
Chapter 3
Crossing. Crossed-Channel Singularities

From perturbative QFT it is clear that a generic quantum filed φi (x) contains both
the annihilation operators of a type of particles and the creation operators of the
corresponding antiparticles [4]. The former term is multiplied by the space-time
factor exp(−i px) while the latter is so by exp(i px). To get the basic idea involved
in crossing let us consider that the field has spin zero. Therefore, the same vertices
in a given scattering process can be associated with a particle of four-momentum p
or with an antiparticle with four-momentum −p and viceversa. This implies that if
we have a scattering amplitude of the form

a1(p1) + a2(p2) + · · · → b1(p
′
1) + b2(p

′
2) + · · · (3.1)

the same scattering amplitude governs any other process in which one or several
particles are changed from initial/final to final/initial and at the same time there is a
flip in the global sign of the four-momenta. For instance, for the previous reaction
we could have many others related by crossing, in particular

a1(p1) + a2(p2) + · · · + b̄(−p′
1) → b2(p

′
2) + · · · (3.2)

where the bar indicates the corresponding antiparticle. This is the basic content of
crossing.

Let us particularize crossing to the two-body scattering a + b → c + d. We can
then distinguish the following related processes:

a(p1) + b(p2) → c(p3) + d(p4), (3.3)

a(p1) + c̄(−p3) → b̄(−p2) + d(p4), (3.4)

a(p1) + d̄(−p4) → c(p3) + b̄(−p2). (3.5)

From top to bottom, these processes are referred to as s-channel, t-channel and
u-channel, in order. We also denote the s-channel as the direct one while the
t- and u-channels are also called crossed channels.Apart from the processes indicated
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in Eqs. (3.3)–(3.5), there are other three processes in which instead of exchang-
ing b(p2) → b̄(−p2) from the initial to the final state, we could also exchange
a(p1) → ā(−p1). These processes can also be obtained by CPT invariance from the
ones shown in these equations.

Under the exchange of signs in the four-momenta, the s, t and u variables for
every channel are related. Let us designate with a subscript t and u the Mandelstam
variables for the t- and u-channels, respectively. Then we have for the t-channel:

st = (p1 − p3)
2 = t, (3.6)

tt = (p1 + p2)
2 = s,

ut = (p1 − p4)
2 = u, (3.7)

and for the u-channel the relations are

su = (p1 − p4)
2 = u, (3.8)

tu = (p1 − p3)
2 = t,

uu = (p1 + p2)
2 = s. (3.9)

The physical regions for these processes are disjoint. To simplify the discussion let
us take that the four particles have the same mass m, e.g., this is the case of ππ
scattering. The s, t and u variables are given in the CM by

s = 4(m2 + p2), (3.10)

t = −2(s/4 − m2)(1 − cos θ),

u = −2(s/4 − m2)(1 + cos θ),

with θ the scattering angle. Fromherewe see that the physical region for the s-channel
comprises the domain

s ≥ 4m2, (3.11)

t ≤ 0,

u ≤ 0.

For the other channels the same values take place in terms of the variables with the
subscripts. Thus, for the t-channel

t = st ≥ 4m2, (3.12)

s = tt ≤ 0,

u = ut ≤ 0.
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In turn for the u-channel,

u = su ≥ 4m2, (3.13)

s = uu ≤ 0,

t = tu ≤ 0.

For the equal-mass case we have the relation, cf. Eq. (2.4),

s + t + u = 4m2. (3.14)

Therefore, only two of the three variables are independent.
Analyticity assumes that the scattering amplitudes in the three disjoint physi-

cal regions for the s-, t- and u-channels are given by the same analytical function
A(s, t, u) of s and t [u is then given by Eq. (3.14)]. The physical values for the
different channels correspond to boundary values of this analytic function.

In particular, if we take a constant value of t the unitarity cut associated with the
normal cuts in the u-channel, cf. Eq. (2.5), gives rise to a new cut in the complex s
plane apart from the s-channel unitary cut. This is a simple example of a crossed-
channel cut (also called unphysical cut, because it involves unphysical values of
the Mandelstam variables in the s-channel) arising from a branch point singularity
attached to a two-body threshold. In particular, this cut runs for u ≥ 4m2 so that it
correspond to the s values

s = 4m2 − t − u ≤ −t, (3.15)

and for s ≥ 4m2 we have the s-channel unitary cut.
For particles with spin the analytical continuation of the scattering amplitude in

the complex s and t planes is more involved due to the presence of kinematical
singularities, whose origin is not dynamical, like the unitarity cuts in the s or crossed
channels. They have to do with the solutions of the relativistic equations for the
particleswith spins, like the spinors for spin 1/2. For a general account on kinematical
singularities we refer to [12, 13].

