. Sometimes, not
uncommonly in the logical foundations of mathematics (Hilbert held this view),
the consistency of a given definition of a mathematical entity is identified with
the existence of the corresponding object, a form of mathematical Platonism, if
this existence is assumed to be possible outside human thought. Either way, this
view poses difficulties given Gödel’s incompleteness theorems or even Cantor’s
set theory and its paradoxes. Our mathematical specifications must of course be
logically consistent.

My assumption here is that nothing mathematical actually exists in thought
beyond what can be thus specified, perhaps, again, in one’s unconscious. This dif-
ferentiates the situation from that of quantum physics. While quantum phenomena
or quantum theories are specified in the same sense (and quantum theories are
mathematical in the first place), one assumes, by a decision of thought concerning
one’s interpretation of quantum phenomena, the existence of the ultimate physical
reality, which is beyond representation or even conception and thus specification. I
leave aside for the moment whether something nonmathematical can exist in thought
apart from any specification, although the position I take here compels me to answer
in the negative in this case as well. In the present view, only physical matter in its
ultimate constitution exists in this way. This assumption has been challenged as
well, with Plato as the most famous ancient case and Bishop Berkeley as the most
famous modern case, and is occasionally revived, as a possibility, in the context
of quantum theory, but it is still a common assumption. As just noted, it is quite
possible that there are (mentally) real things that exist in our unconscious that
will never become conscious. It is equally possible, however, that they will enter
our consciousness at one point or another. The ultimate constitution of nature, in
this interpretation of quantum physics, is not assumed to ever become available,
as things stand now. This does not of course preclude that such specifications
cannot be made more complete or modified by new concepts, structures, and logical
propositions, which would change the objects or concept in question, as say, a
Riemann surface, as it developed during over, by now, a long period. However, in
the present view, it is no longer possible to see such changes as referring to the same
mathematical object (which can, again, be a broad and multiple entity), approached
by our evolving concepts. Instead, they create new objects or concepts. Thus, new
classes of Riemann surfaces are created by each modification of the concept. There
are no Riemann surfaces as such, existing by themselves and in themselves, at any
given point of time; there is only what we can think or say about them at a given
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point of time. By contrast, as things stand now, nothing can be in principle improved
in our understanding of the ultimate constitution of matter. We can only improve our
understanding and, by using mathematics and new experimental technology, our
predictions of the effects on this constitution manifested in measuring instruments.

The present view of mathematical reality has thus a constructivist flavor, in part
following Kant’s view of mathematics as the synthetic construction of mathematical
proposition and concepts by thought [35].23 According to Badiou, “mathematics
is a thought,” part of the ontology of thought, and for Badiou this ontology is
mathematical, an argument he makes via modernist mathematics, from Cantor’s
set theory to Grothendieck’s topos theory [7, p. 45]. Without addressing Badiou’s
argument itself (different from the one offered here), I take his thesis literally in the
sense that mathematics is only what can be thought, created by thought and then
expressed, communicated, and so forth, thus also in accord with the Greek meaning
of máthẽma as that which can be known and learned, or taught.

It is of course not uncommon to encounter a situation in which a mathematical
entity (again, possibly a large and multiple one) that cannot be given, now or
possibly ever, an adequate mathematical specification, and is only specified partially
mathematically or more fully otherwise. It may, for example, be specified as a
phenomenal object or set of objects by means of philosophical concepts, but that
can nevertheless be consistently related to, indirectly, and by means of a more
properly specified mathematical concept or set of concepts. The latter concepts
may, then, function as mathematical technologies which enable one to work with
and, to the degree possible, understand this entity, as fibrations or homotopy
and cohomology group allow us to understand better and more properly specify
the corresponding topological spaces. These technologies are crucial and, while
found in all mathematics, their persistent use, in part, against, relying on ontology,
is characteristic of mathematical modernism, because of the persistence of the
situations of the type just described. In the present view, however, any such entity
can only be seen as existing or real if it is sufficiently specified in some way: in terms
of phenomenal intuition or philosophical concepts, perhaps partially supplemented
by mathematical concepts or structures. It cannot be assigned reality beyond such a
specification.

In fact, as we know, in view of Gödel’s incompleteness theorems, mathematics,
at least if it is rich enough to contain arithmetic, cannot completely represent itself:
it cannot mathematically formalize all of its concepts, propositions, or structures,
and ultimately itself so as to guarantee its consistency. But it does not necessarily
follow that the corresponding unspecifiable reality exists, although one can make
this assumption, as Gödel ultimately did on Platonist lines, claiming that there is,
at least for now, no human means, mathematical or other, to specify this reality. It
only follows that it is impossible to prove that all possible specifications, within

23I do not refer by this statement to the trend known as “constructivism” in the foundational
philosophy of mathematics, from intuitionism on, relevant as it may be, in part given Kant’s
influence. I use the term “constructivist” more generally.
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any such system, are consistent. (Gödel’s theorems do allow that the system can in
fact be proven to be inconsistent.) What may be inconceivable is why this is the
case, the reality that is responsible for it, which is, however, not a mathematical or
even meta-mathematical question, any more than the question why our interaction
with nature by means of quantum physics enables us to make correct probabilistic
predictions. These questions belong to the biological and specifically neurological
nature of our thought, although they may not ultimately be answerable by biology
or neuroscience either.

One could speak in considering such as yet unspecified mathematical objects
or concepts in terms of a hypothetical potentiality, defined by the assumption that
a mathematical object or concept of a certain type could or should exist. Such
potentialities are, moreover, only partially, probabilistically, determined by what is
sometimes called plausible reasoning, very important in mathematical thinking, as
rightly argued by Polya [58]. There are different and possibly incompatible way in
which this potentially may be become reality. Consider, paradigmatically, thinking
of the equation X2 + 1 = 0 and complex numbers. While this equation (which
may be safely assumed to exist in our thought as a mathematical entity) had no real
solution, one could have and some had envisioned that it should have a solution
and that a mathematical entity or a multiple of such entities, a new type of number,
should exist. This hypothesis came to be realized, also literally, insofar, as complex
numbers eventually became a mathematical reality. In the present view, however,
they were not a mathematical reality before they were correspondingly specified in
somebody’s thought, say, by the time of Gauss, who was crucial in allowing complex
numbers to become a mathematical reality, each time one thinks of them, but in the
present view, not otherwise.

The present view, thus, precludes the assumption of an independent mathematical
reality. This assumption, again, commonly defines reality in physics, even if this
reality is assumed to be beyond representation or conception, as in quantum
theory, thus, consistently with the present view of physical reality, as opposed to
mathematical Platonism or other positions that claim the existence of mathematical
reality independent of human thought, which is in conflict with the present view
of mathematical reality. In sum, in the present view, in mathematics all reality is
constructed, and this construction may, ontologically, involve multiple “mathemat-
ics,” as Grothendieck’s topos-theoretical ontology shows. This multiplicity is also
a consequence of Gödel’s undecidability, as exemplified by Cantor’s continuum
hypothesis, mentioned above. This hypothesis was crucial not only for the question
of continuity but also for the question of Cantor’s hierarchical order of infinities
(the infinity of which was one of his discoveries) and thus for the whole edifice of
Cantor’s set theory. The hypothesis was proven undecidable by Cohen. It follows,
however, that one can extend classical arithmetic in two ways by considering
Cantor’s hypothesis as either true or false, that is, by assuming either that there is no
such intermediate infinity or that there is. This allows one, by decisions of thought,
to extend arithmetic into mutually incompatible systems that one can construct,
ultimately infinitely many such systems, because each on them will contain at least
one undecidable proposition. It is, as noted, in principle possible to assume that
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all such possible constructions form a single, if multiply branching, potentiality,
ultimately realizable in principle. I shall not assess this view except by noting
that even if one adopted it strictly in this form, one would still only allow for a
vast constructible mathematical potentiality rather than independent mathematical
reality. Would this view be in practice equivalent to mathematical Platonism? While
it may be in practice, the difference in principle would remain important, both
in general and because that it would be impossible to assume that, being infinite,
this potentiality could ever be realized. In practice, mathematics, again, creates
new mathematical realities and, with them, new mathematical potentialities all the
time, quite apart from any undecidable propositions. This process will only end
when mathematics is no longer with us, and one day it might not be, although
curves are likely to remain with us as long as we are around. By contrast, in
quantum physics in nonrealist interpretations, the ultimate reality is assumed to
exist as unconstructible or (as this view is still constructivist), constructed as
unconstructible. But this unconstructible physical reality may be related to by means
of constructed mathematical realities, such as that of Hilbert-spaces mathematics,
again, meaning by a Hilbert space what we can think about or use and objectively
share, rather than an independently existent mathematical object.

Thus, along with all realism in physics, the present view radically breaks with
all Platonism in mathematics, especially with mathematical Platonism, but arguably
with any form of Platonism hitherto. As I said, not all Platonism in mathematics
is mathematical Platonism: that of Plato is not. Some forms of realism in physics
are, again, forms of Platonism, too, as are, for example, some versions (known as
ontological) of the so-called structural realism, according to which mathematical
structures are the only reality [36]. As I indicated, Heisenberg, in his later thinking
was inclined to this type of view, as against the time of his creation of quantum
mechanics [33, pp. 91, 147–166].

While, however, breaking with Platonism, even Plato’s own, the modernist
thinking considered here in mathematics and physics does retain something, perhaps
the most important thing, from Plato—from the spirit of Plato—rather than the ghost
of Plato, intimately linked as these two words, spirit and ghost, are. This thinking
retains the essential role of the movement of thought, something as crucial to
Plato as to mathematical modernism, however anti-Platonist the latter may become.
Heisenberg (whose father was a classicist) was reading Plato’s Timaeus in the course
of his discovery of quantum mechanics, in which he in effect reinvented Hilbert
spaces over C, a double, physical and mathematical, modernism [43, v. 2, pp. 11–
14]. Some of Plato’s thinking, led Heisenberg to his invention of a new mathematical
technology in physics, under radically non-Platonist, epistemological assumptions.
(Heisenberg, again, adopted a more Platonist view in his later thinking.) That this
technology already existed in mathematics does not diminish the significance of this
mathematical invention, especially given that Heisenberg used infinite unbounded
matrices, never considered previously. The work of the mathematical figures
considered here, from Fermat and Descartes to Riemann and from Riemann to
Grothendieck and beyond, to split for a moment (but only for a moment) modernity
and modernism, was shaped by the spirit of the movement of thought, the spirit
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that connects modernity and modernism, in mathematics and science, as it does in
philosophy and art.

5.6 Conclusion

I close on a philosophical and artistic note by citing Heidegger’s conclusion in “The
Question Concerning Technology”:

There was a time when it was not technology alone that bore the name techne. Once that
revealing that brings forth truth into the splendor of radiant appearing also was called
techne.

Once there was a time when the bringing forth of the true into the beautiful was called
techne. And the poiesis of the fine arts also was called techne.

In Greece, at the outset of the destining of the West, the arts soared to the supreme height
of the revealing granted them. . . . And art was simply called techne. It was a single, manifold
revealing. It was . . . , promos, i.e., yielding to the holding-sway and the safekeeping of truth.

The arts were not derived from the artistic. Art works were not enjoyed aesthetically.
Art was not a sector of cultural activity.

What, then, was art—perhaps only for that brief but magnificent time? Why did art
bear the modest name techne? Because it was a revealing that brought forth and hither, and
therefore belonged within poiesis. It was finally that revealing which holds complete sway
in all the fine arts, in poetry, and in everything poetical that obtained poiesis as its proper
name. . . .

Whether art may be granted this highest possibility of its essence in the midst of
the extreme danger [of modern technology], no one can tell. Yet we can be astounded.
Before what? Before this other possibility: that the frenziedness of technology may entrench
itself everywhere to such an extent that someday, throughout everything technological, the
essence of technology may come to presence in the coming-to-pass of truth.

Because the essence of technology is nothing technological, essential reflection upon
technology and decisive confrontation with it must happen in a realm that is, on the one
hand, akin to the essence of technology and, on the other, fundamentally different from it.

Such a realm is art. But certainly only if reflection on art, for its part, does not shut its
eyes to the constellation of truth after which we are questioning.

Thus questioning, we bear witness to the crisis that in our sheer preoccupation with
technology we do not yet experience the coming to presence of technology, that in our
sheer aesthetic-mindedness we no longer guard and preserve the coming to presence of art.
Yet the more questioningly we ponder the essence of technology, the more mysterious the
essence of art becomes. [30, pp. 34–35]

I would argue that modernist mathematics, in its more expressly technological
aspects and in general, and physics, where in quantum theory all mathematics
used is a technology, are techne in a sense close to that Heidegger wants to give
this term here. The reason that I see them as close rather than the same is that
Heidegger would allow that the ultimate reality could be accessed by what he saw
as the true thought, which he saw as artistic or poetic thought in the sense of this
passage. In contrast to some (including some modernist) poetry and art, he sees
modernist technology (in its conventional sense) and modernist mathematics and
science, including, one might plausibly surmise, as it is understood here, as a form
of forgetting rather than approaching techne as art found in ancient Greek thinking.
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It is not even clear that he would grant this to the ancient Greek mathematics, much
as he admired ancient Greek, especially pre-Socratic, thought, in philosophy and
poetry, and he sees the forgetting of the thought in question as beginning with
Socrates and Plato. Admittedly, Heidegger’s position is complex, especially insofar
as how artistic thought can do this remains “mysterious,” the mystery that appears
to be deepened by our attempts to understand the essence of our, modern and
modernist, technology. Nevertheless, Heidegger allows at least the possibility of
thinking [Denken] (his preferred term) this truth, even if not representing it. I would
contend, however, that modernist epistemology, even when, in its most radical form,
it places the ultimate nature of reality beyond thought itself in physics or rejects
the existence of such a (single) ultimate reality in mathematics altogether, does not
preclude thought from reaching “the supreme height of the revealing granted them,”
albeit “creation” might be a better word than “revealing,” if there is no ultimate
reality that can be revealed. Even if it exists, as in physics, it still cannot be revealed,
and in mathematics, again, everything is created, constructed. Coming together of
techne and truth is still possible under these conditions and is perhaps not possible
otherwise, regardless of one’s aspirations for how far our thought can reach. We
cannot dispense with truth. What changes are the relationships between truth and
reality, and both concepts themselves, while realism and the corresponding concepts
of truth still apply and are indispensable at surface levels. Techne and truth do come
together under these conditions.

This, I have argued here, is precisely what happens in the thought of Riemann,
Hilbert, Weyl, Weil, and Grothendieck, and those who followed them in mathemat-
ics, or their predecessors, from Fermat and Descartes, or the thought of those who
used mathematics in physics, from Kepler and Galileo to Einstein and Heisenberg,
and beyond, the Platonist or realist aspirations of many, even most, of these figures
notwithstanding. Their thought continues, in mathematics or physics, not the least
when it comes to the idea of curve, even when a curve is a surface, the project of
the painters of curves of the Chauvet Cave, the cave of dreams, no longer forgotten.
The discovery of the cave gave these dreams back to us, and these dreams are about
much more than curves, just as modernist art, such as that of Klee, or the modernist
mathematics of curves are so much more.

Perhaps, however, our history has kept these dreams alive all along by keeping
alive the creative nature of our thought, dreams that we began dreaming well
before the frescoes of the Chauvet Cave were painted. Some form of mathematical
thinking, just as some form of artistic or philosophical thinking, must have always
been part of our history as thinking beings and our dreams, in either sense. The
history that at some point gave (we may never know how!) our brain the capacity to
have these dreams is immeasurably longer, ultimately as long as the history of life
or even the Universe itself, in which, at some point, life has emerged.
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Chapter 6
From Euclid to Riemann and Beyond:
How to Describe the Shape
of the Universe

Toshikazu Sunada

Dedicated to the memory of Marcel Berger (14 April 1927–
15 October 2016).

The purpose of this essay is to trace the historical development of geometry while
focusing on how we acquired mathematical tools for describing the “shape of the
universe.” More specifically, our aim is to consider, without a claim to completeness,
the origin of Riemannian geometry, which is indispensable to the description of the
space of the universe as a “generalized curved space.”

But what is the meaning of “shape of the universe”? The reader who has never
encountered such an issue might say that this is a pointless question. It is surely
hard to conceive of the universe as a geometric figure such as a plane or a sphere
sitting in space for which we have vocabulary to describe its shape. For instance,
we usually say that a plane is “flat” and “infinite,” and a sphere is “round” and
“finite.” But in what way is it possible to make use of such phrases for the universe?
Behind this inescapable question is the fact that the universe is not necessarily the
ordinary 3D (3-dimensional) space where the traditional synthetic geometry—based
on a property of parallels which turns out to underlie the “flatness” of space—
is practised. Indeed, as Einstein’s theory of general relativity (1915) claims, the
universe is possibly “curved” by gravitational effects. (To be exact, we need to
handle 4D curved space-times; but for simplicity we do not take the “time” into
consideration, and hence treat the “static” universe or the universe at any instant of
time unless otherwise stated. We shall also disregard possible “singularities” caused
by “black holes.”)

An obvious problem still remains to be grappled with, however. Even if we assent
to the view that the universe is a sort of geometric figure, it is impossible for us to
look out over the universe all at once because we are strictly confined in it. How can
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we tell the shape of the universe despite that? Before Albert Einstein (1879–1955)
created his theory, mathematics had already climbed such a height as to be capable
to attack this issue. In this respect, Gauss and Riemann are the names we must,
first and foremost, refer to as mathematicians who intensively investigated curved
surfaces and spaces with the grand vision that their observations have opened up an
entirely new horizon to cosmology. In particular, Riemann’s work, which completely
recast 3000 years of geometry executed in “space as an a priori entity,” played an
absolutely decisive role when Einstein established the theory of general relativity.

Gauss and Riemann were, of course, were not the first to be involved in
cosmology. Throughout history, especially from ancient Greece to Renaissance
Europe, mathematicians were, more often than not, astronomers at the same time,
and hence the links between mathematics and cosmology are ancient, if not in the
modern sense. Meanwhile, the venerable history of cosmology (and cosmogony)
overlaps in large with the history of human thought, from a reflection on primitive
religious concepts to an all-embracing understanding of the world order by dint
of reason. It is therefore legitimate to lead off this essay with a rough sketch of
philosophical and theological aspects of cosmology in the past, while especially
focusing on the image of the universe held by scientists (see Koyré [16] for a detailed
account). In the course of our historical account, the reader will see how cosmology
removed its religious guise through a long process of secularization and was finally
established on a firm mathematical base. To be specific, Kepler, Galileo, Fermat,
Descartes, Newton, Leibniz, Euler, Lagrange, and Laplace are on a short list of
central figures who plowed directly or indirectly the way to the mathematization of
cosmology.

The late nineteenth century occupies a special position in the history of math-
ematics. It was in this period that the autonomous progress of mathematics was
getting apparent more than before. This is particularly the case after the notion of
set was introduced by Cantor. His theory—in concord with the theory of topological
spaces—allowed to bring in an entirely new concept of abstract space, with which
one may talk not only about (in)finiteness of the universe in an intrinsic manner,
an issue inherited since classical antiquity, but also about a global aspect of the
universe despite that we human beings are confined to a very tiny and negligible
planet in immeasurable space. In all these revolutions, Riemann’s theory (in tandem
with his embryonic research of topology) became encompassed in a broader, more
adequate theory, and eventually led, with a wealth of new ideas and methodology,
to modern geometry.

It is not too much to say that geometry as such (and mathematics in general) is
part of our cultural heritage because of the profound manifestations of the internal
dynamism of human thought provoked by a “sense of wonder” (the words Aristotle
used in the context of philosophy). Actually, its advances described in this essay
may provide an indicator that reveals how human thought has progressed over a
long period of history.

In this essay, I do not, deliberately, engage myself in the cutting-edge topics
of differential geometry which, combined with topology, analysis, and algebraic
geometry, have been highly cultivated since the latter half of the twentieth century.
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I also do not touch on the extrinsic study of manifolds, i.e., the theory of
configurations existing in space—no doubt an equally significant theme in modern
differential geometry. In this sense, the bulk of my historical commentary might be
quite a bit biased towards a narrow range of geometry. The reader interested in a
history of geometry (and of mathematics overall) should consult Katz [14].

Acknowledgements I wish to thank my colleague Jim Elwood whose suggestions were very
helpful for improvement of the first short draft of this essay. I am grateful to S.G. Dani, Athanase
Papadopoulos, Ken’ichi Ohshika, and Polly Wee Sy for the careful reading and for all their
invaluable comments and suggestions to the enlarged version.

6.1 Ancient Models of the Universe

Since the inception of civilization that emerged in a number of far-flung places
around the globe like ancient Egypt, Mesopotamia, ancient India, ancient China,
and so on, mankind has struggled to understand the universe and especially how the
world came to be as it is.1 Such attempts are seen in mythical tales about the birth
of the world. “Chaos”, “water”, and the like, were thought to be the fundamental
entities in its beginning that was to grow gradually into the present state. For
example, the epic of Atrahasis written about 1800 BCE contains a creation myth
about the Mesopotamian gods Enki (god of water), Anu (god of sky), and Enlil (god
of wind). The Chinese myth in the Three Five Historic Records (the third century
CE) tells us that the universe in the beginning was like a big egg, inside of which
was darkness, chaos.2

The question of the origin is tied to the question of future. Hindu cosmology has
a unique feature in this respect. In contrast to the didactics in monotheistic Chris-
tianity describing the end of the world as a single event (with the Last Judgement)
in history, the Rig veda, one of the oldest extant texts in Indo-European language
composed between 1500 BCE–1200 BCE, alleges that our cosmos experiences
a creation-destruction cycle almost endlessly (the view celebrated much later by
Nietzsche). Furthermore, some literature (e.g. the Bhagavata Purana composed
between the eighth and tenth century CE or as early as the sixth century CE)
mentions the “multiverse” (infinitely many universes), which resuscitated as the
modern astronomical theory of the parallel universes.

In the meantime, thinkers in the colonial towns in Asia Minor, Magna Graecia,
and mainland Greece, cultivated a love for systematizing phenomena on a rational
basis, as opposed to supernatural explanations typified by mythology and folklore

1To know the birth and evolution of the universe is “the problem of problems” at the present day
as seen in the Big Bang theory, the most prevailing hypothesis of the birth.
2The term “chaos” (χάος) is rooted in the poem Theogony, a major source on Greek mythology,
by Hesiod (ca. 750 BCE–ca. 650 BCE). The epic poet describes Chaos as the primeval emptiness
of the universe.
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in which the cult of Olympian gods and goddesses are wrapped. Many of them
were not only concerned with fundamental issues arising from everyday life, as
represented by Socrates (ca. 470 BCE–399 BCE), but also labored to mathemati-
cally understand multifarious phenomena and to construct an orderly system. They
appreciated purity, universality, a certainty and an elegance of mathematics, the
characteristics that all other forms of knowledge do not possess. Legend has it
that Plato (ca. 428 BCE–ca. 348 BCE) engraved the phrase “Let no one ignorant
of geometry enter here” at the entrance of the Academeia (Ἀκαδημία) he founded
in ca. 387 BCE in an outskirt of Athens. Whether or not this is historically real,
Academeia indubitably put great emphasis on mathematics as a prerequisite of
philosophy.3

Eventually, Greek philosophers began to speculate about the structure of the
universe by deploying geometric apparatus. Exemplary is the spherical model, with
the earth at the center, proposed by Plato himself, and his two former students
Eudoxus of Cnidus (ca. 408 BCE–ca. 355 BCE) and Aristotle from Stagira (384
BCE–322 BCE).4 In his dialogue Timaeus, Plato explored cosmogonical issues,
and deliberated the nature of the physical world and human beings. He referred
to the demiurge (δημιουργός) as the creator of the world who chose a round
sphere as the most appropriate shape that embraces within itself all the shapes
there are. Meanwhile, Eudoxus proposed a sophisticated system of homocentric
spheres rotating about different axes through the center of the Earth, as an answer
to his mentor’s question how to reduce the apparent motions of heavenly bodies to
uniform circular motions. This was stated in the treatise On velocities—now lost,
but Aristotle knew about it. Eudoxus may have regarded his system simply as an
abstract geometrical model; Aristotle took it to be a description of the real world,
and organized it into a kind of fixed hierarchy, conjoining with his metaphysical
principle (Metaphysics, XII).

Aristotle’s spherical model (Fig. 6.1) was refined later to a sophisticated geocen-
tric theory by the Alexandrian astronomer Ptolemy (ca. 100 CE–ca. 170 CE). The
latter’s vision of the universe was set forth in his mathematico-astronomical treatise
Almagest, and had been accepted for more than 1200 years in Western Europe and
the Islamic world until Copernicus’ heliocentric theory emerged (Sect. 6.3) because
his theory succeeded, up to a point, in describing the apparent motions of the sun,

3Among Plato’s thirty-five extant dialogues, there are quite a few in which the characters (Socrates
in particular) discuss mathematical knowledge in one form or another; say, Hippias major, Meno,
Parmenides, Theaetetus, Republic, Laws, Timaeus, Philebus. In the Republic, Book VII, Socrates
says, “Geometry is fully intellectual and a study leading to the good because it deals with absolute,
unchanging truths, so that it should be part of education.”
4Pythagoras of Samos (ca. 580 BCE–ca. 500 BCE) was the first to declare that the earth is a sphere,
and that the universe has a soul and intelligence. Plato was a devout Pythagorean, originally
meaning the member of a mathematico-religious community created by Pythagoras (ca. 530 BCE)
in Croton, Southern Italy.
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Fig. 6.1 Aristotle’s model (P. Apianus, Cosmographicus liber, 1524)

moon, and moon, and planets.5 What is notable in his system is the use of numerous
epicycles (ἐπίκυκλος), where an epicycle is a small circle along which a planet is
assumed to move, while each epicycle in turn moves along a larger circle (deferent).6

This schema—a coinage of the Greek doctrine—was first set out by Apollonius of
Perga (ca. 262 BCE–ca. 190 BCE), and developed further by Hipparchus of Nicaea
(ca. 190 BCE–ca. 120 BCE).

5The title “Almagest” was derived from the Arabic name meaning “greatest.” The original Greek
title is Mathematike Syntaxis (Μαθηματικὴ Σύνταξις). It was rendered into Latin by Gerard of
Cremona (ca. 1114–1187) from the Arabic version found in Toledo (1175), and became very
widely known in Western Europe before the Renaissance.
6The reasonable accuracy of Ptolemy’s system results from that an “almost periodic” motion (in
the sense of H. A. Bohr)—a presumable nature of planetary motions—can be represented to any
desired degree of approximation by a superposition of circular motions.
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At all events, an intriguing (and arguable) feature of their model is the idea of
unreachable “outermost sphere.” In Aristotle’s concept (Physics, VIII, 6), it is the
domain of the Prime Mover (τὸ πρώτη ἀκίνητον), a variant of Plato’s notion in his
cosmological argument unfolded in the Timaeus, which caused the outermost sphere
to rotate at a constant angular velocity.

We shall come back to the spherical model in Sect. 6.3 after discussing a
relevant issue, and recount at some length how this peculiar model had an effect
on philosophical and religious aspects of cosmology.

6.2 What Is Infinity?

Besides the kinematical nature of celestial bodies, what seems to lie in the
background of Aristotle’s view about the universe is his philosophical thought about
infinity. Actually the issue of infinity was a favorite subject for Greek philosophers,
dating back to the pre-Socratic period.7

Deliberating over his predecessors’ vision, Aristotle distinguished between
actual and potential infinity. Briefly speaking, actual infinity is “things” that are
completed and definite, thereby being transcendental in nature, while potential
infinity is “things” that continue without terminating; more and more elements can
be always added, but with no recognizable ending point, thus being what can be
somehow corroborated within the scope of the capacity of human deed or thought.
For a variety of possible reasons, Aristotle rejects actual infinity, claiming that only
potential infinity exists, and captures space as something infinitely divisible into
parts that are again infinitely divisible, and so on (Physics, III). His doctrine, which
had satisfied nearly all scholars for a long time,8 was employed by himself to find a
way out of Zeno’s paradoxes , especially the paradox (παράδοξος) of Achilles and
the and the Tortoise.9 This, in a rehashed form, says, “The fastest runner [Achilles]

7Anaximander of Miletus (ca. 610 BCE–ca. 546 BCE) was the first who contemplated about
infinity, and employed the word apeiron (ἄπειρον meaning “unlimited”) to explain all natural
phenomena in the world. Anaxagoras of Clazomenae (ca. 510 BCE–ca. 428 BCE) wrote the
book About Nature, in which he says, “All things were together, infinite in number.” Assuming
the infinite divisibility of matter, he avers, “There is no smallest among the small and no largest
among the large, but always something still smaller and something still larger.”
8G. W. F. Hegel, a pivotal figure of German idealism, defended Aristotle’s perspective on the
infinite in his Wissenschaft der Logik (1812–1816), though he used the terms “true (absolute)
infinity” and “spurious infinity ( schlecht Unendlichkeit)” instead.
9 Zeno of Elea (ca. 490 BCE–ca. 430 BCE) was a student of Parmenides (ca. 515 BCE–ca. 450
BCE) who contended that the true reality is absolutely unitary, unchanging, eternal, “the one.” To
vindicate his teacher’s tenet, Zeno offered the four arguable paradoxes “The Dichotomy,” “Achilles
and the Tortoise,” “The Arrow,” and “The Stadium.”

During the Warring States period (476 BCE–221 BCE) in China, the School of Names cultivated
a philosophy similar to Parmenides’. Hui Shi (ca. 380 BCE–ca. 305 BCE) belonging to this school
says, “Ultimate greatness has no exterior, ultimate smallness has no interior.”
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in a race can never overtake the slowest [tortoise], because the pursuer must first
get to the point whence the pursued started, so that the slowest must always hold
a lead” (Physics, VI; 9, 239b15). To quote Aristotle’s reaction in response to the
quibble, Zeno’s argument exploits an ambiguity in the nature of ‘infinity’ because
Zeno seems to insist that Achilles cannot complete an infinite number of his actions
(getting the point where the tortoise was); that is, ‘complete’ is the word for actual
infinity, but ‘infinite number of actions’ is the phrase for potential infinity.

Aristotle’s resolute rejection of actual infinity seems in part to come from the
fact that mathematicians of those days had no adequate manner to treat continuous
magnitude and could do, all in all, quite well without actual infinity. This is
distinctively seen in the statement in Euclid’s Elements, Book IX, Prop. 20, about
the infinitude of prime numbers, which deftly asserts, “Prime numbers are more than
any assigned multitude of prime numbers.”10

On the other hand, it appears that Archimedes of Syracuse (ca. 287 BCE–
ca. 212 BCE) had a prescient view of infinity, as adumbrated in the Archimedes
Palimpsest,11 a tenth-century Byzantine Greek copy housed at the Metochion of
the Holy Sepulcher in Jerusalem. To our astonishment, in the 174-pages text
(specifically in the Method, Prop. 14), he duly compared two infinite collections
of certain geometric objects by means of a one-to-one correspondence (henceforth
OTOC); see [21]. This is surely related to the concept of actual infinity that has been
revived in nineteenth century (Sect. 6.18).

Archimedes was also a master of the method of exhaustion (or the method of
double contradiction) which originated, however incomplete, with Antiphon the
Sophist (ca. 480 BCE–ca. 411 BCE) and Bryson of Heraclea (born ca. 450 BCE),
and exploited by Eudoxus to avoid flaws that may happen when we treat infinity in a
naive way. Such a flaw is found in the claim by the two originators; they contended
that it is possible to construct, with compass and straightedge, a square with the
same area as a given circle C. Their argument (criticized roundly by Aristotle in
the Posterior Analytics I, 9, 75b40) is as follows: From the correct fact that such a
construction is possible for a given polygon (Euclid’s Elements, Book II, Prop. 14),
they elicited the incorrect consequence that the same is true for C on the grounds
that the regular polygon with 2n edges inscribed in C eventually coincides with C as
we let n increase endlessly (needless to say, a passage to a limit does not necessarily
preserve the given properties).12

10Euclid does not seem to entirely refrain from the use of non-potential infinity. In the Elements,
Book X, Def. 3, he says, “there exist straight lines infinite in multitude which are commensurable
with a given one” [7, Book X, p. 10].
11In 1906, J. L. Heiberg, the leading authority on Archimedes, confirmed that the palimpsest,
overwritten with a Christian religious text by thirteenth-century monks, included the Method of
Mechanical Theorems, one of Archimedes’ lost works by that time. Our knowledge of Archimedes
was greatly enriched by this fabulous discovery.
12The approach taken by Antiphon and Bryson, however incorrect, was appropriately adopted by
Archimedes, who obtained 223/71 < π < 22/7 using two regular polygons of 96 sides inscribed
and circumscribed to a circle (Measurement of the Circle).
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Incidentally, the problem Antiphon and Bryson challenged is designated “squar-
ing the circle”, one of the three big problems on constructions in Greek geometry;
the other problems are “doubling the cube” and “trisecting the angle.” Anaxagoras
is the first who worked on squaring the circle, while Hippocrates of Chios (ca. 470
BCE–ca. 410 BCE) squared a lune. This held out hope to square the circle for a
time, but all attempts met with failure. It was in 1882 that this problem came to
a conclusion; Ferdinand von Lindemann (1852–1939) proved the impossibility of
such a construction by showing that π = 3.141592 · · · is a transcendental number;
i.e., π is not a solution of an algebraic equation with integral coefficients (1882).
Doubling the cube and trisecting the angle are also impossible as P. L. Wantzel
showed (1837).

In the background of the method of exhaustion is the premise that a given
quantity α (not necessarily numerical) can be made smaller than another one
given beforehand by successively halving A. This, in modern terms, says that
for any quantity β, there exists a natural number n with α/2n < β; thus the
premise goes along well with Anaxagoras’ view of “limitless smallness”13 and is,
though restricted to very special situations, regarded as a harbinger of the predicate
calculus in modern logic—the branch of logic that deliberately deals with quantified
statements such as “there exists an x such that · · · ” or “for any x, · · · ”—and
particularly the ε-δ argument invented for the rigorous treatment of limits in the
nineteenth century which adequately avoids endless processes (Remark 19.1). A
variant of this premise is: “Given two quantities, one can find a multiple of either
which will exceed the other.” This is what we call the Axiom of Archimedes since it
was explicitly formulated by Archimedes in his work On the Sphere and Cylinder.14

Eudoxus and Archimedes combined these premises with reductio ad absurdum
(proof by contradiction) in a judicious manner,15 and established various results
on area and volume by highly sophisticated arguments. Noteworthy is that, in his
computations of ratios of areas or volumes of two figures, Archimedes made use of
infinitesimals in a way similar to the one in integral calculus at the early stage (e.g.
Quadrature of the Parabola).

13The word “exhaustion” for this reasoning was first used by Grégoire de Saint-Vincent (1584–
1667); Opus Geometricum Quadraturae Circuli et Sectionum Conti, 1647, p. 739.
14The Elements, Book V, Def. 4 states, “Magnitudes (μέγεθος) are said to have a ratio to
one another which can, when multiplied, exceed one another.” A similar statement appears in
Aristotle’s Physics VIII, 10, 266b 2. The name “Axiom of Archimedes” was given by O. Stolz in
1883, and was adopt by David Hilbert (1862–1943) in a modern treatment of Euclidean geometry
(Remark 10.1 (2)).
15Reductio ad absurdum is a reasoning in the Eleatics philosophy initiated by Parmenides.
Incidentally, the Chinese word for “contradiction” is “máodùn,” literally “spear-shield,” stemming
from an anecdote in the Han Feizi, an ancient Chinese text attributed to the political philosopher
Han Fei (ca. 280 BCE–ca. 233 BCE). The story goes as follows. A dealer of spears and shields
advertised that one of his spears could pierce any shield, and at the same time said that one of his
shields could defend from all spear attacks. Then one customer queried the dealer what happens
when the shield and spear he mentioned would be used in a fight.
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Some 1500 years later, the issue of infinity was examined by two scholars.
Thomas Bradwardine (ca. 1290–ca. 1349)—a key figure in the Oxford
Calculators (a group of mathematics-oriented thinkers associated with Merton
College)—employed the principle of OTOC in discussing the aspects of infinite. His
observation is construed, in modern terms, as “an infinite subset could be equal to its
proper subset” (Tractatus de continuo, 1328–1335). This is a polemic work directed
against atomistic thinkers in his time such as N. d’Autrécourt who, following the
classical atomic concept, considered that matter and space were all made up of
indivisible atoms, as opposed to Aristotle’s doctrine. After a while, Nicole Oresme
(1320–1382), a significant scholar of the later Middle Ages, elaborated the thought
that the collection of odd numbers is not smaller than that of natural numbers
because it is possible to count the odd numbers by the natural numbers (Physics
Commentary, around 1345).16

Meanwhile, the magic of infinity has bewildered Galileo Galilei (1564–1642).
In his Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze (1638),
written during house arrest as the result of the Inquisition, he says, in a similar vein
to Oresme’s claim, “Even though the number of squares should be less than that
of all natural numbers, there appears to exist as many squares as natural numbers
because any natural number corresponds to its square, and any square corresponds
to its square root” (Galileo’s paradox).

Remark 2.1

(1) The principle of OTOC seems to have its roots deep in a fundamental faculty
of human brain. Thinking back on how the species acquired “natural numbers”
when they did not yet have any clue about numerals to count things, we are led
to the speculation that they relied on the principle of OTOC. More specifically,
ancient people are supposed to check whether their cattle put out to pasture
returned safely to their shed, without any loss, by drawing on OTOC with some
identical things such as sticks of twigs prepared in advance. They extended the
same manner in counting things in various aggregations. This experience over
many generations presumably made people aware that there is “something in
common” behind, not depending on things, and they eventually got a way of
identifying as an entity all aggregations among which there are OTOCs. This
entity is nothing but a natural number.17

Once reached this stage, it did not take much time for people to come up
with assigning symbols and names, and evolving primitive arithmetic through
empirical fumbling, especially the division algorithm, if not in the way we
express it today. In fact, numerical notation systems allowing us to represent

16Oresme was in favor of the spherical model of the universe, but took a noncommittal attitude
regarding the Aristotelian theory of the stationary Earth and a rotating sphere of the fixed stars
(Livre du ciel et du monde and Questiones super De celo, Questiones de spera).
17A. N. Whitehead said, “The first man who noticed the analogy between a group of seven fishes
and a group of 7 days made a notable advance in the history of thought” (Science and the Modern
World, 1929).
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numbers with a few symbols evolved from the division algorithm. For instance,
lining up rod-like symbols as |, ||, |||, ||||, |||||, ||||||, · · · is the most primitive
way to represent numerals, as seen in the first few of the Babylonian and
Chinese numerals. In the quinary system, we split up a given ||| · · · | into several
groups each of which consists of five rods ||||| together with a group consisting
of rods less than five (this is an infantile form of the division algorithm). We
then replace each ||||| by a new symbol, e.g. �; thus, for example, |||||||||||| =
||||| ||||| || is exhibited as � � ||. We do the same for the symbol �, and
continue this procedure (this story is, of course, considerably simplified).

(2) The decimal system, contrived in India between the first and fourth cen-
turies, made it possible to express every number by finitely many symbols
0, 1, . . . , 9.18 This epochal format amplified arithmetic considerably, and was
brought through the Islamic world to Europe in the tenth century. The names
to be mentioned are Muhammad ibn Mūsā al-Khwārizmı̄ (ca. 780 CE–ca. 850
CE), Gerbert of Aurillac (ca. 946 CE–1003), and Leonardo Fibonacci (ca. 1170
–ca. 1250). In ca. 825 CE, al-Khwārizmı̄ wrote a treatise on the decimal system.
His Arabic text (now lost) was translated into Latin with the title Algoritmi de
numero Indorum, most likely by Adelard of Bath (ca. 1080–ca. 1152). Gerbert
is said to be the first to introduce the decimal system in Europe (probably
without the numeral zero). Fibonacci, best known by the sequence with his
name, travelled extensively around the Mediterranean coast, and assimilated
plenty of knowledge including Islamic mathematics. His Liber Abaci (1202)
popularized the decimal system in Europe.

The decimal notation—practically convenient and theoretically being of
avail—is firmly planted in our brain as a mental image of numbers. ��

6.3 Is the Universe Infinite or Finite?

Let us turn to the issue of the universe. Were Aristotle’s spherical model correct,
there would be its “outside.” So the question at once arises as to what the outside
means after all. Is it something substantial or just speculative fabrication? Defending
this ridiculous image of the universe, Aristotle explained away by saying, “there is
neither place, nor void outside the heavens by reason that the heaven does not exist
inside another thing” (On the Heavens, I, 9).

Aristotle’s model continued to be employed even in the time when the Christian
tenet dominated the scholarly world in Europe. Especially, influenced by Thomas
Aquinas (1225–1274), who incorporated extensive Aristotelian philosophy through-

18The explicit use of zero as a symbol more than a placeholder was made much later. In India, zero
was initially represented by a point. The first record of the use of the symbol “0” is dated in 876
(inscribed on a stone at the Chaturbhuja Temple). The historical process leading to the term “zero”
is as follows: “sunya” in Hindu meaning emptiness → “sifr” (cipher) in Arabic → “zephirum” in
Latin used in 1202 by Fibonacci → “zero” in Italian (ca. 1600).
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out his own theology, the scientific substratum in Christianity was synthesized with
the Aristotelian physics.19 After a while, the Florentine poet Dante Alighieri (1265–
1321) reinforced Aristotle’s idea of “outside” in his unfinished work Convivio. He
says, “in the supreme edifice of the universe, all the world is included, and beyond
which is nothing; and it is not in space, but was formed solely in the Primal Mind.”
He further offered an imaginal vision of an intriguing macrocosm in order to turn
down the queer consequence of the Biblical concept of ascent to Heaven and descent
to Hell which connotes that Hell is the center of the spherical universe (Sect. 6.21).

An exception is Nicolaus Cusanus (Nicholas of Cusa, 1401–1464), a first-class
scientist of his time. He alleges, refuting the prevalent outlook of the world, “The
universe is not finite in the sense of physically unboundedness since there is no
special center in the universe, and hence the outermost sphere cannot be a boundary.”
At the same time, he argued finiteness of the universe, by which he meant to
say “privatively infinite” because “the world cannot be conceived of as finite,
albeit it is not infinite” (De Docta ignorantia; 1440). This rather contradictory
dictum elaborated in the ground-breaking book is a consequence of his analysis
of conceivability and a parallelism between the universe and God.

A 100 years later, a dramatic turnabout took place. The heliocentric the-
ory proposed by Nicolaus Copernicus (1473–1543) in his De revolutionibus or-
bium coelestium brings out the apparent retrograde motion of planets better than
Ptolemy’s theory. He already got his ideas—relying largely on Arabic astronomy
typified by al-Battānı̄20 (ca. 858 CE–929 CE)—some time before 1541 ( Commen-
tariolus), but resisted, in spite of his friends’ persuasion, to make his theory public
since he was afraid of being a target of contempt. It was in 1543, just before his
death, that his work (with a preface which puts the accent on the hypothetical nature
of the contents) was brought out.

Now, what did Copernicus think about the size of the universe? His model of
the universe is spherical with the outermost consisting of motionless, fixed stars;
thus being not much different from Aristotle’s model in this respect. Meanwhile,
Giordano Bruno (1548–1600) argued against the outermost sphere (while accepting
Copernicus’ theory), reasoning that the infinite power of God would not have
produced a finite creation. He was quite explicit in his belief that there is no special
place as the center of the universe (De l’infinito universo et mondi, 1584); thus
indicating that the universe is endless, limitless, and homogeneous. His outspoken
views, containing Hermetic elements, scandalized Catholics and Protestants alike.21

19In his masterwork Summa Theologiae, Aquinas asserts that God is perfect, complete, and
embodies actual infinity. To reconcile his assertion with Aristotle’s doctrine, he says, “God is an
infinite that has bounds.”
20His work Kitāb az-Zı̄j (Book of Astronomical Tables), translated into Latin as De Motu Stellarum
by Plato Tiburtinus in 1116, was quoted by Tycho Brahe, Kepler and Galileo.
21Some modern scholars consider him as a magus, not a pioneer of science because Hermeticism
is an ancient spiritual and magical tradition. Others, however, have argued that the magical world-
view in Hermeticism was a necessary precursor to the Scientific Revolution.
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Consequently, he was condemned as an impenitent heretic and eventually burned
alive at the stake after 8 years’ solitary confinement.

Bruno’s view was partly shared by his contemporary Thomas Digges (1546–
1595). He was the first to expound the Copernican system in English. In an appendix
to a new edition of his father’s book A Prognostication everlasting, Digges discarded
Copernicus’ notion of a fixed shell of immovable stars, presuming infinitely many
stars at varying distances (1576)—a more tenable reasoning than Bruno’s. What
should be thought over here is that the religious atmosphere in England in his time
was different from that in the Continent because of the English Reformation that
started in the reign of Henry VIII.

Interrupting the chronological account, we shall go back to ancient Greece,
where we find forerunners of Cusanus, Copernicus, and Bruno. Among them,
Archytas of Tarentum (428 BCE–347 BCE) is a precursor of Bruno. He inferred
that any place in our space looks the same, and hence no boundary can exist;
otherwise we would have a completely different sight at a boundary point. He thus
concluded infiniteness of the universe.22 The Pythagorean Philolaus (ca. 470 BCE–
ca. 385 BCE) relinquished the geocentric model, saying that the Earth, Sun, and
stars revolve around an unseen central fire. As alluded to in Archimedes’ work
Sand Reckoner, Aristarchus of Samos (ca. 310 BCE–ca. 230 BCE)—apparently
influenced by Philolaus—had speculated that the sun is at the center of the solar
system for the reason that the geocentric theory is against his conclusion that the sun
is much bigger than the moon. In his work On the Sizes and Distances, he figured out
the distances and sizes of the sun and the moon, under the assumption that the moon
receives light from the sun. In the Sand Reckoner, Archimedes himself harbored the
ambition to estimate the size of the universe in the wake of Aristarchus’ heliocentric
spherical model. To this end, he proposed a peculiar number system to remedy the
inadequacies of the Greek one and expressed the number of sand grains filling a
cosmological sphere. The presupposition he made is that the ratio of the diameter of
the universe to the diameter of the orbit of the earth around the sun equals the ratio
of the diameter of the orbit of the earth around the sun to the diameter of the earth.

Aristarchus’ heliocentric model was espoused by Seleucus of Seleucia, a Hel-
lenistic astronomer (born ca. 190 BCE), who developed a method to compute
planetary positions. In the end, however, the Greek heliocentrism had been long
forgotten. Even Hipparchus who undertook to find a more accurate distance between
the sun and the moon took a step backwards.

Now in passing, we shall make special mention of Alexandria founded at the
mouth of the Nile in 332 BCE by Alexander the Great, after his conquest of Egypt.
It was Ptolemy I, the founder of the Ptolemaic dynasty, who raised the city to a
center of Hellenistic culture, an offspring of Greek culture that flourished around the

22Anaximander, belonging to the previous generation, conceived a mechanical model of the world
based on a non-mythological explanatory hypothesis, and alleged that the Earth has a disk shape
and is floating very still in the center of the infinite, not supported by anything, while Anaxagoras
portrayed the sun as a mass of blazing metal, and postulated that Mind (νοῦς, Nous) was the
initiating and governing principle of the cosmos (κόσμος).
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Alexandria

Syene

Fig. 6.2 The circumference of the earth

Mediterranean after the decline of Athens. He and his son Ptolemy II—both held
academic activities in high esteem—established the Great Museum (Μουσεῖον),
where many thinkers and scientists from the Mediterranean world studied and
collaborated with each other. Archimedes stayed there sometime in adolescence.

Prominent among them is Eratosthenes of Cyrene (ca. 276 BCE–ca. 195 BCE),
the third chief librarian appointed by Ptolemy II and famous for an algorithm for
finding all prime numbers.23 Pushing further the view about the spherical earth, he
adroitly calculated the meridian of the earth. The outcome was 46,620 km, about
16% greater than the actual value. His work On the measurement of the earth was
lost, but the book On the circular motions of the celestial bodies by Cleomedes (died
ca. 489 CE) explains Eratosthenes’ deduction relying on a property of parallels and
the observation that at noon on the summer solstice, the sun casts no shadow in
Syene (now Aswan), while it casts a shadow on one fiftieth of a circle (7.2◦) in
Alexandria on the same degree of longitude as Syene (Fig. 6.2). His resulting value
is deduced from the distance between the two cities (5040 stades= 925 km), which
he inferred from the number of days that caravans require for travelling between
them.

The Ptolemaic dynasty lasted until the Roman conquest of Egypt in 30 BCE, but
even afterwards Alexandria maintained its position as the center of scientific activity
(see Sect. 6.11).

Finishing the excursion into ancient times, we shall turn back to the later stage of
the Renaissance, the age when science was progressively separated from theology,
and scientists came to direct their attention to scientific evidence rather than to
theological accounts (thus science was becoming an occasional annoyance to the
religious authorities). Representative in this period (religiously tumultuous times)
are the Catholic Galileo and the Protestant Johannes Kepler (1571–1630); both gave
a final death blow to Aristotelian/Ptolemaic theory.

23Archimedes’ Method mentioned in Footnote 11 takes the form of a letter to Eratosthenes.
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Fig. 6.3 Kepler’s model of the Solar system

Kepler discovered the three laws of planetary motion, based on the data of Mars’
motion recorded by Tycho Brahe (1546–1601).24 His first and second laws were
elaborated in the Astronomia nova (1609). The first law asserts that the orbit of a
planet is elliptical in shape with the center of the sun being located at one focus. The
second law says that a line segment joining the sun and a planet sweeps out equal
areas in equal intervals of time. The third law stated in the Epitome Astronomiae
Copernicanae (1617–1621) and the Harmonices Mundi (1619) maintains that the
square of the orbital period of a planet is proportional to the cube of the semi-major
axis of its orbit.

Before this epoch-making discovery, however, he attempted to explain the
distances in the Solar system by means of “regular convex polyhedra” inscribing and
circumscribed by spheres, where the six spheres separating those solids correspond
to Saturn, Jupiter, Mars, Earth, Venus, and Mercury (Mysterium Cosmographicum,
1596; Fig. 6.3). He also rejected the infiniteness of the universe, on the basis of an
astronomical speculation on the one hand, and on the traditional scholastic doctrine

24Tycho Brahe, the last of the major naked-eye astronomers, rejected the heliocentricism. His
model of the universe is a combination of the Ptolemaic and the Copernican systems, in which
the planets revolved around the Sun, which in turn moved around the stationary Earth.
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on the other (for this reason, Kepler is portrayed as the last astronomer of the
Renaissance, and not the first of the new age).

Galileo was not affected by Aristotelian prejudice that an experiment was an
interference with the natural course of Nature. Without performing any experiment
at all, medieval successors of Aristotle insisted, for instance, that a projectile is
pushed along by the force they called “impetus,” and if the impetus is expended,
the object should fall straight to the ground. At the apogee of his scientific career,
Galileo had conducted experiments on projectile motion, and observed that their
trajectories are always parabolic (1604–1608). He further investigated the relation
between the distance d an object (say, a ball) falls and the time t that passes during
the fall, and found the formula d = 1

2gt
2 (in modern terms), where g = 9.8 m/s2,

the gravitational acceleration (Discorsi). The crux of this formula is that the drop
distance does not depend on the mass of a falling object, contrary to Aristotle’s
prediction (Physics, IV, 8, 215a25).25

Galileo turned his eyes on the universe. With his handmade telescope, he made
various astronomical observations and confirmed that four moons orbited Jupiter.
This prompted him to defend the heliocentricism, for provided that Aristotle were
right about all things orbiting earth, these moons could not exist (Sidereus Nuncius,
1610). As an inevitable consequence, his Copernican view led to the condemnation
at the Inquisition (1616, 1633). After being forced to racant, he was thrown into
a more thorny position than Kepler, and had to avoid dangerous issues that may
provoke the Church. Regarding the size of the universe, he denied the existence of
the celestial sphere as the limit, while he was reluctant to say definitely that the
universe is infinite, because of censorship by the Church. In a letter to F. Liceti
on February 10, 1640, Galileo says, “the question about the size of the universe
is beyond human knowledge; it can be only answered by the Bible and a divine
revelation.”

Next to Kepler and Galileo are Descartes and Pascal, the intellectual heroes of
seventeenth-century France, who laid the starting point of the Enlightenment with
their inquiries into truth and the limits of reason.

René Descartes (1596–1650), whose natural philosophy agrees in broad lines
with Galileo’s one, defended the heliocentrism, by saying that it is much simpler and
distinct, but hesitated to make his opinion public upon the news of the Inquisition’s
conviction of Galileo (1633). As regards the size of the universe, he maintained at
first that the universe is finite; but later became ambivalent. In a letter in 1649 to the
rationalist theologian H. More of Cambridge, he conceded, after a long dispute, that
the universe must have infinite expanse because one cannot think of the limit; for if
the limit exists, one cannot help but think of the outside of space which must be the
same as our space.

While, for Descartes, the self is prior and independent of any knowledge of the
world, Blaise Pascal (1623–1662) pronounced that the order is reversed; that is,

25The mean speed theorem due to the Oxford Calculators (nothing but the formula for the area of
a trapezoid from today’s view) is a precursor of “the law of falling bodies.”
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knowledge of the world is a prerequisite to knowledge of the self. In the Pensées
(1670), in comparison with the disproportion between our justice and God’s, he
writes, “Unity added to infinity does not increase it at all [. . . .]: the finite is
annihilated in the presence of the infinite and becomes pure nothingness” (fragment
418). Further, he says, “Nature is an infinite sphere of which the center is everywhere
and the circumference nowhere” (fragment 199).26

As described hitherto, the posture to pay attention to the universe is a steady
tradition of European culture. In its background, philosophy was nurtured in the
bosom of cosmogony, and could not be separated from religion because of the
intimacy between them. Especially after the rise of Christianity, Western scholars
had to be confronted, at the risk of their life in the worst case, with God as a creator.
Even after the tension between science and religion was eased, scientists could not
be entirely free from God, whatever His image is. Such milieu led quite naturally to
probing questions about our universe in return.

In summary, “whether the universe is finite or infinite,” whatever it means, is an
esoteric issue in religion, metaphysics, and astronomy in Europe that had intrigued
and baffled mankind since dim antiquity. What matters most of all is whether the
outside is necessary when we talk about finiteness of the universe.

6.4 From Descartes to Newton and Leibniz

Intuition for space surrounding us was the driving force for people to puff up their
image of the universe. Needless to say, from the ancient times to the Middle Ages
and even the early modern times, the mental image that nearly all people had is,
if not being particularly conscious about it, the one described by Euclidean space,
the model of our space named after the Alexandrian Euclid (Εὐκλείδης; ca. 300
BCE; see Sect. 6.9 for the details). Even the advocates of the spherical model
of the universe imagined Euclidean space as the entity embracing all. Synthetic
geometry executed on this model is what we call Euclidean geometry. It started with
a collection of geometrical results acquired in Egypt and Mesopotamia by empirical
investigations or experience of land surveys and constructions of magnificent and
imposing structures, and had been systemized, as the search of universals, through
the efforts of Greek geometers.

Putting it briefly, Euclidean space is homogeneous in the sense that there is no
special place, and it is isotropic; i.e., there is no special direction.27 These features
are not expressly indicated in Greek geometry, but are guaranteed by a property

26This sentence, reminiscent of Cusanus’ view, may be from the Liber XXIV philosophorum
(Book of the 24 Philosophers), an influential philosophical and theological medieval text, usually
attributed to Hermes Trismegistus, the purported author of the Corpus Hermeticum.
27Euclidean space holds one more significant aspect expressed by a property of parallels, but its
true meaning had not been comprehended for quite a while; see Sect. 6.10.
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of congruence28; namely any geometric figure can be rotated and moved to an
arbitrary place while keeping its shape and size. What should be pinpointed here
is that it was not until the nineteenth century that people explicitly conceptualized
Euclidean space (or space as a mathematical object which fits in with our spatial
intuition). Until then, geometry meant only Euclidean geometry, and the space
where geometry is performed was considered as an a priori entity, or what amounts
to the same thing, our space—a place of storage in which objects are recognized,
and a place of manufacture in which objects are constructed—was not an entity for
which we investigate whether our understanding of it is right or wrong, thereby all
the propositions of geometry being considered “absolute truth.”

As stated above, Euclidean geometry had been a lofty edifice for nearly 2000
years that nobody could break down. Only the appearance changed when Descartes
invented the so-called algebraic method. This epoch-making method is elucidated
in his La Géométrie [5], one of the three essays attached to the philosophical and
autobiographical treatise Discours de la méthode pour bien conduire sa raison, et
chercher la vérité dans les sciences (1637).29

Descartes’ prime concern was, though he was trained in religion with the still-
authoritarian nature, to find principles that one can know as true without any
scruples. In the self-imposed search for certainty, he linked philosophy with science,
and had the confidence that certainty could be found in the mathematical proofs
having the apodictic character. Upon his emphasis on lucid methodology and
dissatisfaction with the ancient arcane method, as already glimpsed in his Regulae
ad Directionem Ingenii (1628), he attempted to create “universal mathematics” by
bridging the gap between arithmetic and geometry that used to be thought of as dif-
ferent terrains. Indeed, the Greeks definitely distinguished geometric quantities from
numerical values, and even thought that length, area, and volume belong to different
categories, thus lumping them together makes no sense. Under such shackles (and
being devoid of symbolic algebra), the “equality,” “addition/subtraction,” and the
“large/small relation” for two figures in the same category were defined by means
of geometric operations.30 Specifically, they considered that two polygons (resp.

28 Prop. 4 in the Elements, Book I, is the first of the congruence propositions.
29La Géométrie consists of Book I (Des problèmes qu’on peut construire sans y employer que
des cercles et des lignes droites), Book II (De la nature des lignes courbes), and Book III (De la
construction des problèmes solides ou plus que solides). The other two essays are La Dioptrique
and Les Météores.
30The Greeks had difficulty to handle irrationals in their arithmetic and were forced to replace
algebraic manipulations by geometric ones [22]. Actually, geometry had been thought of as far
more general than arithmetic as seen in Aristotle’s words, “We cannot prove geometric truths by
arithmetic” (Posterior Analytics, I, 7; see also Plato’s Philebus, 56d).

The word “algebra,” stemmed from the Arabic title al-Kitāb al-mukhtasar fi hisāb al-jabr
walmuqābala (The Compendious Book on Calculation by Completion and Balancing) of the book
written approximately 830 CE by al-Khwārizmı̄ (ca. 780–ca. 850) (Remark 2.1 (2)), was first
imported into Europe in the early Middle Ages as a medical term, meaning “the joining together
of what is broken.” In addition, algorithm, meaning a process to be followed in calculations, is a
transliteration of his surname al-Khwārizmı̄.
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polyhedra) are “equal” if they are scissors-congruent; i.e., if the first can be cut into
finitely many polygonal (resp. polyhedral) pieces that can be reassembled to yield
the second.

Remark 4.1 Any two polygons with the same numerical area are scissors-congruent
as shown independently by W. Wallace in 1807, Farkas Bolyai in 1832, and P.
Gerwien in 1833. Gauss questioned whether this is the case for polyhedra in two
letters to his former student C. L. Gerling dated 8 and 17 April, 1844 (Werke, VIII,
241–42). In 1900, Hilbert put Gauss’s question as the third problem in his list of the
23 open problems at the second ICM. M. W. Dehn, a student of Hilbert, found two
tetrahedra with the same volume, but non-scissors-congruent (1901); see [37]. ��

In his essay La Géométrie, Descartes made public that all kinds of geometric
magnitude can be unified by representing them as line segments, and introduced
the fundamental rules of calculation in this framework.31 His idea is to fix a unit
length, with which he defines addition, subtraction, multiplication, division, and the
extraction of roots for segments, appealing to the proportional relations of similar
triangles and the Pythagorean Theorem, as indicated in Fig. 6.4. Then he adopts
a single axis to represent these operations; thereby replacing the Greek geometric
algebra by “numerical” algebra. On this basic format, he handles various problems
for a class of algebraic curves. Priding himself on his invention, he says, in a fond
familiar letter dated November 1643 to Elisabeth (Princess Palatine of Bohemia),
that extra effort to make up the constructions and proofs by means of Euclid’s
theorems is no more than a poor excuse for self-congratulation of petty geometers
because such effort does not require any scientific mind.

Afterwards, Franciscus van Schooten (1615–1660), who met Descartes in Leiden
(1632) and read the still-unpublished La Géométrie, translated the French text
into Latin, and endeavored to disseminate the algebraic method to the scientific
community (1649). In the second edition (1659–1661), he added annotations and
transformed Descartes’ approach into a systematic theory, which made it far more
accessible to a large readership.

31A letter dated March 26, 1619 to I. Beeckman indicates that Descartes already held a rough
scheme at the age of 22. Pierre de Fermat (1601–1665) argued a similar idea in his Ad locos plano
et solidos isagoge (1636), though not published in his life time.
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Descartes’ method, along with algebraic notations dating back to François Viète
(1540–1603) who took a momentous step towards modern algebra,32 was inherited
as analytic geometry afterwards. With this progression, geometric figures were to be
transplanted to algebraic objects in the coordinate plane R2 or the coordinate space
R

3.33 What is more, this new discipline was integrally connected with the calculus
initiated by Issac Newton (1642–1726) and Gottfried Wilhelm von Leibniz (1646–
1716), independently and almost simultaneously, which is to be a vital necessity
when we talk about the shape of our universe.

Newton learnt much from the Exercitationes mathematicae libri quinque (1657)
by van Schooten and Clavis Mathematicae (1631) by William Oughtred (1574–
1660) when he was a student of Trinity College, Cambridge. “Fluxion” is Newton’s
underlying term in his differential calculus, meaning the instantaneous rate of
change of a fluent, a varying (flowing) quantity. His idea, to which he was led by
personal communication with Issac Barrow (1630–1677) and also by Wallis’ book
Arithmetica infinitorum (1656),34 is stated in two manuscripts; one is of October
1666 written when he was evacuated in a neighborhood of his family home at
Woolsthorpe during the Great Plague, and another is the Tractatus De Methodis
Serierum et Fluxionum (1671). In his calculus, Newton made use of power series in
a systematic way.

Meanwhile, Leibniz almost completed calculus while staying in Paris (1673–
1676) as a diplomat of the Electorate of Mainz in order to get Germany back on
its feet from the exhaustion caused by the 30 Years’ War. Although the aspired
end of diplomacy was not attained, he had an opportunity to meet Christiaan
Huygens (1629–1695), a leading scientist of his time, who happened to be invited
by Louis XIV as a founding member of the Académie des Sciences. Very helpful
for him was the suggestion by Huygens to read Pascal’s Lettre de Monsieur
Dettonville· · · (1658). Further, his perusal of Descartes’ work was an assistance
in strengthening the basis of his thought. Around the time when Leibniz returned
to Germany, he improved the presentation of calculus, and brought it out as two
papers; Nova methodus pro maximis et minimis, and De geometria recondita et
analysi indivisibilium atque infinitorum.35

Their calculus, though still something of a mystery (Remark 15.1 (2)), provided
a powerful tool which enabled to handle more complicated geometric figures

32Viète, In artem analyticem isagoge (1591).
33It was Leibniz who first introduced the “coordinate system” in its present sense (De linea ex
lineis numero infinitis ordinatim ductis inter se concurrentibus formata, easque omnes tangente,
ac de novo in ea re Analysis infinitorum usu, Acta Eruditorum, 11 (1692), 168–171). Incidentally,
Oresme used constructions similar to rectangular coordinates in the Questiones super geometriam
Euclidis and Tractatus de configurationibus qualitatum et motuum (ca. 1370), but there is no
evidence of linking algebra and geometry.
34John Wallis (1616–1703) propagated Descartes’ idea in Great Britain through his work.
35His papers were published in Acta Eruditorum, 3 (1684), 467–473 and 5 (1686), 292–300. In the
second paper, he states, “With this idea, geometry will make a far more greater strides than Viète’s
and Descartes’.”
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than the ones that Greek geometers treated in an ad hoc manner.36 Indeed,
differential calculus provides a unified recipe to find tangents of a general curve (say,
transcendental curves Descartes did not deal with), and integral calculus (called the
“inverse tangent problem” by Leibniz) allows more latitude in calculating the area of
a general figure without any ingenious trick. Paramountly important is the discovery
that tangent (a local concept) and area (a global concept) are linked through the
fundamental theorem of calculus (FTC). 37

There are other lines of evolution of Descartes’ method and its offspring.
Analytic geometry paved the way for higher-dimensional geometry (Sect. 6.14),
which was to be incorporated into Riemann’s theory of curved spaces (Sect. 6.15).
Algebraic geometry is regarded as the ultimate incarnation of Cartesian geometry,
which came of age from the late nineteenth century to the early twentieth century.
Descartes’ method also prompted to set up mathematical theories in a strictly
logical manner, not relying on geometry, but relying on arithmetic wherein concepts
involved are entirely framed in the language of real numbers or systems of such
numbers (Sect. 6.16). This signifies in some sense that mathematicians eventually
become aware of mathematical reality—a sort of Plato’s world of Forms (είδος or
its cognates)—distinguished from physical reality or the empirical world.

Remark 4.2

(1) Symbols and symbolization has played a significant role in the history of
mathematics. Prior to Viète, the symbols +,− were used by H. Grammateus
in Ayn new Kunstlich Buech (1518). Actually, these symbols already appeared
in 1489 to indicate surplus and deficit for the mercantile purpose. In 1525, the
symbol

√·was invented by C. Rudolff, a student of Grammateus. Subsequently,
R. Recorde adopted the equal sign = in 1557. After Viète, Oughtred innovated
the symbol× for multiplication in his Clavis Mathematicae (1631). In the same
year, the book Artis analyticae praxis ad aequationes algebraicas resolvendas
by Thomas Harriot (ca. 1560–1621), which left a great mark on the history
of symbolic algebras, was brought out posthumously, wherein the symbols <
and > representing the magnitude relation appear. For all of this, the usage of
symbols in Descartes’ time was almost in agreement with that of today.

(2) When integral calculus was still in its nascent stage, Kepler computed the
volumes of solids of revolution.38 After a while, Bonaventura Cavalieri (1598–
1647), a disciple of Galileo, proposed a naive but a systematic method, known
as Cavalieri’s principle, to find areas and volumes of general figures, which

36In the Elements, Book III, Def. 2, Euclid says, “a straight line is said to touch a circle which,
meeting the circle and being produced, does not cut the circle.” Curiously, in the Metaphysics, III,
998a, Aristotle reports that Protagoras (ca. 490 BCE–ca. 420 BCE) argued against geometry that a
straight line cannot be perceived to touch a circle at only one point.
37I. Barrow, who strongly opposed to Descartes’ method in contrast with Wallis, knew the FTC in
a geometric form (Prop. 11, Lecture 10 of his Lectiones Geometricae delivered in 1664–1666). A
transparent proof was given by Leibniz in his De geometria, 1686.
38Nova stereometria doliorum vinariorum (1615).
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is thought of as intermediating between the Greek quadrature and integral
calculus.39 The linchpin of his innovation is the notion of indivisibles; he
regards, for instance, a plane region as being composed of an infinite number of
parallel lines, each considered to be an infinitesimally thin rectangle.

(3) Although calculus initiated by Newton and Leibniz was the same in essence,
their styles differed in a crucial way. The difference was reflected in the notation
they used. For instance, Leibniz invented the symbol dx/dt , while Newton
employed the dot notation ẋ. This difference gave rise, as often said, to the fact
that the British mathematics under a baneful influence of Newton’s authority
had fallen seriously behind the Continental counterpart. They were jolted by the
Mécanique Céleste by Pierre-Simon Laplace (1749–1827) which was affiliated
with the “Leibnizian school.” John Playfair (1748–1819) says, “We will venture
to say that the number of those in this island who can read the Mécanique
Céleste with any tolerable facility is small indeed” (1808).

(4) Until the nineteenth century through a pre-classical theory implicit in the work
of Newton, Leibniz and their successors, real numbers had been grasped as
points on a straight line—the vision that dates back to Descartes and is credited
to J. Wallis—or “something” (without telling what they are) approximated by
rational numbers.40

Thus calculus had been built on a fragile base. In a letter to his benefactor
dated March 29, 1826, Niels Henrik Abel (1802–1829) writes, “the tremendous
obscurity one undoubtedly finds in analysis today. It lacks all plan and system
[· · · ] The worst of it is, it has never been treated with rigor. There are very
few theorems in advanced analysis that have been demonstrated with complete
rigor” (Remark 19.1).

An entrenched foundation to calculus was furnished by Richard Dedekind
(1831–1916). He constructed the real number system by appealing to what we
now call the method of Dedekind cuts, partitions of the rational numbers into
two sets such that all numbers in one set are smaller than all numbers in the
other (1872).41 To say the least, this understanding heralds the emancipation of
analysis from geometry.

Long ago, Eudoxus developed an idea similar to Dedekind’s in essence.
Before that, Greek geometers had tacitly assumed that two magnitudes α, β are
always commensurable (σύμμετρος); i.e., there exist two natural numbersm,n
such that mα = nβ. Thus, with the discovery of incommensurable magnitudes
which results from the Pythagorean Theorem, the issue arose as to how to define
equality of two ratios. The impeccable definition attributed to Eudoxus is :
“Magnitudes are said to be in the same ratio, the first to the second and the

39Geometria indivisibilibus continuorum nova quadam ratione promota (1635, 1653).
40Simon Stevin (1548–1620) renovated the notation for decimal fractions to make all computations
easier, which contributed to comprehension of the nature of real numbers. In the 35-page booklet
De Thiende (1585), he expressed 27.847 by 27 0©8 1©4 2©7 3© for instance.
41In the same year, Cantor arrived at another definition of the real numbers (Footnote 147).



234 T. Sunada

third to the fourth, when, if any equimultiples whatever are taken of the first
and third, and any equimultiples whatever of the second and fourth, the former
equimultiples alike exceed, are alike equal to, or alike fall short of, the latter
equimultiples respectively taken in corresponding order” [7, Book V, p. 114].
In modern terminology, this is expressed as “Given four magnitudes α, β, γ, δ,
the two ratios α:β and γ :δ are said to be the same if for all natural numbers
m,n, it be the case that according as mα � nβ, so also is mγ � nδ.”

Related to the theory of proportions is the anthyphairesis (ἀνθυφαίρεσις), a
method to find the ratio of two magnitudes. A special case is Euclid’s algorithm
used to compute the greatest common divisors of two numbers (Elements, Book
VII, Prop. 2; see [20]). Specifically, for two magnitudes α > β, it proceeds as
α = n1β + γ1 (0 < γ1 < β), β = n2γ1 + γ2 (0 < γ2 < γ1), γ1 =
n3γ2 + γ3 (0 < γ3 < γ2), γ2 = n4γ3 + γ4 (0 < γ4 < γ3), · · · (Book X,
Prop. 2). Here, α and β are commensurable if and only if this process terminates
after a finite number of steps (i.e., γn = 0 for some n). This idea was handed
down to us as the technique to obtain continued-fraction expansions afterward.
Namely, for positive real numbers α, β, eliminating γi in the above, we have

α

β
= n1 + 1

n2+
1

n3+
1

n4+ · · · (= [n1, n2, n3, n4 . . .]). ��

6.5 A New Approach in Classical Geometry

Leaving Euclidean geometry aside for a moment, we shall touch on projective
geometry, the embryonic subject that came up during the Renaissance period
and had matured in the nineteenth century. This new approach is exclusively
concerned with quantity-independent properties such as “three points are on a line”
(collinearity) and “three lines intersect at a point” (concurrency) that are invariant
under projective transformations (the left of Fig. 6.5).42

Projective geometry has a historical link to (linear) perspective, an innovative
skill in drawing contrived by Filippo Brunelleschi (1377–1446), which allowed
Renaissance artists to portray a thing in space and landscapes as someone actually
might see them.43 The theoretical aspect of perspective was investigated by Leon
Battista Alberti (1404–1472) and Piero della Francesca (1416–1492). In the preface
of his book Della Pittura (1435) dedicated to Brunelleschi, Alberti emphatically

42Imitating this wording, one may say that Euclidean geometry is a geometry that treats invariant
properties under congruence transformations. Such a perspective is ascribed to Christian Felix
Klein (1849–1925), who promulgated his scheme in the booklet Vergleichende Betrachtungen
über neuere geometrische Forschungen (“Erlangen Program” in short) in 1872.
43One of the earliest to have used perspective is Masaccio. He limned the San Giovenale Triptych
(1422) based on the principles he learned from Brunelleschi, which emblematizes the transition
from medieval mysticism to the Renaissance spirit.
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Fig. 6.6 Alberti’s drawing in Della Pictura and Dürer’s illustration

writes, “I used to marvel and at the same time to grieve that so many excellent
and superior arts and sciences from our most vigorous antique past could now
seem lacking and almost wholly lost. · · · Since this work [due to Brunelleschi]
seems impossible of execution in our time, if I judge rightly, it was probably
unknown and unthought of among the Ancients” (translated by J. R. Spencer).
Piero’s book De Prospectiva Pingendi (1475) exemplifies the effective symbiosis
of geometry and art; he actually had profound knowledge of Greek geometry and
made a transcription of a Latin translation of Archimedes’ work.

The “Renaissance Man” Leonardo da Vinci (1452–1519)—stimulated by Al-
berti’s book—fully deserves his reputation as a true master of perspective. His
technique is particularly seen in his study for A Magis adoratur (ca. 1481). He
says, “Perspective is nothing else than seeing a place or objects behind a plane
of glass, quite transparent, on the surface of which the objects behind the glass
are to be drawn” [30]. Albrecht Dürer (1471–1528), a weighty figure of the
Northern Renaissance who shared da Vinci’s pursuit of art, discussed in his work
Underweysung der Messung (1525) an assortment of mechanisms for drawing in
perspective from models (the right of Fig. 6.6). This work, in which he touched on
“Doubling the cube,” is the first on advanced mathematics in German.



236 T. Sunada

Subsequently, Federico Commandino (1506–1575) published the work enti-
tled Commentarius in planisphaerium Ptolemaei (1558). This, a commentary
on Ptolemy’s work Planisphaerium, includes an account of the stereographic
projection of the celestial sphere, and is a work on perspective from a mathematical
viewpoint (concurrently, he translated several works of ancient scholars).

Remark 5.1 Leonardo drew the illustrations of the regular polyhedra in the book
De divina proportione (1509) by Fra Luca Bartolomeo de Pacioli (ca. 1447–1517),
a pupil of Piero. The theme of the book is mathematical and artistic proportions,
especially the golden ratio (divine proportion)—the positive solution (1+√5)/2 =
[1, 1, 1, . . .] of the equation x2 = x + 1—and its application in architecture. The
golden ratio appears in the Elements, Book II, Prop. 11; Book IV, Prop. 10–11; Book
XIII, Prop. 1–6, 8–11, 16–18,44 and is commonly represented by the Greek letter φ
after the sculptor Pheidias (Φειδίας, ca. 480 BCE–ca. 430 BCE) who is said to have
employed it in his work. ��

The origin of projective geometry can be traced back to the work of Apollonius of
Perga on conic sections and Pappus of Alexandria (ca. 290 CE–ca. 350 CE).45 In his
Collection, Book VII, where Pappus enunciated his hexagon theorem, he made use
of a concept equivalent to what we call now the cross-ratio,46 which was to enrich
projective geometry from the quantitative side since it is invariant under projective
transformations. Here the cross-ratio of collinear points A, B, C and D is defined
as [A,B,C,D] = (AC · BD)/(BC · AD), where each of the distances is signed
according to a consistent orientation of the line.47

Projective geometry as a solid discipline was essentially initiated by Girard
Desargues (1591–1661), a coeval of Descartes. In 1639, motivated by a practical
purpose pertinent to perspective, he published the Brouillon project d’une atteinte
aux événemens des rencontres du Cone avec un Plan.48 Pascal took a strong interest
in Desargues’ work, and studied conic sections in depth at the age of 16. Philippe

44In Book VI, Def. 3, Euclid says, “A straight line is said to have been cut in extreme and mean
ratio (ἄκρος καὶ μέσος λόγος) when, as the whole line is to the greater segment, so is the greater to
the less.” In today’s terms, “the segment AB is cut at C in extreme and mean ratio when AB:AC=
AC:CB.” Note that AB/AC equals the golden ratio. Kepler, who proved that φ is the limit of the
ratio of consecutive numbers in the Fibonacci sequence, described it as “a fundamental tool for
God in creating the universe” (Mysterium Cosmographicum).
45The first to have studied conic sections is Menaechmus (ca. 380 BCE–ca. 320 BCE), who
used them to solve “doubling the cube.” The names ellipse (ἔλλειψις), parabola (παραβολη) and
hyperbola (ύπερβολη) for conic curves were introduced by Apollonius.
46[Editor’s note] The notion of cross ratio was already known to Menelaus of Alexandria (c. 70–c.
140); see [28, p. 340ff].
47The cross-ratio of real numbers x1, x2, x3, x4 is defined by [x1, x2, x3, x4] := (x3 − x1)(x4 −
x2)/(x3 − x2)(x4 − x1). The projective invariance of cross-ratios amounts to the identity
[T (x1), T (x2), T (x3), T (x4)] = [x1, x2, x3, x4], where T (x) = (ax+ b)/(cx + d) (ad − bc �= 0).
48The celebrated Desargues’ theorem showed up in an appendix of the book Exemple de l’une des
manières universelles du S.G.D.L. touchant la pratique de la perspective published in 1648 by his
friend A. Bosse.
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de La Hire (1640–1718) was affected by Desargues’ work, too. He is most noted
for the work Sectiones Conicae in novem libros distributatae (1685). However,
partly because of the spread of Descartes’s method among the mathematical
community in those days and because of his peculiar style of writing, his work
remained unrecognized until it was republished in 1864 by Noël-Germinal Poudra.
Without being aware of Desargues’ work, Jean-Victor Poncelet (1788–1867) laid
a firm foundation for projective geometry in his masterpiece Traité des propriétés
projectives des figures (1822).

In any case, projective geometry falls within classical geometry at this moment;
but it has an interesting hallmark in view of infiniteness. Guidobaldi del Monte
(1505–1607) in the Perspectivae Libri VI (1600) and Kepler in his Astronomiae
pars optica (1604) proposed the idea of points at infinity. Subsequently, having in
mind the “horizon” in perspective drawing (Fig. 6.5), Desargues appends points at
infinity to the plane as idealized limiting points at the “end,” and argues that two
parallel lines intersect at a point at infinity. Later, the “plane plus points at infinity”
came to be termed the projective plane (Sect. 6.16).

6.6 Euclid’s Legacy in Physics and Philosophy

Not surprisingly, Euclidean geometry predominated in physics for a long time.
Salient is Newton who adopted Euclidean geometry as the base of his grand work
Philosophiae Naturalis Principia Mathematica (1687, 1713, 1726; briefly called the
Principia), in which he formulated the law of inertia,49 the law of motion, the law
of action-reaction and the law of universal gravitation.

It was in 1666, exactly the same year when he worked out calculus, that Newton
found a clue leading to the law of universal gravitation. Hagiography has it that he
was inspired, in a stroke of genius, to formulate the law while watching the fall of
an apple from a tree. Leaving aside whether this is a fact or not, all we can definitely
say is, he concluded that the force acting on objects on the ground (say, apples)
acts on the moon as well; he thus found the extraordinarily significant connection
between the terrestrial and celestial which had been thought of as being independent
of each other.

To go further with his subsequent observation, let O be the center of the
earth, and let P be the position of the moon. We denote by v and a the speed
and acceleration of P , respectively. The acceleration is directed towards O , and
a = v2/R, where R is the distance between O and P . If the orbital period of the
moon is T , then vT = 2πR, so that a = 4π2R/T 2. Next, applying Kepler’s third

49The law of inertia was essentially discovered by Galileo during the first decade of the seventeenth
century though he did not understand the law in the general way (the term “inertia” was first
introduced by Kepler in his Epitome Astronomiae Copernicanae). The general formulation of the
law was devised by Galileo’s pupils and Descartes (the Principles of Philosophy, 1644).
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law to a circular motion, we have R3 = cT 2 (c > 0). Hence a = 4π2cR−2 and
ma = 4π2mcR−2, which is the force acting on P in view of the law of motion,
and the law of universal gravitation follows. Conversely, based on his laws, Newton
derived Kepler’s laws through far-reaching deductions.50

Remark 6.1 We let x(t) = (
x(t), y(t), z(t)

) ∈ R
3 be the position of a point mass

(particle) in motion at time t . The law of motion is expressed as mẍ = F , where
m is the inertial mass of the particle, and F stands for a force. The law of universal
gravitation says that a point mass fixed at the origin O attracts the point mass at
x by the force F = −GMm‖x‖−3x,51 where G = 6.67408× 10−11 m3 kg−1 s−2

is the gravitational constant, and M is the gravitational mass at the origin. What
should be stressed is, as stated in the opening paragraph of the Principia, that the
inertial mass coincides with the gravitational mass under a suitable system of units
(this is by no means self-evident), so that the Newtonian equation is expressed as
ẍ = −GM‖x‖−3x, namely, the acceleration does not depend on the mass m as
Galileo observed for a falling object. Kepler’s laws of planetary motion are deduced
from this equation. ��

The Newton’s cardinal importance in the history of cosmology lies in his
understanding of physical space. According to him, Euclidean space is an “absolute
space,” with which one can say that an object must be either in a state of absolute rest
or moving at some absolute speed. To justify this, he assumed that the fixed stars can
be a basis of “inertial frame.” His bucket experiment,52 elucidated in the Scholium to
Book 1 of the Principia, is an attempt to support the existence of absolute motion.

Setting aside the theoretical matters, what is peculiar about the Principia is
that Newton adhered to the Euclidean style, and used laboriously the traditional
theory of proportions in Book V of the Elements and the results in Apollonius’
Conics even though he was well acquainted with Descartes’ work, which was, as a
matter of course, more appropriate for the presentation. He testified, writing about
himself in the third person, “By the help of the Analysis, Mr. Newton found out
most of Propositions of his Principia Philosophiae: but because the Ancients for
making things certain admitted nothing into Geometry before it was demonstrated
synthetically, he demonstrated the Propositions synthetically, that the System of
Heavens might be founded upon good Geometry. And this makes it now difficult

50Newton tried to reconfirm his theory of gravitation by explaining the motion of the moon
observed by J. Flamsteed, but the 3-body problem for the Moon, Earth and Sun turned out be
too much complicated to accomplish his goal (he planned to carry a desired result as a centerpiece
in the new edition of the Principia).
51Throughout, ‖ · ‖ and 〈·, ·〉 stand for norm and inner product, respectively.
52When a bucket of water hung by a long cord is twisted and released, the surface of water, initially
being flat, is eventually distorted into a paraboloid-like shape by the effect of centrifugal force. This
shape shows that the water is rotating as well, despite the fact that the water is at rest relative to
the bucket. From this, Newton concluded that the force applied to water does not depend on the
relative motion between the bucket and the water, but it results from the absolute rotation of water
in the stationary absolute space (Footnote 187).
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for unskillful Men to see the Analysis by which those Propositions were found out”
(Phil. Trans. R. Soc., 29 (1715), 173–224).

Apart from the style of the Principia, this epoch-making work (and its offspring)
was “the theory of everything” in the centuries to follow as far as the classical
description of the world is concerned. Indeed, Newton’s laws seemed to tap
all the secrets of nature, and hence to be the last word in physics. It was in
the nineteenth century that physical phenomena inexplicable by the Newtonian
mechanics were discovered one after another. A notable example is electromagnetic
phenomena which are in discord with his mechanics at the fundamental level; see
Remark 17.2 (4). Moreover various physicochemical phenomena called for entirely
new explanations as well, and eventually led to quantum physics.

Newton was a pious Unitarian. His theological thought had him say: “Space
is God’s boundless uniform sensorium.”53 This gratuitous comment to his own
comprehensive theory provoked a criticism from Leibniz, who said that God does
not need a sense organ to perceive objects. Moreover, on the basis of “the principle
of sufficient reason” and “the principle of the identity of indiscernibles,” Leibniz
claimed that space is merely relations between objects, thereby no absolute location
in space, and that time is order of succession. His thought was unfolded in a series of
long letters between 1715 and 1716 to a friend of Newton, S. Clarke.54 Having said
that, however, the existence of God is an issue which Leibniz could not sidestep. To
be specific, his principle of sufficient reason made him assert that nothing happens
without a reason, and that all reasons are ex hypothesi God’s reasons. One may
ask, for instance, “Why would God have created the universe here, rather than
somewhere else?” That is, when God created the universe, He had an infinite number
of choices. According to Leibniz, He would choose the best one among different
possible worlds. As will be explained later (Sect. 6.12), his insistence, though having
a strong theological inclination, is relevant to a fundamental physical principle.

At all events, the period that begins with Newton and Leibniz corresponds to the
commencement of the close relationship between mathematics and physics. From
then on, both disciplines have securely influenced each other.

Immanuel Kant (1724–1804), who stimulated the birth of German idealism, was
influenced by the rationalist philosophy represented by Descartes and Leibniz on
the one hand, and troubled by Hume’s thoroughgoing skepticism on the other.55

He felt the need to rebuild metaphysics to argue against Hume’s view. Being

53The medieval tradition had so much effect on Newton that he was deeply involved in alchemy
and regarded the universe as a cryptogram set by God. As J. M. Keynes says, he was not the first
of the age of reason, but the last of the magicians (Newton the Man, 1947).
54Clarke (1717), A Collection of Papers, which passed between the late Learned Mr. Leibniz, and
Dr. Clarke, In the Years 1715 and 1716.
55The empiricist David Hume is a successor of F. Bacon, T. Hobbes, J. Locke, and G. Berkeley.
He says that an orderly universe does not necessarily prove the existence of God (An Enquiry
Concerning Human Understanding, 1748). Hobbes, a critic of Aristotle, described the world as
mere “matter in motion,” maybe the most colorless depiction of the universe since the ancient
atomists, but he did not abandon God in his cosmology (Leviathan, 1651).
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also dissatisfied with the state of affairs surrounding metaphysics, in contrast to
the scientific model cultivated in his days, Kant strove to lay his philosophical
foundation of reason and judgement on secure grounds.

He was an enthusiast of Newtonian physics framed on Euclidean geometry, and
asked himself, “Are space and time real existences? Are they only determinations
or relations of things as Leibniz insists?” His inquiry brought him to the conclusion
that Euclidean geometry is the inevitable necessity of thought and inherent in nature
because our space (as an “absolute” entity) is a “sacrosanct” framework for all and
any experience. He also held that space (as a “relative” entity) is the “subjective
constitution of the mind” (see Sect. 6.22), He stressed further that mathematical
propositions are formal descriptions of the a priori structures of space and time.56

In the work Allgemeine Naturgeschichte und Theorie des Himmels (1755), Kant
discussed infiniteness of the universe. He believed that the universe is infinite,
because God is the “infinite being,” and creates the universe in proportion to his
power (recall Bruno’s view). In turn, he argues that it is not philosophically possible
to decide whether the universe is infinite or finite; that is, we are incapable of
perceiving so large distance, because the mind is finite.57

As Kant emphasized in the Kritik der reinen Vernunft (1781), abstract speculation
must be pursued without losing touch with reality grasped by intuition; otherwise
the outcome could be empty. This is not least the case for scientific knowledge. Yet
intuition about our space turned out to be a clinging constraint on us; it was not easy
to free ourselves from it.

6.7 Gauss: Intrinsic Description of the Universe

In Christianity, God is portrayed to be omnipresent, yet His whereabouts are
unknown. Nonetheless, the laity usually personify God (if not a person literally), and
believe that He “dwells” outside the universe (or empyrean). Imagining such a deity
is not altogether extravagant from the view that we will take up in investigating a
model of the universe though we do not posit the existence of God. What is available
in place of God is, of course, mathematics.58 Thus, we pose the question, “Is it
mathematically possible to tell how the universe is curved without mentioning any
outside of the universe?”

56Affected by the science in his time, Kant developed further the nebular hypothesis proposed by
E. Swedenborg in 1734 (this hypothesis that the solar system condensed from a cloud of rotating
gas was discussed later by Laplace in 1796).
57Hegel dismissed the claim that the universe extends infinitely.
58Robert Grosseteste (ca. 1175–1253) in medieval Oxford says, “mathematics is the most supreme
of all sciences since every natural science ultimately depends on it” (De Luce, 1225). He
maintained, by the way, that stars and planets in a set of nested spheres around the earth were
formed by crystallization of matter after the birth of the universe in an explosion.
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The answer is “Yes.” To explain why, let us take a look at smooth surfaces as
2D toy models of the universe.59 That is, we human beings are supposed to be
confined in a surface. Here space in which the surface is located is thought of as the
“outside,” and is called the ambient space. A person in the outside plays the role
of God incarnate. In our story, we allow him to exist for the time being; that is, we
investigate surfaces in an extrinsic manner. At the final stage, we are disposed to
remove him (and even the outside) from the scene, and to let the inhabitants in the
surface find a way to understand his universe. In other words, what we shall do is,
starting from an extrinsic study of surfaces, to look for some geometric concepts
with which one can talk about how surfaces are curved without the assistance of the
outside. Such concepts will be called intrinsic, one of the most vital key terms in
this essay.

A few words about intrinsicness. Imagine that an inhabitant confined in a surface
wants to examine the structure of his universe. The only method he holds is, like us,
measuring the distance between two points and the angle between two directions.
In our universe, we use the light ray to this end, which in a uniform medium
propagates along shortest curves (straight lines) in space; a very special case of
Fermat’s principle of least time saying that the path taken between two points by
a light ray is the path which can be traversed in the least time.60 Hence shortest
curves on a surface are regarded as something similar to paths traced by light rays
(see Sect. 6.12), and it is reasonable to say that a quantity (or a concept) attached to
a surface is “intrinsic” if it is derived from distance and angle measured by using
shortest curves.

The progenitor of the intrinsic theory of surfaces is Johann Carl Friedrich Gauss
(1777–1855). In 1828, he brought out the memoir Disquisitiones generales circa
superficies curvas, where he formulated bona fide intrinsic curvature, which came
to be called Gaussian curvature later.

Just for the comparison purpose, let us primarily look at the curvature of plane
curves. Subsequent to the pioneering studies by Kepler (Opera, vol. 2, p. 175) and
Huygens (1653–4), Newton used his calculus to compute curvature.61 His approach
is to compare a curve with uniformly curved figures; i.e., circles or straight lines.
To be exact, given a point p on a smooth curve C, he singles out the circle (or the
straight line) C0 that has the highest possible order of contact with C at p, and then
defines the curvature of C at p to be the reciprocal of the radius of C0 (when C0 is
a straight line, the curvature is defined to be 0); thus the smaller the circle C0 is, the
more curvedC is. To simplify his computation, take a coordinate system (x, y) such
that the x-axis is the tangent line of C at p, and express C around p as the graph

59Throughout, “smooth” means “infinite differentiable.”
60This principle was stated in a letter (January 1, 1662) to M. C. de la Chambre. Employing it,
he deduced the law of refraction. The first discoverer of the law is Harriot (July 1601), but he
died before publishing. W. Snellius rediscovered the law (1621). Descartes derived the law in La
Dioptrique under a wrong setup; actually he believed that light’s propagation was instantaneous.
The finite speed of light was demonstrated by O. Rømer in 1676.
61Tractus de methodis serierum et fluxionum (1670–1671).
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associated with a smooth function y = f (x) with f (0)= f ′(0)= 0 and f ′′(0)≥ 0.
Compare f (x)= 1

2f
′′(0)x2+ 1

3!f
′′′(θx)x3 (0<θ<1) (Taylor’s theorem) with the

function f0(x)=R−
√
R2 − x2= 1

2R
−1x2 + · · · corresponding to the circle C0 of

radius R, tangent to the x-axis at x = 0. Thus C0 has the second order of contact
with C at (0, 0) if and only if R = 1/f ′′(0). Therefore the curvature is equal to
f ′′(0).

Remark 7.1 For an oriented curve C (a curve with a consistent direction defined
along the curve), we select a coordinate system (x, y) such that the direction of x-
axis coincides with that of C at p. Then f ′′(0) is possibly negative. We call κ(p) :
= f ′′(0) the signed curvature of C at p. If c : [a, b] −→ R

2 is a parameterization
of C with ‖ċ‖ ≡ 1, then c̈ is perpendicular to ċ, and c̈(s) = κ(c(s))n(s), where n(s)

is the unit vector obtained by the 90◦ counterclockwise rotation of ċ(s). Writing
c(s) = (x(s), y(s)), we have n(s) = (−ẏ(s), ẋ(s)), and κ(c(s)) = 〈c̈(s),n(s)〉 =
ẋ(s)ÿ(s)− ẏ(s)ẍ(s). ��

In the eighteenth century, Continental mathematicians polished calculus as an
effectual instrument to handle diverse problems in sciences. Leonhard Euler (1707–
1783) was among those who helped to brings calculus to completion and employed
it as a tool for the extrinsic geometry of surfaces. His particular interest was
the curvature of the curve obtained by cutting a surface with the plane spanned
by a tangent line and the normal line. This study brought him to the notion
of principal curvature.62 Then in 1795, Gaspard Monge (1746–1818) published
the book Application de l’analyse à la géométrie, an early influential work on
differential geometry containing a refinement of Euler’s work. However neither
Euler nor Monge arrived at arrived at intrinsic curvature. Here came Gauss, who
found how to formulate it with absolute confidence in its significance.

What comes to mind when defining the curvature of a surface S at p is the use
of a coordinate system (x, y, z) with origin p such that the xy-plane is tangent to S
at p,63 with which S is locally expressed as a graph of a smooth function f (x, y)
defined around (x, y)= (0, 0) with f (0, 0)= fx(0, 0)= fy(0, 0)= 0, where fx =
∂f/∂x and fy= ∂f/∂y. Then we obtain f (x, y)= 1

2 (ax
2 + 2bxy + cy2) +r(x, y),

where a = fxx(0, 0), b = fxy(0, 0), c = fyy(0, 0), and r(x, y) is of higher degree
than the second. The shape of the graph (and hence the shape of S around p) is
roughly determined by the quantity ac−b2; it is paraboloid-like (resp. hyperboloid-
like) if ac − b2 > 0 (resp. ac − b2 < 0) (Fig. 6.7). Given all this, we define the
curvature KS(p) to be ac − b2, which is independent of the choice of a coordinate
system. For example, KS≡R−2 for the sphere of radius R.

To account the exact meaning of intrinsicness of the Gaussian curvature, we
consider another surface S′, and let Φ be a one-to-one correspondence from S to
S′ preserving the distance of two points and the angle between two directions (such

62Recherches sur la courbure des surfaces, Mém. Acad. R. Sci. Berlin, 16 (1767), 119–143.
63Gauss’s original definition uses the map (Gauss map) from S to the unit sphere which associates
to each point on S its oriented unit normal vector (Disquisitiones generales, Art. 6).
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Fig. 6.7 Paraboloid and Hyperboloid

Φ is called an isometry in the present-day terms; see Sect. 6.20). If we would adopt
the approach mentioned above on intrinsicness, Gauss’s outcome could be rephrased
as “KS ′(Φ(p)) = KS(p).” In particular, KS ≡ 0 for a cylindrical surface S, since
S, which is ostensibly curved, is deformed without distortion to a strip in the plane.
This example articulately signifies that the Gaussian curvature could be possibly
defined without the aid of the outside.

Executing lengthy computations, Gauss confirmed the intrinsicness of KS (see
Sect. 6.17).64 Since the goal is more than a pleasing astonishment, Gauss named his
outcome “Theorema Egregium (remarkable theorem)” (Disquisitiones generales,
Art. 12). Actually, it is no exaggeration to say that this theorem is a breakthrough
not only in geometry, but also in cosmology. The following is his own words (1825)
unfolded in a letter to the P. A. Hansen:

This research is deeply entwined with much else, I would like to say, with
metaphysics of space and I find it difficult to shake off the consequences of this, such
as for instance the true metaphysics of negative or imaginary quantities (Werke, XII,
p. 8. See [3]).65

Although the Theorema Egregium has a deep metaphysical nature as Gauss put
it, his incipient motivation came from the practical activity pertaining to the geodetic
survey of Hanover to link up with the existing Danish grid that started in 1818 and

64Crucial in his argument is the commutativity of partial differentiation. Euler and A. C. Clairaut
knew it, but the first correct proof was given by K. H. A. Schwarz in 1873.
65Even in the eighteenth century, there were a few who did not accept negative number. For
example, F. Maseres said, “[negative numbers] darken the very whole doctrines of the equations
and make dark of the things which are in their nature excessively obvious and simple” (1758).
Although limited to the practical use, negative numbers already appeared in the Jiuzhang Suanshu
(The Nine Chapters on the Mathematical Art) written in the period of the Han Dynasty (202 BCE–
8 CE). The reason why the Chinese accepted negative numbers is, in all likelihood, that they had
the concept of yin (negative or dark) and yang (positive or bright). Negative numbers were in use
India at least from about the 7th century.
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continued for 8 years. He traveled criss-cross in order to cover the whole country.
Fueled by this arduous activity, he brought out many papers on the geometry of
curves and surfaces from about 1820 onwards. The Theorema Egregium was a
culmination of his intensive study in this field.

Remark 7.2 In her study of elasticity (1831), Sophie Germain introduced the mean
curvature HS(p) := 1

2 (a + c), which appears in a characterization of minimal
surfaces; that is, the surface area of S is locally minimized if and only if HS ≡ 0.

Putting A=
(
a b

b c

)
, we have KS(p) = detA and HS(p) = 1

2 trA. The eigenvalues

κ1(p), κ2(p) of A are called the principal curvatures of S. Obviously KS(p) =
κ1(p)κ2(p) (Disquisitiones generales, Art. 8) and HS(p)= 1

2 (κ1(p)+ κ2(p)). ��

6.8 Number Systems

It is off the subject, but while looking at the background behind Gauss’s opinion
about complex numbers quoted above, we shall prepare some material related to
what we shall describe later (Sect. 6.21).

Gerolamo Cardano (1501–1576), who stood out above the rest at that time as
an algebraist, acknowledged the existence of complex numbers in his Ars Magna
(1545) that contains the first printed solutions to cubic and quartic equations.
He observed that his formula may possibly involve complex numbers even when
applied to a cubic equation possessing only real solutions.66 Yet, he did not
understand the nature of complex numbers and even thought that they are useless.
Subsequently, Rafael Bombelli (1526–1572) took down the rules for multiplication
of complex numbers (binomio) in his Book I of L’Algebra, while Descartes used
the term “imaginary number” (nombre imaginaire) with the meaning of contempt.
Wallis insisted that imaginary numbers are not unuseful and absurd when properly
understood by using a geometric model just like negative numbers (Algebra, Vol. II,
Chap. LXVI, 1673). Meanwhile, Euler persuaded himself that there is an advantage
for the use of imaginary numbers (1751), and introduced the symbol i for the
imaginary unit (1755). It was around 1740 that he found the earth-shaking formula
e
√−1θ = cos θ +√−1 sin θ .

In 1799, Gauss gained his doctorate in absentia from the University of Helmstedt.
The subject of his thesis is the fundamental theorem of algebra,67 which, with a
long history of inspiring many mathematicians, says that every polynomial equation

66For example, his formula applied to the cubic equation x3−15x−4(= (x−4)(x+2+√3)(x+
2−√

3)) = 0 yields a solution x = 3
√

2+√−124+ 3
√

2−√−124.
67Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius
variabilis in factores reales primi vel secundi gradus resolvi posse. However, his proof had a gap.
He gave three other proofs (1816, 1849) (see Sect. 6.21 for a “topological” proof).
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with complex coefficients has at least one complex root.68 As the title of his thesis
indicates, he shied away from the use of imaginary numbers, notwithstanding that
Gauss already had a tangible image. In a letter to F. W. Bessel, dated December 18,
1811, he communicated, “first I would like to ask anyone who wishes to introduce
a new function into analysis to explain whether he wishes it to be applied merely to
real quantities, and regard imaginary values of the argument only as an appendage,
or whether he agrees with my thesis that in the realm of quantities the imaginaries
a + b

√−1 have to be accorded equal rights with the reals. Here it is not a question
of practical value; analysis is for me an independent science, which would suffer
serious loss of beauty and completeness, and would have constantly to impose
very tiresome restrictions on truths which would hold generally otherwise, if these
imaginary quantities were to be neglected. . . ” (Werke, X, pp. 366–367; see [15]).

In 1833, William Rowan Hamilton (1805–1865) conceived the idea to express a
complex number a+ b

√−1 by the point (a, b) in the coordinate plane R2,69 which
motivated him to construct 3D “numbers” with arithmetical operations similar
to complex numbers, but the quest was a dead end. Alternatively, he discovered
quaternions, the 4D numbers at the expense of commutativity of multiplication
(1843). Specifically, the multiplication is defined by

(a1, b1, c1, d1) · (a2, b2, c2, d2) = (a1a2 − b1b2 − c1c2 − d1d2, a1b2 + b1a2

+c1d2 − d1c2, a1c2 − b1d2 + c1a2 + d1b2, a1d2 + b1c2 − c1b2 + d1a2). (6.8.1)

In Hamilton’s notations, i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1), so that
quaternions are represented in the form: a + bi + cj + dk (a, b, c, d ∈ R). A
fact deserving special mention is that putting ‖α‖ = √

a2 + b2 + c2 + d2 for α =
(a, b, c, d), we have ‖α · β‖ = ‖α‖‖β‖, the identity similar to |zw| = |z||w| for
complex numbers, which agrees with the four-square identity discovered by Euler
in 1748 during his investigation on sums of four squares (see Remark 14.1).

It may be said, incidentally, that Gauss had already discovered quaternions
in 1818 (Mutationen des Raumes, Werke, VIII, 357–361). What he observed is,

68Albert Girard (1595–1632) was the first to suggest the fundamental theorem of algebra (FTA)
(Invention Nouvelle en l’Algèbre, 1629). Meanwhile, Leibniz claimed that x4 + 1 = 0 affords
a counterexample for the FTA (1702). He assumed that the square root of i should be a more
complicated “imaginary” entity, not able to be expressed as a + bi; but the truth is that x =
± 1√

2
(1 + i) is a square root of i. Euler (1742) and D’Alembert (1746) counted on the FTA when

they dealt with indefinite integrals of rational functions.
69Gauss had been in possession of the geometric representation of complex numbers since 1796.
In 1797, C. Wessel presented a memoir to the Copenhagen Academy of Sciences in which he
announced the same idea, but it did not attract attention. In 1806, J. R. Argand went public with
the same formulation.
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though his original expression is slightly different, that the rotation group SO(3)
is parameterized by (a, b, c, d) with a2+b2+c2+d2=1 as

A(a, b, c, d) =
⎛
⎝a2 − b2 − c2 + d2 −2(ab+ cd) 2(bd − ac)

2(ab− cd) a2 − b2 + c2 − d2 −2(ad + bc)

2(ac+ bd) 2(ad − bc) a2 + b2 − c2 − d2

⎞
⎠ ,

and A(a1, b1, c1, d1)A(a2, b2, c2, d2) = A
(
(a1, b1, c1, d1) · (a2, b2, c2, d2)

)
. Note

here that quaternions α = a + bi + cj + dk with ‖α‖ = 1 form a group, which is
identified with the spin group Spin(3), pertinent to the quantum version of angular
momentum that describes internal degrees of freedom of electrons. Additionally, the
kernel of the homomorphism α �→ A(α) is a homomorphism of Spin(3) onto SO(3)
whose kernel is {±1} (Remark 21.1).

Remark 8.1 Euler discovered his formula while studying differential equations with
constant coefficients (1748). Previously, de Moivre derived a formula that later
brought on what we now call de Moivre’s theorem (1707), a precursor of Euler’s
formula. Subsequently, R. Cotes had given the formula ix = log(cos x+ i sin x) in
1714, but overlooked that the complex logarithm assumes infinitely many values,
differing by multiples of 2πi, as found by Euler (1746).70

Before the problem of the complex logarithm was settled by Euler, there were
arguments between Leibniz and Johann Bernoulli (1667–1748) in 1712 and then
between Euler and Jean-Baptiste le Rond d’Alembert (1717–1783) around 1746
about log x for a negative x. Leibniz says that log(−1) does not exist, while
Bernoulli alleges that log(−x) = log x. In the above-mentioned letter to Bessel
in 1811, Gauss renewed the question about the multivaluedness of the complex
logarithm, representing log z as the complex line integral

∫
c

1/z dz, where c is a
curve in C\{0} joining 1 and z (see Sect. 6.21). He further referred to what we now
call Cauchy’s integral theorem.71 ��

70The logarithmic function originated from the computational demands of the late sixteenth
century in observational astronomy, long-distance navigation, and geodesy. The main contributors
are John Napier (1550–1617), Joost Bürgi, Henry Briggs, Oughtred, and Kepler. The term
logarithm, literally “ratio-number” from λόγος and ὰριθμός, was coined by Napier in his pamphlet
Mirifici Logarithmorum Canonis Descriptio (1614). Kepler studied Napier’s pamphlet in 1619, and
published the logarithmic tables Chilias Logarithmoria (1624), which he used in his calculations
of the Tabulae Rudolphinae Astronomicae (1627), a star catalog and planetary tables based on the
observations of Tycho Brahe.
71Augustin-Louis Cauchy defined complex line integrals in 1825 and established his theorem in
1851.
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6.9 Euclid’s Elements

Gauss is one of the discoverers of non-Euclidean geometry (a geometry consistently
built under the assumption that there are more than one line through a point which
do not meet a given line), but he did not publish his work and only disclosed it in
letters to his friends.72 His hesitation in part came from the atmosphere in those
days; that is, his new geometry was entirely against the predominant Kantianism.
He wanted to avoid controversial issues,73 and requested his friends not to make it
public.

The other discoverers of the new geometry are Nikolai Ivanovich Lobachevsky
(1792–1856) and János Bolyai (1802–1860).74 In 1826, Lobachevsky stated pub-
licly that the new geometry exists.75 Fourteen years later, as this research did not
draw attention, he issued a small book in German containing a summary of his
work to appeal to the mathematical community,76 and then put out his final work
Pangéométrie ou précis de géométrie fondée sur une théorie générale et rigoureuse
des parallèles, a year before his death (1855); see [17]. Meanwhile, in a break with
tradition, Bolyai independently began his head-on approach to the non-Euclidean
properties as early as 1823. In a letter to his father Farkas Bolyai, on November 3,
1823, János says with confidence, “I discovered a whole new world out of nothing,”
and made public his discovery in a 26-pages appendix Scientiam spatii absolute
veram exhibens to his father’s book.77

Gauss was a perfectionist by all accounts. He did not publish many outcomes,
fearing that they were never perfect enough; his motto was “pauca sed matura—
few, but ripe.” After his death it was discovered that many results credited to
others had been already worked out by him (remember Cauchy’s integral theorem;
Remark 8.1). The extraordinariness of Gauss may be highlighted by the joke:
Suppose you discovered something new. If Gauss would be still alive and would
browse your result, then he would say, “Ah, that’s in my paper,” and surely would
take an unpublished article out of a drawer in his desk. This was no joke for
János Bolyai. Gauss received a copy of his father’s book in 1832, and endorsed
the discovery in the response. To János’ disappointment, his cool reply reads,
“The entire contents of your son’s work coincides almost exactly with my own
meditation, which has occupied my mind for from thirty to thirty-five years”

72For instance, his discovery was mentioned in a letter to F. A. Taurinus dated November 8, 1824
(Werke, VIII, p. 186).
73In a letter to Bessel dated January 27, 1829, Gauss writes, “I fear the cry of the Boetians [known
as vulgarians] if I were to voice my views” (Werke, VIII, p. 200).
74Strictly speaking, both Lobachevsky and Bolyai discovered the 3D geometry, while Gauss dealt
only with the 2D case (Sect. 6.11).
75Lobachevsky, Exposition succincte des principes de la géométrie avec une démonstration
rigoureuse du théorème des parallèles;O nachalakh geometrii, Kazanskii Vestnik, (1829–1830).
76Geometrischen Untersuchungen zur Theorie der Parallellinien (1840).
77Tentamen juventutem studiosam in elementa Matheseos Purae (1832).
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(Werke, VIII, p. 220). So much disappointed, János wholly withdrew from scientific
activity, though Gauss wrote to Gerling (February 14, 1832), “I consider the young
geometer Bolyai a genius of the first rank” (see [4]). As regards Lobachevsky, it
was not until 1841 that his work came to the notice of Gauss, who looked over the
Geometrischen Untersuchungen by chance. Gauss was very impressed with it, and
praised Lobachevsky as a clever mathematician in a letter to his friend J. F. Encke
(February 1841; Werke, VIII, p. 232).78

Now, what is known about Euclid and his Elements? It is popularly thought that
Euclid was attached to Plato’s Academeia or at least was affiliated with it, and that he
was temporarily a member of the Great Museum during the reign of Ptolemy I. Truth
to tell, very little is known about his life. Archimedes, whose life, too, overlapped
with the reign of Ptolemy I, mentioned briefly Euclid in his On the Sphere and the
Cylinder I.2. In the Collection VII, Pappus records that Apollonius spent a long
time with the disciples of Euclid in Alexandria. Apollonius himself referred to
Euclid’s achievement with the statement that his method surpasses Euclid’s Conics.
Proclus Diadochus (411 CE–485 CE) and Joannes Stobabeing (the fifth century CE)
recorded the oft-told (but not trustworthy) anecdotes about Euclid. The sure thing is
that he is the author of the definitive mathematical treatise Elements (Στοιχεῖα),79

which is a crystallization of the plane and space geometry known in his day (ca. 300
BCE) and was so predominant that all earlier texts were driven out. It is solely to
the Elements, one of the most influential books in long history, which Euclid owes
his abiding fame in spite of his shadowy profile.

The Elements, consisting of thirteen books, starts with the construction of equi-
lateral triangles and ends up with the classification of the regular solids; tetrahedron,
cube, octahedron, dodecahedron, and icosahedron (Book XIII, Prop. 465). This
suggests the influence of Pythagorean mysticism that put great emphasis on aes-
thetic issues, which, nowadays, are described in terms of symmetry (συμμετρία).80

Moreover, it has an orderly organization consisting of 23 fundamental definitions,
5 postulates, 5 axioms, and 465 propositions. The “reductio ad absurdum” is made

78F. K. Schweikart, a professor of law and an uncle of Taurinus, had a germinal idea of non-
Euclidean geometry (“astral geometry” in his term), and asked for Gauss, through Gerling, to
comment on the idea in 1818. In response to the request (March 16, 1819), Gauss communicated,
with compliments, that he concurred in Schweikart’s observation (Werke, VIII, p. 181). However
Schweikart neither elaborated his idea nor published any result.
79Besides the Elements, at least five works of Euclid have survived to today; Data, On Divisions of
Figures, Catoptrics, Phaenomena, Optics. There are a few other works that are attributed to Euclid
but have been lost: Conics, Porisms, Pseudaria, Surface Loci, Mechanics.
80“Symmetry” is explicated by group actions, with which both spatial homogeneity and isotropy
are described. Klein’s Erlangen Program is also explained in this framework.

Aetius (first- or second-century CE) says that Pythagoras discovered the five regular solids (De
Placitis), while Proclus argues that it was the historical Theaetetus (ca. 417 BCE–ca. 369 BCE)
who theoretically constructed the five solids. Plato’s Timaeus (53b5–6) provides the earliest known
description of these solids as a group. Nowadays, regular polyhedra are discussed often in relation
to finite subgroups (polyhedral groups) of SO(3) or O(3). For example, the icosahedral group is
the rotational symmetry group of the icosahedron (see Remark 21.1).
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full use of as a powerful gambit (Prop. 6 in Book I is the first one proved by reductio
ad absurdum).

As often said, only a few theorems are thought of having been discovered by
Euclid himself. The theorem of angle-sum (Book I, Prop. 32), the Pythagorean
Theorem (Book I, Prop. 47), and perhaps the triangle inequality (Book I, Prop. 20)
are attributed to the Pythagoreans. The theory of proportions (Book V) and the
method of exhaustion (Book X, Prop. 1, Book XII) are, as we mentioned before,
greatly indebted to Eudoxus.

We shall talk about a checkered history of the Elements, originally written on
fragile papyrus scrolls.81 The book survived in Alexandria and Byzantium under
the control of the Roman Empire. In contrast, Roman people—the potentates of the
world during this period—by and large expressed little interest in pure sciences as
testified by Marcus Tullius Cicero (BCE 106–BCE 43), who confesses, “Among the
Greeks, nothing was more glorious than mathematics. We, however, have limited
the usability of this art to measuring and calculating” (Tusculanae Disputationes,
ca. 45 BCE). Luckily, Alexandria is far away from the central government of the
Empire, disintegrating in scandal and corruption. Situated as it was and thanks to the
Hellenistic tradition, pure science flourished there. The people involved were Heron
(ca. 10 CE–ca. 70 CE), Menelaus (ca. 70 CE–ca. 140 CE), Ptolemy, Diophantus
(ca. 215 CE–ca. 285 CE), Pappus, Theon Alexandricus (ca. 335 CE–ca. 405 CE),
and Hypatia (ca. 350 CE–415 CE).82

But even in the glorious city, scientific attitude declined with the lapse of time, as
the academic priority had been given, if anything, to annotations on predecessor’s
work, and eventually fell into a state of decadence. This was paralleled by the
steady decay of the city itself that all too often suffered overwhelming natural and
manmade disasters. After a long tumultuous period, the great city was finally turned
over to Muslim hands (641 CE).

In the Dark Ages, Europeans could no longer understand the Elements. In this
circumstance, Anicius Manlius Boethius (ca. 480 CE–524 CE) and Flavius Magnus
Aurelius Cassiodorus Senator (ca. 485 CE–ca. 585 CE) are very rare typical scholars
in this period who were largely influential during the Middle Ages. Meanwhile, the
Elements was brought from Byzantium to the Islamic world in ca. 760 CE, and

81In the tiny fragment “Papyrus Oxyrhynchus 29” housed in the library of the University of
Pennsylvania, one can see a diagram related to Prop. 5 of Book II, which can be construed in

modern terms as ab + (
a+b

2 − b
)2 = (

a+b
2

)2.
82Diophantus stands out as unique because he applied himself to some algebraic problems in
the time when geometry was still in the saddle. Theon is known for editing the Elements with
commentaries. His version was the only Greek text known, until a hand-written copy of the
Elements in the tenth century was discovered in the Vatican library (1808). Hypatia, a daughter
of Theon, is the earliest female mathematician in history, and is more known for her awful death;
she was dragged to her death by fanatical Christian mobs.
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was taught in Bagdad, Cordova, and Toledo where there were large-scale libraries
comparable with the Great Museum in Alexandria.83

After approximately 400 years of blank period in Europe, Adelard of Bath
(Remark 2.1 (2)), who undertook a journey to Cordova around 1120 to delve into
Arabic texts of Greek classics, obtained a copy of the book and translated it into
Latin. Later on, Gerard (Footnote 5) translated it into Latin from another Arabic
version procured in Toledo. His translation is considered being close to the Greek
original text. Then, in the mid-renaissance, only 27 years later from the type printing
of the Bible by Johannes Gutenberg in Mainz, the first printed edition—based on
the Latin version from the Arabic by Campanus of Novara who probably had
access to Adelard’s translation—was published in Venice. Thereafter, versions of the
Elements in various languages had been printed. The first English-language edition
was printed in 1570 by H. Billingsley. Then in 1607, Matteo Ricci and Xu Guangqi
translated into Chinese the first six volumes of the Latin version published in 1574
by Christopher Clavius.

One of the first multicolored books The First Six Books of the Elements of Euclid
by O. Byrne was printed in 1847 in London. A. De Morgan was very critical of
its non-traditional style embellished by pictorial proofs, and judged this inventive
attempt to be nonsense (A Budget of Paradoxes, 1872). At that time, there was
considerable debate about how to teach geometry; say, the pros and cons of whether
to adopt a new approach to Euclidean geometry in teaching. C. Dodgson in Oxford,
known as Lewis Carroll, assumed a critical attitude to his colleague Playfair who
tried to simplify the Euclid’s proofs by introducing algebraic notations. In the little
book Euclid and his Modern Rivals printed in 1879, he argues, “no sufficient reasons
have yet been shown for abandoning [Euclid’s Elements] in favour of any one of the
modern Manuals which have been offered as substitutes.” G. B. Halsted says, in
the translator’s introduction to J. Bolyai’s Scientiam spatii, “Even today (1895), in
the vast system of examinations carried out by the British Government, by Oxford,
and by Cambridge, no proof of a theorem in geometry will be accepted which
infringes Euclid’s sequence of propositions.” As a matter of course, it is now seldom
to make direct use of Euclid’s propositions for university examinations, but the
book went through more than 2000 editions to date, and has been (and still is) the
encouragement and guide of scientific thought. Furthermore, modern mathematics
inherits much of its style from the Elements; in particular, many mathematical
theories, even if not all of them, begin with axiomatic systems (Sect. 6.18).

What about the original Greek text? It was Heiberg (Footnote 11) who tracked
down all extant manuscripts—the aforementioned Greek Vatican manuscript is one
of them—to produce a definitive Greek text together with its Latin translation and

83Worthy to mention is the House of Wisdom (Bayt al-Hikma) in Bagdad. It was founded by Caliph
Harun al-Rashid (ca. 763 CE–809 CE) as an academic institute devoted to translations, research,
and education, and culminated under his son Caliph al-Mamoon. Al-Khwārizmı̄ was a scholar at
this institute.
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prolegomena (Euclidis Opera Omnia, 8 vols, 1883–1916). This is a trailblazing
achievement that has become the basis of later researches on Euclid.

6.10 The Fifth Postulate

Euclid’s greatest contribution is his daring selection of a few postulates as major
premises (if not completely adequate from today’s view), of which Greek geometers
thought as self-evident truth requiring no proof. He built up a deductive system in
which every theorem is derived from these postulates. Among his five postulates,
the last one, called the Fifth Postulate (FP henceforward), constitutes the core of our
story on non-Euclidean geometry. It says:

If a straight line falls on two straight lines in such a manner that the interior angles on
the same side are together less than two right angles, then the straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right angles [7,
Book I].

The theorem of angle-sum and the Pythagorean Theorem rely on this postulate.
For example, what is required for the former is the fact that “if a straight line
fall upon two parallel straight lines it will make the alternate angles equal to one
another” (Prop. 29 in Book I), which is a consequence of the FP.84

The first four postulates have fairly simple forms; say, the first one declares, in
today’s terms, that given two points, there exists a straight line through these points,
whereas the necessity of the last postulate is by no means overt, owing not only to
the intricacy of its formulation, but also to the fact that the converse of Prop. 29 is
proved without an appeal to the last postulate (Prop. 27). Actually the last one had
been believed to be redundant and hence to be a “proposition” all through modern
times until the second decade of the nineteenth century [2].

An elaborate and stalwart attempt to vindicate Euclidean geometry by “proving”
the FP was done by Girolamo Saccheri (1667–1733), an Italian Jesuit priest, who
explored the consequences under the negation of the postulate, hoping to reach a
contradiction. For this sake, he made use of quadrilaterals of which two opposite
sides are equal to each other and perpendicular to the base, and set up the following
three hypotheses (Fig. 6.8)85;

(i) the hypothesis of the right angle: � C = � D = � R,
(ii) the hypothesis of the obtuse angle: � C = � D > � R, and

(iii) the hypothesis of the acute angle: � C = � D < � R,

84In contrast to these two theorems, the triangle inequality is proved without invoking the FP
(Book I, Prop. 20).
85Omar Khayyam (1048–1131) dealt with the FP in his Explanation of the Difficulties in the
Postulates of Euclid. He is considered a predecessor of Saccheri.
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Fig. 6.8 Saccheri’s
quadrilateral

where the first hypothesis is equivalent to the FP. Examining these hypotheses
meticulously, he concluded that hypothesis (ii) contradicts the infinite extent of
plane, and is false, but could not exclude hypothesis (iii). At the final stage of his
argument, Saccheri appeals to intuition about our space, and says, “Hypothesis an-
guli acuti est absolute falsa; quia repugnans naturae liniae rectae” [“the hypothesis
of the acute angle is absolutely false; because it is repugnant to the nature of the
straight line”] [2]. In summary, he virtually proved that, under the negation of the
FP, the angle-sum of any triangle is less than π (thus the existence of a triangle with
angle-sum of π implies the FP).86

Johann Heinrich Lambert (1728–1777)—conceivably familiar with Saccheri’s
work because, in his Theorie der Parallellinien (1766), he quoted the work of
G. S. Klügel who listed nearly 30 attempts to prove the FP including Saccheri’s
work87—investigated the FP in alignment with an idea resembling that of Saccheri
[2, p. 44].88 His work, published after the author’s death, bristles with far-sighted
observations and highly speculative remarks (see [26]). One of his revelations is
that, under the negation of the FP, the angular defect π − ( � A + � B + � C)
for a triangle �ABC is proportional to the area of the triangle. This is inferred
from the fact that if we define m(P) for a polygon P with n sides by setting
m(P) = (n−2)π−(the sum of inner angles of P), thenm(·) and the area functional
Area(·) share the “additive property”; i.e.,m(P) = m(P1)+m(P2) for a polygon P
composed of two polygons P1, P2. With this observation in hand, he reasoned that
non-Euclidean plane-geometry (if it exists) has a close resemblance to spherical
geometry.

Let us briefly touch on spherical geometry, which is nearly as old as Euclidean
geometry, and was developed in connection with geography and astronomy. In his
Sphaerica, extant only in an Arabic translation, Menelaus introduced the notion
of spherical triangle, a figure formed on a sphere by three great circular arcs
intersecting pairwise in three vertices. He observed that the angle-sum of a spherical
triangle is greater than π [28]. Greek spherical geometry gave birth to spherical
trigonometry that deals with the relations between trigonometric functions of the

86Saccheri, Euclides ab omni naevo vindicatus sive conatus geometricus quo stabiliuntur prima
ipsa geometriae principia (1733). See [32].
87Conatuum praecipuorum theoriam parallelarum demonstrandi recensio (1763).
88Lambert proved that the transfer time from x1 to x2 along a Keplerian orbit is independent of
the orbit’s eccentricity and depends only on ‖x1‖ + ‖x2‖ and ‖x1 − x2‖ (Über die Eigenschaften
der Kometenbewegung, 1761). He was the first to express Newton’s second law of motion in the
notation of differential calculus (Vis Viva, 1783).



6 From Euclid to Riemann and Beyond: How to Describe the Shape of the Universe 253

Fig. 6.9 A spherical triangle
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sides and angles of spherical triangles. At a later time, it was treated in Islamic
mathematics and then by Viète, Napier, and others. A culmination is the following
fundamental formulas given by Euler.89

cos � A = − cos � B cos � C + sin � B sin � C cos
a

R
, (6.10.2)

cos
a

R
= cos

b

R
cos

c

R
+ sin

b

R
sin

c

R
cos � A, (6.10.3)

where �ABC is a spherical triangle on the sphere of radius R, and a, b, c are the
arc-length of the edges corresponding to A,B,C, respectively (Fig. 6.9).

Now, what Lambert paid attention to is the formula ( � A + � B + � C) − π =
R−2Area(�ABC), a refinement of Menelaus’ observation on spherical triangles
discovered by Harriot (1603) and Girard (Invention nouvelle en algebra, 1629), and
probably known by Regiomontanus.90 Replacing the radius R by

√−1R in this
formula, we obtain π − ( � A + � B + � C) = R−2Area(�ABC), which fits in
with his outcome on the angular defect, and brought him to the speculation that
an “imaginary sphere” (under a suitable justification) provides a model of “non-
Euclidean plane,” but he did not pursue this idea any further.

Remark 10.1

(1) Here is a list (by no means exhaustive) of people who tried to deduce the FP
from other propositions: Posidonius of Apameia (ca. 135 BCE–ca. 51 BCE),
Geminus of Rhodes (the first century BCE), Ptolemy, Proclus, Nası̄r al-Dı̄n Tūsı̄
(1201–1274), C. Clavius (1538–1612), P. A. Cataldi (1548–1626), G. A. Borelli
(1608–1679), G. Vitale (1633–1711), Leibniz, Wallis, J. S. König (1712–
1757), Adrien-Marie Legendre (1752–1833), B. F. Thibaut (1775–1832), and F.
Bolyai. Gauss, J. Bolyai, and Lobachevsky were, for that matter, no exception at
the beginning of their studies of parallels. What is in common to their arguments

89Trigonometria sphaerica universa, ex primis principiis breviter et dilucide derivata, Acta
Academiae Scientarum Imperialis Petropolitinae, 3 (1782), 72–86 (see [25]). The spherical cosine
law (6.10.3) is seen in al-Battānı̄’s work Kitāb az-Zı̄j (Footnote 20).
90The Latin name of Johannes Müller von Königsberg (1436–1476), the most important as-
tronomer of the fifteenth century who may have arrived at the heliocentricism.
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(except for the great trio) is that they beg the question; that is, they assume what
they intend to prove.

(2) The system of postulates in the Elements is not complete. An airtight system
was provided by Hilbert in the text Grundlagen der Geometrie (1899). His
system consists of five main axioms; I. Axioms of Incidence, II. Axioms
of Order, III. Axioms of Congruence, IV. Axiom of Parallels, V. Axioms of
Continuity.91 The Axiom of Parallels says, “Given a line and a point outside
it, there is exactly one line through the given point which lies in the plane of the
given line and point so that the two lines do not meet.” This statement, clearly
given by Proclus in his commentary, was adopted by Playfair in his edition of
the Elements (1795) as an alternative for the FP. Hilbert’s Axioms of Continuity
consists of the axiom of completeness related to Dedekind cuts (Remark 4.2 (4))
and the Axiom of Archimedes. ��

6.11 Discovery of Non-Euclidean Geometry

We now go back to Gauss’s discovery of non-Euclidean geometry. In his letter to
Taurinus in 1824, Gauss mentions, “The assumption that angle-sum [of triangle] is
less than 180◦ leads to a curious geometry, quite different from ours [the euclidean]
but thoroughly consistent, which I have developed to my entire satisfaction. The
theorems of this geometry appear to be paradoxical, and, to the uninitiated, absurd,
but calm, steady reflection reveals that they contain nothing at all impossible”
(see [1]).

Now, when did Gauss become aware of the new geometry? A few tantalizing
pieces of evidence are in Gauss’s Mathematisches Tagebuch, a record of his
discoveries from 1796 to 1814 (Werke, X).92 The 72nd item written on July 28,
1797 says, “Plani possibilitatem demostravi” [“I have demonstrated the possibility
of a plane”]. This seems to indicate Gauss’s interest in the foundation of Euclidean
geometry, of which he never lost sight from that time onward. Following that, in
the 99th entry dated September 1799, he wrote, “In principiis Geometriae egregios
progressus fecimus” [“On the foundation of geometry, I could make a remarkable
progress”]. It is difficult to imagine what this oblique statement means, but it could
have something to do with non-Euclidean geometry.93 In the same year, Gauss

91Moritz Pasch (1843–1930), Giuseppe Peano (1858–1932), and Mario Pieri (1860–1913) con-
tributed to the axiomatic foundation of Euclidean geometry.
92Gauss’s diary—which contains 146 entries written down from time to time, and most of which
consist of brief and somewhat cryptical statements—was kept by his bereaved until 1899. The
80th entry (October, 1797) announces the discovery of the proof of the Fundamental Theorem of
Algebra.
93In a letter to F. Bolyai, March 6, 1832 (Werke VIII, p. 224), Gauss alluded that Kant was wrong
in asserting that space is only the form of our intuition.
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confided to F. Bolyai to the effect that he had doubt about the truth of geometry.94

However, his letter to F. Bolyai in 1804 witnessed that he was still suspicious of
the new geometry (Werke, VIII, p. 160). All of the available witnesses point to the
possibility that it is in 1817 at the latest that Gauss disengaged himself from his
preconceptions, and began to deal seriously with the new geometry. In a letter to
his friend H. Olbers (April 28, 1817), he elusively says, “I am becoming more and
more convinced that the necessity of our geometry cannot be proved” (Werke, VIII,
p. 177).

In all likelihood, Gauss had a project to bring out an exposition of the “Nicht-
Euklidische Geometrie”. His unpublished notes about the new theory of parallels
might be part of this exposition (Werke, VIII, pp. 202–209). A letter addressed to
Schumacher on May 17, 1831 says, “In the last few weeks, I have begun to write
up a few of my own meditations, which in part are already about 40 years old.”95

His project was, however, suspended upon the receipt of a copy of J. Bolyai’s work.
Accordingly, the detailed study of the new geometry was put in the hands of Bolyai
and Lobachevsky, who established, under the negation of the FP, an analogue of
trigonometry, with which they could be confident of the consistency of the new
geometry [17, 24].

The fundamental formulas in non-Euclidean trigonometry are given by

cos � A = − cos � B cos � C + sin � B sin � C cosh
a

R
, (6.11.4)

cosh
a

R
= cosh

b

R
cosh

c

R
− sinh

b

R
sinh

c

R
cos � A. (6.11.5)

These are obtained from the trigonometric formulas established by Bolyai and
Lobachevsky.96 Notice here that, thanks to Euler’s formula, we get (6.11.4)
and (6.11.5) by transforming R into

√−1R in (6.10.2) and (6.10.3), thereby
justifying Lambert’s anticipation of a new geometry on the imaginary sphere.

We should underline here that non-Euclidean geometry involves a positive
parameter R just like spherical geometry involving the radius of a sphere. As
Lambert took notice of it, this implies that, once R is selected, the absolute unit of
length is determined.97 Actually, the non-existence of an absolute unit of length is

94In the letter, he also said, “If one could prove the existence of a triangle of arbitrarily great area,
all Euclidean geometry would be validated” (see [4]).
95In a letter to Schumacher of July 12, 1831, Gauss said that the circumference of a non-Euclidean
circle of radius r is πk(er/k − e−r/k) where k is a positive constant (Werke, VIII, p. 215), which
turns out to coincide with the radius R of the imaginary sphere.
96The non-Euclidean formulas were found by Taurinus (Geometriae Prima Elementa, 1826), but
the outcome did not wholly convince him of the possibility of a new geometry.
97In the ordinary geometry, only a relative meaning is attached to the choice of a particular unit in
the measurement. The concept of “similarity” arises exactly from this fact.
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equivalent to the FP. Failing to notice this fact, Legendre believed that he succeeded
in proving the FP.98

Thus the issue of the FP, which had perplexed many able scholars for more
than 2000 years, was almost settled (the reason why we say “almost” will become
clear later). More than that, mathematicians grew up to realize that postulates in
general are not statements which are regarded as being established, accepted, or
self-evidently true, but a sort of predefined rules.

On reflection, Euclid’s choice of the FP shows his keen insight and deserves
great veneration. Thomas Little Heath (1861–1940), a leading authority of Greek
mathematics, remarked that “when we consider the countless successive attempts
made through more than twenty centuries to prove the Postulate, many of them by
geometers of ability, we cannot but admire the genius of the man who concluded
that such a hypothesis, which he found necessary to the validity of his whole system
of geometry, was really indemonstrable” [7, p. 202].

6.12 Geodesics

In Sect. 6.7, we stressed the role of shortest curves in the intrinsic measurement
in a surface. In order to outline another work of Gauss related to non-Euclidean
geometry, we shall take a look at such curves from a general point of view.

The length of a curve c(t) = (x(t), y(t), z(t)), a ≤ t ≤ b, on a surface S is given
by �(c) = ∫ b

a

√
ẋ(t)2 + ẏ(t)2 + ż(t)2 dt . Thus our issue boils down to finding a

curve c that minimizes �(c) among all curves on S satisfying the boundary condition
c(a) = p, c(b) = q . Johann Bernoulli raised the problem of the shortest distance
between two points on a convex surface (1697). Following his senescent teacher
Johann, Euler obtained a differential equation for shortest curves on a surface given
by an equation of the form F(x, y, z) = 0 (1732).

Finding shortest curves is a quintessential problem in the calculus of variations,
a central plank of mathematical analysis originated by Euler, which deals with
maximizing or minimizing a general functional (i.e., a function whose “variable” is
functions or maps). A bud of this newly-born field is glimpsed in Fermat’s principle
of least time, but the derivation of Snell’s law is a straightforward application of the
usual extreme value problem. The starting point in effect was the brachistochrone
curve problem raised by Johann Bernoulli (1696);99 the problem of finding the shape
of the curve down which a sliding particle, starting at rest from P1 = (x1, y1) and

98Léflexions sur différentes manières de démontrer la théorie des paralléles ou le théorème sur
la somme des trois angles du triangle, 1833. In his futile attempt to prove the FP, Legendre
rediscovered Saccheri’s result. The error in his “proof” was pointed out by Gauss in a letter to
Gerling (1816; Werke, VIII, pp. 168, 175). (By 1808, Gauss realized that the new geometry must
have an absolute unit of length; Werke VIII, p. 165.)
99“Brachistochrone” is from the Greek words βράχιστος (shortest) and χρόνος (time). The first to
consider the brachistochrone problem is Galileo (Two New Sciences).



6 From Euclid to Riemann and Beyond: How to Describe the Shape of the Universe 257

accelerated by gravity, will slip (without friction) to a given point P2 = (x2, y2)

in the least time. To be exact, the problem is to find a function y = y(x) which

minimizes the integral
∫ x2
x1

√
1+y ′2

2gy dx.
In the paper Elementa Calculi Variationum read to the Berlin Academy on

September 16, 1756, Euler unified various variational problems. At about the same
time, Joseph-Louis Lagrange (1736–1813) simplified Euler’s earlier analysis and
derived what we now call the Euler-Lagrange equation (E-L equation). Especially,
his letter to Euler dated August 12, 1755 (when he was only 19 years old!) contains
the technique used today. Here in general (however restricted to the case of one-
variable), the E-L equation associated with the functional of the form

F[q] =
∫ b

a

L
(
t, q(t), q̇(t)

)
dt, q(t) = (q1(t), . . . , qn(t)) (6.12.6)

is given by

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (i = 1, . . . , n). (6.12.7)

What Lagrange proved is that q(t) minimizing F is a solution of (6.12.7).
Applying the E-L equation to length-minimizing curves on a surface, we obtain

an ordinary differential equation for x(t), y(t), z(t). What should be aware of is that
a solution of this equation is only a locally length-minimizing curve; not necessarily
shortest. Such a curve is called a geodesic, the term (coming from geodesy) coined
by Joseph Liouville (1809–1882).100

A geodesic may be defined as a trajectory of force-free motion. To explain this,
we regard a curve c(t) in a surface S as the trajectory of a particle in motion. The
velocity vector ċ(t) is a vector tangent to S at c(t), but the acceleration vector c̈(t) is
not necessarily tangent to S. If the constraint force confining the particle to S is the
only force, then c̈(t) must be perpendicular to the tangent plane of S at c(t) because
the constraint force always acts vertically on S. Such a curve c turns out to be a
geodesic. Hence, if we denote by D

dt
dc
dt

the tangential part of c̈, then c is a geodesic
if and only if D

dt
dc
dt
= 0. Since this is a second-order ordinary differential equation

(see (6.17.18) and Sect. 6.20), we have a unique geodesic c defined on an interval
containing 0 such that c(0) = p, ċ(0) = ξ for given a point p and a vector ξ tangent
to S at p.

There is an alternative derivation of the equation D
dt

dc
dt

= 0, based on the
principle of least action that was enunciated by Pierre Louis Moreau de Maupertuis

100De la ligne géodésique sur un ellipsoide quelconque, J. Math. Pures Appl., 9 (1844), 401–408.
Strictly speaking, as a parameter of a geodesic, we adopt the one proportional to arc-length. We
should note that �(c) is left invariant under a parameter change.
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(1698–1759) and occupies its position in the physicist’s pantheon,101 according to
which a particle travels by the action-minimizing path between two points. The
action he defined is the “sum of mvs” along the entire trajectory of a particle with
mass m, where s is the length of a tiny segment on which the velocity of the particle
is v.102

The obscurity of Maupertuis’ formulation was removed by Euler (1744) and
Lagrange (1760). Specifically the action integral S applied to a particle in motion
under a given potential energy V (the concept conceived by Lagrange in 1773) is:

S=∫ b
a

(
1
2m‖ċ(t)‖2 − u(c(t))

)
dt . The E-L equation for S reduces to the Newtonian

equation: c̈ = −gradu. (For example, the gravitational potential energy generated
by the mass distribution μ is u(x)=−G ∫ ‖x − y‖−1 dμ(y).) This suggests us to

define the action integral for a curve c in S by E(c)=∫ b
a
‖ċ(t)‖2dt . Indeed, the E-L

equation for this functional coincide with D
dt

dc
dt
= 0.

The minimum (maximum) problems come up in various scenarios in geometry.
For instance, the (classical) isoperimetric theorem whose origin goes back to ancient
Greece states, “Among all planar regions with a given perimeter, the circle encloses
the greatest area.” Needless to say, minimal surfaces are solutions of a minimum
problem. In particular, finding a surface of the smallest area with a fixed boundary
curve is known as Plateau’s problem, the problem raised by Lagrange in 1760
and investigated in depth in the twentieth century onward.103 Minimum/maximum
principles hold emphatic importance even in different fields; say, in potential theory
(Remark 15.1 (1)), in statistical mechanics, in information science, in the design of
crystal structures [38], and much else besides. Even more surprisingly, so too does
in the characterization of the “shape” of the universe as will be explained later.

Remark 12.1

(1) Hamilton reformulated the E-L equation in the context of mechanics as follows
(1835). For simplicity, suppose that the integrand L in (6.12.6) (called a
Lagrangian) does not involve the time variable t . Making the change of
variables (q1, . . . , qn, q̇1, . . . , q̇n) �→ (q1, . . . , qn, p1, . . . , pn) where pi =
∂L/∂q̇i , and defining the function H (the Hamiltonian) with the new variables

101Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles, read to the
French Academy on April 15, 1744. His paper Loi du repos des corps, Histoire Acad. R. Sci. Paris
(1740), 170–176, is its forerunner.
102On reflection, the principle of least action seems to tell us that present events are dependent
on later events in a certain manner; so, though a bit exaggerated, a natural occurrence seems to
be founded on an intention directed to a certain end. For such a teleological and purposive flavor
(dating back to Aristotle), Maupertuis (and Euler alike) thought that his cardinal principle proves
a rational order in nature, and buttresses the existence of a rational God.
103Plateau conducted experiments with soap films to study their configurations (1849).
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(p, q) by H(p, q) =∑
i pi q̇i − L(q, q̇), we may transform (6.12.7) into what

we call the Hamiltonian equation:

dpi

dt
= −∂H

∂qi
,

dqi

dt
= ∂H

∂pi
, (i = 1, . . . , n).

A general form of the law of the conservation of energy is then embodied by
the fact that H(p(t), q(t)) is constant for any solution (q(t),p(t)). In the case
where L= m

2

∑n
i=1 q̇i

2−V (q), we have p=mq̇ and H = 1
2m

∑n
i=1 pi

2+V (q)
(= m

2

∑n
i=1 q̇i

2+ V (q)). Hence p in this case is the momentum, and H is the
total mechanical energy; that is, the sum of the kinetic energy and the potential
energy. Hamilton’s formulation gained further prominence with the advent of
statistical mechanics and quantum mechanics.

(2) To outline a maximum principle in statistical mechanics, consider a simple
quantum mechanical system with possible microscopic states 1, . . . , n whose
energies are E1, . . . , En.104 A (macroscopic) state of the system is described
by a probability distribution P = {pi}ni=1, where pi is the probability
that the microscopic state i occurs during the system’s fluctuations. In this
setting, the internal energy U(P) and the entropy S(P ) are defined by
U(P) = ∑n

i=1 Eipi, S(P ) = −kB∑i=1 pi logpi , respectively, where kB
is Boltzmann’s constant. Among all states P with U = U(P), there is a
unique P 0 = {p0

i }ni=1 with the maximum entropy; i.e. S(P ) ≤ S(P 0).
It is given by the Gibbs distribution105 representing the equilibrium state
p0
i = exp(−Ei/kBT )/Z(1/kBT ); Z(β) := ∑n

i=1 exp(−βEi), where T is
the temperature, determined by the equation U = −d/dβ∣∣

β=1/kBT
logZ(β).

The second law of thermodynamics (formulated by Clausius) says that
entropy of an isolated system invariably increases because the system evolves
towards equilibrium. Therefore the total entropy of the universe is continually
increasing. ��

6.13 Curvature and Non-Euclidean Geometry

In a nutshell, what Gauss discovered during his study of the new geometry is that
homogeneity and isotropy are not enough to characterize Euclidean space; namely,
his discovery suggests that there is another “space” with these properties, which is
to be called “non-Euclidean space”. However, we have to stress that the way Gauss

104A quantum mechanical system is described by a self-adjoint operator Ĥ acting on a Hilbert
space. A unit eigenvector of Ĥ with eigenvalue E represents a state with energy E.
105The term “entropy,” from Greek εν (“in”) + τροπή (“a turning”), was coined in the early 1850s
by R. J. E. Clausius. In the 1870s, L. Boltzmann gave its statistical definition.
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Fig. 6.10 A triangle on a
surface

and others searched for their new geometry was synthetic. At this stage, therefore,
the “new space” has not yet been explicitly described.

Gauss did not refer to the non-Euclidean space, but perhaps he was aware that the
“new space” may yield an alternative model of the universe. In truth, the moment
when he perceived this is by far the most significant turning point in cosmology.106

What is more, Gauss seemed to know an intimate relation between his intrinsic
theory of surfaces and non-Euclidean (plane) geometry because he obtained the
arresting formula ( Disquisitiones generales, Art. 20):

∫∫
�ABC

KS dσ = ( � A+ � B + � C)− π, (6.13.8)

where �ABC is a geodesic triangle (a triangle on S formed by the arcs of three
geodesics segments; Fig. 6.10), and dσ is the surface element of S (Sect. 6.15). Note
that this is a generalization of Harriot-Girard’s formula.

From (6.13.8), a “plane-like surface” of constant negative curvature (if exists)
is expected to be a non-Euclidean plane-model, and hence finding such a surface
became an urgent issue. In a note dated about 1827, Gauss jotted down his study
about the surface of revolution generated by the tractrix (Fig. 6.11),107 which he
called “das Gegenstück der Kugel” (the opposite of the sphere).108 This is an
example of a surface with constant negative curvature, but he did not mention clearly
that it has to do with the new geometry (Werke, VIII, p. 265).109 The reason might

106In the Disquisitiones generales (Art. 28), Gauss refers to the numerical data for the triangle
formed by the three mountain peaks Brocken, Hohenhagen, and Inselsberg. Some say that with
these data Gauss wished to determine whether the universe is Euclidean. What we can say at the
very least is that he compared a geodesic triangle on the earth surface with a plane rectilinear
triangle. Meanwhile, Lobachevsky attempted to measure the angle sum of a triangle by analyzing
data on the parallax of stars (Exposition succincte; see [19]).
107The tractrix is the graph of the function y = R log((R +

√
R2 − x2)/x) +√R2 − x2, which

shows up as a locus of an object obtained from dragging it along a line with an inextensible string.
The architect C. Perrault proposed a problem related to the tractrix (1670) for the first time. The
appellation “tractrix” was coined by Huygens in 1692.
108This was to be called the pseudosphere by Eugenio Beltrami (1835–1900); see Footnote 126.
109F. Minding found that the trigonometry for geodesic triangles on this surface enjoys analogy
to spherical trigonometry (1840). However he did not notice that his finding is equivalent to the
non-Euclidean trigonometric relations.
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Fig. 6.11 Das Gegenstück
der Kugel

be because he could not construct such a surface with a planar shape. The truth is
that the non-Euclidean plane cannot be realized as an ordinary surface in space, as
Hilbert showed in 1901. In order to apprehend its true identity, we need the notion
of manifold (Sect. 6.16).

Gauss may have known (6.13.8) as early as 1816, so it may have served as a
forerunner to the Theorema Egregium. In his Disquisitiones generales, Art. 20, he
says, “This formula, if I am not wrong, should be counted among the most elegant
ones of the theory of surfaces.”

Behind (6.13.8), there seems to be his commitment to electromagnetism110;
in 1813, he proved a special case of what we now call Gauss’s flux law that
correlates the distribution of electric charge with the resulting electric field. The
law is expressed by a formula connecting an integral inside a closed surface with a
surface integral over the boundary (divergence theorem; Werke, V, pp. 5–7).

