
Chapter 16
Near-Threshold Scattering

In this section we consider the physics in a near-threshold region so that the nonrela-
tivistic limit is appropriate. Furthermore, we assume that the LHC is relatively weak
and/or far away. In the later case the LHC admits a Taylor expansion in the region
of interest and its effects can be accounted for without explicitly including it. For
the former case we assume that it can be neglected in good approximation because
of its weakness. With this scenario in mind we use the general results deduced in
Chap. 6, cf. Eq. (6.24), which are applicable when the cut associated with the LHC
is not explicitly realized.

We consider the S-wave scattering, which is expected to be dominant since the
energy is supposed to be near the threshold of the reaction of the two particles with
massesm1 andm2. In such circumstances the general structure of a PWAcorresponds
to Eq. (6.24) with L = 0. The relativistic phase space in the integral along the RHC is
p(s)/8π

√
s. We also introduce the kinetic energy E by its nonrelativistic expression,

namely,

E = p2

2μ
, (16.1)

p = √
2μE ,

which is more appropriate for nonrelativistic dynamics, with the relation
√
s = m1 +

m2 + E + O(p4).
The unitary loop function, that corresponds to the integral along the RHC in

Eq. (6.24), is already given in Eq. (8.3). Its series in powers of p = |p| around
threshold gives rise to an expansion involving powers of p2 [it corresponds to the
expansion in real variable of its real part for physical values of s > sth. This is given
by the Cauchy’s principal value of the integral in Eq. (8.3)] and odd powers of p
[which stems from the expansion of its imaginary part −p/8π

√
s ]. The first terms

of this nonrelativistic series of g(p) in powers of p read
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g(p) = a

16π2
+ 1

8π2(m1 + m2)
(m1 log

m1

μ
+ m2 log

m2

μ
) (16.2)

− i
p

8π(m1 + m2)
+ O(

p2

Σ2
) ,

where Σ has dimension of mass and it is made out of the masses m1 and m2. For
every O(pm) term with m ≥ 1 there is always a neat power of mass mi , i = 1, 2,
in the denominator, avoiding any relative enhancement from powers of the factor
m1/m2 with m1 � m2. This is clear from the nonrelativistic reduction of the RHC
integral in Eq. (8.3),

g(p) = ã − s

π

∫ ∞

0

dq2

ω′
1(q)ω′

2(q)

q

8π[ω′
1(q) + ω′

2(q)] (16.3)

× 1

[ω′
1(q) + ω′

2(q) − ω1(p) − ω2(p)][ω′
1(q) + ω′

2(q) + ω1(p) + ω2(p)]
= ã + 1

8π(m1 + m2)

∫ ∞

0

qdq2

p2 − q2
+ O(

p2

Σ2
) ,

with ωi (q) already introduced in Eq. (8.5).
In the following we adopt the more standard nonrelativistic normalization of the

PWA t (p2), already introduced in Eq. (11.9) for m1 = m2 = m. Additionally, we
denote by β the momentum-independent contribution on the rhs of Eq. (16.2) (times
8π(m1 + m2) because of the change in normalization). Namely,

β = a(m1 + m2)

2π
+ 1

π
(m1 log

m1

μ
+ m2 log

m2

μ
) . (16.4)

Attending to Eq. (6.24) with L = 0, in addition to the subtraction constant we also
have the sum over the CDD poles. Looking for relevant structures in the near-
threshold region apart from the threshold branch-point singularity, we explore the
consequences of including a CDD pole. In this way, we recast Eq. (6.24) as

t (E) =
(

γ

E − MCDD
+ β − i p(E)

)−1

, (16.5)

where we use the kinetic energy E as variable, cf. Eq. (16.1). In this equation γ is
the residue of the CDD pole and MCDD is its position in energy E .

