
Chapter 17
An Example of Application of Analyticity
in the Nuclear Medium: The Nuclear
Energy Density

In this section, following Ref. [8], we apply DRs to calculate the nuclear-matter
energy density, E , as a function of the Fermi momenta for the protons and neutrons,
ξp and ξn , respectively. Ref. [8] evaluates the contributions to the energy density
of the nuclear medium up to and including NLO in the in-medium chiral counting
developed in Ref. [109]. The different contributions are represented in Fig. 17.1.
Without entering in the details of this in-medium chiral power counting, for what
we refer to the latter reference, we focus our attention here to the contributions
that generally stem from the iteration in the nuclear medium of the two-nucleon
interactions, represented by the diagrams (c.1) and (c.2) in Fig. 17.1. The former
corresponds to the direct NN interactions (Hartree diagrams) and the later to the
crossed ones because of the Fermi statistics (Fock diagrams).

The contribution from the sum over the kinetic energies of the nucleons is given
by the diagram (a) of Fig. 17.1, it is denoted by E1 and its expression is

E1 = 3

10m

(
ρpξ

2
p + ρnξ

2
n

)
, (17.1)

where ρp and ρn are the proton and neutron densities. The latter read in terms of the
corresponding Fermi momentum ξi ,

ρi = 2
∫

d3k

(2π)3
θ(ξi − |k|) = ξ 3

i

3π2
, (17.2)

with i = 1(2) for the proton(neutron). Themagnitude ofE1 is suppressedwith respect
to its chiral order because it is divided by the relatively large nucleon mass. It is a
contribution of recoil nature.

For the analysis of the rest of contributions in Fig. 17.1 we need to discuss the
nucleon propagator in the nuclear medium with four-momentum k, G0(k). It can be
written as [8, 110]
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G0(k) =
(
1 + τ3

2
θ(ξp − |k|) + 1 − τ3

2
θ(ξn − |k|)

)
1

k0 − E(k) − iε

+
(
1 + τ3

2
θ(|k| − ξp) + 1 − τ3

2
θ(|k| − ξn)

)
1

k0 − E(k) + iε
. (17.3)

In this expression E(k) is the nucleon energy, E(k) = √
m2 + k2 (we take the isospin

limit for vacuum dynamics), and the τi are the Pauli matrices. We can also rewrite
equivalently the nucleon propagator in Eq. (17.3) by doing the transformation 1/(x −
iε) = 1/(x + iε) + 2iπδ(x), with x → k0 − E(k). It then reads,

G0(k) = 1

k0 − E(k) + iε
(17.4)

+ i(2π)δ(k0 − E(k))

(
1 + τ3

2
θ(|k| − ξp) + 1 − τ3

2
θ(|k| − ξn)

)
.

The first term is the free part of the propagator and the second one is the in-medium
one. The latter one is also indicated as an in-medium insertion of a baryon propagator,
or simply as an in-medium insertion. In Feynman diagrams an in-medium part of the
nucleon propagator is depicted by a thick line, the free part by a line with a slash, and
the full in-medium propagator is drawn by a plain line. The one-baryon propagator in
Eqs. (17.3) and (17.4) is given in a matrix notation, while its components are denoted
by G0(k)i .

The contribution (b) in Fig. 17.1, E2, arises from the nucleon self-energy due to
a pion loop. It entails only one in-medium insertion, because a contribution with
two in-medium insertions is already accounted for by the diagram (c.2) [due to the
isovector nature of the pion–nucleon coupling there is no one-pion loop (c.1)-like
diagram for this case]. We denote by 
π

f the nucleon self-energy in vacuum by a
pion loop, which expression reads [8, 111]


π
f (k) = 3g2Ab

32π2 f 2π

[

−ω + √
b

(

i log
ω + i

√
b

−ω + i
√
b

+ π

)]

− 3g2Am
3
π

32π f 2π
, (17.5)

with gA � 1.26 the axial coupling of the nucleon related by chiral symmetry (par-
tially conserved axial-vector current) to the pion–nucleon coupling constant. In the
previous equation ω = k0 is the nucleon energy once its rest mass is discounted and
b = m2

π − ω2 − iε. The last term in Eq. (17.5) is subtracted because the self-energy
is zero for the ω = 0, which corresponds to the vacuum nucleon mass at rest. Since
in the diagram (b) of Fig. 17.1 the nucleon energy is a kinetic one, with ξi � m, it
follows that this diagram is indeed a small contribution to the total energy density in
the medium.

