
Chapter 7
Reaching the Unphysical Riemann
Sheets. A Nonlinear Integral Equation
to Calculate a PWA

Now, let us discuss how to proceed to calculate the T matrix of PWAs in an unphys-
ical Riemann sheet (RS). In order to give a general discussion let us use a generic
parameterization for a T matrix by explicitly isolating the RHC. Performing a DR
of the inverse of the T matrix by employing Eq. 2.51 we have

TL(s)
−1 = NL(s)

−1 + a(s0) − s − s0
π

∫
sth

ρ(s ′)ds ′

(s ′ − s0)(s ′ − s)
, (7.1)

TL(s) = [NL(s)
−1 + g(s)

]−1
. (7.2)

where we have included a subtraction at s0 because ρ(s) tends to constant as s → ∞.
HereNL(s) is a matrix that only has crossed-channel cut (although it could also have
CDD poles). In the limit in which crossed cuts are neglected this function and the
N (s) function of the N/Dmethod can bemade to coincide. In addition, the dispersive
integral plus the subtraction constant a(s0) (so that the result is independent of the
subtraction point s0) is denoted by g(s). The matrices g(s) and a(s0) are diagonal
(recall that ρ(s) is a diagonal matrix), whose matrix elements are explicitly,

gi (s) = ai (s0) − s − s0
π

∫ ∞

sth;i

ρi (s ′)ds ′

(s ′ − s0)(s ′ − s)
. (7.3)

Notice that if the only singularities of TL(s)i j were a RHC, a LHC, and possible
poles in between the two cuts, and if it were furthermore bounded in the com-
plex s plane by some power of s for s → ∞, we could then apply the Sugawara–
Kanazawa theorem, Chap. 4. This is clear because from unitarity we have that
Ti j = (Si j − 1)/

(
2iρ1/2i ρ

1/2
j

)
, |Si j | ≤ 1, and we would expect for the case of finite-

range interactions that Si j tends to a definite limit for s → ∞ + iε (let us note that
the Schwarz reflection principle is fulfilled by the PWA). We could then conclude
from the application of the Sugawara–Kanazawa theorem that Ti j (s) would tend to
constant for s → ∞, like (Si j (∞ + iε) − 1)/(2iρi (∞ + iε)1/2ρ j (∞ + iε)1/2) for
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s, s > 0(a)

s, s < 0

(b)

Fig. 7.1 Contour deformation (thick solid line) for reaching the second Riemann sheet of the
function gi (s) by crossing the RHC from top (a) to bottom (b). The deformation of the integration
contour results in order to avoid the pole singularity of the integrand in Eq. (7.3) at s′ = s, for s ∈ R

and s > sth;i . Subsequently the process continues to further avoid the crossing of the pole at s in
the integrand with the deformed contour when moving deeper in the complex s plane. This figure
could be seen also as a way to reach the first Riemann sheet from the second one by crossing again
the RHC from the later (a) to the former (b). Of course, the RHC could also be crossed from bottom
to top, with the deformed contour being the mirror image of the one pictured in (b)

�s > 0 and like its complex conjugate for �s < 0. Nonetheless, in practical applica-
tions we have to handle, at least at the effective level, with singular interactions for
which the PWAs are not bounded in the complex s plane. For examples the interested
reader might consult Ref. [7], where a formula is derived that allows to calculate the
exact discontinuity of a PWA along the LHC both for regular and singular poten-
tials. For the latter ones, the modulus of this discontinuity diverges stronger than any
polynomial of s for s → −∞. Therefore, the Sugawara–Kanazawa theorem does
not apply in this case and Ti j (s) is divergent for s → ∞, as the explicit calculation
of the discontinuity along the LHC shows.

The Eq. (7.2) gives TL(s) in the first Riemann sheet. In order to reach resonance
poles we should consider the T matrix in unphysical Riemann sheets as well. This
is accomplished by performing the analytical continuation of the different matrix
elements of the diagonal dispersive integral in Eq. (7.1). The function gi (s) has a
branch-point singularity at the ith threshold sth;i and a cut starting from this point
that we take along the positive real s axis, that is, a standard RHC or unitarity cut.
Now, in order to reach the second Riemann sheet of gi (s) one should cross the
RHC and proceed by analytical continuation to the second Riemann sheet. This
analytical continuation can be accomplished by deforming the integration contour
[2] as depicted in Fig. 7.1.

We then have to add to gi (s) the result of the integration along the closed integra-
tion contour around s. Thus, if we denote by gI I ;i (s) the gi (s) function in the second
Riemann sheet we have the relation

gI I ;i (s) = gi (s) − 2iρI I ;i (s) = gi (s) + 2iρI ;i (s) , (7.4)
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where the function ρI ;i (s) in the complex s plane is

ρI ;i (s) = 1

16π

√
λ(s,m2

1,m
2
2)

s2
, (7.5)

with the square root
√
z taken in its first Riemann sheet and defined as having a RHC,

that is, with argz ∈ [0, 2π[. Notice, that the minus sign in the term after the first equal
sign in Eq. (7.4) is due to the fact that ρI I ;i (s) is the same function as ρI ;i (s) but
defined in its second RS (the procedure of analytically continuing an integral by
deforming its integration contour requires using the integrand analytically continued
to its corresponding Riemann sheet).