A possible way to deal with the kinematics singularities is to isolate Lorentz
invariant functions out of the scattering amplitudes. For instance, let us consider the
process πa(q)N (p,σ;α) → πa′

(q ′)N (p′,σ′;α′), where a and a′ denote the Carte-
sian coordinates in the isospin space. In terms of them the charged pions correspond
to the combination

∑

a

πaτ a

√
2

=
(

π0√
2

π+

π− − π0√
2

)
. (3.16)

First, the scattering amplitude contains two invariant isospin amplitudes correspond-
ing to I = 1/2 and 3/2, because the pions are isospin 1 particles and the nucleons
have isospin 1/2. Any matrix in the isospin 1/2 space of nucleons can be expressed
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as a superposition of Pauli matrices τ a and the 2×2 identity matrix. Given two pions
with indices a and a′ the tensors with good properties under isospin rotations at our
disposition are δaa′ and [τa, τa′ ].1 In this way we write,

Taa′ = δa′aT
+ + 1

2
[τa, τa′ ]T−. (3.17)

In turn the two amplitudes T± are operators acting in the space of the Dirac spinors
and can be written as a linear combination of the 16 linearly independent matrices
I , γμ, σμν , γ5 and γ5γ

μ with the Lorentz indices contracted with four-momenta. The
matrices γ5 and γ5γ

μ would violate parity and they do not appear. The set σμν does
not appear either because of the Gordon identity,2 which implies that it does not
give rise to any independent structure apart from the ones already accounted for by
the identity matrix and γμ. Taking also into account that p/u(p,σ) = mu(p,σ) and
ū(p′,σ′)p′/ = mu(p′,σ′), we arrive to the standard form [12]

T± = ū(p′,σ′)
[
A±(s, t, u) + 1

2
(q/ + q ′/)B±(s, t, u)

]
u(p,σ). (3.19)

The analytical properties of the Lorentz invariant functions A± and B± are essentially
the same as those of the scattering amplitude for scalar particles. The other factors in
Eq. (3.19) have to be taken into account in establishing relations between analyticity
and experimental results.

The crossed-channel poles, corresponding to poles in the crossed t- andu-channels
for certain real values of t or u, in order, give rise to crossed cuts in the complex s
plane of partial-wave amplitudes. For instance, consider the u-channel proton pole
in π−n → π−n scattering (in this sense these poles are called “bound states”, even
though they could be elementary states or composite of other degrees of freedom
[14]). Such a pole gives rise to a crossed cut in a given partial wave. For pion–nucleon
scattering in the CM the u variable is given by (m and mπ are the nucleon and pion
masses)

u = m2 + m2
π − 2ωE − 2p2 cos θ. (3.20)

In this equation E and ω are the nucleon and pion CM energies, respectively. When
performing the partial-wave projection the scattering angle is integrated and cos θ ∈
[−1, 1]. Thus, setting u = m2 in Eq. (3.20) and expressing ω, E and p2 in terms of s,

1No tensor of rank should 2 be considered because its combination with an isospin 1/2 cannot get
rise to an isospin 1/2.
2The Gordon identity establishes that

ū(p′,σ′)γμu(p,σ) = 1

2m
ū(p′,σ′)

[
(p′ + p)μ + iσμν(p′ − p)ν

]
u(p,σ). (3.18)
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ω = s + m2
π − m2

2
√
s

, (3.21)

E = s + m2 − m2
π

2
√
s

,

p2 = λ(s,m2,m2
π)

4s
,

λ(s,m2
1,m

2
2) = (s − (m1 + m2)

2)(s − (m1 − m2)
2),

with λ(s,m2
1,m

2
2) the Källén triangle function, we have the following solutions for

s as a function of x = cos θ,

s1(x) = m2x + m2
π(1 + x) − √

m4 + 2m4
π(1 + x) + 2m2m2

π(−1 + x + 2x2)

1 + x
,

(3.22)

s2(x) = m2x + m2
π(1 + x) + √

m4 + 2m4
π(1 + x) + 2m2m2

π(−1 + x + 2x2)

1 + x
.