Despite the straightforward derivation ofEq. (16.5) by attending to basic analytical
properties of PWAs, in this case, the presence of the RHC and of a pole in the inverse
of the PWA, goes beyond an ERE, up to an including O(p4), cf. Eq. (11.10). The
reason is because the presence of a zero in t (p2) [or a pole in 1/t (p2)] sets a limit in
the applicability of the ERE because at this point p cot δ = ∞ and it is singular. Thus,
if this zero happens very close to threshold it makes the ERE to have a very small
region of validity,whichwould typically invalidate it as an adequate approach to study
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the near-threshold scattering. One can work out straightforwardly the relationship
between the parameters a, r2, and v2 in the ERE with γ, MCDD and β in Eq. (16.5),
it reads

1

a
= γ

MCDD
− β , (16.6)

r = − γ

μM2
CDD

,

v2 = − γ

4μ2M3
CDD

.

An important output of these relations [96] is that a near-threshold CDD pole,
MCDD → 0, is characterized by giving rise to large values of r in absolute mod-
ule (γ can take any sign). This is also the expected situation for v2 and higher shape
parameters vi , i ≥ 4. However, the value for the scattering length in the same limit
MCDD → 0 would tend to zero as MCDD/γ. Of course, the actual situation in which
this limit takes place depends on the value of the residue of the CDD pole, the larger
is γ the sooner this scenario takes place.

Another parameterization that is usually employed in the literature to describe
near-threshold resonances is the so-calledFlatté parameterization [97], thatwedenote
as tF (E) and corresponds to

tF (E) = g2/2

MF − i 12Γ (E) − E
, (16.7)

Γ (E) = g2 p(E) , E > 0 ,

Γ (E) = ig2|p(E)| , E < 0 ,

and Γ (E) ≥ 0 for E > 0, which determines that g2 ≥ 0. The Flatté mass MF is the
value of the energy for which the real part of the denominator in tF (E) vanishes. The
energy dependence of Γ (E) is a characteristic aspect of a Flatté parameterization.

We notice here that tF (E) is a particular case of an ERE, with the denominator in
Eq. (16.7) involving up to quadratic powers in p. The relationship between the ERE
parameters a, r and those in the Flatté parameterization g2, MF is

a = − g2

2MF
, (16.8)

r = − 2

g2μ
.

Thus, a Flatté parameterization can only give rise to negative values for the effective
range, r < 0. The scattering length changes of sign with MF and, for fixed coupling
g2, it is infinity forMF = 0, in which case tF (0) becomes infinity too. There is indeed
a qualitatively different behavior of the pole content of tF (E) depending on whether
MF is positive or negative. Solving the roots in p of the denominator of tF (E), we
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can write the latter as

tF (E) = −μg2

(p(E) − p1)(p(E) − p2)
, (16.9)

p1,2 = −i
g2μ

2

(

1 ±
√

1 − 8MF

g4μ

)

, (16.10)

with the subscript 1(2) corresponding to the +(−) sign in front of the square root.
Thus, if MF ≤ 0 then p1,2 are purely imaginary, but with opposite signs. In this way,
	p1 < 0 and it corresponds to a virtual state in the second RS, while 	p2 > 0 and it
gives rise to a bound state (in the first RS). Furthermore, |p1| > |p2| and the virtual
state is deeper than the bound state, which is then closer to threshold. For MF = 0
the bound state has zero binding energy. When MF becomes positive and lies in the
interval 0 < MF < g4μ/8, the second pole turns out as another virtual state closer
to threshold than p1.

For MF > g4μ/8 the two pole positions p1,2 have the same negative imaginary
part but real parts with opposite signs. These are poles corresponding to resonances,
such that in the limit MF → g4μ/8 + ε the real part tends to zero and we would end
with a a double virtual-state pole [98]. This is also a limitation of the Flatté model,
no higher than double poles can arise from this parameterization.

