
Chapter 15
The Muskhelishvili-Omnès Problem
in Coupled-Channel form Factors

The basic problem that we consider in this section is to find the possible solutions for
a set of form factors Fi (s), i = 1 . . . n, ordered in increasing value of their thresholds
sth;i . Each of the Fi (s) has LHC for s < sL and RHC for s > sth, where sth is the
lightest of all the thresholds sth;i involved and sL was defined above.

Along the RHC the imaginary part of Fi (s) is given by the unitarity relation
expressed in Eq. (13.4). The latter also allows us to know the discontinuities of these
form factors along the RHC because they fulfill the Schwarz reflection principle,

Fi (s
∗) = Fi (s)

∗ , (15.1)

since the form factors are real in the interval sL < s < sth. As a result, the disconti-
nuity of Fi (s) along the RHC obeys

�Fi (s + iε) − �Fi (s − iε) = 2i�Fi (s + iε) , s > sth . (15.2)

On the other hand, the discontinuity of these functions along the LHC is assumed
to be given, cf. the example of Eq. (14.20), and it is denoted in the following by
ΔL Fi (s). Namely,

Fi (s + iε) − Fi (s − iε) = ΔL Fi (s) , s < sL . (15.3)

We already have shown in Eq. (13.14) that the n × 1 column vector F(s) ofmatrix
elements Fi (s) can be expressed as the product of the inverse of the n × n matrix
D(s), whose matrix elements are the functions Di j (s), times L(s). The latter is an
n × 1 vector columnof n analytical functions in the cut complex s plane, Li (s), which
do not have RHC. They could have only LHC (if any) [the possible bound-state poles
in F(s) would correspond to zeroes in the detD(s)].

To characterize the different solutions for F(s) it is convenient to introduce an
n × n matrix S(s) defined as
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S(s) = I + T (s)2iρ(s) . (15.4)

Notice that although T (s) is a symmetric this is not the case in general for S(s).
From Eq. (15.4) and the unitarity relation for T (s), Eq. (2.50), it is straightforward
to prove that for s > sth;n this matrix satisfies the property,

S(s)S(s)∗ = S(s)∗S(s) = I . (15.5)

To avoid any confusion let us indicate that the asterisk refers to complex conjugation
and not to the Hermitian conjugate of the matrix S(s). Since S(s) is not symmetric
they are not equivalent. Note also the while the S matrix in partial waves, defined in
Eq. (2.52), is symmetric and unitary neither of these properties hold in general for
S(s) when n > 1.

If we use the N/D method to express T (s) = D(s)−1N (s), we notice that S(s)
can also be written as

S(s) = I + 2i D(s)−1N (s)ρ(s) = D(s)−1 [D(s) + 2i N (s)ρ(s)]

= D(s)−1D(s)∗ , (15.6)

an expression valid in the whole complex s plane.
Now, let us assume that we have found an n × n matrix D(s) with only RHC

that satisfies Eq. (15.6). From the previous equation, and taking into account that
D(s)∗ = D(s∗) it also follows the discontinuity relation

D(s)−1 = S(s)D(s∗)−1 . (15.7)

Multiplying both sides by L(s), cf. Eq. (13.14), and taking into account that L(s) is
real along the RHC, we then have an analogous relation for the form factors

F(s) = S(s)F(s∗) . (15.8)

As stated, L(s) = D(s)F(s) has only LHC and its discontinuity along this cut is
given by

ΔL L(s) = D(s)ΔL F(s) , (15.9)

since D(s) is regular along the LHC because of extended unitarity. Assuming that
L(s) diverges for s → ∞ less strongly than sm for some integer m ≥ 0,1 we can
write the following m-times subtracted DR

1More rigorously we should say that L(s) diverges less strong than sm−1, m ≥ 1, to avoid just a
logarithmic vanishing of L(s)/sm . However, for the statement above we always have in mind a
power-like vanishing, |L(s)/sm | < |s|−γ , γ > 0, for s → ∞.
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L(s) =
m−1∑

i=0

ai s
i + sm

π

∫ sL

−∞
D(s ′)ΔL F(s ′)ds ′

(s ′)m(s ′ − s)
, (15.10)

such that if m = 0 there is no subtractive polynomial. The latter equation allows to
write the following DR representation for F(s),