Remark 13.1 The divergence theorem asserts that

∫∫∫
D

divXdx =
∫∫

S

〈n,X〉dσ

for a vector field X defined on a domain D ⊂ R
3 with boundary S, where n is the

outer unit normal of the surface S. A special case was treated by Lagrange (1762),
and by Gauss (1813). It was M. V. Ostrogradsky who gave the first proof for the
general case (1826). The 2D version is known as Green’s theorem (1828):

∫∫
D

( ∂g
∂x

− ∂f

∂y

)
dxdy =

∫
C

f dx + gdy, (6.13.9)

where D is the domain surrounded by a piecewise smooth, simple closed counter-
clockwise oriented curve C. Another important formula is Stokes’ formula for a
bordered surface S with a normal unit vector field n:∫∫

S

〈n, rotX〉dσ =
∫
C

〈ċ(s),X(c(s))〉ds,

110The rapid progress of electromagnetism originated with H. C. Oersted who verified by
experiment that electricity and magnetism are not independent (1820).
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where we represent the boundary curve C of S by an arc-length parameterization
c(s) in such a way that ċ(s)× n(c(s)) points towards the interior of S.111 ��

A formula that deserves to be mentioned is derived from (6.13.8). For a closed
surface S with a division by a collection of geodesic triangles such that each triangle
side is entirely shared by two adjacent triangles, we have∫

S

KS dσ = 2π(v − e + f ), (6.13.10)

where v, e, f are the number of vertices, edges, and faces, respectively. This
formula, due to Walther Franz Anton von Dyck (1856–1934), is called the Gauss-
Bonnet formula, though they never referred to (6.13.10) in their work.112 It tells us
that χ(S) := v−e+f (the Euler characteristic of S) is independent of the choice of
a triangulation. In particular, applying to the unit sphere S2, we get the polyhedron
formula χ(S2) = 2 discovered by Euler in 1750 (Sect. 6.21).

The proof of (6.13.10) goes as follows. The sum of the interior angles gathering
at each vertex is 2π , so that∫
S

KSdσ =
∑
�ABC

∫∫
�ABC

KS dσ =
∑
�ABC

{
( � A+ � B + � C)−π

} = 2πv− fπ,

while 3f = 2e because each edge is counted twice when we count edges of all
triangles. Consequently, the left-hand side of (6.13.10) is equal to π(2v − f ) = π

(2v −2e+ 2f ) = 2π(v − e + f ), as desired.
The Gauss-Bonnet formula opened the doorway to global analysis that knits

together three fields; differential geometry, topology, and analysis (Sect. 6.21).
After Gauss’s monumental feat, cosmology began to depart from religion and

even philosophy, and to snuggle up to higher mathematics which is unconstrained
by perceptual experience; thus God walked away from the center stage. However the
outside of space still remains as a backdrop. It was Riemann, the next protagonist in
our story, who at last erased the outside.

6.14 The Dimension of Space

Deferring the account of Riemann’s achievement to the next section, we shall pause
for a moment to discuss higher-dimensional spaces.

111The statement of Stokes’ formula appeared as a postscript to a letter (July 2, 1850) from William
Thomson (Lord Kelvin, 1824–1907) to G. Stokes. Stokes set the theorem as a question on the 1854
Smith’s Prize Examination at Cambridge.
112von Dyck, Beiträge zur Analysis situs I. Aufsatz. Ein- und zweidimensionale Mannigfaltigkeiten,
Math. Ann., 32 (1888), 457–512. Pierre Ossian Bonnet (1819–1892) generalized (6.13.8) to
triangles with non-geodesic sides (1848).
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Dimension is, in a naive sense, a measurable extent of a particular kind, such
as length, breadth and depth, or the maximum number of independent directions
in a refined sense. Physically it is the number of degrees of freedom available
for movement in a space. Aristotle was among the earliest who contemplated
dimension; he says, “magnitude which is continuous in one dimension is length; in
two breadth, in three depth, and there is no magnitude besides these” (Metaphysics,
V, 11–14). Ptolemy likewise asserted in his book On Distance that one cannot
consider “space of dimension more than three,” and even gave a proof as testified
by Simplicius of Cilicia (ca. 490 CE–ca. 560 CE).

In Sect. 6.7, we speculated what the inhabitants in a surface would do when they
want to know the shape of their universe. Surfaces are 2D, whilst our universe is
3D. Why are we in the 3D space, not in another?113 However difficult it may have
been to furnish a definite answer to this question, there is no barrier to thinking of
higher-dimensional models of space. Actually we have a clue in analytic geometry
to formulate coordinate spaces of general dimension.114

It was in the eighteenth century that mathematicians began to contemplate
the possibility of the use of R

d as a gadget to develop mechanics. As Lagrange
and D’Alembert suggested, it is natural to add the time parameter as the fourth
dimension. Moreover, it is technically convenient to describe a mass system of N
particles located at (x1, y1, z1), (x2, y2, z2), . . . , (xN , yN, zN ) as the single point
(x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN) in R

3N . Then, around the 1830s, the theory
of n-ple integrals was evolved. For instance, Carl Gustav Jacob Jacobi (1804–1851)
computed the volume of a higher-dimensional sphere in connection with quadratic
forms though he deliberately avoided geometrical language (1834).

Certain it is that, by the early nineteenth century, the time was ripe for
developing higher-dimensional geometry. In 1843, Arthur Cayley published a small
memoir on R

n, however the paper is characteristically algebraic. In the same
year, Hamilton conceived the 4D number system (Sect. 6.7). A year later, Die
Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, a pioneer work on
vector spaces of general dimension, was published by Hermann Grassmann (1809–
1877).115

A point at issue is how to imagine R
d as a higher-dimensional analogue of

plane and space. A lighthearted way is to execute a geometry in R
d by mimicking

geometry in R
2 and R

3 (thus geometric terminology may be of psychological

113Closely related to this question is the anthropic principle (Brandon Carter, 1973), the philo-
sophical deliberation that the universe is inseparable from mankind’s very existence.
114Analytic geometry acquired its whole range in the eighteenth century with A. Parent, Clairaut,
Euler, G. Cramer, Lagrange and many others. La Hire’swork Nouveaux élémens des sections
coniques, les lieu géométriques (1679) summarized the progress of analytic geometry during a
few decades since Descartes. His work contains some ideas leading to the extension of space to
more than three dimensions.
115In this book, he created what we now call the exterior algebra (or Grassmann algebra), which,
denigrated at the time, was to exert a profound influence on the formation of algebra and geometry;
see Sect. 6.20. In this sense, he was quite ahead of his time.



264 T. Sunada

assistance when we imagine Rd ). It is to the credit of Ludwig Schläfli (1814–1895)
to have inaugurated the study of the geometry of Rd along this line. In his magnum
opus, Theorie der vielfachen Kontinuität, worked out from 1850 to 1852,116 Schläfli
defined the distance between A = (x1, . . . , xd) and B = (y1, . . . , yd) in R

d by
d(A,B) := √

(x1 − y1)2 + · · · + (xd − yd)2.
As expected, many results in R

d are just direct generalizations of the facts
that hold in plane and space, but there are several results depending heavily on
dimension. Schläfli’s classification of higher-dimensional convex regular polytopes
is such an example. Specifically, there are six regular polytopes in R

4, while there
are only three regular polytopes in R

d , d > 4 (the analogues of the tetrahedron, the
cube and the octahedron). Another dimension-dependent example—rather recent
one originating with Newton’s curiosity regarding celestial bodies—is the maximum
possible kissing number k(d) for Rd , where the kissing number is the number of
non-overlapping unit spheres Sd = {(x1, x2, . . . , xd+1)| (x1− a1)

2+ · · ·+ (xd+1−
ad+1)

2 = 1} that can be arranged in such a way that each of them touches another
given unit sphere. For example, k(2) = 6, k(3) = 12 and k(4) = 24, but curiously
k(d) is unknown for d > 4 except for k(8) = 240 and k(24) = 196, 560.117

Such phenomena enrich geometry; thereby, as opposed to Kant’s dictum, higher-
dimensional geometry turns out to be non-empty and fruitful.

Remark 14.1 As mentioned in Sect. 6.7, there exists no 3D number system that
inherits, in part, the arithmetic properties of real numbers, while a 4D system exists.
Hence a dimension-dependence phenomenon occurs in number systems. In 1843,
J. T. Graves discovered the octonions, a non-associative 8D number system, inspired
by Hamilton’s discovery of quaternions.118 We thus have four number systems.
These systems share the following properties; writing a · b for multiplication of
a = (a1, . . . , ad), b = (b1, . . . , bd) (d = 1, 2, 4, 8), we have (a + b) · c =
a · c + b · c, a · (b + c)= a · b + a · c, k(a · b)= (ka) · b= a · (kb) (k ∈R), and
‖a ·b‖ = ‖a‖‖b‖. Here ‖a‖2=a1

2+· · ·+ad2. Interestingly, if Rd has multiplication
having these properties, then d must be 1,2,4, or 8 as A. Hurwitz showed in 1898.

Quaternions and octonions—the products of pure thought— have applications in
modern physics; thus being more than mathematical fabrications. ��

116It was in 1901, after his death, that the entire manuscript was published in Denkschriften Der
Schweizerischen Naturforschenden Gesellschaft, 38 (1901), 1–237.
117The fact k(3) = 12 was conjectured by Newton, while D. Gregory, a nephew of James Gregory,
insisted that k(3) = 13 in a discussion taking place at Cambridge in 1694. A proof in favor of
Newton was given by K. Schütte and van der Waerden (1953).
118Slightly before the publication of his paper, Cayley discovered the octonions. Octonions are
often referred to as Cayley numbers.
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6.15 Riemann: The Universe as a Manifold

Gauss brought about a revolution in geometry as he envisaged. Indeed, his study
of surfaces turned out to be the germ of a “science of generalized spaces” that was
essentially embodied by Georg Friedrich Bernhard Riemann (1826–1866) in his
Habilitationsschrift Über die Hypothesen welche der Geometrie zu Grunde liegen
presented to the Council of Göttingen University.119

It was Gauss—only 1 year before the death at the age of 78—who asked his
brilliant disciple to prepare a thesis on the foundations of geometry, out of the
three possible topics that Riemann proposed. The two other topics were on electrical
theory, and unlike the one chosen by his mentor, he was well-prepared for them. So
Riemann had to work out the topic Gauss recommended, and in a matter of months
he could bring it to completion without qualm.

The aged Gauss, albeit being sick at that time, attended Riemann’s probationary
lecture delivered on 10 June 1854 in anticipation of hearing something new related
to his old work. “Among Riemann’s audience, only Gauss was able to appreciate
the depth of Riemann’s thoughts. . . . The lecture exceeded all his expectations and
greatly surprised him. Returning to the faculty meeting, he spoke with the greatest
praise and rare enthusiasm to W. Weber about the depth of the thoughts that Riemann
had presented” [19].

In his lecture aimed to a largely non-mathematical audience, Riemann posed
profound questions about how geometry is connected to the world we live in. The
thrust being as such, the content was much more philosophical than mathematical
though he humbly denied this (Part I).

At the outset, he says that the traditional geometry assumes the notion of
space and some premises which are merely nominal, while the relation of these
assumptions remains in darkness because the general notion of multiply extended
magnitude remained entirely unworked. He thus sets himself the task of constructing
the notion of manifold of general dimension.

There is something of note here. In his setup, Riemann does not set a limit to
the dimension of space. Remember that, when he inaugurated his study, higher-
dimensional geometry as an abstract theory was just formulated. This might be
a precipitating factor for his commitment to higher-dimensional curved spaces.
His general treatment of space was, however, not a mere idea or pipe dream, and
had truly a decisive influence on modern cosmology that employs manifolds of
dimension more than four (in superstring theory, space-time is 10D).

Riemann continues his deliberation on manifolds, which is bolstered by his
immense insight into the principles behind the proper understanding of our space;
but to go straight to the heart of his scheme, let us take a shortcut at the expense of
his true motive.

119Habilitationsschrift is a postdoctoral thesis required for qualification as a lecturer. This is his
second stage of the procedure (see Footnote 158 for his thesis at the first stage). The title of
Riemann’s thesis is an implicit criticism of Kant.
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To single out a reasonable model of the universe, we must take into account
the fact that our universe looks Euclidean in so far as we examine our vicinity.
In the light of this observation, we define a d-dimensional manifold to be a
“generalized space” on which one can set up a curvilinear coordinate system (x1,

. . . , xd) around each point p0, so that we may indicate each point p near p0
by its coordinates (x1, . . . , xd). In addition, the higher-dimensional Pythagorean
Theorem is supposed to hold in the infinitesimal sense. To explore what this
means, we recall that the distance �s between (y1, . . . , yd) and its displacement
(y1 + �y1, . . . , yd + �yd) in R

d is given by (�s)2 = (�y1)
2 + · · · + (�yd)

2.
When a skew coordinate system (x1, . . . , xd) is taken instead of the Cartesian one,
this expression is modified as (�s)2 = ∑d

i,j=1 gij�xi�xj . Here if the coordinate

transformation between (y1, . . . , yd) and (x1, . . . , xd) is given by yi =∑d
j=1 rij xj ,

then�yi =∑d
j=1 rij�xj , and hence gij =∑d

h=1 rhirhj . The square matrix (gij ) is
a positive symmetric matrix. Since in the infinitesimally small scale, the curvilinear
coordinate system is regarded as a skew coordinate system, it is natural to express
the “infinitesimal” Pythagorean Theorem as

ds2 =
d∑

i,j=1

gij dxidxj , (6.15.11)

where the “line element” ds stands for the “distance between infinitesimally nearby
points” (x1, . . . , xd) and (x1 + dx1, . . . , xd + dxd), and (gij ) is, in turn, a function
of the variables x1, . . . , xd with values in positive symmetric matrices. The right-
hand side is called the first fundamental form (or Riemannian metric in today’s term;
Sect. 6.20), which is literally fundamental in Riemann’s theory of manifolds. With
it, one can calculate the length of a curve c(t) = (u1(t), . . . , ud(t)) (a ≤ t ≤ b) by
the integral

∫ b

a

{ d∑
i,j=1

gij
dui

dt

duj

dt

}1/2
dt. (6.15.12)

In imitation of the case of surfaces, we say that c is a geodesic if it is locally length-
minimizing. The distance of two points p, q is defined to be the infimum of the
length of curves joining p, q .

The next task—a highlight of his thesis—is to define “curvature” in his setting.
To this end, Riemann takes a union of geodesics passing through a given point p to
form a surface S, and then defines what we now call the “sectional curvature” to be
KS(p) (Part II, §3; see Sect. 6.20 for a modern definition).
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The manifold is said to have constant curvature if KS(p) does not depend on
the choice of p and S. He observes that a manifold with constant curvature α has a
coordinate system (x1, . . . , xd) around each point such that

ds2 =
d∑
i=1

dxi
2
/(

1+ α

4

d∑
i=1

xi
2
)2
. (6.15.13)

In particular, the curvature of a manifold covered by a single coordinate system
(x1, . . . , xd)with the fundamental form

∑d
i=1 dxi

2 vanishes everywhere. Obviously
this manifold, for which he used the term “flat,” is the d-dimensional coordinate
space Rd with the distance introduced by Schläfli.

Related to the curvature is a question about unboundedness (Unbegrenzheit) and
infinite extent (Unendlichkeit) of the universe (Part III, §2). He said that this kind
of inquiry is possible even when our empirical determination is beyond the limit
of observation. For example, if the independence of bodies from positions could
be assumed, then the universe is of constant curvature, and hence must be finite
provided that the curvature is positive (see Sect. 6.18 for the exact meaning of
finiteness). He justifies his argument by saying that a manifold with positive constant
curvature has a sphere-like shape.120

Riemann’s consideration is not limited to finite dimensions; he suggests the
possibility to contrive the theory of infinite-dimensional manifolds which may allow
to handle spaces of functions or mappings en bloc from a view similar to the finite-
dimensional case (Part I, §3). Thus, at this point of time, he might already have had
an inspiration that variational problems are regarded as extreme value problems on
infinite-dimensional manifolds, which a little later led to his use of what he called
Dirichlet’s principle in complex analysis (1857).121

At the end of his lecture, Riemann ponders on the question of the validity of the
hypotheses of geometry in the infinitely small realm. He says that the question of
the validity of the hypotheses of geometry in the infinitely small is bound up with
the question of the ground of the metric relations of space, and concluded the lecture
with the following confident statement.

Researches starting from general notions, like the investigation we have just made, can only
be useful in preventing this work from being hampered by too narrow views, and progress in
knowledge of the interdependence of things from being checked by traditional prejudices.
This leads us into the domain of another science, of physics, into which the object of this
work does not allow us to go to-day (translated by W. K. Clifford, Nature, Vol. VIII, 1873;
see also [34]).

120Riemann’s claim should be phrased as “a d-dimensional manifold with positive constant
curvature is locally a portion of the sphere Sd .” A typical example besides Sd is the projective
space P d(R) obtained from Sd by identifying (x1, . . . , xd+1) with (−x1, . . . ,−xd+1), on which
projective geometry is developed (see Sect. 6.16). In the 3D case, the classification of such
manifolds is related to polyhedral groups. We will come across an example in Sect. 6.21.
121Theorie der Abel’schen Funktionen, J. für die Reine und Angew. Math., 54, 115–155.
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Remark 15.1

(1) Dirichlet’s principle was already conceived by Gauss in 1839 to solve a
boundary value problem for harmonic functions by means of a minimum
principle.122 Specifically, it says that a solution u of the Laplace equation
�u = 0 on a domain D of Rd with boundary condition u = g on ∂D can
be obtained as the minimizer of the functional E(u) = ∫

D
1
2‖gradu‖2 dx. Yet,

as pointed out by Karl Theodor Wilhelm Weierstrass (1815–1897) in 1870, the
existence of the minimizer is not obvious. It was in 1899 that Riemann’s use of
the principle was warranted (Hilbert).

(2) An “infinitesimal” that shows up as the symbol dxi in (6.15.11) is paradoxically
thought of as an object which is smaller than any feasible measurement. The
symbol dx (called the differential and exploited by Leibniz for the first time)
is convenient when expressing tidily formulas that involve differentiation and
integration. For example, the expression

∫
c f dx + g dy (see (6.13.9)) for a

line integral along a curve c(t) = (x(t), y(t)) (a ≤ t ≤ b) is originally∫ b
a

(
f (x(t), y(t)) dx

dt
+ g(x(t), y(t))

dy
dt

)
dt . Because of such a background,

calculus had been referred to as the infinitesimal analysis. Typical are the
Analyse des infiniment petits (1696) by Guillaume François Antoine Marquis
de L’Hôpital (1661–1704), which contributed greatly to the dissemination of
calculus in the Continent, and Euler’s Introductio in Analysin Infinitorum, the
first systematic exposition of calculus of several variables.

The paradoxical nature of infinitesimal was criticized as incorrect by Berke-
ley who described “0/0” in differentiation as the “ghost of departed quan-
tities,”123 and provoked controversy among the successors of Leibniz. For
instance, for Euler, infinitely small quantities are actually equal to zero, and
differential calculus is simply a heuristic procedure for finding the value of the
expression 0/0” (Institutiones Calculi Differentialis [8]. Yet, with the hindsight
of modern geometry, infinitesimals are not altogether absurd and could survive
today as “duals” of certain “operations” (Sect. 6.20).

It is a significant progress in the history, however inconspicuous, that
differentiation was recognized as an operation that can be manipulated inde-
pendently of functions to which they are applied. L. F. A. Arbogast was one
of the first to make such a conceptual leap (Calcul des dérivations, 1800).
It goes without saying that the Leibnizian notations played a key part in this
comprehension. ��

To appreciate Riemann’s work, we shall step back into Gauss’s work, wherein we
see the elements of continuity between them as forthrightly expressed in Riemann’s

122Kelvin used the principle in 1847 in his study of electric fields. The most complete formulation
was given by Johann Peter Gustav Lejeune Dirichlet (1805–1859) around 1847 in his lectures on
potential theory at Berlin.
123The analyst, or a discourse addressed to an infidel mathematicians (1734). Berkeley denied the
material existence of the world; he says, “Esse est percipi (To be is to be perceived).”
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words, “In the comprehension of the geometry of surfaces, the data on how a surface
sits in space is incorporated with the intrinsic measure-relation in which only the
length of curves on the surface is considered” (Part II, §3).

We let (u, v) �→ S(u, v) be a local parametric representation of a surface S in
space; that is, S is a smooth one-to-one map from a domainU of R2 into S such that
Su(u, v) and Sv(u, v) are linearly independent for each (u, v) ∈ U (thus span the
tangent plane of S at S(u, v)). Note that the inverse map of S yields a curvilinear
coordinate system (u, v) of S.

Consider a curve c(t) (t ∈ [a, b]) on S whose coordinates are
(
u(t), v(t)

)
, and

differentiate both sides of c(t) = S
(
u(t), v(t)

)
to obtain

∥∥∥dc
dt

∥∥∥2 =
∥∥∥du
dt

Su+ dv

dt
Sv

∥∥∥2 = 〈Su,Su〉
(
du

dt

)2

+2〈Su,Sv〉du
dt

dv

dt
+〈Sv,Sv〉

(
dv

dt

)2

.

so the length of c is given by

∫ b

a

∥∥∥dc
dt

∥∥∥dt = ∫ b

a

{
〈Su,Su〉

(
du

dt

)2

+2〈Su,Sv〉du
dt

dv

dt
+〈Sv,Sv〉

(
dv

dt

)2 }1/2
dt.

Putting E = 〈Su,Su〉, F = 〈Su,Sv〉, G = 〈Sv,Sv〉 and comparing this formula
with (6.15.12), we see that the first fundamental form is I := Edu2 + 2Fdudv +
Gdv2.

Besides, Gauss introduced the coefficients of what we now call the second
fundamental form II := Ldu2 + 2Mdudv + Ndv2 by setting L = 〈Suu,n〉, M =
〈Suv,n〉, N = 〈Svv,n〉, where n is the unit normal defined by n = (Su×Sv)/‖Su×
Sv‖. Then KS(p) = (LN −M2)/(EG − F 2) (Disquisitiones generales, Art. 10).
To show this, we employ the coordinate system (x, y, z) and the function f (x, y)
introduced in Sect. 6.7. We may assume that S(0, 0) = (0, 0, 0) and the direction of
the z-axis coincides with that of n. Let (x(u, v), y(u, v)) be the xy-coordinate of the
orthogonal projection of S(u, v) onto the tangent plane, so that S(u, v) = (

x(u, v),

y(u, v), f (x(u, v), y(u, v))
)
.124 We then have

Suu=
(
xuu, yuu, axu

2 + 2bxuyu + cyu
2), Svv =

(
xvv, yvv, axv

2 + 2bxvyv + cyv
2),

Suv=
(
xuv, yuv, axuxv + b(xuyv + yuxv)+ cyuyv

)
((u, v) = (0, 0)).

From the assumption on the vector n, it follows that the coefficientsL,M,N are the
z-coordinates of Suu, Suv , Svv , respectively, so thatL = axu

2 +2bxuyu+cyu2, N =

124For the local parametric representation of S given by the map (x, y) �→ (x, y, f (x, y)), the
second fundamental form at (0, 0) is given by adx2 + 2bdxdy + cdy2.
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axv
2+2bxvyv+cyv2, M = axuxv +b(xuyv+yuxv)+cyuyv . In matrix form, these

formulas together may be written as

(
L M

M N

)
=
(
xu yu

xv yv

)(
a b

b c

)(
xu xv

yu yv

)
.

Therefore, taking the determinant of both sides, we have LN − M2 = (xuyv −
yuxv)

2(ac−b2) = (xuyv−yuxv)2KS , while, noting that Su = (xu, yu, 0) and Sv =
(xv, yv, 0), we find thatEG−F 2 = 〈Su,Su〉〈Sv,Sv〉−〈Su,Sv〉2 = (xuyv−yuxv)2,
from which the claim follows.

We add a few words about the surface element dσ (Sect. 6.13). For a point
p = S(u, v), define S0 : R

2 → E by setting S0(x, y) = p + xSu + ySv ,
which is a parametric representation of the tangent plane at p. Consider the small
parallelogram P = S0

({(x, y)| 0 ≤ x ≤ �u, 0 ≤ y ≤ �v}). This approximates
S
({(x, y)|0≤ x ≤�u, 0 ≤ y ≤ �v}). Hence, the surface area of S

({(x, y)| 0≤
x ≤ �u, 0 ≤ y ≤ �v}) is approximated by Area(P ) = {〈Su,Su〉〈Sv,Sv〉 −
〈Su,Sv〉2

}1/2
�u�v = √

EG− F 2�u�v, so the surface area of S(U) is given

by
∫∫

U

√
EG− F 2dudv, and dσ = √

EG− F 2dudv ( Disquisitiones generales,
Art. 17).

The reader might suspect that Riemann’s approach is more or less a direct
generalization of Gauss’s one. That is not quite correct since Riemann’s formulation
is entirely intrinsic; therefore, the universe can exist without the outside (in
particular, we may consider surfaces not realized in space, thereby providing a
possibility of constructing a model of the non-Euclidean plane). This should be the
point that Gauss spoke of with the greatest praise and rare enthusiasm.

6.16 Hyperbolic and Projective Spaces

Soon after Riemann passed away at the age of 39 on June 28, 1866, his recondite
thesis was published by his friend Dedekind,125 and was taken up by Beltrami to
put an end to the argument on non-Euclidean geometry. In fact, most people at that
time were reluctant to accept the unaccustomed geometry because it might very
well be possible to fall in with inconsistency after a more penetrating investigation.
So as to convince incredulous people, a model of non-Euclidean geometry needed
to be constructed, resting on well-established geometric ingredients, with which
inconsistency can be kept at bay.

125Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13 (1868), 133–
152.
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In 1868, the Italian journal Giornale di Mathematiche carried Beltrami’s article
Teoria fondamentale degli spazii de curvatura constante,126 in which it was shown
that the non-Euclidean space is realized as the 3D open ballD = {(x1, x2, x3)|x1

2+
x2

2 + x3
2 < 4} with ds2 = (dx1

2 + dx2
2 + dx3

2)/
(
1 − (x1

2 + x2
2 + x3

2)/4
)2,

where geodesics are circular arcs in space crossing perpendicularly ∂D = {(x1, x2,

x3)| x1
2 + x2

2 + x3
2 = 4}. The apparent boundary ∂D is at infinity, so that the

universe modeled by D has infinite extent.127 In the same vein, the non-Euclidean
plane is represented by the 2D open disk {(x1, x2)| x1

2 + x2
2 < 4} with ds2 =

(dx1
2 + dx2

2)/
(
1− (x1

2 + x2
2)/4

)2.128

Here, a short comment is in order. Regarding geodesics as straight lines, one may
logically build up a theory that satisfies all premises of non-Euclidean geometry.
What should be emphasized is that straight lines are not necessarily the ones that we
visualize on a piece of paper. Actually, as postulated by Hilbert (Remark 10.1 (2)),
“point” and “straight line” are undefined objects, and only the relations between
them such as “a point p is on a straight line �” and “there is a unique line
passing through given two points” are a vital necessity. Of great significance in this
comprehension is that all the non-Euclidean objects are described in the Euclidean
terminology. Thus the logical consistency of non-Euclidean geometry reduces to
that of Euclidean geometry, and then to that of the real number system because R

3

is a model of Euclidean space.129

In Sect. 6.5, we touched on projective geometry as a branch of classical geometry.
For the pedagogical sake, we shall present an alternative perspective that was
developed in the same period as Poncelet and Jakob Steiner (1796–1863) embarked
on it in view of synthetic geometry. We owe the idea in the main to August
Ferdinand Möbius (1790–1868).130 It provides another exemplar of the transition
to a “geometry of space itself.”

A “plane” that one assumes a priori in projective geometry is called today the
projective plane. Plane projective geometry is, if we distill its content down to a few

126This is his second paper on a non-Euclidean model. He did not know Riemann’s work when
writing the first paper Saggio di Interpretazione della Geometrica Non-euclidea (1868), wherein
the pseudosphere (Footnote 108) is exploited in a tricky manner.
127In the Teoria fondamentale, it is indicated that Hd = {(x1, . . . , xd ) ∈ R

d | xd > 0} with
ds2 = (

∑d
i=1 dxi

2)/xd
2 has constant negative curvature. This manifold, together with other ones,

was later to be called the hyperbolic space (F. Klein, 1871); see [35].
128Thinking back over Riemann’s thesis, we wonder why he did not refer to the non-Euclidean
geometry since (6.15.13) for α < 0 is connotative of Beltrami’s model. In a letter to J. Hoüel
dated April 4, 1868, Beltrami says, “What amazes me is that for all the time I talked with Riemann
(during the 2 years he spent in Pisa, shortly before his sad end), he never mentioned these ideas to
me, though they must have occupied him for quite a long time, for a fine draft cannot be the work
of a single day, even for such a brilliant genius” (see [11]).
129At the ICM 1900, Hilbert proposed to prove the consistency of the real number system within
his formalistic framework. Yet, this turns out to be not feasible as Gödel showed (1931).
130Möbius, Der barycentrische Calcül, 1827. A similar approach was taken by J. Plücker.
Meanwhile, Steiner stuck to the synthetic method.
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Fig. 6.12 Projective plane
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essential premises, built on the following simple system of axioms that are stated in
terms of relations between points and lines:

(i) Any two distinct points are contained in one and only one line.
(ii) Any two distinct lines have one and only one point in common.

(iii) there exists four points, no three of which are contained in one line.

Although this might cause a sense of discomfort at first, a concrete model of the
projective plane with “points” and “lines”, symbolically indicated by P, is given by
the totality of lines in R

3 passing through the origin O . Here a “point” is just an
element of P. A “line” is defined to be an ordinary plane in space passing through
O . We say that a “point” � is contained in a “line” H if the line � is contained in the
plane H in the usual sense. The axioms (i)–(iii) above are easy consequences of the
facts that hold for lines and planes.

In Sect. 6.5, we said that, in plane projective geometry, points at infinity are
adjoined to the Euclidean plane. To confirm this in our setting, select a plane H not
containingO , and to take the line �p containing both p ∈ H and O . We let H(P) be
the collection of lines � ∈ P not parallel to H, and let H∞(P) be the plane passing
throughO and parallel to H. Then p �→ �p is a one-to-one correspondence between
H and H(P), which allows us to identify H(P) with H. Figure 6.12 illustrates that,
as a point in H tends to infinity, the line �p converges to a line parallel to H.
Accordingly, one may regard H∞(P) as the line at infinity.

Now, P is identified with P 2(R) in a natural manner. We call (x, y, z) ∈ R
3\{0}

the homogeneous coordinate of the “point” � ∈ P when � passes through (x, y, z),
and write � = [x, y, z] by convention. This concept is immediately generalized
to Pd(R), and also to the realm of complex numbers.131 The simplest case is the
complex projective line P 1(C) = {[z,w]| (z,w) �= (0, 0), z,w ∈ C}, which
coincides with the Riemann sphere, the complex plane plus a point at infinity,
introduced by Riemann (Footnote 121). A projective transformation in this case
is represented as T (z) = (az+ b)/(cz+ d) (a, b, c, d ∈ C, ad − bc �= 0).

Henri Poincaré (1854–1912) observed a conflation of P 1(C) and non-Euclidean
geometry in his study of Fuchsian functions (a sort of “periodic” functions of one
complex variable). Indeed, the above T with a, b, c, d ∈ R satisfying ad − bc> 0

131One can consider the projective planes over quaternions and octonions as well. It is interesting
to point out that Desargues’ theorem holds for quaternions, but does not for octonions, and that
Pappus’ hexagon theorem does not hold for quaternions.
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preserves not only H ={z=x + yi ∈C| y >0}, but also ds2 = |dz|2/y2 (|dz|2 =
dx2 + dy2). Since (H, ds2) is a model of the non-Euclidean plane (Footnote 126),
T is a non-Euclidean congruent transformation.132 More conspicuously, this idea
led up to an entirely new phase of analytic number theory (initiated by Euler and
definitively established by Dirichlet) through the notion of automorphic form, a
generalization of Fuchsian functions.

Another non-Euclidean model that is cross-fertilized by projective geometry was
given by Beltrami in his Saggio and independently by F. Klein (1871). This model,
called the Klein model and first constructed in 1859 by A. Cayley in the context
of real projective geometry without reference to non-Euclidean geometry (1859),
is realized as the open unit disk D = {(x, y) ∈ R

2| x2 + y2 < 1}, in which the
“line segments” are chords in D. Worthy of mention is that the cross-ratio pops up
in the distance between two points. To be exact, the distance between two points
P and Q in D can be expressed as d(P,Q) = 1

2 log
∣∣[A,P,Q,B]∣∣, where A,B

are the points of intersection on the circle ∂D with the line connecting P,Q (see
Remark 17.2 (5)). This distance is the one associated with ds2 = {(

1 − (x2 +
y2)

)
(dx2 + dy2)+ (xdx + ydy)2

}
/
(
1− (x2 + y2)

)2.

6.17 Absolute Differential Calculus

Riemann’s work was evolved further by Elwin Bruno Christoffel (1829–1900) and
Rudolf Lipschitz (1832–1903). The significance of Christoffel’s work lies in his
introduction of the concept later called covariant differentiation and of the curvature
tensor which crystallizes the notion of Riemann’s curvature (1869).133 After a
while, Gregorio Ricci-Curbastro (1853–1925) and Tullio Levi-Civita (1873–1941)
initiated “absolute differential calculus”134—calculus, in line with Christoffel’s
work, dealing with “invariant” geometric quantities (called tensor fields). Levi-
Civita further brought in parallel transports as a partial generalization of parallel
translations.135 Before long, absolute differential calculus was renamed “tensor
calculus” and used effectively by Einstein for his general relativity.136 In this

132Poincaré, Sur les Fonctions Fuchsiennes, Acta Math., 1 (1882), (1882), 1–62. For this reason,
(H, ds2) is called the Poincaré half plane. The line element ds was previously obtained by
Liouville through transformation of the line element on the pseudosphere (1850).
133Über die Transformation der homogenen Differentialausdrücke zweiten Grades, J. für die Reine
und Angew. Math., 70 (1869), 46–70; Über ein die Transformation homogener Differentialaus-
drücke zweiten Grades betreffendes Theorem, ibid., 241–245.
134Méthodes de calcul différentiel absolu et leurs applications, Math. Ann., 54 (1900), 125–201.
135Nozione di parallelismo in una varietàqualunque e consequente specificazione geometrica della
curvatura Riemanniana, Rend. Circ. Mat. Palermo, 42 (1917), 73–205.
136Die Feldgleichungen der Gravitation. Sitzungsberichte der Preußischen Akademie der Wis-
senschaften zu Berlin: 844–847 (November 25, 1915).



274 T. Sunada

groundbreaking theory, a slight modification of Riemann’s theory is required;
namely, the matrix (gij ) associated with the first fundamental form is a four-by-
four symmetric matrix with three positive and one negative eigenvalue. A manifold
with such a fundamental form is called a curved space-time, or a Lorentz manifold
after Hendrik Anton Lorentz (1853–1928).

We shall now plunge ourselves into tensor calculus. Henthforth the matrix (gij )
is supposed to be invertible, so that our discussion includes the case of Lorentz
manifolds. A tensor field (in the classical sense) is roughly a system of multi-
indexed functions depending on the choice of a coordinate system and satisfying
a certain transformation rule under coordinate transformations so as to yield a
coordinate-free quantity. Tensor fields thus defined fit in with the principle of
relativity which Einstein set up to claim that the laws of physics should have the
same form in all admissible coordinate systems of reference.

An example is the coefficients {gij } of the first fundamental form (called the
metric tensor). Here we should note that ds2 = ∑d

i,j=1 gij dxidxj is a coordinate-
free quantity. If we take another coordinate system (y1, . . . , yd), we have a different
expression ds2 = ∑d

h,k=1 ghkdyhdyk. The chain rule for differentiation applied
to the coordinate transformation xi = xi(y1, . . . , yd) (i = 1, . . . , d) is written
as dxi = ∑d

h=1
∂xi
∂yh

dyh. So substituting this for (6.15.11), we obtain ds2 =∑d
h,k=1

∑d
i.j=1 gij

∂xi
∂yh

∂xj
∂yk

dyhdyk. Comparing this with ds2 = ∑d
h,k=1 ghkdyhdyk,

we have the transformation rule ghk =
∑d

i.j=1 gij
∂xi
∂yh

∂xj
∂yk

.

Another example is a contravariant vector ξ i (i = 1, . . . , d) obeying the rule

ξ
i = ∑d

j=1 ξ
j ∂yi
∂xj

. For instance, ξ i = dxi
dt

for a curve c(t) = (
x1(t), . . . , xd(t)

)
is

a contravariant vector because dyi
dt
=∑d

j=1
dxj
dt

∂yi
∂xj

(yi(t) = yi
(
x1(t), . . . , xd(t)

)
).

Hence, a contravariant vector is reckoned as a vector tangent to the manifold.
A general tensor field (of type (h, k)) is a system of multi-indexed functions

ξ
i1···ih
j1···jk (i1, . . . , ih, j1, . . . , jk = 1, 2, . . . , d) satisfying the transformation formula

ξ
a1···ah
b1···bk =

d∑
i1,...,ih=1

d∑
j1,...,jk=1

ξ
i1···ih
j1···jk

∂ya1

∂xi1
· · · ∂yah

∂xih

∂xj1

∂yb1

· · · ∂xjk
∂yjk

.

Hence gij is a tensor field of type (0, 2). For the inverse matrix (gij ) = (gij )
−1, we

have ghk =∑d
i.j=1 g

ij ∂yi
∂xh

∂yj
∂xk

, so that gij is a tensor field of type (2, 0).

The covariant derivative of ξ i1···ihj1···jk is a tensor field of type (h, k + 1) given by

∇i ξ i1···ihj1···jk :=
∂

∂xi
ξ
i1···ih
j1···jk +

d∑
a=1

{
i1

ai

}
ξ
ai2···ih
j1···jk + · · · +

d∑
a=1

{
ih

ai

}
ξ
i1···ih−1a

j1···jk

−
d∑

a=1

{
a

j1i

}
ξ
i1···ih
aj2···jk − · · · −

d∑
a=1

{
a

jki

}
ξ
i1···ih
j1···jk−1a

,
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where

{
h

ij

}
=

d∑
a=1

1

2
gha

(
∂gia

∂xj
+ ∂gja

∂xi
− ∂gji

∂xa

)
(6.17.14)

is what we call the Christoffel symbol.137 The term involving the Christoffel symbols
is thought of as making the derivation intrinsic. The curvature tensor Rijkl is then
defined to be a tensor that measures non-commutativity of covariant differentiation;
namely, ∇l∇kξj −∇k∇lξ j =∑d

i=1 R
j

ilkξ
i , where

Rijkl =
∂

∂xk

{ i
lj

}
− ∂

∂xl

{ i

kj

}
+

d∑
a=1

{ i

ka

}{ a
lj

}
−

d∑
a=1

{ i
la

}{ a
kj

}
.

Although implicit, the curvature tensor turns up in Riemann’s paper submitted
to the Académie des Sciences on July 1, 1861 (remained unknown until 1876).138

In the second half of this paper, which was his answer to the prize question on heat
distribution posed by the Academy in 1858, he gave a condition in order that ds2 =∑d

i,j=1 gij dxidxj be flat, or equivalently that there exists a curvilinear coordinate

system (y1, . . . , yd) such that ds2 = dy1
2 + · · · + dyd

2. His condition can be
transliterated into Rijkl ≡ 0 (see [9] for the detail).

We defer the details of how the curvature tensor is linked with Riemann’s
sectional curvature (see Sect. 6.20), and only cite the fact that the Gaussian curvature
KS of a surface S is expressed asKS = R1

221/(g11g22−g12
2), so thatKS is a rational

function (not depending on S) in E,F,G and their derivatives up to second order
as shown by Gauss with “bare hands” (Disquisitiones generales, Arts. 9–11). More
specifically (in the present notation),

KS = 1√
EG− F 2

[ ∂
∂u

(√EG− F 2

G

{
1

22

})
− ∂

∂v

(√EG− F 2

G

{
1

12

})]
, (6.17.15)

{
1

22

}
= 2GFv −GGu − FGv

2(EG− F 2)
,

{
1

12

}
= GEv − FGu

2(EG− F 2)
.

Now take this for granted. For an isometry Φ : S → S, the composition
S(u, v) = Φ(S(u, v)) gives a local parametric representation of S such that
E(u, v) = E(u, v), F(u, v) = F(u, v), G(u, v) = G(u, v) because Φ preserves

137The symbol Christoffel used is
{
ij
h

}
. R. Lipschitz (reputable for “Lipschitz continuity”) brought

in a similar symbol in his Untersuchungen in Betreff der ganzen homogenen Functionen von n
Differentialen, J. für die Reine und Angew. Math., 70 (1869), 71–102.
138Commentatio Mathematica, qua respondere tentatur quaestioni ab Illma , Academia Parisiensi
propositae.
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ds2. Therefore the derivatives ofE,F ,G of any order coincide with the correspond-
ing derivatives of E, F,G, from which Gauss’s Theorema Egregium follows.

Remark 17.1 The following formulas are due to Gauss, K. M. Peterson, G.
Mainardi, and D. Codazzi:

Lv −Mu =
{

1

12

}
L+

({
1

11

}
−
{

2

12

})
M +

{
2

11

}
N, (6.17.16)

Nu −Mv =
{

1

22

}
L+

({
2

22

}
−
{

1

12

})
M −

{
2

12

}
N. (6.17.17)

In 1867, Bonnet proved the converse (the fundamental theorem of sur-
face theory): if functions E,F,G and L,M,N in variables u and v sat-
isfy (6.17.16), (6.17.17), (6.17.15), while EG − F 2 > 0, then there exists a
unique surface (up to motion) in space which admits E,F,G and L,M,N as the
coefficients of the first and second fundamental forms. ��

In terms of the Christoffel symbol, the equation of a geodesic c(t) = (
x1(t), . . . ,

xd(t)
)

is expressed as

d2xi

dt2
+

d∑
j,k=1

{ i

jk

}dxj
dt

dxk

dt
= 0 (i = 1, . . . , d). (6.17.18)

This expression in a curved space-time—in alliance with imaginary experiments
carried out within a closed chamber in interstellar space to confirm the equivalence
of gravity and acceleration139—is the starting point of Einstein’s theory; that
is, we think of (6.17.18) as an analogue of the Newtonian equation of motion
d2xi/dt

2 = −∂u/∂xi under gravitational potential u (i.e., the equation for “free
fall”).140 Pursuing this analogy, he concluded that the first fundamental form may
be loosely regarded as a generalization of the gravitational potential,141 and that the
fundamental interaction of gravitation as a result of space-time being curved by
matter and energy is manifested by the field equations:

Rij − 1

2
Rgij +�gij = 8πG

c4 Tij , (6.17.19)

139The freely floating chamber produces a gravity-free state inside, while the accelerated chamber
produces a force indistinguishable from gravitation.
140Grundlage der allgemeinen Relativitätstheorie, Ann. der Physik, 49 (1916), 769–822.
141In his thesis (Part III, §3), Riemann prophetically says, “We must seek the ground of its metric
relations outside it, in binding forces which act upon it.”
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where Rij = ∑d
k=1 R

k
ikj is the Ricci tensor, R = ∑d

i,j=1 g
ijRij is the scalar

curvature (note that R = 2KS for a surface S), � is the cosmological constant,142 c

is the speed of light in vacuum, and Tij is the stress–energy tensor (an attribute of
matter, radiation, and non-gravitational force fields).

The left-hand side of (6.17.19) as an operator acting on gij is a non-linear
generalization of the d’Alembertian−∂2/∂t2+c2� showing up in the description of
wave propagation with speed c. This observation brought Einstein to the prediction
of gravitational waves, which was successfully detected by the Laser Interferometer
Gravitational-Wave Observatory (11th February, 2016).

What is remarkable is, as observed by Hilbert (1915), that the vacuum field
equations (Rij = 0) are the E-L equation associated with the action integral:
S = ∫

R
√− det(gij )dx1dx2dx3dx4.

Remark 17.2

(1) D’Alembert showed that solutions of the wave equation ∂2y

∂t2
− a2 ∂2y

∂x2 = 0 are
of the form f (x + at) + g(x − at), where f and g are any functions (1747).
On the other hand, Daniel Bernoulli (1700–1782), a son of Johann Bernoulli
and a friend of Euler, came up with trigonometric series for the first time, when
he tried to solve the wave equation (1747). The two ways to express solutions
stirred up controversy on the nature of “arbitrary” functions (Remark 19.1).

(2) The Laplacian � named after Laplace appears in the theory of heat conduc-
tion by Jean Baptiste Joseph Fourier (1768–1830). While he was Governor
of Grenoble (appointed by Napoleon I), he carried out experiments on the
propagation of heat along a metal bar, and used the trigonometric series to

solve the heat equation ∂y
∂t
= a2 ∂2y

∂x2 that describes the distribution of heat over
a period of time (1807 and 1822); see Remark 19.1. An interesting fact is that
a special solution is given by the function (1/

√
4πa2t) exp(−x2/4a2t), which

shows up as the normal distribution in mathematical statistics that A. de Moivre,
Gauss, and Laplace pioneered.

(3) (6.17.19) is also regarded as an analogue of Poisson’s equation �u = 4πGρ,
where u is the gravitational potential associated with a mass density ρ.143 As
noticed by Green (1828) and Gauss (1839; Werke V, 196–242), this equation
embodies the law of universal gravitation (and hence �u = 0 in the vacuum
case). Indeed, u(x) = −G ∫ ‖x − y‖−1ρ(y)dy is a solution of Poisson’s
equation.

A heuristic (and intrepid) way to derive (6.17.19) in the vacuum case is to
take a look at the tendency of free-falling objects to approach or recede from one
another, which is described by the “variation vector field” J (t) := ∂x/∂s

∣∣
s=0,

where x(t, s)= (xi(t, s)) (−ε < s < ε) is a family of solutions of d2xi/dt
2 =

−∂u/∂xi . Clearly J (t) satisfies d2J/dt2 + H(J ) = 0, where H is the linear

142This constant is used to explain the observed acceleration of the expansion of the universe. (In
1929, E. Hubble discovered that the universe is expanding.)
143The density ρ for a mass distribution μ is defined by the relation ρ(x)dx = dμ(x).



278 T. Sunada

map defined by H(z)=∑d
j=1

∂2u
∂xi∂xj

zj . Notice that tr(H)=�u= 0. In turn,
the variation vector field J (t) for the geodesic equation (6.17.18) satisfies the
apparently similar equation D

dt

(
D
dt
J
)+K(J ) = 0 (called the Jacobi equation),

where K(z) = ∑d
j=1 R

i
hjkẋhẋkzj , and DX

dt
= dXi

dt
+∑d

h,k=1

{
i
hk

}
dxh
dt
Xk , the

covariant derivative of a vector fieldX along the curve x(·, 0) (Sect. 6.20). Since
tr(K) = ∑d

h,k=1 Rhkẋhẋk , we may regard the equation
∑d

h,k=1 Rhkẋhẋk = 0
(or Rhk ≡ 0 since ẋ is arbitrary) as an analogue of �u = 0.

(4) The theory of special relativity created by Einstein in 1905 is literally a special
case of general relativity, which has radically changed our comprehension of
time and space.144 Roughly speaking, it is a theory of space-time under absence
of gravitation. Einstein assumed that (i) the speed of light c (= 2.99792458×
108 m/s) in a vacuum is the same for all observers, regardless of the motion of
the light source, and (ii) the physical laws are the same for all non-accelerating
observers (this is a special case of the principle of relativity). His setup squares
with the theory of electromagnetic waves due to James Clerk Maxwell (1831–
1879); see Sect. 6.22. The special relativity was mathematically formulated by
Hermann Minkowski (1864–1909).145 His model (called the Minkowski space-
time) is a 4D affine space with a coordinate system (x1, x2, x3, t) for which
the line element is given by ds2 = dx1

2 + dx2
2 + dx3

2 − c2dt2. Such a
coordinate system (stemming from the invariance of the speed of light) is called
an inertial system, which an observer employs to describe events in space-time.
If (y1, y2, y3, s) is another inertial system moving in uniform velocity relative
to (x1, x2, x3, t), then the relation between them is given by an inhomogeneous
Lorentz transformation:

(
y

s

)
=
⎛
⎜⎝ A −Av

∓c−2
(

1− ‖v‖2

c2

)−1/2
tv ±

(
1− ‖v‖2

c2

)−1/2

⎞
⎟⎠
(

x

t

)
+
(

b

t0

)
(6.17.20)

(v, b ∈ R
3, and x = t (x1, x2, x3), y = t (y1, y2, y3)); here A is a 3 × 3 matrix

satisfying

tAA = I3 + ‖v‖2

c2 − ‖v‖2Pv, | detA| =
(

1− ‖v‖2

c2

)−1/2

,

where Pv is the orthogonal projection of R3 onto the line Rv. Since y = A(x−
tv)+ b, the vector v is the relative velocity of two systems. Equation (6.17.20)
tells us that the relative speed ‖v‖ cannot exceed c. Notice that, formally

144Zur Elektrodynamik bewegter Körper, Ann. der Physik, 17 (1905), 891–921.
145Minkowski, Raum und Zeit, Physikalische Zeitschrift 10 (1907), 75–88.
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making c tend to infinity, we obtain a Galilei transformation compatible with
Newtonian mechanics:(

y

s

)
=
(
A −Av

0 ±1

)(
x

t

)
+
(

b

t0

)
, A ∈ O(3).

With (6.17.20), one may interpret the Lorentz-FitzGerald contraction of
moving objects. Before special relativity came out, Lorentz and G. F. FitzGerald
posited the idea of contraction to rescue the existence of aether (or ether) from
a paradox caused by the outcome of Michelson-Morley experiment (1887).146

(5) The linear part of the transformation given in (6.17.20) with c = 1 belongs
to O(3, 1), where O(n, 1) is the matrix group (called the Lorentz group) that
preserves the quadratic form Q(x1, . . . , xn, xn+1) = x1

2 + · · · + xn
2 − xn+1

2.
Interestingly, the subgroup O+(2, 1) of O(2, 1) that preserves the sign of the
last coordinate comes up as the congruence group for the Klein model D (note
that the set P = {[x1, x2, x3] ∈ P 2(R)|x1

2 + x2
2 − x3

2 < 0} is identified with
D, and that the projective transformation associated with a matrix in O+(2, 1)
leaves P (and D) invariant and preserves the distance d(z,w) on D because of
the projective invariance of cross-ratios). ��

6.18 Cantor’s Transfinite Set Theory

Mathematical terminology to formulate what Riemann wanted to convey had not
yet matured enough in his time. Here is an excerpt from Riemann’s paper referred
to above, which indicates how he took pains to impart the idea of manifolds with
immatured terms.

If in the case of a notion whose specializations form a continuous manifold, one passes from
a certain specialization in a definite way to another, the specializations passed over form a
simply extended manifold, whose true character is that in it a continuous progress from a
point is possible only in two directions, forwards or backwards. If one now supposes that
this manifold in its turn passes over into another entirely different, and again in a definite
way, namely so that each point passes over into a definite point of the other, then all the
specializations so obtained from a doubly extended manifold. In a similar manner one

146Aether, whose existence was discarded by Einstein, had been thought to permit the determina-
tion of our absolute motion and also to allow electromagnetic waves to pass through it as elastic
waves. Going back into history, ancient thinkers (e.g. Parmenides, Empedocles (ca. 490 BCE–
ca. 430 BCE), Plato, Aristotle) assumed that aether (Αἱθήρ) filled the celestial regions. Descartes
insisted that the force acting between two bodies not touching each other is transmitted through
it (Traité du monde et de la lumière, 1629–1633). Newton suggested its existence in a paper read
to the Royal Society (1675). Riemann assumed that both “gravitational and electrostatic effects”
and “optical and magnetic effects” are caused by aether (1853), while Kelvin, holding Newton in
reverence, said that he could not be satisfied with Maxwell’s work until a mechanical model of the
aether could be constructed (1884).
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obtains a triply extended manifold, if one imagines a doubly extended one passing over
in a definite way to another entirely different; and it is easy to see how this construction
may be continued. If one regards the variable object instead of the determinable notion of
it, this construction may be described as a composition of a variability of n+ 1 dimensions
out of a variability of n dimensions and a variability of one dimension (English translation
by Clifford).

Poincaré attempted to give a definition of manifold for his own motivation. In
the ground-breaking work Analysis Situs (J. École Polytech, 1 (1895) 1–121), he
offered two definitions, both of which rely on “constructive procedures.” The first is
to describe a manifold as the zero set f−1(0) of a smooth function f : U −→ R

k ,
where U is an open set of R

d+k, and the Jacobian of f is of maximal rank
everywhere. In the second, a manifold is produced by a “patchwork” of a family of
open sets of Rd . Although his definitions are considered a precursor to the modern
formulation of manifolds, it was not yet satisfactory enough ([33] and [23]). To
remove the ambiguity in the early formulation and to study a global aspect of
manifolds, it was necessary to establish the notion of topological space, an ultimate
concept of generalized space allowing us to talk about “finite and infinite” in an
entirely intrinsic manner (thus one can say that topological spaces are “stark naked”
models of the universe).

What should be accentuated in this development, is the invention of (transfinite)
set theory by Georg Cantor (1845–1918). His Grundlagen einer allgemeinen
Mannigfaltigkeitslehre (1883) was originally motivated by the work of Dirichlet
and Riemann concerning trigonometric series (Remark 19.1),147 and made a major
paradigmatic shift in the sense that since then mathematicians have accepted pub-
licly “the actual infinity”, as opposed to the traditional attitude towards infinity.148

To grasp the atmosphere before set theory came in, we shall quote Gauss’s words.
In a letter addressed to Schumacher (July 12, 1831), he says, “I protest against
the use of infinite magnitude as something completed, which is never permissible
in mathematics. Infinity is merely a way of speaking, the true meaning being a
limit which certain ratios approach indefinitely close, while others are permitted to
increase without restriction” (Werke, VIII, p. 216). What he claimed is not altogether
inapposite as far as “differentiation” is concerned, but cannot apply to infinity
embodied by set theory.

A set (Mengenlehre) is, as Cantor’s declares, a collection of definite, well-
distinguishable objects of our intuition or of our thought to be discerned as a
whole.149 To tell how set theory is linked to the issue of infinity, let us take a look
at natural numbers. We usually recognize natural numbers 1, 2, 3, . . . as potential
infinity; that is, we identify them by a non-terminating process such as adding 1

147In Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen,
Math. Ann., 5 (1872), 123–132, he defined real numbers, using Cauchy sequences of rationals.
148Bernhard Bolzano (1781–1848) conceived the notion of set from a philosophical view (Wis-
senschaftslehre, 1837).
149Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann., 46 (1895), 481–512. This
is Cantor’s last major publication.
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to the previous number, while Cantor thinks that one may capture the “set” of
all natural numbers as a completed totality (which we shall denote by N). Once
the notion of set as the actual infinity is accepted, one can exploit one-to-one
correspondences (OTOC) to compare two infinite sets as Archimedes, Bradwardine,
and Oresme did (Sect. 6.2). In this context, infiniteness of a set is characterized by
the property that it has a OTOC with a proper subset. This characterization (due to
Dedekind) resolves Galileo’s paradox mentioned in Sect. 6.2, simply by saying that
the set of natural numbers is infinite.

The most significant discovery by Cantor is the existence of different sizes of
infinite sets; for instance, the real numbers are more numerous than the natural
numbers. Thus R, the set of real numbers, cannot be captured as potential infinity
whatsoever. This was mentioned in a letter150 to Dedekind dated December 7,
1873 and published in 1874. 151 Furthermore, he introduced cardinal numbers as
a generalization of natural numbers; that is, a cardinal number is defined to be a
name assigned to an arbitrary set, where two sets have the same name if and only if
there is a OTOC between them.

At any rate, the notion of set per se is so simple that it seem not necessary to
take it up expressly. Indeed, “set” is nearly an everyday term with synonyms such
as “collection,” “family,” “class,” and “aggregate.” In truth, people before Cantor
more or less adapted themselves to “sets” without noticing that the notion cannot be
discussed separately from actual infinity.

Greek thinkers were timid with infinity since it often leads to falsity (remember
the erroneous argument by Antiphon and Bryson in “squaring the circle”). Cantor,
too, struck a snag when he put forward his theory, if not the same snag the Greeks
struck. In fact, the simplicity of the notion of set is deceptive. Unless the concept
of set is suitably introduced, we run into a contradiction like Russell’s paradox
discovered in 1901, which had disquieted, for some time, mathematicians of the
day who were favorably disposed towards set theory.152

Surely, Cantor’s innovation was unorthodox and daring at that time; he met
with belligerent resistance from a few conservative people. For instance, Poincaré
poignantly said that there is no actual infinity since mathematics accepting it has
fallen into contradiction (1906), and L. J. J. Wittgenstein bluntly dismissed set
theory as “utter nonsense,” and “wrong.”153

150Briefwechsel Cantor-Dedekind, eds. E. Noether and J. Cavailles, Paris: Hermann.
151His diagonal argument was given in Über eine elementare Frage der Mannigfaltigkeitslehre.
Jahresbericht der Deutschen Mathematiker-Vereinigung, 1 (1890–1891), 75–78.
152His paradox results from admitting that X = {x|x �∈ x} is a set. In fact, if X �∈ X, then X ∈ X
by definition, and if X ∈ X, then X �∈ X again by definition.
153See “Wittgenstein’s Philosophy of Mathematics” in the Stanford Encyclopedia of Philosophy.
The frustration and despair caused by the disinterest and cold rejection directed Cantor to a
theological explanation of his theory, which, he believed, would open up a whole new landscape
in Christian theology (a letter to C. Hermite, dated January 22, 1894 [18].
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Fortunately, various paradoxes derived from a vague understanding were re-
solved by axiomatizing set theory,154 and most mathematicians responded favorably
to his theory. Hilbert, who stands squarely against the outcry of conservative people,
exclaims, “No one shall expel us from the Paradise that Cantor has created” (Über
das Unendliche, Math. Ann., 95 (1926), 161–190).155

6.19 Topological Spaces

The swift change caused by set theory delimited the history of mathematics. The
old thought that mathematics is the science of quantity, or of space and number,
has largely disappeared. From then on, mathematics has been built eventually on
set theory, indissolubly combined with the concept of mathematical structure—in
short, any set of objects along with certain relations among those objects—which
was put forward in a definitive form by Bourbaki in the campaign for modernization
of mathematics. An instructive example is N whose structure is characterized by
Peano’s axioms, the setting that epitomizes the transition from potential infinity to
actual infinity (1889):

“The set N has an element 1 and an injective map ϕ : N −→ N such that (i)
1 �∈ ϕ(N), (ii) if S is a subset of N with 1 ∈ S and ϕ(S) ⊂ S, then S = N.”

Algebraic systems such as groups, rings, and vector spaces are sets with
structures as well. Topological spaces are another exemplary, which has, in no small
part, evolved out of a long process of understanding the meaning of “limit” and
“continuity” of functions.

Remark 19.1 A primitive form of functions is glimpsed in the Almagest, Book 1,
Chap. 11. He made a table of chords of a circle (dating back to Hipparchus), which,
from a modern view, can be thought of as associating the elements of one set of
numbers with the elements of another set. After Oresme (1350), Galileo (1638),
and Descartes (1637) adumbrated germinal ideas, the great duo of Johann Bernoulli
and Leibniz adopted the word “functio” for “a quantity formed from indeterminate
and constant quantities” (1694). A more lucid formulation was given by Euler,
who introduced the notation f (x) (1734) and defined a function to be an analytic
expression composed in any way whatsoever of the variable quantity and numbers or
constant quantities” (Introductio; [13]). But, after a while, he altered this definition
as “When certain quantities depend on others in such a way that they undergo a
change when the latter change, then the first are called functions of the second” [8].

154Axiomatic set theory, established by E. Zermelo in 1908 and A. Fraenkel in 1922, is formulated
with a formal logic.
155In the late 1920s, Hilbert preferred to compare the use of actual infinity to the addition of points
at infinity in projective geometry.
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Interest in the true nature of functions was renewed when Fourier claimed that
an arbitrary function f (x) on [−π, π] can be expressed as a trigonometric series

f (x) = 1

2
b0 + (a1 sin x + b1 cos x)+ (a2 sin 2x + b2 cos 2x)+ · · · , (6.19.21)

an = 1

π

∫ π

−π
f (x) sinnxdx, bn = 1

π

∫ π

−π
f (x) cosnxdx.

However, he did not turn his eye to the convergence of the series, let alone the
meaning of the equality, the unavoidable issues as pointed out by Cauchy (1820).156

It was in this context that Cauchy gave a faultless definition of continuous function,
using the notion of “limit” for the first time.157 Following Cauchy’s idea, Weierstrass
popularized the ε-δ argument in the 1870s, which made it possible to discuss diverse
aspects of convergence. In the meantime, Dirichlet made Fourier’s work rigorous
on a clearer understanding of (dis)continuity. With some prodding from Dirichlet,
Riemann made further progress by giving a precise meaning to integrability of
function.158

The rigor of calculus whose absence was deplored by Abel was now in place
(Remark 4.2 (4)). Analysis that developed on it (and was accompanied with Cantor’s
set theory) contributed to the advent of the concept of topological space. ��

A topology on a set X is a family of subsets (called neighborhoods) which
makes it possible to express the idea of getting closer and closer to a point and
also to introduce the notion of continuous maps as a generalization of continuous
functions. In his magnum opus Grundzüge der Mengenlehre (1914), Felix Hausdorff
(1869–1942) sets the four axioms in terms of neighborhoods, the last being known
as the Hausdorff separation axiom; thus his topological spaces are what we now call
Hausdorff spaces, a proper generalization of metric spaces.159

Now, a manifold with the first fundamental form is a metric space, so we are
tempted to discuss finiteness of the universe in the topological framework. Finiteness
of a figure in R

N is interpreted by the terms closed and bounded. Thus the issue
boils down to the unequivocal question of how we define such terms in an intrinsic

156The bud of the issue is seen in the debate among D’Alembert, Euler, and Daniel Bernoulli about
solutions of the wave equation (Remark 17.2 (1)).
157Euler thought of “limn→∞” (resp. “limx→0”) as “the value for n infinitely large (resp. the value
for x infinitely small”). The modern definition was furnished by Bolzano in his Der binomische
Lehrsatz, 1816; however, it was not noticed at that time.
158Riemann, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abhand-
lungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13 (1868), 87–132. This
was presented in December of 1853 as his Habilitationsschrift at the first stage.
159The earlier results on topology—ascribed to F. Riesz, M. R. Fréchet, and others—fitted naturally
into the framework set up by Hausdorff. Currently, there are several ways to define topological
spaces; e.g. by the axioms on the closure operation (1922) due to K. Kuratowski, and by the axioms
on open sets (1934) due to W. F. Sierpiński. The notion of metric space was first suggested by
Fréchet in his dissertation paper (1906).
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manner, without referring to “outside.” The answer is afforded by the notion of
compactness (Fréchet, 1906), which expresses “closed and bounded in itself” so to
speak, whose origin is the Bolzano-Weierstrass Bolzano-Weierstrass theorem and
the Heine-Borel theorem in analysis.

Armed with the impregnable language of finiteness, one may call into question,
without assessing relevance to metaphysical or theological meaning, whether our
universe is finite. Yet, this overwhelming question is beyond the scope of this
essay and belongs entirely to astronomy. The recent observation (by the Planck,
the space observatory operated by the European Space Agency) lends support to
an “almost” flat model of the universe in the large. However this does not entail
its infiniteness since “flatness” does not imply “non-compactness.” In turn, if there
are only finitely many particles in the whole universe, then the universe should
be finite (here it is assumed that the mass would be uniformly distributed in the
large).160 This seems not to be a foolhardy hypothesis altogether. The cosmological
principle in modern cosmology claims that the distribution of matter in the universe
is homogeneous and isotropic when viewed on a large enough scale. Einstein says,
“I must not fail to mention that a theoretical argument can be adduced in favor
of the hypothesis of a finite universe.”161 Truth be told, however, nobody could
definitively pronounce on the issue at the moment. On this point, our intellectual
adventure cannot finish without frustration since the issue of finiteness is the most
fundamental in cosmology.

6.20 Towards Modern Differential Geometry

After the notion of topological space took hold, mathematicians got ready to move
forward. What had to be done initially was to link the concept of curvilinear
coordinate system with topological spaces. An incipient attempt was made by
Hilbert, who, using a system of neighborhoods, tried to characterize the plane.162

Subsequently, Hilbert’s former student Hermann Klaus Hugo Weyl (1885–1955)
published Die Idee der Riemannschen Fläche (1913), a classical treatise that lays
a solid foundation for complex analysis initiated by Riemann (Footnote 121). His
perspicuous exposition, though restricted to the 2D case, opened up the modern
synoptic view of geometry and analysis on manifolds. Stimulated with this, O.
Veblen and his student J. H. C. Whitehead gave the first general definition of
manifolds in their book The foundations of differential geometry, 1933. At around
the same time, Hassler Whitney (1907–1989) and others clarified the foundational
aspects of manifolds during the 1930s. One of significant outcomes is that any

160In the Letter to Herodotus, Epicurus (341 BCE–270 BCE), an adherent of atomism and advocate
of “billiard ball universe,” states that the number of atoms is infinite.
161Geometry and Experience, an address to the Berlin Academy on January 27th, 1921.
162Appendix IV (1902) to Grundlagen der Geometrie.
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smooth manifold (with an additional mild property) can be embedded in a higher-
dimensional Euclidean space (1936), thus giving a justification to one of Poincaré’s
definitions of manifold (Sect. 6.18).

Meanwhile, differential geometry of surfaces was expanded by Jean-Gaston Dar-
boux (1842–1917). He published, between 1887 and 1896, four enormous volumes
entitled Leçons sur la théorie générale des surfaces et les applications géométriques
du calcul infinitésimal, including most of his earlier work and touching on global
aspects of surfaces to some extent. Darboux’s spirit was then inherited by Élie
Cartan (1869–1951). Most influential is his meticulous study of symmetric spaces
(1926), a class of manifolds with an analogue of point symmetry at each point,
including R

d , Hd , Sd , and Pd(R); thus unifying various geometries in view of
symmetry and also following the Greek tradition in seeking symmetric shapes.
What is remarkable is that Cartan’s list includes symmetric spaces described in
terms of quaternions and octonions. Furthermore Cartan enlarged Klein’s “Erlangen
Program” (Footnote 42) so as to encompass general geometries.

A decade from 1930 was the period when geometry began to be intensively
studied from a global point of view, in concord with a new field launched by
Riemann and Poincaré (see Sect. 6.21). What is more, the fundamental concepts
have been made more transparent by means of a coordinate-free setup, which, in a
sense, conforms to the principle of relativity perfectly.163

In what follows, just to make our story complete, we shall quickly review, at the
cost of some repetition, how some of the ingredients introduced by the forerunners
are reformulated in modern terms. The first is the definition of smooth manifolds as
a terminus ad quem of our journey to “generalized curved spaces.”

Definition

(1) A Hausdorff space M is said to be a d-dimensional topological manifold (or
d-manifold) if each point of M has an open neighborhood homeomorphic to an
open set in R

d ; therefore we have an atlas of local charts; that is, a family of
curvilinear coordinate systems that covers M .

(2) A topological manifold M is called smooth if there is an atlas such that every
coordinate transformation is smooth (such an atlas is said to be smooth).

Using a smooth atlas, we may discuss “smoothness” of various objects attached
to smooth manifolds; say, smooth functions and smooth maps. What comes next
to mind is the question whether it is possible to define tangent space as the
generalization of tangent planes of a surface. The idea to conceptualize tangent
space without reference to a coordinate system and ambient spaces dates back to
the work of C. Bourlet who, paying special attention to the product rule, gave an
algebraic characterization of differentiation.164

163Grassmann was the first to realize the importance of the coordinate-free concepts.
164Sur les opérations en général et les équations différentielles linéaires d’ordre infini,
Ann. Ec. Normale, 14 (1897), 133–190.
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To explain the idea in depth, we shall first observe that a tangent plane of a surface
can be intrinsically defined. Let TpS be the space of vectors tangent to a surface S
at p, and let C∞p (S) be the set of smooth functions defined on a neighborhood of p.

Define the action of ξ ∈ TpS on C∞p (S) by setting ξ (f ) = d
dt
f
(
c(t)

)∣∣
t=0, where

c : (−ε, ε) −→ S is a curve with c(0) = p and ċ(0) = ξ . The correspondence
f ∈ C∞p (S) �→ ξ (f ) ∈ R has the following properties:

1. (Linearity) ξ (af + bg) = aξ(f )+ bξ(g) a, b ∈ R, f, g ∈ C∞p (S).
2. (Product rule) ξ (fg) = f (p)ξ (g)+ g(p)ξ (f ).
3. (aξ + bη)(f ) = aξ(f )+ bη(f ) a, b ∈ R, ξ , η ∈ TpS, f ∈ C∞p (S).
4. If ξ (f ) = 0 for any f ∈ C∞p (S), then ξ = 0.

We let τpS be the vector space consisting of maps ω : C∞p (S) → R with the
properties ω(af + bg) = aω(f ) + bω(g) and ω(fg) = f (p)ω(g) + g(p)ω(f ).
In view of (1), (2), ξ as a map of C∞p (S) into R belongs to τpS. Hence we obtain a
map ι of TpS into τpS, which turns out to be a linear isomorphism. Identifying TpS
with τpS via ι, we have an intrinsic description of TpS.

The foregoing discussion suggests how to define the tangent spaces of a
smooth manifold M . Let C∞p (M) be the set of smooth functions defined on
neighborhoods of p ∈ M , and define TpM to be the vector space consisting
of operations ω : C∞p (M) → R satisfying linearity and the product rule.165

For a curvilinear coordinate system (x1, . . . , xd) around p, partial differentiations
∂i |p := ∂/∂xi

∣∣
p

(i = 1, . . . , d) form a basis of TpM . Moreover, the velocity vector

ċ(t) ∈ Tc(t)M for a curve c in M is defined by putting ċ(t)f = d
dt
f (c(t)).

The notion of tangent space allows us to import various concepts in calculus into
the theory of manifolds. An example is the differential Φ∗p : TpM −→ TΦ(p)N of
a smooth map Φ : M −→ N defined by Φ∗p(ξ)(f ) = ξ(f ◦ Φ), ξ ∈ TpM, f ∈
C∞Φ(p)(N), which is an intrinsic version of the Jacobian matrix.

A Riemannian manifold is a manifold with a (Riemannian) metric, a smooth
family of inner products 〈·, ·〉p on TpM (p ∈ M). The relation between the metric
and the first fundamental form is given by gij (p) = 〈∂i |p, ∂j |p〉p . A smooth
map Φ : M −→ N between Riemannian manifolds is called an isometry if
〈Φ∗p(ξ),Φ∗p(η)〉Φ(p) = 〈ξ , η〉p (ξ , η ∈ TpM). The differential Φ∗p of an
isometry Φ is obviously injective for every p. Conversely, for a smooth map Φ

of M into a Riemannian manifold N such that Φ∗p is injective for every p, one
can equip a metric on M (called the induced metric) which makes Φ an isometry.
The first fundamental form on a surface S is nothing but the metric induced by
the inclusion map of S into R

3.166 Furthermore, the metric (6.15.13) given by
Riemann coincides essentially with the standard metric on the sphere Sd(R) =
{(x1, . . . , xd+1)|x1

2 + · · · + xd+1
2 = R2} that is read in the curvilinear coordinate

165This definition is given in Claude Chevalley’s Theory of Lie Groups (1946).
166In 1956, J. F. Nash showed that every Riemannian manifold has an isometric inclusion into
some Euclidean space R

N .
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system derived by the stereographic projection ϕ : Sd(R)\{(0, . . . , 0, R)} −→ R
d :

ϕ(x1, . . . , xd+1) =
(
Rx1/(R − xd+1), . . . , Rxd/(R − xd+1)

)
.

No less important than tangent spaces is the dual space T ∗pM of TpM , which

is distinguished from TpM though they are isomorphic as vector spaces.167 We
denote by {dx1|p, . . . , dxd |p} the dual basis of {∂1|p, . . . , ∂d |p}; i.e., dxi|p(∂j |p) =
δij . The symbol dxi|p defined in this way justifies the notion of differential
(Remark 15.1 (2)). A tensor of type (h, k) is then a multilinear functional T :
T ∗pM × · · · × T ∗pM︸ ︷︷ ︸

h

× TpM × · · · × TpM︸ ︷︷ ︸
k

−→ R. which is related to a classical

tensor by T i1···ihj1···jk (p) := T (dxi1 |p, . . . , dxih |p, ∂j1 |p, . . . , ∂jk |p). A tensor field of
type (h, k) is a smooth assignment to each p ∈ M of a tensor T (p) of type (h, k). A
vector field is a tensor field of type (1, 0). The vector space consisting of all vector
fields on M is denoted by X(M).

Essential to global analysis are differential forms and their exterior derivative
introduced by Poincaré (1886) and Cartan (1899). To give a current definition of
differential forms, we denote by ∧kT ∗pM the totality of tensors ω of type (0, k)
satisfying ω(ξσ(1), . . . , ξσ(k)) = sgn(σ )ω(ξ 1, . . . , ξ k) (ξ i ∈ TpM) for every
permutation σ of the set {1, . . . , k}. A smooth assignment to each p ∈ M of
ω(p) ∈ ∧kT ∗pM is called a (differential) k-form, all of which constitute a vector

space, denoted by Ak(M). A k-form is informally expressed as

ω =
∑

1≤i1<···<ik≤d
fi1···ik (x1, . . . , xd)dxi1 ∧ · · · ∧ dxik ,

where the “wedge product” ∧ is supposed to satisfy (dxh ∧ dxi) ∧ dxj = dxh ∧
(dxi∧dxj ), dxi∧dxj = −dxj ∧dxi .168 With this notation, the exterior derivation
dk : Ak(M) −→ Ak+1(M) is defined by

dkω(= dω) :=
d∑
i=1

∑
1≤i1<···<ik≤d

∂fi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik .

Note here that df = fx1dx1 + · · · + fxd dxd for a smooth function f ∈ A0(M). A
significant fact derived from the equality fxy = fyx is the identity dk ◦ dk−1 = 0.
Thus we obtain the vector spaceHk

dR(M) := Kerdk/Imagedk−1, which is called the
de Rham cohomology group; Remark 21.2 (3).

167The distinction between a vector space and its dual was definitively established following the
work of S. Banach and his school, though it had been already reflected for a long time by the
distinction between covariant and contravariant, and also between cogredient and contragredient,
the concepts in group-representation theory.
168The totality of ∧kT ∗pM (k = 0, 1, . . . , d) , equipped with the wedge product, constitutes the
exterior algebra introduced by Grassmann (Sect. 6.14).
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Differential forms give an incentive to justify the formal expression dx1 · · · dxd
in multiple integrals, because the basic rules for the wedge product make the
appearance of Jacobian determinants automatic: dy1∧ · · · ∧ dyd = ∂(y1,...,yd)

∂(x1,...,xd)
dx1∧

· · · ∧ dxd , where yi = yi(x1, . . . , yd) is a coordinate transformation. This is
in conformity with a change of variables in multiple integrals:169 dy1 · · · dyd =∣∣∣ ∂(y1,...,yd)
∂(x1,...,xd)

∣∣∣dx1 · · · dxd . Thus we are motivated to make the following definition: “M

is said to be orientable if it has a smooth atlas such that the Jacobian determinant
of every coordinate transformation is positive” (Poincaré, Analysis Situs, 1895; see
Sect. 6.22). Then, what springs to mind is to define the integral over an orientable
d-manifold M of a d-form ω = f (x1, . . . , xd)dx1 ∧ · · · ∧ dxd by setting

∫
M ω =∫

f (x1, . . . , xd)dx1 · · · dxd .
Now, given ω ∈ Ak(N) and a map Φ of an orientable k-manifold M (possibly

with boundary) into N , we define the integral of ω along Φ by
∫
Φ ω :=∫

M
Φ∗ω, where (Φ∗ω)(p) ∈ ∧kT ∗pM is defined by setting (Φ∗ω)(ξ1, . . . , ξ k) =

ω(Φ∗(ξ1), . . . , Φ∗(ξ k)). This is a generalization of line integrals, with which we
may unify Stokes’ formula, Gauss’s divergence theorem, and Green’s theorem, as
the generalized Stokes’ formula:

∫
M

dω =
∫
∂M

ω

(
=
∫
ι

ω

)
,

where ω is a (d − 1)-form on an orientable d-manifold M with boundary ∂M

(appropriately oriented), and ι : ∂M −→ M is the inclusion map.
The notion of vector field is quite old. In his Principes généraux du mouvement

des fluides (1755), Euler used it to represent a fluid’s velocity. Related to vector
fields is the work Theorie der Transformationsgruppen (1888–1893) by Sophus
Lie (1842–1899). Under the influence of Klein’s Erlangen Program, he made the
study of infinitesimal group actions, which eventually evolved into the theory
of Lie groups. As he observed, giving such an action is equivalent to giving a
subspace g of X(M) satisfying “X,Y ∈ g ⇒ [X,Y ] ∈ g,” where [X,Y ](p)f =
X(p)(Yf )−Y (p)(Xf ). Here the binary operation [X,Y ] (the Lie bracket) satisfies
the Jacobi identity [[X,Y ], Z]+[[Y,Z],X]+[[Z,X], Y ] = 0. An algebraic system
with such an operation was to be called a Lie algebra.170

A covariant differentiation acting on tensor fields is an intrinsic generalization
of directional differentiation acting on vector-valued functions, which is also
designated a connection, a term introduced by H. Weyl (1918). In the case of vector
fields, it is a bilinear map ∇ : (ξ ,X) ∈ TpM × X(M) �→ ∇ξX ∈ TpM satisfying

169This formula was first proposed by Euler for double integrals (1769), then generalized to triple
ones by Lagrange (1773). Ostrogradski extended it to general multiple integrals (1836).
170Lie algebra (“infinitesimal group” in Lie’s term) was independently invented by W. Killing in
the 1880s with quite a different purpose.
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∇ξ (fX) = ξ (f )X + f∇ξX (a, b ∈ R, f ∈ C∞(M)) (J.-L. Koszul). Define the

functions
{
k
ij

}
by the relation ∇∂i

(
∂j
) =∑d

k=1

{
k
ij

}
∂k . Then

∇ξX =
d∑
i=1

ξi

(∂fk
∂xi

+
d∑
j=1

{
k

ij

}
fj

)
∂k (ξ =

d∑
i=1

ξi∂i, X =
d∑
j=1

fj ∂j ).

The Levi-Civita connection is a unique connection satisfying

∇XY −∇YX = [X,Y ], ξ 〈X,Y 〉 = 〈∇ξX,Y 〉 + 〈X,∇ξY 〉. (6.20.22)

The first equality is equivalent to
{
k
ij

}
=

{
k
ji

}
(i, j, k = 1, . . . , d), while the

second one tells us that
{
k
ij

}
coincides with the Christoffel symbol (6.17.14).

Let c(t) = (c1(t), . . . , cd(t)) (a ≤ t ≤ b) be a smooth curve in M . If we write
fi(t) for fi(c(t)) for brevity, then

∇ċ(t )X =
d∑

i,k=1

dcj

dt

(∂fk
∂xi

+
d∑
j=1

{
k

ij

}
fj

)
∂k =

d∑
i,k=1

(dfk
dt

+
d∑

j=1

{
k

ij

}
dci

dt
fj

)
∂k.

With this formula in mind, we define the covariant derivative of a vector fieldX(t) =
f1(t)∂1|c(t) + · · · + fd(t)∂d |c(t) along the curve c by setting

D

dt
X =

d∑
k=1

(dfk
dt

+
d∑

i,j=1

{
k

ij

}
dci

dt
fj

)
∂k.

If DX/dt ≡ 0, then X is said to be parallel. Since DX/dt ≡ 0 is a system of
linear equations of first order, there exists a parallel vector field X along c satisfying
X(c(a)) = ξ ∈ Tc(a)M . The parallel transport Pc : Tc(a)M −→ Tc(b)M is
then defined by Pc(ξ ) = X(c(b)); thus a connection literally yields a “bridge”
between two tangent spaces, originally unrelated to each other. For the Levi-Civita
connection, we have 〈Pc(ξ), Pc(η)〉c(b) = 〈ξ , η〉c(a) in view of (6.20.22). Therefore
Pc preserves the angle between two tangent vectors.

A geodesic is defined to be a curve c whose velocity vector ċ(t) is parallel along
c, i.e., D

dt
dc
dt
= 0, which, in the case of Levi-Civita connection, turns out to be the

E-L equation associated with the functionalE(c) = ∫ b
a ‖ċ(t)‖2dt .

Finally we shall give a modern formulation of curvature. A multilinear map
R(·, ·)· : TpM × TpM × TpM −→ TpM may be defined so as to satisfy

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (X, Y,Z ∈ X(M)).
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Fig. 6.13 Parallel transport

Putting R(ω, ξ , η, ζ ) := ω(R(ξ , η)ζ ) (ω ∈ T ∗pM, ξ , η, ζ ∈ TpM), we obtain the

tensor field R of type (1, 3) such that R(dxl, ∂i , ∂j , ∂k) = Rlkij . Moreover, taking
the subspace H of TpM spanned by linearly independent vectors ξ , η ∈ TpM , we
obtain the sectional curvatureK(H)=〈R(ξ , η)η, ξ 〉/{‖ξ‖2‖η‖2 − 〈ξ , η〉2}1/2. The
Ricci curvature is the quadratic form R(ξ , η) := tr(ζ �→ R(ζ , η)ξ ) on TpM , to
which the Ricci tensor is linked by Rij = R(∂i, ∂j ).

Remark 20.1

(1) Parallel transport on a surface S is related to classical parallelism. Let X be a
vector field along a curve c : [0, a] → S, and let H be the plane tangent to S
at c(0). Imagine that c and X are freshly painted and still wet. Roll S on H in
such a way that c(t) (0 ≤ t ≤ a) is a point where the rolled surface at time t
is tangent to H (Cartan rolling; Fig. 6.13). Then the curve c is transferred to a
curve c′ in H , c(t) to a point c′(t), and X(t) to a vector X′(t) at c′(t). With a
little nudge, we can show that X is parallel if and only if X′ along c′ is parallel
in the classical sense.

Pushing further this idea, we may construct a one-to-one correspondence
between smooth curves c in a manifold M with c(0) = p and smooth curves
c0 in TpM with c0(0) = 0. Moreover this correspondence extends to the one
for continuous curves by means of stochastic integrals, with which we may
define Brownian motion on M ,171 the starting point of “stochastic differential
geometry” initiated by K. Ito and P. Malliavin.

(2) The parallel transport around closed loops informs us how a manifold is curved.
We shall see this by looking at the parallel transport P�ABC : TAS −→ TAS

along the perimeter A → B → C → A of a geodesic triangle �ABC on a
surface S. It coincides with the rotation of vectors in TAS through the angle
θ�ABC := |π − ( � A + � B + � C)| since the parallel transport preserves the
angle of two tangent vectors. By virtue of Gauss’s formula (6.13.8), we find

θ�ABC =
∣∣∣∫∫�ABC KS dσ

∣∣∣.172

171“Brownian motion” originally means the random motion of small particles suspended in fluids.
It was named for the botanist R. Brown, the first to study such phenomena (1827). In 1905, Einstein
made its statistical analysis, and observed that the probabilistic behavior of particles is described
by the heat equation (Remark 17.2 (2)).
172The idea explained here is generalized in terms of holonomy groups, the concept introduced by
É. Cartan (1926).



6 From Euclid to Riemann and Beyond: How to Describe the Shape of the Universe 291

(3) The idea of connection makes good sense for a vector bundle, a family of
vector spaces parameterized by a manifold which locally looks like a direct
product, and are used to formulate gauge theory in modern physics that provides
a unified framework to describe the fundamental forces of nature. ��

6.21 Topology of the Universe

It cannot be completely denied that the universe may have a complicated structure.
Hence it is irresistible to ponder the question “how can we describe the complexity
of the universe?” In pursuing this, it will be appropriate to use topological terms as
in the case of the question about finiteness.

In passing, the term “topology” used to describe a structure on an abstract set also
indicates the branch of geometry which principally put a premium on the properties
preserved under homeomorphisms. What, in addition, is important is the concept
of homotopy, coined by Dehn and P. Heegaard in 1907, and employed by L. E. J.
Brouwer with the current meaning of the word (1911).

A distinct advantage of topology compared with classical geometry is that we can
employ lenient operations such as “gluing (pasting)” figures together. For instance,
we obtain a sphere by gluing boundaries of two disks (Fig. 6.14).

Likewise one can glue boundaries (spheres) of two balls to get the 3-sphere S3 =
{(x, y, z,w) ∈ R

4| x2 + y2 + z2 + w2 = 1} where one of the two balls is the
mirror image of another. But this operation cannot be illustrated with drawings, so
we shall proceed the other way around; that is, we start with the resulting figure S3,
and put S3+ = {(x, y, z,w) ∈ S3| w ≥ 0}, S3− = {(x, y, z,w) ∈ S3| w ≤ 0}.
Clearly S3 = S3+ ∪ S3− and S3+ ∩ S3− = {(x, y, z)| x2 + y2 + z2 = 1} = S2.
Furthermore, (x, y, z,w) �→ (x, y, z) yields homeomorphisms of S3± onto the ball
D = {(x, y, z) ∈ R

3| x2+y2+ z2 ≤ 1}. This signifies that S3 is obtained by gluing
two balls along their boundaries.

This construction of S3 reminds us of an allegorical vision of Christian afterlife
in Dante’s poem Divina Commedia. In Canto XXVIII of Paradiso (line 4–9), he
“constructs” the empyrean as a mirror image of the Aristotelian universe. Thus, if it
were taken at face value (though not a little farfetched), Dante would have obtained
S3 as a model of the “universe” [27].

Apart from the Dante’s fantastic imagination, the 3-sphere is surely the easiest
conceivable model of a (homogeneous and isotropic) finite universe, if not possible

Fig. 6.14 From two disks to
a sphere
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to view it all at once like S2. Einstein once said that the universe (at any instant
of time) can be viewed globally as S3 (see Sect. 6.18). He wrote, “Now this is the
place where the reader’s imagination boggles. ‘Nobody can imagine this thing,’ he
cries indignantly. ‘It can be said, but cannot be thought. I can imagine a spherical
surface well enough, but nothing analogous to it in three dimensions.’ We must try
to surmount this barrier in mind, and the patient reader will see that it is by no means
a particularly difficult task” [6].

J.-P. Luminet and his colleagues put forward an alternative model of a finite
universe with constant positive curvature, which, called the Poincaré homology
sphere, is the quotient of S3 by the binary icosahedral group, a finite subgroup
of the spin group Spin(3).173 Their model—pertinent to the Poincaré conjecture on
which we shall comment in due course—explains an apparent periodicity in the
cosmic microwave background, electromagnetic radiation left over from an early
stage of the universe in Big Bang cosmology.

Remark 21.1 The binary icosahedral group is the preimage of the icosahedral group
under the homomorphism of Spin(3) onto SO(3) (Sect. 6.7), and is explicitly given
as the union of 24 quaternions {±1,±i,±j,±k, 1

2 (±1 ± i ± j ± k)} with 96
quaternions obtained from 1

2 (0 ± i ± φ−1j ± φk) by an even permutation of all
the four coordinates 0, 1, φ−1, φ, and with all possible sign combinations (φ being
the golden ratio). ��

Solely for the convenience of the reader, let us provide a shorthand historical
account of topology. The etymology of “topology” is the German word “Topologie,”
coined by J. B. Listing, in his treatise “Vorstudien zur Topologie” (1847) as a
synonym for the “geometry of position”. He learned this discipline from Gauss, and
launched the study of several geometric figures like screws, knots, and links from the
topological perspective. It was Leibniz, if traced back to the provenance of topology,
who offered a first rung on the ladder. In a letter to Huygens dated September 8,
1679, Leibniz communicated that he was not satisfied with the algebraic methods
in geometry and felt for a different type of calculation leading to a new geometry
to be called analysis situs. Leibniz himself did not put his plan into practice, but
his intuition was not leading him astray. It was embodied by Euler in the solution
of the celebrated problem “Seven Bridges of Königsberg” (1736), and also in his
polyhedron formula v−e+f = 2 for a convex polyhedron with v vertices, e edges,
and f faces, which, stated in a letter to his friend C. Goldbach (November 14, 1750),
is recognized as giving a topological characteristic of the sphere (Sect. 6.13),174

and contains some seeds of combinatorial topology pioneered by Poincaré that

173J.-P. Luminet, et al., Dodecahedral space topology as an explanation for weak wide-angle
temperature wide-angle temperature correlations in the cosmic microwave background, Nature,
425 (2003), 593–595.
174A copy of Descartes’ work around 1630, which was taken by Leibniz on one of his trips to
Paris, reveals that he obtained an expression for the sum of the angles of all faces of a polyhedron,
from which Euler’s polyhedron formula can be deduced.
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deals with geometric figures based on their decomposition into combinations of
elementary ones.

Gauss took part in the formation of topology, though he opted not to publish any
work on topology as usually happened with him. On January 22, 1833 (still in his
prime), he noted down a summary of his consideration over the past few months,175

which was to usher us into the theory of knots and links.

Of the geometria situs, which was foreseen by Leibniz, and into which only a pair of
geometers (Euler and Vandermonde were granted a bare glimpse, we know and have, after
a century and a half, little more than nothing.

A principal problem at the interface of geometria situs and geometria of magnitudinis
will be to count the intertwining of two closed or endless curves.

Let x, y, z be the coordinates of an undetermined point on the first curve; x′, y′, z′ those
of a point on the second and let

∫∫
(x′ − x)(dydz′ − dzdy′)+ (y′ − y)(dzdx′ − dxdz′)+ (z′ − z)(dxdy′ − dydx′)(

(x′ − x)2 + (y′ − y)2 + (z′ − z)2
)3/2

= V

(6.21.23)

then this integral taken along both curves is 4mπ , m being the number of intertwinings
[called the linking number today]. The value is reciprocal, i.e., it remains the same if the
curves are interchanged.

His pretty observation has something to do with electromagnetism. In-
deed, (6.21.23) reminds us of the Biot–Savart law (1820), an equation describing
the magnetic field B generated by an electric current i, which is named after J.-B.
Biot and F. Savart. It is stated as

B(x) = μ0

4π

∫
R3

i(y)× (x − y)

‖x − y‖3
dy, (6.21.24)

where μ0 is the magnetic permeability of vacuum (Footnote 189).
Another (more pedagogical) example in topology to which Gauss slightly

contributed is the notion of winding number. It is defined analytically by

W(c, p0) = 1

2π

∫
c

−(y − y0)dx + (x − x0)dy

(x − x0)2 + (y − y0)2
, (6.21.25)

where c is a closed (not necessarily simple) plane curve that does not pass through
p0 = (x0, y0). This is an integer because, if we parameterize the curve c as c(t) =
(x0 + r(t) cos θ(t), y0 + r(t) sin θ(t)) (0 ≤ t ≤ 1) with continuous functions r(t)
and θ(t), then, without costing much effort, we see that the integral in (6.21.25)
is transformed into 1

2π

∫ 1
0 dθ(t) = 1

2π [θ(1) − θ(0)], which, because c(0) = c(1),
represents the total (net) number of times that c travels around p0.

From the analytic expression (6.21.25) and the fact that an integral-valued
continuous function is constant, it follows that, if c1 and c2 are homotopic as maps of

175Nachlass zur Electrodynamik in Gauss Werke, V, translated by Ricca and Nipoti [29].
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the circle S1 into R
2\{p0}, then W(c1, p0) = W(c2, p0). Moreover, W(c, p) does

not depend on p so far as p is in the connected component D0 of R2\c containing
p0; hence one may put W(c,D0) := W(c, p0).

The homotopy invariance of winding numbers stands us in good stead in
proving the fundamental theorem of algebra (cf. Gauss Werke III, 31–56). Given
a polynomial f (z) = zn + a1z

n−1 + · · · + an−1z + an (an �= 0), one can take R
> 0 such that cs(t) := fs(Re

2π
√−1t ) �= 0 (0 ≤ s, t ≤ 1), where fs(z) = zn+

s(a1z
n−1 + · · · + an−1z + an), so that W(c1, 0) = W(c0, 0) = n( �= 0). On

the other hand, if f (z) �= 0 for any z ∈ C, then cr(t) := f (re2π
√−1t ) �= 0 (0

≤ r ≤ R, 0 ≤ t ≤ 1), so that W(c1, 0) = W(cR, 0) = W(c0, 0) = 0; thereby a
contradiction, and hence f (z) = 0 must have a solution.

What deserves a good deal of attention is that the integral (6.21.25) is neatly
expressed as the complex line integral: 1

2π
√−1

∫
c

1
z−z0

dz (z0 = x0 + y0
√−1).

Thus as Gauss briefly noticed in the letter to Bessel in 1811 (Sect. 6.7), the winding
number reveals the nature of the complex logarithm (see Remark 8.1).

Winding numbers appeared in the study of “signed areas” by Albrecht Ludwig
Friedrich Meister (1724–1788).176 Here, the signed area surrounded by a general
closed curve c is defined to be 1

2

∫
c(−ydx + xdy). If c is simple and counterclock-

wise, this is the “genuine” area Area(D) of the domainD surrounded by c by virtue
of Green’s theorem (6.13.9). For a general c and the bounded connected components
D1, . . . ,DN of R2\c, we have

1

2

∫
c

(−ydx + xdy) =
N∑
k=1

W(c,Dk)Area(Dk).

In fact, this is a consequence of the formula
∫
c ω = ∑N

k=1 W(c,Dk)
∫
∂Dk

ω

holding for any 1-form ω on R
2, where the boundary ∂Dk is assumed to have

counterclockwise orientation. This suggests a formal framework allowing us to
write “c =∑N

k=1 W(c,Dk)∂Dk”. Indeed, this identity can be justified by the notion
of “chain” in homology theory (Remark 21.2 (2)).

Moving away from the small treasure trove of Gauss’s “toys”, we shall see how
topology evolved thereafter.

The period from the mid-nineteenth century to the early twentieth century
was the infancy of topology. It coincides with the era when mathematics began
to develop autonomously on a rigid base. Prompted by such a state of affairs,
geometers created a wealth of novel ideas. One of the marked achievements in this
period is the discovery of one-sided surfaces that differ from ordinary surfaces in
the way of their disposition in the space. Remember that a smooth surface S is
two-sided if and only if it admits a global continuous (unit) normal vector field,
or equivalently S is orientable. (This equivalence is deduced from the fact that, if

176Generalia de genesifigurarum planarum, et inde pendentibus earum affectionibus, Novi
Commentarii Soc. Reg. Scient. Gott., 1 (1769/1770), 144–180.
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Fig. 6.15 Classification of closed surfaces

S1 : U1 −→ S and S2 : U2 −→ S are two local parametric representations of a
surface S with S1(U1) ∩ S2(U2) �= ∅, then (S1)u × (S1)v = ∂(z,w)

∂(u,v)
(S2)z × (S2)w ,

where S2
−1 ◦ S1(u, v) = (z(u, v),w(u, v)) on U1 ∩ S1

−1(S2(U2)).) The foremost
examples of one-side surfaces are the Möbius band and the Klein bottle. The former
was discovered by Möbius (1865) and Listing (1862). The latter was constructed by
Klein (1882). The projective plane P 2(R) is another example.

The classification of closed surfaces is the problem attacked in the late nineteenth
century. The case of two-sided surfaces was independently treated by Möbius (1863)
and M. E. C. Jordan (1866). One-sided closed surfaces were classified by von Dyck
(1888). As depicted in Fig. 6.15, every closed one-sided surface can be constructed
from S2 by attaching a finite number of Möbius bands (the leftmost is the projective
plane, and the next is the Klein bottle). Thus the “shapes” of 2D models of the finite
universe are completely comprehended.

Now, one may ask, “what about the higher-dimensional case?” If restricted to 3-
or 4-manifolds, this is a problem concerning a possible structure of our universe, and
hence has a much higher profile. More specifically, one may pose the question: Does
our universe have a structure like a surface with many holes? Here, the meaning of
“hole” is well elucidated in terms of algebraic topology which borrows tools from
abstract algebra crystallized in the early twentieth century.

Riemann had a clear perception of what we now call the Betti numbers,
significant topological invariants related to the Euler characteristic and defined today
as the rank of the homology group (see the remark below). His grandiose program—
showing again that he was far ahead of the times—was published posthumously
as the Fragment aus der Analysis Situs [31]. Later, Enrico Betti (1823–1892), an
Italian friend of Riemann, made clearer what Riemann thought.177 Finally, their
idea came to fruition as homology theory by Poincaré (1899), who also introduced

177Sopra gli spazi di un numero qualunque di dimensioni, Ann. Mat. Pura Appl., 4 (1871), 140–
158. A letter dated October 6, 1863 from Betti to his colleague tells us that he got an accurate
conception about the connectivity of spaces through a conversation with Riemann.
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the fundamental group, another algebraic tool and a modern version of “Greek
geometric algebra” in a sense because the algebraic system in question are directly
constructed from geometric figures.

In the meantime, G. de Rham related homology to differential forms, proving
what we now call de Rham’s theorem, one of the earliest outcomes in global
analysis (1931). This line—coupled with Chern’s generalization of the Gauss-
Bonnet formula (1944) and the theory of harmonic integrals developed by Weyl,
W. V. D. Hodge and K. Kodaira—culminated in the Atiyah-Singer theory, one of
the most exhilarating adventures of the twentieth century. Additionally, the work of
M. Gromov on large-scale aspects of manifolds can be considered as far-reaching
generalizations of a batch of results on relations between curvature and topology
obtained by geometers on and after the 1950s.

The success of the taxonomy of closed surfaces impelled topologists to attack
the case of closed 3-manifolds, but the matters turned out to be more complicated
than expected. In 1982, W. P. Thurston offered the geometrization conjecture as
an initial template, which daringly says that all 3-manifolds admit a certain kind of
decomposition involving the eight geometries (one of them is hyperbolic geometry).
This spectacular supposition was proved by G. Perelman in 2003. His arguments
include the proof of the long-standing Poincaré conjecture which claims, “a simply
connected closed 3-manifold is homeomorphic to the 3-sphere.”178 A conspicuity
of his proof is that a non-linear evolutional equation involving Ricci curvature is
exploited in an ingenious way; thereby displaying a miraculous trinity of differential
geometry, topology, and analysis.

The situation gets out of hand when trying to classify closed manifolds M with
dimM ≥ 4. This is because an arbitrary finitely presented group (a group defined
by a finite number of generators, and a finite number of defining relations) can be
the fundamental group of a closed 4-manifold, and there is no algorithm to decide
whether two finitely presented groups are isomorphic.179

We close this section with an instructive example in differential topology which
has been intensively studied in the latter half of the last century.

We shall say that a smooth curve c in R
2 is regular if ċ(t) �= 0 for every t . Given

a closed regular curve c, we define the rotation number R(c) by setting R(c) =
W(ċ, 0). In plain language, R(c) is the total number of times that a person walking
once around the curve turns counterclockwise.180 This notion came up in Gauss’s

178Poincaré, Cinquième complément à l’analysis situs, Rend. Circ. Mat. Palermo, 18 (1904), 45–
110. He claimed, at first, that homology is sufficient to tell if a closed 3-manifold is homeomorphic
to S3 (1900), but 4 years later, he found that what we now call the Poincaré homology sphere gives
a counterexample.
179A. Turing and A. Church rigorously mathematized the concept of algorithm by analyzing the
meaning of computation. They independently treated the decision problem challenged by Hilbert
in 1928, and showed that a general solution is impossible (1936).
180As known, at least informally, by Meister (Generalia, 1770), the rotation number is defined for
a closed oriented polygonal curve. It is the sum of all (signed) exterior angles divided by 2π (the
right of Fig. 6.16). In the Geometria Speculativa (ca. 1320), Bradwardine (Sect. 6.2) studied a class
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Fig. 6.16 Rotation number and exterior angles

work of experimental nature; he observed, among others (Werke, VIII, 271–281),
that, if we denote by n(c) the number of self-intersection points of c, then we have
the sharp inequality: n(c) ≥ ||R(c)| − 1|.

In 1937, H. Whitney proved that a closed regular curve can be deformed to
another one through a “smooth” family of closed regular curves (this being the case,
two curves are said to be regularly homotopic) if and only if two curves have the
same rotation number. In particular, a clockwise oriented circle (R = −1) is not
regularly homotopic to a counterclockwise oriented circle (R = 1). This fact is
rephrased as “one cannot turn a circle inside-out,” because giving an orientation to a
closed regular curve c is equivalent to choosing one of two normal unit vector fields
along c, and the inside and outside of a circle correspond to the inner normal and
outer normal vector fields along it, respectively. Of particular note is the unexpected
result by S. Smale that one can turn the sphere S2 inside-out, quite by contrast to
the case of the circle (1959).

Remark 21.2

(1) The rotation number is linked with the signed curvature (Remark 7.1) via the
formula

∫
c
κ(c(s))ds = 2πR(c). Indeed,

2πR(c) =
∫
c

ÿ(s)ẋ(s)− ẍ(s)ẏ(s)

ẋ(s)2 + ẏ(s)2
ds =

∫
c

[ÿ(s)ẋ(s)−ẍ(s)ẏ(s)]ds =
∫
c

κ(c(s))ds.

We thus have a fusion of topology and differential geometry at a very basic
level.

(2) In the Analysis situs, Poincaré defined “homology classes” in a somewhat fuzzy
way. The group structure on homology classes, which he did not explicitly
indicate, was studied by E. Noether and others in the period 1925–1928. Later
on, S. Eilenberg developed the singular homology theory that allows to define
the homology group for a general topological space (1944).

of general polygonal curves, which seems to have a relevance with rotation number (Jeff Erickson,
Generic and Regular Curves, PDF, 2013).
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A central role in homology theory is played by a chain complex, a series of

homomorphisms · · · ∂k+1−→ Ck(X,Z)
∂k−→ · · · ∂2−→ C1(X.Z)

∂1−→ C0(X,Z)
∂0−→

0 satisfying ∂k ◦ ∂k+1 = 0, where, in the singular case, Ck(X,Z) is the
free abelian group generated by “singular k-simplices” (continuous maps σk
from the k-simplex into a topological space X). The k-simplex here is a
generalization of a segment (k=1), a triangle (k=2), and a tetrahedron (k=3).
The homomorphism ∂k brings σk to the sum of the singular (k − 1)-simplices
represented by the restriction of σk to the faces of the k-simplex, with an
alternating sign to take orientation into account. The factor group Hk(X,Z) =
Ker ∂k/Image ∂k+1 is what we call the k-th homology group ofX. The k-th Betti
number bk(X) is the rank of Hk(X,Z) (if finite). When bk(X) = 0 for k > d ,
the Euler characteristic ofX is defined to be χ(X) =∑d

k=0(−1)kbk(X), which,
for a surface, agrees with the definition relying on a triangulation (Sect. 6.13).

(3) For a k-form ω on a convex domain D ⊂ R
d satisfying dω = 0, there is

a (k − 1)-form η with dη = ω; that is, Hk
dR(D) = {0}. This (the Poincaré

lemma),181 in tandem with the generalized Stokes’ formula, is crucial in the
proof of de Rham’s theorem asserting that bk(M) = dimHk

dR(M) for a closed
manifold M .

(4) Define the d-form � on a closed even-dimensional orientable manifold M by

� = (−1)n

22nπnn!
∑

σ=(i1,...,id )
sgn(σ )gi1i2gi3i4 · · · gi2n−1i2n�i1i2∧�i3i4∧· · ·∧�i2n−1i2n ,

�ij =
d∑

m,k,l=1

gimR
m
jkldxk ∧ dxl (dimM = d = 2n).

Then Chern’s generalization of the Gauss-Bonnet formula is expressed as

χ(M) =
∫
M

�.

(5) Hodge’s theorem says that the space of harmonic forms Hk(M) = {ω ∈
Ak(M)|dkω = d∗k−1ω = 0} is isomorphic to Hk

dR(M), where d∗k−1 is the adjoint
of dk−1 (with respect to natural inner products on A∗(M)). Using this fact, we
obtain

dim KerD − dim CokerD = χ(M), (6.21.26)

181Poincaré, Les Méthodes nouvelles da la Mécanique céleste, vol. 3, Gauthier-Villars, Paris, 1899,
pp. 9–15. This fact, which, in the case of 1-forms, dates back to Euler (1724/1725) and Clairaut, is
essentially ascribed to Vito Volterra (1860–1940).
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where D = d + d∗, an operator from the space of even forms to the space of
odd forms. A special feature of D is that it is elliptic; i.e., its principal symbol
is invertible.182

The left-hand side of (6.21.26) is called the analytic index of D. The Atiyah-
Singer theorem asserts that the analytic index (IndP ) of an elliptic operator P
equals the topological index defined in terms of topological data, and that there
is a d-form � involving both curvature tensor and principal symbol of P such
that IndP = ∫

M
�. ��

6.22 Right and Left in the Universe

An intriguing question about our universe is whether it has “one side” or “two sides.”
In discussing sidedness, it seems necessary, if looking back to the case of surfaces
(Sect. 6.21), to assume the existence of “outer side” of the universe. The fact is that
it is genuinely intrinsic in character as in the case of finiteness. Why is it so? This
time, we bring in the idea of “right and left,” the terms used not only in everyday
life, but also in mathematics, which are usually designated by the human hands.
No less obvious perhaps to our eyes, but no less essential, is the recognition that
the human hands are represented by frames (ordered basis), the notion obtained by
whittling away the extraneous details of hands; see Fig. 6.17 illustrating the right-
handed frame (a, b, c).183

To clarify the nature of right and left, we shall refer to the notorious mirror
paradox that is best stated as a question: Why do flat mirrors reverse left and right,
but not top and bottom? Prima facie, this sounds puzzling, but the mirror paradox
is simply a paradox of “a red herring” or a word play to confuse or startle people by
making them believe that the wording “left and right” is the same sort of “top and
bottom.” Indeed, the latter is not described by a frame, but by a single vector; say,
the vector represented by the directed segment joining bottom and top.184

Now, the claim “the universe has two sides” is rephrased as “the right-handed
frame and the left-handed frame are distinct wherever they are” in the sense that
these two frames cannot be superposed no matter how one is moved to another
in the universe. Otherwise expressed, if the universe has “only one side,” then the

182A differential operator P of order m on M (acting on vector-bundle valued functions) is locally
expressed as P =∑

|α|≤m Aα(x)Dα , where α = (α1, . . . , αd ) denotes a d-tuple of non-negative
integers, |α| = α1 + · · · + αd , Dα = (∂α1/∂x

α1
1 ) · · · (∂αd /∂xαdd ), and {Aα(x)} are matrix-valued

functions. The principal symbol of P is defined to be σP (x, ξ) : =∑
|α|=m Aα(x)ξ

α1
1 · · · ξαdd (ξ �=

0 ∈ T ∗M).
183The fact that there are just two kinds of frames in R

d is equivalent to that the general linear
group GLd (R) has two connected components.
184Shin-itiro Tomonaga argues that this paradox cannot be resolved by neither geometric optics
nor mathematics (1963), while Martin Gardner says that the mirror does not reverse right and left,
but does reverse front and back [10].
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Fig. 6.17 The frame
corresponding to the
gun-shaped right hand

distinction between the right-handed frame and the left-handed frame does not make
sense; namely there is only one kind of frame. What is more, as in the case of
surfaces, two-sidedness and orientability of the universe are equivalent when we
regard the universe as a smooth manifold. Thus the distinguishability between right
and left depends on the global intrinsic structure of the universe.

Even if our universe is Euclidean, there remains a subtle problem on “right and
left” that dates back to the dispute between Newton and Leibniz and have fascinated
philosophers and cosmologists since then [12]. Newton insisted that there is a ‘left’
and ‘right’ in the universe, while Leibniz opposed this view and argued that left
and right are in no way different from each other.185 Puzzled by enantiomorphs
for decades, Kant mused about this issue in connection with Leibniz’s claim
that all spatial facts should be reduced to facts about relative distances between
material bodies (Prolegomena, 1738). He surmised in his prolix discussion that the
difference between similar but not congruent things cannot be made intelligible by
understanding about any concept, and are known only through sensuous intuition.
He even set up an extreme thought-experiment to adduce conclusive evidence of his
assertion.186 According to him, this suggests, after all, that space is not independent
of the mind that perceives it.

The purport of what Newton, Leibniz, and Kant thought up is clarified if we
replace Kant’s claim by the statement, “one cannot furnish any mathematical charac-
terization of right-handedness of a frame.” This might perplex the reader because, in
several places of this essay, we used vector product, whose (casual) definition relies
on the right-handed frame; thus seemingly incomplete as a mathematical concept.
As a matter of fact, we may select any frame as a reference frame; if we choose
another kind of frame, then the resulting vector has the opposite direction, and there
is no trouble caused at all.

185Leibniz’s critique of Newton is unfolded in his third letter to S. Clarke (Footnote 54).
186Von dem ersten Grunde des Unterschieds der Gegenden im Raume, 1768. In it, he considers a
marble hand broken off a statue that is supposed to be the only object in the universe, and asks
whether it makes sense to say that it is still either a right hand or a left.
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Fig. 6.18 Fleming’s
left-hand rule

SN

How about the issue of right and left in physics? Ernst Mach (1838–1916)187

cogently argued that only asymmetric laws can distinguish left and right (1886).
Here, a law is said to be asymmetric (or to violate parity) if it is not invariant
under transformations interchanging left and right (specifically, under the parity
transformation (x, y, z) �→ (−x,−y,−z)). In this connection, the neophyte of
physics might recollect Fleming’s left-hand rule about the direction of force acting
on a current-flowing wire under an external magnetic field (Fig. 6.18). As the name
suggests, the rule is described by using human hands, and hence seem to imply that
the electromagnetic phenomenon is asymmetric. But that is not actually the case
because of the nature of magnetic fields. In order to put it clearly, let us recall the
Lorentz force e [E + (v ×B)] experienced by a particle of charge e moving with
velocity v in the presence of an electric field E and a magnetic field B. Here B is
not an ordinary (polar) vector, but an axial vector gaining an additional sign flip
under a reflection.188

The nature of magnetic fields is better explained by identifying B = (B1, B2, B3)

with the differential 2-form ω = B3dx1 ∧ dx2 +B1dx2 ∧ dx3 +B2dx3 ∧ dx1 since
ω is “handedness-invariant.” This identification is not altogether artificial, though,
at first sight, differential forms might look an elaborate mathematical fabrication,
having nothing to do with the real world. To convince ourselves of this, let us employ
differential forms to express Maxwell’s equations.

The original form of Maxwell’s equations in a vacuum is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε0 div E(t, x) = ρ(t, x) (Gauss’s flux law),

μ−1
0 rot B(t, x)− ε0

∂E

∂t
= i(t, x) (Ampère-Maxwell law),

div B(t, x) = 0 (Absence of magnetic monopoles),

rot E(t, x)+ ∂B

∂t
= 0 (Faraday’s law),

(6.22.27)

187Mach is best-known for the sensation-based theory of reality. In Die Mechanik in ihre
Entwicklung historisch-kritisch dargestellt (1883), he criticized Newton’s conclusion on absolute
motion based on the bucket experiment (Footnote 52), saying that centrifugal force may act on
water in the stationary bucket if the universe rotates. According to him, the inertia and acceleration
of a body are determined by all of the matter of the universe. This view was called the Mach
principle by Einstein (1918).
188The distinction between “polar” and “axial” vectors was made by W. Voigt in 1896. Note that
polar × polar = axial and polar × axial = polar .
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where ε0 stands for the dielectric constant of a vacuum,189 and ρ (resp. i) is
the density of electric charge (resp. the electric current density). Writing E =
(E1, E2, E3) and lumping together the magnetic field and the electric field, define
a 2-form � by setting �=B3dx1 ∧ dx2+B1dx2 ∧ dx3+B2dx3 ∧ dx1+E1dx1 ∧
dt +E2dx2 ∧ dt +E3dx3 ∧ dt . Writing i = (i1, i2, i3) likewise, we put η =
μ0(i1dx1+i2dx2+i3dx3)−ε−1

0 ρdt . Then (6.22.27) are rewritten as d� = 0, d∗�=η,
which is manifestly invariant under Lorentz transformations. Here d∗ is the adjoint
of the exterior derivation d with respect to the Minkowski metric; specifically,

d∗ω=
( ∂f3

∂x2
− ∂f2

∂x3
− c−2 ∂g1

∂t

)
dx1 +

( ∂f1

∂x3
− ∂f3

∂x1
− c−2 ∂g2

∂t

)
dx2

+
( ∂f2

∂x1
− ∂f1

∂x2
− c−2 ∂g3

∂t

)
dx3 −

(∂g1

∂x1
+ ∂g2

∂x2
+ ∂g3

∂x3

)
dt

for ω=f3dx1∧dx2+f1dx2∧dx3+f2dx3∧dx1+g1dx1∧dt+g2dx2∧dt+g3dx3∧dt .
It was unthinkable that anyone should question the validity of symmetry under

a mirror reflection until a genuine asymmetric law was predicted by T.-D. Lee
and C.-N. Yang in 1956 as the parity violation of the weak interaction (a force
that governs all matter in the universe). Right after their announcement, the mind-
boggling prediction was confirmed by C.-S. Wu and her collaborators through an
experiment monitoring the beta decay of cobalt-60 atoms. Expressed in words,
this implies that the nature at a very fundamental level can tell the characteristic
difference between left- and right-handed (see [10]).

In addition to the weak interaction, there are the three other fundamental
interactions in nature; say, the electromagnetic force, the strong interaction, and
gravitation. The strong interaction is, loosely put, the mechanism responsible for
the strong nuclear force and is known to be “P-symmetric”, i.e., invariant under the
parity transformation like the electromagnetic force. In this connection, a few more
words about symmetry in quantum physics will not be out of place; besides the P-
symmetry, we have the “C-symmetry” under the charge conjugation that reverses
the electric charge and all the internal quantum numbers, and the “T-symmetry”
under the time reversal replacing t by−t . Each of these symmetries can be violated
individually. Theoretically, however, there exists no physical phenomenon that
violates the “CPT-symmetry,” the combination of all three symmetries. This fact
is called the “CPT theorem.”

189ε0 = 8.854187817 . . . × 10−12 F/m, μ0 = 1.2566370614 · · · × 10−6 H/m. Strictly speaking,
these equations are Heaviside’s version (1888/1889). Maxwell’s original equations (consisting
of 20 equations in 20 variables) are quite complicated. It follows from (6.22.27) that both E

and B satisfy the wave equation μ0ε0∂
2f /∂t2 − �f = 0 under the absence of ρ and i.

Hence electromagnetic waves propagate at the speed 1/
√
μ0ε0 = 0.299792458 × 108 m/s, which

coincides with the speed of light. Maxwell thus predicted that light is an electromagnetic wave
(1865). This was confirmed experimentally by H. Hertz in 1887.
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6.23 Conclusion

In retrospect, the theorem of angle-sum and the Pythagorean Theorem in classical
antiquity were the fresh impetus in the far-reaching feats by Gauss and Riemann.
The triangle inequality as well was a fundamental source of the theory of topological
spaces, with which we can get a better understanding of intrinsicness of curved
spaces. Moreover, the effort to refine the ancient approach to “infinitesimals”
came to fruition as calculus by Newton and Leibniz, which, combined with the
idea of coordinate system (no little indebted to Descartes’ method), provided us
with a powerful tool to investigate our space. What we ought to remember in
particular is Cantor’s set theory that not only encompasses all the necessary stuff for
mathematizing cosmology, but also spurred us on to give a probing interpretation to
infinity whose nature had been a perennial controversial issue passed from antiquity.

Sullivan [36] says felicitously in a general context, “A history of mathematics is
largely a history of discoveries which no longer exist as separate items, but are
merged into some more modern generalization, these discoveries have not been
forgotten or made valueless. They are not dead, but transmuted.”
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Harawı̄’s Version, Walter de Gruyter 2017.
29. R. L. Ricca and B. Nipoti, Gauss’ linking number revisited, J. of Knot Theory and Its

Ramifications, 20 (2011), 1325–1343.
30. J. P. Richter, The Literary Works of Leonardo da Vinci, 1979.
31. B. Riemann, Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, edited with

the support of R. Dedekind and H. Weber, Leipzig: Teubner (1876); 3rd ed. by R. Narasimhan,
Springer (1990).

32. Saccheri, Euclid Vindicated from Every Blemish, edited and annotated by Vincenzo De Risi,
translated by G. B. Halsted and L. Allegri, Birkhäser, 2014.

33. E. Scholz, The concept of manifold, 1850–1950, in History of Topology, edited by I. M. James,
North-Holland, 1999, 25–64.

34. M. Spivak, A Comprehensive Introduction to Differential Geometry, Volume 2, Publish or
Perish, 1970.

35. J. Stillwell, Sources of Hyperbolic Geometry, Amer. Math. Soc., 1996.
36. J. W. N. Sullivan, The History of Mathematics in Europe from the Fall of Greek Science to the

Rise of the conception of Mathematical Rigour, Oxford University Press, 1924.
37. T. Sunada, The Story of Area and Volume from Everyday Notions to Mathematical Concepts,

Chap. 2 in A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry,
and Algebra, translated by Eiko Nakayama Tyler, Amer. Math. Soc., 2005.

38. T. Sunada, Topological Crystallography —With a View Towards Discrete Geometric
Analysis—, Springer, 2013.



Chapter 7
A Path in History, from Curvature
to Convexity

Annette A’Campo-Neuen and Athanase Papadopoulos

God decided that quantity should exist before all other things
so that there should be a mean for comparing
a curved with a straight line.
(Johannes Kepler, Mysterium cosmographicum, 1596, [75,
p. 93])

Abstract We describe a path in the history of curvature, starting from Greek
antiquity, in the works of Euclid, Apollonius, Archimedes and a few others, passing
through the works of Huygens, Euler, and Monge and his students, and ending in
the twentieth century at the works of Bonnesen, Fenchel, Busemann, Feller and
Alexandrov. Our goal is not to review the whole history of curvature, but to show
how the approaches to curves, surfaces and curvature evolved from the synthetic
point of view of the Greeks to the methods of analytic geometry founded by
Fermat, Descartes, Newton and Leibniz, and eventually, in the twentieth century,
experienced a return to the synthetic methods of the Greeks.

AMS Classification: 01-02, 01A20, 34-02, 34-03, 54-03, 92B99

7.1 Introduction

Our aim in this essay is to trace out a path between the early study of curves
in Greek antiquity and the modern notion of curvature applied to convex (non-
necessarily differentiable) surfaces that appears in the writings of Busemann–Feller
and A.D. Alexandrov. The path traverses the work of Christiaan Huygens, which is
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in the direct lineage of those of the Greeks, then the work of Euler who developed
the theory of curvature of differentiable surfaces, making extensive use of the
newly introduced methods of analytic geometry and differential calculus, and then
the works of the eighteenth and nineteenth-century French school of differential
geometry founded by Monge, including his followers Meusnier, Dupin, Rodrigues
and others. Thus, we made a choice in the topics that we survey. In particular, the
works of Fermat and Descartes on the analytic geometry of curves, and those of
Newton and Leibniz on differential calculus will hardly be mentioned, and we shall
not talk about Gauss and Riemann.

Good references for the history of curvature are the article Outline of a history
of differential geometry [108] by Struik and the historical notes in his book
Lectures on classical differential geometry [109]. A rich source of information on
differential geometry, which lies at the junction of the historical, mathematical and
popularization literature, is Marcel Berger’s book Geometry revealed: A Jacob’s
ladder to modern higher geometry [12].

7.2 The Precursors

There is no mention, nor indication, of any definition of curvature in the math-
ematical literature of Greek antiquity that survives. But the ground was ready
there for the development of such a concept. First of all, a great variety of curves
and surfaces were discovered and studied, and several qualitative features of their
curvature were highlighted. Among these curves, the conics (intersections of planes
with the surface of a cone of revolution) were studied extensively, but many other
curves were also investigated, especially curves obtained by intersecting planes with
surfaces (generally, boundaries of three-dimensional bodies). For example, a spiric
is a curve of degree four obtained as the intersection of a spiric surface—a surface
generated by a circle revolving about a straight line lying in its plane and disjoint
from its center—with a plane parallel to its axis. As in the case of conics, there are
three kinds of spiric curves; see the expositions by Heath [41, Vol. I, p. 163] and
Tannery [110]. Among the other curves, we mention Aristotle’s wheel, also called
the “paradoxical curve”, defined as the locus of a point situated on a small circle
attached in the interior of a circle having the same center and a larger diameter, while
the larger circle rolls on a straight line. This curve is called paradoxical because at
first casual sight, the point situated on the smaller circle covers the same distance as
a point situated on the bigger circle (say, on the same ray starting from the center
of the wheel), but the two wheels do not have equal diameters! The fact is that the
point on the smaller circle (like the one on the greater circle) does not describe a
straight line, but, precisely, a curve called Aristotle’s wheel. This curve is discussed
in Aristotle’s Mechanica [11]. It is more general than the cycloid, a curve that
plays an important role in our exposition below (the cycloid is a special case of an
Aristotle wheel where the small and the large circle coincide). Aristotle’s wheel (and
the cycloid) is an example of a “mechanical curve”, a class of curves highlighted in



7 A Path in History, from Curvature to Convexity 307

Greek antiquity, named so because they are constructed using a mechanical device.
They form a collection of curves that is distinct from those defined by equations
or by intersections of planes with boundaries of three-dimensional bodies. Other
examples of mechanical curves are the conchoid and quadratrix, known to be useful
for trisecting an angle, and the cissoid, useful for duplicating a cube. Archimedes’
spiral is a curve that may be used for trisecting an angle and rectifying the circle.
We recall though that in the mathematical construction problems of Greek antiquity,
only the compass and ruler were allowed, therefore many mechanical curves were
not permitted in the solution of these problems.

Besides curves, a great variety of surfaces were studied by the ancient Greek
geometers. The spiric surfaces which we already mentioned are examples. A
particular case of a spiric surface is our familiar two-dimensional torus (this is
the case where the revolving circle does not intersect itself during its revolution).
Cylinders were considered as limits of cones of revolution, and their intersections
with planes are also conics (including degenerate conics). Archimedes (3rd c. BCE)
wrote a book titled Conoids and spheroids, a far-reaching treatise including subtle
geometric considerations on lengths of curves obtained by intersections of planes
with surfaces, and on areas of pieces of surfaces bounded by such intersections.
Conoids, in Archimedes’ terminology, include the hyperboloids and the paraboloids
of revolution. A spheroid is an ellipsoid of revolution (a surface obtained by rotating
an ellipse around one of its axes). Cylindroids and other surfaces and curves
obtained by intersecting these surfaces with planes were investigated by several
Greek geometers, and many of them are described by Heron (1st c. CE) in his
Metrica [68], by Pappus (4th c. CE) in his Collection [94] (especially Book IV),
and by Proclus (5th c. CE) in his Commentary on the first book of Euclid’s Elements
[99]. Proclus was a great historian of mathematics and a great mathematician as
well.

Let us return to Aristotle. In several treatises, he talks about the distinction
between a straight line and a curved line. In the Metaphysics,1 he gives a list of ten
“opposites” or “contraries” which, he says, are fundamental in Pythagorean thought.
The latter considered that opposites are the principles of things. The list includes
the opposition between a straight line and a curved line.2 In the treatise On the
heavens,3 Aristotle writes that there are two sorts of lines: the simple ones, namely,
the straight line and the circle, and the others, which, he says, are a combination of
these two. In the treatise On the soul,4 he gives a dynamical definition of a curve,
as an object produced by the motion of a point, a definition close to our intuition of
a curve drawn by moving the point of a pencil on a sheet of paper. It may seem too

1Metaphysics [8] 985b23; cf. also 1016b25-27.
2The other nine oppositions are: limited-unlimited, odd-even, unity-plurality, right-left, male-
female, rest-motion, light-darkness, good-bad, square-oblong.
3On the heavens [9] 268b17.
4On the soul [10] 409a.
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much extrapolation to infer from these passages combined that Aristotle conceived
a planar curve as a moving point together with a rolling circle of variable size
representing the curvature at that point. But given the degree of geometric intuition
and the sophisticated mathematical knowledge that the Philosopher had, we do not
find this conjecture too unsound.

An important notion related to the curvature of a plane curve is that of normal
line. Indeed, (in the modern terminology) the normal at a point contains the center of
the osculating circle, and the curvature is the inverse of the radius of the osculating
circle. Normals to conics were studied by Apollonius of Perga (3rd c. BCE). In
Book V of the Conics, Apollonius investigates in detail lines that (locally) maximize
or minimize the distance from a given point to the conic. He shows that these lines
are normal to the conic, that is, perpendicular to the tangent to the conic at the point
where they intersect it. As a matter of fact, the study of these maxima and minima is
the main object of Book V. This is stated explicitly by Apollonius himself, in the first
book where he gives a summary of all of the Conics; cf. [100, p. 252]. The work is all
the more remarkable in that it does not make use of any differential calculus, analytic
geometry or algebraic formalism. The methods are ingenious, purely synthetic.

Book III of Euclid’s Elements is entirely dedicated to the circle and its properties,
and Euclid studies there the tangents and normals to that curve. For instance,
Proposition 18 says that if a straight line is tangent to a circle, and another straight
line joins the center to the point of contact, then the two lines are perpendicular
to each other. Apollonius’ work on this topic in Book V of the Conics may be
considered as an extension of Euclid’s propositions on the circle to the case of
ellipses and more general conics.

Apollonius was also aware of the idea of evolute. In particular, in Book V of
the Conics, he studies a notion that is equivalent to the one of the evolute of the
family of normals to the three types of conics. The importance of this notion in his
works has been highlighted by many authors. Chasles, in his Aperçu historique sur
l’origine et le développement des méthodes en géométrie [27] (1837), writes:

The fifth book is the most valuable monument of Apollonius’ genius. This is where the
questions of maxima and minima appeared for the first time. We find there all the things
that todays’ analytic methods teach us on this subject, and we recognize there the germ of
the beautiful theory of evolutes. Indeed, Apollonius proves that there exists, on each side
of the axis of a conic, a set of points from where we can draw a unique normal onto the
opposite part of the curve. He gives the construction of these points, and he observes that
their continuity separates two spaces that present a remarkable difference, namely, that from
any point of the first one we can draw two normals to the curve, and from any other point
of the other one we cannot draw any normal. Therefore, here are perfectly determined the
osculation centers and the evolute of a conic.5

5Le cinquième livre est le monument le plus précieux du génie d’Apollonius. C’est là qu’ont paru
pour la première fois les questions de maxima et de minima. On y retrouve tout ce que les méthodes
analytiques d’aujourd’hui nous apprennent sur ce sujet; et l’on y reconnaît le germe de la belle
théorie des développées. En effet, Apollonius prouve qu’il existe, de chaque côté de l’axe d’une
conique, une suite de points d’où l’on ne peut mener à la partie opposée de la courbe qu’une
normale; il donne la construction de ces points, et observe que leur continuité sépare deux espaces
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We recall in this context that the envelope of the family of normals to a plane
curve is its evolute, and that the evolute of a curve is the locus of its centers
of curvature. On the same subject, Dieudonné writes in his History of algebraic
geometry [35]:

In the geometry of the Greeks, algebraic curves are also introduced as “loci” with respect to
problems of purely geometric origin. The most beautiful example is undoubtedly the most
profound part of Apollonius’ work on conics, the study of normals to conics, in which the
evolutes of conics are completely characterized and studied. Apollonius’ theorems translate
immediately in our notation into the equation of the evolute that only the undeveloped state
of Greek algebra prevents him from writing.

Ver Eecke, the author of the French translation of the Conics, also expressed
the fact that Apollonius was close to discovering the notion of curvature: “Most of
the propositions of this book are, in a striking way, close to the modern theories of
normals, sub-normals and radii of curvature, and we already find there the germ of
the theory of evolutes.”6 [5, p. xix].

Two propositions from Book V of the Conics (Propositions 51 and 52) are called
by Heath “the great propositions” and are commented on by him in a section of his
History of Greek Mathematics under the title Propositions leading immediately to
the determination of the evolute of a conic [67, Vol. 2, pp. 168–179].

Even though the idea of evolute is contained in Apollonius’ work, for a precise
definition one had to wait for the seventeenth century, and more precisely the work
of Christiaan Huygens, who thoroughly studied this notion and found a spectacular
application of it. We survey his work in the next section of the present paper.

In Book VII of the Conics, Apollonius introduces the notion of conjugate
diameters of a conic. Roughly speaking, for an ellipse, a diameter (line passing
through its center) is conjugate to a second diameter if it is parallel to the tangents
of the ellipse at the endpoints of the first diameter. The theory works for any kind of
conic. It was generalized by Dupin in the eighteenth century to a theory of conjugate
curves on a surface; we shall review this in Sect. 7.6 below.

Several commentators consider that the Greek theory of conic sections has a
practical origin. The mathematician Philippe de La Hire, who continued the works
of Desargues and Pascal on conics, published in 1682 a treatise titled Gnomonique
ou l’art de tracer des cadrans ou horloges solaires sur toutes les surfaces, par
différentes pratiques, avec les démonstrations géométriques de toutes les opérations
(Gnomonics, or the art of tracing sundials over all kind of surfaces by different
methods, with geometrical proofs of all the operations) [70], in which he claims
that conic sections originate in the art of sundials, which can be traced back in

qui présentent cette différence remarquable, savoir: que de chaque point de l’un on peut mener
deux normales à la courbe, et que d’aucun point de l’autre on n’en peut mener aucune. Voilà donc
les centres d’osculation, et la développée d’une conique parfaitement déterminés. [In this paper,
the translations from the French and German are ours].
6La plupart des propositions de ce livre se rapprochent d’ailleurs d’une manière frappante des
théories modernes sur les normales, les sous-normales et les rayons de courbure, et l’on y trouve
déjà le germe de la théorie des développées.
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Greek antiquity to the fourth century BCE. In the Foreword to his book, he writes
(p. 4):

I could easily demonstrate that we owe to the solar clocks the discovery of these wonderful
curved lines of which we find great usage in all parts of mathematics; because one cannot
consider the shadow of the extremity of some sharp body on a surface without noticing at
the same time the curvature marking the path of the sun, which is very similar to the one of
the section of the right cone having as basis a circle parallel to the equator, where we can
assume that the sun moves while making this shadow, and whose tip is the extremity of the
body that makes the shadow.7

Neugebauer, in his paper The Astronomical Origin of the Theory of Conic Sections
[92], made the same conjecture, namely, that the study of conic sections originates
in the mathematical study of sundials. This brings us to a class of curves studied
by the Greeks which are more general than the conics, namely, those traced by the
shadows of paths of the sun on sundials, at the various stages of the year. Such
curves were investigated by Ptolemy, Pappus and others. We note that the sundials
were not all planar: some of them were convex surfaces engraved in stone blocks.
We refer the interested reader to the survey articles by Rinner [103] and by Jones
[74]. In the latter, the author notes (the trivial but nonetheless remarkable fact) that
a surface of arbitrary shape could be used as a sundial, provided that one does not
require the day curves to be circles, straight lines, or conic sections. The article
contains pictures of sundials of various forms. From here, we reach the theory of
curves drawn on an arbitrary surface, that is, space curves. We shall talk about (the
modern theory of) space curves in Sect. 7.5 below.

In 1888, the English architect, archaeologist and astronomer Francis Penrose,
who was a specialist of Greek monuments, published a book titled An investigation
of the principles of Athenian architecture; or, the results of a survey conducted
chiefly with reference to the optical refinements exhibited in the construction of
the ancient buildings at Athens [95]. In this book, Penrose makes a thorough
investigation of Greek architecture of the fourth century BCE, and he shows that
a large number of curves (conics are just a small class of them) were used in the
various parts of the monuments of that epoch (Figs. 7.1 and 7.2). He also claims that
the Greeks of that period were acquainted with the notion of osculating circle and
radius of curvature. See in particular p. 118ff of [95].

7Je pourrais facilement démontrer que nous sommes redevables aux horloges solaires de la
découverte de ces admirables lignes courbes dont nous trouvons de très grands usages dans toutes
les parties des mathématiques; car l’on ne peut considérer l’ombre de l’extrémité de quelque corps
pointu sur une surface, sans s’apercevoir en même temps de la courbure que marque le chemin
du soleil, qui est très semblable à celle de la section du cône droit qui aurait pour base un cercle
parallèle à l’équateur, dans lequel on peut supposer que le soleil marche lorsqu’il fait cette ombre,
et dont le sommet est l’extrémité du corps qui fait l’ombre.
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Fig. 7.1 Space curves drawn on a capital. From Penrose’s Investigation of the principles of
Athenian architecture; or, the results of a survey conducted chiefly with reference to the optical
refinements exhibited in the construction of the ancient buildings at Athens

Coolidge, in his paper The unsatisfactory story of curvature [33], writes that the
first author to have talked explicitly of curvature and given a hint towards the modern
definition of this notion is Nicolas Oresme (fourteenth century). The latter used the
name curvitas and stated that the curvature of a circle is inversely proportional to
its radius. Oresme also expressed the property that if two curves touch the same
line at the same point, then the smaller curve has the greater curvature. There is
a discussion of this work of Oresme in the paper [107] by Serrano and Suceava
(following Coolidge’s work), in which these authors describe the content of his
treatise De configurationibus. They note that in Chapter LXXI of this book, Oresme,
for what concerns curves, refers to Aristotle.
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Fig. 7.2 Another picture from Penrose’s treatise

7.3 Christiaan Huygens

Christiaan Huygens is the mathematician par excellence who made the link between
the mathematics of Greek antiquity and that of the modern period. He knew
very well the works of the Ancients, with whom he shared a purely geometric
point of view, in particular, on curves. At the same time, he was knowledgeable
in the analytic geometry newly developed by Fermat and Descartes, and he
became acquainted with the emerging differential calculus through his relations
with several mathematicians including Leibniz, Newton, the brothers Johann and
Jacob Bernoulli, and the Marquis de l’Hôpital. The important edition of Huygens’
complete works (Œuvres complètes [72]), published in 22 volumes, including his
papers, books, notes and extensive correspondence, is an invaluable source of
information on his life and work, and more generally on scientists and science in
the seventeenth-century. It is apparent from these writings that Huygens disliked the
mechanical and algebraic methods of differential and integral calculus. We shall say
more about this below, after spending a few more words on Huygens’ background.

Christiaan Huygens acquired most of his teaching from his father, Constantijn
Huygens, who belonged to the higher Dutch aristocracy. Constantijn was a diplomat,
poet and composer, and above all, a Renaissance humanist, infused of classical
Greek culture and science. In Huygens’ complete works edition [72], we find a list
of mathematical books that the mathematician Jan Stampioen, who was his private
teacher at the age of fifteen, asked him to read.8 The list includes, besides works of
contemporary authors like Kepler, Copernicus, Descartes, Viète and a few others,
Ptomely’s Almagest, Diophantus’ Arithmetic and Apollonius’ Conics.

At the University of Leiden, where he enrolled at the age of sixteen, in a law
curriculum, Christiaan Huygens continued to be nurtured by the writings of the
Greek geometers. J.A. Vollgraff, the editor of Volume XXII of his complete works,

8Huygens [72, Vol. I, No. 5].
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writes, on p. 421 of that volume: “The study of law for Christiaan Huygens was
an imposed task; but that of geometry and its applications, and also of practical
mechanics (at least during his youth) a pure delight. It was indeed, as far as geometry
is concerned, Archimedes’ work that attracted him. He could not be satisfied with
the modern authors.”9 Because of Christiaan Huygens’ expertise in Greek geometry,
and in particular in the methods of Archimedes, his father used to call him Mon
petit Archimède (My little Archimedes). The surname was used for several years by
several friends and correspondents of his father, including Mersenne.10

One of the professors at Leiden University, the mathematician and orientalist
Jacob Golius, who had been Descartes’ teacher, was fluent in Arabic. He stayed in
Aleppo, and then in Constantinople where he was the advisor of the representative of
the Netherlands to the Sublime Porte. He was also a collector of Arabic manuscripts
and he translated some of them into Latin. In 1653, he published an Arabic-Latin
dictionary. We mention these details because Golius was a friend of Constantijn
Huygens, and had a private copy of an Arabic translation of Books V, VI and
VII of Apollonius’ Conics, three books that do not survive in Greek. (We already
mentioned that the theory of normals is contained in Book V.) Vollgraff, in his
comments in Volume XXII of Huygens’ complete works, reports that Golius
obtained that copy from an uncle of Christiaan Huygens who used to travel in the
Middle East and brought it from there.11 Golius made a draft of a first translation of
the three books of Apollonius, and he communicated it to Descartes. It is possible
that Christiaan Huygens had access to Golius’ translation, and it is also conceivable
that he made his own translation of them. Indeed, like his father, Christiaan Huygens
was talented in languages, and both men were fluent in several European as well as
old and more modern Middle-Eastern languages. It is also possible that Christiaan
Huygens had access to a translation of the Arabic books of Apollonius made by
the Italians. Indeed, in a letter written to Christiaan Huygens in 1661,12 prince
Leopoldo de’ Medici informed him about a translation of the Conics from the Arabic
which he ordered. The Huygens family had good relations with the Medicis, like
with other princes in Europe. The translation was eventually made by the Italian
mathematician Giovanni Alfonso Borelli together with Abraham Ecchellensis, a
Syrian linguist who lived in Rome (his original name was Ibrahim Al-Haqilani)
[6]. Christiaan Huygens received a copy of that translation the following year.13

There is a correspondence between Christiaan Huygens and the French astronomer

9L’étude du droit fut pour Christiaan une tâche imposée; mais celle de la géométrie et de ses
applications, et aussi de la mécanique pratique (du moins dans sa jeunesse) un pur plaisir. C’étaient
bien, en matière de géométrie, les travaux d’Archimède qui l’intéressaient. Il ne pouvait se
contenter des auteurs modernes.
10See e.g. letters 25, 48, 200, 210 of Volume I of the Complete works, and there are others.
11Huygens [72, Vol. XXII, p. 405].
12Huygens [72, Vol. XXII, letter No. 37].
13Huygens [72, Vol. IV, letter No. 1029].
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Fig. 7.3 A drawing showing
an osculating circle and a
radius of curvature, from
Huygens’ Volume XXII of his
complete works (p. 211)

Ismaël Boulliau in which they discuss the Arabic manuscripts of Apollonius and
Archimedes that belong to Leopoldo de’ Medici.14

Toomer’s edition of Book V of the Conics [4] contains a translation of a memoir
by Huygens on the solution of the following problem of Pappus: Given a parabola
and a point, to draw from it a straight line to meet the parabola at right angles (from
Proposition 30 of Book IV of Pappus’ Collection [94]). The original was published
in Huygens’ Oeuvres complètes [72], Vol. I, No. 365. pp. 533–534. In his edition of
the Conics, Heath notes that this problem of finding the normal to a parabola was
not treated by Apollonius.

Besides the conics, Christiaan Huygens investigated a great variety of curves.
One of his first discoveries, which he made the year he enrolled at Leiden’s
university, concerns the hanging chain, also called the catenoid. Huygens showed
that this curve cannot be a parabola, thus correcting a statement made by Galileo
Galilei. His result is discussed in a letter he wrote to Mersenne, dated October 28,
1646.15 Huygens returned to the catenoid a few years before the end of his life. In
an article written in 1690, he computes its radius of curvature at the vertex.16 He
uses in this article the words “radius curvitatis” and “centro curvitatis.” Vollgraff,
commenting on a drawing by Huygens reproduced here (Fig. 7.3, extracted from
p. 211 of Volume XXII of the complete works), in which he indicated the osculating
circle of the curve of equation a2x = y3, writes: “I cannot understand how Huygens
obtained this result [. . . ] One can see that before 1658, he was already interested in
what he will call later the radius of curvature.”17

The notion of radius of curvature also often appears in Huygens’ writings on
Dioptrics, in the context of radii of curvature of lenses; cf. [72], Vol. XIII, XXI and
others.

14See e.g. the letter No. 536 in volume II of [72], dated October 18, 1658 and the letter No. 547 in
the same volume, dated November 8, 1658.
15Huygens [72, Vol. I, No. 14].
16Huygens [72, Vol. IX, No. 2625].
17Nous ne voyons pas comment Huygens a obtenu ce résultat [. . . ] On voit qu’avant 1658
il s’intéressait déjà à ce qu’il appellera plus tard le rayon de courbure. [. . . ].
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Besides the catenary and the other curves we mentioned (conics, conchoid,
cycloid, Archimedean spiral, etc.) we find many other curves in the works of
Huygens, some of them with exotic names: the epicycloid, the hypercycloid, the
hypocycloid, the cassinoid, the cardioid, the Beaune curve, the Gutschoven curve,
the Tschirnhaus curve, the Descartes folium, the Dinostratus quadratrix, the sail
curve, the lemniscate, the spring curve, the paracentric isochronous curve, etc.
Huygens also studied caustics, which he observed during his experiments on optics.
In his Traité de la lumière, written in 1678, he made the relation between caustics
and the theory of evolutes and involutes which he developed in his 1673 Horologium
oscillatorium and of which we shall talk later in this paper. Huygens showed that
the caustic is the evolute of the wave front. Most of all, he liked to study the curves
that appear in nature and that have some practical use. He expressed this on several
occasions, and in particular in a letter to Leibniz, dated September 1st, 169118:

I have often considered that the curved lines which the nature presents frequently to our
view, and which it describes, so to say, itself, all comprise very remarkable properties. Such
are the circle which we encounter everywhere, the parabola, which the water jets describe,
the ellipse and the hyperbola, which the shadow of the edge of the stylet makes and which
we also encounter elsewhere, the cycloid which a nail on the circumference of a wheel
describes, and finally, our hanging chain that was noticed by so many centuries, without
analyzing it. [. . . ] But to build new ones, only in order to exert one’s geometry, without
predicting any other use, is difficiles agitare nugas,19 and I have the same opinion on all the
problems that concern numbers.20

Huygens studied the locus of the center of a rolling hexagon (Fig 7.4). One may
add here that at the time of Huygens, the conics, which had been studied in a purely
theoretical manner by the Greeks, have found their place in nature: Kepler saw that
planets move in ellipses and Galileo showed that objects projected obliquely upward
move in parabolas.

The drawing in Fig. 7.5 is by Huygens. It is extracted from the paper [18] by Bos,
and it originates in a manuscript Huygens wrote on the tractrix in 1692. It represents
an instrument that may be used for drawing such a curve. At the top left, Huygens
wrote: “A little cart or a boat would serve for squaring the hyperbola.”21

18Huygens wrote two versions of that letter, a preliminary one and the one he sent. Both versions
are reproduced in the complete works (Huygens [72] Vol. X, No. 2693) and we quote from both.
19The Latin expression agitare nugas means to deal with bagatelles, or child’s plays. Thus, the
expression difficiles agitare nugas means to occupy oneself with questions that are difficult but
with no importance, which, in this context means questions that have no practical relevance.
20J’ai souvent considéré que les lignes courbes que la nature présente souvent a notre vue, et qu’elle
décrit, pour ainsi dire, elle-même, renferment toutes des propriétés fort remarquables. Telles sont le
cercle que l’on rencontre partout, la parabole, que décrivent les jets d’eau, l’ellipse et l’hyperbole,
que l’ombre du bout du stile parcourt et qu’on rencontre aussi ailleurs, la cycloïde qu’un clou qui
est dans la circonférence d’une roue décrit, et enfin notre chaînette qu’on a remarquée par tant de
siècles sans l’examiner. [. . . ] Mais d’en forger de nouvelles, seulement pour y exercer sa géométrie,
sans y prévoir d’autre utilité, il me semble que c’est difficiles agitare nugas, et j’ai la même opinion
de tous les problèmes touchant les nombres.
21Une charrette, ou un bateau servira à quarrer l’hyperbole.
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Fig. 7.4 A curve studied by Huygens: the locus of the center of a hexagon rolling along a line.
Vol. XVIII p. 403

Fig. 7.5 An instrument imagined by Huygens, to construct a tractrix (Figure extracted from the
article [18] by Bos)

Huygens was the first to introduce a word for evolute (he used the French word
“développée”), and he studied it extensively. No progress on this notion was made
between the work of Apollonius and that of Huygens. The latter used both properties
of this curve, being the locus of centers of curvature of the original curve (the
involute), and the envelope of the normals of this involute. Furthermore, he gave a
beautiful application of this notion, in his work on the pendulum clock (Horologium
oscillatorium), published in several versions. Namely, he found that the cycloid is a
shape on which a pendulum may roll so that it is isochronous, that is, it has the same
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Fig. 7.6 From Huygens’
Horologium oscillatorium.
The pendulum swings along
two cycloids, KM and KI,
and the curve MPI that the
bob makes is also a cycloid
(1673)
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period, independently of the amplitude. In Fig. 7.6, extracted from his complete
works and representing a swinging pendulum, the curves KM and KI are cycloids.
Huygens also proved that the curve made by the bob of the pendulum, (the curve
MPI in Fig. 7.6), which is the involute of the cycloid, is also a cycloid.

