
Chapter 14
The Omnès Solution. Reasoned Warnings
on the Use of the Omnès Function

We consider along this section that the uncoupled unitarity relation of Eq. (13.5) can
be applied, at least in good approximation, and assume that the strong interacting
PWA is known. Given a form factor with only RHC, like for example the vector
or scalar form factors of two hadrons, the unitarity relation, Eq. (13.5), provides
us with its discontinuity along this cut. The phase of the form factor F(s), ϕ(s), is
the same as the phase of the PWA T (s) [also denoted then by ϕ(s)] because of the
Watson final-state theorem (we are here suppressing any subscript).1 In the strict
elastic region ϕ(s) = δ(s) but, as we show below, it might be that still the phase
of the form factor corresponds approximately to that of the PWA, while the latter
departs strongly from δ(s) in a region with marked inelasticity. The reason is that the
form factor mostly couples to a given eigen-channel that diagonalizes the S matrix,
for which the elastic treatment holds.

The solution for an analytical function in the cut complex s plane, with a branch
point singularity at sth associated with a RHC, along which its phase is known, can
be written in terms of the so-called Omnès function. The idea is relatively straight-
forward and can be implemented in two steps.

First, by the knowledge of ϕ(s) we construct an analytical function with a RHC
and branch point discontinuity at sth by writing down the DR

ω(s) =
n−1∑

i=0

ai s
i + sn

π

∫ ∞

sth

ϕ(s ′)ds ′

(s ′)n(s ′ − s)
, (14.1)

where we have assumed that ϕ(s) does not diverge stronger than sn−1 for s → ∞,
with n a finite integer. We have introduced n subtraction constants so that the result is
independent of the subtraction point. Along the RHC this function fulfills that ω(s +
iε) − ω(s − iε) = 2iϕ(s). Second, we next define the Omnès function, Ω(s), as

1If there is a difference between these two phases of π then just take −F(s).
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Ω(s) = expω(s) . (14.2)

We always have the freedom to normalize the Omnès function such that Ω(0) = 1,
which fixes a0 = 1. It follows also that the combination

R(s) = F(s)

Ω(s)
, (14.3)

is real for s > sth and it has no cuts, so that it is a meromorphic function of s in the
first RS of the whole complex s plane.

Let us consider first that ω(s) is finite along the RHC, so that 0 < |Ω(s)| < ∞,2

and there are no bound states (i.e., F(s) has no poles). It is known in complex
analysis that any function that is analytic in the whole complex s plane is constant
or unbounded. If we apply this theorem to R(s), we learn then that F(s) diverges as
much as or stronger than Ω(s) for s → ∞. As result we conclude in this case that
we can express F(s) as

F(s) = R(s)Ω(s) , (14.4)

with R(s) a constant or an analytical function which is unbounded at infinity. Indeed,
we can expect exponential divergences in Ω(s) from Eq. (14.2) when the DR for
ω(s) requires for convergence more than one subtraction. The conclusion follows by
a similar analysis as the one performed betweenEqs. (4.10) and (4.12) in relationwith
the Sugawara–Kanazawa theorem. Thus, if ϕ(s)/sn−1 (n ≥ 2) were not vanishing
for s → ∞, one would have logarithmic divergences like sn−1 log s (here there is
only RHC). These divergences could not be canceled by the ansn−1 term. Therefore,
R(s) would be an exponential function so as to guarantee that F(s) does not diverge
stronger than a power of s for s → ∞ (and it is then amenable for a DR). Regarding
this point, one would expect that a hadronic form factor would typically vanish for
s → ∞ because of the finiteness of the non-perturbative scale of QCD, ΛQCD , as
also suggested by the quark counting rules [77–79], and then being amenable to a
DR. By the same token, one would also expect intuitively that the phase of the form
factor tends to a constant limit for s → ∞. However, these expectations could fail
in the case of singular interactions at the origin.

We can say more about R(s). Let P(s) be the polynomial made out of the pos-
sible zeroes of F(s) (if any), and let Q(s) be another polynomial whose zeroes
are the possible poles (if there exists any bound state) of F(s). Next, we multiply
F(s) by the rational function Q(s)/P(s) and perform a DR of the analytical func-
tion log

[
F(s)Q(s)/P(s)

]
in the cut complex s plane circumventing the RHC. The

discontinuity of this function along the RHC is 2i[δ(s + iε) − δ(s − iε)], the one
corresponding to functionω(s). Of course, we are assuming also here that F(s) has a
finite number of zeroes and bound states (these numbers are p andq, respectively) and
that log F(s)Q(s)/P(s) is amenable to aDR treatment. There, this procedure implies