For evaluating the contributions (c.1) and (c.2) of Fig. 17.1we need the in-medium
NN interactions, that are depicted by the iteration of the zig-zag lines. For an in-
medium NN PWA we use Eq. (7.2) in terms of N , that only has LHC, and the
two-nucleon unitary function, that in the nuclear medium corresponds to L I3

10 instead
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Fig. 17.1 Set of diagrams for the evaluation of the energy per baryon in nuclear matter up to an
including two-nucleon interactions in the nuclear medium. In-medium insertions are represented
in the figure by thick solid lines, and the thin ones correspond to the full baryon propagator G0(k),
cf. Eq. (17.4). The diagram (a) is the kinetic energy, (b) represents the nucleon self-energy due to
a pion loop [it involves one in-medium and one free baryon propagator (solid line with a dash), so
as not to double count with the diagrams in (c)]. Finally, diagrams (c.1) (Hartree) and (c.2) (Fock
diagrams) are the contributions due to the direct and exchange two-nucleon interactions, in order,
with at least two in-medium interactions in the baryon propagators. Its evaluation [8], by making
use of a partial-wave expansion and the analytical properties of the PWAs in the nuclear medium,
is the main point of the present section

of g(s). Contrarily to the vacuumcase, the in-mediumunitarity loop function function
also depends on the total CM three-momentum of the two nucleons. In terms of the
four-momenta k1 and k2 of the two nucleons we introduce the four-momenta a and
p defined as

a = 1

2
(k1 + k2) , (17.6)

p = 1

2
(k1 − k2) .

We also use below the quantity

A = 2ma0 − a2 . (17.7)

The two-nucleon unitarity function depends also on the total charge of the two
nucleons because the different values that theFermimomenta of protons andnucleons
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could have. This is indicated by the superscript I3 in L I3
10 which corresponds to the

total third component of the isospin of the NN system. The explicit expression for
L I3
10 is [8]

L I3
10 = i

∫
d4k

(2π)4

[
θ(ξ1 − |a − k|)

a0 − k0 − E(a − k) − iε
+ θ(|a − k| − ξ1)

a0 − k0 − E(a − k) + iε

]

(17.8)

×
[

θ(ξ2 − |a + k|)
a0 + k0 − E(a + k) − iε

+ θ(|a + k| − ξ2)

a0 + k0 − E(a + k) + iε

]
.

Performing explicitly the integration over k0 we have for this loop function

L I3
10 = m

∫
d3k

(2π)3

[
θ(|a − k| − ξ1)θ(|a + k| − ξ2)

A − k2 + iε
(17.9)

−θ(ξ1 − |a − k|)θ(ξ2 − |a + k|)
A − k2 − iε

]
,

in which the first term between square brackets is the free particle-free particle part
(in the following we drop the adjective “free” as usual in the literature) and the last
one is the so-called hole–hole part (because it involves two insertions of Fermi seas
due to the Heaviside functions in the numerator). The integration over k can also be
performed algebraically and the explicit expressions can be found in the Appendix
C of Ref. [8]. It is clear from Eq. (17.9) the dependence of L I3

10 on I3 and the CM
variables contained in a and A. In this respect, notice that in the CM frame and
for on-shell k1 and k2, it follows from Eq. (17.7) that A = p2. The Eq. (17.9) also
establishes the appearance of the RHC when the real part of any of its denominators
vanishes. The resulting imaginary part has the same sign from both contributions
because of the minus sign in front of the hole–hole term. At LO in the in-medium
chiral counting of Ref. [109] the matrixN is the same as the one already determined
in vacuum. In general its characteristic facet at any order in the chiral expansion,
as expressed above, is that it has no RHC, being the latter contained entirely in
L I3
10. Employing the notation of Ref. [8] we denote the former by NJ I (�̄, �, S) and

similarly for the PWA, T I3
J I (�̄, �, S). Here, J is the total angular momentum, S the

total spin, �̄ the final orbital angular momentum and � the initial one, always referred
to the initial/final NN systems (themeaning of the different labels is in harmonywith
the notation introduced in Chap. 2). After this preamble, the in-medium expression
equivalent to Eq. (7.2) is

T I3
J I (�̄, �, S;p2, a2, A) =

[
N I3

J I (�̄, �, S;p2, a2, A)−1 + L I3
10(a

2, A)
]−1

. (17.10)

It is worth clarifying that the total isospin I of a NN state is a good quantum number
because the L I3

10 function is symmetric under the exchange of the two particles, cf.
Eq. (17.8). This is a general rule because the I3 = 0 operators are symmetric under
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the exchange p ↔ n, and therefore the symmetric properties under the transposition
of the two particles in the I3 = 0 NN state are not altered by the iterative interacting
process.

