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Introduction

Abstract This is an introductory text on the vast and rich field of dispersion
relations in hadron physics, with some developments as well of direct interest in
nuclear physics. We typically consider the relativistic dynamics, but some chapters
are dedicated to the problem of nonrelativistic scattering. The latter has the peda-
gogical advantage of being a framework with a setup that can be stated in a less
abstract way than its relativistic counterpart. Needless to say that the basic prin-
ciples of dispersion relations, namely, analyticity and unitarity, overpass the stan-
dard fields of application of hadron and nuclear physics and, therefore, the
exposition here might be also of interest for a wider audience. In this regard, we
devote the first four chapters of the book on the basic aspects of the dispersion
relations for the scattering amplitudes and related process like production ones.
Special emphasis is given to analyticity, unitarity, partial-wave expansion of
dynamical amplitudes and the important mathematical theorem of Sugawara–
Kanazawa. The latter addresses the question of how many subtraction constants are
needed in a dispersion relation. Its demonstration also illustrates a method to
determine the asymptotic behavior of dispersive integrals. These results are
exemplified in Chap. 5 by developing the exact dispersion relations for the
eigenvalues of the scattering kernel in nonrelativistic scattering. As an outcome, it
also gives the requirement for the convergence of the Born series in potential
scattering. There is then the set of Chaps. 6–12, which deal with the application of
dispersion relations to study scattering in partial waves. In these chapters, resonance
scattering is also considered, and the examples of the � or f0ð500Þ and ‰ð770Þ are
discussed in detail. There are several methods exposed to work out the partial-wave
amplitudes, depending on how the crossed-channel discontinuities required in the
resulting unitarized non-perturbative expression are implemented. Chapters 13–15
are dedicated to the problem of final-state interactions in production processes
(similar techniques could be used for initial-state interactions or for implementing
both simultaneously, if required). The exposition in this regard begins by deter-
mining the unitarity requirements, both in the uncoupled and coupled cases. The
former case is treated in detail in Chap. 14 when analyzing the Omnès solution. We
discuss a possible problem that could arise in this case by not taking properly into

vii



account the presence of zeroes and poles in the Omnès function. This can happen
due to a transition from a region of parameters of the model into another one, which
could a pathological behavior in the Omnès function. An explicit example is
worked out. In Chap. 15, we treat the coupled channel version of the problem and
discuss the Muskhelishvili–Omnès problem. There is a pedagogical discussion
about the number of independent acceptable solutions to this problem, which is not
easy to find in the literature. Chapter 16 is dedicated to the near-threshold non-
relativistic scattering, and a comparison is given between general results derived
from analyticity and unitarity, with some specific models in potential scattering.
Finally, in the last chapter, we exemplify the application of dispersion relations in
the nuclear medium by evaluating the contribution of the in-medium nucleon–
nucleon interactions to the energy density in nuclear matter. The appendix provides
a numerical method for numerically evaluating dispersive integrals. This is par-
ticularly interesting when the dispersion relations give rise to a set of integral
equations that must be solved to obtain the desired response.

Murcia, Spain José Antonio Oller

viii Introduction



Chapter 1
S and T Matrices. Unitarity

The typical situation of a scattering process that we deal in the subsequent is that
corresponding to short-range interactions. Therefore, in the asymptotic past and
future the initial and final states of particles, respectively, behave as free ones. The
corresponding states are given by the direct product of monoparticle states, each of
them being characterized by its three-momentum p, spin s, third component of spin
σ, massm and other quantum numbers (like charges) are denoted globally by λ. The
corresponding state is written as

|p,σ,m, s,λ〉, (1.1)

with σ = −s,−s + 1, . . . , s − 1, s. These states have the relativistic invariant nor-
malization

〈p′,σ′,m ′, s ′,λ′|p,σ,m, s,λ〉 = δs ′sδσ′σδλ′λ(2π)
32p0δ(p′ − p), (1.2)

where p0 = √
m2 + p2 is the on-shell energy.

The probability amplitude for an initial state |i〉 at time t → −∞ to evolve into a
final state | f 〉 at time t → +∞ is given by the matrix elements of a unitary operator
S denoted as the S matrix [1],

SS† = S†S = I. (1.3)

Its matrix elements S f i correspond to

S f i = 〈 f |S|i〉. (1.4)

Because of the space-time homogeneity these matrix elements are always accom-
panied by an energy-momentum Dirac delta function, (2π)4δ(4)(p f − pi ), where pi
and p f are the initial an final four-momenta, in order. In linear relations a Dirac delta
function of total energy and momentum conservation factors out while, in nonlinear

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019
J. A. Oller, A Brief Introduction to Dispersion Relations, SpringerBriefs in Physics,
https://doi.org/10.1007/978-3-030-13582-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13582-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-13582-9_1


2 1 S and T Matrices. Unitarity

relations (like unitarity), others remain, multiplying S-matrix elements of clusters
of particles which control the momentum loops in the processes. We do not always
show explicitly the cancelation of the total energy-momentum Dirac delta functions,
though the context makes it clear.

In the Dirac or interacting picture of Quantum Field Theory (QFT), with Lint the
interacting Lagrangian, the S-matrix is given by the evaluation of thematrix elements

S f i = 〈 f |ei ∫ d4xLint |i〉
〈0|ei ∫

d4xLint |0〉 , (1.5)

with |0〉 the free state without any particle (or 0th-order perturbative vacuum). In the
previous equationU (+∞,−∞) = exp i

∫
d4xLint(x) is the evolution operator in the

interacting picture from/to asymptotic times and, therefore, S f i is its matrix element
between the pertinent final and initial states. The denominator is a normalization
factor that removes the disconnected contributions without involving any external
particle.

Associated with the S matrix we also have the T matrix, which at least requires
the presence of one interaction. Its relation with the S matrix is

S = I + iT . (1.6)

In terms of the T matrix the unitarity relation of Eq. (1.3) reads

T − T † = iT T † (1.7)

= iT †T, (1.8)

by using either the first term or the second one from left to right in Eq. (1.3), respec-
tively.By including a resolution of the identity between the product of two T matrices,
we have for the matrix elements

〈 f |T |i〉 − 〈 f |T †|i〉 = i
∑ ∫ [

(2π)4δ(4)(p f −
n∑

i=1

qi )
n∏

i=1

d3qi
(2π)32q0

i

]

(1.9)

×〈 f |T †|q1,σ1,m1, s1,λ1; . . . ;qn,σn,mn,λn〉
×〈q1,σ1,m1,λ1; . . . ;qn,σn,mn,λn|T |i〉,

where the total energy-momentum conservation, p f = pi , should be understood.We
also have the similar term in the right-hand side (rhs) but with T † and T exchanged.
The sum extends over all the possible intermediate states allowed by the appropriate
quantum numbers and with thresholds below the total center-of-mass (CM) energy√
p2f (otherwise the intermediate Dirac delta function would vanish).
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The basic content of Hermitian unitarity (chapter 4.6 of Ref. [2]) is precisely to
show that the matrix elements of T † are also given by the same analytical function
as those of T itself but with a slightly negative imaginary part in the total energy
(or partial ones for subprocesses) along the real axis, instead of the slightly positive
imaginary part used for the matrix elements of T in Eq. (1.9). Therefore, the unitarity
relation of Eq. (1.9) gives rise to the presence of the right-hand cut (RHC) or unitarity
cut in the scattering amplitudes for the total energy real and larger than the smallest
threshold, typically a two-body state. It also embraces other singularities like pole
ones, while its iteration from the simplest singularities (pole and normal thresholds)
generates more complicated ones such as the anomalous thresholds (sections 4.10
and 4.11 of Ref. [2]).

The factor between square brackets on the rhs of Eq. (1.9) is the differential phase
space of the intermediate state |q1,σ1,m1,λ1; . . . ;qn,σn,mn,λn〉. We designate it
by dQ and it is worth writing it isolatedly, given its importance in collision theory,

∫
dQ =

∫
(2π)4δ(4)(p f −

n∑

i=1

qi )
n∏

i=1

d3qi
(2π)32q0

i

. (1.10)

Notice that the phase factor is Lorentz invariant.
In general the final and the initial states do not need to contain the same parti-

cles, even in nonrelativistic scattering. The latter is a valid limit as long as the three
momenta of the particles involved are much smaller than their masses. This condi-
tion is required because then the Compton wavelength is much smaller than the De
Broglie wavelength, �/mc � �/|p|, and we can consider that measuring position is
meaningful within good accuracy [3].

Given an initial state of two particles with four-momenta p1 and p2, its cross
section to a final state | f 〉, denoted by σ f i , is defined as the number of particles
scattered per unit time divided by the incident flux φ0. The latter division is necessary
because the number of collisions rises in a given experiment as the number of incident
particles. In our normalization, Eq. (1.2), we have the following expression for σ f i

in the CM,

σ f i = 1

4|p1|√s

∫
dQ f |〈 f |T |p1,σ1,m1, s1,λ1;p2,σ2,m2, s2,λ2〉|2 , (1.11)

where s is the Lorentz invariant s = (p1 + p2)2.
For pedagogical reasons we explain how the different factors arise in the previous

formula. First, we take the modulus squared of the matrix element of the T matrix,
from where a factor [(2π)4δ(4)(p f − pi )]2 arises. One of this Dirac delta function is
included in the phase spacedQ f ,while the other gives rise to the diverging factorVT ,
with V the volume of space and T the interaction time. The latter cancels because
we have to divide by the time of interaction T , since we are seeking the transition
probability per unit time. On the other hand, the number of states corresponding
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to the normalization of monoparticle states, Eq. (1.2), is V 2p0. Therefore, the flux
factorφ0 = 4p01 p

0
2vrelV , which takes into account that there are 4p01 p

0
2V

2 interacting
particles with a relative velocity vrel. The latter is given in the CM (p1 + p2 = 0) by

vrel =
∣∣∣∣
p1
p01

− p2
p02

∣∣∣∣ = |p1|(p01 + p02)

p01 p
0
2

. (1.12)

Notice that in the CM p01 + p02 = √
s. As a result the factors of V cancel in the

calculation of σ f i and we are left with Eq. (1.11). In particular, the total cross section
from the initial state, σi , is given by the sum over all the possible final sates. From
Eq. (1.11) we then have

σi = 1

4|p1|√s

∑

f

∫
dQ f |〈 f |T |p1,σ1,m1, s1,λ1;p2,σ2,m2, s2,λ2〉|2 . (1.13)

Needless to say that the sum over f could also involve continuous variables and then
instead of a discrete sum (as symbolically indicated in the previous equation) one
would have to perform the corresponding integrals.

In the following, for brevity in the notation, we designate the monoparticle states
by |p1σ1λ1〉, omitting some labels that might be inferred from the information given.

We can relate the total cross section σi with the imaginary part of the forward
T -matrix element Tii by taking | f 〉 = |i〉 in the unitarity relation of Eq. (1.9). We
then have

	Tii = 1

2

∑

f

∫
dQ f |T f i |2 = 2|p1|√s σi . (1.14)

This result is usually referred as the optical theorem.
Had we taken instead the other order T T † in the unitarity relation then we have

	Tii = 1

2

∑

f

∫
dQ f |Ti f |2. (1.15)

Comparing with Eq. (1.14) we then have the reciprocity relation

∑

f

∫
dQ f |T f i |2 =

∑

f

∫
dQ f |Ti f |2. (1.16)

As a consequence one could derive the important Boltzmann H -theorem in statistical
mechanics (chapter 3.6. of Ref. [4]). Let Pi be the probability distribution of having
a state i in an infinitesimal phase-space volume around this state, then its variation
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in time is governed by the balance of states f ending in i and the evolution from i
to any other state f . Thus,

dPi
dt

=
∑

f

∫
dQ f |Ti f |2Pf − Pi

∑

f

∫
dQ f |T f i |2. (1.17)

By summing over all initial state i it is clear that

∑

i

∫
d4 pi
(2π)4

∫
dQi

d Pi
dt

= 0, (1.18)

where the first integration involves the total four-momentum of the state i , to remove
the extra factor of (2π)4δ(4)(pi − ∑

j q j ) included in dQi in the next integral symbol.
Physically it represents to allow all possible CMmotion, since we are summing over
all state i .

In order to simplify the derivation of the Boltzmann theorem, let us take the dis-
cretized version of the probability distribution function. Then, the entropy is defined
by S = −∑

i Pi log Pi (there would be just a constant of difference with respect to
taking the continuum distribution probability function) and its derivative with respect
to time is

dS

dt
= −

∑

i

(log Pi + 1)
dPi
dt

= −
∑

i

d Pi
dt

−
∑

i

d Pi
dt

log Pi . (1.19)

The term −∑
i d Pi/dt = 0 because of Eq. (1.18), while for the last term we use the

balance Eq. (1.17)

dS

dt
= −

∑

i

d Pi
dt

log Pi = −
∑

i, j

log Pi
(
Pj |T D

i j |2 − Pi |T D
ji |2

)
, (1.20)

with the superscript D indicating that the modulus squared of the matrix element
contains the factor (2π)4δ(4)(p j − pi ), which is symmetric under i ↔ j . Exchanging
the indices i and j in the last term of Eq. (1.20), we are left with

dS

dt
=

∑

i, j

|T D
i j |2Pj log

Pj

Pi
. (1.21)

Now one makes use of the inequality for any two positive quantities Pi and Pj ,
Pj log(Pj/Pi ) ≥ Pj − Pi .1 Then, the rhs of Eq. (1.21) is larger or equal than

1For Pj ≥ Pi this is clear because then log Pj/Pi ≥ 1. In the range Pj ∈ [0, Pi ] the difference
Pj log(Pj/Pi ) − Pj + Pi is ≥ 0, because it has a negative derivative with respect to Pj and it is
zero at Pj = Pi (it is Pi for Pj = 0).
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∑
i, j |T D

i j |2(Pj − Pi ). Exchanging again the indices i and j in the last term we are
then left with the inequality

dS

dt
≥

∑

i, j

Pj
(|T D

i j |2 − |T D
ji |2

) = 0, (1.22)

where in the last step we have taken into account the unitarity implication of
Eq. (1.18).



Chapter 2
Two-Body Scattering. Partial-Wave
Expansion

We focus mainly on the scattering between two particles of four-momenta p1 and p2
going into a final state of two other particles of four-momenta p3 and p4. The types
of particles in the final and initial states might be different. For a two-body final state
the differential phase-space factor of Eq. (1.10) expressed with variables in the CM
is

dQ =
∫

d3 p1
(2π)32p01

d3 p2
(2π)32p02

(2π)4δ(p1 + p2) = |p1|dΩ

16π2
√
s
, (2.1)

where dΩ is the differential of solid angle of p1 in the CM. Here we have also
introduced the Mandelstam variable s,

s = (p1 + p2)
2 = (p3 + p4)

2, (2.2)

which is equal to the total energy squared in the CM [it was alluded above in connec-
tion with Eq. (1.11)]. The other standard Mandelstam variables t and u are defined
as

t = (p1 − p3)
2 = (p2 − p4)

2, (2.3)

u = (p1 − p4)
2 = (p2 − p3)

2.

From Eqs. (2.2) and (2.3) it follows that

s + t + u = m2
1 + m2

2 + m2
3 + m2

4. (2.4)

In terms of dQ the unitarity relation of Eq. (1.9) below the threshold of states with
three or more particles reads
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8 2 Two-Body Scattering. Partial-Wave Expansion

〈 f |T |i〉 − 〈 f |T †|i〉 = i
∑ ∫ |p1|dΩ

16π2
√
s
〈 f |T †|q1,σ1,m1, s1,λ1;q2,σ2,m2,λ2〉

× 〈q1,σ1,m1,λ1;q2,σ2,m2,λ2|T |i〉. (2.5)

The differential cross section between two-body states is, cf. Eq. (1.11),

dσ

dΩ
= |p′

1|
|p1|

|〈p′
1,σ

′
1,λ

′
1;p′

2,σ
′
2,λ

′
2|T |p1,σ1,λ1;p2,σ2,λ2〉|2
64π2s

. (2.6)

We have employed here that because of energy conservation p01 + p02 = p′
1
0 + p′

2
0.

Rotational symmetry implies the invariance of the S- and T -matrix operators
under any rotation R,

RSR† = S, (2.7)

RT R† = T . (2.8)

In the manipulation that follow we only show the active variables characterizing a
state and suppress any other label. If the particles involved in the scattering process
have zero spin, then we have that the matrix elements of T are scalars because

〈p′
1 . . . p′

n|T |p1 . . . pn〉 = 〈p′
1 . . . p′

n|R†T R|p1 . . . pn〉 (2.9)

= 〈Rp′
1 . . . Rp′

n|T |Rp1 . . . Rpn〉.

When the particles have nonzero spins the matrix elements of T are not invariant but
covariant.

It is convenient to expand thesematrix elements in a series expansion of scattering
amplitudes between states with well-defined total angular momentum J , total spin
S and orbital angular momentum �. One of the reasons is because the two-body
unitarity adopts a very simple form.

Let us consider a two-body state of particles with spins s1 and s2, that is charac-
terized by the CM three-momentum p and the third components of spin σ1 and σ2

in their respective rest frames. This state is denoted by |p,σ1σ2〉. Associated with
this, we can define the two-body state with orbital angular momentum � and third
component of orbital angular momentum m, denoted by |�m,σ1σ2〉, as

|�m,σ1σ2〉 = 1√
4π

∫
dp̂ Ym

� (p̂)|p,σ1σ2〉. (2.10)

Let us show first that this definition is meaningful because the state |�m,σ1σ2〉 trans-
forms under the rotation group as the direct product of the irreducible representations
associated with the orbital angular momentum � and the spins s1 and s2 of the two
particles.
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We introduce a Lorentz transformation U (p) along the vector p that takes the
particle four-momentum at rest to its final value

U (p)

(
m
0

)
=

(
Ep

p

)
, (2.11)

with Ep = √
m2 + p2. We also introduce the rotation R(p̂) that takes ẑ to p̂,

R(p̂)ẑ = p̂. (2.12)

In terms of the polar (θ) and azimuthal (φ) angles of p̂ this rotation is defined as

R(p̂) = Rz(φ)Ry(θ), (2.13)

with the subscripts z and y indicating the axis of rotation. For latter convenience we
write the Lorentz transformation U (p) as

U (p) = R(p̂)Bz(|p|)R(p̂)−1, (2.14)

where Bz(|p|) is a boost along the ẑ axis with velocity v = −β and β = |p|/Ep.
Namely,

Bz(|p|) =

⎛
⎜⎜⎝

γ 0 0 γβ
0 0 0 0
0 0 0 0

γβ 0 0 γ

⎞
⎟⎟⎠ (2.15)

and

γ = 1√
1 − β2

. (2.16)

Notice that one could also include any arbitrary rotation around the ẑ axis to the right
end of Eq. (2.13). Of course, this does not have any affect on either Eqs. (2.12) and
(2.14) (for the latter one let us note that Bz(|p|) commutes with a rotation around the
ẑ axis).