Talking about the cycloid in the introduction of the 1673 version of his
Horologium oscillatorium, Huygens writes22: “The geometers, in our times, called
it cycloid and examined it carefully because of its various properties, whereas we
considered it because of that faculty we mentioned, namely, that of measuring
time.”23

In Fig. 7.7, we have reproduced two drawings of Huygens, extracted from a
manuscript titled De linearum curvarum evolutione et dimensione (on the evolute
and the dimension of curved lines) which is a part of his 1673 Horologium
oscillatorium (see [72] Vol. XVII, p. 142 ff). In these drawings, the upper curve,
a cycloid, is the involute of the lower curve, its evolute. Huygens’ goal in these
drawings is to prove that the evolute, which is obtained here as the locus of
intersection points of infinitesimally close normals to the curve (this is the definition
of the center of curvature), is also a cycloid.

The cycloid was already studied before Huygens, in particular by Galileo Galilei,
who, as is well known, also worked on the pendulum, but without noticing the
tautochronous property of this curve. We also noted that the cycloid appears in
Aristotle’s works, as a particular case of Aristotle’s wheel. Finally, it is worth noting
that Descartes studied the cycloid among other mechanical curves before writing
his Géometrie (1637), and that he used in his study a classical approach to tangents
(without the new infinitesimal apparatus), considering the rolling circle as a limit of
polygons with a number of sides growing to infinity; cf. the article [101] by Rashed

22Huygens [72, Vol. XVIII, p. 86].
23Les géomètres de notre temps l’ont appelée cycloïde et l’ont examinée avec soin à cause de ses
diverses autres propriétés. Quant à nous, nous l’avons considérée à cause de cette faculté dont nous
parlions, savoir celle de mesurer le temps.
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Fig. 7.7 Finding the centers of curvature of the cycloid. Figures extracted from Huygens’
manuscript De linearum curvarum evolutione et dimensione (1673) [72] Vol. XVII, pp. 144–145

Fig. 7.8 A study of the cycloid, [72, Vol. XVIII, p. 391]

on Descartes and the infinitely small. The reader may also recall here Huygens’
drawing of a rolling polygon reproduced in Fig. 7.4 above.

Figure 7.8 is extracted from another study of Huygens on the cycloid [72,
Vol. XVIII, p. 391].

There is a set of letters exchanged between Leibniz and Huygens where these two
mathematicians discuss evolutes and curvature. For instance, in a letter to Huygens
dated January 8, 1692, Leibniz writes24:

24Huygens [72, Vol. X, letter 2727].
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I really think that you saw clearly the circle which appears when the point evolves on the
curve and whose radius is the shortest segment that can be drawn from that point to the
given curve. But maybe you had not thought of considering it primarily as a measure of the
curvature. And myself, when I first thought of considering the greatest circle that touches
the curve internally as the measure of the curvature or the contact angle, I did not have the
idea of considering evolutes.25

After developing the theory of the evolute of the cycloid, Huygens worked on
the evolutes of the parabola, ellipse and other curves. He addressed the question of
what are the curves, other than the cycloid, whose evolute is a similar curve.26 He
showed in particular that the evolute of the epicycloid is also an epicycloid.27

Huygens also worked on the problem of curvature of sails of ships under the
pressure of the wind.28 This is an extremely difficult problem which was posed
on several occasions by Johann Bernoulli29 and which Newton had addressed in
Book II of his Principia. In 1694, one year before his death, Huygens corresponded
with Leibniz on this subject.30 This topic was also studied later by Euler. We shall
say more about this later.

By the end of his life, Christiaan Huygens became interested in the new methods
developed by Leibniz, Johann Bernoulli and the Marquis de l’Hôpital to study
curves, and, more generally, in the new differential calculus. In a letter to Leibniz,
dated September 1st, 1691, he writes31:

Apart from the reduction to the construction of the squaring of the hyperbola or to
logarithms, I can see the foundations of what you and Mr. Bernoulli have more than me. But
this reduction, for which I have high esteem, I don’t see up to now how you obtained it, and I
would be very happy if you could teach it to me. I want to believe that [your new calculus] is
useful for noticing more easily the various properties of the lines that we examine, because
I see that yourself as well as Mr. Bernoulli discovered things regarding this catenary, which
I did not propose to myself to investigate, because I thought they were too far off. But to
you, it seems that they reveal themselves.32

25Je crois bien que vous avez vu le cercle qui se décrit du point de la courbe évolue, et dont le rayon
est la moindre droite qu’on peut mener de ce point à la courbe décrite; mais peut-être n’aviez vous
pas songé d’abord à le considerer comme la mesure de la courbure, et moi lorsque j’avais considéré
le plus grand cercle qui touche la courbe intérieurement comme la mesure de la courbure ou de
l’angle de contact, je ne m’étais pas avisé de songer aux évolutions.
26Huygens [72, Vol. XVIII, p. 104].
27Huygens [72, Vol. XVIII], appendix III to Pars Tertia of the Horologium Osillatorium, p. 399 ff.
28Calculs et considérations sur les résistances éprouvées par différentes surfaces appartenant à
des corps animés d’un mouvement uniforme à travers l’air ou l’eau et sur les vitesses que le vent
peut donner à des voiliers à une seule voile supposée plane (1691), published in Vol. XXII. of [72].
29Johann Bernoulli, Solution du problème de la courbure que fait une voile enflée par le vent, 1692
and Essai d’une nouvelle théorie de la manoeuvre des vaisseaux, 1714.
30Huygens [72, Vol. XX, p. 552].
31Huygens [72, Vol. X, letter No. 2693].
32Hormis la réduction de la construction à la quadrature de l’hyperbole, ou aux logarithmes, je vois
les fondements de tout ce que vous et M. Bernoulli avez de plus que moi; mais cette réduction, que
j’estime fort, je ne vois pas jusqu’ici comment vous y êtes parvenus, et vous me ferez plaisir de me
l’apprendre. [. . . ] je veux croire que [votre nouveau calcul] sert à faire remarquer plus facilement
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In a letter sent in 1692,33 three years before his death, to the Swiss mathematician
and astronomer Fatio de Duillier who lived in London and who was, like Huygens,
a member of the Royal Society, Huygens enquires about a treatise that Newton
promised to publish on curves, expressing the will to learn more about the latter’s
method of fluxions. He writes:

[Newton’s] treatise on curved lines, according to what my brother sent me (he learned it
from you, Sir), should soon be born, and I am waiting for this impatiently, hoping to find
there all these beautiful things which you mention in your last [letter], and which, the more
I conceive the difficulty, the more I respect. [. . . ] Newton has general rules [. . . ] Also like
when the equation of the tangent is given, whether he knows if it belongs to some curve.34

Besides, I don’t understand what the fluxion of the fluxion means, it seems that this would
mean the tangent of a curved line on which depends the curve of the first fluxion, but then I
don’t see why the difficulty is greater. Please Sir, implore Mr. Newton to publish this treatise
which will have marvelous usefulness and will do him great honour.35

Huygens eventually started to use the new differential calculus. During the last
years of his life, he spent a large part of his time trying to solve problems using the
methods of Leibniz. In one of his last memoirs, concerning a curve whose tangents
make a constant angle with the parts of the axis (1693), he writes that without these
methods he would not have succeeded in solving the problem addressed [32, p. 67].

Newton had a great admiration for Huygens. He used to call him Summus
Hugenius36 (Huygens, the greatest). Henry Pemberton, the editor of the third
edition of Newton’s Principia, writes in the preface of his book A View of Sir
Isaac Newton’s Philosophy [96]: “Sir Isaac Newton several times has particularly
recommended to me Huygens’ style and manner. He thought him to be the most
elegant of any mathematical writer of modern times, and the most just imitator of
the Ancients.” In his article on Huygens, published in Volume 21 of the Biographie
universelle [83], J.-F.-Th. Maurice writes: “The high esteem that Newton carried for
the truly geometrical style of Huygens is most probably the reason for the method

les diverses propriétés des lignes qu’on examine, parce que je vois que M. Bernoulli aussi bien que
vous a découvert des choses touchant cette chaînette, que je ne me suis pas proposées à chercher,
parce que je les croyais trop éloignées; mais à vous et lui il semble qu’elles se soient offertes.
33Huygens [72, Vol. XXII, letter LXXVIII].
34We have tried to keep the translation close to Huygens’ French, at the expense of making some
passages, like the present one, look awkward.
35Le traité [de Newton] des lignes courbes, à ce que mon frère me mande, (qui le tenait de vous
Monsieur) devait bientôt voir le jour, ce que j’attends avec impatience, espérant d’y apprendre
toutes ces belles choses dont vous faites mention dans votre dernière, et que j’estime d’autant
plus que j’en conçois la difficulté. [. . . ] Newton a des règles générales [. . . ] Comme aussi lorsque
l’équation de la tangente est donnée s’il peut connaître qu’elle appartient a quelque ligne courbe.
Au reste je n’entends pas ce que signifie la fluxion de la fluxion; il semble que cela veuille dire
la tangente d’une ligne courbe dont dépend la courbe de la premiere fluxion mais je ne vois pas
alors en quoi la difficulté devient plus grande. Je vous prie de solliciter auprès de Monsr. Newton
la publication de ce traité qui sera d’une utilité merveilleuse, et lui fera grand honneur.
36See e.g. his letter to Leibniz, dated Octobre 16, 1693, in Turnbull (ed.), Correspondence of Isaac
Newton, Vol. 3, p. 285.
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of exposition that he carried himself in his great work of the Principia, where he
made use of only synthetic proofs and constructions, hiding the thread that guided
him.”37

In his Meditatio nova de natura anguli contactus et osculi: horumque usu in
practica mathesi, ad figuras faciliores succedaneas difficilioribus substituendas
(New meditation on the nature of the angles of tangency and osculation and their
mathematical application in order to successfully replace complex figures with
simpler ones) [80] (1686), Leibniz defined the notion of osculating circle for a point
on a plane curve, as a limit of circles determined by three points on that curve. In
the same work, he addressed the question of the existence of an osculating sphere
for a point on a surface and of the definition of the curvature of the surface at that
point using this osculating sphere. Vollgraff discusses this notion on p. 42 of Volume
XVIII of Huygens’ complete works [72], recalling that Leibniz was mistaken in his
definition of the osculating circle. He also notes that Jacob Bernoulli pointed out
this mistake a few years later in an article he published in the Acta Eruditorum,
J.B. Additamentum ad solutionem curvae causticae fratris Jo. Bernoulli, una cum
meditatione de natura evolutarum, & varus osculationum generibus (Addition to
the solution of caustic curves of my brother Jo. Bernoulli together with a meditation
on the nature of evolutes and other more general osculations) (1692). Leibniz
acknowledged his mistake and published a correction in his article Generalia de
natura linearum, anguloque contactus et osculi, provolutionibus, aliisque cognatis,
et eorum usibus nonnullis (General observations on the nature of lines, angle of
tangency and osculation, other related matters and several of their applications [81]).
In these last two works, the name of Huygens is mentioned several times. The reader
is referred to Vollgraff’s comments in [72] (p. 42 ff) for the intricate history of
the notions of contact angle, osculating circle, center of curvature and radius of
curvature in that period.

7.4 Euler

After Huygens, we pass to Euler, who developed a new theory of curves and
surfaces.

Since his youth, Euler was interested in the differential geometry of curves and
surfaces. He wrote a large number of essays and a book dedicated to the subject. His
memoir, Recherches sur la courbure des surfaces (Researches on the curvature of
surfaces), published in 1767 and which we shall survey in some detail, constitutes

37La haute estime que faisait Newton du style vraiment géométrique d’Huygens est la cause très
probable de la méthode d’exposition qu’il a suivie lui-même dans son grand ouvrage des Principes,
où il n’a guère fait usage que de démonstrations et de constructions synthétiques, en déguisant le
fil qui l’avait guidé.
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a big step in the theory of curvature of differentiable surfaces. Before doing so, we
briefly review a few other writings of Euler on curves and surfaces.

First of all, we mention three of his memoirs that make the link with Huygens’
work. They concern isochronous curves (also called tautochronous; Euler uses the
two terminologies). The titles are: Constructio linearum isochronarum in medio
quocunque resistente (Construction of isochronous curves in a resistant medium)
[42] (1926), De innumerabilibus curvis tautochronis in vacuo (On the innumerable
tautochronous curves in a vacuum) [45] (1935) and Curva tautochrona in fluido
resistentiam faciente secundum quadrata celeritatum (Tautochronous curves in a
fluid making a resistance proportional to the square of the speed) [46] (1935). The
memoir [42] is the first that Euler ever published (he was nineteen). In this and
in the memoir [46], Euler considers isochronous curves in a resisting medium. In
the classical case, a curve is submitted to the force of gravity, whose directions at
any two points are parallel (the force is directed towards the center of the earth,
considered at an infinite distance). This is the situation which Huygens considered
in his Horologium. Newton, in his Principia (Book II, Proposition 16) studied the
question of isochronous curves in the case where the forces of gravity are not parallel
but are directed towards a point at finite distance, and he also addressed the same
question in a resisting medium with resistance proportional to speed. He proved that
in these cases, the cycloid is also tautochronous. Euler worked on tautochronous
curves in a setting which is more general than Newton’s, and he found other
curves. In his memoir [45], he considered the question of isochronous curves in
the vacuum, and he found many curves satisfying this property, besides the cycloid.
In his solution, he made use of Huygens’ theory of evolutes. Euler studied evolutes
in two other memoirs, Investigatio curvarum quae evolutae sui similes producunt
(Investigation of curves which produce evolutes similar to themselves) (1750) [54]
and Investigatio curvarum quae similes sint suis evolutis vel primis vel secundis vel
tertiis vel adeo ordinis cuiuscunque (Investigation of curves that are similar to their
evolutes of first or second or third or whatever order) (1787) [60]. He addressed there
the natural question of finding curves whose evolutes are similar to themselves, a
question on which Huygens had already worked,38 and he found, like Huygens did,
that, besides the cycloid, the epicycloid satisfies this property.39 Euler also studied
the problem of finding the curves that are similar to their higher evolutes (evolutes of
the evolute, etc.) In his memoir De linea celerrimi descensus in medio quocunque
resistente (On the curve of fastest descent in whatever resistant medium) [48], he
studied the brachistochrone in a resistant medium.

Another memoir of Euler on plane curves is his De curvis triangularibus (On
triangular curves) [57], in which we find the origin of curves of constant breadth.
These are convex curves in the plane having the property that the distance between
any two distinct parallel supporting lines (that is, lines intersecting the curves but

38Huygens [72] Vol. XVIII, appendix III to Pars Tertia of the Horologium Osillatorium, p. 399 ff.
39Cf. p. 104 of volume XVIII of Huygens’ works [72], and the editor’s note on p. 40 of the same
volume.
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not the open convex region it bounds) is constant. The property is satisfied by the
circle, and it is an interesting question to find what other curves satisfy it. The title of
the memoir, “triangular curves”, stems from the fact that Euler finds these curves as
involutes of curves having three singularities (cusps, or non-smooth points), which
he calls triangular curves. Euler calls the curves of constant breadth orbiforms
(orbiformis), a name that reminds us of a modern notion. The notion of breadth
became later a fundamental one in convexity theory and there is a large literature
on the notion of breadth of convex bodies, see e.g. the papers [15] by Blaschke and
Hessenberg, [102] by Reidemeister, [28] by Chebotarev and the survey on convex
bodies of constant breadth in §16 of the book by Bonnesen and Fenchel [17]. Euler’s
memoir De curvis triangularibus also contains results on developable surfaces. In
fact, these surfaces, introduced by Euler, were used later as a tool to deform space
curves. We refer the reader to the exposition in the book by Hilbert and Cohn-Vossen
[69], in particular §§30 and 31. Euler had already introduced these surfaces in his
memoir De solidis quorum superficiem in planum explicare licet (On solids whose
entire surface can be unfolded onto a plane) [56]. He obtained a partial differential
equation that describes such a surface and concluded that this surface must be either
a plane, a cone, a cylinder or a surface obtained as the set of tangents to a curve
in 3-space. Euler’s work on developable surfaces was continued and developed to a
high degree by Monge; we shall talk about this below.

Among the other published works of Euler on surfaces, we mention the early
memoir De linea brevissima in superficie quacunque duo quaelibet puncta jungente
(Concerning the shortest line on any surface by which any two points can be joined
together) [44] in which he gives the differential equation satisfied by a geodesic
joining two points on a differentiable convex surface. He applies his methods to
cylinders, cones and surfaces of revolution. Several other memoirs by Euler concern
geodesics on surfaces. In particular, in his major treatise Mechanica, published in
1736 [47], he proves that a point-mass moving freely (that is, without any force
exerted on it) on a surface describes a geodesic, that is, a curve which is locally
the shortest path between its two endpoints. As a matter of fact, the main subject
of Volume 2 of the Mechanica is the motion of a point-mass on a given curve or
surface. Euler derives in this book the differential equations of geodesics.

Among the many other works of Euler on surfaces, we mention his study of
minimal surfaces. These surfaces first appear in his treatise on the calculus of
variations, a field of which he was the founder. Minimal surfaces were one of the
first applications he gave of that theory. (Cf. Chapter V, Sect. 47 of [50]).

In his work on curves and surfaces, Euler relied heavily on differential calculus
and especially differential equations, a field in which he was a master. Curves and
surfaces in his work are almost always defined by equations: mostly algebraic,
but also transcendental, by which Euler meant that they are defined by functions
that cannot be expressed by quotients of polynomials. He introduced the notion
of transcendence in several memoirs (see [49] and [59]), and he expanded on it
thoroughly in the treatise Introductio in analysin infinitorum (Introduction to the
analysis of the infinite) [51, 52] (1748) of which we talk now.
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The Introductio is a complete two-volume treatise on the differential geometry
of space curves and surfaces intended for students, and it is written in the modern
language of differential geometry. Curves are defined by parametric equations
x= x(t), y= y(t), z= z(t). In Volume I, osculating circles and radii of curvature
of plane curves are given in coordinates, and convexity and concavity of curves are
discussed in relation with the signs of the radii of curvature. Algebraic curves are
classified, and transcendental curves are also considered. Volume II is concerned
with curves in 3-space, and it contains a long appendix (about 100 pages) on
surfaces. Surfaces are represented by parametric equations x = x(u, v), y =
y(u, v), z = z(u, v). The appendix includes a section on the intersection of a surface
with an arbitrary plane, a study of plane sections of cylinders, cones and spheres,
a classification of second-degree surfaces and a chapter on the intersection of two
arbitrary surfaces.

Euler published his memoir Recherches sur la courbure des surfaces [55] in
1767, about 20 years after the publication of his Introductio. With this memoir, he
opened a new era in the differential geometry of surfaces. We shall highlight below
some of the works done by several preeminent geometers, based on Euler’s ideas.

In the memoir [55], Euler introduced a concept of curvature at a point of a
differentiable surface, based on the curvature of curves that pass through that point.
He started by pointing out that instead of studying the curvature of the totality of
curves passing through a point on a surface, it suffices to consider normal curves,
that is, curves that are intersections of the surface with planes containing the normal
vector to the surface at the given point, i.e., the vector normal to the tangent plane.
Such a plane is called a normal plane, or a normal section.40 In the same appendix,
Euler studied the osculating circles and the radii of curvature of normal curves.
The curvature of a curve obtained in this way is called a normal curvature of
the surface. It turns out that the collection of these normal curvatures contains all
the information on the curvature of the surface at that point. Euler proved that
at any given point of the surface, the maximal and minimal curvatures, that is,
the maximum and minimum of the normal curvatures taken over all the normal
sections passing through that point, determine all the other normal curvatures. More
precisely, he showed that at any point on a surface where the normal curvatures are
not all equal, the directions of the planes that realize the extremal curvatures are
orthogonal to each other, and he proved the following (we use Euler’s notation):
If at the given point, f and g are the maximal and minimal radii of curvature for
the normal sections through it, then for any normal section containing a tangent
vector making an angle ϕ with the tangent vector contained in the normal section

40The fact that the curvature of the normal sections determines the curvature of all the other
sections is nicely formulated by a theorem of Meusnier which we recall below.



7 A Path in History, from Curvature to Convexity 325

corresponding to the greatest osculating circle, its radius of curvature r is given by
the equation

r = 2fg

(f + g)− (f − g) cos(2ϕ)
.

The normal sections that correspond to the greatest or smallest curvature at a
point on a surface (provided these two quantities are distinct) are called the principal
sections. They play an important role, as we shall see below.

The following is a convenient way of re-writing Euler’s equation (the form is
due to Dupin, from his Développements de géométrie [37, p. 109], which we shall
discuss below):

1

r
= cos2 ϕ

f
+ sin2 ϕ

g
.

Note that f and g may take any real value.
Let us quote the conclusion of Euler’s memoir [55] (Réflexion VI, p. 143):

Thus, the judgement of the curvature of surfaces, however complicated it may seem at the
beginning, is reduced for each element to the knowledge of two osculating radii, one being
the largest and the other the smallest at that element. These two objects determine entirely
the nature of the curvature, displaying for us the curvature of all the possible sections that
are perpendicular to the proposed element.41

Late in his life, Euler wrote a memoir on curves in 3-space, Methodus facilis
omnia symptomata linearum curvarum non in eodem plano sitarum investigandi
(An easy method to investigate all properties of curves that do not lie in a plane)
[58]. The memoir was published in 1782, one year before his death. In this memoir,
to study the curvature at one point, he introduced a sphere centered at that point
and made use of spherical trigonometry, which was one of his favorite subjects. In
a sense this inaugurated the spherical map that Gauss introduced more formally 40
years later.

We shall review the history of curves in 3-space in the next section.
Euler, like Huygens before him, worked extensively on the theory of lenses, and

he wrote several articles on catoptrics, where the notion of center of curvature is
central.

Finally, we mention another question that Euler addressed and which involves
curvature, namely the question of sails of ships. He first investigated this question in
1727, at the age of twenty, in a memoir he sent to the French Academy of Sciences,
as a solution to a problem which the Academy proposed as a contest. The memoir is

41Ainsi le jugement sur la courbure des surface, quelque compliqué qu’il ait paru au commence-
ment, se réduit pour chaque élément à la conaissance de deux rayons osculateurs, dont l’un est
le plus grand et l’autre le plus petit dans cet élément; ces deux choses déterminent entièrement
la nature de la courbure en nous découvrant la courbure de toutes les sections possibles qui sont
perpendiculaires sur l’élément proposé.
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titled Meditationes super problemate nautico, quod illustrissima regia Parisiensis
Academia scientiarum proposuit (Thoughts on a nautical problem, proposed by
the illustrious Royal Academy of Sciences in Paris) [43]. Johann Bernoulli,42 who
was Euler’s teacher in Basel and who encouraged him to work on that problem,
had already published a memoir on the same subject, in 1714, which he called
Théorie de la manœuvre des vaisseaux (Theory of maneuver of ships). In the memoir
submitted to the Academy, Euler extended ideas of Archimedes from his treatise
On floating bodies, introducing the techniques of differential calculus, in particular
partial differential equations. Euler remained interested in these questions for the
rest of his life. Several years later, he completed his major opus on ship building,
the Scientia navalis (Naval science) [53], a two-volume treatise which appeared in
1749 in Saint Petersburg [53].

Talking about Euler, one may also mention Lagrange, his younger colleague,
sometimes competitor, for whom Euler had a real admiration, and who is considered
to be the co-founder of the calculus of variations. At the same time as Euler, he
introduced the methods of the calculus of variations in the study of curves and
surfaces. Lagrange’s Théorie des fonctions analytiques [77], which is a written
version of the lectures he gave at the École Polytechnique during the years 1795
and 1796, is, like Euler’s Introductio, an important monument of our mathematical
literature. The treatise has two parts, Part I containing the principles of differential
and integral calculus freed from the notion of infinitely small, in a language close
to our modern one. Part II, titled Application de la théorie à la géométrie et à la
mécanique, starts with a paragraph referring to the “Ancient geometers,” with a
review of how they conceived tangent lines to curves, and a comparison with the
new point of view using techniques of fluxions and infinitesimals. Lagrange declares
there that the modern techniques do not provide the rigor and the evidence of the
ancient proofs, and that the methods he develops in his treatise allow him to deal
with the problems of tangents and related problems according to the principles of
the Ancients. This part constitutes a treatise on the differential geometry of curves
and surfaces, with a study of curvature of space curves, osculating planes, tangent
planes to surfaces, order of contact of surfaces, developable surfaces, and the use of
the methods of the calculus of variations in various problems of maxima and minima
related to surfaces.

7.5 Curves in 3-Space

In this section, we briefly review works on space curves by Alexis Clairaut (1713–
1765), a contemporary of Euler with whom he held an important correspondence,
of Gaspard Monge (1746–1818), one of the main founders of the famous French
school of geometry that flourished in the last quarter of the eighteenth century

42This is Johann I Bernoulli the father (1667–1748).
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and continued through the nineteenth and part of the twentieth centuries, and of
Michel-Ange Lancret (1774–1807), who was a student of Monge at the École
Polytechnique.

At the beginning of Chapter I of the second volume of the Introductio, Euler
mentions the work of Clairaut on curves in space, writing: “Curves of this kind
have two kinds of curvature, which has been beautifully discussed by the brilliant
geometer Clairaut. Since this material is closely connected with the nature of
surfaces, which we will now discuss, We have decided not to give a separate
treatment, but to explain both simultaneously.”43

Clairaut wrote a memoir titled Recherches des courbes à double courbure [30] in
1729, at the age of 16. The work was published 2 years later. The reason commonly
accepted for this delay is that Clairaut worked so hard on his paper that he became
ill, and it took him 2 years to recover. In his memoir, Clairaut studies curves that are
not contained in a plane, which he calls “courbes à double courbure.”44 A surface is
always in the background of such a curve. In fact, at the beginning of his memoir,
Clairaut says that the curves he considers can be traced on the surfaces of solids, like,
for instance, the one we get by making a compass turn on a cylinder or on another
arbitrary surface. He considers himself as the first to investigate such curves, even
if he notes that Descartes planned such a study, and he adds that he learned from
Descartes’ work that to investigate such a curve, one has to project it onto two
perpendicular planes, and transform it into curves contained in these planes.

Like Euler, Clairaut works with a fixed coordinate system (the two perpendicular
planes he refers to). His space curves are generally given by two polynomial
equations in three variables (he calls such curves “geometric”, but he notes in the
introduction to his memoir that the same methods apply to transcendental curves).
The surface upon which the curves are drawn is given by an equation in three
variables. Clairaut assumes that the curve he studies is contained in a right solid
angle, and he projects it onto the three planes that bound this solid angle. He
develops two approaches to the study of such a curve, the first one by considering
its projection onto the coordinate planes and the second one by considering it
as a curve drawn on a curved surface. The fact that a curve is defined by two

43Vol. II, p. 378 of [52].
44The name “courbes à double courbure” was already used by Henri Pitot (1695–1771) in a memoir
titled Sur la quadrature de la moitié d’une courbe qui est la compagne des arcs, appelée la
compagne de la cycloïde (On the quadrature of half of a curve which is the companion of arcs
called the companion of the cycloid), presented to the Académie royale in 1724 and published 2
years later [97]. Talking about a spiral on a cylinder, Pitot writes: “The Ancients called this curve
spiral or helix, because its construction on the cylinder follows the same analogy as the construction
of the ordinary spiral on a plane, but it is very different from the ordinary spiral, being one of these
curves with double curvature [à double courbure] or a line which one can conceive as traced out
on the curved surface of a solid. [Les anciens ont nommé cette courbe spirale ou hélice, parce que
sa formation sur le cylindre suit la même analogie que la formation de la spirale ordinaire sur un
plan, mais elle est bien différente de la spirale ordinaire, étant une des courbes à double courbure
ou une des lignes qu’on conçoit tracée sur la surface courbe des solides.] Pitot, like many other
French mathematicians of that epoch, was an engineer.
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equations in three variables makes it naturally the intersection of two surfaces. When
Clairaut talks about a normal to a space curve, he means a normal to a surface that
contains the curve. He exploits his two approaches in the description of tangents
and tangent planes and he calculates path integrals in many explicit examples. In
his development, Clairaut uses only first derivatives. He studies objects such as loci
of intersections with the coordinate planes of lines that are tangent or normal to
the given curve. Such loci were thoroughly investigated later by Monge and his
students.

Clairaut does not introduce any explicit notion of curvature, nor of osculating
plane for a space curve. Such notions were introduced by Monge and his students,
in the work we review below. Clairaut notes in his memoir that a theory of surfaces
in three-space needs to be developed, and that he once had the intention to write a
treatise on that subject. He mentions that the only known fact about such surfaces
is that they can be expressed by a three-variable equation, a fact which, he says, is
contained in an article by Bernoulli published in the Leipzig Acta.

There is a solid which, in the eighteenth century literature, is called the Clairaut
spheroid. This is our familiar earth. The name was coined after Clairaut’s treatise,
Théorie de la figure de la terre, tirée des principes de l’hydrostatique (Theory of
the shape of the earth, drawn from the principles of hydrostatics) [31], published
in 1743, in which he develops a theory that supports the fact that the earth is not
spherical but has the form of an ellipsoid of revolution. Clairaut’s arguments came
from physics, and at the same time they were based on measurements made during
a famous expedition in Lapland done in 1736–1737. The expedition, whose aim
was to settle a question that was hanging on since several decades concerning the
shape of the earth, lasted 16 months. It was supported by the French Academy
of sciences, it was headed by Pierre-Louis de Maupertuis, and it included several
French scientists as well as foreign ones like the Swedish astronomer Anders
Celsius.

The question of the spheroidal shape of the earth started with Newton who stated
in 1687 that the earth is flattened at the poles, and, in fact, predicted a flattening
whose magnitude is of the order of 1/230 (Principia, Book III, Proposition XIX).
This led to a dispute between the English scientists and a large part of the French,
led by the astronomer Jacques Cassini. The latter believed, on the contrary, that the
earth was elongated at the poles. Johann Bernoulli, with his so-called vortex theory,
was on the side of Cassini, whereas Huygens, Maupertuis and Clairaut were on
the side of the English. Clairaut, in his Théorie de la figure de la terre, confirmed
Newton’s conclusions, even though he showed that the latter had made a mistake in
his computations.

We now pass to the work of Monge on space curves.
In 1769, Gaspard Monge, who was twenty-three, sent a letter to the editors of

the Journal encyclopédique, concerning the curvature of space curves. The letter
was published in that journal and it was reprinted with a commentary by René
Taton in [113]. It is 2 pages long, and it constitutes the first published work of
Monge. It carries the title Sur les développées des courbes à double courbure (On
the evolutes of curves with double curvature). The letter is an announcement of
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results that concern the evolutes of space curves. These results were expanded in a
paper Monge presented at the Academy of sciences 2 years later, titled Mémoire sur
les développées des courbes à double courbure et leurs inflexions.

At the beginning of the letter, Monge points out to the editors of the Journal
that before he started working on the subject, nobody had developed any theory
of evolutes of non-planar curves, and that even in the planar case, people worked
out only the planar evolutes of these curves. In his theory, a plane curve has, like a
space one, infinitely many evolutes (except in one single instance of a plane curve).
The evolutes of a curve are space curves, and Monge showed that they lie on a
developable surface, of which he gave a differential equation. After recalling how
to find the center of curvature of a plane curve at a point (or, as Monge says, of
an infinitely small arc), as the intersection of two infinitely close perpendiculars, he
considers the case of space curves, and of plane curves but considered in 3-space.
In this case, the perpendiculars are not unique, and at a given point, they form a
plane. The set of intersection points of two infinitely close such planes constitutes a
surface which Monge calls the “surface of centers of curvature”, and he shows that
this surface is also a developable surface. In the case where the curve we started with
is planar, the surface is a cylinder whose basis is the usual evolute of the plane curve.
Monge says in his announcement that he can write the equations of such a surface,
and that this surface is the locus of all the evolutes of the given curve. He gives a
way of constructing such an evolute using a rod which is tangent to the surface, in a
way that generalizes the classical construction of the evolute of a plane curve. The
paper ends with statements on the inflection points of space curves.

Monge’s Mémoire sur les développées des courbes à double courbure et leurs
inflexions was published in 1785, and it was also reprinted in his treatise Application
de l’analyse à la géométrie [88]. In this memoir, Monge gives the expressions of
the normal plane, of the center of radius of the first curvature, of the evolutes,
of the polar lines, of the osculating sphere, of the simple inflection points (where
the second curvature vanishes) and of the double inflection points (where the first
curvature vanishes).

We shall say more on Monge’s work in the next section which concerns surfaces.
Before that, we need to review the work of Monge’s student Lancret on curves.

Michel-Ange Lancret, who studied at the École Polytechnique, where Monge
was teaching, is known for his participation (like Monge, Fourier, Berthollet,
Ampère, Geoffroy Saint-Hilaire and many other scholars) in Napoleon’s expedition
to Egypt. In his short life, during which he was very active as an explorer and
civil engineer, he wrote two important memoirs on space curves, the Mémoire
sur les courbes à double courbure (Memoir on curves with double curvature) [78]
(published in 1806) and the Mémoire sur les développoïdes des courbes planes, des
courbes à double courbure, et des surfaces développables (memoir on evolutoids
of plane curves, of curves with double curvature and of developable surfaces) [79]
(published after his death, in 1811).

Lancret’s work was based on those of Monge and Fourier. His work involves
an interplay between curvature properties of space curves and surfaces. In the
first memoir, he defines the concepts of curvature and torsion of a space curve
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in terms of the infinitesimal rotation angles of normal planes and osculating
planes. He uses for these concepts the terms first flexion and second flexion,
which correspond respectively to our notions of contingence angle (the angle
made by two infinitesimally close normal planes) and torsion (the angle between
two infinitesimally close osculating planes). In considering space curves, Lancret,
following Monge, studies their evolutes. In his first memoir, he starts by giving
a proof of an unpublished theorem he learned from Fourier, saying that the first
flexion of the involute of a curve is equal to the second flexion of its plane evolute,
and that the converse is true: the first flexion of the plane evolute of a curve is equal
to the second flexion of its involute. Lancret then introduces a developable surface
which is the envelope of the planes that pass through the points of a curve that are
perpendicular to the principal normals. He establishes relations between this surface,
the osculating surface and the envelope of the normal planes. He makes several
connections between the two flexions of a space curve and those of its evolutes.

In his second memoir [79], Lancret develops a new theory, namely, the theory of
the evolutoid of a plane or a space curve. This is a space curve whose tangent lines
cut a given space curve at a constant angle different from a right angle.

The theory of space curves and the interplay between that theory and that of
developable surfaces continued to be a subject of intense investigation by French
geometers. We mention the Mémoire sur la théorie des courbes à double courbure
(1850) [14] by Joseph Bertrand, in which the author studies the principal normals
of a space curve and in particular conditions under which two curves have the
same principal normals. Bertrand also investigated conditions under which the
generatrices of a ruled surface are the lines carrying the radii of curvature of a curve
traced on some surface, and conditions under which a ruled surface is the locus of
the principal normals of a curve.

In the second half of the nineteenth century, the study of space curves was the
subject of several doctoral dissertations in France. We mention as examples the
dissertation of Jean-Frédéric Frenet, Sur les courbes à double courbure, defended
in 1847, in which the author introduces the so-called Frenet-Serret formulas found
independently by Serret in his paper Sur quelques formules relatives à la théorie des
courbes a double courbure published in 1851. We also mention the dissertation of
Paul Appell, Sur les cubiques gauches et le mouvement hélicoïdal d’un corps solide,
defended in 1876, and that of Émile Picard, Application de la théorie des complexes
linéaires à l’étude des surfaces et des courbes gauches, defended in 1877.

7.6 Curvature of Surfaces: Monge and His School

We now return to surfaces, reviewing works of Monge, Meusnier, Dupin and Olinde
Rodrigues.

Monge was in several ways the continuator of Euler’s work on curvature of
surfaces. For instance, he highlighted the significance of the two orthogonal line
fields that are tangent to Euler’s minimal and maximal directions of radii of
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Fig. 7.9 The pair of singular foliations of an ellipsoid by lines of curvature, discovered by Monge
(Extracted from Hilbert and Cohn Vossen’s Geometry and the imagination)

curvature. These line fields define two orthogonal foliations on the surface, and
this constitutes one of the first explicit appearances in the mathematical literature
of the notion of foliation. Monge called these foliations lines of curvature [87].
Figure 7.9 shows two orthogonal foliations by lines of curvature of an ellipsoid.
Dupin, in his Essai historique sur les services et les travaux scientifiques de Gaspard
Monge, reports that when Monge presented his construction of lines of curvature of
an ellipsoid at a lecture he gave at the École polytechnique, Lagrange, who was
present, was delighted and said to Monge: “I would have liked to be the author!”45

Dupin adds that Monge was most flattered by Lagrange’s reaction and that during
the rest of his lifetime, he liked to repeat this episode to his friends [39, p. 120].

Monge coined the expression umbilical point, to denote the points where the
two principal curvatures have the same value. These points, which Euler mentioned
without further discussion in his study of principal directions, are the singular points
of the foliations by the lines of curvature.

Monge continued Euler’s work on developable surfaces, in his Mémoire sur les
propriétés de plusieurs genres de surfaces courbes et particulièrement sur celles
des surfaces développables avec une application à la théorie générale des ombres
et des pénombres (Memoir on the properties of several species of curved surfaces
and particularly those of developable surfaces with an application to the theory
of shadow and twilight) [84] and his Mémoire sur les développées, les rayons
de courbure et les différents genres d’inflexions des courbes à double courbure
(Memoir on evolutes, radii of curvature, and the various species of inflexions of
curves with double curvature) [86]. He expressed several times his debt to Euler,

45Je voudrais en être l’auteur!
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whose works have motivated his investigations. In the first memoir just mentioned,
he writes:

Having resumed this matter, at the occasion of a memoir that Mr. Euler gave in the 1771
volume of the Petersburg Academy on developable surfaces, in which this famous geometer
gives formulae to determine whether a given surface may or may not be applied onto a plane,
I reached results on the same subject which seem to me much simpler, and whose usage is
much easier.46

Monge published a memoir [85] whose subject is the optimal transport of two
given volumes of sand (or of another material constituted of infinitesimally small
particles). The memoir is titled Mémoire sur la théorie des déblais et remblais
(Memoir on the theory of excavating and backfilling). This is an engineering
problem which acted as a motivation for his theory of lines of curvature of a surface
and for his theory of developable surfaces. He worked under the hypothesis that the
trajectories of the sand particles, when they are transported during the operations of
excavation and backfill, are straight lines, and he showed that these lines are normal
to a unique surface. He collected these trajectories into groups of developable
surfaces whose geometry is related to the curvature of the unique surface. This topic
was further developed by Dupin and by other prominent mathematicians; we shall
talk about this below.

In 1807, Monge published a treatise, Applications de l’analyse à la géomé-
trie [88], which became one of the most influential mathematical textbooks in
nineteenth-century mathematics. It contains the lectures he gave at the École
polytechnique, edited in the form of a collection of papers.47 In this treatise, Monge
systematically translates every geometric question concerning curves and surfaces
into the language of partial differential equations. A comprehensive reference on
Monge is the book [112] by René Taton.

Another important complement to Euler’s theory of curvature of surfaces was
provided by Jean-Baptiste Meusnier (1754–1793), who was a student of Monge at
the military school of Mézières. It is interesting to read a report that Monge left on
his first meeting with the young Meusnier; it shows clearly the lineage with Euler48:

I saw the young Meusnier for the first time when he entered as a student the École du génie
of Mézières, where I was a professor. He was eighteen [. . . ] Right on the day of his arrival
at Mézières, he came to see me in the evening and expressed his wish that I propose to him
a question which would allow me to be able to appreciate his degree of knowledge and to be

46Ayant repris cette matière, à l’occasion d’un mémoire que M. Euler a donné dans le volume 1771
de l’Académie de Pétersbourg, sur les surfaces développables, et dans lequel cet illustre géomètre
donne des formules pour reconnaître si une surface courbe proposée jouit ou non de la propriété de
pouvoir être appliquée sur un plan, je suis parvenu à des résultats qui me semblent beaucoup plus
simples, et d’un usage bien plus facile pour le même sujet.
47The fifth edition of Monge’s Applications is the most well known, because it contains extended
notes by Liouville.
48Extracted from the biographical article by Taschereau [111] where the author reproduces
handwritten notes by Gayvernon, vice-director of the École Polytechnique, where Monge was also
teaching.
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able to judge his capabilities. In order to satisfy him, I talked with him about Euler’s theory
of maximal and minimal radii of curvature of curved surfaces. I explained to him the main
results and I suggested to him to look for the proof. The next morning, in the classrooms, he
gave me a small piece of paper containing that proof. But what was the most remarkable is
that the considerations he made were much more direct, and his approach much faster than
the one Euler used. The elegance of that solution and the very short time it costed him gave
me an idea of his wisdom and of that exquisite feeling for the nature of things of which he
has given multiple proofs in all the works he did after that. I then showed him the volume
of the Berlin Academy which contains Euler’s memoir on this subject. He soon recognised
that the methods he used were more direct than those of his model. It turned out they were
also more productive, and he reached results that Euler had missed. He wrote a memoir
which I sent on his behalf to the Academy of Sciences and which was published among
those of the associate members.49

On the 14th and 21st of February 1776, Meusnier, who was twenty-one,
presented his first discoveries on the curvature of surfaces at the Académie des
Sciences. We learn from a biography of Meusnier written by Darboux [34] that
d’Alembert, who was present at the Academy, declared: “Meusnier starts while
I finish.” The same year, and despite his very young age, Meusnier was made
corresponding member of the Academy. He wrote only one mathematical paper,
the Mémoire sur la courbure des surfaces [82], published in 1785. He became a
general in the French army and pursued a military career.

In his paper, Meusnier gave a formula that complements Euler’s formula on the
curvature of curves obtained by normal sections, namely, he gave, for a given point
on the surface, the curvature of the curves obtained by intersecting the surface by
oblique planes, relating them to the curvature at that point of the corresponding
normal sections, that is, the intersection of the surface with the normal sections
having the same tangent vector. The precise formula says that at a point on the
surface, the curvature κφ of a curve obtained by intersecting the surface by a plane

49La première fois que j’eus l’occasion de voir le jeune Meusnier, ce fut lorsqu’il vint en qualité
d’élève à l’École du génie de Mézières où j’étais professeur, il avait dix-huit ans. [. . . ] Le jour
même de son arrivée à Mézières, il vint me voir le soir, et il me témoigna le désir qu’il avait que
je lui proposasse une question qui me mît à portée et de connaître le degré de son instruction et
de juger ses dispositions. Pour le satisfaire je l’entretins de la théorie d’Euler sur les rayons de
courbure maxima et minima des surfaces courbes; je lui en exposai les principaux résultats, et
lui proposai d’en chercher la démonstration. Le lendemain matin, dans les salles, il me remit un
petit papier qui contenait cette démonstration ; mais ce qu’il y avait de remarquable, c’est que les
considérations qu’il avait employées étaient beaucoup plus directes, et la marche qu’il avait suivie
était beaucoup plus rapide que celles dont Euler avait fait usage. L’élégance de cette solution, et
le peu de temps qu’elle lui avait coûté, me donnèrent une idée de la sagacité et de ce sentiment
exquis de la nature des choses dont il a donné des preuves multipliées dans tous les travaux qu’il
a entrepris depuis. Je lui indiquai alors le volume de l’Académie de Berlin dans lequel était le
mémoire d’Euler sur cet objet; il reconnut bientôt que les moyens qu’il avait employés étaient plus
directs que ceux de son modèle; ils devaient être aussi plus féconds, et il parvint à des résultats
qui avaient échappé à Euler. Il en composa un mémoire que j’adressai de sa part à l’Académie des
Sciences et qui fut imprimé parmi ceux des savants étrangers.
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containing a tangent vector making an angle φ with the normal plane containing the
same tangent vector satisfies the relation

κφ cosφ = κ,

where κ is the curvature of the curve cut out by the normal section. He proved at
the same time that at any point on a surface and for any tangent curve at that point,
the osculating circles to a curve obtained by the various oblique sections having the
given tangent vector lie on the same sphere.

In the same paper, Meusnier introduced a notion of osculating torus for a surface
at a point, generalizing the notion of osculating circle for a plane curve. In fact, he
defined, at a given point of a surface, two osculating tori at each point, each one
obtained by rotating the osculating circle of one principal section along the axis
of the osculating circle of the second principal section. Each such torus has first
and second derivatives equal to those of the surface at the given point. His proof of
Euler’s theorem and of the so-called Meusnier formula which we mentioned above
are based on these tori. Meusnier also used these tori to give a characterization of
minimal surfaces. He also gave a characterization of the surfaces for which the two
extremal radii of curvature are always equal, a condition satisfied at the so-called
umbilical points, and he solved a problem on developable surfaces. In his paper,
Meusnier also showed that the helicoid obtained by rotating and displacing a straight
line around an axis is a minimal surface of average curvature zero.

Charles Dupin is another student of Monge who made significant advances in
the theory of curvature, establishing relations between differential geometry and the
theory of conics and, more generally, projective geometry. Needless to say, as a
student of Monge, Dupin was knowledgeable in projective geometry.

As a first-year student at the École Polytechnique, Dupin became known for a
solution of a problem concerning spheres that are tangent to three given spheres. He
found a property of the envelope of that family of spheres, namely, that its lines of
curvature are two systems of circles. Such a surface is now called a Dupin cyclide.
In his article on Monge, Dupin writes that the latter already considered surfaces
that are envelopes of families of surfaces, and he says that in his last two memoirs,
written amidst the dangers and the works of the Egyptian expedition, Monge applied
the theory of curvature of surfaces to the study of the equations and the properties
of a surface that is the envelope of a family of spheres of varying radii distributed
along an arbitrary curve [39, p. 113 and p. 122]. The problem of spheres tangent to
three given spheres is a generalization of a famous set of problems of Apollonius,
asking for a circle tangent to three circles, where the latter may have radius zero or
infinity, that is, they may be a point or a line. Apollonius wrote two books on the
subject, which he titled On contacts. The books are lost, but later authors refer to
them (see e.g. Propositions 9, 10, 14 and others in Book IV of Pappus’ Collection
[94]).

Dupin, like his teacher, expressed at several places his admiration for Euler. In his
treatise Développements de géométrie [37, p. 107], he talks about the “wonderful
theorem of Euler who was, for modern geometry, the source of the greatest progress:
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At any point of a surface, the two directions of greatest and smallest curvature are
always at right angles.”50

Dupin considered himself (and he indeed was) a true disciple of Monge. His
treatise Développements de géométrie [37] is dedicated to his master. The treatise is
a collection of several memoirs, divided into two sections. The first section contains
three memoirs, and the second one contains two. The topics studied in this treatise
include the osculation of surfaces by ellipsoids, the theory of conjugate tangents,
the so-called Dupin indicatrix and the theory of orthogonal trajectories applied to
the determination of lines of curvature. Let us briefly review some of these topics.

An osculating ellipsoid, now called Dupin ellipsoid, is introduced in the first
memoir. The osculating circles of all the normal sections of the surface are also the
osculating circles of the normal sections of this ellipsoid. The set of curvatures of
the surface at the given point is the set of curvatures of the ellipsoid at its vertex
(the contact point with the surface). One of the axes of this ellipsoid coincides with
the normal at that point. This says in particular that the directions of smallest and
largest curvature of the surface at that point are perpendicular, as for the ellipsoid.
One may deduce, from the existence of this ellipsoid with its properties, Euler’s
theorem saying that the curvatures of all the normal sections may be deduced from
the two principal curvatures.

The Dupin indicatrix is an assignment, at every point of the surface, of a conic
in the tangent space, centered at the origin, which Dupin called curvature indicatrix
(“indicatrice de courbure”; it indicates the directions of the two principal curvatures
at that point). The system of conjugate diameters of the conic represents the system
of conjugate tangents. In the case where the indicatrix is an ellipse (parabolic point),
its axes represent the directions of largest and smallest curvature of the surface at
the given point, and the normal radius of curvature in any direction at a point in
the surface is equal to the square of the distance from the corresponding point of
the ellipse to its center. The Dupin indicatrix is reduced to a line when one of the
principal curvatures vanishes, while the other is infinite. If the indicatrix is an ellipse
(respectively a hyperbola), then the sum (respectively the difference) of the two radii
of curvature of the sections which correspond to two conjugate tangents is constant,
and it is equal to the sum (respectively the difference) of the two principal radii. If
the indicatrix is a parabola, one of these radii becomes infinite, and the curvature
vanishes. This happens for instance at any point of a developable surface.

Dupin gave a construction of the indicatrix. In the case of a parabolic point, the
first approximation of the indicatrix is obtained by intersecting the given surface
with a plane parallel to the tangent plane at that point and infinitesimally close to
that tangent plane, then projecting this approximation onto the tangent plane. In the
case of a hyperbolic point, one has to take two infinitesimally close planes, one from
each side of the surface. Dupin also developed a theory of asymptotic directions of

50[. . . ] admirable théorème d’Euler, qui a été pour la géométrie moderne la source des plus grands
progrès: En chaque point d’une surface, les deux directions de plus grande et de moindre courbure
sont constamment à angles droit.
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the surface (defined by the asymptotic directions of the indicatrix) and of conjugate
tangents at each point. The latter are obtained by constructing a developable surface
touching our surface along a certain curve. Then, at the given point, the tangent to
the curve and the line of the developable surface at this point, form two conjugate
tangents.

Dupin’s theory of conjugate directions led him to define a notion of conjugate
families of curves on the surface. This is a generalization of Apollonius’ theory
of conjugate diameters, to the setting of differentiable surfaces. The two lines
of curvature of a surface are examples of conjugate lines. Dupin gave a relation
between the curvature in some direction of the surface and the curvature in the
conjugate direction. He proved that the sum of the radii of curvature in conjugate
directions is constant.

In the third memoir of his Développements de géométrie, Dupin determines
points where the indicatrix is a circle (that is, all the curvatures of normal sections
are equal), making relations with Monge’s umbilics. Dupin also introduced an object
that he called a “system of triply orthogonal coordinates in space”, that is, a system
of three families of surfaces that meet everywhere orthogonally. He showed that any
surface in any such system meets the other surfaces in its lines of curvature.

Dupin, like Monge and others, who were engineers, published memoirs and
books on the application of the theory of curves and surfaces to practical problems.
We mention in particular his memoir Applications de la géométrie à la mécanique
[40], in which he studied the stability of floating bodies, that reminds us of
Archimedes. One may also mention his memoir on earthwork [36] and his Exercices
[38], concerned with the optimal transport of a volume of particles of sand,
continuing the work of Monge on the subject. Dupin had a more general approach
compared to his master, namely he allowed the paths taken by the particles to be
curved. He writes in [38]: “The only way to add something to the results of a famous
predecessor is to consider the case where the paths cannot all be rectilinear, but
depend on the form and the slope of the ground on which they must be traced.”51

This theory of optimal transport was further developed by Paul Appell in his booklet
Le problème géométrique des déblais et des remblais (The geometrical problem of
cut and fill) [7], in which the author also reviews the works of Monge and Dupin on
this subject.52

We also mention Dupin’s memoir on optics, Mémoire sur les routes de la lumière,
dans les phénomènes de la réflection et de la réfraction (Memoir on the routes of
light in the phenomena of reflexion and refraction), in which he gives, among other
things, a complete theory of cyclides, that is, surfaces whose lines of curvature are
circles. In his article on Monge, he writes that the questions of transport of particles

51Le seul moyen d’ajouter quelque chose aux recherches d’un illustre devancier est de considérer
le cas où les routes ne sauraient être toutes rectilignes, mais dépendent de la forme et de la pente
du terrain sur lequel elles doivent être tracées. (quoted by Appell in [7]).
52There seems to be a “strange case” of plagiarism in this booklet by Appell, [7] which contains
several pages copied verbatim from a memoir by Albert de Saint-Germain published in 1886; cf.
the paper [106] by Roitman and Le Ferrand where this issue is discussed.
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of sand have led, by extension, to general theorems on mathematical optics [39,
p. 131].

Dupin later became a naval engineer, and a friend and a confident of Napoleon.
He was a lover of modern Greece. He spent several years in the island of Corfu and
he founded there, in 1808, together with Antoine-Marie Augoyat, a fellow student at
the École polytechnique, an academy which became known as the Ionian Academy.
He became a senator under Napoleon III.

To conclude with the work on Dupin, let us note that Poincaré, in 1847, published
a paper titled Démonstration nouvelle des propriétés de l’indicatrice d’une surface
(A new proof of properties, of the indicatrix of a surface) [98] in which he gives
new proofs and complements to results of Dupin. Poincaré starts by giving a proof
of the following result: If at each normal section at a given point on a surface we
take, at the intersection with the tangent plane, a segment whose length is the square
root of the radius of curvature of that section, then the result obtained is a conic.
He then gives a new proof of Meusnier’s theorem as well as a generalization, and a
series of properties of the Dupin indicatrix, including results on conjugate tangents.
Poincaré’s proofs do not involve any calculation or equation, but only the synthetic
theory of conics.

Olinde Rodrigues (1795–1851), who belonged to the circle of Monge,53 wrote
in 1815 and 1816 two memoirs on lines of curvature, Sur quelques propriétés des
intégrales doubles et des rayons de courbure des surfaces (On some problems of
double integrals and radii of curvature of surfaces) [104], and Recherches sur la
théorie des lignes et des rayons de courbure des surfaces, et sur la transformation
d’une classe d’intégrales doubles qui ont un rapport direct avec les formules de cette
théorie (Researches on the theory of lines and of radii of curvature of surfaces, and
on the transformation of a class of double integrals which have a direct relation with
the formulas of this theory) [105]. Rodrigues is known for a formula on this subject
carrying his name, and for developing the idea of a representation of a differentiable
surface on a sphere of radius one which amounts to the Gauss map. He used such a
representation to study the ratio of the area of (a piece of) the original surface to the
area of its image on the sphere, arriving at a measure of curvature which in fact is
the Gaussian curvature at a point of a surface.

7.7 Twentieth Century: Return to Euclid

The work of Busemann and Feller on which we shall comment below is strongly
influenced by Hilbert’s vision on mathematics. Both Busemann and Feller obtained
their PhD in Göttingen, and although their thesis advisor was Courant, they were

53Strictly speaking, Rodrigues was not a student of Monge, but according to Taton [112], Monge
considered him as his student. Rodrigues became a follower of Saint-Simon (1760–1825), the
famous utopian socialist whom he met in 1823, 2 years before Saint-Simon’s death, and he became
the main promoter of his ideas.
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shaped by Hilbert’s view on the foundations of geometry. Feller obtained his PhD
in 1927, and Busemann in 1931. Before talking about their work, let us say a few
words on some work of Hilbert related to our topic.

In 1932, together with Stephan Cohn-Vossen,54 Hilbert published his remarkable
book Geometry and the Imagination55 [69] which is based on Hilbert’s lectures held
in 1920/21. Let us quote Hilbert from the preface, about the aim of this book:

Here we want to look at geometry in its present condition from the point of view of
the imagination. With imagination, we can approach the manifold geometric facts and
questions, and moreover in many cases we can give an idea in imaginative form of the
methods of investigation and proof leading to the discovery of the facts, without having to
give all the details of the conceptual theories and the calculations.56

The point of view is indeed purely geometric, unlike the one of Euler or Monge
and his students, which is based on analytic geometry. In a sense, it is a return to
the methods of the Greeks. Let us quote from the chapter on differential geometry
[69, p. 155] their description of the osculating circle at a point P1 on a plane curve,
a notion which we encountered several times in this essay. It says the following:

We draw a circle through P1 and two neighbouring points on the curve. If we let the two
neighbouring points approach P1, the corresponding circle converges to a limit position
[. . . ] This limit circle is called the osculating circle at P1. Because of the construction
described, it is usual to say that the curvature circle has three points running together in
common with the curve. Similarly, one says that the tangent and the curve have two points
running together in common.57

The osculating circle of a curve at a point P typically changes sides of the curve
at the touching point P . If we consider all circles through P touching the curve at
P , then in general those circles of radius greater than the radius of curvature r lie on
one side of the curve whereas those of radius less than r lie on the other side of the
curve. This is represented in Fig. 7.10, which is extracted from Cohn-Vossen’s book
(see [69, Figure 186]).

These ideas directly translate to space curves. To construct the osculating plane
of a space curve at a point P , we can consider the limiting position of the

54For a comprehensive review on Cohn-Vossen’s work, we refer the reader to the article [1] by
Alexandrov.
55The original German title is: Anschauliche Geometrie.
56Wir wollen hier die Geometrie in ihrem gegenwärtigen Zustand von der Seite des Anschaulichen
aus betrachten. An Hand der Anschauung können wir uns die mannigfachen geometrischen
Tatsachen und Fragestellungen nahebringen, und darüber hinaus lassen sich in vielen Fällen
auch die Untersuchungs- und Beweismethoden, die zur Erkenntnis der Tatsachen führen, in
anschaulicher Form andeuten, ohne daß wir auf die Einzelheiten der begrifflichen Theorien und
der Rechnung einzugehen brauchen.
57Wir legen einen Kreis durch P1 und zwei benachbarte Punkte auf der Kurve. Wenn wir
dann die beiden Nachbarpunkte auf der Kurve gegen P1 rücken lassen, nähert sich der Kreis
einer Grenzlage. [. . . ] Man nennt diesen Kreis den Krümmungskreis der Kurve in P1. [. . . ]
Der angegebenen Konstruktion wegen pflegt man zu sagen, daß der Krümmungskreis drei
zusammenfallende Punkte mit der Kurve gemein hat. Ebenso sagt man, die Tangente hat mit der
Kurve zwei zusammenfallende Punkte gemein.
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Fig. 7.10 The osculating circle at P separates two kinds of circles tangent to the curve at P :
those that lie on one side of the curve and those that lie on the other side of the curve (in the
neighbourhood of the point P ). Figure from [69]

plane through the tangent at P and a neighbouring point that approaches P [69,
p. 158]: “In the same sense as above, the osculating plane has three points that
are running together in common with the curve.”58 Let us note incidentally that the
term “osculating plane” can be traced back to Johann Bernoulli, specifically to his
memoir Problema: in superficie curva ducere lineam inter duo puncta brevissimam
(Problem: to draw on a curved surface a shortest line between two points) [13].59

Bernoulli used this notion in the context of his study of geodesics on surfaces. In
fact, he characterized geodesics as the curves on the surface whose osculating plane
is always perpendicular to the tangent plane of the surface.

In [69], §32, Hilbert and Cohn-Vossen discuss eleven properties of the sphere,
some of which characterize it and others do not. For example the third property
says that the sphere is a surface of constant breadth and all the projections have
constant circumference. The property of having constant breadth means that the
distance between any two parallel tangent planes is constant. It is a generalization
for surfaces of the property with the same name that we encountered in Euler’s
memoir on triangular curves [57]. As Hilbert and Cohn-Vossen explain, there are
many other convex surfaces sharing this property. Figure 7.11 is extracted from
Hilbert and Cohn-Vossen’s book and reproduces pictures of such surfaces. In the

58Die Schmiegungsebene hat im früher erläuterten Sinn drei zusammenfallende Punkte mit der
Kurve gemein.
59Bernoulli writes: Voco autem planum osculans quod transit per tria curvae quaesitae puncta
infinite sibi invicem propinqua. (I also call an osculating plane one that passes through three points
on the given curve that are infinitely close to each other).
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Fig. 7.11 Surfaces of constant breadth, from [69]

picture on the left hand side, one can see a surface having as a section a curve with
three cusps (a triangular curve in the sense of Euler). The fourth property in §32
says that all points on a sphere are umbilical, which in fact characterizes the sphere.
The fifth property concerns the focal points of a surface. Let us explain this notion.
The set of centers of curvature of normal sections at a point of a surface is in general
a segment contained in the normal section at that point, whose extremities are the
centers of curvature of the principal directions. These extremities are called focal
points, and we already saw that these two points coincide if and only if the given
point is umbilical. The fifth property then states that the focal points of the sphere
do not form a surface. Indeed the sphere is the only closed surface that has a unique
focal point. But there are other surfaces where the set of focal points degenerates to
a curve. These are the surfaces we mentioned, discovered by Dupin, called Dupin
cyclides.

After Hilbert and Cohn-Vossen, and before going over to the work of Busemann
and Feller, we briefly review the work of Bonnesen and Fenchel on convexity.

It is interesting to note that there was a strong interaction between the whole
group of four mathematicians: Fenchel, Feller, Bonnesen and Busemann. Werner
Fenchel obtained his PhD in 1928 in Berlin under Bieberbach. The title of his
dissertation was Über Krümmung und Windung geschlossener Raumkurven (On
curvature and torsion of closed space curves) [62]. The topic was differentiable
curves in 3-space. The main results concern the image of the curve obtained by
taking the tangent vectors of a given curve parametrized by arc length. This curve
of tangents is considered as a curve lying on the unit sphere. Fenchel proves that (1)
the total curvature of a space curve is bounded below by 2π , with equality if and
only if the curve is planar and convex; (2) if the curve of tangents has a double point,
then the torsion changes sign unless it is constant. The first of these two results is
known as “Fenchel’s theorem”, and it was generalized in several ways by various
people. The proofs of the results in Fenchel’s thesis are very geometric in spirit.
After his PhD, Fenchel moved to Göttingen, where he became Landau’s assistant.
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Busemann and Feller were also working in Göttingen, as young mathematicians.
Fenchel remained there until 1933, when Hitler was appointed chancellor, with
two interruptions between 1930 and 1932 during which he spent some time in
Copenhagen, where Tommy Bonnesen was working. In 1933, Busemann, Feller
and Fenchel fled to Denmark. Fenchel spent essentially the rest of his career there,
whereas Busemann and Feller eventually moved to the US. The reader interested in
this turbulent period of the history of Europe may refer to Feller and Busemann’s
biographies contained in their Selected Works editions, [61, Vol. 1] and [25, Vol. 1].
We also refer to Busemann’s biography in [93].

The book [17] by Bonnesen and Fenchel, published in 1934, a year after
Fenchel’s move to Denmark, belongs to the Göttingen tradition of Hilbert’s
foundations of geometry. It is one of the founding books of modern convexity
theory and, at the same time, of the synthetic point of view on curvature. §17 of
the book starts with the following statement: “Far-reaching assertions can be made
about the curvature relations of convex curves without making any assumption of
differentiability” [17, p. 153]. Indeed, in that section and the next one, the authors
attempt to develop a geometric theory of curvature of convex curves and surfaces
without differentiability conditions.

Convex curves in the plane (respectively convex surfaces in 3-space) have
support lines (respectively support planes) which sometimes can play the role
of tangent lines (respectively planes). We recall that for any point on a convex
hypersurface (that is, the boundary of a proper open convex set of maximal
dimension in some Euclidean space), a support hyperplane is a hyperplane that
contains that point but no point from the open convex subset it bounds. Any point
on a convex surface is contained in a (not necessarily unique) support hyperplane. If
the surface is differentiable at the given point, then the support hyperplane is unique
and coincides with the tangent plane at that point.

Bonnesen and Fenchel call an element of a convex curve C in the plane a pair
(P, s) consisting of a pointP and a support line s at P . A normal line to this element
is a line passing through P and perpendicular to s. An osculating circle at (P, s) is
defined as a geometric limit of circles each of which touches s at P and which passes
through a sequence of points on the curve that converges to P . The radius of such
a circle is then a radius of curvature of the curve C at P . The values 0 and ∞ are
allowed; in such cases the osculating circle is a point or a line respectively. To each
element (P, s) is associated a set of osculating radii and of radii of curvature, each
being an interval, the former contained in the latter. A circle of curvature at (P, s)
is a limit of circles through P whose centers are the intersections of the normal of s
at P with the normals of a sequence of elements that converge to (P, s). One also
defines the center of curvature of C at P as the limit (if this limit exists) of the
intersection of the normal line at p with the normal lines of a sequence of points
on C that converge to P . The center of curvature, when it exists, may or may not
coincide with the center of the osculating circle of C at P . For a given element
(P, s), there may be several osculating circles and several circles of curvature. An
osculating circle is a circle of curvature but the converse is not necessarily true. In
the case where the osculating circle is unique, there exists also a unique circle of
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curvature, and both circles coincide. This occurs for almost all points of the convex
curve, with respect to the Lebesgue measure of arc length on the curve; cf. Jessen
[73]. In the cases where the limits do not exist (at a set of points of measure zero),
one may define, by taking the smallest upper bound and the greatest lower bound,
the upper and lower centers of curvature on the normal line n and then define the
upper and lower curvature of the curve at the point P .

Bonnesen and Fenchel refer to the papers by Hjelmslev [71] and by Jessen [73]
for these notions and their basic properties. They relate this notion of greatest lower
bound of curvature radii to the question of the largest circle that can roll unhindered
on a convex curve. This kind of questions remind us of questions that Aristotle
addressed, and which we recalled in Sect. 7.2 of this paper. Bonnesen and Fenchel
refer to papers by Bohr and Jessen [16], Mukhopadhyaya [90] and Brunn [20]. Then
they discuss osculating conics to convex curves, referring to papers by Hayashi
[65], Mukhopadhyaya [89] and others. In his paper Circles incident on an oval of
undefined curvature [91] published in 1931, Mukhopadhyaya studied contact and
osculation of circles relative to a convex continuous curve in the plane under the
assumption that a definite tangent exists at each point but with no assumption on the
existence of an osculating circle.

All this concerns curves. Regarding surfaces, Bonnesen and Fenchel state that
“systematic investigations of the curvature properties of convex surfaces without dif-
ferentiability assumptions are not available” [26, p. 154]. They mention preliminary
tools and methods of attack due to Bouligand [19], Hadamard [64], Cohn-Vossen
[29] and a few others.

In their article [26], Busemann and Feller investigate curvature properties of
convex surfaces in Euclidean space. They describe their goal in the introduction
thus:

The aim of this paper is to develop the elements of differential geometry of convex surfaces
without making the usual regularity assumptions. Hereby necessarily, purely geometric
considerations often replace the usual analytic arguments.60

Consequently, they start from purely geometric definitions of tangent, tangent
plane, osculating circle, radius of curvature etc. in the spirit of the book of Hilbert
and Cohn-Vossen [69]. Their approach allows them to consider topological surfaces
in 3-space with mild extra assumptions, and in particular convex surfaces, without
further regularity conditions. Their starting point is a definition of tangent line,
approximating circle, curvature and osculating plane, generalized from the setting
of curves in space to that of sequences of points in space converging to a given point
(Section 1 of [26]). At this point, the reader may stop and think about the meaning of
these words, in the simplest situation, and without any differentiability assumption.
Here is how Busemann and Feller proceed.

We start with a sequence of points {Pn} in 3-space converging to a point P . If
the lines joining Pn to P converge to a line t , this limit is called the tangent line of

60Cf. the English translation of the whole article in [25, Vol. 1, p. 235].
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{Pn}. As in the treatise by Bonnesen and Fenchel, the pair (P, t) is said to be a line
element. If the sequence {Pn} has a tangent line t , then the circle in the plane (t, Pn)
through Pn that is tangent to t is called the approximating circle of Pn with respect
to the line element (P, t). If ρn denotes the radius of this circle and if the limit ρ
of ρn exists, then this limit is called the radius of curvature, and its inverse 1

ρ
the

curvature of the sequence of points {Pn}. If the planes through Pn and t converge to
a plane E, then this plane E is called the osculating plane of {Pn}.

Other metric notions associated with a sequence of points {Pn} are introduced in
the same paper, such as the foot of the perpendicular, normal segment and tangent
segment from Pn to P . Formulae for curvature radii, etc. are given in terms of limits
of normal segments, tangent segments, etc. generalizing the classical formulae given
in terms of derivatives.

From this, Busemann and Feller introduce as follows the notions of tangent,
curvature and osculating plane for a space curve:

Let κ be a continuous space curve and P a point on κ . If for any sequence Pn of
points on κ converging to P the tangent and curvature exist and are independent of
the choice of Pn, then these tangent and curvature are defined to be the tangent and
curvature of κ at P . The osculating plane of κ at P is defined similarly.

Several other metric definitions in the same spirit are given. In particular, if the
tangent and the osculating plane exist but the curvature depends on the chosen
sequence, then the upper limit of all the possible curvatures is called the upper
curvature of κ . Choosing the sequence Pn to be on the same side of P on the curve,
one obtains notions of right-sided and left-sided tangent and curvature.

Busemann and Feller compare these definitions with the classical ones by taking
derivatives in the special case of plane curves and they show that their concept is
broader. Namely, if a curve κ is given as the graph of a continuous function f of
one variable x and if at some point x0 of the interval of definition the right second
derivative of f exists, then the usual notion of right curvature of κ at x0 coincides
with the one they introduce. They show that the converse is not true: there exists a
C1-function f with right curvature at x0 (in the sense of the authors) admitting no
right second derivative at x0.

The case of convex plane curves is of particular interest. Here, at each point of
such a curve, a left and a right tangent exists. Because the slope of these one-sided
tangents is monotone with respect to the point, the curve has a two-sided tangent
almost everywhere (up to countably many exceptions). This monotonicity property
also implies that up to a set of measure zero, f has also almost everywhere a second
derivative.

In the same trend, the authors give a geometric definition of a strict tangent plane
at a point of a surface [26, § 2]: given a point P on a surface � in the Euclidean
space, a plane � is called strict tangent plane of � at P if for every sequence of
secantsQnPn of � converging to P , all the limits of the lines joiningQn and Pn are
contained in�. Again, the case of a convex surface is a typical example: any tangent
plane is automatically strict. Busemann and Feller indicate that this notion of strict
tangent plane coincides with that of paratangent introduced by Bouligand [19].
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Using these definitions, Busemann and Feller present generalizations of classical
results on the differential geometry of surfaces. In particular, Euler’s theorem on
normal curvatures which we surveyed in Sect. 7.4 and Meusnier’s formula which we
mentioned in Sect. 7.6 serve as testing ground to demonstrate that the general setting
is reasonable enough, that is, non-trivial results may be proven in it. More precisely,
the general form of Meusnier’s theorem, which holds also for non-convex surfaces,
is the following: If at a point with a strict tangent plane some oblique plane section
through a tangent t has curvature, then all plane sections through t have curvature as
well, and the corresponding osculating circles lie on a common sphere. In particular,
for a convex surface, Meusnier’s formula holds almost everywhere.

For convex surfaces in 3-space, Busemann and Feller show that Euler’s theorem
on normal curvatures holds almost everywhere. They formulate their result in terms
of Dupin’s indicatrix. We already recalled in Sect. 7.6 that Dupin observed that
Euler’s equation relating to the normal curvatures at a point of an analytic surface
define a conic (called Dupin indicatrix) in the tangent plane at the given point. In the
case of a convex surface, the indicatrix can either be an ellipse or a pair of parallel
lines unless all normal curvatures at the point vanish.

Busemann and Feller use the following construction as a definition of the
indicatrix: Consider the tangent plane T at a point P of a convex surface where such
a plane exists, and choose coordinates such that this tangent plane is not vertical
and P is its origin. Take the plane parallel to T and lying above T , at distance ε.
It intersects the surface in a curve, call it cε . Then, for almost every P , the curve
cε rescaled by the factor 1

ε
converges, as ε → 0, to a curve, which the authors

call the indicatrix at that point. Moreover, they show that it is either an ellipse or
a pair of parallel lines. This means that for a convex surface, at almost all points
normal curvatures exist and satisfy Euler’s theorem. They then show that Rodrigues’
formula for principal curvature directions holds in this general setting. They also
obtain an umbilical theorem. We recall that in its classical form, the theorem says
that an analytic surface in 3-space in which all points are umbilics (i.e. the maximal
and minimal normal curvatures coincide) is either a piece of a sphere or a piece
of a plane. In particular, this property characterizes the sphere among all convex
closed analytic surfaces in 3-space (see also [69], §32, Property 4). Busemann and
Feller generalize this result by proving that a differentiable convex surface where
almost all points are umbilics and the upper normal curvatures are bounded is either
a piece of a sphere or a plane. They also show, through a counterexample, that the
extra condition of boundedness of the upper normal curvatures is essential. More
precisely, they construct an example of a closed differentiable convex surface where
almost all points are umbilics with the same curvature c and that is neither a piece
of a sphere nor a plane. This example is obtained by a subtle algorithm starting with
the unit ball and stepwise replacing parts by caps of curvature c and smoothing out
the edges with canal surfaces of curvature greater than c.

In the last section of their paper, Busemann and Feller study geodesics on convex
surfaces. They prove that a geodesic passing through (or emanating from) any point
at which a tangent plane exists is in fact differentiable. Moreover, such a geodesic
has a tangent line (or tangent ray) at that point, and an osculating plane which is
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perpendicular to the tangent plane. This generalizes a result of Johann Bernoulli
which we already mentioned, from his article published in his 1728, Problema: in
superficie curva ducere lineam inter duo puncta brevissimam [13] in which he used
the term “osculating plane” for the first time.

For the proofs of all these theorems, Busemann and Feller acknowledge the
strong influence of Bonnesen and Fenchel’s Theorie der konvexen Körper [17]
(1934), and this influence is also stressed in Busemann’s monograph Convex
surfaces [24] published in 1958. In the first chapter of that monograph, Busemann
gives more detailed proofs of all these theorems. In the introduction, he writes that
the first two chapters form a complement to Bonnesen and Fenchel’s book, dealing
in particular with subjects conjectured or suggested there. Zalgaller, in his paper
[114], writes that Busemann took part in the preparation of the book by Bonnesen
and Fenchel.

In the introduction of his monograph Convex surfaces, Busemann declares that
his purpose is to present a subject, convex surfaces, which “during the past 25 years
has experienced a striking and beautiful development, principally in Russia, but has
remained largely unknown, at least in the USA.” Indeed, the book is a tribute to the
work of A. D. Alexandrov. As a matter of fact, this is the way Busemann presented
his book project to the publisher.61 We are not going to attempt any description of
the results from Alexandrov or the school he founded, because this would lead us
too far, but since our main subject matter in this article is curvature, we shall review
his notion of nonpositive curvature.

We start with the definition of the length of a curve γ in a metric space (X, d),
that is, of a continuous path γ : [0, 1] → X. This is defined as

L(γ ) = sup
∑
i

d(γ (ti), γ (ti−1))

where the supremum is taken over the set of subdivisions 0 = t0 ≤ t1 ≤ . . . ≤
tn = 1 of the interval [0, 1]. The definition is reminiscent of the notion of length
of a curve as defined by Archimedes in his On the sphere and the cylinder [66]. If
γ (0) = A and γ (1) = B, we say that the curve joins A and B. We also say that the
curve starts at A.

A metric on a surface (2-dimensional manifold) M is said to be intrinsic if the
distance between two points is equal to the infimum of the lengths of curves in that
surface that joins them.

A geodesic inM joining two points is a curve joining them which is the isometric
image of a Euclidean interval.

61A letter written on July 23, 1956, from the editor-in-chief of Interscience Publishers Inc. (with
copies to Courant, Stocker and Bers) starts with: “It is with very special pleasure indeed that we
learn from Dr. Stocker of your willingness to preset in our Tracts series an account of important
recent development of the work of certain Russian geometers.” (A copy of the letter is kept with
Courant’s correspondence at the Elmer Holmes Bobst Library in New York University).
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A triangle � in M is the union of three points in M (called the vertices of �)
together with three minimizing geodesics (called the sides of �) joining them.

To each triangle � in M , one can associate a triangle �E in the Euclidean plane
E, together with a natural marking between the sides of � and the sides of �E . The
triangle �E is called a comparison triangle of �. Now consider two curves γ1 and
γ2 in S starting at a common point p. We wish to define the angle these curves make
at p. We take a sequence of points xn and yn on the images of γ1 and γ2 respectively,
both converging to p.

We then define the upper angle between γ1 and γ2 at p as the upper limit of
the sequence of angles of the comparison triangles of p, xn, yn, all the angles being
taken at the image of the point p in the Euclidean plane.

With this definition, each triangle in the metric surface M has a well-defined
upper angle at each vertex. Let S be the sum of these three upper angles. The angle
excess of such a triangle is then equal to S − π .

The surface M with an intrinsic metric is said to have (local) non-positive
curvature in the sense of Alexandrov if (locally) each triangle has non-positive angle
excess.

There are straightforward variations on this definition that lead to that of surfaces
of bounded curvature (from below and from above), where, instead of taking
comparison triangles in the Euclidean plane, one takes comparison triangles in
one of the constant curvature geometries. Alexandrov thoroughly investigated this
notion in several books and articles, see e.g. [2] and [3].

In his monograph [23] (and in other books and papers), Busemann introduced
other (close but different) metric notions of curvature, and we recall the definition.
He starts with the notion of a metric space midpoint convex, that is, for any two
points x and y in that space, there exists a point z whose distances from x and from
y are both equal to half the distance between x and y. Such a point z is called a
midpoint of x and y (it is not unique). In a midpoint convex geodesic metric space
which is complete, any two points may be joined by a geodesic.

Busemann defines a midpoint convex metric space (M, d) to be non-positively
curved if for any three points a, b, c in M , if a′ is a midpoint of a and c and b′ a
midpoint of b and c, then

d(a′, b′) ≤ 1

2
d(a, b).

There are variations of this definition, namely, the space is called negatively
curved, non-negatively curved, or positively curved depending on whether the above
inequality is replaced by a strict inequality, or the reverse inequality or strict reverse
inequality respectively. If the inequality is replaced by an equality, the space is said
to be zero curved. These notions are used today under the name Busemann non-
positive (resp. non-negative, positive, negative, zero) curvature.

In the same monograph, Busemann studied other notions of metric curvature, and
we would like to mention three of them. The first one uses the notion of a peakless
function. This is a continuous function f defined on an interval I of the real line
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such that for all t1 < t2 < t3 in I we have

f (t2) ≤ max(f (t1), f (t3))

with equality if and only if f (t1) = f (t2). Using this, Busemann introduced
the notion of space whose distance function is peakless, another generalization of
nonpositive curvature.

Another notion of curvature, introduced by Busemann, uses the notion of
capsules in metric spaces: If T is a segment in a metric space (M, d) and ρ a
nonnegative number, a subset of the form

{x ∈ M | d(x, T ) ≤ ρ}

is said to be a capsule of axis T and radius ρ.
Busemann proves a local-implies-global result for convexity of capsules [23,

Theorem 36.20], and he proves that a space which has Busemann non-positive
(respectively negative) curvature has convex (respectively strictly convex) capsules.
[23, Theorem 36.20]

In the same book, Busemann introduced a notion of curvature in terms of angle
excess of triangles in spaces he calls G-spaces (G-stands for “geodesic”). These are
metric spaces that are finitely compact (every bounded infinite sequence contains a
convergent subsequence) and that satisfy a property of local uniqueness of extension
of geodesics.

The notion of G-space, like many of the other metrical notions introduced by
Busemann, is already contained in his early book Metric Methods in Finsler Spaces
and in the Foundations of Geometry [21] (1942) and in his paper On spaces in which
points determine a geodesic [22] (1943).

The metric notions of curvature introduced by Alexandrov and by Busemann
turned out to be the bases of whole new fields in geometry, called after their names62

and there is a multitude of theorems and research problems that rely on these
definitions.

Like Busemann, Fenchel and some other twentieth-century geometers we men-
tioned, Alexandrov’s interest abides in the most basic notions of geometry, putting
isoperimetry, isoepiphany and other problems of classical mathematics at the
forefront of research, with a dislike for a certain Riemannian geometry based
on linear algebra and tensor calculus. We refer the reader to Alexandrov’s book
Intrinsic geometry of convex surfaces [2], in which he provided proofs of the
theorems of Euler, Meusnier and Rodrigues in the general setting of convex surfaces,
attributing these generalizations to Busemann and Feller. He proved in the same
book [2] that any convex two-dimensional manifold is non-negatively curved in the
sense he introduced it and which we recalled above, and that every non-negatively

62There are AMS Mathematics Subject Classification codes that carry the names of Alexandrov
and Busemann geometries.
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curved two-dimensional manifold homeomorphic to the sphere is isometric to some
convex surface.

As another link between the group of geometers we mentioned, let us note that
in his treatise Convex surfaces, Busemann gives a proof of a theorem in convexity
theory that was independently obtained by himself and Fenchel and Jessen [63]
stating that if two convex bodies in Euclidean n-space have equal p-th order area
measure (we shall not go into the definition here) for some p satisfying 1 ≤ p ≤
n− 1, then the two bodies are the same up to a translation.

In a tribute in memory of Alexandrov, S.S. Kutateladze, who belongs to
Alexandrov’s school, writes that Alexandrov’s slogan in mathematics was “Retreat
to Euclid” and that he used to declare that “the pathos of contemporary mathematics
is the return to Ancient Greece” [76].

A geometry freed from the dominion of differential calculus kept growing since
the last quarter of the twentieth century, reinvigorated in the works of Thurston
whose methods constitute a return to the synthetic methods of non-Euclidean
geometry, and of Gromov, closer in spirit to the Busemann and Alexandrov
approaches.
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Chapter 8
The Axiomatic Destiny of the Theorems
of Pappus and Desargues

Victor Pambuccian and Celia Schacht

Non c’è un unico tempo: ci sono molti nastri
che paralleli slittano
spesso in senso contrario e raramente
s’intersecano.

Eugenio Montale, Tempo e tempi

Abstract We present the largely twentieth century history of the discovery of
the significance of Pappus and Desargues for the axiomatics of geometry. Their
significance is followed in projective, affine, and orthogonality contexts. There
is an extensive bibliography, that should allow the interested reader to take a
comprehensive look at the research literature on these axioms.

8.1 Introduction

There are mathematical results that are significantly ahead of their time. Having
materialized during a time which had no use for them, they did not find their rightful
place in the tissue of mathematical results of their own time, having to wait many
centuries to reveal their consequential worth. Results born long before their kairos,
their right time. One tends to think of Apollonius’s conics, the findings of which
were of rather limited use until more than 1800 years later, when Kepler uncovered
their centrality for understanding planetary motion.

The most remarkable of these early results are Pappus’s and Desargues’s
theorems, whose peripheral nature is even more surprising than that of the conic
sections due to the fact that the context that endows them with meaning did not
become fully actualized for centuries. In the meantime, their hibernation traversed
mathematically active centuries during which they remained unused and, to a great
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extent, forgotten. In times preceding the axiomatic turn, the value of a theorem
resided in the range of its consequences or in the effect it had in organizing a whole
domain of investigation. None of the two appeared to have any influence on matters
of geometric, algebraic, or analytic concern.

Pappus’s Theorem can be found in Book VII of Pappus’s Collection, where it is
spread over Lemmas XII, XIII, XV, and XVII in the part of Book VII containing
lemmas to the first book of Euclid’s Porisms (see [189, pp. 270–273] and [188]). It
thus goes back to the first half of the fourth century A.D.

Desargues’s Theorem appeared in Manière universelle de M. Desargues pour
practiquer la perspective, a practical book on the use of perspective, published
in 1648 by Desargues’s student Abraham Bosse (see [62] for a French edition of
Desargues’s works and [74] for an English translation).

Although Pappus’s theorem was generalized by Blaise Pascal—in a note written
in 1639, when he was 16 years old, and published the following year as the broadside
“Essay pour les coniques. Par B. P.” (see [191])—the deeper meaning of these results
came to be understood only beginning with the last decade of the nineteenth century.

In fact, it took all of the twentieth century and beyond to reveal the wealth of
meaning encoded by these results. The subject of this chapter is not simply the story
of the late recognition that befell these results, but the adventure through which
their true importance became revealed; the significance of Pappus’s and Desargues’s
theorems not only became relevant, but spurred the twentieth century discoveries
of other like-minded results that are either special cases of the two theorems or
different configuration theorems that turn out to be logically equivalent to some form
of one of Pappus’s and Desargues’s theorems. At one point, we will also elucidate
the role played by another older and perhaps even more enigmatic result, that of
Menelaus’s Theorem, which goes back to Menelaus’s Sphaerica, a work which was
probably written in the beginning of the second century A.D.

The story of the gradual understanding of these theorems is a chapter in the
history of the axiomatic foundation of geometry. A significant aspect of the develop-
ments we will survey is the surprisingly close relationship between geometry with
important configuration theorems and algebra. This relationship was emphasized
very early in the history of projective geometry, perhaps most emphatically by
Gaspard Monge in his Géométrie descriptive:

There is no construction belonging to descriptive geometry that could not be translated into
analysis; and whenever the matter involved does not require more than three unknowns,
each analytic operation can be seen as the script of a spectacle in geometry.1

Our narrative is structured as follows: In a first section we present the history
of the role of configuration theorems deriving from Pappus and Desargues inside
geometries with incidence and sometimes order as their only primitive notions. In a

1Il n’y a aucune construction de Géométrie descriptive qui ne puisse être traduite en Analyse; et
lorsque les questions ne comportent pas plus de trois inconnues, chaque opération analytique peut
être regardée comme l’écriture d’un spectacle en Géométrie. (All translations are by V.P.).
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second section we group all results in which the above configuration theorems play a
major role inside geometries which have, in addition to incidence and perhaps order,
congruence, orthogonality, and line reflections as primitive notions. We will exclude
from this survey the results that belong to finite geometries, with the exception of
very few, in which the only additional assumption is finiteness. The story of finite
geometries constitutes a separate subplot, which has been summarized in several
monographs [28, 61, 106–108, 115, 151, 235]. Both historical bias against explicitly
finite worlds, and a bias towards first-order logic, warrants an attitude of agnosticism
with regard to the cardinality of the models of the geometries under consideration.

The pre-history, as it were, of our story is that of the attempts to present projective
geometry in a more geometrico manner, to separate it as far as possible from the
bond with the real numbers. The major figures of this pre-history are J. Steiner, K.
G. C. von Staudt, and M. Pieri. Their pioneering contributions have been surveyed
in [154, 172, 266] and [13].

8.2 Desargues and Pappus in the Projective Setting

8.2.1 Configuration Theorems

Both theorems of Pappus and of Desargues belong to the class of universal
configuration theorems. In a language with points (uppercase Latin letters) and
lines (lowercase Latin letters) as individual variables, and the binary incidence
relation ∈ (for which we will use words such as “lying on” or “passing through”,
as well as “collinear” for three points incident with the same line), these can be
defined, following [163] and [197, p. 26] (see [146–149] and [171] for variants,
and [82, 141, 202], and [129] for comprehensive treatments of configurations), as
universal statements, in which the antecedent is a conjunction of some of the fol-
lowing: (i) incidences, (ii) negated incidences, (iii) negated equalities between point
variables, and (iv) negated equalities between line variables, and the consequent is
a conjunction of the same kind.

In its projective form, the Desargues axiom can be stated as: “If two triangles are
in perspective centrally then they are in perspective axially.” Two triangles A1A2A3
and B1B2B3 with pairwise different vertices are said to be in perspective centrally
if the lines A1B1, A2B2, and A3B3 are concurrent (have a point C in common), and
they are said to be in perspective axially if the three intersection points Cij of the
corresponding sides AiAj with BiBj (with 1 ≤ i < j ≤ 3) of the two triangles are
collinear. Formally, it can be stated as (Fig. 8.1)

pDes If C,Ai, Bi ∈ ci , Cik,Ai,Ak ∈ aik , Cik, Bi, Bk ∈ bik , C,Ai, and Bi are
pairwise different points, c1, c2, and c3 are three pairwise different lines, a12 �= a13,
b12 �= b13, and C12, C13 ∈ c (for all i and k in {1, 2, 3} with i < k), then C23 ∈ c.
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Fig. 8.1 The projective form
of the Desargues axiom
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Fig. 8.2 The projective form
of the Pappus axiom
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In its projective form, the Pappus axiom states that (Fig. 8.2):

pPapp If the three points P1, P2, and P3 are on a line a, the three points Q1,Q2,

and Q3 are on a line b but not on a, then the points of intersection of the lines: (i)
P1Q1 and Q2P3, (ii) P2Q2 and Q3P1, (iii) P3Q3 and Q1P2, are collinear.

They will be considered in this section as statements inside plane projective
geometry, whose other axioms can be stated in the following duality-emphasizing
manner (as in [131]):

P 1 There is a line passing through any two given points.

P 2 There is a point incident with any two given lines.

P 3 If two pointsA andB are incident with the lines a and b, then a = b orA = B.

P 4 There are four points A,B,C,D and four lines a, b, c, d , such that A is
incident with a and b, but with neither c nor d , B is incident with d and a,
but with neither b nor c, C is incident with c and d , but with neither a nor b,
and D is incident with b and c, but with neither a nor d .

This axiom system for plane projective geometry without any configuration
theorem will be denoted by P = {P1–P4}. If the points A and B are distinct, then
the unique line (by P1 and P3) joining them will be denoted by AB.

In [105, p. 85], configurations are defined in a much more restrictive manner, as
a “system of p points and g lines, which lie in a plane in such a manner, that every
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point of the system is incident with the same number γ of lines of the system and
at the same time every line of the system is incident with the same number π of
points of the system. Such a configuration is denoted by the symbol (pγ gπ ).” When
p = g and γ = π , we will denote (pγ gπ) by just (pγ ). Both pDes and pPapp fit
this narrower definition, as (103) and (93) respectively, but the axiom of the fourth
harmonic point from Sect. 8.2.6, although a universal configuration theorem in the
sense of Pickert, does not fit the above definition.

8.2.2 The Fundamental Theorem of Projective Geometry

Our story begins with the result announced in 1890, without proof, by H. Wiener
in [270], which states that one can prove the fundamental theorem of projective
geometry from the axioms P1–P4, pPapp, and pDes. The novelty lied in the fact that
for the first time, ever since von Staudt had proved it in 1847, all need for some kind
of continuity had disappeared. That need had been present, without being explicitly
mentioned among the assumptions, in von Staudt’s work (see [266]). The claim was
first proved in 1899 by Schur [232].

To understand what the fundamental theorem of projective geometry states, we
first define perspectivities. Given two lines l andm and a point P on neither line, the
mapping between the points on l and those onm assigning to a pointX incident with
l, the pointX′ onm that is the intersection of the line PX withm is referred to as the
perspectivity with center P . The composition of a finite number of perspectivities is
called a projectivity.

Following [24], we denote by (Pn) the statement that a projectivity of a line l to
itself with n fixed points is the identity mapping of l.

With this notation, the fundamental theorem of projective geometry is (P3).
The statement (P3) as such is not a first-order sentence, given that a projectivity
is the composition of an unspecified number of perspectivities. As determined
by Hessenberg, in 1905 [98], who raised precisely this question, asking for the
minimal number of perspectivities needed to obtain a given projectivity, if pDes
holds, then every projectivity of a line onto itself must be the composition of at most
three perspectivities (see also [220]). However, in the absence of any configuration
theorem, there is no a priori bound on the number of perspectivities involved (see
[25] for more on perspectivities). If we denote, as in [199], by (Pn,m) the statement
(Pn) makes, in which the projectivity is a composition of at most m perspectivities,
then we do, indeed obtain a result in first-order logic, namely that, for all m ≥ 2, in
the presence of pPapp and pDes, a projectivity which is the composition of at most
m perspectivities of a line l to itself which fixes 3 points is the identity mapping of
l, or formally (here and in the sequel, “Σ,α, β  γ ” should be read as “γ can be
deduced from α, β, and the statements in Σ”)

P, pPapp, pDes  P3,m. (8.1)
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Such concerns were certainly not in the minds of Wiener or Schur, for the concept
of first-order logic had only emerged in the early 1920s (see [73] and [65]).

The significance of (8.1) lies in the fact that von Staudt had already shown in
1856 that, by means of his Wurfrechnung, one can introduce the operations of
addition and multiplication in a projective plane which satisfies the fundamental
theorem (P3). This led Lüroth, in 1875, to provide a streamlined development of
analytic projective geometry based on the Wurfrechnung. Thus, at the latest, by
the time Hilbert published the first edition of his Grundlagen der Geometrie in
1899, in which Chapter V is devoted entirely to the significance of Desargues’s
theorem, it had become apparent that any projective plane which satisfies pDes
is a projective coordinate plane over a skew field (Hilbert referred to skew fields
as “Desarguessche Zahlensysteme” as the actual term had not yet been coined).
This effect encompassed by pDes, that it allows the “introduction of number” into
geometry, which “in any exact science” is “a most highly prized aim,”2 has great
epistemological significance for Hilbert, which he expressed in his 1989–1999
lectures on the foundations of geometry [104, p. 222], expressing the thought:

However, if science is not to fall prey to a sterile formalism, then it must reflect on itself in
some later stage of its development, and should at least check the foundations that led to the
introduction of number.3

Although Hilbert’s axiom system included the order axioms, these were not used
in the coordinatization itself. One also reads off the same book, whose Chapter VI
is devoted to Pappus’s theorem (referred to by Hilbert as Pascal’s theorem), that
in the presence of both pDes and pPapp, the coordinatizing skew field must be
commutative, thus a field (see [217] for a history of the influence of Hessenberg’s
work on Desargues and Pappus mentioned below had on the various editions of the
Grundlagen der Geometrie). Anne Lucy Bosworth, Hilbert’s first female doctoral
student, provided in her doctoral dissertation [33] a coordinatization, by means
of a segment calculus, of ordered incidence planes satisfying pDes and pPapp (in
which certain lines need to intersect, if the additive and the multiplicative inverses
are to exist), and showed that segment addition and multiplication satisfy the
usual associativity, commutativity, and distributivity properties. A different, purely
projective coordinatization was proposed by Hessenberg in 1904 [96], based solely
on pDes (an alternative coordinatization was put forward by Schwan in 1919 [234];
see also [9, 10]). (8.1) thus meant that synthetic and analytic projective geometry
are identical in the presence of pDes or of pDes and pPapp. This is notable, for
while synthetic geometry is expressed in terms of the purest geometrical form of
intuition, that of a point lying on a line, analytic projective geometry is expressed

2Nun ist in der That in jeder exakten Wissenschaft die Einführung der Zahl ein vornehmstes Ziel.
3Aber, wenn die Wissenschaft nicht einem unfruchtbaren Formalismus anheimfallen soll, so wird
sie auf einem späteren Stadium der Entwicklung sich wieder auf sich selbst besinnen müssen und
mindestens die Grundlagen prüfen, auf denen sie zur Einführung der Zahl gekommen ist.
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in terms of two operations satisfying a variety of axioms, none of which stem from
our understanding of space.4

The question regarding the need for both pDes and pPapp in (8.1) was soon settled
by Hessenberg in 1905. He showed in [98] that pDes can be derived from pPapp

(“Pappus implies Desargues”), or formally

P, pPapp  pDes. (8.2)

The proof was later found to be incomplete, as it did not consider all cases in
which some coincidences might happen. Several complete proofs have since been
published. One fixing the original proof can be found in [64], while other proofs
were presented in [58, 118, 197, 236]. All existing proofs use the Pappus axiom
three times to prove Desargues. It was shown in [186], using Guggenheimer’s [83]
axiom system for Desarguesian affine planes in terms of the axiom of Menelaus
(see Sect. 8.3.1 below), that there is no proof of pDes that uses pPapp less than three
times. That the number of uses of an axiom in a proof can be made precise in a
certain axiomatic set-up has been pointed out in [181]. One can look at axiom use
in a proof as resource use, and resources may be depleted after the first use, or
after a certain finite number of uses, or repeated uses may simply turn the proof
into a more expensive affair if one thinks that each accessing of an axiom comes
with a price tag, in which case repeated use of an axiom—in particular repeated use
of expensive axioms, such as the very strong statement pPapp—renders the proof
exceedingly expensive (see [182] for more on the history of this concern for the
number of uses of an assumption in a proof).5

Equation (8.2) itself led Hilbert and Cohn-Vossen [105, p. 117] to state that “the
theorem of Pascal [which is the name they use for pPapp] is the only essential
configuration theorem of the plane”, that it “represents the most important figure
of plane geometry.”6

Given the existence of ordered proper skew fields, the first one being constructed
in [103] (see also [51]), (8.2) with pPapp and pDes switched, does not hold even in
the presence of order axioms. However, given that there are no finite skew fields, as
shown by J. Wedderburn and L. E. Dickson in 1905 (see [190] for the history of this
discovery and [8] for a short proof), we do have P, ∃≤n, pDes  pPapp, for all
natural numbers n (or, if we want to have non-vacuous statements before the  sign,
for all n ≥ 7, since there are no projective planes with less than 7 elements), where
∃≤n denotes the statement that there are at most n points.

4What’s more, in the higher-dimensional case, there is not even a need for any configuration
theorem to hold, for any at least 3-dimensional projective space must satisfy pDes and thus
surprisingly gives rise to the intricate algebraic structure of a skew field in terms of trivial
geometrical statements.
5All known proofs that theorems π equivalent to Pappus (in its projective or in its affine form)
imply theorems δ equivalent to Desargues resort to three uses of π (see, for example, [127]).
6[“Wir] können [. . .] sagen, daß der Satz von PASCAL der einzig wesentliche Schnittpunktsatz der
Ebenen ist, daß die Konfiguration (93)1 die wichtigste Figur der ebenen Geometrie darstellt.”
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Following Beniamino Segre [235], geometers have tried to find a geometric
proof of this fact; the key idea in this is not to use the fact that projective planes
satisfying pDes can be coordinatized by skew fields. The most successful of these,
by Bamberg and Penttila in 2015 [21], is significantly more convincing than the
previous attempts in [137] and [257], by not giving the impression of an algebraic
proof clad in geometric garb.

That neither pDes nor pPapp follow from plain P was settled by Veblen and
Maclagan-Wedderburn in 1907 [265] by constructing a finite model of projective
geometry, in which pDes (and thus a fortiori pPapp) does not hold. Although the
concept of freeness had been around for groups since Walther von Dyck’s 1882
paper, it was only in 1943 that free projective planes were defined by Hall [85], and
thus a very direct procedure for constructing projective planes that do not satisfy any
non-trivial configuration theorem. The procedure is very simple. One starts with
four distinct points and builds a structure in steps. The initial set of four points
forms the structure at step 0. At odd steps, one adds to the existing points and lines
a new line for each pair of distinct points that do not yet have a joining line (all the
lines thus introduced are distinct). At even steps, one adds an intersection point for
any two lines that do not have an intersection point (all the newly added points are
distinct). The union of all these structures is the free plane constructed starting from
the original four points.

Returning now to (P3), the fundamental theorem of projective geometry, by
Hessenberg’s theorem [98] and the observation that

P, P3,3  pPapp (8.3)

one gets that (P3), (P3,3), and pPapp are equivalent statements with respect to P.
After Barlotti proved in [24] that free projective planes (introduced by Hall in
[85])—which do not satisfy any non-trivial configuration theorem—satisfy (P6), the
question whether pPapp follows from (and thus is equivalent with) some (Pn) with
3 < n < 6 led Schleiermacher [225] (a different proof being provided in [78]) to
prove that pPapp already follows from (P5), which is the strongest result one could
expect. In fact, his proof shows that (P5,10) suffices. Later, Pickert [199] showed, by
modifying the proof in [78], that (P5,5) suffices to prove pPapp. Schleiermacher also
showed in [226] that, for any n ≥ 6, pPapp follows from pDes and (Pn,4). Moreover,
in case the projective plane is assumed to be finite, pPapp already follows from (P6).
Schleiermacher’s result was improved upon in [63], where it is shown that pPapp
follows from pDes and (Pn,3).

In the intuitionist setting—in which the underlying logic is intuitionistic, which
means that it is compatible with a mathematics practiced in the manner proposed
by L. E. J. Brouwer, avoiding any use of the Law of Excluded Middle and of its
corollaries—one can prove some of the main theorems, but one needs somewhat
stronger assumptions, such as that pDes and P3 implies pPapp (rather than just P3
itself implies pPapp). A detailed analysis of the difficulties encountered in this case
can be found in [153].
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8.2.3 The Missing Link Between Desargues and Pappus

Since pDes is a strictly weaker statement than pPapp (given that there are skew
fields that are not commutative, as was known since the discovery of quaternions
by Hamilton in 1843; that proper skew fields exist in the presence of order as well
was first proved by Hilbert, by constructing an ordered skew field, in 1903, in the
second edition of the Grundlagen der Geometrie), the question regarding a missing
link between pDes and pPapp was raised by Bottema in 1935 [34].

A missing link between two statements α and β, for which we know that α is
strictly stronger than β (that is, α → β (“α implies β”) but β �→ α (“β does not
imply α”) holds), is a statement γ such that α ∧ γ ↔ β (“the conjunction of α and
γ is equivalent to β”), but such that γ alone does not imply β (all implications are
considered with respect to some background theory, in our case P). That missing
statement was the restriction of pPapp in which one fixes the points P1, P2,Q1,Q2
(formally speaking, the statement pPapp had all variables universally quantified; the
restricted statement makes the same statement about the variables involved, but its
prefix starts with four existential quantifiers binding the variables P1, P2,Q1,Q2,
followed by universal quantifiers binding all other variables).

8.2.4 Local Forms of the Desargues and Pappus Theorems

Hessenberg [95] was the first to have noticed that a configuration need not be
assumed valid for all its point and line variables. He showed that it is enough to
assume that all the open configurations of pDes close for a fixed pair of incident
C23 and c, or else assume them for a configuration of a certain set of two lines
and two points fixed. By this we mean that all the sentences formed by having
C23 and c are quantified existentially at the beginning of the sentence, all other
variables are quantified universally, C23 ∈ c is part of the hypothesis, as are all the
negated equalities, as well as all but one of the incidences between the universally
quantified variables, and the remaining incidence is the conclusion. From this finite
set of configuration theorems with fixed elements one can derive pDes.

We have mentioned that Pascal proved a generalization of Pappus’s theorem.
It states that if the two lines a and b in the statement of Pappus’s theorem are
replaced by a non-degenerate conic section, the theorem remains true. Pappus’s
theorem is simply a degeneration of Pascal’s, in which the conic section reduces to
two lines. The main problem with using Pascal’s theorem as an axiom is that plane
projective geometry, as introduced by us and as considered generally, does not have
individual variables for “conic sections” in its language, creating major difficulties
in simply expressing Pascal’s theorem. This obstacle was, however, overcome in the
formulation of Buekenhout’s theorem [38] to which we turn.

First, let us mention that it is surprising and remarkable that the general form of
both Pappus’s and Pascal’s theorems follows from a very restricted form of their
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general statements. As shown by Pickert in 1959 [198] (and reproved, with different
methods in [42]), pPapp follows from its specialization in which a and b are two
fixed lines.

In the same vein, F. Buekenhout in 1966 [38] showed that if Pascal’s theorem
is valid whenever the six vertices of the hexagon lie on a fixed oval, then pPapp
holds and the oval is a conic section. An oval stands here for a non-empty set S
of points in the projective plane with the property that no line intersects S in more
than two points, and for every point P in S there exists precisely one line which
intersects S only in P . In axiomatic parlance, the theorem states that if we enlarge
the language of plane projective geometry with a unary predicateω (whose intended
interpretation is “if A is a point variable, then ω(A) means that A lies on the oval ω
defines,” and which can be defined not to hold for line variables), and we add to P
the axioms (the defining axioms for an “oval”)

O 1 There exists A such that ω(A).

O 2 If A,B, and C are collinear points such that ω(A), ω(B), and ω(C), then
A = B or B = C or C = A.

O 3 If ω(A), then there is exactly one line a through A such that no point P �= A

on a satisfies ω(P).

then (with Pappω standing for pPapp in which we add ω(Pi) and ω(Qi) for i ∈
{1, 2, 3} to the hypothesis)

P,O2,O3, Pappω  pPapp.

Buekenhout’s theorem, together with variants and more general forms, has been
reproved with different means in [12, 39] (using results from [11]), [22, 52, 67, 68,
111, 123, 124, 221].

8.2.5 What Is so Special About Desargues and Pappus?

8.2.5.1 Dehn’s Question

A plethora of configuration theorems have sprung up during the twentieth century
that are equivalent to pDes and pPapp, or such that their conjunction is equivalent
to one of the two. Many of these can be found in G. Pickert’s comprehensive
monograph [197] and the literature cited therein, and more have come to the fore
since its publication, such as [75, 92, 93, 200, 201, 204, 223, 224, 255]. Faced with
such an abundance of statements, all equivalent to pDes or pPapp, one wonders if
there is anything really distinguishing about these two configurations, or if they are
simply artifacts of history. Both were found to be expressible as self-dual statements
[131, 160], both can be seen as “generalized equivalences” (i.e. can be written as
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∧
1≤j≤n

(∧
1≤i≤n,i �=j ϕi → ϕj

)
), as pointed out in [156], but these properties are

not uniquely applied to these two configuration theorems. However, early on, two
authors raised different questions meant to showcase the central importance of these
particular configuration theorems.

The first one was Max Dehn, a student of Hilbert, who in 1922 [59] (see
also [60]) asked whether there was any configuration theorem that was strictly
between pDes and pPapp, in the sense that it was true in all Desarguesian projective
planes, but not in all Pappian projective planes, without being equivalent to pDes.
It was known, for quite some time, that such a configuration theorem could not
exist in ordered Desarguesian projective planes of a special kind (a survey of
how order can be introduced in a projective plane can be found in [183]), a
result proved by Wagner in 1937 [267]. That such a configuration theorem cannot
exist in any ordered Desarguesian projective plane was proved only in 1966 by
Amitsur [2] (see also [27]). His proof shows more, namely that such configuration
theorems are impossible in any Desarguesian geometry whose skew field satisfies
an additional condition that is of a purely algebraic nature, unrelated to a relevant
geometric statement. In this sense, one may say that, in ordered projective planes, all
configuration theorems strong enough to imply pDes are equivalent to one of pDes
or pPapp. Dehn’s question and Wagner’s [267] pioneering treatment of that question
gave rise to the field of rings with polynomial identities, now an autonomous field
within algebra (see [3] or [222]).

However, this result still leaves open the questions whether the actual formal
statements of these two configuration theorems are distinguished by more than
historical accident from their many equivalent formulations.

8.2.5.2 Why pDes and pPapp Stand Out Among All (n3) Configurations

Rachevsky’s Answer
Before moving on to Pyotr Konstantinovich Rachevsky, the second author who
attempted to distinguish the two historical theorems from their competitors—and
whose work seems to have never been mentioned (not even in the otherwise
encyclopaedic [197] or [82])—it is worth mentioning that all ordered projective
planes satisfy an axiom introduced by Fano in 1891 [69]: “The three diagonal points
of a complete quadrangle are non-collinear”:

Fano If A1, A2, A3, A4 are such that no three among them are collinear, then the
points of intersection of (i) A1A2 and A3A4, (ii) A1A3 and A2A4, (iii) A1A4 and
A2A3 are not collinear.

Let us also notice that all three statements, pDes, pPapp, and Anti-Fano (which,
given the same hypothesis as Fano, concludes that the three diagonal points of a
complete quadrangle are collinear, are (n3) configurations. In case there are only
finitely many points, Anti-Fano implies pDes, as shown by Gleason [81]—but not
in the general, infinite case (see [197]). An (n3) configuration consists of a set L
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of n lines and of a set P of n points, on every line from L there are precisely three
points from P and through every point from P go precisely three lines from L. pDes
is a (103), pPapp a (93), and Anti-Fano a (73).

We are now ready to state the 1940 result of Rachevsky [210]. Assume, for a
fixed natural number n ≥ 7, the following axioms: P1–P3, P5, (Pcofin), Fano, Cn,
and all the purely existential statements that state the existence of every constructible
configuration (see [163], where the concept was introduced and [197, p. 29]) of < n

points and≤ n lines (or< n lines and≤ n points) without any additional incidences
or coincides. Here P5 stands for

P 5 Through every point there pass at least three distinct lines.

By (Pcofin) we understand the following set of statements ϕm,n, for every pair
of natural numbers n and m, with m ≥ 2: a projectivity composed of at most
m perspectivities that fixes all but n points of a line is the identity mapping of
that line. Given Barlotti’s result on free planes satisfying (P6), this is a very weak
requirement. By Cn, we mean the configuration theorem that states that from all but
one of the incidences of a specific (n3) configuration one can derive the missing
one. A constructible configuration is one in which one starts with a point or a line
and introduces, in stages, either points or lines incident with the existing ones, lines
joining two points, or intersection points of existing lines. Still, one cannot stipulate
that additional (“surprising”) collinearities or incidences will result. Thus, for a
given n, there are finitely many constructible configurations with < n points and
≤ n lines (or vice-versa), and we add an axiom stating their existence without any
surprises in our projective plane.

Under these modest assumptions, Rachevsky proves that Cn must be pDes or
pPapp. He could not show that the Fano assumption was needed, and the problem
has not been revisited since.

Kocay’s Answer
Another characterization of pDes and pPapp inside the class of all (n3) configura-
tions was established by Kocay in 2016 [130]. It is based on the impossibility of
obtaining these configurations by a certain 1-point extension. This impossibility is
a very rare one, being shared only with two other configurations.

The idea of extending (n3) configurations to ((n+ 1)3) configurations goes back
to Martinetti [155]. A new extension procedure that characterizes pDes or pPapp,
Anti-Fano, and an anti-Fano-type configuration has been presented in [130].

Given an (n3) configuration (Σ,Π), where Σ is the set of points and lines
and Π is the set of incidences of the configuration, we pick three distinct points
A1, A2, A3 and three distinct lines l1, l2, l3 in Σ , such that A1 = l1 ∩ l2,
A2 = l2 ∩ l3, A3 ∈ l3, A3 �∈ l1, and such that, if l′ is the third line
containing A1, then l′ ∩ l3 �= ∅ implies l′ ∩ l3 = A3. We construct a new
configuration (Σ ′,Π ′), the 1-point extension of (Σ,Π), which turns out to be
an ((n + 1)3) configuration, by setting Σ ′ = Σ ∪ {A0, l0}, where a0 is a
new point and l0 is a new line, and Π ′ = (Π \ {(A1, l1), (A2, l2), (A3, l3)}) ∪
{(A1, l3), (A2, l0), (A3, l0), (A0, l0), (A0, l1), (A0, l2)}.
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Kocay [130] shows that the only ((n+1)3) configurations that cannot be obtained
by a 1-point extension from an (n3) configuration are the Anti-Fano configuration,
the Pappus configuration, the Desargues configuration, and a specific Anti-Fano-
type configuration.

Desargues and Pappus as Geometries in Their Own Right
Inspired by Bachmann’s approach to the axiomatic foundation of plane absolute
geometry in [19], Struve [250] provided in 1984 a remarkable characterization of
the two configurations as geometries in their own right. In it the two configurations
sit, once more, particularly close to one another.

The setting is that of a groupGwith trivial center (i.e., such that the only element
x, for which xg = gx for all g ∈ G, is the identity ofG), together with two subsets S
and P (the elements of S, which stand for line reflections, will be denoted by lower-
case letters, those of P , which stand for point reflections, by upper-case letters),
such that all elements of S and of P are involutory, i.e., elements x different from
the identity 1, but such that x2 = 1, and such that the sets S andP are invariant under
conjugation—i.e., for any a ∈ S and for any A ∈ P , g−1ag ∈ S and g−1Ag ∈ P

for all g ∈ G—and generate together G (i.e., every element of G is a product of
elements from S and P ). In this setting, we can speak in a recognizably geometric
language, by considering elements of P to be points, those of S to be lines, and
introducing an incidence relation | between points and lines by defining A | b to
mean that Ab is involutory, i.e., that A �= b and Ab = bA, as well as a notion of
parallelism ‖ between lines, defined so that a ‖ b holds if and only if either a = b or
there is no point C such that C | a and C | b. To any triple (G, S, P ) of a group with
two distinguished subsets S and P , one can thus associate an incidence structure,
the group plane (S, P, |). Two additional axioms, one of which is Playfair’s form
of the Euclidean parallel postulate, the other of which is asking the geometry to be
an (n3) configuration, turn out to be sufficient to determine pDes and pPapp. These
axioms can be expressed as

PA For all A ∈ P and g ∈ S with A �= g there is exactly one h with A | h and
h ‖ g.

N3 For all d ∈ S there are exactly three elements A,B, and C in P such that
A,B,C | d , and for all D ∈ P there are exactly three elements a, b, and c in S with
D | a, b, c. There are A and b such that A �= b and A� | b.

The surprising result in [250] is that the group plane of a triple (G, S, P ) in the
above setting that satisfies PA and N3 is either such that S = P , in which case it
is the projective Desargues configuration, or S ∩ P = ∅, in which case it is the
projective Pappus configuration.

8.2.5.3 Desargues and Pappus as Cayley–Klein Geometries

The configurations of Desargues and Pappus can also be conceived as finite plane
Cayley–Klein geometries. Plane Cayley–Klein geometries have been axiomatized
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in Bachmann’s reflection-geometric style in [254]. As pointed out in [253, p. 182–
183], the configuration described by pDes is an elliptic Cayley–Klein geometry
over the field with five elements, whereas the configuration described by pPapp
is a Galileian geometry over the field with three elements.

The groups of automorphisms of the Desargues and Pappus configurations have
been the subject of a series of papers by Coxeter [53–55], a line of thought that has
been pursued in [252] as well.

8.2.5.4 Strambach and Conic Sections

Conic sections have received two definitions, by J. Steiner and K. G. C. von Staudt,
during the nineteenth century, and another one, by Krüger [132] (see also [90])
during the twentieth century. One would expect that each of these produces ovals
(non-empty sets S of points in the projective plane with the property that no line
intersects S in more than two points, and for every point P in S there exists
precisely one line which intersects S only in P ), and that the objects they define
coincide. However, it was noticed by Ostrom in 1981 [177] that this is not the case in
projective planes that do not satisfy pPapp. The question regarding the equivalence
of the three definitions led Strambach [249] to determine in 1995 that objects defined
according to some of these definitions coincide with others or are ovals only if pPapp
or, in one case, pDes holds in that projective plane.

In a projective plane, let P(A) stand for the pencil of lines going through A.
For two distinct points A1 and A2, let σ denote a projectivity mapping the lines of
P(A1) onto those of P(A2), that does not fix the lineA1A2. A Steiner conic section
K(A1, A2, σ ) is the set {l ∩ σ(l) | l ∈ P(A1)}.

Strambach [249, Satz 1] proved that a Steiner conic section is an oval (i.e.,
satisfies O2 and O3) if and only if pPapp holds in that projective plane.

To define a Krüger conic section, we denote by [l,P(A)], for A �∈ l,
the perspectivity mapping the points of l onto the lines in P(A), and
similarly [P(A), l] the perspectivity mapping the lines of P(A) onto the
points of l. For any four points A,B,C, and D, with no three collinear, the
notion of a Krüger conic section K(A,B,C;D) is the set {l ∩ σ(l) | l ∈
P(A)}, where σ = [P(A), BC][BC,P(D)][P(D),AC][AC,P(B)] (that
is, σ is the projectivity obtained by composing the four perpsectivities
[P(A), BC], [BC,P(D)], [P(D),AC], and [AC,P(B)]).

Every Steiner conic section is a Krüger conic section precisely if pDes holds in
that projective plane [249, Satz 2].

To define strict von Staudt conic sections, we first introduce a few notions of
projective geometry. A correlation of a projective plane is a one-one mapping of the
points onto the lines and lines onto the points which preserves incidence. A polarity
is a correlation of order 2; it maps a point into its polar and a line into its pole.
An absolute point (line) of a polarity is one which is incident with its polar (pole).
An orthogonal polarity is a polarity whose set of absolute points is non-empty and
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forms an oval. A strict von Staudt conic section is precisely the above-mentioned
set of absolute points of an orthogonal polarity.

Steiner conic sections and strict von Staudt conic sections coincide if and only if
pPapp and Fano hold in that projective plane [249, Satz 6].

8.2.6 Moufang Planes

In 1843, spurred by the spectacular discovery of the quaternions that same year
by William Rowan Hamilton, John T. Graves and, independently, Arthur Cayley
discovered octonions, a normed division algebra that is eight-dimensional over the
reals. The octonions can be also seen as a non-associative division algebra that uses
real scalars, obtained by “doubling” the quaternions.7 While quaternions might be
said to have a loose connection with the foundations of geometry, as projective
planes satisfying pDes but not pPapp are coordinatized by skew fields and the
quaternions present one example of a proper skew field, it was realized very early
on, with Hilbert’s model of an ordered skew field in 1903, that quaternions are in no
way emblematic of proper skew fields. In fact, it was rather an accident of history
that they were the first non-commutative field to be discovered. Octonions (not
necessarily built over the reals, for no elementary (first-order) axiomatization can
capture a specific infinite field such as the reals), on the other hand, did turn out to
be precisely the algebraic structure that corresponds to a natural class of projective
planes.

It all started in the early 1930s when Ruth Moufang, a student of Max Dehn,
provided a geometric home for these once obscure numerical abstractions in a
series of papers [163–169] devoted to a specialization of pDes, in which one adds
C ∈ c to the hypothesis, nowadays referred to as the projective minor form of the
Desargues axiom, to be denoted by p des. Projective planes that satisfy pdes are
called Moufang planes, following [197]. Moufang [165, 168] (and later, by more
geometrical means, [157]) showed that pdes is equivalent to a geometrically more
illuminating requirement: the axiom of the fourth harmonic point.

To understand the statement of that axiom, consider three distinct collinear points
A,B, and C, and letM be any point not onAB. Let c be any line throughC distinct
from AB and not passing through M , intersecting point MA in L, and MB in E.
Let AE intersect BL in R and let MR intersect AB in D. Whenever A,B,C, and
D are related by such a diagram, A,B,C, and D are said to be a harmonic set
of four collinear points. The axiom of the fourth harmonic point states that, given
three distinct collinear points A,B, and C, there is exactly one point D, such that
A,B,C, and D form a harmonic set, and that D is different from C. This can be
phrased as a configuration theorem, stating that for any collinear and different triple

7The word associative was coined by Hamilton in 1848 precisely to describe the fact that the
octonions are non-associative.
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of points (A,B,C), and any two pairs (M, c) and (M ′c′), satisfying the conditions
stated above for the construction of the fourth harmonic point, the construction
leading to D starting with (M, c) also leads to D when one starts with (M ′, c′).

Having found a wide class of configuration theorems that follow from pdes,
Moufang showed (and a different proof was provided in [157]) that the Moufang
planes can be coordinatized by algebraic structures that had just been defined by
Artin and Zorn [277, 278] as alternative algebras. In these, the multiplication is
not only not commutative, but it is not associative either. To be precise, these are
structures A with an addition and multiplication operation, such that (i) 〈A,+〉 is
an Abelian group, with neutral element 0, (ii) multiplication has a two-sided neutral
element 1, (iii) for all a and b different from 0, the equations a · x = b and y · a = b

have unique solutions x and y; and for all a, b, and c we have (iv) a ·(a ·b) = (a ·a)·b
and a·(b·b) = (a·b)·b, (v) a·(b+c) = a·b+a·c, and (vi) (b+c)·a = b·a+c·a. That
there are Moufang planes that do not satisfy pDes, i.e., that we are in the presence of
the discovery of some new structures, was pointed out by Moufang in 1933 [168].
For at the time of their discovery, it was apparent that the octonions, not only when
built upon the field of the real numbers as constructed by their discoverers Graves
and Cayley, but when built up in the same manner over an arbitrary field K (a
structure to be denoted by O(K)), are an example of a non-associative alternative
algebra. Despite some partial results characterizing alternative algebras in [278],
the problem was solved in its entirety only in 1950–1951, by Skornyakov [240–
243] (after preliminary work in [239]) and Bruck and Kleinfeld [37], where it was
shown that any non-associative alternative algebra of characteristic different from 2
(corresponding to a Moufang plane which does not satisfy pDes and in which Fano
holds) is an octonion algebra O(K) for some field K of characteristic �= 2. The case
of characteristic 2 was solved in [125]. These proofs were simplified in [41] and
presented in the monograph [197, 6. Kapitel & Anhang 4] and in the textbook [71].

That certain local forms of pdes imply pdes was shown in [238].
Given that octonion algebras are not orderable, in the presence of order, a

Moufang plane must satisfy pDes. Also, every finite Moufang plane must satisfy
pPapp (see [197, p. 301]). In the spirit of Schleiermacher’s results, Pickert [199]
proved the following stronger version of a result from [226], that pPapp follows
already in Moufang planes from the assumption that a composition of at most 6
perspectivities that fixes 4 points must be the identity (Schleiermacher had shown
that pPapp follows in Desarguesian planes from that same assumption), or formally

P, pdes, P6,4  pPapp.

8.2.6.1 The Missing Link Between Moufang and Pappus in Fanoian
Planes

We have mentioned earlier that O. Bottema determined in 1935 the missing link
between pDes and pPapp. The question regarding a missing link between pdes
and pPapp has been answered in 1981 by Weiß [269], but only in the presence
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of Fano. The missing link is the projective version pNG of the following Newton–
Gauss theorem: The three midpoints of the diagonals of a complete quadrilateral are
collinear (if x, y, z, and w denote the sides of a quadrilateral, A the intersection of
x and z, A′ that of y and w, B that of z and y, B ′ that of x and w, C that of y and x,
and C′ of z and w, then the midpoints of the diagonals AA, BB, CC are collinear).
Thus, in the presence of the Fano axiom, pPapp can be replaced by Moufang’s pdes
and the Newton–Gauss theorem pNG, or formally

P, Fano  pPapp↔ pdes ∧pNG.

8.2.7 The Lenz–Barlotti Classification

A specialization of pDes lies at the heart of a classification of all projective
planes that satisfy configuration theorems that are not stronger than pDes. The
specialization, commonly referred to as the (C, c)-Desargues differs from the same
statement of pDes just by fixing in advanceC and c, and allowing all other variables
to be free. Thus a projective plane may satisfy the (C, c)-Desargues for some pairs
of (C, c) but not for others. Lenz [138] provided in 1954 a first classification of
projective planes based on the sets of pairs (C, c), with c ∈ C, for which the
plane satisfies the (C, c)-Desargues. Six non-empty classes of projective planes
took shape from that analysis. By removing the requirement that c ∈ C, Barlotti
[23] obtained in 1957 a refinement of Lenz’s classification, referred to as the Lenz–
Barlotti classification. The classes that interest us here are the Lenz classes IV,
V, VII, corresponding to translation planes, Moufang planes, and Desarguesian
planes.

The Lenz–Barlotti classification can also be understood in terms of a certain
notion of transitivity that the group of collineations could act on the lines of a
projective plane. A bijection α of the point and line sets of a projective plane onto
itself is called a collineation if it preserves the incidence relation, i.e., if P ∈ g

implies α(P ) ∈ α(g). A collineation α is called a perspective collineation with
center C and axis c if α(g) = g for all lines g with C ∈ g and α(P ) = P for all
P ∈ g. For a fixed projective plane P, let ΓC,c stand for the group of all perspective
collineations with center C and axis c. For a point C and a line c, we say that P
is (C, c)-transitive if for any two points P and Q, none of which lies on c, that are
collinear with C, but none of which is C, there exists a collineation α in ΓC,c, such
that α(P ) = Q. It turns out that (C, c)-transitivity amounts to the transitive action
of the group ΓC,c on the points different from C and the intersection of c with g of
a single line g �= c passing through C. The (C, c)-transitivity of P is equivalent to
the validity of the (C, c)-Desargues in P (see [197, p. 76]). Desarguesian planes are
(C, c)-transitive for any pair (C, c), Moufang planes are (C, c)-transitive for any
pair (C, c) with C ∈ c, whereas translation planes are (C, c)-transitive for all C
lying on a fixed line c.
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We will now turn to a definition of translation planes in the context of affine
planes.

8.3 The Affine Setting

Given the particularly simple and direct connection between affine and projective
planes, any affine plane being extendable to a projective plane by adding a new point
to every line as well as a new line incident with all new points, and any projective
plane becoming an affine plane by deleting one of its lines together with all points
incident with it, the story narrated here could have been told in the projective
setting as well. However, given that certain statements have been discovered in the
affine setting and tend to have a more appealing statement in the language of affine
geometry, we have decided to devote a special section to the affine forms of Pappus
and Desargues.

Plane affine geometry can be expressed in the same language as projective
geometry, but it is helpful to use the defined notion of parallelism (defined by g ‖ h
if and only if either g = h or else there is no point P incident with both g and
h) when expressing configuration theorems. It is axiomatized by A = {A1 − A4},
where

A 1 There is precisely one line passing through two different pointsA andB (which
will be denoted by AB).

A 2 There are at least two points on every line.

A 3 There is exactly one parallel through P to l for any point P and any line l.

A 4 There are three non-collinear points.

The affine version of pDes is obtained by letting c be the “line at infinity”, which
turns it into (Fig. 8.3)

aDes If C,Ai, Bi ∈ ci , Ai,Ak ∈ aik , Bi, Bk ∈ bik , C,Ai, and Bi are pairwise
different points (for all i and k in {1, 2, 3} with i < k), c1, c2, and c3 are three

Fig. 8.3 The affine form of
the Desargues axiom
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A3

C

A1

B2

B3

B1
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Fig. 8.4 The affine form of
the Pappus axiom P3

a

b

P1
P2

Q3 Q2
Q1

pairwise different lines, a12 �= a13, b12 �= b13, A1A2 ‖ B1B2, and A2A3 ‖ B2B3,
then A1A3 ‖ B1B3.

The affine version of pPapp, to be denoted by aPapp, is obtained by adding (i) and
(ii), in which the respective pairs of lines are parallel, to the hypothesis, and asking
for the pair in (iii) to be parallel as conclusion (Fig. 8.4).

aPapp If the three points P1, P2, and P3 are on a line a, the three points Q1,Q2,

and Q3 are on a line b but not on a, P1Q1 ‖ Q2P3, and P2Q2 ‖ Q3P1, then
P3Q3 ‖ Q1P2.

If in aPapp, the lines a and b are required to be parallel, then we get the minor
form of the affine Pappus axiom, aPapp, and if in aDes, C is a “point at infinity”, i.e.
all lines ci are parallel, then we get minor form of the affine Desargues axiom, ades.
Affine planes satisfying ades are called translation planes and came to prominence
after André [4, 5] showed that there are translation planes that do not satisfy aDes.
These can, however, be coordinatized by quasifields, an algebraic structure that had
shown up earlier, in [265]. These are structures A endowed with an addition and
a multiplication, both with neutral elements, 0 and 1 respectively, satisfying the
conditions (i), (ii), (v) mentioned earlier for alternative algebras, as well as (vii)
0 · x = x · 0 = 0 for all x; (viii) for all a, b, and c with a �= b there exists y such
that a · y − b · y = c.

So far, our story, which is one of interactions between geometry and algebra,
has brought algebraists into the narrative fold. We now meet a major figure of
differential and convex geometry, Wilhelm Blaschke. Educated in a variety of
centers of geometry, he developed a particular interest for the geometry of webs,
in a style born out of multiple influences, from Klein, Hilbert, Engel, Study, and
Bianchi, expounding upon the early works of Lie and Poincaré.

At the 1928 International Congress of Mathematicians in Bologna, Blaschke
posed the question of how these webs might be considered in an axiomatic setting.
Reidemeister[218, 219], Thomsen [260], and Bol [261] took it upon themselves
to answer this call and produced a great number of configuration theorems, all
of which, although can be understood in projective planes, are best stated in the
language of affine geometry (see [122] and [161] for a survey of these configuration
theorems). It was eventually shown that all these configuration theorems were
equivalent to one of aPapp, aDes or ades. Wilhelm Klingenberg—at the time
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influenced by Friedrich Bachmann, himself influenced by Kurt Reidemeister (to
whom Bachmann’s opus magnum [19] is dedicated)—showed many of these
equivalences in [126, 127], the results of which surprised Moufang, the leading
expert in configuration theorems at that time. In fact, of particular interest was the
startlingly unexpected strength of the Reidemeister configuration theorem. A major
Reidemeister configuration is a configuration consisting of 9 points and 12 lines,
and can be best thought of as the drawing of rectangle ABCD illuminated from a
source of light O outside its plane, in which the rays of light are shown emanating
from O and projecting the vertices of ABCD onto another rectangle A′B ′C′D′ on
a plane parallel to that of ABCD. The surprise resided in the fact that the major
Reidemeister configuration theorem is strong enough to entail aDes.8

In the meantime, many more affine configurations emerged, such as those in
[32, 79, 80, 134, 135, 175, 176, 272]. The textbook [256] (as well as [144]) presents
synthetic proofs of the dependencies (here aPapp1 stands for aPapp in which the
lines a and b have an intersection point; it is also shown there that A  aPapp1 ↔
aPapp)

A  aPapp1 → aDes → ades → apapp. (8.4)

It should come as no surprise that aDes leads to skew fields as coordinates and
aPapp to commutative fields, since the projective planes in which pDes and pPapp
are satisfied are planes over skew fields and commutative fields, respectively. That
pDes (pPapp) holds in affine planes satisfying aDes (resp. aPapp) is apparent if one
thinks in terms of the coordinatization of these structures. For the Desarguesian case,
a direct geometric proof can be found in [203]. The first two implications in (8.4)
cannot be reversed (given that there are quasifields that are not skew fields and skew
fields that are not commutative), but it is still not known whether the last implication
is reversible, i.e. if apapp→ ades does or does not hold.

As pointed out by Reinhold Baer in 1944 [14] (see also [197, p. 211–212]),
translation planes of characteristic �= 2, i.e., satisfying the affine version of Fano,
stating that the diagonals of a parallelogram do intersect, can also be axiomatized
in a language enlarged with a binary operation μ on points, whose intended
interpretation is that of a midpoint operation, by the axioms of A, together with

8The connection between Blaschke—who would later author two books on webs ([31] (with
G. Bol) and [30]) and a textbook on projective geometry [29]—and the foundations of affine
and projective geometry was not only one giving an impetus to the discovery of so many
configuration theorem central to the foundational approach, but also one of a personal friendship
with Reidemeister, for whom he intervened in June 1933, after Reidemeister was dismissed from
his position in Königsberg—which he had held since 1925, and where he had worked among others
with Ruth Moufang—for having been a longtime critic of the National Socialists, by organizing
a petition to persuade the government that forcing Reidemeister to retire at 40 was not in the
interest of the teaching of mathematics and of mathematical research in Germany. The petition
was successful and Reidemeister was appointed to Hensel’s chair at Marburg.
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the following axioms (Mid 4 states that midpoints are invariant under parallel
projection):

Mid 1 For X �= Y , we have μ(X, Y ) ∈ XY ; μ(X,X) = X.

Mid 2 For all X �= Z, there is exactly one Y such that μ(X, Y ) = Z.

Mid 3 μ(X, Y ) = μ(Y,X).

Mid 4 ForX �= Y , X′ �∈ XY ,XX′ ‖ YY ′ or Y = Y ′, we haveμ(X, Y )μ(X′, Y ′) ‖
XX′.

This characterization of translation planes of characteristic �= 2 led in [179] to the
simplest possible axiom system in a language with points and parallelism as the
only primitive notions, as each axiom is a statement about at most 5 points.

In a similar vein, Lüneburg [150], has shown in 1967 that translation planes can
be characterized as affine planes admitting the notion of a ratio—i.e., a binary
operation μ with points as variables and values, with μ(A,B) to be interpreted as
the point on the line AB dividing it in a fixed ratio. The axiom system consists of
the axioms of A together with Mid1 and the axiom requesting that for all X there
exists a point Y such that μ(X, Y ) �= X and μ(X, Y ) �= Y .

Affine Moufang planes (affine planes obtained from a projective Moufang plane
by removing a line and all of it points) of characteristic �= 2 can be axiomatized
(as shown in [134]) by the axioms of A, the affine form of the Fano axiom, stating
that the diagonals of a parallelogram intersect, and the Trapezoid-Desargues, which
has the same conclusion as aDes, but to whose hypothesis A1A2 ‖ A3B3 has been
added. An alternative axiomatization was proposed by Zimmer in 1958 [275] (and
a different proof was offered in [134], the author being apparently unaware of
the existence of [275]), where it was shown that the Trapezoid-Desargues can be
replaced by one of its specializations, called Parallelogram-Desargues, in which
one adds to the hypothesis of the Trapezoid-Desargues axiom the statement that
A2A3 ‖ A1B1, provided that one replaces the affine Fano axiom by a statement on
the existence and uniqueness of midpoints. It states that, for any two distinct points
P and Q there is a point M on PQ, such that, for any S and R, not on PQ, and
such that PQ ‖ QS and QR ‖ PS, we have M ∈ RS (it states the existence of the
midpoint M for any pair of distinct points P and Q, as the intersection point of the
diagonals of a parallelogramPRQS, as well as its independence from the particular
choice of a parallelogram with PQ as one of its diagonals).

It is also worth mentioning that André [6] also introduced central translation
structures. These structures are more general than translation planes in the sense that
non-parallel lines do not need to intersect (parallelism being a primitive notion in
those structures, that is not definable by means of the point-line incidence relation).
They can be thought of as incidence structures—in which every line is incident with
at least two points, and which contains three non-collinear points—endowed with a
parallelism relation that satisfies not only the Euclidean parallel postulate (existence
and uniqueness of a parallel through a given point to a given line), but also all the
universal statements valid in arbitrary affine planes, such that all of its translations
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(fixed point-free collineations which map lines into parallel lines, and the identity)
are central (if τ is a proper translation and P and Q are two points, then the lines
Pτ(P ) and Qτ(Q) are parallel), form a group, and act transitively on the set of
points. Central translation structures were provided with a different, simple axiom
system in [180].

A reflection-geometric axiomatization of all major classes of translation planes
(Moufang, Desarguesian, and Pappian), in the style of Bachmann’s [19] was
proposed in [207] and [208].

The constructive (in the sense of Errett Bishop) content of the results needed to
introduce coordinates in Desarguesian affine planes was analyzed in [152].

8.3.1 The Role of the Theorem of Menelaus

Desargues’s original proof for his theorem could be of purely historical interest,
as perhaps revealing something of the inspirational background leading to its
discovery, or it could be of methodological interest, raising the question whether
the assumptions used in that proof could be turned into a set of axioms to provide a
foundation for some Desarguesian geometry. For his theorem, Desargues utilized
both Menelaus’s theorem and its converse. Menelaus’s theorem, going back to
Menelaus of Alexandria’s Sphaerica [158], states that, given a triangle ABC, and a
line g that goes through none of the vertices of this triangle and which intersects the
lines AB, BC, and CA in the points P , Q, and R, respectively, then (ratios being
considered oriented, i.e., AP

BP
= −PA

BP
)

AP

PB
· BQ
QC

· CR
RA

= −1.

The converse states that if three points P , Q, and R, lie on the sides AB, BC,
and CA of a triangle ABC, different from its vertices, such that the above equality
holds, then P , Q, and R are collinear. Since ratios of segments lying on the same
line are notions of affine geometry, from an axiomatic point of view the question
is one regarding the possible role of Menelaus’s theorem taken as an axiom in
the foundations of affine planes satisfying aDes. This question was both raised and
solved by Guggenheimer in 1974 [83], the explanation of which is delineated below.

The axiomatic set-up is inside a two-sorted first-order language. One sort of
variable is for elements of a multiplicative group, to be denoted by lowercase Greek
letters, the other for points, to be denoted by uppercase Latin letters. There is a unary
operation −1 standing for the inverse element operation, binary operation ·, whose
arguments and values are elements of the group, two individual constants, 1 (the
neutral element) and ω (an element of the multiplicative group), a ternary operation
f , with the first two arguments points and the third one an element of the group,
taking point values, a ternary function λ, with all arguments points, taking elements
of the group as values.
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The intended interpretation of f (A,B, α) is the pointX on the ‘line’ determined

by A and B, for which
−→
AX = α · −→XB (by abuse of language we also write

−→
AX :−→

XB = α). The intended interpretation of λ(X,A,B) is the ratio
−→
AX : −→XB in case

A �= B and X is a point on the line determined by A and B, different from A and B.
The axioms state that: (M1) · is associative, has a neutral element, and every

element has an inverse; (M2) ω is an involutory element of the group that belongs
to its center; (M3–M6) describe basic properties of the operations f and μ; (M7)
Menelaus’ theorem; (M8) its converse.

M 1 x · (y · z) = (x · y) · z ∧ 1 · x = x ∧ x−1 · x = 1.

M 2 ω · x = x · ω ∧ ω �= 1 ∧ ω2 = 1.

M 3 A �= B ∧ α �= ω ∧ β �= ω ∧ f (A,B, α) = f (A,B, β)→ α = β.

M 4 A �= B ∧ α �= ω→ λ(f (A,B, α),A,B) = α.

M 5 (∀ABα)(∃βγ )A �= B ∧ α �= ω ∧X = f (A,B, α)

→ A = f (B,X, β) ∧ β �= ω ∧ B = f (X,A, γ ) ∧ γ �= ω

M 6 A �= B ∧ α �= ω→ λ(f (A,B, α), B,A) = α−1.

M 7 P �= Q ∧ f (P,Q, η) = R ∧ η �= ω ∧ A �= B ∧ f (A,B, α) = P ∧ α �= ω

∧f (B,C, β) = Q ∧ β �= ω ∧ C �= A ∧ f (C,A, γ ) = R ∧ γ �= ω

→ λ(P,A,B) · (λ(Q,B,C) · λ(R,C,A)) = ω

M 8 (∀PQRABCαβγ )(∃ η) P �= Q ∧A �= B ∧ f (A,B, α) = P ∧ α �= ω

∧f (B,C, β) = Q ∧ β �= ω ∧ C �= A ∧ f (C,A, γ ) = R ∧ γ �= ω

∧λ(P,A,B) · (λ(Q,B,C) · λ(R,C,A)) = ω→ f (P,Q, η) = R ∧ η �= ω

One can show that one needs three applications of the direct form (M7) and one
of the converse of Menelaus’s theorem (M8) to prove a Des, precisely the number
of times Desargues himself used Menelaus’ theorem (see [186]). It is remarkable
that, without having postulated that there is a skew field involved at all, since there
is no addition operation in this language, Guggenheimer was able to show that these
structures naturally emerge, that the lines are coordinatizable by skew fields, and
that the multiplicative group in our axiom system is the multiplicative group of that
skew field.

If we add to the above axiom system an axiom stating that · is commutative, then
we can prove, by a fivefold application of M7 and by one of M8, as in [56, p. 68],
pPapp.

8.3.2 Area

In [103, p. 80], Hilbert points out that some basic theorems regarding area in
Euclidean geometry are dependent upon and can be used to prove aPapp. This
remark has been made precise by Hotje in 1979 [113], by showing that the existence
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of an oriented area function in an arbitrary affine plane satisfying certain common
sense conditions implies that the affine plane satisfies aPapp (see also [112] and
[84]). Another set of area related conditions, this time on equiaffinities (affine
transformations that preserve the area), entail, in the case of Desarguesian affine
planes of characteristic �= 2, the validity of aPapp, which is given in [128, pp. 126–
131]. Less stringent conditions on the oriented area function than those stipulated by
Hotje allowed Lesieur [139] to enlarge the class of affine planes endowed with an
area function to affine Moufang planes. Likewise, Petit [193–195] found an even
wider class of affine planes that includes certain translation planes that are not
Moufang planes, to which an area function can be associated.

Although no general area theory can be developed to allow the comparison of
any two triangles in ordered translation planes without additional properties, in
at least a manner that would satisfy the very modest requirements of J.-C. Petit,
a particular problem involving area comparison of triangles sharing a side can be
expressed in a perfectly meaningful manner and proved inside the theory of ordered
translation planes, as shown in [116]. The problem is an elementary one, proposed
by H. Debrunner in print, but going back to P. Erdős and E. Trost. It states that of the
four triangles formed by three points A′, B ′, and C′ on the sides BC, CA, and AB,
one of the corner triangles, AB ′C′, BC′A′, and CA′B ′, has the smallest area. This
is an indication that ordered translation planes are not just abstract structures that
result from specializing Desargues’s theorem, but occur naturally as just the right
structures in which certain elementary geometry statements can be expressed and
proved.

8.4 The Effect of the Archimedean Axiom

The Archimedean axiom, although not expressible in first-order logic (see [183]
for the logics extending first-order logic in which it is expressible), has played a
central role in the foundations of geometry ever since its discovery by Eudoxus
and extensive use by Archimedes. It is thus worth looking at its effect on the
configuration theorems of our story. The aim of the Archimedean axiom is to
exclude the possibility of the existence of “infinitely small” or “infinitely large”
magnitudes, i.e., to ensure that, given 0 < x < y, there exists a natural number n
such that nx > y. The first to notice its surprising effect was Hilbert in [103, §32,
pp. 72–73]. What he noticed, was that the commutative law for multiplication
follows in skew fields from the presence of the Archimedean axiom. With Arch
denoting the Archimedean axiom, this means that (here OA stands for the axioms
for ordered affine planes, such as those in [256])

OA, aDes,Arch  aPapp. (8.5)

It is easily noticed that Hilbert’s proof, which operates entirely on the algebraic
level, goes through in alternative algebras, since proper alternative algebras cannot
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be ordered at all. The question thus arises what the lowest level in the Lenz–
Barlotti classification is, in which Hilbert’s result can be extended, i.e., in which
the addition of the Archimedean axiom implies pPapp. As shown in [205, p. 224],
using results from [57], the answer to the above question, i.e. the algebraic structure
corresponding to the lowest level of the Lenz–Barlotti classification for which
the addition of Archimedeanity forces it to turn into an Archimedean ordered
commutative field, is that of a quasifield, the coordinatizing structures for translation
planes. Thus (8.5) remains valid even with aDes replaced by ades, and a des is the
weakest (C, c)-Desargues configuration that can replace aDes in (8.5). A purely
geometric proof of the derivability of pPapp from Arch, P and some configuration
theorems that were shown by Moufang to follow from pdes, has been provided in
[26]. Later on, a purely geometric proof of (8.5) was provided in [211].

Rather surprisingly, (8.5) was turned into first-order logic by Rautenberg (in
[214], after having done a similar feat in an algebraic setting in [212]), who has
introduced a certain first-order version Σar of Arch, which can replace the latter
in (8.5). This version is much weaker than all the statements true in first-order logic
in all Archimedean ordered affine planes with aDes, for that theory is not even
recursively axiomatizable, as shown in [213]. With Z(ABC) standing for ‘B lies
strictly between A and C’ and AB ∼= CD standing for μ(A,D) = μ(B,C), where
μ denotes the midpoint operation, it states that

Σar (∀PQRST )(∃UV )P �= Q∧ϕ(P )∧ϕ(Q)∧[PQ ∼= RS → (ϕ(R)↔ ϕ(S))]
→ [T ∈ PQ→ ϕ(U) ∧ ϕ(V ) ∧ Z(UT V )],

where ϕ(·) is a formula containing none of the variables P,Q,R, S, T ,U, V , and
PQ stands for the line determined by P and Q.

This axiom schema states that, if A, a subset of the point set of a model M of
plane affine geometry, is a definable set of points (defined by ϕ, which means that
X ∈ A if and only if ϕ(X) holds in M ), containing distinct points P and Q, and
such that, whenever PQ ≡ RS, R is in A if and only if S is in A, then every point T
on the line PQ is between two points of A.

8.5 Desargues’s Axiom as Indicator of a Projective Plane’s
Embeddability in a Projective Space

After asking, in the lectures [104, p. 318] (see also [7] and [185]) preceding the
publication of the Grundlagen der Geometrie, whether aDes is a sufficient condition
for a plane to be a part of three-dimensional space (that it is a necessary condition
was known, given that one can easily prove pDes from considerations involving
intersections of planes), Hilbert answered in [103] this question in the affine case.
What he actually did show in Theorem 35 of [103] was that Desarguesian ordered
affine planes can be embedded in ordered affine spaces, but he did this in an
algebraic manner. After coordinatizing the affine plane by a skew field, he added
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a third coordinate to each point (x, y) of the plane, which becomes (x, y, 0) in the
affine space in which the plane is embedded.

A more geometrico proof of Hilbert’s Theorem 35 was provided in [228],
while purely geometric embeddings of projective planes satisfying pDes into
3-dimensional projective spaces (without any order relation) were provided in
[15, 20, 72, 76, 77, 89, 94, 99, 142], and [146, Theorem 9.2.6].

If we now drop the requirement that the plane be affine or projective, and ask
the necessity version of Hilbert’s question for ordered planes, as defined by the
plane axioms of the first two groups of axioms of Hilbert’s [103], then even the
fact that any plane in an ordered space (i.e., in a model of Hilbert’s incidence and
order axioms) has to satisfy pDes, is no longer a simple matter. That this is indeed
the case was first shown in [192, pp. 46–55] (see also [1]). That the validity of the
betweenness axioms is essential for this has been pointed out in [88]. To understand
why ordered planes pose a problem and why one cannot just transfer the relevant
results from projective geometry, one should visualize an ordered plane as possibly
the interior of any convex set in, say, an affine ordered plane. Thus, if the domain
of discourse is, say, the interior of a triangle, and one knows that a configuration
theorem τ is valid in it, that means that we only know that τ holds when all its points
belong to that domain. One must then find a way to transfer the local information
to an entire projective plane that is needed to construct an extension of the ordered
plane.