2Later we discuss a specific situation when this is not the case.
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that F(s) can be written as in Eq. (14.4) with R(s) = Q(s)/P(s). In the subsequent
we further require that F(s) resulting from this analysis does not grow exponen-
tially, so that we are driven to admit that a once-subtracted DR is possible for ω(s)
in Eq. (14.1). In other terms, we assume that for s → ∞ the ratio |ϕ(s)/s| < s−γ for
some γ > 0, because otherwise we could apply the analysis above below Eq. (14.4),
and based on the process followed for the demonstration of the Sugawara–Kanazawa
theorem.3 We then arrive to the following expression for F(s) that we consider in
the following:

F(s) = P(s)

Q(s)
Ω(s) , (14.5)

Ω(s) = expω(s) , (14.6)

ω(s) = s

π

∫ ∞

sth

ϕ(s ′)ds ′

s ′(s ′ − s)
. (14.7)

Here, P(s) absorbs the required normalization constant to permit our choiceΩ(0) =
1 without loss of generality.

Let us work out the behavior of Ω(s) in the limit s → ∞ by taking for granted
the existence of the limit ϕ(∞) < ∞. For that we again proceed as in Eq. (4.10) and
then we decompose ω(s) in Eq. (14.7) as

ω(s) = ϕ(∞)
s

π

∫ ∞

sth

ds ′

s ′(s ′ − s)
+ s

π

∫ ∞

sth

ϕ(s ′) − ϕ(∞)

s ′(s ′ − s)
ds ′ . (14.8)

Thus, for s → ∞ we have

ω(s + iε) −−−→
s→∞ −ϕ(∞)

π
log

s

sth
+ iϕ(∞) − 1

π

∫ ∞

sth

ϕ(s ′) − ϕ(∞)

s ′ ds ′ , (14.9)

and the logarithmic divergence is the one that dominates for s → ∞. The other two
terms in the previous equation are constant ones, the first one is purely imaginary
and gives the phase of Ω(s) while the latter is a constant stemming from the second
integral in Eq. (14.8) that renormalizes P(s) in the considered limit of s → ∞. As
a result, we have for Ω(s) the limit behavior

3In nonrelativistic scattering we know from the Levinson theorem [17, 80] that δ(0) − δ(∞) =
(n + q/2)π , where n is the number of bound states in the problem and q only applies to S-wave
(
 = 0), being the number of zero energy S-wave resonances. For the precise condition of this later
case consider Eq. (95) of Ref. [17].
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Ω(s) −−−→
s→∞ CΩ eiϕ(∞) ×

( sth
s

) ϕ(∞)

π

. (14.10)

This translates into the form factor F(s), Eq. (14.5), as

F(s) −−−→
s→∞ CF e

iϕ(∞) × s p−q− ϕ(∞)

π , (14.11)

where CΩ and CF are constants.
The Eq. (14.11) offers interesting corollaries

(i) If the high-energy behavior of F(s) is considered to be known and it is of the
form sν , then we have from this equation that

p − q − ϕ(∞)

π
= ν , (14.12)

which is a kind of relativistic Levinson theorem for the form factor.
(ii) When modeling interactions with limited information, so that we are able to
achieve some partial control on the PWA and form factor, we should keep constant
under variation of the parameters the relation of Eq. (14.12). Since ν is fixed then
we would require that

p − q − ϕ(∞)

π
= fixed (14.13)

as the parameters vary. In this way, if, e.g., ϕ(∞)/π decreases by one unit and there
are no bound states in the system then we should introduce an extra zero in the form
factor, so that p increases by one compensating unit. A similar logic would apply
for other possible situations.

(iii) We should stress that while we can compensate for the strong-model effects
discussed in (ii), by increasing/decreasing p, q and ϕ(∞)/π , this is not possible for
Ω(s), which then could be driven into a very troublesome behavior. That is, Ω(s) is
expected to be more strongly dependent on fine details of the hadronic model and it
should be used with care, e.g., within a formula like that for F(s) in Eq. (14.5).

As an important example that illustrates the previous points (i)–(iii), we refer to
the pion scalar form factor, associated with the light-quark scalar source ūu + d̄d,
which is defined as

F(s) =
∫

d4xei(p+p′)x 〈0|muū(x)u(x) + mdd̄(x)d(x)|0〉 . (14.14)

Here u and d are the up and down quarks,mu andmd are themasses of these quarks, in
order, and s = (p + p′)2. In the following we consider the isospin limit (nominally,
mu = md ).