Every monoparticle state |p,σ〉 under the action of a rotation R transforms as

R|p,σ〉 = RU (p)|0,σ〉 = U (p′)U (p′)−1RU (p)|0,σ〉, (2.17)

and p′ = Rp.1 It is straightforward to show that

R = U (p′)−1RU (p). (2.18)

1For a general Lorentz transformation these manipulations give rise to the Wigner rotation [5].
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For that we explicitly write the Lorentz transformations U (p′) and U (p) as in
Eq. (2.14) so that

U (p′)−1RU (p) =R(p̂′)Bz(|p|)−1R(p̂′)−1RR(p̂)Bz(|p|)R(p̂)−1. (2.19)

Next, the product of rotations R(p̂′)−1RR(p̂) is a rotation around the z axis, Rz(γ),
since it leaves invariant ẑ. Thus,

R(p̂′)−1RR(p̂) = Rz(γ), (2.20)

or, in other terms,

R(p̂′) = RR(p̂)Rz(γ)−1, (2.21)

Taking into account Eqs. (2.20) and (2.21) in Eq. (2.19) it follows the result of
Eq. (2.18) because Bz(|p|) and Rz(γ) commute. Then, Eq. (2.17) implies that

R|p,σ〉 = U (p′)R|0,σ〉 =
∑
σ′

D(s)(R)σ′σ|p′,σ′〉, (2.22)

with D(s)(R) the rotation matrix in the irreducible representation of the rotation
group with spin s.

Now, it is clear from this result that the action of the rotation R on the state
|p,σ1σ2〉, which is the direct product of the states |p,σ1〉 and | − p,σ2〉, is

R|p,σ1σ2〉 =
∑
σ′
1,σ

′
2

D(s1)(R)σ′
1σ1D

(s2)(R)σ′
2σ2 |p′,σ′

1σ
′
2〉. (2.23)

We are now ready to derive the action of R on |�m,σ1σ2〉,

R|�m,σ1σ2〉 =
∑
σ′
1,σ

′
2

D(s1)(R)σ′
1σ1D

(s2)(R)σ′
2σ2

1√
4π

∫
dp̂′ Ym

� (R−1p̂′)|p′,σ′
1σ

′
2〉

=
∑

σ′
1,σ

′
2,m

′
D(�)(R)m ′mD

(s1)(R)σ′
1σ1D

(s2)(R)σ′
2σ2 |�m ′,σ′

1σ
′
2〉. (2.24)

In this equation we have made use of the invariance of the solid-angle measure under
rotations and the following property of the spherical harmonics:

Ym
� (R−1p̂′) =

∑
m ′

D(�)(R)m ′mY
m ′
� (p̂′). (2.25)
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This property can be easily derived by noticing that

Ym
� (p̂) = 〈p̂|�m〉, (2.26)

where |p〉 and |�m〉 are two generic states, the former having a well-defined orien-
tation and the latter well-defined spin � and third component of angular momentum
m. Thus,

Ym
� (R−1p̂′) = 〈R−1p̂|�m〉 = 〈p̂|R|�m〉 =

∑
m ′

D(�)
m ′m(R)Ym ′

� (p̂). (2.27)

Equation (2.24) shows that under a rotation the states defined in Eq. (2.10) has the
right transformation under the action of a rotation R, and our proposition above
[below Eq. (2.10)] is shown to hold.

Now, because of the transformation in Eq. (2.24), corresponding to the direct
product of the spins s1, s2 and the orbital angular momentum �, we can combine
these angular momentum indices and end with the LSJ basis. In the latter every
state is labeled by the total angular momentum J , the third component of the total
angular momentum μ, the orbital angular momentum � and the total spin S (resulting
from the composition of the spins s1 and s2). Namely, we use the notation |Jμ, �S〉
for these states, which are then given by

|Jμ, �S〉 =
∑

σ1,σ2,m,M

(σ1σ2M |s1s2S)(mMμ|�SJ )|�m,σ1σ2〉, (2.28)

where we have introduced the standard Clebsch–Gordan coefficients for the com-
position of two angular momenta.2 Next we introduce the isospin indices α1 and
α2 corresponding to the third components of the isospins τ1 and τ2. This does not
modify any of our previous considerations since isospin does not transform under
the action of spatial rotations, although it is convenient for latter use. One can invert
Eq. (2.10) and give the momentum-defined states in terms of those with well-defined
orbital angular momentum,

|p,σ1σ2,α1α2〉 = √
4π

∑
�,m

Ym
� (p̂)∗|�m,σ1σ2,α1α2〉 (2.29)

= √
4π

∑
J,μ, �,m
S, M, I, t3

Ym
� (p̂)∗(σ1σ2M |s1s2S)(mMμ|�SJ )(α1α2t3|τ1τ2 I )|Jμ, �S, I t3〉,

with I the total isospin of the particle pair and t3 is the third component. The inversion
of Eq. (2.29) provides us with the states |Jμ, �S, I t3〉,

2The Clebsch–Gordan coefficient (m1m2m3| j1 j2 j3) is the composition for j1 + j2 = j3, with mi
referring to the third components of the spins.
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|Jμ, �S, I t3〉 = 1√
4π

∑
σ1,σ2
M,m

α1,α2

∫
dp̂Ym

� (p̂)(σ1σ2M |s1s2S)(mMμ|�SJ ) (2.30)

× (α1α2t3|τ1τ2 I )|p,σ1σ2,α1α2〉.

From the normalization of the monoparticle states, Eq. (1.2), a two-body particle
state with definite three-momentum satisfies the normalization

〈p′,σ′
1σ

′
2,α

′
1α

′
2|p,σ1σ2,α1α2〉 = 16π2√s

|p| δ(p̂′ − p̂), (2.31)

where we have dropped out a factor (2π)4δ(4)(p′ − p). The total energy conservation
guarantees that the moduli of the final and initial three-momenta in Eq. (2.31) are
the same, that we denote by |p|. In terms of this result and Eq. (2.30) it follows
straightforwardly by taking into account the orthogonality properties of Clebsch–
Gordan coefficients and spherical harmonics that

〈J ′μ′, �′S′, I ′t ′3|Jμ, �S, I t3〉 = 4π
√
s

|p| δJ ′ J δμ′μδ�′�δS′SδI ′ I δt ′3t3 . (2.32)

We are interested in the partial-wave amplitude (PWA) corresponding to the tran-
sition between states with quantum numbers J �̄S̄ I to states J�SI , that is given by
the matrix element

T (J I )
�S;�̄S̄ = 〈Jμ, �S, I t3|T |Jμ, �̄S̄, I t3〉. (2.33)

Here we take the convention that the quantum numbers referring to the initial state
are barred. Of course, the matrix element in Eq. (2.33) is independent of μ and t3
because of the invariance under rotations in ordinary and isospin spaces, respectively.
We can calculate this scattering matrix element in terms of those in the basis with
definite three-momentum by replacing in Eq. (2.33) the states in the LSJ basis as
given in Eq. (2.30). We then obtain in a first step

T (J I )
�S;�̄S̄ = 1

4π

∑∫
dp̂

∫
dp̂′ Ym

� (p̂′)∗Y m̄
�̄

(p̂)(σ1σ2M |s1s2S)(mMμ|�SJ )(α1α2t3|τ1τ2 I )
× (σ̄1σ̄2 M̄|s̄1 s̄2S)(m̄ M̄μ|�̄S̄ J )(ᾱ1ᾱ2t3|τ̄1τ̄2 I )S〈p′,σ1σ2,α1α2|T |p, σ̄1σ̄2, ᾱ1ᾱ2〉S,

(2.34)

Herewe have not shown the explicit indices overwhich the sum is done in order not to
overload the notation.3 We use next the rotation invariance of the T -matrix operator
T to simplify the previous integral so that, at the end, we have just the integration
over the final three-momentum solid angle. There are several steps involved that

3They correspond to those indicated under the summation symbol in Eq. (2.30) both for the initial
and final states.
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we discuss in detail. The referred rotational invariance of T implies that it remains
invariant under the transformation T → R(p̂)T R(p̂)†, which implies at the level of
the matrix elements that

〈p′,σ1σ2,α1α2|T |p, σ̄1σ̄2, ᾱ1ᾱ2〉 = 〈p′,σ1σ2,α1α2|R(p̂)T R(p̂)†|p, σ̄1σ̄2, ᾱ1ᾱ2〉.
(2.35)

Under the action of the rotation R(p̂)† (R(p̂)†p̂ = ẑ and R(p̂)†p̂′ = p̂′′) the final and
initial states transform as, cf. Eq. (2.23),

R(p̂)†|p, σ̄1σ̄2, ᾱ1ᾱ2〉 =
∑
σ̄′
1,σ̄

′
2

D(s̄1)
σ̄′
1σ̄1

(R†)D(s̄2)
σ̄′
2σ̄2

(R†)|ẑ, σ̄′
1σ̄

′
2, ᾱ1ᾱ2〉,

R(p̂)†|p′,σ1σ2,α1α2〉 =
∑
σ′
1,σ

′
2

D(s1)
σ′
1σ1

(R†)D(s2)
σ′
2σ2

(R†)|p̂′′,σ′
1σ

′
2,α1α2〉, (2.36)

with the convention that R inside the argument of the rotation matrices refers to
R(p̂). We insert Eqs. (2.35) and (2.36) into Eq. (2.34), and next transform p̂′ → p̂′′
as integrations variables, take into account the invariance of the solid angle measure
under such rotation and use Eq. (2.25) for

Y m̄
�̄

(p̂) = Y m̄
�̄

(R(p̂)ẑ) =
∑
m̄ ′

D(�̄)
m̄ ′m̄(R†)Y m̄ ′

�̄
(ẑ),

Ym
� (p̂′) = Ym

� (R(p̂)p̂′′) =
∑
m ′

D(�)
m ′m(R†)Ym ′

� (p̂′′). (2.37)

Then, Eq. (2.34) for T (J I )
�S;�̄S̄ can be rewritten as

T (J I )
�S;�̄S̄ = 1

4π

∑ ∫
dp̂

∫
dp̂′′(σ1σ2M |s1s2S)(mMμ|�SJ )(α1α2t3|τ1τ2 I )D(s1)

σ′
1σ1

(R†)∗

×D(s2)
σ′
2σ2

(R†)∗D(�)
m′m(R†)∗Ym′

� (p̂′′)∗(σ̄1σ̄2 M̄|s̄1s̄2 S̄)(m̄ M̄μ|�̄S̄ J )(ᾱ1ᾱ2t3|τ̄1τ̄2 I )

×D(s̄1)
σ̄′
1σ̄1

(R†)D(s̄2)
σ̄′
2σ̄2

(R†)D(�̄)
m̄′m̄(R†)Y m̄′

�̄
(ẑ)〈p′′, σ′

1σ
′
2, α1α2|T̂ | |p|ẑ, σ̄′

1σ̄
′
2, ᾱ1ᾱ2〉. (2.38)

From the composition of two rotation matrices it follows the result [5, 6]

∑
m1,m2

(m1m2M |�1�2L)D(�1)

m ′
1m1

(R)D(�2)

m ′
2m2

(R) =
∑
M ′

(m ′
1m

′
2M

′|�1�2L)D(L)
M ′M(R).

(2.39)

We apply this rule first to the following two combinations in Eq. (2.38):
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∑
σ1,σ2

(σ1σ2M |s1s2S)D(s1)
σ′
1σ1

(R†)D(s2)
σ′
2σ2

(R†) =
∑
M ′

(σ′
1σ

′
2M

′|s1s2S)D(S)
M ′M(R†)

∑
σ̄1,σ̄2

(σ̄1σ̄2M̄|s̄1s̄2 S̄)D(s̄1)
σ̄′
1σ̄1

(R†)D(s̄2)
σ̄′
2σ̄2

(R†) =
∑
M̄ ′

(σ̄′
1σ̄

′
2M̄

′|s̄1s̄2 S̄)D(S̄)

M̄ ′ M̄(R†), (2.40)

so that Eq. (2.38) becomes

T (J I )
�S;�̄S̄ = 1

4π

∑ ∫
dp̂

∫
dp̂′′(σ′

1σ
′
2M

′|s1s2S)D(S)
M ′M(R†)∗D(�)

m ′m(R†)∗(mMμ|�SJ )

× (α1α2t3|τ1τ2 I )Ym ′
� (p̂′′)∗(σ̄′

1σ̄
′
2M̄

′|s̄1s̄2 S̄)D(S̄)

M̄ ′ M̄(R†)D(�̄)
m̄ ′m̄(R†)(m̄ M̄μ|�̄S̄ J )

× (ᾱ1ᾱ2t3|τ̄1τ̄2 I )Y m̄ ′
�̄

(ẑ)〈p′′,σ′
1σ

′
2,α1α2|T | |p|ẑ, σ̄′

1σ̄
′
2, ᾱ1ᾱ2〉. (2.41)

The same relation inEq. (2.39) is applied oncemore to the combinations inEq. (2.41):

∑
m,M

(mMμ|�SJ )D(S)
M ′M(R†)D(�)

m ′m(R†) =
∑
μ′

(m ′M ′μ′|�SJ )D(J )
μ′μ(R

†),

∑
m̄,M̄

(m̄ M̄μ|�̄S̄ J )D(S̄)

M̄ ′ M̄(R†)D(�̄)
m̄ ′m̄(R†) =

∑
μ̄′

(m̄ ′M̄ ′μ̄′|�̄S̄ J )D(J )
μ̄′μ(R

†). (2.42)

We take Eq. (2.42) into Eq. (2.41) which now reads

T (J I )
�S;�̄S̄ = 1

4π

∑ ∫
dp̂

∫
dp̂′′(σ′

1σ
′
2M

′|s1s2S)(m ′M ′μ′|�SJ )(α1α2t3|τ1τ2 I )Ym ′
� (p̂′′)∗

× (σ̄′
1σ̄

′
2M̄

′|s̄1s̄2 S̄)(m̄ ′M̄ ′μ̄′|�̄S̄ J )(ᾱ1ᾱ2t3|τ̄1τ̄2 I )Y m̄ ′
�̄

(ẑ)D(J )
μ′μ(R

†)∗D(J )
μ̄′μ(R

†)

× 〈p′′,σ′
1σ

′
2,α1α2|T | |p|ẑ, σ̄′

1σ̄
′
2, ᾱ1ᾱ2〉. (2.43)

Now, the partial-wave amplitude T (J I )
�S;�̄S̄ is independent of μ and then

T (J I )
�S;�̄S̄ = 1

2J + 1

J∑
μ=−J

T (J I )
�S;�̄S̄. (2.44)

Thus, the same result in Eq. (2.43) is obtained with the product D(J )
μ′μ(R

†)∗D(J )
μ̄′μ(R

†)

replaced by

1

2J + 1

J∑
μ=−J

D(J )
μ′μ(R

†)∗D(J )
μ̄′μ(R

†) = δμ̄′μ′

2J + 1
, (2.45)

as follows from the unitarity character of the rotation matrices. As a consequence
any dependence in p̂ present in the integrand of Eq. (2.43) disappears in the average
of Eq. (2.44), the integration in the solid angle p̂ is trivial and gives a factor 4π.
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Taking into account the Kronecker delta in Eq. (2.45) for the third component of the
total angular momentum, and a new one that arises because Y m̄ ′

�̄
(ẑ) is not zero only

for m̄ ′ = 0, we end with the following expression for T (J I )
�S;�̄S̄:

T (J I )
�S;�̄S̄ = Y 0

�̄
(ẑ)

2J + 1

∑
σ1, σ2, σ̄1
σ̄2, α1,α2
ᾱ1, ᾱ2,m

∫
dp̂′′ 〈p′′,σ1σ2,α1α2|T | |p|ẑ, σ̄1σ̄2, ᾱ1ᾱ2〉 (2.46)

× Ym
� (p̂′′)∗(σ1σ2M |s1s2S)(mMM̄|�SJ )(σ̄1σ̄2M̄|s̄1s̄2 S̄)(0M̄ M̄ |�̄S̄ J )

× (α1α2t3|τ1τ2 I )(ᾱ1ᾱ2t3|τ̄1τ̄2 I ),

where we have removed the primes on top of the spin and orbital angular momentum
third component symbols and in the previous sum M = σ1 + σ2 and M̄ = σ̄1 + σ̄2.

Next, we derive the unitarity relation corresponding to our normalization for the
partial-wave projected amplitudes T (J I )

�S;�̄S̄ . For that we employ the unitarity relation
for the T matrix of Eq. (1.8). By time-reversal invariance it follows that the partial-
wave amplitudes are symmetric (this is demonstrated in the footnote 9 of [7], see
also chapters 3 and 5 of Ref. [5]) and therefore

2ImT (J I )
�S;�̄S̄ = 〈Jμ, �S, T t3|T T †|Jμ, �̄S̄, T t3〉. (2.47)

On the rhs we introduce between T and T † a two-body resolution of the identity
of states |Jμ, �S, I t3〉 (we have restricted our vector space to the one generated by
these states, below the threshold of multiparticle production) such that, taking into
account their normalization in Eq. (2.32), one ends with

ImT (J I )
�S;�̄S̄ =

∑
�′′,S′′

|p′′|
8π

√
s
T (J I )

�,S;�′′,S′′T (J I )∗
�′′,S′′;�̄S̄. (2.48)

The phase-space factor is included in the diagonal matrix

ρi j = |p|i
8π

√
s
δi j . (2.49)

Another form of expressing the unitarity requirement of Eq. (2.48) is by intro-
ducing the inverse of the matrix T (J I )(s). Employing a matrix notation we rewrite
this equation as

T (J I ) − T †(J I ) = 2iT (J I )ρT †(J I )
. (2.50)
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Multiplying to the left by T (J I )−1
and to the right by T †(J I )−1

, we arrive to the desired
result

�T (J I )−1
(s) = −ρ(s), (2.51)

above the thresholds of the channels involved. Along this work, we also denote by
channel any of the states interacting in a given process.

A more standard definition of the S-matrix for partial waves implies to redefine
it as

S(J I ) = I + 2iρ
1
2 T (J I )ρ

1
2 . (2.52)

This redefinition amounts to evaluate the S matrix between partial-wave projected
states

√ |p|i
4π

|Jμ, �S; i〉, (2.53)

which are just normalized to the product of Kronecker deltas with unit coefficient,
instead of the original normalization in Eq. (2.32). As a result now the diagonal
matrix elements of the identity operator I and SJ are just 1 and ηi e2iδi . Namely,

S(J I )
i i = ηi e

2iδi , (2.54)

where ηi is the inelasticity for channel i and δi its phase shift. We have included the
superscripts I and J to emphasize that we are considering a certain set of partial
waves with definite total angular momentum J and total isospin I .

A slight change in the formalism for projecting into partial-wave amplitudes
is needed when the two-body states comprise two identical particles or these two
particles can be treated as identical ones within the isospin formalism. This has
been treated in detail for fermions and bosons in Refs. [8, 9], in order. These
(anti)symmetric states are defined by

|p,σ1σ2,α1α2〉S = 1√
2

(|p,σ1σ2,α1α2〉 ± | − p,σ2σ1,α2α1〉) , (2.55)

with the subscript S indicating the (anti)symmetrized nature of the state under the
exchange of the two particles, the + is for bosons and the − is for fermions. Making
use of Eq. (2.29) we can write the (anti)symmetric states in terms of those with
well-defined J . As a result, instead of Eq. (2.30) for isolating the states with well-
defined J , we have now
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|p,σ1σ2,α1α2〉S = √
4π

∑
J,μ, �,m
S, M, I, t3

1 ± (−1)�+S+I

√
2

(σ1σ2M |s1s2S)(mMμ|�SJ )

(2.56)
× (α1α2t3|τ1τ2 I )Ym

� (p̂)∗|Jμ, �S, I t3〉.