Let us come back to evaluate the diagrams (c.1) and (c.2) in Fig. 17.1. Its sum is
denoted by E3 and it is given by

E3 = 1

2

∑

σ1,σ2

∑

α1,α2

∫
d4k1
(2π)4

d4k2
(2π)4

eik
0
1ηeik

0
2ηG0(k1)α1G0(k2)α2 (17.11)

× T σ1σ2
α1α2

(p, a, A) .

In this equation η → 0+ at the end of the calculation. It is introduced so as to enforce
that at least two in-medium insertions get involved in the calculation [8, 110]. The
NN scattering amplitude from the initial state |k1, k2, σ1σ2, α1α2〉S , cf. Eq. (2.55),
to the same final one is indicated in the previous equation by T σ1σ2

α1α2
(p, a, A). The

two states are the same because one has to take the trace of the scattering amplitudes
when calculating the self-interactions of the system giving rise to E3. As in Chap. 2,
the labels σi and αi refer to the third components of the spin and isospin of the
i th nucleon, in order. Since Eq. (17.11) is already a NLO contribution we can use
for its evaluation the LO NN PWAs amplitudes, by employing Eq. (17.10) with N
calculated as in vacuum. In such a case, NJ I (�̄, �, S) is a function only of p2, the
momentum transfer squared, cf. Eqs. (17.6), and (17.10) becomes

T I3
J I (�̄, �, S;p2, a2, A) =

[
N I3

J I (�̄, �, S;p2)−1 + L I3
10(a

2, A)
]−1

. (17.12)

Once the integration variables k1 and k2 are changed by A, a and p in Eq. (17.11), it
is then possible to perform straightforwardly the integration over p0. Notice that the
only dependence on p0 in the integrand of Eq. (17.11) is in the propagators G0(ki )αi .
It results,

∫
dp0

2π
G0(a + p)α1G0(a − p)α2 =

− i
[ θ(|a + p| − ξα1)θ(|a − p| − ξα2)

2a0 − E(a + p) − E(a − p) + iε
− θ(ξα1 − |a + p|)θ(ξα2 − |a − p|)

2a0 − E(a + p) − E(a − p) − iε

]
.

(17.13)

For convenience we also introduce the splitting of the particle–particle contribution
in the form

θ(|a + p| − ξα1)θ(|a − p| − ξα2) = [1 − θ(ξα1 − |a + p|)][1 − θ(ξα2 − |a − p|)]
= 1 − θ(ξα1 − |a + p|) − θ(ξα2 − |a − p|) + θ(ξα1 − |a + p|)θ(ξα2 − |a − p|) .

(17.14)
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It follows from Eqs. (17.13) and (17.14) that the result of the integration in p0 of
Eq. (17.11) can be written as

E3 = −4i
∑

σ1,σ2

∑

α1,α2

∫
d3a

(2π)3

d3 p

(2π)3

d A

2π
ei(A+a2)ηT σ1σ2

α1α2
(p, a, A)

[
1

A − p2 + iε

− θ(ξα1 − |a + p|) + θ(ξα2 − |a − p|)
A − p2 + iε

− 2π iδ(A − p2)θ(ξα1 − |a + p|)θ(ξα2 − |a − p|)
]

. (17.15)

Here we have expressed all the explicit denominators having +iε by employing the
trick explained just before Eq. (17.4).

The next step is to perform the integration over A, which actually implies to
compute

∫ ∞

−∞
d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) , (17.16)

since the last term in the integrand of Eq. (17.15) is proportional to δ(A − p2) and the
integral in A is then trivial. We proceed with Eq. (17.16) by enclosing the integration
contour in A with a semicircle at infinity in the half complex A plane with positive
imaginary part, by taking advantage of the factor ei Aη with η → 0+. As it is evident
from Eq. (17.9), the particle–particle contribution gives rise to a cut in A with a
slightly negative imaginary part, so that it is not within the domain that results after
closing the integration contour. Similarly the denominator in Eq. (17.16) gives rise to
a pole singularity in A with also a negative imaginary part. However, the hole–hole
part in L I3