F(s) = D(s)−1
m−1∑

i=0

ai s
i + sm

π

∫ sL

−∞
D(s)−1D(s ′)ΔL F(s ′)ds ′

(s ′)m(s ′ − s)
. (15.11)

Now, for a given PWA T (s) we can work out S(s), Eq. (15.5). The problem of
finding an n × n matrix D(s) of functions Di j (s) with only RHC that allows one
to write S(s) = D(s)−1D(s)∗ as in Eq. (15.6) is called the Hilbert problem. From
Eq. (15.7) it is clear that each column of D(s)−1 satisfies the same discontinuity
relation as Eq. (15.8) for the form factors along the RHC. Therefore, every column
of D(s)−1 is itself a form factor with RHC only. The final form factors Fi (s) are
obtained by a linear combination of the columns D(s)−1, where the coefficients in
this linear superposition are the Li (s) functions that comprise the possible LHC, cf.
Eq. (15.10).

First, let us notice that the determinant of the S matrix, S(s), and that of S(s) are
the same,

detS(s) = detS(s) . (15.12)

This is clear if we consider that

detS = det
(
I + 2iρ

1
2 Tρ

1
2

)
= det

(
ρ

1
2

[
ρ− 1

2 + 2iTρ
1
2

])
= det (I + 2iTρ) = detS .

(15.13)

Notice also that detS is given by the sum of the eigen-phase shifts ϕi (s) as

detS = exp 2i
n∑

i=1

ϕi (s) = detS . (15.14)

For the important two-coupled channel case the sum of the eigen-phase shifts is the
sum of the phase shifts, as it is clear from Eq. (13.15).

The fact that S(s) = D(s)−1D(s)∗, Eq. (15.6), allows us to write an Omnès rep-
resentation for detD−1. The point is that detD−1 has only RHC (as the function D
itself) and fromEq. (15.6) we learn that the phase of detD−1 is half the phase of detS,
which is denoted in the following as Φ(s), Φ(s) = 2

∑
i ϕi (s).2 In addition detD−1

could have zeroes and poles (the former are the generalization of the CDD poles to
the coupled-channel case). Out of the zeros and poles of detD(s)−1 we make up the

2The number of open channels changes. However, Φ(s) is a continuous function of s along the
RHC.
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polynomials P(s) and Q(s), respectively, cf. Eq. (14.5). To simplify the notation we
further introduce the symbols

Δ(s) = detD(s)−1 , (15.15)

sR = sth;1 .

We take the function e−i Φ(sR )

2 Q(s)Δ(s)/P(s), which is amenable to an Omnès rep-
resentation in the form,

Δ(s) = P(s)

Q(s)
expω(s) , (15.16)

ω(s) = Φ(sR)

2
+ s − sR

2π

∫ ∞

sR

Φ(s ′) − Φ(sR)

(s ′ − sR)(s ′ − s)
ds ′ . (15.17)

We have multiplied Δ(s) by exp (−iΦ(sR)/2) so that the resulting function has a
zero phase at sR , which allows the integral in the DR of the previous equation to stay
finite (even if Φ(sR) is not zero).

Taking into account that the asymptotic behavior of an Omnès function for s →
∞ is given by the asymptotic phase Φ(∞), cf. Eq. (14.10), we then have from
Eqs. (15.16) and (15.17) the following limit behavior for Δ(s),3

Δ(s) −−−→
s→∞ s p−q− Φ(∞)−Φ(sR )

2π . (15.18)

Which is the relativistic coupled-channel version of the Levinson theorem, cf.
footnote 3.

An interesting result in connectionwith Eq. (15.18) is that it relates the asymptotic
behavior of Δ(s) with the leading power behavior in s of the columns in D(s)−1

[75, 91, 92]. Let φi (s) be the ith column of D(s)−1 which, as follows fromEq. (15.7),
satisfies the same discontinuity linear relation as a form factor,

S(s)φi (s)
∗ = φi (s) , s > sR . (15.19)

Assuming as in Refs. [75, 92] that S(s) → I for s → ∞ it is clear that the leading
behavior of φi (s) should be integer-power like (no cut remains in this limit and we
always assume that all these functions are amenable to aDR treatment). Furthermore,
by appropriate linear combinations we can always choose these φi (s) such that if
χi is the leading degree in s of φi (s) [which corresponds to the degree in s of the
dominant component among all the components of φi (s)] then