The resonance poles happens in complex conjugate positions in the complex E
plane (E = p2/2μ), which is generally required because of the fulfillment by the
PWAs of the Schwarz reflection principle. For this situation, we read from Eq. (16.7)
that in the limit in which Γ (MF ) 
 MF the nearest pole position to the physical
axis occurs in good approximation at

EF = MF − i
Γ (MF )

2
, (16.11)

where the equation MF − iΓ (E)/2 − E = 0 is solved by iterating it once in Γ (E).
This is the situation corresponding to the narrow resonance case. The other pole at
E = E∗

F in the second RS is further away from the physical or first RS, because the
physical values are obtained in the latter sheet by taking E + iε with ε → 0+. This
upper part of the physical axis is connected smoothly with the negative vanishing
imaginary part in the second RS, which is the region in which the approximate pole
position of Eq. (16.11) lies. Nonetheless, the pole with positive complex imaginary
part is connected with the values of the scattering amplitudes in the complex E plane
below the real axis (where the scattering amplitude is the complex conjugate of the
physical one).

The poles of tF (E) in the second RS of the complex E plane are E1,2 = p21,2/2μ,
with p1,2 given in Eq. (16.10). The corresponding expressions for E1,2 are
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E1,2 = MF − g4μ

4
∓ i

g4μ

4

√
8MF

g4μ
− 1 , MF >

g4μ

8
, (16.12)

There is a variation of the real part of E1,2 with respect to MF due to the self-energy
contribution −g4μ/4. On the one hand, from Eq. (16.12) we identify the resonance
mass, MR , as E1,2,

MR = MF − g4μ

4
. (16.13)

On the other hand, twice the modulus of the imaginary part of E1,2 is identified with
the width of the resonance, Γ , given then by

Γ = g4μ

2

√
8MF

g4μ
− 1 . (16.14)

Let us notice that, this expression for Γ is only equal to g2
√
2μMR , cf. Eq. (16.7),

for the case in which MF � g4μ. In this situation the expression for Γ in Eq. (16.11)
also holds in good approximation. Thus, the narrow resonance limit actually requires
that MF � g4μ.

It is also interesting to workout the residues of tF (E) at the pole positions, either
in the complex momentum or energy spaces,

γ2
k = − lim

p→pi
(p − pi )tF (p2/2μ) , (16.15)

γ2
E = − lim

E→EP

(E − Ei )tF (E) , (16.16)

in order. Both types of residues are related by

γ2
E = γ2

k

dE

dp

∣∣∣∣
p1,2

= g2k
p1,2
μ

. (16.17)

Working out the residue γ2
k is straightforward from Eq. (16.9), with the result

γ2
k = ± μg2

p1 − p2
= ± 1

√
8MF
g4μ

− 1
, (16.18)

with+(−) for the pole p1(p2), in this order. Notice that in the narrow resonance case,
MF � g4μ/8, the coupling γ2

k → 0. The opposite situation occurs forMF → g4μ/8
in which case the coupling diverges, because we end with a double virtual-state
pole [98]. Let us recall that this is the starting point for having resonance poles, cf.
Eq. (16.12).
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There is also another interesting limit that corresponds to the case in which the
real part of E1,2 starts becoming positive. According to Eq. (16.12), this occurs for
g4μ/4 < MF < ∞ and then 1 ≥ |γk |2 ≥ 0. Indeed, one can develop a probabilistic
interpretation for |γk |2 when the real part of the pole position in energy of the reso-
nance is larger than zero. According to this interpretation, |γk |2 is the weight of the
two-body continuum component in the composition of the resonance [96, 99].

As noted above, the effective range r for a Flatté parameterization must be nega-
tive, cf. Eq. (16.8). In general terms, a PWA t (p2) from an ERE up to and including
p2, cf. Eq. (11.9), and denoted by tr (E), is given by

tr (E) = 1

− 1
a + 1

2rp(E)2 − i p(E)
. (16.19)

Given the quadratic nature of the denominator in p we also have two poles corre-
sponding to the values

p1,2 = 1

r

(

i ∓
√
2r

a
− 1

)

. (16.20)

We have resonance poles for

r/a > 1/2 and r < 0 . (16.21)

Notice that the imaginary part for a resonance pole should be negative as it lies on
the second RS, and this is why we have required that r < 0. Let us also indicate
that, if the requirements in Eq. (16.21) are applied to the expressions for a and r of a
Flatté parameterization in Eq. (16.8), we have the constraint MF > g2μ/8, which we
already derived as necessary so as to end with resonance poles. It is also interesting
to work out the residues γ2

k of tr (E) for the poles in Eq. (16.20). The corresponding
expression is

γ2
k = 1

rp1,2 − i
= ∓ 1

√
2r
a − 1

. (16.22)