The first step toward answering the sufficiency question in the case of ordered
planes was taken by Owens in 1910 [178], where it was shown that an ordered plane,
in which certain strong forms of the Desargues axiom and its converse hold, can be
embedded in a projective ordered plane satisfying pDes. Athough Owens’ work was
reviewed by Dehn for the Jahrbuch für die Fortschritte der Mathematik, it is not
referred to by Moufang [164] (see also [244]), who takes the next step by showing
that an ordered plane that satisfies pdes (whenever all points involved belong to the
ordered plane) can be embedded in a projective ordered plane, which in turn satisfies
pdes. In 1938 Emanuel Sperner [247] completely answered Hilbert’s question in
the case of ordered planes by showing that ordered planes satisfying pDes can be
embedded in projective ordered planes satisfying pDes. It will turn out later, with
the results of Skornyakov and Bruck and Kleinfeld referred to earlier, which imply
that all ordered Moufang planes satisfy pDes, that Moufang’s 1931 result actually
implies Sperner’s 1938 result. However, since no synthetic geometric deduction of
pDes from the axioms of ordered projective planes and pdes is known, Sperner’s
proof is the only purely geometric one we have. These results thus imply that any
ordered plane satisfying pDes is indeed part of an ordered three-dimensional space
as defined in [103].

In its most general version, the problem of embedding a part of a projective plane
that satisfies some form of the Desargues axiom into a projective plane satisfying
pDes has been solved in [66] (and later, by a different method in [121]). The set-
up is a very general one. There are points, lines, and incidence in the language, as
usual, but there is also a unary predicate π which applies to points only (i.e., for all
lines g, we have ¬π(g)), with π(A) to be interpreted as “pointA is a proper point”,
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in contradistinction from points A with ¬π(A), which will be referred to as ideal
points. One can visualize this again in terms of the points in the interior I of some
convex set in an ordered projective plane ε being proper points, whereas all other
points are ideal, and the set of lines consists only of those lines of ε that intersect I.
However, we should bear in mind that the class of possible models for our axiom is
much wider and that there is actually no notion of order, so the above model is for
visualization purposes only. The axiom system consists of a certain form of pDes,
in which the relevant points are proper, and:

ES 1 There are two different lines. Any two different lines have precisely one point
in common.

ES 2 Every line is incident with at least three proper points.

ES 3 If A is a proper point and B is any point different from A, then there is a line
incident with both A and B.

What Ellers and Sperner show in [66] is that these few requirements suffice
for any model of the above axiom system to be embedded in a projective plane
satisfying pDes. Obviously, this is a much stronger statement than all those for
ordered planes previously mentioned.

Whether a similar theorem is true for pPapp is not known, at least in the ordered
setting. That is, whether an ordered plane satisfying pPapp can be embedded in an
ordered space satisfying pPapp remains open. L. W. Szczerba told the first author
in 2003 that he had once proved this to be true, but did not write the proof down
anywhere. If this were true, this would simplify Skala’s [237] incidence-based
axiomatization of plane hyperbolic geometry, which uses pPapp, pDes, as well as
Pascal’s theorem for all hexagons with vertices ‘ends’, which lie on the absolute
conic, the inside of which constitutes the hyperbolic plane.

While pDes follows from the axioms of a projective space of more than two
dimensions, this is not the case for pPapp, as one can construct projective spaces of
any dimension as left vector fields over skew fields. There is, however, a statement
with a special higher-dimensional flavor, which is equivalent to pPapp, given the
usual axioms of three-dimensional projective geometry. It is sometimes referred to
as Dandelin’s theorem, or as the Sixteen Points Proposition. It states that (see [100,
p. 97, Th. 4.2.1]): “If a0, a1, a2, a3, b0, bl, b2, b3 are different lines, not in one plane,
and if fifteen of the intersections ai ∩ bk exist, then the sixteenth exists as well.” A
higher-dimensional version of Dandelin’s theorem was considered in [91], and it
was shown that it is equivalent to pPapp.

8.6 One-Dimensional Characterizations

Our story so far has been one of an astonishing dialogue between configuration
theorems in projective or affine geometry and algebra. Since the proud two-
dimensional configuration theorems of Pappus and Desargues become, in this
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dialogue, properties of algebraic structures constructed on lines living in projective
planes, one wonders why one would need a two-dimensional statement to tell a one-
dimensional story. Couldn’t these algebraic structures themselves be axiomatized in
purely geometric terms? By geometric we mean here some story that allows for
transformations that leave the structure invariant. The algebra itself is definitely not
“geometric” in this sense. If we look at the real number field, for example, we notice
that the only transformation (bijection) that preserves addition and multiplication is
the identity transformation.

The first steps in this direction were taken by Hans Zassenhaus, who approached
in 1935 [273, 274] the problem in its finite case. He started from where our story
began, namely with (P3), with the simple observation that the group of Möbius
transformations of a projective line P

1(K) over a field K—which can be thought
of as consisting of points as one-dimensional subspaces of K2, those of the form
K ·(1, a) to be identified with a ∈ K , and those of the formK ·(0, 1)with∞, so that
one can think of the projective line overK as K ∪ {∞}—which are transformations
defined for all a, b, c, and d in K with ad − bc �= 0 by x �→ ax+b

cx+d , for x ∈ K ,

with the understanding that, if c = 0, then ∞ �→ ∞, and if c �= 0, − d
c
�→ ∞ and

∞ �→ a
c
, acts sharply 3-transitively on P1(K). To understand the statement, we need

to define group actions. If G is a multiplicatively written group and X is a set, then
a group action α of G on X is a function α : G×X→ X satisfying: (i) α(e, x) = x

for all x ∈ X, where e denotes the neutral element of G, and (ii) α(g · h, x) =
α(g, α(h, x)) for all g, h ∈ G and all x ∈ X. The action α is sharply 3-transitive
if, for any two triples (x1, x2, x3) and (x ′1, x ′2, x ′3), with xi �= xj and x ′i �= x ′j for all
1 ≤ i < j ≤ 3, there is exactly one g ∈ G such that g(xi) = x ′i . In fact, Zassenhaus
could determine the structure of all sharply 3-transitive group actions on a finite set
X. The characterization involved an algebraic structure generalizing fields, called a
nearfield, and amounted to the fact that these group actions are much like both the
group of Möbius transformations and that of affine linear transformations, i.e. the
x �→ ax + b. One would have thought that, based on Zassenhaus’ work, someone
would find a group-theoretic characterization of the projective line. In the finite
realm, this would have been an easy task, but no one knew whether the nearfield
connection was valid for sharply 3-transitive groups acting on infinite sets. In fact,
it was only in 2016 that Katrin Tent [258] proved that this is not the case, that there
are sharply 3-transitive groups that do not arise from a nearfield. So the path from
Zassenhaus’s papers to solving the general case was indeed, unbeknown to anyone
at the time, barred. Yet history decided to take another route altogether. The 19 year
old Jacques Tits, originally unaware of Zassenhaus’s work, started from scratch and
provided in 1949 [262–264] several simple characterizations of the projective line
over a field. The most memorable, perhaps, is that for any sharply 3-transitive group
G acting on a set X that satisfies the additional property that there are no “pseudo-
involutions”, i.e., that

If x �= y, α(g, x) = y, α(g, y) = x, then g · g = e
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one can endow X with the structure of a projective line over a field, and G must be
isomorphic to the Möbius group of X.

Tits also provided like-minded axiomatization of the affine line over a field.
A completely different axiomatization, inspired by the calculus of ends in plane
hyperbolic geometry, of the projective line over a field was found later by Bachmann
[18], and axiomatizations of affine and projective lines over skew fields were
provided in [40, 114], and [68]. Purely geometric axiomatizations of Desarguesian
and Moufang lines, in terms of a sexternary relation for “quadrangle sections,” were
presented in [70].

8.7 Pappus and Desargues in Geometries with Notions
of Congruence, Orthogonality, and Reflection

8.7.1 Hilbert’s Questions

Returning to Hilbert’s questions in [104] (see also [185]), we find that perhaps the
most pertinent questions, those which opened unexpected vistas, were ones asking:

Is pDes provable with the help of the congruence axioms alone? ([104, p. 172])

Prove pPapp (and pDes) in the plane based only on axioms in the groups I, II, and III (i.e.,
on the basis of the axioms for absolute geometry, without using the Parallel Postulate) [104,
pp. 284, 392]; in another form: pPapp “arises by the elimination of the congruence axioms,
indeed [pPapp] is the sufficient condition that ensures that a definition of congruence is
possible.” [104, p. 261]

On the one hand, Hilbert was interested in these question, in “introducing
number” into geometry in a purely geometrical manner—for which the theorems
of Desargues and Pappus are instrumental—to justify geometry as an autonomous
discipline. On the other hand, there are deeper metamathematical reasons for
wanting “numbers” to be part of geometry, for the arithmetization of geometry is
a means of transferring the consistency problem of geometry to that of a “number
system” (a certain field (or a certain class of fields) in today’s language).

These questions can be viewed in either the absolute setting, i.e., in the absence
of any assumption regarding the existence or uniqueness of parallels, or in an affine
setting. We first consider the absolute setting.

8.7.2 The Absolute Setting

The first contribution on the effect the congruence axioms (in the absence of any
assumption on parallels) have on pPapp and pDes, came in the ground-breaking
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paper by Hjelmslev [109]. Max Dehn, in his 1926 afterword to the second edition of
Pasch’s [192], refers to the significance of Hjelmslev’s paper in the following terms:

Hjelmslev’s result represents the highest point reached by modern mathematics going
beyond Euclid in setting up elementary geometry: in the plane, with assumptions only
regarding a limited part of the plane, without continuity, one lays the foundations for
analytic geometry.9

Although Hjelmslev’s name is unfamiliar to the vast majority of mathematicians
living today, the methods he pioneered having remained hidden from what has
become the mathematical mainstream, there is no exaggeration in these words.
Hjelmslev’s achievement was to realize that line reflections have certain properties
that are independent of any assumption regarding parallels, and thus absolute.
Line reflections, and in particular the central three reflections theorem, stating that
the composition of three reflections in lines that have a common perpendicular
or a common point must be a line reflection, were not entirely new. They had
been treated earlier in [97, 102, 232, 271], yet in these works line reflections
were not treated independently of the particular geometry in which they were
defined (Euclidean, hyperbolic, or elliptic), as they were by Hjelmslev. The ideas
espoused in 1907 [109] were developed further in a series of papers [110] that did
away with several of the assumptions present in [109]. Many more geometers—
their contributions are chronicled in [122]—have helped in the understanding of
geometry in terms of line reflection as primitive notions. They helped remove
assumptions regarding both the order of the plane and the free mobility of the plane
(i. e. the possibility of transporting segments on any given line). The final touch
in carving a particularly austere axiom system came from Friedrich Bachmann in
1951 [17] (whose contributions to the subject go back to 1936 [16]), who showed
that two axioms proposed by Hilbert’s student Arnold Schmidt [227] for that theory
are superfluous.

In its final version, Bachmann’s axiom system for metric planes, about which
a monograph [19] and more than a hundred additional papers were written, states
so very few facts about line reflections, that it is surprising that those assumptions
suffice to give rise to the “analytic geometry” to which Dehn refers. In terms of
points, lines, and incidence, using line reflections as a ‘figure of speech’,—defined
as bijections of the collection of all points and lines, which preserve incidence and
orthogonality, are involutory transformations, different from the identity, and fix all
the points of a line—the axioms state that:

MP 1 There are at least two points.

MP 2 For every two different points there is exactly one line incident with those
points.

9Mit dem Hjelmslevschen Resultat haben wir den höchsten Punkt bezeichnet, den die moderne
Mathematik über Euklid hinausgehend in der Begründung der Elementargeometrie erreicht hat: in
der Ebene, mit Voraussetzungen nur über einen beschränkten Teil der Ebene, ohne Stetigkeit ist
die analytische Geometrie zu begründen.
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MP 3 If a is orthogonal to b, then b is orthogonal to a.

MP 4 Orthogonal lines intersect.

MP 5 Through every point P there is to every line l a perpendicular, which is
unique if P is incident with l.

MP 6 To every line there is at least one reflection in that line.

MP 7 The composition of reflections in three lines a, b, and c which have a point
or a perpendicular in common is a reflection in a line d .

These structures, referred to as metric planes, can be axiomatized in terms of
orthogonality alone (see [184]), and, in the non-elliptic case, in terms of incidence
and segment congruence (or just in terms of the latter alone)—in the manner
required by Hilbert’s formulation of the question—as shown in [246].10

The axioms for metric planes are strong enough to imply both pPapp and pDes,
for metric planes are embeddable in projective planes coordinatized by fields of
characteristic �= 2 and endowed with an orthogonality relation extending that of the
metric plane, as shown in [19]. The difficulty of that embedding process has been
likely responsible for its absence from the collective consciousness of present-day
mathematicians. One of the important steps involves proving Brianchon’s theorem,
which is just a dual form of pPapp. In metric planes that satisfy additional conditions
and correspond to the three classical geometries, Euclidean, hyperbolic, and elliptic,
the proof of pPapp can be somewhat simplified. These simplified proofs are all
presented with great care in [19]. For example, one can find six different proofs
from the literature that aPapp holds in metric planes in which there is a rectangle.
Formal proofs of aPapp from Tarski’s axioms for plane Euclidean geometry, and
of an absolute version of Pappus’s axiom from Tarski’s axioms for plane absolute
geometry, to be found in [233] (which is also the geometry axiomatized by the plane
axioms of groups I, II, and III of [103]), were carried out using Coq, a second-order
formal proof management system, and took some ten thousand lines, as reported in
[35].

In fact, an even weaker axiom system, for structures that we will refer to as
Sperner planes, in which the three reflections theorem is weakened, implies both
pDes and pPapp. That axiom system was developed by Sperner in [248] with the
declared aim of being just strong enough to prove pDes. However, Sperner’s Ph.D.
student Kannenberg showed in [117] that, if Sperner planes can be embedded in
projective planes satisfying pDes and Fano, then one can deduce the commutativity
of the underlying skew field, and line reflections have their usual form in terms of
a quadratic form. That these results hold even in characteristic 2 (i.e., that Fano

10Something that Hilbert apparently considered impossible in 1898–1899: “Der umgekehrte Weg,
die Kongruenzaxiome und -sätze mit Hülfe des Bewegungsbegriffs zu beweisen ist falsch, da sich
die Bewegung ohne den Kongruenzbegriff gar nicht definieren lässt.” [104, p. 335] (“The converse,
proving the congruence axiom and theorems in terms of the concept of rigid motion is wrong, for
rigid motions cannot be defined at all in the absence of the congruence notion.”).
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is not needed to deduce the validity of pPapp in Sperner planes, should these be
embeddable in projective planes with pDes) was shown in [119, 120]. According to
[122, p. 182], around 1958, Harms, a student of Sperner, proved that all Sperner
planes can be embedded in Desarguesian projective planes. Her proof was then
simplified and became [66]. Sperner’s axiom system and Sperner planes were
studied in great depth in [143] and a monograph [145] was devoted to them, one
that can be seen as the counterpart of [19] for Sperner planes.

A weakening of the axiom system for metric planes in a different direction, to
become an axiom system for all Cayley–Klein geometries with the exception of
the doubly-hyerbolic, was presented by Rolf Struve in 2016 [254]. Its axioms also
imply pPapp.

Thus, it appears that there is a little understood obstruction preventing absolute
axiom system more general than that of metric planes for plane reflection geometry
to imply pDes but not pPapp.

That one does need somewhat strong congruence axioms to prove aDes has
been pointed out by models of independence that verify all of Hilbert’s plane
axioms except the triangle congruence axiom (“Side-Angle-Side”), ever since the
first edition of the Grundlagen der Geometrie. The independence in question is
implicit in the work of Beltrami going back to 1865 and explicit in a paper of Peano
of 1894. Non-Desarguesian geometries with several other properties were a subject
of several other papers (see the survey [50]), the one by Moulton from 1902 [170]
being adopted in all later editions of Hilbert’s Grundlagen der Geometrie [103].

In a different direction, Smid [245] has shown that pPapp and pDes can be proved
even if one weakens, inside the axiom system for absolute geometry, Hilbert’s
segment transport axiom, in such a manner that it is still valid in bounded regions of
an absolute plane. One cannot define line reflections in these planes, so Hjelmslev’s
results cannot be applied directly.

8.7.3 The Affine Plane with Orthogonality Setting

Unlike the absolute case, in the affine case there are several axiom systems
([133, 173, 174, 206, 209, 215, 229, 230, 256, 276] (it is also shown in [136] that one
cannot obtain a non-Pappian three-dimensional geometry in the same manner)) that
provide in the Euclidean case a precise answer to Hilbert’s question, i.e., provide
orthogonality or congruence axioms that are strong enough to imply aDes but not
aPapp. On the other hand, as shown in [216] even in the affine setting, if one
postulates the existence, in a translation plane, of an orthogonality relation on lines,
such that (i) if a ⊥ b, a ‖ a′, and b ‖ b′, then a′ ⊥ b′; (ii) if a ⊥ b and a ⊥ c,
then b ‖ c, (iii) if two of the altitudes of a triangle exist and intersect, then the third
altitude exists and passes through that intersection point, (iv) there are four lines
a1, a2, a3, a4, such that a1 ⊥ a2, a′1 ⊥ a′2, such that none of a1 and a2 is parallel
to any of a′1 and a′2, then aPapp holds. Whether that statement remains true even
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without the assumption that the affine plane is a translation plane is not known,
according to [216]. Other conditions leading to aPapp can be found in [251].

Moreover, by weakening some orthogonality axioms from [229], Schütte suc-
ceeded in [231] to construct affine planes with a symmetric orthogonality relation
over certain alternative fields that need not be skew fields (the algebraic description
of possible models can be found in [36]). In [140], it is shown that a symmetric
orthogonality relation can be introduced in an even larger class of affine parallel
structures.

8.8 The Desargues Property in Busemann’s G-Spaces

8.8.1 Hilbert’s Fourth Problem

Desargues theorem also appears as an axiom in a rather different context. Although
motivated by a fundamental question in the axiomatic foundation of geometry,
Hilbert’s Fourth Problem, as it became known by being the fourth problem on
Hilbert’s list of twenty-three problems—one actually read at the 1900 International
Congress of Mathematicians in Paris—it very soon became apparent that the
methodology required for its solution was of a non-elementary nature. It concerns
the construction of all the metrics in which the ordinary lines, that is (pieces of) lines
in n-dimensional real projective space Pn(R), are the shortest curves or geodesics.
It became clear very soon, already with the dissertation of Hilbert’s student Hamel
[86], parts of a revised version of which were published in 1903 [87], that one
needs to assume the Desargues axiom to obtain a result resembling a classification.
While Hamel assumed the differentiability of a certain length function that shows
up, Busemann [43] introduced a set-up in which all assumptions of differentiability
are banned from the axioms. What remains is still non-elementary, as it assumes a
metric with real number values as well as topological notions, but the spirit is very
close to that of the axiomatic foundation of geometry that was the subject of the
previous sections.

Hilbert’s Fourth Problem, as well as Busemann’s contributions were surveyed in
depth in [187], so we will mention only the main aspects of the axiomatic set-up
and the main results that involve what Busemann calls “the Desargues property.”

8.8.2 G-Spaces

We first take care of notation. In any metric space (X, d), one can define a notion
of metric betweenness βd in the manner of Menger [159] (see also [268]), by
stipulating that βd(x, y, z) holds if and only if x, y, z are distinct and d(x, y) +
d(y, z) = d(x, z). Here βd(x, y, z) is read as “y lies between x and z.” The open
ball with center p and radius ", denoted by S(p, ") is the set of all x in X with
d(p, x) < ".
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A G-space is a metric space (X, d) satisfying the following axioms: (1) (Finite
compactness) Every bounded infinite set has an accumulation point; (2) (Menger
convexity) For any x and z in X, there exists a point y which is between x and
z (that is, for which βd(x, y, z) holds); (3) (Local extendability) To every point
p of X there corresponds a positive "p, such that, for two distinct points x and
y in S(p, "p) there is a point z in S(p, "p) with βd(x, y, z); (4) (Uniqueness of
extension) If βd(x, y, z1) and βd(x, y, z2) and if d(y, z1) = d(y, z2) then z1 = z2.

A geodesic is a map x : R → X, such that, for any real number τ0 there is a
positive number ε(τ0) such that for all τ1, τ2 with |τ1 − τ0| < ε(τ0) and |τ2 − τ0| <
ε(τ0), we have d(x(τ1), x(τ2)) = |τ1 − τ2| (that is, if x is a locally isometric map).
A geodesic is called a straight line if the equation d(x(τ1), x(τ2)) = |τ1 − τ2| holds
for all τ1 and τ2.

Under the Desargues property Busemann understands the conjunction of a
modified version of the statement pDes makes and of its converse (by which we
mean that from the collinearity of C12, C23, and C31 one deduces the concurrence
of A1B1, A2B2, and A3B3). The modified version of pDes states, with geodesics
instead of lines, that if A1B1, A2B2, and A3B3 have the point C in common, if
A1A2 and B1B2 have C12 in common, if A2A3 and B2B3 have C23 in common, and
if two of the three intersections C12C23 ∩A3A1, C12C23∩B3B1, and A3A1 ∩B3B1
exists, then they coincide. The version of the converse of pDes states that, if the
intersections of A1A2 and B1B2, A2A3 and B2B3, and A1A3 and B1B3 exist and
are collinear (that is, lie on a geodesic), and if two of the three intersections if
A1B1 ∩ A2B2, A2B2 ∩A3B3, and A3B3 ∩ A1B1 exist, then they coincide.

A G-space in which the geodesic through two points is unique and in which
the Desargues Property holds is called a Desarguesian space. Using the Menger-
Urysohn notion of topological dimension, one may speak of n-dimensional Desar-
guesian spaces.

In a similar vein to the results reported in Sect. 8.5, Busemann proved in [44,
(14.6), (14.8)] (and dealt with an unsolved case in [46, p. 32] to complete the proof)
that

For a given n-dimensional Desarguesian G-space R there is an (n + 1)-dimensional
Desarguesian space R∗ such that R is a hyperplane in R∗ and the restriction of the metric
of R∗ to R is the given metric in R.

Extending to G-spaces a result of Hamel [87], Busemann also proved the follow-
ing characterization of two-dimensional Desarguesian spaces [44, Theorems 13.1]
(a similar characterization is valid for the n-dimensional case, even if the metric is
not assumed to be symmetric, as shown in [44, Theorem 14.1] and in [46, p. 37]);

Let R be a two dimensional Desarguesian space. Then
Either all geodesics are great circles of the same length and R can be mapped topologically
on the projective plane P 2(R) in such a way that each great circle in R goes into a line in
P 2(R)

Or all geodesics are straight lines and R can be mapped topologicallv on an open convex
subset C of the affine plane A2(R) in such a way that each straight line in R goes into the
intersection of C with a line in A2(R).
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Desarguesian spaces in which the metric is not necessarily symmetric, which
are noncompact and for which the closed balls, S(p, ") (with the balls defined in
either way, as the set of all x in X with d(p, x) < " or as the set of all x in X

with d(x, p) < "), also allow for a simple joint characterization of the Minkowski
and Hilbert geometries (the former being a generalization of the Euclidean plane in
which the unit circle is replaced by an arbitrary convex curve (and it shows up for the
first time in [162] (see [259] for a comprehensive treatment of these geometries) and
the latter being a generalization of the Beltrami-Cayley–Klein model of hyperbolic
geometry, in which the circle is being replaced by an arbitrary convex curve (and
which shows up for the first time in a letter of Hilbert to Klein, published in [101]
and as Appendix I in [103]) by the property that an isometry of one geodesic on
another or itself is a projectivity.

A G-space R is called straight if "(p) = ∞ for all p ∈ R, where " is the
function introduced in axiom (3) for G-spaces. A straight two-dimensionalG-space
is quasihyperbolic if it possesses all translations along two geodesics G and H ,
whereG is an asymptote toH , but not parallel toH (here the terms “asymptote” and
‘parallel” have rather involved definitions, see [44]). As shown in [45], hyperbolic
geometry is the only Desarguesian quasihyperbolic geometry.

The last surprising result of the theory of G-spaces, with an elementary flavor,
that we will state out of the vast œuvre of Busemann [49] and of his students of
results emphasizing the importance of the Desargues axiom, is due to Busemann’s
student Phadke [196], who has shown that a straight two-dimensional G-space
which satisfies the following property (P), stipulating the existence of a ray having
the property of the Euclidean angle bisector,

Inside a nonstraight convex angle with legs N1, N2 and vertex v, there is a ray M with
origin v, such that any segment with endpoints a1 and a2, with a1 ∈ N1 and a2 ∈ N2, with
a1 �= v, a2 �= v, intersects M in a point b = b(a1, a2), for which d(v,a1)

d(v,a2)
= d(b,a1)

d(b,a2)
.

must be Desarguesian (that is, it must satisfy aDes). Given the results in [47] and
[48], where the problem of characterizing two-dimensional G-spaces satisfying
property (P) was raised, it follows that a straight two-dimensional G-space which
satisfies (P) must be a Minkowski plane.
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Vuia Timişoara Lucrăr. Sem. Mat. Fiz. No. 2 (1984), 37–40.

177. T. G. Ostrom, Conicoids: conic-like figures in non-Pappian planes. P. Plaumann and K.
Strambach (eds), Geometry—von Staudt’s point of view (Bad Windsheim, 1980), pp. 175–
196, D. Reidel, Dordrecht 1981.



396 V. Pambuccian and C. Schacht

178. F. W. Owens, The introduction of ideal elements and a new definition of projective n-space.
Trans. Amer. Math. Soc. 11 (1910), 141–171.

179. V. Pambuccian, Simple axiom systems for affine planes. Zeszyty Nauk. Geom. 21 (1995),
59–74.

180. V. Pambuccian, Two notes on the axiomatics of structures with parallelism. Note Mat. 20
(2000/2001), 93–104.

181. V. Pambuccian, Fragments of Euclidean and hyperbolic geometry. Sci. Math. Jpn. 53 (2001),
361–400.

182. V. Pambuccian, Early examples of resource-consciousness. Studia Logica 77 (2004), 81–86.
183. V. Pambuccian, The axiomatics of ordered geometry I. Ordered incidence spaces. Expo. Math.

29 (2011), 24–66.
184. V. Pambuccian, Orthogonality as single primitive notion for metric planes. With an appendix

by H. and R. Struve. Beitr. Algebra Geom. 48 (2007), 399–409.
185. V. Pambuccian, Review of: M. Hallett and U. Majer (eds.), David Hilbert’s lectures on the

foundations of geometry, 1891–1902. Springer-Verlag, Berlin, 2004, Philos. Math. (III) 21
(2013), 255–277.

186. V. Pambuccian, Prolegomena to any theory of proof simplicity. Philos. Trans. Royal Soc. A
377 (2019), 20180035.

187. A. Papadopoulos, Hilbert’s fourth problem. A. Papadopoulos and M. Troyanov (eds.),
Handbook of Hilbert geometry, pp. 391–431, European Mathematical Society, Zürich, 2014.

188. Pappus d’Alexandrie, La collection mathématique. Œuvre traduite pour la première fois du
grec au français avec une intriduction et des notes par Paul Ver Eecke. Desclée de Brouwer,
Paris-Bruges, 1933.

189. Pappus of Alexandria, Book 7 of the Collection. Edited, with translation and commentary by
Alexander Jones. Springer-Verlag, New York 1986.

190. K. H. Parshall, In pursuit of the finite division algebra theorem and beyond: Joseph H. M.
Wedderburn, Leonard E. Dickson, and Oswald Veblen. Arch. Internat. Hist. Sci. 33 (1983),
274–299.

191. B. Pascal, Œuvres complètes. Texte établi, présenté et annoté par Jacques Chevalier.
Bibliothèque de la Pléiade, Gallimard, Paris, 1976.

192. M. Pasch, Vorlesungen über neuere Geometrie. 1. Aufl. (1882), 2. Aufl. (Mit einem Anhang
von M. Dehn: Die Grundlegung der Geometrie in historischer Entwicklung) J. Springer,
Berlin, 1926.

193. J.-C. Petit, Caractérisation algébrique des plans affines munis d’une mesure des triangles.
Algèbre Theorie Nombres, Sem. P. Dubreil, M.-L. Dubreil-Jacotin, L. Lesieur et C. Pisot 19
(1965/66), No. 22.

194. J.-C. Petit, Mesure des triangles et mesure des vecteurs à supports parallèles dans une
géométrie plane affine. Math. Z., 94, 271–306 (1966), Zbl 156.19303.

195. J.-C. Petit, Mesure des vecteurs sur un groupe G et ternaires G-mesurables. Math. Z. 110
(1969), 223–256.

196. B. B. Phadke, The theorem of Desargues in planes with analogues to Euclidean angular
bisectors. Math. Scand. 39 (1976), 191–194.

197. G. Pickert, Projektive Ebenen. Springer-Verlag, Berlin, 1955 (1st ed), 1975 (2nd ed).
198. G. Pickert, Der Satz von Pappos mit Festelementen. Arch. Math. (Basel) 10 (1959), 56–61.
199. G. Pickert, Projectivities in projective planes. P. Plaumann and K. Strambach (eds),

Geometry—von Staudt’s point of view (Bad Windsheim, 1980), pp. 1–49, D. Reidel,
Dordrecht, 1981.

200. G. Pickert, Bemerkungen zu einem Inzidenzsatz von W. Kroll. Math. Semesterber. 40 (1993),
55–62.

201. G. Pickert, Ceva-Transitivität. Geom. Dedicata 74 (1999), 73–78.
202. B. Polster, A geometrical picture book. Springer, New York, 1998.
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Chapter 9
Projective Configuration Theorems:
Old Wine into New Wineskins

Serge Tabachnikov

Abstract We survey some recent results concerning projective configuration theo-
rems in the spirit of the classical theorems of Pappus, Desargues, Pascal, . . . We hope
that this modern take on the old theorems makes this evergreen topic fresh again.
We connect configuration theorems to completely integrable systems, identities in
Lie algebras of motion, modular group, and other subject of contemporary interest.

9.1 Introduction: Classical Configuration Theorems

Projective configuration theorems are among the oldest and best known mathemat-
ical results. The next figures depict the famous theorems of Pappus, Desargues,
Pascal, Brianchon, and Poncelet (Figs. 9.1, 9.2, 9.3, 9.4).

The literature on configuration theorems is vast; the reader interested in a
panoramic view of the subject is recommended [6, 36].

Configuration theorems continue to be an area of active research. To a great
extent, this is due to the advent of computer as a tool of experimental research
in mathematics. In particular, interactive geometry software is a convenient tool for
the study of geometric configurations. The illustrations in this article are made using
such a software, Cinderella 2 [52].

Another reason for the popularity of configuration theorems is that they play an
important role in the emerging field of discrete differential geometry and the theory
of completely integrable systems [7].

The goal of this survey is to present some recent results motivated and inspired
by the classical configuration theorems; these results make the old theorems fresh
again. The selection of topics reflects this author’s taste; no attempt was made
to present a comprehensive description of the area. In the cases when proofs are
discussed, they are only outlined; the reader interested in details is referred to the
original papers.
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Fig. 9.1 The Pappus theorem: if A1, A2, A3 and B1, B2, B3 are two collinear triples of points,
then C1, C2, C3 is also a collinear triple

Fig. 9.2 The Desargues theorem: if the lines A1B1, A2B2 and A3B3 are concurrent, then the
points C1, C2, C3 are collinear

Fig. 9.3 The Pascal theorem, a generalization of the Pappus theorem: the pointsA1, . . . , A6 lie on
a conic, rather than the union of two lines. The Brianchon theorem is projectively dual to Pascal’s



9 Projective Configuration Theorems: Old Wine into New Wineskins 403

Fig. 9.4 The Poncelet Porism, case n = 5: if the polygonal line A1A2A3A4A5, inscribed into a
conic and circumscribed about a conic, closes up after five steps, then so does any other polygonal
line B1B2B3B4B5

We assume that the reader is familiar with the basics of projective, Euclidean,
spherical, and hyperbolic geometries. One of the standard references is [5], and [22]
is as indispensable as ever.

Now let us specify what we mean by configuration theorems in this article. The
point of view is dynamic, well adapted for using interactive geometry software.

An initial data for a configuration theorem is a collection of labelled points Ai
and lines bj in the projective plane, such that, for some pairs of indices (i, j), one
has the incidence Ai ∈ bj . If, in addition, a polarity is given, then one can associate
the dual line to a point, and the dual point to a line. In presence of polarity, the initial
data includes information that, for some pairs of indices (k, l), the point Ak is polar
dual to the line bl .

One also has an ordered list of instructions consisting of two operations: draw a
line through a pair of points, or intersect a pair of lines at a point. These new lines
and points also receive labels. If polarity is involved, one also has the operation of
taking the polar dual object, point to line, or line to point.

The statement of a configuration theorem is that, among so constructed points
and lines, certain incidence relations hold, that is, certain points lie on certain lines.

It is assumed that the conclusion of a configuration theorem holds for almost
every initial set of points and lines satisfying the initial conditions, that is, holds
for a Zariski open set of such initial configurations. This is different from what is
meant by a configuration of points and lines in chapter 3 of [22] or in [20]: the focus
there is on whether a combinatorial incidence is realizable by points and lines in the
projective plane.
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9.2 Iterated Pappus Theorem and the Modular Group

The Pappus theorem can be viewed as a construction in RP
2 that inputs two

ordered triples of collinear points A1, A2, A3 and B1, B2, B3, and outputs a new
collinear triple of points C1, C2, C3, see Fig. 9.1. One is tempted to iterate: say,
take A1, A2, A3 and C1, C2, C3 as an input. Alas, this takes one back to the triple
B1, B2, B3.

To remedy the situation, swap points C1 and C3. Then the input A1, A2, A3 and
C1, C2, C3 yields a new collinear triple of points, and so does the input C1, C2, C3
and B1, B2, B3. And one can continue in the same way indefinitely, see Fig. 9.5.
The study of these iterations was the topic of Schwartz’s paper [39].

Return to Fig. 9.1. The input of the Pappus construction is the marked box
(A1, A3, B3, B1;A2, B2), a quadrilateral A1A3B3B1 with the top distinguished
point A2 and the bottom distinguished point B2. The marked box is assumed to
satisfy the convexity condition: the points A1 and A3 are separated by the points A2
andO on the projective line a, and likewise for the pairs of pointsB1, B3 and B2,O

on the line b. Marked boxes that differ by the involution

(A1, A3, B3, B1;A2, B2)↔ (A3, A1, B1, B3;A2, B2)

are considered to be the same.
A convex set in RP

2 is a set that is disjoint from some line and that is convex in
the complement to this line, the affine plane. Two points in RP

2 can be connected
by a segment in two ways. The four points A1, A3, B3, B1, in this cyclic order,
define 16 closed polygonal lines, but only one of them is the boundary of a convex
quadrilateral, called the interior of the convex marked box.

Fig. 9.5 Iterations of the
Pappus construction produced
by Schwartz’s applet [53]
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Recall that the points of the dual projective plane are the lines of the initial plane.
Let Θ = (A1, A3, B3, B1;A2, B2) be a convex marked box in RP

2. Its dual, Θ∗, is
a marked box in the dual projective plane whose points are the lines

(A2B1, A2B3, A1B2, A3B2; a, b).

The dual marked box is also convex.
The moduli space of projective equivalence classes of marked boxes is

2-dimensional. One can send the points A1, A3, B3, B1 to the vertices of a unit
square; then the projective equivalence class of a convex marked box is determined
by the positions of the points A2 and B2 on the horizontal sides of the square.
Namely, let x = |A1A2|, y = |B1B2|. Then the equivalence class given by

(x, y) ∼ (1− x, 1− y), (9.1)

where 0 < x, y < 1, determines the projective equivalence class of a convex marked
box. We denote this equivalence class by [x, y].

The Pappus construction defines two operations on convex marked boxes, see
Fig. 9.6:

τ1 : (A1, A3, B3, B1;A2, B2) �→ (A1, A3, C3, C1;A2, C2),

τ2 : (A1, A3, B3, B1;A2, B2) �→ (C1, C3, B3, B1;C2, B2).

Add to it a third operation

i : (A1, A3, B3, B1;A2, B2) �→ (B1, B3, A1, A3;B2, A2),

also shown in Fig. 9.6.
The three operations form a semigroup G. The operations satisfy the following

identities, proved by inspection.

Fig. 9.6 The interior of the
convex marked box i(Θ) is
bounded by the segments
A1A3, A3B1, B1B3 and
B3A1. Two of these segments
cross the line at infinity
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Fig. 9.7 A tiling of the
hyperbolic plane, in the
Poincaré disk model, by ideal
triangles

Lemma 2.1 One has:

i2 = 1, τ1iτ2 = τ2iτ1 = i, τ1iτ1 = τ2, τ2iτ2 = τ1.

As a consequence, G is a group; for example, τ−1
1 = iτ2i.

Recall that the modular groupM is the group of fractional-linear transformations
with integral coefficients and determinant one, that is, the group PSL(2,Z). Since
PGL(2,R) is the group of orientation preserving isometries of the hyperbolic plane,
the modular group M is realized as a group of isometries of H 2.

Consider the tiling of H 2 by ideal triangles obtained from one such triangle
by consecutive reflections in the sides, see Fig. 9.7 for the beginning of this
construction. The modular group is generated by two symmetries of the tiling: the
order three rotation about point A and the order two rotation (central symmetry)
about point B. Algebraically, M is a free product of Z3 and Z2.

Return to the group G. It is generated by the elements α = iτ1 and β = i.
Lemma 2.1 implies that α3 = β2 = 1. One can prove that there are no other
relations, and hence G = Z3 ∗ Z2 is identified with the modular group.

Given a convex marked box Θ , consider its orbit Ω = G(Θ) under the action
of the group G. The orbit can be described by its oriented incidence graph Γ . The
edges of Γ correspond to the marked boxes of Ω , oriented from top to bottom, and
the vertices correspond to the tops and the bottoms of the boxes.

One can embed Γ in the hyperbolic plane as in Fig. 9.7 (the orientations of the
edges are not shown). The group G acts by permutations of the edges of Γ . The
operation i reverses the orientations of the edges. The operation τ1 rotates each
edge counterclockwise one ‘click’ about its tail, and τ2 rotates the edges one ‘click’
clockwise about their heads. (This is a different action from the one generated by
rotations about points A and B in Fig. 9.7). Denote by G′ the index two subgroup
of G that consists of the transformations that preserve the orientations of the edges.



9 Projective Configuration Theorems: Old Wine into New Wineskins 407

The orbit Ω of a convex marked box Θ has a large group of projective
symmetries, namely, an index two subgroup M ′ of the modular group M . This is
one of the main results of [39]. Specifically, one has

Proposition 2.2 Given a convex marked box Θ , there is an order three projective
transformation with the cycle

i(Θ) �→ τ1(Θ) �→ τ2(Θ).

In addition, there exists a polarity that identifies i(Θ) with the dual box Θ∗.

Proof For the proof of the first statement, one can realize the box Θ in such a way
that the three-fold rotational symmetry is manifestly present, see Fig. 9.8. Namely,

Θ = (B3, B1, A1, A3;B2, A2), i(Θ) = (A1, A3, B1, B3;A2, B2),

τ1(Θ) = (B1, B3, C1, C3;B2, C2), τ2(Θ) = (C1, C3, A1, A3;C2, A2).

In terms of the marked box coordinates (x, y), described in (9.1), the three
operations, i, τ1, and τ2, act in the same way: [x, y] �→ [1− y, x].

For the second statement, consider another realization depicted in Fig. 9.9. The
marked points A2 and B2 are at infinity, and |OA1||OA3| = |OB1||OB3| = 1.
Then the polarity with respect to the unit circle centered at point O acts as follows:

A1 �→ A3B2, A3 �→ A1B2, B1 �→ B3A2, B3 �→ B1A2,

providing the desired projective equivalence. �

Fig. 9.8 A symmetric
realization of the marked
boxes i(Θ), τ1(Θ), τ2(Θ)
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Fig. 9.9 Projective
equivalence of i(Θ) and Θ∗

If one identifies the projective plane with its dual by a polarity, then the above
discussion describes a faithful representation of the modular group M as the group
of projective symmetries of the G-orbit Ω of a convex marked box.

A marked boxΘ determines a natural map f of the set of vertices of the graph Γ
to the set of the marked points of the orbit Ω . The map f conjugates the actions of
the groupG′ on the graph Γ and the groupM ′ of projective symmetries of the orbit
Ω . The set of vertices of Γ is dense on the circle at infinity of the hyperbolic plane
S1, see Fig. 9.7. Using the nested properties of the interiors of the boxes in Ω and
estimates on their sizes (in the elliptic plane metric), Schwartz proves the following
theorem.

Theorem 2.1 The map f extends to a homeomorphism of S1 to its image.

The image Λ = f (S1) is called the Pappus curve; see Fig. 9.5 that provides an
approximation of this curve.

The above discussion shows that the Pappus curve is projectively self-similar. In
the exceptional case of x = y = 1/2, the curve Λ is a straight line. Otherwise, it is
not an algebraic curve, see [21].

The tops and bottoms of the marked boxes form a countable collection of lines
that also extends to a continuous family, a curve L in the dual projective plane.

Define a transverse line field along Λ as a continuous family of lines such that
each line from the family intersects the curve at exactly one point and every point
of Λ is contained in some line.

Theorem 2.2 If the Pappus curve Λ is not a straight line, then L is a unique
transverse line field along Λ.

This theorem, the fact that the Pappus curve is projectively self-similar, and
computer experiments suggest that Λ is a true fractal (unless it is a straight line).
The thesis [26] contains some preliminary numerical results on the box dimension of
the Pappus curve and its dependence on the coordinates [x, y] of the initial convex
marked box. According to these experiments, the maximal possible box dimension
of Λ is about 1.25.



9 Projective Configuration Theorems: Old Wine into New Wineskins 409

Finding the fractal dimensions of the Pappus curves as a function of [x, y] or,
at least, proving that this dimension is greater than one in all non-exceptional cases
[x, y] �= [1/2, 1/2], is an outstanding open problem.

9.3 Steiner Theorem and the Twisted Cubic

This section is based on another recent ramification of the Pappus theorem, the work
of Rigby [37] and Hooper [23].

Let us start with the dual Pappus theorem, see Fig. 9.10 where the objects dual to
the ones in Fig. 9.1 are denoted by the same letters, with the upper and lower cases
swapped (the Pappus theorem is equivalent to its dual). As an aside, let us mention
that the dual Pappus theorem has an interpretation in the theory of webs: the 3-web,
made of three pencils of lines, is flat, see [16], lecture 18.

Now consider Pascal’s theorem, Fig. 9.3. The six permutations of the points
on the conic yield 60 Pascal lines. These lines and their intersection points,
connected by further lines, form a intricate configuration of 95 points and 95
lines, the hexagrammum mysticum. There is a number of theorems describing this
configuration, due to Steiner, Plücker, Kirkman, Cayley, and Salmon. See [9, 10] for
a contemporary account of this subject.

The Pappus theorem is a particular case of Pascal’s theorem, and in this case, the
number of lines that result from permuting the initial points (say, points B1, B2, B3
in Fig. 9.1) reduces to six, shown in Fig. 9.11.

Let us introduce notations. Consider Fig. 9.1 and denote the triples of points:

A = (A1, A2, A3), B = (B1, B2, B3).

The Pappus theorem produces a new triple, C = (C1, C2, C3). The lines containing
these triples are denoted by a, b, c, respectively. We write: c = �(A,B).

Fig. 9.10 Dual Pappus
theorem



410 S. Tabachnikov

Fig. 9.11 Two Steiner points, corresponding to even and odd permutations, are labelled. One of
the points �∗(ϕ, s(ψ)) is shown

We use a similar notation for the dual Pappus theorem: if

α = (a1, a2, a3), β = (b1, b2, b3)

are two triples of concurrent lines, then �∗(α, β) is the point of intersection of the
triple of lines (c1, c2, c3), see Fig. 9.10.

The permutation group S3 acts on triples by the formula

s(B) = (Bs−1(1), Bs−1(2), Bs−1(3)).

Let σ ∈ S3 be a cyclic permutation, and τ ∈ S3 be a transposition of two elements.
The following result, depicted in Fig. 9.11, is due to Steiner.

Theorem 3.1 The three Pappus lines �(A, s(B)) where s ∈ S3 is an even
permutation, are concurrent, and so are the three lines corresponding to the odd
permutations.

Thus we obtain two triples of concurrent lines; denote them by

ϕ = (�(A,B), �(A, σ (B), �(A, σ 2 (B)), ψ = (�(A, τ(B)), �(A, τσ (B), �(A, τσ 2 (B)).

Apply the dual Pappus theorem to the permutations of these triples of lines. By
the dual Steiner theorem, the six points �∗(ϕ, s(ψ)), s ∈ S3, are collinear in threes.
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More is true. The next two theorems are due to Rigby [37].

Theorem 3.2 The points �∗(ϕ, s(ψ)) lie on line a when s is an even permutation,
and on line b when s is odd.

Let B′ be another collinear triple of points such that the line b′ still passes through
point O = a ∩ b. Applying the above constructions to A,B′, we obtain new triples
of lines ϕ′, ψ ′, and a new triple of points �∗(ϕ′, s(ψ ′)) on line a where s is an even
permutation.

Theorem 3.3 The new triple of points coincides with the old one: for even
permutations s, one has �∗(ϕ′, s(ψ ′)) = �∗(ϕ, s(ψ)).

Theorems 3.2 and 3.3 are stated by Rigby without proof; to quote,

The theorems in this section have been verified in a long and tedious manner using
coordinates. There seems little point in publishing the calculations; it is to be hoped that
shorter and more elegant proofs will be found.

Conceptual proofs are given in [23]; the reader is referred to this paper and is
encouraged to find an alternative approach to these results.

The above theorems make it possible to define the Steiner map

SO : (A1, A2, A3) �→ (�∗(ϕ,ψ), �∗(ϕ, σ 2(ψ)), �∗(ϕ, σ (ψ))).

This map depends on the point O , but not on the choice of the triple B.
The Steiner map commutes with permutations of the points involved, and hence

it induces a map of the space of unordered triples of points of the projective line.
Abusing notation, we denote this induced map by the same symbol. Hooper [23]
gives a complete description of the Steiner map.

Assume that the ground field is the field of complex numbers. The space of
unordered triples of points of CP1, that is, the symmetric cube S3(CP1), is identified
with CP

3. This is a particular case of the Fundamental Theorem of Algebra, one
of whose formulations is that Sn(CP1) = CP

n (given by projectivizing the Vieta
formulas that relate the coefficients of a polynomial to its roots). Thus SO is a self-
map of CP3.

The set of cubic polynomials with a triple root corresponds to a curve Γ ⊂ CP
3,

the twisted cubic (the moment curve). The secant variety of the twisted cubic, that
is, the union of its tangent and secant lines, covers CP3, and the lines are pairwise
disjoint, except at the points of Γ .

The set of cubic polynomials with a zero root corresponds to a plane in CP
3.

Denote this plane by Π . The Steiner map SO : CP3 → CP
3 is described in the next

theorem.

Theorem 3.4

(i) The map SO preserves the secants of the twisted cubic Γ that do not pass
through the origin (the image of the cubic polynomial z3).
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(ii) One can choose projective coordinates on these secant lines so that the map is
given by the formula x �→ x2.

(iii) The choice of coordinates is as follows: the two points of intersection of the
secant line with Γ have coordinates 0 and ∞, and the intersection point of the
secant with the plane Π has coordinate −1.

In homogeneous coordinates of CP3, the map SO is polynomial of degree 6; see
[23] for an explicit formula for a particular choice O = (0 : 1).

In the real case, the secant lines are identified with the circle R/Z, and the Steiner
map becomes the doubling map t �→ 2t mod 1, a well-known measure-preserving
ergodic transformation.

9.4 Pentagram-Like Maps on Inscribed Polygons

This section, based on [43], concerns eight configuration theorems of projective
geometry that were discovered in the study of the pentagram map.

The pentagram map, whose study was put forward by Schwartz [38], is a
transformation of the moduli space of projective equivalence classes of polygons
in the projective plane depicted in Fig. 9.12. The pentagram map has become a
popular object of study: it is a discrete completely integrable system, closely related
with the theory of cluster algebras. See [17–19, 33, 34, 46] for a sampler of the
current literature on this subject.

To formulate the results, let us introduce some notations.
By a polygon in the projective plane we mean a cyclically ordered collection of

its vertices (that also determines the cyclically ordered collection of lines, the sides
of the polygon).

Let Cn and C∗n be the spaces of n-gons in the projective plane RP
2 and its dual

(RP2)∗. Define the k-diagonal map Tk : Cn → C∗n : for P = {p1, . . . , pn},

Tk(P ) = {(p1pk+1), (p2pk+2), . . . , (pnpk+n)}.

Fig. 9.12 The pentagram
map takes an n-gon P to the
polygon made by the
intersection points of the
short (skip one) diagonals of
P . Here n = 7
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Fig. 9.13 The third iteration of the pentagram map on an inscribed octagon yields a projectively
dual octagon

Each map Tk is an involution; the map T1 is the projective duality that sends a
polygon to the cyclically ordered collection of its sides.

Extend the notation to muti-indices: Tab = Ta ◦ Tb, Tabc = Ta ◦ Tb ◦ Tc, etc. For
example, the pentagram map is T12. If P is a polygon in RP

2 and Q a polygon in
(RP2)∗, and there exists a projective transformation RP

2 → (RP2)∗ that takes P to
Q, we write: P ∼ Q.

Now we are ready to formulate our results; they concern polygons inscribed into
a conic or circumscribed about a conic.

Theorem 4.1

(i) If P is an inscribed 6-gon, then P ∼ T2(P ).
(ii) If P is an inscribed 7-gon, then P ∼ T212(P ).

(iii) If P is an inscribed 8-gon, then P ∼ T21212(P ).

Surprisingly, this sequence does not continue! Theorem 4.1 (iii) is depicted in
Fig. 9.13. See also Schwartz’s applet [54] for illustrations of this and other results
of this section.

Theorem 4.2 If P is a circumscribed 9-gon, then P ∼ T313(P ).

See Fig. 9.14.

Theorem 4.3 If P is an inscribed 12-gon, then P ∼ T3434343(P ).

The next results have a somewhat different flavor: one does not claim anymore
that the final polygon is projectively related to the initial one.

Theorem 4.4

(i) If P is an inscribed 8-gon, then T3(P ) is circumscribed.
(ii) If P is an inscribed 10-gon, then T313(P ) is circumscribed.

(iii) If P is an inscribed 12-gon, then T31313(P ) is circumscribed.
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Fig. 9.14 Theorem 4.2

Fig. 9.15 Theorem 4.4 (iii)

Again, contrary to one’s expectation, this sequence does not continue. Theo-
rem 4.4 (iii) is illustrated in Fig. 9.15.

Now about the discovery of these results and their proofs. Theorems 4.1 (i) and
(ii) were discovered in our study of the pentagram map. Then Valentin Zakharevich,
a participant of the 2009 Penn State REU (Research Experience for Undergraduates)
program, discovered Theorem 4.2. Inspired by this discovery, we did an extensive
computer search for this kind of configuration theorems; the results are the above
eight theorems. We think that the list above is exhaustive, but this remains a
conjecture.

Note that one may cyclically relabel the vertices of a polygon to deduce seem-
ingly new theorems. Let us illustrate this by an example. Rephrase the statement of
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Theorem 4.4 (iii) as follows: If P is an inscribed dodecagon then T131313(P ) is also
inscribed. Now relabel the vertices by σ(i) = 5i mod 12. The map T3 is conjugated
by σ as follows:

i �→ 5i �→ 5i + 3 �→ 5(5i + 3) = i + 3 mod 12,

that is, it is the map is T3 again, and the map T1 becomes

i �→ 5i �→ 5i + 1 �→ 5(5i + 1) = i + 5 mod 12,

that is, the map is T5. One arrives at the statement: If P is an inscribed dodecagon
then T535353(P ) is also inscribed.

We proved all of the above theorems, except Theorem 4.4 (iii), by uninspiring
computer calculations (the symbolic manipulation required for a proof of Theo-
rem 4.4 (iii) was beyond what we could manage in Mathematica).

Of course, one wishes for elegant geometric proofs. Stephen Wang found proofs
of Theorems 4.4 (i) and (ii) which are presented below, and Maria Nastasescu, a
2010 Penn State REU participant, found algebraic geometry proofs of the same
two theorems. Fedor Nilov proved Theorem 4.4 (iii) using a planar projection of
hyperboloid of one sheet. Unfortunately, none of these proofs were published.

Here is Wang’s proof of Theorem 4.4 (i).
Consider Fig. 9.16. We need to prove that the points B1, . . . , B8 lie on a conic.

The hexagon A6A1A4A7A2A5 is inscribed so, by Pascal’s theorem, the points
B1, B6 and C are collinear. That is, the intersection points of the opposite sides
of the hexagon B1B2B3B4B5B6 are collinear. By the converse Pascal theorem, this
hexagon is inscribed.

A similar argument shows that the hexagon B2B3B4B5B6B7 is inscribed. But
the two hexagons share five vertices, hence they are inscribed in the same conic.
Likewise, B8 lies on this conic as well.

Fig. 9.16 Proof of
Theorem 4.4 (i)
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Fig. 9.17 Proof of Theorem 4.4 (ii)

Now, to the proof of Theorem 4.4 (ii), see Fig. 9.17.
Consider the inscribed hexagon A3A6A9A10A7A4. By Pascal’s theorem, the

points

(A3A6) ∩ (A10A7), (A6A9) ∩ (A7A4), (A9A10) ∩ (A4A3)

are collinear. Hence the triangles A3B3A4 and A10A9B6 are perspective. By the
Desargues theorem, the points A4, A9, (B3B6) ∩ (A3A10) are collinear.

It follows that the triangles B9B10Y and B3B6X are perspective. By the Desar-
gues theorem, the points X,Y, (B6B9)∩ (B3B10) are collinear. The same argument,
with all indices shifted by five, implies that the points X,Y, (B1B4) ∩ (B8B5) are
collinear as well. Hence the points

(B6B9) ∩ (B3B10), (B1B4) ∩ (B8B5), and X

are collinear. Reinterpret this as the collinearity of

(C10B10) ∩ (C5B9), (C10B4) ∩ (C5B5), (B3B4) ∩ (B5B6).

It follows that the trianglesB3B4C10 andB5B6C5 are perspective. By the Desargues
theorem, the points B4, B5 and (C10C5) ∩ (C2C3) are collinear. That is, the points

(C10C5) ∩ (C2C3), (C10C1) ∩ (C3C4), (C1C2) ∩ (C4C5)
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are collinear, and by the converse Pascal theorem, the points

C10, C1, C2, C3, C4, C5

lie on a conic. The rest of the argument is the same as in the previous proof. �

One can add to Theorems 4.1–4.4 a statement about pentagons. Consider the
following facts:

(1) every pentagon is inscribed in a conic and circumscribed about a conic;
(2) every pentagon is projectively equivalent to its dual;
(3) the pentagram map sends every pentagon to a projectively-equivalent one.

Therefore one may add the following theorem to our list: for a pentagon P , one
has P ∼ T2(P ).

The following result of Schwartz [18, 40, 42] also has a similar flavor.

Theorem 4.5 If P is a 4n-gon inscribed into a degenerate conic (that is, a pair of
lines) then

(T1T2T1T2 . . . T1)(P ) (4n− 3 terms)

is also inscribed into a degenerate conic.

One wonders whether there is a unifying theme here. A possibly relevant
reference is [19].

9.5 Poncelet Grid, String Construction, and Billiards
in Ellipses

A Poncelet polygon is a polygon that is inscribed into an ellipse Γ and circum-
scribed about an ellipse γ . Let L1, . . . , Ln be the lines containing the sides of a
Poncelet n-gon, enumerated in such a way that their tangency points with γ are in
the cyclic order. The Poncelet grid is the collection of n(n + 1)/2 points Li ∩ Lj ,
whereLi∩Li is the tangency point of the line Li with γ . To simplify the exposition,
assume that n is odd (for even n, the formulations are slightly different).

One can partition the Poncelet grid in two ways. Define the sets

Pk = ∪i−j=k�i ∩ �j , Qk = ∪i+j=k�i ∩ �j ,

where the indices are understood mod n. There are (n+1)/2 setsPk , each containing
n points, and n sets Qk , each containing (n + 1)/2 points. The sets Pk are called
concentric, and the sets Qk are called radial, see Fig. 9.18.

The following theorem is proved in [41].
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Fig. 9.18 Poncelet grid, n = 9: shown are the concentric sets P0, P2, P3, and P4 that lie on four
ellipses

Theorem 5.1

(i) The concentric sets lie on nested ellipses, and the radial sets lie on disjoint
hyperbolas.

(ii) The complexified versions of these conics have four common tangent lines.
(iii) All the concentric sets are projectively equivalent to each other, and so are all

the radial sets.1

In this section, following [28], we prove this projective theorem using Euclidean
geometry, namely, the billiard properties of conics. As a by-product of this approach,
we establish the Poncelet theorem and prove the theorem of Reye and Chasles on
inscribed circles. See [13, 15] for general information about the Poncelet theorem,
and [27, 47, 48] for the theory of billiards.

The reduction to billiards goes as follows. Any pair of nested ellipses γ ⊂ Γ can
be taken to a pair of confocal ellipses by a suitable projective transformation. This
transformation takes a Poncelet polygon to a periodic billiard trajectory in Γ .

The billiard inside a convex domain with smooth boundary is a transformation
of the space of oriented lines (rays of light) that intersect the domain: an incoming
billiard trajectory hits the boundary (a mirror) and optically reflects so that the angle
of incidence equals the angle of reflection.

The space of oriented lines has an area form, preserved by the optical reflections
(independently of the shape of the mirror). Choose an origin, and introduce
coordinates (α, p) on the space of rays: α is the direction of the ray, and p is its
signed distance to the origin. Then the invariant area form is ω = dα ∧ dp.

1See also a recent paper [50] for an extension of Kasner’s theorem from pentagons to Poncelet
polygons.
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Fig. 9.19 String construction

A caustic of a billiard is a curve γ with the property that if a segment of a billiard
trajectory is tangent to γ , then so is each reflected segment.

There is no general method of describing caustics of a given billiard curve,2 but
the converse problem, to reconstruct a billiard table Γ from its caustic γ , has a
simple solution given by the following string construction: wrap a non-stretchable
closed string around γ , pull it tight, and move the farthest point around γ ; the
trajectory of this point is the billiard curve Γ . This construction yields a 1-parameter
family of billiard tables sharing the caustic γ : the parameter is the length of the
string.

The reason is as follows, see Fig. 9.19. For a point X outside of the oval γ ,
consider two functions:

f (X) = |XA|+ '|AO|, g(X) = |XB|+ '|BO| .

The gradients of these functions are the unit vectors along the lines AX and BX,
respectively. It follows that these two lines make equal angles with the level curves
of the functions f + g and f − g, and that these level curves are orthogonal to each
other. In particular, the level curves of f + g are the billiard tables for which γ is a
caustic.

Note that the function f + g does not depend on the choice of the auxiliary point
O , whereas the function f − g is defined up to an additive constant, so its level
curves are well defined.

Here is a summary of the billiard properties of conics. The interior of an ellipse
is foliated by confocal ellipses: these are the caustics of the billiard inside an ellipse.
Thus one has Graves’s theorem: wrapping a closed non-stretchable string around
an ellipse yields a confocal ellipse.

The space of rays A that intersect an ellipse is topologically a cylinder, and the
billiard system inside the ellipse is an area-preserving transformation T : A → A.

2The existence of caustics for strictly convex and sufficiently smooth billiard curves is proved in
the framework of the KAM theory.
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Fig. 9.20 Phase portrait of
the billiard map in an ellipse

The cylinder is foliated by the invariant curves of the map T consisting of the rays
tangent to confocal conics, see Fig. 9.20.

The curves that go around the cylinder correspond to the rays that are tangent to
confocal ellipses, and the curves that form ‘the eyes’ to the rays that are tangent to
confocal hyperbolas. A singular curve consists of the rays through the foci, and the
two dots to the 2-periodic back and forth orbit along the minor axis of the ellipse.

One can choose a cyclic parameter, say, x modulo 1, on each invariant circle, such
that the map T becomes a shift x �→ x + c, where the constant c depends on the
invariant curve. Here is this construction (a particular case of the Arnold-Liouville
theorem in the theory of integrable systems).

Choose a function H whose level curves are the invariant curves that foliate A,
and consider its Hamiltonian vector field sgrad H with respect to the area form ω.
This vector field is tangent to the invariant curves, and the desired coordinate x on
these curves is the one in which sgrad H is a constant vector field d/dx. Changing
H scales the coordinate x on each invariant curve and, normalizing the ‘length’ of
the invariant curves to 1, fixes x uniquely up to an additive constant. In other words,
the 1-form dx is well defined on each invariant curve.

The billiard map T preserves the area form and the invariant curves, therefore its
restriction to each curve preserves the measure dx, hence, is a shift x �→ x + c.

An immediate consequence is the Poncelet Porism: if a billiard trajectory in an
ellipse closes up after n reflections, then nc ≡ 0 mod 1, and hence all trajectories
with the same caustic close up after n reflections.3

Note that the invariant measure dx on the invariant curves does not depend
on the choice of the billiard ellipse from a confocal family: the confocal ellipses
share their caustics. This implies that the billiard transformations with respect to
two confocal ellipses commute: restricted to a common caustic, both are shifts in
the same coordinate system. This statement can be considered as a configuration
theorem; see Fig. 9.21.

3See [44] for a curious property of the centroids of Poncelet polygons.
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Fig. 9.21 Left: the billiard reflections of the rays from a focus in two confocal ellipses commute.
Right: the general case

Fig. 9.22 Two pairs of tangents from an ellipse to a confocal ellipse

To summarize, an ellipse is a billiard caustic for the confocal family of ellipses.
It carries a coordinate x, defined up to an additive constant, in which the billiard
reflection in confocal ellipses is given by x �→ x + c. We refer to the coordinate x
as the canonical coordinate.

Consider an ellipse γ , and let x be the canonical coordinate on it. Define
coordinates in the exterior of the ellipse: the coordinates of a point X outside of
γ are the coordinates x1 and x2 of the tangency points of the tangent lines from X

to γ . Let us call (x1, x2) the string coordinates of point X. The confocal ellipses are
given by the equations x2 − x1 = const.

Lemma 5.1 The confocal hyperbolas have the equations x2 + x1 = const.

Proof Consider Fig. 9.22. Let the canonical coordinates of the tangency points on
the inner ellipse, from left to right, be x1, x2, x3, x4, so that the string coordinates
are as follows:

A(x1, x3), B(x2, x4), C(x2, x3), D(x1, x4).
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Since A and B are on a confocal ellipse, x4 − x2 = x3 − x1, and hence x2 + x3 =
x1 + x4.

By the billiard property, the arc of an ellipse AB bisects the angles CAD and
CBD. Therefore, in the limit A → B, the infinitesimal quadrilateral ABCD
becomes a kite: the diagonal AB is its axis of symmetry. Hence AB ⊥ CD, and
the locus of points given by the equation x1 + x4 = const and containing points C
and D is orthogonal to the ellipse through points A and B. Therefore this locus is a
confocal hyperbola. �

The next result is due to Reye and Chasles.

Theorem 5.2 Let A and B be two points on an ellipse. Consider the quadrilateral
ABCD, made by the pairs of tangent lines fromA and B to a confocal ellipse. Then
its other vertices, C and D, lie on a confocal hyperbola, and the quadrilateral is
circumscribed about a circle, see Fig. 9.22.

Proof In the notation of the proof of the preceding lemma, x2 + x3 = x1 + x4,
hence points C and D lie on a confocal hyperbola. Furthermore, in terms of the
string construction,

f (A)+ g(A) = f (B)+ g(B), f (C)− g(C) = f (D)− g(D),

hence

f (D)− f (A)− g(A)+ g(C)+ f (B)− f (C)− g(D)+ g(B) = 0,

or |AD| − |AC| + |BC| − |BD| = 0. This is necessary and sufficient for the
quadrilateralABCD to be circumscribed. �

Now, consider a Poncelet n-gon, an n-periodic billiard trajectory in the ellipse Γ .
One can choose the canonical coordinates of the tangency points of the sides of the
polygon with the confocal ellipse γ to be

0,
1

n
,

2

n
, . . . ,

n− 1

n
.

Then the string coordinates of the points of the concentric set Pk are

(
0,
k

n

)
,

(
1

n
,
k + 1

n

)
,

(
2

n
,
k + 2

n

)
, . . . ,

that is, their difference equals k/n, a constant. It follows that Pk lies on a confocal
ellipse. Likewise for the radial sets Qk , proving the first claim of Theorem 5.1.

Theorem 5.2 implies that each quadrilateral of the Poncelet grid is circumscribed,
see Fig. 9.23. We refer to [3] for circle patterns related to conics.



9 Projective Configuration Theorems: Old Wine into New Wineskins 423

Fig. 9.23 Poncelet grid of circles

Next, we prove the second claim of Theorem 5.1. The confocal family of conics
is given by the equation

x2
1

a2
1 + λ

+ x2
2

a2
2 + λ

= 1,

where λ is a parameter. Its dual family is the pencil

(a2
1 + λ)x2

1 + (a2
2 + λ)x2

2 = 1

that consists of the conics that share four points, possibly complex. Hence the
confocal family consists of the conics that share four tangent lines, also possibly
complex.

To prove the last claim of Theorem 5.1, we need the following classical result.
Let γ and Γ be confocal ellipses, centered at the origin and symmetric with respect
to the coordinate axes, and let A be the diagonal matrix with positive entries that
takes γ to Γ .

Lemma 5.2 (Ivory) For every point P ∈ γ , the points P and A(P) lie on a
confocal hyperbola.

Let us show that the linear map A takes Pk to Pm or to its centrally symmetric
set; the argument for the radial sets is similar.
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It is convenient to change the string coordinates (x, y) to u = (x + y)/2, v =
(y − x)/2. The (u, v)-coordinates of the points of the sets Pk and Pm are

(
k

2n
+ j

n
,
k

2n

)
,

(
m

2n
+ j

n
,
m

2n

)
(j = 0, 1, . . . , n− 1).

We know that Pk and Pm lie on confocal ellipses γ and Γ . According to Lemma 5.2,
the map A preserves the u-coordinate. Therefore the coordinates of the points of the
set A(Pk) are

(
k

2n
+ j

n
,
m

2n

)
(j = 0, 1, . . . , n− 1).

If m has the same parity as k, this coincides with the set Pm, and if the parity of
m is opposite to that of k, then this set is centrally symmetric to the set Pm. This
completes the proof.4

9.6 Identities in the Lie Algebras of Motions

It is well known that the altitudes of a Euclidean triangle are concurrent. It is a
lesser known fact that an analogous theorem holds in the spherical and hyperbolic
geometries.

In this section, we describe Arnold’s observation [4] that these results have
interpretations as the Jacobi identity in the Lie algebras of motions of the respective
geometries of constant positive or negative curvatures; see also [24, 45]. Following
[2, 51], we shall discuss the relation of other classical configuration theorems with
identities in these Lie algebras.

In spherical geometry, one has the duality between points and lines that assigns
the pole to an equator. There are two poles of a great circle; one can make the
choice of the pole unique by considering oriented great circle, or by factorizing by
the antipodal involution, that is, by replacing the sphere by the elliptic plane.

This spherical duality can be expressed in terms of the cross-product: if A and
B are two vectors in R

3 representing points in the elliptic plane, then the vector
A × B represents the point dual to the line AB. In the following argument, we do
not distinguish between points and their dual lines.

Given a spherical triangle ABC, the altitude dropped from C to AB is the
great circle connecting the pole of the great circle AB and point C. Using the
identification of points and lines, and cross-product, this altitude is represented by
the vector (A× B)× C, see Fig. 9.24.

4See also [25] for another theorem of Ivory and its relation to billiards in conics.
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Fig. 9.24 An altitude of a
spherical triangle

Two other altitudes are given by similar cross-products, and the statement that
the three great circles are concurrent is equivalent to linear dependence of the these
three cross-products. But

(A× B)× C + (B × C)× A+ (C ×A)× B = 0,

the Jacobi identity for cross-product, hence the three altitudes are concurrent.
Note that the Lie algebra (R3,×) is so(3), the algebra of motions of the unit

sphere. Thus the Jacobi identity in so(3) implies the the existence of the spherical
orthocenter.

A similar, albeit somewhat more involved, argument works in the hyperbolic
plane, with the Lie algebra of motions sl(2,R) replacing so(3). Note that these
algebras are real forms of the complex Lie algebra sl(2,C).

Interestingly, the Euclidean theorem on concurrence of the three altitudes of a
triangle does not seem to admit an interpretation as the Jacobi identity of the Lie
algebra of motions of the plane.

Developing these ideas, Tomihisa [51] discovered the following identity.

Theorem 6.1 For every quintuple of elements of the Lie algebra sl(2) (with real or
complex coefficients), one has

[F1, [[F2, F3], [F4, F5]]]+[F3, [[F2, F5], [F4, F1]]]+[F5, [[F2, F1], [F4, F3]]] = 0.

Note that the indices 1, 3, 5 permute cyclically, while 2 and 4 are frozen.
As above, the Tomihisa identity can be interpreted as a configuration theorem:

the Lie bracket corresponds to one of the two basic operations: connecting a pair of
points by a line or intersecting a pair of lines at a point. See Fig. 9.25 for such an
interpretation.
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Fig. 9.25 The Tomihisa
identity as the dual Pappus
theorem: the lines AF1, BF3,
and CF5 are concurrent

9.7 Skewers

This section is based upon the recent paper [49]. The main idea is that planar
projective configuration theorems have space analogs where points and lines in the
projective plane are replaced by lines in space, and the two operations, connecting
two points by a line and intersecting two lines at a point, are replaced by taking the
common perpendicular of two lines.

The skewer of two lines in 3-dimensional space is their common perpendicular.
We denote the skewer of lines a and b by S(a, b). In Euclidean and hyperbolic
spaces, a generic pair of lines has a unique skewer; in the spherical geometry, a
generic pair of lines (great circles) has two skewers, similarly to a great circle on S2

having two poles. We always assume that the lines involved in the formulations of
the theorems are in general position.

Here is the ‘skewer translation’ of the Pappus theorem, as depicted in Fig. 9.1:

Theorem 7.1 Let a1, a2, a3 be a triple of lines with a common skewer, and let
b1, b2, b3 be another triple of lines with a common skewer. Then the lines

S(S(a1, b2), S(a2, b1)), S(S(a1, b3), S(a3, b1)), and S(S(a2, b3), S(a3, b2))

share a skewer.

This theorem, as well as in the following ones, holds in R
3, S3 and H 3.

And here is the skewer version of the Desargues theorem, as depicted in Fig. 9.2:

Theorem 7.2 Let a1, a2, a3 and b1, b2, b3 be two triples of lines such that the lines
S(a1, b1), S(a2, b2) and S(a3, b3) share a skewer. Then the lines

S(S(a1, a2), S(b1, b2)), S(S(a1, a3), S(b1, b3)), and S(S(a2, a3), S(b2, b3))

also share a skewer.

The ‘rules of translation’ should be clear from these examples.
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Fig. 9.26 Petersen-Morley
configuration of ten lines

As a third example, consider a configuration theorem that involves polarity,
namely, the theorem that the three altitudes of a triangle are concurrent that was
discussed in Sect. 9.6. In its skewer version, one does not distinguish between polar
dual objects, such as a great circle and its pole. This yields

Theorem 7.3 Given three lines a, b, c, the lines

S(S(a, b), c), S(S(b, c), a), and S(S(c, a), b)

share a skewer.

This is the Petersen-Morley, also known as Hjelmslev-Morley, theorem [30]. An
equivalent formulation: the common normals of the opposite sides of a rectangular
hexagon have a common normal. See Fig. 9.26, borrowed from [32].

Denote the 2-parameter family of lines that meet a given line � at right angle
by N�. The sets N� play the role of lines in the skewer versions of configuration
theorems. Two-parameter families of lines in 3-space are called congruences.

Next we describe line analogs of circles. Let � be an oriented line in 3-space
(elliptic, Euclidean, or hyperbolic). Let G� be the 2-dimensional subgroup of the
group of orientation-preserving isometries that preserve �. The orbit G�(m) of an
oriented linem is called the axial congruence with � as axis (an analog of the center
of a circle).

In R
3, the lines of an axial congruence with axis � are at equal distances from �

and make equal angles with it. In the hyperbolic space, one can define the complex
distance between oriented lines, see [29]. The complex distance between the lines
of an axial congruence and its axis is constant.

Axial congruences share the basic properties of circles: if two generic axial
congruences share a line, then they share a unique other line; and three generic
oriented lines belong to a unique axial congruence.

The next result is a skewer analog of the Pascal theorem, see Fig. 9.3, in the
particular case when the conic is a circle.
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Theorem 7.4 Let A1, . . . , A6 be lines from an axial congruence. Then

S(S(A1, A2), S(A4, A5)), S(S(A2, A3), S(A5, A6)), and S(S(A3, A4), S(A6, A1))

share a skewer.

As another, lesser known, example, consider the Clifford’s Chain of Circles.
This chain of theorems starts with a collection of concurrent circles labelled
1, 2, 3, . . . , n. The intersection point of the circles i and j is labelled ij . The circle
through points ij, jk and ki is labelled ijk.

The first statement of the theorem is that the circles ijk, jkl, kli and lij

share a point; this point is labelled ijkl. The next statement is that the points
ijkl, jklm, klmi, lmij and mijk are concyclic; this circle is labelled ijklm. And
so on, with the alternating claims of being concurrent and concyclic; see [11, 32],
and Fig. 9.27 where the initial circles are represented by lines (circles of infinite
radius sharing a point at infinity).

The next theorem, in the case of R3, is due to Richmond [37].

Theorem 7.5

1) Consider axial congruences Ci , i = 1, 2, 3, 4, sharing a line. For each pair
of indices i, j ∈ {1, 2, 3, 4}, denote by �ij the line shared by Ci and Cj . For
each triple of indices i, j, k ∈ {1, 2, 3, 4}, denote by Cijk the axial congruence

Fig. 9.27 Clifford’s Chain of Circles (n = 5)
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containing the lines �ij , �jk, �ki . Then the congruences C123, C234, C341 and C412
share a line.

2) Consider axial congruences Ci , i = 1, 2, 3, 4, 5, sharing a line. Each four of the
indices determine a line, as described in the previous statement of the theorem.
One obtains five lines, and they all belong to an axial congruence.

3) Consider axial congruences Ci , i = 1, 2, 3, 4, 5, 6, sharing a line. Each five of
them determine an axial congruence, as described in the previous statement of
the theorem. One obtains six axial congruences, and they all share a line. And
so on. . .

Next one would like to define line analogs of conics. A first step in this direction
is taken in [49], but much more work is needed. In particular, one would like to
have skewer analogs of various configuration theorems involving conics, including
the Pascal theorem and the whole hexagrammum mysticum, the Poncelet Porism,
and the theorems described in Sect. 9.4. As of now, this is an open problem.

Now we outline two approaches to proofs of the above theorems and the skewer
versions of other planar configuration theorems. The first approach is by way of the
spherical geometry, and the second via the hyperbolic geometry. Either approach
implies the results in all three classical geometries by ‘analytic continuation’. This
analytic continuation principle is well known in geometry; see, e.g., [1, 35] where it
is discussed in detail.

9.7.1 Elliptic Approach

The space of oriented great circles in S3, or lines in the elliptic space RP
3, is the

GrassmannianG(2, 4) of oriented 2-dimensional subspaces in R
4. Below we collect

pertinent facts concerning this Grassmannian.
To every oriented line � in RP

3 there corresponds its dual oriented line �∗: the
respective oriented planes in R

4 are the orthogonal complements of each other. The
dual lines are equidistant and they have infinitely many skewers.

The Grassmannian is a product of two spheres:G(2, 4) = S2−×S2+. This provides
an identification of an oriented line in RP

3 with a pair of points of the unit sphere
S2: � ↔ (�−, �+). The antipodal involutions of the spheres S2− and S2+ generate
the action of the Klein group Z2 × Z2 on the space of oriented lines generated by
reversing the orientation of a line and by taking the dual line.

Two lines � and m intersect at right angle if and only if d(�−,m−) =
d(�+,m+) = π/2, where d denotes the spherical distance in S2. A line n is a
skewer of lines � and m if and only if n− is a pole of the great circle �−m−, and n+
is a pole of the great circle �+m+.

The set of lines that intersect � at right angle coincides with the set of lines
that intersect � and �∗. A generic pair of lines has exactly two skewers (four, if
orientation is taken into account), and they are dual to each other.
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It follows that a configuration involving lines in elliptic space and their skewers
can be identified with a pair of configurations on the spheres S2− and S2+. Under
this identification, the great circles of these spheres are not distinguished from their
poles, just like in the proof described in Sect. 9.6. That is, the operation of taking
the skewer of two lines is represented, on both spheres, by the cross-product.

In this way, a configuration of lines in space becomes the direct product
of the corresponding planar configurations. For example, the Petersen-Morley
Theorem 7.3 splits into two statements that the altitudes of triangles, on the spheres
S2− and S2+, are concurrent.

9.7.2 Hyperbolic Approach

In a nutshell, a skewer configuration theorem in 3-dimensional hyperbolic space is a
complexification of a configuration theorem in the hyperbolic plane. We follow the
ideas of Morley [31, 32], Coxeter [12], and Arnold [4].

Consider the hyperbolic space in the upper halfspace model. The isometry group
is SL(2,C), and the sphere at infinity (the celestial sphere of [31]) is the Riemann
sphere CP1.

A line in H 3 intersects the sphere at infinity at two points, hence the space of
(non-oriented) lines is the configuration space of unordered pairs of points. As we
mentioned in Sect. 9.3, S2(CP1) = CP

2, namely, to a pair of points in the projective
line one assigns the binary quadratic form having zeros at these points:

(a1 : b1, a2 : b2) �−→ (a1y − b1x)(a2y − b2x).

Thus a line in H 3 can be though of as a complex binary quadratic form, up to a
factor.

The space of binary quadratic forms ax2 + 2bxy + cy2 has the discriminant
quadratic form Δ = ac − b2 and the respective bilinear form. The equation Δ = 0
defines the diagonal of S2(CP1); this is a conic in CP

2 that does not correspond to
lines in H 3.

The next result is contained in §52 of [32].

Lemma 7.1 Two lines in H 3 intersect at right angle if and only if the respective
binary quadratic forms fi = aix

2 + 2bixy + ciy
2, i = 1, 2, are orthogonal with

respect to Δ:

a1c2 − 2b1b2 + a2c1 = 0. (9.2)

If two lines correspond to binary quadratic forms fi = aix
2 + 2bixy + ciy

2, i =
1, 2, then their skewer corresponds to the Poisson bracket (the Jacobian)

{f1, f2} = (a1b2 − a2b1)x
2 + (a1c2 − a2c1)xy + (b1c2 − b2c1)y

2.
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If (a1 : b1 : c1) and (a2 : b2 : c2) are homogeneous coordinates in the
projective plane and the dual projective plane, then (9.2) describes the incidence
relation between points and lines. In particular, the set of lines in H 3 that meet a
fixed line at right angle corresponds to a line in CP

2.
Suppose a configuration theorem involving polarity is given in RP

2. The
projective plane with a conic provides the projective model of the hyperbolic
plane, so the configuration is realized in H 2. Consider the complexification, the
respective configuration theorem in CP

2 with the polarity induced by Δ. According
to Lemma 7.1, this yields a configuration of lines in H 3 such that the pairs of
incident points and lines correspond to pairs of lines intersecting at right angle.

Remark 7.2 (On Lie algebras) From the point of view of the identities in Lie
algebras, discussed in Sect. 9.6, the relation between configuration theorems in
the hyperbolic plane and the hyperbolic space is the relation between sl(2,R) and
sl(2,C): an identity in the former implies the same identity in the latter.

As to the Lie algebras in space, in the elliptic case, the Lie algebra of motions is
so(4) = so(3) ⊕ so(3), and in the hyperbolic case, it is sl(2,C). Accordingly, an
elliptic skewer configuration splits into two configurations in S2, and a hyperbolic
skewer configuration is obtained from a configuration in H 2 by complexification.

We finish the section by discussing two results concerning lines in 3-space that
do not follow the above described general pattern. The first of them is the skewer
version of the Sylvester Problem.

Given a finite set S of points in the plane, assume that the line through every pair
of points in S contains at least one other point of S. Sylvester asked in 1893 whether
S necessarily consists of collinear points. See [8] for the history of this problem and
its generalizations.

In RP
2, the Sylvester Problem, along with its dual, has an affirmative answer (the

Sylvester-Galai theorem), but in CP
2 one has a counter-example: the 9 inflection

points of a cubic curve (of which at most three can be real, according to a theorem
of Klein), connected by 12 lines.

The skewer version of the Sylvester Problem concerns a finite collection of
pairwise skew lines in space such that the skewer of any pair intersects at least
one other line at right angle. The question is whether a collection of lines with this
skewer Sylvester property necessarily consists of the lines that intersect some line
at right angle.

Theorem 7.6 The skewer version of the Sylvester-Galai theorem holds in the
elliptic and Euclidean geometries, but fails in the hyperbolic geometry.

Proof In the elliptic case, we argue as in the above described elliptic proof. A
collection of lines becomes two collections of points, in RP

2− and in RP
2+, and the

skewer Sylvester property implies that each of these sets has the property that the
line through every pair of points contains another point, so one applies the Sylvester-
Galai theorem on each sphere.
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In the hyperbolic case, we argue as in the hyperbolic proof. Let a1, . . . , a9 be the
nine inflection points of a cubic curve in CP

2, and let b1, . . . , b12 be the respective
lines. Let b∗1, . . . , b∗12 be the polar dual points. Then the points ai correspond to nine
lines in H 3, and the points b∗j to their skewers. We obtain a collection of nine lines
that has the skewer Sylvester property but does not possess a common skewer.

In the intermediate case of R3, the argument is due to Timorin (private commu-
nication).

Let us add to R
3 the plane at infinityH ; the points ofH are the directions of lines

in space. One has a polarity in H that assigns to a direction the set of the orthogonal
directions, a line in H .

Therefore, if three lines in R
3 share a skewer, then their intersections with the

plane H are collinear. Let L1, . . . , Ln be a collection of lines with the skewer
Sylvester property. Then, by the Sylvester-Galai theorem in H , the points L1 ∩
H, . . . , Ln ∩ H are collinear. This means that the lines L1, . . . , Ln lie in parallel
planes, say, the horizontal ones.

Consider the vertical projection of these lines. We obtain a finite collection of
non-parallel lines in the plane such that through the intersection point of any two
there passes at least one other line. By the dual Sylvester-Galai theorem, all these
lines are concurrent. Therefore the respective horizontal lines in R

3 share a vertical
skewer. �

The second result is a different skewer version of the Pappus theorem.

Theorem 7.7 Let � and m be a pair of skew lines. Choose a triple of points
A1, A2, A3 on � and a triple of points B1, B2, B3 on m. Then the lines

S((A1B2), (A2B1)), S((A2B3), (A3B2)), and S((A3B1), (A1B3))

share a skewer.

We proved this result, in the hyperbolic case, by a brute force calculation using
the approach to hyperbolic geometry, developed in [14]; see [49] for details. It is not
clear whether this theorem is a part of a general pattern.

Let us close with an invitation to the reader to mull over the skewer versions of
other constructions of planar projective geometry. For example, one can define the
skewer pentagram map that acts on cyclically ordered tuples of lines in space:

{L1, L2, . . .} �→ {S(S(L1, L3), S(L2, L4)), S(S(L2, L4), S(L3, L5)), . . .}

Is this map completely integrable?
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Chapter 10
Poincaré’s Geometric Worldview
and Philosophy

Ken’ichi Ohshika

Abstract Poincaré is one of the pioneers in non-Euclidean geometry and topology.
In this paper, we shall first review his work on non-Euclidean geometry and
topology. Then we shall see how his researches in these fields are reflected in his
philosophical work, especially his philosophical position often called “convention-
alism”.

AMS Subject Classification: 01A55, 01A60, 01A70, 57-03

10.1 Introduction

Poincaré’s works extend to many fields of mathematics, such as analysis, algebra,
arithmetic, geometry, topology, and celestial mechanics. Among these, geometry
and topology, on which we focus in this paper, constitute very important parts.
Poincaré interpreted non-Euclidean geometry, first discovered by Lobatchevsky and
Bolyai, using a conformal model which was already mentioned by Riemann in
his Habilitationsvorstrag [40] and is now called Poincaré model, and studied the
isometry groups of hyperbolic spaces. This, along with his other papers on Fuchsian
groups, is an important part of his work on geometry. As for topology, Poincaré’s
work started with a small piece entitled “Sur l’Analysis Situs”, which appeared in
1892 [29], and culminated in a famous series of papers “Analysis Situs” and its
five complements [30–35]. This series includes, among others, a formal definition
of manifold, which is a concept invented by Riemann [40], the notion of Poincaré
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Poincaré wrote several papers whose topics would be labelled as philosophy or
philosophy of science. Most of them were eventually included in his four books,
La science et l’hypothèse, La valeur de la science, Science et méthode, and Les
dernières pensées [36–39]. Reading these books, we can easily see that Poincaré’s
philosophy was motivated and influenced by his work on geometry and topology. In
particular, it is evident that his work on non-Euclidean geometry was an important
factor leading him to his geometric “conventionalism”. His view on the relationship
between the “real world” and mathematics was quite radical compared to that of
his contemporaries, and was very far from the Kantian or neo-Kantian worldview
which was influential in his time.

In this paper, we shall first review Poincaré’s work on geometry and topology,
particularly focusing on hyperbolic geometry and topology, “analysis situs” in his
time. Then we shall look at his philosophical works, focusing on those concerning
his view on space and time. We shall see how his work on and understanding of
geometry and topology influenced his philosophical view.

Poincaré’s philosophy would certainly be one of what Althusser called “spon-
taneous philosophy of scientists” [1]. Althusser’s claim was that spontaneous
philosophy of scientists, influenced by the ideology of their time, would always
have idealistic elements, and that the philosophers’ role should be to discern such
elements and draw a “line of demarcation”. Still, as far as we can see, Poincaré’s
epistemology was much freer from an idealistic worldview and more profound than
most of the philosophers of his days. We shall explain this more in the last section.

The author would like to express his gratitude to Athanase Papadopoulos for
inviting him to write this paper. He is also grateful to the anonymous referee for
his/her valuable suggestions and drawing the author’s attention to a magnificent
book by Gray [12].

10.2 Hyperbolic Geometry

Non-Euclidean geometry usually means geometry for which Euclid’s fifth postulate
does not hold, and instead, its negation holds. The fifth postulate is equivalent to
what is called Playfair’s axiom, saying that for any straight line � and a point P
outside �, there is a unique straight line �′ passing through P which is parallel to �.
Two kinds of non-Euclidean geometry can be considered: one is spherical geometry,
where two “straight lines” always intersect, and the other is hyperbolic geometry,
where there are more than one “straight lines” passing through P parallel to � in the
setting above.

Spherical geometry in dimension 2 is known to have been already studied in
ancient Greek, and was extensively studied by Euler, but was regarded by the latter
as being part of Euclidean space geometry rather than non-Euclidean geometry. (See
Papadopoulos [24, 25].) In contrast, hyperbolic geometry in dimension 2, which was
first found by Lobatchevsky [20] and Bolyai, was born from the beginning as a trial
to construct a geometry without Euclid’s fifth postulate. These two authors showed
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that they could prove non-Euclidean versions of many theorems in elementary
geometry including trigonometry under the second type of the negation of the fifth
postulate: the existence of more than one parallel lines as was described above.
Still, at this stage, it was not clear that such a geometry is realisable without
contradictions.

Riemann introduced the general notion of metric for spaces in all dimensions
for the first time in his Habilitationsvorstrag [40]. Relying on Riemann’s idea,
Beltrami gave a concrete geometric object having a non-Euclidean geometry in all
dimensions. This in particular settled the problem of realisability for hyperbolic
geometry in dimension 2. Let us explain this in more detail.

Suppose that on an n-dimensional space E
n, a Cartesian coordinate system

(x1, . . . , xn) is given. By the Pythagorean law, the distance between two points

(x1, . . . , xn) and (y1, . . . , yn) is expressed as
√∑n

j=1(xj − yj )2. Riemann in [40]

regards its infinitesimal form: ds =
√∑n

j=1 dx
2
j as a metric defining the Euclidean

space. For a curve γ in E
n, its length is defined to be

∫
γ
ds, and for two points in

E
n, the infimum of the lengths of arcs joining them coincides with their distance,

which is realised by a straight segment joining them. Riemann noticed that by
changing this infinitesimal form ds, we can get a different metric on the space. In

particular, he mentioned that a form ds = 1

1+ α
4

∑n
j=1 x

2
j

√√√√ n∑
j=1

dx2
j gives a metric

of “curvature” α. Although his definition of curvature is rather intuitive, what he
meant was the sectional curvature in modern terminology.

Developing this idea of Riemann, Beltrami considered the n-dimensional space
with curvature −1 in [4]. He showed that if we consider the upper half-space

{(x1, . . . , xn) | xn > 0} and equip it with a metric given by ds =
√∑n

j=1 dx
2
j

xn
, we

get a model of n-dimensional hyperbolic geometry. Mapping the upper half-space to
the open unit ball {(x1, . . . , xn) | ∑n

j=1 x
2
j < 1} conformally, he also got the same

expression as Riemann’s for α = −1 on the open unit ball. In Beltrami’s upper-
half space model of hyperbolic geometry, for any two distinct points, the shortest
path connecting them is a part of either a line or a circle intersecting the hyperplane
{(x1, . . . , xn) | xn = 0} perpendicularly. In the open unit ball model, the shortest
path is a part of a circle intersecting the unit sphere perpendicularly. A different
model of hyperbolic geometry was given in another paper by Beltrami [6], and also
by Klein [18] from the viewpoint of projective geometry. The base space of Klein’s
model is also the open unit ball, but the shortest path between two distinct points is
a Euclidean segment connecting them.

Poincaré used the same model as Beltrami’s to study hyperbolic geometry,
although it is not certain whether Poincaré was aware of Beltrami’s work. This
choice of model was important for his argument regarding “conventionalism”.
In fact, in Chapitre 4 of [36], he considered a universe where the metric is
deformed conformally by temperature. Poincaré determined the isometry group
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of the hyperbolic plane in [28], which turned out to be the group of linear
fractional transformations with real coefficients. Furthermore, Poincaré studied
discrete groups of linear fractional transformations, which he called Fuchsian
groups, using fundamental domains in the hyperbolic plane. His work in particular
shows that every closed orientable surface of genus greater than 1 has a hyperbolic
metric. This is very important in the history of hyperbolic geometry: by proving
that hyperbolic geometry is a natural geometry on closed surfaces of high genera,
Poincaré showed that hyperbolic geometry has the same right as spherical geometry,
which is a natural geometry for genus-0 surface, and as Euclidean geometry, a
natural geometry for genus-1 surface. This anticipated the same kind of naturalness
of hyperbolic geometry in dimension 3, which would be formulated by Thurston
much later, in the 1980s (see [47]).

In Chapitre 3 in Livre I of [38], Poincaré described the process in which he
found Fuchsian groups to be isometry groups of the hyperbolic plane. According
to his description there, his invention of Fuchsian groups did not arise from his
study of non-Euclidean geometry, but from his study of Fuchsian functions, i.e.
automorphic functions. He called groups preserving Fuchsian functions Fuchsian
groups. He found that Fuchsian groups are also isometry groups of the hyperbolic
plane only afterward, while he was taking a “course géologique” planned by the
École des Mines, forgetting his mathematics on the surface of consciousness, but
probably thinking about it subconsciously.

10.3 Topology-Analysis Situs

Poincaré wrote nine papers on topology, two short papers with the same title
“Sur l’Analysis Situs”, published in 1892 and 1901 respectively, “Analysis Situs”,
published in 1895, a one-page paper entitled “Sur les nombres de Betti”, published
in 1899, “Sur la connection des surfaces algébriques”, published in 1901, and
five complements to the “Analysis Situs”, published in 1899, 1900, two in 1902,
and 1904 respectively. The short papers “Sur les nombres de Betti”, the second
“Sur l’Analysis Situs”, and “Sur la connection des surfaces algébriques” are just
announcements of the results whose details are contained in the first, the third and
the fourth complements respectively. Therefore we have seven papers to discuss
here. (There is one more paper entitled “Sur un théorème de géométrie” in the
section on topology of Poincaré’s collected works, which is an unfinished work
and whose topics is not closely related to the subject of the present paper.) The
fifth complement to the “Analysis Situs” contains a very famous conjecture, which
is now called the Poincaré conjecture, saying that every simply connected closed
3-manifold should be homeomorphic to the 3-sphere. The conjecture was finally
resolved by Perelman about 100 years after the conjecture was raised. The Poincaré
conjecture has been one of the strongest driving forces in research of topology
throughout this 100 years. (See Berevstokii’s paper in this volume [5] for more on
the Poincaré conjecture.) We fully admit the importance of this conjecture, but we
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must never forget other works of Poincaré on topology, which also contain many
important topics. We refer the reader to Sarkaria’s paper [43] for more detailed
accounts about Poincaré’s papers on topology.

In the first “Sur l’Analysis Situs”, Poincaré considered a question asking whether
the Betti numbers determine the homeomorphism type of manifolds. This is the
first paper in history which deals with a long-standing question of topology,
from which modern topology has developed and is still developing: “ how do
algebraic invariants determine homeomorphism types of manifolds?” In [6], Betti
considered manifolds embedded in a Euclidean space, and introduced the notion
called “l’ordine di connessione”, which should be interpreted as the real dimension
of the k-th homology plus one, i.e. one greater than what we call the k-th Betti
number today. His definition does not involve simplices or cycles in the way we use
to define homology groups in modern textbooks. He just considered k-dimensional
submanifolds embedded in a given manifold, and counted how many independent k-
dimensional submanifolds there are. There is a subtle problem in the way to define
the independence of submanifolds, but anyway, this work of Betti gave birth to
homology theory.

Poincaré asked in this paper whether two manifolds having the same Betti
numbers can be deformed from one to the other continuously, and showed that the
answer is no, by giving examples of 3-manifolds having the same Betti numbers
without being homeomorphic. His examples are torus bundles over the circle. He
claimed that a torus bundle over the circle with monodromy A ∈ SL2(Z) has first
Betti number 3, which he called “quadruple connection” using Betti’s term, if and
only if A = E; 2, which he called “triple connection”, if and only if TrA = 2; and
1, which he called “double connection”, otherwise. Poincaré also claimed that two
torus bundles, with monodromiesA and B, are homeomorphic if and only if A and
B are conjugate in GL2(Z). We note that it is not so simple to prove the last claim,
even using modern techniques in low-dimensional topology. Poincaré discussed this
example again in the following paper “Analysis Situs” and gave a “proof” of it. We
are not sure whether a rigorous proof could be given using only the techniques
known in Poincaré’s time.

Poincaré’s second paper on topology, “Analysis Situs”, was published in the
Journal de l’École Polytechnique in 1895. This paper, consisting of 121 pages,
gave foundations for the theory of manifolds, first invented by Riemann in his
Habilitationsvortrag [40], and for the homology theory of manifolds. Poincaré gave
two definitions of manifold. In the first of them, a manifold is defined to be a set of
points (x1, . . . , xn) in the n-dimensional Euclidean space E

n satisfying a system of
p (differentiable) equations F1, . . . , Fp and q inequalities such that the rank of the
Jacobian matrix of F1, . . . , Fp has rank p. In other words, Poincaré’s first definition
of a manifold is that of what we call an (n − p)-dimensional submanifold in the
n-dimensional Euclidean space defined by implicit functions. Local charts or local
coordinate systems which we use in defining manifolds today did not appear in this
definition. This is quite similar to the definition of “spazio” of dimension (n−p) by
Betti in [6] although in Betti’s paper the condition for the independence of equations
is quite obscure.
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In the second definition, Poincaré considered m-dimensional sets in E
n param-

eterised by m variables in such a way that two parameterisations are transformed
from one to the other by analytic functions at their intersection. In this definition, for
the first time, a construction of a manifold by patching up local coordinate systems
appeared, which would lead to a later definition of manifolds using local charts
due to Hilbert, Weyl, Kneser, and Veblen-Whitehead. (See Scholz [44] and Ohshika
[23].)

Poincaré then introduced the notion of homology, clarifying and refining
Betti’s work. He considered a q-dimensional manifold W with boundary in a
p-dimensional manifold V , and he regarded the boundary components of W , which
are (q − 1)-dimensional submanifolds of V , as being related by a homology. This
definition is more like that of cobordism in today’s terminology. He then defined
the (q − 1)-th Betti number to be the maximal number of linearly independent
(q − 1)-dimensional submanifolds with regard to homologies. Here he took into
account the possibility that more than one of the boundary components represent
parallel copies of the same (q− 1)-dimensional manifold. This makes his definition
slightly different from Betti’s original definition. This difference concerns the topic
of the first complement. Poincaré also showed the duality of Betti numbers using
intersection number: for a closed orientable manifold of dimension n, the p-th Betti
number is equal to the (n− p)-th Betti number.

In the latter part of the paper, Poincaré studied 3-dimensional manifolds,
systematically constructing examples from polyhedra. This can be regarded as a
generalisation of his construction of torus bundles in the previous paper. Poincaré in
particular observed the following from this construction.

• 3-manifolds can be obtained from properly discontinuous actions of groups on
Euclidean space just like Fuchsian groups.

• There are distinct 3-manifolds with the same Betti numbers, as was already
mentioned in “Sur l’Analysis Situs”, such that the groups corresponding to these
manifolds (fundamental groups) are different.

• There are 3-manifolds having finite fundamental groups.

Poincaré also posed the following essential problems:

(1) Etant donné un groupe G défini par un certain nombre d’équivalences fon-
damentales, peut-il donner naissance à une variété fermée à n dimensions ?
Comment doit-on s’y prendre pour former cette variété ?
(Given a group G defined by a certain number of fundamental equivalences,
can it give birth to a closed n-dimensional manifold? How should we proceed
to form this manifold?)1

(2) Deux variétés d’un même nombre de dimensions, qui ont même groupeG, sont-
elles toujours homéomorphes ?

1All translations put in parentheses in this paper are by the present author.
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(Are two manifolds of the same dimension which have the same groupG always
homeomorphic?)

The condition for G to be defined by a certain number of fundamental equiv-
alences should mean that it is finitely generated. We know today that for the first
problem, we need to add the assumption that G is finitely presented, but with this
condition, this has turned out to be true for n ≥ 4, but false for n = 3. For the
second problem, the answer is no for every dimension n ≥ 3. What is amazing is
that Poincaré was so far-sighted that he could consider such a problem which would
decide the direction of research in topology for a long time to come and could be
resolved only much later in the twentieth century.

In the first complement to the Analysis Situs, Poincaré clarified the duality of
Betti numbers which he stated in his “Analysis Situs”, responding to a criticism
by Heegaard [14], and gave another proof, which is more rigorous than the one
contained in the “Analysis Situs”. It is interesting for us to see that in those days,
results appearing in papers were sometimes incomplete, and could be rectified
after discussion in other papers. The new proof is nearer to what we can find in
a textbook on simplicial homology theory today. Poincaré defined Betti numbers
using polyhedra and boundary operators. To prove the duality, he used the dual cell
complex as is done in most textbooks today. In the second complement, using the
same line of argument as he did in the first complement, Poincaré observed the
existence of a torsion invariant, which corresponds to the torsion part of homology
groups. At the end of the paper, Poincaré said:

Tout polyhèdre qui a tous ses nombres de Betti égaux à 1 et tous ses tableaux Tq bilatères
est simplement connexe, c’est-à -dire homéomorphe à l’hypersphère.
(Every polyhedron all of whose Betti numbers are equal to 1 and all of whose charts Tq are
bilateral is simply connected, i.e. is homeomorphic to the 3-sphere.)

In other words, Poincaré said that every combinatorial 3-manifold with trivial
first homology group is homeomorphic to S3. This is of course false, and indeed
Poincaré himself realised that this is not the case as was to be shown in the fifth
complement.

In the third complement, Poincaré studied specific 3-manifolds. First, he con-
sidered an algebraic surface in C

3 expressed as z = √
F(x, y), where F is a

polynomial. It was assumed that for every y except for finitely many singular points,
F(x, y) = 0 has 2p+ 2 simple roots as an equation in x. He then considered a loop
on the complex y-plane going around singularities, and the set of corresponding
points in the algebraic surface. This becomes a 3-manifold which is a closed surface
bundle over the circle. Poincaré showed how to compute the fundamental groups of
such 3-manifolds.

In the fourth complement, Poincaré studied the topology of algebraic surfaces
defined by f (x, y, z) = 0 when f is a polynomial. The study of such surfaces was
started by Picard in [26]. Poincaré calculated the Betti numbers of such surfaces. He
also showed that there is a duality between the first and the third Betti numbers for
4-manifolds, which was later termed Poincaré duality.
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The fifth complement is very famous for the fact that the Poincaré conjecture was
formulated for the first time there. The paper also contains many other important
results. In the first part of the paper, Poincaré introduced what is now called the
Morse theory. We should have in mind that this paper was published in 1904
(dated on 3 November 1903), which is more than 20 years before Morse, to
whom the invention of the “Morse theory” is usually attributed, started writing a
series of paper on this topic. (See Morse [22] for his work.) Although Poincaré’s
setting is very special, it is interesting that this case is the same as the one which
is shown as an example of an application of Morse theory in most textbooks.
He considered an m-dimensional manifold V embedded in a higher-dimensional
Euclidean space E

k , and a function φ defined on E
k . Then he considered to slice

V at φ(x1, . . . , xk) = t , which gives a family of m − 1-dimensional manifolds
W(t) (allowing singularities for some t), and observed that the topological type of
W(t) changes only at points t where W(t) has singularities. He also analysed how
W(t) changes before and after t passes a singular value, and how this affects the
topology of V . As the first application of this theory, he gave an alternative proof
of the topological classification of closed surfaces. The second application, which is
the most important part of this paper, is for 3-manifolds. Poincaré showed that there
exists a closed 3-manifold with trivial Betti numbers and trivial torsions which is not
homeomorphic to the 3-sphere. In other words, he constructed a homology 3-sphere.
In the case of dimension 3, slicing V into W(t) corresponds to a Heegaard splitting
of V , i.e. a decomposition of V into two handlebodies, which was first studied by
Heegaard in [14]. Poincaré constructed a concrete Heegaard splitting, which gives
a homology sphere, and calculated its fundamental group to show that the resulting
3-manifold is not homeomorphic to the 3-sphere. In the last page of the paper he
posed the following question, which is the very famous Poincaré conjecture:

Est-il possible que le group fondamental de V se réduise à la substitution identique et que
pourtant V ne soit pas simplement connexe?
(Is it possible that the fundamental group of V is reduced to the identical substitution and
that nevertheless V is not simply connected?)

We should recall that Poincaré called a 3-manifold simply connected when it is
homeomorphic to the 3-sphere. The paper is concluded with this sentence:

Mais cette question nous entraînerait trop loin.
(But this question would take us too far.)

Looking back at later development of topology, we see that the Poincaré con-
jecture was solved in higher dimensions by Smale [46] in a way extrapolated from
Poincaré’s own thinking. In fact, using Morse theory and handle decomposition to
prove the h-cobordism theorem is a natural extension of Poincaré’s idea of slicing
a manifold to get a decomposition into a family of codimension-1 submanifolds. In
dimension 4, Freedman [7] proved the conjecture in the topological category, using
Casson handles instead of ordinary handle decomposition in higher dimensions.
(See also Poénaru’s paper in this volume [27] for related topics.) On the other
hand, the original Poincaré conjecture, i.e. for dimension 3, was solved in a way
which should have been quite unexpected to Poincaré. To get to the final solution



10 Poincaré’s Geometric Worldview and Philosophy 443

by Perelman, it was necessary to pass through the geometric understanding of 3-
manifolds by Thurston [47], and the deformation of Riemannian metrics by Ricci
flows due to Hamilton (see Morgan-Tian [21]).

10.4 Epistemology of Space and Time

When we talk about epistemology in the nineteenth and the early twentieth
centuries, we cannot ignore the strong impact of the work of Kant and his apriorism.
From the ancient Greek period on, Euclidean geometry was considered to be a
precise reflection of the reality. For empiricists, geometry should also be derived
from experience. Kant’s position is quite different from this. He maintained clearly
that “space is not an empirical concept that has been drawn from outer experiences”
in his major work “Kritik der reinen Vernunft” [17]. He regarded the notions
of space and time as “synthetic a priori”. This means that these notions are not
what we construct based on our experience, but are foundations upon which all
other recognitions should be built. This view of Kant was quite influential among
(continental) European philosophers, in particular those who adhered to German
idealism, and scientists, whether they agree on it or not. For instance, Herbart, an
impact of whose philosophy can be also found in Riemann’s Habilitaionsvorstrag,
emphasised the aspect of the notion of space as a human construction, which can be
regarded as a criticism of Kantian apriorism ([15], see also Banks [3]). Fries, while
keeping the principle of apriorism by Kant, reexamined Kantian transcendental
logic introducing psychologic basis of knowledge [10]. Still, we can say that these
two philosophers are within a Kantian paradigm: their approaches are guided by
problems posed by Kant, and their works are responses to the writings of Kant. (See
§2 of Gray [12] for a more detailed account on these post-Kantian philosophers and
their influences on mathematics.)

On the other hand, modern empiricists such as J-S. Mill developed ideas opposed
to this Kantian apriorism. In his book entitled “A System of Logic, Ratiocinative and
Inductive”, which is famous for his emphasis on the importance of induction as a
logic supporting science, he insisted that geometry is also a part of experimental
science whose validity should be justified by induction. For him, even Euclidean
geometry can be justified by experience.

Poincaré’s view, which is often referred to under the name of (geometric)
conventionalism, is quite different from both Kantianism and Mill’s version of
empiricism. By the discovery of non-Euclidean geometry, the apriorism concerning
Euclidean geometry such as Kant proposed broke down. Still one could expect that
it was possible to prove that Euclidean geometry is the right one in the universe
where we live, through either experiments or observations. Poincaré did not think
that this was the case. He further thought even properties of space common to both
Euclidean and non-Euclidean geometry, such as the dimension of space, neither are
given a priori nor can be proved by experiments or observations.
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Poincaré published three books of a philosophical nature, La science et
l’hypothèse, La valeur de la science, and Science et méthode. Another book was
published posthumously under the title Les dernières pensées. Poincaré discussed
epistemology of space and time throughout these four books. Here, we are going to
examine what is expressed in the first two of his books.

The second part of his first book La science et l’hypothèse is entitled “ l’espace”
and contains three chapters “les géométries non-euclidiennes”, “ l’espace et la
géométrie”, and “l’expérience et la géométrie”. In the first chapter of these three,
Poincaré first explains how non-Euclidean geometries, spherical one and hyperbolic
one, were born, through the work of Riemann, Lobatchevsky and Beltrami, and
why these geometries are natural in the same way as Euclidean geometry. He then
analyses what should be geometry in general. He emphasises the importance of the
existence of a group acting on a space preserving the shapes of things lying there
to make it possible to consider geometry. This view, which Poincaré attributes to S.
Lie for its invention, is also a precursor of today’s definition of geometric structures,
which are also called (G,X)-structures. (The reader may refer to Goldman’s paper
[11] in this volume for more on (G,X)-structures.) We should recall here that for
Poincaré, the definition of fundamental group is different from what we find today in
textbooks: in modern terminology, his fundamental group is the covering translation
group acting on the universal cover. Therefore, considering the group consisting of
possible motions in each geometry should be very natural for him.

We should also note that Poincaré argues, contrary to Kant’s view, that the
axioms of geometry do not constitute synthetic a priori judgements. For Poincaré,
the principle of induction is, for instance, a synthetic a priori judgement, for which
he considered it was impossible to consider an alternative arithmetic. Since it is quite
possible to consider the world in which non-Euclidean geometry holds instead of
Euclidean geometry, the axioms of geometry could not be thrown into this category.
On the other hand, Poincaré admits that Euclidean geometry reflects motions of
solid bodies in the real world and that projective geometry is an abstraction of
behaviours of light. Still he rejects the view that geometry is an experimental
science, for it is not an object which is subject to revision. As a result, he concludes:

Les axiomes géométriques ne sont donc ni des jugements synthétiques à priori ni des faits
expérimentaux.
(The geometric axioms are therefore neither synthetic a priori judgements nor experimental
facts.)
Ce sont des conventions; notre choix, parmi toutes les conventions possibles, est guidé par
des faits expérimentaux: mais il reste libre et n’est limité que par la nécessité d’éviter toute
contradiction.
(They are conventions; our choice, among all possible conventions, is guided by the
experimental facts, but it remains free and is limited only by the necessity to avoid any
contradiction.)

He then insists that it is meaningless to ask if between two geometries, for
example Euclidean and non-Euclidean geometries, one is truer than the other, and
that what we can say is just one is more convenient than the other.
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In the next chapter, “l’espace et la géométrie”, Poincaré goes deeper into an
epistemological aspect of our cognition of space and its relation to geometry. He
characterises space as we understand it by the following five properties: (1) it is
continuous; (2) it is infinite; (3) it has three dimensions; (4) it is homogenous;
and (5) it is isotropic. He then analyses how these properties are derived from our
“experience”. He observes that our notion of space is derived from three different
spaces which our senses directly perceive: visual space, tactile space, and motor
space. He points out that the visual space has two dimensions, and observes that only
by converging the views from two eyes and accommodating them, we get a sense of
the third dimension: the distance. For the tactile and motor spaces, the process to get
hold of three dimensional space is more complicated. Furthermore, Poincaré argues
that our space and its geometry are not mere consequences of integrating these three
kinds of spaces which we perceive. It is only through displacement of solid objects,
causing changes in view or in touch, and their recoveries through our movement, we
form our sense of geometry. This final point is very important in his epistemology
of space. He says:

Aucune de nos sensations, isolée, n’aurait pu nous conduire à l’idée de l’espace, nous
y sommes amenés seulement en étudiant les lois suivant lesquelles ces sensations se
succèdent.
(None of our sensations, if they were isolated, would lead us to the idea of space. We are
brought there only by studying the laws following which these sensations succeed to one
another.)

Therefore, our space and time are products of our reasoning, not what was given
a priori.

In the last of the three chapters, Poincaré discusses if geometry can be derived
from experiments or observations. His answer is definitely no. For instance, he asks
whether it is possible to determine if the space we are living in is either Euclidean
or spherical or hyperbolic (Lobatchevskian in his words). Some may think that this
is possible for instance by measuring parallaxes of stars. Poincaré says that this is
not the case. To make this kind of idea acceptable, we must assume that light always
proceeds along a geodesic. Since there is no way to prove this, Poincaré says, using
parallaxes to measure the curvature is just shifting a problem to another one. More
generally, Poincaré says,

Aucune expérience ne sera jamais en contradiction avec le postulatum d’Euclide; en
revanche aucune expérience ne sera jamais en contradiction avec postulatum de Lo-
batchevsky.
(No experiment will ever lead to contradiction with the postulate of Euclid, on the other
hand, no experiment will ever lead to contradiction with the postulate of Lobatchevsky.)

One may think that the existence of Euclidean solids would prove the “flatness”
of space, but Poincaré points out that this is not true, for Euclidean solids can be
realised also in a hyperbolic space as solids bounded by parts of horospherical sur-
faces. This observation is very shrewd, and reminds us of the fact that Lobatchevsky
called his geometry “pangeometry” [20].
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In the second book La valeur de la science, Poincaré takes up the epistemology of
space again in two chapters, which are entitled “la notion d’espace” and “l’espace et
ses trois dimensions”. After reviewing what he showed in La science et l’hypothèse,
Poincaré goes on to study the subject more deeply. Recall that both Euclidean
geometry and (hyperbolic) non-Euclidean geometry presuppose three-dimensional
space on which their metrics are defined. This space without any metric is called
“amorphous continuum” by Poincaré. This continuum has some properties, which
can be studied by “l’analysis situs”, i.e. if we use modern terminology, topological
properties. Poincaré poses the same questions for these topological properties as
those which he posed for the geometry of space: whether they are given a priori
or whether they can be verified by experiments and so forth. As one of the most
important topological properties of space, he chooses its dimension and considers
whether it can be determined a priori or by experiments. First, Poincaré asks how we
can define the dimension of an amorphous continuum in which we live. In the real
existing physical space, if two points are close enough, we cannot distinguish them.
Therefore Poincaré thinks of the continuum not as a mere point-set, but as a set on
which the relation of distinguishability is defined for any two points. We should note
that at the time when Poincaré wrote this book, there was no notion of topological
space. This notion was first introduced by Hausdorff in 1914, but Poincaré’s idea is
very similar to that of neighbourhood which appeared in Hausdorff’s book [13] for
the first time.

Poincaré considers what he called “coupures”, i.e. cuts, for a continuumC. Cuts
are a collection of either elements ofC or continua contained in C. Suppose that one
proceeds from one element A in C to another element B in C, by which we mean
that there is a sequence of elementsE1, . . . , En ofC such thatA is indistinguishable
from E1; Ej is indistinguishable from Ej+1 for each j ; B is indistinguishable
from En; and two non-adjacent Ei and Ej are distinguishable. If there are cuts
{ek} of C such that for any E1, . . . , En as above, some Ej is indistinguishable
from some of ek , then we say that the cuts {ek} divide C. Poincaré defines that
C is one-dimensional if there are cuts consisting elements of C which divide C.
Then inductively he defines C has n dimensions if there are cuts of C consisting of
(n− 1)-dimensional continua which divide C.

Having defined dimension for continua in this way, Poincaré returns to the
original question. He first analyses how we can apply the above definition of
dimension for the space in which we live. Then in the same way as in “l’espace
et la géométrie” in the previous book, he analyses how we get the sense of three-
dimensionality from our visual, tactile, and motor senses. Again, Poincaré says,
we derive this from displacement of objects causing changes of senses and their
recoveries by our movement. He concludes that our experience alone cannot prove
that our space has three dimensions: in fact it may have more than three dimensions,
but we choose three-dimensionality for its convenience. The experience has only
guided this choice. He writes:

Quel est alors le rôle de l’expérience ? C’est elle qui lui (l’esprit) donne les indications
d’après lesquelles il fait son choix.
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(What is then the role of experience? It is the experience that gives the mind the indications
following which it makes choice.)

10.5 Spontaneous Philosophy: Conclusion

Althusser, arguably one of the most influential Marxist philosophers in the twentieth
century, gave an inaugural lecture of a course on philosophy for scientists in 1967
at l’École Normale Supérieure. This lecture was later published as a book entitled
Philosophie et philosophie spontanée des savants in 1974 [1]. Throughout the book,
he described what he thought philosophy was and what role philosophy should play.
What is relevant to the present article is his view on spontaneous philosophy of
scientists, which is succinctly explained in his Thèse 25 as follows:

Dans leur pratique scientifique, les spécialistes des différentes disciplines reconnaissent
« spontanément » l’existence de la philosophie, et le rapport privilégié de la philosophie
aux sciences. Cette reconnaissance est généralement inconsciente : elle peut devenir, en
certaines circonstances, partiellement consciente. Mais elle reste alors enveloppée dans les
formes propres de la reconnaissance inconsciente : ces formes constituent la « philosophie
spontanée des scientifiques » (P.S.S.).
(In the practice of science, the specialists of different disciplines recognise “spontaneously”
the existence of philosophy, and the special relation of philosophy to science. This
recognition is generally unconscious, and in some occasions it may become partially
conscious. But then it remains covered in its own forms of unconscious recognition, and
these forms constitute the “spontaneous philosophy of scientists” (P.S.S.).)

Althusser observed that P.S.S. contains often idealistic ideas coming from the
outside of science, which he called “Élément 2”, and that it constitutes an ideolog-
ical aspect of P.S.S. For Althusser, the principal role of philosophers (as himself)
with regard to P.S.S. is to draw a line of demarcation between science, which must
be materialism, and ideology, which consists of idealism. We should have in mind
that, as can been seen in [2], for Althusser a role model of such an intervention on
the part of philosophers is Lenin’s disparagement of empiriocriticism as one can
find in [19].

It is evident that Poincaré’s epistemology was born out of his work on geometry
and topology. The progress in geometry and topology in Poincaré’s day made it
necessary to change the classical view on space and time as was formulated by
Kant. In this sense, from Althusser’s viewpoint, Poincaré’s epistemology should be
regarded as an example of P.S.S. (An analysis of Poincaré’s philosophy in this line
can be found in Rollet [41].) However, what we want to emphasise is that Poincaré’s
epistemology, which can be regarded as a precursor of empiriocriticism along with
E. Mach, was quite ahead of his time, and that compared to naïve materialism such
as the one propounded by Lenin in [19], it was based on far more profound insights
into how our recognition of space and time is formed, as we saw in the previous
section.

Putting aside a rather amateurish approach of Lenin, let us compare Poincaré’s
philosophy with his contemporary professional philosophers. Among them, we can



448 K. Ohshika

in particular think of Frege, Husserl and Russell as those who studied seriously
epistemological problem of space and time. All of them had an academic training
in mathematics. Frege, who is often regarded as a precursor of logical positivism,
studied the foundation of mathematics, as in [8], which inspired both Wittgenstein
and the famous work of Russell-Whitehead, Principia Mathematica. Frege also
had good knowledge on the work of Riemann. Still, his attitude toward the non-
Euclidean geometries and epistemological problem of space can be regarded as
staying within a Kantian framework: Frege seemed to believe that our space of
intuition should be the Euclidean three-dimensional space, as can be seen in his
correspondence with Hilbert and his review on Hilbert’s book, both of which can
be found in [9] (see also Shipley [45] for a more detailed account on Frege’s
epistemological view on geometry and space).

Husserl, who is now regarded as a precursor of phenomenology, also worked
for philosophical aspects of mathematics. He gave a course on Riemann’s theory
of geometry at University of Halle in 1889 [16], where he dealt with Riemann’s
notion of metric critically. In particular, after criticising Riemann’s definition
of curvature, Husserl claimed that since Euclidean space is necessary to define
Gaussian curvature, Euclidean space is a special entity which is given to us by
pure intuition in Kantian sense. If we scrutinise his argument from the viewpoint
of modern geometry, we notice that Husserl was confusing intrinsic and extrinsic
natures of space. He did not seem to pay attention to the fact that spheres and
Euclidean planes can be realised even in hyperbolic space. (Recall that this is why
Lobachevsky coined the term “Pangeometry” as we noted in §4.)

Russell, who belongs to a younger generation than the other two, published in his
twenties a book entitled An essay on foundation of geometry [42]. In this book, he
criticised Kantian apriorism in geometry, and observed that there are two elements
in geometry, what is a priori and what is empirical. Russell rejected the a-priority
of Euclidean geometry, and claimed that experience can decide which of Euclidean
or non-Euclidean geometry is valid. He further insisted that their common ground,
which is projective geometry, should be a priori. This means that Russell embraced
some part of conventionalism, but retained a weak version of Kantian apriorism.
This position of Russell was harshly criticised by Poincaré in his review of this
book.

Thus we have seen that even these three famous philosophers who were familiar
with Riemann’s work could not be as radical as Poincaré in abandoning Kantianism,
and this seems to be caused by the fact that without experience of research on
geometry and topology, they could not reach the level of Poincaré’s understanding of
space. In the latter half of the twentieth century, there appeared philosophers such as
Merleau-Ponty, who analysed how our perception leads to our recognition of space,
but in Poincaré’s day no professional philosopher could approach the epistemology
of space as deeply as Poincaré. According to Althusser, as we have explained above,
the role of philosophers would be to draw a line of demarcation between science and
ideology in spontaneous philosophy by scientists. However for this to be possible,
philosophers need to have a deep understanding on what constitutes the core of
spontaneous philosophy. In Poincaré’s case, the core is nothing but his geometric
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conventionalism, which in turn depends on his research in geometry and topology.
In his time, it was very difficult for other philosophers to reach this level for playing
the role to draw such a line of demarcation in Poincaré’s epistemology.
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Chapter 11
Perturbing a Planar Rotation: Normal
Hyperbolicity and Angular Twist

Alain Chenciner

Abstract In generic two-parameter families of local diffeomorphisms of the plane
unfolding a local diffeomorphism with an elliptic fixed point, the tension between
radial (hyperbolic) and tangential (elliptic) behaviour gives rise to phenomena where
the whole wealth of the area preserving case is unfolded along some direction of the
parameter space.

AMS Classification: 37E30, 37E40, 37D05, 34C23, 37G05, 37G15

11.1 Introduction

Perturbing the germ at the origin of a planar rotation re2πiθ �→ re2πi(θ+ω) leads
to two celebrated results which describe geometrically the dynamical behaviour of
the iterates of a diffeomorphism F obtained by perturbation, that is the structure of
the orbits O(z) = {z, F (z), F 2(z), . . . , F n(z), . . .}: the Andronov–Hopf–Neimark–
Sacker bifurcation of invariant curves under a generic radial hypothesis of weak
attraction (or repulsion) and the Moser invariant curve theorem under an angular
twist hypothesis in the area preserving case. The invariant curves whose existence
is proved are normally hyperbolic with generic induced dynamics in the first case,
with a dynamics smoothly conjugate to a diophantine rotation in the second one.

Statements and proofs illustrate the notion of normal form, introduced by
Poincaré in his thesis in 1879. Closely related to the “averaging of perturbations”
used by astronomers since the eighteenth century, it generalizes the Jordan normal
form of a matrix to the nonlinear world. Namely, by introducing local coordinates
which reveal an approximate geometry underlying the situation, it sets the scene for
the application of refined analytic tools to the determination of which features of
this geometry do really exist.
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After recalling these two classical contexts, say the one of nonlinear self-
sustained oscillations (Lord Rayleigh, Van der Pol) and the one of the 3-body
problem (Poincaré), I shall describe an old result of mine which in some sense makes
the two worlds meet: in generic 2-parameter families of germs of diffeomorphisms
of the plane near a fixed point, the tension between radial and angular (or hyperbolic
and elliptic) behaviour leads to phenomena where the whole wealth of the area
preserving situation is unfolded along some direction of the parameter space.

11.2 Elliptic Fixed Points

Let F : (S, p)→ (S, p) be a local C∞ (or analytic) diffeomorphism of a surface S
defined in the neighborhood of a fixed point p = F(p). The fixed point is said to be
elliptic if the spectrum of the derivative dF(p) is of the form {e2πiω, e−2πiω} with
e2πiω �= ±1. This is equivalent to the existence of a linear conjugation of dF(p)
with the rotation of angle 2πω. Hence, after choosing good coordinates, one can
suppose that p = 0 and that F : (C, 0)→ (C, 0) is such that

F(ζ ) = λζ +O(|ζ |2), with λ = e2πiω.

In other words, F is a perturbation of a rotation.1 Now, a rotation preserves each
circle centered at the origin. This is a very strong property, very likely to be
destroyed by the non-linear terms in the Taylor expansion of F . Nevertheless, reality
is subtler and the study of the fate of these invariant circles is the starting point of two
famous theories which correspond roughly to the dichotomy between dissipative
and conservative dynamics:

1. Andronov–Hopf–Neimark–Sacker bifurcation theory which analyzes what hap-
pens when one considers a generic2 diffeomorphism F with an elliptic fixed
point at 0. The local behaviour of F itself is quite dull: indeed, the radial
behaviour of the nonlinear terms turns the fixed point into an attractor or a
repulsor and no other invariant object persists in its neighborhood. It is only
when considering “generic” 1-parameter families Fμ of local diffeomorphisms
stemming from F0 = F that the whole richness of the dynamics is regained (see
[2, 3]): each small enough circle invariant under the rotation dF(0) becomes a
normally hyperbolic3 closed curve invariant under some Fμ (Fig. 11.2).

1Beware that the notation F(ζ) does not mean that F is complex analytic, its expression depends
on ζ and ζ .
2We shall not give a formal definition of this word; it means essentially that what is described is the
general situation and that only special hypotheses could prevent the description from being correct.
3Roughly speaking this means that any attraction or repulsion normal to the curve under the iterates
of Fμ dominates any attraction or repulsion inside the curve; this condition insures the robustness
of the curve.
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2. Kolmogorov–Arnold–Moser (KAM) theory which analyzes the case when F

is area preserving, a hypothesis which is natural for diffeomorphisms with a
mechanical origin, the paradigmatic example being first return maps4 in the
restricted three body problem first studied by Poincaré (see [8, 9]). In this case,
it is the angular behaviour of the non-linear terms which plays the key part, the
result being that “many” of the circles invariant under the rotation dF(0) persist
in the form of closed curves invariant under the action of F itself. Moreover the
restriction of F to such an invariant closed curve is smoothly conjugated to a
rotation whose angle is of the form 2πα with α not rational and even “far from
the rationals” in a precise sense.

11.3 Preparation: Poincaré’s Theory of Normal Forms

The idea, which goes back to Poincaré’s thesis in 1879, is the following: being a
rotation, the derivative ofF commutes with the whole group SO(2) of rotations. This
is shown to imply that, provided some conditions on ω are satisfied, a high order
approximation of F is locally invariant by an action of SO(2) close to the standard
one. Equivalently, one proves the existence of local coordinates which reveal the
approximate geometry of the map, in a spirit similar to the Jordan form of a matrix:

Theorem 1 If λ = e2πiω is such that λq �= 1 for all integers q ∈ N such that
q ≤ 2n+ 2, then there exists a local diffeomorphism

H : (C, 0)→ (C, 0), ζ �→ z = H(ζ ) = ζ +O(|ζ |2)

such that

H ◦F ◦H−1(z) = N(z)+O(|z|2n+2), where N(z) = z
(

1+ f (|z|2)
)
e2πi(ω+g(|z|2)),

with f and g real polynomials of degree n such that f (0) = g(0) = 0. If moreover
λ2n+3 �= 1, one can achieve a rest which is O(|z|2n+3).

The so-called normal form N , is characterized by the fact that it commutes with
the whole group SO(2) of rotations:

∀α,N(e2πiαz) = e2πiαN(z).

4See section 1.4 of [7] for a brief introduction.
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Proof Let us start with a local diffeomorphism of degree 2,

H2 : (C, 0)→ (C, 0), z = H2(ζ ) = ζ +
∑
i+j=2

γij ζ
iζ
j
.

The direct computation of H2 ◦ F ◦H−1
2 is illustrated in the following diagram.

ζ
F−−−−−→ λζ +∑

i+j=2 αij ζ
i ζ̄ j +O

(|ζ |3)
↓ H2 ↓ H2

ζ +∑
i+j=2 γij ζ

i ζ̄ j
H◦F◦H−1−−−−−−→ λζ +∑

i+j=2 αij ζ
i ζ̄ j +∑

i+j=2 γij λ
i λ̄j ζ i ζ̄ j +O

(|ζ |3)
‖ ‖
z λz + ∑

i+j=2

(
αij + γij

(
λi λ̄j − λ

))
zi z̄j +O

(|z|3)

Supposing that F(ζ ) = λζ +∑
i+j=2 αij ζ

iζ
j +O(|ζ |3), we get

H2 ◦ F ◦H−1
2 (z) = λz +

∑
i+j=2

(
αij + (λiλ

j − λ)γij

)
zizj +O(|z|3).

Hence, if no resonance relation of the form λiλ
j − λ = 0 is satisfied with indices

i, j such that i + j = 2, that is if λ3 �= 1 (otherwise λ
2 − λ = 0), the choice

of γij = −(λiλj − λ)−1αij kills all degree 2 terms in the Taylor expansion of the
transformed map H2 ◦ F ◦H−1

2 .
If one tries in the same way to simplify the terms of degree 3 in the Taylor

expansion of H2 ◦ F ◦H−1
2 , one stumbles upon an unavoidable resonance

λ2λ− λ = 0

which merely reflects that |λ| = 1. Hence, if no other resonance of order 3 exists,

which amounts to saying that λ4 �= 1 (otherwise λ
3−λ = 0), a local diffeomorphism

H3 of the form H3(z) = z+∑
i+j=3 γij z

izj can be found such that5

H3 ◦H2 ◦ F ◦H−1
2 ◦H−1

3 (z) = λz+ c1z|z|2 +O(|z|4).

5In order to avoid too cumbersome notations we still call z the transformed coordinate H3(z).
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Now, if λq �= 1 for all q ≤ 2n + 3, one finds by induction a local diffeomorphism
H = H2n+2 ◦H2n+1 ◦H3 ◦H2 tangent to Id at 0 such that

H ◦ F ◦H−1(z) = λz +
n∑
k=1

ckz|z|2k +O(|z|2n+3).

If λ2n+3 = 1, there is possibly a monomial γ z2n+2 which cannot be canceled.
Finally, chosing polar coordinates, one writes H ◦ F ◦H−1 as in the conclusion of
the theorem.

Remark Resonances of the form λq = 1 for 1 ≤ q ≤ 4 are called strong
resonances. They are characterized by the fact that the resonant monomial zq−1

is of smaller or comparable order to the first unvoidable resonant monomial z|z|2
and hence could play a role in the geometry of the normal form N which could
become invariant only by rotations by an angle multiple of 2π/q . In the sequel, the
hypotheses always exclude strong resonances.

Remark on Notations Theorem 1 allows us to suppose from the start that local
coordinates z have been chosen so that F is in the form given, by Theorem 1. In
other words, from now on we shall write F(z) instead of H ◦ F ◦H−1(z).

11.4 The Dissipative Case

11.4.1 Andronov–Hopf–Neimark–Sacker Bifurcation

The first two names are attached to the “continuous” case of a differential equation,
the last two to the present “discrete” case of a map (see [2, 3, 13, 17]).

In general, the polynomial f (s) =∑n
k=1 aks

k is such that a1 �= 0. If a1 < 0, one
can scale the coordinates so that a1 = −1 which, provided λq �= 1 for all integers
1 ≤ q ≤ 4, puts F into the form

F(z) = N(z)+O(|z|4), where N(z) = z
(

1− |z|2
)
e2πi

(
ω+b1|z|2)

)
.

As well as the rotation dF(0), the normal form N still leaves invariant the foliation
by circles centered at 0 but it sends the circle of radius r onto the circle of
radius r(1 − r2). This implies not only that limm→∞Nm(z) = 0 but also that
limm→∞ Fm(z) = 0 as soon as |z| is small enough. Indeed, if |z| is small enough,

|F(z)| < |z|
∣∣∣1− 1

2 |z|2
∣∣∣ .

One says that 0 is a weak attractor (Fig. 11.1), the adjective “weak” recalling that
the attraction is due to a non-linear term.

Hence we completely understand the dynamics of F in some neighborhood V
of the fixed point 0. Things become much more interesting if one perturbs F by
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Fig. 11.1 Weak attraction

including it in a smooth one parameter family of local diffeomorphisms Fμ such
that F0 = F . A direct application of the implicit function theorem shows that,
in the neighborhood of 0, the equation Fμ(z) − z = 0 has a unique solution zμ
depending smoothly on μ and such that z0 = 0. Hence, after a translation by zμ of
the coordinates, one can suppose that for all μ near 0, one has Fμ(0) = 0.

For values of μ such that the spectrum of dFμ(0) is not on the unit circle,
there is no resonance and one could get a normal form which is linear up to any
order. However, this would not be of much use: on the one hand the domain of
definition of the conjugating diffeomorphism Hμ tends to 0 when the spectrum of
dFμ(0) tends to the unit circle and interesting phenomena occur outside of this
domain, on the other hand, this would break the continuity with respect to μ of
the coordinate change Hμ. In consequence, one chooses to eliminate in Fμ only
the same terms as the ones we have eliminated in F0, that is we mimic for Hμ the
construction of H in Sect. 11.3. Doing so one gets a smooth family Hμ of local
diffeomorphisms of (C, 0) defined in a fixed neighborhood of 0 which put Fμ into

the form Fμ(z) = z(1+ fμ(|z|2))e2πi(ω+gμ(|z|2)) + · · · given by Theorem 1 except
that fμ(s) =∑n

i=0 aks
k and gμ(s) =∑n

k=0 bμ(s)s
k now start with terms of degree

0. Finally, we shall suppose that a0(μ) is monotone (say increasing) for μ close
enough to zero. This is also a “generic” condition which amounts to saying that
the spectrum of the derivative dFμ(0) crosses transversally the unit circle when μ
crosses the value 0. It allows us to change parameters and suppose that a0(μ) = μ.
At the end, we are reduced to study a family Fμ of local diffeomorphisms of the
form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fμ(z) = Nμ(z)+O(|z|4), where

Nμ(z) = z
(

1+ μ+ a1(μ)|z|2
)
e2πi

(
b0(μ)+b1(μ)|z|2)

)
, and

a1(μ) = −1+O(|μ|), b0(μ) = ω +O(|μ|).
The rest can be made O(|z|5) except if λ5 = 1, which can leave a term γ z4.

Due to the commutation of Nμ with the group SO(2) of rotations, the study of
its dynamics reduces to an elementary question in dimension 1. The results are
summarized in Fig. 11.2: the origin, which is a strong (=linear) attractor when
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Fig. 11.2 Dynamics of the family of normal forms Nμ

μ < 0, becomes a strong repellor when μ > 0. But points far enough from the
origin are still attracted and in between appears an invariant circle Cμ of radius rμ
the unique solution of the equation μ+ a1(μ)r

2
μ = 0.

Theorem 2 (Neimark 1959, Sacker 1964) Under the above hypotheses, for each
μ > 0 small enough,Fμ possesses an invariant closed curve Γμ, close to Cμ, which
attracts a uniform (that is independent of μ) neighborhood V of 0 (with 0 deleted).
If the local diffeomorpisms Fμ are of class C∞, these curves are of class Ck with k
depending on μ and going to infinity when μ tends to 0.

The proof proceeds in two steps:

1. One encloses the invariant circle Cμ in an annulus Aμ of width O(|μ|), say
the one bounded by the circles whose radii r±μ are the two solutions of the
equation μ + a1(μ)r

2 ± r3 = 0. One checks that every point z �= 0 in some
uniform (i.e. independent of μ) neighborhoodV of 0 is eventually sent insideAμ
under the iterates of Fμ (Fig. 11.3).

2. One shows that under the iterates of Fμ, every point inside the annulus tends
asymptotically to some invariant curve Γμ close to the circle Cμ. For this, we
choose coordinates in Aμ centered on Cμ of the form:

z = rμ(1+√
μσ) e2πiθ .

Fig. 11.3 The attracting annulus Aμ
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Fig. 11.4 Graph transform

If λ5 �= 1, the map Fμ becomes (we keep the same notation Fμ for convenience)

Fμ(σ, θ) =
(
(1− 2μ)σ +O(μ3/2), θ + bμ+O(μ3/2)

)
.

(If λ5 = 1 and the term γ z4 is present, a circle is not a good enough
approximation of the invariant curve and a further change of variables is
necessary to get to the above form, see [17]). Let (θ, ψ(θ)) be the graph of a
function θ �→ σ = ψ(θ) from the circle R/Z to R. If ψ is small enough, its
graph Γψ is contained in the annulus Aμ and the image by Fμ of its graph, also
contained in Aμ, is the graph of a function Fμψ:

Fμ(Γψ) = ΓFμψ .

The map ψ �→ Fμψ is called the graph transform. Thanks to the contracting
factor 1 − 2μ which dominates any contraction along the angular direction (a
manifestation of the fact that the normal hyperbolicity of Cμ dominates the
perturbation), one shows that Fμ is a contraction in a well-chosen Banach space
of Ck functions provided μ is close enough to 0 (a condition more and more
stringent when k tends to +∞). The attracting invariant curve Γμ ⊂ Aμ we are
looking for is the graph of the unique fixed point of this contraction (Fig. 11.4).

11.4.2 Dynamics on the Invariant Curves

In conclusion, from the “radial” hypothesis a1(0) < 0 we have obtained a complete
control on the radial dynamics of Fμ in a uniform neighborhoodV of 0 (i.e. Fig. 11.2
is still pertinent to describe the normal dynamics of Fμ), but we have no control
of the dynamics restricted to the invariant curves. Indeed, this dynamics may be
a “generic” dynamics of a diffeomorphism of the circle (see section 4 of [7]). To
be more precise we should add another “generic” assumption, this time on the
“angular” part of F , namely that b1(0) �= 0, for example b1(0) > 0. This implies
that, for μ close enough to 0, the restriction of the normal form Nμ to its invariant
circleCμ is a rotation whose angle increases withμ. The two-parameter family fω,μ
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Fig. 11.5 Typical behavior of a 2-parameter family of circle diffeomorphisms (figure adapted
from [4])

of diffeomorphisms of the circle defined by the restriction ofFμ to its invariant curve
Γμ, the other parameter being ω, behaves in general as does Arnold’s family Tω,μ,
described in [4]:

Tω,μ(θ) = θ + ω + μ cos 2πθ.

In the interior of each of the so-called Arnold’s tongues—values of the parame-
ters for which the rotation number is rational—fω,μ is in general a diffeomorphism
of the circle with two periodic orbits of the same period q if the root of the tongue
is the rotation of angle (2πω = 2π p

q
). One orbit is attracting, the other repelling.

Such periodic orbits cannot be destroyed by a small enough perturbation and hence
persist over an interval of values of ω for each μ �= 0; the complement of the union
of all these intervals is a Cantor set of values of ω for which fω,μ is topologically
(but not always smoothly) conjugated to a rotation. Moreover, for any μ �= 0, the set
of ω for which the rotation number of fω,μ is rational is in general big in the sense
of topology, namely it is open and dense, but its complement is always big in the
sense of measure, namely, its measure tends to 1 when μ→ 0 (see [16]) (Fig. 11.5).

11.5 The Area Preserving Case

11.5.1 Moser’s Invariant Curve Theorem [21]

We now suppose that, in addition to satisfying λq �= 1 for all integers 1 ≤ q ≤ 4,
F is area preserving. It follows that the radial component f of the normal form N

vanishes identically and one can show that it is possible to chooseH area preserving.
Hence, one is reduced to the study in the neighborhood of its elliptic fixed point 0
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of an area-preserving diffeomorphism of C, 0 of the form

F(z) = N(z)+O(|z|4), N(z) = ze2πi(ω+b1|z|2).

The normal form N is called a truncated Birkhoff normal form. Dynamically, it is
an integrable monotone twist: as well as the rotation dF(0), it leaves invariant each
circle Cr centered at 0 but the angle of rotation 2π(ω + b1r

2) on Cr varies now
monotonically with the radius r of this circle.

Poincaré, while studying the three body problem, became aware of a fundamental
difference between the invariant circles on which N induces a periodic (ω + b1r

2

rational) or non periodic (ω + b1r
2 irrrational) rotation: in the first case (angle

2πω = 2πp/q) the invariant circle is simply the union of a continous family of
q-periodic points z (i.e. of points z such that Nq(z) = z); in consequence, a small
perturbation should in general break such a circle, with only a finite number of
periodic points surviving the perturbation. On the other hand, if ω is irrational, the
invariant circle being the closure ∪n≥0Nn(z) of an orbit has a dynamical origin
and hence has more chance to resist a perturbation. In the first volume of his famous
book The New Methods of Celestial Mechanics, Poincaré even ventured to write that
some arithmetic condition on ω could perhaps grant resistance to perturbations of
such an invariant circle but that he considered such a possibility as quite improbable
(Fig. 11.6).

Nevertheless, after the pioneering work of Kolmogorov in 1954, the so-called
KAM theory (from the names of Kolmogorov, Arnold and Moser) showed that
indeed, what Poincaré deemed improbable was in fact a dominant phenomenon.
In the present case, the pertinent statement is the following

Theorem 3 (Moser 1962) Given an area preserving diffeomorphism F as above,
given C > 0 and β > 0, there exists ε(C, β) > 0 such that each invariant circle Cr0
of the normal form N such that its rotation angle 2πωr0 = 2π(ω + b1r

2
0 ) satisfies

the diophantine condition

∀ p

q
∈ Q,

∣∣∣∣ωr0 − p

q

∣∣∣∣ ≥ C|ωr0 − ω|
|q|2+β and |ωr0 − ω| < ε(C, β)

Fig. 11.6 Perturbation of a monotone twist ???
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will give rise to a smooth (resp. analytic) closed curve Γr0 invariant under F and
such that the restriction F |Γr0 of F is smoothly conjugate to the rotation of angle
2πωr0 .

The most transparent proof of theorem 2 is based on a version of the so-called
“hard implicit function theorem” adapted to the problem of small denominators well
known to astronomers since eighteenth century. The following consequence of area
preservation, named intersection property, is crucial: the image F(Γ ) of a curve
Γ surrounding the origin cannot be disjoint from Γ . Note that such a property is
preserved even under changes of coordinates which do not preserve area. Fixing
r = r0 satisfying the hypotheses of the theorem, one chooses coordinates centered
on Cr0 of the form:

z = r0
√

1+ σ e2πiθ .

The map F is now (as before we keep the same notation F )

F(σ, θ) =
(
σ +O(r4

0 ), θ + ωr0 + b1r
2
0σ +O(r4

0 )
)
.

As a further simplification, one replaces σ by ρ = σ + O(r2
0 ) so that the formula

for F takes the form

F(ρ, θ) =
(
ρ + ϕ(ρ, θ), θ + ωr0 + b1r

2
0ρ
)
,

where the perturbation ϕ is O(r4
0 ). Following Rüssmann, it is enough to look for a

curve of the form ρ = ψ(θ)which is sent by F to the translated curve ρ = ψ(θ)+τ
for some τ ∈ R. This is because the intersection property, still valid after the changes
of coordinates, implies that τ must be equal to 0. This leads to the equation

ψ
(
g(θ)

) + τ = ψ(θ)+ ϕ
(
ψ(θ), θ

)
, where g(θ) = θ + ωr0 + b1r

2
0ψ(θ).

Recall that in the dissipative case, the radial hypothesis a1(0) �= 0 implied the
existence of a curve invariant under Fμ with a prescribed normal dynamics. Having
now an angular hypothesis b1 �= 0, it is natural to look for invariant curves of F
with a prescribed angular dynamics. It turns out that the right constraint to impose
to the (translated) curve we are looking for is the existence of a diffeomorphism h

of the circle R/Z such that g(θ) = h−1 ◦ Rωr0 ◦ h(θ).
Finally, defining ψ by ψ(θ) = 1

b1r
2
0

[
h−1 ◦ Rωr0 ◦ h(θ)− θ − ωr0

]
, we must

solve

F(ϕ, τ, h) := ψ(θ)− ψ(h−1 ◦ Rωr0 ◦ h(θ))− τ + ϕ(ψ(θ), θ) = 0

in the neighborhood of the solution (ϕ = 0, τ = 0, h = Id). This is typically a
“hard implicit function problem” because even the best diophantine condition allows
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us only to invert the “derivative” of F in a weak sense (i.e. with loss of a finite
number of derivatives on the target space of the inverse).

Warning Examples in [1] show that an area preserving C∞-diffeomorphism of
the disk D2 with an elliptic fixed point such that ω is a Liouville number, too well
approximated by rational numbers, may have a very wild dynamics, with dense
orbits.

11.5.2 Periodic Orbits, Aubry-Mather Sets and Homoclinic
Tangles

The curves Γr0 given by Theorem 3 form a Cantor family for which 0 is a density
point (the relative measure of the Cantor set in smaller and smaller neighborhoods of
0 tends to 1). Nevertheless, this is far from being the whole story. The dynamics of
such a generic area-preserving F in the complement of the invariant curves (the so-
called Birkhoff domains of instability) is extremely complicated and, if the works of
Birkhoff, Aubry, Mather, Herman, have shed considerable light on the way invariant
circles of the normal form break (periodic points, invariant Cantor sets, see [14]),
many questions remain open.

Some of the complexity of a generic area-preserving map of the disc is roughly
suggested in Fig. 11.7. This figure, taken from [8], originates from [15]. It illustrates
the dynamics of the monotone twist map of the annulus which arises when studying
the restricted three-body problem at high values of the Jacobi constant (see [9] for
explanations). To the periodic points are attached invariant stable (resp. unstable)
manifolds along which the images of a point under the positive (resp. negative)
iterates of F converge exponentially fast to the periodic orbit. The homoclinic
tangles (see [8, 22]) created by the intersections of such invariant manifolds produce
invariant Cantor sets on which the dynamics of F is the same as the one of throwing
a dice (more technically, a Bernoulli shift, see [7, 18]) and hence possesses positive
topological entropy. Also, orbits go from one boundary of a domain of instability to
the other, but their diffusion is blocked by the invariant curves.