In deducing this expression we have taken into account the following symmetric
properties of the Clebsch–Gordan coefficients:

(σ2σ1M |s2s1S) = (−1)S−s1−s2(σ1σ2M |s1s2S),

(α2α1t3|t2t1 I ) = (−1)I−t1−t2(α1α2t3|τ1τ2 I ),
Ym

� (−p̂) = (−1)�Ym
� (p̂). (2.57)

Of course, due to the fact that we are dealing with indistinguishable particles
within the isospin formalism it follows that s1 = s2, τ1 = τ2. The combination
(1 ± (−1)�+S+I )/

√
2 in Eq. (2.56) is denoted in the following as χ(�SI ) and takes

into account the (anti)symmetric character of the two particles, so that only stateswith
(odd)even � + S + I are allowed. The inversion of Eq. (2.56) gives (we assume in the
following that � + S + I=even(odd) for bosons(fermions), so that χ(�SI ) = √

2),

|Jμ, �S, I t3〉 = 1√
8π

∑
σ1,σ2
M,m

α1,α2

∫
dp̂Ym

� (p̂)(σ1σ2M |s1s2S)(mMμ|�SJ )(α1α2t3|τ1τ2 I )

× |p,σ1σ2,α1α2〉S. (2.58)

By comparing with Eq. (2.30) we conclude that the only difference of writing the
states |Jμ, �S, I t3〉 in terms of the (anti)symmetric ones is just a factor 1/

√
2. There-

fore, we can use the same expression of Eq. (2.46) for calculating the partial-wave
amplitudes in terms of the (anti)symmetric states but including an extra factor 1/

√
2

for every state obeying (anti)symmetric properties under the exchange of its two
particles. This is the so-called unitary normalization introduced in Ref. [10].

Let us show how the unitarity relation stems within the less abstract and more
definite setup of potential scattering, for more details the reader can consult section
2 of Ref. [7]. The full Hamiltonian H is the free one H0 plus the potential v, H =
H0 − v. A minus sign in front of v is introduced to conform with the sign convention
employed in the definition of the T matrix in Eq. (1.6). We denote by r0(z) and r(z)
the resolvents of H0 and H , in order,

r0(z) = (H0 − z)−1 ,

r(z) = (H − z)−1 , (2.59)
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with �z 	= 0. The following equations for r(z) follow,

r(z) = r0(z) + r0(z)vr(z) (2.60)

= r0(z) + r(z)vr0(z). (2.61)

For instance, take the following steps r(z) = r0(I − vr0)−1 = r0(I − vr0 + vr0)(I −
vr0)−1 = r0 + r0vr(z). For the other equation multiply the previous derivation by
I − vr0 to the right.

The relation between the T matrix T (z) and the resolvent r(z) is, by definition,

T (z)r0(z) = vr(z), (2.62)

such that from Eq. (2.60)

r(z) = r0(z) + r0(z)T (z)r0(z). (2.63)

By comparing this result with Eq. (2.61) we also obtain that

r0(z)T (z) = r(z)v. (2.64)

The Lippmann–Schwinger (LS) equation results by employing Eq. (2.60) for r(z),
and its relation with T (z), Eq. (2.62), such that

T (z) = v + vr0(z)T (z). (2.65)

Had we used instead Eqs. (2.61) and (2.64) we would have obtained this other form
of the LS equation

T (z) = v + T (z)r0(z)v. (2.66)

An interesting property of T (z) is that

T (z)† = T (z∗) (2.67)

as follows from the fact that r(z)† = r(z∗), as it is clear from its definition.4 The
previous equation illustrates as well the Hermitian unitarity [2].

We can obtain too a relationship between two resolvent operators evaluated at
different values of z, which is known as the Hilbert identity, and that it is very useful
also to establish the unitarity properties of the T matrix. The Hilbert identity reads

r(z1) − r(z2) = (z1 − z2)r(z1)r(z2). (2.68)

4The potential is also required to fulfill this property, v(z)† = v(z∗).
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For its demonstration take the difference r(z2)−1 − r(z1)−1 = z1 − z2 and multiply
it to the left by r(z1) and to the right by r(z2). In terms of the T matrix the Hilbert
identity reads

T (z1) − T (z2) = (z1 − z2)T (z1)r0(z1)r0(z2)T (z2), (2.69)

as follows by multiplying Eq. (2.68) to the left and right by v. For the left-
hand side (lhs) in Eq. (2.68) use the LS equation (2.65), because then vr(z1)v −
vr(z2)v = vr0(z1)T (z1) − vr0(z2)T (z2) = T (z1) − T (z2). For the rhs just employ
the Eqs. (2.62) and (2.64), vr(z1)r(z2)v = T (z1)r0(z1)r0(z2)T (z2).

The partial-wave projected LS equation arises by considering two-body states
projected in a given partial wave, |k, �S, Jμ〉, where k refers to the modulus of the
three-momentum, as introduced in Eq. (2.31). To shorten the notation, we typically
denote the discrete indices globally as λ, and then write |k,λ〉 for the same state.
This compact notation is also valuable because it readily shows that the results can
be applied to other choice of partial-wave projection, e.g., in the helicity basis. The
partial-wave states are normalized such that

〈k,λ|k ′,λ′〉 = 2π2 δ(k − k ′)
k2

δλλ′ . (2.70)

This normalization is consistent with that of Eq. (2.32) if
√
s = p01 + p02 is replaced

by m1 + m2. Furthermore, we also have to multiply this equation by 2πδ(k2/2μ −
k ′2/2μ) = 2πμδ(k − k ′)/k, because the LS equation is three-dimensional. Here
μ = m1m2/(m1 + m2) is the reduced mass. Finally, we divide the result by 4m1m2,
because in a nonrelativistic theory a plane wave is normalized as (2π)3δ(k − k′),
without the factor 2p01 (which in the nonrelativistic limit becomes simply 2m1).

The matrix elements of the T matrix between partial-wave states constitute the
partial-wave amplitudes, indicated schematically by Ti j (k, k ′; z), and corresponding
to

Ti j (k, k
′; z) = 〈k,λi |t (z)|k ′,λ j 〉. (2.71)

The LS equation in partial waves is obtained by taking thematrix element between
partial-wave states of Eqs. (2.65) and (2.66),

Ti j (k, k
′; z) = vi j (k, k

′) + μ

π2

∑
n

∫ ∞

0

dqq2

q2 − 2μz
vin(k, q)Tnj (q, k ′; z)

= vi j (k, k
′) + μ

π2

∑
n

∫ ∞

0

dqq2

q2 − 2μz
Tin(k, q; z)vnj (q, k ′). (2.72)
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In this equation we have included between the operators T (z) and v an intermediate
set of two-body partial-wave states |q,λ j 〉 taking into account their normalization
in Eq. (2.70), and the notation

vi j (k, k
′) = 〈k,λi |v|k ′,λ j 〉. (2.73)

For the Hilbert identity in partial waves we have from Eq. (2.69) that

Ti j (k, k
′; z1) − Ti j (k, k

′; z2) = (z1 − z2)
2μ2

π2

∑
n

∫ ∞

0

dqq2

(q2 − 2μz1)(q2 − 2μz2)

× Tin(k, q; z1)Tnj (q, k ′; z2). (2.74)

Next, we use the property that follows from Eq. (2.67),

Ti j (k, k
′; z∗) = Tji (k

′, k; z)∗, (2.75)

with z2 = z∗
1 = z∗ in Eq. (2.74). It results

Ti j (k, k
′; z) − Tji (k

′, k; z)∗ = 2i�z 2μ
2

π2

∑
n

∫ ∞

0

dqq2

(q2 − 2μz)(q2 − 2μz∗)

× Tin(k, q; z)Tnj (q, k ′; z)∗. (2.76)

Assuming time-reversal invariance the PWAs are symmetric, Ti j (k, k ′; z) = Tji

(k ′, k; z), and then Eq. (2.76) simplifies as

�Ti j (k, k′; z) = �z 2μ
2

π2

∑
n

∫ ∞

0

dqq2

(q2 − 2μz)(q2 − 2μz∗)
Tin(k, q; z)Tjn(k

′, q; z)∗

= �z 2μ
2

π2

∑
n

∫ ∞

0

dqq2

(q2 − 2μ�z)2 + (2μ�z)2 Tin(k, q; z)Tjn(k
′, q; z)∗ (2.77)

We now take the limit �z → 0+ and use the result

lim
�z→0+

2μ�z
(q2 − 2μ�z)2 + (2μ�z)2 = πδ(q2 − 2μ�z). (2.78)

We indicate by κ the on-shell momentum,

κ = √
2μ�z, (2.79)

and then Eq. (2.77) reads, with z = E + iε and ε → 0+,

�Ti j (k, k ′; z) = θ(E)
μκ

2π

∑
n

Tin(k,κ; z)Tjn(k
′,κ; z)∗, (2.80)

which is the off-shell unitarity relation.
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Two important particular cases of Eq. (2.80) are the half-off-shell and on-shell
unitarity relations. For the former, one takes E = k ′2/2μ (so thatκ = k ′) inEq. (2.80),
which then reads

�Ti j (k,κ; E + iε) = θ(E)
μκ

2π

∑
n

Tin(k,κ; E + iε)Tjn(κ,κ; E + iε)∗. (2.81)

This is a unitarity relation of the same type as the one for form factors [5, 11], that
are discussed in Chap. 13. In connection with this, we have here another version of
the Watson final-state theorem because Eq. (2.81) implies that along the RHC the
phase of the half-off-shell PWA is the same (modulo π) as the phase of the on-shell
PWA for the uncoupled case, since the lhs of Eq. (2.81) is real.

The on-shell unitarity relation, or simply unitarity, stems by taking the extra
requirement k ′ = k in the half-off-shell case. Then Eq. (2.81) becomes

�Ti j (κ,κ; E + iε) = θ(E)
μκ

2π

∑
n

Tin(κ,κ; E + iε)Tjn(κ,κ; E + iε)∗. (2.82)

This imaginary part is the reason of the presence of the right-hand cut (RHC) or
unitarity cut in the PWAs for positive real values of the energy (or physical ones).
This is clear if we take into account the Hermitian unitarity relation in Eq. (2.67) and
the symmetric character of the partial-wave amplitudes, so that Ti j (κ,κ, E + iε) −
Ti j (κ,κ, E − iε) = 2i�Ti j (κ,κ, E + iε), with the latter given in Eq. (2.82).

The partial-wave decomposition of the S matrix, given by its matrix elements
between states |k,λ〉, is

Si j (E) = δi j + i
μκ

π
Ti j (κ,κ; E + iε). (2.83)

This is a unitary operator for E ≥ 0 because it satisfies

S(E)S(E)† = S(E)†S(E) = I, E ≥ 0, (2.84)

as consequence of the on-shell unitarity in partial waves, Eq. (2.82).



Chapter 3
Crossing. Crossed-Channel Singularities

From perturbative QFT it is clear that a generic quantum filed φi (x) contains both
the annihilation operators of a type of particles and the creation operators of the
corresponding antiparticles [4]. The former term is multiplied by the space-time
factor exp(−i px) while the latter is so by exp(i px). To get the basic idea involved
in crossing let us consider that the field has spin zero. Therefore, the same vertices
in a given scattering process can be associated with a particle of four-momentum p
or with an antiparticle with four-momentum −p and viceversa. This implies that if
we have a scattering amplitude of the form

a1(p1) + a2(p2) + · · · → b1(p
′
1) + b2(p

′
2) + · · · (3.1)

the same scattering amplitude governs any other process in which one or several
particles are changed from initial/final to final/initial and at the same time there is a
flip in the global sign of the four-momenta. For instance, for the previous reaction
we could have many others related by crossing, in particular

a1(p1) + a2(p2) + · · · + b̄(−p′
1) → b2(p

′
2) + · · · (3.2)

where the bar indicates the corresponding antiparticle. This is the basic content of
crossing.

Let us particularize crossing to the two-body scattering a + b → c + d. We can
then distinguish the following related processes:

a(p1) + b(p2) → c(p3) + d(p4), (3.3)

a(p1) + c̄(−p3) → b̄(−p2) + d(p4), (3.4)

a(p1) + d̄(−p4) → c(p3) + b̄(−p2). (3.5)

From top to bottom, these processes are referred to as s-channel, t-channel and
u-channel, in order. We also denote the s-channel as the direct one while the
t- and u-channels are also called crossed channels.Apart from the processes indicated
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in Eqs. (3.3)–(3.5), there are other three processes in which instead of exchang-
ing b(p2) → b̄(−p2) from the initial to the final state, we could also exchange
a(p1) → ā(−p1). These processes can also be obtained by CPT invariance from the
ones shown in these equations.

Under the exchange of signs in the four-momenta, the s, t and u variables for
every channel are related. Let us designate with a subscript t and u the Mandelstam
variables for the t- and u-channels, respectively. Then we have for the t-channel:

st = (p1 − p3)
2 = t, (3.6)

tt = (p1 + p2)
2 = s,

ut = (p1 − p4)
2 = u, (3.7)

and for the u-channel the relations are

su = (p1 − p4)
2 = u, (3.8)

tu = (p1 − p3)
2 = t,

uu = (p1 + p2)
2 = s. (3.9)

The physical regions for these processes are disjoint. To simplify the discussion let
us take that the four particles have the same mass m, e.g., this is the case of ππ
scattering. The s, t and u variables are given in the CM by

s = 4(m2 + p2), (3.10)

t = −2(s/4 − m2)(1 − cos θ),

u = −2(s/4 − m2)(1 + cos θ),

with θ the scattering angle. Fromherewe see that the physical region for the s-channel
comprises the domain

s ≥ 4m2, (3.11)

t ≤ 0,

u ≤ 0.

For the other channels the same values take place in terms of the variables with the
subscripts. Thus, for the t-channel

t = st ≥ 4m2, (3.12)

s = tt ≤ 0,

u = ut ≤ 0.
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In turn for the u-channel,

u = su ≥ 4m2, (3.13)

s = uu ≤ 0,

t = tu ≤ 0.

For the equal-mass case we have the relation, cf. Eq. (2.4),

s + t + u = 4m2. (3.14)

Therefore, only two of the three variables are independent.
Analyticity assumes that the scattering amplitudes in the three disjoint physi-

cal regions for the s-, t- and u-channels are given by the same analytical function
A(s, t, u) of s and t [u is then given by Eq. (3.14)]. The physical values for the
different channels correspond to boundary values of this analytic function.

In particular, if we take a constant value of t the unitarity cut associated with the
normal cuts in the u-channel, cf. Eq. (2.5), gives rise to a new cut in the complex s
plane apart from the s-channel unitary cut. This is a simple example of a crossed-
channel cut (also called unphysical cut, because it involves unphysical values of
the Mandelstam variables in the s-channel) arising from a branch point singularity
attached to a two-body threshold. In particular, this cut runs for u ≥ 4m2 so that it
correspond to the s values

s = 4m2 − t − u ≤ −t, (3.15)

and for s ≥ 4m2 we have the s-channel unitary cut.
For particles with spin the analytical continuation of the scattering amplitude in

the complex s and t planes is more involved due to the presence of kinematical
singularities, whose origin is not dynamical, like the unitarity cuts in the s or crossed
channels. They have to do with the solutions of the relativistic equations for the
particleswith spins, like the spinors for spin 1/2. For a general account on kinematical
singularities we refer to [12, 13].

A possible way to deal with the kinematics singularities is to isolate Lorentz
invariant functions out of the scattering amplitudes. For instance, let us consider the
process πa(q)N (p,σ;α) → πa′

(q ′)N (p′,σ′;α′), where a and a′ denote the Carte-
sian coordinates in the isospin space. In terms of them the charged pions correspond
to the combination

∑

a

πaτ a

√
2

=
(

π0√
2

π+

π− − π0√
2

)
. (3.16)

First, the scattering amplitude contains two invariant isospin amplitudes correspond-
ing to I = 1/2 and 3/2, because the pions are isospin 1 particles and the nucleons
have isospin 1/2. Any matrix in the isospin 1/2 space of nucleons can be expressed
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as a superposition of Pauli matrices τ a and the 2×2 identity matrix. Given two pions
with indices a and a′ the tensors with good properties under isospin rotations at our
disposition are δaa′ and [τa, τa′ ].1 In this way we write,

Taa′ = δa′aT
+ + 1

2
[τa, τa′ ]T−. (3.17)

In turn the two amplitudes T± are operators acting in the space of the Dirac spinors
and can be written as a linear combination of the 16 linearly independent matrices
I , γμ, σμν , γ5 and γ5γ

μ with the Lorentz indices contracted with four-momenta. The
matrices γ5 and γ5γ

μ would violate parity and they do not appear. The set σμν does
not appear either because of the Gordon identity,2 which implies that it does not
give rise to any independent structure apart from the ones already accounted for by
the identity matrix and γμ. Taking also into account that p/u(p,σ) = mu(p,σ) and
ū(p′,σ′)p′/ = mu(p′,σ′), we arrive to the standard form [12]

T± = ū(p′,σ′)
[
A±(s, t, u) + 1

2
(q/ + q ′/)B±(s, t, u)

]
u(p,σ). (3.19)

The analytical properties of the Lorentz invariant functions A± and B± are essentially
the same as those of the scattering amplitude for scalar particles. The other factors in
Eq. (3.19) have to be taken into account in establishing relations between analyticity
and experimental results.

The crossed-channel poles, corresponding to poles in the crossed t- andu-channels
for certain real values of t or u, in order, give rise to crossed cuts in the complex s
plane of partial-wave amplitudes. For instance, consider the u-channel proton pole
in π−n → π−n scattering (in this sense these poles are called “bound states”, even
though they could be elementary states or composite of other degrees of freedom
[14]). Such a pole gives rise to a crossed cut in a given partial wave. For pion–nucleon
scattering in the CM the u variable is given by (m and mπ are the nucleon and pion
masses)

u = m2 + m2
π − 2ωE − 2p2 cos θ. (3.20)

In this equation E and ω are the nucleon and pion CM energies, respectively. When
performing the partial-wave projection the scattering angle is integrated and cos θ ∈
[−1, 1]. Thus, setting u = m2 in Eq. (3.20) and expressing ω, E and p2 in terms of s,

1No tensor of rank should 2 be considered because its combination with an isospin 1/2 cannot get
rise to an isospin 1/2.
2The Gordon identity establishes that

ū(p′,σ′)γμu(p,σ) = 1

2m
ū(p′,σ′)

[
(p′ + p)μ + iσμν(p′ − p)ν

]
u(p,σ). (3.18)
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ω = s + m2
π − m2

2
√
s

, (3.21)

E = s + m2 − m2
π

2
√
s

,

p2 = λ(s,m2,m2
π)

4s
,

λ(s,m2
1,m

2
2) = (s − (m1 + m2)

2)(s − (m1 − m2)
2),

with λ(s,m2
1,m

2
2) the Källén triangle function, we have the following solutions for

s as a function of x = cos θ,

s1(x) = m2x + m2
π(1 + x) − √

m4 + 2m4
π(1 + x) + 2m2m2

π(−1 + x + 2x2)

1 + x
,

(3.22)

s2(x) = m2x + m2
π(1 + x) + √

m4 + 2m4
π(1 + x) + 2m2m2

π(−1 + x + 2x2)

1 + x
.