The requirement for 0 ≤ |γ2
k | ≤ 1 implies that

r

a
≥ 1 . (16.23)

Again, if we consider this constraint in terms of the values of a and r as corresponding
to the Flatté parameterization we then have the condition MF ≥ g2μ/4, which is
also needed so that the real part of the resonance energy is positive. Indeed, from
Eq. (16.20) the pole energy E1,2 = p21,2/2μ is given by
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E1,2 = p21,2
2μ

= 1

arμ

(
1 − a

r

)
∓ i

1

r2μ

√
2r

a
− 1 . (16.24)

It is then concluded form the previous expression that r/a > 1 so that E1,2 ≥ 0,
and then the criterion for the probabilistic interpretation of |γk |2, as developed in
Refs. [96, 99], can be applied. From Eq. (16.24) we also have for the width of the
resonance (identified as twice the modulus of the imaginary part of E1,2),

Γ = 2

r2μ

√
2r

a
− 1 . (16.25)

FromEq. (16.22) |γk |2 decreases as r/a increases. At this point it is worth connecting
with the values of a and r given by a near-threshold CDD pole, worked out in
Eq. (16.6). From this equation it follows that as MCDD → 0 one is driven towards
values of a and r for which |r/a| increases and, therefore, |γk |2 decreases. This fact
is interpreted as that the resonance when MCDD → 0 becomes purely elementary, in
the sense that the weight in the resonance state of the two-body asymptotic states,
whose scattering is described by tr (E), tends to vanish. Precisely, this is connected
with the standard interpretation for a CDD pole which is typically associated with
the need to introduce explicitly in the equations the exchange of an explicit bare
resonance. In particular, notice that a bare resonance is characterized by two basic
parameters, its mass and coupling to a given state. Similarly, a CDD pole implies
two free parameters, its mass and residue. According to Eq. (16.24) in the limit
MCDD → 0 we have for the resonance poles positions

E1,2 −−−−−→
MCDD→0

−M3
CDD

λ2
∓ i

(−MCDD)7/2
√
2μ

λ2
(16.26)

and we see that the width vanishes faster than the mass (the real part of E1,2) by an
extra factor (−MCDD)1/2. This pole is then characterized by a small mass but even a
much smaller width, so that the narrow resonance limit holds. Indeed, the decoupling
limit of a bare resonance from the two-body continuum requires a zero in the PWA
in order to remove the bare pole of the resonance from t (E). This shows in simple
terms that the weak coupling limit of a resonance and the presence of a CDD pole
are related. We also mention that in order to fulfill the requirements in Eq. (16.21) it
is necessary to have negative MCDD and positive γ in the limit MCDD → 0.

The situation in Eq. (16.26) is opposite to the one when γ2
k → 1, which according

to Eq. (16.22) happens for r/a → 1. In such a case, we infer fromEq. (16.24) that the
mass of the resonance vanishes in this limit and the energy becomes purely imaginary
and finite. Therefore, a resonance that is purely composite of the asymptotic two-
body state whose interaction is given by tr (E) is characterized by having a width
much larger than its mass.

We have shown that the parameterization in Eq. (16.5) is more general than an
ERE up to an including O(p4), because the former accounts for the possibility of
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near-threshold zeroes while the latter loses its meaning for energies beyond the zero
and its convergence is much worse for lower energies. If the parameterization based
on the ERE is restricted to terms up to O(p2) in the p2 expansion one then has a
PWA, Eq. (16.19), that is more general than the one obtained by applying the Flatté
parameterization, Eq. (16.7), because the later can only give rise to negative values
of r .