The FSI for this form factor are driven by the isoscalar scalar ππ interaction,
which was discussed for low energies with its salient feature of the appearance of the



14 The Omnès Solution. Reasoned Warnings … 97

f0(500) or σ meson in Chap. 8. Another phenomenologically relevant channel is the
K K̄ one, with a threshold at 991.4MeV [34]. Apart from the f0(500) or σ resonance
there is also the f0(980) resonance, which is relatively narrow [34] and it manifests as
a steep rise of the isoscalar scalar phase shifts at around the two-kaon threshold. This
resonance couples much more strongly to K K̄ than to ππ [81], which causes that as
soon as the K K̄ is open there is an active conversion of pionic flux in a kaonic one. As
a result, the inelasticity parameter η1 rapidly drops from 1 below the K K̄ threshold to
much smaller values for

√
s > 2mK . The aforementioned rapid rise of the phase of the

isoscalar scalar ππ PWA T (s), ϕ(s), could be abruptly interrupted at the K K̄ before
it reached π degrees. All depends on whether δ(s) at s = sK = (2mK )2 is larger or
smaller than π , which might be easily changed within the parameters of the hadronic
model, being both situations compatible with the present experimental phase shifts
at around s = 1 GeV2. As a result, the Omnès function for this case would have two
dramatically different behaviors under tiny changes of the parameters, depending
on whether δ(sK ) is larger or smaller than π . In the former case Ω(s) is huge at
the point where δ(s) = π (this point is below sK ), while for the later case Ω(s) is
nearly zero just below the K K̄ threshold. This pathological situation was discussed
in great detail in Ref. [82]. We also refer to Refs. [10, 81] for explicit accounts of
the mentioned experimental data for the isoscalar scalar meson–meson interactions.

Let us exemplify this situation by performing an explicit calculation by identifying
ϕ(s) with the phase of the PWA T (s) along the RHC. For the numerical evaluation
of the DR for ω(s), Eq. (14.7), it is convenient to rewrite it so as to avoid the explicit
numerical calculation of the Cauchy principal value of the integral involving ϕ(s ′).
We then have

ω(s) = ϕ(s)
s

π

∫ ∞

sth

ds ′

s ′(s ′ − s)
+ s

π

∫ ∞

sth

ϕ(s ′) − ϕ(s)

s ′(s ′ − s)
ds ′ , (14.15)

and the former integral can be evaluated algebraically.
The situation in which δ(sK ) → π drives to a singularity in the Omnès function

Ω(s). When this happens, with a subtraction constant around −2.45, the phase of
the strong PWA becomes discontinuous for s above sK . We plot δ(s) in the left top
panel of Fig. 14.1 and ϕ(s) in the right top one. The PWA T (s) in terms of the phase
shifts δ(s) is given by

T (s) = |T (s)|eiϕ(s) = 1

2ρ
[η sin 2δ + i(1 − η cos 2δ(s))] . (14.16)

Thus, when δ(sK ) < π we have that above sK the real part of T (s) changes sign
(since δ(s) keeps growing), and then the phase of T (s) experiences a rapid decrease
from values near π below sK to values in the interval [0, π/2] (the imaginary part
of T (s) is always positive because of unitarity, η ≤ 1). This transition in ϕ(s) from
values near to π to others below π/2 becomes more abrupt as δ(sK ) → π−, and in
reaching this limit the phase ϕ(s) becomes discontinuous at sK . On the other hand,
when δ(sK ) > π the function ϕ(s) keeps growing because the real part of T (s) does



98 14 The Omnès Solution. Reasoned Warnings …

not change sign and when η becomes small then it is clear that the imaginary part
of T (s) becomes larger than the real part [ϕ(s) > π for s > sK ]. The presence of
such a discontinuity in ϕ(s) at sK by an amount of π/2 drives to a singularity in
ω(s) at s = sK . This singularity is of the end-point type, as it is clear by splitting the
integral for ω(s) in two parts, from sπ (sπ = 4m2

π ) to sK and from the latter to ∞,
with ϕ(sK − ε) − ϕ(sK + ε) = ±π/2. In the latter expression, the plus sign applies
when δ(sK − ε) → π− and the minus sign when δ(sK − ε) → π+. The resulting
logarithmic singularity in ω(s) stems then from the fact that the Cauchy’s principal
value of the integral around s = sK does not get rid of the pole singularity in the
integrand from the factor 1/(s ′ − s). Thus, we are driving to the divergence

1

π

[∫ sK−Δ ϕ(sK − ε)ds ′

s ′ − sK
+

∫

sK+Δ

ϕ(sK + ε)ds ′

s ′ − sK

]

→ 1

π
[ϕ(sK − ε) − ϕ(sK + ε)] logΔ = ±1

2
logΔ , (14.17)

with Δ → 0+ and δ(sK − ε) → π∓, in order. In this way, when exponentiating
ω(s) to get Ω(s) this divergent contribution in the exponent gives rise to (

√
Δ)±1.