Δ(s) −−−→
s→∞ sχ1+χ2+···+χn . (15.20)

3We assume that the zeroes and poles of Δ(s) do not occur at the threshold sR .
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To see this result let us discuss first the two-coupled channel case and to fix ideas
let us assume that χ2 ≥ χ1. If the leading behavior for φ2 gives rise to a column
vector linearly independent to the leading one for φ1, then the result of Eq. (15.20) is
clear. However, if the leading-components vector φ2 is linearly dependent with the
leading one from φ1, then multiply φ1 by sχ2−χ1 times a constant and remove it to
φ2, which is then the new φ2. In this way (iterated if needed), the leading behavior
for φ2(s) is now a linearly independent vector to φ1. On the other hand, if χ1 > χ2

we would proceed analogously exchanging 1 ↔ 2. It is clear that this process can be
further iterated to treat the case with n coupled PWAs, and then Eq. (15.20) results
for an appropriately built matrix D(s)−1. Notice also that the exponent in the rhs of
Eq. (15.20) must match with the one in Eq. (15.18). Thus, we also have that

χ1 + χ2 + . . . + χn = p − q − Φ(∞) − Φ(sR)

2π
. (15.21)

These results were applied in Ref. [76] to study the strangeness-changing scalar
form factors for Kπ(1), Kη(2) and Kη′(3), following an analogous set up as in
Ref. [83] for the calculation of theππ and K K̄ isoscalar scalar form factors (this latter
problem was addressed also by Ref. [84] with a similar approach). The strangeness-
changing or ΔS = 1 scalar form factors are defined by

〈0|∂μ(s̄γμu)(0)|KφK 〉 = −i

√
3

2
ΔKπFk(s) , (15.22)

ΔKπ = m2
K − m2

π .

The state |Kπ〉 is in the isospin basis so that its form factor is
√
3 that of |K+π0〉,

and |0〉 is the vacuum state.
The I = 1/2 scalar Kπ, Kη′ PWAs of Ref. [93] were used for driving the FSI.

Reference [76] also checked that the results barely change when considering the Kη
channel as well, so that we disregard it in the following and concentrate in the two-
coupled channel problem of Kπ and Kη′ scattering. It was further taken for granted
in Ref. [76] that the scalar form factors vanish for s → ∞ because the hadrons are
composite objects. This is also in agreement with expectations from QCD counting
rules [77–79]. As a result, the following unsubtracted DRs were written for the
hadronic form factors F1(s) and F3(s),

F1(s) = 1

π

∫ ∞

sth;1
ρ1(s ′)F1(s ′)T11(s ′)∗ds ′

s ′ − s
+ 1

π

∫ ∞

sth;3
ρ3(s ′)F3(s ′)T13(s ′)∗ds ′

s ′ − s
,

(15.23)

F3(s) = 1

π

∫ ∞

sth;1
ρ1(s ′)F1(s ′)T13(s ′)∗ds ′

s ′ − s
+ 1

π

∫ ∞

sth;3
ρ3(s ′)F3(s ′)T33(s ′)∗ds ′

s ′ − s
.

These coupled linear IEs were solved numerically in Ref. [93] by iteration. The
numerical iterativemethoddeveloped in this reference is summarized in the appendix.
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ThePWAsconsidered inRef. [93] have nobound states,q = 0, and the D−1 matrix
has no CDD poles [they were reabsorbed in the function N (s)], p = 0. Furthermore,
Φ(sR) = 0. As a result, the rhs of Eq. (15.18) reads

Δ(s) −−−→
s→∞ s− Φ(∞)

2π . (15.24)

The first set of T matrices used in Ref. [93], and derived in Ref. [76], give rise to
Φ(∞) = 2π (δ1(∞) = π and δ3(∞) = 0). It follows then from Eq. (15.21) that

χ1 + χ2 = −1 . (15.25)

Since it is not possible that simultaneously χ1 and χ2 are negative integers, we then
conclude that there is only one linearly independent solution that vanishes at infinity
with χ1 = −1. This is the solution obtained by solving numerically Eq. (15.23)
employing the PWAs from the fits (6.10) and (6.11) of Ref. [76]. As starting input
Ref. [93] takes for F1(s) its solution according to an Omnès representation, cf.
Eq. (14.5), with constant P(s) and Q(s), while F3(s) is taking zero initially. The
normalization factor corresponds to FKπ(0) according to its value calculated at NLO
in ChPT [94].