Another type of parameterization that one usually finds in the literature for describ-
ing near-threshold scattering stems from the use of a dynamical model based on
solving a LS equation with a potential that also includes the exchange of an explicit
bare resonance. This is a definite model that exemplifies the connection between the
exchange of a bare resonance and the appearance of a CDD pole in the PWA, as
commented above. We qualify the scattering due to an energy-independent potential
V (p,p′) as direct scattering between the two-body states in the continuum. On top
of it, the exchange of a bare state is also considered, so that the total potential in the
continuum, VT (p,p′, E), is given by

VT (p,p′, E) = V (p,p′) + f (p) f (p′)
E − E0

. (16.27)

Here E0 is the bare mass of the discrete state that is exchanged. The real function
f (p) is the bare coupling of this state to the two-body states. The scattering amplitude
is given by solving the LS equation in momentum space, cf. Eq. (2.65),

T (p,p′, E) = VT (p,p′, E) +
∫

d3q

(2π)3

VT (p,q, E)T (q,p′, E)

q2/(2μ) − E − iε
. (16.28)

The solution of this IE is clear and intuitive by employing a graphical method. First
consider those diagrams without the exchange of any bare-state propagator. This
is represented in the panel (a) of Fig. 16.1, where the point vertices, each with four
lines attached, indicate the insertion of a factor of V (q,q′). In turn, the circles joining
vertices correspond to the loops with two propagators associated with the two-body
intermediate states in the continuum.The panel (a) of Fig. 16.1 represents the iteration
of V (p,p′) that gives rise to the direct-scattering amplitude TV (p,p′, E), that results
by solving the LS equation of the pure potential problem,

TV (p,p′, E) = V (p,p′) +
∫

d3q

(2π)3

V (p,q)TV (q,p′, E)

q2/(2μ) − E − iε
. (16.29)

Next, we consider those contributions containing at least the exchange of one
bare state, which is represented pictorially by a double line. When iterating these
contributions we have as intermediate states both two particles in the continuum and
extra bare-state exchanges. In this way, we have the standard Dyson resummation for
the bare-state propagator, giving rise to the dressed one, as represented in the panel
(b) of Fig. 16.1. In addition, we also have the dressing of the bare coupling of the
exchanged state to the continuum by the direct scattering of the latter, as represented
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+ + + + · · ·
(a)

+ + + + · · ·
(b)

+ + + + · · ·
(c)

Fig. 16.1 Diagrammatic representation of the solution for T (p,p′, E) in Eq. (16.28). The dia-
grams in a represents the iteration of V (p,p′) without any bare-state exchange, which generates
TV (p,p′, E), Eq. (16.29). The panel b represents the self-energy for getting the dressed propagator.
Those diagrams in panel c correspond to the dressing of the bare coupling due to the self-interactions
(or final-state interactions) between the two-body states in the continuum

in the panel (c) of Fig. 16.1. Thus, the set of diagrams in the panels (b) and (c) of
Fig. 16.1 gives rise finally to the exchange of a particle with dressed propagator and
couplings, in the form

R(p,p′, E) = Θ(p, E)Θ(p′, E)

E − E0 + G(E)
, (16.30)

whereΘ(p, E) represents the dressed coupling and 1/[E − E0 + G(E)] the dressed
propagator.We then conclude that the scattering amplitude T (p,p′, E)must be given
by the sum of TV and R,

T (p,p′, E) = TV (p,p′, E) + Θ(p, E)Θ(p′, E)

E − E0 + G(E)
. (16.31)

First, we are going to show directly that indeed Eq. (16.31) is a solution of the LS
equation in Eq. (16.28), for appropriate functionsΘ(p, E) andG(E). Next, we give a
more general derivation of the solution for the LS equation in terms of the solution of
another LS equation with one less discrete intermediate state. In the present example
for the total potential in Eq. (16.27), this is the scattering amplitude TV (p,p′, E),
which satisfies the LS equation of Eq. (16.29) without the intermediate bare state.