Therefore,Ω(s) has finally a pole when δ(sK ) → π+ and a zero when δ(sK ) → π−.
This behavior is represented in the right bottom panel in Fig. 14.1.

This pathological situation has a reflection in the condition expressed in
Eq. (14.13), because there is a jump by one in ϕ(∞)/π between the two situa-
tions δ(sK − ε) → π±. Thus, imposing continuity in the transition δ(sK − ε) < π

to > π requires that p increases by 1, that is, there should be one more zero for
δ(sK ) > π as compared with the opposite situation. If we would require the conti-
nuity from δ(sK ) > π to < π we would have to increase q by one and had bound
sate (a pole in the first Riemann sheet). This latter situation can be ruled out in pion
physics. It follows then that an Omnès representation of the isoscalar scalar ππ PWA
in the case δ(sK ) > π requires the function Ω(s) to have a zero at the point at which
�T (s) = 0 for s < sK . Well, applying an Omnès representation for T (s) itself this
is also a consequence of unitarity because T (s) = eiδ sin(δ)/ρ in the elastic region
below the K K̄ threshold.

Similar reasoning was applied in Ref. [82] to the pion scalar form factor F(s)
which follows (in good approximation) the phase of the isoscalar scalar ππ PWA
T (s) (even somewhat above the K K̄ threshold). This is shownby explicit calculations
of F(s) within other approaches [11, 83, 84]. Indeed, such a situation might be
expected by realizing that the f0(980) couples much more strongly to kaons than to
pions, e.g., Ref. [81] reports that the coupling to kaons is larger by a factor 3. As a
result, the admixture between the pion and kaon channels is suppressed and both of
them follow their own eigen-channel of the isoscalar scalar meson–meson PWAs.
We refer to Refs. [82, 85] for detailed discussions that provide the explicit expression
for the eigen-channels and eigen-phases.

We would also like to mention that one can precisely determine the point s = s1
at which the form factor has a zero when δ(sK ) > π as find out in Ref. [82]. This
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reference writes down a twice-subtracted DR for the form factor,

F(s) = F(0) + 1

6
〈r2〉πs s + s2

π

∫ ∞

sπ

�F(s ′)ds ′

(s ′)2(s ′ − s)
. (14.18)

In this expression, 〈r2〉πs is the quadratic scalar radius of the pion. Indeed one expects
fromasymptoticQCD [86] that F(s) vanishes at infinity so that thewrittenDR should
converge fast, which is of particular interest for relatively low energies. It is then clear
from the integral representation of F(s) in Eq. (14.18) that the only point at which
F(s) can vanish for s < sk is where �F(s) = 0 (since the subtraction polynomial in
Eq. (14.18) is real). The latter fact can only occur when δ(s) = π since there is only
one zero at such energies and |�F(s)| = |F(s) sin δ(s)|/ρ(s) in the elastic region,
s < sK , and δ(sK ) > π . This in turns fixes the first order polynomial that should
multiply the Omnès function Ω(s) so as to achieve a continuous transition for δ(sK )

greater or smaller than π .
In summary, one should better use the function

Ω(s) =
{
expω(s) , δ(sK ) < π ,
s1−s
s1

expω(s) , δ(sK ) > π .
(14.19)

A clear lesson that follows from the discussion in this section is that one should use
an Omnès function with great care when employing it while doing fits to data. The
latter requires varying the parameters of the theory and one should avoid possible
instable behaviors associated with rapid movements in the phases integrated that
could strongly affect an Omnès function. As we have seen, nonsense results could
arise by a nearby discontinuity in the space of parameters. The fulfillment of the
requirement in Eq. (14.13) should then be pursuit, and for the phase of the isoscalar
scalar ππ PWA one should use the function in Eq. (14.19) instead of a pure Omnès
function, cf. Eq. (14.6).