The first solution s1(x) gives always a cut along the negative real axis because the
radicand is larger than the squared of the the terms in the numerator before the square
root [their difference is (1 − x2)(m2 − m2

π)
2]. Incidentally this also shows that the

radicand is always positive for any values of the masses and x ∈ [−1, 1]. Its upper
limit happens for x = 1 and it is zero, while its lower limit is −∞ because (1 + x)
in the denominator tends to zero for x → −1. This is a clear example of a left-hand
cut (LHC). Regarding s2(x), this implies a finite cut which ranges along the positive
real axis with values from (m2 − m2

π)
2/m2 up to m2 + 2m2

π.
The analysis for ππ scattering is simpler because the two-pion cut along the

t-channel and u-channel happens for t = −2(s/4 − m2
π)(1 − x) ≥ 4m2

π and u =
−2(s/4 − m2

π)(1 + x) ≥ 4m2
π . Solving s in terms of x we find that both cases give

rise to LHCs with s ∈] − ∞, 0] when x moves along [−1, 1].
In the case of a nonrelativistic theory, the quantum fields only involve annihilation

operators (or creation ones for the Hermitian conjugate field, Chap. 5 of Ref. [3])
and crossing does not operate. Nonetheless, there is still a LHC in this case due to
the particles exchanged that give rise to the potential. For instance, let us consider a
Yukawa potential

V (r) = α
e−rmπ

r
. (3.23)

Its Fourier transform is

V (q2) = α

∫
d3re−iqr e

−rmπ

r
= 4πα

q2 + m2
π

, (3.24)
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where q = p′ − p is the three-momentum transfer. Its angular projection for particles
without spin is simply

VJ (p, p
′) = 1

2

∫ +1

−1
d cos θ V (q2) PJ (cos θ) (3.25)

= − πα

pp′

∫ +1

−1
d cos θ

PJ (cos θ)

cos θ − (p2 + p′2 + m2
π)/(2pp′)

.

The LHC results by the vanishing of the denominator. Thus, in order to study its
appearance we isolate the term that produces it by proceeding as follows:

VJ (p, p
′) = − πα

pp′

∫ +1

−1
d cos θ

PJ (cos θ)

cos θ − ξ
= − πα

pp′

∫ +1

−1
d cos θ

PJ (cos θ) − PJ (ξ)

cos θ − ξ
(3.26)

− πα

pp′ PJ (ξ)

∫ +1

−1

d cos θ

cos θ − ξ
,

with

ξ = p2 + p′2 + m2
π

2pp′ . (3.27)

The term before the last one in Eq. (3.26) does not give rise to the LHC because
when the denominator vanishes the numerator also does. Therefore, the last term
is the only one responsible for the LHC and the integration over cos θ can be done
explicitly with the result

− πα

pp′ PJ (ξ)

∫ +1

−1

d cos θ

cos θ − ξ
= − πα

pp′ PJ (ξ)
[
log(1 − ξ) − log(−1 − ξ)

]
. (3.28)

Now for real and positive p and p′ we can rewrite the difference of logarithms in the
last term as

πα

pp′ PJ (ξ)
[
log((p + p′)2 + m2

π) − log((p − p′)2 + m2
π)

]
. (3.29)

This expression is specially suitable for performing the analytical continuation to
complex values of p and p′ and so determine the position of the cuts, as fully exploited
in Ref. [7]. The point is that the cuts in the p variable for given p′ occurs when
(p + p′)2 + m2

π < 0 (first logarithm) or (p − p′)2 + m2
π < 0 (second logarithm).

This implies the vertical cuts

p = (±)p′ ± i
√
m2

π + x2, x ∈ R, (3.30)
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with the first ± symbol uncorrelated with the second one. An analogous reciprocal
relation exists for the cuts in the variable p′ for a given p. The cuts for on-shell
scattering, p = p′, result from the only meaningful equation then, by taking the
minus sign between brackets in Eq. (3.30),

p = −p ± i
√
m2

π + x2. (3.31)

Its solution gives

p = ± i

2

√
m2

π + x2, (3.32)

and for the variable p2 we have a cut for the values

p2 ≤ −m2
π

4
. (3.33)

This is the LHC that occurs in nonrelativistic nucleon–nucleon (NN ) scattering [7].
The NN partial waves are function of the variable p2 because by imposing parity
invariance of the T matrix,

PT P = T, (3.34)

in the equation that gives the projection onto the partial waves, Eq. (2.46), one easily
deduces that

Ti j (−p) = η2(−1)�i+� j Ti j (p) = Ti j (p),

(3.35)

becauseYm
� (−p̂) = (−1)�Ym

� (p) and P|p,σ1σ2,α1α2〉 = η| − p,σ1σ2,α1α2〉, with
η the intrinsic parity. We can write η2(−1)�i+� j = +1 because parity is a good quan-
tum number and partial-wave states with different parity are not connected by time
evolution.



Chapter 4
Important Mathematical Results:
Schwarz Reflection Principle,
Sugawara–Kanazawa Theorem,
and Herglotz Theorem

• The Schwarz reflection principle states that given a function f (z) of a complex
variable z such that f (z) is real in a finite segment � of the real axis, then

f (z) = f (z∗)∗ (4.1)

in a domain D in complex z plane if (i) � ⊂ D and (ii) f (z) is analytic in D.
This theorem intuitively follows if we think that the Taylor expansion of the

analytic function f (z) in D can be worked out in terms of the derivatives of this
function at a point z0 ∈ � and evaluated along the real axis. As a result, since f (z) is
real in z ∈ � it follows that the derivatives of any order at z0 are real. Therefore, the
Taylor expansion around z0 satisfies Eq. (4.1). Since f (z) = f (z∗)∗ in this region,
it is clear that its analytical continuation will also satisfy it since one proceeds by
overlapping the new regions of analytical continuation with the previous ones where
it is already satisfied.

The Schwarz reflection principle is important since it has many applications when
writing down dispersion relations (DRs). For instance, it establishes that given a
partial-wave amplitude T (s) with a separation between the RHC and LHC, there is
an interval along the real s axis in which T (s) is real, and then this function satisfies
the Schwarz reflection principle, Eq. (4.1). It also implies that the discontinuity of
the function along any of the aforementioned cuts is 2i its imaginary part because
then

f (x + iε) − f (x − iε) = f (x + iε) − f (x + iε)∗ = 2i� f (x + iε). (4.2)

This principle could also be applied to an invariant part of a scattering amplitude
A(s, t, u) as a function of s with a t fixed that does not match with intermediate states
in the t-channel, and such that it allows for a region in s without intermediate states
in the s- and u-channels. Then A(s, t, u)will satisfy the Schwarz reflection principle
as a function of s (let us recall the on-shell relation that s + t + u = ∑

m2
i ).
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−c2 c1

xi

∞−∞

Fig. 4.1 Integration contour C used to settle the DR of Eq. (4.6)

• The Sugawara–Kanazawa theorem [15]: Let f (z) be a function analytic every-
where in the complex z plane except for two cuts along the real axis and poles
between them (as represented in Fig. 4.1). We also assume that

(i) f (z) has finite limits f (∞ ± iε) as z → ∞ ± iε along the c1 cut or RHC.
(ε → 0+).

(ii) The possible divergence of f (z) for z → ∞ is less strong than a finite power
N ≥ 1 of z.

(iii) f (z) has definite (not necessarily finite) limits for z → −∞ ± iε along the c2
cut or LHC.1

The theorem then probes that f (z) has the limits

lim
z→∞ f (z) = f (∞ + iε), �z > 0, (4.3)

lim
z→∞ f (z) = f (∞ − iε), �z < 0,

and it admits the dispersion relation

f (z) =
∑

i

Ri

z − xi
+ 1

π

(∫ ∞

c1

+
∫ −c2

−∞

)
Δ f (x)

x − z
dx + f̄ (∞), (4.4)

1The notation of Ref. [15] for a infinite definite limit refers to the fact that the function should tend
to this infinite limit steadily without oscillating.



4 Important Mathematical Results: Schwarz Reflection Principle … 33

where

Δ f (x) = 1

2i
[ f (x + iε) − f (x − iε)] , (4.5)

f̄ (x) = 1

2
[ f (x + iε) + f (x − iε)] .

This theorem enables one to express the contribution from the infinite circle of the
Cauchy contour integral in terms of the boundary values of f (z) at infinity along
only one of the cuts extending to infinity.

The Sugawara–Kanazawa theorem reflects a typical situation found inmany appli-
cations, so that one has to study a function f (z)with RHC and LHC that extend along
the real axis up to infinity from some starting points, together with the possibility of
poles along the real axis corresponding to bound states in the first Riemann sheet.

We offer here a summary of its demonstration, which is also of interest by itself
since it provides the asymptotic behavior of integrals that are often found in actual
applications. The demonstration also illustrates a peculiar manner of including extra
subtractions in a DR.

We take the integration contour C in Fig. 4.1 and start with the usual integration
for an unsubtracted DR,

∮
f (z′)
z′ − z

dz′ =
∫ R

c1

f (x + iε) − f (x − iε)

x − z
dx +

∫ −c2

−R

f (x + iε) − f (x − iε)

x − z
dx

+
∫

circle

f (z′)
z′ − z

dz′ = 2π i f (z) + 2π i
∑

i

Ri

xi − z
, (4.6)

where Ri is the residue of f (z) at the pole xi . The set of poles xi lies within the
interval [−c2, c1].

We take into account the asymptotic behaviors assumed in the statement of the
theorem, so that we include one extra subtraction in the first integral on the rhs of
Eq. (4.6), and N + 1 extra ones in the second and third integrals on the same side of
the integral.

An interesting point in the demonstration, worth keeping in mind, is the way these
extra subtractions are taken in Ref. [15] by employing the mathematical identity

1

z′ − z
=

m∑

i=0

zi

z′i+1 + zm+1

z′m+1

1

z′ − z
, (4.7)

and applying it withm = 0 to the first integral on the rhs of Eq. (4.6) and withm = N
to the second and third integrals. The integrals along the circle of radius R involving
f (z′)zN+1/z′N+1

(z′ − z) vanish in the limit R → ∞. We can then rewrite f (z) from
Eq. (4.6) in the limit R → ∞ as
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f (z) =
∑

i

Ri

z − xi
+ z

π

∫ ∞

c1

Δ f (x)

x(x − z)
dx + (−1)N

zN+1

π

∫ ∞

c2

Δ f (−x)

xN+1(x + z)
dx

+
(

a0 + 1

π

∫ ∞

c1

Δ f (x)

x
dx − 1

π

∫ ∞

c2

Δ f (−x)

x
dx

)

(4.8)

+
(

a1 + 1

π

∫ ∞

c2

Δ f (−x)

x2
dx

)

z + · · · +
(

aN + (−1)N+1

π

∫ ∞

c2

Δ f (−x)

xN+1 dx

)

zN ,

where we have exchange the sign of the integration variable in the integrals along the
LHC. In this equation the coefficients am are the integrals along the circle at infinity
from the last integral in Eq. (4.6) divided by 2π i ,

am = lim
R→∞

1

2πRm

∫ 2π

0
f (Reiθ )e−imθdθ. (4.9)

By attending only to ii) many of the individual integrals in the coefficients of the
polynomial in Eq. (4.8) are divergent, though their actual sum is convergent power
by power in z, since both f (z) and the first two integrals on the rhs of this equation
are finite.

Now let us consider the constraints imposed by the condition i). Our analysis is
in the following simpler than in the original Ref. [15], addressing faster the main
reason why we proceed along with a sketch of the demonstration of the theorem.
Those seeking more mathematical rigor are addressed to Ref. [15]. Specifically we
discuss the first integral in Eq. (4.8) and rewrite it as

z

π

∫ ∞

c1

Δ f (x)

x(x − z)
dx = Δ f (∞)

z

π

∫ ∞

c1

1

x(x − z)
dx + z

π

∫ ∞

c1

Δ f (x) − Δ f (∞)

x(x − z)
dx,

(4.10)

where Δ f (±∞) is the limit

Δ f (±∞) = lim
x→±∞ Δ f (x), (4.11)

that exists and is finite in virtue of i). The first integral on the rhs of Eq. (4.10) as a
function of z diverges logarithmically as z → ∞ unless Δ f (∞) = 0, while the last
integral has the limit

lim
z→∞

z

π

∫ ∞

c1

Δ f (x) − Δ f (∞)

x(x − z)
dx = − 1

π

∫ ∞

c1

Δ f (x) − Δ f (∞)

x
dx . (4.12)

Nonetheless, we cannot conclude thatΔ f (∞) is zero because still we havemore con-
tributions from the first LHC integral in Eq. (4.8) that could cancel such logarithmic
divergent contribution from Eq. (4.10).
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Indeed, we can proceed similarly for the first integral along the LHC in Eq. (4.8)
and then it is required that2

lim
x→−∞

Δ f (−x)

xN
= 0, (4.13)

because otherwise we would have a contribution diverging like zN log z in contra-
diction with i). Since Eq. (4.13) must be fulfilled then Eq. (4.12) implies that

lim
z→∞(−1)N

zN+1

π

∫ ∞

c2

Δ f (−x)

xN+1(x + z)
dx = lim

z→∞(−1)N
zN

π

∫ ∞

c2

Δ f (−x)

xN+1
dx, (4.14)

which cancels the contribution from the integral along the LHC in the coefficient
multiplying zN . Similarly, aN = 0 because otherwisewewould have a xN divergence
at odds with (i). We can continue this analysis for N − 1. For this continuation let
us notice that if Eq. (4.13) is fulfilled then we can rewrite

(−1)N
zN+1

π

∫ ∞

c2

Δ f (−x)

xN+1(x + z)
dx = (−1)N

zN

π

∫ ∞

c2

Δ f (−x)

xN

z + x − x

x(x + z)
dx

(4.15)

= (−1)N−1 z
N

π

∫ ∞

c2

Δ f (−x)

xN (x + z)
dx + (−1)N

zN

π

∫ ∞

c2

Δ f (−x)

xN+1
dx .

The term before the last one in the rhs of this equation is the same as the original
one but with N → N − 1, while the last factor is the same as already discussed
in connection with Eq. (4.14). As a result, decreasing step by step in one unit the
number of subtractions in the integral along the LHC, we can conclude that am = 0
and Δ f (−∞)/xm = 0 for all m ≥ 1. Therefore, it follows at this stage that only
one subtraction is needed in Eq. (4.8) instead of the N + 1 taken there. The latter
equation then simplifies to

f (z) =
∑

i

Ri

z − xi
+ z

π

∫ ∞

c1

Δ f (x)

x(x − z)
dx + z

π

∫ ∞

c2

Δ f (−x)

x(x + z)
dx (4.16)

+ a0 + 1

π

∫ ∞

c1

Δ f (x)

x
dx − 1

π

∫ ∞

c2

Δ f (−x)

x
dx .

We can proceed analogously as in the analysis of Eq. (4.10) and add and subtract
Δ f (±∞) in the first and second integrals in Eq. (4.16). This tells us that f (x ± iε)
would diverge for x → ∞ unless

Δ f (∞) − Δ f (−∞) = 0. (4.17)

2In the manipulations for the demonstration of this theorem we take that the vanishing limits for
x → ∞ tend to zero at least as x−γ with γ > 0.
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By decomposing 1/x(x ± z) in simpler fractions

1

x(x ± z)
= ∓1

z

[
1

x ± z
− 1

x

]

(4.18)

we can further rewrite Eq. (4.16) as

f (z) =
∑

i

Ri

z − xi
+ 1

π

∫ ∞

c1

Δ f (x)

x − z
dx − 1

π

∫ ∞

c2

Δ f (−x)

x + z
dx + a0. (4.19)

Notice that the integrals after a0 in Eq. (4.16) cancel with the integrals that stem
from the last term in Eq. (4.18). In general, it is convenient for considering the limit
z → ∞ of Eq. (4.19) to rewrite it as

f (z) = a0 + 1

π

∫ ∞

c1
Δ f (x)

(
1

x − z
− 1

x + z

)

dx −
∫ ∞

c1+c2

Δ f (−x) − Δ f (x)

x + z
dx + · · ·

= a0 + Δ f (∞)

π

∫ ∞

c1

(
1

x − z
− 1

x + z

)

dx (4.20)

+ 1

π

∫ ∞

c1
[Δ f (x) − Δ f (∞)]

(
1

x − z
− 1

x + z

)

dx

−
∫ ∞

c1+c2

Δ f (−x) − Δ f (x)

x + z
dx + · · ·

where the ellipsis indicates contributions that trivially vanish as z → ∞. The second
and third integrals, the latter because of Eq. (4.17), are zero in the limit z → ∞. The
only surviving contribution stems from the first integral which gives

lim
z→∞

Δ f (∞)

π

∫ ∞

c1

(
1

x − z
− 1

x + z

)

dx =
{+iΔ f (∞), �z > 0,
−iΔ f (∞), �z < 0.

(4.21)

This also fixes

a0 = f̄ (∞), (4.22)

by taking the limit z → ∞ ± iε in Eq. (4.20) which implies f (∞ ± iε) = a0 ±
iΔ f (∞). Thus, we conclude the validity of Eqs. (4.3) and (4.4).

Let us indicate some other important conclusions that follow from the Sugawara–
Kanazawa theorem

1. If the RHC and LHC have finite extent, then the results of the theorem are trivial
(the infinite point is isolated).

2. If the function only has one infinite cut, then Δ f (∞) = 0, because the function
is continuous at the end of the opposite side of the real axis and then f̄ (∞) =
f (∞ ± iε). This is the case for form factors.

3. If the Schwarz theorem is fulfilled, Eq. (4.1), then Δ f (x) = � f (x) and f̄ =
� f (∞).
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4. We have assumed that both limits f (∞ ± iε) are finite in the statement of the
theorem, point i). This is necessarily the case when one of them is finite and the
Schwarz reflection principle is satisfied. Even in the case when only one of them
is finite, let us say f (∞ + i∞), and the other f (∞ − iε) is infinite, the first line
of Eq. (4.4) still holds. The demonstration is analogous to the one followed here,
with an integration contour that consists of an infinite semicircle along the upper
half of the complex z plane and a path along the entire real axis.

5. If f (z) is known to approach zero as z → ∞ ± iε, the theorem states that f (z)
approaches zero in any other direction and the unsubtracted dispersion relation
of Eq. (4.3) with f̄ (∞) = 0 holds.

6. If f (z) is known to diverge as z goes to either one or both of the limits ∞ ± iε,
we can introduce a function F(z) which diverges at least as strongly and apply
the theorem to the new function f (z)/F(z). Of course, this new function should
have finite limits for ∞ ± iε and cannot have poles and branch cuts out of the
real axis, with the cuts lying separately along the latter. Since F(z) is a known
function we can calculate the residues and discontinuity of f (z)/F(z) in terms
of those of f (z).
As a result of applying the theorem to f (z)/F(z)we conclude that f (z) diverges
at infinity as F(z) times constants that are the limits of f (z)/F(z) for z →
∞ ± iε.

•TheHerglotz theorem [16]: Consider an analytic function g(ξ) in |ξ | < 1 andwhich
fulfills that �g(ξ) ≥ 0 in this domain. Then, the function g(ξ) can be represented by
the integral

g(ξ) = i
∫ 2π

0

eiθ + ξ

eiθ − ξ
dβ(θ) + c, (4.23)

where β(θ) is an increasing bounded function and c is a real constant.
The transformation

ξ = z − i

z + i
, z = i

1 + ξ

1 − ξ
, (4.24)

maps the region |ξ | < 1 with the upper half plane �z > 0, while

x = i
1 + eiθ

1 − eiθ
= − cot

θ

2
, (4.25)

maps the circle |ξ | = 1 with the real z axis. Making use of this transformation one
can easily rewrite the integral of Eq. (4.23) into the following integral representation
of f (z) = g(ξ) [16]:

f (z) = c + Az +
∫ ∞

−∞
1 + xz

x − z
dα(x), �z > 0, (4.26)
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where c is the same constant as in Eq. (4.23), α(x) = β(θ(x)) (therefore, α(x) is an
increasing bounded function in x) and A is another real constant.