By inserting the tentative solution of Eq. (16.31) into Eq. (16.28), and taking into
account that TV (p,p′, E) fulfills Eq. (16.29), we are then left with the following IE
for R(p,p′, E),
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Θ(p, E)Θ(p′, E)

E − E0 + G(E)
= f (p) f (p′)

E − E0
+

∫
d3q

(2π)3
1

q2/(2μ) − E − iε

[
V (p, q)

Θ(q, E)Θ(p′, E)

E − E0 + G(E)

+ f (p) f (q)

E − E0
TV (q, p′, E) + f (p) f (q)

E − E0

Θ(q, E)Θ(p′, E)

E − E0 + G(E)

]
. (16.32)

We can derive the equations satisfy by G(E) and Θ(p, E) by taking E → E0 and
E → E0 − G(E) in the previous equation. In order, we are then left with

Θ(p′, E)
−1

G(E)

∫
d3q

(2π)3
f (q)Θ(q, E)

q2/(2μ) − E − iε
= f (p′) +

∫
d3q

(2π)3
f (q)TV (q,p′, E)

q2/(2μ) − E − iε
.

(16.33)

Θ(p, E) = − f (p)

G(E)

∫
d3q

(2π)3
f (q)Θ(q, E)

q2/(2μ) − E − iε
+

∫
d3q

(2π)3
V (p,q)Θ(q, E)

q2/(2π) − E − iε
.

These two equations can be made equivalent by identifying1

G(E) = −
∫

d3q

(2π)3

f (q)Θ(q, E)

q2/(2μ) − E − iε
, (16.34)

and requiring that Θ(p, E) satisfies the inhomogeneous IE

Θ(p′, E) = f (p′) +
∫

d3q

(2π)3

f (q)TV (q,p′, E)

q2/(2μ) − E − iε
. (16.35)

Let us notice that this IE can also be rewritten as

Θ(p′, E) = f (p′) +
∫

d3q

(2π)3

TV (p′,q, E) f (q)

q2/(2μ) − E − iε
(16.36)

= f (p′) +
∫

d3q

(2π)3

V (p′,q)Θ(q, E)

q2/(2μ) − E − iε
.

The three IEs in Eqs. (16.35) and (16.36) are equivalent as it is clear by performing
the Neumann series expansion of TV (q,p′, E) from Eq. (16.35), and by solving
iteratively the last IE for Θ(p′, E) in Eq. (16.36). It is straightforward to show that
Eq. (16.32) is fulfilled once Eqs. (16.34) and (16.35) are satisfied. For instance, by
inserting Eq. (16.35) in Eq. (16.32), we can combine the first and third terms on
the rhs of this equation as f (p)Θ(p′, E)/(E − E0). Therefore, we can simplify the
factor Θ(p′, E) on both sides of the resulting equation, which then reads

1In Eq. (16.33) we have renamed E0 as E because there is nothing special on E0, so that it can also
be considered as a variable energy.
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Θ(p, E)

E − E0 + G(E)
= f (p)

E − E0
+

∫
d3q

(2π)3
1

q2/(2μ) − E − iε

[
V (p, q)Θ(q, E)

E − E0 + G(E)

+ f (p) f (q)Θ(q, E)

(E − E0)(E − E0 + G(E))

]
(16.37)

= f (p)

E − E0
+ 1

E − E0 + G(E)

∫
d3q

(2π)3
V (p, q)Θ(q, E)

q2/(2μ) − E − iε
− f (p)G(E)

(E − E0)(E − E0 + G(E))

= f (p)

E − E0 + G(E)
+

∫
d3q

(2π)3
1

q2/(2μ) − E − iε

V (p, q)Θ(q, E)

E − E0 + G(E)
,

which is fulfilled in virtue of Eq. (16.36).
Now, let us give a more general derivation of the separation of the total T -matrix

T (p,p′, E) as in Eq. (16.31). Let the full Hamiltonian H be split as in Chap. 2 in
the free part H0 and the potential V , H = H0 − V , and let |0〉 be an eigenstate of
H0, H0|0〉 = E0|0〉. Let T1(E) be the T matrix that fulfills a LS equation without the
discrete intermediate state |0〉, namely,

T1(E) = V +
∑

n

∫
dW V |Wn〉(Wn − E)−1〈Wn|T1(E) (16.38)