Remark One can check [9, 20] that Moser’s invariant curve theorem applies to the
Poincaré first return map on a surface of section of the planar circular restricted
three body problem with any large enough energy in the rotating frame (i.e. Jacobi
constant). This implies stability in a strong sense as the invariant tori corresponding
to the invariant closed curves are of codimension 1 in the energy surface and hence
serve as barriers confining the solutions. This is precisely because he lacked such a
theorem that Poincaré tried to prove such a stability result using barriers made from
invariant manifolds of periodic orbits, which lead to the famous error in the first
version of his prize winning Memoir on the Three-body problem (see [8]).
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Fig. 11.7 The return map of the restricted 3-body problem at high Jacobi constant (figure
reproduced (slightly modified) with the kind permission of Encyclopædia Universalis)

11.6 When Radial and Angular Behaviours Compete

Area-preserving maps form a subspace of infinite codimension within the set of
all smooth maps and the same is true of rotations. If one views Neimark-Sacker
bifurcation as an unfolding, due to the nonlinear terms, of the continuum of circles
invariant by the rotation along the parameter μ (Fig. 11.2), the infinite codimension
reflects the infinite number of events which happen for one and the same map
while generically they happen for different values of μ. In a similar but subtler
way one shows ([10], summarized in [5, 11, 12, 23]) that the whole complexity of
the dynamics of an area-preserving map happens unfolded along some curve Γ of
the parameter space in generic 2-parameter families Fμ,a of diffeomorphisms of
the plane in the neighborhood of a degenerate elliptic fixed point which is a very
weak attractor. Along the lines of Sect. 11.3, provided F = F0,0 satisfies the non
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Fig. 11.8 Dynamics of Nμ,a

resonance relations λk �= 1 for all integers 1 ≤ k ≤ 6, such a family can be written

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fμ,a(z) = Nμ,a +O(|z|6), where

Nμ,a(z) = z
(

1+ μ+ a|z|2 + a2(μ, a)|z|4)
)
e2πi

(
b0(μ,a)+b1(μ,a)|z|2+b2(μ,a)|z|4

)
,

a2(0, 0) = −1, b1(0, 0) �= 0, b1(0, 0)+ 2
∂b0

∂a
(0, 0) �= 0.

Figure 11.8 shows the dynamics of Nμ,a in the different regions of the parameter
plane around (0, 0). Along the curve Γ , Nμ,a possesses a non normally hyperbolic
invariant curve, attracting from the outside and repelling from the inside. This is in
some sense the closest dissipative approximation to an invariant curve of an area-
preserving normal form.6

The complement of some cusp neighborhood of Γ belongs to the hyperbolic
domain: here, the “normal” dynamics of Fμ,a is similar to the one of Nμ,a and the
methods of proof are the ones of Sect. 11.4. On the contrary, in the cusp domain
along Γ , the control is more on the angular dynamics of Fμ,a and the methods of
proof are the ones of Sect. 11.5. This is a first approximation of the elliptic domain
(Fig. 11.9).

More precisely, for a Cantor set of points (μ, a) near Γ the dynamics of Fμ,a is
similar both in radial and angular directions to the one of Nμ′,a′ for some (μ′, a′) ∈

6All figures in this section are reproduced with the kind permission of Publications mathématiques
de l’IHÉS.
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Fig. 11.9 Hyperbolic and elliptic domains

Fig. 11.10 “Unfolding” the dynamics of a monotone twist

Γ . Moreover, the hyperbolic domain extends to the complement of a countable
number of bubbles having this Cantor set in their closure. The union of these bubbles
is precisely the elliptic domain, the only place where complicated dynamics occurs.
Figure 11.10, to be compared to Fig. 11.2, shows that one can describe heuristically
the dynamics of Fμ,a along this elliptic domain as the unfolding of the dynamics of
a generic area-preserving map as represented in Fig. 11.7.

Finally, in the neighborhood of an elliptic fixed point, generic one-parameter
families of planar diffeomorphims displaying the elimination of a pair of invariant
closed curves, one repelling and one attracting, may be thought of as being
the dissipative analogues of the invariant subsets of a generic area-preserving
diffeomorphism : in particular, to the Cantor set of KAM curves corresponds a
Cantor set of families along which the elimination proceedes as simply as in the case
of normal forms (or equivalently of time one maps of differential equations) with
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Fig. 11.11 Resonant elimination of a pair on invariant curves (from [10] III)

a single value of the parameter for which the diffeomorphism posesses a smooth
invariant closed curve which is non normally hyperbolic and on which Fμ,a is
smoothly conjugate to a diophantine rotation, while to the well ordered periodic
orbits with rational rotation numbers p/q such that q is not too large with respect
to the distance of the orbit to the fixed point 0, correspond one-parameter families
along which the elimination process, much more complicated, is represented on
Fig. 11.11.

The condition on p/q amounts to asking that in some annulus A containing the
periodic points of rotation number p/q , the qth iterate Fq

μ,a of the map still be
a small perturbation of the qth iterate Nq

μ,a of its normal form. The said periodic
points are then interpreted as the trace left by a nearby resonant elliptic fixed
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point (compare Sect. 11.4.2) and resonant normal forms provide local coordinates
(θ, y) in the annulus A which make the one-parameter subfamily Fμ,a depicted in
Fig. 11.11 appear as a perturbation of the composition of the rotation Rp/q (of angle
2πp/q) with the time 1 map of a differential equation of the form

dθ

dt
= y,

dy

dt
= α + γy2 + δ cos 2πqθ,

where γ < 0 and δ > 0 are fixed and α is the parameter.
Finally, a surprizing consequence of this study is the strong organizing power

of diophantine rotation numbers: if some Fμ,a possesses a closed invariant curve
encircling 0 on which it induces a diffeomorphism with such a rotation number, it
behaves like a normal form in a uniform (independent of (μ, a)) neighborhood of
the origin, the sole possibly more complicated dynamics occuring in restriction to
the second invariant closed curve when that curve exists.
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Chapter 12
René Thom and an Anticipated
h-Principle

François Laudenbach

Abstract The first part of this chapter intends to present the role played by Thom in
diffusing Smale’s ideas about immersion theory, at a time (1957) where they sound
counterintuitive: it is clearly impossible to make the sphere inside out! Around a
decade later, M. Gromov transformed Smale’s idea in what is now known as the
h-principle. Here, the h stands for homotopy.

Shortly after the astonishing discovery by Smale, Thom gave a lecture in Lille
(1959) announcing a theorem which would deserve to be named a homological h-
principle. The aim of our second part is to comment about this theorem which, at
that time, was completely ignored by the topologists in Paris, but not in Leningrad.
We explain Thom’s statement and comment about it. The first idea is combinatorial.
A beautiful subdivision of the standard simplex emerges from Thom’s article. We
connect it with the jiggling technique introduced by W. Thurston in his seminal
work on foliations.

12.1 From Immersions Viewed by Smale to Gromov’s
h-Principle

12.1.1 Thom and Smale in 1956–1957

Important and reliable information1 about Stephen Smale in these years is given by
Hirsch [16, p. 36]:

1Curiously enough some biographies online give 1957 as the date of Smale’s thesis even though
the footnote in [28] is quite clear on this matter.
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Fig. 12.1 Corrugation in
dimension one and two

or ×S1

Fig. 12.2 First corrugating
step for an isometric
embedding of the unit sphere
into the ball of radius 1/2. By
courtesy of the Hevea Project

I first learned of Smale’s thesis at the 1956 Symposium on Algebraic Topology in Mexico
City. I was a rather ignorant graduate student at the University of Chicago, Smale was a
new PhD from Michigan . . . I thought I could understand the deceptively simple geometric
problem Smale addressed: Classify immersed curves in a Riemannian manifold.

René Thom gave an invited lecture at the same Symposium. Probably, it was the
first occasion for Thom and Smale to meet. Let us continue reading Hirsch [16]: “In
the Fall of 1956, Smale was appointed Instructor at the University of Chicago”.

On January 2, 1957, Smale submitted an abstract to the Bulletin of the American
Mathematical Society which was published in the issue of May 1957 [27, Abstract
380t]. This is a 14 lines piece2 titled A classification of immersions of the 2-sphere
where Smale announces3 a complete classification of immersions of the 2-sphere
valued in C2 manifolds of dimension greater than two. He writes: “For example any
two C2 immersions of S2 in E3 are regularly homotopic”.

In the Spring of 1957, Thom spent a semester as invited Professor at the Univer-
sity of Chicago. He spoke with Smale for hours until he had a full understanding of
Smale’s ideas on immersions. Back to France, Thom reported on Smale’s work in a
Bourbaki seminar of December 1957 [36] (or [38, p. 455–465]). It is remarkable
that the written version of Thom’s lecture contains the very first figure which
has appeared in the theory of immersions. This is just a bump; according to [41],
Thurston would have called this picture a corrugation (Fig. 12.1).

I should say that the theory of corrugations is still very lively for constructing
concrete C1 isometric embeddings (see Borrelli et al. [2] and Fig. 12.2).

In the rest of Sect. 12.1, I would like to present Smale’s ideas, starting from the
basics, and connect them with more recent ideas.

2This abstract is not included in [31].
3The complete paper following this announcement is [29].
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(a) (b)

Fig. 12.3 (a) shows an embedding (0, 1) → R
2 whose image is not a submanifold. (b) shows an

immersion S
1 → R

2 which does not extend to an immersion of the 2-disc

12.1.2 Immersions

Given two smooth manifolds X and Y where the dimension of X is not greater
than the dimension of Y , a C1-map f : X → Y is said to be an immersion if its
differential df is of maximal rank at every point of X. An immersion may have
double points but no singular points like folds. Under a properness condition, an
immersion with no double points is said to be an embedding and its image is a
submanifold of Y ; the condition is that f is a proper map4 from X to some open
subset of Y (Fig. 12.3a).

The space of immersions from X to Y , denoted by Imm(X, Y ), is an open set
in C1(X, Y ) if the space of C1 maps is endowed with the so-called fine Whitney
topology. When X is compact, there is no concern: a sequence (fn) is convergent
if and only if both sequences (fn(x)) and (dfn(x)) converge uniformly. In what
follows, we shall only consider immersions whose domain is compact. In that case,
the set of immersions is locally contractible.

Two immersions f0, f1 : X → Y are said to be regularly homotopic if they
are joined by a path in Imm(X, Y ) or equivalently if f0 and f1 belong to the same
connected component of Imm(X, Y ).

12.1.3 Whitney-Graustein Theorem

The immersions from the circle to the plane have been classified by H. Whitney up
to regular homotopy in the mid thirties [43]. The classification reduces to the degree
of the Gauss map

G : S1 → S
1

x �→ dfx(∂θ )/‖dfx(∂θ )‖ ,

4Given two topological spaces A and B, a continuous map from A to B is said to be proper if the
preimage of any compact set of B is a compact set of A.



472 F. Laudenbach

where ∂θ stands for the unit tangent vector to the circle S
1 := R/2πZ. The

reason why this theorem is named Whitney-Graustein Theorem is given by Whitney
himself in a footnote on page 279 of his article: “This theorem, together with a
straightforward proof, was suggested to me by W. C. Graustein”.

It is worth noting that there is an interesting proof of the Whitney-Graustein The-
orem given by S. Levy in [20, p. 33 - 37] following Thurston’s idea of corrugation.

It would be wrong to think that this classification ends the story of the immersions
of the circle to the plane. A much more difficult question is the following: Which
immersion extends to an immersion of the disc to the plane? For such an immersion,
how many extensions are there? An obvious necessary condition for a positive
answer to the first question is that the degree of the Gauss map be equal to one.
But this condition is not sufficient, as Fig. 12.3b shows. Actually, these questions
have been solved by S. Blank in his unpublished thesis. Fortunately, V. Poénaru
reported5 on Blank’s thesis in a Bourbaki seminar [26]. The analogous questions for
immersions of the n-sphere into R

n+1 can be raised and remain essentially open.

12.1.4 The Key Proposition in Smale’s Thesis

Let f0 denote the standard embedding of the 2-sphere S2 in R
3. Choose an equatorE

on S
2, a base point p ∈ E and two hemispheres respectively named the northern and

the southern hemisphereHN and HS . We consider the space of pointed immersions

Immp(S
2,R3) :=

{
f : S2 � R

3 | f (p) = f0(p) and df (p) = df0(p)
}
.

The spaces Immp(HS,R
3) and Immp(HN,R

3) are similarly defined. The space
of immersions HN � R

3 whose 1-jet j1f (x) := (
f (x), df (x)

)
coincides with

j1f0(x) at every point x ∈ E is denoted by ImmE(HN,R
3). Finally, Ĩmmp(E,R

3)

will denote the space of immersions f : E → R
3 enriched with a 2-framing along

f (E) which is fixed at p and whose span is tangent to f (E).
The space of pointed immersions of the 2-disc into R

3 is known to be contractible
thanks to the Alexander’s contraction which reads in the present setting:

(x, t) �→ p + 1

t
[f (p + t (x − p)

)− f (p)]

5Note that Poénaru’s report contains the drawing of the so-called Milnor example, that is, an
immersion of the circle into the plane having two extensions to the disc which are not equivalent
up to homeomorphism of D2.
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Fig. 12.4 The southern
hemisphere moves to the
right. Only a northern collar
of the equator in HN is
deformed

HS

E HN⇒

where p lies in the boundary of D2 and (x, t) ∈ D
2 × (0, 1]. When t approaches

0, the limit of the above expression, uniformly in x in the 2-disc, is the affine map
x �→ p + df (p)(x − p).

Proposition

(1) The restriction map, Immp(S
2,R3) → Immp(HS,R

3), is a Serre fibration.
Its fibre over f0 is homeomorphic to ImmE(HN,R

3).
(2) The 1-jet map along the equator, Immp(HN,R

3)→ Ĩmmp(E,R
3), is a Serre

fibration.6 Its fibre over (j1f0)|E is also homeomorphic to ImmE(HN,R
3).

A map ρ : X → Y between two arcwise connected spaces is said to be a Serre
fibration if it has the parametric Covering Homotopy Property. More precisely, for
every γ : [0, 1] → Y and every x0 in X with ρ(x0) = γ (0), there exists a lift
γ̃ : [0, 1] → X of γ starting from x0; and similarly for families with parameters in
the n-disc. In this case, there is a long exact sequence in homotopy.

It is worth noting that similar statements for a one-dimensional source were
already in Smale’s thesis (published in [28]).

The proof of the first item is sketched by a picture which shows the flexibility that
the statement translates (Fig. 12.4).

Corollary We have π0
(
Immp(S

2,R3)
) = 0, that is, the space of pointed immer-

sions of S2 → R
3 is arcwise connected.

Proof Since the base of the first Serre fibration is contractible, the homotopy
exact sequence yields π0

(
Immp(S

2,R3)
) ∼= π0

(
ImmE(HN,R

3)
)
. By the second

Serre fibration whose total space is contractible, we have π0
(
ImmE(HN,R

3)
) ∼=

π1
(
Ĩmmp(E,R

3)
)
. Arguing similarly for the enriched immersions of E whose

equator is a 0-sphere, we get

π1
(
Ĩmmp(E,R

3)
) ∼= π2

(
Ĩmmp(S

0,R3)
) ∼= π2({2-frames in R

3} ∼= π2(SO(3)) = π2(S
3) = 0.

�

6I am not saying that this 1-jet map is surjective!
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12.1.5 Concrete Eversion of the Sphere

I do not intend to explain the history of this matter. I just give a list of references in
chronological order and add a few comments: Phillips [22], Francis and Morin [7],
Francis’ book [6] and finally the text and video by Levy [20].

The first idea, due to Arnold Shapiro, is to pass through Boy’s surface, here noted
Σ , an immersion of the projective plane into the 3-space. Since the projective plane
is non-orientable, a tubular neighborhood T of Σ is not a product. Therefore, T
is bounded by an immersed sphere Σ̃ . It turns out that Σ̃ is endowed with the
involution which consists of intertwining the two end points in each fibre of T .
This is realized by the regular homotopy

Σ̃ × [0, 1] → T , (x, t) �→ x(1− 2t),

where the product in the right hand side is associated to the affine structure of the
fibre of x. If the two faces of Σ̃ are painted with different colors, this move has the
effect of changing the color which faces Boy’s surface. It remains to connect the
standard embedding of S2 to Boy’s surface by a regular homotopy in order to get an
eversion of the sphere.

Remembering a walk with Nicolaas Kuiper during which he explained this
construction to me, I had the feeling that he played a role in it. I did not know
more until very recently, when Tony Phillips informed me about an article of Kuiper
where his argument is written explicitly7 [17, p. 88]. The video [20] does not follow
the same idea: it goes the way of Thurston’s corrugations and is not optimal for what
regards the number of multiple points of multiplicity 3 or more.

12.1.6 Hirsch’s Definitive Statement

The general statement in the homotopy theory of immersions is due to Hirsch [15].
He considers an arbitrary pair (X, Y ) of smooth manifolds. For simplicity, assumeX
is connected. The main assumption is that dimX ≤ dimY , equality being allowed
only when X is not closed (each connected component of X must have a non-empty
boundary).

If f : X→ Y is an immersion, we have a diagram

T X
df

T Y

X
f

Y

7The approaches by Shapiro and Kuiper were contemporary. As far as I know, nothing indicates
some relationship between them.
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where df is a fibre bundle map over f (between the total spaces of the respective
tangent bundles) which is fibrewise linear and injective.

Even though this terminology has been in use only after Gromov’s thesis, we are
going to use it here. A formal immersion is a diagram

T X
F

T Y

X
f

Y

where f is only assumed to be continuous and F is a fibre bundle map which is
fibrewise linear and injective. In the language of jet spaces, this is just a section of
the 1-jet bundle J 1(X, Y ) over X valued in the open set of 1-jets whose linear part
is of maximal rank.

With this vocabulary in hand, Hirsch’s theorem states the following:

Theorem (Hirsch [15]) The space Imm(X, Y ) of immersions from X to Y has the
same homotopy type8 as the space Immformal(X, Y ) of formal immersions.

12.1.7 Phillips’ Work on Submersions

When the dimension ofX is greater than the dimension of Y , it is natural to consider
submersions, that is, maps of maximal rank. When such maps exist they form a
space that we denote by Subm(X, Y ). Using again the current terminology, a formal
submersion is a section of the 1-jet bundle J 1(X, Y ) over X valued in the open
set of 1-jets whose linear part is of maximal rank. Phillips’ submersion Theorem
sounds similar to Hirsch’s immersion Theorem with, nevertheless, a fundamental
difference: the domain needs to be an open manifold. Notice that the circle admits
no submersion into the line even though there is a formal submersion; a similar
claim holds for any parallelizable manifold like a compact Lie group.

Theorem (Phillips [23]) If X is an open manifold, Subm(X, Y ) and Submformal

(X, Y ) have the same homotopy type.

Since a foliation is locally defined by a submersion into a local transversal, the
next theorem can be viewed as an extension of the previous one. Let F be a smooth
foliation of the manifold Y . Denote its normal bundle by ν(F); this is a vector
bundle on Y whose rank is equal to the codimension of F . Denote by π : T Y →

8In the literature on this topic, one generally speaks of the same weak homotopy type, meaning a
map inducing an isomorphism between each respective homotopy group of the two considered
spaces. Actually, Palais [21, Theorem 15] tells us that the two notions are equivalent for the
topological spaces we are dealing with.
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ν(F) the linear bundle morphism over IdY whose kernel is the sub-bundle of T Y
made of vectors which are tangent to the leaves of F .

A smooth map f : X → Y is said to be transverse to F if the bundle morphism
π ◦ df : TX → ν(F) over f is fibrewise surjective. In that case, the preimage of
f−1(F) is a foliation of the same codimension as F and its normal bundle is the
pull-back f ∗

(
ν(F)). We denote by C�F (X, Y ) the set of smooth maps transverse

to Y .
Given a bundle morphism F : TX → T Y over f : X → Y , the pair (f, F ) is

said to be formally transverse to F if π ◦ F is fibrewise surjective. By abuse, one
says also that f is formally transverse to F .

Theorem (Phillips [24]) The space C�F (X, Y ) has the same homotopy type as the
space of maps which are formally transverse to F .

Remark All the previous theorems reduce the understanding of immersions, sub-
mersions or maps transverse to foliations, from the homotopical point of view, to
the understanding of the corresponding formal problems. And the latter reduce to
classical homotopy theory: the matter is to find sections to some maps and thus it
reduces to well-known obstructions. This does not mean that the homotopy type of
the formal spaces in question is computable. In general it is not, as the homotopy
groups of the spheres are not completely computed.

The aim of Gromov’s approach which we are going to describe below is to
consider all the previous problems as particular cases of a general principle.

12.1.8 Differential Relations After M. Gromov

The main reference here is Gromov’s book [10]. A simplified approach is described
in Eliashberg and Mishachev’s book [5]; the new tool is their holonomic approxi-
mation Theorem which was first proved in [4].

The preface of [5] starts as follows: “A partial differential relation R is any
condition imposed on the partial derivatives of an unknown function”.

If the unknown function in question is a smooth map from X to Y , a simple
definition consists of saying that R is a subset in a jet space9 J r(X, Y ) for some
integer r . Recall that in coordinates an element of this jet space is just the data of
a point a ∈ X, a point b ∈ Y and a Taylor expansion of order r at a with constant
term b.

The expression h-principle comes from the article of Gromov and Eliashberg
[11]; they write: “The principle of weak homotopy equivalence for etc.” Later on,

9Since this is going to be forgotten, I recall that the concept of jet space is due to Charles
Ehresmann.
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this expression is abbreviated to h-principle.10 With these authors we say that the
parametric h-principle holds for R if the space

secR := {sections of J r(X, Y ) valued in R}

has the same homotopy type as

solR := {f : X→ Y | j rf is valued in R}.

One can think of an element of secR as a formal solution of the problem posed
by R. A section valued in R which is of the form j rf is said to be holonomic
or integrable. The integrablity is prescribed by the vanishing on the section in
question of a list of 1-forms (called a Pfaff system) which are naturally defined
on the manifold J r(X, Y ). For instance, when r = 1 and Y = R, a section s is
integrable if and only if its image is Legendrian for the canonical contact form α

which reads dz−∑
pidq

i in canonical coordinates, that is, if and only if s∗α = 0.

Theorem (Gromov [8])) If R is an open set in J r(X, Y ) which is invariant by
the natural right action of Diff(X) and if X is an open manifold (meaning that no
connected component is closed), then the parametric h-principle holds for R.

The proof also goes through corrugations as in the case of Smale’s theorem. Of
course, the corrugations are not developed in the range; there is no room there for
corrugating. They are developed in the domain. This is very clearly explained in
Eliashberg-Mischaev’s book [5].

Remark Another very important condition on a differential relation leads to an h-
principle; it is when the relation is ample. In this case X does not have to be an
open manifold. Here, the h-principle follows from the famous convex integration
technique invented by Gromov in [9] (see Gromov’s book [10]). A complete account
on this is given in Spring’s book [32]. The end of Eliashberg-Mishachev’s book [5]
focuses on the convex integration applied to the C1 isometric embedding problem
(Nash-Kuiper); Borrelli et al. [2] converted their theoretical result into an algorithm
richly illustrated by pictures of C1 fractal objects, as the authors say. In spite of the
great interest of the subject, I do not intend to enter more deeply into it as it is less
close to Thom’s work than what follows.

Going back to the, say open, h-principle stated above, one sees that the previously
mentioned results by Smale, Hirsch and Phillips are clearly covered by Gromov’s
theorem. One could be disappointed that only 1-jet spaces are involved. The simplest
way for finding new examples with differential relations of higher order consists of

10I have already commented on the word weak in Footnote 8. Concerning the word principle, I
feel uncomfortable with a principle which is not always true, and worse, whose domain of validity
remains unknown. This means that the h-principle is not a gift from heaven.
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the following construction, which naturally appears in Thom’s singularity theory
[35] as it is shown in the next subsection.

Consider a proper submanifold Σ ⊂ J r−1(X, Y ) or a proper stratified set with
nice singularities (for instance, with conical singularities in the sense of [18]); the
important point is that transversality to any stratum Σi ⊂ Σ implies transversality
to all other strata in some neighbourhood of Σi in J r−1(X, Y ). Assume that Σ
is natural, that is, invariant by the action of Diff(X). The transversality to Σ is
obviously a differential relation of order r . This differential relation which we
denote by RΣ is open and natural, that is, invariant by the action of Diff(X). Thus,
if X is open, Gromov’s theorem applies.

12.1.9 Examples from Singularity Theory

For a first concrete example, take dimX = dimY = 2 and consider the stratified set
Σ of 1-jets of rank less than 2. It is made of two strata: one stratum is the set of jets of
rank 1; it has codimension 1 and is denoted by Σ1 in the so-called Thom-Boardman
notation [1]. The other stratum is made of 1-jets of rank 0; its codimension is 4 in
our setting. Their union is a stratified set with conical singularities which is natural
and proper. Thus RΣ satisfies the open h-principle if X is open.

The next example leads to a differential relation of order 3. One starts with
the first example and looks at a 2-jet ξ ∈ RΣ ; say it is based in a ∈ X. On
the one hand, as ξ is transverse to Σ , it does not project to the zero 1-jet for
dimension/codimension reasons. Therefore, it determines the tangent space at a to
the fold locus L ⊂ X where the rank of any germ of map f realizing ξ is exactly 1.
In our setting, L is one-dimensional. On the other hand, ξ determines the kernel Ka

of the differential dfa . Thus, there is a natural stratification of RΣ ⊂ J 2(X, Y ): one
stratum is Σ1,0 which is made of 2-jets where Ka is transverse to TaL; the second
one, denoted by Σ1,1, is made of 2-jets where Ka is tangent to TaL. The stratum
Σ1,0 is an open set in RΣ and Σ1,1 has codimension 2 in J 2(X, Y ). Thus, if a 3-jet
is transverse to RΣ in a 2-jet in Σ1,1, it is the jet of a germ having an isolated cusp
from which emerge two branches of the fold locus (see Fig. 12.5).

Fig. 12.5 Local image of a
cusp in a two-dimensional
manifold
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12.1.10 Thom’s Transversality Theorem in Jet Spaces

This was exactly the subject of Thom’s lecture at the 1956 Symposium in Mexico
City that I mentioned at the very beginning of this piece. Incidentally, this theorem
will play a fundamental role in singularity theory, as the above discussion lets us
foresee. The statement is the following:

Theorem (Thom [34])) Let Σ be a submanifold in the total space an r-jet bundle
E(r) → X over a manifold. Then, generically,11 an integrable section of E(r) is
transverse to Σ .

This theorem is remarkable in two ways:

(1) The usual transversality statement tells us that any section of E(r) can be
approximated by a section transverse to Σ . But, the intregrability condition
is a closed constraint12 and even if we had started with an integrable section,
the transverse approximation might be non-integrable.

(2) The same proof, by inserting the given map in a large family of maps which is
transverse to Σ as a whole, works both for the usual transversality theorem and
for the transversality theorem with constraints.

For a while, I tried to understand whether the statements of Thom and Gromov
were somehow related. For instance, does the h-principle hold for the relations RΣ

from Sect. 12.1.9? In general, the answer is NO as it is shown in a note with Alain
Chenciner [3]. Quoting from its abstract: “A section in the 2-jet space of Morse
functions is not always homotopic to a holonomic section”.

12.2 Integrability and Related Questions

12.2.1 Thom’s Point of View in 1959

The title of the lecture given by René Thom at the 1959 conference organized by
the CNRS in Lille (France) is striking when compared with the terminology that
appears 10 years later: “Remarques sur les problèmes comportant des inéquations
différentielles globales”, which I translate by: Remarks about problems involving
global differential inequations.

The setting is the same as in Gromov’s theorem from Sect. 12.1.8 and, for
consistency with what precedes, R still denotes an open set in the jet space

11A property is said to be generic in a given topological space F (here, it is the space of integrable
sections with the C1 or C∞ topology, or the Whitney topology evoked in Sect. 12.1.2) if it is
satisfied by every elements in a residual subset (that is, an intersection of countably many open
dense subsets).
12The space of integrable sections is closed with empty interior in the space of all the sections.
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J r(X, Y ), except that now the openness of X is not assumed. There are two chain
complexes naturally associated with R:

(1) C∗(R) is the complex of continuous13 singular simplices.
(2) Cint∗ (R) is the sub-complex generated by the differentiable simplices valued in

R which are integrable (or holonomic) in the sense that each 1-form from the
integrability Pfaff system vanishes on them.

Here, a k-simplex is a map from the standard k-simplex Δk ⊂ R
k+1 into R. In

(2), thanks to the so-called small simplices Lemma, up to quasi-isomorphism, it is
sufficient to consider holonomic smooth simplices of the form: σ = j rf ◦ σ where
σ is a k-simplex of the base X and f is a smooth map defined near the image of σ
with values in Y .

Theorem (Thom [37]) The inclusion Cint∗ (R) ↪→ C∗(R) induces an isomorphism
in homology for ∗ < dimX and an epimorphism for ∗ = dimX.

For instance, if X is closed and s : X → R is a section, then the cycle s(X)
(at least with Z/2Z coefficients when X is non-orientable) is homologous to a
holonomic zig-zag, that is a cycle of the form j rf (X) where f : X → Y is
multivalued.

12.2.2 What Happened Afterwards

The article [37] was actually only an announcement. The proof of the theorem was
outlined in three pages, and remains still difficult to read even though some ideas
were visibly emerging; an instance is the sawtooth, which is an antecedent to the
jiggling intensively used by Thurston in the early seventies [39]. No complete proof
has ever appeared. Unfortunately, the report by Smale in the Math. Reviews [30]
was somewhat discouraging for anyone who would have tried to complete Thom’s
proof. Here is the final comment of this report: {The author has said to the reviewer
that, although he believes his proof to be valid for r = 1, there seem to be further
difficulties in case r > 1.}

Nevertheless, David Spring has known for a few years that Thom’s statement
holds (see his note [33]). His unpublished proof is based on the holonomic
approximation Theorem of Eliashberg and Mishachev [4] when ∗ < dimX. In the
remaining case, he also needs Poénaru’s foldings theorem [25]. I should say that
the holonomic approximation Theorem is in germ in Thom’s announcement; his
horizontal sawtooth is closely related to the construction made in [4].

13Replacing continuous with smooth changes the complex to a quasi-isomorphic sub-complex,
meaning that the homology is unchanged.
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When reading Thom’s article for preparing the edition14 of his collected math-
ematical works [38], I was not able to complete the proof in the way indicated by
Thom. But, I discovered a beautiful construction in that article. I first translate the
original few lines into English and then, in the next subsection, I shall state the
lemma which I could extract from these lines.

[The proof] mainly relies on the construction of a deformation (homotopy operator) from
the complex of singular differentiable simplices to the sub-complex of integrable simplices.
Such a deformation has to be hereditary, that is, compatible with the restriction to faces.
Moreover, as the problem is local in nature, it will be sufficient to construct this deformation
for an open set in J ′r (Rn,Rp).

. . . . . .
Let bk be a k-dimensional simplex, bn an n-dimensional simplex, n ≥ k; let b′k be a

subdivision of bk and s a simplicial map from this subdivision b′k of bk to bn. The finer the
subdivision b′ is, the more the map s has a “strong gradient” in the sense that the quotient
[s(x) − s(y)]/(x − y), for every pair of points x, y ∈ bk close enough, becomes larger and
larger.

Here, the question is: why do such a subdivision and simplicial map exist?

12.2.3 The Thom Subdivision

Here is the statement that I cooked up for translating the preceding lines into a more
precise language.

Lemma There exists a sequence (Kn, sn)n, where Kn is a linear subdivision of Δn

and sn : Kn → Δn is a simplicial map such that:

(1) (Non-degeneracy) For each n-simplex δn ⊂ Kn, the restriction sn|δn is
surjective;

(2) (Heredity) For each (n− 1)-face F of Δn we have:

{
F ∩Kn

∼= Kn−1 ,

s|F ∼= sn−1 .

Here, the symbol ∼= stands for a simplicial isomorphism. The non-degeneracy
somehow translates Thom’s strong gradient condition. After a time of thinking, I
found a proof by induction on n in the way which is illustrated by passing from
Figs. 12.6 to 12.7: put a small n-simplex δn upside down in the interior of Δn

14The team of editors of Thom’s works was initiated by André Haefliger and is directed by Marc
Chaperon.
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Fig. 12.6 The Thom
subdivision in dimension 1
and its folding map

⇓s1 : K1 Δ1

Fig. 12.7 The Thom
subdivision in dimension two;
s2 is defined by the colour

and join each vertex of δn to the facet of Δn lying in front of it which is already
subdivided by induction hypothesis.15

One can think of sn as a folding map from Δn onto itself. Due to the heredity
property, we have:

– Any polyhedron can be folded onto itself.
– The folding can be iterated r times:

K
(r)
n =

(
s
(r−1)
n

)−1
(Kn),

s
(r)
n = sn ◦ s(r−1)

n .

Note that the folding map of any order is endowed with an hereditary unfolding
homotopy to the Identity map.

12.2.4 Jiggling Formula

It is now easy to derive a natural jiggling formula, using the same terminology as
Thurston’s in [39], but without any measure consideration.

15Today, this subdivision is called the standard chromatic subdivision of the n-simplex. It appears
in books of combinatorial topology or graph theory. It is also used by computer scientists [14]. I
have never found any reference to Thom.
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Fig. 12.8 The jiggling map
of order r = 1. The vertical
lines are fibres of T X

OXDX

leaves of exp

K(1)
n (X) j(1)(X)

Equip X with a Riemannian metric. Let DX → X be a tangent disc bundle such
that the exponential map exp : DX → X is a submersion. Denote by Fexp the
exponential foliation of DX whose leaves are the fibres exp−1(x), x ∈ X.

Choose a triangulation T of X finer than the open covering
{
expx(DxX) |

x ∈ X}. Fix an integer r . The r-th jiggling map is the section of the tangent bundle
defined by

j (r) : X→ DX,

j(r)(x) = exp−1
x

(
s
(r)
n (x)

)
.

This map is piecewise smooth. Moreover, the larger r is, the more vertical the
jiggling is (Fig. 12.8). As a consequence, for r large enough, j (r)(X) is quasi-
transverse to the tangent space to the exponential foliation Fexp in the sense that, for
any simplex τ of the r-th Thom subdivision of T , the smooth image j (r)(τ ) shares
no tangent vector with the tangent space to the leaves of Fexp; when the dimension
of τ is n, quasi-transversality is equivalent to transversality.

Similarly, if X is compact and if we are given a compact family P = {Pt }t of n-
plane fields transverse to the fibres of TX, then taking r large enough makes j (r)(X)
quasi-transverse to all the elements of P simultaneously.

12.2.5 Going Back to Immersions

This is contained in a joint work with Meigniez [19].
First, recall that one can reduce oneself to consider only immersions of codi-

mension 0 whose domain has a non-empty boundary. Indeed, any formal immersion
(f, F ) from X to Y , when dimX < dimY , has a normal bundle; this is the vector
bundle over X which is the cokernel ν(f, F ) of the monomorphism TX → f ∗T Y
through which F factorizes. Thus, immersingX into Y is equivalent to immersing a
disc bundle of ν(f, F ) into Y and the latter is a codimension 0 immersion problem.

In what follows, we assume that X is compact with a non-empty boundary and
has the same dimension as Y . For free, a formal immersion (f, F ) fromX to Y gives
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rise to a foliation FX := F−1(FexpY ) which foliates a neighbourhood of the zero
sectionOX of TX. Indeed, since F maps fibres to fibres surjectively,F is transverse
to the exponential foliation of Y (defined near the zero section OY of T Y ).

Such a (germ of) foliation like FX is called a tangential Haefliger structure or
a Γn-structure on X. We refer to [13] for more details on this important notion. As
there is no reason for FX to be transverse to OX, the trace of FX on X = OX is in
general a singular foliation.

Actually, those singularities are responsible for the flexibility associated with that
concept. Thanks to them, operations like induction (or pull-back) and homotopy (or
concordance) are available for Γn-structures while they are not for foliations. Let us
emphasize that a Γn-structure is mainly a Čech cocycle of degree one with values
in the groupoid of germs of diffeomorphisms of Rn. This allows one to induce such
a structure on a polyhedron or a CW-complex without regarding the dimension of
that space.

A concordance between two Γn-structures ξ0 and ξ1 on X is just a Γn-structure
on X × [0, 1] which induces ξi on X × {i}, i = 0, 1. There is a classifying space
BΓn in the following sense: the Γn-structures onX, up to concordance, are in 1-to-1
correspondence with the homotopy classes [X,BΓn], as for vector bundles.

In our setting, the Haefliger structure in question is enriched with a transverse
geometric structure invariant by holonomy: each transversal to FX is endowed with
a submersion into Y which is preserved when moving the transversal by isotopy
along the leaves (this point being obvious since the leaves in question are contained
in the inverse images of points in Y ); such a Γn-structure will be named a Γ Y

n -
structure. In particular, if OX were transverse to FX, then X would be endowed
with a submersion into Y , that is an immersion into Y since dimX = dimY .
Therefore, the aim is to remove the singularities of the Γ Y

n -structure, that is, to
find a regularizing concordance of Γ Y

n -structures from FX to a Γ Y
n -structure whose

underlying foliation is transverse to the zero section OX.
In the next subsection we give a brief review of the regularization problem. In

the last subsection, a sketch for regularizing Γ Y
n -structures is given in our setting of

immersions in codimension 0 of compact manifolds with non-empty boundary and
no closed connected components.

12.2.6 About the Regularization of Γ -Structures

Let ξ be a Γq -structure on an n-dimensional manifold X. In general, the underlying
foliation F(ξ) is supported in a neighbourhood of the zero-section in a vector
bundle ν(ξ) of rank q , called the normal bundle to ξ . This normal bundle remains
unchanged along a concordance. If ξ is regular, that is, if F(ξ) is transverse to the
0-section of ν(ξ), then the trace of F(ξ) on X is a genuine foliation whose normal
bundle is canonically isomorphic to ν(ξ). Therefore, a necessary condition for being
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regularizable is that:

(∗) ν(ξ) embeds into the tangent bundle TX16; in particular, q ≤ n.

André Haefliger was the first who proved that any Γq -structure on an open
manifold X whose normal bundle embeds into TX is regularizable [12] (or [13,
p. 148]). This follows from two things:

– First, the classifying property of the classifying space BΓq which says that BΓq
is equipped with a universal Γq -structure in the sense that any Γq -structure on
any CW-complex X is induced by pull-back from the universal structure through
a map X→ BΓq .

– Second, Phillips’ theorem about transversality to a foliation [24] when the
domain is open.

Today, combining all the steps, this regularization theorem is frequently referred
to as the Gromov-Haefliger-Phillips Theorem.

The next step was done by Thurston [39] who solved the case of closed
manifolds. Namely, if q > 1 even when X is closed, any Γq -structure satisfying
the necessary condition (∗) is regularizable. The case q = n is a toy case. The
only technique is the famous jiggling lemma whose proof is quite tricky in terms
of measure theory, even though Thurston considered it as an obvious statement.
Exactly at this point, our jiggling, based on the Thom subdivision, is much simpler;
in particular, it works in family, that is, with parameters.

The final step is the codimension-one case for closed manifolds, a piece of work
indeed. Generally it is known in the following form:

Theorem (Thurston [40]) Every hyperplane field is homotopic to an integrable
hyperplane field, that is, a field tangent to some codimension-one foliation.

Actually, the main part of this result is a regularization theorem for Γ1-structures.
In addition to the jiggling technique, there are many subtle points (simplicity of the
group of diffeomorphisms, intricate constructions, etc.).

12.2.7 Regularization of Transversely Geometric Γn-Structures

In Sect. 12.2.5 we reduced the immersion problem to a problem of regularization of
some Γ Y

n -structure ξ on X associated with the given formal immersion and shown
in Fig. 12.9. The exponent Y reminds us that we are considering a Γn-structure
endowed with some transverse geometry which here consists of being a submersion
into Y . The scheme shown in Fig. 12.10, and which I am going to comment on,
summarizes an ordinary regularization (which would work even if X were closed).

16By abuse, we identify a vector bundle with its total space.
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OY

expY
Blue lines =

⇒
F

DY ⊂ TYDX ⊂ TX

X := F−1( expY
)

Blue lines =

OX

Fig. 12.9 The left part shows a tangential Haefliger structure

OX
⇒OX

OX

⇓

⇐

⇓

(A)

(B)

(C)

(D)

s(r)n (OX) ∼ IdX

(ξ) expX

expX

DX TX⊂DX TX⊂

Fig. 12.10 The scheme of the regularization in four steps

It will appear in the end that this regularization is easily enriched with a transverse
geometric structure when X is open. It is worth noting that the problem is the same
whatever the transverse geometry is. In place of submersion to Y one could have a
symplectic or contact structure, a complex structure or a codimension-one foliated
structure etc. For any geometry,17 the regularization is the same.

17We take the concept of geometry in the sense of Veblen and Whitehead [42] which could be
rewritten in the more modern language of sheaves.
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First, the jiggling is chosen, meaning that the order of the Thom subdivision r
is fixed once and for all. This r is chosen so that j (r)(X) is quasi-transverse to the
following codimension-n foliations or n-plane fields:

– the foliation F(ξ) underlying the given Γn-structure ξ (this foliation was denoted
by FX in the particular case of Fig. 12.9);

– the exponential foliation FexpX ;
– every n-plane field which is a barycentric combination18 of the two previous

ones.

The homotopy from the zero-section to j (r)(X) gives rise to an obvious concordance
which is not mentioned in the scheme of Fig. 12.10.

Step (A) is exactly Thurston’s concordance in [39]. By using the above-
mentioned barycentric combination, some generic (n + 1)-plane field Π is chosen
on TX × [0, 1] quasi-transverse to j (r)(X) × [0, 1]. Since the trace of Π on each
simplex of the jiggling is 0- or 1-dimensional, such a trace is integrable. Thus, a C0

approximation of Π is integrable in a neighbourhood of j (r)(X)×[0, 1]. This gives
the concordance (A) and explains the reason why some part of the tubeDX has been
deleted from the initially foliated domain.

Step (B) is just the inclusion using the fact that the exponential foliation exists
on the whole tube. Step (C) uses the interpolation expt , t ∈ [0, 1], from IdDX to
exp : DX → X given by:

expt : (x, u) �−→ (
expx(tu),

(
D(x,tu)expx(tu)

)
(1− t)u

)
.

It allows one to slide j (r)(X) along the leaves of the exponential foliation keeping
the quasi-transversality to each simplex.19 Observe that the vertical homothety does
not have such a property. When t = 1, we finish with the folding map s(r)n (X)→ X.
Step (D) is just the unfolding of s(r)n , that is, its hereditary homotopy to IdX. Again,
at each time of the homotopy, the image polyhedron (contained in the zero-section)
is quasi-transverse to the exponential foliation. This finishes the regularization of ξ
as a Γn-structure. In general, it is not possible to extend the transverse geometry of
F(ξ) to the concordance. But, this is possible when X is an open manifold as we
are going to explain20 now.

18Recall that the space of n-planes tangent to the total space TX at (x, u), x ∈ X, u ∈ TxX, and
transverse to the vertical tangent space (that is, the kernel of D(x,u)π where π : TX→ X denotes
the projection) is an affine space.
19For the reader who does not like complicated formulas, I suggest a more topological approach
of the previous interpolation. Let U be a nice tubular neighbourhood of the diagonal Δ in X ×X;
here, nice means that the two projections πv and πh respectively given by (x, y) �→ (x, x) and
(x, y) �→ (y, y) are n-disc bundle maps. If U is small enough, a Riemannian metric provides
an identification of πv with a tangent disc bundle to X. In that case, πh is the corresponding
exponential map. Hence, the above-mentioned interpolation is just a contraction of the fibres of πh.
20Only the idea of the proof is given here. We refer to [19] for more details.
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Fig. 12.11 A few leaves of
FW are drawn in black. The
simplex σq is the union of the
red full part and the red
dashed part σq

Wq

χ1
q(σq)

If X is an n-dimensional manifold without closed connected component, en-
dowed with a triangulation T , there exists a spine that is, a sub-complex K of
dimension n − 1 such that, for any neighbourhood N(K), there is an isotopy of
embeddings ϕt : X→ X whose time one map sends X into N(K) (see for instance
[5, p. 40–41]).

Restricting ourselves to K ⊂ X, let us consider the concordance (W,FW) of
Γn-structures obtained by concatenation and time reparametrization of the four
concordances described right above from j (r)(K) to K ⊂ OX. Here, W ⊂ TX ×
[0, 1] is piecewise linear homeomorphic to K × [0, 1]; and FW is a codimension-n
foliation defined near W and transverse to the fibres of TX × [0, 1] → X × [0, 1]
which induces F(ξ) over t = 0 and FexpX over t = 1. Moreover, FW is quasi-
transverse to every simplex of W . Therefore, since W is n-dimensional, every leaf
meets each simplex of W in one point at most.21

By construction, W collapses onto its initial face W0 := j (r)(K). We recall
that a simplicial complex W collapses onto W0 if there is a sequence of elementary
collapsesWq+1 ↘ Wq starting withW and ending withW0. An elementary collapse
means that Wq+1 is the union of Wq and a simplex σq so that σq ∩Wq consists of
the boundary of σq with an open facet removed. The elementary collapse Wq+1 ↘
Wq gives rise to an elementary isotopy χtq pushing Wq+1 into itself, keeping Wq

fixed, and ending with χ1
q (Wq+1) as close to Wq as we want. Due to the quasi-

transversality to FW , this isotopy extends to a neighbourhood of σq as a foliated
isotopy χ̃t , meaning that each leaf is mapped to a leaf at each time (Fig. 12.11).

By induction on q , assume that the transverse geometric structure already exists
on the foliation FW |Wq . Then, by pulling back through χ̃1

q , this structure extends
to the foliation FW |Wq+1 . Finally, the whole foliation FW is enriched with the
considered geometry, for instance a submersion into Y . And hence, N(K) =
N(K) × {1} is endowed with a submersion into Y . As K is a spine of X, the
submersion onto Y extends to X.

21Here, it is necessary to make a jiggling in the time direction. The cell decomposition of W is
then prismatic (simplex×interval). Each prismatic cell has a Whitney triangulation (canonical up
to the numbering of the vertices of X) [44, Appendix II].
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12.2.8 Sphere Eversion Again

The main advantage of this proof based on the Thom subdivision and its associated
jiggling is that it works for families (or with parameters). It is sufficient to choose
the order r large enough so that a common jiggling is convenient for each member
of the family.

For instance, if f0 denotes the inclusion S
2 ↪→ R

3 and f1 := −f0, these two
immersions are formally homotopic22 by:

(ft , Ft ) : (x, *u) �→
(
tf1(x)+ (1− t)f0(x), R

πt
Ox(*u)

)
.

Here, t ∈ [0, 1] is the parameter of the homotopy, x is a point in S
2 and *u is a

vector in
→
R

3 tangent to S
2 at x; finally, RπtOx stands for the Euclidian rotation of

angle πt in R
3 around the oriented axis directed by *x. When t = 1, we have indeed

F1(x,−) = dxf1(−), the differential of f1 at x.
By thickening, we have a one-parameter family Ft of formal submersions of S2×

(−ε,+ε) into R
3. Thus, we have a one-parameter family of Γ3-structures equipped

with a transverse geometry (the local submersion to R
3). The regularization by the

Thom jiggling method – one jiggling working for all the foliations F−1
t (Fexp

R3 ) –

gives rise to a one-parameter family of submersions S2 × (−ε,+ε) → R
3 joining

the respective thickenings of f0 and f1. The restriction to S
2 × {0} is a regular

homotopy from f0 to f1. That is the desired sphere eversion.

12.2.9 Final Remark

Since f0 and f1 have the same image, we get that the space of non-oriented
immersed 2-spheres in the 3-space is not simply-connected. It may be that those who
are skeptical about the sphere eversion think the orientation should be preserved. Of
course, if an orientation is chosen on the initial sphere, it propagates along any
regular homotopy. But, as the image changes throughout such a homotopy, that
f0 and f1 have the same image does not prevent us from a change of orientation.
This is a phenomenon of monodromy well-known for detecting some non-simple
connectedness.

Acknowledgements I am indebted to Anthony Phillips who gave me important information
about the time of the sphere eversion. I thank Paolo Ghiggini, Peter Landweber and Athanase
Papadopoulos who carefully read different versions of my article and made useful suggestions
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22I learnt this very simple formula from Gaël Meigniez.
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Chapter 13
Rigid and Flexible Facets of Symplectic
Topology

Yakov Eliashberg

Abstract The article discusses in a historical perspective the notions of symplectic
flexibility and rigidity and their role in the creation and the development of
symplectic topology.

13.1 Rigid and Flexible Methods in Mathematics

In every area of Mathematics there always coexist two directions of explorations.
The first is concerned with finding constraints and restrictions. I refer to this part as
the rigidity side. On the other side, the flexibility, mathematicians are developing
techniques for new constructions which test the boundaries of the mathematical
world. The phenomena discovered are sometimes unexpected and counter-intuitive.
Most famous examples of this kind were discovered in 1950s: these were the C1-
isometric embedding theorem by J. Nash [53], and S. Smale’s 2-sphere eversion,
which was developed to the immersion theory of Smale-Hirsch [37, 58]. Nash-
Smale’s ideas were greatly developed and generalized by M. Gromov, beginning
from his 1968 PhD dissertation [31], and culminating in his book [34]. Since then
the flexibility phenomena are usually referred as the h-principle.

Though rigid and flexible worlds coexist in most mathematical subjects, they
come especially close to each other in symplectic topology.

13.2 Symplectic Basics

To set the stage we give here some basic definitions from symplectic and contact
geometries.
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Symplectic geometry was born as a geometric language of classical mechanics,
and similarly contact geometry is a natural set-up for geometric optics and mechan-
ics with non-holonomic constraints.

The cotangent bundle T ∗M of any smooth n-dimensional manifold M carries a
canonical Liouville 1-form λ, usually denoted pdq , which in any local coordinates
(q1, . . . , qn) on M and dual coordinates (p1, . . . , pn) on cotangent fibers can be

written as λ =
n∑
1
pidqi . The differential ω := dλ =

n∑
1
dpi ∧ dqi is called the

canonical symplectic structure on the cotangent bundle of M . Any diffeomorfism
f : M → M lifts to a diffeomorphism T ∗f : T ∗M → T ∗M which preserves the
form pdq . The lift T ∗f is given by the formula

T ∗f (q, p) =
(
f (q), (dqf

∗)−1(p)
)
, q ∈ M,p ∈ T ∗q M.

In the Hamiltonian formalism of classical mechanics the cotangent bundle T ∗M
is viewed as the phase space of a mechanical system with configuration space
M . The p-coordinates have a mechanical meaning of momenta. The full energy
of the system expressed through coordinates and momenta, i.e. viewed as a
function H : T ∗M → R on the cotangent bundle (or a time-dependent family of
functions Ht : T ∗M → R if the system is not conservative) is called the Hamil-
tonian of the system. The dynamics is then defined by the Hamiltonian equations
ż = XHt (z), z ∈ T ∗M , where the Hamiltonian vector fieldXHt is determined by the
equation i(XHt )ω = −dHt , and in the canonical (p, q)-coordinates has the form

XHt =
n∑
1

−∂Ht

∂qi

∂

∂pi
+ ∂Ht

∂pi

∂

∂qi
.

The flow of the vector field XHt preserves ω, i.e. X∗Ht
ω = ω. The isotopy generated

by the vector field XHt is called Hamiltonian.
More generally, Hamiltonian dynamics can be defined on any 2n-dimensional

manifold endowed with a symplectic, i.e. a closed non-degenerate differential
2-form ω. According to a theorem of Darboux any such form admits local
canonical coordinates p1, . . . , pn, q1, . . . , qn in which it can be written as

ω =
n∑
1
dpi ∧ dqi . Diffeomorphisms preserving ω are called symplectomorphisms.

Symplectomorphisms which can be included in a time dependent Hamiltonian
flow are called Hamiltonian. When n = 1 a symplectic form is just an area
form, and symplectomorphisms are area preserving transformations. In higher
dimensions symplectomorphisms are volume preserving but the subgroup of
symplectomorphisms represents only a small part of the group of volume preserving
diffeomorphisms.

The projectivized cotangent bundle PT ∗M serves as the phase space in ge-
ometric optics. It can be interpreted as the space of contact elements of the
manifold M , i.e. the space of all tangent hyperplanes to M . The form pdq does
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not descend to PT ∗M but its kernel does, and hence the space of contact elements
carries a canonical field of hyperplanes tangent to it. This field turns out to be
completely non-integrable. It is called a contact structure. More generally, a contact
structure on a (2n + 1)-dimensional manifold is a completely non-integrable field
of tangent hyperplanes ξ , where the complete non-integrability can be expressed
by the Frobenius condition α ∧ (dα)∧n �= 0 for a 1-form α (locally) defining ξ

by the Pfaffian equation α = 0. Though at first glance symplectic and contact
geometries are quite different, they are in fact tightly interlinked and it is useful
to study them in parallel. In particular, with any contact manifold (V , ξ) one can
canonically associate a symplectic manifold (SV,ωξ ), called the symplectization
of (V , ξ), which is defined as follows. Let Nξ ⊂ T ∗V be the rank 1 conormal
bundle to ξ ⊂ TM , and let SV be the total space of Nξ with the 0-section
removed. The contact condition for ξ is equivalent to the fact that the canonical
symplectic form d(pdq) on T ∗V restricts to a symplectic form ωξ on SV . In
case of a co-oriented ξ the term “symplectization” is usually referred to the half
S+V of SV consisting of 1-forms which define the given co-orientation of ξ . Any
contactomorphism f : (V , ξ)→ (V , ξ), i.e. a diffeomorphism S : (V , ξ)→ (V , ξ)

which preserves the contact structure, canonically lifts to a symplectomorphism
Sf : (SV,ωξ ) → (SV,ωξ ) given by the formula Sf = T ∗f |SV . An important
property of symplectic and contact structures is the following stability theorem due
to Moser [50] in the symplectic case and to Gray [30] in the contact one:

Theorem 13.2.1 Let ωt , t ∈ [0, 1], be a family of symplectic (resp. contact)
structures on a manifold X which coincide outside of a compact set. In the
symplectic case suppose, in addition, that ωt − ω0 = dθt , t ∈ [0, 1], where θt
has a compact support. Then there exists an isotopy ht : X → X with compact
support which starts at the identity h0 = Id and such that h∗t ωt = ω0.

Maximal integral (i.e. tangent to ξ ) submanifolds of a (2n + 1)-dimensional
contact manifold (V , ξ) have dimension n and are called Legendrian. Their
symplectic counterparts are n-dimensional submanifolds L of a 2n-dimensional
symplectic manifold (W,ω) which are isotropic for ω, i.e. ω|L = 0. They are
called Lagrangian submanifolds. Here are two important examples of Lagrangian
submanifolds. A diffeomorphism f : W → W of a symplectic manifold (W,ω) is
symplectic if and only if its graph0f = {(x, f (x)); x ∈ W } ⊂ (W×W,ω×(−ω))
is Lagrangian. A 1-form θ on a manifold M viewed as a section of the cotangent
bundle T ∗M is Lagrangian if and only if it is closed. For instance, if H1(M) = 0
then Lagrangian sections are graphs of differentials of functions, and hence the
intersection points of a Lagrangian with the the 0-section are critical points of the
function. A general Lagrangian submanifold corresponds to a multivalued function,
called the front of the Lagrangian manifold. Given a submanifold N ⊂ M (of
any codimension), the set of all hyperplanes tangent to it in TM is a Legendrian
submanifold of the space of contact elements PT ∗M .
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13.3 Poincaré’s Dream and Arnold’s Conjecture

Symplectic topology was born from Henri Poincaré’s dream that Hamiltonian
systems must have some special qualitative properties just because the phase flow
of a Hamiltonian system preserves the symplectic form.

In particular, Poincaré’s study of periodic orbits in the so-called restricted 3-
body problem led him to the following statement, now known as the “last geometric
theorem of H. Poincaré”: any area preserving transformation of an annulus S1 ×
[0, 1] which rotates the boundary circles in opposite directions should have at least
two fixed points. Poincaré, see [55], provided many convincing arguments why the
statement should be true, but the actual proof was found by G.D. Birkhoff[6] in
1913, only after Poincaré’s death. Birkhoff’s proof was purely 2-dimensional and
further development of Poincaré’s dream of what is now called symplectic topology
had to wait till the 1960s when V. I. Arnold [3] formulated a number of conjectures
formalizing this vision of Poincaré. These conjectures played an important role in
the creation and development of symplectic topology. In particular, one of Arnold’s
conjectures stated that the number of fixed points of a Hamiltonian diffeomorphism
is bounded below by the minimal number of critical points of a function on the
symplectic manifold (which is positive only if the manifold is closed). For instance,
for the 2-dimensional torus Arnold’s conjecture predicted 4 fixed points in the non-
degenerate case, and 3 fixed points without the non-degeneracy assumption. The
statement looks very close to the statement of Poincaré’s geometric theorem, and
indeed it is easy to deduce the annulus case from the case of the 2-torus, but it
seems impossible to adapt Birkhoff’s annulus argument to the torus case.

13.4 Basic Symplectic Problems and Gromov’s Alternative

Around the same time when Arnold formulated his conjectures there was an
explosion of surprising results discovered on the flexible side of Mathematics.
Several such results were proven in symplectic geometry, mainly by Gromov, and it
was not at all clear whether any rigidity in symplectic geometry exist at all beyond
dimension 2.

Here is a list of some problems (including Arnold’s conjectures) which were
considered in 1960–70s and were completely open at that time.

P1-abs. Which smooth manifolds admit symplectic or contact structures?
P1-rel. When can a symplectic or contact structure on a neighborhood of the

boundary ∂M of a smooth manifold be extended to M?
P2-abs. Given two symplectic or contact structures on a manifold, when are

they homotopic as symplectic or contact structures (and in the symplectic
case possibly with an additional condition that the cohomology class of the
symplectic form is preserved in the homotopy). According to Gray’s and Moser’s
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theorems this is equivalent for closed manifolds (together with the cohomological
condition) to the existence of an isotopy between the structures.

P2-rel. When are two symplectic or contact structure on a manifold with boundary
(e.g. the 2n-ball) which coincide near the boundary homotopic via a homotopy
fixed on a neighborhood of the boundary?

P3. Arnold’s fixed point conjecture.
P4. Arnold’s Lagrangian intersection conjecture. In particular, given a closed

Lagrangian L ⊂ T ∗M which is Hamiltonian isotopic to the 0-section, the
number of intersection points #L ∩ M of L with the 0-section M is bounded
below by the minimal number of critical points of a smooth function on M .

P5. The Lagrangian embedding problem, and in particular:
P5-Cn. Are there embedded closed exact Lagrangian submanifols of C

n? A
Lagrangian submanifold L in an exact symplectic manifold (X, dα) with a
chosen primitive α is called exact if the closed form α|L is exact. If H 1(X) = 0
this condition is independent of the choice of the primitive α.

P5-nearby. Given a closed manifold M , are there closed exact Lagrangian sub-
manifolds in (T ∗M,d(pdq)) besides those which are Hamiltonian isotopic to the
0-section? The negative answer to this problem is known as nearby Lagrangian
conjecture (which was formulated by V. I. Arnold later on around 1986).

P6. The Legendrian isotopy problem: are there obstructions for Legendrian
isotopy beyond the formal ones? Here and below by formal obstructions we mean
those which persist if we decouple maps and its derivatives, e.g. in the Legendrian
case replace a Legendrian embedding of � into a contact manifold (Y, ξ) by a
pair (φ,�t ), where φ : �→ Y is any smooth embedding, and �t : T�→ T Y

a homotopy of injective homomorphisms connecting �0 = dφ with an isotropic
homomorphism�1 : T�→ ξ .

P7. Are there obstructions for symplectic embeddings beyond the volume and
bundle constraints?

P8. What is theC0-closure of the group of symplectic or contact diffeomorphisms
in the group of all diffeomorphisms of a symplectic or contact manifold?

One of Gromov’s earlier results, [31], was that Problems P1-abs and P2-abs have
an h-principle type answer for open manifolds. In other words, e.g. in the symplectic
case:

Any almost symplectic structure (i.e. a non-degenerate but not necessarily closed
2-form) is homotopic on an open manifold to a symplectic form in any given
cohomology class, and two symplectic forms homotopic as almost symplectic
structures are homotopic as symplectic ones.

Gromov proved around the same time many other flexibility results in symplectic
geometry. For instance, he proved, see [32], that Lagrangian immersions abide an
h-principle (this was also proved independently by Lees [43]). Moreover, this is
also the case for ε-Lagrangian embeddings (i.e. embeddings whose tangent planes
deviate from Lagrangian directions by an angle <ε). A remarkable h-principle was
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proven by Gromov for iso-symplectic and iso-contact embeddings.1 For instance,
in the symplectic case, Gromov proved that if (M,ω) and (N, η) are two symplectic
manifolds such that dimN ≥ dimM + 4 then any smooth embedding f : M → N

which pulls back the cohomology class of the form η to the cohomology class of ω,
and whose differential df is homotopic to a symplectic bundle isomorphism, can
be C0-approximated by an iso-symplectic embedding f̃ : M → N , i.e. f̃ ∗η = ω.
Gromov also proved the following alternative concerning Problem P8.

Theorem 13.4.1 Either the group of symplectic (resp. contact) diffeomorphisms of
a manifold M is C0-closed in the group of all diffeomorphisms, or its C0-closure
coincides with the group of volume preserving (resp. all) diffeomorphisms.

Though the proof of this alternative appeared only in Gromov’s book [34], he
explained to me a sketch of the proof already in 1971.

In fact, it was clear that there are a lot of links and inter-connections between all
these problems. If the Gromov alternative had a flexible resolution (meaning that
all volume preserving diffeomorphisms could be approximated by symplectic), this
would imply that Arnold’s fixed point conjecture is wrong in dim > 2. Indeed, it is
easy to show that in dimensions >2 it is wrong for volume preserving, rather than
symplectic diffeomorphisms.

In turn, an h-principle type answer to Problems P1-rel and P2-rel would imply
the flexible resolution of the Gromov alternative, as the following argument (taken
from [21]) shows. Consider, for instance, the contact case. Let (M, ξ) be a (2n+1)-
dimensional contact manifold, and f : M → M a diffeomorphism isotopic to
the identity which is somewhere not contact. Let us first note that according to
Gromov’s h-principle for open contact manifolds, the analogs of Problems P1-
rel and P2-rel do have positive answers for neighborhoods of discs of positive
codimension. Assuming that both Problems P1-rel and P2-rel have positive answers
as well, we consider a small triangulation of M and inductively modify f by a C0-
small isotopy to make it contact on neighborhoods of k-skeleta of the triangulation,
k = 0, . . . , 2n + 1. Suppose that we already constructed a diffeomorphism
fk−1 : M → M preserving ξ on a neighborhood of the (k − 1)-skeleton Ck−1.
Take a neighborhood Gσ ⊃ σ of a k-simplex σ . Consider a contact structure
on Op (∂Gσ ∪ σ) ⊂ Gσ which coincides with ξ on Op ∂Gσ and with (fk−1)∗ξ
on Op σ .2 Using P1-rel we can then extend it as a contact structure on Gσ in
the same formal homotopy class relative to ∂Gσ as ξ . Hence, P2-rel together
with the Gray-Moser argument then implies the existence of a diffeomorphism
gσ : M → M compactly supported in Gσ such that g∗σ ξ = ξ̃ . Note that one
can arrange that the supports of gσ and gσ̂ are disjoint if σ ∩ σ̂ = ∅. Then the
composition g of the diffeomorphisms gσ for all k-simplices σ is C0-small provided
that the triangulation and the neighborhoodsGσ have small diameters. But then the

1An embedding f : (M0, ω0) → (M1, ω1) is called iso-symplectic if f ∗ω1 = ω0, and an
embedding (M0, ξ0)→ (M1, ξ1) is iso-contact if its symplectization is iso-symplectic.
2We use Gromov’s notation Op A for an unspecified neighborhood of A.



13 Rigid and Flexible Facets of Symplectic Topology 499

diffeomorphism fk := g ◦ fk−1 is C0-close to f and preserves the contact structure
ξ on a neighborhood of the k-skeleton Ck . Continuing by induction we construct
a contactomorphism f2n+1 which is C0-close to f . But this contradicts to the C0-
closedness of the group of contact diffeomorphisms.

Hence, the resolution of the Gromov alternative became an existential question
for symplectic topology. The rigid resolution of the alternative was a necessary
condition for survival of symplectic topology as a subject.

13.5 Emergence of Symplectic Rigidity

Though I proved in 1979 Arnold’s fixed point conjecture for all 2-dimensional
surfaces [17], this was not yet a major breakthrough in symplectic rigidity because
the result was purely 2-dimensional. The series of breakthroughs happened in the
early 1980s. I proved a theorem about the combinatorial structure of wave fronts
which implied the rigid resolution of the Gromov alternative in the symplectic
case, see [26]. Then, in 1982, C. Conley and E. Zehnder proved Arnold’s fixed
point conjecture P3 for 2n-dimensional tori. As it was explained above, their
proof implied the rigid resolution of the symplectic Gromov alternative. In 1983
Bennequin showed that Problem P2-abs does not have an h-principle type answer
even for contact structures on S3 [4]. He also showed that not all diffeomor-
phisms of a contact 3-sphere can be approximated by contact diffeomorphisms,
thus giving the rigid resolution of the 3-dimensional contact Gromov alterna-
tive.

13.6 Advent of Holomorphic Curves

The true new era of symplectic topology started with the publication of
Gromov’s paper [33]. Searching for tools to establish symplectic rigidity, and,
in particular, to define invariants of symplectic manifolds, Gromov turned
his attention to holomorphic curves which were known to be an important
tool in Algebraic Geometry. However, the environment of integrable complex
structures was too rigid to be useful in Symplectic Geometry. Gromov
realized that Bers-Vekua’s pseudo-analytic functions could be interpreted as J -
holomorphic curves for a not necessarily integrable almost complex structure
J . This turned out to be precisely the right tool to deal with in Symplectic
Topology.

Let us recall that an almost complex structure on a 2n-dimensional manifold
W is a complex structure on its tangent bundle, i.e. an anti-involution J : TW →
TW, J 2 = −Id. A map f : (W1, J1) → (W2, J2) between two almost complex
manifolds of real dimension 2n1 = dimW1 and 2n2 = dimW2 is called
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holomorphic if the differential df : TW1 → TW2 is complex linear, i.e.

∂f := 1

2
(df ◦ J1 − J2 ◦ df ) = 0. (13.1)

Written in local coordinates, Eq. (13.1) is a system of 2n1n2 equations with respect
to 2n2 unknown functions, and hence it is overdetermined unless n1 = 1, i.e. when
(W1, J1) is a Riemann surface. Respectively, when n1 > 1 then for generic non-
integrable J1 or J2 there are no holomorphic maps (W1, J1) → (W2, J2), even
locally. On the other hand, when n1 = 1 Eq. (13.1) is an elliptic equation with the
same principal symbol as the standard Cauchy-Riemann equation in the integrable
case. Hence, with appropriate boundary conditions (e.g. for closed holomorphic
curves, or holomorphic curves with boundaries in totally real submanifolds) this is
a Fredholm problem, and assuming certain transversality we get finite-dimensional
moduli spaces of solutions.

At the time when Gromov was working on his theory of J -holomorphic curves
there was already known an example of a remarkable application of an elliptic PDE
in topology: Simon Donaldson [13] spectacularly applied in 4-dimensional topology
moduli spaces of solutions of another elliptic problem, the so-called anti-self-dual
Yang-Mills equation. Gromov’s idea was to realize a similar scheme in symplectic
topology using instead moduli spaces of holomorphic curves.

The starting problem in this scheme was to ensure compactness properties for
the corresponding moduli spaces, i.e. to prove in the holomorphic curve setup an
analog of Uhlenbeck’s compactness theorem [63] in the Yang-Mills theory. Gromov
proved a far-going generalization of the Schwarz lemma from complex analysis
which allowed him to control derivatives of a holomorphic map in terms of the
diameter of its image. Combining this lemma with an ingenious use of hyperbolic
geometry of Riemann surfaces Gromov proved that

Theorem 13.6.1 Given a sequence fn : (S, j) → (M, J ) of holomorphic curves
in a closed almost complex manifold such that the area Area(fn(S)) is uniformly
bounded, there exists a subsequence converging to a nodal holomorphic curve.

Gromov spectacularly demonstrated how holomorphic curves can be successfully
used for proving a wide range of remarkable results in symplectic topology. Here
are a few examples.

13.6.1 Non-existence of Exact Lagrangians in C
n

A symplectic manifold (X,ω) is called Liouville if the symplectic form ω is exact
and it is fixed a primitive λ, called a Liouville form, of ω. A Lagrangian submanifold
L in a Liouville manifold (X, λ) is said to be exact if the form λ|L is exact. Note that
if H1(X) = 0 then exactness is independent of the choice of the Liouville form λ.
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Theorem 13.6.2 There are no closed exact Lagrangian submanifolds in R
2n.

Gromov’s ingenious strategy for proving this theorem was to consider an inhomo-
geneous ∂-equation ∂f = c for maps f : (D, ∂D) → (Cn, L) of the 2-disc
with contractible boundary f (∂D) ⊂ L, where c is a (1, 1)-form with constant
coefficients. One then checks that for c = 0 all solutions are constant, and hence
the moduli space of solutions is diffeomorphic to L itself, while for sufficiently
large c there could not be any solution at all because solutions have to be harmonic
functions, and hence satisfy an a priori derivative bound in terms of the diameter
of L. In view of Gromov’s compactness this leads to a conclusion that for a
certain c there exists a bubbled solution where the bubble has to be a non-constant
holomorphic disc with boundary in L. But the symplectic area of such a disc is
positive which contradicts the exactness hypothesis.

The beautiful argument used by Gromov in this proof was replicated many times
in later years by several authors. In particular, it is the starting point in a remarkable
theorem of Abouzaid that for certain exotic n-spheres their cotangent bundles are
not symplectomorphic (though all of them are diffeomorphic, as it follows from
Smale’s h-cobordism theorem) to T ∗Sn, see [1].

13.6.2 Gromov’s Non-squeezing Theorem

Theorem 13.6.3 Suppose that 0 < r < R. Then there are no symplectic
embeddings D2n(R) → D2(r) × R

2n−2. Here we assume that R2k is endowed
with the standard symplectic structure and denote by D2k(r) the ball of radius r in
R

2k.

Gromov’s argument used holomorphic curves in the following way. Suppose there
exists a symplectic embedding D2n(R) → D2(r) × R

2n−2. Symplectically embed
D2(r) × R

2n−2 into S2 × R
2n, endowed with the symplectic form ω = σa ⊕ ω0,

where σa is the area form on the 2-sphere S2 of area a ∈ (πr2, πR2), and ω0 is the
standard symplectic structure onR2n−2. ThenD2(r)×R2n−2 symplectically embeds
into S2 × R

2n−2, and hence by assumption there exists a symplectic embedding
h : D2n(R)→ S2×R

2n−2. There exists an almost complex structure J on S2×R
2n

which is compatible with ω and coincides with the push-forward h∗i of the standard
complex structure on the ball D2n(R) ⊂ C

n. Gromov’s theory of holomorphic
curves then yields a J -holomorphic sphere S in S2 × R

2n−2 in the homology class
of S2×p, p ∈ R

2n−2, which passes through the image h(0) of the center of the ball
D2n(R). Then

πR2 > a =
∫
S

ω ≥
∫

S∩h(D2n(R))

ω = Area(h−1(S)). (13.2)

But the curve h−1(S) passes through the center of D2n(R) and it is a properly
embedded into D2n(R) holomorphic curve for the standard complex structure on
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C
n. But then it is a minimal surface, and hence by the isoperimetric inequality for

minimal surfaces we have

Area(h−1(S)) ≥ πR2, (13.3)

which contradicts (13.2).
This theorem for the first time established the existence of specifically symplectic

(e.g. different from the volume) invariants, and in particular, implied the symplectic
rigidity theorem (i.e. the C0-closedness of the group of symplectomorphisms in the
group of all diffeomorphisms). One can also deduce from Theorem 13.6.3 that for
any n > 1 there is a symplectic structure on Op ∂D2n which does not extend to
D2n, while there are no formal obstructions for that. Recently it was shown, see
Sect. 13.7.1 below, that there are no non-formal obstructions for the extension of
contact structures. Gromov’s paper also implied the contact rigidity. However, the
full details of this argument were written only recently, see [51].

Slightly modifying the original Gromov definition we define swidth(U, ω) of
a 2n-dimensional symplectic manifold (U,ω), or as it is now usually called the
Gromov width as

swidth(U) := sup{πr2; D2n(r) symplectically embeds into (U,ω)}.

Thus, swidth(D2(r) × D2n−2(R)) = πr2 if r ≤ R, and one can similarly prove
that swidth(S2(a) × R

2n−2) = a, where we denote by S2(a) the 2-sphere of area
a, assume that the symplectic structure on R

2n is standard, and that the product
is endowed with the split symplectic structure. It is interesting to note that this
Gromov rigidity result coexists with the h-principle type observation of Polterovich
(see [25]) that swidth(T2(a) × R

2n−2) = ∞. In a similar vein, there is a result of
Latschev-McDuff-Schlenk, see [41]: the 4-torus admits an embedding of the 4-ball
of full volume, and hence, swidth(T2(a)× T2(b)) = √

2ab.

13.6.3 Packing Inequalities

Gromov’s theory of holomorphic curves also implied that for any almost complex
structure J on CPn which is tamed by the standard (Fubini-Study) symplectic
form one has a J -holomorphic sphere in the class of the generator of H2(CP

n)

passing through any two points. He then applied this result (cf. the proof of the non-
squeezing theorem) to show that if there is a symplectic embedding of two disjoint
ballsD2n(r1) andD2n(r2) intoD2n(1) then r2

1+r2
2 ≤ 1. Indeed, if the ballsD2n(r1)

andD2n(r2) embed intoD2n(1), then they also embed into CPn with the symplectic
area of the generator of H2(CP

n) slightly bigger than π . Then one can choose an
almost complex structure on CPn tamed by the standard symplectic form and equal
to the push-forward of the standard complex structure on the images of the balls.
Finally, using the monotonicity theorem one concludes that the holomorphic sphere
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in the generator class passing through the centers of these balls have symplectic area
≥ π(r2

1 + r2
2 ), and the required inequality follows.

This result opened the whole new subject of symplectic packing inequalities with
the most remarkable results proven in the 4-dimensional case. For instance, let us
denote

vk := sup
kVolume(D4(r))

Volume(D4(1))
,

where the supremum is taken over all r such that the disjoint union

D4(r) � · · · �D4(r)︸ ︷︷ ︸
k

symplectically embeds into D4(1). Gromov’s result implies that v2 ≤ 1
2 . In the

work of Karshon, Traynor, McDuff-Polterovich, and Biran [5, 48, 62], there were
computed the precise values of vk for all k. It turns out that

k 1 2 3 4 5 6 7 8

vk 1 1/2 3/4 1 20/25 24/25 63/64 288/289

and vk = 1 for k ≥ 9.
Inspired by Gromov’s definition of invariants of symplectic domains, Helmut

Hofer defined in [38] a remarkable invariant of a Hamiltonian symplectomorphism,
called nowadays the Hofer norm (a related invariant was defined by Claude Viterbo
in [65]).

To connect Hofer’s and Gromov’s definitions let us consider a Hamiltonian
diffeotopy ht : D2n → D2n, t ∈ [0, 1], from the identity to h1 = h. The diffeotopy
is generated by a family of Hamitonian functionsHt : D2n → R equal to 0 on ∂D2n.
Let 0Ht ⊂ D2n × [0, 1] × R be the graph of Ht :

0Ht = {u = Ht(x); x ∈ D2n, t ∈ [0, 1]} ⊂ (D2n ×R
2, ω + dt ∧ du),

where ω is the standard symplectic form on D2n. Let us assume for a moment that
Ht is positive on the interior of the ball and consider the domain

UHt = {(x, t, u)| 0 ≤ u ≤ Ht(x), t ∈ [0, 1], x ∈ D2n}.

Choosing a different Hamiltonian path h̃t connecting Id with h, we observe that
if the two paths are homotopic through paths with positive Hamiltonian functions
then the corresponding domains UHt and UH̃t

are symplectomorphic. Hence, the
symplectic invariants of the domain UHt , e.g. its Gromov width, are invariants of
the Hamiltonian diffeomorphism h (or more precisely, of its lift to the universal
cover of the group of Hamiltonian diffeomorphisms).
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Hofer got around the positivity constraint by defining his conjugation invariant
norm ||h|| for any Hamiltonian diffeomorphism h : D2n → D2n as

||h|| = inf(maxHt(x)−minHt(x)),

where the max and min are taken over all (x, t) ∈ D2n × [0, 1], and the infimum
is taken over all Hamiltonians Ht with Ht |∂D2n = 0 generating h. One can
think of ||h|| as the Gromov width of a smallest box D2n × [0, 1] × [m,M]
containing the graph 0Ht . The non-degeneracy of this norm, i.e. the fact that a
symplectomorphism which can be generated by an arbitrary C0-small Hamiltonian
is equal to the identity, is parallel to Gromov’s non-squeezing theorem. Hofer’s

norm can be equivalently defined by the formula ||h|| = inf
Ht

1∫
0
||Ht ||C0dt , where

||Ht ||C0 = max
x∈D2n

Ht (x) − min
x∈D2n

Ht (x) is the C0-norm on the space of functions

on D2n equal to 0 on ∂D2n, and the infimum is again taken over all Hamiltonians
Ht with Ht |∂D2n = 0 generating h. In this formulation we see that Hofer’s norm
is just the path-length norm on the group H of Hamiltonian diffeomorphisms
corresponding to the Finsler metric given by the C0-norm on the Lie algebra of
the group H. A remarkable theorem of Buhovsky and Ostrover, see [9], asserts
that any conjugation invariant Finsler (pseudo-)norm on the group of Hamiltonian
diffeomorphisms that is generated by an invariant norm on the Lie algebra which is
continuous with respect to the C∞-topology, is either identically zero or equivalent
to the Hofer norm.

Hofer’s norm, later generalized to all symplectic manifolds by Lalonde-McDuff
[40], generates a bi-invariant metric on the group of Hamiltonian symplectomor-
phisms, which plays an important role in Hamiltonian Dynamics.

13.6.4 4-Dimensional Applications

As Gromov demonstrated in his seminal paper, holomorphic curves are especially
useful in 4-dimensional symplectic geometry due to the positivity of the intersection
property. As in the integrable case, transversely intersecting holomorphic curves in
an almost complex 4-manifold intesect positively. Gromov sketched an argument to
show that even in the singular case the analogy with the integrable case should hold.
It turned out that the issue is quite subtle, and was settled in a series of papers of
McDuff [47] and Micalleff–White [49]. Here are some of remarkable applications
proven by Gromov.

Theorem 13.6.4

(i) Let J be any almost complex structure on CP 2 tamed by the standard
symplectic form on CP 2. Then through any two distinct points there is a
unique J -holomorphic sphere in the homology class of the generator of
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H2(CP
2), and any two such spheres intersect at one point. All these spheres

are embedded.
(ii) Let (X,ω) be a symplectic 4-manifold with an almost complex structure J

tamed by ω. Suppose that there exists an embedded J -holomorphic sphere
S ⊂ X with S · S = 1, and there are no embedded J -holomorphic spheres with
self intersection equal to −1. Then (X,ω) is symplectomorphic to CP 2 with
the standard symplectic form.

Theorem 13.6.4 (ii) was improved by McDuff [46]: without assuming an absence of
(−1)-curves one can conclude that X is symplectomorphic to CP 2, possibly blown
up at a few points.

A corollary of Theorem 13.6.4 (ii) is that there exists a unique standard
at infinity symplectic structure on R

4, where uniqueness is understood up to
symplectomorphism fixed at infinity. Another spectacular corollary is that the group
of compactly supported symplectomorphisms of the standard symplectic R

4 is
contractible. This implies that the space of symplectic forms on R

4standard at
infinity is homotopy equivalent to the group of all compactly supported diffeomor-
phisms. Note, however, that nothing is currently known about the topology of this
group.3

C.H. Taubes found a link, see [60, 61], between the Seiberg-Witten gauge
theory and Gromov’s theory of holomorphic curves. His result in combination with
Theorem 13.6.4 (ii) implied that the uniqueness up to symplectomorphism result
also holds for symplectic structures of a fixed total volume on CP 2.

A lot of other great results on the rigidity side of symplectic topology were
achieved in the years following Gromov’s discovery. However, there were also
significant advances on the flexible side of symplectic topology. We discuss some
of them in the next section.

13.7 Successes on the Flexible Side of Symplectic Topology

13.7.1 Overtwisted Contact Structures

Gromov’s h-principle for contact and symplectic structures on open man-
ifolds reduced Problems P1-abs and P2-abs for closed manifolds to the
extension problems P1-rel and P2-rel for the balls. Gromov non-squeezing
result implied that an h-principle type answer cannot hold for Problem
P1-rel in any symplectic dimension 2n ≥ 4. On the other hand, in the
contact case Bennequin’s theorem [4] in dimension 3 and later results, see

3Added in proof: Recently Tadayuli Watanabe found non-trivial elements in higher homotopies of
this diffeomorphism group; see Some exotic nontrivial elements of the rational homotopy groups
of Diff(S4). Tadayuki Watanabe, Arxiv 1812.02448.
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[64], implied that Problem P2-rel cannot have a positive h-principle type
answer in any contact dimension 2n − 1 ≥ 3. On the other hand it was
already known that P1-rel in contact dimension 2n − 1 = 3 abides an h-
principle.4

It was a surprising discovery in 1989 for the case 2n−1 = 3, see [18], and in 2014
for all higher dimensions, see [7], that all problems P1-abs, P1-rel, P2-abs, P2-rel
abide an h-principle for a certain subclass of contact structures, called overtwisted
contact structures. In particular, if an odd-dimensional manifold M admits a stable
almost complex structure (i.e. if the stabilized tangent bundle TM ⊕ ε1 admits a
complex structure) then it also admits a genuine contact structure.

13.7.2 Donaldson’s Hyperplane Sections

We already mentioned above Gromov’s h-principle for iso-symplectic embeddings
in codimension >2. Applying holomorphic curve techniques it is not difficult to
construct counter-examples to a similar h-principle in codimension 2. However,
Simon Donaldson, using his theory of almost holomorphic sections of complex line
bundles over almost complex symplectic manifolds, proved among other remarkable
results the following

Theorem 13.7.1 (Donaldson [14]) For any closed 2n-dimensional symplectic
manifold (M,ω) with an integral cohomology class [ω] ∈ H 2(M) and a sufficiently
large integer k there exists a codimension 2 symplectic submanifold 1 ⊂ M which
represents the homology class Poincaré dual to kω. Moreover, the complement
M \1 has the homotopy type of an n-dimensional cell complex (as it is the case for
complements of hyperplane sections in complex projective manifolds).

13.7.3 Guth’s Symplectic Embeddings

Let us denote by P(r1, . . . , rn) the polydisc {|z1| ≤ r1, . . . , |zn| ≤ rn} ⊂ C
n, where

we assume r1 ≤ r2 ≤ · · · ≤ rn. In the case n = 2 if P(r1, r2) symplectically
embeds into P(R1, R2) then Theorem 13.6.3 implies that r1 ≤ R1. We also have
the volume constraint r1r2 ≤ R1R2. Many people tried to prove that for a similar
embedding problem for high-dimensional polydiscs there are additional constraints
on intermidiate radii besides the width and volume constraints. However, Larry Guth
proved the following remarkable result on the flexible side, which showed that the
room for additional constraints is very limited.

4It seems that the proof of this result appeared in print only in [18], but it was, probably, known to
W.P. Thurston, who used a very close argument in his proof of the h-principle for codimension 1
foliations.
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Theorem 13.7.2 (Guth [35]) There exists a constant C(n) depending on the
dimension n such that if C(n)r1 ≤ R1 and C(n)r1 . . . rn ≤ R1 . . . Rn then the
polydisc P(r1, . . . , rn) symplectically embeds into P(R1, . . . , Rn).

13.7.4 Bounds on the Number of Double Points of Exact
Symplectic Immersions

While the results confirming Arnold’s conjecture on the intersection of two La-
grangian submanifolds remain one of the centerpieces of rigid symplectic topology,
its analog concerning lower bounds for the number of double points of a Lagrangian
immersion turned out to be wrong. For instance, an “Arnold type” conjecture
predicts that the minimal number s(L) of transverse double points of an exact
Lagrangian immersion of an orientable n-dimensional closed manifold L into R

2n

should satisfy the bound s(L) ≥ 1
2 rankH∗(L), which for L = T n gives s(L) ≥

2n−1.
However, it turns out (see [15]; for n = 2 the result is due to D. Sauvaget [56])

that this conjecture is wrong:

Theorem 13.7.3 Let L be a closed n-dimensional orientable manifold. If the
complexified tangent bundle T ∗(L)⊗ C is trivial5 then

s(L)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= − 1
2χ(L), if n is even and χ(L) < 0;

≤ 1
2χ(L)+ 2, if n is even and χ(L) ≥ 0;

≤ 2, if n is odd;
= 1, if n = 3, 7.

Here χ(L) is the Euler characteristic of L. For instance, any 3-manifold admits a
Lagrangian immersion into R

6 with exactly 1 double point.
It is interesting to contrast this theorem with the following rigidity result of

Ekholm and Smith, [16]:

Theorem 13.7.4 If a closed orientable 2k-manifold L, k > 2, with χ(L) �= −2
admits an exact Lagrangian immersion into R

4k with one transverse double point
and no other self-intersections, then L is diffeomorphic to the sphere.

5This is a necessary and sufficient condition for existence of a Lagrangian immersion, as it follows
from Gromov-Lees h-principle, [32, 43], for Lagrangian immersions.
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13.7.5 Loose Legendrian Knots and Lagrangian with Conical
Singularity

One of the applications of holomorphic curves techniques in contact topology
was the introduction of new invariants of Legendrian knots, such as Legendrian
homology algebra, [10, 20]. There is a certain operation on a Legendrian, called
stabilization, see [11, 19, 52], which can be performed in a neighborhood of any
point of the Legendrian knot, and which kills the Legendrian homology algebra.
Moreover, it was known for 1-dimensional Legendrian knots, see [27], that formally
isotopic Legendrian knots become genuinely Legendrian isotopic after sufficiently
many stabilizations.

Emmy Murphy in her 2012 PhD dissertation [52] proved that for Legendrian
knots of dimension > 1 formal Legendrian isotopy implies the genuine one already
for once stabilized knots. A Legendrian knotL in a contact manifold (M, ξ) is called
loose if it is Legendrian isotopic to a stabilization of another Legendrian knot.

Theorem 13.7.5 ([52]) Any two formally isotopic loose Legendrian knots of dimen-
sion > 1 can be connected by a genuine Legendrian isotopy.

Given a symplectic manifold (X,ω) we say that L ⊂ M is a Lagrangian
submanifold with an isolated conical point if it is a Lagrangian submanifold away
from a point x ∈ L, and there exists a symplectic embedding f : Bε → X such
that f (0) = x and f−1(L) ⊂ Bε is a Lagrangian cone. Here Bε is the ball of radius
ε in the standard symplectic R

2n. Note that this cone is automatically a cone over
a Legendrian sphere in the sphere ∂Bε endowed with the standard contact structure

given by the restriction to ∂Bε of the Liouville form λst = 1
2

n∑
1
(pidqi − qidpi).

It turns out that Lagrangians with 1 conical point exhibit a great deal of flexibility.

Theorem 13.7.6 ([24]) Let L be an n-dimensional, n > 2, closed manifold such
that the complexified tangent bundle T ∗(L \ p) ⊗ C is trivial. Then L admits an
exact Lagrangian embedding into R

2n with exactly one conical point. In particular,
a sphere admits a Lagrangian embedding into R

2n with one conical point for each
n > 2.

The analogous statement for n = 2 is wrong, as it follows from Bennequin’s
inequality, [4].

13.7.6 Construction of Symplectic Cobordisms

While existence problem for symplectic structures on closed manifolds remains
widely open, the situation drastically changes when one allows symplectic structures
to have one conical singularity. We say that a 2-form ω on the punctured 2n-ball
D2n\0 is a symplectic form on D2n with a conical singularity at 0 if it can be
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written as d(r2α), where α is a contact form on S2n−1 = ∂D2n and r is the radial
coordinate.

We will call (S2n−1, ζ = {α = 0}) the link of the singularity. Note that if the
contact structure ζ is standard, then the form extends to a non-singular symplectic
form to D2n.

Theorem 13.7.7 ([23]) Let X be a closed manifold of dimension 2n > 4 that
admits an almost complex structure on X \ p, p ∈ X. Let a ∈ H 2(X) be any
cohomology class. Then for any closed symplectic 2n-dimensional manifold (Z,ω),
the connected sum X#Z admits a symplectic form with a conical singularity at p in
the cohomology class a + C[ω] for a sufficiently large constant C > 0.

13.8 Basic Problems: Where They Stand Now?

We finish this article with a brief survey of the current status of basic problems
discussed in Sect. 13.4.

Problem P1-abs (Existence of Symplectic and Contact Structures)
Gromov’s theorem fully answered this question for open manifolds. In the 3-
dimensional contact case Problem P1-abs was positively answered by J. Martinet,
[45], and R. Lutz, [44]. The paper [7] gave an h-principle type necessary and
sufficient condition for higher-dimensional closed contact manifolds. In the closed
contact symplectic case the problem is open and there are no counter-examples to
the following flexible conjecture: any closed manifold of dimension 2n > 4 which
has an almost complex structure J and a cohomology class a ∈ H 2(M)with an �= 0
admits a symplectic structure ω with [ω] ∈ a, and which is compatible with an
almost complex structure homotopic to J . In dimension 4 this conjecture was proven
to be wrong by Taubes, [59], with the help of Seiberg-Witten theory. For example,
the connected sum of 3 copies ofCP 2 does not admit a symplectic structure, while it
has an almost complex structure and a cohomology class a ∈ H 2(M) with a2 �= 0.

P1-rel (Extension of Symplectic and Contact Structures)
In the contact case there is an h-principle type answer in all dimensions [7]. In
the symplectic case Gromov’s theory of holomorphic curves provides counter-
examples to the flexible conjecture in all dimensions. Unfortunately, there are no
known invariants beyond the formal ones which would serve as obstructions to the
extension of a symplectic structure.

P2-abs (Homotopy of Symplectic and Contact Structures on Closed Manifolds)
In both the symplectic and contact cases there are obstructions for the homotopy
between two formally homotopic structures on a given closed manifolds. In both
cases invariants distinguishing the structures are based on Gromov’s theory of
holomorphic curves.
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P2-rel (The Relative Version of P2-abs)
There are contact structures on the ball which coincide near the boundary but are
not homotopic (e.g. see [64]). In the symplectic case the problem is open. In the
4-dimensional case Gromov proved that any symplectic structure on the ball D4

which is standard near ∂D4 is symplectomorphic to the standard one. However,
nothing is known about the topology of the group Diff(D4, ∂D4), and hence it is
unknown whether there could exist a symplectic structure on D4 which is standard
near ∂D4 and which is not homotopic to the standard one.

P3 (Arnold’s Fixed Point Conjecture)
Arnold’s fixed point conjecture is proven for general symplectic manifolds in its
minimal form, i.e. that assuming all fixed points are non-degenerate, the number
of fixed points is bounded below by the rank of homology [28]. However, more
optimistic conjectures (e.g. bounding the number of non-degenerate points of a
symplectomorphism in terms of the minimal number of critical points of a Morse
function on the manifold) are still open.

P4 (Arnold’s Lagrangian Intersections Conjecture)
If a Lagrangian L ⊂ T ∗M is Hamiltonian isotopic to the 0-section M and
transversely intersects M then the most optimistic Arnold conjecture for the lower
bound for #L ∩ M is equal to Morse(M), the minimal number of critical points
of a Morse function function on M . But the best known estimate is #L ∩ M ≥
stabMorse(M), where stabMorse(M) is the stable Morse number, i.e. the minimal
number of critical points of a Morse function F : M × R

N → R of the form
F(x, y) = Q(y)+ ε(x, y), x ∈ M,y ∈ R

N , where Q is a non-degenerate quadratic
form and ε is a compactly supported function; see [42].

P5 (Lagrangian Embedding Problem)
A lot of progress was achieved towards understanding the topology of Lagrangian
embeddings, beginning with Gromov’s theorem about the absence of closed exact
Lagrangian submanifolds in R

2n. The progress is especially remarkable in dimen-
sion 4. A theorem of H. Whitney, see [66], implies6 that the 2-torus is the only
orientable closed surface which admits a Lagrangian embedding into R

4 and that
non-orientable closed surfaces of Euler characteristics non-divisible by 4 do not
admit Lagrangian embeddings in R

4. On the other hand all non-orientable surfaces
of Euler characteristic −4k, k ≥ 1, were known to admit such an embedding, see
e.g. [29]. Finally the classification of all possible Lagrangian surfaces in R

4 was
completed by Shevchishin [57], who proved that there is no Lagrangian embedding
of the Klein bottle into R

4. In a recent paper of Dimitroglou Rizell et al. [12], it was
shown that all Lagrangian tori in R

4 are Lagrangian isotopic.

6Whitney proved that the normal Euler number of a closed surface embedded into R
4 is equal to

0 in the orientable case, and is congruent to 2χ(mod 4) in the non-orientable one. For Lagrangian
surfaces normal and tangential Euler numbers differ only by sign, which implies the claim.
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P5-nearby (Nearby Lagrangian Conjecture)
The nearby Lagrangian conjecture is still open despite a significant progress. It is
fully proven for T ∗S2 [36], and T ∗T 2 [12]. For all other cases the best known result
[2], states that for any exact Lagrangian L ⊂ T ∗M its projection to M is a simple
homotopy equivalence.

P6 (Legendrian Isotopy Problem)
The Legendrian algebra defined by Chekanov in [10] and independently in the
framework of Symplectic Field Theory by Givental, Hofer and the author in [20, 22]
proved itself to be an effective invariant of Legendrian knots. For 1-dimensional
knots an alternative invariant in the framework of Heegaard homology theory was
defined in [54].

P7 (Equidimensional Symplectic Embeddings)
Beginning with Gromov’s non-squeezing theorem a lot of progress was achieved
in the theory of symplectic embeddings, especially in dimension 4; see Hutchings’s
survey [39]. In higher dimensions there is still a large gap between known negative
and positive results.

P8 (C0-Symplectic Topology)
The resolution of Gromov’s alternative in favor of rigidity suggested the notion
of a symplectic homeomorphism as the one which could be C0-approximated by
symplectic diffeomorphisms. In turn, this yields a natural notion of a topological
symplectic manifold. Most of the basic problems of symplecticC0-topology are still
open. For instance, it is still unknown whether a 2n-dimensional closed topological
symplectic manifold must have a cohomology class a ∈ H 2(M) with an �= 0.
However, the subject continues to develop with many promising non-trivial results,
both on the rigid and flexible sides of this theory; see e.g. [8].

Symplectic rigidity and flexibility continue their development towards each other
in search of the ultimate boundary.
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Chapter 14
Flat Affine, Projective and Conformal
Structures on Manifolds: A Historical
Perspective

William M. Goldman

Abstract This historical survey reports on the theory of locally homogeneous
geometric structures as initiated in Ehresmann’s 1936 paper Sur les espaces
localement homogènes. Beginning with Euclidean geometry, we describe some
highlights of this subject and threads of its evolution. In particular, we discuss the
relationship to the subject of discrete subgroups of Lie groups. We emphasize the
classification of geometric structures from the point of view of fiber spaces and
the later work of Ehresmann on infinitesimal connections. The holonomy principle,
first isolated by W. Thurston in the late 1970’s, relates this classification to the
representation variety Hom

(
π1(1),G

)
. We briefly survey recent results in flat

affine, projective, and conformal structures, in particular the tameness of developing
maps and uniqueness of structures with given holonomy.

1991 Mathematics Subject Classification: 57M05 (Low-dimensional topology);
20H10 (Fuchsian groups and their generalizations)

14.1 Introduction

On 23 October 1935, at the Geneva conference “Quelques questions de Geométrie
et de Topologie,” Charles Ehresmann [56] initiated the study of geometric structures
modeled on a homogeneous space (X,G), or locally homogeneous geometric
structures on manifolds. Here G is a Lie group and X a homogeneous space,
representing a geometry in the sense of Klein’s Erlanger program. A geometric
structure is defined by an atlas of coordinate charts mapping into X with coordinate
changes locally defined by transformations in G. We call such a structure a (G,X)-
structure, and a manifold equipped with such a structure a (G,X)-manifold. A
(G,X)-manifold M inherits all of the local geometry of X invariant under G.
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These ideas were heavily influenced by Sophus Lie, Felix Klein, Henri Poincaré
and Élie Cartan among others. Lie and Klein recognized how a group-theoretic
viewpoint unified the disparate classical geometries: for them, a geometry consists
of the properties of a spaceX upon which a groupG acts transitively by symmetries
of that geometry. Transitivity of the action means that the local geometries at any
pair of points are equivalent. For example for Euclidean geometry, X is Euclidean
space E

n and G is its group of isometries. Poincaré introduced the fundamental
group π1(1, x0) of a topological space 1, consisting of loops based at a fixed (but
arbitrary) base point x0 ∈ 1. Cartan introduced a general notion of development
along paths, which corresponds to parallel transport of infinitesimal objects (for
example, tangent vectors and frames) along paths. Development for an Ehresmann
structure M modeled on a geometry (G,X) defines a homomorphism π1(M)−→G

compatible with a local homeomorphism M̃ −→ X.
Ehresmann begins with Riemannian manifolds of constant curvature, which he

calls Clifford-Klein space forms. Such manifolds are locally modeled on Euclidean
space E

n, the sphere Sn, or hyperbolic space Hn, depending on whether the
curvature is zero, positive or negative, respectively. Indeed, for these geometries,
a (G,X)-structure is completely equivalent to a Riemannian metric of constant
sectional curvature. The key property upon which he focuses is that any two points
in such a space possess open neighborhoods which are isometric, that is, they have
the same local geometries. He considers the more general situation of a manifold X
with a transitive left action of a Lie group G; choosing a point x ∈ X,

G −→ X

g �−→ g(x)

maps G (with its simply transitive group of left-multiplications) G-equivariantly
to X. Furthermore this map passes down to a isomorphism of left G-spaces
G/Stab(G, x) −→ X, where

Stab(G, x) := {g ∈ G | g(x) = x}

is the stabilizer of x in G. In modern parlance, X is a homogeneous space of G.
He then defines a locally homogeneous space to be a manifold M (having the

same dimension as X) which is locally modeled on the G-invariant geometry of X.
Specifically, M is covered by open neighborhoods, coordinate patches, U (which
Ehresmann calls “elementary neighborhoods”) equipped with homeomorphisms,

coordinate charts, U
ψ−−→ X. The coordinate charts transfer the local G-invariant

geometry of X to U .
Coordinate patches U and U ′ with corresponding charts ψ and ψ ′ respectively

define possibly competing geometries on the intersection U ∩ U ′. Thus we require
that ψ and ψ ′ define the same local geometry on U ∩ U ′: that is, each p ∈ U ∩ U ′
possesses an open neighborhoodV ⊂ U∩U ′ such thatψ ′|V = g◦ψ|V for some g ∈
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G. If we require that G acts effectively on X, then g will be uniquely determined.
Furthermore g only depends on the connected component of U ∩ U ′ containing p.

This is what he calls a locally homogeneous space of Lie, to distinguish it from
a homogeneous space of Lie, and he observes that every homogeneous space is
locally homogeneous. The main question addressed in the paper is to what extent
the converse holds.

He begins with the observation that a locally homogeneous space is a real
analytic manifold. Although at the time, the global notion of a Lie group had not
been popularized (Chevalley’s book [35] would not be published for at least another
decade), Ehresmann spends some time clarifying the relation between local groups
of transformations on X.

In [56], Ehresmann calls M a Clifford form of X.
Ehresmann structures modeled on a Lie groupG and its group of left-translations

arise from discrete subgroups ofG, at least under the assumption that the developing
map is a covering space. Certainly when M is compact, such a (G,X)-structure
corresponds to a discrete subgroup 0̃ ⊂ G̃ and an isomorphism M ∼= 0̃\G̃. (For
more information see [75].)

In the literature, “locally homogeneous spaces” sometimes refer to biquotients
0\G/H , since “homogeneous space” may refer to the quotientG/H . (Here 0 ⊂ G

is a discrete subgroup and H ⊂ G is a closed subgroup, so that G/H is Hausdorff.
Furthermore0 is assumed to act properly onG/H , which, unlessH is compact, is a
nontrivial assumption on 0.) If, in addition,0 is assumed to act freely onG/H , then
the double coset space0\G/H admits the natural structure of a (G,X)-manifoldM ,
where X = G/H . Under various completeness assumptions (see below), “locally
homogeneous” in our sense will imply that the geometric manifold is indeed a
double coset space.

When H is compact, X carries a G-invariant Riemannian metric which is
necessarily geodesically complete, and the Hopf-Rinow theorem implies that a
closed (G,X)-manifold is a double coset space in the above sense. These basic
examples are particularly tame, although nonetheless extremely rich.

Acknowledgements I am grateful to Yves Benoist and Athanase Papadopoulous for their careful
reading of the manuscript and many useful suggestions. I also wish to thank Thomas Delzant for
useful comments on the literature.

14.2 Euclidean Manifolds

The most familiar geometry is Euclidean geometry. Euclidean geometry includes
relations between points, lines, planes, and measurements such as distance, angle,
area and volume. A more sophisticated aspect of Euclidean geometry is the theory of
harmonic functions and Laplace’s equation. The key property is that these objects,
and the relations between them, are invariant under the transitive action of the
isometry group G = Isom(En) of Euclidean space En.
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The model space X = E
n is defined as the vector space R

n (or more accurately
the affine space An, where the special significance of the additive identity 0 ∈ R

n is
removed). The isometry group is generated by the group of translations (identified
as the vector space Rn), and the group O(n) of orthogonal linear automorphisms of
R
n. ThusG ∼= R

n
�O(n) andX = E

n identifies with the homogeneous spaceG/H
where H := Stab(G, 0) = O(n) is the stabilizer of the origin 0 ∈ R

n.

14.2.1 Riemannian Geometry

Euclidean structures are flat Riemannian structures, that is, Riemannian structures
whose curvature tensor vanishes. We adopt the viewpoint that the Riemannian
structure is the geometry defined by a Riemannian metric (tensor), which then leads
to notions of speed and length of smooth curves, and finally the structure of a metric
space.

The key point is that forX = E
n, a positive inner product on the associated vector

space V = R
n extends to a G = Isom(En)-invariant metric tensor on X. (The G-

invariant tensor is uniquely determined up to scaling by a nonzero constant.) This
infinitesimal structure makesX into a metric space upon whichG acts isometrically.

If M is a manifold, then an Ehresmann structure on M modeled on Euclidean
geometry is essentially equivalent to a metric space locally isometric to a Euclidean
structure. (We say “essentially” because the distance function is determined up to
scaling by positive constant.) Equivalently, this is just a Riemannian metric which
is flat, that is, one whose Riemann curvature tensor vanishes. Other Ehresmann
structures can be defined in a similar way, using an infinitesimal form (Cartan con-
nections) such that an object generalizing the curvature tensor vanishes. (Compare
Sharpe [129].)

However, the theory of Euclidean manifolds really goes back much earlier, to
crystallography and the theory of regular tilings of Euclidean space. Once the
abstract notion of a group of transformations was formulated, late nineteenth-
century crystallographers such as Schoenflies and Fedorov classified crystallo-
graphic groups, namely symmetry groups of tilings of E3 by compact polyhedra.
These are the mathematical abstractions of crystals. In arbitrary dimension a
Euclidean crystallographic group is a subgroup 0 ⊂ Isom(En) acting properly
discontinuously on E

n with compact quotient (equivalently, a compact fundamental
domain). A compact flat Riemannian manifold M (that is, a Euclidean manifold)
determines a crystallographic group. The Hopf-Rinow theorem (see Sect. 14.6
below) implies that the universal covering space M̃ is isometric to E

n, and the group
π1(M) of deck transformations acts properly and isometrically on E

n. Conversely,
if 0 ⊂ Isom(En) is discrete, then it acts properly and isometrically on E

n. If,
furthermore, 0 is torsionfree, it acts freely on E

n and the quotient M := 0\En
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is a manifold. In particular M identifies with a double coset space 0\G/H . Since
H = O(n) is compact, the homogeneous space 0\G is compact if and only if
the locally homogeneous space 0\G/H is compact. Crystallographic groups, then,
are just discrete subgroups 0 ⊂ Isom(En) which are cocompact, that is, when
0\Isom(En) is compact. In the case that G = Isom(En), this is equivalent to 0

being a lattice in G, namely a discrete subgroup such that 0\G has finite Haar
measure. Thus the classification of crystallographic groups is equivalent to the
classification of lattices in Isom(En). (See Milnor [120] and the references cited
there for an excellent exposition of these ideas and their histroical motivation.)

14.2.2 The Bieberbach Theorems

In 1911, Bieberbach proved a Structure Theorem for crystallographic groups.

Namely, the linear holonomy 0
L−→ O(n) defined by the (constant) derivative of

the isometry γ ∈ 0 has finite image. Its kernel consists of all translations in 0, and
Ker(L) = 0 ∩ R

n is a lattice � in R
n (the additive group spanned by a basis of

R
n). The geometric version is that a compact Euclidean manifold admits a finite

covering space whose total space is a flat torus Rn/�.
He also proved a Rigidity Theorem and a Finiteness Theorem for Euclidean

manifolds. Euclidean manifolds are rigid in the following sense: Every isomorphism
01 → 02 of crystallographic groups extends to an affine automorphism of E

n

conjugating 01 to 02. Observe that the rigidity is up to affine equivalence, not
Euclidean isometry. While isometry classes of marked Euclidean n-manifolds com-
prise a deformation space with rich geometry

(
identifying with GL(R2)/O(2)

)
, the

deformation space of affine equivalence classes of marked Euclidean n-manifolds is
a point.

Finally any n admits finitely many isomorphism classes of crystallographic
subgroups 0 ⊂ Isom(En). For n = 2, only the torus and Klein bottle have
Euclidean structures. For n = 3 only six orientable 3-manifolds admit Euclidean
structures.

These three theorems provide a satisfactory qualitative picture of Euclidean
structures on closed manifolds. Compare Wolf [145], Raghunathan [126], and
Thurston [135].

By the Rigidity Theorem above, it seems natural to consider more general affine
crystallographic groups, namely discrete subgroups 0 ⊂ Aff(An) such that 0
acts properly on An, and the quotient 0\An is compact. (Our notation emphasizes
context: An denotes the affine space underlying E

n: that is, An “is” E
n, but without

the special structure defined by the Euclidean inner product. Similarly An “is” R
n,

but without the special structure given by the additive identity 0 ∈ R
n.)
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14.2.3 Affine Crystallographic Groups

In dimension three, analogues of all three of Bieberbach’s theorems fail for affine
crystallographic groups: the image of the linear holonomy is generally infinite,
there are generally infinitely many affine isomorphism types in a given topological
type, and there are infinitely many topological types (Auslander [7]). Auslander
and Markus [6] construct 3-dimensional flat Lorentzian manifolds which are
geodesically complete: these are quotients M := 0\An by discrete subgroups
0 ⊂ G = Aff(An) which act properly on An with compact quotient. The situation
is now much more tricky, since M is a biquotient 0\G/H , where G = Aff(An).
However, since H = Stab(G, 0) = GL(Rn) is nocompact, generally discrete
subgroups of G will not act properly on X = An.

A structure theorem analogous to the Bieberbach’s theorem may hold in this
context, but presently is not known in general. This is the famous “Auslander
Conjecture,” since it was erroneously claimed in Auslander [8]. The assertion is
that the fundamental group (or affine holonomy group) 0 is necessarily virtually
solvable. This was proved in dimension three by Fried-Goldman[63], and Abels–
Margulis–Soifer [2] have proved this in all dimensions < 6.

The Auslander Conjecture implies the following Structure Theorem: If 0 ⊂
Aff(An) is an affine crystallographic group, then there exists a subgroup G ⊂
Aff(An) such that

• G has finitely many connected components; 0 ⊂ G is a lattice;
• The identity componentG0 acts simply transitively on An.

The last condition means that G inherits a left-invariant complete affine structure,
and a finite-sheeted covering space of the complete affine manifold M = An/0

identifies with the homogeneous space 0\G0. The group G replaces the group of
translations in the Euclidean (Bieberbach) case. For details, see the first section of
[63]; we call 0 a crystallographic hull, but generally it is not unique.

When M is not required to be compact, then many examples are now known
where 0 is not virtually solvable. The first ones were constructed in the late 1970’s
by Margulis [114, 115], where 0 is a nonabelian free group, and n = 3. For
more information, see Abels [1], Charette-Drumm-Goldman-Morrill [31], Fried-
Goldman [63], Milnor [123] and [76].

The three-dimensional examples found by Auslander [7] and Auslander-
Markus [6] have special significance. Such a 3–manifold M3 is a 2-torus bundle
over S1, and is a mapping torus of a linear automorphism of a flat torus T 2. We can
identify T 2 as R

2/Z2, and the automorphism corresponds to A ∈ GL(2,Z). The
monodromy A is periodic if and only if M3 is a Euclidean manifold, in which case
the fundamental group0 is a classical crystallographic group. WhenA is parablolic,
then 0 is nilpotent and nonabelian, its crystallographic hull is the 3-dimensional
Heisenberg group Nil, and M3 is a nilmanifold.
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The most interesting case arises when A is hyperbolic. In that case, the
crystallographic hull G is the semidirect product R2

� R where R acts on R
2 by

the hyperbolic one-parameter group

R −→ GL(R2)

t �−→
[
et 0
0 e−t

]
.

0 is a cocompact lattice in G, and the quotient M3 = 0\G is a 3-dimensional
solvmanifold. We denote this group by Sol. Geometrically G is the identity
component of the group of Lorentzian isometries of flat Minkowski 2-space, and
this interpretation easily yields the flat Lorentzian structure on M .

14.3 Geometrization of 3-Manifolds

Ehresmann’s viewpoint set the context for Thurston’s geometrization program for
3-manifolds, and revolutionized the subject.

Every closed 2-manifold 1 admits a Riemannian metric of constant curvature,
and hence a (G,X)-structure where X is a model space of constant curvature (the
2-sphere S2, Euclidean space E

2, or the hyperbolic plane H2) and G = Isom(X).
Which geometry is supported is determined by the topology of 1: if χ(1) <

0
(
respectively χ(1) = 0, χ(1) > 0

)
, then 1 admits hyperbolic structures

(respectively, Euclidean structures, spherical structures). The deformation spaces
of these structures (equivalent to the Teichmüller spaces of1 by the Uniformization
Theorem), are a powerful tool for understanding the topology of 1.

In 1976, Thurston proposed that 3-manifolds possess a suggestive natural
structure in terms of canonical decompositions into pieces which have locally homo-
geneous Riemannian structures. There are eight local models for such Riemannian
structures, including the three constant curvature geometries (spherical, Euclidean
and hyperbolic) as well as certain product and local-product geometries (such as
S2 × S1, H 2 × S1, the Heisenberg group and the solvable group Isom(R1,1) and
the unit tangent bundle T1(H

2) ∼= PSL(2,R)). As these are metric structures, the
Hopf-Rinow theorem implies that the developing maps are tame, so (at least when
one passes to a simply-connected model space X) the structures are all quotient
structures by discrete subgroups of G.

The tools for the decomposition existed at the time, due to earlier work of
Seifert, Dehn, Kneser, Milnor, Haken, Waldhausen, Jaco, Shalen, Johannsen and
many others; Thurston realized that these topological results gave an intimate and
suggestive relationship between topology and differential geometry, in dimension
three. The importance of these insights cannot be overestimated. See Scott [128],
Bonahon [25] and Thurston [135] for further details.
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Three of the geometries correspond to the Euclidean manifolds, nilmanifolds and
solvmanifolds above. Namely, Euclidean geometry lives on quotients of flat 3-tori
by finite groups. Nilgeometry lives on quotients of the Heisenberg group, and is
defined as the geometry of a left-invariant metric. Solvgeometry lives on quotients
of the solvable Lie group Sol described above, and is defined as the geometry of a
left-invariant metric on Sol.

14.4 Ehresmann Structures

Now we return to Ehresmann’s vision, as outlined in his paper [56] and the
later paper [57], in the context of locally homogeneous structures which are not
necessarily Riemannian.

In the later paper [57], he associates to a (G,X)-structure on M a fiber bundle
with structure group G, fiber X and a section corresponding to the developing
map. More generally, this structure corresponds to what is now called a Cartan
connection on M , and the locally homogeneous structures described in [56] are
precisely those Cartan connections which are flat. A flat Cartan connection is one
for which the curvature vanishes. Sharpe [129] is a particularly readable exposition
of this general theory. He calls a Cartan geometry a Cartan connection, and a flat
one Klein geometry.

The local triviality of these structures implies that the study of such structures
is essentially topological, and in particular closely related to the fundamental group
and the universal covering space. Specifically, suppose M is a connected (G,X)-
manifold with basepoint p0 ∈ M . Let U ⊂ M a coordinate patch containing

p0, with a coordinate chart U
ψ−→ X. Let M̃

�−−→ M denote the corresponding
universal covering space with covering group π = π1(M,p0). Then ψ extends

to a unique map M̃
dev−−−→ X which is compatible with the (G,X)-atlas; it is

a (G,X)-map, a morphism in the category whose objects are (G,X)-manifolds.
As the restrictions of dev to coordinate patches are locally compositions of
coordinate charts with transformations from G, the developing map dev is a local
real-analytic diffeomorphism. (Since the action ofG onX is real-analytic, a (G,X)-
atlas determines a unique real-analytic structure.) Furthermore the group π of
deck transformations acts by (G,X)-automorphisms of M̃ , and therefore defines

a homomorphism π
ρ−→ G such that

M̃ −−−−→ X

M̃ −−−−→ X

dev

dev

(γ)γ ρ

commutes.
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This process of development originated with Élie Cartan and generalizes the
notion of a developable surface in E

3. If S ↪→ E
3 is an embedded surface of

zero Gaussian curvature, then for each p ∈ S, the exponential map at p defines an
isometry of a neighborhood of 0 in the tangent plane TpS, and corresponds to rolling
the tangent plane Ap(S) on S without slipping. In particular every curve in S starting
at p lifts to a curve in TpS starting at 0 ∈ TpS. Élie Cartan calls this the development
of the surface (along the curve). For a Euclidean manifold M , this globalizes to a
local isometry of the universal covering M̃ −→ E

2, the developing map of the
geometric structure. For general Ehresmann structures M , the developing map is a

local homeomorphism M̃
dev−−−→ X from the universal covering space into X, which

locally respects the geometric structure. Furthermore it is equivariant with respect

to a representation π1(S)
ρ−→ G (the holonomy representation) corresponding to

the action of deck transformations of π1(S) on M̃ . The corresponding pair (dev, ρ)
is unique up to the action of g ∈ G given by

(dev, ρ) �−→ (g ◦ dev, Inn(g) ◦ ρ).

The metric structure is actually subordinate to the affine connection, as this
notion of development really only involves the construction of parallel transport.

Later this was incorporated into the notion of a fiber space, as discussed in the
1950 conference [133]. The collection of coordinate changes of a (G,X)-manifold
M defines a fiber bundle EM −→ M with fiber X and structure group G. The fiber
over p ∈ M of the associated principal bundle

PM �P−−−→ M

consists of all possible germs of (G,X)-coordinate charts at p. The fiber over p ∈
M of EM consists of all possible values of (G,X)-coordinate charts at p. Assigning

to the germ at p of a coordinate chart U
ψ−−→ X its value

x = ψ(p) ∈ X

defines a mapping

(PM)p −→ (EM)p.

Working in a local chart, the fiber over a point in (EM)p corresponding to x ∈ X

consists of all the different germs of coordinate charts ψ taking p ∈ M to x ∈
X. This mapping identifies with the quotient mapping of the natural action of the
stabilizer Stab(G, x) ⊂ G of x ∈ X on the set of germs.
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For Euclidean manifolds, (PM)p consists of all affine orthonormal frames, that
is, pairs (x, F ) where x ∈ E

n is a point and F is an orthonormal basis of the tangent
space TxEn ∼= R

n. For an affine manifold, (PM)p consists of all affine frames: pairs
(x, F ) where now F is any basis of Rn.

The coordinate atlas/developing map defines a section of EM → M which is
transverse to the two complementary foliations of EM :

• As a section, it is necessarily transverse to the foliation of EM by fibers;
• The nonsingularity of the coordinate charts/developing map implies this section

is transverse to the horizontal foliation FM of EM defining the flat structure.

The differential of this section is the solder form of the corresponding Cartan
connection.

14.4.1 Properties of the Developing Map

Ehresmann [56] proves several basic facts about the development/holonomy pair:
Suppose that M is compact and π1(M) is finite. Then

• X must be compact and π1(X) is finite;
• The universal covering M̃ of M is (G,X)-isomorphic to the universal covering

of X.

He defines a structure to be normal if and only if the developing map is a covering
space. Structures on closed manifolds with finite fundamental group are normal.

14.4.2 Hierarchy of Structures

One may pass between different local models. We may define a category of
homogeneous spaces, whose objects are pairs (G,X) where G is a Lie group and
X is a manifold with a transitive action of G. A morphism (G,X) −→ (G′,X′)
is defined by a pair of maps h : G −→ G′ and f : X −→ X′, where h is a
homomorphism and f is a local diffeomorphism which is h-equivariant, that is, for
all g ∈ G,

X
f−−−−→ X

g h(g)

f−−−−→ XX

commutes. Such a morphism induces a mapping from (G,X)-manifolds to
(G′,X′)-manifolds.
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Particularly interesting is the case when h is a local isomorphism of Lie groups.
In this case the pseudogroups defined by (G,X) and (G′,X′) are identical, and the
two categories of locally homogeneous structures identify. In this case Ehresmann
calls X′ a Klein form of X.

Here is another point of view concerning morphisms (G,X) −→ (G′,X′). There

is a unique (G′,X′)-structure on X such that X
f−→ X′ is a (G′,X′)-map. Since the

transformations ofX defined byG are f -related to transformations ofG′, the action
of G on X preserves this structure. In particular, for a given homogeneous space
(G,X), a morphism (G,X) −→ (G′,X′) is equivalent to a G-invariant (G′,X′)-
structure on X.

In the special case thatX is a Lie group andG is the group of left-multiplications,
we see that a left-invariant (G′,X′)-structure on G is equivalent to a representation
G −→ G′, together with an open orbit in X′ which has discrete isotropy.

In many cases, the classification of geometric structures on a fixed topology
proceeds by showing that the structures can be refined to certain subgeometries.

A particularly interesting and nontrivial example is Fried’s classification of sim-
ilarity structures on closed manifolds [61], whereby a compact manifold modeled
on Euclidean similarity geometry is either a Euclidean manifold, or a finite quotient
of a Hopf manifold. (See also Reischer-Vaisman [138] for a much different proof
of the classification of closed similarity manifolds). This was first announced by
Kuiper [103], but he implicitly assumed that the developing map was a covering-
space onto its image.)

14.4.3 The Ehresmann-Weil-Thurston Holonomy Principle

Fundamental in the deformation theory of locally homogeneous (Ehresmann) struc-
tures is the following principle, first observed in this generality by Thurston [134]:

Theorem 14.4.1 Let X be a manifold upon which a Lie group G acts tran-
sitively. Let M be a compact (G,X)-manifold with holonomy representation

π1(M)
ρ−→ G.

(1) Suppose that ρ′ is sufficiently near ρ in the representation variety
Hom(π1(M),G). Then there exists a (nearby) (G,X)-structure on M with
holonomy representation ρ′.

(2) If M ′ is a (G,X)-manifold near M having the same holonomy ρ, then M ′ is
isomorphic to M by an isomorphism isotopic to the identity.

Here the topology on marked (G,X)-manifolds is defined in terms of the atlases
of coordinate charts, or equivalently in terms of developing maps, or developing
sections. In particular one can define a deformation space Def(G,X)(1) whose
points correspond to equivalence classes of marked (G,X)-structures on 1. One
might like to say the holonomy map

Def(G,X)(1)
hol−−→ Hom

(
π1(1),G

)
/Inn(G)
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is a local homeomorphism, with respect to the quotient topology on Hom
(
π1(1),

G
)
/Inn(G) induced from the classical topology on the R-analytic set Hom

(
π1(1),

G
)
. In many cases this is true (see below) but misstated in [75]. However,

Kapovich [89] and Baues [12] observed that this is not quite true, because local
isotropy groups acting on Hom

(
π1(1),G

)
may not fix marked structures in the

corresponding fibers.
In any case, these ideas have an important consequence:

Corollary 14.4.2 Let M be a closed manifold. The set of holonomy representations
of (G,X)-structures on M is open in Hom(π1(M),G) (with respect to the classical
topology).

One can define a space of flat (G,X)-bundles (defined by a fiber bundle EM
having X as fiber and G as structure group) and the foliation F transverse to the
fibration EM −→ M , that is foliated bundles or flat bundles. The foliation F is
equivalent to a reduction of the structure group of the bundle from G with the
classical topology to G with the discrete topology. This set of flat (G,X)-bundles
over 1 identifies with the quotient of the R-analytic set Hom(π1(1),G) by the
action of the group Inn(G) of inner automorphisms action by left-composition on
homomorphisms π1(1)→ G.

Conversely, if two nearby structures on a compact manifold M have the same
holonomy, they are equivalent. The (G,X)-structures are topologized as follows.
Let 1 −→ M be a marked (G,X)-manifold, that is, a diffeomorphism from a fixed
model manifold 1 to a (G,X)-manifold M . Fix a universal covering 1̃ −→ 1

and let π = π1(1) be its group of deck transformations. Choose a holonomy

homomorphism π
ρ−→ G and a developing map 1̃

dev−−−→ X.
In the nicest cases, this means that under the natural topology on flat (G,X)-

bundles (Xρ,Fρ) over M , the holonomy map hol is a local homeomorphism.
Indeed, for many important cases such as hyperbolic geometry (or when the
structures correspond to geodesically complete affine connections), hol is actually
an embedding.

14.4.4 Historical Remarks

Thurston’s holonomy principle has a long and interesting history.
The first application is the theorem of Weil [144] that the set of discrete

embeddings of the fundamental group π = π1(1), of a closed surface 1, in
G = PSL(2,R) is open in the quotient space Hom(π,G)/G. Indeed, a discrete
embedding π ↪→ G is exactly a holonomy representation of a hyperbolic structure
on 1. The corresponding subset of Hom(π,G)/G is called the Fricke space F(1)
of 1, and will be discussed more fully in Sect. 14.7.3. Weil’s results are clearly and
carefully expounded in Raghunathan [126], (see Theorem 6.19), and extended in
Bergeron-Gelander [24].
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In the context of CP1-structures, this is due to Hejhal [81, 82]; see also Earle [55]
and Hubbard [85]. This venerable subject originated with conformal mapping and
the work of Schwarz, and closely relates to the theory of second order (Schwarzian)
differential equations on Riemann surfaces. In this case, where X = CP1 and
G = PSL(2,C), we denote the deformation space Def(G,X)(1) simply by CP1(1).
See Dumas [52] and Sect. 14.8.1 below.

Thurston sketches the intuitive ideas for Theorem 14.4.1 in his notes [134]. The
first detailed proofs of this fact are given in Lok [112], Canary-Epstein-Green [29],
and Goldman [73] (the proof in [73] was worked out with M. Hirsch, and was
independently found by A. Haefliger). The ideas in these proofs may be traced to
Ehresmann [57], although he didn’t express them in terms of moduli of structures.
Corollary 14.4.2 was noted by Koszul [100], Chapter IV, §3, Theorem 3; compare
also the discussion in Kapovich [90], Theorem 7.2.

14.5 Example: One Real Dimension

We illustrate these ideas in dimension 1, and classify geometric structures modeled
on the real projective line RP1, that is RP1-manifolds. One-dimensional geometry
(in our narrow locally homogeneous sense) reduces to projective geometry (where
X = RP1 and G = PGL(2,R)). Let 1 be a compact connected 1-manifold (that
is, a circle). Denote the deformation space Def(G,X)(1) of PGL(2,R)-equivalence
classes of marked RP1-structures on 1 by RP1(1). Denote the universal covering

group of SL(2,R) by ˜SL(2,R)); say that two elements a, b ∈ ˜SL(2,R)) are
equivalent if a is conjugate to b or b−1.

The classification of RP1-manifolds is due to Kuiper [106] and the following
succinct description is due to Goldman [69].

Theorem 14.5.1 The deformation space RP1(1) identifies with the space of equiv-

alence classes of nontrivial elements of the universal covering group ˜SL(2,R)).

In other words,

RP1(1) =
(

˜SL(2,R)) \ {1}
)
/ ∼ .

This space is a non-Hausdorff space containing several copies of R, one correspond-
ing to the lifts of an elliptic one-parameter subgroup, and others corresponding
to cosets of a hyperbolic one-parameter subgroup. We describe the corresponding
structures in detail below in Sect. 14.5.2.
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14.5.1 Noncompact Manifolds

Let X be a 1-dimensional homogeneous space, and G its transitive group of
automorphisms. A connected 1-manifold M is homeomorphic to either R or S1 ≈
R/Z. If M ≈ R, then it is simply connected, and a structure modeled on X is
just an immersion M � X. If X is not already simply connected, replace it by its
universal cover X̃. Since X̃ ≈ R, then a structure on M is an immersion, which
must be an embedding. Such an embedding corresponds to a monotone function
R −→ R. By choosing compatible orientations on M and X, we may assume that
this monotone function is increasing. Such an increasing function is determined (up
to the appropriate relation of isotopy) by the endpoints of the closure, that is a pair
(a, b) where

−∞ ≤ a < b ≤ ∞.

14.5.2 Compact Manifolds

Now consider the case M is compact. In that case M ≈ S1, which we realize
topologically as the quotient space of a closed interval [a, b] ⊂ R by the equivalence
relation defined by identifying its two endpoints a, b. Denote the common image
of the endpoints by p0 ∈ M . The total space for the universal covering M̃ is the
quotient space of [a, b] × Z by the equivalence relation defined by:

(b, n) ∼ (a, n+ 1)

for n ∈ Z. The group π1(M) is the cyclic group 〈μ〉 ∼= Z acting on M̃ by:

[a, b] × Z
μm−−→ [a, b] × Z

(u, n) �−→ (u, n+m)

where u ∈ [a, b] and μ denotes the generator of π1(M).

Now we construct a developing map M̃
dev−−−→ X. The developing map is

determined by two pieces of information:

• Its restriction to [a, b] ⊂ M̃ (corresponding to the subset [a, b] × {0} ⊂ [a, b] ×
Z), which is an immersion

[a, b] f
� X;

• A holonomy transformation η = ρ(μ) : X→ X such that ηf (b) = f (a).



14 Geometric Structures 529

Then f extends to the developing map by defining:

dev(u, n) := ηnf (u)

for an arbitrary element [(u, n)] ∈ M̃ .
As above, it is convenient to lift f to the universal covering X̃ ≈ R and using a

diffeomorphism M̃ ≈ R, identify f with a monotone function R −→ R.

14.5.3 Euclidean Manifolds

The first example arises when f is the embedding of [a, b] as the unit interval
[0, 1] ⊂ E

1 and η is unit translation. Then M identifies naturally with the quotient
R/Z. Its natural structure is that of a compact flat Riemannian manifold of total
length 1.

More generally, for any l > 0, the quotient R/lZ (where η is translation by l) is
a Euclidean manifold of length l. Different values of l give non-isometric Euclidean
structures, but homotheties define isomorphisms as affine manifolds:

R/Z
∼=−−→ R/lZ

[x] �−→ [lx].

Also observe that these structures are homogeneous: the group of translations acts
transitively onM . Indeed, this defines a bi-invariant (Euclidean) geometric structure
on the circle group.

14.5.4 Incomplete Affine Structures

Any λ > 1 generates a lattice inside the multiplicative groupR+, which acts affinely
on A1. The quotient R+/〈λ〉 also defines an affine structure on M , which is not a
Euclidean structure since dilation by λ is not an isometry. Explcitly, take f to be a
diffeomorphism onto the interval [1, λ] ⊂ R ≈ A1, so that dev is a diffeomorphism
of M̃ onto (0,∞) = R+ ⊂ A1.

Like the preceding example, this affine structure is also bi-invariant with respect
to the natural Lie group structure on R+/〈λ〉.

Observe that, since the exponential map

R −→ R+
x �−→ ex,
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converts addition (translation) to multiplication (dilation), it defines a diffeomor-
phism between two quotients

R/lZ −→ R+/〈λ〉

where l := log(λ). This map also defines a (non-affine) analytic isomorphism
between the corresponding Lie groups.

These structures are geodesically incomplete, and in fact model incomplete
closed geodesics on affine manifolds. Namely, the geodesic on A1 defined by

t �−→ 1+ t (λ−1 − 1)

begins at 1 and in time

t∞ := 1+ λ−1 + λ−2 + · · · = (1− λ−1)−1 > 0

reaches 0. It defines a closed incomplete closed geodesic p(t) on M starting at
p(0) = p0. The lift

(−∞, t∞)
p̃−→ M̃

satisfies

devp̃(t) = 1+ t (λ−1 − 1),

which uniquely specifies the geodesic p(t) on M . It is a geodesic since its velocity
p′(t) = (λ−1 − 1)∂x is constant (parallel). However p(tn) = p0 for

tn := 1− λ−n

1− λ−1 = 1+ λ−1 + · · · + λ1−n

and as viewed in M , seems to go “faster and faster” through each cycle. By time
t∞ = limn→∞ tn, it seems to “run off the manifold:” the geodesic is only defined
for t < t∞. The apparent paradox is that p(t) has zero acceleration: it would have
“constant speed” if “speed” were only defined.

The model space X is the real projective line RP1 and the structure group G is
the group PGL(2,R) of collineations of RP1. The fixed reference topology1 is the
circle, which we understand as a the identification space of a closed interval [a, b]
with its two endpoints a, b identified. We identify the universal covering 1̃ −→ 1

as the quotient of the Cartesian product [a, b] × Z, with identifications

(b, n) ∼ (a, n+ 1)
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for n ∈ Z. The group π1(1) ∼= Z of deck transformations acts by:

(x, n) �−→ (x, n+m)

for m ∈ Z. An RP1-structure on 1 is defined by the restriction dev|[a,b].
Choose a transformation γ ∈ G to serve as the generator of the holonomy group.

Specifically, define the presumptive holonomy homomorphism ρ by:

Z ∼= π1(1)
ρ−→ G

m �−→ γm.

Any immersion f : [a, b]� X such that f (b) = γf (a) extends to a ρ-equivariant
immersion 1̃ −→ X.

If G ∼= R, left-invariant structures form three equivalence classes, corresponding
to the three conjugacy classes of one-parameter subgroups in G′:

• An elliptic one-parameter subgroup acts simply transitively on all of X′. The
deck transformation τ is a discrete subgroup of this one-parameter group.

• A parabolic one-parameter subgroup acts simply transitively on the open interval
between a point x ′ ∈ X′ and its image τ (x ′).

• A hyperbolic one-parameter subgroup acts simply transitively on the open
interval between two points x ′, y ′ ∈ X′.

Of these structures, the last two are affine structures, since X \ {x ′} is an affine line
and its stabilizer in G′ is the affine group. For example, taking x ′, y ′ to be lifts of
0,∞ ∈ RP1 and g to be scalar multiplication by λ > 1, we obtain a structure,
which we call a Hopf structure

R+/λn | n ∈ Z, (14.5.1)

since it is a special case of the construction of Hopf manifolds below.
In 1953, Kuiper [106] classified all such structures. In particular he found

structures which are not homogeneous. These occur only if the holonomy group
is parabolic or hyperbolic. Let g ∈ G be either parabolic or hyperbolic, and let
τ be the positive generator of the center of G′ as above. Let n > 0. Choose a
point x ∈ X not fixed under g. Let J ⊂ X′ be a positively oriented interval going

from x to τng(x). A homeomorphism [0, 1] h−→ J extends to the Z-equivariant
homeomorphism defined by:

R
h̃−→ X′

t �−→ τnh(t − n),

(where n = 0t1), which is a developing map for an RP1-structure on the closed
1-manifold R/Z.
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Kuiper [106] showed these comprise all the equivalence classes of structures. In
particular the developing map is always a homeomorphism of the universal covering
M̃ to either:

• all of X′ (any structure with trivial or elliptic holonomy, or an inhomogeneous
structure with parabolic or hyperbolic holonomy);

• the lift of the complement of one point (homogeneous structures with parabolic
holonomy);

• the lift of the complement of two points (homogeneous structures with hyperbolic
holonomy).

14.6 Geodesics on Affine Manifolds

14.6.1 Geodesic Completeness

The next examples we discuss are affine structures. In this case the affine group
G′ preserves the Euclidean connection on affine space (although not the Euclidean
metric). These are manifolds with local affine geometry. A smooth vector field along
a smooth curve γ has a well-defined covariant derivative, which is another vector
field along γ . The acceleration γ ′′ of γ is the covariant derivative of the veclocity
vector field γ ′, and γ is a geodesic if it has zero acceleration. IfM is a manifold with
an affine structure, and (x, v) ∈ TM is a tangent vector, then there exists ε > 0, and
a unique geodesic γ : (−ε, ε) −→ M with γ (0) = x and γ ′(0) = v.

If M is a Euclidean manifold with its underlying affine structure (or more
generally if (M, g) is a Riemannian manifold with its Levi-Civita connection),
then geodesic completeness is equivalent to the more intuitive notion of metric
completeness of the associated metric space. This is the Hopf-Rinow theorem, and
plays a fundamental role in controlling the developing map of flat structures.

As compact metric spaces are complete, a compact Riemannian manifold is
geodesically complete. This also follows from the fact that the geodesic local flow of
a compact Riemannian manifold reduces to local flows on the energy hypersurfaces

ER(M) := {(v, x) ∈ TM ×M | v ∈ TxM, g(v, v) = R},

which are compact. The complete integrability of these vector fields on ER(M) (for
R > 0) implies geodesic completeness of (M, g).

14.6.2 Hopf Manifolds

In 1948, H. Hopf [84] constructed a compact complex manifold which is not Kähler.
His construction also yields compact affine manifolds which are geodesically
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incomplete. Indeed, the examples in Sect. 14.5.4 above are the simplest case of
Hopf’s construction.

An affine manifold is complete if it is geodesically complete in the above sense,

that is, for every initial location and velocity (x, v) there is a geodesicR
γ−→ M with

γ (0) = x and γ ′(0) = v. Auslander and Markus [5] showed that completeness is
equivalent to bijectivity of the developing map. That is, a complete affine manifold is
affinely isomorphic to a quotient of Rm by a discrete group of affine transformations
acting freely and properly.

14.7 Surfaces and 3-Manifolds

14.7.1 Affine structures on surfaces

For a detailed survey of this subject, see Baues [14]. The first results are due
to Kuiper [107], who listed the affine structures on 2-dimensional tori which are
convex, that is, the developing map is an embedding onto a convex domain� ⊂ A2.
Either the structure is complete (which Kuiper also calls “normal”), in which case
� = A2, or � is either a half-plane or a quadrant.

The classification was completed in the 1970’s by, independently, Nagano-
Yagi [124] and Arrowsmith-Furness [64] (see also the classification of Klein bottles
in [4]). In the remaining (nonconvex) cases after Kuiper, M is a quotient of the
complement of a point in A2. These are special cases of radiant affine structures,
which we now describe.

14.7.1.1 Radiant Affine Structures

Affine manifolds which are quotients of the complement of a point p ∈ An

have special properties, which deserve special attention. Necessarily p is fixed
under the affine holonomy group 0 ⊂ Aff(An). By applying a translation, we
may conveniently assume that p is the origin 0 ∈ R

n. Since the stabilizer
Stab

(
Aff(An), 0

) = GL(Rn), the affine holonomy group is actually linear.
Such affine structures are called radiant in [62], since they are characterized by

the existence of a radiant vector field which generates a homothetic flow (that is,
scalar multiplications on the vector space R

2).
Nagano-Yagi [124] observed that on a closed radiant affine manifold M , the

developing image dev(M̃) is disjoint from the set Fix(0) of fixed points of 0. Thus
every radiant vector field on M is nonsingular. A purely topological consequence
is that χ(M) = 0. Another topological consequence is that M cannot have parallel
volume (see Sect. 14.8.3.1 below), and therefore the first Betti number β(M) ≥ 1.
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In his 1960 unpublished lecture notes, L. Markus observed that the known ex-
amples of compact affine manifolds which are geodesically complete are precisely
the known examples of compact affine manifolds with parallel volume. Validity of
this observation, which Markus didn’t really conjecture, has become known as the
Markus conjecture.

These manifolds can be understood by a suspension construction of mapping
tori of automorphisms of the compact RP1-manifolds discussed in Sect. 14.5. This
is due to Benzécri [23], who proved that, any RPn-manifold M admits a double
covering M̂ such that the Cartesian product M̂×S1 admits a radiant affine structure,
where the radiant flow is the flow in the S1-factor.

For example, all radiant affine 2-manifolds arise in this way. Furthermore the
affine holonomy group contains a linear expansion of R2. The simplest example is
the Hopf manifold described above.

A radiant affine manifold (M, ξ) is a radiant suspension if and only if the flow ρ

suspension, and therefore is either a Seifert 3-manifold covered by a productF×S1,
where F is a closed surface, a nilmanifold or a hyperbolic torus bundle (Fig. 14.1).

In dimensions 1 and 2 all closed radiant manifolds are radiant suspensions.
Together with Kuiper’s list of convex structures, these comprise all closed affine
2-manifolds, since a closed surface M admits an affine structure if and only if
χ(M) = 0 (Benzécri [22]). That is, either M is diffeomorphic to a Klein bottle
(in which case its orientable double covering is diffeomorphic to a torus) or M is
diffeomorphic to a torus. (Benzécri’s theorem inspired Milnor’s generalization [121]
to flat oriented rank two vector bundles over surfaces; see [76] for a more detailed
account of these developments.)

Fig. 14.1 Incomplete complex-affine structures on the 2-torus are radiant suspensions. The two
examples depicted are suspensions of rotations (isometries) of the circle
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14.7.2 Complete Affine Structures

The complete structures on T 2 are all affine Lie groups, that is, an affine structure
on a Lie group invariant under both left- and right-multiplications. For example, the
Euclidean structures are all quotients R2/�, where � ⊂ R

2 is a lattice. The other
structures are obtained by polynomial deformations of Euclidean structures, namely
the diffeomorphism

R
2 Fε−−→ R

2

(x, y) �−→ (x + εy2, y),

conjugates translation by (s, t) to the affine transformation

(x, y) �−→ (x + 2εyt + (s + ε2t2), y + t)

and the quotient space

M = R
2/Fε�F

−1
ε

is a non-Euclidean complete affine torus. Figure 14.2 illustrates a Euclidean torus
and a polynomial deformation.

Baues [13] showed that the deformation space of complete affine structures
on T 2 is homeomorphic to R

2 (see also Baues-Goldman [15]), with the origin
(0, 0) corresponding to the single equivalence class corresponding to Euclidean
structures. The action of Mod(T 2) = GL(2,Z) on this deformation space identifies
with the usual linear action of GL(2,Z) on R

2. This action is highly chaotic: it is
topologically mixing, and every continuous invariant function is constant.

Complete affine structures on compact 3-manifolds were classified by Fried–
Goldman [63]. A closed 3-manifold admits a complete affine structure if and only
if it is finitely covered by a 2-torus bundle over the circle; in other words, it is

Fig. 14.2 Complete affine structures on the 2-torus
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Euclidean, Heisenberg, or Sol in the Thurston geometrization [25, 128, 135]. For
more information, see Abels [1], Baues [12, 13] and Goldman [75, 76].

Noncompact complete affine 3-manifolds are considerably more complicated, in
the light of Margulis’s discovery [115] of proper isometric actions of nonabelian
free groups on Minkowski 2 + 1-space. The structure is much better understood
now, and they all arise from a Schottky-group construction using crooked planes
invented by Drumm [50, 51]. We refer to [26, 32–34, 41, 48, 49] for more current
information.

14.7.3 Hyperbolic Structures on Surfaces

A paradigm for this theory is the classification of hyperbolic structures on surfaces.
The Fricke space F(1) embeds in Hom(0,G)/G, where

G = Isom(H2) ∼= SO(2, 1),

and indeed defines a connected component in this space. As noted above, openness
follows from Corollary 14.4.2.

Closedness is more special. If 0 is not virtually nilpotent and G is semisimple,
then the discrete embeddings 0 ↪→ G form a closed subset of Hom(0,G)
in the classical topology. (A proof of this well-known statement can be found
in Goldman-Millson [77], although it was known much earlier.) In this special
case, it is originally due to Chuckrow [45]. In general closedness follows from
Kazhdan-Margulis uniform discreteness [92], see Chapter VIII of [126] , §4.12 of
Kapovich [90], or §4.1 of Thurston [135].

It remains to see that Fricke space F(1) is connected. In general the discrete
embeddings 0 ↪→ G fall into many connected components. Counting the com-
ponents is an interesting and difficult general problem. In this particular case, one
can use the direct hyperbolic-geometry parametrization of F(1) by Fenchel-Nielsen
coordinates, whereby

F(1) ≈ R
6g−6+3b

is connected, completing the proof that F(1) is a connected component of
Hom(0,G)/G. (See, for example, Buser [28], Abikoff [3], Ratcliffe [127],
Theorem 9.7.4, §4.6 of Thurston [135], or Wolpert [147] for accessible accounts of
the Fenchel-Nielsen parametrization of F(1).

Another proof uses the Uniformization Theorem. First identify F(1) with the
Teichmüller space T(1) of 1 (uniformization). Now apply Teichmüller’s theorem
to identify T(1) with the unit ball in the vector space Q(M) of holomorphic
quadratic differentials on a Riemann surface M homeomorphic to 1. (For details
see Hubbard [86], Theorem 7.2.1.) Alternatively, following Wolf [146], identify
T(1) with all of Q(M) using the Hopf differentials of harmonic maps from M

to an arbitrary Riemann surface homeomorphic to 1.
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The components of Hom(π,G)/G were classified in [74] in terms of the
Euler class. In particular F(1) identifies with the component [74] maximizing
this characteristic class. In terms of the foliated (G,X)-bundle Xρ associated to
a representation ρ, this result means that the necessary topological conditions for
Xρ to admit a transverse section are sufficient. See Goldman [75, 76] for further
details and discussion.

Toledo [137] considered surface group representations when G acts on a
Hermitian symmetric space X. He defined a characteristic number which includes
the Euler class of flat PSL(2,R)-bundes when X = H2. In particular Toledo’s
invariant is bounded by topological invariants of M . Representations maximizing
Toledo’s invariant have many properties of Fuchsian representations, in particular
forming connected components consisting entirely of discrete embeddings. In a
different direction, when G is a split R-form, Hitchin [83] found components
which naturally contain compositions of Fuchsian SL(2,R)-representations with
the Kostant principal representation SL(2,R) → G. When G = PGL(3,R),
the component identifies with the deformation space of convex RP2-surfaces [42],
as discussed in Sect. 14.8.2 below. Hitchin proved that these components are
topologically open cells. Labourie [110] characterized Hitchin’s representations
dynamically, and proved that they are all quasi-isometric (and hence discrete)
embeddings. (From a somewhat different viewpoint, these representations were also
studied by Fock-Goncharov [59, 60] who found coordinates on these components.)
This subject, sometimes called “higher Teichmüller theory,” is surveyed in Burger-
Iozzi-Wienhard [27] (with background expounded in Labourie [111]), to which we
refer the reader for further details.

14.8 Projective and Conformal Structures

Finally we discuss Ehresmann structures modeled on compact homogeneous spaces,
such as the sphere and projective space. Although this subject dates back to the
nineteenth century, in the context of second order linear differential equations
on Riemann surfaces and conformal mapping, many mysteries remain, and the
subject is fundamental in the broader hierarchy of geometries. We then discuss real-
projective structures on surfaces, for which a complete classification is known [42].
We then briefly discuss several results about flat conformal structures and real-
projective structures in higher dimensions.

14.8.1 Projective Structures on Riemann Surfaces

The rich subject of projective structures on Riemann surfaces promises to be
fundamental in the theory of Ehresmann locally homogeneous structures. When
the underlying Riemann surfaces are allowed to vary, the resulting Ehresmann
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structures are called CP1-manifolds. I find it rather striking that although the
algebraic theory of the character variety is less pathological, the geometric theory is
exceedingly profound and difficult. The parametrization of the deformation space
CP1(1) as an affine bundle whose underlying vector bundle is T ∗T(1) is the
(holomorphic) cotangent bundle of the Teichmüller space T(1) is rather “soft” but
the geometric theory of CP1-manifolds is extremely subtle, involving some of the
most technically difficult aspects of the “modern” theory of hyperbolic 3-manifolds
and Kleinian groups (see Marden [113]). We only concentrate on the properties
of the holonomy mapping, referring to the excellent survey article [52] by David
Dumas. See also Gunning [78, 79] for background.

