
Chapter 10
Perturbative Introduction
of Crossed-Channel Cut Singularities

Let us now consider the perturbative treatment of the crossed-channel cuts, that for
simplicity are denoted generically as LHC, when unitarizing PWAs obtained from
some EFT.We present four methods; the first one is based in the use ofN (s) as intro-
duced in Eq. (7.1). From this method we also derive another approach that is referred
in the literature as the Inverse AmplitudeMethod (IAM). Other two approaches arise
from the use of the N/D method where �(p2) is calculated perturbative in the con-
sidered EFT, such that either the N/D IE is solved fully or in its first iterated form.
This line of handling perturbatively the LHC contributions is discussed in Chaps. 11
and 12, in order.

Let us suppose that T (s) is given by Eq. (7.2) in terms ofN (s) and g(s). In view
of Eq. (7.10) a convenient choice for the subtraction constant in the unitarity loop
function would be such that g(s) is zero at some point along the near-threshold LHC.
In this way, we might dismiss the dependence of N (s) along the physical region
(s ≥ sth) on the iterated LHC contributions [multiplied by g(s)], at least for not too
high s. For example, if one imposes that g(0) = 0 then, by taking the subtraction
point at s = 0, the subtraction constant would be simply zero. Had we imposed that
g(s0) = 0, with s0 along the LHC, then we would change the subtraction point to s0,
so that again a(s0) = 0. In this case g(s) would read

g(s) = − s − s0
π

∫ ∞

sth

ρ(s ′)ds ′

(s ′ − s0)(s ′ − s)
(10.1)

= − s

π

∫ ∞

sth

ρ(s ′)ds ′

s ′(s ′ − s)
+ s0

π

∫ ∞

sth

ρ(s ′)ds ′

s ′(s ′ − s0)
.

This choice for the subtraction constant in order to weaken the influence of the
iterated LHC for low s might be of relevance if one wished to provide a perturbative
solution of Eq. (7.10) forN (s). Indeed, from Eq. (7.2) we have the geometric series
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T = N − N gN − N gN gN + . . . (10.2)

This expansion in powers ofN g could bematchedwith a perturbative loop expansion
of T and, in this way, N could be determined order by order [8, 48].

Let us give an explicit example based on ChPT applied in Ref. [48] to themassless
WLWL scattering (the subscript L stands for the longitudinal component of the W
boson) by applying the equivalence theorem [49]. In this EFT the momentum expan-
sion implies a loop expansion, so that the chiral dimension of a perturbative Feynman
graph with L loops is D = 2L + 2 + ∑

d Nd(d − 2) , with d the chiral dimension
of a given monomial in the ChPT Lagrangian and Nd is the number of such vertices
with dimension d [50]. The isoscalar scalar WLWL scattering amplitude up to NLO
or O(p4) in ChPT is [48, 51]

T2(s) = s

v2
, (10.3)

T4(s) = 3s2

2v2(m2
H − s)

+ m4
H

v2s

[
log

(
1 + s

m2
H

)
− s

m2
H

+ s2

2m4
H

]
(10.4)

− s2

1728π2v4

[
1673 − 297

√
3π + 108 log

−s

m2
H

+ 42 log
s

m2
H

]
,

where v = (
√
2GF )−1/2 � 1/4 TeV is the analogous to fπ for the pion case, with

GF the Fermi coupling constant. The expression for T4(s) in Eq. (10.4) contains the
exchange of a Standard Model Higgs boson of mass mH . If we denoted by b the
combination

11v2

6m2
H

− 1673 − 297π
√
3

1728π2
→ b , (10.5)

then the expression in Eq. (10.4) becomes more general and it does not necessarily
correspond to the exchange of a Standard Model Higgs boson, but to a general sce-
nario of another underlying fundamental theory. The amplitude T4(s), up to O(p4),
becomes then

T4(s) = b
s2

v4
− s2

1728π2v4

[
108 log

−s

m2
H

+ 42 log
s

m2
H

]
. (10.6)

At NLO all of these alternative theories would give rise to T4(s) as written above
in terms of v and b, although with the latter having different values. The scale m2

H
is introduced above to refer to a high-energy scale in which bare resonance could
appear. In the previous equation the first logarithm gives rise to the RHC and the last
to the LHC.

In order to proceed with the unitarization of T2(s) + T4(s) we employ the non-
perturbative expression
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T (s) = N (s)

1 + g(s)N (s)
, (10.7)

equivalent to Eq. (7.10). Next, we proceed with the chiral expansion of N (s) up to
NLO as

N (s) = N2(s) + N4(s) + O(p6) (10.8)

with the subscript indicating the chiral order. Then, we match the chiral expansion
of T (s) in Eq. (10.7) by counting the loop function g(s) asO(p0), as it is clear from
its loop expression in Eq. (8.5). This function in the present massless case reads

g(s) = 1

16π2

(
a + log

−s

m2
H

)
. (10.9)

Therefore we have,

N2(s) = T2(s) , (10.10)

N4(s) = T4(s) + T2(s)
2g(s) (10.11)

= s2

288π2v4

(
18(a + 16bπ2) − 7 log

s

m2
H

.

)
.