= V + V (H0 − E)−1θT1(E) ,

where θ|0〉 = 0 and this state is then excluded in the sum over intermediate states.
In the previous equation we have also used a compressed notation for the sum over
discrete states and indexes, represented by n (n �= 0), and integration over the contin-
uum ones, represented byW . The corresponding intermediate state is then indicated
by |Wn〉. The Eq. (16.38) can be recast as the IE for the resolvent of the kernel of
a linear IE. For that, we multiply this equation to the right by (H0 − E)−1θ, which
then reads

T1(E)(H0 − E)−1θ = V (H0 − E)−1θ + V (H0 − E)−1θT1(E)(H0 − E)−1θ .

(16.39)

The kernel of this IE is V (H0 − E)−1θ and its resolvent K1(E) is therefore [18]

K1(E) = T1(E)(H0 − E)−1θ . (16.40)

Now,we take into account thatwe can formallywrite from theLS thatT (E) = V (I −
(H0 − E)−1V )−1 = V (H − E)−1(H0 − E). It follows then that the resolvent of the
kernel of the LS equation, as identified in Eq. (16.40), is T (E)(H0 − E)−1 = V (H −
E)−1, cf. Eq. (2.64). The inclusion of θ in Eq. (16.40) is just a projection in the
subspace orthogonal to |0〉.

The full T matrix T (E) satisfies a LS equation in which the state |0〉 contributes
as intermediate state. Thus,
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T (E) = V + V |0〉(E0 − E)−1〈0|T (E) +
∑

n

∫
dWV |Wn〉(Wn − E)−1〈Wn|T (E)

(16.41)

= V + V |0〉(E0 − E)−1〈0|T (E) + V (H0 − E)−1θT (E) .

We can clearly identify from the previous equation the same kernel, V (H0 − E)−1θ,
as in the IE for T1(E), cf. Eq. (16.38). Thus, by considering V + V |0〉(E0 −
E)−1〈0|T (E) as the new independent term, we can write that a solution for T (E)

must satisfy

T (E) = V + V |0〉(E0 − E)−1〈0|T (E) + K1(E)
[
V + V |0〉(E0 − E)−1〈0|T (E)

]

= T1(E) + T1(E)|0〉(E − E0)
−1〈0|T (E) . (16.42)

We now multiply the previous IE to the left by 〈0|, so as to express 〈0|T (E) in terms
of known matrix elements. It then results that

〈0|T (E) = 〈0|T1(E) + 〈0|T1(E)|0〉(E − E0)
−1〈0|T (E) , (16.43)

and then

〈0|T (E) =
[
1 − 〈0|T1(E)|0〉(E0 − E)−1

]−1〈0|T1(E) . (16.44)

Substituting the previous result into Eq. (16.42) we arrive to the final expression for
T (E),

T (E) = T1(E) + T1(E)|0〉
[
E − E0 − 〈0|T1(E)|0〉

]−1〈0|T1(E) . (16.45)

From here we read the full propagator

Δ(E) = 1

E − E0 − 〈0|T1(E)|0〉 , (16.46)

and the coupling squared operator T1(E)|0〉〈0|T1(E). The latter when acting over
the states in the continuum gives rise to the coupling function

Θ(pn, E) = 〈pn|T1(E)|0〉 . (16.47)

The Eq. (16.45) is the general expression of the scatteringmatrix T (E) in terms of the
reduced one T1(E), which results after a bare state |0〉 is removed from the sum over
the intermediate states. In particular, it is clear that T1(E), cf. Eq. (16.38), corresponds
to panel (a) of Fig. 16.1, Δ(E) in Eq. (16.46) arises from the Dyson resummation
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depicted in the panel (b), and the coupling functionΘ(p, E) of Eq. (16.47) originates
from the FSI of the continuum states, drawn in the panel of (c) of the same figure.

The Eq. (16.31) is a particular case of Eq. (16.45) when projected over states in
the continuum. The latter equation can be found in Ref. [100], but not its derivation,
which has been offered here in detail for completeness and also for pedagogical
reasons.