Gallo-Kapovich-Marden [65] answered a question first raised by Gunning [80]:

Theorem Let 1 be a closed orientable surface of χ(1) < 0. Denote the
deformation space of marked CP1-structures on 1 by CP1(1). The image of the
holonomy mapping

CP1(1)
hol−−→ Hom

(
π1(1)

consists of equivalence classes of representations ρ for which:

• ρ lifts to a representation π1(1)
ρ̃−→ SL(2,C);

• the image 0 of ρ fixes no point on hyperbolic space H3, fixes no point in the
boundary ∂H3, and leaves invariant no geodesic in H3.

The first condition means that ρ lies in the connected component of Hom
(
π1(1),G

)
containing the trivial representation (Goldman [74]). The second condition means
that ρ is nonelementary, and is equivalent to numerous other conditions. For
example, it is equivalent to the real Zariski closure of 0 being PSL(2,C) or
conjugate to PGL(2,R). Another equivalent condition is that the image of ρ is
unbounded (having noncompact closure) and non-solvable. Yet another condition
is that the holonomy group 0 is not amenable.

Although W. Thurston announced this and communicated the outline of the proof
to the author in the late 1970’s, many details were missing. The full proof (following
Thurston’s outline) was completed by Gallo-Kapovich-Marden [65]. (An incorrect
proof, but with an extremely interesting approach, can be found in [91].) See also
Kamishima-Tan [88].

The injectivity of the holonomy mapping is also quite fundamental and mys-
terious. Goldman [72], using ideas inspired by the Thurston parametrization (see
Sect. 14.8.4 below), computed the inverse image hol−1(F1) in terms of a grafting
construction, first developed by Hejhal [82] and Maskit [118] (Theorem 5) and
Sullivan-Thurston [132].

The main result is that, over the inverse image of the quasi-Fuchsian subset of
Hom

(
π1(1),G

)
, the holonomy map hol is a covering space and the fiber admits

an explicit topological description in terms of grafting. In this case, X decomposes
into two subdomains �+ and �− along their common boundary which is the limit



14 Geometric Structures 539

Fig. 14.3 Developing maps of RP2-structures which are not covering spaces of their images, due
to Sullivan-Thurston and Smillie

set of the holonomy group 0. The geometric manifold M with this holonomy then
admits a corresponding decomposition M = M+ ∪M−, and under the assumption

that the holonomy homomorphism is an isomorphism π1(M)
∼=−−→ 0, one of M± is

a union of annuli.
However, as pointed out by M. Kapovich and S. Choi, the proof of a key lemma

(Theorem 2.2) of Goldman [72] is flawed. (A similar problem can be found in
Faltings [58]). See Choi-Lee [44] for a corrected proof and extensive discussion.
One would like to control the developing map by decomposing the geometric man-
ifold into open submanifolds modeled on holonomy-invariant subdomains � ⊂ X

where the holonomy 0 preserves a complete Riemannian structure g�. However,
even if M is compact, the induced metric on dev−1(�) may be incomplete. One
needs a sharper argument involving the asymptotics of 0, as in Kuiper [105].
(Indeed, the Sullivan-Thurston-Smillie examples discussed in Sect. 14.8.2 and
depicted in Fig. 14.3 provide counterexamples to Theorem 2.2 of [72].)

Shinpei Baba’s work [9–11] describes CP1-structures with Schottky holonomy
in terms of a similar grafting construction. Although developing maps for general
CP1-structures are intractable, under the assumption of Schottky holonomy, Baba
obtains sharp results on decomposing the developing map into basic pieces.

14.8.2 Real-Projective Structures on Surfaces

When X = RP2 and

G = Aut(X) ∼= PGL(3,R) ∼= SL(3,R)

is its group of collineations, we call the resulting Ehresmann structures RP2-
manifolds. We denote the deformation space Def(G,X)(1) simply by RP2(1).
Curiously, the case when χ(1) = 0 has a much more complicated general picture
than when χ(1) < 0.
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When χ(1) = 0, then 1 admits affine structures, discussed in Sect. 14.7.1.
The remaining RP2-structures on T 2 (and the Klein bottle) were classified in [68].
The new examples involve a surgery construction (due to Sullivan-Thurston [132]
and independently Smillie [131]) analogous to the CP1-grafting construction of
Hejhal [82], Maskit [118] and Sullivan-Thurston [132].

Here one starts with a collineation γ of RP2 described by a diagonal 3 × 3-
matrix with distinct positive eigenvalues. The coordinate axes define the three fixed
points of γ on RP2, which lie outside the developing image. The coordinate planes
define invariant lines, whose complements are γ -invariant affine patches in RP2.
Corresponding to the maximum (respectively minimum) eigenvalue are two affine
patches in which γ acts by a linear expansion (respectively linear contraction).
There corresponds a pair of Hopf manifolds with RP2-structures, which can be
glued together along closed geodesics (corresponding to the coordinate plane with
the middle eigenvalue) to form new RP2-surfaces with the “same” holonomy
representation. (See [72, 132] for details.) The Sullivan-Thurston-Smillie example
of a pathological developing map is illustrated in Fig. 14.3.

About 10 years later, the combined work [42] of the author [66] and Suhyoung
Choi’s dissertation [37, 38] (and its extensions in [39, 40]) completely described the
deformation space RP2(1). Choi shows that if 1 is closed and χ(1) < 0, then
any RP2-surface decomposes canonically into annuli bounded by closed geodesics
and convex surfaces with totally geodesic boundary. RP2(1) is a countable disjoint
union of copies of the deformation space of convex RP2-structures (shown in [66]
to be a cell of dimension −8χ(1)). The components are parametrized by a discrete
invariant involving the multicurve on 1 controlling Choi’s convex decomposition.

Much more recently Choi observed that these grafted RP2-structures with
Schottky SO(2, 1)-holonomy compactify Margulis spacetimes [41].

14.8.3 Incomplete Affine Structures on Closed 3-Manifolds

The classification of incomplete affine structures in dimension 3 is largely un-
kown, except under rather strong assumptions on the fundamental group. Smillie’s
work [131] on closed affine manifolds with abelian holonomy was generalized by
Fried-Goldman-Hirsch [62] to nilpotent holonomy, and leads to a classification of
closed 3-manifolds with nilpotent fundamental group. Serge Dupont [54] gave a
beautiful classification of affine structures on hyperbolic 3-manifolds, which we
briefly describe below.

14.8.3.1 Parallel Volume

An affine manifold has parallel volume if and only if its linear holonomy preserves
volume (up to sign). Equivalently the linear holonomy has determinant±1. Another
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equivalent condition is the existence of a coordinate atlas whose coordinate changes
preserve volume.

The obstruction to parallel volume is the class in H 1(M;R) defined by the
homomorphism

π1(M) −→ R

γ �→ log | detL(γ )|.

When the first Betti number vanishes, every affine structure must admit parallel
volume. Then the results of Sect. 14.8.3.1 below apply to give nonexistence of affine
structures on certain closed 3-manifolds.

Theorem 14.8.1 (Smillie) Let M be a closed affine manifold with a parallel exte-
rior differential k-form which has nontrivial de Rham cohomology class. Suppose
U is an open covering of M such that for each U ∈ U , the affine structure induced
on U is radiant. Then dimU ≥ k; that is, there exist k + 1 distinct open sets

U1, . . . , Uk+1 ∈ U

such that the intersection

U1 ∩ · · · ∩ Uk+1 �= ∅.

(Equivalently the nerve of U has dimension at least k.)

A published proof of this theorem can be found in Goldman-Hirsch [67].
Using these ideas, Carrière, d’Albo and Meignez [30] have proved that a

nontrivial Seifert 3-manifold with hyperbolic base cannot have an affine structure
with parallel volume. This implies that the 3-dimensional Brieskorn manifolds
M(p, q, r) with

p−1 + q−1 + r−1 < 1

admit no affine structure whatsoever. (Compare Milnor [122].)

14.8.3.2 Hyperbolicity

The opposite of geodesic completeness is hyperbolicity in the sense of Vey [140]
and Kobayashi [94, 95], which is equivalent to the following notion: Say that an
affine manifoldM is completely incomplete if there exists no affine map R −→ M ,
that is, M admits no complete geodesic.
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Similarly, an RPn-manifold is completely incomplete if there exists no projective
map R −→ M . As noted by the author (see Kobayashi [95]), the combined results
of Kobayashi [95], Wu [148], and Vey [141] imply:

Theorem Let M be a closed hyperbolic affine manifold. Then M is a quotient of a
sharp convex cone.

In particularM is radiant. MoreoverM fibers over S1 (which implies that χ(M) = 0
and b1(M) > 0).

For projective manifolds, taking the radiant suspension of a hyperbolic projective
structure yields a radiant affine structure, which one easily sees to be is hyperbolic.
Applying the above theorem implies that M is a quotient of a sharp convex cone.

This striking characterization of hyperbolicity uses intrinsic metrics in the cate-
gory of affine and projective manifolds, developed by Vey [140] and Kobayashi [94,
95]. Their constructions were inspired by the intrinsic metrics of Carathéodory and
Kobayashi for complex manifolds.

Denote by I the open unit interval
(− 1, 1

)
and

gI := 4

(1− u2)2
du2

its Poincaré metric.
For projective manifolds M , one defines a “universal” pseudo-metric M ×

M
dM−−→ R such that affine (respectively projective) maps I → M are distance

non-increasing with respect to gI .
The definition of dM enforces the triangle inequality by taking the infimum of

gI -distances over sequences x0 = x, x1, . . . , xm = y where xi and xi+1 are “close”

in the following sense: there are projective maps I
fi−−→ M such that xi = fi(ai)

and xi+1 = fi(bi) for −1 < ai < bi < 1. Then define dM(x, y) as the infimum
over all such sequences (fi, ai , bi) of

m−1∑
i=0

dI (ai, bi),

where dI is the distance function on the Riemannian 1-manifold
(
I, g[−1,1]

)
. That

is, dM(x, y) is the infimum of

∫ b

a

f
(
γ ′(t)

)
dt

over all piecewise C1 paths [a, b] γ−→ M with γ (a) = x, γ (b) = y.
This function has an infinitesimal form, defined by a nonnegative upper-

semicontinuous function TM
φ−→ R. For affine manifolds, completeness is

equivalent to f ≡ 0.



14 Geometric Structures 543

Following Kobayashi and Vey, M is projectively hyperbolic if and only if dM is
a metric, that is, if dM(x, y) > 0 for x �= y. Then dM is a Finsler metric and equals
the Hilbert metric on the convex domain M̃ .

When M is affine, then Vey [141] proves that M is a quotient of a sharp convex
cone. In that case there is (in addition to the Hilbert metric), a natural Riemannian
metric introduced by Vinberg [142], Koszul [98, 99, 101, 102] and Vesentini [139].
In particular Koszul and Vinberg observe that this Riemannian structure is the
covariant differential ∇ω of a closed 1-form ω. In particular ω is everywhere
nonzero, so by Tischler [136], M fibers over S1.

14.8.3.3 Hessian Manifolds

Hyperbolic affine manifolds are closely related to Hessian manifolds. If ω is a closed
1-form, then its covariant differential∇ω is a symmetric 2-form. Since closed forms
are locally exact, ω = df for some function; in that case ∇ω equals the Hessian
d2f . Koszul [101] showed that hyperbolicity is equivalent to the existence of a
closed 1-form ω whose covariant differential ∇ω is positive definite, that is, a
Riemannian metric. More generally, Shima [130] considered Riemannian metrics
on an affine manifold which are locally Hessians of functions, and proved that
such a closed Hessian manifold is a quotient of a convex domain, thus generalizing
Koszul’s result.

14.8.3.4 Hyperbolic Torus Bundles

Although the class of affine structures on closed 3-manifolds with nilpotent holon-
omy are understood, the general case of solvable holonomy remains mysterious.
However, Serge Dupont [54] completely classifies affine structures on 3-manifolds
with solvable fundamental group. (Compare also Dupont [53].) In terms of the
Thurston geometrization, these are the geometric 3-manifolds modeled on Sol,
that is, 3-manifolds finitely covered by hyperbolic torus bundles: mapping tori
(suspensions) of hyperbolic elements of GL(2,Z). Dupont shows that all such
structures arise from left-invariant affine structures on the corresponding Lie group
G, which is the semidirect product of R2 by R, where R acts on R

2 as a unimodular
hyperbolic one-parameter subgroup (explicitly, G is isomorphic to the identity
component in the group of Lorentz isometries of the Minkowski plane).

Two structures are particularly interesting for the behavior of geodesics in light
of the results of Vey [141]. A properly convex domain� ∈ An is said to be divisible
if � admits a discrete group 0 of projective automorphisms acting properly on �
such that �/0 is compact. (Equivalently, the quotient space �/0 by a discrete
subgroup 0 ⊂ Aut(�) is compact and Hausdorff.) Vey proved that a divisible
domain is a cone. However, dropping the properness of the action of 0 on � allows
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counterexamples: the parabolic cylinder

� := {(x, y) ∈ A2 | y > x2}

is a properly convex domain which is not a cone, but admits a group 0 of
automorphisms such that �/0 is compact but not Hausdorff.

Now take the product � × R ⊂ A3. The author [70] found a discrete subgroup
0 ⊂ Aff(A3) acting properly on �× R such that:

• The quotient M = (� × R)/0 is a hyperbolic torus bundle (and in particular
compact and Hausdorff);

• �× R is not a cone.

Clearly � × R is not properly convex, showing that Vey’s result is sharp. The
Kobayashi pseudometric degenerates along a 1-dimensional foliation of M ,
and defines the hyperbolic structure transverse to this foliation discussed by
Thurston [134], Chapter 4.

14.8.4 Flat Conformal Structures in Higher Dimensions

Flat conformal structures generalize CP1-structures, under the identification of CP1

with S2 with its usual conformal structure. In general the group of conformal
transformations of Sn is the group PO(n + 1, 1), where Sn ↪→ RPn+1 embeds
as a quadric invariant under the projectivized Lorentz group PO(n + 1, 1). See
Matsumoto [119] for an excellent survey.

Flat conformal structures arise in Riemannian geometry. Specifically, a Rieman-
nian manifold (M, g) is conformally flat if and only if every point p ∈ M possesses

an open neighborhood U and a smooth coordinate chart U
ψ−−→ E

n such that the
Riemannian structure on U induced by g is conformally equivalent to the Euclidean
structure. (Sometimes this condition is called locally conformally flat.) When n > 2,
a flat conformal structure in our sense is then equivalent to a conformal equivalence
class of conformally flat Riemannian structures. See Kulkarni [108, 109] for more
background.

Kuiper [104] initiated the subject of flat conformal structures, and in [105],
classified those with abelian fundamental group. Kulkarni [108] defined a connected
sum operation between flat conformal manifolds. The construction is based on the
fact that a conformal inversion interchanges the two components of the complement
of a hypersphere in Sn. In other words, the inside and the outside of a hypersphere
in Sn are conformally equivalent. Thus a closed 3-manifold need not be geometric
in Thurston’s sense to admit a flat conformal structure. However, as shown by
the author [71], 3-manifolds with nilgeometric and solvgeometric structures do
not admit flat conformal structures. These were the first examples of 3-manifolds
without flat conformal structures.
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14.8.5 Real Projective Structures in Higher Dimensions

In a series of papers [16–20], Yves Benoist developed a vast theory of convex RPn-
structures on compact manifolds. (See Benoist [21] for a survey.) In particular he
analyzed the boundary and showed that strict convexity is equivalent to hyperbolic-
ity in various contexts.

All of these studies involve the projectively invariant Hilbert metric on a properly
convex domain. When the domain is bounded by a quadratic, this metric is just the
hyperbolic metric in the Beltrami-Klein projective model of hyperbolic space. See
Marquis [117], and in general the collection [125] for surveys of Hilbert geometry
on such manifolds. Recently Benoist’s theory of convexRPn-structures on compact
manifolds has been extended to the analog of finite volume hyperbolic manifolds.
In particular we mention the work of Cooper-Long-Tillmann [46] on cusped RPn-
manifolds, as well as Choi [36], Choi-Lee-Marquis [43] and Marquis [116].

Kapovich [91] gave examples of convex RPn-structures on compact negatively
curved Riemannian manifolds which admit no locally symmetric Riemannian
metric.

Which closed 3-manifolds admit RP3-structures (that is, RP3-manifolds) is an
interesting and difficult question.

Unlike in the case of flat conformal structures, the topology of RP3 precludes
any inversion such as the Steiner inversion facilitating the Kulkarni connected-sum
operation.

(Indeed, the two components of the complement of a projective hyperplane in
projective space are not even topologically equivalent.) In this direction, Weiqiang
Wu [149] showed that any compact RPn-structure bounded by a sphere on its
convex side must be a disc—as noted above, this rigidity phenomenon is evidently
absent for flat conformal manifolds. (Compare also Dupont [53].) In particular it
seems notoriously difficult to construct an RP3-structure on a connected sum. In
this vein, Cooper-Goldman [47] showed that the connected sum RP3#RP3 fails to
admit an RP3-structure; as of yet we know very few obstructions for a 3-manifold
not to admit a flat projective structure.

14.8.6 Complex Projective Structures in Higher Dimensions

In a different direction, Klingler [93] classified (holomorphic) projective structures
on complex surfaces, following earlier work by Vitter [143] and Kobayashi-
Ochiai [87, 96, 97]. Every closed CP2-manifold is finitely covered by a manifold of
one of the following types:

• the complex projective plane CP2;
• complex hyperbolic manifolds;
• complex solvmanifolds, that is, homogeneous spaces 0\G where G is a 4-

dimensional (real) Lie group with left-invariant complex structure and 0 ⊂ G

is a lattice;
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• Hopf manifolds C2 \ {0}/0, where 0 is a cyclic group of linear expansions;
• elliptic surfaces over CP1-manifolds, that is, holomorphic fibrations by elliptic

curves over a Riemann surface with a projective structure.

These two latter classes are affine structures.
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Chapter 15
Basic Aspects of Differential Geometry

Marc Chaperon

Abstract This is a very partial description of differential geometry as elaborated
by Élie Cartan and expressed in a suitable language by Charles Ehresmann.

This is a very partial description of differential geometry as elaborated by Élie
Cartan and expressed in a suitable language by Charles Ehresmann. I am entirely
responsable for the selection of materials and for the mistakes, if any.

The framework is that of smooth1 (finite dimensional) manifolds and maps,
whose definition is taken for granted—most of the notions we consider “pass”
without any problem to the real analytic and (replacing R by C) complex and/or
Banach categories. The kth derivative of a map f is denoted by Dkf as in [10].
Paths are defined on intervals.

15.1 Jets

Introduced by Ehresmann [14], curiously almost absent from [11, 12], they are
at the very beginning of modern differential geometry, as they generalize Taylor
expansions to maps between manifolds. Recall the Faà di Bruno formula giving
the kth derivative of the composed map of two Ck maps between open subsets of
Banach spaces:

1

k!D
k(g ◦ f )(x)vk =

∑
D|p|g(f (x))

(
1

p1!
( 1

1!D
1f (x)v1

)p1
, . . . ,

1

pk !
( 1

k!D
kf (x)vk

)pk)
,

1That is C∞ or “smooth enough”, the word being implicit when nothing is specified.
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where x lies in the definition domain of g ◦ f , the vector v in the ambient Banach

space, vk := (

k times︷ ︸︸ ︷
v, . . . , v) and the sum is on all p = (p1, . . . , pk) ∈ N

k with∑
j pj = k, setting |p| =∑

pj .
This formula is obtained by “composition of kth order Taylor expansions” [8]. Its author, born

in Alessandria in 1825, was an officer in the Italian Royal Army before studying mathematics in

Paris under the supervision of Cauchy and Le Verrier and taking up the position of Professor of

Mathematics at the university of Turin. He was beatified in 1988, one century after his death, for

his work as a social reformer, most notably the foundation of the Minim Sisters of St. Zita. Also a

musician, he had been ordained in 1876.

For each integer k, two Ck maps f and g, defined in the neighbourhood of a
point a in a manifold M , taking their values in a manifold N , have the same kth
order jet at a, denoted jka f = jka g, when they take the same value b at a and there
exist local charts ϕ : (M, a)→ R

n andψ : (N, b)→ R
p such that ψ ◦f ◦ϕ−1 and

ψ ◦ g ◦ ϕ−1 have the same kth order Taylor expansion at ϕ(a); fortunately for this
definition, the Faà di Bruno formula implies that such is then the case for all local
charts ϕ and ψ at a and b respectively.

Let J k(M,N) be the set of kth order jets jka f of maps of M into N . If M,N are
open subsets U,V of Rn,Rp respectively, J k(U, V ) identifies to the open subset
U × V × J k(n, p) of the finite dimensional vector space

J k(Rn,Rp) = R
n × R

p × J k(n, p) := R
n ×

k∏
j=0

L
j
s (R

n,Rp),

where L
j
s (R

n,Rp) is the space of symmetric j -linear maps of (Rn)j into
R
p and L0

s (R
n,Rp) := R

p; indeed, jka f is then naturally identified to(
a,
(
Djf (a)

)
0≤j≤k

)
, and this identification is bijective as every (a, b0, . . . , bk)

in U × V × J k(n, p) is of the form jka f for f (x) =∑k
0

1
j !bj (x − a)j .

In the general case, it follows from the Faà di Bruno formula that J k(M,N) is
endowed with a smooth manifold structure by the natural charts�k

ϕ,ψ associated to
pairs of local charts ϕ of M and ψ of N as follows:

• the definition domain dom�k
ϕ,ψ of �k

ϕ,ψ is the set of jka f with a ∈ domϕ and
f (a) ∈ domψ ,

• the chart �k
ϕ,ψ is given by the formula

�k
ϕ,ψ (j

k
a f ) := jkϕ(a)(ψ ◦ f ◦ ϕ−1),

implying that the transition maps are �k
ϕ1,ψ1

◦ (�k
ϕ,ψ )

−1 = �ϕ1◦ϕ−1,ψ1◦ψ−1

• its range im�k
ϕ,ψ therefore is J k(imϕ, imψ).

Examples and “Derived Products” The manifold J 0(M,N) is of course identi-
fied to M ×N by the diffeomorphism j0

a f �→
(
a, f (a)

)
.
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The set of all j1
0 f ∈ J 1(R, N) is a submanifold, the tangent bundle T N of

N : each natural chart �1
idR,ψ

is an adapted chart for T N and restricts to the chart

Tψ : j1
0 γ �→

(
ψ ◦ γ (0), (ψ ◦ γ )′(0)); moreover, J 1(R, N) is identified to R× T N

by the map j1
t γ �→

(
t, j1

0 (γ ◦ τ−t )
)
, where τ−t (x) = x + t . One calls j1

0 (γ ◦ τ−t )
the velocity γ̇ (t) of the path γ at time t (the knowledge of this velocity includes that
of the position γ (t), but not that of the time t).

Symmetrically, the set of all j1
a f ∈ J 1(M,R) with f (a) = 0 is a submanifold,

the cotangent bundle T ∗M of M: each natural chart �1
ϕ,idR

is an adapted chart for

T ∗M and restricts to the chart T ∗ϕ : j1
a f �→

(
ϕ(a),D(f ◦ϕ−1)

(
ϕ(a)

))
; moreover,

J 1(M,R) is identified to T ∗M ×R by the map j1
a f �→ (

j1
a (τf (a) ◦ f ), f (a)

)
. One

calls j1
a (τf (a) ◦ f ) the differential daf of f at a (its knowledge includes that of a,

but not of f (a)).
The natural charts endow J k(M,N) with much more than just a manifold

structure, since the projections jka f �→ a (“source projection”), jka f �→ f (a)

(“target projection”) and jka f �→ j�af , 0 ≤ � < k, are fibrations, as we shall now
see.

15.2 Submersions and Fibrations

A map
E

↓ π

B

between manifolds is a submersion when “it is locally in E the

projection onto the first factor of a product”: for every a ∈ E, there exist an open
subset U of Rn, an open subset V of Rr , a local chart ϕ̃ of E at a and a local chart
ϕ of B at π(a) such that im ϕ̃ = U × V , im ϕ = U and ϕ ◦ π = pr1 ◦ ϕ̃, where
pr1 : U × V → U denotes the projection onto the first factor. One then calls ϕ̃ a
fibred chart of the submersion over ϕ.

Similarly, π is a locally trivial fibration when “it is locally in B the projection
onto the first factor of a product”: for every b ∈ B, there exist a local chart ϕ of B
at b, a manifold F and a diffeomorphism ϕ̃ of π−1(domϕ) onto imϕ×F such that
ϕ ◦π = pr1 ◦ ϕ̃, where pr1 : imϕ×F → imϕ is the projection onto the first factor.

One can avoid the use of ϕ via an equivalent definition: for every b ∈ B, there exist an open

subset � 3 b of B and a diffeomorphism h of π−1(�) onto � × F such that π |π−1(�) is the first

component of the local trivialisation h of π .

Clearly (taking local charts of F ) a fibration is a submersion and (by the very
definition of a submanifold) the fibres π−1(b) of a submersion are submanifolds.
When π is a fibration, one calls E (the total space of) a fibre bundle over B (called
its base space) with projection π .

When F is an open subset of Rr , the diffeomorphism ϕ̃ in the definition of a
fibre bundle (which determines ϕ) is a chart of E. A vector bundle is defined by an
atlas of such charts ϕ̃ with F = R

r (or a vector space), such that the transition maps
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ϕ̃1 ◦ ϕ̃−1 are linear with respect to F (“atlas of vector bundle”). Il follows that the
fibres Eb = π−1(b) are endowed with a structure of vector space isomorphic to F .
Replacing “linear” and “vector” by “affine”, on gets the notion of an affine bundle,
whose fibres are affine spaces.

Sections With the previous notation, a smooth section of the submersion π over the
open subset U of B is a smooth map σ of U into π−1(U) such that π ◦ σ = idU ;
if U = B, it is called a section of π . In the same way as a map is determined by its
graph, a section is determined by its image σ(U), that is a submanifold (it appears
as a graph in the fibred charts ϕ̃). It is therefore natural—hence the terminology—to
consider that a smooth section of π over U is a submanifold meeting each fibre of
π |π−1(U) at a unique point and transversally (see the sequel).

The Case of Jets Il is immediate that the projectionsπ�k : J k(M,N)→ J �(M,N)

defined for � ≤ k by π�k (j
k
a f ) = j�af are fibrations, whose typical fibre F is

the vector space
∏
�<j≤k L

j
s (R

n,Rp): just take ϕ̃ = �k
ϕ,ψ and ϕ := ��

ϕ,ψ in the

definition. Similarly, taking ϕ̃ = �k
ϕ,ψ and ϕ = ϕ (resp. ϕ := ψ) in the definition

of a submersion, one sees that the source projection sk : jka f → a and the target
projection bk : jka f → f (a) are submersions. By the Faà di Bruno formula,

• this defines on J 1(M,N) a vector bundle structure with base space J 0(M,N) =
M ×N , projection π0

1 and typical fibre L(Rn,Rp),
• thus the tangent bundle TN is a vector bundle over N with typical fibre R

p =
L(R,Rp), and the cotangent bundle T ∗M a vector bundle over M with typical
fibre Rn∗ = L(Rn,R),

• for k > 1, the fibre bundle J k(M,N) is an affine bundle with typical fibre
Lks (R

n,Rp) over J k−1(M,N),
• for � < k ≤ 2�+ 1, the space J k(M,N) is endowed by the charts �k

ϕ,ψ with an

affine bundle structure over J �(M,N),
• such is not the case for k > 2� + 1, the transition maps between natural charts

being polynomial of degree at least 2 with respect to the typical fibre, but
• if N is a vector space, J k(M,N) is endowed for 0 ≤ � < k with a structure of

affine bundle over J �(M,N) (vector bundle if � = 0) by the charts �k
ϕ,idN

.

The fibre TaM of TM over a ∈ M is the tangent space of M at a.
Though it is a vector space, it should be pictured genuinely tangent to M at a when M is a

submanifold of Rd : indeed, TaM is obtained by looking at M through a microscope centred at a,

taken as the origin of the affine space R
d .

The fibre T ∗a M of T ∗M identifies naturally to the dual space (TaM)∗, the duality
form being

(
γ̇ (a), daf

) �→ (f ◦ γ )′(a).
The source projection sk : jka f → a and the target projection bk : jka f → f (a)

are in fact fibrations, whose typical fibres are respectively the set J k0 (R
n,N) of all

jk0 f ∈ J k(Rn,N) and the set J k(M,Rp)0 of all jka f ∈ J k(M,Rp) with f (a) = 0.

The proof is the same as for the tangent and cotangent bundles: to each chart ϕ of M one

can associate the diffeomorphism ϕ̃ of s−1
k (dom ϕ) onto imϕ × J k0 (R

n,N) mapping jka f to
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(
ϕ(a), jk0 (f ◦ ϕ−1 ◦ τ−ϕ(a))

)
; similarly, to each chart ψ of N is associated the diffeomorphism

ψ̃ of b−1
k (domψ) onto imψ × J k(M,Rp)0 mapping jka f to

(
ψ ◦ f (a), jka (τψ◦f (a) ◦ ψ ◦ f )).

Examples of Sections For every smooth map f of an open subset U of a manifold
M into a manifold N , the map a �→ jka f is a section jkf of the source projection
J k(M,N) → M over U , the kth order jet of f , clearly a section of the source
projection J k(U,N)→ U ; such sections are called holonomic.

A section of the tangent bundle TM → M over U is called a vector field on U
(at every point a of U one grows a vector Xa ∈ TaU = TaM).

For each smooth real function f on an open subset U of M , the map
df : a �→ daf is a section of the cotangent bundle T ∗M → M over U or,
equivalently, a section of the cotangent bundle T ∗U ⊂ T ∗M; a section of the
cotangent bundle T ∗U → U is called a “field of covectors” or Pfaffian form (or
differential form of degree 1, or differential 1-form, or 1–form) on U .

More generally to each smooth map f : M → N is associated the map Tf of

TM in T N defined by Tf
(
γ̇ (a)

) = ˙f ◦ γ (a); its restriction Taf to each fibre TaM
is a linear map into Tf (a)M (“linear map tangent to f at a”): this is expressed by
calling Tf a homomorphism of vector bundles.

Of course, Taf is identified to j1
a f . In the seventies, some authors [11, 12] would

replace for example j2f by T (Tf ), but the ensuing inflation of dimensions and
redondance are unreasonable.

Infinitesimal Characterisation of Submersions, Vertical and Horizontal Spaces
and Sections It follows easily from the inverse mapping theorem that a smooth

map
E

↓ π

B

between manifolds is a submersion in the neighbourhood of a ∈ E if and

only if the tangent linear map Taπ is onto; therefore, π is a submersion if and only
if Taπ is onto for every a ∈ E.

For each a ∈ E, setting b = π(a), the tangent space at a to the fibre π−1(b) of
the submersion π is the kernel ker Taπ ; it is called the vertical space Va of π at a;
in the case of a vector bundle, it therefore identifies to the vector space Eb; for an
affine bundle, it is identified to the underlying vector space *Eb of the fibre.

We can now characterise the smooth sections σ of the submersion π over an open
subset U of B as submanifolds: they are the submanifolds W of π−1(U) that meet
each fibre π−1(b)with b ∈ U at a unique point a, such that the tangent space TaW is
horizontal, i.e., a complement in TaE of the vertical space Va ; in other words, π |W
is a diffeomorphism of W onto U and the corresponding section σ is the composed
map of (π |W)−1 and the inclusion W ↪→ π−1(U).

Remarks In the case of the tangent bundle, one should therefore imagine the fibres
TaM as being vertical, transversal to M (identified to the zero section). This
somewhat contradicts the geometric intuition of submanifolds in R

d , for which
TaM lies along M , but one must understand that by identifying each TaM to the
affine subspace so obtained, one gets a very bad representation of TM: in the case
where M is a curve in R

3, for example, the surface of R3 so obtained admits M
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as a cuspidal line at points where the curve is “truly spatial”, i.e., with nonegative
curvature and torsion, even though these are the least singular points of the surface
lying in M .

Similarly, the geodesics of a surface S in Euclidean space R3 are the parametrised
curves γ with values in S whose acceleration γ ′′(t) is normal to the surface for every
t , whereas the second derivative γ̈ (t) is horizontal for the Levi-Civita connection
(see the sequel). One has to get used to it. . .

Worse: the rank of a fibre bundle is the dimension of its fibre, i.e., the corank of
its projection.

More Fibre Bundles The datum of a basis (“reference frame”) (e1, . . . , en) of
a real vector space E is equivalent to that of the isomorphism (x1, . . . , xn) �→
x1e1 + · · · + xnen of R

n onto E. An essential object, introduced (in a different
language) by Élie Cartan, is the frame bundle of a manifold M of dimension n,
whose fibre over a ∈ M is the set of (linear) isomorphisms Aa of Rn onto TaM;
therefore, it is a dense open subset of the vector bundle over M (generalising TM)
consisting of all j1

0 f ∈ J 1(Rn,M), and obviously a fibre bundle whose typical
fibre is the linear group GLn(R) (Ln in Ehresmann’s notation): this can be seen by
restricting the natural charts �idRn ,ϕ of J 1(Rn,M).

This frame bundle, denoted by Isom(M × R
n, TM) in [12] (this is a little

misleading, as it might make one believe that the sphere of dimension 2 is
parallelisable in the sense given hereafter), is naturally endowed with the action
(B,Aa) �→ Aa ◦ B−1 of GLn(R), which is free and transitive in each fibre: this is
expressed by calling it a principal bundle with structural group GLn(R).

Ehresmann’s “regular infinitesimal structures” are “principal subbundles of the
frame bundle”.

For example, the datum of a Riemannian metric on M (i.e., a scalar product in
each tangent space TaM , depending smoothly on a in the sense that the real function
which to v ∈ TM associates its scalar square is smooth) is equivalent to the datum of
the subbundle of the frame bundle consisting of those Aa which map the canonical
basis of Rn to an orthonormal basis for the scalar product in TaM . This is a principal
bundle whose structural group is the orthogonal group On, the orthonormal frame
bundle of the Riemannian manifold. The scalar product on TaM is the image of the
standard Euclidean scalar product on R

n by any of those “orthonormal frames” Aa .
Similarly, given a closed subgroup H of GLn(R), the datum of a principal

subbundle of the frame bundle, with structural group H , is equivalent to the datum,
for each a ∈ M , of one of the frames Aa , the others being determined by the action
of H . The “structure” preserved (or defined) by H is then transferred to TaM by
any of the Aa’s.

If one wishes frames Aa to depend smoothly on a, one must stay at the local level: otherwise,

one would get an isomorphism of the trivial vector bundle M ×R
n onto TM , an isomorphism that

does not exist [24] in the case of manifolds as respectable as the sphere of dimension 2: they are

not parallelisable.
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For each Aa , the n components of A−1
a (coordinate functions in the frame Aa)

are linear forms on TaM; they constitute the “coframe” mentioned by Élie Cartan
and Ehresmann; given a section of the frame bundle under study over the open U of
M , i.e., for each a ∈ U , the choice of one frame Aa in the fibre, the components of
a �→ A−1

a are therefore Pfaffian forms on U .

15.3 Pfaffian Systems and Systems of Partial Differential
(in)Equations

The space J k(M,N) is not only a fibre bundle in many ways: for k > 0, it is also
endowed with a canonical Pfaffian system, easy to understand when M = R

n and
N = R

p.
A section σ of the source projection of J k(Rn,Rp) = R

n × ∏k
0 L

j
s (R

n,Rp)

over an open subset U of Rn is a map of U into J k(Rn,Rp) that writes σ(x) =(
x, y0(x), . . . , yk(x)

)
; clearly, it is holonomic (i.e. of the form jkf ) if and only

if, modulo the canonical identification of L
(
R
n, Lj (Rn,Rp)

)
to Lj+1(Rn,Rp)

familiar in differential calculus, Dyj (x) = yj+1(x) for 0 ≤ j < k for all x ∈ U .
Let us express this viewing σ as the submanifold W = σ(U): if one writes

z = (x, y0, . . . , yk) the points of J k := J k(Rn,Rp), the section is holonomic if and
only if, at every point z of W , the tangent space TzW (in other words, the image of
Dσ(x)) is contained in the subspace Kk

z = Kk
z(R

n,Rp) of TzJ k 4 J k defined by
the equations

dyj = yj+1 dx pour 0 ≤ j < k, (15.1)

i.e. consisting of those vectors δz = (δx, δy0, . . . , δyk) such that, modulo the
canonical identification just mentioned, δyj = yj+1 δx for 0 ≤ j < k; here, yj+1 δx

is the interior product (“contraction”) of yj+1 by δx, i.e., the symmetric j -linear map
(δx1, . . . , δxj ) �→ yj+1(δx, δx1, . . . , δxj ).

One calls (15.1) the canonical Pfaffian system or Cartan system (or canonical
contact structure) of J k(Rn,Rp); equivalently, one can give the same name to the
field of vector subspaces (“plane field”) z �→ Kk

z , that can be seen geometrically as
the sub-vector bundle Kk = Kk(Rn,Rp) of T J k 4 J k × J k union of the subsets
{z} ×Kk

z .
One can see that, for each z ∈ J k, the “plane” Kk

z is the closure2 of the union of
all TzW when W varies among the holonomic sections through z; using the natural
charts, this yields the following fact: given now two manifoldsM andN , one defines
a Pfaffian system Kk(M,N) on J k(M,N), i.e. a sub-vector bundle of the tangent
bundle T J k(M,N), by the fact that its fibre over z ∈ J k(M,N) is the closure in

2One has to “catch” also the vertical vectors for the projection onto J k−1.



560 M. Chaperon

TzJ
k(M,N) of the union of the tangent spaces at z to holonomic sections through

z. Naturally,

• it is called the canonical Pfaffian system or Cartan system (or canonical contact
structure) of J k(M,N),

• one has Tz�
(Kz(M,N)

) = K�(z)(R
n,Rp) for every natural chart � of

J k(M,N) and every jet z ∈ dom�, implying that Kk(M,N) is indeed a sub-
vector bundle of T J k(M,N).

The reader would have understood that a Pfaffian system on a manifold V can be
defined as a sub-vector bundle P of the tangent bundle T V .

In “real life”, we are going to see that the notion can be more complicated: the manifold V may

have singular points, the dimension of the fibre Pz may vary at some points z ∈ V , etc.

An integral manifold of P is a submanifold W of V verifying TzW ⊂ Pz for
every z ∈ W ; in this langage, a section of the source projection of J k(M,N) is
holonomic if and only if, seen as a submanifold, it is an integral manifold of the
Cartan system—which admits other integral manifolds, for example the fibres of
the projection onto J k−1(M,N).

Example If dimN = 1, the Cartan system K1(M,N) is a field of hyperplanes,
authentic contact structure in today’s restrictive sense, and its integral manifolds of
dimension n are called Legendre submanifolds, a terminology due to V.I. Arnold. In
particular, (15.1) consists of one equation, and the Pfaffian form α = dy0 − y1 dx

on J 1(Rn,R) is a contact form, meaning that dαz induces a nondegenerate bilinear
form onK1

z = kerαz; according to a theorem of Darboux [8], up to diffeomorphism,
all contact forms in dimension 2n+ 1 are locally equal to α.

Systems of Partial Differential Equations A system of q partial differential
equations of degree k in p unknown functions of n variables is written in a
condensed way as F(jkx y) = 0, where F is a map of an open subset of J k(Rn,Rp)

into R
q , the variable is x ∈ R

n and the unknown function y (with values in R
p). A

solution f of the system defined in an open subset of Rn is identified to jkf , i.e. to
a holonomic section of the source projection J k(Rn,Rp) → R

n over U that takes
its values in E = F−1(0) or, in other words, to an integral manifold of the canonical
contact structure contained in E and projecting diffeomorphically onto U .

A system of partial differential equations therefore identifies to a Pfaffian system,
provided the name is given to the pair consisting of (15.1) and of the equation
F(z) = 0. To use our first definition, one should take as a manifold V the smooth
part ofE (for analyticF , this makes sense) and as a Pfaffian system Pz := Kz∩TzV ,
a “fibre bundle” whose rank may have an unfortunate propension to jump (for
example, if k = n = p = q = 1, it may well happen that Kz = TzV at some
points, which should be excluded from V if one is looking for a genuine sub-vector
bundle).

Of course, all this extends to the case where E is a submanifold of codimension
q of J k(M,N), not necessarily defined globally by q real equations.
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For k = p = q = 1, it is fruitful to first forget the projection J 1 → J 0 and
consider the “geometric solutions” of the equation, i.e. the Legendre submanifolds
contained in E, whether they are or not sections of the source projection. They
sometimes have a physical meaning: for example, caustics are the projections into
J 0 of such geometric solutions. This case, whose local theory goes back to the
nineteenth century, still gives rise to new global developments.

Systems of Partial Differential Inequations The spaces of jets also serve as the
framework of the homotopy principle or h–principle [18], introduced by Gromov
(following Thom [25]) in his thesis as an astounding abstraction of Smale’s
classification of immersions. The idea is dual to what has just been done: in the case
of immersions of a manifold M into a manifold N , one considers in J 1(M,N) the
open subset � consisting of jets of immersions, i.e. j1

a f such that Taf is injective.
Given two immersions f0, f1 ofM intoN , the question is whether they are regularly
homotopic, i.e. whether there exists a smooth path [0, 1] 3 t �→ ft joining them in
the space of immersions; in other words, one wonders whether there exists a path
of holonomic sections j1ft of J 1(M,N)→ M joining j1f0 to j1f1 and such that
all these sections take their values in �. Naturally, the same problem can be posed
for various subsets � of various J k(M,N)’s; the homotopy principle (when it is
true) states that the question admits a positive answer if and only if this is the case
forgetting the contact structure but not the source projection, meaning that one can
join the two holonomic sections by a path in the set of not necessarily holonomic
sections with values in �. With time, this has become astonishingly simple [15],
back to Thom in fact (see Laudenbach’s comment of [25] in [26]).

15.4 Connections

Here again, Ehresmann did a good job. The problem is that a submersion
E

↓ π

B

does

not allow even locally the unique lifting of paths, except when it is a local
diffeomorphism at every point (in which case, if it is a fibration, one calls it a
covering): if ϕ̃ is a fibred chart of π , with image U × V , over a chart ϕ of B,
then, for every path γ with values in domϕ, any path γ̃ with values in dom ϕ̃ of the
form γ̃ (t) = ϕ̃−1

(
ϕ ◦ γ (t), f (t)) with dom γ̃ = dom γ is a lift(ing) of γ , meaning

that π ◦ γ̃ = γ ; therefore, even if one imposes to γ̃ a given value a ∈ π−1
(
γ (t0)

)
for t = t0, there are many possible choices f , none of which is a priori better than
the others. The datum of a connection suppresses this indeterminacy and provides
(at least locally) a unique lifting γ̃ of γ such that γ̃ (t0) = a.

For example, if E is the frame bundle of B (or a principal subbundle), a
connection allows one to obtain along γ a moving frame γ̃ (t), well determined
by its value at t0. If the connection is better than the others, so will be this moving
frame.
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Definition A connection on the submersion π is a field of horizontal spaces, i.e., a
Pfaffian system H onE such that Ha is, for every a ∈ E, a complementary subspace
in TaE of the vertical space Va = ker Taπ = Ta

(
π−1(a)

)
; in other words, Taπ |Ha

is an isomorphism onto Tπ(a)B.
The datum of Ha is equivalent to that of the projection of TaE onto Va parallel

to Ha , used by Dieudonné [12] to define a connection; it can be denoted v �→ vV
(vertical component of the tangent vector v). The unique lifting (“horizontal lifting”)
γ̃ announced will be defined by the initial condition and by the fact that the
derivative ˙̃γ (t) is horizontal for every t , which writes (notation of [23])

Dγ̃

dt
:= ˙̃γ (t)V = 0. (15.2)

Indeed, the connection H “reads” as follows in a fibred chart ϕ̃ of E over ϕ, with
image the openU×V of Rn×R

r : for every a ∈ dom ϕ̃, if ϕ̃(a) = (x, y), the image
of Ha by Taϕ̃ is the graph of a linear map −0(x, y) of Rn into R

r : this defines the
Christoffel map 0 : U × V → L(Rn,Rr ) of the connection H in the fibred chart
ϕ̃, and it is smooth because H is; the equation vV = 0 expressing that v ∈ TE is
horizontal therefore writes δy + 0(x, y)δx = 0, where

(
(x, y), (δx, δy)

) = T ϕ̃(v).
Hence, if γ is a path in domϕ and x(t) := ϕ◦γ (t), a lifting γ̃ (t) = ϕ̃−1

(
x(t), y(t)

)
of γ with values in dom ϕ̃ is horizontal if and only if the path t �→ y(t) verifies the
differential equation

y ′(t)+ 0
(
x(t), y(t)

)
x ′(t) = 0

expressing (15.2); this enables one to use Cauchy’s theorem on differential equa-
tions to obtain the local existence and uniqueness of the lifting γ̃ taking a given value
at time t0. Its global existence is ensured for example when π is proper, i.e., when
π−1(K) is compact for every compact K of B: indeed, in that case, the solution
γ̃ of (15.2) can not “go to infinity” at time t ∈ dom γ . Let us deduce from this a
fundamental result in differential topology:

Theorem (Ehresmann) If the submersion π is proper, then it is a fibration.

Proof For every b ∈ B, there exist an open subset � 3 b of B and a connection
H on π |π−1(�): to see it, cover the compact manifold π−1(b) by the domains of
finitely many fibred charts ϕ̃j and take � = ⋂

domϕj , where the ϕj ’s are the
charts of B defined by the ϕ̃j ’s; restricting the ϕ̃j ’s, we may assume domϕj = �

for every j , so that the dom ϕ̃j ’s form a finite cover of π−1(�) and that there exists
[11] a smooth partition of unity θj subordinate to this cover; for each j , there is a
connection Hj on π |dom ϕ̃j , for example that whose Christoffel map in the fibred
chart ϕ̃j is identically zero; denoting by v �→ vj,V the corresponding projection,
one can then take the connection H whose projection TaE → Va is defined by
vV := ∑

j θj (a)vj,V for each a ∈ π−1(�) (as usual, the sum is on those j ’s such
that a ∈ dom ϕ̃j ).
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Restricting �, one may assume that there exists a chart ϕ of B with domϕ = �

such that ϕ(�) is an open ball of centre 0 = ϕ(b) in R
n. Thus, for y ∈ �, one

defines a path γy : [0, 1] → � joining y to b by γy(t) := ϕ−1
(
(1 − t)ϕ(y)

)
;

for all x ∈ π−1(y), the path γy admits a unique horizontal lift γ̃x : [0, 1] → E

such that γ̃x(0) = x, and the map x �→ γ̃x(1) of π−1(y) in π−1(b), called
parallel transport from time 0 to time 1 along the path γy for the connection H, is
obviously bijective (its inverse is obtained by lifting t �→ γy(1− t)); as solutions of
differential equations depend smoothly on initial conditions and parameters, the map
x �→ γ̃x(1) is a diffeomorphism, and so is the map h of π−1(�) onto �× π−1(b)

given by h(x) := (
π(x), γ̃x(1)

)
, that is the required local trivialisation.

Remarks Conversely, a fibration with compact fibres is obviously proper. As in
the definition of a fibration, if one wants the typical fibre to be unique up to
diffeomorphism, then B must be assumed connected.

This very robust theorem holds, with the same proof, in the Banach framework.
Proceeding as in the first part of the proof, one can see that a submersion defined
on a paracompact manifold (as in real life) admits a connection, which can be used
in the second part of the proof, � being the domain of any chart ϕ vanishing at b
whose image is a ball.

An Example The contact structure K1(M,R) is a connection for the fibration
π : j1

a f �→ daf of J 1(M,R) onto T ∗M . We shall return to it in the section on
curvature.

15.5 Integral of Differential Forms, Pullbacks, Exterior
Derivative

Direct Images of Paths, Curvilinear Integral, Pullback of Functions and
1-Forms Let g be a smooth map of a manifold M into a manifold N . The (direct)
image under g of a path γ in M is the path g∗γ := g ◦ γ in N ; similarly, the inverse
image (or pullback) by g of a real function f onN is the real function g∗f := f ◦g
on M .

When γ is defined on a segment [t0, t1] (γ is then called an arc), the (curvilinear)
integral along γ of a Pfaffian form α on M is by definition

∫
γ

α :=
∫ t1

t0

αγ (t)
(
γ̇ (t)

)
dt,

where αγ (t) ∈ T ∗γ (t)M = (Tγ (t)M)∗ denotes the value of α at γ (t). This integral is
invariant under parameter changes : if ϕ : [s0, s1] → [t0, t1] verifies ϕ(sj ) = tj ,
then

∫
γ ◦ϕ α =

∫
γ
α; when α is the differential df of a real function f on M , since
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dfγ (t)
(
γ̇ (t)

) = (f ◦ γ )′(t),
∫
γ

df = f
(
γ (t1)

)− f
(
γ (t0)

)
(mean value formula). (15.3)

A Pfaffian form α is determined by the integrals
∫
γ α.

Indeed, for every x ∈ M and every v ∈ TxM , there exists an arc γ : [0, 1] → M such that

γ̇ (0) = v (take a chart ϕ of M such that ϕ(a) = 0 and a path of the form ϕ ◦γ (t) = θ(t ϕ∗v) t ϕ∗v,

where ϕ∗v = Txϕ(v) and θ : imϕ → [0, 1] is C∞ with compact support, equal to 1 near 0). If

γε : [0, 1] → M is given by γε(t) := γ (εt), then lim
ε→0

ε−1 ∫
γε
α = lim

ε→0

∫ 1
0 αγ (εt)

(
γ̇ (εt)

)
dt =

αγ (0)
(
γ̇ (0)

) = αxv.

The pullback by g of a Pfaffian form β on N is the Pfaffian form g∗β on M such
that

∫
γ
g∗β = ∫

g∗γ β for every arc γ in M; it is given by the formula

(g∗β)x = βg(x) ◦ Txg.

For f : M → R, the chain rule, in intrinsic terms

T (f ◦ g) = (Tf ) ◦ Tg,

therefore writes g∗df = d(g∗f ).

Differential Forms, Their Integral on Parametrised Rectangles and Their
Pullbacks A differential form of degree k or differential k-form, or k-form α on
a manifoldM is a field of alternate k-linear forms αx : (TxM)k → R, i.e., a smooth
section of the vector bundle

∧k
T ∗M over M whose fibre over x ∈ M is the space

Lkalt(TxM,R) of alternate k-linear forms on TxM; an atlas of this vector bundle

consists (naturally) of the natural charts
∧k

T ∗ϕ : αx �→ (
ϕ(x), (Txϕ)∗ αx

) ∈
imϕ × Lkalt(R

n,R), where ϕ is a chart of M with values in R
n (the tangent linear

map Txϕ therefore maps TxM onto Tϕ(x)R
n = R

n), αx ∈ Lkalt(TxM,R) and
(Txϕ)∗ αx(v1, . . . , vk) := αx

(
(Txϕ)

−1v1, . . . , (Txϕ)
−1vk

)
for v1, . . . , vk ∈ R

n.
For every smooth map ρ : [0, 1]k → M , the integral of α along the parametrised

rectangle ρ of dimension k is by definition

∫
ρ

α :=
∫
[0,1]k

αρ(t)
(
∂1ρ(t), . . . , ∂kρ(t)

)
dt

(integral with respect to Lebesgue measure), where ∂jρ(t) ∈ Tρ(t)M is the partial
derivative of ρ with respect to the j th factor and αρ(t) ∈ Lkalt(Tρ(t)M,R) denotes
the value of α at ρ(t).

A k-form α is determined by the integrals
∫
ρ
α.

Indeed, for x ∈ M and v1, . . . , vk ∈ TxM , there exists (same proof as for k = 1, replacing

tϕ∗v by
∑
tjϕ∗vj ) a parametrised rectangle ρ : [0, 1]k → M such that ∂j ρ(0) = vj for every j ; if
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ρε : [0, 1]k → M is given for 0 < ε ≤ 1 by ρε(t) := ρ(εt), then lim
ε→0

ε−k
∫
ρε
α = αx(v1, . . . , vk)

as for k = 1.

Given a smooth map g : M → N between manifolds, the pullback by g of
a k-form β on N is the k-form g∗β on M such that

∫
ρ
g∗β = ∫

g∗ρ β for every
parametrised rectangle ρ of dimension k in M , using the notation g∗ρ := g ◦ ρ; it
is given by the formula

(g∗β)x = βg(x) ◦ (Txg)k,

where (Txg)k(v1, . . . , vk) := (Txg(v1), . . . , Txg(vk)) for v1, . . . , vk ∈ TxM .

The Exterior Derivative That of a Pfaffian form α on M is the 2-form dα on M
such that ∫

ρ

dα =
∫
∂ρ

α (15.4)

for every C2 parametrised rectangle ρ : [0, 1]2 → M , where ∂ρ is the oriented
boundary of ρ, obtained by concatenation of the paths [0, 1] 3 s �→ ρ(s, 0),
[0, 1] 3 s �→ ρ(1, s), [0, 1] 3 s �→ ρ(1 − s, 1) and [0, 1] 3 s �→ ρ(0, 1 − s);
it is given par

dαρ(t)
(
∂1ρ(t), ∂2ρ(t)

) = ∂1
(
αρ(t)∂2ρ(t)

)− ∂2
(
αρ(t)∂1ρ(t)

)
. (15.5)

More generally, for each k ≥ 1, the exterior derivative of a k-form α on M is
the (k + 1)-form dα on M verifying (15.4) for every parametrised rectangle ρ of
dimension k + 1, setting

∫
∂ρ

α :=
k+1∑
i=1

(−1)i+1
( ∫

∂ρ1
i

α −
∫
∂ρ0

i

α
)
,

where the “faces” ∂ρji of ρ are the parametrised rectangles of dimension k defined
by

∂ρ
j
i (s) := ρ

(
(s�)�<i, j, (s�)�≥i

)
, s = (s1, . . . , sk) ∈ [0, 1]k, j = 0, 1;

the identity (15.5) is the particular case k = 1 of the formula

dαρ(t)
(
∂1ρ(t), . . . , ∂k+1ρ(t)

) = k+1∑
i=1

(−1)i+1∂i

(
αρ(t)

((
∂�ρ(t)

)
�<i

,
(
∂�ρ(t)

)
�>i

))
,

(15.6)
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valid when ρ is a C2 map with values in M defined on an open subset or an “open
subset with corners” of Rk , for example [0, 1]k.

This formula follows from (15.4), the mean value formula and the Fubini theorem.
indeed, if one alleviates notation by setting for example α

(
∂1ρ(t), . . . , ∂kρ(t)

) :=
αρ(t)

(
∂1ρ(t), . . . , ∂kρ(t)

)
, then

∫
∂ρ1

i

α −
∫
∂ρ0

i

α =
∫
[0,1]k

(
α
(
∂sj ρ

(
(s�)�<i , 1, (s�)�≥i

))
1≤j≤k − α

(
∂sj ρ

(
(s�)�<i , 0, (s�)�≥i

))
1≤j≤k

)
ds

=
∫
[0,1]k

∫ 1

0
∂τ α

(
∂sj ρ

(
(s�)�<i , τ, (s�)�≥i

))
1≤j≤k dτ ds

=
∫
[0,1]k+1

∂iα
((
∂�ρ(t)

)
�<i

,
(
∂�ρ(t)

)
�>i

)
dt,

where t := (
(s�)�<i , τ, (s�)�≥i

)
. Naturally, the “miracle” is that the right-hand side of (15.6)

depends only on the ∂j ρ(t)’s: this can be checked in a chart, which reduces the problem to the case

where M is an open subset U of Rn, and using the fact that, then, ∂i∂�ρ = ∂�∂iρ. Indeed, in that

case, α identifies to its second component U → Lk+1
alt (Rn,R) and dα : U → Lk+1

alt (Rn,R) is given

by dα(x)(v1, . . . , vk+1) = ∑k+1
i=1 (−1)i+1Dα(x)(vi )

(
(v�)�<i , (v�)�>i

)
, x ∈ U , v1, . . . , vk+1 ∈

R
n.

This definition of the exterior derivative is not too intrinsic, but it shows that
a k-form is meant to be integrated on objects of dimension k, exterior derivation
appearing as the dual (“coboundary”) of the “oriented boundary” ∂ via the Stokes
formula (15.4)—which generalises (15.3) and yields easily the other “Stokes
formulae”. Whitney even constructed the theory of differential forms out of it [29].

It follows at once from the definitions of the pullback and the exterior derivative
that

d(g∗β) = g∗dβ (15.7)

for every smooth map g : M → N between manifolds and every differential form
β on N .

Moreover, for every differential k-form α on M ,

ddα = 0. (15.8)

Indeed, the integral of ddα on every parametrised rectangle ρ : [0, 1]k+2 → M is zero since by

definition
∫
ρ

ddα =
k+2∑
i=1

(−1)i+1
( ∫

∂ρ1
i

dα−
∫
∂ρ0

i

dα
)
=

k+2∑
i=1

(−1)i+1
( ∫

∂∂ρ1
i

α−
∫
∂∂ρ0

i

α
)

, in other

words

∫
ρ

ddα =
k+2∑
i=1

(−1)i+1
k+1∑
j=1

(−1)j+1
( ∫

∂(∂ρ1
i
)1
j

α −
∫
∂(∂ρ1

i
)0
j

α −
∫
∂(∂ρ0

i
)1
j

α +
∫
∂(∂ρ0

i
)0
j

α
)
,



15 Basic Aspects of Differential Geometry 567

a sum where “each face of dimension k of ρ appears twice and with opposite signs” as

∂(∂ρ�i )
m
j = ∂(∂ρmj )

�
i−1, 1 ≤ j < i ≤ k + 2, �,m ∈ {0, 1}.

If k = 1, these faces correspond to the edges of the cube [0, 1]3.

A differential form β is closed when dβ = 0; it is exact when it is the exterior
derivative β = dα of a differential form, called a primitive of β and obviously
unique up to the addition of a closed form (when one adds two sections α and β of
a vector bundle E, it is of course fibrewise addition, i.e., (α+ β)(x) = α(x)+ β(x)

in Ex); the formula (15.8) therefore means that every exact form is closed.

15.6 Flows, Lie Derivative and Lie Bracket

Flows and Lie Derivative To every smooth vector field X on the manifold M is
associated its flow or one-parameter (pseudo)groupgtX, defined as follows: for every
a ∈ M , the map t �→ gtX(a) is the path in M that is the maximal solution of the
differential equation ẋ = X(x) (“integral curve of X ”) passing through a at time
t = 0. Here, maximal means “defined on an interval as large as possible.”

Note As the integral curves are parametrised, they are not merely one-dimensional
integral manifolds.

By the theory of differential equations, the domain of gX : (t, a) �→ gtX(a) is an
open subset of R×M and gX is as smooth asX; clearly, gsX

(
gtX(a)

) = gs+tX (a)when
the left-hand side makes sense or, equivalently, for a ∈ dom(gtX) ∩ dom(gs+tX );
in particular, since g0

X = idM , each gtX is a diffeomorphism of the open subset
domgtX ⊂ M onto the open subset dom g−tX , and (gtX)

−1 = g−tX .
If X has compact support, the solutions of ẋ = X(x) cannot “go to infinity in

finite time”; therefore, dom gX = R×M and gX is a smooth action of the additive
group R on M , meaning that t �→ gtX is a homomorphism of R into the group of
diffeomorphisms of M onto itself; in that case, X (or its flow) is said to be complete.

The Lie derivative of a tensor field τ on M (here, a differential form of degree k
or, as a little further, a vector field) with respect to X is by definition

LXτ := d

dt
gt ∗X τ

∣∣∣
t=0

, (15.9)

that is a tensor field of the same nature as τ ; for example, the Lie derivative of a
real function f on M is the real function on M which is the (interior) product or
contraction df (X) of df by X:

LXf = df (X) : x �→ dxf (Xx).



568 M. Chaperon

For k > 0, the Lie derivative of a differential k-form α on M verifies the Cartan
formula

LXα = d(αX)+ (dα)X, (15.10)

where αX and (dα)X denote the interior products (or contractions) x �→ αxXx and
x �→ (dαx)Xx of α and dα by X, a notation introduced when we wrote the Cartan
system of J k(Rn,Rp).

Though Élie Cartan undoubtfully knew and used the Cartan formula [4], it took some time

for the Lie derivative—as for many primitive notions—to be recognised as such and it is Henri

Cartan who wrote (15.10) under this form. One can, if one really wants to, take it as an intrinsic

but incomprehensible definition of the exterior derivative.

Its proof is very easy: for all x ∈ M and (v1, . . . , vk) ∈ TxM , there exists
ρ1 : (Rk, 0) → (M, x) such that vj = ∂jρ1(0) for 1 ≤ j ≤ k, and one can take
ρ(t) := g

t1
X ◦ ρ1(t2, . . . , tk+1) and t = 0 in (15.6). Here is an important application:

Poincaré Lemma Every closed differential form α of degree k ≥ 1 on M is locally
exact: each a ∈ M has an open neighbourhood � such that α|� is exact.

Indeed, if � is the domain of a chart ϕ vanishing at a whose image is a ball B of Rn, let X be
the vector field on � that is the pullback by ϕ of the radial field Yy := y on B; for every x ∈ �,
the points gtX(x) = ϕ−1

(
et ϕ(x)

)
with t ≤ 0 are well defined and, by (15.10), since dα = 0,

αx = (g0 ∗
X α)x = (g0 ∗

X α)x − lim
t→−∞(g

t ∗
X α)x =

∫ 0

−∞
d

dt
(gt ∗X α)x dt =

∫ 0

−∞
(gt ∗X LXα)x dt

=
∫ 0

−∞
(
gt ∗X d(αX)

)
x
dt =

∫ 0

−∞
d
(
gt ∗X (αX)

)
x
dt =

(
d

∫ 0

−∞
gt ∗X (αX) dt

)
x
,

where the last integral is in each fibre (one can find it more secure to work in the chart ϕ and take

as variable s = et ).

The de Rham Cohomology For k > 0, the quotient of the vector space of closed
forms of degree k on M by the vector space of exact forms of degree k is the kth de
Rham cohomology space Hk(M,R); as every alternate k-linear form on a space of
dimension< k is zero, Hk(M,R) = {0} for k > dimM; one denotes by H 0(M,R)

the space of locally constant functions on M and H •(M,R) :=
⊕
k≥0

Hk(M,R).

Pullback of Vector Fields, Lie Brackets Given a smooth map h : M → N

between manifolds, a pullback of a vector field Y on N by h, if it exists, is a vector
field X on M such that h “maps the integral curves of X onto those of Y ”, meaning
that h ◦ gtX = gtY ◦ h; as this relation holds for t = 0, it is equivalent to the one
obtained by differentiating it with respect to time, which yields Txh(Xx) = Yh(x)
for every x ∈ X; one therefore sees that if h is etale, i.e., if all the Txh’s are
isomorphisms, then Y has a unique pullback by h, denoted by h∗Y and given by
the formula

(h∗Y )x = (Txh)
−1Yh(x).
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The formula (15.9) therefore has a meaning when τ is a vector field Y on M , and

LXY = [X,Y ]

is the Lie bracket of the vector fields X and Y , such that

L[X,Y ]f = LXLY f − LYLXf

for every real function f on M (as LXLY f = LLXY f + LYLXf by “derivation of
a product”).

The Jacobi identity
[[X,Y ], Z]+[[Y,Z],X]+[[Z,X], Y ] = 0 follows, making

the C∞ vector fields on M an archetypical Lie algebra.
By the formula for the derivation of a product and (15.9), for every choice of the

function f , the tensor field τ , the vector fields X,Y and the differential form α of
degree k > 0 on M , one has

LX(f τ) = (LXf )τ + fLXτ
LX(αY ) = (LXα)Y + αLXY

= d(αX)Y + (dα)XY + α[X,Y ].
(15.11)

If ϕ is a chart ofM with values in R
n, settingXϕ(x) := Txϕ(Xϕ−1(x)) ∈ TxRn = R

n

for every vector field X on M and every x ∈ imϕ, one has

[X,Y ]ϕ(x) = DYϕ(x)Xϕ(x)−DXϕ(x)Yϕ(x). (15.12)

15.7 Some Applications of the Cartan Formula

Infinitesimal Contact Transformations Let α be a contact form on a manifold
V—recall that this means that TxM = kerαx ⊕ ker dαx for every x ∈ V ; let
K be the associated contact structure Kx := kerαx . An infinitesimal contact
transformation or Lie field for K is a vector field X on V whose flow gt := gtX
preserves K, meaning that Txgt (Kx) = Kgt (x) for every (t, x) ∈ dom gX: this is
expressed by calling the maps gt contact transformations or (local) automorphisms
of K.

Theorem (Libermann) Under these hypotheses, a Lie field X is determined by
its Hamiltonian −αX with respect to α, and every C2 real function F on V is the
Hamiltonian of a C1 Lie field XF . In particular, if α is C∞, the map F �→ XF is an
isomorphism of C∞(V ,R) onto the space of C∞ Lie fields for K, an isomorphism
whose inverse is X �→ −αX.

Indeed, X is a Lie field if and only if its flow gt verifies (gt∗α)x = μt (x)αx for every x ∈ dom gt ,
which (after derivation with respect to t) writes LXα = λα, where λ is a real function on V ; by
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(15.10), the relations between X and F := −αX are therefore expressed for each x ∈ V by the
two equations

− αxXx = F(x) (15.13)

−dxF + dαx Xx = λ(x)αx ; (15.14)

if Xx = Yx + Zx in the decomposition TxV = Kx ⊕ ker dαx , (15.13) determines Zx knowing
F(x) and vice versa since αx |ker dαx is an isomorphism; as for (15.14), it may be written as

−dxF |ker dαx = λ(x)αx |ker dαx

dxF |Kx
= (dαx Yx)|Kx

;

the first equation determines λ(x) knowing dxF |ker dαx and vice versa, and the second yields

Yx knowing dxF |Kx
and vice versa, as the nondegenerate bilinear form dαx |(Kx )2

induces the

isomorphism v �→ (dαxv)|Kx
of Kx onto its dual.

Having always [9] attributed this result to Sophus Lie, I nearly asked who was
that Bermann the first time it was rightly [20] credited to Paulette Libermann in
my presence. The result implies that the group of automorphisms of K is huge, the
vector fields XF with F compactly supported being complete.

Application: Local Theory of First Order Partial Differential Equations Under
these hypotheses, given F : V → R, let E := F−1(0). Two preliminary
observations:

(i) as there is no nondegenerate alternating bilinear form on a space of odd
dimension, V is of odd dimension 2n+ 1;

(ii) an integral manifold W of K is of dimension at most n; indeed, if ι : W ↪→ V

is the inclusion, the relation ι∗α = 0 expressing that W is integral implies
that ι∗dα = d(ι∗α) = 0, i.e., that each tangent space TxW is included in its
orthogonal for the nondegenerate bilinear form dαx |(Kx)2

, hence the inequality
dimTxW ≤ 2n − dimTxW ; the integral manifolds of dimension n are the
Legendre manifolds of K.

For every x ∈ E,

(iii) the previous proof shows that X = XF vanishes at x if dxF = 0, since then
Yx = Zx = 0;

(iv) it follows from (15.13)–(15.14) and the antisymmetry of dαx that dxF (Xx) =
0; hence, XF is tangent at x to E for dxF �= 0 (F is a submersion in an open
neighbourhood U of x, therefore U ∩ E is a submanifold of codimension 1
with tangent space ker dxF at x);

(v) it follows from (15.13) that Xx belongs to Kx .

Assertions (iii)–(iv) imply that one has gtX(E ∩ dom gtX) ⊂ E for every t ; assertion
(v), together with the fact that the maps gtX preserve K, therefore yields the
following facts:

(vi) for every integral manifoldW0 ⊂ E of K and every a ∈ W0 withXa �∈ TaW0,
there exists an open subset� 3 (0, a) of R×W0 such that the map j : �→ E
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defined by j (t, x) := gtX(x) is a diffeomorphism onto an integral manifold
W of K, which therefore verifies dimW = dimW0 + 1;

(vii) this imposes dimW0 < n by (ii); hence, a geometric solution of the
generalised partial differential equation E, i.e., a Legendre manifold L

contained in E, verifies Xx ∈ TxL for every x ∈ L;
(viii) if dimW0 = n − 1 (one then calls (E,W0) a generalised Cauchy problem,

well-posed at a), then W is a geometric solution of E;
(ix) conversely, by (vii), every geometric solution W of E is obtained in this

fashion in the neighbourhood of each a ∈ W where Xa is nonzero (just take
for W0 a hypersurface of W passing through a with Xa /∈ TaW0); this proves
the local existence and uniqueness of the solution of a generalised Cauchy
problem.

If V = J 1(Rn,R), K = K1(Rn,R) and, denoting by (t, x) ∈ R × R
n−1

the points of R
n, the equation E is of the form ∂ty = g(t, x, y, ∂xy), a well-

posed classical Cauchy problem is the datum of the value y0(x) of the unknown
function for t = 0; this does determine the generalised Cauchy datum given by
W0 =

{(
0, x, y0(x), g(0, j1

x y0),Dy0(x)
)} ⊂ E, which defines at each of its points

a well-posed problem whose local generalised solutions W are holonomic sections
of the source projection J 1(Rn,R)→ R

n contained inE, jets of order 1 of the local
solutions of the Cauchy problem.

Hamiltonian Vector Fields on a Symplectic Manifold Paulette Libermann is not
foreign [20] to their intrinsic definition. A symplectic manifold is the pair consisting
of a manifold V and a symplectic form on V , i.e., a closed 2-form ω such that
every ωx ∈ L2

alt(TxV,R) is nondegenerate (the dimension of V must therefore be
even). A vector field X on V is symplectic when its flow gt = gtX preserves ω,
meaning that gt ∗ω = ω in dom gt for every t (the maps gt are therefore symplectic
transformations of ω). As this relation is verified if t = 0, this amounts to saying
that 0 = d

dt
gt ∗ω = gt∗LXω for every t , i.e., that LXω = 0; since ω is closed,

it follows from (15.10) that this is the case if and only if the Pfaffian form ωX is
closed.

When it is exact, ωX = dH , one says thatX is Hamiltonian and that the function
H is a Hamiltonian of X; il determines X, and each real function H on V is the
Hamiltonian of a unique Hamiltonian vector field XH : indeed, for each x ∈ V , the
equation ωxv = dxH has a unique solution v ∈ TxV since ωx is nondegenerate.
The group of (global) symplectic transformations of ω therefore is huge too, since
it contains the maps gtXH with H compactly supported.

As LXHH = dH(XH) = ω(XH ,XH ) = 0, the flow of X = XH preserves
H , meaning that H

(
gtX(x)

) = H(x) for every (t, x) ∈ dom gX (“conservation
of energy”); one also calls H a first integral of XH . Since LXHK = dK(XH) =
ω(XK,XH ) = −LXKH for all real functions H and K on V , the Poisson bracket
{H,K} := LXHK (“Poisson parentheses”) is antisymmetric; this yields the (trivial
but quite useful) Hamiltonian version of a theorem by Emmy Noether: if “XK is
an infinitesimal symmetry of H ”, meaning that H is a first integral of XK , then K
is a first integral of XH . The Poisson bracket lifts to functions the Lie bracket of
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vector fields in the sense that X{H,K} = [XH,XK ]; it (therefore) satisfies the Jacobi
identity, endowing C∞(V ,R) with a Lie algebra structure if ω is C∞.

Similarly, if α is a contact form, the Lie bracket of Lie fields can be lifted to real functions

by (the inverse of) the isomorphism X �→ αX, the bracket so obtained being called the Lagrange

bracket, it seems.

In the “concrete” case, studied since Lagrange at least [21], V is the cotangent
bundle (“phase space”) T ∗M of a manifold (“configuration space”) M , endowed
with its canonical symplectic structure ωM , unique 2-form on T ∗M whose pullback
by the projection J 1(M,R) → T ∗M is the exterior derivative of the canonical
contact form dy0 − y1 dx defining K1(M,R).

15.8 Curvature

Curvature of a Connection If H is a connection on a submersion
E

↓ π

B

, every

vector field X on an open subset U ⊂ B lifts to a unique horizontal vector field
X̃ on π−1(U), given by X̃a = (Taπ |Ha

)−1Xπ(a). A remarkable fact of Nature
is that, if Y is another vector field on U , the vertical component ([X̃, Ỹ ]a)V of
the Lie bracket [X̃, Ỹ ], at each point a ∈ π(U), depends only on X̃a, Ỹa ∈ Ha ,
i.e., on Xπ(a), Yπ(a) ∈ Tπ(a)B; hence one can define an alternate bilinear map
Ra : Tπ(a)B × Tπ(a)B → Va , the curvature tensor of H at a, by the formula

Ra(Xπ(a), Yπ(a)) := ([X̃, Ỹ ]a)V . (15.15)

If 0 is the Christoffel map of H in a fibred chart ϕ̃ of π over the chart ϕ of B, it
follows from (15.12) that

Ra(v1, v2) = D0(z)
(
x2,−0(z)x2

)
x1−D0(z)

(
x1,−0(z)x1

)
x2 , where

⎧⎨
⎩z := ϕ̃(a)

xj := Tπ(a)ϕ(vj ),
(15.16)

which proves our “fact of Nature” (see the next paragraph for a nicer argument).
When E is a vector bundle over B, the identification of Va to the fibre Eπ(a)

makes Ra into an element of L2
alt(Tπ(a)B,Eπ(a)); in particular, if E = TB, one is

in the perhaps more familiar situation where Ra takes its values in Tπ(a)B.
For a general vector bundle, when H is linear, i.e., when the parallel transport

from one time to another along any path is (which amounts to saying that the
Christoffel maps 0(x, y) in the charts of the vector bundle are linear in y), it
follows from (15.16) that the curvature Ra depends linearly on a viewed as an
element of Eπ(a); setting b = π(a), Ra(v,w) therefore is the value at (a, v,w) ∈
Eb × TbB × TbB of a trilinear map Rb with values in Eb; if E = T B, the
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familiar monster of Riemannian geometry [23] is the quadrilinear form (TbB)
4 3

(a, v,w,h) �→ Rb(a, v,w) · h (scalar product).
If E is an affine bundle, Ra takes its values in the vector space *Eπ(a) underlying

the fibre. More generally, when E is a principal bundle with structural group G,
the datum of a enables one to identify Eπ(a) to G by the inverse of the bijection
G 3 g �→ ga, and therefore identify Va to the Lie algebra of G (the tangent space
g := T1G of G at 1) by the inverse of the differential at 1 of the previous bijection;
in this identification, one therefore has Ra ∈ L2

alt(Tπ(a)B, g).

“Curvature” of a Pfaffian System If P is a Pfaffian system on a manifold V (that
is, a sub-vector bundle of the tangent bundle T V , the stupid cases of T V and its zero
section being excluded), one can replace in the previous construction the “concrete”
vertical space Va by its “abstract” version

νPa := TaV/Pa

(which defines a vector bundle νP over V , the normal bundle of P) and denote
by v �→ vν the canonical projection TaV → νPa . The previous fact of Nature
generalises: one defines the “curvature tensor” Ra ∈ L2

alt(Pa, νPa) of the Pfaffian
system P at a ∈ V by the formula

Ra(Xa, Ya) := ([X,Y ]a)ν, (15.17)

whereX,Y vary among the sections of the vector bundleP over open subsetsU 3 a
of V (vector fields onU verifyingXx, Yx ∈ Px or, equivalently, (Xx)ν = (Yx)ν = 0
for every x).

To prove our “fact of Nature”, one can consider locally P as a connection (see
the proof of the Frobenius theorem hereafter) and use (15.16) or, in a more elegant
way, remark that if one multiplies for example Y by a real function f defined near a,
(15.11) yields [X, fY ]a = f (a)[X,Y ]a + Lxf (a)Ya and therefore ([X, f Y ]a)ν =
f (a)([X,Y ]a)ν since (Ya)ν = 0, hence ([X, fY ]a)ν = ([X,Y ]a)ν if f (a) = 1.

Proposition For every integral manifold W of P , the curvature tensor Ra is
identically zero on TaW × TaW for all a ∈ W .

Indeed, if X,Y are vector fields on a neighbourhood of a inW , it is easy to extend them locally

to sections X̄, Ȳ of P defined in the neighbourhood of a in V ; by definition, X̄a = Xa , Ȳa = Ya

and, moreover, [X̄, Ȳ ]a = [X,Y ]a ∈ TaW ⊂ Pa since, near a, the flow of X̄ coincides on W with

that of X. It follows that Ra(Xa, Ya) = Ra(X̄a, Ȳa) = ([X̄, Ȳ ]a)ν = ([X,Y ]a )ν = 0, hence the

proposition since (Xa, Ya) can be any pair of vectors tangent to W at a.

Definition An integral element of P at a ∈ V is a plausible candidate to be the
tangent space at a of an integral manifold of P , i.e., a vector subspace Ia of Pa such
that Ra |Ia×Ia = 0.
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The Cartan-Kähler theorem for Pfaffian systems [1, 7, 12, 22] asserts that, in the
analytic case, every “generic” integral element Ia of P is indeed of the form
Ia = TaW for at least one (analytic) integral manifold W of P . This statement is
more Cartan than Kähler [2]; it is astounding that Élie Cartan, from three examples,
could have the idea of so general a result and see how to “corner” the required
integral manifold. Here are two extreme examples where this general result is not
needed.

Example 1: Completely Integrable Pfaffian Systems They are those Pfaffian
system P such that Ra = 0 for every a ∈ V (in other words, Pa is an integral
element). For example, the Pfaffian system V defined by the vertical spaces of a
submersion is completely integrable (and completely integrated, the fibres being
integral manifolds). A completely integrable connection is sometimes said to be flat
since its curvature zero everywhere.

Frobenius theorem If a Pfaffian system P on V is completely integrable, there
does exist, for every a ∈ V , an integral manifold W of P such that TaW = Pa
(hence, for dimensional reasons, TxW = Px for every x ∈ W if W is connected);
moreover, this integral manifold is locally unique: if W ′ is another one, there exists
an open neighbourhoodU of a in V such that W ∩U = W ′ ∩ U (in words, W and
W ′ have the same germ3 at a).

Hence, the relation “there exists a connected integral manifold of P containing
a and a′ ” between points a, a′ of V is an equivalence relation, whose equivalence
classes are called the leaves of the foliation of V defined by P ; they inherit from
their definition a structure of connected manifold (injectively immersed) of the
same dimension as the Pa’s, but they are not (embedded) submanifolds in general.
Even for dimPa = 1 (“line field”, always completely integrable since the Ra’s
are alternate), the global study of foliations is a very difficult subject to which,
after Ehresmann and Reeb, contributed Haefliger, Bott, Novikov, Thurston among
others and, in the case of line fields, all the great names of dynamical systems since
Poincaré. Indeed, the theory includes the study of the orbits of a vector field X on
V (considering the line field x �→ RXx on the open subset of V where X does not
vanish), which are the images of its integral curves.

Local structure of the foliation defined by a completely integrable Pfaffian system
For every a ∈ V , there exist open subsets U ⊂ R

n, U ′ ⊂ R
p and a chart (“plaque

family”) ψ of V with a ∈ domψ and imψ = U × U ′ such that the leaves of the
foliation of domψ defined by P are the subsets ψ−1(U × {y0}) with y0 ∈ U ′; each
of these local leaves (“plaques”) is obviously contained in one of the leaves of the
global foliation, but this global leaf can come back and cut domψ following other
plaques, whose union can even be dense in domψ: for example, if α is an irrational

3In the beginning, Ehresmann used the word jet, little recommendable in this case except in the
analytic framework.
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number, all the orbits of the constant vector field Xx := (1, α) ∈ R
2 = TxT

2 on the
torus T2 = R

2/Z2 are dense.

Proof à la Dieudonné [10] of the Frobenius theorem and of the existence of plaque
families Let ϕ be an arbitrary chart of V at a; composing it with a translation and
a permutation of coordinates, one can assume that it takes its values in R

n × R
p,

that ϕ(a) = 0 and that Taϕ(Pa) is horizontal, i.e., complementary of the vertical
space {0} ×R

p of the projection π : (x, y) �→ x. Restricting domϕ, it follows that
all the spaces Hϕ(z) := Tzϕ(Pz) are horizontal; therefore, there exists a Christoffel
map 0 : imϕ → L(Rn,Rp), such that H(x,y) is the graph of −0(x, y) for every
(x, y) ∈ imϕ. The integral manifolds of maximal dimension of P in domϕ are the
images by ϕ−1 of those of the connection H so defined, which integral manifolds
are locally the graphs of solutions y = f (x) of the “total differential equation”

dy

dx
+ 0(x, y) = 0; (15.18)

if such a solution f takes the value y0 at 0, then, for every x ∈ R
n such that the

segment [0, x] is contained in dom f , it follows that f (tx) is for 0 ≤ t ≤ 1 the value

Rt (x, y0) at time t of the solution of the differential equation
dy

dt
+ 0(tx, y)x =

0 equal to y0 at t = 0. As Rt (x, y0) exists for every t if x = 0, the theory of
differential equations [8] tells us that there are open balls U ⊂ R

n and U ′ ⊂ R
p

centred at 0 such that, for x ∈ U , the map y0 �→ R1(x, y0) is a diffeomorphism of
U ′ onto an open subset of Rp; in other words, h : (x, y0) �→

(
x,R1(x, y0)

)
is a

diffeomorphism of U × U ′ onto an open subset of U ×R
p.

We now just have to check that the unique candidate f : x �→
R1(x, y0) for every y0 ∈ U ′, to be in U the solution of (15.18) equal
to y0 for x = 0 is indeed a solution of (15.18): one will get the plaque
family ψ := h−1 ◦ ϕ and, for y0 = 0, the Frobenius theorem. Now,
differentiating with respect to x the identity ∂

∂t
f (tx) + 0

(
tx, f (tx)

)
x = 0

and using (15.16), one can see that t �→ tDf (tx) and t �→ −t0(tx, f (tx)) verify
the same differential equation on [0, 1] and take the same value 0 ∈ L(Rn,Rp) at
t = 0; therefore, they are equal, hence the required result for t = 1.

Remarks For line fields, this is just the theory of “time dependent” differential
equations. The construction performed in general (before the final verification,
which uses curvature) is a local version of the proof of Ehresmann’s theorem.
The vanishing of curvature is imposed by the symmetry of the second derivative
of solutions of (15.18). Dieudonné’s proof works in infinite dimensions as well.

Example 2: Fields of Hyperplanes and Contact Structures If α is a nowhere
vanishing Pfaffian form on V and Kz := kerαz, the curvature at z of the Pfaffian
system K identifies to −dαz|Kz

by the isomorphism of νKz = TzV/Kz onto R

induced by αz.
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Indeed, for all local sections X,Y of the vector bundle K in the neighbourhood
of z, one has αX = αY = 0, and therefore αz[Xz, Yz] = −dαz(Xz, Yz) by (15.11).

A contact structure therefore is “completely non integrable”, its curvature being
at every point a nondegenerate bilinear form.

The canonical contact structure K = K1(M,R) of J 1(M,R) is a connection
on the trivial fibre bundle J 1(M,R) = T ∗M × R over T ∗M; therefore, it has an
intrinsic “Christoffel map”: denoting the points of T ∗M by x = (q, p) (p ∈ T ∗q M),

as in mechanics, and by z = (q, p, y) those of J 1(M,R), each Kz is defined by the
equation dy = p dq; hence, it is the graph of the linear form p dq on Tx(T ∗M); the
Pfaffian form λ = λM on T ∗M given by λx = p dq is called the Liouville form of
T ∗M .

The curvature of the connection K1(M,R) on the trivial fibre bundle
J 1(M,R) = T ∗M × R over T ∗M identifies therefore to the 2-form dλM on
T ∗M: one obtains again the canonical symplectic form ωM = −dλM of T ∗M .

Remarks To obtain Hamilton’s equations under their historical form, one has the
choice between our sign conventions and those of [21], namely ωM = dλM and
ωMXH = −dH .

Every etale map g between open subsets of M lifts to the map T ∗g of T ∗ dom g

onto T ∗ im g given by T ∗g(q, p) := (
g(q), p ◦ (Tqg)−1

)
, which is obviously

symplectic (it preserves the Liouville form); if X is a vector field on M , each
T ∗gtX is the time t of the flow of the Hamiltonian vector field with Hamiltonian
K(q, p) = pXq ; the first integrals of classical mechanics obtained by applying the
“Hamiltonian Noether theorem” are in general such K’s.

Given a Pfaffian system P on V , let P⊥ be the sub-vector bundle of T ∗V whose
fibre over x consists of those ξ ∈ T ∗x V which vanish on Px . For each a ∈ V ,
there exist r sections α1, . . . , αr of P⊥ over an open subset U containing a such
that α(x) := (

α1(x), . . . , αr (x)
)

is a basis of P⊥
x for every x ∈ U ; in other words,

α(x) induces an isomorphism of νPx onto R
r that, as for r = 1, identifies Rx to

−dα(x)|P2
x
= −(dα1(x), . . . , dαr(x)

)|P2
x
∈ Lalt(Px,Rr ).

It follows from Thom’s transversality lemma that “almost every” Pfaffian form
on a manifold of odd dimension is a contact form off a smooth hypersurface, see
for example [9]; likewise, the exterior derivative of “almost every” Pfaffian form
on a manifold M of even dimension is symplectic off a hypersurface, necessarily
nonempty if M is compact without boundary.

In contrast, it is clear that, apart from those defined by a submersion and line
fields, completely integrable Pfaffian systems almost never occur. Why devote so
much effort to such improbable objects? An answer is that they appear in a rather
robust way (despite a certain loss of regularity under perturbations) in the case of
the stable and unstable foliations of an Anosov diffeomorphism—hence, it seems,
Novikov’s initial interest in the subject; another answer, very present in Élie Cartan’s
work, is that the most symmetric objects often are the most beautiful and the most
useful; here is an illustration, assuming some knowledge of de Rham cohomology:
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The “Gauss-Manin” Connection Associated to a Proper Submersion, and

Monodromy One can associate to every proper submersion
E

↓ π

B

the vector bundle

H •E over B on K = R or C whose fibre over b is the cohomology space
H •(Eb,K). To see that it is indeed a vector bundle endowed with a canonical
flat linear connection H, we are going to construct (assuming E paracompact. . . )
a vector bundle atlas {ϕ̃}ϕ∈� such that, denoting by Hϕ the linear flat connection
on dom ϕ̃ whose Christoffel map in the chart ϕ̃ is4 0 = 0, the connections Hϕ and
Hψ , coincide on dom ψ̃ ∩dom ϕ̃ for ϕ,ψ ∈ �; therefore, the local connectionsHϕ

do define a global flat linear connection H on H •E.
In this construction, � is the atlas of B consisting of those charts whose image is an open ball

centred at 0 in R
n. A connection on π being chosen, the proof of Ehresmann’s theorem shows

that there exists for each ϕ ∈ � a trivialisation hϕ : π−1(dom ϕ) → dom ϕ × Fϕ of π over
dom ϕ; for b ∈ dom ϕ, the canonical injection ib : Eb ↪→ π−1(dom ϕ) induces an isomorphism
i∗b of H •(π−1(dom ϕ),K) onto H •(Eb,K), which “reads” modulo hϕ as the isomorphism j∗b of
H •(dom ϕ× Fϕ,K) onto H •({b} ×Fϕ,K

)
defined by jb : {b} ×Fϕ ↪→ dom ϕ× Fϕ [the inverse

isomorphism is p∗b , where pb(x, y) := (b, y), as every closed differential form α on dom ϕ × Fϕ
such that j∗b α = 0 is exact: to see it, just apply our proof of Poincaré’s lemma to the vector field X
on dom ϕ × Fϕ whose image by ϕ × idFϕ admits the flow (x, y) �→ (

b + et (x − b), y
)
]. One can

therefore associate to ϕ the chart ϕ̃ of H •E over ϕ, with image imϕ×H •(π−1(dom ϕ),K), given
by ϕ̃(b, c) := (

ϕ(b), (i∗b )−1c
)
, c ∈ H •(Eb,K). Il is easy to check that one gets in this fashion the

required vector bundle atlas and flat connection.

A subtle feature of the construction is that the fibre bundle H •E and the connection are K–

analytic when π is, whereas the local trivialisations hϕ are not—they are obtained using partitions

of unity.

For b ∈ B, parallel transport along each loop γ in B, with base point b, defines an
automorphism ofH •Eb since the connection is linear; as it is flat, this automorphism
depends only on the homotopy class of γ ; this defines a homomorphism of the
fundamental group π1(B, b) into the group of automorphisms of H •Eb, called
monodromy.

Torsion, Levi-Civita Connection and Variants The torsion τa ∈ Lalt(TaM, TaM)

at a ∈ M of a linear connection on a manifoldM (i.e., on its tangent bundle) can be
defined quickly as follows: for every parametrised surface σ : (R2, 0) → (M, a),
one has τa

(
∂1σ(0), ∂2σ(0)

) = D2∂1σ(0) − D1∂2σ(0), where D1∂2σ(s, t) :=
D
∂s

∂
∂t
σ (s, t) and D2∂1σ(s, t) := D

∂t
∂
∂s
σ (s, t). For each Riemannian metric on M ,

there exists a unique linear connection without torsion (“symmetric”) on M that is
Riemannian, i.e., such that the parallel transport from time s at time t along any
path γ in M is an isometry of Tγ (s)M onto Tγ (t)M: it is called the Levi-Civita

4More simply, ϕ̃ is a plaque family of the foliation defined by Hϕ , which therefore is born
“integrated”; by the way, Élie Cartan named infinitesimal connection what we call a connection; the
problem is to “connect” two nearby fibres Eb,Eb′—for (infinitesimal) connections with nonzero
curvature, however, the result depends, even locally, on the arc from b to b′ along which parallel
transport is taken.
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connection. The absence of torsion allows for example an intrinsic proof of the fact
that the critical points of the action functional 1

2

∫ 1
0 ‖γ̇ (t)‖2 dt on the space of paths

γ with fixed endpoints γ (0), γ (1) in M are the geodesics, solutions of the equation
D
dt
γ̇ (t) = 0.
Since parallel transport for the Levi-Civita connection preserves the scalar

product, it induces a parallel transport of orthonormal frames of the tangent spaces
of M , which is the parallel transport of a connection on the bundle of orthonormal
frames; this connection is principal, meaning that parallel transport preserves the
action of the structural group.

15.9 As a Conclusion

Of course, I have barely touched the subject, my only ambition being to provide
some access to the ideas of Ehresmann and his master Élie Cartan. The work of the
latter is not yet finished, as each generation tries to cast some light on it. A first rate
contribution in that respect was Charles Ehresmann’s introduction of fibre bundles,
jets and connections, but also pseudogroups and groupoids, now again very popular
[17, 27, 28] in spite of their ugly name (to say nothing of the horrible algebroids,
direct from a bad science fiction film).

Typical examples The diffeomorphisms between open subsets of a manifold M

form a pseudogroup, and even a groupoid if it is forbidden to compose two of
them when the domain of the second is not exactly the image of the first; the
germs at points of M of such local diffeomorphisms form a groupoid (one can
compose a germ f at a and a germ g at b only if b = f (a)), and so do their
jets of order k. When M is endowed with an additional structure, for example a
Riemannian metric or a symplectic form or a contact structure, the (jets or germs
of) local diffeomorphisms preserving this structure form a sub-pseudogroup or a
sub-groupoid of the previous one. The Riemannian example of an otherwise round
sphere with a bump in the neighbourhood of a point shows that this pseudogroup or
groupoid can be rather irregular, well apt to detect local symmetries ignored by the
group of global isometries of our sphere onto itself, in general trivial. A fundamental
object in foliation theory is the holonomy groupoid generalising monodromy.

In the works of Lie or Élie Cartan, “groups” were quite often pseudogroups—
which appear already when one considers the flow of a non-complete vector field
(similarly, what plays the role of a one-parameter group for time-dependent vector
fields is a “groupoid with two parameters”, which shows that many scientists
manipulate groupoids without being aware of it!). The emphasis on abstract
groups, which, according to the dogma, act only on themselves until they are
represented, partially rejected into darkness Lie’s original groups, i.e., pseudogroups
of transformations that cannot always be abstracted from the space on which they
act [3, 5].
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To Élie Cartan, as I said, one goes back all the time: for example, the algorithmic
“equivalence method” in [16] is a recent avatar of his “equivalence problem” [6, 19].

The equivalence problem is to find criteria for two structures to be locally equivalent up to local

coordinate changes; of course, the langage of manifolds, used throughout this article, is coordinate-

free, so that “coordinate change” means “diffeomorphism” (true problems cannot depend on the

choice of coordinates).

Similarly, his theory of involution goes on to inspiring Malgrange [22] after
Kuranishi and many others [1, 12], such as Ehresmann, whose jets allow an intrinsic
formulation of the prolongations of a differential system.

It should also be time to go back to Ehresmann before his beautifully concise
texts become inaccessible; thus, my proof of his most famous theorem is the
original one [13], so elliptic that many people replaced it by arguments far less
elegant and natural. Science progresses to a large extent because its actors do not
really understand the work of their predecessors and make it into something else,
sometimes more interesting than the original, but there are limits. . .
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Chapter 16
The Global Study of Riemannian-Finsler
Geometry

Katsuhiro Shiohama and Bankteshwar Tiwari

To the Memory of Marcel Berger

Abstract The aim of this article is to present a comparative review of Riemannian
and Finsler geometry. The structures of cut and conjugate loci on Riemannian
manifolds have been discussed by many geometers including H. Busemann, M.
Berger and W. Klingenberg. The key point in the study of Finsler manifolds is the
non-symmetric property of its distance functions. We discuss fundamental results
on the cut and conjugate loci of Finsler manifolds and note the differences between
Riemannian and Finsler manifolds in these respects. The topological and differential
structures on Riemannian manifolds, in the presence of convex functions, has been
an active field of research in the second half of twentieth century. We discuss some
results on Riemannian manifolds with convex functions and their recently proved
analogues in the field of Finsler manifolds.
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16.1 Introduction

The origin of Finsler geometry can be traced back to Riemann’s 1854 Habilitation
address “Uber die Hypothesen, welche der Geometrie zu grunde liegen” (On the
Hypotheses which lie at the Foundations of Geometry), where he remarked: ‘. . . The
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next case in simplicity includes those manifoldness in which the line-element may be
expressed as the fourth root of a quartic differential expression. The investigation
of this more general kind would require no really different principles, but would
take considerable time and throw little new light on the theory of space, especially
as the results cannot be geometrically expressed, I restrict myself, therefore, to
those manifoldness in which the line-element is expressed as the square root of
a quadratic differential expression. . . ’, translation by William Kingdon Clifford
[35]. Later on, the geometry where the metric is the square root of a quadratic
differential form, got well recognized as Riemannian geometry. The general case
was initiated by Paul Finsler in 1918 in his thesis written under the supervision of
Carathéodory. It was said by S.S. Chern that Finsler Geometry is just Riemannian
Geometry without the Quadratic Restriction [11]. In this article, we are interested
in Global Finsler Geometry considered as an intrinsic metric geometry. We often
refer to Riemannian geometry for our development of global Finsler geometry.
One of the basic differences between Riemannian and Finsler geometry is the
possible asymmetry of distance functions. It turns out that in certain contexts Finsler
geometry is more natural than Riemannian geometry, and closer to real world. Here
is an example. On a slope of the earth’s surface we may consider the “distance” in
terms of time taken to traverse it. Consider a person walking from the bottom of a
hill to its top. In this context, the “distance” will be larger from the bottom to the
top, than from the top to the bottom. This example has been emphasized by Herbert
Busemann, one of the most prominent promoters of Finsler geometry. Busemann’s
collected works were published in a 2-volume set by Springer Verlag, see [7]. Later
Makoto Matsumoto explicitly showed that such metric is actually a Finsler metric,
see [28].

Let us be more specific. A Finsler metric on a smooth manifold is a smoothly
varying family of Minkowski norms on the tangent spaces, rather than a family
of inner products in the case of a Riemannian metric. It turns out that every
Finsler metric induces an inner product, one in each direction of a tangent space
at each point of the manifold. Thus, a Finsler metric associates to the manifold
a family of inner products parametrized by the tangent spaces of the manifold
(instead of being parametrized by the manifold, in the case of a Riemannian metric).
However, the perpendicularity between two tangent vectors does not make sense
on a Finsler manifold. Thus, it seems difficult to talk about the angle between
two tangent vectors on such a manifold. In the mathematical literature, several
kinds of connections were defined on a Finsler manifold. Some of the well-known
connections were introduced by J.L. Synge, J. H. Taylor, L. Berwald, E. Cartan, H.
Rund, H. Hashiguchi and S.S. Chern and others. In Riemannian geometry, the Levi-
Civita connection is the canonical connection. It is torsion free and metrical. There
is no connection in Finsler geometry which is both torsion free and metrical. There
are different connections which have their own importance. The Chern connection
is important from two points of view: firstly when the Finsler metric corresponds
to a Riemannian metric, it reduces to the Levi-Civita connection, and secondly, it
solves the problem of equivalence in Finsler geometry. This connection is torsion
free but not metrical.
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On Finsler manifolds, geometric objects are two-sided; viz., forward and back-
ward, arising from the asymmetry of the distance function. The study of the cut
locus and the conjugate locus of Riemannian and Finsler manifolds is important for
the development of global Finsler geometry. In this article we give an overview of
some aspects of global Riemannian geometry, developed in the very beginning of
the last century, and of extensions of the Riemannian results on the cut locus and
conjugate locus to Finsler manifolds. Among others, the cut locus is most important
in the study of global Riemannian geometry. We discuss pointed Blaschke-Finsler
manifolds in connection with the Rauch conjecture on the cut locus and the
conjugate locus of a compact simply connected Riemannian manifold. It should
be emphasized that convex sets and convex functions defined on a Finsler manifold
are independent of the non-symmetric property of the distance function. Hence, the
notion of convexity is common to both Riemannian and Finsler geometries.

The comparison theorems of Rauch, Berger and Toponogov play essential roles
in the study of complete Riemannian manifolds of non-negative sectional curvature.
However, we do not use these comparison theorems here in our study of Finsler
manifolds. Following the ideas from Busemann [8], we discuss several topics
on Finsler manifolds with non-symmetric distance functions. They are (1) the
cut locus, (2) the conjugate locus and (3) convex sets, including the Whitehead
convexity theorem, (4) convex functions, and (5) Busemann functions. We also
discuss Busemann functions on both complete Riemannian and Finsler manifolds.

The article is organized as follows. Definitions and notation are set up in
Sect. 16.2. The forward cut locus and the forward conjugate locus and their
fundamental properties, including the classical Whitehead convexity theorem are
discussed in Sect. 16.3. A detailed discussion on cut locus and conjugate locus,
including the classical results due to Klingenberg and Berger, which are very
important in this article, are developed in Sect. 16.4. We discuss in Sect. 16.4, the
well-known Blaschke problem on compact Finsler manifolds in connection with
the Rauch conjecture [34]. We discuss the simplest case of a pointed Blaschke
manifold. Berger initiated the study of compact simply connected even-dimensional
Riemannian manifolds of positive sectional curvature whose diameter is mini-
mal [2, 3]. Omori [31] discussed compact manifolds with minimal diameter with
real analytic metric. In Sect. 16.5, we discuss the properties of Busemann functions
and convex functions on complete non-compact Riemannian and Finsler manifolds.
Finally, we summarize Riemannian and Finsler results on convex functions. Some
of these results have already been announced in [36] and [22]. For the basic tools in
Riemannian and Finsler geometry we refer to [1, 4, 8, 9, 11, 12, 24, 37].

The authors would like to express their sincere thanks to Professor N. Innami,
Professor C.S. Aravinda and Professor Athanase Papadopoulos for reading and
giving their valuable comments that improved this article.
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16.2 Definitions and Preliminaries

We first give the definitions of Riemannian and Finsler metrics on a smooth
manifold and discuss an important relation between them. The other notions that
we present in this section are concerned with the non-symmetric properties of the
distance function.

16.2.1 Riemannian and Finsler Metrics

Let M be a smooth manifold of dimension n ≥ 2 and at each point x ∈ M , let
gx be a dot product on the tangent space TxM to M . For smooth vector fields X,Y
defined in a neighborhood U of x in M , if the function g(X, Y ) : U → R defined
as x �→ gx(X(x), Y (x)) is smooth, then g is called a Riemannian metric, and the
pair (M, g) is called a Riemannian manifold.

The tangent bundle TM := ∪x∈MTxM over M is a smooth 2n-manifold. Let
F : TM → R be a continuous function such that:

(1) F is smooth on TM \ {0} (regularity);
(2) F(x, cu) = cF (x, u) for all c > 0 and for all (x, u) ∈ TM (positive

homogeneity);

(3) gij (x, u) := 1
2
∂2F 2(x,u)

∂ui∂uj
is a positive definite matrix for all (x, u) ∈ TM (strong

convexity).

The pair (M,F) is called a Finsler manifold and F its fundamental function. The
positive homogeneity and the strong convexity of F lead us to the following facts:

Lemma 16.2.1 (See [1]) Let (M,F) be a Finsler manifold and x ∈ M . If u, z,w ∈
TxM and if u is a non-zero vector, then we have

(1) g(x,u)(z,w) = ∂2F 2(x,u+sz+tw)
2∂t∂s |(0,0);

(2) g(x,u)(u, u) = F 2(x, u);
(3) g(x, tu) = g(x, u) for all t > 0.

16.2.2 Intrinsic Distances and Geodesics

Let (M,F) be a Finsler manifold of dimension≥ 2. For a smooth curve c : [a, b] →
(M,F) the length L(c) is given by

L(c) :=
∫ b

a

F (c(t), c′(t)) dt, where c′(t) = dc

dt
.
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The reversed curve of c, viz. t �→ c(a + b − t), t ∈ [a, b], is denoted by c−1. The
length of c−1 is in general different from that of c:

L(c−1) =
∫ b

a

F (c−1(t), (c−1)′(t)) dt.

The intrinsic distance d(x, y) from a point x ∈ M to a point y ∈ M is defined by

d(x, y) := inf{L(c) | c is a smooth curve from x to y}.

We note that in general d(x, y) �= d(y, x). The indicatrix 1x ⊂ TxM at a point x is
the set of all unit vectors with respect to F :

1x := {u ∈ TxM |F(x, u) = 1}.

The reversibility constant λ(C) of a compact set C ⊂ M is defined by

λ(C) := sup

{
F(x, u)

F (x,−u) | x ∈ C, u ∈ TxM \ {0}
}
. (16.2.1)

We then have

λ(C)−1d(x, y) ≤ d(y, x) ≤ λ(C)d(x, y), for all x, y ∈ C.

Let U be an open subset of a Finsler manifold (M,F). Let νU be the space of
smooth vector fields onU and νU+ ⊂ νU be the subset of nowhere vanishing vector
fields. For V ∈ νU+ and for all X,Y ∈ νU define a trilinear form 〈· , · , ·〉V by

〈X,Y,Z〉V = 1
4

∂3

∂r∂s∂t
F 2(V + rX+ sY + tZ)|r=s=t=0, which is a symmetric (0, 3)

tensor, called the Cartan tensor. The Cartan tensor is a non-Riemannian quantity. It
is easy to show that a Finsler metric reduces to a Riemannian metric if and only
if its Cartan tensor vanishes. An affine connection ∇V is a map ∇V : (X, Y ) ∈
νU × νU → ∇V

XY ∈ νU , linear in Y (not necessarily linear in X) and satisfying
the following conditions ∇V

X (f Y ) = f∇V
XY +X(f )Y and ∇V

fXY = f∇V
XY for all

f ∈ C∞U and X,Y ∈ νU .

Theorem 16.2.1 (See Rademacher [33]) Let (M,F) be a Finsler manifold, U ⊂
M an open set and V ∈ νU+, then there is a unique affine connection∇V associated
with V , called the Chern connection, satisfying the following conditions:

(1) ∇V is torsion free, that is, ∇V
XY − ∇V

Y X = [X,Y ] for all X,Y ∈ νU .
(2) ∇V is almost metrical, that is,

XgV (Y,Z) = gV (∇VXY,Z)+ gV (Y,∇VXZ)+ 2〈∇VXV, Y,Z〉V for all X,Y,Z ∈ νU.
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Using the connection ∇V , we introduce the covariant derivative ∇V
dt

along a
smooth curve c : [a, b] → M . For a vector field X along the curve c with tangent

vector field c′, define ∇V
dt
X(t) = ∇V

c′X(t). If the vector fields V and c′ along c

coincide, we also write ∇V
dt
X(t) = ∇

dt
X(t).

Let γ : [0, 1] → (M,F) be a smooth curve on a Finsler manifold (M,F).
Then γ is said to be a forward geodesic if ∇

dt
γ ′(t) = 0, for all t ∈ [0, 1]. In the

local coordinates, if γ ′(t) = dxi

dt
∂

∂xi
and 0kij (x, y) are components of the Chern

connection (see [1, 33]), then forward geodesics are the solutions of the second
order non-linear differential equations

d2xk

dt2
+ 0kij (x, y)

dxi

dt

dxj

dt
= 0.

A vector field V ∈ νU is said to be a geodesic vector field if ∇V
V V = 0, that is, if

all the flow lines of V are geodesics.

Proposition 16.2.1 (See Rademacher [33]) Let V be a nowhere-vanishing
geodesic vector field defined on an open subset U ⊂ M . Denote by ∇, the Levi-
Civita connection of the Riemannian manifold (U, gV ). Then ∇V

XV = ∇XV , for all
vector fields X; in particular, the vector field V is also a geodesic vector field for
the Riemannian manifold (U, gV ).

16.2.3 The Exponential Map and Geodesic Completeness

A forward geodesic γu : [0, h) → (M,F) with the initial conditions γu(0) := x

and γ̇u(0) := u is the solution of a non-linear second order differential equation
with smooth coefficients. Let �x ⊂ TxM be the star-shaped domain with respect to
the origin of TxM , such that

�x = {u ∈ TxM | γu(1) is defined}. (16.2.2)

We then define the exponential map expx : �x → (M,F) at x by

expx u := γu(1), u ∈ �x.

We say that (M,F) is forward geodesically complete if �x = TxM at some point
x ∈ M . It then follows that �y = TyM for all y ∈ M . The classical Hopf-Rinow
theorem states that any two points on a forward geodesically complete (M,F) are
joined by a forward minimizing geodesic.

A forward (resp. backward) Cauchy sequence {qj }∞j=1 is defined by the condition
that for every ε > 0 there exists an integer Nε such that

d(qj , qk) < ε (resp. d(qk, qj ) < ε), for all Nε < j < k.
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We say that (M,F) is forward complete (resp. backward complete) if every forward
(resp. backward) Cauchy sequence converges.

Remark 1 If F(p, u) = F(p,−u) holds for all (p, u) ∈ TM , then all the
completeness conditions as above are equivalent to each other.

Proposition 16.2.2 (See [1]) If a Finsler manifold (M,F) is forward geodesically
complete, then (M,F) is forward complete.

16.3 Forward Cut Locus and Forward Conjugate Locus

Let (M,F) be a forward geodesically complete Finsler manifold, i.e. at each point
x ∈ M the exponential map expx : TxM → (M,F) is defined on the whole tangent
space.

16.3.1 Forward Cut Locus and Forward Conjugate Locus

The forward cut locus and forward conjugate locus to a point x ∈ (M,F), denoted
by C(x) and J (x) respectively, are subsets of M and have a significant role in the
study of global differential geometry of Finsler manifolds. In particular, the forward
cut locus to a point x ∈ (M,F) equipped with the equivalence relation provided
by the exponential map contains all the topological information of (M,F). We will
define them shortly. Let γu : [0, a] → (M,F), for a unit vector u ∈ 1x , be a unit
speed geodesic with γu(0) := x, γ̇u(0) = u. Define a function ix : 1x → R by

ix(u) := sup{s > 0 | t = d(x, γu(t)), for all t ∈ (0, s)}.

The point γu(ix(u)) is called the forward cut point to x along γu, u ∈ 1x . In the
case where i(x) = ∞, we call x a forward pole of M . The forward injectivity radius
function at x is defined by

i(x) := inf{ix(u) | u ∈ 1x}.

Let v ∈ 1x be a unit vector with gu(u, v) = 0. Here we employ the Riemannian
metric g in (16.3.4) defined on Ux \ {x} which will be described in the next section.
We define the Jacobi field Yu,v : [0, a] → TM along γu such that Yu,v(0) = 0,
∇ ∂

∂t
Yu,v(0) = v. Namely, it is defined by

Yu,v(t) := d(expx)tutv, v ∈ 1x, gu(u, v) = 0, t ∈ [0, a]. (16.3.3)
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The forward first conjugate point along γu is defined as follows: Let cx : 1x →
(0,∞) be a function defined by

cx(u) := sup{ s > 0 | det(d(expx)|tu) �= 0, for all t ∈ (0, s)}, u ∈ 1x.

In other words, a non-trivial Jacobi field Y along γu, with Y (0) = 0, exists such that
Y (cx(u)) = 0 and Y (t) �= 0 for all t ∈ (0, cx(u)). The point γu(cx(u)) is called the
forward first conjugate point to x along γu.

The forward tangential cut locus C̃(x) ⊂ TxM and the forward first tangential
conjugate locus J̃ (x) ⊂ TxM are defined by

C̃(x) := {ix(u)u | u ∈ 1x}, J̃ (x) := {cx(u)u | u ∈ 1x},

and their exponential images are the forward cut locus and forward conjugate locus
to x respectively; they are denoted, respectively, by

C(x) := expx C̃(x), J (x) := expx J̃ (x).

The domain containing the origin of TxM and bounded by C̃(x) is denoted by Ũx .
Clearly we have ∂Ũx = C̃(x), and Ũx ⊂ TxM is the maximal domain on which
expx is an embedding and denote expx Ũx by Ux . We observe from the definition of
the cut locus to a point x ∈ (M,F) thatC(x) contains all the topological information
of M . In fact M \C(x) is just an open disk and the identification structure of C̃(x)
via the exponential map defines the manifold.

16.3.2 Geodesic Polar Coordinates

We define geodesic polar coordinates around an arbitrary fixed point x ∈ M . Let
ϕ : 1x × (0, ix)→ (M,F) be defined by

ϕ(u, t) := expx tu, 0 < t < ix.

The map ϕ is a diffeomorphism of Sn−1 × (0, ix) via identification of the indicatrix
with the unit sphere Sn−1 ⊂ TxM through the central projection. Property (3) in
Lemma 16.2.1 defines a Riemannian metric gu along γu. Let ξ be a radial vector
field on Ux , i.e., ξ(y) := dexptu(u), u ∈ 1x , y = expx(tu), 0 < t < ix . Thus we
have a smooth Riemannian metric g on Ux \ {x} defined by,

g(y) :=
⋃
y∈Ux

g(y, ξ(y)), y ∈ Ux \ {x}. (16.3.4)

The polar coordinates centered at x are defined using ϕ. All the F -geodesics
emanating from x are identified with geodesics as a Riemannian manifold (Ux, g).
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The well-known first and second variation formulas along a geodesic γu with
u ∈ 1x are valid for (Ux, g). Thus we know that q := γu(cx(u)) is a conjugate
point to x along γu if and only if there is a non-trivial Jacobi field Y along γu
such that Y (0) = Y (cx(u)) = 0. If a unit speed geodesic σ : [0, a] → (M,F)

admits a conjugate pair in its interior, then there is a 1-parameter variation α :
(−h, h) × [0, a] → M along σ with α(ε, 0) = x and α(ε, a) = σ(a) for all
ε ∈ (−h, h), such that all of its variational curves have lengths less than a. This
means that

cx(u) ≥ ix(u), for all u ∈ 1x, for all x ∈ M. (16.3.5)

We observe that if σ : [0, a] → (M,F) is a minimizing geodesic and if σ(a) is
conjugate to σ(0) along σ , then σ(a) is the cut point to σ(0) along it.

16.3.3 The Whitehead Convexity Theorem

We define three kinds of convex sets on a complete Finsler manifold (M,F).

Definition 16.3.1 A set V ⊂ M is by definition convex if any pair of points x, y ∈
V is joined by a unique minimizing geodesic whose image is contained entirely in
V . The existence of a convex ball centered at every point on (M,F) is stated in the
Whitehead Convexity Theorem 16.3.1 below. Let B(x, δ(x)) be a convex δ(x)-ball
around x. A closed set V ⊂ M is called locally convex if every x ∈ V has the
property that V ∩ B(x, δ(x)) is convex. A set V ⊂ M is called totally convex if
every geodesic joining two points in V is contained entirely in V .

In the definition of locally convex sets above, the property of being closed is crucial;
for, every open set would be locally convex. If two points x and y in a convex
set U are joined by a non-minimizing geodesic, then the latter is not necessarily
contained in U . For example, a closed hemi-sphere in the standard sphere Sn is
locally convex and an open hemi-sphere is convex. Sn itself is the only totally convex
subset of itself. Every sublevel set ϕ−1(−∞, a] of a convex function ϕ : (M,F)→
R defined on a complete Finsler manifold (M,F) is totally convex.

J.H.C. Whitehead investigated the injectivity radius in [44] and the convexity
radius in [43]. We describe here some of his results:

Let U := ∪x∈MŨx ⊂ TM . The natural projection � : TM → M and the
exponential map together define a smooth map (�, exp) : U→ M ×M by:

(�, exp)(x, u) := (�u, exp
�u

u) ∈ M ×M.

The image (�, exp)(x, u) of (x, u) ∈ U is the pair of initial and end points of the
geodesic γu : [0, 1] → (M,F). Clearly, the zero section O ⊂ U has the property:
d(�, exp)|O = Identity; hence we have a small neighborhood� ⊂ TM around the
zero section and a small neighborhood U(�) ⊂ M ×M around the diagonal � of



590 K. Shiohama and B. Tiwari

M ×M such that

d(�, exp)� : �→ U(�) is a diffeomorphism.

This fact means that any pair of points sufficiently close to each other is joined by
a unique minimizing forward geodesic (compare [44]). If C ⊂ M is a compact set,
then there exists a number α(C) > 0 such that if x, y ∈ C satisfy d(x, y) < α(C),
then there is a unique minimizing geodesic joining x to y. Summing up, we have:

Proposition 16.3.1 Let C ⊂ M be a compact set. Then for every point x ∈ C,
its injectivity radius i(x) is bounded below by a positive number α(C), i.e., i(x) ≥
α(C) for all x ∈ C.

Theorem 16.3.1 (The Whitehead Convexity Theorem [43, 44]) There exists for
every point x ∈ (M,F), a positive number δ(x) such that if r ∈ (0, δ(x)), then a
forward metric r-ball B(x, r) := {y ∈ M | d(x, y) < r} has the property that any
pair of points y, z ∈ B(x, r) is joined by a unique minimizing geodesic whose image
is contained entirely in the B(x, r).

Proof Let C ⊂ M be a compact set and fix a small number a > 0. Using the
notations as in the last subsection, we consider a 4n − 1 dimensional smooth
manifold

�C,a := {(u, v, t) ∈ 1x ×1x × (0, a], | x ∈ C, gu(u, v) = 0, t ∈ (0, a]}.

For an arbitrary fixed point x ∈ C, we shall employ the Riemannian metric g

in (16.3.4). We observe that the maps �C,a → TM:

(u, v, t)→ Yu,v(t), (u, v, t)→ ∇ ∂
∂t
Yu,v(t)

are smooth and uniformly bounded on �C,a . We employ here the Riemannian
connection ∇ induced through the Riemannian metric g in (16.3.4). We then have
from the construction of Yu,v ,

d

dt
gu(Yu,v,∇ ∂

∂t
Yu,v)(t)|t=0 = 0,

and

d2

dt2
gu(Yu,v,∇ ∂

∂t
Yu,v)(t)|t=0 = 1.

Then there exists a constant 0 < β(C) ≤ 1 independent of the choice of points on
C, such that

gu(Yu,v,∇ ∂
∂t
Yu,v)(t) > 0, (u, v, t) ∈ �C,β(C).
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Let λ(C) > 1 be the reversibility constant for C. Let B(x, r) ⊂ M be the forward
metric r-ball around an arbitrary fixed point x ∈ C. If y, z ∈ B(x, r), then the
triangle inequality implies

d(y, z), d(z, y) < (1+ λ(C))r.

Let σ : [0, d(y, z)] → (M,F) be a minimizing geodesic with σ(0) = y,
σ(d(y, z)) = z. We then observe that

d(x, σ (t)) < (λ(C)+ 3)r/2, for all t ∈ [0, d(y, z)] and for all x ∈ C.

Therefore if r < 2α(C)/(λ(C) + 3), then every pair of points in B(x, r) is joined
by a unique minimizing geodesic whose image lies entirely in B(x, r).

We next take an arbitrary pair of points y, z ∈ B(x, r) with r ∈
(0, 2α(C))/(λ(C) + 3). Let τt : [0, �t ] → (M,F) be the unique minimizing
geodesic with τt (0) := x, τt (�t ) := σ(t), t ∈ [0, d(y, z)]. Here we set
�t := d(x, σ (t)). The 1-parameter family of geodesics {τt }t∈[0,d(y,z)] form a
geodesic variation, along each τt , t ∈ [0, d(y, z)]. Clearly t �→ �t is a smooth
function and the second variation formula implies that

d2

d�2
�t = gu(Yu,v(�t ),∇ ∂

∂t
Yu,v(�t )) > 0, for all (u, v, t) ∈ �C,r ,

if r satisfies r < β(C). We conclude the proof by setting

δ(x) := min

{
2α(C)

λ(C)+ 3
,

2β(C)

λ(C)+ 3

}
.

��
Remark 2 We define the convexity radius function δ : (M,F)→ R by:

δ(x) := sup{r > 0 | every forward ball B(y, t) contained in B(x, r) is convex}.

A relation between the injectivity radius and the convexity radius was first discussed
by Berger.

Proposition 16.3.2 (Berger’s Remark: Oral Communication) Let (M, g) be a
compact Riemannian manifold. Let δ : (M, g) → R and i : (M, g) → R be the
convexity radius and the injectivity radius functions respectively. If i(M) and δ(M)

be the infimum of i and δ over M respectively, then we have

1

2
i(M) ≥ δ(M). (16.3.6)
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Proof Let (M, g) be a compact Riemannian manifold. Suppose that (16.3.6) does
not hold. We then have 2δ(M) > i(M).

Choose points x, y ∈ M such that i(M) = d(x, y) = i(x) = i(y). Let γ :
[0, i(M)] → M be a minimizing geodesic with γ (0) = x, γ (i(M)) = y. Then,
Klingenberg’s Lemma (see Proposition 16.4.3) implies that either y is conjugate to x
along γ , or γ extends to a simple closed geodesic such that γ (0) = γ (2i(M)) = x.

We first suppose that γ : [0, 2i(M)] → M is a simple closed geodesic. Since
y /∈ B(x, δ(M)) and x /∈ B(y, δ(M)), the midpoints γ (i(M)/2) and γ (3i(M)/2)
between x and y are contained in B(x, δ(M)), which is a contradiction. In fact,
convexity of B(x, δ(M)) means that γ [i(M)/2, 3i(M)/2] ⊂ B(x, δ(M)).

Suppose next that y is conjugate to x along γ . Let ε ∈ (0, 2δ(M)−i(M)
2 ), and

extend γ to both sides and set x ′ := γ (−ε), q ′ := γ (i(M) + ε). Since x ′, y ′ ∈
B(γ ((i(M)/2), δ(M)) and γ |[−ε,i(M)+ε] is not minimizing, we have a unique
minimizing geodesic joining x ′ to y ′ whose image lies in B(γ (i(M)/2), δ(M)).
Consequently, γ [−ε, i(M)+ ε] is not contained in B(γ (i(M)/2), δ(M)), a contra-
diction. This completes the proof. ��
Problem 16.3.1 Is there any relation between the forward convexity radius and the
forward injectivity radius on a compact Finsler manifold ?

The non-symmetric property of the distance function on (M,F)makes it difficult
to address Problem 16.3.1. In particular, it is not clear whether we can find a
simple closed geodesic γ : [0, 2i(M)] → (M,F) if i(γ (0)) = i(M,F) and
q = γ (i(M,F)) is not conjugate to p along γ . This problem is discussed in
Sect. 16.4.2.

Example 16.3.1 It should be remarked that Proposition 16.3.2 is optimal. In fact,
for every rank-one symmetric space of compact type, equality holds in (16.3.6). A
simple example is given here. Let T 2 := S1(a) × S1(b) with 0 < a < b be a flat
torus whose fundamental domain is rectangular with edge length 2aπ and 2bπ , then
i(T 2) = aπ and δ(T 2) = 1

2aπ .

Lemma 16.3.1 The convexity radius function δ : (M,F)→ R is locally Lipschitz.

Proof Let λ(C) be the reversibility constant of a compact set C ⊂ M as defined
in (16.2.1). We take two arbitrary points x, y ∈ C sufficiently close to each other.
We then observe that B(y, δ(x)−d(x, y)) ⊂ B(x, δ(x)) implies that δ(y) ≥ δ(x)−
d(x, y) and similarly, B(x, δ(y) − d(y, x)) ⊂ B(x, δ(x)) implies δ(x) ≥ δ(y) −
d(y, x). We conclude the proof by noting that

|δ(x)− δ(y)|
d(x, y)

,
|δ(x)− δ(y)|
d(y, x)

≤ λ(C), for all x, y ∈ C.

��
Using this notion of convexity radius function, Theorem 16.3.1 states that the
forward distance function from a point on the manifold to B(x, r) for r ∈ (0, δ(x))
is convex.
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16.4 The Properties of Cut Locus and Conjugate Locus

From now on, for simplicity, we shall only discuss forward geodesics, forward cut
locus, forward conjugate locus, etc. The case where backward aspects are needed
is rare. We shall state basic properties of cut locus and conjugate locus which
have been discussed in Riemannian geometry by Whitehead, Myers, Klingenberg,
Berger, Omori and many others. Rademacher has discussed in [33] the Finsler
version of some results in the proof of the classical sphere theorem. We summarize
them here.

16.4.1 Foots of Closed Sets

Let C ⊂M be a closed set and let x ∈ M \C. A point y ∈ C is called a foot of x on
C if y satisfies d(x, y) = d(x,C) := inf{d(x, y) | y ∈ C}. Let

B−1(C, r) := {x ∈ M | d(x,C) < r} and S−1(C, r) := {y ∈ M | d(y,C) = r}

be the backward metric r-ball and the backward metric r-sphere around a closed

set C ⊂ M respectively. Let B
−1
(C, r) be the closure of B−1(C, r). If a point

x ∈ M \ C has more than one feet, then x belongs to the backward cut locus to C.
With this notation the following Lemma (16.4.1) shows a common property of a

foot of a point on a closed set in Riemannian and Finsler geometries. We show how
the triangle inequalities are employed with a non-symmetric distance function.

Lemma 16.4.1 Let C ⊂ M be a closed set. Take a point x ∈ M \ C and a positive
number r such that d(x,C) > r . Let y ∈ S−1(C, r) be a foot of x on S−1(C, r) and
γ : [0, a] → (M,F) is a unit speed minimizing geodesic with γ (0) = x, γ (a) = y.
Then its extension reaches a point on C at γ (a + r), which is the unique foot of y
on C.

Proof Let z1, z ∈ C be feet of x, y on C respectively. Let τ : [0, r] → (M,F), σ :
[0, b] → (M,F) be unit speed minimizing geodesics such that τ (0) = y, σ (0) = x

and τ (r) = z, σ (b) = z1. Here we set b := d(x, z1) = d(x,C). Clearly, σ [0, b]
intersects S−1(C, r) at a point, say, y1 := σ [0, b]∩S−1(C, r). We then observe that
d(x, y1) ≥ d(x, S−1(C, r)) = d(x, y) and d(y1, z1) ≥ d(y,C) = r . The triangle
inequality then implies d(x,C) = d(x, y1) + d(y1, z1) ≥ d(x, S−1(C, r)) + r =
a + r and d(x,C) ≤ d(x, y) + d(y, z) = a + r. We therefore have d(x, y) +
d(y, z) = d(x, z) = a + r and d(y1, z1) = r. We then assert that x, y and z

belong to a minimizing geodesic. In fact, let B(y, δ(y)) be a convex ball centered
at y and take arbitrary points x ′ ∈ γ (a − δ(y), a) ∩ B(y, δ(y)) and z′ ∈ τ (0, r).
The triangle inequality again implies that d(x ′, z′) = d(x ′, y)+ d(y, z′), and hence
the uniqueness of minimizing geodesic joining two points in B(y, δ(y)) implies
that y is an interior point of the minimizing geodesic joining x ′ to z′. Therefore
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x

z = τ(r)
z1 = σ(b)

y

C

S−1(C, r)

y1

x′

γ

τ

z′

σ

B(y, δy)

Fig. 16.1 Foot of a point x on the closed set C

γ (a + r) = τ (r) = z. In particular, z and z1 are unique feet of y and y1 of C
respectively (see Fig. 16.1). ��

Let C ⊂ (M,F) be a closed, connected and locally convex set. We then find an
open set U(C) of M and a strong deformation retract C of U(C). In fact, we choose
a countable open cover {Ui}i=1,2,... of C such that for each i = 1, 2, . . . , the closure
Ui of Ui is compact. Let δi := δ(Ui) be the convexity radius of Ui and set

U(C) :=
∞⋃
i=1

B−1(Ui, δi).

If x ∈ U(C), then we get a number i and a unique foot f (x) of x onUi∩C. Suppose
there is another foot f ′(x) of x on Ui ∩ C. Clearly we have

f (x), f ′(x) ∈ B(x, δi) ∩ C.

There is a unique minimizing geodesic T (f (x), f ′(x)) joining f (x) to f ′(x)
and belonging to B(x, δi). The convexity of the distance function from x to
T (f (x), f ′(x)) implies that its minimum is attained at an interior point of
T (f (x), f ′(x)). This is a contradiction to the fact that T (f (x), f ′(x)) ⊂ C.
The above discussion may be summarized as follows:

Proposition 16.4.1 A closed locally convex set C ⊂ (M,F) admits an open set
U(C) of M such that C is a strong deformation retract of U(C). The retraction is
given by the foot map f : U(C)→ C.

Remark 3 If the local convexity of a closed set C ⊂ (M,F) is not assumed, then
every open set V ⊃ C may admit a point x ∈ V with more than one foot on C. The
backward cut locus Cut−1(A) ⊂ (M,F) of a closed set A ⊂ (M,F) is defined as
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follows:

Cut−1(A) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ (M,F)

∣∣∣∣∣∣∣∣∣

if f (x) is a foot of x on A, then T (x, f (x)) is not

properly contained in any T (y, f (y)), y ∈ (M,F) \ A,
where f (y) is a foot of y on A.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

This means that x belongs to the backward cut locus to C, and hence the foot map
f : V → C may fail to be a retraction map of C. Let Cut−1(C) ⊂ (M,F) be
the backward cut locus to C. We then have d(Cut−1(C), C) ≥ 0, and equality
holds if and only if there is a sequence {xj }j=1,2,... ⊂ Cut−1(C) such that
limj→∞ d(xj , C) = 0. Let C ⊂ (M,F) be a compact set whose boundary ∂C
is a smooth hypersurface of (M,F). Here we do not assume C to be locally convex.
From the smoothness assumption on ∂C, we deduce that d(Cut−1(C), C) > 0. Let
U(C) ⊃ C be an open set as defined above. ThenC has a strong deformation retract
and its retraction map is the foot map f : U(C)→ C.

16.4.2 The Klingenberg Lemma

We now summarize the important properties of cut loci on complete Riemannian
and Finsler manifolds [20].

Proposition 16.4.2 Let (M,F) be a complete Finsler manifold and x ∈ M an
arbitrary fixed point such that C(x) �= ∅. If y ∈ C(x) and if γ : [0, d(x, y)] →
(M,F) is a minimizing geodesic with γ (0) = x, and γ (d(x, y)) = y, then one of
the following holds:

(1) y is conjugate to x along γ , or
(2) there exists another minimizing geodesic σ : [0, d(x, y)] → (M,F) such that

σ(0) = x and σ(d(x, y)) = y.

Proposition 16.4.3 Let (M, g) be a compact Riemannian manifold and x ∈ M ,
y ∈ C(x) ⊂ (M, g) satisfy (2) in Proposition 16.4.2. If

d(x, y) = i(x) = d(x,C(x)), (16.4.7)

then there are exactly two distinct minimizing geodesics γ, σ : [0, i(x)] → (M, g)

such that γ (0) = σ(0) = x, γ (i(x)) = σ(i(x)) = y, and γ̇ (i(x)) = −σ̇ (i(x)).
Remark 4 It turns out that Klingenberg’s result in Proposition 16.4.3 that γ̇ (i(x)) =
−σ̇ (i(x)) does not hold for a Finsler manifold, in general. This phenomenon shows
an essential difference between Riemannian and Finsler geometry.

Proof of Proposition 16.4.2 Suppose that (1) does not hold. Thus y ∈ C(x) is not
conjugate to x along γ , and hence there is a small open set O(y) ⊂ TxM around
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y such that expx |O(y) : O(y) → (M,F) is an embedding. Let {εj }j=1,2,... be a
decreasing sequence of positive numbers converging to 0 and qj := γ (d(x, y)+εj ).
For each j , let τ : [0, aj ] → (M,F) be a minimizing geodesic such that τj (0) =
x, τj (aj ) = qj for j = 1, 2, . . . . Clearly d(x, qj ) = aj and limj→∞ aj = d(x, y).
Then γ [0, d(x, y)+ ε] is not minimizing for all ε > 0 and hence γ̇ (0) �= τ̇j (0) for
all j . Choosing a subsequence, we find a limit of {τ̇j (0)}j and the limit geodesic
τ : [0, d(x, y)] → (M,F) such that τ (0) = x, τ (d(x, y)) = γ (d(x, y)) satisfying
d(x, y)τ̇ (0) /∈ O(y). This proves that (2) holds. ��

Lemma 16.4.3 below describes certain conditions under which (1) holds.
The following lemma due to Berger [3] is extended to Finsler manifolds. The

proof employs the Riemannian metric in the geodesic polar coordinates as defined
in Sect. 16.3.2, and the first variation formula, and is omitted here.

Lemma 16.4.2 Let x, y ∈ (M,F). Let V ⊂ M be an open set around y such
that the distance function d(x, .) : V → R from x attains a local maximum at
y. Then there exists for every vector u ∈ TyM, u �= 0 a minimizing geodesic
σ : [0, d(y, x)] → (M,F) such that σ(0) = x, σ (d(y, x)) = y and

g(u,−σ̇ (d(x, y))) ≥ 0. (16.4.8)

16.4.3 The Berger-Omori Lemma

The following important lemma was first proved by Berger for even-dimensional
compact Riemannian manifolds of positive sectional curvature with minimal di-
ameter. Then Omori [31] proved it for any compact Riemannian manifold with
minimal diameter. It is summarized in [4]. We prove the Riemannian version under
certain weaker assumptions. The Berger-Omori Lemma can be extended to Finsler
manifolds, and this has been carried out in [20].

For any vector u ∈ TM we denote by ‖u‖ the Riemannian norm of u .

Lemma 16.4.3 Let (M, g) be a complete Riemannian manifold and C(x) �= ∅
for a point x ∈ M . If y ∈ C(x) satisfies d(x, y) = i(x) and if there exist two
distinct minimizing geodesics γ0, γ1 : [0, i(x)] → M such that γ0(0) = γ1(0) = x

and γ0(i(x)) = γ1(i(x)) = y and such that γ̇0(i(x)) and γ̇1(i(x)) are linearly
independent, then there exists a one-parameter family of minimizing geodesics γt :
[0, i(x)] → M , γt (0) = x, γt (i(x)) = y, 0 ≤ t ≤ 1 such that

γ̇t (i(x)) = (1− t)γ̇0(i(x))+ t γ̇1(i(x))

‖(1− t)γ̇0(i(x))+ t γ̇1(i(x))‖ , 0 ≤ t ≤ 1. (16.4.9)

Proof Let ρ := δ(x)/2 and ρ′ := i(x)− ρ. We then have

B(γj (ρ
′), ρ) ⊂ B(x, i(x)), j = 0, 1,
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and also

{B̄(γ0(ρ
′), ρ) ∪ B̄(γ1(ρ

′), ρ)} ∩ ∂B(x, i(x)) = {y}.

Again, let Ũy ⊂ TyM be the maximal domain in TyM on which the exponential
map at y is an embedding. We already know that C̃(y) = ∂Ũy . Set

Sj := (expy |Uy )−1(∂B(γj (ρ
′), ρ)), j = 0, 1.

Then Sj is a smooth hypersurface in TyM . Clearly, cj := (expy |Uy )−1(γj [ρ′, i(x)])
⊂ TyM is a straight line segment, and normal to Sj at O ∈ TyM . Using the
assumption for γ0 and γ1, we choose a small number 0 < rj < ρ and a vector
ξj := −rj γ̇j (i(x)) ∈ TyM such that B(ξj , rj ) ⊂ (expy |Uy )−1(B(γj (ρ

′), ρ)),
j = 0, 1. In fact, both ∂B(ξj , rj ) and (expy |Uy )−1(∂B(γj (ρ

′), ρ)) are smooth
hypersurfaces in TyM and have the same tangent spaces at the origin. We then have

expy{B(ξ0, r0) ∪ B(ξ1, r1)} ∩ ∂B(x, i(x)) = {y}.

Let ξλ := (1 − λ)ξ0 + λξ1 ∈ TyM for λ ∈ [0, 1]. Since the figures are all in a
Euclidean space, it is clear that

B(ξλ, ‖ξλ‖) ⊂ B(ξ0, r0) ∪ B(ξ1, r1), ∀λ ∈ [0, 1], (16.4.10)

(expy |Uy )(∂B(ξλ, ‖ξλ‖)) ∩ ∂B(x, i(x)) = {y}. (16.4.11)

Choosing hλ > 0 sufficiently small, we deduce from the inclusion relation in TyM
that

B(expy hλξλ, ‖hλξλ‖) ⊂ expy(B(ξλ, ‖ξλ‖)).

Finally, the triangle inequality implies

d(x, expy hλξλ)+ d(expy hλξλ, y) ≥ i(x).

Setting σλ : [0, �λ] → (M, g) a minimizing geodesic with

σλ(0) = x, σλ(�λ) = expy hλξλ,

we observe from the above triangle inequality that

d(σλ(�λ), σλ(i(x)) = i(x)− �λ ≤ ‖hλξλ‖.

If σλ(i(x)) �= y, then

σλ(i(x)) ∈ B̄(σλ(�λ), ‖hλξλ‖).
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On the other hand, σλ(i(x)) ∈ ∂B(x, i(x)) means that the point σλ(i(x)) stays
outside expy(B(ξ0, ‖ξ0‖) ∪ B(ξ1, ‖ξ1‖)) \ {y}, which is a contradiction. Thus we
have σλ(i(x)) = y for all λ ∈ [0, 1]. ��
Remark 5 To discuss the Berger-Omori Lemma in the context of Finsler manifolds,
we need to consider TyM as a normed space and introduce a new idea for the proof
of the Finsler version; see Theorem 4.2 in [20] for details.

16.4.4 The Rauch Conjecture

The classical Rauch conjecture [34] predicts that the cut locus C̃(x) ⊂ TxM and
the conjugate locus J̃ (x) ⊂ TxM to a point x on a compact and simply connected
Riemannian n-manifold (M, g) have a point in common in its tangent space TxM:

C̃(x) ∩ J̃ (x) �= ∅, for all x ∈ M. (16.4.12)

The conjecture is true for all metrics on S2 and for all compact rank-one symmetric
spaces. Also it is true for a complete noncompact Riemannian 2-manifolds home-
omorphic to R

2. Weinstein [42] settled this conjecture negatively in general, by
proving that if M is compact and not homeomorphic to S2, then there exists a metric
g and a point x ∈ M such that

C̃(x) ∩ J̃ (x) = ∅.

We next discuss the results obtained in [21] on complete Finsler n-manifolds. Let
(M,F) be a connected and geodesically complete Finsler n-manifold, n ≥ 2. It is
elementary to see that ix(u) ≤ cx(u), in general, and ix(u) = cx(u) < ∞ holds
for some u ∈ 1x if and only if the Rauch conjecture is valid at x. If C̃x = ∅ (or
equivalently, C(x) = expx C̃x = ∅), then γu : [0,∞) → (M,F) is a ray for all
u ∈ 1x . Such a point is called a forward pole of (M,F). An ellipsoid with foci at
x, y ∈ (M,F) and radius r > d(x, y) is denoted by Exy(r) ⊂M and

Exy(r) := {z ∈ M|d(x, z)+ d(z, y) = r},

Bxy(r) := {z ∈ M|d(x, z)+ d(z, y) < r}.

Notice that Bxx(2r) �= B(x, r) follows if d is not symmetric. We further define the
function Fxy : (M,F)→ R by

Fxy(z) := d(x, z)+ d(z, y), z ∈ M.

Notice also that Fxy �= Fyx and Exy(r) �= Eyx(r).
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Theorem 16.4.1 (Compare Theorem 1; [21]) Let (M,F) be an n-dimensional
compact Finsler manifold. Assume that there is a point x ∈ M satisfying

C̃(x) ∩ J̃ (x) = ∅. (16.4.13)

Then for any point y ∈ M \ {x} there exist at least two distinct geodesics emanating
from x and ending at y.

Proof If there exist two distinct minimizing geodesics emanating from x and ending
at y, there is nothing to prove.

If y ∈ C(x) and if there exists a unique minimizing geodesic τ : [0, d(x, y)] →
(M,F) with τ (0) = x and τ (d(x, y)) = y, then every extension τ |[0,d(x,y)+ε]
of τ beyond y is not minimizing for all ε > 0. The uniqueness of τ implies that if
τε : [0, d(x, τ (d(x, y)+ε)] → (M,F) is a minimizing geodesic with τε(0) = x and
τε(d(x, τ (d(x, y)+ ε))) = τ (d(x, y)+ ε), then τε �= τ |[0,d(x,y)+ε]. The uniqueness
of a minimizing geodesic from x to y then implies that limε→0 τε = τ . Therefore
expx : TxM → (M,F) is not bijective in any open set of d(x, y) · τ̇ (0), and
hence y is conjugate to x along τ . Thus we have d(x, y) · τ̇ (0) ∈ T C(x) ∩ T J (x),
a contradiction to (16.4.13). Thus we observe that there are at least two distinct
minimizing geodesics from x to y for all y ∈ C(x). We may therefore suppose that
there exists a unique minimizing geodesic from x to y and that y /∈ C(x).

The construction of a non-minimizing geodesic joining x to y is achieved by
using a technique developed in [21]. There exists a cut point x0 ∈ C(x) such that,

Bxy(�) ∩ C(x) = ∅, x0 ∈ Exy(�) ∩ C(x), � := Fxy(x0). (16.4.14)

Let σ : [0, d(x0, y)] → (M,F) be a minimizing geodesic with σ(0) = x0,
σ(d(x0, y)) = y. We assert that there exist exactly two distinct minimizing geodesics
γj : [0, d(x, x0)] → (M,F), j = 1, 2, with γj (0) = x, γj (d(x, x0)) = x0 such
that one of the composed geodesics γ1 ∗ σ or γ2 ∗ σ forms a geodesic joining x to
y. Here, γj ∗ σ : [0, �] → (M,F) is a broken geodesic given by

γj ∗ σ(t) =
{
γj (t), t ∈ [0, d(x, x0)],
σ (t − d(x, x0)), t ∈ [d(x, x0), �].

For the proof of the above assertion, we argue by deriving a contradiction,
assuming the contrary. Suppose that there are more than two distinct minimizing
geodesics from x to x0. If σ is a fixed minimizing geodesic from x0 to y, we
choose two minimizing geodesics γ1 and γ2 such that both γ1 ∗ σ and γ2 ∗ σ are
broken geodesics with a corner at x0. We then find points z ∈ σ(0, d(x0, y)] and
yj ∈ γj ([0, d(x, x0)) lying in a convex ball around x0. The short cut principle then
implies that

d(yj , z) < d(yj , x0)+ d(x0, z), j = 1, 2,
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and hence

Fxy(z) = d(x, z)+ d(z, y) < (d(x, yj )+ d(yj , z))+ d(z, y)

< d(x, yj )+ (d(yj , x0)+ d(x0, z))+ d(z, y)

= d(x, x0)+ d(x0, y) = Fxy(x0) = �.

We therefore have z ∈ Bxy(�), and in particular, z /∈ C(x). This implies that
σ(0, d(x0, y)) ⊂ expx(Ux). From (16.4.13), there exists an open set �i ∈ TxM

of d(x, x0) · γ̇j (0) for j = 1, 2 such that expx |�j : �j → (M,F) is an embedding.
The lifting of σ(0, d(x0, y)) along the diffeomorphism expx |Ux : Ux → (M,F) \
C(x) forms distinct curves joining d(x, x0) · γ̇j (0) to d(x, y) · σ̇ (0), j = 1, 2.
However this is impossible by the uniqueness of d(x, y) · σ̇ (0).

As shown in the proof of the above assertion, one of γ1 ∗ σ and γ2 ∗ σ forms a
geodesic emanating from x and ending at y; it may be noted that since this geodesic
passes through a forward cut point x0 to x, it is not minimizing. ��

As an application of Theorem 16.4.1, we deduce the following:

Theorem 16.4.2 Let (M,F) be a compact Finsler n-manifold, n ≥ 2 and λ =
λ(M) be the reversibility constant of M , as defined in (16.2.1). If x ∈ M is such
that the Rauch conjecture does not hold, then there exists a geodesic loop γx :
[0, 2�x] → (M,F) with γx(0) = γx(2�x) = x such that

(1+ λ−1)i(x) ≤ L(γx).

Proof The same technique as involved in the proofs of Theorem 16.4.1 is employed
here. For an arbitrary fixed point y /∈ C(x) with y �= x, we choose a point x0(y) ∈
C(x) such that, setting �(y) := d(x, x0(y))+ d(x0(y), y),

Bxy(�(y)) ∩ C(x) = ∅, x0(y) ∈ Exy(�(y)) ∩ C(x).

By Theorem 16.4.1, there exists a geodesic γxy : [0, �(y)] → M such that
γxy(0) = x, γxyd(x, x0(y)) = x0(y) and γxy(�(y)) = y. From the construction
we see that L(γxy[0, d(x, x0(y))]) = d(x, x0(y)) and L(γxy[d(x, x0(y)), �(y)]) =
d(x0(y), y). Taking a sequence {y} ⊂ M \C(x) converging to x, we find a geodesic
loop γx : [0, �x] → M as the limit of {γxy}, where γx = limy→x γxy and
�x = limy→x �(y). We then observe that γx(d(x, x0(x))) ∈ C(x) and that

L(γxy[0, d(x, x0(y))]) ≥ i(x).

From the triangle inequality we have,

L(γxy[d(x, x0(y)), �(y)]) = d(x0(y), y) ≥ λ−1d(y, x0(y))

≥ λ−1[d(x, x0(y))− d(x, y)] ≥ λ−1(i(x)− d(x, y)).
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Therefore, by letting y → x we get, �x ≥ (1 + λ−1)i(x). This proves Theo-
rem 16.4.2. ��

16.4.5 Poles

The original Rauch conjecture was considered on compact and simply connected
Riemannian manifolds. We discuss it on complete non-compact Riemannian and
Finsler manifolds admitting poles. For the discussion of the Rauch conjecture
on complete non-compact manifolds, we need the notion of poles. The Rauch
conjecture is valid for a point x ∈ (R2, g) of a complete noncompact Riemannian
2-manifold homeomorphic to a plane, if C(x) �= ∅. In fact, C(x) for every point
x ∈ (R2, g) carries the structure of a tree. A cut point y ∈ C(x), x ∈ (R2, g) is
called an endpoint of C(x) if C(x) \ {x} is connected. The cut loci of Riemannian
2-manifolds have been discussed by many authors; for instance, see [29, 30, 44] and
[41]. Let x ∈ (R2, g) be a point such that C(x) �= ∅. Then there is a point y ∈ C(x)
which is an endpoint of C(x). If γ : [0, d(x, y)] → (R2, g) is a minimizing
geodesic with γ (0) = x, γ (d(x, y)) = y, then y is conjugate to x along γ , and
hence C̃(x) ∩ J̃ (x) contains d(x, y)γ̇ (0), if C(x) �= ∅.

Let (M,F) be a geodesically complete Finsler n-manifold. A unit speed forward
geodesic γ : [0,∞)→ (M,F) is by definition a forward ray if every subarc γ |[a,b],
0 ≤ a < b <∞ of γ is minimizing. A point x ∈ (M,F) is called a forward pole if
C(x) = ∅. Clearly, expx : TxM → (M,F) is a diffeomorphism if and only if x is a
forward pole. A backward geodesic γ−1(−∞, 0] → (M,F) is called a backward
ray if

d(γ−1(s), γ−1(t)) = t − s, for all 0 > t > s > −∞.