Next, Ref. [93] also matched smoothly the unitarized ChPT PWAs of Ref. [76]
with a K -matrix ansatz at an energy around

√
s = 1.75 GeV. The point is to improve

the reproduction of the experimental data of Ref. [95] on Kπ scattering, that was
somewhat deficiently accomplished by the PWAs of Ref. [76] for energies above
1.9 GeV. Once this is done Ref. [93] could consider the transition from Φ(∞) = 2π
to Φ(∞) = 4π by changing some suitable parameters in the K -matrices employed,
while reproducing satisfactorily the experimental data up to the largest energy avail-
able in Ref. [95] (

√
s = 2.5 GeV). For the case Φ(∞) = 4π we then have from

Eq. (15.21) that (q = p = Φ(sR) = 0)

χ1 + χ2 = −2 . (15.26)

In this case we can then have two linearly independent solutions with negative χi for
χ1 = χ2 = −1. This second linearly independent solution was found in Ref. [93]
by solving Eq. (15.23) with different input values for the form factors at the origin.
Apart from a global normalization another piece of information is needed, since now
there are two linearly independent solutions. The Ref. [93] uses the value of the Kπ
form factor at the Callan-Treiman point, where s = ΔKπ , because it can be related
quite accurately with the ratio of the weak decay constants of the pseudoscalar kaons
( fK ) and pions ( fπ). The precise relation is

FKπ(ΔKπ) = fK
fπ

+ ΔCT , (15.27)
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with ΔCT estimated as −3 × 10−3 [94], while fK / fπ is taken in Ref. [93] as
1.22 ± 0.01, according to the phenomenological information then available. It is
worth emphasizing that once the chiral unitary amplitudes of Ref. [76] were imple-
mented with the K -matrix ansätze, independently of whether Φ(∞) = 2π (one lin-
early independent solution) or 4π (two linearly independent solutions) the value of
FKπ(ΔKπ) is in both cases compatible, which indicates the great stability of the
results. For the case with only one linearly independent solution it turns out that
FKπ(ΔKπ) = 1.219 − 1.22 in impressive agreement with Eq. (15.27).

Let us finish this section by connecting with the use of the function N (s) to
express the form factors Fi (s) as in Eq. (13.11), by using the matrix of functions
[I + N (s)g(s)]−1. In the special case in which N (s) is modeled without LHCs,
as discussed in Chap. 6, we could end with explicit expressions for Ω(s) (in the
uncoupled case) and for D(s) in the coupled case. For the former case we would
have

Ω(s) =
∏q

i=1(s − sP;i )∏p
j=1(s − sZ; j )

1

1 + N (s)g(s)
, (15.28)

with the subscripts P and Z referring to the poles and zeroes of 1/[1 + N (s)g(s)],
which are removed by multiplying this function by the appropriate rational function.
For the case of coupled channels, we can identify the matrix D(s) in Eq. (15.7) with

D(s) = [I + N (s)g(s)] . (15.29)

We can also introduce like in Ref. [92] the analogous of Ω(s) in coupled channels,
denoted byD−1(s), so thatD−1(s) satisfies Eq. (15.7), it is holomorphic and nonsin-
gular in the cut complex s plane. Given the function D(s) in Eq. (15.29) we notice
that the product D(s)D(s)−1 has no cuts because from Eq. (15.7)

D(s + iε)D(s + iε)−1 − D(s − iε)D(s − iε)−1 (15.30)

=D(s − iε)S(s − iε)S(s + iε)D(s − iε)−1 − D(s − iε)D(s − iε)−1 = 0 ,

taking also into account Eq. (15.5) and thatD(s∗) = D(s)∗. The same propertywould
also hold for D(s)D(s)−1. Therefore, the product D(s)D(s)−1 is a rational function
R(s) and we can write [92]

D(s)−1 = D(s)−1R(s) . (15.31)

Of course, this result applies to any possible matrix of functions D(s) satisfying
Eq. (15.6), independently of the modeling of N (s).
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