In this way we can employ Eq. (10.7) to calculate T (s) by usingN = N2 + N4, the
latter ones determined in Eqs. (10.10) and (10.11). In the limit in whichmH � 4πv,
while keeping |a| and |b| of O(1) [b is around 0.1 for a heavy Standard Model
Higgs boson of mass 1 TeV, cf. Eq. (10.5)], an isoscalar scalar resonance with van-
ishing mass and width is dynamically generated [48, 52, 53]. In the opposite limit,
mH 	 4πv, we consider again the perturbative expression for T2(s) + T4(s) given
in Eqs. (10.3) and (10.4) corresponding to the exchange of a standard model Higgs.
Further, we neglect the non-logarithmic terms divided by 4πv in comparison with
those divided by the much smaller mH . Additionally, near the bare pole, s � m2

H ,
the direct exchange of the resonance dominates over other contributions and, after
these simplifications, we have now for N (s)

N (s) ≈ 3s2

2v2(m2
H − s)

. (10.12)

When inserted in Eq. (10.7) for calculating the unitarized the PWA T (s) we obtain

T (s) ≈ 3m2
H/(2v2)

mH − √
s − i 3m3

H
64πv2

. (10.13)

In this form, we end with a Breit–Wigner parameterization for the Higgs exchanged,
with mass mH and width
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ΓH = 3m3
H

32πv2
, (10.14)

which coincides with the QFT expression for the width of the Higgs boson from the
electroweak Lagrangian. This width is much smaller than mH for mH 	 4πv.

In the literature there have been many other studies in which the LHC is included
perturbatively and that could be understood by employing the basic point in the
expansion given in Eq. (10.2).

Let us consider first the Inverse Amplitude Method, on which we briefly report.
We come back again to Eq. (7.2) an expressN = N2 + N4 + O(p6), with the former
given by Eq. (10.10) and the latter by the first line Eq. (10.11), after matching with
T = T2 + T4 + O(p6) as explained above. Then,

T (s) =
([
T2(s) + T4(s) + T2(s)g(s)T2(s) + O(p6)

]−1 + g(s)
)−1

. (10.15)

We perform next the chiral expansion of the inverse matrix between the square
brackets

T (s) =
(
T2(s)

−1 [
I + T4(s)T2(s)

−1 + T2(s)g(s) + O(p4)
]−1 + g(s)

)−1
(10.16)

=
(
T2(s)

−1 [
I − T4(s)T2(s)

−1 − T2(s)g(s) + O(p4)
] + g(s)

)−1
(10.17)

= [
I − T4(s)T2(s)

−1 + O(p4)
]−1

T2(s)

= T2(s)
[
T2 − T4 + O(p6)

]−1
T2(s) .

The last expression corresponds to the NLO IAM [32, 54–58]

T (s) = T2(s) [T2(s) − T4(s)]
−1 T2(s) . (10.18)

Despite it is based on a perturbative solution of Eq. (7.10), the IAM result is inde-
pendent of the subtraction constant in g(s). That this should be the case is clear if
one considers that the IAM can also be recast as the expansion of the inverse of
the PWA, T (s)−1 = (T2 + T4)−1 = T−1

2 (T2 − T4 + O(p6))T−1
2 , and then taking the

inverse of this expansion.
There is an alternative derivation of the uncoupled IAM based on a DR for the

inverse PWA T−1(s) [54, 55, 57]. Instead of taking directly 1/T (s) one consider
the auxiliary function G(s) = T2(s)2/T (s), whose imaginary part is, cf. Eq. (2.51),

�G = −T2(s)
2ρ(s) . (10.19)

We write down a three-times subtracted DR for G(s) by applying the Sugawara–
Kanazawa theorem discussed in Chap. 4, because T2(s)2 at most diverges like s2 and
T (s) →constant for s → +∞ ± iε because of unitarity. It then follows that
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G(s) = G(0) + G′(0)s + 1

2
G′′(0)s2 − s3

π

∫ ∞
sth

ds′ ρ(s′)T2(s′)2
(s′)3(s′ − s)

− LC(G) + PC(s) ,

(10.20)

where−LC(G) refers of the crossed-channel contributions inG(s) and the pole con-
tributions PC(s) arise from possible zeroes of T (s). We neglect this last contribution
because the zeroes in the denominator are largely canceled by T2(s)2 when forming
G(s). There could be some slight mismatch between the zeroes of T2(s) and those
of T (s) which might give rise to a pathological behavior in narrow energy regions
[32, 58, 59]. A modified version of the IAM formula was derived in Ref. [59] to
cure this deficiency. Notice also that the expression for T = 1/([N2 + N4]−1 + g),
without the expansion of [N2 + N4]

−1, has no this pathology.
The subtraction constants G(0), G ′(0) and G ′′(0) are fixed by matching with the

ChPT expansion of G(s) up NLO,

G(s) = T2(s)2

T2(s) + T4(s) + O(p6)
= T2(s) − T4(s) + O(p6) . (10.21)

Therefore, by neglecting higher orders we can identify G(0) = T2(0) − T4(0),
G ′(0) = T ′

2(0) − T ′
4(0), and G

′′(0) = T ′′
2 (0) − T ′′

4 (0). By the same token, LC(G) is
approximated from the crossed-channel cut contribution of T4(s), LC(T4). Further-
more, the dispersive integral in Eq. (10.20) is minus the one for the RHC contribution
in T4(s), whose imaginary part along the RHC is �T4(s) = T2(s)2ρ(s), as required
by perturbative unitarity. Thus, Eq. (10.20) becomes G(s) = T2(s) − T4(s) and then
T (s) is given by Eq. (10.18). The IAM has also been extended to two-loop ChPT
amplitudes in Ref. [60]. This method has been applied to meson–meson scattering
[32, 57, 58, 61], quark-mass dependence of masses and decay constants [62],WLWL

scattering [52, 53], πN scattering [63], etc., among many other references.
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