A point y ∈ (M,F) is called a backward pole if every backward geodesic σ−1 :
(−∞, 0] → (M,F) with σ−1(0) = y is a backward ray.

The relation between the Rauch conjecture and poles on complete noncompact
Riemannian n-manifolds has been discussed in [21]. We have the following
relation between the Rauch conjecture and poles on complete non-compact Finsler
manifolds. The proof is essentially contained in [21] and is omitted here.

Proposition 16.4.4 Let (M, g) and (M,F) be complete Riemannian and Finsler
manifolds respectively.

(1) If (M, g) admits a pole and if x ∈ M is not a pole, then the Rauch conjecture is
valid at x.

(2) If (M,F) admits a backward pole, then for y ∈ M either the Rauch conjecture
holds at y or y is a forward pole.
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16.4.6 The Continuity of the Injectivity Radius Function

We discuss the continuity of injectivity radius functions on complete Finsler
manifolds. The compactification [0,∞] := [0,∞) ∪ {∞} of the half line is
employed here.

Lemma 16.4.4 Let (M,F) be a complete Finsler manifold. The injectivity radius
function i : M → [0,∞] is continuous at every point x ∈ M where i(x) <∞.

Proof Let x ∈ M and {xj }j=1,2,... ⊂ M be such that limj→∞ xj = x. Let
{yj }j=1,2,... ⊂ M be chosen such that d(xj , yj ) = i(xj ) =: �j for all j = 1, 2, . . . .
Let γj : [0, �j ] → (M,F) be a minimizing geodesic with γj (0) = xj and
γj (�j ) = yj for all j = 1, 2, . . . . In view of Proposition 16.4.2, by choosing a
subsequence if necessary, it suffices to consider the following two cases:

Case 1. Assume that yj is conjugate to xj along γj . Setting vj := �j γ̇j (0), we
have

det(d(expxj )vj ) = 0, for all j = 1, 2, . . . (16.4.15)

Thus we observe that limj→∞ yj = y is a conjugate point to x along γ , where γ
is defined by the limit: v = γ̇ (0) := limj→∞ γ̇j (0), and hence i(x) ≤ F(x, v) =
limj→∞ i(xj ).

Case 2. We now assume that there exist minimizing geodesics γj : [0, �j ] →
(M,F) emanating from xj and ending at yj such that i(xj ) = d(xj , yj ) and
yj ∈ C(xj ) is not conjugate to xj along γj for all j = 1, 2, . . . . From
Proposition 16.4.2, we get that there are exactly two minimizing geodesics
γj , σj : [0, �j ] → (M,F) such that γj (0) = σj (0) = xj and γj (�j ) =
σj (�j ) = yj . Choosing a subsequence, if necessary, we get limit geodesics
γ := limj→∞ γj and σ := limj→∞ σj together with � := limj→∞ �j . Clearly
γ and σ are distinct minimizing geodesics emanating from x and ending at y,
and hence y ∈ C(x). Therefore

d(x, y) = lim
j→∞ �j ≥ i(x).

This proves the lower semi-continuity of the injectivity radius function i.
We conclude the proof in this case by showing that

lim
j→∞ �j ≤ �.

Suppose to the contrary that there exists a point x and a sequence {xj } converging
to x such that

lim
j→∞ �j > �. (16.4.16)
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Using (16.4.16) we choose a sufficiently small positive number

ε := lim
j→∞(�j − �)/2.

Let Uj := Uxj ⊂ TxjM be the domain such that ∂Uj = C̃(xj ). There exists a large
number j0 such that,

B̄j (O, �+ ε) ⊂ Uj , for all j > j0.

Here we set B̄j (O, r) ⊂ TxjM an r-ball centered at the origin O ∈ TxjM . Then
expxj |B̄j (O,�+ε) : B̄j (O, �+ ε)→ B(pj , �+ ε) is a smooth embedding. From the
continuity of � : TM → M ×M , it follows that

expx |Ux : B̄(O, �+ ε)→ B(p, � + ε)

is an embedding, and hence � := i(x) ≥ �+ ε, a contradiction. ��
For the proof of the continuity of the injectivity radius function, where M is

non-compact, we now only need to prove that it is continuous at any point where
i(x) = ∞. This is achieved by the following:

Lemma 16.4.5 Let (M,F) be a complete non-compact Finsler manifold. Then the
injectivity radius function i : (M,F) → [0,∞] is continuous at any point x ∈ M

where i(x) = ∞.

Proof Let {xj }j=1,2,··· be a sequence of points converging to x. We then prove that

lim
j→∞ i(xj ) = ∞.

Suppose contrary that there exists a sequence of points {xj } converging to x such
that limj→∞ i(xj ) <∞.

The same notations as in the previous Lemma 16.4.4 will be used. Let y :=
limj→∞ yj , where yj , for every j , is conjugate to xj along γj . We observe that y is
conjugate to x along γ := limj→∞ γj . However this is a contradiction to i(x) = ∞.

Now suppose that for each j the point yj is not conjugate to xj along γj . We then
have two minimizing geodesics γj , σj : [0, limj→∞ �j ] → (M,F) joining xj to
yj . If γ := limj→∞ γj and σ := limj→∞ σj , then γ and σ are distinct minimizing
geodesics from x to y := limj→∞ yj . Therefore y ∈ C(x), contradicting to
C(x) = ∅. ��

16.4.7 Pointed Blaschke Manifolds

The Riemannian Blaschke manifolds have been fully investigated by Berger and
his colleagues and the findings are summarized in [4]. Instead of setting down the
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curvature assumption, a certain restriction on the diameter and injectivity radius of
a compact Finsler manifold is proposed in this respect. Let (M,F) be a compact
Finsler n-manifold. We have discussed the Finsler version of the fundamental
properties of cut locus and conjugate locus. The diameter d(M) of (M,F) is defined
by

d(M) := max {d(x, y) | x, y ∈ M}.

The injectivity radius i(M) of (M,F) is defined by

i(M) := min {i(x) | x ∈ M}.

Definition 16.4.1 A Finsler manifold (M,F) is called a Blaschke Finsler manifold
if

d(M) = i(M), (16.4.17)

and (M,F) is called a pointed Blaschke manifold with a base point at x ∈ M if

i(x) = max {d(x, y) | y ∈ M}. (16.4.18)

Such a pointed Blaschke manifold with a base point x is denoted by (M,F : x).
We refer to [4] for a discussion on Riemannian Blaschke manifolds. Clearly
(16.4.18) holds at each point of M if (16.4.17) is satisfied. A classical result
by Berger and Klingenberg states that if (M, g) is a compact simply connected
Riemannian manifold whose sectional curvature ranges over [ 1

4 , 1], then i(M, g) ≥
π ; see [2, 3], and [23]. Moreover M is homeomorphic to Sn if d(M, g) > π , and
isometric to one of the symmetric spaces of compact type if d(M, g) = i(M, g) =
π .

We set, for simplicity, � := i(x) for a pointed Blaschke Finsler manifold (M,F :
x). Then every cut point y ∈ C(x) has the property that d(x, y) = � and that y
is the farthest point from x. Therefore the assumptions in Proposition 16.4.2 and
Lemma 16.4.3 are satisfied. Let y ∈ C(x) and set

0xy := {γ : [0, �] → (M,F : x) | γ (0) = x, γ (�) = y},

and further set

Axy := {γ̇ (�) | γ ∈ 0xy}.

We then observe from Lemma 16.4.1 that

∂B(x, r) = ∂B−1(C(x), �− r), for all r ∈ (0, �). (16.4.19)
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The discussion on pointed Blaschke Finsler manifolds is divided into two cases,
according to whether the manifold is simply connected or non-simply connected.
We first discuss a simpler case, where, roughly speaking, (M,F : x) does not satisfy
the Rauch conjecture at x.

Lemma 16.4.6 Assume that the Rauch conjecture is not valid at the base point
x ∈ (M,F : x), i.e., C̃(x) ∩ J̃ (x) = ∅. Then every point y ∈ C(x) is joined to x by
exactly two distinct minimizing geodesics

γ, σ : [0, �] → (M,F : x), γ (0) = σ(0) = x, γ (�) = σ(�) = y,

such that y is not conjugate to x along them.

Lemma 16.4.6 is a direct consequence of Lemma 16.4.3 of Berger-Omori. Its proof
is omitted. We observe from Lemma 16.4.6 that there exists a fixed-point free
involution ψ on 1x such that ψ(γ̇ (0)) = σ̇ (0). Clearly we have

expx �u = expx �ψ(u) ∈ C(x), for all u ∈ 1x.

Summing up the above discussion we have the following topological conclusion.

Theorem 16.4.3 Let (M,F : x) is a pointed Blaschke-Finsler manifold with base
point x. If the Rauch conjecture is not valid at the base point x ∈ (M,F : x), then
we have

(1) the cut locus to x is a smooth hypersurface and diffeomorphic to the quotient
space 1x/{ψ : ψ2 = Id.}, i.e., the cut locus is homeomorphic to a real
projective space;

(2) the universal cover M̃ of M is homeomorphic to Sn and M is homeomorphic to
the real projective space;

(3) the fundamental group of M is cyclic of order two.

Remark 6 The assumption in Theorem 16.4.3 is too strong. In fact we prove C̃(x)∩
J̃ (x) = ∅ if (M,F : x) satisfies

C̃(x) \ J̃ (x) �= ∅.

In the Riemannian case, γ and σ together form a simple closed geodesic loop at x,
and J̃ (x) is a 2�-sphere and J (x) = {x}. In view of Theorem 16.4.3, we observe
that if (M,F : x) is a simply connected pointed Blaschke Finsler manifold, then
the Rauch conjecture is valid at x. Moreover, if (M,F : x) is simply connected, we
have

C̃(x) = J̃ (x).

The Berger-Omori Lemma 16.4.3 implies that Axy is a convex set. Moreover the
multiplicity of the conjugate point y to x along a minimizing geodesic γ : [0, �] →
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M with γ (0) = x, γ (�) = y is independent of the choice of γ ∈ 0xy . Since the
dimension of the convex sets Axy is lower semi-continuous on C(x), it is constant
on C(x). Therefore the rank of the exponential map expx at each point of C(x)
is constant. Hence the implicit function theorem implies that expx C̃(x) = C(x)

is a compact smooth submanifold of M . Thus the set of all points on minimizing
geodesics belonging to 0xy forms a k-dimensional submanifold homeomorphic to
Sk , where k is the dimension ofAxy , y ∈ C(x). It follows from the relation (16.4.19)
that B(x, r) for r ∈ (0, �) is simply covered by (k − 1)-dimensional spheres and its
quotient space is nothing but C(x). We still have much more discussion to complete
this case.

16.5 Busemann Functions and Convex Functions

16.5.1 Busemann Functions

We discuss forward rays and forward Busemann functions on complete non-
compact Finsler manifolds.

The definition of a Busemann function is found in §22 of [8]. A forward
Busemann function Fγ : (M,F)→ R for a ray γ : [0,∞)→ (M,F) is defined as
follows:

Fγ (x) := lim
t→∞(t − d(x, γ (t))), x ∈ M.

A backward ray γ : (−∞, 0] → (M,F) and a backward Busemann function for the
backward ray γ are similarly defined. A super Busemann function Fx : (M,F)→
R at x is defined by

Fx(y) := sup {Fγ (y) | γ is a forward ray with γ (0) = x}, y ∈ M.

Clearly, the function t → (t − d(x, γ (t))) is monotone increasing in t and
bounded above by d(x, γ (0)). Thus Fγ is well defined, for t−d(x, γ (t)) converges
uniformly on a compact set and Fγ is locally Lipschitz continuous. A unit speed
forward ray σ : [0,∞)→ (M,F) is by definition asymptotic to γ if there exists a
sequence of unit speed minimizing geodesics {σj : [0, �j ] → (M,F)}j=1,2,··· such
that limj→∞ σ̇j (0) = σ̇ (0), σj (�j ) = γ (tj ) for a monotone divergent sequence {tj }.
The asymptotic relation is in general neither symmetric nor transitive. If (M, g) is
a complete and simply connected Riemannian manifold of non-positive sectional
curvature, then the asymptotic relation between two rays α, β : [0,∞) → (M, g)

satisfies the following inequality:

d(α(t), β(t)) ≤ d(α(0), β(0)), for all t ≥ 0.

Therefore only in this case the asymptotic relation is an equivalence relation.



16 The Global Study of Riemannian-Finsler Geometry 607

The sequence of points {σj (0)}j=1,2,··· cannot be chosen to be a point σ(0), as is
seen in the following example.

Example 16.5.1 Let F ⊂ R
3 be a rotation surface of parabola in a Euclidean 3-

space. Let {(r, θ) | r > 0, θ ∈ [0, 2π)} be the geodesic polar coordinate system
around the pole (0, 0), and γθ : [0,∞) → F for θ ∈ [0, 2π] be the meridian
γθ (r) := (r, θ), r ≥ 0. We observe that all the meridians are asymptotic to each
other. In fact, let θ0 ∈ [0, 2π) be an arbitrary fixed number and {θj }j=1,2,··· ⊂
[0, 2π) be a monotone sequence with limj→∞ θj = θ0. Let {rj }j=1,2,··· be a
monotone decreasing sequence of positive numbers with limj→∞ rj = 0. If we
set γj (t) := γθj (t + rj ), t > 0, then γj for each j = 1, 2,··· is asymptotic to γ0, and
hence so is γθ0 = limj→∞ γj .

Assuming that a ray σ : [0,∞)→ (M,F), y := σ(0) is asymptotic to another
ray γ : [0,∞) → (M,F), x := γ (0), we say that σ is a maximal asymptotic ray
to γ if σ is not properly contained in any ray which is asymptotic to γ . We also
say that a ray is maximal if and only if it is not properly contained in any ray. A
long-standing open problem proposed by Busemann in [6] is stated as follows:

Problem 16.5.1 Is a maximal asymptotic ray a maximal ray?

This problem was solved in the negative by Innami in [18] by exhibiting an
example of a surface in R

3 on which there is a maximal asymptotic ray which is
not a maximal ray.

The local Lipschitz property (1) in Proposition 16.5.1 of Fγ implies that it is
differentiable almost everywhere. Then (6) in Proposition 16.5.1 shows that Fγ is
differentiable at an interior point of some asymptotic ray to γ . Let σ(0) be the initial
point of a maximal asymptotic ray to γ . If there exists a unique asymptotic ray to γ
passing through σ(0), we may view γ (0) and γ (∞) as being conjugate pair along γ ,
(and this corresponds to (1) in Proposition 16.4.2). Otherwise, there exists another
ray σ1 : [0,∞) → (M,F) which is asymptotic to γ . Therefore we may view the
set of all the initial points of rays asymptotic to γ as the cut locus to a point at
infinity obtained by γ (∞), (and this corresponds to (2) in Proposition 16.4.2). If Fγ
attains its minimum at a point x ∈ (M,F), then there exists for every unit vector
u ∈ 1x a ray σ : [0,∞) → (M,F) asymptotic to γ such that gu(u, σ̇ (0)) ≥ 0.
This corresponds to Lemma 16.4.2.

16.5.2 Properties of Busemann Functions on (M,F)

We denote by F−1
γ ({a}) and F−1

γ (−∞, a] the a-level set and the a-sublevel set
of Fγ respectively. The basic properties of Busemann functions are stated in §§22
and 23 of [8] and those on complete Finsler and Riemannian manifolds (M,F) are
summarized in [40] and [39] as follows:
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Proposition 16.5.1 (Properties of Busemann Functions) Let γ : [0,∞) →
(M,F) be a forward ray and Fγ : (M,F) → R a Busemann function for γ . We
then have:

(1) Fγ is locally Lipschitz.
(2) A level set F−1

γ ({a}) for a ∈ Fγ (M) is obtained by

F−1
γ ({a}) = lim

t→∞ S−1(γ (t), t − a).

(3) If a, b ∈ Fγ (M) satisfies a ≤ b, then

F−1
γ (−∞, a] = {y ∈ F−1

γ (−∞, b] | d(y, F−1
γ ({b}) ≥ b − a},

and

F−1
γ ({a}) = {y ∈ F−1

γ (−∞, b]) | d(y, F−1
γ ({b})) = b − a}

= S−1(F−1
γ ({b}), b − a) ∩ F−1

γ (−∞, b].

(4) A unit speed geodesic σ : [0,∞) → (M,F) is a forward ray asymptotic to γ
if and only if

Fγ ◦ σ(t) = t + Fγ ◦ σ(0), for all t ≥ 0.

(5) If x ∈ M and a ∈ Fγ (M) satisfy a > Fγ (x), and if σ : [0, �] → (M,F) is
a unit speed minimizing geodesic with σ(0) = x such that σ(�) is a foot of x
on F−1

γ ({a}), then the extension σ : [0,∞) → (M,F) of σ is a forward ray
asymptotic to γ .

(6) Fγ is differentiable at a point x ∈ M if x is an interior of some ray asymptotic
to γ .

A detailed proof of Proposition 16.5.1 on Riemannian manifolds was given in [39]
and the same proof technique for the Finsler case is seen in [40]. The proof is omitted
here.

In the pioneering works [16] and [10], the authors have proved that a Busemann
function on a complete and non-compact Riemannian manifold (M, g) is strongly
convex if its sectional curvature is positive (see [16]) and convex if its sectional
curvature is non-negative (see [10]). In particular, every super Busemann function
is a convex exhaustion if its sectional curvature is non-negative. If the minimum
set of a super Busemann function has non-empty boundary, then the negative of
the distance function on the minimum set to the boundary is convex, and hence
attains its minimum. Thus by iterating this, a totally convex compact totally geodesic
submanifold without boundary, called a soul ofM , is found in the minimum set. The
well-known Cheeger–Gromoll structure Theorem (see [10]) states that a complete
non-compact Riemannian manifold is homeomorphic to the normal bundle over the
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Fig. 16.2 Flows of −grad(φ)

soul in M . If the sectional curvature is positive, the soul is a point, and hence M is
diffeomorphic to R

n. The Sharafutdinov construction [38] of flow curves along the
negative of the subgradient of a Busemann function gives a distance non-increasing
correspondence between two such flow curves. This was employed by Perelmann
[32] for the proof of the famous soul conjecture.

A simple example is seen here (Fig. 16.2).

Example 16.5.2 Let ϕ(x, y) := |x| + |y| for (x, y) ∈ R
2 be a convex function. It is

clear that the distance function is monotone non-increasing along two flow curves
of −grad(ϕ).

We do not know however, if anologues of the above results stated in [10, 16] and in
Example 5.2 are valid on complete Finsler manifolds with positive (or non-negative)
flag curvature (Flag curvature in Finsler geometry is an analogue of sectional
curvature in Riemannian geometry; for details see [1]).

16.5.3 Convex Functions

A function ϕ : (M,F) → R is said to be convex if along every geodesic γ :
[a, b] → (M,F), the restriction ϕ ◦ γ : [a, b] → R is convex:

ϕ ◦ γ ((1− λ)a + λb) ≤ (1− λ)ϕ ◦ γ (a)+ λϕ ◦ γ (b), 0 ≤ λ ≤ 1 (16.5.20)



610 K. Shiohama and B. Tiwari

Fig. 16.3 Graph of a convex
function
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If the inequality in the above (16.5.20) is strict for all γ and for all λ ∈ (0, 1), ϕ is
called strictly convex, and strongly convex if the second order difference quotient,
namely {ϕoγ (h)−ϕoγ (−h)− 2ϕoγ (0)}/h2 is positive for all γ and all λ ∈ (0, 1).
In the special case where equality in (16.5.20) holds for every γ and for every λ ∈
[0, 1], the function is called an affine function. If a non-trivial convex function ϕ
is constant on an open set, then it assumes its minimum on the open set and the
number of components of a level set ϕ−1({a}), a > infM ϕ, is equal to that of the
boundary components of the minimum set of ϕ. A convex function ϕ is said to be
locally non-constant if it is not constant on any non-empty open set of M . From
now on, we always assume that our convex functions are locally non-constant.

The slope inequality of a one variable convex function is elementary, useful and
employed throughout this section. Let f : (α, β) → R be a convex function. Let
α < a < b < c < d < β and A := (a, f (a)), B := (b, f (b)), C := (c, f (c)) and
D := (d, f (d)) be points on the graph of f (see Fig. 16.3). The slope inequality is
expressed as

slope(AB) ≤ slope(AC) ≤ slope(BC) ≤ slope(BD) ≤ slope(CD). (16.5.21)

We observe from (16.5.21) that the right and left derivatives f ′+(t) and f ′−(t) of
f exist and f ′+(t) ≥ f ′−(t) for all t ∈ (α, β), and the equality holds if and only if f
is differentiable at t .

The topology of Riemannian manifolds admitting locally nonconstant convex
functions has been investigated in [14] and [13]. The topology of complete Alexan-
drov surfaces admitting locally nonconstant convex functions has been studied
in [27] and [25]. The classification of Busemann G-surfaces admitting convex
functions has been obtained in [17]. The isometry groups of complete Riemannian
manifolds admitting strictly convex functions have been discussed in [45]. There
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are several extensions of convex functions, such as peakless functions introduced by
Busemann [8], uniformly locally convex filtrations [46], etc. The splitting theorem
for Alexandrov surfaces admitting affine functions has been established in [26].
Also in [27], the condition for compact Alexandrov surfaces to admit locally
non-constant convex functions has been studied. A detailed discussion of convex
sets on Riemannian manifolds of non-negative curvature is carried out in [5]. It
is emphasized that the notion of convexity makes sense, irrespective of whether
the distance function is symmetric or not. Hence the extended notion of convex
functions will be discussed on Finsler manifolds.

We define the ends of a non-compact manifold M and proper maps on M , which
are useful for the investigation of topology of manifolds admitting convex functions.

Definition 16.5.1 Let M be a noncompact manifold and C1 ⊂ C2 ⊂ M be
compact sets. Then, each component of M \C2 is contained in a unique component
of M \ C1. An end of X is by definition an element of the inverse limit system
{components ofM \ C ; C is compact} directed by the inclusion relation.

For example, if M is a compact manifold from which k points are removed, then M
has k ends. R1 has two ends. For n > 1, Rn has one end, for it is homemorphic to Sn

with one point removed. A cylinder Sn−1 ×R has two ends, for it is homeomorphic
to Sn from which two points are removed.

Definition 16.5.2 A map f : M → R is said to be proper if f−1(K) is compact
for all compact set K ⊂ R and f is said to be an exhaustion of M if f−1(−∞, a]
is compact for all a ∈ f (M).

We shall review the topology of geodesically complete Finsler manifolds ad-
mitting locally non-constant convex functions. The following Propositions are basic
and important facts and have already been established in Riemannian geometry, (see
[14] and [13]).

Without assuming the continuity of a convex function on (M,F), we have the
following proposition. For its proof see [14, 36]:

Proposition 16.5.2 Any convex function on (M,F) is locally Lipschitz.

16.5.4 Riemannian and Finslerian Results on Convex
Functions

The assumption on a convex function to be locally non-constant, as was introduced,
is necessary. For, we can construct on every noncompact manifold a complete
Riemannian metric and a non-trivial smooth convex function whose minimum set
contains a non-empty open set. Therefore the existence of such a non-trivial convex
function gives no restriction on the topology of a manifold. We first discuss the level
sets of a locally nonconstant convex function.
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Proposition 16.5.3 [compare Proposition 2.3 in [14]] Let ϕ : (M,F) → R be
a convex function and a > infM ϕ. Then the a-level set ϕ−1({a}) is a topological
submanifold of dimension n− 1.

Proposition 16.5.4 Let C ⊂ (M,F) be a closed locally convex set. Then there
exists a totally geodesic submanifoldW ofM such thatW ⊂ C and its closure is C.

Proof Since C is locally convex, every point x ∈ C admits a convex set B(x, r)∩C
for some r ∈ (0, δ(x)). If y is a point in B(x, r) ∩ C, then γxy : [0, d(x, y)] →
(M,F) and γxy : [0, d(y, x)] → (M,F) are contained entirely in B(x, r) ∩ C.
Clearly, its interior is a totally geodesic submanifold of (M,F) of dimension at
least one, contained in B(x, r) ∩ C. Thus x is contained in a k(x)-dimensional
totally geodesic submanifold which is contained entirely in B(x, r) ∩ C such that
k(x) is maximal dimension of all such totally geodesic submanifolds in B(x, r)∩C.
Setting k = maxx∈C k(x), we have a k-dimensional totally geodesic submanifold,
say, W(x) of (M,F) contained in B(x, r) ∩ C. Suppose W(x) ∩ B(x, r) � C ∩
B(x, r). We then find a point z ∈ B(x, r) ∩ (C \W(x)). Clearly, we have

d(z,W(x)) ≥ 0 and γ̇xz(0) is transversal to the tangent space TxW(x) at x.

Thus we find a small open set � ⊂ W(x) and a family of minimizing geodesics
emanating from points on � and ending at z, whose initial vectors are transversal to
TW(x). We thus get a cone consisting of minimizing geodesics

γyz : [0, d(y, z)] → B(x, r) ∩ C, y ∈ �,

which is contained entirely in C and forms a totally geodesic submanifold of
dimension k + 1, a contradiction.

Let W = ∪x∈CW(x) ⊂ C. Again the transversality argument with W(x) implies
that W is a smooth totally geodesic submanifold of maximal dimension in C.

We finally prove that the closure W of W coincides with C. To prove this,
suppose that there exists a point z ∈ C \ W . We then find a point y ∈ W such
that d(z, y) = d(z, C)) > 0. Let TyW ⊂ TyM be the linear subspace obtained as
the limit limj→∞ TyjW ; yj ∈ W , limj→∞ yj = y. If γ̇zy(d(z, y)) is transversal to

TyW . Then the above argument shows the existence of a (k+1)-dimensional totally
geodesic smooth submanifold in C, which is a contradiction. Therefore, we have
γ̇zy(d(z, y)) ∈ TyW , and hence γzy(0, d(z, y)) ⊂ W . This proves C = W . ��

16.5.5 Level Set Configurations

An elementary observation based on the slope inequality (16.5.21) gives the
following simple fact on a locally non-constant convex function ϕ : (M,F) → R

(and ϕ : (M, g)→ R).
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If there exists a compact level ϕ−1({a}) ⊂ (M, g), then so are all the other levels.
If ϕ−1({a}) ⊂ (M,F) is compact, then so are ϕ−1({b}) for all b ≥ a.

The proof is sketched as follows: Suppose there is a non-compact level
ϕ−1({c}) ⊂ (M,F). There is a sequence of minimizing geodesics emanating
from an arbitrary fixed point x ∈ ϕ−1({a}) and ending at points yj ∈ ϕ−1({c}), j =
1, 2, . . . where {yj }j=1,2,... is a sequence of points with limj→∞ d(x, yj ) = ∞. We
then choose a ray obtained as the limit of these minimizing geodesics, along which
ϕ must be bounded above by c. This means that this ray is contained in ϕ−1({a}), a
contradiction.

Lemma 16.5.1 Let ϕ : (M,F)→ R be a locally non-constant convex function. Let
ϕ−1({a}) be a compact level. Then, ϕ−1[a, b] for a fixed b > a is homeomorphic to
the product ϕ−1({a})× [a, b].
Proof The slope inequality 16.5.21 plays an important role in this. We first choose
two numbers a0 ∈ (infM ϕ, a) and ak+1 > b and let δ := δ(ϕ−1[a0, ak]) be the
convexity radius over ϕ−1[a0, ak]. Take a sequence of real numbers

ak+1 > ak := b > ak−1 > · · · > a1 := a > a0,

such that for each integer i = 2, · · · , k + 1 and for each point x ∈ ϕ−1({ai}), we
find a unique foot f (x) of x on ϕ−1({ai−2}).

Let xk ∈ ϕ−1({ak}) be an arbitrary point. We then find a unique point xk+1 ∈
ϕ−1({ak+1}) such that xk belongs to the interior of T (xk+1, f (xk+1)), where we
denote by T (xk+1, f (xk+1)) the unique foot of xk+1 on ϕ−1({ak−1}).

The uniqueness of feet implies that there is a homeomorphism between
ϕ−1({ak}) and ϕ−1({ak−1}) via the correspondence xk �→ xk−1. Thus we have
a homeomorphism between ϕ−1[ak−1, ak] and ϕ−1({ak}) × [ak−1, ak] through the
feet.

By iteration, we have for an arbitrary fixed point xk ∈ ϕ−1({ak}), a sequence of
points and a minimizing geodesics

{xk+1, xk, · · · , x1} and {T (xk+1, f (xk+1)), T (xk, f (xk)), · · · , T (x2, f (x2))}

which satisfies the conditions

d(xi, xi−1) > d(xi, f (xi+1)), i = k, · · · , 2.

The right derivative of ϕoT (xk+1, . . . , x1) is monotone increasing (this is evident
from the Figs. 16.4 and 16.5). The slope inequality then implies that the right and
left derivatives of ϕ◦T (xi+1, f (xi+1)) at xi are larger than those of ϕ◦T (xi, f (xi))
at xi . Therefore, if ϕ is restricted to the union of broken geodesics

T (xk, xk−1, . . . , x1) := T (xk, xk−1)∪T (xk−1, xk−2)∪· · ·∪T (x2, x1), (16.5.22)
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Fig. 16.4 Broken geodesics through levels of a convex function-I
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T (xk+1, ..., x1)

Fig. 16.5 Broken geodesics through levels of a convex function-II

then, it is monotone and convex. Clearly, the right and left derivatives at every point
of T (xk, xk−1, . . . , x1) are bounded above by a negative number μ = μ(a0, a, δ);
here μ is defined by

−μ := a − a0

max{d(x, ϕ−1({a0}))|x ∈ ϕ−1({a})} .

This means that the length of T (xk, xk−1, . . . , x1) is bounded above by (b−a)
μ(a0,a,δ)

<

0. This completes the proof (Figs. 16.4 and 16.5). ��
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Let ϕ : (M, g) → R be a locally non-constant convex function on a com-
plete Riemannian manifold. The Sharafutdinov construction of flow curves along
−grad(ϕ) implies that the diameter function t �→ diam(ϕ−1({t})) is monotone non-
decreasing. Here we set

diam(ϕ−1({t})) := sup {d(x, y) | x, y ∈ ϕ−1({t}) ⊂ (M, g)}. (16.5.23)

The monotone property of t �→ diam(ϕ−1({t})) may be roughly explained as
follows:

Let C ⊂ (M, g) be a closed convex set and x, y ∈ M \ C be taken sufficiently
close to C such that there exist unique foot f (x), f (y) of x, y on C respectively.
We observe that d(x, y) ≥ d(f (x), f (y)). This shows that the diameter function
has everywhere non-negative derivative (see [13, 14]). We therefore get that if ϕ
admits a level that is compact, then so are all the others.

However we do not know if the monotone property of the diameter function
is valid for Finsler manifolds. Irrespective of whether the diameter function is
monotone or not, we get from Lemma 16.5.1 the following

Theorem 16.5.1 (See Theorem 1.1 in [36]) Let (M,F) be a complete Finsler
manifold and ϕ : (M,F) → R be a locally non-constant convex function whose
level sets are all compact. Then we have the following:

(1) If ϕ−1({c}) is connected for some c > infM ϕ, then there exists a homeomor-
phism H : ϕ−1({c})× (infM ϕ,∞)→ M such that

(a) H(x, t) ∈ ϕ−1({t}) for all (x, t) ∈ ϕ−1({c})× (infM ϕ,∞).
(b) If a, b ∈ ϕ(M), a < b, we then have H(x, [a, b]) = T (xk, xk−1, . . . , x1)

as defined in (16.5.22).

(2) If ϕ attains its infimum, say m := infM ϕ, then M is homeomorphic to the
normal bundle over ϕ−1({m}) in M .

(3) If there is a disconnected level, then ϕ attains its minimum m = infM ϕ, and
ϕ−1({m}) is a compact totally geodesic smooth hypersurface with trivial normal
bundle. Moreover, M is homeomorphic to ϕ−1({m})×R.

Remark 7 Without the assumption of the existence of a compact level of ϕ :
(M, g) → R, all the above statements are still valid in the Riemannian case.
However we do not yet know this in the Finsler case.

16.5.6 Properness of Exponential Maps

The slope inequality of convex functions along geodesics leads us to the properness
of the exponential maps on manifolds with convex functions. Clearly the exponen-
tial map expx : TxM → M at each point on a complete and simply connected
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Riemannian manifold M gives a diffeomorphism, and hence it is proper. The proof
is sketched as follows:

First of all, let (M, g) be a complete non-compact Riemannian manifold of
positive sectional curvature. Then a super Busemann function Fx : (M, g) → R

at a point x ∈ M is a strictly convex exhaustion. Under this condition Gromoll and
Meyer [16] proved that the exponential map expx : TxM → M is proper. In fact,
suppose to the contrary that there is a compact set K ⊂ M such that exp−1

x (K) is
non-compact. Then there exists a divergent sequence {uj }j=1,2,... ⊂ TxM of vectors
with limj→∞ ‖uj‖ = ∞ such that expx uj ∈ K for all j = 1, 2, . . . . Thus we find
a geodesic γ : [0,∞) → (M, g) such that ϕ ◦ γ is bounded above, and hence
it is constant. This is impossible, for ϕ is strictly convex. Hence the exponential
map expx : TxM → M is proper. The properness of exponential map on Finsler
manifold has recently been extended as follows:

Theorem 16.5.2 (See [22]) If (M,F) is a geodesically complete non-compact
Finsler manifold, and if ϕ : (M,F) → R is a strictly convex exhaustion function,
then the exponential map at each point of (M,F) is proper.

Notice that the exhaustion property in Theorem 16.5.2 is needed for the conclusion
to hold. For instance, let F ⊂ R

3 be a surface of revolution with profile curve
y = ex , x ∈ R. Then the exponential map is not proper at any point of F .

16.5.7 Number of Ends

The number of ends of complete Riemannian manifolds admitting locally non-
constant convex functions is estimated by using the slope inequality (16.5.21),
Lemma 16.5.1 and Theorem 16.5.1.

Theorem 16.5.3 (Ends of (M, g), [14]) Let (M, g) be a connected geodesically
complete Riemannian manifold admitting a locally nonconstant convex function
ϕ.

(1) If ϕ has a noncompact level, then M has one end.
(2) If ϕ assumes its minimum and if it admits a compact level, then M has one end.
(3) If ϕ has a disconnected compact level, then M has two ends.
(4) If ϕ has a compact level and if its infimum is not attained, then M has two ends.

However the ends of geodesically complete Finsler manifolds admitting locally
non-constant convex functions have not been fully understood yet. We do not know
any example of a convex function ϕ : (M,F)→ R with compact and non-compact
levels simultaneously.
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16.5.8 Isometry Groups

Let (H, g) be a Hadamard manifold, namely H is a complete and simply connected
Riemannian manifold of non-positive sectional curvature. Then the distance func-
tion d(x, .) from a fixed point x ∈ H is convex, with a unique minimum point at x.
A well-known classical theorem by Cartan states that if G is a compact subgroup of
the isometry group I (H) of H , then it has a common fixed point. In fact, if x ∈ H is
a fixed point, then theG-orbitG(x) of x is compact, and hence there exists a unique
smallest ball B(y, r) with G(x) ⊂ B̄(y, r). Clearly B(y, r) is invariant under the
action of G, and hence the center y is fixed under the actions of G.

We finally discuss how the existence of a convex function on (M, g) and (M,F)

influences the group of isometries on them. The splitting theorem for Riemannian
manifolds admitting affine functions has been discussed in [19]. It is proved in
[15] that if (M, g) is a complete Riemannian manifold with non-compact isometry
group and if (M, g) admits a convex function without minimum whose levels are
all compact, then (M, g) is isometric to the Riemannian productN ×R, where N is
a compact smooth manifold. In [10] Cheeger and Gromoll constructed the compact
totally convex filtration obtained by a super Busemann function on a complete non-
compact Riemannian manifold of non-negative sectional curvature. They proved:

Theorem 16.5.4 A complete Riemannian manifold (M, g) of non-negative sec-
tional curvature splits off isometrically as the product:

M =M ×R
k,

where the isometry group I (M) of M is compact and I (M) = I (M)× I (Rk).

Without assuming that the sectional curvature is non-negative, there are some results
on the relation between the isometry groups and convex functions defined on (M, g)

and on (M,F) respectively.

Theorem 16.5.5 (See [45]) Let (M, g) be a complete Riemannian manifold admit-
ting a strictly convex function ψ : (M, g)→ R. We then have

(1) If ψ admits a minimum, then every compact subgroup G of the isometry group
of (M, g) has a common fixed point.

(2) If ψ has a compact level and if it has no minimum, then the group of isometries
of (M, g) is compact.

Proof For the proof of (1), we denote by μ the Haar measure on G, normalized by∫
G dμ = 1. We define a function 2 : (M, g) → R by 2(x) := ∫

G ψ(gx)dμ(g),
x ∈ M . Clearly, 2 is strictly convex. Since G is compact, 2 attains its minimum.
The strict convexity of 2 means that the minimum set of 2 consists of a single
point. It follows from the construction of2 that the minimum set is a common fixed
point of G.
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ψ−1({a})

x y

f(y)

f(x)

ψ−1(infM ψ, a]

Fig. 16.6 Feet on a level set of a convex function

The strictly increasing property of the diameter function defined in (16.5.23)
plays an important role for the proof of (2). This fact can intuitively be understood
as follows:

Choose numbers infM 2 < a < b such that d(x,ψ−1({a})), for every
x ∈ ψ−1({b}), is less than the convexity radius on the compact set ψ−1[a, b]. If
x, y ∈ ψ−1({b}) are sufficiently close to each other and if f (x) and f (y) are feet
on ψ−1(infM 2, a], we then have d(x, y) > d(f (x), f (y)), (see Fig. 16.6).

Roughly speaking, this is because of the angle property: �(x, f (x), f (y)) >
π
2 and �(y, f (y), f (x)) > π

2 . Here �(x, f (x), f (y)) is the angle between two
vectors at f (x) tangent to minimizing geodesics joining f (x) to x and f (x) to
f (y). This infinitesimal version of the above observation will give the Sharafutdinov
construction of the distance non-increasing strong deformation retract.

For the proof of (2), we argue by deriving a contradiction. Suppose that the
isometry group G of M is non-compact. Then the orbit G(x) of an arbitrary point
x ∈ (M, g) forms an unbounded set. We know from Theorems 16.5.1 and 16.5.3 that
M is homeomorphic toψ−1({a})×R, where a := ψ(x). Since the diameter function
diamψ(t) of ψ is strictly increasing, every isometry g1 of (M, g) fixes each end of
M . We may chose an element g1 ∈ G so as to satisfy: g1 ◦ψ−1({a}) is contained in
ψ[b, c], where b − a is sufficiently large. Thus the diameter function of ψ satisfies
diamψ(b) > diamψ(a). We then choose a proper curve α : (infM ψ,∞)→ (M, g)

such that ψ ◦ α is strictly increasing and α[b, c] does not meet g1 ◦ ψ−1({a}) (see
Fig. 16.7). It obviously follows that g1 ◦ α : (infM ψ,∞) → (M, g) does not pass
through any point of ψ−1({a}) and join the two ends of M, a contradiction. ��

We know very little about the isometry groups of complete Finsler manifolds
admitting convex functions. Proof of the following result can be found in [22].
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ψ−1({a})

ψ−1({b})

ψ−1({c})

α

α(b)

α(c)

g1(x)

g1 ◦ ψ−1({a})

x

Fig. 16.7 Increasing diameter of a convex function

Theorem 16.5.6 (See [22]) Let ψ : (M,F) → R be a strictly convex exhaustion
function. Then every compact subgroup of the group of isometries on (M,F) has a
common fixed point.
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Chapter 17
The Poincaré Conjecture and Related
Statements

Valerii N. Berestovskii

Abstract The main topics of this paper are mathematical statements, results or
problems related with the Poincaré conjecture, a recipe to recognize the three-
dimensional sphere. The statements, results and problems are equivalent forms,
corollaries, strengthenings of this conjecture, or problems of a more general nature
such as the homeomorphism problem, the manifold recognition problem and the
existence problem of some polyhedral, smooth and geometric structures on topo-
logical manifolds. Examples of polyhedral structures are simplicial triangulations
and combinatorial simplicial triangulations of topological manifolds; so appears
the triangulation conjecture, more exactly, the triangulation problem. Examples
of geometric structures are Riemannian metrics that are locally homogeneous or
have constant zero, positive or negative sectional curvature; more general structures
are intrinsic or geodesic metrics with curvature bounded above or/and below
in the sense of A.D. Alexandrov or with nonpositive curvature in the sense of
H. Busemann.

MSC 2010: 57M40, 57R60, 57M35, 57R65, 57R05, 57R10, 52B70, 53B20, 51Fxx

17.1 Introduction

Poincaré introduced the notion of a (smooth) manifold for the needs of differential
equation theory. For a deep study of manifolds he defined the fundamental group and
the Betti numbers as predecessors of the homology groups. Much later, homology
groups were defined under the influence of Emmy Noether, and higher homotopy
groups were introduced by E. Cech and W. Hurewicz. As a result, there appeared
an interpretation of the first integral homology group for manifolds as the quotient
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group of the fundamental group by its commutator subgroup, and an interpretation
of Betti numbers as ranks of rational or real homology groups.

The very first—erroneous—version of the Poincaré conjecture stated that a
closed 3-manifold with trivial first homology group (in other words, with funda-
mental group equal to its commutator subgroup) must be homeomorphic to the
three-dimensional sphere. However, very soon after, Poincaré gave the corrected
version of his conjecture: a closed 3-manifold is homeomorphic to the 3-sphere if its
fundamental group is trivial (the necessity of the last condition is obvious). This was
after Poincaré discovered the famous homology 3-sphere with fundamental group
of order 120.

Later on, there were many unsuccessful attempts to solve the Poincaré conjecture
as well as very useful discoveries in 3-manifold theory. As examples, let us mention
the spherical decomposition (the inverse operation to the operation of the connected
sum) of any closed triangulated 3-manifold into a finite number of prime summands.
Each summand, besides a 2-spherical bundle over the circle, is irreducible, i.e., any
embedded 2-sphere in it bounds a 3-ball. In addition, the fundamental group of
the initial manifold is a free product of fundamental groups of its summands. This
decomposition is unique for orientable manifolds. Note that any closed 3-manifold
with finite fundamental group is orientable.

In 1982 W. Thurston has conjectured that if M is a prime summand, then any
piece of M of the following kind admits a locally homogeneous metric of a unique
type among some eight types he indicated:

(1) M itself, if M is a 2-spherical bundle over the circle or if its fundamental group
is finite;

(2) every open connected component of the decomposition of M via a finite family
of embedded 2-tori (and possibly embedded projective planes or Klein bottles
if M is nonorientable).

Thurston’s conjecture implies that if the fundamental group of M is finite,
then M admits a Riemannian metric of constant sectional curvature 1. Hence, a
positive answer to Thurston’s geometrization conjecture would imply the Poincaré
conjecture.

G. Perelman proved the Thurston conjecture in three preprints, published in 2002
and 2003. For this, he used a version of R. Hamilton’s program on the Ricci flow
process using the decomposition of manifolds in this process, and his own results
on Alexandrov’s spaces with curvature bounded below.

In this survey, we formulate the Thurston geometrization conjecture without
discussing later papers or results connected with its solution or with the Ricci flow.
The reader can find more information about the conjecture and related topics in
[177] (see also [162]).

Hamilton wrote his first paper on Ricci flows in [89], in the same year 1982
as [177]. A certain amount of information on these topics can be found in several
preprints and papers [12, 24, 45, 49, 109, 133, 135–138, 151–153, 167]. The present
survey may be considered as a complement to these texts.

Our main discussion concerning directly the Poincaré conjecture is about the
early history of the subject, contained in [93, 99, 101, 155] and other papers which
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appeared before [177]. We introduce all the necessary notions or give necessary
references to formulate the results, except for the first elementary notions of general
topology, homology and homotopy theories. The latter are used rather moderately.
We consider the fundamental group in detail, but do not discuss the techniques used
in proofs of results.

In Sect. 17.2, we give a precise formulation of PC3 (the Poincaré conjecture in
dimension 3) and necessary definitions for this formulation.

In Sect. 17.3, we present some equivalent forms of PC3 which admit simple
statements. Let us mention especially the Bing characterization of the 3-sphere in
Theorem 5 which supplies an equivalent to PC3.

In Sect. 17.4, we quote another result of Bing: PC3 is equivalent to the statement
that any simplicial triangulation of a topological 4-manifold is combinatorial, or, in
more common terms, it is a piecewise linear structure (PL-structure). Together with
results of J.C.H. Whitehead about smoothing PL-structures on 4-manifolds, this
implies that a topological 4-manifold admits a simplicial triangulation if and only if
it admits PL and smooth structures. Then, by results of J. Cerf, there are one-to-one
correspondences between these three structures on 4-manifolds; see Sect. 17.5.

It is known that any noncompact 4-manifold is smoothable. In Sect. 17.6, we
discuss the smoothing question for closed simply connected oriented 4-manifolds.
For any such manifold M , the intersection form ω = ωM is defined as an integral
bilinear, symmetric, and unimodular form (on a free Z-module). By the Whitehead
theorem, the oriented homotopy type of a smooth manifoldM is defined by ωM . By
M. Freedman’s theorem, for any such form ω there exist exactly one (respectively,
two) manifold M up to homeomorphism with ωM = ω if ωM is even (respectively,
odd); for at most one of them, M × S1 is smoothable. By Rochlin’s Theorem 14
(respectively, Donaldson’s Theorem 16), a smooth M has ωM of a special kind if
ωM is even (respectively, definite). All this implies that the majority of manifolds
M are nonsmoothable, hence are not triangulated. The smoothable M are not yet
classified; possibly, the smoothable manifolds M are exactly connected sums of
complex algebraic surfaces. Many of smoothable 4-manifolds, possibly all, admit
infinitely many non-diffeomorphic smooth structures.

In Sect. 17.7, we define the homotopy groups, discuss their simple properties,
and calculate the fundamental groups of 1-manifolds.

The main content of Sect. 17.8 is the Seifert-van Kampen theorem and some of
its corollaries about the presentation of fundamental groups.

In Sect. 17.9 are given a classification of closed surfaces and presentations of
their fundamental groups.

In Sect. 17.10 are discussed Heegaard splittings of closed 3-manifolds and
corresponding finite presentations of their fundamental groups.

Section 17.11 contains two group-theoretic equivalent forms of the Poincaré
conjecture and a mention of a third one by C.D. Papakyriakopoulos.

In Sect. 17.12 are considered Grushko’s theorem, connected sums and prime
decompositions of closed 3-manifolds and corresponding decompositions of fun-
damental groups into free products of fundamental groups of summands of prime
decompositions. Any such summand, besides the 2-spherical bundles over the
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circle, is a closed irreducible 3-manifold. The Poincaré conjecture implies that no
summand is a homotopy 3-sphere if the initial manifold is not a 3-sphere.

Any closed irreducible 3-manifold either contains a two-sided embedded pro-
jective plane P 2, hence is nonorientable, or has trivial second homotopy group. A
closed irreducible 3-manifold is said to be P 2-irreducible if the first case does not
occur. A theorem from Sect. 17.13 asserts that the universal covering of any such
manifoldM is either a compact homotopy 3-sphere (hence the 3-sphere by PC3), or
is noncompact and contractible (then M is called aspherical). Recent results imply
that the universal covering of the last manifold is R3. The next theorem demonstrates
on the ground of the loop theorem by J. Stallings that there exist contractible open 3-
manifolds which are not homeomorphic to R

3. The first example of such a manifold
was discovered by Whitehead as a counterexample to his incorrect proof of the
Poincaré conjecture.

In Sect. 17.14 are considered closed 3-manifolds with finite fundamental groups.
Any such manifold is orientable; the Poincaré conjecture is equivalent to the
statement that it is irreducible. The PC3 also implies a surprising theorem of
D.B.A. Epstein on the structure of compact non-orientable 3-manifolds with
boundary and finite fundamental group and the fact that any closed 3-manifold
with finite fundamental group is homeomorphic to a so-called spherical space
form. Any such form is a Riemannian manifold with constant sectional curvature 1.
J. Alexander was the first to discover that there exist non-homeomorphic forms with
isomorphic cyclic fundamental groups (lense spaces).

Any nonorientable closed 3-manifold M has infinite first homology group
H1(M,Z). In Sect. 17.15, we consider closed irreducible 3-manifolds M with
infinite fundamental group and define incompressible surfaces in M . If M is P 2-
irreducible, then its fundamental group π1(M) is without torsion. If π1(M) with
the last condition contains no nontrivial free subgroup of finite index then π1(M)

is free; then, using the Poincaré conjecture, one gets that M is a connected sum
of 2-spherical bundles over the circle. A compact 3-manifold M is said to be
sufficiently large if it contains a compact two-sided incompressible surface. This
is so if H1(M,Z) is infinite. However, there are also closed sufficiently large
3-manifold with a finite H1(M,Z).

In Sect. 17.16 are discussed Haken 3-manifolds. A compact orientable 3-
manifold is called a Haken manifold if it is irreducible and sufficiently large.
Any continuous map between Haken manifolds, inducing an isomorphism of
their fundamental groups, is homotopic to a homeomorphism. The universal
covering manifold of a closed orientable Haken manifold is homeomorphic to
R

3. F. Waldhausen proposed the following virtual Haken conjecture: any compact
irreducible 3-manifold with infinite fundamental group has a finite-sheeted covering
by a Haken manifold. The homeomorphism problem has a positive algorithmic
solution for Haken manifolds. This implies a positive solution to the problem of
algorithmic knot classification.

Section 17.17 contains a formulation of the Jaco-Shalen-Johannson theorem
on the torus decompositions of closed orientable Haken 3-manifolds. A smooth
3-manifold endowed with a smooth effective action of the Lie group U(1) is
called a Seifert fibration. A 3-manifold M is said to be atoroidal if any two-sided
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incompressible torus in M is boundary parallel in M . The JSJ-splitting theorem
states that for any closed Haken manifold M3 there exists a minimal finite (maybe
empty) familyW of tori such that any connected component ofM3−W is atoroidal
or is a Seifert fibration; the family W is unique up to an isotopy of M3.

In Sect. 17.18, we state the Thurston geometrization conjecture for closed
orientable 3-manifolds indicating the relevant eight homogeneous Riemannian 3-
manifolds. Let us note that recently I. Agol proved the virtual Haken conjecture
(respectively, the Thurston conjecture on the virtual fibering over the circle) for
closed aspherical (respectively, hyperbolic) 3-manifolds. As a consequence, the
universal covering spaces of these manifolds are homeomorphic to R

3. To prove the
above two results, Agol used his proof of the D.T. Wise conjecture on the virtually
special action of any word-hyperbolic group acting properly and cocompactly on a
CAT(0) cube complex, and the Thurston geometrization conjecture.

The main result of Sect. 17.19 is a striking recent disproof by C. Manolescu
of the (simplicial) triangulation conjecture for topological n-manifolds, n ≥ 5.
Together with the fact that there are nontriangulable closed simply connected
4-manifolds, we see that the triangulation conjecture is true only for n = 1, 2, 3.
There is an epimorphism, ρ, called the Rochlin epimorphism, from the homology
cobordism group3H

3 over Z2 of integral homology 3-spheres onto Z2. One gets the
short exact sequence as in (17.4) and the corresponding Bockstein homomorphism
β : H 4(Mn,Z2) → H 5(Mn, ker(ρ)) for any n-manifold Mn, n ≥ 5. About 40
years ago D. Galewski and R. Stern proved that (1) the triangulation conjecture for
n ≥ 5 is true if and only if the sequence (17.4) splits, (2) a closed Mn, n ≥ 5,
is triangulable if an only if β(k(Mn)) = 0, where k(Mn) ∈ H 4(Mn,Z2) is the
Kirby-Siebenmann invariant of Mn which equals zero if and only if Mn admits a
PL-triangulation, and they constructed for any n ≥ 5 special n-manifolds Nn such
that the triangulation conjecture for all n ≥ 5 is true if and only if for at least one of
the Nn, β(k(Nn)) = 0. Manolescu proved that (17.4) does not split and presented
particular Nn with β(k(Nn)) �= 0 for all n ≥ 5.

In Sect. 17.20, using results by A.A. Markov and P.S. Novikov, we show that the
homeomorphism problem is algorithmically unsolvable for closed n-manifolds in
any dimension n ≥ 4. Note that Seifert constructed the relevant manifolds in this
respect.

Section 17.21 contains a discussion of the manifold recognition problem. A
locally compact finite-dimensional metric space C is called an absolute cone if
for any point c ∈ C, C is homeomorphic to an open cone over a compact
base with vertex c. The de Groot absolute cone conjecture states that every n-
dimensional absolute cone is homeomorphic to an open ball in R

n. Assuming the
Poincaré conjecture, C. R. Guilbault proved that the absolute cone conjecture is
true for 1 ≤ n ≤ 4 and false for n ≥ 5. This permits easily to characterize
topological n-manifolds for 1 ≤ n ≤ 4. A generalized n-manifold (n-GM) is a
locally compact, locally contractible, finite-dimensional separable metric space X
with the local relative homology of Rn, i.e., H∗(X,X − {x},Z) is isomorphic to
H∗(Rn,Rn − {x},Z) for any x ∈ X. The space X is said to possess the disjoint
disk property (DDP) if any two continuous maps of the disc B2 into X can be
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approximated by arbitrary close maps with disjoint images. A connected space X
is an n-manifold, n ≥ 5, if and only if X is n-GM satisfying DDP and such that
i(X) = 1, where i(X) ∈ 1 + 8Z is the integer F. Quinn obstruction (index).
There is a well-known problem called the Bing-Borsuk problem: “Is it true that
any connected locally compact locally contractible finite-dimensional topologically
homogeneous metric space is a topological manifold?” W. Jakobsche proved that
a positive answer to this problem in dimension 3 implies the Poincaré conjecture.
A locally compact complete space M with intrinsic metric such that the shortest
paths can be locally extended in a unique way is called a Busemann G-space. Up
to now, answers to the following questions of Busemann are unknown: (1) Is it true
that any Busemann G-space is finite-dimensional? (2) Is it true that any Busemann
G-space M of finite dimension is a topological manifold? One can easily prove that
M is locally contractible and topologically homogeneous. The first question has a
positive answer if M contains at least one open ball U such that any two points in U
are joined by a unique shortest path in M and this path lies in U . Any n-dimensional
Busemann G-space is an n-GM. It is not difficult to show that small open balls
in a Busemann G-space M are absolute cones over their bondary spheres. Then
any n-dimensional Busemann G-space is a topological manifold for 1 ≤ n ≤ 4.
P. Thurston proved this for n = 4 not using PC3.

In Sect. 17.22 we discuss triangulations and related questions on the canonical
construction of Alexandrov’s metrics with curvature ≤1 on simplicial complexes.
The construction was suggested by the author of this survey. Alexandrov introduced
his spaces with curvature ≤K (respectively, ≥K) as a generalization of smooth
Riemannian spaces with sectional curvature ≤K (respectively, ≥K). Any such
space can be characterized as a locally geodesic intrinsic metric space with a local
possibility of isometric embedding of quadruples of points into three-dimensional
Riemannian spaces with sectional curvatures ≤K (respectively, ≥K). Any Buse-
mannG-space with Alexandrov curvature bounded above or below is a Riemannian
manifold. Any Alexandrov space of curvature ≤0 has also nonpositive curvature
in Busemann’s sense. P.D. Andreev proved that any Busemann G-space with
nonpositive Busemann curvature is a topological manifold whose universal covering
space is homemomorphic to a Euclidean space. By Alexandrov’s definition, a K-
region is a geodesic space which globally satisfies the curvature condition ≤K;
much later, M. Gromov called it a CAT(K)-space. Any connected locally finite
simplicial complex C admits a metric of 1-region; this implies a positive solution
to a problem by Borsuk. For any point x in a locally compact Alexandrov space X
with curvature ≤K or ≥K, there are the associated space of directions �xX and
the tangent space TxX at x. One can show that there are topological n-spheres X
for all n ≥ 5 with a metric with curvature ≤1, such that at some point x ∈ X,
TxX is homeomorphic to R

n, while �xX is not homeomorphic to Sn−1; if �xS
4

is homeomorphic to S3 for each x ∈ S4 and every metric on S4 with curvature
≤1, then the Poincaré conjecture is true. Thus, there is a natural question for such
metrics on S4, whose positive solution would imply PC3. Lytchak and Nagano gave
in [115] an affirmative answer to this question using the resolution of PC3!
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We see post factum that the key results of 3-dimensional topology could be
obtained by means of (generalized) Riemannian geometry and the corresponding
analytical apparatus without numerous results obtained by topologists and alge-
braists in the twentieth century. So, the crucial theorems by Papakyriakopoulos,
Whitehead and Shapiro, Stallings and Epstein on the Dehn lemma, the loop theorem
and the sphere theorem were proved by W. Meeks III and S.T. Yau using minimal
surfaces [129, 130]. Also Perelman proved the Poincaré conjecture in the realization
of the Hamilton-Perelman program for the solution of Thurston’s conjecture using
the Ricci flow. However, the history (in particular, the history of mathematics) does
not know the subjunctive mood, and the real centenary history culminating in the
proof of the Poincaré conjecture once again demonstrates the unity of mathematics
and the fruitfulness of ideas from mathematical physics. The same is true for the
solution of the triangulation conjecture.

We also see that many interesting, even difficult, unsolved questions, directly or
indirectly connected with the Poincaré conjecture, wait for a solution.

Finally, let us mention interesting popularization books [80] by Masha Gessen
and [147] by Donal O’Shea on the Poincaré conjecture and events connected with
its proof by Perelman as well as presentations of this proof. We warn the reader
that both books contain mistakes and controversial statements, both mathematical
as well as in other respects.

The text below is a revised version of the article [22].
The author is very obliged to professors A. Papadopoulos and S. Dani for many

remarks which helped him improving the text and A. Lytchak for useful discussions.

17.2 The Poincaré Conjecture

We assume that the reader is familiar with the basic notions of general topology. If
a topological space (X, τ) is homeomorphic to a topological space (Y, σ ), we write
(X, τ) ≈ (Y, σ ). The Euclidean n-dimensional space En is the space R

n (i.e., the
n-fold Cartesian power of the real line R) with the metric

ρ(x, y) =
√
1n
k=1(xk − yk)2

and the topology τ corresponding to this metric. We shall often denote a topological
space (X, τ) (respectively, a metric space (X, ρ)) by X.

Definition 1 A metrizable separable topological space X is called an n-manifold
with (possibly empty) boundary, if for any point x ∈ X there exists an (open)
neighborhood Ux of x such that Ux ≈ En, or Ux ≈ (En)+ = {(x1, . . . , xn) ∈
En : xn ≥ 0} and there is no Ux ≈ En. A point of the first (respectively
second) kind is called an interior (respectively, boundary) point of X. The set of
all interior (respectively, boundary) points of an n-manifold X is called the interior
(respectively, the boundary) of X and is denoted by Int(X) (respectively, ∂X). A
compact n-manifold without boundary is called a closed n-manifold.
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Theorem 1 The boundary ∂Mn of a (compact) n-manifold Mn is either empty or
a (closed) (n− 1)-manifold without boundary.

Definition 2 Let f, g : (X, τ) → (Y, σ ) be continuous maps. The map f is said
to be homotopic to the map g if there exists a continuous map (homotopy between
f and g) F : (X, τ) × I → (Y, σ ), where I = [0, 1] ⊂ E1, such that F(x, 0) =
f (x), F (x, 1) = g(x) for all x ∈ X. In this case we write f 4 g.

The relation 4 is an equivalence relation on the set of continuous maps from
(X, τ) to (Y, σ ). The equivalence class of f is called the homotopy class of f and
is denoted by [f ].
Definition 3 A path in a topological space X is a continuous map p : I → X. The
points p(0) and p(1) are called respectively the initial and terminal points of the
path p. A path p is called a loop if p(0) = p(1). A topological space X is said
to be simply connected if for any two loops p and q in X there exists a homotopy
F : I × I → X such that F(·, 0) = p, F(·, 1) = q , and F(·, s) is a loop in X for
all s ∈ I .

Any simply connected topological space X is path connected. This means that
for any two points x, y ∈ X there is a path p in X such that p(0) = x, p(1) = y.
Any path connected topological space is connected. A topological manifold X is
connected if and only if X is path connected.

Let (X, ρ) be a metric space, x0 ∈ X, and r a positive real number. Recall that
an open (respectively, closed) ball, or a sphere of radius r with center x0 in (X, ρ) is
the set of all x ∈ X such that ρ(x, x0) < r (resp., ρ(x, x0) ≤ r) or ρ(x, x0) = r . We
use the following notation for these: U(x0, r) (respectively, B(x0, r)) or S(x0, r).

Conjecture 1 PC3. (The Poincaré Conjecture, 1904, [155]) Any closed simply
connected topological 3-manifold X is homeomorphic to the unit sphere S3 in E4

centred at the origin.

17.3 Some Statements Related with the Poincaré Conjecture

Definition 4 A continuous map f : X → Y between topological spaces is called
a homotopy equivalence if there exists a continuous map g : Y → X such that
g ◦ f 4 1X, f ◦ g 4 1Y . Here 1X is the identity map of X. In this case we write
f : X 4 Y . A topological space X is homotopy equivalent to a topological space Y
if there is a homotopy equivalence f : X 4 Y ; we then write X 4 Y .

Evidently, 4 is an equivalence relation between topological spaces (in general,
this relation is more rough than the relation of homeomorphism). An equivalence
class of a topological space X with respect to 4 is called the homotopy type (and is
denoted by [X]). The properties of X being path connected or simply connected are
invariants of the homotopy type. A topological space X is called contractible if X
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has the homotopy type of a topological space reduced to one point. A topological
space X is contractible if and only if 1X 4 ix : X→ {x} for any point x ∈ X.

Theorem 2 PC3 is equivalent to the following statement HS3: if X is a closed 3-
manifold and X 4 S3 then X ≈ S3.

Since the property of being simply connected is an invariant of homotopy type,
and S3 is simply connected, we have PC3 ⇒ HS3. The converse statement is a
consequence of the following Theorem 3.6 in [93].

Theorem 3 A 3-manifold M is homotopy equivalent to the 3-sphere if and only if
M is closed and simply connected.

By a simple closed curve (respectively, 3-cell) we shall understand a subspace
homeomorphic to S1 (respectively, B3 = B(x, 1) ⊂ E3). A fake 3-cell will mean a
compact contractible 3-manifold which is not homeomorphic to B3.

Arguments as in the proof of Theorem 3 in [93] imply the following

Theorem 4 The Poincaré conjecture is equivalent to the statement that there is no
fake 3-cell.

The sphere S3 can be characterized as follows.

Theorem 5 (R.H. Bing, 1958, [28]) Let M be a closed connected 3-manifold.
Assume that each simple closed curve in M lies in a 3-cell in M . Then M is
homeomorphic to S3.

Evidently, the converse of Theorem 5 is true. It is clear that the hypotheses of
Theorem 5 imply that M is simply connected. Then this theorem follows from PC3.
In turn, it follows from this theorem that PC3 can be obtained from the following
statement.

Statement 1 Let M be a closed (connected) simply connected 3-manifold. Then
each simple closed curve in M lies in a 3-cell in M .

Let us denote by PCn and HSn the statements obtained from PC3 and HS3
respectively by replacing 3 by n, a positive integer. HSn is usually called the
generalized Poincaré conjecture. It is enough easy to prove that PCn is true for
n = 1, 2 and is false for n ≥ 4; HSn is true for n = 1, 2.

In late 1950s and early 1960s, considerable progress was achieved due to the
discovery that manifolds of higher dimensions can be investigated more easily than
3-manifolds. M.H.A. Newman proved in 1966, [142], the following

Theorem 6 HSn is true for n > 4.

Remark 1 Smale proved this statement for combinatorial manifolds in 1961 [169].
Note that any homotopy n-sphere Mn, n ≥ 5, has H 4(Mn,Z2) = 0, hence the
Kirby-Siebenmann obstruction k(Mn) ∈ H 4(Mn,Z2) vanishes, so Mn admits a
combinatorial triangulation [107]. Related results were published by Stallings in
1960 [170], Wallace in 1961 [184], Yamasuge in 1961 [193], Zeeman in 1962 [194].
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The case of n = 4 turned out to be much more difficult and the solution appeared
in the paper by Freedman [70]. The following theorem is a partial result of his work.

Theorem 7 HS4 is true.

17.4 Statements on Triangulations Related with the Poincaré
Conjecture

The convex hull �n of a set An+1 consisting of n + 1 points in Em which do not
lie in an (n− 1)-plane of Em is called n-simplex in Em, m ≥ n. The convex hull of
any subset in An+1 is called a face of the n-simplex�n. An n-simplex in an abstract
metric space is a subset isometric to an n-simplex in En; the faces of this abstract
n-simplex are the inverse images of its isometric image in En.

A geometric complex is a metric space which is an union of a locally finite family
of simplexes such that intersection of any two simplexes, when nonempty, is a face
of each of them. T is called a triangulation of the geometric complex if T contains
each face of each of its elements; the i-skeleton of a triangulation is the union of
all its i-simplexes. A geometric complex endowed with a triangulation is called a
simplicial complex.

If s is a simplex of a triangulation T of a geometric complex, then the star
st (s, T ) is the union of all simplexes in T containing s. The link lk(s, T ) is the union
of all simplexes s′ in st (s, T ) such that s∩ s′ = ∅. If s, s′ are disjoint simplexes that
are faces of the same simplex s′′, then the join of s and s′ is the union of all segments
in s′′ from points of s to points of s′. We will also use this term for arbitrary two
subsets s, s′ of a simplex s′′.

A subset Y of a geometric complex C is called a polyhedron if C admits a
triangulation T such that Y is a union of simplexes in T . A subset Z ⊂ C is said to
be tame in C if there exists a homeomorphism h of C onto itself such that h(Z) is a
polyhedron. A closed subset X ⊂ C which is homeomorphic to a polyhedron but is
not tame in C is said to be wild.

A map f of a geometric complex C into a geometric complex C′ is piecewise
linear if there is a triangulation T of C such that f is linear on each simplex of
T . A map f of a simplicial complex C into a geometric complex C′ is said to be
simplicial if f maps each simplex s of C onto a simplex of C′ and is linear on s.
Geometric (respectively, simplicial) complexes C and C′ are isomorphic if there is
a bijection f : C → C′ such that f and f−1 are piecewise linear (respectively,
simplicial).

A triangulated manifold is a simplicial complex which is a manifold. A
triangulated n-manifold Mn is a piecewise linear or combinatorial manifold if for
any vertex v in T , lk(v, T ) is piecewise linearly homeomorphic to ∂�n.

For any topological manifold Mn, the following three natural questions arise.

Problem 1 Does Mn admit a triangulation? (the triangulation conjecture).
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Problem 2 If a triangulation of Mn exists, is it unique? (Hauptvermutung (HV)).
In more precise terms: Is it true that any two homeomorphic simplicial manifolds
have isomorphic simplicial subdivisions?

Problem 3 Does a (non)-combinatorial triangulation of Mn exist? (the (non)-PL
-conjecture).

It is clear that the PL-conjecture and the Hauptvermutung imply the absence of
non-combinatorial triangulations.

n = 1. One can easily see that the PL-conjecture and the Hauptvermutung hold.
n = 2. T. Rado proved the existence of a PL-structure in 1924 [157].

B.V. Kerékjártó’s classification in 1923 [105] implies the Hauptvermutung.
n = 3. Moise proved the PL-conjecture and Hauptvermutung in 1952 [134];

another proof was given by Bing [30].
n = 4. The work of Casson [2] in the 1980s provided counterexamples to the trian-

gulation conjecture for closed 4-manifolds. We shall discuss such examples
systematically in Sect. 17.6. Therefore, the triangulation conjecture (and
hence the PL-conjecture) is false in the general case.

The following result is interesting in relation with the non-PL-conjecture.

Theorem 8 The Poincaré conjecture PC3 holds if and only if every triangulated
4-manifold is a combinatorial 4-manifold.

The necessity is contained in Bing’s Theorem 21 in [29]. The sufficiency is a
consequence of the following Freedman suspension theorem in [70]: the suspension
S13 over any closed simply connected 3-manifold 13 is homeomorphic to S4.

Recall that

Definition 5 The suspension SX over a topological space X is a quotient space
S(X) = (X × I)/ ∼, where (x, t) ∼ (y, s) if (x, t) = (y, s) or t = s = 0, or
t = s = 1. In addition, if p : X × I → SX is the quotient map, then two points
p(X × {0}) and p(X × {1}) are said to be cone points of S(X).

Remark 2 Another proof to Freedman’s suspension theorem was given in [21] with
essential usage of the main result from [26].

We shall continue this discussion of Problems 1, 2, and 3 later on in Sect. 17.19.

17.5 Smooth Manifolds

We assume that the reader is familiar with smooth (differentiable of class C∞)
manifolds (this term shall mean manifold without boundary, unless specified
otherwise), smooth mappings between smooth manifolds, and diffeomorphisms. A
topological manifold is smoothable if it admits at least one smooth structure, and is
said to be nonsmoothable otherwise.
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Analogously to the previous section, two natural problems arise.

Problem 4 The problem of smoothability of a given topological manifold Mn (the
smoothing conjecture).

Problem 5 The problem of uniqueness of a smooth structure up to a diffeomor-
phism if this structure exists (the conjecture on unique smoothing).

Now let us consider relations with the previous section.
Cairns proved in [41] that any triangulable manifold Mn, 1 ≤ n ≤ 3, admits a

smooth structure. Together with the results of [134, 157], and [30] mentioned above,
this implies that any topological manifold Mn, 1 ≤ n ≤ 3, is smoothable. The
corresponding smooth structure onMn is unique up to a diffeomorphism [139, 140],
and [189].

Theorem 9 ([40, 141, 186]) Any smooth manifold Mn admits a unique natural
PL-triangulation.

Remark 3 Brouwer gave in [35] a proof of this theorem for closed manifolds using
intuitionistic logic.

Theorem 10 If M is a combinatorial 4-manifold, then M possesses a unique
smooth structure compatible with its triangulation.

In his note [42], S.S. Cairns claimed that the smooth structure from Theorem 10
exists, but his argument contains a gap. Much later, in [189] Whitehead gave a
detailed proof for Cairns’ claim, filling the gap in the proof of [42]. Another proof
of the existence of such a smooth structure in [95] is based on the fact that the final
group 03 of the obstruction to smoothability of a 4-dimensional PL-manifold is
trivial, due to the Smale theorem. The uniqueness of smooth structure follows from
Cerf’s results in [48]. Theorems 10 and 9 imply that PL- and smooth structures on
a 4-manifold are in natural one-to-one correspondence with each other.

Now we know that there exists an uncountable set of different smooth structures
on R

4 [81] and [55]. Also there exist infinitely many homeomorphic but mutually
non-diffeomorphic simply connected closed complex surfaces (the Dolgachev
surfaces), [59, 72, 73]. Therefore, in general, the Hauptvermutung is false in
dimension 4.

We get from Theorems 8, 9, and 10 the following

Corollary 1 If the Poincaré conjecture PC3 is true, then for any 4-manifoldM4 the
following statements are equivalent:

(1) M4 admits a smooth structure;
(2) M4 admits a combinatorial triangulation;
(3) M4 admits a triangulation.

Moreover, a structure (in general, not unique) of each type onM4 determines unique
structures of the other types as above.
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17.6 Closed Simply Connected 4-Manifolds and Smooth
Structures

In this section, we denote by M4 a closed simply connected oriented four-
dimensional topological manifold. We need results by Dold from [56].

Set H̃2(M
4,Z) = H2(M

4,Z)/Tor, where Tor is the torsion subgroup (i.e.,
the subgroup of elements with finite order) of the two-dimensional singular
integer homology group H2(M

4,Z). Let us define the integer symmetric bilinear
intersection form

ω = ωM4 : (a, b) ∈ H̃2(M
4,Z)× H̃2(M

4,Z)→ ω(a, b) ∈ Z.

Using Poincaré duality, we identify the group H̃2(M
4,Z) with the group

H̃ 2(M4,Z) = H 2(M4,Z)/Tor and set ω(a, b) = a ∧ b ∈ H 4(M,Z). Here ∧
denotes the cohomology multiplication and H 4(M4,Z) is canonically identified
with Z via an orientation of M4. Since the multiplication ∧ on H̃ 2(M4,Z)⊗
H̃ 2(M4,Z) is commutative, the form ω is bilinear and symmetric. The free abelian
group H̃ 2(M4,Z) ∼= H̃2(M

4,Z) is a module over the ring Z whose rank is equal
to the 2-dimensional Betti number β2(M

4). It follows from the definition of ω that
this form is unimodular, i.e., the symmetric matrix of ω with respect to an arbitrary
Z-basis has determinant equal to ±1. Clearly rank(ω) = β2(M

4).
If M4 is a smooth oriented manifold, then one can realize cycles z1 ∈ c1,

z2 ∈ c2 for any c1, c2 ∈ H̃2(M
4,Z) as smooth oriented surfaces in M4 intersecting

transversally at a finite set of isolated points (see [69], (E9) in Appendix E). Then
ω(c1, c2) is equal to the index of intersection of the oriented cycles z1 and z2, i.e.,
to the algebraic sum of points in z1 ∩ z2, where to each point we assign +1 or −1
according on whether the orientation of the space T z1 ⊕ T z2 coincides with the
orientation of TM4 or not, respectively.

Definition 6 Let ω be an arbitrary integral symmetric bilinear unimodular form
defined on a finitely generated free Z-module μ. The form ω is said to be even (or
of type II) if ω(x, x) is even for all x ∈ μ, and odd (of type I) otherwise. The form
ω is said to be positive (respectively, negative) definite if ω(x, x) > 0 (respectively,
ω(x, x) < 0) for all x ∈ μ\{0}. The form ω is said to be definite if this form is
positive or negative definite; otherwise ω is called indefinite. The signature σ(ω)
of ω equals the dimension of the positive eigenspace minus the dimension of the
negative eigenspace of the form ω on the real vector space R⊗ μ.

It is clear that the direct sum of two bilinear symmetric unimodular forms (more
precisely, their sum on the direct sum of the corresponding Z-modules) gives a
bilinear symmetric unimodular form. The sum of two even or two odd forms is
even; the sum of an odd and an even form is odd; the sum of two indefinite forms is
indefinite; the sum of two definite forms can be definite or indefinite.

Theorem 11 ([132], Serre Theorem) Let ω be an indefinite unimodular bilinear
symmetric form of rank r = p + n and signature σ = p − n (p, n > 0). Then
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(1) if ω is a form of type I, then ω ∼= p(1)⊕ n(−1);
(2) if ω is a form of type II, then ω ∼= aE8⊕bU,where a = 1

8bσ = 1
2 (r−|σ |) (note

that 1
8σ ∈ Z). Here U is a form with matrix

(
0 1
1 0

)
, E8 is the form represented

by the Cartan matrix of the exceptional Lie algebra E8.

Consequently, each indefinite unimodular bilinear symmetric form is uniquely
determined by its type, rank, and signature.

Theorem 12 ([132]) The signature of a symmetric bilinear unimodular form of
type II is divisible by 8.

The complete classification of symmetric bilinear unimodular forms is unknown.
When the rank increases, the number of different symmetric bilinear unimodular
forms increases very rapidly. For example, even if we consider only positive definite
forms of type II, we have one form of rank 8, 2 forms of rank 16, 24 forms of rank
24, at least 107 forms of rank 32, and at least 1051 forms of rank 40 [132].

The following is a classical theorem.

Theorem 13 ([187]) Two oriented closed simply connected smooth 4-manifolds
M1 and M2 are orientably homotopy equivalent if and only if (H̃2(M1,Z), ωM1)

and (H̃2(M2,Z), ωM2) are isomorphic.

An essential role in the further development of the theory of manifolds of
dimension ≥ 4 was played by another classical theorem.

Theorem 14 ([85, 160]) If M4 is a closed smooth oriented spin 4-manifold, then
the signature σ(M4) = σ(ωM4) is divisible by 16.

Remark 4 A smooth oriented manifold M is said to be a spin manifold if M admits
a spin structure. The existence of a spin structure is equivalent to the fact that the
second Stiefel-Whitney class w2(M) of the tangent bundle TM vanishes [23]. If a
manifold M4 is simply connected (or, more generally, the group H1(M

4,Z) does
not contain elements of the second order), then w2(M

4) = 0 if and only if the form
ωM4 is even.

The following essential strengthening of Theorem 13 was proved by the Casson
handle technique [85, 116].

Theorem 15 ([70]) The oriented homeomorphism classes of closed simply con-
nected oriented topological 4-manifoldsM4 are in one-to-one correspondence with
the set of pairs

{([ω], α ∈ {0, 1}) : if ω is even, then
1

8
σ(ω) = α mod 2},

where [ω] is the isomorphism class (over the ring Z) of an integral symmetric
bilinear unimodular form ω. Then ω = ωM4 and, if α = α(M4) = 0 (respectively,
1), then M4 × S1 is smoothable (respectively, nonsmoothable).
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An essentially different proof of this theorem was given by Freedman and Quinn
in [74]. Using the ideas and methods from mathematical physics, namely, the theory
of gauge fields, S. Donaldson proved

Theorem 16 ([57]) The definite intersection form ωM4 of a simply connected
smooth 4-manifold M4 is standard, i.e., ωM4 is equivalent to a form ±((1)⊕ · · · ⊕
(1)).

Corollary 2 Any closed simply connected 4-manifold M4 with definite form ωM4

of type II (or of type I different from the standard form) is nonsmoothable.

Corollary 3 The form ωM4 with matrix E8 (the Cartan matrix of exceptional
Lie algebra E8) is even, the corresponding manifold P := M4 (which exists by
the Freedman theorem 15) is spin and σ(ωP ) = 8; therefore, by the Rochlin
Theorem 14, P is nonsmoothable.

We need two notions from general topology. Let X and A be a topological space
and a subset of it respectively. A point a ∈ X is an interior point of A (relative to
X) if there is a neighborhoodUa of a in X (i.e. an open subset in X which contains
the point a) such that Ua ⊂ A. The set of all interior points of the set A (in X) we
will denote by IntX A or simply by IntA. The set ∂XA or simply ∂A of all boundary
points of A (in X) is defined as the set X − (IntX(X − A)).

Let M , M1, and M2 be connected closed n-manifolds, n ≥ 2, and suppose there
exist n-cells Bi ⊂ Mi, i = 1, 2, and topological embeddings hi : Ri := Mi −
IntBi → M with h1(R1) ∩ h2(R2) = h1(∂B1) = h2(∂B2) and M = h1(R1) ∪
h2(R2). We say that M is the connected sum of the manifolds M1 and M2 and
we denote it by M = M1#M2. The operation of spherical decomposition which is
inverse to the operation of connected sum can be described as follows. We take a
PL-embedded dividing sphere Sn−1 and replace its two-sided neighborhood Sn−1×
I with Bn × S0 (they have the common boundary Sn−1 × S0). Both operations
are partial cases of spherical surgery. If M , M1, and M2 are oriented, we assume
that hi : Ri → M preserve orientations (this is equivalent to the condition that the
homeomorphism identifying ∂B1 with ∂B2 reverses the induced orientations); in
this case the operation is associative and commutative. There exists an operation of
connected sum for smooth oriented manifolds [23] which we will use, but we give
no precise definition here.

One can prove

Proposition 1 If M , M1, and M2 are oriented closed simply connected
4-manifolds, andM = M1#M2, then ωM = ωM1 ⊕ωM2 , σ (M) = σ(M1)+σ(M2).

The following examples are taken from [71].

Example 1 M = S4. Since H2(S
4,Z) = 0, then ωS4 = ∅ (empty set).

Example 2 Let CP 2 and CP 2 be the complex projective plane with the standard
orientation and respectively, the same plane with the inverse orientation. Then
H2(CP

2,Z) ∼= Z, and a generator in Z is represented by the complex projective
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line CP 1 ≈ S2. Since any two (different) projective lines meet at a point, we have
ωCP 2 = (1), ω

CP 2 = −(1), σ (CP 2) = −σ(CP 2) = 1.

Example 3 M = S2×S2. ThenH2(M,Z) ∼= Z⊕ Z is generated with a = S2×{p}
and b = {p} × S2, where {p} denotes a point in S2. It is clear that a and b have
zero self-intersection number, and they meet at a point. Hence ωS2×S2 ∼= U, σ(S2×
S2) = 0.

Example 4 The Kummer surface: M = K3 = [z0, z1, z2, z3] ∈ CP 3; z2
0 + z2

1 +
z2

2 + z2
3 = 0, where z0 : z1 : z2 : z3 are homogeneous complex coordinates of

a point in CP 3. The rank of H2(K3) is equal to 22; the form ωM is even, and
σ(M) = σ(ωM) = −16. Hence the form ωM is indefinite. By the classification of
such forms given in Theorem 11, we have ωK3

∼= −2E8 ⊕ 3U.

Example 5 All non-degenerate algebraic surfaces V d of degree d in CP 3 are
diffeomorphic and their basic algebraic invariants are as follows:

(1) σ(V d) = − 1
3d

3 + 4
3d;

(2) rank H2(V
d,Z) = d3 − 4d2 + 6d − 2;

(3) V d is spin if and only if d is even.

These formulas explain Example 4.

It follows from Corollary 2, Proposition 1, Theorems 15, 11, and the above
examples that smoothable closed simply connected (oriented) 4-manifolds (different
from S4) can be only among n(S2 × S2)#mE8 and nCP 2#mCP 2, n,m ≥ 0,
n + m ≥ 1. All these manifolds are spin. It is clear that all nCP 2#mCP 2

have smooth structures. What can one say about n(S2 × S2)#mE8? The Rochlin
Theorem 14 excludes the case of odd m. Considering the connected sum of several
K3 and S2×S2,we obtain by Examples 4 and 5 that n(S2×S2)#mE8 is smoothable
if 3m ≤ n. This is equivalent to the inequality

b2(M
4) ≥ 11

8
|σ(M4)|. (17.1)

(Since the K3-surface satisfies the equality, the coefficient 11/8 cannot be replaced
by a larger number.)

The assumption that the converse is also true, i.e., the inequality (17.1) holds
for all smooth closed simply connected oriented 4-manifolds with even intersection
form is known as the 11

8 -conjecture. This was suggested by Matsumoto in [123].
The 11/8-conjecture is true for simply connected complex surfaces with even
intersection form [15]. A positive solution to the conjecture would imply that any
smooth simply connected 4-manifold is homeomorphic to a connected sum of
algebraic surfaces. Also such a solution would give a classification of all closed
simply connected topological 4-manifolds admitting smooth structures, or, what is
equivalent by Corollary 1, simplicial triangulations. Now the best known result is
the following inequality proved in [76] for smooth closed oriented spin manifolds
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with indefinite intersection form:

b2(M
4) ≥ 10

8
|σ(M4)| + 2. (17.2)

Note that if the intersection form is definite, a theorem of Donaldson implies the
equality b2(M

4) = σ(M4) = 0 [58, 60].
A later consideration of the 11/8-conjecture was continued in the paper [77]. Let

us quote a phrase from its abstract: “We also show that the ‘nilpotence phenomenon’
explains why the Bauer-Furuta stable homotopy Seiberg-Witten invariants are not
enough to prove 11/8-conjecture’.”

It is amusing that the smooth version of the corollary to the 11/8-conjecture
stated above, the so-called Smooth Decomposition Conjecture which asserts that
any smooth simply connected 4-manifold is a result of connected sum operation
(from [23] for smooth manifolds) of algebraic (hence complex) surfaces is not
true: Gompf R.E. and Mrowka T.S. constructed in their paper [82] infinite families
of smooth simply connected 4-manifolds that cannot be complex surfaces or
connected sums (in the smooth category) of complex surfaces. Their examples are
all homeomorphic to complex surfaces, either the Kummer surface or its nonspin
version 3CP 2#19CP 2, so this is really a smooth phenomenon.

Corollary 4 A closed simply connected oriented 4-manifold M with odd inter-
section form ωM is smoothable if and only if M = nCP 2#mCP 2, n,m ≥ 0,
n + m ≥ 1. For each manifold M with this property there exists a unique closed
simply connected 4-manifold M ′ with the form ωM ′ = ωM which does not admit
an orientation preserving homeomorphism onto M. Moreover, M ′ is orientably
homotopic to M and nonsmoothable, hence M ′ admits no simplicial triangulation.
Further, for each manifold M there exists a unique homeomorphic manifold M− of
this type, but it corresponds to the pair (n−,m−) = (m, n); in particular,M− = M

if and only if n = m.

Corollary 5 The manifold nCP 2#mCP 2 is homeomorphic to n1CP
2#m1CP 2 if

and only if (n,m) = (n1,m1) or (n,m) = (m1, n1).

Theorem 17 The manifoldM = (n(S2×S2)#m(K3))#(n1CP
2#m1CP 2), where n,

m, n1,m1 are nonnegative integers, max(n,m) > 0, max(n1,m1) > 0, is orientably
homeomorphic to the manifold

N = ((3m+ n)CP 2#(19m+ n)CP 2)#(n1CP
2#m1CP 2).

The proof is as follows. Proposition 1 and Examples 2–4 imply that σ(M) =
−16m+ n1 −m1, and the form ωM is the direct sum of even and odd forms, hence
it is odd and evidently indefinite. By Theorem 11, M = n2CP

2#m2CP 2, where

n2 −m2 = −16m+ n1 −m1,

n2 +m2 = 22m+ 2n+ n1 +m1.
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We solve this equation system with respect to n2,m2, and using the associativity and
commutativity of the operation of connected sum in the case under consideration,
we obtain the required result.

Remark 5 Theorems 17 and 35 demonstrate that, unlike the 3-dimensional case,
the summands of connected sums of closed oriented (even simply connected) topo-
logical 4-manifolds are not uniquely determined in the general case. Apparently,
the smooth manifolds M and N are not diffeomorphic, the manifold P#P is not
triangulable, but (P#P) × S1 is smoothable.

Theorem 18 ([71, 74]) Each connected noncompact 4-manifold is smoothable.
The manifold R

4 admits uncountably many non-diffeomorphic smooth structures
(in particular, HV is false for R

4). There exists a smooth structure s on R
4 such

that for any other smooth structure s1 on R
4, (R4, s1) is diffeomorphic to an open

submanifold in (R4, s).

Remark 6 It is known that any smoothable manifold of dimension greater than 4
admits only a finite number of smooth structures [107]. Also it is known that, for n >
2, there exist infinitely many topological manifolds which are homotopy equivalent
to CPn [183]. In contrast to this, in dimension 4 many (possibly all, as many experts
assume) smoothable manifolds admit infinitely many different smooth structures
[67] (and hence triangulations which have no isomorphic simplicial subdivision),
and by Theorems 13, 15, there exist only two topological manifolds homotopically
equivalent to CP 2. Thus dimension four is unique. This is possibly connected with
the fact that we live in four-dimensional space-time.

17.7 Homotopy and Fundamental Groups

Let us recall some notions from general topology.

Definition 7 Let (X, τ) and ∼ be a topological space and an equivalence relation
on X respectively. If Y = X/∼ and p : X → Y are the corresponding quotient set
and projection, then the family σ = {U ∈ Y : p−1(U) ∈ τ } is a topology on Y.
The topology σ and the topological space (Y, σ ) are called respectively the quotient
topology and the quotient (topological) space.

The quotient topology σ on the quotient set Y is characterized by the property
that for any topological space Z and every map g : (Y, σ ) → Z, this map is
continuous if and only if the composition f = g ◦ p : X→ Z is continuous.

In what follows we need the definition of the homotopy groupsπn(X, x) for non-
negative integer numbers n, of a topological space X and some fixed point x ∈ X.
n = 0. In fact π0(X, x) is not a group. This is the set of all path connected

components of the space X. By definition, two points lie in a path connected
component if there is a path in X joining them. Then we choose the path connected
component of the fixed point x as distinguished point in π0(X, x).



17 Poincaré 641

Below f : (X,A) → (Y, B) denotes a continuous map f : X → Y such that
f (A) ⊂ B for A ⊂ X and B ⊂ Y. By definition, maps f, g : (X,A)→ (Y, B) are
homotopic if there exists a homotopy F : f 4 g such that F : (X × I)→ (Y, B).

n > 0. As a set, πn(X, x) is the set of homotopy classes [f ] of all maps f :
(Sn, s)→ (X, x) with some fixed point s ∈ Sn. Let I = [0, 1] and In ⊂ En be the
cube in En. Define an equivalence relation ∼ on In by x ∼ y if and only if x = y

or x, y ∈ ∂In. Then the quotient space In/∼ is homeomorphic to Sn, therefore
we can identify Sn with In/∼ and take the point p(∂In) as distinguished point in
Sn = In/∼, where p : In → In/∼ is the quotient map. Hence we can assume that
πn(X, x) = {[f ]|f : (In, ∂In)→ (X, x)}. Then the product [f ] ∗ [g] of elements
[f ], [g] ∈ πn(X, x) is [f ∗ g] ∈ πn(X, x), where

(f ∗ g)(t1, t2 . . . , tn) =
{

f (2t1, t2 . . . tn), if 0 ≤ t1 ≤ 1
2 ,

g(2t1 − 1, t2 . . . tn), if 1
2 ≤ t1 ≤ 1.

}

One can easily check that [f ∗ g] does not depend on a choice of the maps f, g in
the corresponding homotopy classes.

Now we need to prove the group properties for this multiplication.
Associativity. [(f ∗ g) ∗ h] = [f ∗ (g ∗ h)] or F : (f ∗ g) ∗ h 4 f ∗ (g ∗ h) for

some F : (In × I, ∂In × I)→ (X, x). One can take here the map F defined by the
following formulas

F(t1, t2 . . . , tn, s) =

⎧⎪⎨
⎪⎩

f (
4t1

1+s , t2 . . . tn), if 0 ≤ t1 ≤ 1
4 (1+ s),

g(4t1 − (1+ s), t2 . . . tn), if 1
4 (1+ s) ≤ t1 ≤ 1

4 (2+ s),

h(
4t1
2−s − 2+s

2−s , t2 . . . tn), if 1
4 (2+ s) ≤ t1 ≤ 1.

⎫⎪⎬
⎪⎭

Similarly one can check that [ix], where ix(In) = {x}, will be the unit, and
for any [f ] ∈ πn(X, x), [f ]−1 = [f−], where (f−)(t1, t2, . . . , tn) = f (1 −
t1, t2, . . . , tn).

In addition, the homotopy groups πn(X, x) are commutative for n ≥ 2.
If the topological space X is path connected, then for any positive integer n and

for any x, y ∈ X, the groups πn(X, x) and πn(X, y) are isomorphic.
The homotopy group π1(X, x) is called the fundamental group. The fundamental

group and the higher homotopy groups πn(X, x), n ≥ 2, were defined respectively
by H. Poincaré and W. Hurewicz (the latter were defined around 1935).

Proposition 2 A topological space is simply connected if and only if it is path
connected and π1(X, x) = 1 for any point x ∈ X.

One can easily prove the following

Theorem 19 If X and Y are homotopy equivalent path connected topological
spaces, then for any points x ∈ X, y ∈ Y, and any positive integer n, the homotopy
groups πn(X, x), πn(Y, y) are isomorphic.
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From Theorem 19 it follows

Corollary 6 Any homotopy group πn(X, x), n ≥ 1, of a contractible topological
space X is trivial.

Up to homeomorphism, there are only two (separable) connected topological
manifolds of dimension 1: the Euclidean straight lineE1 and the unit 1-dimensional
sphere (circle) S1, i.e. the set of complex numbers {z : |z| = 1}.

The contractibility of E1 and Corollary 6 imply that all the homotopy groups of
E1 are trivial.

Definition 8 A continuous map c : X → Y between path connected topological
spaces is called a covering (map) if for any point y ∈ Y there is a neighborhood
Uy such that c−1(Uy) is a disjoint union of open subsets in X, and the restriction
of c to each of these subsets is a homeomorphism onto Uy. The space X is called a
covering space of the space Y . A covering c : X → Y is universal if the space X is
simply connected.

Example 6 The map c : R→ S1, where c(t) = exp(2πit), is a universal covering.

One can easily prove the following lemma.

Lemma 1 Let c : (Y, y) → (X, x) be a covering. Then for any continuous map
p : (Z, z) → (X, x) of a simply connected topological space Z there is unique
continuous map q : (Z, z)→ (Y, y) such that c ◦ q = p. (The map q is said to be
a covering for p.) The converse statement is also true.

Now one can easily prove

Proposition 3 Let c : (Y, y)→ (X, x) be a universal covering. Then for every path
p : (I, 0) → (X, x) there is unique path q : (I, 0) → (Y, y) such that c ◦ q = p.

(The converse statement is also true.) Two loops p1, p2 : (I, ∂I) → (X, x) are
homotopic if and only if for the paths q1, q2 : (I, 0)→ (Y, y), which cover p1, p2,

we have q1(1) = q2(1).

As a corollary of this proposition we obtain

Proposition 4 For any path p : (I, 0) → (S1, 1) there is a unique path q :
(I, 0) → (E1, 0) such that c ◦ q = p. The path p is a loop if and only if q(1) is a
positive integer. Two loops p1, p2 : (I, ∂I) → (S1, 1) are homotopic if and only if
for the paths q1, q2 : (I, 0)→ (S1, 1), covering the paths p1, p2, we have q1(1) =
q2(1). The path q1 ∗ q2 covers the loop p1 ∗ p2 and (q1 ∗ q2)(1) = q1(1)+ q2(1).

Corollary 7 π1(S
1, 1) is isomorphic to (Z,+).

Similarly to Proposition 3 one can prove

Proposition 5 Let c : (Y, y)→ (X, x) be a covering. Then πn(X, x) is isomorphic
to πn(Y, y) for any n ≥ 2.

Corollary 8 All the homotopy groups πn(S1, 1) are trivial for n ≥ 2.
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Theorem 20 For any continuous map f : (X, x)→ (Y, y) and positive integer n,
the formula f∗([g]) = [f ◦ g], where [g] ∈ πn(X, x), defines a homomorphism
f∗ : πn(X, x) → πn(Y, y). The homomorphism f∗ depends only on the homotopy
class [f ].
Theorem 21 Let X be a connected (separable) m-manifold. Then the fundamental
group π1(X, x) is finite or countable. For any subgroup H ⊂ π1(X, x) there exists
a covering map c : (Y, y) → (X, x) such that c∗(π1(Y, y)) = H. In addition,
c∗ : π1(Y, y) → π1(X, x) is a monomorphism, and Y is a m-manifold determined
by X and H up to a homeomorphism. In particular, there is a unique universal
covering m-manifold X̃ of the manifold X.

17.8 The Seifert-van Kampen Theorem

For calculating of the fundamental group, of great importance is the Seifert-van
Kampen theorem.

Theorem 22 Let X,U,V be a topological space together with open subspaces
such that X = U ∪V, x ∈ U ∩V, and the spaces U,V,U ∩V (hence X) are path-
connected. Then the following square of homomorphisms induced by inclusions
iU : U ∩ V → U, iV : U ∩ V → V, jU : U → X, and jV : V → X in the
diagram

π1(U ∩ V, x) iU∗−→ π1(U, x)

↓ iV ∗ ↓ jU∗

π1(V , x)
jV ∗−→ π1(X, x)

is a pushout square, i.e. it has the following property: for any group G and any
homomorphisms θU : π1(U, x)→ G and θV : π1(V , x)→ G such that θU ◦ iU∗ =
θV ◦iV ∗, there exists a unique homomorphism θ : π1(X, x)→ G such that θ ◦jU∗ =
θU and θ ◦ jV ∗ = θV . In other terms, the group π1(X, x) is an amalgamated group
product of the groups π1(U, x) and π1(V , x) with the subgroup π1(U ∩ V, x); we
write π1(X, x) = π1(U, x) ∗π1(U∩V,x) π1(V , x). In particular, if the group π1(U ∩
V, x) is trivial, then π1(X, x) is the free product π1(U, x) ∗ π1(V , x) of the groups
π1(U, x) and π1(V , x).

Remark 7 In this theorem one can replace the open subspaces U,V,U ∩ V by
their closed subsets A,B,A ∩ B, if the inclusion maps A → U, B → V, and
A ∩ B → U ∩ V are homotopy equivalences.

The wedge product (X, x) ∗ (Y, y) of topological spaces (with distinguished
points) (X, x) and (Y, y) is the quotient space of the disjoint union of spaces X
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and Y (even if X and Y do intersect, we assume that they are separated) relative
to the equivalence relation: u ∼ v if and only if u = v, or u = x and v = y, or
v = x and u = y.

Theorem 22 and Corollary 7 imply

Corollary 9 The fundamental group of the wedge product of n circles (S1, 1) is
isomorphic to the free product of n infinite cyclic groups.

To explain Theorem 22, let us recall some notions from combinatorial group
theory.

Definition 9 A subset S ⊂ G of a group (G, ·) is called a generator set of the group
G if any g ∈ G can be represented as a product of a finite number of elements from
S or their inverses (any representation of this type is called a word in the alphabet
S); any element from S is called a generator or a letter of the alphabet S. Assume
now that S contains at most one of the elements x, x−1 ∈ G. If w is a word in the
alphabet S, then we denote by w−1 the word obtained by rewriting the letters of w
in the reverse order and multiplying the power of each letter of w by −1. The set of
words in the alphabet S representing the unit element e ∈ G will be called the set of
units and will be denoted by E.

One can easily prove

Lemma 2 If the words w,w1, and w2 are contained in E, then each word of the
type u = w1w2 or u = w−1 or u = xwx−1, or a word obtained fromw by inserting
or deleting xx−1, where x ∈ S ∪ S−1, is also a word in E.

Definition 10 A subset R ⊂ E is said to generate E normally if any word in E

can be obtained from the words of R using the composition of a finite number of
operations described in Lemma 2. The set R is called the relation set (for the group
G with the alphabet S). Any word in R is called a relation. In this case we write
G = {S|R}, and the pair (S,R) is called a presentation of the group G. The group
G is called free, or finitely generated, or finitely presented if it admits a presentation
(S,R), where R = ∅, or S is finite, or S and R are finite, respectively.

Theorem 23 Any pair (S,R), where S is a (finite or infinite) alphabet, and R

is a set of words in the alphabet S, is a presentation of a certain (unique up to
isomorphism) group G. Any group G has a presentation (S,R).

In terms of presentations, we can formulate Theorem 22 in the following way.

Theorem 24 ([122]) Suppose that, under the assumptions of Theorem 22, we are
given the presentations

π1(U, x) = {SU |RU }, π1(V , x) = {SV |RV }, π1(U ∩ V, x) = {SU∩V |RU∩V }.

Then the group π1(X, x) has the presentation π1(X, x) = {SU ∪SV |RU ∪RV ∪R, }
where R = {wU(z)(wV (z))−1 : z ∈ SU∩V }, and wU(z) (wV (z)) is a representation
of an element iU∗(z) ( iV ∗(z)) in the alphabet SU (respectively SV ).
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Obviously, (Z,+) = {1|∅}, i.e., this is a free group with one generator. From
Theorem 24 and Corollary 9 we get

Corollary 10 The fundamental group of the wedge product Wn(S
1, 1) of n circles

(S1, 1) is isomorphic to the group G with the presentation G = {a1, . . . , an|∅}, i.e.,
to the free group Fn with n generators (the free group of rank n).

17.9 Closed Surfaces and Their Fundamental Groups

In this section, the topological types of closed surfaces (2-manifolds) are classified.
First of all, we have the simply connected 2-sphere with distinguished point x =

(0, 0, 1):

S2 = {x ∈ E3 : |x| = 1} = S(0, 1) ⊂ E3, π1(S
2, x) = {1}.

The projective plane P 2 is the space of orbits 0 \ S2, where 0 is the 2-element
group of motions of the space E3 generated by the central symmetry c at zero, with
projection p. Also let b := [p(lxc(x))], where lxc(x) is an arc of a large circle of
S2, passing from x to c(x). Then, by Proposition 3, we have π1(P

2, p(x)) ∼= 0 =
{c|c2}.

The torus T 2 (respectively, the Klein bottle K) is the space of orbits 01 \ E2

(respectively, 02 \ E2), where 01 (respectively, 02) is generated by the parallel
translations by vectors a = (1, 0), b = (0, 1) (respectively, by d = b and
f , the parallel translation by vector 1

2 (1, 0) composed with the symmetry about
x-axis). Let us set a := [p1([0a(0)])], b := [p1([0b(0)])], d := [p2([0d(0)])],
f := [p2([0f (0)])] where p1 : E2 → P 2 and p2 : E2 → K are the quotient maps.
Then, ab = ba, df = f d−1, and by Proposition 3,

π1(T
2, p1(0)) ∼= 01 = {a, b|[a, b] = aba−1b−1}, π1(K,p2(0)) ∼= 02 = {d, f |f df−1d}.

The operation of connected sum is associative and commutative on the set of
closed surfaces.

Theorem 25 ([122]) Any closed surface is homeomorphic to one of the following
surfaces: S2, P 2, K, S2

g := #gk=1T
2(k), P 2#S2

g, K#S2
g , where T 2(k) = T 2, g is a

positive integer, and any two of these surfaces are not homeomorphic to each other.

Remark 8 It is well-known that S2 and T 2 can be given by polynomial equations in
E3. This is true for all other orientable surfaces S2

g, g ≥ 2 [94]. Any non-orientable

surface is not homeomorphic to any subspace in E3; however, if we cut out any
nonempty set from it, we get a subspace homeomorphic to a subset in E3.
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Theorem 26 ([122]) The fundamental groups of the surfaces listed in Theorem 25
have the following presentations:

π1(S
2
g) =

{
a1, b1; . . . ; ag, bg|

g∏
k=1

[ak, bk]
}
,

π1(P
2#S2

g) =
{
a1, b1; . . . ; ag, bg|c2

g∏
k=1

[ak, bk]
}
,

π1(K#S2
g) =

{
a1, b1; . . . ; ag, bg|f df−1d

g∏
k=1

[ak, bk]
}
.

The proof can be done by induction with respect to g, if we restrict ourselves to
the first case. Previously we have obtained the formula for S2

1 = T 2. Now assume
that our claim is true for g ≥ 1. The surface S2

g+1 can be obtained by gluing the

(oriented) surfaces σ1 := S2
g − IntB2, σ2 = S2

1 − IntB2 along their boundary
circles s1 and s2 with the reversed induced orientations. One can easily see that the
surface σ2 is homotopic to the wedge product of two circles, then, by Corollary 9
we have π1(σ2) = {a, b}. In the same way, π1(σ1) = {a1, b1; . . . ; ak, bk}. Then
[s2]−1 = [a, b], and (by induction with respect to g) [s1]−1 =∏g

k=1[ak, bk]. Hence
[s2] = [s1]−1 in S2

g+1 = S2
g#S2

1 and, by the Seifert- van Kampen theorem, we get

π1(S
2
g+1) =

{
a1, b1; . . . ; ag, bg; a, b|

g∏
k=1

[ak, bk][a, b]
}
.

The two other presentations from Theorem 26 are proved similarly.
Note that for closed surfaces, only the fundamental groups of S2, P 2, and T 2 are

commutative.

17.10 Heegaard Splittings and Fundamental Groups of
Closed 3-Manifolds

We need the following definition to present the second description of closed
orientable surfaces S2

g , g ≥ 1.

Definition 11 Let (M, ρ) be a metric space, A ⊂ M a nonempty subset, x ∈ M,

and r a real number. Then by definition, ρ(x,A) = infa∈A ρ(x, a) and similarly for
open and closed balls and spheres, we can define

U(A, r) = {x ∈ M : ρ(x,A) < r},
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B(A, r) = {x ∈ M : ρ(x,A) ≤ r},

S(A, r) = {x ∈ M : ρ(x,A) = r}.

Let us consider the g-leafed rose given in cylindrical coordinates (r, θ, z) on E3

by the relations rg = {0 ≤ r = cosgθ, z = 0}. It is clear that rg is homeomorphic
to the wedge product Wg(S

1, 1). Let εg be a positive number such that the closed
ball B(p0, εg) with center p0, having the Cartesian coordinates ( 1

2 , 0, 0), does not
intersect rg.

One can prove that there exists a homeomorphism fg : S2
g ≈ S(rg, εg) of S2

g ,
described in the previous section, with the following properties. Namely, fg maps
the loop ak, k = 1, . . . , g, onto the loop

r = cos gθ, z = εg; 2πk

g
− π

2g
≤ θ ≤ 2πk

g
+ π

2g
,

and the loop bk, k = 1, . . . , g, onto the loop, which homeomorphically projects
onto the triangle in the xy-plane, whose two sides lie in the union of the (closed)
half-planes

θ = 2πk

g
and θ = 2πk

g
+ π

g
,

and the third side is the image of the part of bk, lying below the plane z = 0.
Hence fg maps the common point p of all loops ak, bk; k = 1, . . . , g, to the

point q with rectangular coordinates (0, 0, εg). Let us denote by ak, bk their images
fg(ak),fg(bk); k = 1, . . . , g.

Example 7 Let B3
g = B(rg, εg), if g ≥ 1, and B3

0 be the unit closed ball B3 =
B(O, 1) ⊂ E3. Then S2

g is the boundary of B3
g , g ≥ 0.

Proposition 6 For any embedding ig : (S2
g, q)→ (B3

g , q), g ≥ 0, the correspond-

ing homomorphism (ig)∗ : π1(S
2
g, q)→ π1(B

3
g , q) is surjective. Its kernel ker(ig)∗

is trivial if g = 0, and is normally generated by all loops bk, k = 1, . . . , g, if g ≥ 1.
In addition, π1(B

3
g, q) is trivial if g = 0, and is a free group of rank g for g ≥ 1.

Let us prove this. It is clear that B3
g contracts in B3

g to rg = WgS
1 so that any

loop ak; k = 1, . . . , g, contracts to the leaf

r = cos gθ, z = 0; 2πk

g
− π

2g
≤ θ ≤ 2πk

g
+ π

2g
.

Similarly, any loop bk; k = 1, . . . , g, contracts in B3
g to a point. Now, all the claims

of the Proposition follow from Corollary 9.

Theorem 27 ([93]) Let B3
g , (B

3
g)2 be two disjoint copies of B3

g , with boundaries

S2
g , (S2

g)2 , g ≥ 0, and hg : S2
g → (S2

g)2 be a homeomorphism. Define an
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equivalence relation ∼ on the disjoint union U = B3
g

∐
(B3

g)2 by the condition

x ∼ y if x = y, or x ∈ S2
g, y ∈ (S2

g)2, and y = hg(x). Then the quotient space

B3
g∪hg (B3

g)2 = U/∼ is a closed orientable 3-manifoldM3. Conversely, each closed

3-manifold M3 can be obtained in this way using a homeomorphism hg, g ≥ 0.

Definition 12 The space B3
g , g ≥ 0, is called the handlebody of genus g. The

handlebody of genus 1 is called the solid torus. The representation of a closed
3-manifold M3 described in Theorem 27 is called a Heegaard splitting of genus
g of M3.

Example 8 For any homeomorphismh0 : S2 ≈ S2, the 3-manifold (B3)1∪h0 (B
3)2

is homeomorphic to S3.

Example 9 The 3-sphere S3 can be presented as the set of all points (z1, z2) ∈ C
2

such that |z1|2 + |z2|2 = 1. The sets B1 = {(z1, z2) ∈ S3||z1| ≥ |z2|}, B2 =
{(z1, z2) ∈ S3||z1| ≤ |z2|} are homeomorphic to B3

1 , and B3
1 ∩B3

2 is homeomorphic
to the torus S1 × S1 = T 2. Thus we obtain a Heegaard splitting of genus 1 for S3.

The following theorem is an immediate consequence of Proposition 6 and the
Seifert-van Kampen theorem, applied to the triple {B3

g, (B
3
g )2, S

2
g}.

Theorem 28 Let B3
g ∪hg (B3

g)2 be a Heegaard spitting of a closed orientable

3-manifold M3. For the embedding jg : (S2
g, q) → (M3, q) the corresponding

homomorphism (jg)∗ : π1(S
2
g, q)→ π1(M

3, q) is surjective. In addition,

π1(M
3, q) = {ak, bk; k = 1, . . . , g|bk, [h−1

g (bl,2)]; k, l = 1, . . . , g},

where [h−1
g (bl,2)] ∈ π1(S

2, q) denotes a word in the alphabet {ak, bk; k =
1, . . . , g, } representing this class, and bl,2 denotes a loop in (S2

g)2 ⊂ (B3
g)2, similar

to bl.

The following proposition is well known.

Proposition 7 Any connected non-orientable n-manifold M admits a unique two-
sheeted covering map p : M0 → M, where M0 is orientable. The induced
homomorphism p∗ : π1(M0) → π1(M) is a monomorphism and the group
p∗(π1(M0)) is a normal subgroup of index 2 in π1(M).

Theorems 25, 26, and Proposition 7 imply that the fundamental group π1(M) of
any closed 3-manifold M is an order two extension of a finitely presented group
π1(M0) by the group π1(M)/p∗(π1(M0)) ∼= Z2. Thus we get the following exact
sequence of groups and homomorphisms

{1} → π1(M0)
p∗→ π1(M)→ π1(M)/p∗(M0)→ {1}.

Any extension of a finitely presented group by a finitely presented group is itself
finitely presented [14]. Therefore we obtain
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Theorem 29 The fundamental group of any closed 3-manifold is finitely presented.

17.11 Group-Theoretic Statements, Equivalent to the
Poincaré Conjecture

17.11.1 Splitting Homomorphisms

There are several ways to formulate the Poincaré conjecture in purely algebraic
terms. Some of them involve the idea of splitting homomorphism [172].

Let (B3
g , (B

3
g)2), g ≥ 1, be a Heegaard splitting of a closed orientable 3-manifold

M3 and let S2
g = B3

g ∩ (B3
g)2. We have the commutative diagram

π1(S
2
g)

φ−→ π1(B
3
g)

↓ φ2 ↓ i

π1((B
3
g)2)

i2−→ π1(B
3
g)× π1((B

3
g)2),

where φ, φ2 are induced by embeddings and i, i2 are natural monomorphisms.

Definition 13 The map φ × φ2 : π1(S
2) → π1(B

3
g) × π1((B

3
g)2) is called the

splitting homomorphism associated with the given Heegaard splitting.

Lemma 3 With the above notation, π1(M
3) = 1 if and only if φ × φ2 is an

epimorphism.

In fact, it follows from Theorems 27 and 28 that all homomorphisms φ, φ2, jg∗ :
π1(S

2
g) → π1(M

3) are surjective and ker jg∗ = kerφ · kerφ2, where kerφ · kerφ2
is generated by elements of kerφ and kerφ2. Therefore φ × φ2 is surjective if and
only if kerφ · kerφ2 = π1(S

2
g).

By Proposition 6, π1(B
3
g) and π1((B

3
g)2) are free groups of rank g. For each g we

fix a free group Fg of rank g and consider the splitting homomorphism as the map
φ×φ2 : π1(S

2)→ Fg×Fg. Such maps are equivalent if there exists a commutative
diagram

π1(S
2
g)

φ×φ2−→ Fg × Fg

↓ α β × β2 ↓

π1(S
2
g)

φ′×φ′2−→ Fg × Fg

with isomorphisms α, β, and β2.
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Lemma 4 ([97]) Each map φ × φ2 : π1(S
2
g)→ Fg × Fg with surjective φ and φ2

is equivalent to the splitting homomorphism associated with a Heegaard splitting of
a closed orientable 3-manifold.

In [179] it is proved that any two Heegaard splittings of S3 of the same genus are
equivalent. A combination of this result with the above argument gives the following

Theorem 30 ([93]) The Poincaré conjecture PC3 holds if and only if for any
positive integer g there exists a unique up to equivalence epimorphism

π1(S
2
g)→ Fg × Fg

onto the direct product of two free groups of rank g.

17.11.2 The Mapping Class Group

In 1910, M. Dehn “proved” the theorem known now as

Lemma 5 (Dehn’s Lemma) Let M be a 3-manifold and f : B2 → M a piecewise
linear map such that for some neighborhoodA of the boundary S1 = ∂B2 in B2 the
map f |A is a topological embedding (i.e., a homeomorphism onto its image) and
f−1(f (A)) = A. Then f |S1 can be extended to a topological embedding g : B2 →
M.

However, in 1929 H. Kneser discovered a serious gap in Dehn’s proof and the
problem remained open up to the middle of 1950s when Papakyriakopoulos [149]
gave a correct proof for the Dehn lemma.

Definition 14 A homotopy F : X × I → X between two homeomorphisms f :
X ≈ X and g : X ≈ X is said to be an isotopy if F(·, s) is a homeomorphism of X
onto itself for each s ∈ I. Homeomorphisms f : X ≈ X, g : X ≈ X are isotopic if
there exists an isotopy between them.

Theorem 30 admits another interpretation in terms of the mapping class group
MC(S) of a closed orientable surface S which is defined as the group of classes
of orientation-preserving homeomorphisms of S modulo homeomorphisms isotopic
to the identity map. We denote by < f > ∈ MC(S) the class of homeomorphism
which contains the homeomorphism f : S → S. One can prove (see Theorem 13.1
in [93]) that each automorphism of the groupπ1(S) is induced by a homeomorphism
of S. Two homeomorphisms of S inducing automorphisms of π1(S) which differ by
an inner automorphism of π1(S) are (freely) homotopic and, by Epstein [65], are
isotopic. Therefore MC(S) is isomorphic to the group of outer automorphisms of
π1(S) (called the homeotopy group of the surface S).
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Let (B1, B2) be a Heegaard splitting of a 3-manifold M, and S = B1 ∩ B2.

Choose a homeomorphism h : S → S which extends to a homeomorphism
H : B1 → B2 (h is determined up to conjugation by a homeomorphism of B1),
such that B1 and h completely determine the splitting (B1, B2) of the manifold M.

Let Ki, i = 1, 2, be the subgroup in MC(S) consisting of the mapping classes
representing homeomorphisms f which can be extended to homeomorphisms of Bi
onto itself. Then the Dehn lemma implies that

Ki = {< f >: f∗(kerφi) = kerφi},

where φi : π1(S)→ π1(Bi) is induced by the inclusion.
For every g ≥ 0 there exists a natural splitting (B1, B2) of genus g of

S3, where B1 = B3
g , B2 = S3 − Int(B1), and S3 is considered as the one-

point compactification of E3. Then, with the previous notation for the loops
ak, bk; k = 1, . . . , g, we get that kerφ1 is the normal subgroup generated by the
loops {b1, . . . , bg}, kerφ2 is the normal subgroup generated by {a1, . . . , ag}, and

h∗(ai) = bi, h∗(bi) = ai, (< h
2
> = 1).

Theorem 31 The Poincaré conjecture is equivalent to the following statement: If

k : S2
g → S

2
g is a homeomorphism such that kerφ1 · k∗(kerφ1) = π1(S

2
g), then

< kh
−1

> ∈ K1K2.

Results by Nielsen and Thurston on mapping class groups can be found in [46].

Remark 9 There is also another paper [150] by Papakyriakopoulos with some group
theoretic reductions of the Poincaré conjecture.

17.12 Connected Sums and Prime Decompositions
of 3-Manifolds

In Sects. 17.12–17.17 we assume that all manifolds and their subspaces (respec-
tively, maps) are polyhedra (respectively, piecewise linear) if the contrary is not
stated explicitly. This is a natural assumption since any n-manifold 1 ≤ n ≤ 3
admits a unique compatible PL-triangulation and smooth structure.

Example 10 The 2-sphere, the projective plane, and the Klein bottle with g handles,
denoted respectively by S2

g , P
2
g , and Kg , are respectively the g-multiple connected

sum of the 2-sphere, the projective plane, and the Klein bottle with the torus S2
1 .

Lemma 6 ([93]) The connected sum is a well defined associative and commutative
operation in the category of oriented 3-manifolds and homeomorphisms preserving
orientation.
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By the van Kampen theorem the inclusion maps Ri → Mi induce isomorphisms
of fundamental groups if n ≥ 3. If A = h1(R1) and B = h2(R2), then A ∩ B

is homeomorphic to Sn−1, and hence is simply connected. Then the van Kampen
theorem implies

Lemma 7 If M = M1#M2 is a connected sum of n-manifolds and n ≥ 3, then
there is a unique natural isomorphism

π1(M) ∼= π1(M1) ∗ π1(M2).

A 3-manifold M is said to be prime if for any decomposition as M = M1#M2,

M1 or M2 is the 3-sphere (then the other manifold is homeomorphic to M).

Theorem 32 ([93], Theorem 3.15) Each compact 3-manifold can be represented
as a connected sum of a finite number of prime manifolds.

The proof of this theorem is based on Lemma 7, Theorem 29, and the following

Lemma 8 Let G be a finitely generated group, p(G) = inf{|A| : A generates G},
andG = G1∗G2 with nontrivial groupsG1 andG2. Then p(G) = p(G1)+p(G2).

In turn, this lemma immediately follows from the well-known Grushko theorem.

Theorem 33 If G1 ∗ G2 is a finitely generated group with nontrivial groups G1
and G2, F a finitely generated free group, and η : F → G1 ∗G2 an epimorphism,
then there exist free groups Fi, i = 1, 2, homomorphisms φi : Fi → Gi, and an
isomorphism ψ : F → F1 ∗ F2 such that (φ1 ∗ φ2) ◦ ψ = η.

For the proof of this theorem we refer the reader to [122]. A topological proof of
the Grushko theorem is given in [171]. The proof of the following theorem, which
is a converse to Lemma 7 in dimension 3 is based on this proof.

Theorem 34 ([93], Theorem 7.1) Let M be a closed 3-manifold. If π1(M) ∼= G1 ∗
G2, thenM = M1#M2, whereM1 andM2 are closed manifolds with π1(Mi) ∼= Gi,

i = 1, 2.

In [131] Milnor proved a uniqueness theorem for the prime decomposition of
closed oriented 3-manifolds. A similar result is true in a more general case.

A prime decomposition M = M1# . . .#Mn of a 3-manifold M is said to be
normal if some of the Mi can be S2 × S1 only if M is orientable. By Lemma 3.17
in [93] any prime decomposition can be replaced with a normal decomposition.

Theorem 35 ([93], Theorem 3.21) Let M = M1# . . .#Mn = M∗
1 # . . .#M∗

n∗
be two normal prime decompositions of a closed 3-manifold M. Then n = n∗
and (up to a permutation) Mi is homeomorphic to M∗

i (in the oriented case the
homeomorphisms preserve the orientation).
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17.13 Irreducible Closed and Open Contractible 3-Manifolds

A 3-manifold M is said to be irreducible if any 2-sphere S in M bounds a 3-cell
in M. The well-known J.W. Alexander theorem in [5] implies that R3 and S3 are
irreducible under the assumptions set out at the beginning of Sect. 17.12.

However, a topological analogue of this statement is false for the (wild) 2-sphere
S in R

3 and S3. Alexander constructed in [4] a topological (wild) 2-sphere S in S3

such that one connected component of S3−S is not simply connected (the so-called
Alexander’s horned sphere). One of the components of the complement of S in S3

is (only topologically!) an open 3-cell, and the otherD is not. LetD′ ∪S′ be another
copy ofD∪S andD∪S be glued with D′ ∪S′ along S and S′ by a homeomorphism
h : S ≈ S′. R.H. Bing proved that the quotient space (D ∪ S) ∪h (D′ ∪ S′) is
homeomorphic to S3 [31]. It is clear that S bounds no (topological!) 3-cell in S3.

Clearly, irreducible 3-manifolds are prime. The following lemma partially gives
the converse statement.

Lemma 9 ([93], 3.13) If M is a prime closed 3-manifold and M is not irreducible
then M is a 2-spherical bundle over S1, i.e., M = S1 × S2 or M = S1 ×φ S

2.

Remark 10 In Lemma 9, S1 ×φ S
2 denotes the quotient space of the direct product

I × S2 with respect to the equivalence relation ∼, where (t, s) ∼ (t1, s1) if
(t, s) = (t1, s1) or t = 0, t1 = 1, and s1 = φ(s) for an orientation-reversing
homeomorphism φ : S2 ≈ S2.

The following theorem gives a characterization of 2-spherical bundles over S1.

Theorem 36 M is a prime closed 3-manifold with a nontrivial free group π1(M) if
and only if M is a 2-spherical bundle over S1. In addition, π1(M) ∼= (Z,+).

It is clear that π1(S
1 × S2) ∼= π1(S

1 ×φ S
2) ∼= π1(S

1) ∼= (Z,+) is a nontrivial
free group. The necessity is proved in Theorem 5.2 of [93]. The following theorem
generalizes this statement.

Theorem 37 M is a closed 3-manifold with a free group π1(M) of rank r > 0 if
and only if M = 1#B1# . . . #Br, where Bj is a 2-spherical bundle over S1, and 1
is a homotopy 3-sphere.

Note that the1 can be dropped ifM (or a covering ofM) contains no fake 3-cell.
This is true if and only if PC3 holds.

Theorem 38 ([110, 131]) Any closed orientable 3-manifoldM3 can be represented
as a connected sum

M3 = (K1# . . . #Kp)#(L1# . . .#Lq)#(#
r
1S

2 × S1) (17.3)

of prime manifolds, where the K- and L-summands are closed irreducible
3-manifolds, the K-summands have infinite fundamental group and are aspherical
(i.e., their universal coverings are contractible), the L-summands have finite



654 V. N. Berestovskii

fundamental groups with homotopy 3-spheres as covering spaces, no L-summand
is a 3-sphere; otherwise M = L ≈ S3. In this sum the summands are unique up to
a permutation.

Remark 11 Validity of the Poincaré conjecture implies that π1(Li) �= {1}, i =
1, . . . , q.

In [188], the reader can find the following version of the sphere theorem.

Theorem 39 For any orientable polyhedral 3-manifold M with π2(M) �= 1, there
exists an embedded polyhedral 2-sphere in M which represents a nontrivial element
of the group π2(M).

Corollary 11 Any closed orientable irreducible 3-manifold has trivial second
homotopy group.

Theorem 40 The universal covering manifoldM of a connected closed 3-manifold
M with π2(M) = 0 is either a compact homotopy 3-sphere or it is noncompact and
contractible.

A noncompact manifold (without boundary) is usually called an open manifold.
The following theorem demonstrates that there are contractible open 3-manifolds
which are not homeomorphic to E3.

Theorem 41 ([93], Example 14.1) Let W be an open 3-manifold represented as
W = ∪∞i=0Ti, where each Ti is a solid torus and for each i ≥ 0

(i) Ti ⊂ Int(Ti+1)

(ii) π1(∂(Ti+1))→ π1(Ti+1 − Ti) is a monomorphism,
(iii) Ti is contractible in Ti+1.

Then W is a contractible open 3-manifold which is not homeomorphic to E3.

The first example of such a manifold W ⊂ E3 was given by Whitehead in
[185] as a counterexample to his false statement in [190] that any open contractible
3-manifold is homeomorphic to E3. This statement was part of a proof which
Whitehead intended to give for the Poincaré conjecture, because if13 is a homotopy
3-sphere, then 13 − {point} is a contractible open 3-manifold.

Using a variant of Whitehead’s technique, in [126] an uncountable family
of pairwise nonhomeomorphic contractible open submanifolds W in E3 was
constructed. Each of these manifolds W satisfies the assumptions of Theorem 41,
hence

(1) W is a contractible open 3-manifold;
(2) any compact subset in W can be topologically embedded in E3.

Quite surprisingly, it was proved in [127] that these two properties imply that
W × E1 is homeomorphic to E4 and in [128] it was remarked that in fact W × E1

is combinatorially equivalent to E4.
In [108], another uncountable family of pairwise nonhomeomorphic contractible

open 3-manifoldsW which admit no topological embedding in E3 was constructed.
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In the proof of Theorem 41 the following theorem called the loop theorem by
Stallings [173] is used.

Theorem 42 Let M be a 3-manifold with nonempty boundary, and F a connected
2-submanifold in ∂M. If N is a normal subgroup in π1(F ) and ker(π1(F ) →
π1(M)) − N �= ∅, then there exists an embedding g : (B2, ∂B2) → (M,F) such
that g(B2) ∩ ∂M = g(∂B2) and [g|∂B2] /∈ N.

17.14 Compact 3-Manifolds with Finite Fundamental
Groups

Theorem 43 ([93]) Any closed 3-manifoldM with finite fundamental group π1(M)

is orientable. Any such M is either irreducible, or can be represented as M =
1#M1, where 1 is a homotopy 3-sphere which is not homeomorphic to S3, and M1
is a closed irreducible 3-manifold with π1(M1) ∼= π1(M). In addition, M admits a
finite covering by a homotopy 3-sphere.

Corollary 12 The Poincaré conjecture PC3 is equivalent to the statement that any
closed 3-manifold with finite fundamental group is irreducible.

In [64] the following surprising theorem is proved.

Theorem 44 Validity of the Poincaré conjecture PC3 implies that any compact
nonorientable 3-manifold with finite fundamental group is homeomorphic to P 2×I
with a finite number of open 3-cells removed, where P 2 is the projective plane.

In the third chapter of [64] the question is investigated under what conditions a
group can be a subgroup of the fundamental group of a 3-manifoldM . For example,
necessary and sufficient conditions are given for π1(M) to have a finite (nontrivial)
subgroup and it is proved that this finite subgroup is isomorphic to the fundamental
group of a closed 3-manifold [64, Corollary 8.7].

Let M be a closed 3-manifold with universal covering manifold S3 (by the
Poincaré conjecture,M is a closed 3-manifold with finite fundamental group). Then
M = 0\S3, where 0 is a finite group acting freely and topologically on S3. The
manifold M admits a piecewise linear structure [134], which can be smoothed [95].
Hence by Theorem 43, there is no loss of generality in supposing that 0 consists
of smooth, orientation-preserving diffeomorphisms of the standard unit sphere S3

in E4. It is proved in [176] that 0 ∼= π1(M) must be isomorphic to a subgroup
01 ⊂ SO(4), such that the standard linear action of 01 on S3 is free, under the
assumption that the Smale conjecture (see below) is true. Moreover,M is homotopy
equivalent to M1 = 01\S3, a smooth Riemannian manifold of constant sectional
curvature 1, a so-called spherical Clifford-Klein form.

The Smale conjecture is the assertion that the inclusion of the orthogonal
group O(4) (respectively, SO(4)) into Diff(S3) (respectively, Diff+(S3)),
the (orientation-preserving) diffeomorphism group of the 3-sphere with the
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C∞-topology, is a homotopy equivalence [168]. Later on A. Hatcher proved the
Smale conjecture [90].

For the most part, the list of these subgroups 01 was obtained by Hopf in [96]. A
full classification of the groups 01 ⊂ SO(4) and corresponding spherical Clifford-
Klein forms is given in the books by Seifert and Threlfall [164] and Wolf [192].

Theorem 45

(1) A closed 3-manifoldM is a homology 3-sphere (see Definition 21) if and only if
M is orientable and π1(M) is a perfect group, i.e. [π1(M), π1(M)] = π1(M),

where [π1(M), π1(M)] is the commutant (the derived group) of π1(M).

(2) Any simply connected closed 3-manifold is a homology 3-sphere.
(3) Any (closed) 3-manifold which is a homotopy 3-sphere is a homology 3-sphere.
(4) Any simply connected closed 3-manifold is a homotopy 3-sphere.

As a corollary of Theorem 45 and the Seifert-van Kampen theorem, we get

Corollary 13 A connected sum of two homology 3-spheres is a homology 3-sphere.

At first Poincaré in [154] erroneously suggested the following

Conjecture 2 A closed 3-manifold, which is a homology 3-sphere, is simply
connected and (hence?) homeomorphic to 3-sphere.

He soon found a mistake in his first assertion and constructed an example of
a closed non-simply connected homology 3-sphere σ 3 with finite fundamental
group π1(σ

3) = P120 of order 120, [155].
The Heegaard splitting of genus 2 for σ 3 is given in [93], Exercise 2.7. Here we

only give the corresponding presentation of the group π1(σ
3):

π1(σ
3) = {a, b : abab−1a−1b−1, aba−1bab−1}.

Let us give another (more geometrical) description of σ 3. By definition, S3 is
the unit sphere in E4, which can be identified with the associative non-commutative
division algebra H of quaternions q = x+yi+zj+wk invented by W.R. Hamilton.
Then S3 is naturally identified with the setQ = {q : |q| = 1} of all unit quaternions,
which constitute a compact Lie group with respect to multiplication in H. A vector
(respectively, scalar) in H is a quaternion q = x + yi +zj +wk such that x = 0
(respectively, y = z = w = 0). The vectors v form the 3-dimensional real vector
space E3 := V 3.

For any unit quaternion q ∈ Q, the map p(q) : V 3 → V 3, p(q)(v) = qvq−1,

is an isometric linear map of the space V 3 = E3 onto itself, which preserves the
orientation of E3, or p(q) ∈ SO(3), where SO(3) is naturally identified with the
Lie group of all orthogonal 3 × 3-matrices with determinant 1. In fact we obtain an
epimorphism of the Lie groups p : Q → SO(3) with kernel kerp = {1,−1}.
The epimorphism p is the two-sheeted universal covering map. The subgroup
I60 ⊂ SO(3) of order 60 of all isometries in V 3 = E3 which map a regular
icosahedron (or dodecahedron) with center O onto itself, is the image of a finite
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group P120 = p−1(I60) ⊂ Q of order 120, which is called the binary icosahedral
or binary dodecahedral group.

Now σ 3 = SO(3)/I60 = Q/ P120 is the (homogeneous Riemannian) quotient
space of left cosets of the group SO(3) (respectively, Q) by its finite subgroup I60
(respectively, P120). Since Q = S3 is simply connected, π1(σ

3) ∼= P120.

We can add to Theorem 43 the following interesting Theorem 3.1 from [66].

Theorem 46 Let M be a compact 3-manifold with finite π1(M). Then π1(M) is
solvable if π1(M) is not isomorphic to the binary dodecahedron group P120 or to
the direct product of P120 and a cyclic group whose order is coprime to 120.

Corollary 14 If M3 is a (closed) homology 3-sphere with finite nontrivial funda-
mental group π1(M

3), then π1(M
3) ∼= P120.

We get from Theorems 43 and 53 the following

Corollary 15 If a closed 3-manifold M with finite π1(M) contains the projective
plane P 2, then π1(M) ∼= Z2.

In the same manner one can consider the binary tetrahedral group P24 and
the binary octahedral group P48 and the corresponding homogeneous Riemannian
quotient spaces SO(3)/T12 = Q/P24 and SO(3)/O24 = Q/P48 with fundamental
groups isomorphic to P24 and P48, respectively. These closed 3-manifolds are not
homology 3-spheres, because the groups P24 and P48 are solvable.

One can also consider a regular two-sided plane n-polygon in E3, where n ≥ 3,
as a dihedron and its dihedral symmetry group D2n ⊂ SO(3), as well as the
binary dihedral group BD4n = p−1(D2n) and the corresponding homogeneous
Riemannian space Q/BD4n . Any element e2πi/p of the multiplicative group Q,

where p ≥ 2 is a positive integer, generates a finite cyclic subgroup ep and
determines the corresponding homogeneous Riemannian space Q/ep. It is clear
that Q/e2 is the real projective 3-space P 3. All other spaces Q/ep, where p ≥ 3,
are called lens spaces and denoted by Lp,1.

All the above mentioned finite subgroups 0 of the multiplicative Lie group Q

determine homogeneous Riemannian spaces Q/0 = S3/0. Any other Riemannian
manifold S3/0 is non-homogeneous [192].

Among the other nonhomogeneous manifolds S3/0 we mention only lens spaces
Lp,q, where p, q ≥ 2 are mutually coprime positive integers. By definition, Lp,q =
S3/0p,q , where 0p,q is a cyclic subgroup of order p in SO(4) generated by the
diagonal complex (2 × 2)-matrix diag(e2πi/p, e(2πi)q/p), and E4 is understood as
C

2.

Theorem 47

(1) Lp,q is homotopy equivalent to Lp′,q ′ if and only if p = p′.
(2) Lp,q is homeomorphic to Lp′,q ′ if and only if p = p′ and q ≡ ±q ′ mod p, or

qq ′ ≡ ±1 mod p.

Corollary 16 There exist homotopy equivalent but nonhomeomorphic lens spaces.
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Note that J.W. Alexander was the first to discover that there exist nonhomeomor-
phic lens spaces with isomorphic fundamental groups [3]. In [93] the reader can
find another description of lens spaces in terms of Heegaard splittings of genus one.
Apart from lens spaces one can describe in this way S3, P 3, and the two above
mentioned S2-bundles over S1.

17.15 Irreducible Closed 3-Manifolds with Infinite
Fundamental Group

It follows from theorems on the prime (normal in the nonorienrable case) decom-
position of a closed 3-manifold into a finite connected sum which were exposed in
Sect. 17.12, that the investigation of these manifolds can be reduced to the case of
closed irreducible 3-manifolds with infinite fundamental group. By Theorem 38, in
the orientable case, these manifolds are aspherical K-summands. By Lemma 9, in
the nonorientable case any prime summand in the corresponding decomposition is
either irreducible or homeomorphic to S2 ×φ S

1. First let us give information on
infinite fundamental groups of 3-manifolds (mainly from [93]).

From Lemma 6.7 in [93] we get the following

Theorem 48 Any non-orientable closed 3-manifold M has infinite first homology
group H1(M,Z).

Definition 15 A closed, possibly not connected, surface F in a closed 3-manifold
M is said to be two-sided in M if there is an embedding h : F × I → M with
h(x, 1

2 ) = x for all x ∈ F.
Theorem 49 Let M be a prime closed 3-manifold with infinite fundamental group
π1(M). Then any element of finite order in π1(M) has order 2. If M contains
no 2-sided projective plane P 2, then π1(M) is torsion free. In particular, if M
is orientable, then M contains no embedded 2-sided P 2, and therefore π1(M) is
torsion free.

The first two statements of this theorem follow from Corollary 9.9 in [93]. The
last statement follows from Theorems 53 and 34.

Theorem 50 ([93], Theorem 10.7) Let M be a closed 3-manifold with π1(M)

torsion free. If π1(M) contains a nontrivial free subgroup of finite index, then π1(M)

is free (and the structure of M is as given in Theorem 37).

Definition 16 A closed 3-manifold M is said to be P 2-irreducible if M is irre-
ducible and M contains no two-sided P 2.

Theorem 51 ([93], Lemma 10.4) Let M be a P 2-irreducible 3-manifold and p :
M̃ → M be a two-sheeted covering map. Then M̃ is P 2-irreducible.
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Proposition 8 If M is a P 2-irreducible 3-manifold, then its universal covering
manifold M is a homotopy 3-sphere if π1(M) is finite and is a contractible
noncompact 3-manifold if π1(M) is infinite. For nonorientable M only the second
possibility holds.

Let us prove this. If M is orientable, this follows from Corollary 11 and
Theorem 40. If M is nonorientable, then its two-sheeted orientable covering space
M̃ is P 2-irreducible by Theorem 51 and we can apply the previous argument. The
last statement now follows from Theorem 48.

Conjecture 3 The universal covering manifold of any connected P 2-irreducible
3-manifold with infinite group π1(M) is homeomorphic to E3.

Definition 17 A compact connected surface F in a compact 3-manifold M is said
to be incompressible in M if ∂F ⊂ ∂M and neither of the following conditions
hold:

(i) F is a sphere bounding a homotopy 3-cell in M ,
(ii) there exists a 2-cell D ⊂ M with D ∩ F = ∂D not contractible in F.

Theorem 52 ([93], Corollary 6.2) If F is a 2-sided incompressible surface in a
compact 3-manifold M, then ker(π1(F ) → π1(M)) = {1}. Hence π1(M) has a
2-torsion if F = P 2.

Theorem 53 ([93], Lemma 6.3) Let M be an orientable 3-manifold containing a
closed surface with odd Euler characteristic, and letF be a closed surface inM with
a maximal odd Euler characteristic. Then F is incompressible in M. If F = P 2,

then π1(M) ∼= Z2 ∗G (it is possible that G = {1}).
Theorem 54 ([93], Lemma 6.6) A closed 3-manifold M contains a 2-sided non-
separating incompressible closed surface if and only if the group H1(M,Z) is
infinite.

Definition 18 A compact 3-manifoldM is said to be sufficiently large ifM contains
a compact 2-sided incompressible surface.

From Theorems 54 and 48 we get

Corollary 17 Any closed 3-manifoldM with infiniteH1(M,Z) is sufficiently large.
In particular, any nonrientable closed 3-manifold is sufficiently large.

Remark 12 The converse of Corollary 17 does not hold; there exist closed ori-
entable sufficiently large 3-manifolds with finite (or even trivial) H1(M,Z).
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17.16 Haken Manifolds

Definition 19 A compact 3-manifold is called Haken if it is irreducible and
contains a closed connected incompressible two-sided surface F which is not
homeomorphic to P 2.

Proposition 9 Any Haken 3-manifold M has infinite fundamental group π1(M).

Let us prove this. Since M is irreducible, then in Definition 19, F cannot be S2

or P 2. Hence π1(F ) is infinite. Now the required statement follows from the first
statement of Theorem 52.

Proposition 10 Let us consider the following three conditions on a closed
3-manifold M:

(i) M is P 2-irreducible and sufficiently large;
(ii) M is Haken;

(iii) M is irreducible and sufficiently large.

Then (i)⇒ (ii)⇒ (iii).WhenM is orientable, the three conditions are equivalent.

Let us prove this. The first statement is evident. IfM is orientable, then it contains
no two-sided nonorientable closed surface (and any orientable closed surface in M
is two-sided), hence M is P 2-irreducible, if it is irreducible.

Remark 13 F. Waldhausen and W. Jaco defined a Haken manifold to be a compact
orientable irreducible sufficiently large 3-manifold [99, 181]. Proposition 10 shows
that the term “orientable Haken manifold” has the usual meaning.

Theorem 55 ([99], Corollary X.8) Let M and M ′ be compact orientable Haken
manifolds and f : (M, ∂M) → (M ′, ∂M ′) be a map such that f∗ : π1(M) →
π1(M

′) is an isomorphism. Then f is homotopic to a homeomorphism (it is possible
that the image ∂M × I is not contained in ∂M ′). Moreover, if f |∂M → ∂M ′ is a
homeomorphism, then f is homotopic rel∂M to a homeomorphism h, i.e. there is a
homotopy between f and h constant on ∂M .

In [181] Waldhausen proved the following partial case of Conjecture 3.

Theorem 56 The universal covering of any closed orientable Haken manifold is
homeomorphic to E3.

In [182] Waldhausen proposed the following conjecture called the virtual Haken
Conjecture (see also [61]), which, by Theorem 56, is stronger than Conjecture 3.

Conjecture 4 LetM be a compact irreducible 3-manifold with infinite fundamental
group. Then M has a finite-sheeted covering which is Haken.

The following text, till the end of this section, is an excerpt from the book [125]
by Matveev.

The question: “Does there exist an algorithm to decide whether or not two given
3-manifolds are homeomorphic?” in [88] is known as the recognition problem for
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3-manifolds. The aim of Chapter 6 in [125] is to present a positive solution to this
problem for Haken manifolds. This case is especially important because it implies
a positive solution to the problem of algorithmic knots classification, one of the
most intriguing problems of low-dimensional topology. Recall that a knot is a circle
topologically embedded in S3. Two knots are equivalent, if there exists an isotopy
S3 → S3 moving one knot to the other.

The history of the positive solution to the recognition problem for Haken
3-manifolds is very interesting. In 1962 Haken proposed an approach to a solution
to this problem [88]. But this approach had a gap. Thanks to the efforts of several
mathematicians, at the beginning of the seventies a crucial obstacle to the solution
was found, and when in 1978 Hemion overcame it in [91], it was widely announced
that the problem has been solved [102, 180]. Later on many topologists used
extensively this result.

Nonetheless, in trying to understand the proof of this theorem in detail, Matveev
discovered that the complete proof was not written anywhere. All the papers and
even books [92, 102, 103, 180] devoted to this subject were written according to the
same scheme: they contained nonformal description of Haken’s approach, obstacles,
Hemion’s result, and the claim that these three ingredients give together the proof.
At the same time, there was no article containing this proof. Matveev investigated
this question and came to the following conclusions.

1. The statement that the recognition problem for Haken manifolds is algorithmi-
cally solvable is true.

2. There is another obstacle of similar nature that cannot be overcome by the same
tools as the first one.

3. This obstacle can be overcome by using an algorithmic version of Thurston’s
theory of surface homeomorphisms that appeared only in 1995 [25].

17.17 The JSJ-Splitting Theorem for Orientable Haken
Manifolds

In this section we discuss the JSJ-splitting theorem proved independently by
Johannson [101] and Jaco and Shalen [98]. Another proof of this theorem for Haken
manifolds together with its algorithmic version is given in Matveev’s book [125].
We restrict ourselves to the case of orientable Haken manifolds.

Let S1 := {z ∈ C : |z| = 1} be the multiplicative group and M a 3-manifold
(with or without boundary) of class C∞. A smooth effective action of S1 on M is a
C∞-map f : M × S1 → M such that

(1) the map t ∈ S1 �−→ f (·, t) is a monomorphism into the diffeomorphism group
of M;

(2) for any x ∈ M there exists t ∈ S1 such that f (x, t) �= x.
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A 3-manifoldM endowed with such a structure is called a Seifert fibration and is
denoted by S. M splits into the orbits of the group S1, i.e., the sets Sx = f (x, S1),

x ∈ M , which are circles, called fibres. A fibre Sx is said to be regular (respectively,
exceptional) if 0x := {t ∈ S1 : f (x, t) = x} = {1} (respectively, 0x �= {1}). Each
exceptional fibre of the Seifert fibration is isolated; if S is compact, then the number
of exceptional fibres is finite.

The quotient (orbit) space B = S1\M of the Seifert fibration S obtained by
identifying each fiber to a point is a 2-manifold with distinguished points, is called
an orbifold. The corresponding quotient map p : S → B is called the projection.
Note that ∂S �= ∅ if and only if ∂B �= ∅, and ∂S = p−1(∂B). Further, if M = S is
compact then any connected component of ∂S is a foliated two-dimensional torus
with regular fibres-circles.

The following statement is a combination of Lemma II.2.3 and Corollary II.2.4
in [98].

Theorem 57 Let S be a compact connected Seifert fibration and ∂S �= ∅. Then S is
irreducible and sufficiently large. Any component of ∂S is incompressible except if
S is homeomorphic to the solid torus.

Seifert fibrations were defined and classified by H. Seifert in [163]. The reader
can find an English translation of this nice paper in [166]. See also the book [146]
by Orlik. Useful information can be found also in [93] and [161].

Two surfaces C,C1 in a 3-manifold M are said to be parallel if there is a
3-manifold Q ⊂ M such that ∂Q = C ∪ C1 and Q is homeomorphic to C × I.

A surface C in M is called boundary parallel in M if there is a surface C1 in ∂M
which is parallel to C.

A 3-manifold M is said to be atoroidal if any two-sided incompressible torus
T = S2

1 in M is boundary parallel in M . In particular, a closed 3-manifold M is
atoroidal if and only if M contains no two-sided incompressible torus; this is true if
M is not a Haken manifold.

Theorem 58 ([98, 101]) A compact orientable irreducible manifold M3 with an
infinite fundamental group is a Seifert fibration if and only if the group π1(M)

contains an infinite cyclic normal subgroup.

Let W be a two-sided (m − 1)-manifold in a compact m-manifold. We denote
by σW(M) the m-manifold obtained by splitting M along W. There is a canonical
“identifying map” r : σW (M)→ M such that r−1(W) consists of two homeomor-
phic copies of W, and r|r−1(M −W) is one-to-one. This map will be denoted by
rW (M).

Theorem 59 ([98, 101]) Let M be a closed connected orientable Haken
3-manifold. Then there exists a (possibly nonconnected) surface W ⊂ M with
two-sided incompressible components, unique up to isotopy of the entire space such
that

(a) the components of W are tori;
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(b) any component of σW(M) is either a Seifert fibration or an atoroidal manifold
(both cases can coexist);

(c) W is a minimal two-sided 2-manifold in M with properties (a) and (b).

In fact this theorem was proved for any compact orientable Haken 3-manifold.
In this framework this result can be stated as follows. First note that any compact
irreducible orientable 3-manifold with nonempty incompressible boundary is a
Haken manifold.

Theorem 60 Let M be a compact connected orientable irreducible 3-manifold
with nonempty incompressible boundary ∂M, and DM ⊃ M a closed 3-manifold
(the double of M) such that M is an orbit space of DM relative to an involutive
homeomorphism j : DM → DM with fixed point set ∂M . Then the statement for
Theorem 59 for DM (instead of M) is the same, with the additional requirement
that we consider only j -invariant surfaces W ⊂ DM. In addition, for the natural
quotient map p : DM → DM/j = M,

(a) p(W) is a collection of tori or bands in M which are not parallel to the
boundary;

(b) any component of σp(W)(M) is either a Seifert fibration or an atoroidal
3-manifold, or an I -bundle over a compact surface.

