
Chapter 1
S and T Matrices. Unitarity

The typical situation of a scattering process that we deal in the subsequent is that
corresponding to short-range interactions. Therefore, in the asymptotic past and
future the initial and final states of particles, respectively, behave as free ones. The
corresponding states are given by the direct product of monoparticle states, each of
them being characterized by its three-momentum p, spin s, third component of spin
σ, massm and other quantum numbers (like charges) are denoted globally by λ. The
corresponding state is written as

|p,σ,m, s,λ〉, (1.1)

with σ = −s,−s + 1, . . . , s − 1, s. These states have the relativistic invariant nor-
malization

〈p′,σ′,m ′, s ′,λ′|p,σ,m, s,λ〉 = δs ′sδσ′σδλ′λ(2π)
32p0δ(p′ − p), (1.2)

where p0 = √
m2 + p2 is the on-shell energy.

The probability amplitude for an initial state |i〉 at time t → −∞ to evolve into a
final state | f 〉 at time t → +∞ is given by the matrix elements of a unitary operator
S denoted as the S matrix [1],

SS† = S†S = I. (1.3)

Its matrix elements S f i correspond to

S f i = 〈 f |S|i〉. (1.4)

Because of the space-time homogeneity these matrix elements are always accom-
panied by an energy-momentum Dirac delta function, (2π)4δ(4)(p f − pi ), where pi
and p f are the initial an final four-momenta, in order. In linear relations a Dirac delta
function of total energy and momentum conservation factors out while, in nonlinear
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2 1 S and T Matrices. Unitarity

relations (like unitarity), others remain, multiplying S-matrix elements of clusters
of particles which control the momentum loops in the processes. We do not always
show explicitly the cancelation of the total energy-momentum Dirac delta functions,
though the context makes it clear.

In the Dirac or interacting picture of Quantum Field Theory (QFT), with Lint the
interacting Lagrangian, the S-matrix is given by the evaluation of thematrix elements

S f i = 〈 f |ei ∫ d4xLint |i〉
〈0|ei ∫

d4xLint |0〉 , (1.5)

with |0〉 the free state without any particle (or 0th-order perturbative vacuum). In the
previous equationU (+∞,−∞) = exp i

∫
d4xLint(x) is the evolution operator in the

interacting picture from/to asymptotic times and, therefore, S f i is its matrix element
between the pertinent final and initial states. The denominator is a normalization
factor that removes the disconnected contributions without involving any external
particle.

Associated with the S matrix we also have the T matrix, which at least requires
the presence of one interaction. Its relation with the S matrix is

S = I + iT . (1.6)

In terms of the T matrix the unitarity relation of Eq. (1.3) reads

T − T † = iT T † (1.7)

= iT †T, (1.8)

by using either the first term or the second one from left to right in Eq. (1.3), respec-
tively.By including a resolution of the identity between the product of two T matrices,
we have for the matrix elements

〈 f |T |i〉 − 〈 f |T †|i〉 = i
∑ ∫ [

(2π)4δ(4)(p f −
n∑

i=1

qi )
n∏

i=1

d3qi
(2π)32q0

i

]

(1.9)

×〈 f |T †|q1,σ1,m1, s1,λ1; . . . ;qn,σn,mn,λn〉
×〈q1,σ1,m1,λ1; . . . ;qn,σn,mn,λn|T |i〉,

where the total energy-momentum conservation, p f = pi , should be understood.We
also have the similar term in the right-hand side (rhs) but with T † and T exchanged.
The sum extends over all the possible intermediate states allowed by the appropriate
quantum numbers and with thresholds below the total center-of-mass (CM) energy√
p2f (otherwise the intermediate Dirac delta function would vanish).
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The basic content of Hermitian unitarity (chapter 4.6 of Ref. [2]) is precisely to
show that the matrix elements of T † are also given by the same analytical function
as those of T itself but with a slightly negative imaginary part in the total energy
(or partial ones for subprocesses) along the real axis, instead of the slightly positive
imaginary part used for the matrix elements of T in Eq. (1.9). Therefore, the unitarity
relation of Eq. (1.9) gives rise to the presence of the right-hand cut (RHC) or unitarity
cut in the scattering amplitudes for the total energy real and larger than the smallest
threshold, typically a two-body state. It also embraces other singularities like pole
ones, while its iteration from the simplest singularities (pole and normal thresholds)
generates more complicated ones such as the anomalous thresholds (sections 4.10
and 4.11 of Ref. [2]).

The factor between square brackets on the rhs of Eq. (1.9) is the differential phase
space of the intermediate state |q1,σ1,m1,λ1; . . . ;qn,σn,mn,λn〉. We designate it
by dQ and it is worth writing it isolatedly, given its importance in collision theory,

∫
dQ =

∫
(2π)4δ(4)(p f −

n∑

i=1

qi )
n∏

i=1

d3qi
(2π)32q0

i

. (1.10)

Notice that the phase factor is Lorentz invariant.
In general the final and the initial states do not need to contain the same parti-

cles, even in nonrelativistic scattering. The latter is a valid limit as long as the three
momenta of the particles involved are much smaller than their masses. This condi-
tion is required because then the Compton wavelength is much smaller than the De
Broglie wavelength, �/mc � �/|p|, and we can consider that measuring position is
meaningful within good accuracy [3].