It is also demonstrated in Ref. [16] that

lim
z→∞

f (z)

z
= A, �z > 0. (4.27)

Equation (4.26) provides too an analytical representation of f (z) in the lower half
plane �z < 0 such that it satisfies the Schwarz reflection principle, since c, A and
α(x) are real. Thus,

f (z∗) = f (z)∗. (4.28)

We can write the integral representation of Eq. (4.26) like a twice-subtracted
DR by expressing the real constants c and A in terms of the function f (z) and its
derivative at some point z0. In the following f ′(z) denotes the derivative of f (z) at z.
Making use of Eq. (4.26) we then have

f (z) = f (z0) + f ′(z0)(z − z0) + (z − z0)2

π

∫ ∞

−∞
σ(x)

(x − z0)2(x − z)
dx, (4.29)

where

σ(x) = π(1 + x2)
dα(x)

dx
≥ 0. (4.30)

We can also interpretσ(x) as the imaginary part of f (x + iε) because fromEq. (4.26)
one has that (recall that c and A are real)

� f (x ± iε) = ±π(1 + x2)α′(x) = ±σ(x). (4.31)

This also has the consequence that we can write Eq. (4.29) as

f (z) = f (z0) + f ′(z0)(z − z0) + (z − z0)2

π

∫ ∞

−∞
� f (x + iε)

(x − z0)2(x − z)
dx, (4.32)

Note that Eq. (4.26) provides the valuable information that both c and A are real
constants and that � f (x + iε) = σ(x), while these facts are not transparent in the
form of the twice-subtracted DR in Eq. (4.32) for general z0. Nonetheless, there is
an exception to this comment that happens when f (z) is real along some interval of
the real axis because then it follows from Eq. (4.31) that σ(x) = 0 there. In such a
case, we can take z0 = x0 along this interval and then both f (x0) and f ′(x0) are real.



Chapter 5
Exact Dispersion Relations in Quantum
Mechanics for the Eigenvalues
of the Scattering Kernel

As an example for the application of the Sugawara–Kanazawa theorem and the
Herglotz theorem introduced and discussed in Chap. 4, we derive the DR satisfied
by the eigenvalues of the scattering kernel in Quantum Mechanics. The exposition
is motivated by Ref. [17].

The Lippmann–Schwinger equation with a Hermitian potential V for a complex
or negative energy W is1

T (W ) = V + V [W − H0]−1T (W ) , (5.1)

where T (W ) is the scattering matrix. We next make the transformation V → λV ,
with λ a complex number, and multiply both sides of Eq. (5.1) by [W − H0]−1/λ.
Then we have

[W − H0]−1 T (W )

λ
= [W − H0]−1V + λ[W − H0]−1V [W − H0]−1 T (W )

λ
.

(5.2)

This equation is the analogous one for finding the resolvent R of a Fredholm integral
equation (IE) of the second type with kernel K [18]

R = K + λK R . (5.3)

We can then make the following identifications:

K →[W − H0]−1V , (5.4)

R →[W − H0]−1 T (W )

λ
. (5.5)

1This equation differs by a minus sign compared to Eq. (2.65) because V = −v, so that H =
H0 + V .
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The values of λ that satisfy the homogeneous equation

[W − H0]−1V |ψν(W )〉 = ην(W )|ψν(W )〉 , (5.6)

〈ψν(W )|ψν(W )〉 = 1 ,

are the eigenvalues of the interaction kernel. In order to connect with the theory of
linear IE we should use ην(W )−1, because the eigenvalue equation is usually written
as λK |ψ〉 = |ψ〉 [18].

It is also interesting to rewrite Eq. (5.6) as a more standard Schrödinger equation
by multiplying it with [W − H0],

[H0 + V

ην(W )
]|ψν〉 = W |ψν〉 . (5.7)

In this way, if W is complex then ην(W ) must be complex because the eigenvalues
of a Hermitian Hamiltonian must be real.

We need some properties of the ην(W ) as a function of W in order to show that
they fulfill a DR of the type corresponding to the Herglotz theorem, Eq. (4.32).

(I) The first one follows upon inspection of Eq. (5.6); each ην(W ) is analytic in
the complexW plane cut along the real axis from 0 to∞, because the spectrum of H0

extends along real positive values. The only exception might arise if several ην(W )

coalesce at the same value at some W . As in Ref. [17], we assume that it does not
happen (we could take advantage of varying slightly the parameters in the theory if
needed).

(II) The second property is that �ην(W ) is always positive or negative in a given
half of the complexW plane.We already remarked after Eq. (5.7) that�ην(W ) cannot
vanish for complex W because ην(W ) must be necessarily complex. Therefore, we
only have to determine the sign of ην(W ) at some convenient point with positive or
negative �W .

It follows from (I) and (II) that we can apply Eq. (4.32) from the Herglotz theorem
either to ην(W ) or to−ην(W ), depending on weather �ην(W ) ≥ 0 or≤ 0 for �W >

0, respectively. At this stage, this implies a twice-subtracted DR for ην(W ). We can
go further by noticing two more properties of ην(W ):

(III) The ην(W ) are real for W < 0. This follows by multiplying the eigenvalue
equation (5.6) by [H0 − W ]1/2 so that

−[H0 − W ]−1/2V [H0 − W ]−1/2
([H0 − W ]1/2|ψν〉

) = ην(W )
([H0 − W ]1/2|ψν〉

)
.

(5.8)

Thus, the ην(W ) are eigenvalues of the Hermitian operator

K̃ = −[H0 − W ]−1/2V [H0 − W ]−1/2 (5.9)

and must be real for W < 0.
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It is also clear that ην(W ∗) = η(W )∗ and they satisfy the Schwarz reflection
principle.

(IV) The ην(W ) vanish in the limit W → ∞. This property is based on the fact
that the trace of K̃ K̃ † clearly vanishes for W → ∞ (�W 
= 0 or W < 0) since it
exists for any complex or negative W for a wide range of potentials. For detailed
conditions on the potential the reader is referred to [17].

In virtue of (III) and (IV)we can rewrite Eq. (4.26) as an unsubtractedDR. First let
us notice that (IV) implies that A = 0, cf. Eq. (4.27). Secondly, since�ην(∞ ± iε) =
0 then, because of Eq. (4.31), we can rewrite the rest of Eq. (4.26) as

ην(z) = c +
∫ ∞

−∞
1 + t (z − t + t)

t − z
dα(t) (5.10)

=c +
∫ ∞

−∞
1 + t2

t − z
dα(t) −

∫ ∞

−∞
tdα(t) . (5.11)

When taking the limit z → ∞ the integral before the last one is zero and then we
are left with

c −
∫ ∞

−∞
tdα(t) = 0 , (5.12)

because ην(z) is zero in the same limit. As a result, it follows from the Herglotz
theorem that

ην(W ) = 1

π

∫ ∞

0

�ην(x + iε)

x − W
dx . (5.13)

This dispersive representation for ην(W ) could be also obtained by applying the
Sugawara–Kanazawa theorem in virtue of the remark 2 when discussing such
theorem.

Reference [17] shows the interest to study the eigenvalues ην(W ) in order to settle
a criterion for the validity of the Born series. The point is that the Neumann series
for the resolvent [W − H0]−1T (W )/λ can be applied as long as |λ| < |η−1

ν | for all
ν. This is a consequence of the standard Fredholm theory which establishes that
the resolvent is a meromorphic function of λ. As a result if all |ην | < 1 then the
Born series is valid because the actual situation happens for λ = 1. Indeed, from the
eigenvalue equation (5.6) we would have for the action of T (W ) on |ψν(W )〉,

T (W )|ψν(W )〉 = (
V + V [W − H0]−1V + V [W − H0]−1V [W − H0]−1V + · · · ) |ψν〉

= V
∞∑

i=0

ην(W )i |ψν〉 , (5.14)
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which is convergent for |ην(W )| < 1. Indeed, this corresponds to the geometric series
and one has that

T (W )|ψν(W )〉 = V |ψν(W )〉
1 − ην(W )

. (5.15)

An interesting condition of having obtained that ην(∞ + i∞) = 0 is that the Born
series is always applicable at sufficiently high energy in potential scattering.



Chapter 6
General Results for Two-Meson
Scattering in Partial Waves After
Neglecting the Crossed-Channel Cuts.
N/D Method

We discuss here the first phenomenological application in this work dedicated to the
study performed in Ref. [19] of the lightest pseudoscalar–pseudoscalar scattering in
S and P waves, with special emphasis in the analysis of the related spectroscopy. This
study is based on the derivation of the formulawhich gives the general structure of the
partial-wave amplitudes when the crossed-channel or unphysical cuts are neglected.

The unphysical cuts comprise two types of cuts in the complex s plane. For
processes of the type a + a → a + a, with mi = ma , there is only a LHC for s <
sLeft. However for those ones of the type a + b → a + b with m1 = m3 = ma and
m2 = m4 = mb, apart from a LHC there is also a circular cut in the complex s plane
for |s| = m2

2 − m2
1 [5], where we have taken m2 > m1. In the rest of this section,

for simplicity in the formalism, we just refer to the LHC as if it comprises all the
unphysical cuts. This is enough for our purposes in this section. In any case, had
we worked in the complex p2 plane all the cuts would be linear cuts and then only
a LHC would be present for this variable. In such a case, the analysis would be
mathematically analogous to the one presented here in the complex s plane.

Let us indicate by TL(s) a two-meson partial-wave amplitude with angular
momentum L . We first analyze the elastic case and then we generalize the results for
the coupled partial-wave amplitudes. In our chosen normalization, the RHC leads to
the imaginary part of T−1

L (s) for s above threshold, sth = (m1 + m2)
2, according to

Eq. (2.51),

�T−1
L (s) = − p

8π
√
s
, s ≥ sth , (6.1)

where

p = |p| =
√
(s − (m1 + m2)2)(s − (m1 − m2)2)

2
√
s

(6.2)

≡ λ1/2(s,m2
1,m

2
2)

2
√
s
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is the CM three-momentum of the two-meson system.1 The LHC, for s < sLeft, leads
to

TL(s + iε) − TL(s − iε) = 2i�TL(s) . (6.3)

A way to obtain a TL(s) fulfilling Eqs. (6.1) and (6.3) is the N/D method [20],
in which TL(s) is expressed as the quotient of two functions,

TL(s) = NL(s)

DL(s)
, (6.4)

where the denominator function, DL(s), only has RHC and the numerator function,
NL(s), contains the unphysical cuts but no RHC.

In order to take explicitly into account the behavior of a partial-wave amplitude
near threshold, which vanishes like p2L , we introduce the new function, T ′

L , defined
as

T ′
L(s) = TL(s)

p2L
, (6.5)

which also satisfies relations of the type of Eqs. (6.1) and (6.3). So that we can write

T ′
L(s) = N ′

L(s)

D′
L(s)

. (6.6)

FromEqs. (6.1), (6.3) and (6.5), the functions N ′
L(s) and D

′
L(s)obey the equations,

�D′
L = ImT ′−1

L N ′
L = −ρ(s)N ′

L p
2L , s > sth (6.7)

�D′
L = 0 , s < sth

�N ′
L = �T ′

L D′
L = �TL

p2L
D′

L , s < sLeft (6.8)

�N ′
L = 0 . s > sLeft

Since N ′
L and D′

L can be simultaneously multiplied by any arbitrary real analytic
function without changing its ratio, T ′

L , nor Eqs. (6.7) and (6.8), we choose the later
as a polynomial made out of all the zeros of N ′

L(s). In this way, we can consider in the
following that N ′

L(s) is free of poles and thus, the poles of a partial-wave amplitude
correspond to the zeros of D′

L(s).
Using dispersion relations for D′

L(s) and N ′
L(s), we can write for these functions

from Eqs. (6.7) and (6.8) that

D′
L(s) = − (s − s0)n

π

∫ ∞

sth

ds ′ p(s
′)2Lρ(s ′)N ′

L(s
′)

(s ′ − s)(s ′ − s0)n
+

n−1∑

m=0

ams
m , (6.9)

1The context makes clear when p is a four-momentum or the modulus of p.
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where n is the number of subtractions needed such that

lim
s→∞

N ′
L(s)

sn−L
= 0 (6.10)

since, from Eq. (6.2)

lim
s→∞

p2Lρ(s)

sL
= 1

4L+2π
. (6.11)

For the function N ′
L(s) we have, consistently with Eq. (6.10),

N ′
L(s) = (s − s0)n−L

π

∫ sLeft

−∞
ds ′ �T L(s ′)D′

L(s
′)

p(s ′)2L(s ′ − s0)n−L(s ′ − s)
+

n−L−1∑

m=0

a′
ms

m .

(6.12)
The Eqs. (6.9) and (6.12) constitute a system of coupled linear integral equations

for the functions N ′
L(s) and D′

L(s), which input is �T L(s) along the LHC.
However, Eqs. (6.9) and (6.12) are not the most general solution to Eqs. (6.7) and

(6.8) because of the possible presence of zeros of TL which do not originate when
solving those equations. These zeros have to be included explicitly and we choose to
incorporate them through poles in the function D′

L (the so-called Castillejo-Dalitz-
Dyson (CDD) poles after Ref. [21]). Following this last reference, let us write along
the real axis

�D′
L(s) = dλ(s)

ds
. (6.13)

Then by Eq. (6.7),

dλ

ds
= −ρ(s)p2L N ′

L , s > sth (6.14)

dλ

ds
= 0 . s < sth

Let si be the points along the real axis where T ′
L(si ) = 0. Between two consecutive

points, si and si+1, we have from Eq. (6.14) that

λ(s) = −
∫ s

si

p(s ′)2Lρ(s ′)N ′
L(s

′)ds ′ + λ(si ) , (6.15)

with λ(si ) unknown because the inverse of T ′
L(si ) is not defined. Thus, we may write

λ(s) = −
∫ s

sth

p(s ′)2Lρ(s ′)N ′
L(s

′)ds ′ +
∑

i

λ(si )θ(s − si ) , (6.16)
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where θ(s) is the usual Heaviside function. Therefore, it follows from Eqs. (6.13)
and (6.16) that

D′
L(s) = (s − s0)n

π

∫ ∞

sth

�D′
L(s

′)ds′

(s′ − s)(s′ − s0)n
+

n−1∑

m=0

ams
m =

n−1∑

m=0

ams
m (6.17)

− (s − s0)n

π

∫ ∞

sth

p(s′)2Lρ(s′)N ′
L(s

′)
(s′ − s)(s′ − s0)n

ds′ + (s − s0)n

π

∫ ∞

sth

∑
i λ(si )δ(s

′ − si )

(s′ − s)(s′ − s0)n
ds′

= − (s − s0)n

π

∫ ∞

sth

p(s′)2Lρ(s′)N ′
L(s

′)
(s′ − s)(s′ − s0)n

ds′ +
n−1∑

m=0

ams
m +

∑

i

λ(si )

π(si − s)

(s − s0)n

(si − s0)n
.

The Eq. (6.17) can also be obtained from Eq. (6.7) and the use of the Cauchy
theorem for complex integration once the possible presence of the CDD poles of D′

L
(zeros of T ′

L ) inside and along the integration contour are taken into account. The
latter is given by a circle in the infinity deformed to engulf the real axis along the
right-hand cut, sth < s ′ < ∞. In thisway one can also consider the possibility of there
being higher order zeros and that some of the si could have a nonzero imaginary part
(because of the Schwartz theorem, in this case s∗

i is another zero of T
′
L(s)). However,

as we see below for L ≤ 1, when considering chiral symmetry in the Large Nc limit
of Quantum Chromodynamics (QCD), the zeros will appear on the real axis and also
as simple zeros. In general, by using T ′

L instead of TL , we avoid working with Lth
order poles of DL at threshold in the dispersion relation given in Eq. (6.17).

The last term in the rhs of Eq. (6.17) can also be written in a more convenient way
by avoiding the presence of the subtraction point s0. To accomplish this let us notice
that

(s − s0)n

s − si
= (s − s0)

n−1 s − si + si − s0
s − si

= (s − s0)
n−1

(
1 + si − s0

s − si

)
(6.18)

= (s − s0)
n−1 + (si − s0)

(s − s0)n−1

s − si

=
n−1∑

i=0

(s − s0)
n−1−i (si − s0)

i + (si − s0)n

s − si
.

The terms

n−1∑

i=0

(s − s0)
n−1−i (si − s0)

i (6.19)

can be reabsorbed in
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n−1∑

m=0

ams
m . (6.20)

As a result we can write Eq. (6.17) in the simpler manner

D′
L(s) = − (s − s0)n

π

∫ ∞

sth

p(s ′)2Lρ(s ′)N ′
L(s

′)
(s ′ − s)(s ′ − s0)n

ds ′ +
n−1∑

m=0

ãms
m +

∑

i

γ̃i

s − si
,

(6.21)
where ãm (n − 1 ≥ m ≥ 0) and γ̃i , si (i ≥ 0), are arbitrary parameters. However, if
some of the si is complex there is another s j such that s j = s∗

i and γ̃ j = γ̃∗
i , as we

explained above. Every term in the last sum of Eq. (6.21) is referred to as a CDD
pole, after Ref. [21].

The Eqs. (6.21) and (6.12) stand for the general integral equations for D′
L and

N ′
L , respectively. Next we make the approximation of neglecting the left-hand cut,

that is, we set �T L(s) = 0 in Eq. (6.12). Thus one has:

N ′
L(s) =

n−L−1∑

m=0

ã′
ms

m . (6.22)

As a result, N ′
L(s) is just a polynomial of degree ≤ n − L − 1.2 So we can write,

N ′
L(s) = C

n−L−1∏

j=1

(s − s j ) . (6.23)

In Eq. (6.23) it is understood that if n − L − 1 is zero N ′
L is just a constant. Thus,

the only effect of N ′
L , apart from the normalization constant C, is the inclusion of, at

most, n − L − 1 zeros in T ′
L(s). Nonetheless, we can always divide N ′

L and D′
L by

Eq. (6.23). The net result is that, when the LHC is neglected, it is always possible to
take N ′

L(s) = 1 and all the zeros of T ′
L(s)manifests as CDDpoles of the denominator

function. In this way,

T ′
L(s) = 1

D′
L(s)

, (6.24)

N ′
L(s) = 1 ,

D′
L(s) = − (s − s0)L+1

π

∫ ∞

sth

ds ′ p(s ′)2Lρ(s ′)
(s ′ − s)(s ′ − s0)L+1

+
L∑

m=0

ams
m +

ML∑

i

Ri

s − si
.