The first solution s1(x) gives always a cut along the negative real axis because the
radicand is larger than the squared of the the terms in the numerator before the square
root [their difference is (1 − x2)(m2 − m2

π)
2]. Incidentally this also shows that the

radicand is always positive for any values of the masses and x ∈ [−1, 1]. Its upper
limit happens for x = 1 and it is zero, while its lower limit is −∞ because (1 + x)
in the denominator tends to zero for x → −1. This is a clear example of a left-hand
cut (LHC). Regarding s2(x), this implies a finite cut which ranges along the positive
real axis with values from (m2 − m2

π)
2/m2 up to m2 + 2m2

π.
The analysis for ππ scattering is simpler because the two-pion cut along the

t-channel and u-channel happens for t = −2(s/4 − m2
π)(1 − x) ≥ 4m2

π and u =
−2(s/4 − m2

π)(1 + x) ≥ 4m2
π . Solving s in terms of x we find that both cases give

rise to LHCs with s ∈] − ∞, 0] when x moves along [−1, 1].
In the case of a nonrelativistic theory, the quantum fields only involve annihilation

operators (or creation ones for the Hermitian conjugate field, Chap. 5 of Ref. [3])
and crossing does not operate. Nonetheless, there is still a LHC in this case due to
the particles exchanged that give rise to the potential. For instance, let us consider a
Yukawa potential

V (r) = α
e−rmπ

r
. (3.23)

Its Fourier transform is

V (q2) = α

∫
d3re−iqr e

−rmπ

r
= 4πα

q2 + m2
π

, (3.24)
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where q = p′ − p is the three-momentum transfer. Its angular projection for particles
without spin is simply

VJ (p, p
′) = 1

2

∫ +1

−1
d cos θ V (q2) PJ (cos θ) (3.25)

= − πα

pp′

∫ +1

−1
d cos θ

PJ (cos θ)

cos θ − (p2 + p′2 + m2
π)/(2pp′)

.

The LHC results by the vanishing of the denominator. Thus, in order to study its
appearance we isolate the term that produces it by proceeding as follows:

VJ (p, p
′) = − πα

pp′

∫ +1

−1
d cos θ

PJ (cos θ)

cos θ − ξ
= − πα

pp′

∫ +1

−1
d cos θ

PJ (cos θ) − PJ (ξ)

cos θ − ξ
(3.26)

− πα

pp′ PJ (ξ)

∫ +1

−1

d cos θ

cos θ − ξ
,

with

ξ = p2 + p′2 + m2
π

2pp′ . (3.27)

The term before the last one in Eq. (3.26) does not give rise to the LHC because
when the denominator vanishes the numerator also does. Therefore, the last term
is the only one responsible for the LHC and the integration over cos θ can be done
explicitly with the result

− πα

pp′ PJ (ξ)

∫ +1

−1

d cos θ

cos θ − ξ
= − πα

pp′ PJ (ξ)
[
log(1 − ξ) − log(−1 − ξ)

]
. (3.28)

Now for real and positive p and p′ we can rewrite the difference of logarithms in the
last term as

πα

pp′ PJ (ξ)
[
log((p + p′)2 + m2

π) − log((p − p′)2 + m2
π)

]
. (3.29)

This expression is specially suitable for performing the analytical continuation to
complex values of p and p′ and so determine the position of the cuts, as fully exploited
in Ref. [7]. The point is that the cuts in the p variable for given p′ occurs when
(p + p′)2 + m2

π < 0 (first logarithm) or (p − p′)2 + m2
π < 0 (second logarithm).

This implies the vertical cuts

p = (±)p′ ± i
√
m2

π + x2, x ∈ R, (3.30)
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with the first ± symbol uncorrelated with the second one. An analogous reciprocal
relation exists for the cuts in the variable p′ for a given p. The cuts for on-shell
scattering, p = p′, result from the only meaningful equation then, by taking the
minus sign between brackets in Eq. (3.30),

p = −p ± i
√
m2

π + x2. (3.31)

Its solution gives

p = ± i

2

√
m2

π + x2, (3.32)

and for the variable p2 we have a cut for the values

p2 ≤ −m2
π

4
. (3.33)

This is the LHC that occurs in nonrelativistic nucleon–nucleon (NN ) scattering [7].
The NN partial waves are function of the variable p2 because by imposing parity
invariance of the T matrix,

PT P = T, (3.34)

in the equation that gives the projection onto the partial waves, Eq. (2.46), one easily
deduces that

Ti j (−p) = η2(−1)�i+� j Ti j (p) = Ti j (p),

(3.35)

becauseYm
� (−p̂) = (−1)�Ym

� (p) and P|p,σ1σ2,α1α2〉 = η| − p,σ1σ2,α1α2〉, with
η the intrinsic parity. We can write η2(−1)�i+� j = +1 because parity is a good quan-
tum number and partial-wave states with different parity are not connected by time
evolution.
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