10(a, A) generates a cut in A than runs slightly above the real axis with a
positive imaginary part. This cut is of finite extent because of the Heaviside functions
in the hole–hole part and extends from A1(|a|) up to A2(|a|) as depicted in Fig. 17.2
by the dashed line (explicit expressions for these limits are given in Eq. (C.19) of
Ref. [8].)1

In order to go on and perform the integration in A we proceeds as follows. We
consider two closed contours in the form stated above, but one of them runs above
the hole–hole cut and the other below it. The former integration contour is denoted
by CI ′ , the latter by CI , and both are represented in Fig. 17.2. We have the following
preliminary results,

1These limits depend on I3, although this is not explicitly written, since no ambiguity arises once
the partial-wave expansion of the T matrix is performed below.
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Fig. 17.2 Integration
contours used to evaluate the
A integration in Eq. (17.16).
The dashed line is the RHC
due to the hole–hole
contribution in L I3

10(a
2, A)

∞

CI

CI

∫ ∞

−∞
d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) =

∮

CI

d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) ,

∮

CI ′

d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) = 0 . (17.17)

Therefore, the subtraction of the two integrals gives

∮

CI

d A

2π

ei Aη

A − p2 + iε
−

∮

CI ′

d A

2π

ei Aη

A − p2 + iε

=
∫ A2(|a|)

A1(|a|)
d A

2π

T σ1σ2
α1α2

(p, a, A) − T σ1σ2
α1α2

(p, a, A + 2iε)

A − p2 + iε
. (17.18)

Notice that this result is also a consequence of deforming the integration contour CI

for avoiding the cut.
An interesting result in Ref. [8] is the derivation of the partial-wave expansion of

the NN scattering amplitude in the nuclearmedium, despite its dependence on a. This
is a generalization of the results in Chap. 2. The scattering amplitude T σ1σ2

α1α2
(p, a, A)

in terms of the in-medium NN PWAs, by making use of Eq. (A.8) of Ref. [8], reads

T σ1σ2
α1α2

= 4π
∑

(σ1σ2s3|s1s2S)2(m ′s3μ|�′SJ )(ms3μ|�SJ )(α1α2i3|τ1τ2 I )2 (17.19)

× Ym ′
�′ (p̂′)Ym

� (p̂)∗χ(S�′ I )χ(S�I )T I3
J I (�

′, �, S) .

For NN scattering τ1 = τ2 = s1 = s2 = 1/2 and the symbol χ(S�I ) arises because
Fermi statistics and it is

χ(S�I ) = 1 − (−1)�+S+I

√
2

=
{√

2 � + S + I = odd ,

0 � + S + I = even .
(17.20)

This factor accounts for the unitary normalization introduced in Chap. 2.
The sum over the isospin and spin indices is straightforward,
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∑

α1α2

(α1α2i3|τ1τ2 I )2 = 1 , (17.21)

∑

σ1σ2

(σ1σ2s3|s1s2S)2 = 1 .

We continue next with the sum over s3 and the third components of orbital angular
momentum, which can also be summed in a close form as

∑

m ′,m,s3

(m ′s3μ|�′SJ )(ms3μ|�SJ )Ym ′
�′ (p̂)Ym

� (p̂)∗ = δ�′�
2J + 1

4π
. (17.22)

To arrive to this result we have used the following symmetry property of the Clebsch–
Gordan coefficients [6],

(m1m2m3| j1 j2 j3) = (−1)m2+ j2

(
2 j3 + 1

2 j1 + 1

)1/2

(−m2m3m1| j2 j3 j1) . (17.23)

This property allowsus towrite the sumofClebsch–Gordan coefficients inEq. (17.22)
as

∑

s3,μ

(m ′s3μ|�′SJ )(ms3μ|�SJ ) = 2J + 1√
(2� + 1)(2�′ + 1)

∑

s3,μ

(−s3μm
′|S�′ J )

× (−s3μm|S�J ) = 2J + 1

2� + 1
δ�′�δm ′m ′ . (17.24)

Notice that we could have included a sum over μ already in Eq. (17.22), because μ

is fixed by the properties of the Clebsch–Gordan coefficients. Finally, the result in
Eq. (17.22) follows by employing the addition theorem of the spherical harmonics

1

2� + 1

∑

m

|Ym
� (p̂)|2 = 1

4π
. (17.25)

Thus, the sum over the PWAs for calculating E3 simplifies to

∑

α1,α2

∑

σ1,σ2

T σ1σ2
α1α2

(p, a, A) =
∑

I,I3,J,�,S

(2J + 1)χ(S�I )2 T I3
J I (�, �, S;p2, a2, A) .