2One can always make that n ≥ L + 1 just by multiplying N ′
L and D′

L by sk with k large enough.
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The number of free parameters present in Eq. (6.24) is L + 1 + 2	, where 	 is the
number of CDDpoles,ML , minus the number of complex conjugate pairs of si . These
free parameters have a clear physical interpretation. Consider first the term 2	which
comes from the presence of CDD poles in D′

L(s), Eq. (6.24). In [22] the presence
of CDD poles was linked to the possibility of there being elementary particles with
the same quantum numbers as those of the partial-wave amplitude, that is, particles
which are not originated from a given “potential” or exchange forces between the
scattering states. One can think that given a D′

L(s) we can add a CDD pole and
adjust its two parameters in order to get a zero of the real part of the new D′

L(s) with
the right position and residue, having a resonance/bound state with the desired mass
and coupling. In this way, the arbitrary parameters that come with a CDD pole can
be related with the coupling constant and mass of the resulting particle. This is one
possible interpretation of the presence of CDDpoles. However, as we are going to see
below, these poles can also enter just to ensure the presence of zeros required by the
underlying theory, as the Adler zeros [23] for the S-wave meson-meson interaction
in QCD. The derivative of the partial-wave amplitude at the zero fixes the other
parameter of a CDD, γ̃i . With respect to the contribution L + 1 to the number of free
parameters coming from the angular momentum L , it appears just because we have
explicitly established the behavior of a partial-wave amplitude close to threshold,
vanishing as p2L . This is required by the centrifugal barrier effect, well known from
Quantum Mechanics.

It should be stressed that Eq. (6.24) is the most general structure that an elastic
PWA, with arbitrary L, has when the left- hand cut is neglected. The free parameters
that appear there are fitted to the experiment or calculated from the basic underlying
theory. In Ref. [19] the basic dynamics is expected to be QCD, but Eq. (6.24) could
also be applied to other interactions apart from QCD, as the Electroweak Symmetry
Breaking Sector [24] [which also has the symmetries [25] used to derive Eq. (6.24)].

We now give the necessary steps to generalize Eq. (6.24) to coupled channels by
employing a matrix formalism. From the beginning we neglect the unphysical cuts.
As a consequence TL(s)i j will be proportional to pL

i p
L
j . Thismakes that TL(s)i j , apart

from the right-hand cut coming from unitarity (above the thresholds for channels i
and j , sith and s j

th respectively), will have another cut for odd L between sith and s j
th

due to the square roots present in pi and p j . This can be avoided by defining, in
analogy with the elastic case Eq. (6.5), the matrix T ′

L as

T ′
L(s) = p−LTL(s)p

−L , (6.25)

with p a diagonal matrix which elements are pi j = piδi j , where pi is the modulus of

the CM momentum of the channel i , pi = λ1/2(s,m2
1i ,m

2
2i )

2
√
s

, with m1i and m2i the
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masses of the two mesons in channel i . In this way, T ′
L has only the right-hand cut

coming from unitarity and it is free of the cut associated with the product of pL
i p

L
j

for odd L .3

Along the RHC the matrix T ′
L(s) satisfies

�T ′−1
L (s) = −pLρ(s)pL = −ρ(s)p2L , (6.26)

where ρ(s) is a diagonal matrix defined by

ρ(s) = − p

8π
√
s
θ(s) , (6.27)

with θ(s) another diagonal matrix such that θi (s) = θ(s − sth;i ).
We write T ′

L as a quotient of two matrices, N ′
L and D′

L making use of the coupled
channel version of the N/D method [26]

T ′
L = D′−1

L N ′
L (6.28)

We can always take N ′
L free of poles and also containing all the zeros of T ′

L . In
such a case N ′

L is just a matrix of polynomials in s of maximum degree n − L − 1,
namely,

N ′
L = Qn−L−1 . (6.29)

Next, from Eqs. (6.26) and (6.28) one has

�D′
L(s) = −N ′

L(s)ρ(s)p
2L , (6.30)

that we employ to write the following DR for D′
L . It results

D′
L(s) = − (s − s0)n

π

∫ ∞

0
ds ′ Qn−L−1(s ′)ρ(s ′)p2L(s ′)

(s ′ − s)(s ′ − s0)n
+ Pn−1 , (6.31)

with Pn−1 a matrix of polynomials of maximum degree n − 1.
Because N ′

L is just a matrix of polynomials, it can be reabsorbed in D′
L to give

rise to a new D̃′
L which fulfills Eq. (6.30) but with Ñ ′

L = 1. In this way

3The formalism can be straightforwardly generalized to allow for different Ls of the initial and final
states in the case of hadrons with different spins.
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T ′
L = D̃′−1

L (6.32)

Ñ ′
L = 1 ,

D̃′
L = − (s − s0)L+1

π

∫ ∞

0
ds ′ ρ(s ′)p2L(s ′)

(s ′ − s)(s ′ − s0)L+1
+ R(s) ,

with R(s) a matrix of rational functions whose poles contain the zeros of T ′
L . This

fact is in clear analogy with the role played by the CDD poles introduced above for
the elastic scattering.



Chapter 7
Reaching the Unphysical Riemann
Sheets. A Nonlinear Integral Equation
to Calculate a PWA

Now, let us discuss how to proceed to calculate the T matrix of PWAs in an unphys-
ical Riemann sheet (RS). In order to give a general discussion let us use a generic
parameterization for a T matrix by explicitly isolating the RHC. Performing a DR
of the inverse of the T matrix by employing Eq. 2.51 we have

TL(s)
−1 = NL(s)

−1 + a(s0) − s − s0
π

∫
sth

ρ(s ′)ds ′

(s ′ − s0)(s ′ − s)
, (7.1)

TL(s) = [NL(s)
−1 + g(s)

]−1
. (7.2)

where we have included a subtraction at s0 because ρ(s) tends to constant as s → ∞.
HereNL(s) is a matrix that only has crossed-channel cut (although it could also have
CDD poles). In the limit in which crossed cuts are neglected this function and the
N (s) function of the N/Dmethod can bemade to coincide. In addition, the dispersive
integral plus the subtraction constant a(s0) (so that the result is independent of the
subtraction point s0) is denoted by g(s). The matrices g(s) and a(s0) are diagonal
(recall that ρ(s) is a diagonal matrix), whose matrix elements are explicitly,

gi (s) = ai (s0) − s − s0
π

∫ ∞

sth;i

ρi (s ′)ds ′

(s ′ − s0)(s ′ − s)
. (7.3)

Notice that if the only singularities of TL(s)i j were a RHC, a LHC, and possible
poles in between the two cuts, and if it were furthermore bounded in the com-
plex s plane by some power of s for s → ∞, we could then apply the Sugawara–
Kanazawa theorem, Chap. 4. This is clear because from unitarity we have that
Ti j = (Si j − 1)/

(
2iρ1/2i ρ

1/2
j

)
, |Si j | ≤ 1, and we would expect for the case of finite-

range interactions that Si j tends to a definite limit for s → ∞ + iε (let us note that
the Schwarz reflection principle is fulfilled by the PWA). We could then conclude
from the application of the Sugawara–Kanazawa theorem that Ti j (s) would tend to
constant for s → ∞, like (Si j (∞ + iε) − 1)/(2iρi (∞ + iε)1/2ρ j (∞ + iε)1/2) for
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s, s > 0(a)

s, s < 0

(b)

Fig. 7.1 Contour deformation (thick solid line) for reaching the second Riemann sheet of the
function gi (s) by crossing the RHC from top (a) to bottom (b). The deformation of the integration
contour results in order to avoid the pole singularity of the integrand in Eq. (7.3) at s′ = s, for s ∈ R

and s > sth;i . Subsequently the process continues to further avoid the crossing of the pole at s in
the integrand with the deformed contour when moving deeper in the complex s plane. This figure
could be seen also as a way to reach the first Riemann sheet from the second one by crossing again
the RHC from the later (a) to the former (b). Of course, the RHC could also be crossed from bottom
to top, with the deformed contour being the mirror image of the one pictured in (b)

�s > 0 and like its complex conjugate for �s < 0. Nonetheless, in practical applica-
tions we have to handle, at least at the effective level, with singular interactions for
which the PWAs are not bounded in the complex s plane. For examples the interested
reader might consult Ref. [7], where a formula is derived that allows to calculate the
exact discontinuity of a PWA along the LHC both for regular and singular poten-
tials. For the latter ones, the modulus of this discontinuity diverges stronger than any
polynomial of s for s → −∞. Therefore, the Sugawara–Kanazawa theorem does
not apply in this case and Ti j (s) is divergent for s → ∞, as the explicit calculation
of the discontinuity along the LHC shows.

The Eq. (7.2) gives TL(s) in the first Riemann sheet. In order to reach resonance
poles we should consider the T matrix in unphysical Riemann sheets as well. This
is accomplished by performing the analytical continuation of the different matrix
elements of the diagonal dispersive integral in Eq. (7.1). The function gi (s) has a
branch-point singularity at the ith threshold sth;i and a cut starting from this point
that we take along the positive real s axis, that is, a standard RHC or unitarity cut.
Now, in order to reach the second Riemann sheet of gi (s) one should cross the
RHC and proceed by analytical continuation to the second Riemann sheet. This
analytical continuation can be accomplished by deforming the integration contour
[2] as depicted in Fig. 7.1.

We then have to add to gi (s) the result of the integration along the closed integra-
tion contour around s. Thus, if we denote by gI I ;i (s) the gi (s) function in the second
Riemann sheet we have the relation

gI I ;i (s) = gi (s) − 2iρI I ;i (s) = gi (s) + 2iρI ;i (s) , (7.4)
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where the function ρI ;i (s) in the complex s plane is

ρI ;i (s) = 1

16π

√
λ(s,m2

1,m
2
2)

s2
, (7.5)

with the square root
√
z taken in its first Riemann sheet and defined as having a RHC,

that is, with argz ∈ [0, 2π[. Notice, that the minus sign in the term after the first equal
sign in Eq. (7.4) is due to the fact that ρI I ;i (s) is the same function as ρI ;i (s) but
defined in its second RS (the procedure of analytically continuing an integral by
deforming its integration contour requires using the integrand analytically continued
to its corresponding Riemann sheet).

The Eq. (7.4) also shows that this is a two-sheet cut, because by crossing again
the RHC we would have to add +2iρI ;i (s), because of the addition of the circle
to the integration contour, but this time added to gI I ;i (s) = gi (s) + 2iρI I ;i (s) (the
square-root function ρI ;i (s) in Eq. (7.4) is also analytically continued to its second
Riemann sheet). Then, the extra terms cancel and we come back again to gi (s) in the
first Riemann sheet. This analysis shows that the RHC is a two-sheet cut and because
of this the different Riemann sheets can be characterized as the Riemann sheets of
the square root present in the definition of the CM three-momentum p,

p(s) = ±
√

λ(s,m2
1,m

2
2

4s
. (7.6)

Our convention to nominate all the possible 2n RS for a scattering process with n
channels is the following. The physical or first Riemann sheet (RS) corresponds to
take the plus sign in all the channels, (+,+, . . .), the second RS to take the minus
sign in the first channel, (−,+, . . .), the third RS to (+,−,+, . . .), the fourth RS
to (−,−,+, . . .), etc. Thus, before we flip the sign of the m th channel we have
2m−1 RSs.

We now discuss a DR for NL(s) following the derivation of Ref. [8]. This rep-
resentation also provides a nonlinear IE for NL(s). To simplify the discussion we
consider an uncoupled PWA taken as a function of the CM three-momentum squared,
p2. This is done so as to avoid the circular cuts for unequal mass scattering, §1.1
of Chap. 8 in Ref. [5], so that TL(p2) has only a LHC and a RHC. The procedure
discussed could be generalized straightforwardly to coupled PWAs.

From Eq. (7.2) we have that �N (p2) satisfies along the LHC (we omit the sub-
script L to shorten the writing),

�T (p2) = � 1

N (p2)−1 + g(p2)
= − �N (p2)−1

|N (p2)−1 + g(p2)|2 = �N (p2)
|T (p2)|2
|N (p2)|2 .

(7.7)
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Therefore,

�N (p2) = |N (p2)|2
|T (p2)|2 �T (p2) (7.8)

= ∣∣1 + g(p2)N (p2)
∣∣2 Δ(p2) , p2 < p2Left .

Here, we have introduced the function Δ(p2) defined as

Δ(p2) = �T (p2) , p2 < p2Left , (7.9)

where p2Left is the upper bound of the LHC. Assuming that N (p2)/p2n vanishes for
p2 → ∞ we can write an n-times subtracted DR for N (p2),

N (p2) =
n−1∑
m=0

am p
2m + p2n

π

∫ p2Left

−∞

∣∣1 + g(q2)N (q2)
∣∣2 Δ(q2)dq2

q2n(q2 − p2)
. (7.10)

This is a nonlinear IE which input is the knowledge of Δ(p2) along the LHC. In
terms of this DR we can write for T (p2),

T (p2) =

⎡
⎢⎢⎣

⎛
⎜⎝

n−1∑
m=0

am p2m + p2n

π

∫ p2Left

−∞

∣∣∣1 + g(q2)N (q2)
∣∣∣2 Δ(q2)dq2

q2n(q2 − p2)

⎞
⎟⎠

−1

+ g(p2)

⎤
⎥⎥⎦

−1

.

(7.11)

In this form the subtraction constants am can be determined in terms of physical
parameters of the T matrix, e.g., by fitting phase shifts, reproducing the effective
range expansion (ERE) shape parameters, etc.

The Ref. [8] also shows that T (p2) is independent of the subtraction constant
in g(s). We reproduce here the arguments given in this reference and, as there, we
take only one subtraction constant in N (p2), which is enough for illustrating the
point. We perform a DR for T−1(p2) taking into account the RHC and LHC with an
integration contour that consists of a circle at infinity that engulfs the two mentioned
cuts. We use that the �T (p2)−1 along the RHC is −ρ(p2), Eq. 2.51. Then, one has

T−1(p2) = β − p2

π

∫ ∞

0

ρ(q2)dq2

q2(q2 − p2)
+ p2

π

∫ p2Left

−∞
Δ(q2)dq2

|T (q2)|2q2(q2 − p2)
+ R(p2) ,

(7.12)

where R(p2) is a rational function taking care of the possible zeroes of T (p2) and
that it does not play an active role in the considerations that follow. It is clear from
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the previous equation that there is only one free parameter (subtraction constant) to
be determined, β, even though we could split it in two constants and add one of them
to the integral over the RHC. The sum of this constant plus the RHC integral is the
unitarity function g(s). Thus, the inclusion of a subtraction constant in g(p2) appears
just as a matter of convenience.



Chapter 8
The Good (σ), The Bad (ρ)
and the Difficult (LHC)

We now apply the formalism developed in Chap. 6 to study the low-energy isoscalar
S-wave and isovector P-wave ππ amplitudes. Their phase shifts are characterized
by the presence of a broad increase and later plateau (σ) for the former and by a steep
rise (ρ) for the later.

As dynamical input we first consider the lowest order Chiral Perturbation Theory
(ChPT) amplitudes. As it is well-known Chiral Perturbation Theory is a low-energy
effective field theory (EFT) employing as effective degrees of freedom the lightest
pseudoscalars that correspond to the pseudo-Goldstone bosons associated with the
spontaneous chiral symmetry breaking of strong interactions. Another consequence
of the Goldstone theorem is that the interaction involving the Goldstone bosons are
of derivative nature and vanish in the limit p2i → 0. As a result, even for the S waves
there is a near threshold zero that is known as Adler zero, while for the P wave this
is just the zero at threshold. For detailed accounts on this EFT the interested reader
can consult the Chap. 19 of Refs. [27, 28] or the topical reviews [29–31].

We can treat both types of zeroes similarly by including a CDD pole in the
corresponding D(s) function. The leading order (LO) ChPT amplitudes are ( fπ �
92.4 MeV is the weak pion decay constant)

V0 = s − m2
π/2

f 2π
, (8.1)

V1 = s − 4m2
π

6 f 2π
,

for the I = 0 S-wave and I = 1 P-wave ππ scattering, in order [19]. Thus, by
approaching the position of the zero and its residue by LO ChPT, and by using
Eq. (6.24) with L = 0 and ML = 1, we have
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T0(s) =
(

f 2π
s − m2

π/2
+ ã0 − s

π

∫ ∞

sth

ds ′ ρ(s ′)
s ′(s ′ − s)

)−1

, (8.2)

T1(s) =
(

6 f 2π
s − 4m2

π

+ ã1 − s

π

∫ ∞

sth

ds ′ ρ(s ′)
s ′(s ′ − s)

)−1

.

In order to continue forward, and appreciate the difference between the σ and
the ρ from the hadronic point of view of taking pions as explicit degree of freedom,
we have to elaborate on the physical meaning of the subtraction constants ãI in
Eq. (8.2), which become part of the functions gI (s). These subtraction constants
appear together with the dispersive integral so that the result is independent of the
subtraction point s0, which in Eq. (8.2) is equal to zero.

Let us first give the generic algebraic expression for the unitary function g(s), cf.
Eq. (7.3), with two particles involved in the intermediate state with masses m1 and
m2 (in the scattering of a heavy particle with a much lighter one we takem1 the mass
of the heavier one),

g(s) = ã − s

π

∫ ∞

sth

ds ′ ρ(s ′)
s ′(s ′ − s)

(8.3)

= 1

16π2

[
a(μ) + log

m2
1

μ2
− x+ log

x+ − 1

x+
− x− log

x− − 1

x−

]
,

x± = s + m2
2 − m2

1

2s
± 1

2s

√
(s + m2

2 − m2
1)

2 − 4s(m2
2 − i0+) .

Here the renormalization scaleμ is introduced tomake dimensionless the argument of
the first logarithm. The combination a(μ) − 2 logμ is independent of μ. The relation
between g(sth) and a(μ) is

g(sth) = a(μ)

16π2
+ 1

8π2(m1 + m2)
(m1 log

m1

μ
+ m2 log

m2

μ
) . (8.4)

The unitarity function g(s) corresponds to the unitarity loop function

g(s) = i
∫

d4 p

(2π)4

1

[(P/2 − p)2 − m2
1 + iε][(P/2 + p)2 − m2

2 + iε] (8.5)

=
∫ ∞

0

p2dp

(2π)2

ω1 + ω2

ω1ω2[s − (ω1 + ω2)2 + iε] ,

where P = p1 + p2 is the total four-momentum and ωi =
√
m2

i + p2. This integral
is logarithmically divergent and requires regularization. This is why a subtraction
constant is needed in Eq. (8.3). This equation can also be obtained by performing the
loop integral with dimensional regularization in d dimensions and then absorbing
in the subtraction constant the diverging contribution 1/(d − 4) in the limit d → 4.
One could use as well a three-momentum cutoff regularization by integrating over p
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up to a maximum Λ, and the resulting expression for g(s) is worked out in Ref. [32]
with the result

gΛ(s) = 1

32π2

(
− Δ

s
log

m2
1

m2
2

+ 2
Δ

s
log

1 +
√
1 + m2

1/Λ
2

1 +
√
1 + m2

2/Λ
2

+ log
m2

1m
2
2

Λ4
(8.6)

+ ν

s

⎧⎨
⎩log

s − Δ + ν
√
1 + m2

1/Λ
2

−s + Δ + ν
√
1 + m2

1/Λ
2

+ log
s + Δ + ν

√
1 + m2

2/Λ
2

−s − Δ + ν
√
1 + m2

2/Λ
2

⎫⎬
⎭

− 2 log

[(
1 +

√
1 + m2

1/Λ
2

) (
1 +

√
1 + m2

2/Λ
2

)] )
,

with ν = λ(s,m2
1,m

2
2)

1/2 and Δ = m2
2 − m2

1.
In hadron physics the natural size for a three-momentum cutoff is the size of

the hadron themselves as resulting from the strong dynamics binding of quarks and
gluons, the degrees of freedom of QCD. This value is around 1GeV, since for a three-
momentum cutoff larger than this value the associated de Broglie wave length would
be smaller than the distances inside which extra degrees of freedom aremanifest. The
relativistic limit of both functions g(s) and gΛ(s) (|p| � m1, m2) is a constant plus
−i p/(8π(m1 + m2)) + O(p2). This constant for g(s) is already given in Eq. (8.4),
while for gΛ(sth) is

gΛ(sth) = − 1

8π2(m1 + m2)

[
m1 log

(
1 +

√
1 + m2

1/Λ
2

)
(8.7)

+m2 log

(
1 +

√
1 + m2

2/Λ
2

)
− m1 log

m1

Λ
− m2 log

m2

Λ

]
.