Given an initial state of two particles with four-momenta p1 and p2, its cross
section to a final state | f 〉, denoted by σ f i , is defined as the number of particles
scattered per unit time divided by the incident flux φ0. The latter division is necessary
because the number of collisions rises in a given experiment as the number of incident
particles. In our normalization, Eq. (1.2), we have the following expression for σ f i

in the CM,

σ f i = 1

4|p1|√s

∫
dQ f |〈 f |T |p1,σ1,m1, s1,λ1;p2,σ2,m2, s2,λ2〉|2 , (1.11)

where s is the Lorentz invariant s = (p1 + p2)2.
For pedagogical reasons we explain how the different factors arise in the previous

formula. First, we take the modulus squared of the matrix element of the T matrix,
from where a factor [(2π)4δ(4)(p f − pi )]2 arises. One of this Dirac delta function is
included in the phase spacedQ f ,while the other gives rise to the diverging factorVT ,
with V the volume of space and T the interaction time. The latter cancels because
we have to divide by the time of interaction T , since we are seeking the transition
probability per unit time. On the other hand, the number of states corresponding
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to the normalization of monoparticle states, Eq. (1.2), is V 2p0. Therefore, the flux
factorφ0 = 4p01 p

0
2vrelV , which takes into account that there are 4p01 p

0
2V

2 interacting
particles with a relative velocity vrel. The latter is given in the CM (p1 + p2 = 0) by

vrel =
∣∣∣∣
p1
p01

− p2
p02

∣∣∣∣ = |p1|(p01 + p02)

p01 p
0
2

. (1.12)

Notice that in the CM p01 + p02 = √
s. As a result the factors of V cancel in the

calculation of σ f i and we are left with Eq. (1.11). In particular, the total cross section
from the initial state, σi , is given by the sum over all the possible final sates. From
Eq. (1.11) we then have

σi = 1

4|p1|√s

∑

f

∫
dQ f |〈 f |T |p1,σ1,m1, s1,λ1;p2,σ2,m2, s2,λ2〉|2 . (1.13)

Needless to say that the sum over f could also involve continuous variables and then
instead of a discrete sum (as symbolically indicated in the previous equation) one
would have to perform the corresponding integrals.

In the following, for brevity in the notation, we designate the monoparticle states
by |p1σ1λ1〉, omitting some labels that might be inferred from the information given.

We can relate the total cross section σi with the imaginary part of the forward
T -matrix element Tii by taking | f 〉 = |i〉 in the unitarity relation of Eq. (1.9). We
then have

	Tii = 1

2

∑

f

∫
dQ f |T f i |2 = 2|p1|√s σi . (1.14)

This result is usually referred as the optical theorem.
Had we taken instead the other order T T † in the unitarity relation then we have

	Tii = 1

2

∑

f

∫
dQ f |Ti f |2. (1.15)

Comparing with Eq. (1.14) we then have the reciprocity relation

∑

f

∫
dQ f |T f i |2 =

∑

f

∫
dQ f |Ti f |2. (1.16)

As a consequence one could derive the important Boltzmann H -theorem in statistical
mechanics (chapter 3.6. of Ref. [4]). Let Pi be the probability distribution of having
a state i in an infinitesimal phase-space volume around this state, then its variation
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in time is governed by the balance of states f ending in i and the evolution from i
to any other state f . Thus,

dPi
dt

=
∑

f

∫
dQ f |Ti f |2Pf − Pi

∑

f

∫
dQ f |T f i |2. (1.17)

By summing over all initial state i it is clear that

∑

i

∫
d4 pi
(2π)4

∫
dQi

d Pi
dt

= 0, (1.18)

where the first integration involves the total four-momentum of the state i , to remove
the extra factor of (2π)4δ(4)(pi − ∑

j q j ) included in dQi in the next integral symbol.
Physically it represents to allow all possible CMmotion, since we are summing over
all state i .

In order to simplify the derivation of the Boltzmann theorem, let us take the dis-
cretized version of the probability distribution function. Then, the entropy is defined
by S = −∑

i Pi log Pi (there would be just a constant of difference with respect to
taking the continuum distribution probability function) and its derivative with respect
to time is

dS

dt
= −

∑

i

(log Pi + 1)
dPi
dt

= −
∑

i

d Pi
dt

−
∑

i

d Pi
dt

log Pi . (1.19)

The term −∑
i d Pi/dt = 0 because of Eq. (1.18), while for the last term we use the

balance Eq. (1.17)

dS

dt
= −

∑

i

d Pi
dt

log Pi = −
∑

i, j

log Pi
(
Pj |T D

i j |2 − Pi |T D
ji |2

)
, (1.20)

with the superscript D indicating that the modulus squared of the matrix element
contains the factor (2π)4δ(4)(p j − pi ), which is symmetric under i ↔ j . Exchanging
the indices i and j in the last term of Eq. (1.20), we are left with

dS

dt
=

∑

i, j

|T D
i j |2Pj log

Pj

Pi
. (1.21)

Now one makes use of the inequality for any two positive quantities Pi and Pj ,
Pj log(Pj/Pi ) ≥ Pj − Pi .1 Then, the rhs of Eq. (1.21) is larger or equal than

1For Pj ≥ Pi this is clear because then log Pj/Pi ≥ 1. In the range Pj ∈ [0, Pi ] the difference
Pj log(Pj/Pi ) − Pj + Pi is ≥ 0, because it has a negative derivative with respect to Pj and it is
zero at Pj = Pi (it is Pi for Pj = 0).
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∑
i, j |T D

i j |2(Pj − Pi ). Exchanging again the indices i and j in the last term we are
then left with the inequality

dS

dt
≥

∑

i, j

Pj
(|T D

i j |2 − |T D
ji |2

) = 0, (1.22)

where in the last step we have taken into account the unitarity implication of
Eq. (1.18).
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