The Eq. (7.4) also shows that this is a two-sheet cut, because by crossing again
the RHC we would have to add +2iρI ;i (s), because of the addition of the circle
to the integration contour, but this time added to gI I ;i (s) = gi (s) + 2iρI I ;i (s) (the
square-root function ρI ;i (s) in Eq. (7.4) is also analytically continued to its second
Riemann sheet). Then, the extra terms cancel and we come back again to gi (s) in the
first Riemann sheet. This analysis shows that the RHC is a two-sheet cut and because
of this the different Riemann sheets can be characterized as the Riemann sheets of
the square root present in the definition of the CM three-momentum p,

p(s) = ±
√

λ(s,m2
1,m

2
2

4s
. (7.6)

Our convention to nominate all the possible 2n RS for a scattering process with n
channels is the following. The physical or first Riemann sheet (RS) corresponds to
take the plus sign in all the channels, (+,+, . . .), the second RS to take the minus
sign in the first channel, (−,+, . . .), the third RS to (+,−,+, . . .), the fourth RS
to (−,−,+, . . .), etc. Thus, before we flip the sign of the m th channel we have
2m−1 RSs.

We now discuss a DR for NL(s) following the derivation of Ref. [8]. This rep-
resentation also provides a nonlinear IE for NL(s). To simplify the discussion we
consider an uncoupled PWA taken as a function of the CM three-momentum squared,
p2. This is done so as to avoid the circular cuts for unequal mass scattering, §1.1
of Chap. 8 in Ref. [5], so that TL(p2) has only a LHC and a RHC. The procedure
discussed could be generalized straightforwardly to coupled PWAs.

From Eq. (7.2) we have that �N (p2) satisfies along the LHC (we omit the sub-
script L to shorten the writing),

�T (p2) = � 1

N (p2)−1 + g(p2)
= − �N (p2)−1

|N (p2)−1 + g(p2)|2 = �N (p2)
|T (p2)|2
|N (p2)|2 .

(7.7)
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Therefore,

�N (p2) = |N (p2)|2
|T (p2)|2 �T (p2) (7.8)

= ∣∣1 + g(p2)N (p2)
∣∣2 Δ(p2) , p2 < p2Left .

Here, we have introduced the function Δ(p2) defined as

Δ(p2) = �T (p2) , p2 < p2Left , (7.9)

where p2Left is the upper bound of the LHC. Assuming that N (p2)/p2n vanishes for
p2 → ∞ we can write an n-times subtracted DR for N (p2),

N (p2) =
n−1∑
m=0

am p
2m + p2n

π

∫ p2Left

−∞

∣∣1 + g(q2)N (q2)
∣∣2 Δ(q2)dq2

q2n(q2 − p2)
. (7.10)

This is a nonlinear IE which input is the knowledge of Δ(p2) along the LHC. In
terms of this DR we can write for T (p2),

T (p2) =

⎡
⎢⎢⎣

⎛
⎜⎝

n−1∑
m=0

am p2m + p2n

π

∫ p2Left

−∞

∣∣∣1 + g(q2)N (q2)
∣∣∣2 Δ(q2)dq2

q2n(q2 − p2)

⎞
⎟⎠

−1

+ g(p2)

⎤
⎥⎥⎦

−1

.

(7.11)

In this form the subtraction constants am can be determined in terms of physical
parameters of the T matrix, e.g., by fitting phase shifts, reproducing the effective
range expansion (ERE) shape parameters, etc.

The Ref. [8] also shows that T (p2) is independent of the subtraction constant
in g(s). We reproduce here the arguments given in this reference and, as there, we
take only one subtraction constant in N (p2), which is enough for illustrating the
point. We perform a DR for T−1(p2) taking into account the RHC and LHC with an
integration contour that consists of a circle at infinity that engulfs the two mentioned
cuts. We use that the �T (p2)−1 along the RHC is −ρ(p2), Eq. 2.51. Then, one has

T−1(p2) = β − p2

π

∫ ∞

0

ρ(q2)dq2

q2(q2 − p2)
+ p2

π

∫ p2Left

−∞
Δ(q2)dq2

|T (q2)|2q2(q2 − p2)
+ R(p2) ,

(7.12)

where R(p2) is a rational function taking care of the possible zeroes of T (p2) and
that it does not play an active role in the considerations that follow. It is clear from
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the previous equation that there is only one free parameter (subtraction constant) to
be determined, β, even though we could split it in two constants and add one of them
to the integral over the RHC. The sum of this constant plus the RHC integral is the
unitarity function g(s). Thus, the inclusion of a subtraction constant in g(p2) appears
just as a matter of convenience.
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