Given a form factor which also involves LHC,4 e.g., that for γ γ → ππ , we could
also define the function R(s) as in Eq. (14.3), although now this function also contains
LHC, and then we denote it by L(s) [analogously to Eq. (13.14)]. Nonetheless, the
introduction of this function allows a clear splitting between the RHC and LHC
contributions that is also exploited in the literature. One typically writes down a DR
for L(s) along the LHC,

L(s) =
n−1∑

i=1

ai s
i + sn

π

∫ sL

−∞
�L(s ′)ds ′

(s ′)n(s ′ − s)
, (14.20)

F(s) = Ω(s)L(s) ,

�L(s) = Ω(s)−1�F(s) , s < sL ,

4Maybe some readers are used to consider that the form factors should only have RHC. Here we
use the notation introduced in Chap. 13.
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Fig. 14.1 From left to right and top to bottom: Phase shifts, δ(s), phase of T (s),ϕ(s), and theOmnès
function, |Ω(s)|. The solid line corresponds to the subtraction constant a of the g(s) function with
the value a = −2.4 and the dashed line to a = −2.5. We have modeled the ππ and K K̄ channels
with I = 
 = 0 by unitarizing the lowest order ChPT amplitudes. We use Eq. (8.29) and the 2 × 2
matrix N (s) is identified with the leading ChPT amplitudes, Eq. (8.30)

with sL the upper limit for the LHC. In this way, the Omnès function can be known
(at least partially) from the knowledge of the strong PWAs along the RHC and then
one needs to know �F(s) along the LHC. Of course, in the pure elastic case the
phase of the Omnès function is the phase of the strong PWA T (s) and we could
proceed as discussed above in this section. For the particular case of γ γ → π0π0

its S wave contribution is discussed in Refs. [87, 88]. The subtraction constants can
be adjusted by employing the Low’s theorem, which implies that for s → 0 the total
F(s) tends to its renormalized Born term contribution (involving the values of the
physical couplings and masses). The other subtraction constant is fixed by matching
with the one-loop ChPT calculation of Refs. [89, 90]. One could approach �F(s)
by the contributions from the Born terms and the crossed exchanges of the J PC
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resonance multiplets 1−− and 1++ as in Ref. [88], where explicit formulas for the
resonance-exchange tree-level amplitudes can be found.

Incidentally, Refs. [87, 88] use a somewhat different unitarization procedure than
Eq. (14.20) to calculate the low-energy cross section for γ γ → π0π0. These refer-
ences consider only S wave (π0π0 does not have P wave because of Bose–Einstein
symmetry) and two isospin channels are possible, the isoscalar and the isotensor
ones. The first step is to build up a function with only RHC by subtracting to FI (s)
a function L̃ I (s) that contains its LHC. Namely, the new function is

FI (s) = FI (s) − L̃ I (s)

ΩI (s)
. (14.21)

Next, Refs. [87, 88] perform a twice-subtracted DR for the latter, in terms of which
FI (s) reads

FI (s) = L̃ I (s) + aIΩI (s) + cI sΩI (s) + ΩI (s)
s2

π

∫ ∞

4m2
π

L̃ I (s ′) sin ϕI (s ′)ds ′

(s ′)2(s ′ − s)|ΩI (s ′)| .

(14.22)

The subtraction constants are fixed as explained above by considering the Low’s the-
orem and matching with the one-loop ChPT calculations of γ γ → ππ in Refs. [89,
90]. At the practical level L̃ I (s) is also approximated in Refs. [87, 88] by the tree-
level amplitudes including the Born terms and the exchange of the 1−− and 1++
multiplets of vector and axial resonances, in order. In this way, the Low’s theorem
requires that

lim
s→0

[
FI (s) − L̃ I (s)

] = O(s) , (14.23)

fromwhich it follows that aI = 0 in Eq. (14.22). Indeed, the contributions of the 1++
axial resonances are more important at low energies than that of the 1−−. Actually,
the former appear one order lower in the chiral expansion than the latter. Despite
that the explicit axial exchanges are neglected in Ref. [87], while they are taken into
account in Ref. [88]. The calculations performed in this reference confirm that these
contributions are phenomenologically relevant and should not be neglected since their
contributions are around a 30% of the full result. A major step forward of Ref. [88]
compared to Ref. [87] is to use the stable Ω0(s) function as defined in Eq. (14.19),
instead of just a pure Omnès function. In this way, the output at low energies is much
more stable under changes of the parameterizations used for the isoscalar scalar ππ

phase shifts in the region of the f0(980) resonance, accomplishing a reduction of
about a factor of 2 in the uncertainty of the cross section for γ γ → π0π0 at around
the mass of the ρ(770), and about a 25% already at around

√
s = 500 MeV. Notice,

that even if for δ0(sK ) > π one has a zero in the denominator because Ω0(s1) = 0,
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as defined in Eq. (14.19), the ratio sin ϕ0(s ′)/|Ω0(s ′)| in the integrand of Eq. (14.22)
is well defined because the zero of Ω0(s ′) happens at the same point s1 at which
ϕ0(s1) = π , cf. Eq. (14.18).
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