We can then obtain a prediction for the constant a(μ) as a function of Λ by
equating Eqs. (8.4) and (8.7)

a(μ) = − 2

m1 + m2

[
m1 log

(
1 +

√
1 + m2

1/Λ
2

)
(8.8)

+m2 log

(
1 +

√
1 + m2

2/Λ
2

)]
− log

Λ2

μ2
.

For a given Λ we can obtain any value of a(μ) by varying μ. For instance for ππ
scattering with Λ = 1 GeV we obtain

a(μ) = −1.40 − log
Λ2

μ2
, Λ = 1 GeV . (8.9)

By taking in Eq. (8.8) the renormalization scale to be equal toΛ and the latter to stay
around 1 GeV, we obtain what is called the natural value for the subtraction constant,
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a concept introduced in Ref. [33]. Thus, taking this value for a(μ) in the isoscalar
scalar ππ partial-wave amplitude we find a pole for the resonance σ or f0(500) at1

sσ = (0.47 − i 0.20)2 , (8.10)

which is compatible with the values given in Particle Data Group (PDG) [34] that
reports

sσ = (0.4 − 0.5 − i (0.20 − 0.35))2 GeV2. (8.11)

Then, it is clear that theσ resonance has a dynamical originwhichfinds an explanation
within simple terms when employing the pions as explicit degrees of freedom. It is
due to an interplay between the low-energy Adler zero located around m2

π/2 (there
could be small higher order corrections) and the rescattering of the two pions when
propagating. For a recent and comprehensive review on the σ resonance the reader
can consult Ref. [35].

However, if we apply the same idea to the isovector vector ππ PWA we cannot
obtain the pole of the ρ(770) with a(μ) having a natural value. We need to use a
much larger subtraction constant in absolute value in order to obtain a good pole for
the ρ(770). For instance, for a(μ) = −14, μ = 1 GeV, we obtain

sρ = (0.777 − i 0.072)2 GeV2 , a(1 GeV) = −14 . (8.12)

This value of a(μ) requires an extremely big cutoff of aroundΛ = 600 GeV, near the
TeV region. Thus, the presence of the ρ(770) cannot be easily explained employing
the pions as explicit degrees of freedom and the parameters of the theory need to be
adjusted. This clearly indicates that this resonance has a nature very different to that
of the σ.2

TheRef. [19]matched the rational function in D(s) so as to include an explicit bare
ρ resonance. In this way, it is clear that the large nonnatural value of the subtraction
constant a(μ) for the ρ(770) resonance is due to the fact that it is not a ππ rescattering
effect but an elementary (quark–antiquark) resonance.

N1(s) = 1 (8.13)

D1(s) =
2∑

i=1

γi

s − si
+ a − s − s0

π

∫ ∞

sth

ds ′ ρ(s ′)
(s ′ − s)(s ′ − s0)

,

1The pole is located in the 2nd Riemann sheet. We discuss above in Chap. 7 how to change to
different Riemann sheets.
2In hadron physics an appealing justification for the appearance of the ρ(770) in the spectrum is
obtained by gauging the chiral symmetry in the nonlinear chiral Lagrangians [36–38].
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with one of the CDD poles corresponding to the zero at threshold, already accounted
for in T1(s) of Eq. (8.2). The tree-level LO ChPT amplitude plus the bare exchange
of a ρ resonance employing the Lagrangian of Ref. [39] can be easily calculated and
it gives [19]

t1(s) = 2

3

p2

f 2π

[
1 + g2v

s

M2
ρ − s

]
. (8.14)

The KSFR [40] relation requires the coupling gv to be equal to one. We can match
this tree-level amplitude with two CDD poles. The position of a zero corresponds
to that of the CDD pole and the derivative of t1(s) at this zero is the inverse of the
residue of the CDD pole in the D(s) function. The new CDD pole location and its
residue corresponding to t1(s) are

s2 = M2
ρ

1 − g2V
, (8.15)

γ2 = 6 f 2π
1 − g2v

g2vM
2
ρ

M2
ρ − 4(1 − g2v)m

2
π

.

In the limit g2v → 1 the zero s2 tends to infinity and this exemplifies why we could
generate before the ρ resonance by only a subtraction constant added to g(s) in
Eq. (8.2). Indeed the limit

lim
s2→∞

γ2

s − s2
= −6 f 2π

M2
ρ

. (8.16)

times 16π2 gives

−96π2 f 2π
M2

ρ

= −13.6 , (8.17)

which is our value above for a(1 GeV) in the isovector vector ππ scattering. There-
fore, this number reflects the elementary nature of the ρ resonance from the point of
view of pionic degrees of freedom. In summary,

T1(s) =
[

6 f 2π
s − 4m2

π
− 6 f 2π

M2
ρ

+ 1

16π2

(
log

m2
π

μ2
− x+ log

x+ − 1

x+
− x− log

x− − 1

x−

)]−1

,

(8.18)

with μ � 1 GeV. A similar equation also holds for the I = 1/2 vector Kπ scattering
and the K ∗(892) resonance [19].

The Ref. [19] also includes explicit bare-resonance fields for the scalar sector and
employs the matrix notation of Eq. (6.32) for coupled channels in order to perform
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a simultaneous study of the phase shifts and inelasticity parameters for I = 0 (ππ,
K K̄ and η8η8), 1 (πη8 and K K̄ ) and 1/2 (Kπ and Kη8), where we have singled out
between brackets the coupled channels in every case. The unitarized amplitude reads
for each isospin

TI (s) = [
tI (s)

−1 + g(s)
]−1

, (8.19)

with tI (s) the tree-level amplitudes calculated from LO ChPT and the chiral
Lagrangians ofRef. [39] employed for including explicit bare-resonance scalar fields.
For instance, the tree-level amplitudes for I = 1 read

t1;11(s) = m2
π

3 f 2π
+ β2

1

M2
S − s

, (8.20)

t1;12(s) = −
√
3/2

12 f 2π
(6s − 8m2

K ) + β1β2

M2
S − s

,

t1;22(s) = s

4 f 2π
+ β2

2

M2
S − s

,

where the bare-resonance couplings βi are

β1 =
√
2√

3 f 2π

(
cd(s − m2

π − m2
η) + 2cmm

2
π

)
, (8.21)

β2 = − 2

f 2π

(
cd

s

2
+ (cm − cd)m

2
K

)
,

here mK is the kaon mass and m2
η = 4m2

K /3 − m2
π/3 (close to the eta mass). These

tree-level amplitudes, as well as the ones used for the other channels, can be found
in Ref. [19].

The function g(s) is the unitarity loop function given in Eq. (8.3) and the subtrac-
tion constant a is taken to be the same for all channels and it is fitted in Ref. [19] with
a resulting value of around −0.7 [19]. We discuss below in Chap. 9 that implement-
ing exact SU (3) symmetry requires the same value for the subtraction constants of
all channels that are SU (3) related. In this way, together with the σ resonance the
study of Ref. [19] also obtains poles corresponding to the light scalar resonances,
f0(980) (I = 0), a0(980) (I = 1), κ (I = 1/2), and to an octet of scalar resonances
with masses near to 1.4 GeV with I = 0, 1/2, and 1. This mass is coincident with
the mass of the bare SU (3) octet of scalar resonances introduced in the evaluation of
the tree-level amplitudes. The Ref. [19] also includes a singlet bare resonance with
a mass around 1 GeV. This contribution to the f0(980) resonance is necessary so as
to reproduce properly the inelasticity parameter η1 for the isoscalar scalar S matrix,
cf. Eq. (2.54), once the η8η8 is included as a one more coupled channel. This result
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answers the question raised in Ref. [41] about the unsatisfactory reproduction of the
inelasticity parameter for the unitarized isoscalar scalar ChPT tree-level amplitudes
after included the η8η8 channel in addition to the ππ and K K̄ ones. Additionally, the
results of Ref. [19] provide a fine reproduction of the experimental phase shifts and
inelasticities for the different channels, cf. Figs. 2–8 in this reference.

All these results are obtained without having included explicitly LHC contribu-
tions. The latter are estimated in Ref. [19] and it is concluded that they are small
in the resonant scalar meson–meson channels for the region

√
s � 1 GeV. The esti-

mate is performed by considering the crossed loop diagrams that occur atO(p4), or
next-to-leading order (NLO), in the ChPT meson–meson amplitudes, and by includ-
ing additionally the t- and u-channel exchanges of resonances with spin≤ 1. These
contributions, denoted by TI ;Left(s), can be obtained from the ChPT calculation in
Ref. [42] of the meson–meson scattering amplitudes with some bare resonances
included. Being more precise, we match the calculated PWA A(s) from Ref. [42]
with the expansion of Eq. (8.19) at the one-loop level,

tI (s) − tI (s)g(s)tI (s) , (8.22)

from where TI ;Left(s) is defined as

TI ;Left(s) = A(s) − tI (s) + tI (s)g(s)tI (s) . (8.23)

In other terms, we remove from A(s) the tree-level amplitude and the unitarity
contribution at the one-loop level, which is already taken into account by employing
TI (s).3 It follows then from the results of Ref. [19] that for the L = 0, I = 0 ππ and
L = 0, I = 1/2 Kπ elastic scattering (the lightest channel for every given quantum
number is selected), the absolute value of the ratio TI ;Left(s)/tI (s) is always� 5% up
to around

√
s = 1 GeV. This smallness of the LHC contribution is remarkable and is

due to the cancelation to a large extent between the crossed exchange of resonances
in the t and u channels and the crossed loops (each of them separately is around a
15% of tI (s) in the considered region).

It is also wroth stressing that the previous cancelation between resonance
exchanges and loops in the crossed channels also signals towards an important fact in
the meson–meson scalar sector, which is the violation of large Nc QCD expectations.
Notice that meson–meson loops are subleading in the large Nc

counting, while resonance exchanges are expected to be leading in this counting
[43]. In connection with large Nc QCD, Ref. [19] was the first study in the literature
to point out that the mass of the σ resonance does not follow the standard pattern for
a qq̄ resonance, so that it raises with Nc instead of being O(N 0

c ). This point can be

3The Ref. [19] does not include in A(s) the tadpole contributions for calculating TI ;Left(s). The
idea followed by Ref. [19] is to keep only those contributions in the calculation of Ref. [42] that
involve explicit LHC contributions, while the tadpoles are local ones. These tadpole contributions
could also be removed by employing a different regularization scheme for the calculation.
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understood from the expressions of T0(s) in Eq. (8.2) and a(μ) in Eq. (8.8), which
show that the latter is O(N 0

c ) as the rest of terms in g(s). Therefore, when looking
for a zero in the denominator of Eq. (8.2) we then have an equation for s of the type

sσ → − f 2π /g(sσ) = O(Nc) , (8.24)

since f 2π runs like Nc in the large Nc QCD counting [43]. This situation should be
compared with that for the ρ resonance as follows by employing T1(s) from Eq. 8.2
and the expression for a(μ) in Eq. (8.17) (notice that ã1 = a(μ)/16π2). For this case
the equation that results is

sρ → M2
ρ + O(N−1

c ) , (8.25)

which counts as O(N 0
c ). These manipulation also clearly show the very different

nature regarding the origin of the σ and ρ resonances.
Two more interesting facts are also explored in a novel way in Ref. [19]. The

first one is to notice that the set of the lightest scalar resonances [σ, κ, f0(980) and
a0(980)] have pole positions that largely vary as the pseudoscalar masses do. The
second finding is that these resonances merge together in an octet plus a singlet in
the chiral SU (3) limit (this is the limit in which all the pseudoscalar masses vanish).
That is, out of the nine pseudoscalar resonances in an SU (3) symmetric situation
(same masses for the pseudoscalars), eight resonances are degenerate and form an
octet of scalar resonances and there is another one, with a different mass, which is an
SU (3) singlet. In particular, in the chiral limit (mπ = mK = 0) Ref. [19] found that
the octet pole position is around 500 − i 350 MeV and the singlet one is lighter at
around 400 − i 25 MeV. Notice how different these pole positions are as compared
to those in the actual physical situation, for which the Ref. [19] finds the poles that
are given in Table 8.1. The strong dependence of the σ mass with the pion mass is
confirmed recently by the lattice QCD calculation of Ref. [44]. In Table 8.1 we also
give the coupling constants ξi to the different channels. These couplings are given
by the calculation of the residues of the T matrix of PWAs at the pole position,

ξiξ j = lim
s→sR

(s − sR)Ti j (s) , (8.26)

where the subscripts i and j indicate the coupled channels and sR is the resonance
pole.

It is also interesting to connect the formalism developed in Chaps. 6 and 7 with
the so-called on-shell factorization of the vertices in a Bethe–Salpeter equation as
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Table 8.1 Pole positions [MeV] and moduli of the couplings [GeV] for the lightest scalar reso-
nances by applying the formalism described in this section from Ref. [19]. The couplings to the ππ
and η8η8 channels have been multiplied by

√
2 to correct for the unitarity normalization

σ f0(980) a0(980) κ√
sσ = 45 − i 221

√
s f0 = 987 − i 14

√
sa0 = 1053 − i 24

√
sκ = 779 − i 330

|ξππ| = 4.25 |ξK K̄ | = 3.63 |ξK K̄ | = 5.50 |ξKπ | = 5.00∣∣∣ ξK K̄
ξππ

∣∣∣ = 0.25
∣∣∣ ξππ
ξK K̄

∣∣∣ = 0.51
∣∣∣ ξπη8
ξK K̄

∣∣∣ = 0.70
∣∣∣ ξKη8

ξKπ

∣∣∣ = 0.62∣∣∣ ξη8η8
ξππ

∣∣∣ = 0.04
∣∣∣ ξη8η8

ξK K̄

∣∣∣ = 1.11

developed in Ref. [10].4 In this reference the scalar lowest order ChPT amplitudes
with I = 0 and 1 are unitarized by iterating them in a Bethe–Salpeter equation

T (k, p) = V (k, p) − i
∫

d4q

(2π)4

V (k, q)T (q, p)

[q2 − m2
1][(P − q)2 − m2

2]
, (8.27)

where we only give one four-momentum (let us say that of the first particle) for
the initial (right) and final (left argument) states, because the other four-momenta
can be obtained by the conservation of the total momentum P , which in the CM
is P = (

√
s, 0). In Eq. (8.27) V (k, q) is the S-wave projected off-shell LO ChPT

meson–meson scattering amplitude. The off-shell isoscalar scattering amplitude can
be calculated straightforwardly from the LO ChPT Lagrangian [29], with the result
[10]

V11(s) = 1

9 f 2

(
9s + 15

2
m2

π − 3
4∑

i=1

p2i

)
. (8.28)

Notice that at this order it is just a purely S wave scattering amplitude. In the previous
equation, pi stands for the four-momentum of any pion and f is the bare pion
decay constant (equal to fπ in the chiral limit). The whole on-shell factorization
process in Ref. [10] is based on the observation that the off-shell part in the LO
meson–meson scattering amplitudes considered, like the one in Eq. (8.28), is of the
form

∑
i ci (p

2
i − m2

i ), where the ci are constants. Therefore, these off-shell terms
cancel one or two of the propagators in the explicit loop function of the Bethe–
Salpeter equation inEq. (8.27), so that one endswith pure contact interactionswithout
momentum flow. This type of diagrams only contributes to the renormalization of
the bare parameters that appear already in the lowest order amplitudes [10, 45], and

4Our convention for the scattering amplitudes differs from that in Ref. [10] by a minus sign. There
is also a reshuffling in the labeling of the states, so that we designate themwith a label that increases
as the associated threshold does.
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whose values are rather constraint by phenomenology. These parameters can be taken
at lowest order in the chiral expansion to be given by their physical values. In this
way, Ref. [10] expresses the PWA T (s) in the form,

T (s) = [N (s)−1 + g(s)
]−1

, (8.29)

where N (s) is given now by the on-shell LO PWAs calculated in ChPT (p2i = m2
i ).

E.g., for the I = L = 0 meson–meson scattering one has

V11(s) = 1

f 2π
(s − m2

π

2
) , (8.30)

V12(s) =
√
3s

4 f 2π
,

V22(s) = 3s

4 f 2π
,

and V21(s) = V12(s).



Chapter 9
SU(3) Analysis of the Subtraction
Constants in gi(s)

In the SU (3) limit the masses of all the hadrons belonging to a given SU (3)multiplet
have the same value. By direct product of monoparticle states of particles belonging
to different SU (3) multiplets we have multiparticle scattering states. In particular,
for the two-body interaction process involving such particles we would have only
to distinguish between the common masses of the particles in the SU (3) represen-
tation involved. For instance, for the lightest pseudoscalar–pseudoscalar scattering
we would have only one mass since all the particles belong to the same octet SU (3)
representation. Other two-body states of interest for our purposes is the one made
by a baryon and one of the lightest pseudoscalars, all of them belonging to octet
representations.

It is clear that because of theWigner–Eckart theorem thematrix element of SU (3)
operators transforming within a given SU (3) multiplet between states belonging to
definite representations are independent of the hypercharge and third component of
isospin, that characterize the different states and operators in a given irreducible rep-
resentation [46]. The T matrix is an SU (3) singlet and therefore the scatteringmatrix
is diagonal in a basis of states with definite transformation properties under SU (3).
Denoting these states by |R,λ〉, with R corresponding to the SU (3) irreducible repre-
sentation and λ including the other quantum numbers needed to distinguish between
states within R (e.g., third component of isospin and hypercharge). The momenta
and spin indices are not indicated in the following since they do not play any active
role in the next considerations. We then have for the T matrix,

〈R′,λ′|T |R,λ〉 = TRδRR′ (9.1)

= 1

N−1
R + gR(s)

δRR′ .

Here we have used the general parameterization of Eq. (7.2) with the unitarity func-
tion gR(s) containing the subtraction constant aR .
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Let us further denote by |i〉 the physical states in the chargedbasis and theClebsch–
Gordan coefficients connecting both bases by 〈i, Rλ〉. These real coefficients satisfy
the orthogonality relations

∑

i

〈i, Rλ〉〈i, R′γ〉 = δRR′δλγ , (9.2)

∑

R,λ

〈i, Rλ〉〈 j, Rλ〉 = δi j .

Notice that since 〈i, Rλ〉 = 〈i |R,λ〉 and is real, then it also follows that 〈i, Rλ〉 =
〈R,λ|i〉.