17.18 The Thurston Geometrization Conjecture

In order to formulate this conjecture we need the notion of geometric structure.

Definition 20 Let (N, ν) be a simply connected homogeneous Riemannian mani-
fold, i.e., the group G of all isometries of the manifold (N, ν) is a Lie group which
acts transitively onN , and let0 ⊂ G be a closed discrete subgroup which acts freely
(without fixed points) on N. The orbit space 0\N with the natural smooth structure
and Riemannian metric μ such that the natural projection (N, ν) → (0\N,μ) is
a local isometry, is called a locally homogeneous Riemannian manifold of type
(N, ν). A topological manifold M (possibly with boundary) admits a geometric
structure (of finite volume) of type (N, ν) if IntM is homeomorphic to 0\N for
some pair ((N, ν), 0) (and Vol(0\N,μ) <∞).

Remark 14 Under the latter condition of Definition 20, π1(M) ∼= 0.

Theorem 61 Any compact surface M2 admits a geometric structure. Here
(N, ν) = S2 ⊂ E3 if M is homeomorphic to S2 or P 2; (N, ν) = E2 if M2 is
homeomorphic to T 2 or K; and (N, ν) = H 2 (the Lobachevskii plane of curvature
−1) in all other cases.
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Theorem 62 ([177]) There are exactly eight 3-dimensional simply connected ho-
mogeneous Riemannian manifolds (N, ν) admitting a quotient manifold (0\N,μ)
of finite volume:

(1) the sphere S3 of constant sectional curvature 1;
(2) the Euclidean space E3 of constant sectional curvature 0,
(3) the Lobachevskii space H 3 of constant sectional curvature −1;
(4) the direct metric product S2 ×E1;
(5) the direct metric product H 2 × E1;

and the following Lie groups with left invariant Riemannian metrics:

(6) the universal covering ˜SL(2,R) of the Lie group SL(2,R);
(7) Nil, the nilpotent Heisenberg group of real upper triangular (3 × 3)-matrices

with units on the main diagonal;
(8) Sol, the solvable Lie group which is the semidirect product of R∗ and (R2,+),

where the action of t ∈ R∗ on (R2,+) is given by the (2 × 2)-matrix
diag(t, t−1).

Theorem 63 ([161]) Let M be a closed 3-manifold. Then

(1) M is a Seifert fibration if and only if M admits a geometric structure of type
different from Sol and H 3.

(2) M admits a geometric structure of type Sol if and only if M has a finite-sheeted
covering by a bundle P over S1 whose fibres are tori and the gluing map is
hyperbolic.

Remark 15 The condition in (2) that the gluing map is hyperbolic means that P ≈
(T 2×I)/f,where f : T 2×{0} ≈ T 2×{1} induces an isomorphism f∗ : π1(T

2)→
π1(T

2) ∼= Z ⊕Z with matrix in GL(2,Z) with respect to a Z-lattice which has no
eigenvalues equal to 1.

Theorem 64 ([161]) Any closed 3-manifold admits at most one geometric structure
of one of the above types.

Remark 16 This geometric structure is not unique. However, for the type H 3, by
Mostow’s theorem, the manifold (M3, μ) is determined up to isometry by the group
π1(M).

Conjecture 5 ([177]. (Thurston’s Geometrization Conjecture)) Let a spherical
decomposition (17.3) of an orientable closed 3-manifold M3 be given. Then the
summands Lj , S2 × S1 and the interior part of any connected component of the
torus decomposition σWiKi from Theorem 59 of eachKi from (17.3), i = 1, . . . , p,
admit a geometric structure of finite volume.

We need to give an explanation. If Ki is Haken, then it is possible to apply the
JSJ theorem. If Ki is not Haken, then Ki has no incompressible torus, Wi is empty,
and σWiKi = Ki. The following two corollaries are consequences of the Thurston
geometrization conjecture.
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Corollary 18 Any closed 3-manifold with finite fundamental group is homeomor-
phic to 0\S3 with a group 0 ⊂ SO(4) from Sect. 17.14. This implies the Poincaré
conjecture.

Corollary 19 A closed orientable manifold M3 admits a geometric structure of
type H 3 if and only if M3 is irreducible, atoroidal, is not a Seifert fibration, and
whose fundamental group π1(M

3) is infinite.

Agol proved the following long-awaited result.

Theorem 65 ([1], Theorem 9.1) The virtual Haken conjecture is true for closed
aspherical 3-manifolds.

This theorem also gives a partial positive answer to Thurston’s Question 16 in
[177]. The following two theorems are consequences of Theorem 65.

Theorem 66 The virtual Haken conjecture is true for closed orientable irreducible
3-manifolds with infinite fundamental group.

Theorem 67 ([161]) Let M3 be a closed orientable irreducible non-Haken mani-
fold with infinite fundamental group. Then M3 is a Seifert fibration or is atoroidal.
Consequently M3 admits a geometric structure different from Sol.

The next statement is a consequence of Theorems 65 and 56.

Corollary 20 Conjecture 3 is true.

Theorem 68 ([1], Theorem 9.2) Let M be a closed hyperbolic 3-manifold. Then
there is a finite-sheeted covering M̃ → M such that M̃ fibers over the circle (i.e.,
M̃ is a fibration over S1 with a closed 2-surface F as the fiber).

Theorem 68 gives a partial positive answer to Thurston’s Question 18 in [177].
Theorems 65 and 68 were proved under the assumption of a positive answer to
the Thurston geometrization conjecture and the following theorem which gave a
positive answer to Problem 11.7 in the paper [86] by F. Haglund and Wise.

Theorem 69 ([1], Theorem 1.1) Let G be a word-hyperbolic group acting prop-
erly and cocompactly on a CAT(0) cube complex X. Then G has a finite-index
subgroup H acting specially on X.

We shall consider CAT(0) spaces in Sect. 17.22. The (word-)hyperbolic groups
were defined by Gromov in [83]. Special cube complexes were defined in [86] (see
also [87]).

17.19 Triangulations of Topological Manifolds

In this section, we again discuss the triangulation conjecture (Problem 1). To begin
with we note the known fact that any topological n-manifold is homotopy equivalent
to an n-dimensional simplicial complex.
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Let us recall some facts alluded to above. Any n-manifold is triangulable, and
each triangulation is combinatorial if 0 ≤ n ≤ 3. The positive solution to the
Poincaré conjecture implies that (1) a 4-manifold is triangulable if and only if it
is smoothable, (2) any triangulation is combinatorial. Any noncompact 4-manifold
is triangulable. The “majority” of closed simply connected 4-manifolds are not
triangulable. Many (or, possibly, all) triangulable 4-manifolds admit infinitely many
triangulations which are not equivalent with respect to simplicial subdivision. The
triangulation and non-PL conjectures, as well as the Hauptvermutung are false in
dimension 4. The question of whether closed simply connected 4-manifolds with
indefinite even intersection form are triangulable has not been completely solved.

R. Kirby and L. Siebenmann proved that Mn, n ≥ 5, admits a piecewise linear
structure if and only if the Kirby-Siebenmann obstruction k(Mn) ∈ H 4(Mn,Z2)
vanishes [107]. In particular, Mn admits a PL-structure if H 4(Mn,Z2) = 0. In
dimensions n ≥ 5 there exist manifolds with k(Mn) �= 0; e.g. Mn = T n−4 × E8.

Therefore, the PL-conjecture (Problem 3) is false in all dimensions n ≥ 4.

Definition 21 A homology n-sphere for a positive integer n is a closed topological
n-manifold M with integral homology groups isomorphic to the integral homology
groups of Sn. Specifically, H0(M,Z) ∼= Z, Hn(M,Z) ∼= Z, and Hk(M,Z) = 0 if
0 < k < n.

Remark 17 To obtain the notion of rational homologyn-sphere one needs to replace
the ring Z by the field Q.

Example 11 Let 1n−2, n ≥ 5 be a triangulated homology (n − 2)-sphere with
π1(1

n−2) �= {1} (for n = 5 we can take as 13 the Poincaré homology 3-sphere
P 3 from Corollary 14). The suspension S(1n−2) is not a manifold, but the double
suspension S(S(1n−2)) is a topological manifold homeomorphic to the sphere
Sn, by the double suspension theorem of Edwards [62, 63], and Cannon [44]. A
triangulation of S(S(1n−2)) induced by 1n−2 is not a combinatorial triangulation,
since the link of any cone point v in S(S(1n−2)) is lk(v) = S(1n−2), which is not
a manifold so is not a PL-sphere.

M. Kervaire proved that for any dimension k ≥ 4 there exist smooth homology
k-spheres 1k with π1(1

k) �= {1} [106]. This result and Example 11 imply the
following

Corollary 21 For any manifold of dimension n ≥ 5, the non-PL-conjecture holds,
while the Hauptvermutung is false.

To consider the triangulation conjecture for dimension ≥ 5, let us begin with
some statements that do not involve new notions. If a simplicial complex is a
topological n-manifold, then the link of each vertex is a homotopy (n − 1)-sphere
(which in general is not an (n−1)-manifold). Any orientable topological 5-manifold
is triangulable (see Corollary 22 below). There exists a closed nonorientable
topological 5-manifold M5 such that all the topological n-manifolds, where n ≥ 5,
are triangulable if and only if M5 is triangulable [78, 79]. An exact statement about
this is given in Theorem 75.
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Theorem 70 ([85, 159]) Any smooth closed 3-manifoldM3 is diffeomorphic to the
boundary of a smooth 4-manifold M4 (with boundary) which is orientable if M3 is
orientable.

If the manifold M3 = 13 is a homology 3-sphere, then M4 is a spin 4-manifold
(endowed with an arbitrary orientation). Then the signature σ(M4) is divisible by 8.
From Rochlin’s results it follows that ρ(13) := 1

8 (σ (M
4))(mod 2) ∈ Z2 depends

only on 13. This is called the Rochlin invariant of 13.

Theorem 71 ([107]) Every orientable topological 5-manifold may be simplicially
triangulated if and only if there exists a PL-homology 3-sphere of Rochlin invari-
ant 1 whose double suspension is homeomorphic to S5.

The Poincaré homology 3-sphere P 3 has Rochlin invariant 1 and S(S(P 3)) ≈ S5

by Example 11. Then Theorem 71 implies

Corollary 22 Any orientable topological 5-manifold is triangulable.

By Lemma 6 and Corollary 13, the set H of all smooth oriented homological
3-spheres 13 is a commutative monoid with respect to the operation of connected
sum; this set modulo the 13 that bound smooth acyclic [56] 4-manifolds is a group
3H

3 called the homology cobordism group of homology 3-spheres.
The Rochlin invariant ρ is a surjective homomorphism ρ : 3H

3 → Z2. Thus we
get the short exact sequence

1 → ker(ρ)→ 3H
3

ρ→ Z2 → 1 (17.4)

and the corresponding homomorphism called Bockstein homomorphism [56]

β : H 4(Mn,Z2)→ H 5(Mn, ker(ρ))

for any n-manifold Mn, n ≥ 5.

Theorem 72 ([79, 124]) A topological manifold Mn, n ≥ 5, is triangulable if and
only if β(k(Mn)) = 0.

Theorem 73 ([79, 124]) Each topological manifold Mn, n ≥ 5, is triangulable if
and only if there exists an element 13 ∈ 3H

3 of order two (i.e., 13#13 bounds an
acyclic 4-manifold) such that ρ(13) = 1.

Theorem 74 ([158]) The short exact sequence (17.4) splits if and only if
β(k(Mn)) = 0 for any topological manifold Mn, n ≥ 5.

Let us consider the short exact sequence

0 → Z2
×2→ Z4 → Z2 → 0.
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The Bockstein homomorphism β associated to this sequence is the first Steenrod
square Sq1 on cohomology [174],

Hk(Mn,Z2)
Sq1

→ Hk+1(Mn,Z2).

Theorem 75 ([78, 79]) For each n ≥ 5, there exist topological n-manifolds Mn

such that 0 �= Sq1(k(Mn)) ∈ H 5(Mn,Z2). All the topological n-manifolds, where
n ≥ 5, are triangulable if and only if at least one of these manifolds is triangulable.

A manifoldMn as in the first statement in Theorem 75 is said to be the Galewski-
Stern manifold.

In 2013 Manolescu proved the following striking result.

Theorem 76 ([117]) The short exact sequence (17.4) does not split.

Then, by Theorems 72, 74, and 76,

Theorem 77 ([117]) For every n ≥ 5, there exist nontriangulable n-dimensional
manifolds. In other words, the triangulation conjecture is false for every n ≥ 5.

Theorem 76 implies

Proposition 11 If Mn, n ≥ 5, is a topological manifold and Sq1(k(Mn)) �= 0,
then β(k(Mn)) �= 0.

In particular no Galewski-Stern manifold Mn, n ≥ 5 can be triangulated. To
see explicit examples, it suffices to present an M5. It will then follow that M5, and
hence M5 × T n−5 for any n ≥ 5, are nontriangulable.

Following [117], one can construct such manifold M5 as follows.
By the positive answer to the Poincaré conjecture, Corollary 1, and Theorem 15,

there is an orientable fake CP 2#CP 2, i.e., nontriangulable simply connected closed
topological 4-manifold W with intersection form Q = ωW = (+1)⊕ (−1). Since
the form Q is isomorphic to −Q, then by Theorem 15, W admits an orientation-
reversing homeomomorphism f : W → W. Let M5 be the mapping torus of f ,
i.e. the space obtained from W × I by gluing all points (w, 0) ∈ W × I with
(f (w), 1) ∈ W × I. We have k(W) = 1 ∈ H 4(W,Z2) = Z2, and therefore
Sq1(k(M5)) = k(W) ∧ u �= 0, where u is a nontrivial element of the cohomology
group H 1(S1, Z2) ∼= Z2.

In [52], the authors applied Gromov’s hyperbolization technique [83] to Freed-
man’s E8-manifold to show that there exist closed aspherical (i.e., with contractible
universal covering) 4-manifolds that cannot be triangulated. In the paper [53], with
the help of the hyperbolization technique applied to the Galewski-Stern manifolds,
it is proved that for each n ≥ 6 there exist nontriangulable closed aspherical
n-manifolds. The question, whether such manifolds exist in dimension 5, remains
open.

In dimensions n ≥ 6 there also exist nontriangulable oriented n-manifolds.
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In 1985 Casson constructed a new powerful integer invariant λ : H→ Z [2, 85].
The invariant λ has the following properties:

(0) λ(S3) = 0 and λ(H) is not contained in a proper subgroup of the group Z,
(4) λ(−13) = −λ(13),
(5) λ(13

1 #13
2) = λ(13

1 )+ λ(13
2 ),

(6) λ(13) = ρ(13)(mod 2),
(7) if λ(13) �= 0, then π1(1

3) has a nontrivial representation in the Lie group
SU(2).

The other properties (1), (2), (3), (3’) of λ are related to links (in particular,
to knots) in 13 ∈ H and to Dehn surgery along them [2, 85]. The invariant λ is
determined uniquely up to a sign by the above mentioned properties.

It follows from (6) that the Rochlin invariant is determined by the Casson
invariant. By properties (4), (6), (7), the Rochlin invariants of homotopy 3-spheres
and mirror homology 3-spheres vanish. The Casson invariant is not invariant under
the homology cobordisms. Therefore, unlike the Rochlin invariant, it is not defined
on 3H

3 . Note that Casson’s invariant of an oriented 13 can be thought of as the
number of conjugacy classes of irreducible representations of π1(1

3) in SU(2)
counted with signs.

Casson gave a topological definition of his invariant. An analytic definition of
Casson’s invariant is the subject of the article [175] by Taubes. Roughly speaking,
Casson’s invariant can be defined using gauge theory as an infinite-dimensional
generalization of the classical Euler characteristic. This new definition of Casson’s
invariant requires some basic facts from gauge theory (connections, curvature, and
covariant derivatives) which can be found in [69] and [113].

In the paper [68], A. Floer assigns to an oriented homology 3-sphere 13 a
Z8-graded homology group I∗(13) whose Euler characteristic is twice Casson’s
invariant λ(13). The definition uses a construction of instantons on 13 × R. Later
on, the group I∗(13) was called the instanton Floer homology group of 13.

Galewski-Stern [79] and Matumoto [124] reduced Problem 1 to a problem in
3+1 dimensions. The solution of this reduced problem is given in [117], and uses the
Pin(2)-equivariant Seiberg-Witten Floer homology theory for homology 3-spheres.

Variants of the U(1)-equivariant Seiberg-Witten Floer homology theory for
rational homology 3-spheres were constructed by Marcolli-Wang in [119], by
Manolescu in [118], and Froshov in [75], as well as by Kronheimer-Mrowka
in [112] for all three-manifolds. The Pin(2)-equivariant theory was first defined
by Manolescu in [117] for rational homology 3-spheres. Later on a different
construction of the Pin(2)-equivariant theory for all three-manifolds was given
by Lin in [114]. Lin’s construction provides an alternative proof of Theorem 77.
All these papers presented definitions of the so-called equivariant monopole Floer
homology groups.

For Theorem 76, it is enough to consider a smooth integral homology 3-sphere
Y = 13, and pick a Riemannian metric g on Y. There is a unique Spinc- structure
on (Y, g) denoted by s. Specifically, s consists of a rank-2 Hermitian bundle S on
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Y , together with a Clifford multiplication map μ : T Y ∼=→ su(S) ⊂ End(S). Here
su(S) denotes traceless (trA = 0), skew-adjoint (A+A∗ = 0) endomorphisms of S.
Everything in the construction from [117] is Pin(2)-equivariant, because the Spinc-
structure is Spin. Here Pin(2) = U(1) ∪ jU(1) ⊂ C ∪jC = H, j2 = −1, ij = j i.

The Seiberg-Witten equations are also Pin(2)-equivariant. Thus, Manolescu gives
in [117] the definition of the Pin(2)-equivariant Seiberg-Witten Floer homology.

17.20 The Homeomorphism Problem for Closed
n-Manifolds, n ≥ 4

Now we present some results connected with the algorithmic insolubility of the
homeomorphy problem for closed n-manifolds, n ≥ 4, as was remarked by Markov
in [120] and [121].

Theorem 78 Any finitely presented group is isomorphic to the fundamental group
of some closed n-manifold if n ≥ 4.

Let us prove this theorem.
LetG = {a1, . . . , al |r1, . . . , rm} be a presentation of a groupG and n ≥ 4 be any

positive integer. First, let us consider the manifold V n = (Sn−1×S1)# . . .#(Sn−1×
S1) (l copies). Obviously, π1(S

n−1 × S1) ∼= (Z ,+). Then by Lemma 7, π1(V
n) is

a free group on l generators (loops with a base point x0 ∈ V n) which we denote by
α1, . . . , αl .

Denote by ρ1, . . . , ρm loops in V n, obtained from corresponding words
r1, . . . , rm via the substitution of αi instead of ai, i = 1, . . . , l. Using free
homotopies (without fixed ends) of loops, we can assume that all loops ρ1, . . . , ρm
are mutually disjoint circles S1, embedded in V n. Then there exist mutually
disjoint closed neighborhoods Uj of ρj , j = 1, . . . ,m, in V n, homeomorphic
to S1 × Bn−1, so the boundary ∂Uj is homeomorphic to S1 × Sn−2. Now, we
can move homotopically every circle ρj in Uj to a circle on the boundary ∂Uj ,
preserving the same notation ρj for the moved circle. Next we remove every
open set IntUj , j = 1, . . . ,m and glue in place of it a copy of B2 × Sn−2 via a
homeomorphism of its boundary S1 × Sn−2 to the boundary ∂Uj . This is possible,
because ∂Uj is homeomorphic to S1 × Sn−2. As a result we get the desired closed
n-manifold Mn with π1(M

n) isomorphic to G, because B2 × Sn−2 is simply
connected, so any circle ρj , j = 1, . . . ,m is null-homotopic in Mn. To be accurate,
instead of the very last sentence we need only use m times the Seifert-van Kampen
theorem.

Novikov in [144] (see also [145]) proved the following

Theorem 79 There exists a finitely presented group with undecidable word prob-
lem, i.e., such that it is impossible to find an algorithm for deciding the identity of
group elements given by products of powers of generators.
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As a corollary of Theorems 78 and 79 we get

Corollary 23 If we are given arbitrary two n-manifolds M1 and M2, where n ≥
4, then in general it is impossible to decide (algorithmically) whether they are
homeomorphic or not.

Finally, notice that Markov indicated in [121] that a manifold Mn, similar to the
one given in the proof of Theorem 78, was described in exercises from [165].

Remark 18 In reality, the situation is much worse than it is stated in Corollary 23.
Theorems 78 and 79 imply that in general there is no algorithm to solve the word
problem for presentations of fundamental groups of closed topological manifolds
in any dimension n ≥ 4. But in fact to solve the homeomorphism problem it
is necessary to overcome after the word problem several other problems, namely,
(1) the conjugacy problem, (2) the isomorphism problem (for fundamental groups),
after that the topological problems: (3) the homotopy equivalence, and only at the
end (4) the homeomorphism problem. The passage from every mentioned problem
to the next one is very difficult or maybe even impossible.

17.21 The Manifold Recognition Problem

In [43] Cannon posed the following problem: find a short list of topological
properties that separate topological manifolds from topological spaces. He assumed
that the manifolds can be characterized as generalized n-manifolds with general
position property. For dimensions ≥ 5 he proposed the following disjoint disk
property (DDP): any two continuous maps of the disc B2 into the space can be
approximated by arbitrary close maps with disjoint images.

A generalized n-manifold (n-GM) is a locally compact, locally contractible,
finite-dimensional separable metric space X with local relative homology of En,

i.e., H∗(X,X − {x},Z) is isomorphic to H∗(En,En − {x},Z) for any x ∈ X.

Generalized manifolds naturally arise as sets of fixed points of group actions on
manifolds, limits of sequences of manifolds, and boundaries of groups of negative
curvature.

Theorem 80 ([191]) Any generalized n-manifold is a topological n-manifold for
n = 1, 2.

By definition, a compact subset C of a topological space X is cell-like if for any
neighborhood U of C in X, C contracts to a point in U. A proper map (i.e., a map
such that the inverse image of each compact set is compact) f : X → Y between
locally compact metric spaces is said to be cell-like if f−1(y) is cell-like for any
y ∈ Y.

It is clear that any n-manifold is an n-GM, but the converse is false for n > 2.
Let f : M → X be a proper cell-like surjective map defined on an n-manifold, and
dimX < ∞. Then X is an n-GM (by definition, X is a resolvable n-GM and the
pair (M, f ) is a resolution for X). The classical example of Bing’s dog bone space
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[27] demonstrates that, in general, X is not a manifold. Edwards shows in [63] (for
details, see [51]) that a resolvable n-GM, n ≥ 5, is an n-manifold if and only if it
satisfies the DDP.

For a connected n-GM space X, the integer obstruction (index) i(X) ∈ 1 +
8Z was defined by Quinn [156]. This obstruction is defined locally and is locally
constant; i(X × X′) = i(X) × i(X′), and i(X) = 1 if and only if X is resolvable
(n ≥ 4). Hence for n ≥ 5 a connected space X is an n-manifold if and only if X is
an n-GM satisfying DDP and such that i(X) = 1. In [37] it is proved that for each
n ≥ 6 there exist generalized n-manifoldsX with any index i(X) ∈ 1+Z, including
unresolvable. Since the Quinn index is locally constant, we obtain that any point of
an unresolvable X has no neighborhood homeomorphic to a manifold.

A locally compact complete space M with intrinsic metric which satisfies the
property that the shortest paths can be locally extended in a unique way is called
a Busemann G-space [39]. Busemann G-spaces have many properties of regular
Finsler manifolds. Up to now, answers to the following questions of Busemann from
[39] are unknown.

Problem 6 Is it true that any Busemann G-space is finite-dimensional?

Problem 7 Is it true that any Busemann G-space M of finite dimension is a
topological manifold?

One can easily prove that a Busemann G-space M is locally contractible and
topologically homogeneous, i.e., for any x, y ∈ M there exists a homeomorphism
f : M → M such that f (x) = y. (Moreover, one can find such a homeomorphism
f which is isotopic to the identity map). Therefore, a positive answer to Problem 7
would follow from a positive answer the well-known Bing-Borsuk problem

Problem 8 ([32]) Is it true that any connected locally compact locally contractible
finite-dimensional topologically homogeneous metric space is a topological mani-
fold?

The following theorem is of interest.

Theorem 81 ([100]) If the answer to Problem 8 is positive in dimension 3, then the
Poincaré conjecture holds.

Problem 6 has a positive answer if M has at least one open nonempty ball
which is geodesically convex with respect to the induced metric [16]. Any
finite-dimensional Busemann G-space satisfies the property of domain invariance
(D. Montgomery). The answer to Problem 7 is positive for dimensions n = 1, 2
[39], n = 3 [111], and n = 4 [178]. B. Krakus applied K. Borsuk’s theorem on the
characterization of the 2-sphere. P. Thurston subsequently proved the statement in
four steps.

Step 1. Mn is an n-GM. In fact, the present author proved this result earlier
(unpublished).

Step 2. M4 admits arbitrary small topological embeddings of 2-spheres, 3-cells,
and 3-spheres.
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Step 3. i(M4) = 1.
Step 4. Final.

Problem 9 Is it true that i(Mn) = 1 or DDP holds for Mn, n ≥ 5?

There is another method to get a positive answer to Problem 7 for dimensions
1 ≤ n ≤ 4.

Definition 22 A (locally) compact finite-dimensional metric space X is called
an absolute suspension (respectively, an absolute cone) if for any two points
x1, x2 ∈ X, x1 �= x2, (respectively, for any x ∈ X) X is homeomorphic to a
suspension (respectively, to an open cone over a compact base) with vertices x1, x2
(respectively, with vertex x).

Conjecture 6 ([54]) Every n-dimensional absolute suspension is homeomorphic to
Sn.

Conjecture 7 ([54]) Every n-dimensional absolute cone is homeomorphic to Un

(open n-cell).

Theorem 82 ([84]) The absolute cone conjecture 7 is true for all 1 ≤ n ≤ 4 and
false for n ≥ 5, if the Poincaré conjecture holds.

Using some isotopies of small balls in a Busemann G-space M , one can easily
see that they are absolute cones over their boundary spheres (and hence have a local
product structure with respect to their boundaries which are known to be generalized
(n− 1)-manifolds if M is n-dimensional). Then Theorem 82 implies

Corollary 24 Any n-dimensional Busemann G-space is a topological manifold for
1 ≤ n ≤ 4.

Let Q be a polyhedron with triangulation T and z ∈ Q. Taking, if necessary,
a subdivision of T , one can assume that z is a vertex of T . If Q is topologically
embedded as a closed subset into a generalized 3-manifold X, then we say that the
set X −Q has a free local fundamental group at z ∈ Q (briefly, 1-FLG at z) if for
any sufficiently small neighborhoodU of z there exists another neighborhood V of
z such that z ∈ V ⊂ U and ifW is any connected open neighborhood of z in V , then
for any nonempty connected componentW ′ ofW−Q the image π1(W

′)→ π1(U
′)

(induced by inclusion) is a free group with m− 1 generators, where U ′ denotes the
connected component of U −Q containingW ′, and m the number of “components”
of st(z) − {z} whose images intersect W ′. As usual, we simply say that X − Q is
1-FLG in X if this space is 1-FLG at every point z ∈ Q.

We say that a map f : K → X from a compact 2-dimensional polyhedron
K into a generalized 3-manifold X is simplicial if f (K) is a polyhedron whose
complement is 1-FLG in X and f : K → f (K) is simplicial with respect to certain
triangulations of K and f (K). A generalized 3-manifold X is said to satisfy the
property of relative simplicial approximation (RSA) if for any map f : B2 → X

and any compact subpolyhedronQ ⊂ B2 such that f |Q is simplicial, and for each
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ε > 0, there exists a simplicial map F : B2 → X such that the natural distance
dist(F, f ) is less than ε and F |Q = f |Q.
Theorem 83 ([50, 104]) Assume that the Poincaré conjecture is true. Then a
generalized 3-manifold X is a 3-manifold if and only if X has the property RSA.

17.22 Triangulations and Alexandrov Spaces with Curvature
Bounded Above

A.D. Alexandrov introduced spaces of curvature ≤K in [7] (cf. [8, 9, 34]). A
smooth Riemannian manifold has curvature ≤K (respectively, ≥K) in the sense
of Alexandrov if and only if it has sectional curvature≤K (respectively,≥K).

Let us introduce some definitions and notation. We denote by xy the distance
between points x, y of a metric space M. A point y is said to lie between points x
and z if y is different from x and z, and xz = xy + yz; we write (xyz) to denote
such a triple. A quadruple of distinct points in M will be called singular if one
of its points lies between two different pairs of the quadruple and the quadruple
does not lie on a straight line, i.e., it does not embed isometrically into a Euclidean
straight line. Otherwise the quadruple is called standard. We denote by U(x, r) and
B(x, r) respectively the open and closed balls of radius r with center x; and by SK
a complete simply connected three-dimensional Riemannian manifold of constant
sectional curvatureK. A subset [x, y] ⊂ M is said to be a shortest path or a segment
with endpoints x, y if [x, y] is isometric to a segment of the real line. A space
M is called a space with intrinsic metric (respectively, a geodesic space) if any
two points x, y ∈ M can be joined by a path in M whose length is arbitrarily
close (respectively, equal) to xy. A geodesic space M is said to have Busemann
nonpositive curvature if for any five points x, y, z, y1, z1 ∈ M such that xy1 =
y1y = 1

2xy, xz1 = z1y = 1
2xz, the inequlity y1z1 ≤ 1

2yz holds [39]. Gromov
called such spaces metrically convex [83]. A detailed investigation of metrically
convex spaces was undertaken by Papadopoulos in his book [148].

Theorem 84 ([16]) Sufficiently small balls in a geodesic locally metrically convex
space are geodesically and metrically convex. Moreover, any Busemann G-space
with Busemann nonpositive curvature is finite-dimensional.

Theorem 85 ([13]) Any Busemann G-space with Busemann nonpositive curvature
is a topological n-manifold for some positive integer n. In addition, its universal
covering space is homeomorphic to the Euclidean space En.

For an ordered triple (x, y, z) in M such that xy + yz+ zx < 2π√
K

if K > 0, we

denote by γK(xyz) the angle in the triangle �K on SK with sides of lengths xy, xz,
and yz,which lies opposite to the side of length xz. For the shortest paths k = [y, x]
and l = [y, z], we denote by γ (k, l) (respectively, γ (k, l)) the lower (respectively,

upper) limit lim(γK(x ′yz′)) (respectively, lim(γK(x ′yz′))) under the condition that
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x ′ ∈ k, z′ ∈ l, and x ′ → y, z′ → y. These limits do not depend on the choice of
K. The value γ (k, l) (respectively, γ (k, l)) is called lower (upper) angle between
the shortest paths k and l. If γ (k, l) = γ (k, l), then their common value γ (k, l)
is called the angle between the shortest paths k and l. The upper angle γ between
the shortest paths is nonnegative and satisfies the triangle inequality. However it can
be zero even if the shortest paths k and l have only one common point. If we fix a
point y ∈ M and identify the shortest paths k and l with the starting point at y if
γ (k, l) = 0, we obtain a metric space ωy(M). The metric completion �y(M) of
this space is called the space of directions to M at y.

In [17] and [19] it was announced and proved that a metric space M with local
existence of shortest paths is a space of curvature ≤K (respectively, ≥K) if and
only if for any point x ∈ M there exists r = r(x) > 0 (r ≤ π

3
√
K

if K > 0) such

that any standard (respectively, any) quadruple of points in U(x, r) is isometric to
a quadruple of points in SK ′ , K ′ ≤K (respectively, K ′ ≥K), where K ′ depends on
the chosen quadruple. In a space of curvature ≤K (respectively, ≥K), for any two
shortest paths with a common endpoint the angle between them exists at this point.

An important notion of K-region introduced in [8] and later called a CAT(K)-
space [34] is a special case of a geodesic space of curvature ≤K , which globally
satisfies the properties from the previous paragraph. More precisely, in case K ≤ 0
(respectively, K > 0) the space M is a K-region if and only if any two points
x, y ∈ M (respectively with xy < π√

K
) can be joined by a unique shortest path and

any standard quadruple of points x, y, z,w in M (respectively with the additional
condition that for any triple from this quadruple, e.g., x, y, z, we have xy+yz+zx <
2π√
K

, etc.) is isometric to a quadruple of points in SK ′, K ′ ≤ K, where K ′ depends

on the chosen quadruple.
A geodesic space M is a 0-region if and only if for all points p, q, r,m ∈ M

satisfying equalities qm = mr = 1
2qr , the Bruhat-Tits-CN-inequality [36] holds:

(pq)2 + (pr)2 ≥ 2(mp)2 + 1

2
(qr)2.

Any 0-region is metrically convex.
In [6] it was proved that any simply connected geodesic space of locally

(Busemann) nonpositive curvature has globally nonpositive curvature. It follows
from this that any simply connected complete space of curvature ≤ K ≤ 0 is a
K-region.

G. Perelman proved a rather wide generalization of V.A. Toponogov’s theorem
on comparison of angles in geodesic triangles in complete Riemannian manifolds
of sectional curvature ≥K [38]. This generalization is equivalent to the following
statement: Any quadruple of points in a complete Alexandrov space of curvature
≥K is isometric to a quadruple of points in SK ′ , K ′ ≥ K, where K ′ depends on the
chosen quadruple.

Theorem 86 ([18]) Any connected locally finite simplicial complex C admits a
geodesic metric of 1-region.
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Since any two points in a 1-region of distance less than π are joined by a unique
shortest arc, Theorem 86 gives a positive answer to Problem (10.2) from Borsuk’s
book [33]. One can describe briefly the metrization as such that any k-dimensional
simplex of the first barycentric subdivision of a given triangulation T of the complex
C is isometric to the regular k-dimensional simplex with edges of length π/2 in the
unit k-dimensional sphere Sk1 .

In the proof and in the original construction of this metric the construction and
properties of the K-cone CKY over a metric space Y for a real numberK was used
[9, 18]. Let (Y, d) be a metric space and K a real number. If K ≤ 0, then CKY
(as a set) is the quotient set of [0,∞) × Y with respect to the equivalence relation
4 defined by (t, y) 4 (t ′, y ′) if (t = t ′ = 0) or (t = t ′ > 0 and y = y ′). If
K > 0, then the suspension SKY is the quotient set of [0, π√

K
] × Y with respect to

the equivalence relation4 defined by (t, y) 4 (t ′, y ′) if t = t ′ = 0, or t = t ′ = π√
K

,

or (t, y) = (t ′, y ′). The point of the cone (respectively, suspension) corresponding
to t = 0 (or t = π√

K
) is called the vertex. Let us denote by ty the equivalence class

of a point (t, y). Set dπ(y, y ′) = min{π, d(y, y ′)}. Let us define the distance xx ′
between the points x = ty and x ′ = t ′y ′ in the following way:

(xx ′)2 = t2 + (t ′)2 − 2tt ′ cos(dπ(y, y ′))

if K = 0,

cosh(
√−Kxx′) = cosh(

√−Kt) cosh(
√−Kt ′)−sinh(

√−Kt) sinh(
√−Kt ′) cos(dπ (y, y′))

if K < 0; and xx ′ ≤ π√
K

,

cos(
√
Kxx ′) = cos(

√
Kt) cos(

√
Kt ′)+ sin(

√
Kt) sin(

√
Kt ′) cos(dπ(y, y ′)),

if K > 0. For K > 0, the cone CKY can be obtained from the suspension by the
restriction 0 ≤ t ≤ π

2
√
K
.

Theorem 87 ([9, 18]) If the space Y is a 1-region, then CKY is a K-region.

The following is an analogue of this theorem:

Theorem 88 ([38]) If the space Y is a complete space of curvature≥ 1, then CKY
is a complete space of curvature ≥K .

The following theorem was proved with the help of Theorem 87.

Theorem 89 ([11]) The interior of each compact contractible n-dimensional
piecewise linear manifold with boundary (n ≥ 5) admits a metric of K-region
for K ≥ 0.

This gives a new series of simple examples providing a negative answer to
Gromov’s question: Are metrically convex geodesic manifolds homeomorphic to the
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Euclidean space? The first examples of this kind were constructed in [52] (also with
usage of Alexandrov’s metrics of nonpositive curvature).

The space Ty(M) := C0(�y(M)) is called the tangent space or the tangent cone
to M at the point y [9, 38]. The terms space of directions and tangent space can be
explained by the fact that for each Riemannian manifold (Mn,μ), n ≥ 2, endowed
with its natural intrinsic metric and any y ∈ Mn, the spaces �y(M

n) and Ty(Mn)

are isometric respectively to Sn−1
1 and En.

Theorem 90 ([143]) For any space M of curvature ≤K and any point y ∈
M, �y(M) (respectively, Ty(M)) is a metrically complete 1-region (respectively,
0-region).

Here is an analogue of this result:

Theorem 91 ([38]) For any finite-dimensional space M of curvature ≥K and any
point y ∈ M, �y(M) (respectively, Ty(M)) is a complete (respectively, locally)
compact space of curvature ≥ 1 (resp. ≥ 0).

Problem 10 ([10]) Is it true that if M is a metrized manifold of dimension n ≥ 2
which is an Alexandrov space of curvature≤ K, then the space of directions�y(M)

is homeomorphic to Sn−1 for any point y ∈ M?

One can prove that the answer to this problem is affirmative for n = 2, 3.

Theorem 92 ([20]) Let (1n−2, T ), n ≥ 5, be a closed manifold with triangulation
T which is a homology, but not homotopy (n − 2)-sphere endowed with a metric
d from Theorem 86. Then the double suspension M = S1(S1((1

n−2, d))) (respec-
tively, the cone M = CK(S1((1

n−2, d))) for K ≤ 0) is a 1-region (respectively,
K-region) homeomorphic to Sn (respectively, to En), but the space of directions at
any vertex of the second suspension (respectively, of the cone ) is not a topological
manifold, hence is not homeomorphic to Sn−1.

Remark 19 The topological statements of this theorem follow from Example 11 and
the first sentence after it. The same argument shows that the tangent cone Ty(M) at
any point y ∈ M is homeomorphic to En.

Corollary 25 The answer to Problem 10 is in the negative for all n ≥ 5.

Theorem 93 ([21]) Let (13, T ) be a three-dimensional closed manifold with
triangulation T which is a homotopy 3-sphere endowed with a metric d from
Theorem 86 so that (13, d) is a 1-region. Then the suspension M = S1((1

3, d))

(respectively, the cone M = CK((1
3, d)) for K ≤ 0) is a 1-region (respectively,

K-region) homeomorphic to S4 (respectively, to E4), and the space of directions at
any vertex of the suspension (respectively, of the cone) is homeomorphic to 13.

Topological versions of this theorem follow from the papers [70] and [26].
Very recently, using the resolution of the Poincaré conjecture PC3, A. Lytchak

and K. Nagano proved as a part of Theorem 6.4 in [115] the following important

Theorem 94 Problem 10 has affirmative answer for n ≤ 4.
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Chapter 18
A Glimpse into the Problems
of the Fourth Dimension

Valentin Poénaru

18.1 Introduction

The message of this short survey is that four-dimensional topology is very special
indeed. Also, four dimensions is the place where, today, as far as topology of
manifolds is concerned, more than anywhere else, there are still big questions
waiting to be solved.

Some people might add that four dimensions correspond exactly to our ambient
space-time, but this kind of argument I will not pursue here.

The first section of this short paper lists some basic questions and NO/YES
answers to them (sometimes question marks) and, to a certain extent at least, it
corresponds to my own idiosyncrasies. The next three sections, which explore the
big abyss between DIFF and TOP in four dimensions (and only there, is there such
an abyss), are more conventional.

My choice here was to use the Casson-Handles and Yang-Mills rather than, let us
say, the gropes of Stanko-Freedman-Quinn [8] or the equations of Seiberg-Witten.
For a longer survey, that would have been a better policy, but just to introduce those
topics would have required a much longer paper. Of course, if complete proofs
would have had to be supplied, it would have been simpler, or much simpler, with
gropes and with Seiberg-Witten, [14].

I wish to thank the IHES for its friendly help and, in particular Cécile Gourgues
for the typing and Marie-Claude Vergne for the drawings.
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18.2 Geometrical Questions, and Answers

We will review now some simple geometrical questions, which should illustrate the
special position of dimension four, inside the category of DIFF manifolds.

A smooth connected manifold is said to be geometrically simply connected
(GSC) if it possesses a smooth handlebody decomposition with a unique handle of
index zero and with its 1-handles and 2-handles in cancelling position, i.e. without
1-handles. (I am not sure who concocted the GSC concept, it may well have been
Terry Wall [27].) I will be more explicit concerning the “handles in cancelling
position”. Remember that an n-dimensional handle of index λ is an n-ball factorized
as Bλ×Bn−λ. Here the ∂Bλ×Bn−λ, respectively Bλ× ∂Bn−λ are called attaching
zone, respectively lateral surface. The reason for this terminology is that, via an
embedding of the attaching zone into the boundary of some n-manifold, the handle
can be glued and/or attached and then the lateral surface appears as a piece of the
boundary of the newly created n-manifold.

Elementary Morse theory tells us that, in the DIFF context, any connected
manifold can be gotten by starting either with an n-ball (i.e. a handle of index
λ = 0), in the compact case, or with the n-dimensional regular neighbourhood of
an infinite tree, in the non-compact case, and then adding, successively, handles of
index λ = 1, λ = 2, a.s.o. This kind of thing is called a handlebody decomposition.
In the non-compact case one adds here the proviso that there should be no infinite
accumulation at finite distance.

In this context, let us consider two handlesH 1 = B1×Bn−1,H 2 = B2×Bn−2 of
index λ = 1 and λ = 2 respectively. In the generic case, any connected component
of

{the lateral surface B1 × Sn−2 of H 1} ∩ {the attaching zone ∂B2 × Bn−2 of H 2}

is a product B1 × Bn−2, with B1 ⊂ S1 and Bn−2 ⊂ Sn−2. We will denote by
H 2 · H 1 the number of these connected components. No orientations, no ± signs
and no algebra are involved here.

With this, any handlebody decomposition comes with a matrix H 2
j · H 1

i which
is finite in the compact case and infinite in the non-compact case. It is called the
geometric intersection matrix. Here comes now a definition, for square matrices
aij with entries in Z+. We say that the matrix is of the easy id + nilpotent type if
aji = δji + ηji where ηji > 0 ⇒ j > i. Dually, it is of the difficult id + nilpotent
type if aji = δji + ηji where now ηji > 0 ⇒ j < i. Of course, the two notions are
equivalent in the finite case.

By definition, for a handlebody decomposition, the 1-handles and 2-handles are
in cancelling position if we can identify a family of 2-handles H 2

i in bijection with
the 1-handle H 1

i such that the geometric intersection matrix H 2
j ·H 1

i is of the easy
id + nil type. Then the 1-handles can be gotten rid of, by cancelling them with the
2-handles.
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In formula (6) below, we will meet the open Whitehead manifold Wh3. This can
be proved not to be GSC, but it admits a handlebody decomposition with H 2

j · H 1
i

of the difficult id + nil type.
The proof of this fact does not exist in print, to the best of my knowledge, but I

will give here a hint of how one gets it. Look first at the figure 2.3.1 in [22], p. 669.
What one sees there is a disc with boundary the curve Ti , coming back so as to hit
itself along a double line (the g (M2(g | Di)) in the drawing). All this is really a
2d object, but one can also read it as a recipe for a handlebody decomposition of
S1 ×D2, with geometric intersection matrix

H 2
1 ·H 1

1 = 1 , H 2
1 ·H 1

2 = 2 .

There are here one 0-handle, two 1-handles and one 2-handle, and the H 1
2

corresponds to the double line above.
In this 2d-object, one picks up now a closed loop going through a piece of Ti and

throughH 1
2 , and next one treats the loop in question like we just did with Ti , adding

along it a disc which bites itself back. The higher 2d object gotten this way is again
a recipee for S1 ×D2, with this time, the matrix

H 2
1 ·H 1

1 = 1 , H 2
1 ·H 1

2 = 2 , H 2
2 ·H 1

2 = 1 , H 2
2 ·H 1

3 = 2 .

The pattern continues indefinitely, and it generates an infinite matrix of the difficult
id + nilpotent type. But the resulting 2d object is certainly not Wh3 and also some
sacro-sancted local finiteness conditions get violated, in the way.

So the construction has to be modified, or rather enriched. After each one of the
infinitely many steps, we thicken the result in 3-dimensional, by adding additional
handles of index 1, 2 and 3. If one does this carefully, then what emerges is a
PROPER (no accumulation at finite distance) handlebody decomposition for the
Whitehead manifold Wh3 which has a geometric intersection with a main difficult id
+ nilpotent part (and with some additional easy id + nilpotent contributions which
do not interfere with the main difficult part). But the complete detailed version of
this story is too long for the format of the present short survey. And, of course, one
has to be a bit less cavalier than we have been, in the complete definition of the
difficult id + nil.

The fact that a manifold is not GSC is closely related to it not being simply
connected at infinity. More precisely, GSC implies the existence of an exhaustion by
compact simply-connected complexes, which for open 3-manifolds implies π∞1 =
0. Obviously, GSC implies π1 = 0 and here is the first

Question 1 Assume that the smooth manifold Mn is simply-connected. Is it then,
also, GSC? Here is the complete answer to this question for compact Mn’s. I will
organize the yes/no answers to our question by decreasing dimensions.

The Case n ≥ 5 The answer is YES. This is part of Smale’s proof for his
h-cobordism theorem, which includes the Poincaré Conjecture in dimensions n ≥ 5.
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There is here a little piece of dramatic history. About 1960, at the time when
Steve Smale announced his result, John Stallings also announced his own proof
for the Poincaré Conjecture (in dimension ≥7), via engulfing. Then, during the
Arbeitstagung in Bonn, where both of them were lecturing, Stallings detected an
error in Smale’s original argument, exactly at the level of our present question

π1 = 0
?....⇒ GSC .

At that moment, it looked as if Smale’s proof was in shambles. But, after very few
weeks, Smale came with a nice and clever argument, using handles of index two
and three; thus he put his proof back, now on a solid footing. He had gotten the idea
during the boat-trip on the Rhine, traditional part of the same Arbeitstagung. I have
always admired Smale for his courage in front of adversity and for the beautiful way
by which he rescued everything. I must add here that I was not present there at that
Arbeitstagung, since I was living on the dark side of the Moon at that time, but I
have reconstructed the story from what was told to me, a bit later. See here [24] for
more on this story.

The Case n = 4 Here the answer is NO, since there exist compact bounded
contractible 4-manifolds which are not GSC. This was proved by Andrew Casson. I
will be a bit more specific here. Towards 1959, Barry Mazur and the present author
[12, 16], independently of each other, had constructed smooth compact bounded
contractible 4-manifoldsM4 such that

(a) π1 ∂ M
4 admits non trivial representations into some permutation group. So,

π1 ∂ M
4 �= 0 and hence M4 �=

TOP
B4, already in the topological category.

(b) Nevertheless, M4 × [0, 1] =
DIFF

B5.

(c) M4 has a 2-spine: there is a contractible finite complex K2 ⊂ M4 such that the
4-dimensional regular neighbourhoodN4(K2) = M4.

Now, what Casson proved is that if a contractible compact smooth bounded
4-manifold X4 is such that there is a non trivial homomorphism

π1 ∂ X
4 ρ−−−→ {compact connected Lie group} ,

then X4 cannot be GSC. His argument is a beautiful mixture of discrete groups and
Lie groups. Casson never published his proof, but I believe many people knew about
it. I learned about it from Mike Freedman, many years ago.

The Case n = 3 Here our question is equivalent to the 3-dimensional Poincaré
Conjecture and so, via the very celebrated work of G. Perelman, the answer is
YES, [15].

When we move from the compact case to the one of open manifolds, asking the
same question 1, then for n ≥ 5 and n = 3 things are just like above, provided we



18 A Glimpse into the Problems of the Fourth Dimension 691

add the assumption π∞1 = 0. When we move, next, to open 4-manifolds or to non
compact n-manifolds with non-empty boundary, then except for obvious trivialities,
there are no theorems nor even general clean conjectures. Notwithstanding this, the
present author, in his work on low-dimensional manifolds and on geometric group

theory, consistently met this issue π1 = 0
?..⇒ GSC and had to prove that various

things are GSC, in the murky non compact realms just described, (see here, for
instance [18] and [20]). So, we go now to the next

Question 2 Let K2 be a contractible finite complex such that, for some n, the

regular neighbourhood Nn(K2) makes sense. Is then Nn(K2)
?=

DIFF
Bn? Here are

the answers, for increasing n’s.

The Case n = 3 Again YES, since the question is now equivalent to the
3-dimensional Poincaré Conjecture, and so we can invoke once more Perelman’s
work.

The Case n = 4 The answer here is NO. In our previous discussion of Question 1,
we have already met the Mazur-Po manifoldsM4. These are contractible,M4 �= B4

and we have M4 = N4(K2).

The Case n = 5 Here we have a question mark, it is an open question, the answer
is not known today. I will come back to this later.

The Case n ≥ 6 The answer is YES, via Smale, just like for Question 1 above.

The question mark above corresponds to the following

Conjecture A If K2 is contractible, then

N5(K2) =
DIFF

B5 .

This question is connected with another big open problem, the smooth
4-dimensional Poincaré Conjecture, and remember here that Michael Freedman has
proved that any TOP manifold which has the homotopy type of S4 is homeomorphic
to S4. This is the TOP 4-dimensional Poincaré Conjecture.

So, let then 14 be a DIFF 4-dimensional homotopy sphere, and define

�4 ≡ 14 − intB4 , (18.1)

where B4 ⊂ 14 is a smoothly embedded standard 4-ball. The DIFF 4-dimensional

Poincaré Conjecture, an open question indeed, is equivalent to the question �4 ?=
DIFF

B4. There is here a particularly interesting special case, namely when �4 embeds

smoothly into S4, �4 ⊂ S4. The issue �4 ?=
DIFF

B4 is then the so-called smooth

4-dimensional Schoenflies problem.
The general DIFF Schoenflies problem is to describe, up to diffeomorphism, the

smooth compact bounded n-manifolds �n gotten by splitting Sn along a smooth
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embedding Sn−1 ⊂ Sn. The celebrated work of Mazur (and besides [11] I suggest
here the reference [19]), completed by Kervaire and Milnor [10], shows that if n �= 4
then the Schoenflies n-ball is �n =

DIFF
Bn. For n = 4, the only known fact, as of

today, is that

�4
Schoenflies − {a boundary point} =

DIFF
B4 − {a boundary point} ,

which implies, of course, that �4
Schoenflies =

TOP
B4. This is also proved in Mazur’s

celebrated paper. But the full DIFF 4-dimensional Schoenflies problem is another
big open question.

Assume now that, for the general smooth homotopy 4-ball �4 from (18.1), we
would also know that it is GSC. Then, Conjecture A would easily imply that �4 ×
I =

DIFF
B5 and, if we would also have the DIFF 4-dimensional Schoenflies, we

would then get that �4 =
DIFF

B4, i.e. 14 =
DIFF

S4, the DIFF 4-dimensional Poincaré

Conjecture.
Personally, I have strong reasons to believe the truth of both Conjecture A

and the DIFF 4-dimensional Schoenflies, but I am less sure concerning the �4 ∈
GSC, for a general DIFF homotopy 4-ball. It is here, I believe, that the DIFF
4-dimensional Poincaré Conjecture may fail, if it fails.

At this point, once we talk about geometric conjectures, I would like to end this
discussion with the following old conjecture, due, I think, to the late Sir Christopher
Zeeman, who incidentally happens to have been my cousin, and which would
immediately imply the 3-dimensional Poincaré Conjecture:

Conjecture B Let K2 be any finite complex which is contractible. ThenK2×[0, 1]
is collapsible.

Although the 3-dimensional Poincaré Conjecture is proved by now, this does not
imply Conjecture B, which to the best of my knowledge is still open, with a meaning
which is mysterious.

At this point, some historical comments have to be fitted in. Way back in
the nineteen-fifties, and earlier too of course, people believed that, in topology,
difficulties increased with dimension. And, since 3-dimensional was clearly very
hard, one was afraid of the higher dimensions, the difficulties of which were believed
to be stratospheric.

Then came Barry Mazur (and he was barely 18 at the time), with his big break-
through in the Schoenflies problem [11]. This was a psychological breakthrough
too, not only mathematical. People stopped being afraid of the high dimensions and
now the road was open for the spectacular next successes of Steve Smale [23], John
Stallings [25], Christopher Zeeman [28], and others, who showed the dimensions
≥5 were actually not that hard, after all.

It was in dimensions 3 and 4 that the real difficulties were hidden. Then
Mike Freedman [8] and Simon Donaldson [4] clarified a lot dimension four while
Bill Thurston [26] and Grisha Perelman [3, 15], to a large extent completely cleaned
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the field in dimension three. Our lists of questions above, reflect this historical
development.

18.3 Casson Handles

Almost 50 years ago, Andrew Casson introduced a class of non compact DIFF
4-manifolds V 4 with non-empty boundary having all of them with the following
general features:

intV 4 =
DIFF

R4
standard , ∂ V 4 = S1 ×

◦
B2 , (18.2)

and before I will say some more things about them, let us contemplate (18.2). We
all know that knots are loops, of which I will always think of as being thickened,
which live in the boundary of B4, i.e. things like

S1 ×
◦
B2 ⊂ S3 = ∂ B4 (null-framing is meant here) . (18.3)

Now, what we see displayed in (18.2) is such an S1 ×
◦
B2 but living not in ∂ B4

but at the infinity of R4. I will call such a thing a sort of knot. And if a sort of
knot like (18.2) can be extended to something like (18.3), then I will call it tame,
otherwise it is wild. But here the distinction DIFF/TOP can be injected too, we will
come back to this below. Changing the topic for a little while, there is a famous
lemma of Whitney, for eliminating intersections of submanifolds of complementary
dimensions and this was an essential tool for Smale’s h-cobordism theorem. A good
reference for Whitney’s lemma is [7]. But the Whitney lemma fails in dimension
four and Casson invented his handles as a way to circumvent this difficulty.

Their explicit construction is too long for the format of the present article, but a
very good description of all Casson Handles can be found in [9]. Concerning these
Casson Handles, there is a big theorem of Freedman [6]

Theorem C For any Casson Handle V 4, we have

V 4 =
TOP

B2 ×
◦
B2 . (18.4)

This is the main step in Freedman’s proof of 14 =
TOP

S4 and also in his complete

classification for closed simply-connected TOP 4-manifolds [6].
Via Theorem C, the sort of knot (18.2) is trivial, in the TOP category, i.e. it is also

topologically tame. But then, using the kind of arguments which will be developed
in the last section of this paper one can also show that there have to be Casson
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Handles V 4 such that V 4 �=
DIFF

B2 ×
◦
B2. Such Casson Handles are sort of knots

which have to be smoothly wild. Here is the argument. Assume that the Casson
Handle V 4, above is actually a sort of knot which is smoothly tame.

It is a standard fact that any Casson Handle V 4 is properly homotopy equivalent

with B2 ×
◦
B2. (This is, of course, immediately implied by Theorem C too.) But

then, using the now classical knot theory, our smoothly tame V 4 is also smoothly

trivial, hence V 4 =
DIFF

B2 ×
◦
B2, contradiction!

We talked here about sort of knots, but then, of course there are also sort of links,
living at the infinity ofR4 too. I have encountered a lot of such in my work, and I had
to invest quite a big effort in showing that certain particular classes were smoothly
tame; I needed this; see here [17], for instance. But then, notice that all these kind
of issues wild versus tame in the context DIFF or TOP are unknown in classical
knot theory, to which they are foreign. It would be very interesting, I think, to try
to develop the appropriate quantum topology in this quite nonstandard context. I
believe this would be of consequence for physics too.

Each Casson Handle V 4 is labeled by a certain kind of infinite tree. These trees
may be organized in some sort of “moduli space” and I will only describe here,
explicitly, the Casson handle V 4 which corresponds to an extremal point of this
“moduli space” (with the tree reduced to a half-line).

We start with the embedding T1 ⊂ T2 of one solid torus into the interior of
another one, which Fig. 18.1 suggests and which is obviously connected to the
Whitehead link.

One can iterate infinitely many times the map T1 ⊂ T2, getting thus

T1 ⊂ T2 ⊂ T3 ⊂ . . . (18.5)

and the union

Wh3 ≡
∞⋃
n=1

Tn (18.6)

T1

T2

The Whitehead link

Fig. 18.1 The embedding of T1 in T2
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is called the Whitehead manifold. This venerable object is an open contractible
3-manifold such that π∞1 Wh3 �= 0, i.e. Wh3 �=

TOP
R3 too. It was discovered by

Henry (J.H.C.) Whitehead around 1934 as a counterexample to his attempted proof
of the 3-dimensional Poincaré Conjecture. It is actually a counterexample in many
different contexts, in particular in the context of geometric group theory.

It is very easy to show that Wh3 × R which I will express as

Wh3 × R =
∞⋃
n=1

◦
Tn × (0, 1) (18.7)

is diffeomorphic to our standardR4. With this, here is the simplest possible example
of a Casson Handle

V 4 =
( ◦
T1 × [0, 1)

)
∪

∞⋃
n=2

◦
Tn × (0, 1) , ∂ V 4 = ◦

T1 × {0} , (18.8)

and all Casson Handles admit descriptions of this type.

Some Comments
(A) We can continue (18.5) to the left, by a similar sequence

. . . ⊂ T−2 ⊂ T−1 ⊂ T0 ⊂ T1 (18.9)

and K ≡
−∞⋂
n=1

Tn is called the Whitehead continuum. With it, comes a dual

description of the Whitehead manifold, namely

Wh3 = S3 −K , (18.10)

an easily provable fact.

(B) Our Fig. 18.1 can also be read as a smooth injection T2
f−→ T2, with f T2 = T1

and this is a discrete non-hyperbolic dynamical system which deserves, I think,
to be studied. I would, for instance, be personally curious to know what is its
zeta-function, à la Artin-Mazur [1] looks like; I never found enough leisure to
compute it, but it should not be too hard.

But there are also other dynamical aspects of the Whitehead manifold Wh3,
in particular connections with the Julia sets of quadratic maps (see [22]).

Our story, so far, has carried us through differential topology, topological
topology (i.e. TOP manifolds) and through wild topology (à la R.H. Bing). And,
next, we will meet the Standard Model of the elementary particles. It is this mixture
which, among other things, makes four dimensions such a fascinating topic. But,
before going on, this is an appropriate moment for another historical comment.
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As already mentioned, Casson’s motivation for inventing those handles which
bear his name, was the dismal failure of Whitney’s lemma, in dimension four.

And those handles were created as a means for circumventing that difficulty.
But when he discovered that wild topology was propping up, Casson failed to
take full advantage of his discovery. And so it was left for Mike Freedman to
make the big breakthrough, the complete classification of closed simply-connected
4-manifolds, in the TOP category, via a big symphony of infinite processes. He
married differential topology and the wild topology in the style of R.H. Bing. And
all the spectacular results in high dimensions, could be extended to that context of
TOP 4-dimensional manifolds too.

That made the issue of the quadratic intersection form for DIFF closed
4-manifolds become very acute. And now the tools came from a really unexpected
direction, the physics of the Standard Model of elementary particles and fields.
Sir Michael Atyiah [2] discovered that the non-linear Yang-Mills equations (non-
abelian gauge theory) contained important mathematics, opening thus the way for
the discoveries of Simon Donaldson, Karen Uhlenbeck, Clifford Taubes and the
others.

This is the object of what comes next. And, for this section and the next two,
there is also the reference [21].

18.4 Yang-Mills Theory, From a Topological Viewpoint

In what comes next, M4 will be a closed DIFF 4-manifold, with π1 M
4 = 0 and

with a chosen orientation. Over M4, we are also given a complex bundle E → M4

with structural group G and with a connection A. Here G is a compact Lie group
and with this comes the curvature 2-form F = FA ∈ �2(M4,LG). We are now in
dimension four and here, since 2 + 2 = 4, for the Hodge operator we find that it
maps 2-forms into 2-forms

�2 ∗−−→ �2 ,

meaning that ∗F ∈ �2 too. If dA is the covariant differential, we have the following
automatic equation, always verified

dA F = 0 (Bianchi’s theorem) . (18.11)

But then, there is also the following equation, which is certainly not automatic,
the celebrated Yang-Mills equation

dA ∗ F = 0 (18.12)
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(written here without a source term), living at the core of the Standard Model of
elementary particles. The “unknown quantity” in Eq. (18.12) is the connection A,
and for our non-abelian G = SU(n), n ≥ 2, Eq. (18.12) is non-linear.

If G = U(1), then we can replace dA by the mundane exterior differential d and
the formulae (18.11)+ (18.12) become the linear equations

dF = 0 , d ∗ F = 0 . (18.13)

But before we go on with topology, I feel like injecting here a bit of physics.
If one wants to bring Maxwell’s theory (electro-magnetism) into the framework of
Einstein’s special relativity, then one has to lump together the electric field *E and
the magnetic field *B into the following 2-form

F = −Ex dt ∧ dx − . . .+ Bx dy ∧ dz+ . . . ∈ �2(R4) , (18.14)

with the “. . .” standing for circular permutations. With this meaning for F ,
the (18.13) are exactly Maxwell’s equations (in the absence of currents and electric
charges). The A is now the gauge potential, more classically it is the scalar potential
and the vector potential lumped together. To be very specific here, the Bianchi part
of (18.13) corresponds to Faraday’s law of induction and to the non-existence of
magnetic monopoles, while the second, Yang-Mills part corresponds to the laws of
Gauss and Ampère (with Maxwell’s “displacement field” added here too). The real
meaning of G = U(1) is provided by quantum theory, and I will not discuss it here.
Actually, quantum-theoretically, the A stands for the photon field.

Also, in the framework of Maxwell, the Hodge-star operation interchanges *E
and *B, i.e. ∗ *E = − *B, a.s.o. This is the so-called electro-magnetic duality, with
deep prolongations in string theory. It is a very hot topic these days. In a maybe
less serious vein, I heard some people say that our world (the space-time) is
4-dimensional, so as to make possible the existence of Maxwell’s equations.

The non-linear Eq. (18.12) for G = SU(2) and G = SU(3) correspond to the
nuclear weak forces respectively to the strong forces. Actually, in our real world,
G = SU(2) has to be replaced by G = SU(2)×SU(1), in what is called the electro-
weak unification of Glashow, Salam and Weinberg.

Historically, Eq. (18.12), with G = SU(2) was discovered by Yang and Mills
around 1954, in an attempt to describe nuclear forces by a nonlinear gauge
theory inspired by Maxwell’s equations. How, once combined with an appropriate
symmetry-breaking mechanism, this eventually fitted into the Standard Model is a
fascinating story on its own, but we cannot tell it here.

Anyway we close here our little excursion into physics. And going back
to (18.12), notice that the infinite-dimensional group G of automorphisms of the
bundle E, called the group of gauge transformations, acts on the whole theory.

For our present purposes, we will work with G = SU(2), and assume that the
second Chern class c2(E) = −1. Also, we will replace (18.12) by the simpler, so
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called self-dual Yang-Mills equation

F = ∗F (18.15)

which, via Bianchi implies (18.12).
We consider now the moduli-space

M = {self dual connections}/G , (18.16)

and it is a nontrivial fact that M is a non-void Hausdorff space. For a generic
Riemannian metric on M4, this M can be compactified into a 5-manifold M which
is smooth except for some isolated, very controlled singularities and which is such
that ∂M = M4. The condition c2(E) = −1 is used here, and the key fact is a deep
theorem of Karen Uhlenbeck, which states that from every sequence A1, A2, . . . ∈
M which does not converge, one can extract a subsequence An1, An2 , . . . ∈ M
such that: There is a point p ∈ M4 such that the curvaturesFAn1

, FAn2
, . . . get more

and more concentrated around p, leaving a flat connection outside p. See here [5].
Now, any oriented M4 has a quadratic intersection form q(M4) defined over Z,

which via Poincaré duality is nondegenerate. Actually, any M4n has such q(M4n),
and this is an important invariant.

Donaldson’s big discovery was that the topology of M contains important
information concerning its boundary M4, our smooth 4-manifold of interest. We
are here in the DIFF context, remember.

Theorem D (Donaldson) If π1 M
4 = 0 and q(M4) > 0, then q(M4) is diagonal-

izable, over Z. [4]

In particular, this excludes q(M4) = E8+E8, which at the time of his discovery
was a big novelty. The E8 had already been excluded by a famous theorem of
Rohlin, but not E8 + E8. All this concerns the DIFF case. For TOP, things are
quite different.

It is via this theorem of Donaldson that one knows that some of the Casson
Handles are smoothly wild.

Questions Are there criteria, coming let’s say from some kind of quantum topology,
for detecting Casson Handles which are smoothly wild? And are all Casson Handles
smoothly wild?

18.5 Exotic R4’s

If Xn is a smooth manifold homeomorphic to Rn then, if also n �= 4, it was known
since a while that Xn is diffeomorphic to the standard Rn. This basic fact has been
proved by Moise for n ≤ 3 [13] and by Stallings for n ≥ 5 [25]. Moreover it was
also known, essentially via the work of Kervaire and Milnor [10] that, in dimensions
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n �= 4, the difference between DIFF and TOP (which can be there in dimensions
n ≥ 5) is completely controlled by the discrete invariants of algebraic topology,
let us say by some “discrete quantum numbers”. All the facts above, which were
already well-known by, let us say 1970 or before, fail to be true when n = 4. This
is so because we have here the following surprising result.

Theorem E (Freedman-Donaldson) There exist open manifolds smooth X4 s.t.

X4 =
TOP

R4 but X4 �=
DIFF

R4 .

It is here that one can really perceive that there is a big mysterious chasm between
dimension four and the other dimensions. In dimension four the discrete invariants
of algebraic topology are of no use when one tries to compare DIFF and TOP. But
we will not discuss this further here, and I will just sketch the proof of Theorem E,
modulo the various other things already said. Notice, first the obvious fact that

B4 + {two handles of index two added along the Hopf link

with null-framing} =
DIFF

S2 × S2 − intB4 . (18.17)

Figure 18.2 should illustrate this fact, with two dimensions less.
If in the context of formula (18.17) we replace the 2-handles by some Casson

Handles, and if we also scrape away all the boundary then we get a smooth open
manifold which I will generically denote by W 4

Casson. There is, a priori at least, a
whole uncountable infinity of them. It follows from Theorem C that

W 4
Casson =

TOP
S2 × S2 − B4 , (18.18)

which should be, of course compared to (18.17). Here, the smooth embeddingB4 ⊂
S2 × S2 factors through another smooth embedding

B4 ⊂ intB4
1 ⊂ B4

1 ⊂ S2 × S2 . (18.19)

Fig. 18.2 S1 × S1 − intB2
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This allows us to introduce the following compact core C4 of the W 4
Casson

C4 ≡ S2 × S2 − intB4
1 ⊂ W 4

Casson . (18.20)

We have now the following

Lemma F (A. Casson) For every W 4
Casson, there is a smooth embedding

W 4
Casson ⊂ S2 × S2 . (18.21)

The proof uses ideas similar to those in Comment A, Sect. 18.2. So we can
consider now

C4 ⊂ W 4
Casson ⊂ S2 × S2

and when we look, next, at the smooth open manifold

X4 ≡ S2 × S2 − C4 , (18.22)

then we can very easily see that it is contractible (since any non-trivial topology has
gone with the core C4) and also that its unique end is the standard S3 × R. This
is so because the (18.19) is very nice and tame; we may actually assume that the
∂ B4

1 ⊂ S2×S2 has a collar ∂ B4
1×(−ε, ε) ⊂ S2×S2. It follows then, from the TOP

4-dimensional Poincaré Conjecture proved by M. Freedman [6], that X4 =
TOP

R4.

We will show that, among these X4’s defined by (18.22), some have to be exotic,
X4 �=

DIFF
R4.

We consider now the classical Kummer surface K4, defined in CP 3 by

K4 = {z4
0 + z4

1 + z4
2 + z4

3 = 0} ,

in projective coordinates. What we need to know here is that K4 is a smooth closed
4-manifold (which happens to be spin, too), coming with π1 K

4 = 0 and with the
following quadratic intersection form

q(K4) = E8 + E8 +
(

0 1
1 0

)
+
(

0 1
1 0

)
+
(

0 1
1 0

)
. (18.23)

We see here occuring three times the q(W 4
Casson), namely the

(
0 1
1 0

)
.

We have now
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Lemma G (Casson) We can find three W 4
Casson’s which come with smooth dis-

joined embeddings inside K4, realizing exactly the

(
0 1
1 0

)
+
(

0 1
1 0

)
+
(

0 1
1 0

)
in (18.23).

Here is what I can say concerning this. The Casson definition of the Casson
Handles is an infinite process, which is sort of a very high powered version of
the definition of the Whitehead manifold Wh3. And Casson found a nice simple
algebraic criterion which, when satisfied, allows us to construct a Casson Handle
V 4 (never mind which), when we might need one. It is the Casson criterion which
is behind Lemma G; see [9] for more details.

So, we have here three X4’s like in (18.22) and I will show that, if each of them
comes with

X4 =
DIFF

R4 , (18.24)

then we get a contradiction with Donaldson’s theorem.
In the context of Lemma F, let us consider the wild closed subset

k ≡ S2 × S2 −W 4
Casson . (18.25)

Here, we have two disjoined embeddings into S2 × S2, namely

k ⊂ S2 × S2 ⊃ C4 . (18.26)

Assuming from now on that each of our six X4’s is diffeomorphic to the R4
standard,

we can find inside each of them a smoothly embedded copy of the 3-sphere

S3 ⊂ X4 = S2 × S2 − C4 ⊂ S2 × S2 , (18.27)

which separates our wild closed set k from the infinity of X4. Metaphorically
speaking, a standard R4 has a smooth horizon while, generally speaking an exotic
R4 has a fractal horizon. [I am touching here an issue which, I think, deserves
to be investigated, namely the possible connection between exotic SMOOTH
4-dimensional structures and chaotic dynamics. Such ideas, partly suggested by
John Hubbard, were behind [22].]

This S3 ⊂ X4 splits from X4 a smooth compact bounded manifold A4 ⊂ X4 ⊂
S2 × S2, which is such that

S3 = ∂ A4 and k ⊂ intA4 .

Inside our S2 × S2 from (18.27) we also find that

S3 ⊂ S2 × S2 − k = W 4
Casson , (18.28)
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and now, our smooth S3 splits from W 4
Casson ⊂ K4 a smooth compact bounded

manifold D4 ⊂ W 4
Casson, which comes with

{the core C4 of W 4
Casson} ⊂ intD4 , ∂ D4 = S3 .

For each of the three individual X4’s coming from the three W 4
Casson’s in

Lemma G, we find now the inclusions

C4 ⊂ D4 ⊂ K4 and k ⊂ A4 ⊂ S2 × S2 ,

coming with a canonical diffeomorphism ∂ D4 = ∂ A4 (our S3). Let Y 4 be the
smooth closed simply-connected 4-manifold gotten by replacing each D4 ⊂ K4 by
the correspondingA4, an operation which makes sense, once

∂ D4 = ∂ A4 .

We clearly have q(Y 4) = E8 + E8, which contradicts Donaldson’s theorem. The
smooth manifold Y 4 cannot exist and so Theorem E is now proved.

The theorem in question is the first sign that the difference between DIFF and
TOP, which is non-existant at category level in dimensions ≤3, and completely
amenable to the discrete techniques of algebraic topology in dimensions ≥5, is a
big wide open gap in dimension exactly four, totally un-understandable by algebraic
topology. I think that understanding this gap is an important problem, and I tend to
view the smooth 4-dimensional Schoenflies issue as a first small little step in that
direction. But what we will eventually need is a new sort of quantum topology, or
something like it, not yet available to us. This should allow us to make good sense
of the gap DIFF/TOP in dimension four, as well let us say, as we understand that
kind of issue today in dimensions higher than five, via the sophisticated methods of
differential and algebraic topology, methods which seem powerless for our gap.
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Chapter 19
Memories from My Former Life:
The Making of a Mathematician

Valentin Poénaru

To Barry and Gretchen

I will give you now some snapshots from my former life, which ended very suddenly
the 14th of August 1962 at 6 am.

As a very young adolescent, my first big interest was Philosophy, and my hero
was Immanuel Kant, the Kant of the Critique of Pure Reason, but I also had a big
interest in Ludwig Wittgenstein and in the Vienna Circle, Der Wiener Kreiss.

What for some might be the Bible, but that book I have never read, was for me in
those very youthful years Die Kritik der reiner Vernunft and the Tractatus. And once
we are talking about these kind of things, I maybe should tell you right now that I do
not believe in God, more precisely, that I fail to understand what the whole question
of His existence or nonexistence might mean. But then I do believe that mystical
activity, that totally individualistic quest for transcendence, is something objective,
on par with other objective things. But I should leave this topic for another time.

Pretty soon I got the idea that in order to start any serious philosophical
meditations, I better understand how the world functions. And as far as that
functioning of the world was concerned, for me it meant Physics. I can muse now
in retrospect, why life sciences were not included here. I guess that, at least in those
old days, I thought that life was an accident, while physics meant universality. And
as far as human society and its organization were concerned, that might well be
important for our everyday life, but so is good plumbing too, and it never counted
among the topics of higher intellectual value which I cherished.

I may have slightly mollified some of these ideas, later on in my second life, then
that universality of physics may have come into some questioning. For instance,
our Universe may well be only one of many possible ones, all somehow existing
out there, more or less independently of each other, in particular with different
physical laws. For quite some time, in the past, I had believed that there was one
and only one mathematically consistent system of equations for the world, waiting
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to be discovered. In my second life, I have even worked with some physicist friends,
for some years, on a small piece of those so elusive equations, but that is another
story. Anyway, I now no longer think that this sacrosanct uniqueness makes that
good sense. And I also realize now that, after all, the brain can think mathematics
and understand the world.

The fact still remains that, even today, a Black Hole fascinates me much more
than the most exquisitely beautiful animal or plant. It would not be appropriate to
explain you here the rather technical reasons that make Black Holes so exciting
for me. Besides, at the time when the present story unfolds, nobody had thought
seriously about them, they were still in limbo for years to come.

Coming back to those really old days, I soon came to realize that one cannot get
anywhere far in Physics without a solid amount of Mathematics. I really hated the
silly maths which the school tried to teach me, I was totally unmotivated as far as it
was concerned, and I am unable to function without motivation. But then, at the age
of about eleven, I started to learn more serious Mathematics, all by my own, with
only occasional bits of help from people who knew more.

You understand that for expository reasons which should be obvious, I am telling
you here, in a linear order, various things which happened to me, all more or less
simultaneously, mixed with each other and intermingled, during a certain span of
time, between the ages of 11 and 14 or maybe 15, in one big lump.

So I successively learned Algebra, Analytic Geometry and Trigonometry, and
then, at the age of about 13–14, Calculus. I got so excited when I understood
Calculus that, I immediately started teaching it to my friend and classmate Gussi.
We were sharing a double bench in our Romanian high-school class of fifty or so
pupils, and our bench was located in the most remote corner of the classroom,
so that we should not be disturbed by our teacher’s voices, we liked to do our
own business in peace. This way, Gussi also learned Calculus, he later became a
professional mathematician, and as you shall see we even wrote quite a number
of mathematical papers together. He actually ended his career as director of the
Mathematical Institute in Bucharest, but that came after Ceauçescu’s fall.

Our activity was not restricted to Maths or Physics (and Physics in those old
days meant for us Newton, Lagrange and Maxwell) or Philosophy (this was in my
case); about four times a week we left surreptitiously our high school, after having
socialized with the other chums, and went to the boxing school instead. Our classes
started at about 2 pm, but at 4 pm we jumped over the fence around the school yard,
and went straight to the boxing school. There we were together with professional
boxers too, and the training was tough. But after a few years of that, we both became
very athletic, we were the strongest guys in our school. Sometimes it so happened
that we quarreled and that we started fighting. His game was usually to try to keep
me at a distance with his fists, while my game was to try to get through that, and
close in on him, because I knew that if I had managed that, then I had won. The
other pupils gathered in a big circle around us, like for a circus show. And nobody
in that school ever dared challenge us.

There was another boy in our class, Michael, a small frail but very brilliant guy,
who would later become a well-known stage director at the Bucharest theater. He
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had the idea that if we all, the whole class, joined together the Communist Youth
organization we would be safe with the Communist system.

It was a serious thing, but a bit of a joke too. You have to understand that
communism is a very verbose thing. Using the politically correct word in the
correct place may have meant the difference between being highly praised for your
good knowledge of marxism-leninism, as this was in my case; after all I had a
philosophical background and all that was very easy for me, or when you did not
manage to find those correct words or, even worse, you came out with something
heretical, then you might even have had to face jail. So, quite naturally, in my high-
school I was the propagit, which in communist jargon means the person in charge
with propaganda and agitation. That is how it was, in those old days.

I have just told you how I learnt calculus at the age of about thirteen or fourteen.
It so happens that there were some twelve boys, of the same age, in that country,
who like me did the same. Their motivation might have been physics, like in my
case, but not always. I will call them from now on “the bright boys” and they, or at
least most of them, will appear big in this story of mine. And soon the bright boys
got to know about each other’s existence too.

This is a good time to take a break and make a parenthesis. Karl Marx once
said that people do not understand the history they live through, and this is damn
true. I have lived through this sudden burst of youthful mathematical enthusiasm, in
a scientifically underdeveloped Balkan country, and I still do not fully understand
how that could happen. And after my own crop of bright boys, the next generation
in Romania came with a new crop, and the process was many times renewed. How
was that possible? I have, of course some conjectures about that, having to do,
for instance, with a transfer of interest from humanities, which was rather strong
before the war, and then made impossible by communism, to something equally
lofty, which was possible to do now. But I cannot see very well how, for such a
conjecture one could find any shred of factual evidence. History, which after maths,
physics and philosophy, is my next big topic of interest, is clearly a very difficult
subject. When I have such a hard time in getting some understanding for events in
my own life, then imagine how painstaking it should be to disentangle the more
distant past. I love History, but I never could have become a real historian trying to
prune through the evidence, written or other, which the past has left us. I certainly
do not like old archives, that is certainly not something for me.

And then also, at least when talking about one’s own past history, so often did
I talk with some friend about some past event we shared, and more than often our
memories did not quite match, sometimes ridiculously badly so. I strongly suspect
that this same kind of mechanism concerns the more global history too.

Finally also, history can and should be done at various levels, at various scales
of magnification, in time and/or in field of activity, a bit like the renormalization
group, if you see what I mean. For instance, I am very fascinated by the history of
recent or very recent Science, and the only sciences I know, are of course maths and
physics. Just an example. A few hours before flying to the South Pacific I heard that
Bill Thurston had died, I do not even know the details, here and now, in Fiji. Bill
has left us a magnificent mathematical legacy but as for right now, large chunks of
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it only survive in the minds of a few of us. We should better hurry to do something
about this, because when we will be gone it will be gone too. I know that various
people will re-work and re-write things, make them rigorous by other means, and
so on and so forth. But then something of the fantastic potentiality which is there in
Bill’s work, as it stands, will be lost in the process, maybe forever.

But I should not loose track of my own story, and I go back to it now. So, time
went by and I had to start thinking about the University. When my parents heard that
what I was planning to do was to study maths and physics or physics and maths, they
got very worried. Very gently, my father told me that this was certainly the surest
road to starvation. He thought there were only three reasonable lines of University
studies with which one could make, afterwards, a comfortable living. These were
medicine, law, and engineering, which included architecture too. How little did he
grasp what was going on in that country of ours. Lawyers were already pariahs in
the communist society, and medical doctors were to follow them in less than 10
years time. My father’s dream was that I should become a dentist, like himself,
and eventually take over his medical practice. I believe that this would have been
about as unsuitable for me as it could have been, and with some sadness my father
understood that too. I shudder even now, with horror, thinking of what would have
happened if, instead of being myself the way I am, I would have been a traditionalist,
would have followed in the steps of my father, and then today, if still alive, I would
be an old sedated dentist, clearly feeling like a total failure, living in some dark
God-forgotten corner of that Balkan country where I happened to have been born.
But tradition, of any kind, is not my thing. I am sure, of course, that in certain
appropriate conditions and for the appropriate people, tradition may be a good thing,
but in my specific case it would clearly have meant sheer disaster. One cannot stick
to tradition when the world around you is in upheaval, nor when your own ideals
are too far removed from those of your parents or ancestors.

Also, when my father wanted me to become a dentist, little did he fancy, at that
stage, that private medical practice was going to be abolished, like so many other
things. And when, later on, he understood that, he died with a broken heart.

With these kind of thoughts being around, only about half of the bright boys went
in for science. All of them went in for maths, except one who became a physicist.
As I soon found out myself, maths studies in Romania were quite underdeveloped,
but physics studies were even more so.

But then also, about half of the bright boys went into engineering. I met at least
some of them, a few years later. They were by then broken and disillusioned. The
bright light in their eyes was gone, their youthful ideals were shattered, and they
were busy counting sacs of cement or doing other similarly exciting tasks. A slightly
older mathematician, Ganea, a very close friend of mine, had been obliged by his
parents to study engineering before going fully into maths. And he told me quite
gory stories about that. Some examples:

Exam question: How does one proceed for paving a road?
Expected answer: With care.
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Then, the students ask their professor questions about some more interesting
topics. The professor says to them: You do not have to worry about these things,
which are not for you. If ever such things become actual, then one will call an
engineer from Germany to take over. Beautiful, isn’t it? Ganea, the man with the
blackest, often self-critical sense of humor which I ever knew, will occur big again
in this story.

Few months before actually entering the University, in June 1951, I went there
to attend a series of lectures on Abstract Algebra, “Rings and Ideals” it was called,
geared for mathematically minded young people, and given by Moisil, a university
professor who was soon going to play a big role in my life. Just before the
first lecture started, another student, a tall intense looking young man with bushy
eyebrows, came to me saying: I know who you are and I want us to become friends.
So we did, and we stayed friends forever after. Sorin, the young man in question,
is that unique one among the bright boys who became a physicist. Also, about a
year after we first met, he introduced me to the mountains, which became then
so important for me. In his later life, after many years spent at Trinity College in
Dublin, Sorin finished his career as a professor at the University of Montpellier. He
is a regular visitor of the CERN in Geneva, and brings me news from there. But this
is no longer part of this story.

The first semester at the university was common for maths, physics and for
training future high-school teachers. The three lines separated at the end of the
semester. One of the first new fellow students which I met, was Samy Z., a very
brilliant and quite aggressive guy. He brushed away my fears of not having gone
into engineering and started to feed me with little problems to solve. He was more
advanced than I was then, in point set topology and real variables. Every time he
served me some little Fundamenta type problem, he told me that I was an idiot if
I could not prove that. You might remember that Fundamenta is the Polish maths
journal, famous between the two wars.

This changed my life. Instead of taking the overcrowded tram, I started to walk
to the University and back home, a total trip of about an hour and a half. And while
walking, I thought about Samy’s problems, this taught me to work without paper and
pencil, all in the head. I always managed to prove what Samy asked me to prove,
and I remember only one of his little riddles, which took me more than the walk
home to do. I thought about it during a good part of that afternoon, in the middle
of a lively and noisy party, until I solved it. It went about like this. Try to cram in a
plane as many two by two disjoint topological copies of the figure Y as you can; it
is claimed that you cannot put more than countably many.

About a year later, Samy and I had our first mathematical paper published, a
joint piece of work on Fundamenta type arguments; that was in the very beginning
of 1953.

So now our whole little gang of bright boys, we found ourselves first year
students, actually in the first semester, and all the courses were very lousy. Then we
decided to attend some fourth year courses, the closest thing to a graduate school in
Bucharest, in those days. I attended a course in set theory, à la Cantor, and another
one in algebraic topology. To this one was also attached a little appendix, on group
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theory. The professor for these two joined courses was the same Moisil already
mentioned.

Moisil was brilliantly clever, he had a rather broad knowledge of many mathe-
matical topics and his main field was mathematical logic. But, at the same time he
was quite superficial, in fact his knowledge was all quite shallow. He had a Balkan
mentality and Balkan ambitions (avoid carefully the difficult deep questions and,
instead, enjoy toying with those harmless and easy ones). He was also sparklingly
witty and praised a nicely coined witty sentence above all things. For the sake of
making a nice pun, he was willing to create for himself a lifelong enemy, and he
had many such. Here is one of his many favorite aphorisms: Do not trust a man who
neither smokes, nor drinks, nor has plenty of affairs with women, because only God
knows what kind of secret tastes he might hide. Moisil himself certainly indulged
big in the three pleasures above. He also told me once that, as a young man he went
to a lot of parties, and in order to sharpen his mind, so as to be able to put up that
brilliant conversation of his, just before the party he would read some G.B. Shaw;
he trained his brain like for a sporting event of sorts.

He also loved to go to restaurants, surrounded by a crowd of followers; I soon
became one of the youngest of them. Everybody paid for his or her food, and Moisil
paid the wine for everybody, and plenty of wine there always was. His table talk was
pure pleasure to listen to. With his round bald Churchillian head, his clever eyes and
his deep voice he was quite a character. And the town was full of funny little stories
concerning him, I guess some true and some not.

Between the two wars, in a country dominated by the extreme right, Moisil
had been a well-known left-wing university professor, and he had been targeted
by the Iron Guard, the violently vicious Romanian fascist party. So now he was an
important member of the Communist party, with a lot of power. But Moisil was nice
and kind and he helped me a lot, in difficult times; and he helped many other people
too. He used his power to be good. He would soon become my boss, and one could
not survive in Romania, in those days, without one.

Moisil’s algebraic topology course was flying very low, and it was highly non-
inspiring. In his little group theory course he rather assigned some research papers
to various graduate students to read and report about. So, 1 day I learned about
an item which was supposed to be next week’s topic. The issue was this. If a real
function respects addition and if it is also continuous, then quite trivially it has to be
linear homogenous. But what I heard now was that there existed also discontinuous
solutions for the corresponding functional equation. That was next week’s topic, and
a graduate student, who was soon to become a friend of mine, was reading a paper
about it, preparing to make a report. But this was good food for my mathematical
thinking walks, and before the week was over, I knew how to construct all those
discontinuous solutions. I had never been exposed to linear algebra so I recreated
from scratch everything which was necessary now, looking at something which I
later recognized as being the vector space of the reals over the rationals, but that
language was then unknown to me. But that did not matter; on the other hand, what
I did know quite well, were transfinite ordinals, which were certainly needed for
the construction. I was never to be exposed to that linear algebra, but some 2 years
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later I had become an expert on Hilbert and Banach spaces and I had also created
my own private brand of theory of distributions. And so the standard linear algebra
looked to me like a silly childish game, really Kindergarten stuff. I happily skipped
the University courses on the topic, like I skipped most of them, as you shall see.

Anyway, when that next week came, I reported on my solution in the group
theory class. There were two consequences of this, firstly I decided to go in for
math the second term and not for physics, as Sorin was pressing me to do. So, it was
a big forking point for me. Secondly, Moisil did then become my boss and me his
protégé. And some 6 months later, when I risked to be expelled from the university
for political reasons, his protective shield saved me.

In my high-school days, the communist youth organization was a bit of a joke, but
at the university it was a deadly serious affair. Some of my fellow students were like
hateful monsters, coming straight out of a book by Dostojevski, or so they seemed
to me.

And just before the end of the first academic year, a political earthquake shook us
all. I had always, since 1947 when the communists took over, felt Stalin’s oppressive
presence, physically, as if he were there. Now, in the last year of his life, Stalin got a
big access of paranoia and wanted to purge thoroughly the whole communist world,
at all levels. At the highest level, that meant a lot of political trials of communist
leaders, in various communist countries, accused of this and of that, and more often
than not, shot or hanged.

At my more modest level what this meant was that beginning with June
1952, every week there was sort of a political trial, inside the university, in the
framework of the communist youth organization. No blood was actually shed,
but the punishment was being excluded from that organization, with possible
consequences being expelled from the university or even jail. Each of these shows,
with its ritual of accusations, confessions and self-vilifications, started at 10 pm and
lasted until the early morning. It so happens that at the very first trial already, I tried
to defend a friend of mine, claiming that he should not be punished for what his
father had done. And, for once actually, the father in question had done something,
he had been part of an attempted military coup against the regime, and he was now
in prison for life.

The only net result of my attempt to help my friend was that now I was myself
targeted for the next trial. I had decided to stay home for the occasion, but they
came and fetched me. When my turn came, it was four o’clock in the morning, I
was exhausted, and I tried to shorten the procedure by simply returning my little red
membership card, after which I left. This was taken very badly, I was declared, in
my absence, an enemy of the people and this stuck to my secret police file for many
years to come, with all sort of unpleasant consequences.

In those months, during the Summer and Fall of 1952, I lived through a sort of
very fast re-enacting of the French Revolution, let us say the French revolution of the
years 1791 to 1794, coming with its murderous blend of terror and fanaticism; those
two items mix together better than one might think, even inside a single person’s
mind. No heads were actually rolling, but careers were destroyed and lives got
broken. Those who had expelled me from the communist youth were themselves
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expelled a few weeks later; those who had expelled them were in their turn expelled
too, and so it went on and on, until Stalin died, in the early months of 1953. Then, all
of a sudden, everything calmed down, the big oppressive pressure had disappeared,
and at least for the next few years one could start breathing a bit more freely.

My daily routine had also changed. I was now a second year student and, in the
morning, when I would get close to the university, then I rarely went in, normally I
would go straight to the next café, where I knew I would find my chums, the bright
boys. With two exceptions, Complex Analysis and Lebesgue theory, all the courses
were really bad, and we had decided to skip them all, except for those two.

We learned mathematics from each other, in the long and lively café discussions.
We talked loud, we seldom waited for the other person to finish his sentence, but in
those immensely intense exchanges of ideas, we grew up to become mathematicians.
Of course, each of us also read mathematics on his own and thought on his own, but
the two kinds of activities, alone or together with the group, complemented each
other quite well. They were both necessary.

Our professors were so much out of touch with what was going on, mathemati-
cally speaking, that our discussions would have completely passed over their heads.
We learned very little from them and had to do it all by ourselves. My boss Moisil
being a logician, I still had heard about Gödel’s incompleteness and about Turing
machines, but I had to learn all that by myself. He certainly encouraged me to do
that, and he was very happy when I lectured about these things in his seminar. For
somebody with my background it was only natural that I should pick up these topics.
But the other bright boys did not seem very interested in those things, so there was
nobody with whom I could really talk about them, in that former life of mine.

Later on, in the second life, I was sometimes dreaming of what it must have
meant to live in a mathematical climate, where let’s say Hodge combined classical
algebraic geometry with the electro-magnetism of Maxwell, about which he had
first hand knowledge, where Atiyah became a student of Hodge and where in his
own turn, Donaldson became a student of Atiyah. We of course, did not have access
to such niceties, and we had to try to do the best we could with what we had. And
each other’s company was our most precious asset; we had no other.

About the end of 1952, beginning of 1953, Foias, Gussi and myself started a
big piece of joint work, more than fifteen published papers, in all, on nonlinear
partial differential equations. We certainly were not doing fore-front mathematics,
we were after all still apprentices, but in the rather modest niche inside which we
were operating, our team of three was quite respected by the colleagues in the US,
in France, in Russia, or in Italy. Some of our correspondents and competitors were
rather well-known mathematicians with high academic positions, while we were
still second or third year undergraduate students. But at least as far as Foias and
myself were concerned, we were after much bigger game than this.

I became very close friend with Foias during the Fall of 1952. He was coming
from a small Transylvanian town and, in the beginning he felt very lost in the big
capital, Bucharest. He was immensely proud of his family. His father had been the
main medical doctor in the little town, and also its liberal mayor; the Liberals were
one of the old political parties in Romania.
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But in the stormy Fall of 1940 the Iron Guard took complete control of the
country, for a while. The Iron Guard, the Romanian fascist party, was the most
viciously murderous fascist party in Europe, according to most historians. Even the
nazis thought of the Iron Guard as being too extreme and, somebody like let us
say Mussolini and his gang of thugs, were nice little angels compared with them.
They had their own brand of very chauvinistic ultra-nationalism, their very ugly
form of antisemitism, dark orthodox religious creeds mixed with archaic rituals, and
they were also violently anti-capitalistic; their word for capitalism was plutocracy,
something which they thought was a Jewish avatar. They also thought that all town
people were corrupt and that only the peasants were the pure, true children of God.
When they did their bloody murders, they always had the name of God on their lips.

The liberals were anathema for the Iron Guard, and 1 day they stepped in through
the main door of Foias’s parents house, in order to shoot Foias’s father. But Foias’s
father fled through the back door, jumped on his already prepared fast horse, and
rode away to safety. By then also, Hitler had decided that the Iron Guard were really
too crazy and he had the Romanian army, under Antonescu, the new boss of the
country, put them down, temporarily. He always thought that they might come in
handy for him later on.

Anyway, Foias’s father now was safe, for a while. When the communists came
to power in 1946–1947 he went to jail, where he stayed a long time, because he had
been a Liberal mayor.

And then, in 1952 Foias’s magnificent family castle collapsed, his beautiful
mother ran away with a younger man. Foias was shattered, but he became a different,
stronger person, in the process. His mother’s eloping was a big scandal in the little
town, and her parents did not want to see her, nor hear from her, any longer. And it
was young Foias who managed to make peace between his grand-parents and their
daughter, his mother. And he also stayed close to both of his, by now completely
estranged parents.

Foias was a superb mathematician, and a few years later he started doing
magnificent work in the theory of single operators in Hilbert space (he was never
an operator algebra man) and on the Navier-Stokes equations of fluid dynamics. He
was fascinated by the mathematics of turbulence.

My old friend Gussi, my very first pupil, and the third man in our mathematical
trio, came from a very aristocratic and rich originally Greek family; actually a very
large part of the high middle class in Romania was of Greek origin. Gussi’s father,
as a young ambassador to Spain, in the early forties, was the first ambassador since
the times of Philip the second, to go down in the arena and fight the bull, like a
torrero. He was still looking very youthful when Gussi and me we were in high-
school and people usually thought he was the older brother. He was notoriously gay
too. In 1947, when the communists were in power, he had a brilliant idea: he gave
up all his positions, his fortune was already in the process of being confiscated, and
he became a factory worker, which both saved him from jail, and also made that
Gussi, now the son of a factory worker, was safe, for a while.
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Among the three of us, Gussi was the best in gauging what was important in
mathematics. He had an excellent mathematical taste and a very good nose for those
important things. His advices have often been very useful to me, in my later career.

But Gussi also had a big problem. He never produced any mathematics, except
for the joint work of our trio, nothing ever of his own, alone. One reason for this is
simple and sad. He wanted a lot of things, like a motorcycle and other gadgets. For
this he needed money and his salary was certainly not enough. So he gave private
lessons, made translations and a lot of other such extra jobs. But then he never had
the leisure, the time, nor the energy to do maths, other than reading and staying well
informed about what was going on. But he did not do anything creative, and by the
time he understood what was happening to him, it was too late. There is a second
reason too: the very unpleasant conditions in which he and his parents were living,
completely discouraged him.

The three of us also loved to do sports, we could not have lived without that.
So, Gussi went big into rugby and he became one of the two best half-backs in the
country. But let me tell you a little story which may amuse you. Gussi liked to use
what he had learned in our boxing school in his normal life, when he thought it
was necessary. And on his way to and from the rugby field, he had to go through
some very ill-famed streets of Bucharest. He told me that there, if someone asked
you the hour, you better hit him hard and fast, before he had the chance of doing
that to you. After that, you might even tell him what time it was. That is how some
sections of Bucharest used to be, and maybe still are. Actually, not so many years
ago Jean-Pierre Serre was almost torn to pieces by a pack of wild, vagabond dogs
without master, in the streets of that old town of mine.

Foias and myself went in for another sport. We ganged up with another bright
boy, Igor, and as a new trio we did a lot of mountain climbing, actually rock-
climbing together, and we did it big. You will hear much more about that, later on
in this story. But I close now the long parenthesis, and go back to the mathematics
of our trio.

Foias, Gussi and myself were deeply involved in functional analysis too. But,
although I knew that in certain aspects of Hilbert space, for instance, I could navigate
better than anybody else, I felt that all this was not really my road. My friend Foias,
for instance, had started to play the following mathematical game, where I felt I
could not be his equal. I will remind you first a Kindergarten fact. If T is an operator
and f (z) is a holomorphic function on the spectrum of T , then f (T ) makes good
sense, and this is a nice useful little fact. Now, Foias had a very clever and slick way
to make sense, under certain conditions, of f (T ) when f (z) had singularities on the
spectrum. And that, when it worked, had big consequences.

So, by 1955, while I was still a student in the last year at the university, I moved
from analysis to algebraic topology, not like in the old Moisil lectures, but now for
serious. And in those days I was completely lonely in Romania, in that area and I
had nobody to talk to, about my new field of interest. Only a bit later did others
join in, which made me quite happy. It did not take me long to discover that there
was, in topology, a big open problem, which I decided was my kind of thing, the
Poincaré Conjecture. And It turned out to be one of the most important mathematical
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problems that there was. And I started some very naive, clumsy first steps towards
it.

When the Summer 1955 came, I had my university degree and I had a job too.
Since my political file was so lousy, the University could not hire me as an assistant,
and I only got a lesser job, called preparateur, I think it had no equivalent elsewhere.
It implied the same teaching load as an assistant, with a lot more administrative
tasks on top, and with only half the salary. In the meanwhile, I had also met Sanda.

She was a student in the Theater School and her boy-friend, Lucian, was an
old friend of mine, from the high-school days. He was her fellow-student, and
everybody in that Theater school thought that Lucian was a genius. And I think
he was a genius. This very intense young man, made later on a number of movies,
mostly in English, which were pure masterpieces. Also his Turandot, on the scene
of a Paris theater was a historical event. He became one of the big stage directors of
his generation.

But in those by now so old days, when I met Sanda, there was big tension in her
relation with Lucian and they were moving towards a breaking point. I must confess
that I took advantage of that crack in their relation, and started to court Sanda. Of
course Lucian came to me and asked me to give up, and of course I promised him
to do so, but then I could not keep my promise. By then, Sanda and I were in love.
My friendship with Lucian did not survive these tumultuous events.

Sanda and I were now lovers, and I remember a little incident from the very
beginning of our love affair. It was a little thing, but it was so full of further meaning,
a harbinger of future things to come. Sanda and me we were sitting on a bench in
the gardens of the Academy, and soon we noticed that some ten meters away, on the
next bench, were sitting Lucian himself, immersed in deep amorous conversation
with young Julie, whom I only knew by sight in those old days. And Sanda, rather
jokingly, maybe not a very good taste joke, said to me: why don’t you go and seduce
her. Little did she know, and little did I know then, what Fate had in store for Julie
and myself. This little incident must have happened in the Spring of 1955.

At the beginning of the next year, although our love was shining somehow less
bright, Sanda and I decided to get married and we announced the news to our
families, which then met. That was not a big success. My future mother-in-law
started by saying that I was too young, while my father, after taking a glance at that
prospective mother-in-law of mine, decided that he did not like the whole set-up.
The only thing on which the two families could agree, was that they both opposed
the marriage.

Now, we were both twenty-three, we ourselves had started to believe that the
marriage idea was maybe not such a great one, but a parental opposition was a
challenge which we felt had to be met, our honor was at stake. And so we did get
married.

But let me come back, for an instant, to that business of being too young. Not so
many years later, in my next life, another mother-in-law declared me to be too old.
So, in a very short span of time, I must have gone from extreme youth to old age,
without ever becoming an adult.
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Be that as it might be, the marriage with Sanda was a big failure, and it is not hard
to give at least a couple of good reasons why that was so. We did not like the same
things, we did not like the same people, and above all, there was hardly anything
which we enjoyed doing together. I think we were both nice and clever people, but
we did not really fit. The love was not yet dead, but that was not enough.

I was living now in the world of the theater, which I got to know from the inside,
and that had its own fascination. My wife was a stage director and an actress too,
not at all easy to do both those things at the same time, but she was both gifted and
had a lot of energy. My father-in-law was a famous actor. He was also a bit of a poet,
he wrote biting little epigrams, which created many enemies for him, and which did
not always do him a lot of good.

I maybe should have said all through here, theater and movie world, but the actor
takes his or her pleasure in the theater, through the almost physical contact with the
public, rather than in the movies, although that brings more fame and more money.
An actor’s job, which he or she does using the glandular system, or the brain, or a
mixture of both, is to pass a certain kind of magical, invisible fluid to the public in
front and make it vibrate.

For this magic to work, a certain kind of tension inside the actor’s mind is
necessary. It is a tension between some sort of shyness or inhibition, and the quite
opposite urge to shout out loud one’s strong emotions. A perfect balance of these
two ingredients is necessary here.

And then, like in so many other things, there is also a question of both inborn
talent and acquired technique. The first girl I was ever in love with, while I was
still a teenager, another Sanda, also went to the Theater school. And at her first test,
everybody thought she had a fantastic talent. So she might have had, but she never
learned anything more, never developed, and she became a third class actress, with
pitiful little roles.

Understanding all these things about how an actor functions, in relation to the
public, was rather useful in my next life, when lecturing or teaching.

Through my not so happy years of marriage, relatively short years actually, from
May 1956 to September 1958, I continued to work hard on the Poincaré conjecture
And, quite naively I might add, I thought I had managed to prove it, by the Summer
of 1957.

I wrote a longish paper, had it typed and then sent it to Georges de Rham in
Switzerland. In those days, when I was writing to Georges I addressed him as “Très
honoré Maître”. It so happens, that not so many years later, but that was happening
now in my second life, we became very close friends, although Georges was about
30 years older than I was. And, notwithstanding the fact that what will come right
next is really part of my second, future life, I still feel like recording it here.

At the time when our friendship started, Georges was a big professor at the
universities of Geneva and Lausanne, President of the International Mathematical
Union, while I was just a young refugee. But he had a high opinion about what I had
done by then in mathematics (since 1959), and he was very fond of me. He helped
me a lot in my second life.
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Georges was not only a great mathematician, he was also one of the big mountain
climbers of his generation. He climbed during all his life, he feasted his 60th
birthday by leading a very difficult climb in the Mont Blanc, and he kept doing
hard rock-climbing into his very late sixties, or even early seventies. Since I was
myself a very passionate climber, you will hear more about that later, Georges and I
did a lot of rock-climbing together, in the Swiss and the French Alps.

And we talked a lot together, about mathematics and everything, in his palatial
home in Lausanne with the sumptuous living-room decorated by his ancestor’s
armor plates, and by medieval cannon, but we also talked in various cafés of
Lausanne or Geneva. Georges loved good wines and, as one says in French, he was
a fin gourmet. I can still remember the sunny day, years ago, but still well inside
my second life, when Henri Cartan, who knew that Georges and I were friends and
who liked us both quite a lot, invited us for a beautiful lunch, in one of the best
restaurants in Strasbourg, where the three of us had quite a good time together.

I learned a lot from Georges, both in mathematics, and about many other things.
It was him, for instance, who introduced me to the Whitehead manifold, which later
in my life was always in the back of my mind, as a mathematical scarecrow.

Georges had a young Polish girl-friend, she must have been about my age, but
later on she died in a mountain accident.

One day, in one of the chats with Georges, I discovered something which amused
me a lot and which I feel like recording here. I must start by telling you that, years
before, as a child, I had been often with my rich godparents. My godmother was
my mother’s older sister, while her husband, my godfather, was a first cousin of her
mother, my maternal grandmother. This was about as close as one was allowed to
be, blood-wise, and still get married.

They did not have children of their own, and they treated me and my cousin
Liliana, the daughter of my mother’s younger sister, as their own children. Liliana
was the same age as me and for years she was like my sister. I am sad that the stormy
sea of life made that, later on, we became complete strangers. But that is too long a
story for right now.

As a child, I spent the first half of each Summer, in the mansion of my godparents,
on their estate in the country side, and then the second half in their very large villa,
in a beautiful mountain resort.

And close to my godparents estate, in the next village, there was another, even
more magnificent mansion. Talking 1 day with Georges, about this and that, I
discovered that the magnificent mansion in question had belonged to his, by then
dead, brother, who had had a Romanian wife. The world is small, indeed. It really
sounds odd that a Swiss Marquess, member of the highly aristocratic HSP (Haute
Société Protestante) should own an estate in Romania, neighboring the estate of my
own godparents. And that his brother later became a good friend of mine, isn’t all
that very strange?

But please do not get things wrong, at this point. Georges himself was deeply
democratic, in the noblest sense of the word, his two usual climbing mates and close
friends, with whom I climbed myself often too, were Carlo, a gardener, employee of
the Lausanne township and Apo, a railway worker. Georges was really a wonderful
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person. Except for its very beginning this long prentice about him really concerns
my second life; but I felt like telling these things here. I move now back to my main
story, where I had left it.

1958 was the black year of my life. One February night, in my dreams, I saw
a sort of a mathematical monster, which I immediately understood to mean the
complete collapse of my childish Poincaré proof. And the monster was certainly
there, for good. Of course, I immediately informed de Rham, he was not yet Georges
to me, about the disaster.

In April, my father died, and this was the single biggest blow which ever befell
on me. I might not always have agreed with my father, but our love bond was of the
strongest possible kind there may be. It took me years to get over my sorrow.

By then also, the relative liberalization which had followed Stalin’s death came
to an end, and as an aftermath of the crushing of Budapest by Soviet tanks in 1956,
the communist system had become very tough again. And nasty rumors concerning
what was going to happen next at the university, were in the air. And indeed, one
black Friday, in the beginning of September 1958, a list of about thirty names was
posted on the door of the university. And the people on that list were supposed to
report the next Monday at human resources; in Romania that meant a branch of the
secret police, the Securitate, located inside the university. It did not feel good at all
to find myself on that list. About half of it were Jews, my friend Samy was included,
the other half were people with various other political sins, like myself.

That next Monday, we were each informed in turn, that we were dismissed from
our jobs at the university, each with his or her precise reason. Samy was supposedly
a Zionist, and I was an enemy of the people.

Poor Samy! Every year we were given some forms to fill in, from the admin-
istration of the university. Among other things, there were two items to be filled
in: citizenship and nationality, which in communist countries did not mean the
same thing. I wrote “Romanian” in both places, but when Samy did the same, the
forms were invariably returned to him with “Jewish nationality” added in red and
“Romanian nationality” crossed out.

Samy managed to leave Romania and landed first in Italy, where he got some
university degree and an Italian wife too. “Una magnifica ragazza”, he wrote to me.
But when he married, he had to promise that his children would be raised in the
Roman-Catholic religion. So, Samy might well have been born in the ghetto, his
first religion might well have been marxism, he ended up as father of six Catholic
children. He also became a specialist in decoding the Papal texts, trying to find
loop-holes for contraception. He is now professor at the Université de Montréal, in
Canada and, these days, when we meet, we tend to speak Italian together, rather
than Romanian. And he is not the only person from the old country with whom I
use now that language.

When I became jobless, in September 1958, my already shaky marriage collapsed
completely. Sanda and I decided to divorce; that took about 10 days and costed
something like the equivalent of four or five euros. That is how it was in Romania in
those days. It was a completely friendly affair, and we did stay friends and chatted
from time to time about our respective problems; you will hear more about that.
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Just before anybody else would have grabbed it, I moved fast into my father’s
former study, in my mother’s flat.

Notwithstanding the situation, life felt now better than before. While I was
married, I had often felt very lonely, my by now ex-wife was often until late in
the theater, and we had no common friends. Now I felt like a free man, many of my
various inhibitions had vanished, I became a very good dancer, something which I
had never been before, and it looked as if a lot of girls wanted to see me. For the
first time in my life, I started moving around feeling free with respect to obligations,
social conventions, and all that. I was stepping now firmly on the ground, doing
what I wanted to do and not what other people wanted me to do. All this was new
for me and it was clearly a liberation.

But it was only a foretaste of that really big liberation, which came with my
second life, when I felt like a wild stallion who had escaped from the stable, and was
now running madly free through the big open fields. By then I was also loose from
all those so many mental ropes which earlier had held my elbows back, preventing
me from acting freely. The influence of my good friend Barry Mazur was certainly
very important here too, but all this is certainly no longer part of the present story
of my earlier life.

All this having been said, I still had to earn a living, in that Fall of 1958. So I
started to give private lessons of maths. This was quite illegal and rather risky, but I
earned now substantially more than my earlier meager university salary. Of course,
some time and energy had to be spent on those lessons too. Of course also, according
to the law I had to stand in line, periodically, at the unemployment office, and declare
myself as a job-seeking person. For some reason, one had to start queuing there
at 4 am. And indeed, I got some offers for various jobs: to sell apples in a state-
owned supermarket, or to go and teach small children in a God-forgotten village
in Northern Romania. I always politely refused these job offers and chose instead
to stay with my black market activity of giving private lessons. This was the only
way by which I could survive as a mathematician, and I have never thought that my
own life was worth living without mathematics. The price was the risk involved, of
course.

Through all these upheavals, totally oblivious of the, by a large, hostile outside
world, I moved inside my mathematical universe, and I continued to work hard, in
all my available time and with all my available energy. My favorite activity consisted
in long walks through the parks, during dusk and afterwards, thinking deeply about
mathematics, under the starry sky. And since my February Poincaré disaster, I had
learned by now a lot of mathematics, mostly by banging my head against the walls,
so to say. Sometimes I had to recreate, from scratch, various mathematical theories
which the Bucharest libraries did not give me access to.

And I also felt now that at least inside the field which I had chosen, I had become
an adult, seasoned mathematician and that I was no longer a beginner.

During my long mathematical walks I discovered that the monster which had
killed my childish Poincaré attempt, was a mathematical object of some interest,
behind which lay hidden a little treasury. So, I started digging and, by May–June
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1959, I made a discovery: I found a smooth four-manifold which was a non-trivial
factor of the five-dimensional cube.

I was jobless, but I had access to the outgoing mail-box of the Mathematical
Institute. This was a big courtesy of its director Stoilov, my former teacher in
complex analysis. So, I wrote a paper on that nontrivial factor, and I sent it to Jean
Leray. He decided that this was indeed, an important thing, and with the expert
advice of R.H. Bing from Texas, he thoroughly checked my paper, helped me re-
write it completely, and had it published in France. When that paper appeared, it
created quite a commotion in the mathematical world and I may say that, ever since,
my road in life was open and smooth, and that I never had problems any more.

That paper had saved my life. I had a big admiration for Leray, reason for which
I had sent him my paper, to begin with. And then, more technically speaking, as I
saw things then, what I had done had some connection with things which he himself
had done earlier. He helped me a lot and I am sad to say that, later on, our relations
became ice-cold. But this was in my other life, and it is not part of this story, any
longer.

I was not alone in my discovery. Barry Mazur, who was already a big mathemati-
cian did, independently and at the same time as myself, the same discovery. So we
started to write to each other, and soon we got to meet and became best friends.

But in September 1959, I was still jobless. My paper had not yet seen the light of
day, it had not yet made its impact, and my boss Moisil thought that if I did not fast
get a job, some job, any job, then I would get into trouble with the authorities. After
all, I was now a black marketeerer who made his living by performing an illegal
activity, giving private lessons in maths. So, at the end of September 1959, I became
a janitor at the Romanian Mathematical Society, an organization located inside the
university, but catering for high-school teachers. Moisil was the big super-duper
boss of that Society, that is how I got the job.

Never mind now the exact chronology, but several interesting things happened
during my 13 months of joblessness or soon after, when I was a janitor. I feel I have
to record them here.

Once I was a free man, free I really was, and I started to go every weekend,
and in addition during long periods in Summer or Winter, to the mountains. And,
as I have already told you earlier, we were three friends doing this together, Foias,
Igor and myself. We went together rock-climbing and we did it the big way. I think
rock-climbing, if one loves it, is one of the basic pleasures which a human being can
have. If you hang on a vertical wall, on one finger and one toe, with many hundreds
of meters of void behind you, if you still manage to climb higher, and if you do not
care a damn about the danger, then this is like the most divinely delicious strong
drink, the taste of which you can never forget, afterwards.

Quite a long time ago, the great Italian climber Emilio Comici, the man who had
managed to climb for the first time the Cima Grande di Lavaredo, in the Dolomites,
had said: “What for many is Death, for some of us is just a game”.

In my own case, all this came with a side benefit. I used to be quite clumsy. Now,
when you hang on that finger and on that toe, then with the other hand you have to
do something tricky, like planting a python or mounting a carabine. You better do
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that fast, you certainly cannot afford to be clumsy, this is now a matter of life and
death. And so I learned not to be clumsy, at least when necessary.

The other climbers called us the ones in rags, because we always were in rags.
Until 1 day, a state sponsored mountain club came to us and said: Listen guys, why
don’t you join us, we will give you boots, clothes, new ropes and equipment, food
too. We will also pay your train tickets to the mountains. You will continue to do
your climbing as you like, but from time to time you will have to give us a hand
with the beginners. We did join the club. Until then we had climbed together, and
there was always an issue about who should lead. Also, climbing in a team of three
is not the most efficient thing. Now we were each of us three, leaders on our own.
Each of us had a second, all by himself.

When the difficulty was up to fourth degree included, I always left my second,
Sandu B. lead. When the difficulty was five or more, then it was me who was leading.
This way he learned things and we were both happy.

Igor lived to become the best climber in the country. His technique was fantastic,
he was wiry but very strong, very agile and supple, and then he also had nerves out
of steel. He was not only a superb athlete, but also very gifted in many fields. He
was certainly a full-fledged member of the group of bright boys already mentioned.
It is through him that I got my first exposure both to Lie groups and to quantum field
theory. But then also, because of his background of deep poverty and persecution in
those very stormy and troubled times of the Romania of our youth, he was somehow
a desperate man, who did not care a damn whether next instant he would be still alive
or not. And all this allowed him to do things which nobody else could. For instance
he did various hard climbs alone, freely and without any balaying, sometimes two
the same day, one after the other. And in December 1962, but then I was already
away, and this time with a second, he climbed in two successive days and nights,
in full winter, the “Fissure Bleue”, the hardest climb there was in Romania. It was
close to impossible to do, even in Summer, and nobody before had ever dreamt of
doing it in winter.

He eventually got back his job at the university, he had lost it at the same time as
I did, but then he died in a stupid mountain accident, in February 1963.

The third man in our mountaineering trio, my old friend Foias together with
whom I had also done all that maths earlier on, is an American today. He is a
professor at a University somewhere in Texas. He is also staunchly Republican,
of the most arch-conservative biblical type. Fortunately for our friendship, we see
each other not more often than every 5 years or so. Would we live in the same town,
I am not so sure how that friendship would fare.

At some time during my jobless period, the phone rang and a young woman
informed me that comrade minister So-and-So wanted to talk to me. That was the
Minister of Education and I got quite excited, thinking that I was getting my job
back. The comrade minister invited me to come and see him, which I immediately
did, of course. He received me very friendly and told me: You have been highly
recommended to me, and I have a son who needs private maths lessons. The son
in question was on the verge of entering the university and I started going once a
week to give him a lesson. The comrade minister used to keep me a bit afterwards
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for snacks, and I think I must have drunk quite a number of bottles of good wine
together with the minister. He always asked me very kindly about my affairs, and
always wished me good luck. So much for the help. But I was very well paid, and
that was that.

Let us stop here for an instant and think a bit. You may have noticed that in this
little story which I have just told you, a cabinet minister asks happily and casually
somebody to do for him a black market, totally illegal job. I think Romania is about
the only place where such things can happen and the same comment may also apply
to other instances in this story of mine too.

Some help actually did come, from an unexpected direction. There was a woman,
let me call her comrade M., who was a very big shot. She had a young son who
had a German nanny, a good friend of my own former German nanny. So, when
years before, comrade M. had needed a dentist, she heard about my father, through
her nanny, and she came to see him. My father had been a very charming and
charismatic person, and I understand that comrade M. liked him quite a lot. When
comrade M. heard that the son of that nice man, now dead, meaning myself, was in
deep trouble, she sent a word for me to come and see her at her office at the Central
Committee of the Party. So I did, and she promised to ask for an investigation by
the central committee on my case. I never heard anything more about that, but I
understand that what she actually did, was to get hold of my very damaging file and
destroy it. That did help me a lot, later on.

When, as a result of the Leray paper I got, later on, a job at the mathematical
institute of the Academy, then that kind of special Human Resources office which I
have already mentioned before, had to create a brand new file for me. And that new
file might still not have been such a fantastically good one either, but at least it was
no longer deadly damaging.

The Romanian Mathematical Society, where I was now employed as a janitor,
was located, as I said, inside the university. Igor, who as I have told you had also
been expelled from his university job, was there as a junior secretary, and so was
also our old friend from student days, Gunther Bach. My monthly salary would not
have been enough for buying two pairs of normal shoes. I still had to continue with
the private lessons, but now I was a normal working person and hence no longer in
danger.

There was not a very hard working atmosphere in that Society of Maths. As soon
as the boss, who was quite unpleasant, was away, which meant almost always, Igor,
Bach and myself, went straight to the café, while the ladies, the secretaries, went to
do their shopping. Incidentally, the boss of the society hated Moisil, and hence he
hated me too. My duties as a janitor were varied and many, and I did them all very
badly. The many letters which I was supposed to answer, I put straight in the waste-
basket, any caller who came to ask for something from the Society was invariably
told by me to come the next week, and when he did come again that next week, then
the same thing started all over again. The letters which I was supposed to put stamps
on and take to the post office, I never sent, the lamps which I was supposed to repair
I left unrepaired, and so it went.
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The only thing which I did happily, was to turn a big printing press with my arms,
I thought that would be a good physical exercise. I may have been the world’s worst
janitor, ever.

I have described you a bit of Igor’s short life. Our friend Gunther Bach, had
always dreamt of going to Göttingen and doing big mathematics there, but he died
of alcoholism in Romania, with his dream unfulfilled. He did not gauge either, that
since Hitler, Göttingen was no longer the Göttingen of his dreams.

As I have already told you, the Mathematical Society was located inside the
university, and I took a certain pride and pleasure in carrying, as part of my janitorial
duties, big sacs with various junk on my back, under the noses of my former
professors.

One day, in October 1959, in the corridors of the university, I happened to see
L., a handsome black haired girl, a student in physics, whom I had briefly met some
time before, at a party. I decided it was a good idea to invite her to go out with me.
I also sensed, very fast, that she was going to refuse me flatly; but I was not leaving
her any chance to do so. I engaged into a fast, interesting and funny conversation,
where I did most of the talking myself, and after a short time the ice was melting
and she very gladly accepted my offers.

From there on, an affair with L. started, then it grew and unfolded. She became,
so to say, my official girl-friend. And for the time being that seemed like a happy
situation for both of us.

In the early weeks of December 1959, I came rather close to that Death which I
used to tease, without ever being afraid of it. One weekend of that early December,
Igor and I went to the mountains, with ropes and all the gear, to do a certain climb in
snow and ice. But the snow was very difficult, we advanced slower than anticipated,
and by the time we were on top of the mountain, it was already pitch dark and we
did not manage to find our way down. So we had to spend the night there on top,
it was very cold, we had neither food nor water, except for the possibility to eat a
bit of snow, and we only had a minimum of clothes with us. We also knew quite
well that falling asleep meant certain death. So, we made a hole in the snow, just
big enough to sit down, back against back, to keep each other a bit warm. We kept
talking, during that long cold winter night, each of us watching carefully that the
other one should not fall asleep. When the morning finally came, then our boots,
which we had stupidly taken off so as to keep our feet inside our rucksacks, had to
be softened with our hammers, but we were safe, and we got home that Monday
evening. It took me about a week in order to get warmed up again, and on my toes I
still have the scars of that night.

The next Tuesday morning, when we reappeared at the Society of Maths,
everybody knew already that we had gotten lost in the mountains and they thought
that we might have been already dead. But our boss was worried only about (I
forget now which) little nonsensical objects, which were in our charge, and which
he thought could get lost, in case we did not come back alive.

And soon after this, finally quite exciting little adventure, one afternoon in the
same month of December, I was invited to a bridge party, where I finally met Julie.
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Of course, we both knew very well about each other and we also both remem-
bered that little quiproquo in the Academy gardens, even if she had not heard what
Sanda had said. Among the guests was also Gelu, her future husband; he met Julie
now for the first time too. He never liked me, but that might not be so surprising.
There were other people there too, including my own uncle Dan, who knew very
well Julie. He was a close scientific collaborator of her father and a very frequent
visitor of their house.

Dan was a younger cousin of my mother, and this made him my uncle, by
Romanian standards. He was actually the preferred and most beloved cousin of my
mother, who had many cousins. Dan’s own mother was Jewish and he had always
thought of himself as being a Jew. He was accepted by the Jewish community as
such. So was also his very elegant older sister, my aunt. Of course neither my uncle
nor my aunt were religious; but then so few Romanian Jews were, in those days.

Dan was one of the kindest and sweetest persons I knew, well-beloved by
everybody. There was nobody in the extended family to cater so well for the old
aunts, like Dan did. He was also quite gay, a fact which my very shy mother never
mentioned. But he made no secret about it, the whole town knew, and I knew too.

Through Dan, I got to know a lot of things about Julie’s father, his boss, who was
a well-known university professor, in virology. Both him and Dan had originally
been trained as medical doctors. But Julie’s father was also one of the big heads
of a venerable, very many centuries old, half-secret international organization,
with infinitely many ramifications, secret ceremonials, and big connections. He
was, somehow, the certainly unofficial representative of the organization, within
the Romanian communist party. He had happily survived, always in the highest
positions, through the stormy years of the recent Romanian history. During the nazi
times, although his wife, Julie’s mother, was Jewish, actually like Dan, Julie thought
of herself as being a Jew, he managed to be good friends with Antonescu, Hitler’s
stooge, the dictator of Romania during the war days.

And now he was a very big shot, member of the central committee of the
communist party, president of the Romanian academy, an important member of the
National assembly, the communist parliament, director of various institutes, and so
on.

He and his family lived like princes of old. They had a big beautiful mansion,
which included a large private collection of Far Eastern art, they had their own
butler, chauffeur, cook, chambermaids, and so on and so forth. As I also learned
from Julie later on, her father lived with the permanent fear of getting arrested
and always had a little suitcase ready for the occasion. Do not believe, like many
westerners do, that people in the kind of privileged situation which I have described,
were necessarily communists. A far as Julie was concerned, for instance, she would
invariably refer to the communists as “the pigs”.

I also knew that entering that family implied joining the venerable organization
and hence becoming a piece of a highly structured system, loosing one’s freedom.
This is, of course, exactly what Gelu, who married Julie a bit later, did. Later in
time, he actually became himself president of the Romanian Academy, ambassador
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to Paris and Brussels, and so on and so forth. But I am a free man and I did not, and
still do not want to have neither master nor God, for that matter.

My uncle Dan of course, would have been delighted if I, his nephew, would
have gotten together with Julie. Incidentally, many years later Dan left Romania
and moved to Italy, where during my second life I met him again. He died in Rome,
in the early eighties.

At that famous bridge afternoon party, very soon some magical invisible current
passed between me and Julie, and I well knew that it only depended on myself to
let events happen and unfold, between her and me. But, as I have just said, I wanted
to stay a free man and so, notwithstanding the big mutual attraction, which there
obviously was between us two, I decided not to do anything.

I hardly saw Julie during the next few months and then, via Dan and other
common friends, I knew that she was getting married to Gelu. And the day before
that marriage, I got a phone call from Julie who asked me to come and join her in
a neighboring public garden. So, we met that afternoon, and again I knew perfectly
well that it only depended on myself to totally change the course of events. Again
I decided to stay a free man and did not do anything. We had a long walk together,
with a big exchange of lofty ideas. Later Julie referred to that afternoon as our trip
to Africa. In fact she did ask me rather insistently to read a book, “Le Lion”, by
Joseph Kessel. I did that only much later, in my next life, and then I understood
the metaphor she had in mind that afternoon, about me (King the lion), herself (the
young girl) and Gelu (the massai warrior).

In the meanwhile, my paper was out, I became then a well-known mathematician,
so Moisil, Stoilov and the other big bosses thought it was indecent that I should
continue to be a janitor. As a little parenthesis, Moisil and Stoilov were not quite
good bed-fellows, they disliked each other, life cannot always be linearly simple.
But all that was immaterial for the matter at hand. Of course, the university could
not take me back, they thought I could have politically contaminated the students.
But in May 1960 I got a much nicer job, a purely research job at the Mathematical
Institute of the Academy. The contribution of comrade M. who had destroyed my
bad file was essential at this point. And when I left my janitor job for the new one,
the very unpleasant boss of the math society looked like a tiger from whom his meat
had been taken away.

The Mathematical Institute where I was working now, was a singularity in
communist Romania. It was the creation of Stoilov, the only one among my old
professors, of some reasonably higher mathematical quality. He had been my
complex analysis teacher, you may remember.

Like Moisil, Stoilov had always been a left-wing intellectual, then at an early
stage he joined the communists. He was high in their hierarchy and had a lot of
power too. But, just like Moisil, he used his power trying to do good, and what
those two really thought about communism in the depth of their mind, was always
a mystery to me.

At Stoilov’s Institute, everybody was free to work on what he or she liked, and
as they liked. You could come when it suited you, if it suited you, not like in any of
those regular usual jobs, which were certainly not my kind of thing. Of course, only
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people with very high motivation for mathematical research, were ever hired at this
institute. And we were fewer than 20, maybe about 15 or 16.

Every month there was a little fight with the accountant, who did not want to
pay us our salaries. According to her, being present at the institute for 8 h a day,
something which we clearly never did, was the only thing that mattered, and as far
as producing all that mathematics, about that she could not have cared less, and said
so. Every month the director, Stoilov, had to force her to pay our salaries. There was
nothing else like this, in communist Romania.

So, beginning with May 1960 I had the best job I could have wished for right
then, perfectly well suited for me. My mathematics proceeded quite well, and I had
a good number of mathematical friends, throughout the world, with most of them
I could only communicate by letters, since I could not travel to the West. Among
them was an English mathematician, Christopher Zeeman, later Sir Christopher,
whose young Danish cousin, just 2 years after my second life had started, became
my much beloved second wife, finally the good one.

The years 1959–1960 saw the glorious revolution of high-dimensional topology,
lead by Jack Milnor, Michel Kervaire, Barry, Steve Smale, John Stallings, Chris
Zeeman, and few others. I had not yet met any of these big mathematicians, it is
only a few years later that I was getting to know all of them quite well, but I had
access to their work, long before it was in print. I joined with great passion and
excitation this movement, placing myself somewhere at the border between high
dimensions and low dimensions.

Anyway, in the Spring of 1961, I could happily pursue both with my mathematics
and with my climbing, the Sun was still bright, and life looked quite good, for the
time being.

But I had a strong feeling that this situation depended of a very unstable balance,
and that it was anything but lasting. My fears were quite right. Very few years after
my departure from Romania, Ceauçescu the then dictator of the country, declared
publicly that he wanted to have a bomb explode under the Mathematical Institute,
which he claimed created disorder in his country. And he had the Institute closed
down. Those who were still working there, at that time, became either unemployed
or were given various not very pleasant jobs, maybe as a punishment for the too
good time they had before. So my fears were certainly not pure paranoia. If I would
not have gone out of Romania in time, horrible thought if any, then I would have
been caught in that big disastrous crash. I do not know, under those hypothetical
conditions, how I would fare to-day, if still alive. Anyway, occasionally, this is food
for my nightmares.

But let me go back to my main story now. L. was a very nice, sweet, beautiful
girl, but there was a little problem too. Although nothing of the kind was ever said
between us, I knew she wanted very much to get married to me. Her parents wanted
the same, and my own mother wanted that too. And I was not up to that, maybe
crudely put, I was not enough in love with L. But all this was too much for me, and
I started to feel like climbing up the walls.
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So, one afternoon during the very early days of May 1961, I went to pay a visit
to Julie, at her lab. She was by then a medical doctor, a lab-doctor. I had hardly seen
her again since our trip to Africa, the day before her marriage, about a year earlier.

And now, when I met her again, the dam finally burst and things unfolded then
very fast, all the big way through, between her and me. At the very beginning
already, I had broken with L., quite abruptly and brutally, I am sorry to say. It so
happened, by one of those accidents of chance, that L. met, face to face, with Julie
and me, in one of those gardens. And what was going on between us two, was so
crystal clear and so much beyond any shadow of doubt, that L. burst into tears,
started crying and ran away. I still feel sorry now, for the way she felt hurt and
humiliated that day. But the big irresistibly powerful torrent swept everything else
away.

A very big, passionate love affair, between Julie and myself was now on. We
were also anything but discrete, we displayed proudly and happily our love to the
Sun and to the Moon, and so we were, by then, the big talk of the whole town, but
we could not have cared less. We were madly in love with each other, and we moved
inside our private magical garden.

At this point, another very big event, so important for my life ever after, occurred
too. In those days, I was not entitled to travel to the West, although I had been by
now invited several times as a speaker at various important conferences. But I was
allowed to travel inside the communist bloc. So, in August 1961 I went to Prague, to
a mathematical meeting. And Barry, who knew I was coming, joined that meeting
too and so we finally met, for the first time. It was big friendship at first sight. We
did not need to search out and discover who the other one was. We knew already
plenty about each other, about our work, our interests and our thoughts. We became
almost instantly good friends, so it stayed for ever after, our friendship only grew
and developed. Barry IS my best friend. Of course this is by now largely part of the
story of my second life.

As I have several times noticed, the world is very small, indeed. It so happens
that L.’s mother was the accountant at one of the Institutes where Julie’s father was
the director. And about what I am going to tell you right now, I only heard later on,
after my break with L. One day, before the break in question, L.’s mother had asked
young Anna, a friend of mine who was also working at that same institute, to come
and see her. And when she did, she scolded young Anna, asking her to stay away
from me since, that is what L.’s mother said, I was promised to her daughter. She
did not dream then, what was going to happen soon.

And since L.’s mother worked at that institute, at various official occasions, L.
and Julie had actually met too. I knew these things from L., before the big irresistible
torrent had swept our poor little relation away. And Julie who always had felt like
a princess, could be very haughty, and she snubbed big little L. I do not think Julie
knew then that L. was my girlfriend. But that does not matter, one way or another,
now.

At the end of 1961, something like November 15th to December 15th, I was sent
by my Institute for a scientific visit to Moscow. In those days I could speak some
Russian, I was even able to lecture, in Russian, about my own work. My Russian
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was clumsy and stuffed with mistakes, but I was able to communicate in Russian. I
wish I could still do that to-day; but I can only read it, and with difficulty.

I was coming from another communist country and that gave me a privileged
position which a westerner, which I was not yet then, could never have had. Very
fast, I could feel where the person who was in front of me stood with respect to the
regime, and that person in front felt the same about me. So, I could speak freely with
the Russians, in a way no Westerner could have done. And I never saw anywhere
else as strong anti-communism as I saw in those Russian days of mine.

And I talked a lot with the Russian people, in the streets or in the restaurants,
where some always gathered at my table. It was the Khrushchev period when they
could not order much vodka. Since I was a foreigner I could, so I ordered for them,
and we had a very good time together. These were really bygone days, when a full
dinner on black caviar, which I very often had, costed the same price as a steak.

And this same mechanism of mutual fast recognition, followed by completely
free talk, also worked with my mathematical colleagues, and some of them became
my friends too.

I met a good number of the great luminaries, like Kolmogorov, Alexandrov,
Pontryaguine, Shafarevitch, Postnikov; I had met already earlier Sobolev, and I
knew him a bit. With more time available, there would be some interesting stories
to be told concerning him too. I must confess that when I was introduced to
Kolmogorov, I was very pleased when he immediately said he knew who I was, and
in order to show that he actually did, he started quoting some of my mathematics.
But I spent most of my time with the mathematicians of my age, Novikov, Arnold,
Anosov, Cernavski and others. Novikov and I became quite good friends, and stayed
so, afterwards.

We were all very young in those old days. I still remember how Novikov and
Arnold talked very outspokenly against the regime, so outspokenly that it did not
do them much good. I spent many hours in various Moscow cafés, together with
Serguei Novikov and some other friends, talking about mathematics and everything
else. Serguei was already working big on the invariance of the Pontryaguine classes
and I remember how 1 day he flew to Leningrad (Saint Petersburg to-day) to speak
to Rohlin, to whom he was very close. There was a rumor that Rohlin had proved
the invariance of those classes. Serguei flew back to Moscow the next day with the
news that Rohlin’s supposed proof had a big hole, and he continued to work big,
on his own. He was a very charismatic person and, in those 1961 days, possibly the
most handsome young man I had ever met. And I also remember, how many years
later, he impressed Milen with his fantastic knowledge of Scandinavian literature,
which he seemed to know better than herself.

During my Moscow trip, but also later, during my second life, I heard from
Serguei a lot of very interesting stories concerning the KGB, and also about the
fates of the people whom the KGB interrogated. He thought that only very few
of them managed to survive in one piece, without being permanently damaged.
He mentioned Sakharov and Solzhenytsin among the rare happy exceptions. But
most were destroyed in the process, and with quite many, something very strange
happened. They were turned, they went on the side of their tormentors and joined
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them. They had gotten somehow to like them. Human mind is a complicated and
strange thing.

Serguei thought that Shafarevitch was a case all by himself, in addition to these
KGB incidences. As a very young mathematician, he got a big prize for his solution
of the inverse Galois problem. But then, in later years, he or one of his students,
found a big hole in that supposed proof. And Shafarevitch suppressed this fact, both
publicly and in his own mind. And from there on, he started doing really weird
things.

I was often invited to Serguei’s home, where I was always very nicely received by
his mother, Ludmila Keldysh, the Tartar princess, a very distinguished mathemati-
cian herself. I did not meet the father, Piotr Sergueevitch, of Word problem fame,
an item in which I was myself involved then and quite for some time afterwards, in
my second life. You may remember that the big discovery of Novikov father was
the following item, which I will tell here in a popular form. He found a finitely
presented group, the explicit rules of the game of which can be written down on
one single page (or less), which you can easily feed into your lap-top, but which is
such that no Turing machine can ever unravel all its mysteries, hence no imaginable
computer, classical or quantum, can either, ever. This is something very close to my
heart and which my mathematics several times touched.

Unfortunately, I could not meet Piotr Sergueevitch because at the time of my
Moscow trip he was in a hospital, for a cure of alcoholic desintoxication.

My Moscow trip was one of those things which I could not easily forget. Then,
in the Summer of 1962, Ludmila Keldysh, through her brother Mstislav Keldysh,
Serguei’s uncle, the then president of the Soviet academy, and a very big shot in
the Soviet Union, started to make official arrangements for a very extended visit of
mine to Moscow, beginning with the Fall of 1962. But Fate had decided otherwise.

Some time in January 1962, my friend Ganea told me that he had gotten the exit
visa from Romania, and asked me what my own plans were. At that time, Jews like
Ganea could be bought out of Romania, sometimes other people too. Ganea thought
that it would be a very bad idea for me to continue to rot in that country where I
was living then, and very helpfully, he went to the Jewish organization, of which his
father had been the president earlier, and asked whether I could be added on their
lists, as some sort of a honorary Jew, so that I could leave Romania that way. Since
that turned out to be impossible, he came back with a half-joke: Why don’t you just
marry my mother, he said, and then come out with us? This was pure Ganea!

A more practical idea was that, if I wanted, he could organize for me to be bought
out, just like he was being bought out then. Since I had not yet made up my mind and
since he was leaving that next week, we devised the following plan. If and when, at
some later time, I would decide to go, then I should write a mathematical letter to
a common mathematical friend, Peter Hilton from Birmingham, a letter containing
a subtle mathematical error which only somebody very familiar with my own work
could detect as such, and which the censorship hence could not decode.

Although what will immediately follow now concerns the very beginning of my
second life, I have to tell it here, because it is about how Ganea saved me from a very
dangerous situation, in the beginning of September 1962. I had just left Romania,
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and how that came about I will tell you soon. I had landed in Stockholm and at
the time of the little incident to be told about now, I had been there already for a
few weeks. What happened during those weeks was quite eventful but I will not tell
about that now.

I was now completely alone in Stockholm, living in the flat of a Swedish-
American friend, himself away on vacation. I had plenty of money too, and there was
no problem as far as that was concerned. But, in a nutshell, here was my situation,
on a very precise day, that month of September: the bridges back to Romania were
certainly burned, my provisional permit for staying in Sweden had expired, and
although quite friendly, the Swedish police had made it very clear that they did not
want me to ask for political asylum in their country and, finally, my visa for France
had just been refused. The French police thought that I was a spy. So, at that very
instant, it looked as if there was no corner of the planet, where I could safely be.

I sent a desperate telegram to Ganea, in Paris, asking for help. And Ganea went to
Charles Ehresmann, who he knew wanted very much that I should settle in France.
Ehresmann went to the minister of police and talked to him and then in less than
24 h I had my visa for Paris. This really was the end of my escape from Romania.
My friendship with Ganea continued big, and I was very saddened when some years
later he died of a very nasty cancer. But this is no longer part of the present story, to
which we move back now.

At the very beginning of the Spring of 1962, Julie’s parents were faced with
the following situation. Their daughter who had already left her husband and was
staying again with them, wanted to get a divorce and move in with her lover,
meaning with me, while at the same time their son-in-law Gelu threatened with
suicide. So Julie’s father decided that he wanted to know more about me, before
anything else. And it is Julie who told me what follows next.

In his position, Julie’s father could use the Romanian secret police (the famous
Securitate) as in a Western country one might use some private detectives. Few
weeks later, the Securitate came with their answer: Comrade, they said, you cannot
let your daughter go with that man, he is crazy! Julie’s family strongly vetoed then
the whole thing.

Julie was a very romantic person, and she often had said that if for some reason
we two got separated, then she would go to a nunnery and become a nun, while I
should join the Foreign Legion, an idea which I had sometimes toyed with.

Then, in May 1962 I sent that famous letter to Peter Hilton, and about that same
time I got an invitation as a speaker at the International Congress of Mathematicians,
in Stockholm, August 1962; that is a kind of event happening every fourth year. I
had never been allowed to go to the West before and I did not think there would be
any reason for them to let me go now. What I did not know then, was that the buying
out system was finished, at least for non-Jews and also that via Ganea and Hilton,
many western colleagues knew by then that I wanted to leave Romania.
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Actually, at the time when I wrote that letter to Peter Hilton, certain things had
maturated and crystalized in my mind too, and I was burning now with a big desire
to go. I also knew that this step was crucial for my mathematics, and that was what
mattered most for me, it was more important than anything else. Mathematics was
and is, my big passion in life.

Julie’s father had never liked me, but her mother Raia rather did. And Raia was
a woman who yielded a lot of power, and she had very long arms. Several of her
relatives were in high positions in various communist parties, in various countries,
on both sides of the Iron Curtain. A cousin of her’s for instance, was one of the
big bosses of the French communist party. And here comes something which I
understood only much later: Raia devised a plan for getting us all out of the dead
end, namely to have me shipped away. Like Julie, Raia knew that if I got to the
West, then I would never come back to Romania, and she also knew that I had
an invitation for Stockholm. So, she put pressure on the man who was the head
of the communist party organization of the Academy, that institution of which my
own Institute depended, a man who had never met me, and asked him, or maybe
forced him, to vouch for me, and guarantee that I would return, if allowed to go to
Stockholm. So he did, and as a consequence he lost his job.

Then, to everybody’s surprise, mine included, I did get that permission and visa
too, to go to the conference in Stockholm. And about twenty people knew, because
I had told them, that I would not return from Stockholm, but leave Romania forever.
These twenty or so included, of course Julie, my very close friends and my mother.
But they also included some others, of various ages and genders. I obviously had
made a good choice in trusting those twenty people, they were all loyal to me, and
nobody gave me in. I am also sorry to have to tell you that some relatives of mine
were mortally offended forever, because I had not told them. But I had made a choice
anyway.

And, maybe I was crazy, as that police report claimed. I was certainly recklessly
incautious when I took with me on that plane to Stockholm, two big suitcases,
supposedly for 10 days. They contained, among other things, my complete archives,
dangerous stuff would I have been searched. And in those archives, basically by
chance, mixed up with other papers, was my divorce certificate. Few weeks before,
my ex-wife Sanda, who had just received it, had handed it casually to me, saying
that I might need it. Sanda was not included in that list of twenty people who knew,
and she did not have the foggiest idea that I would never return; like most people in
town she thought that I was much too unpractical to be able to manage alone, all by
myself, in a foreign land. When she said that I might find that certificate useful, what
she had in mind was, undoubtedly, me and Julie. And what Sanda did not know and
what myself I could not have dreamt then, was how badly that divorce certificate
turned out to be actually needed, but now in that second life of mine.

The 14th of August 1962, at 6 am, I flew away from Romania. And then I got
reborn for my next, second life.
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I felt an urge to write all these things down, after a Fijian night when, with a mere
fortnight before my eightieth birthday, the long-forgotten memories started bubbling
in my mind, and the words to tell them started to get organized in my head too, just
by themselves, with me as a mere spectator.

And after having told you all of this, I feel now like I am coming back from
the land of the dead, from the dead times and from the dead by-gone world. I must
confess that I feel a bit shaky.
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A Little Side-Story
– In Lieu of a Short Story Inside the Bigger Tale –

In my youth, when I was eagerly reading those big writers of old, I loved their
shorter stories inside the main stories. But, unlike Cervantes or Dostojevski, what
I will offer you now, will be not something inside my main story, but a little aside,
which you may take with you if you like to do so, or leave.

I have often been thinking about Winston Churchill. You see, I am not a historian,
I have already told you that, and so I can indulge in playing with history, in a way
no professional historian could do, for so obvious reasons.

You might remember that our Winston Churchill, was the grand-grand-grand-son
of John Churchill, first Duke of Marlborough, who together with prince Eugenio di
Savoia, the Austrian general, stopped the villain of Europe of those days, Louis the
fourteenth of France, at Blenheim, about 300 years ago. You may also remember
that Blenheim is located in the Black Forest, der Schwarzwald, that place where
both the Rhine and the Danube have their sources so close to each-other.

The reason why I mention the old Duke now, is because our Churchill often
identified himself with his illustrious ancestor and in more than one way, the first
Duke had always loomed big in his mind.

Churchill has done a lot of mistakes and said a lot of stupid things during his life,
that is the kind of things which most of us do. But there was one big historical instant
when he rose above all of us, or at least above most of us. That was in the Summer of
1940, when our kind of world was crumbling and when, almost single-handedly and
against all odds, Churchill stood between Hitler and that victory of Hitler’s which
seemed then so close at hand. Churchill decided that his island would not raise hands
up, but rather fight to death, to the bitter end.

At that time, many of the other British politicians of the day, would have rather
wanted to talk to Hitler, see what he wanted, maybe some arrangement or other
could be found, that is what they hoped. Churchill strongly disagreed, he did not
want to go on that slippery slope, that is what he said. And it was so fortunate that
it was Churchill who was the British PM and not, let us say somebody like Lord
Halifax, bringing with him his underling and accomplice Rap Butler. And in May
1940, when history bifurcated, it was almost by chance that it was Churchill who
became the PM, and not the Halifax in question.

Churchill could not beat Hitler then, of course, but he could prevent him from
winning, and as we all know, Hitler eventually lost his war. It is fair to say that
Churchill has saved us all at that time.

I have also dreamt a lot about the same Churchill, at an earlier age, and during
an earlier war. He was then the First Lord of the Admiralty, with at his side Jacky
Fisher, the foremost fighting sailor since the days of Horatio Nelson, of Trafalgar
fame. Fisher was Churchill’s First Sea Lord; you see, I am very much at home with
the complicated arcanes of the British hierarchy.
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The two of them, Churchill and Fisher, devised a master plan to end the war fast,
the Gallipoli campaign, sometimes referred to as the Dardanelles, and also called by
those Brits of that day, imbued with classical culture, the Hellespontus.

Sadly for all of us, the Gallipoli campaign in question was a total failure. One of
the many reasons for that failure, was that, by then Fisher was too old, in point of
fact he was younger than I am now, but then almost everybody is so, and he got cold
feet.

But if the Gallipoli campaign, which I so often have dreamt about, would have
succeeded, then nobody to-day would have ever heard neither about Hitler, naziism
and fascism, nor about Stalin and communism. You have understood by now, from
my main story, that those beasts of the Apocalypse haunted so big the dark times of
my childhood and youth.

And I sometimes also dream that I can break away from the prison of time, get
together with Churchill and have a nice long chat with him, about history and other
things, in front of a bottle of good champagne, his preferred kind of wine, which I
do not dislike either. We might have a very good time together, or at least so I think.

Orsay, France Valentin Poénaru
October 2012

2017: I thank Cécile Gourgues for typing this text.
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