(17.26)

In the rest of this section we suppress the arguments (�, �, S) in T I3
J I and N I3

J I for
brevity in the writing. We now perform the difference between PWAs needed to
implement Eq. (17.18),
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T I3
J I (p

2, a2, A) − T I3
J I (p

2, a2, A + i2ε) =
[
N I3

J I (p
2) + L I3

10(a
2, A)

]−1

−
[
N I3

J I (p
2) + L I3

10(a
2, A + i2ε)

]−1 =
[
N I3

J I (p
2) + L I3

10(a
2, A)

]−1

×
[
L I3
10(a

2, A + i2ε) − L I3
10(a

2, A)
] [

N I3
J I (p

2) + L I3
10(a

2, A + i2ε)
]−1

. (17.27)

It follows from Eq. (17.9) that the difference L I3
10(a

2, A + i2ε) − L I3
10(a

2, A) is due
entirely to the hole–hole part and it gives

L I3
10(a

2, A + i2ε) − L I3
10(a

2, A) = −m
∫

d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
(

1

A − q2 + iε
− 1

A − q2 − iε

)

= i2πm
∫

d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)δ(A − q2) . (17.28)

Now, we come back to Eq. (17.15) and from Eqs. (17.26), (17.27) and (17.28) it
follows that after performing the integration in A, cf. Eq. (17.18), we can write
Eq. (17.15) as

E3 = −4
∑

I,I3,J,�,S

(2J + 1)χ(S�I )2
∫

d3a

(2π)3
d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
(
T I3
J I (q

2, a2, q2) + m
∫

d3 p

(2π)3
1 − θ(ξα1 − |a + p|) − θ(ξα2 − |a − p|)

p2 − q2 − iε

×
[
N I3

J I (p
2)−1 + L I3

10(a
2, q2)

]−1[N I3
J I (p

2)−1 + L I3
10(a

2, q2)∗
]−1

)

(�,�,S)

. (17.29)

This is our final equation for E3. In this equation we have dropped the exponent
eia

2η since the integration in |a| is bounded because of the product of the Heaviside
functions θ(ξα1 − |a + q|)θ(ξα2 − |a − q|). Related to this factor, we have also writ-
ten that L I3

10(a
2,q2 + i2ε) = L I3

10(a
2,q2)∗, because only the hole–hole part in this

functions enters, cf. Eq. (17.9). The rest of sums and integrations in Eq. (17.29) are
performed numerically in Ref. [8].

It is also of pedagogical interest to show explicitly followingRef. [8] that�E3 = 0,
as it must be because E is a real quantity. The imaginary part of the second term
between the round brackets in Eq. (17.29) stems only from the denominator of
1/(p2 − q2 − iε) → iπδ(p2 − q2). We then have
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�E3 = −4
∑

I,I3,J,�,S

(2J + 1)χ(S�I )2
∫

d3a

(2π)3
d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
(

�T I3
J I (q

2, a2, q2) + m
∫

d3 p

(2π)3

[
1 − θα1(ξα1 − |a + p|) − θα2 (ξα2 − |a − p|)]

× πδ(p2 − q2)T I3
J I (p

2, a2,q2)T I3
J I (p

2, a2, q2)∗
)

(�,�,S)

. (17.30)

It is clear from Eq. (17.12) (with A = q2) that the imaginary part of T I3
J I (q

2, a2,q2)

arises from the one of L I3
10(a

2,q2), which in turn is only due to the hole–hole part
because of the product of the two Heaviside functions on the rhs of Eq. (17.30).
Substituted the expression for �T I3

J I into the previous equation one finds

�E3 = −4
∑

I,I3,�,S

(2J + 1)χ(S�I )2
∫

d3a

(2π)3

d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
∫

d3 p

(2π)3
mπδ(p2 − q2)

[
1 − θ(ξα1 − |a + p|) − θ(ξα2 − |a − p|)

+ θ(ξα1 − |a + p|)θ(ξα2 − |a − p|)]T I3
J I T

I3
J I

∗∣∣∣
(�,�,S)

= 0 . (17.31)

To conclude that this expression is zero, we have taken into account from Eq. (17.14)
that the function between square brackets in the previous equation is only the particle–
particle part, given by θ(|a + p| − ξα1)θ(|a − p| − ξα2). But since |p| = |q| there is
no way that this product of step functions can be satisfied because a and q are already
constrained to satisfy the product of the two Heaviside functions in the first line of
Eq. (17.31). Thus, this equation is zero.
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