In particular, let us compare the expression in Eq. (16.5), given in terms of a
subtraction constant and a CDD pole, with the model of Ref. [101] that results by
applying Eq. (16.31) with TV (p,p′, E) corresponding to the plain scattering length
approximation,

TV (p,p′, E) = 2π

μ

1

− 1
aV

− ik(E)
, (16.48)

k(E) = √
2μE .

For this particular case indeed TV (p,p′, E) only depends on the energy and we
better denote it simply as TV (E). As a result, the evaluation of the self-energy G(E)

and the dressed coupling Θ(p, E), cf. Eqs. (16.34) and (16.35), respectively, is
straightforward once f (p) is known. Nonetheless, Ref. [101] argues that, since one
is focusing in the low-energy region so that kα 
 1, with α the typical range of the
interaction involved, one could parameterize the whole f (p) by f0 = f (0)/(2π) and
then, the diverging integrals from Eqs. (16.34) and (16.35) are regularized by naive
dimensional analysis as

g̃1(E) =
∫

d3q

(2π)3

f (p)2

q2/(2μ) − E − iε
= f 20 (R + μik) , (16.49)

g̃2(E) =
∫

d3q

(2π)3

f (p)

q2/(2μ) − E − iε
= f0(R

′ + μik) ,

where one expects that the constants R and R′ take values of O(μ/α). It is just
a matter of simple algebra to deduce from Eqs. (16.34), (16.35) and (16.31) the
following expression for the on-shell T matrix (|p| = |p′| = k) [101],

t (E) = −2π

μ

E − E f + 1
2g f γV

(E − E f )(γV + ik) + i 12g f γV k
, (16.50)

where γV = 1/aV , while g f and E f are functions of the original parameters R, R′
and E0 of the model (the interested reader can consult Ref. [101] for the relations).
Notice that g f has the meaning of a bare coupling and E f is the energy at which the
real part of the denominator in Eq. (16.50) vanishes. Redefining the normalization
multiplying t (E) by μ/(2π), we end with a particular case of Eq. (16.5), previously
obtained making use of general analytic and unitarity principles. The parameters in
Eq. (16.5) are related to those in Eq. (16.50) by
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β = −γV , (16.51)

γ = 1

2
g f γ

2
V ,

MCDD = E f − 1

2
g f γV .

However, the reverse is not true and Eq. (16.5) is not a particular case of Eq. (16.50)
from the scatteringmodel of Ref. [101]. As a proof of this statement, let us notice that
from Eq. (16.50) the resulting effective range r can only be negative [98]. Applying
Eq. (16.6) with the particular values of Eq. (16.51) we have

r = − g f γ
2
V

2μ(E f − g f γV /2)2
≤ 0 , (16.52)

because g f = 2μ f 20 (R − RV )2/R2
V and RV = μγV [101].

The situation described in this section is particularly interesting for the scat-
tering of heavy-quark mesons near their thresholds where several states with rather
exotic properties have been found that go beyond well-established quarkonium spec-
troscopy [34, 102]. In these systems the coupling to the pion is relatively suppressed
compared to that in the light-quark sector. For instance, for the P∗P potential worked
out in Ref. [103] (where P∗ is a heavy-quark vector-meson resonance and P is a
heavy-quark pseudoscalar, with the heavy quark being the c or the b), one has that
the strength of the central and tensor components of the one-pion mediated inter-
action is weaker by around a factor g2/(2g2A) � 0.06 compared to that for the NN
interactions. Here g is the coupling for P∗Pπ which is around 0.5 [103]. This makes
that even though there would be a LHC due to pion exchanges, this can be treated
perturbatively and one could neglect its effects in a first approximation. In such a
situation we can then apply the results presented in this section [96, 98].

We have only introduced by pass the interesting matter of quantifying the com-
positeness and elementariness of a pole in the S matrix, since a full discussion on
it should imply to abandon the strict realm of DRs and enter in QFT developments.
For more discussions the interested reader can consult Ref. [14]. For earlier results
one has, e.g., Refs. [96, 98–100, 104–108].
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