In the physical basis the T -matrix elements Ti j (s) also obeys Eq. (7.2), withN (s)
calculated in the charged basis and the functions gi (s) involving the subtraction
constants ai . Let us show that all the aR and ai have the same value in the SU (3)
limit, as derived in Ref. [47]. For that we proceed with the change of basis of a singlet
SU (3) matrix A, from the physical basis to the SU (3) one. Then,

∑

i j

〈i, Rλ〉Ai j 〈 j, R′γ〉 = ARδRR′δλγ . (9.3)

For instance, this is case for the QCDHamiltonian, and therefore for the T matrix, as
well as for the unitarity loop function gi (s), Eq. (8.5). The latter function, contrary to
the T matrix, is also diagonal in the physical basis. This is a key distinctive feature
that allows us to perform the following manipulations. By inverting Eq. (9.3) with
g(s) instead of A, we have that

gi (s)δi j =
∑

R,λ

〈i, Rλ〉gR(s)〈 j, Rλ〉 . (9.4)

Next, we multiply by 〈 j, R′γ〉 and sum over j ,

gi (s)〈i, R′γ〉 =
∑

R,λ

∑

j

〈i, Rλ〉gR(s) 〈 j, Rλ〉〈 j, R′γ〉︸ ︷︷ ︸
δRR′ δλγ

= 〈i, R′γ〉gR′(s) . (9.5)

From this relation it is sufficient to take physical states with components in different
irreducible representation to conclude that for any state |i〉 in the charged basis and
for any irreducible SU (3) representation R involved in the decomposition of the
charged basis in SU (3) multiplets, one has

gi (s) = gR(s) = g(s) . (9.6)

As a result it follows the equality in the SU (3) limit of all the subtraction constants
for the two-particles states |AB〉, with A and B belonging to the irreducible SU (3)
representations RA and RB , in order.
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This result is manifestly evident when every subtraction constant ai (μ) is given
by its natural value, Eq. (8.8), because then the masses m1 and m2 (as well as the
three-momentum cut-off �) are common to all the two-particle states in the SU (3)
limit.



Chapter 10
Perturbative Introduction
of Crossed-Channel Cut Singularities

Let us now consider the perturbative treatment of the crossed-channel cuts, that for
simplicity are denoted generically as LHC, when unitarizing PWAs obtained from
some EFT.We present four methods; the first one is based in the use ofN (s) as intro-
duced in Eq. (7.1). From this method we also derive another approach that is referred
in the literature as the Inverse AmplitudeMethod (IAM). Other two approaches arise
from the use of the N/D method where �(p2) is calculated perturbative in the con-
sidered EFT, such that either the N/D IE is solved fully or in its first iterated form.
This line of handling perturbatively the LHC contributions is discussed in Chaps. 11
and 12, in order.

Let us suppose that T (s) is given by Eq. (7.2) in terms ofN (s) and g(s). In view
of Eq. (7.10) a convenient choice for the subtraction constant in the unitarity loop
function would be such that g(s) is zero at some point along the near-threshold LHC.
In this way, we might dismiss the dependence of N (s) along the physical region
(s ≥ sth) on the iterated LHC contributions [multiplied by g(s)], at least for not too
high s. For example, if one imposes that g(0) = 0 then, by taking the subtraction
point at s = 0, the subtraction constant would be simply zero. Had we imposed that
g(s0) = 0, with s0 along the LHC, then we would change the subtraction point to s0,
so that again a(s0) = 0. In this case g(s) would read

g(s) = − s − s0
π

∫ ∞

sth

ρ(s ′)ds ′

(s ′ − s0)(s ′ − s)
(10.1)

= − s

π

∫ ∞

sth

ρ(s ′)ds ′

s ′(s ′ − s)
+ s0

π

∫ ∞

sth

ρ(s ′)ds ′

s ′(s ′ − s0)
.

This choice for the subtraction constant in order to weaken the influence of the
iterated LHC for low s might be of relevance if one wished to provide a perturbative
solution of Eq. (7.10) forN (s). Indeed, from Eq. (7.2) we have the geometric series
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T = N − N gN − N gN gN + . . . (10.2)

This expansion in powers ofN g could bematchedwith a perturbative loop expansion
of T and, in this way, N could be determined order by order [8, 48].

Let us give an explicit example based on ChPT applied in Ref. [48] to themassless
WLWL scattering (the subscript L stands for the longitudinal component of the W
boson) by applying the equivalence theorem [49]. In this EFT the momentum expan-
sion implies a loop expansion, so that the chiral dimension of a perturbative Feynman
graph with L loops is D = 2L + 2 + ∑

d Nd(d − 2) , with d the chiral dimension
of a given monomial in the ChPT Lagrangian and Nd is the number of such vertices
with dimension d [50]. The isoscalar scalar WLWL scattering amplitude up to NLO
or O(p4) in ChPT is [48, 51]

T2(s) = s

v2
, (10.3)

T4(s) = 3s2

2v2(m2
H − s)

+ m4
H

v2s

[
log

(
1 + s

m2
H

)
− s

m2
H

+ s2

2m4
H

]
(10.4)

− s2

1728π2v4

[
1673 − 297

√
3π + 108 log

−s

m2
H

+ 42 log
s

m2
H

]
,

where v = (
√
2GF )−1/2 � 1/4 TeV is the analogous to fπ for the pion case, with

GF the Fermi coupling constant. The expression for T4(s) in Eq. (10.4) contains the
exchange of a Standard Model Higgs boson of mass mH . If we denoted by b the
combination

11v2

6m2
H

− 1673 − 297π
√
3

1728π2
→ b , (10.5)

then the expression in Eq. (10.4) becomes more general and it does not necessarily
correspond to the exchange of a Standard Model Higgs boson, but to a general sce-
nario of another underlying fundamental theory. The amplitude T4(s), up to O(p4),
becomes then

T4(s) = b
s2

v4
− s2

1728π2v4

[
108 log

−s

m2
H

+ 42 log
s

m2
H

]
. (10.6)

At NLO all of these alternative theories would give rise to T4(s) as written above
in terms of v and b, although with the latter having different values. The scale m2

H
is introduced above to refer to a high-energy scale in which bare resonance could
appear. In the previous equation the first logarithm gives rise to the RHC and the last
to the LHC.

In order to proceed with the unitarization of T2(s) + T4(s) we employ the non-
perturbative expression
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T (s) = N (s)

1 + g(s)N (s)
, (10.7)

equivalent to Eq. (7.10). Next, we proceed with the chiral expansion of N (s) up to
NLO as

N (s) = N2(s) + N4(s) + O(p6) (10.8)

with the subscript indicating the chiral order. Then, we match the chiral expansion
of T (s) in Eq. (10.7) by counting the loop function g(s) asO(p0), as it is clear from
its loop expression in Eq. (8.5). This function in the present massless case reads

g(s) = 1

16π2

(
a + log

−s

m2
H

)
. (10.9)

Therefore we have,

N2(s) = T2(s) , (10.10)

N4(s) = T4(s) + T2(s)
2g(s) (10.11)

= s2

288π2v4

(
18(a + 16bπ2) − 7 log

s

m2
H

.

)
.

In this way we can employ Eq. (10.7) to calculate T (s) by usingN = N2 + N4, the
latter ones determined in Eqs. (10.10) and (10.11). In the limit in whichmH � 4πv,
while keeping |a| and |b| of O(1) [b is around 0.1 for a heavy Standard Model
Higgs boson of mass 1 TeV, cf. Eq. (10.5)], an isoscalar scalar resonance with van-
ishing mass and width is dynamically generated [48, 52, 53]. In the opposite limit,
mH 	 4πv, we consider again the perturbative expression for T2(s) + T4(s) given
in Eqs. (10.3) and (10.4) corresponding to the exchange of a standard model Higgs.
Further, we neglect the non-logarithmic terms divided by 4πv in comparison with
those divided by the much smaller mH . Additionally, near the bare pole, s � m2

H ,
the direct exchange of the resonance dominates over other contributions and, after
these simplifications, we have now for N (s)

N (s) ≈ 3s2

2v2(m2
H − s)

. (10.12)

When inserted in Eq. (10.7) for calculating the unitarized the PWA T (s) we obtain

T (s) ≈ 3m2
H/(2v2)

mH − √
s − i 3m3

H
64πv2

. (10.13)

In this form, we end with a Breit–Wigner parameterization for the Higgs exchanged,
with mass mH and width
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ΓH = 3m3
H

32πv2
, (10.14)

which coincides with the QFT expression for the width of the Higgs boson from the
electroweak Lagrangian. This width is much smaller than mH for mH 	 4πv.

In the literature there have been many other studies in which the LHC is included
perturbatively and that could be understood by employing the basic point in the
expansion given in Eq. (10.2).

Let us consider first the Inverse Amplitude Method, on which we briefly report.
We come back again to Eq. (7.2) an expressN = N2 + N4 + O(p6), with the former
given by Eq. (10.10) and the latter by the first line Eq. (10.11), after matching with
T = T2 + T4 + O(p6) as explained above. Then,

T (s) =
([
T2(s) + T4(s) + T2(s)g(s)T2(s) + O(p6)

]−1 + g(s)
)−1

. (10.15)

We perform next the chiral expansion of the inverse matrix between the square
brackets

T (s) =
(
T2(s)

−1 [
I + T4(s)T2(s)

−1 + T2(s)g(s) + O(p4)
]−1 + g(s)

)−1
(10.16)

=
(
T2(s)

−1 [
I − T4(s)T2(s)

−1 − T2(s)g(s) + O(p4)
] + g(s)

)−1
(10.17)

= [
I − T4(s)T2(s)

−1 + O(p4)
]−1

T2(s)

= T2(s)
[
T2 − T4 + O(p6)

]−1
T2(s) .

The last expression corresponds to the NLO IAM [32, 54–58]

T (s) = T2(s) [T2(s) − T4(s)]
−1 T2(s) . (10.18)

Despite it is based on a perturbative solution of Eq. (7.10), the IAM result is inde-
pendent of the subtraction constant in g(s). That this should be the case is clear if
one considers that the IAM can also be recast as the expansion of the inverse of
the PWA, T (s)−1 = (T2 + T4)−1 = T−1

2 (T2 − T4 + O(p6))T−1
2 , and then taking the

inverse of this expansion.
There is an alternative derivation of the uncoupled IAM based on a DR for the

inverse PWA T−1(s) [54, 55, 57]. Instead of taking directly 1/T (s) one consider
the auxiliary function G(s) = T2(s)2/T (s), whose imaginary part is, cf. Eq. (2.51),

�G = −T2(s)
2ρ(s) . (10.19)

We write down a three-times subtracted DR for G(s) by applying the Sugawara–
Kanazawa theorem discussed in Chap. 4, because T2(s)2 at most diverges like s2 and
T (s) →constant for s → +∞ ± iε because of unitarity. It then follows that
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G(s) = G(0) + G′(0)s + 1

2
G′′(0)s2 − s3

π

∫ ∞
sth

ds′ ρ(s′)T2(s′)2
(s′)3(s′ − s)

− LC(G) + PC(s) ,

(10.20)

where−LC(G) refers of the crossed-channel contributions inG(s) and the pole con-
tributions PC(s) arise from possible zeroes of T (s). We neglect this last contribution
because the zeroes in the denominator are largely canceled by T2(s)2 when forming
G(s). There could be some slight mismatch between the zeroes of T2(s) and those
of T (s) which might give rise to a pathological behavior in narrow energy regions
[32, 58, 59]. A modified version of the IAM formula was derived in Ref. [59] to
cure this deficiency. Notice also that the expression for T = 1/([N2 + N4]−1 + g),
without the expansion of [N2 + N4]

−1, has no this pathology.
The subtraction constants G(0), G ′(0) and G ′′(0) are fixed by matching with the

ChPT expansion of G(s) up NLO,

G(s) = T2(s)2

T2(s) + T4(s) + O(p6)
= T2(s) − T4(s) + O(p6) . (10.21)

Therefore, by neglecting higher orders we can identify G(0) = T2(0) − T4(0),
G ′(0) = T ′

2(0) − T ′
4(0), and G

′′(0) = T ′′
2 (0) − T ′′

4 (0). By the same token, LC(G) is
approximated from the crossed-channel cut contribution of T4(s), LC(T4). Further-
more, the dispersive integral in Eq. (10.20) is minus the one for the RHC contribution
in T4(s), whose imaginary part along the RHC is �T4(s) = T2(s)2ρ(s), as required
by perturbative unitarity. Thus, Eq. (10.20) becomes G(s) = T2(s) − T4(s) and then
T (s) is given by Eq. (10.18). The IAM has also been extended to two-loop ChPT
amplitudes in Ref. [60]. This method has been applied to meson–meson scattering
[32, 57, 58, 61], quark-mass dependence of masses and decay constants [62],WLWL

scattering [52, 53], πN scattering [63], etc., among many other references.



Chapter 11
The N/D Method with Perturbative
Δ( p2)

Here we take the point of view of calculating perturbatively in an EFT the discon-
tinuity of a PWA along the LHC, that we denoted above as Δ(p2). Once Δ(p2)
is approximated in this way one can then solve the IE that follows from the N/D
method in order to calculate D(s) along the LHC, and then the full T (s). We mostly
follow here the presentation in Ref. [64], where the N/D method is applied to the
study of the NN interactions in nonrelativistic scattering theory, employing ChPT
Lagrangians with 0, 1 and 2 conserved baryon number. The PWAs in this case are
characterized as in Chap. 2, by the total angular momentum J , total spin S and orbital
angular momentum �. There could be mixing in some triplet states (S = 1) between
the partial waves with � = J ± 1.

The NN PWAs are analytic functions of p2 with a RHC and a LHC. The onset of
theLHC is due to one-pion exchange in the t- andu-channelswhen the pion-exchange
propagator is on-shell, t = m2

π or u = m2
π, respectively. Therefore, it extends for

p2 ≤ −m2
π

4
≡ L . (11.1)

Within nonrelativistic kinematics p2 = mE , with E = √
s − 2, the NN kinetic

energy.
We present here the N/D method with some differences with respect to Chap. 6

because the LHC contribution is not neglected and then, a different way to guarantee
the required threshold behavior of a PWA (which should vanish as p2� for p → 0)
is convenient. Our basic equations are

T (p2) = N (p2)

D(p2)
, (11.2)

�D(p2) = −ρ(p2)N (p2) , p2 ≥ 0 ,

�N (p2) = D(p2)Δ(p2) , p2 ≤ L ,
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being zero the imaginary parts of N and D for p2 > L and p2 < 0, in order. We also
take the standard nonrelativistic normalization for a PWA

ρ(p2) = m
√
p2

4π
, (11.3)

the same as already considered in the nonrelativistic partial-wave expansion of the LS
equation, compared, e.g., with Eq. 2.82 for μ = m/2. In this equation the prefactor
μk/2π then becomes ρ(k2 + iε).

The N/D equations withm subtractions in N and n subtractions in D are referred
as NDmn . They can be written as,

D(p2) = 1 +
n−1∑

i=1

δi (p
2 − p20)

i − (p2 − p20)
n

π

∫ ∞

0

ρ(q2)N (q2)dq2

(q2 − p20)
n(q2 − p2)

, (11.4)

N (p2) =
m−1∑

i=0

νi (p
2 − p20)

i + (p2 − p20)
m

π

∫ L

−∞
Δ(q2)D(q2)dq2

(q2 − p20)
m(q2 − q2)

. (11.5)

Where we have taken advantage that the ratio of N and D is unchanged if these
functions are renormalized by the same factor to fix that D(p20) = 1. Certainly, one
could introduce several subtraction points and not always the same one, p20, as written
above. The standard N/D equations result after substituting the expression for N in
that of D, which then reads

D(p2) = 1 +
n−1∑

i=1

δi (p
2
i − p20)

i −
m−1∑

i=0

νi
(p2 − p20)

n

π

∫ ∞

0

ρ(q2)dq2

(q2 − p2)(q2 − p20)
n−i

(11.6)

+ (p2 − p20)
n

π2

∫ L

−∞
Δ(q2)D(q2)

(q2 − p20)
m

∫ ∞

0

ρ(k2)dk2

(k2 − p2)(k2 − q2)(k2 − p20)
n−m

.

We impose in the following that m ≤ n because otherwise the last integration on the
RHC in the previous equation is divergent.

The previous DR provides us with a linear IE to calculate D(p2) for p2 < L ,
whichwe solve numerically by discretizing the integration and inverting the resulting
matrix. Once D(p2) is known along the LHC then we can calculate the functions
D(p2) and N (p2) in the whole complex p2 plane by employing Eq. (11.6) and
Eq. (11.5), respectively. As a result of this knowledge, we can then determine the
PWA T (p2) = N (p2)/D(p2) as a function of the complex p2 variable.

All the integrals along the RHC in Eq. (11.6) can be done algebraically. They can
be written out of the unitarity loop function g(p2, k2), which is defined as

g(p2, k2) = m

4π2

∫ ∞

0

qdq2

(q2 − p2)(q2 − k2)
= im/4π

√
p2 + √

k2
. (11.7)



11 The N/D Method with Perturbative Δ(p2) 79

For p2 and k2 along the LHC we should use the previous expression replacing
p2 → p2 + iε and analogously for k2. By differentiating g(p2, k2) with respect to
k2 we can calculate the RHC integrals with more subtractions involved. Namely,

∂ j g(p2, k2)

∂k2 j
= j !

π

∫ ∞

0

ρ(q2)dq2

(q2 − p2)(q2 − k2) j+1
. (11.8)

In Refs. [64, 65] and [66] Δ(p2) was calculated at the chiral orders p, p2 and p3,
respectively, from the chiral perturbative calculation of the NN scattering amplitude
in Ref. [67]. A good reproduction of the NN phase shifts is achieved already at
O(p3).

A way to impose by construction that a PWA with orbital angular momentum
� vanishes in the limit p2 → 0 as p2� is to add a higher order CDD pole in the D
function as γ�/p2� in Eq. (11.6). This is the minimum input to keep the required
behavior at threshold given the fact that Δ(p2) is only calculated perturbatively and
we are later using it to evaluate a non-perturbative amplitude [7, 65]. One could also

include more terms, and write
�∑

i=1

γi

p2i
+ 1 +

n−1∑

i=1

δi p
2i instead of just 1 +

n−1∑

i=1

δi p
2i

in Eq. (11.6). The number of subtraction constants would be limited depending on
the problem, e.g., by requiring to reproduce a few low-energy parameters associated
with an ERE.

An interesting point from the N/D method, as found out in Ref. [66], is that it
allows a very precise determination of the ERE shape parameter up to very high
orders. The improvement stems from the fact that this method provides us with
the PWA in the complex p2 plane, so that one can apply the Cauchy theorem to
calculate derivatives with high precision. Notice that one can express them in terms
of an integral and use in its numerical evaluation large numbers of points when
discretizing the integral. More precisely, given an elastic PWA t (s) with orbital
angular momentum � and normalized as

t (p2) = 1

p cot δ� − i p
, (11.9)

t (p2) = mT (p2)

4π
= m

4π

N (p2)

D(p2)
,

the ERE is given by

p2�+1 cot δ� = −1

a
+ 1

2
rp2 +

∞∑

i=2

vi p
2i , (11.10)

where this expansion is done at threshold and it is convergent until the nearest sin-
gularity of T−1 [once the threshold branch point is discounted because it is removed
from p cot δ� (also called the the K matrix) in Eq. (11.9)]. In NN scattering this is
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the starting of the one-pion exchange threshold, but in other physical systems the
radius of convergence could be settled by a near-threshold zero of t (p2) [in other
terms because of a CDD pole].

Following Ref. [66] we define the function

H(p2) = 4π

m

D(p2)

N (p2)
p2� + i p2�

√
p2 = p2�

√
p2 cot δ , (11.11)

with
√
p2 defined in the first Riemann sheet. The derivatives of H(p2) at the origin

provides uswith the different terms in theERE.Denoting by H (n)(0) its nth derivative,
we have from the Cauchy integral formula

H (n)(0) = n!
2πi

∮

C

H(z)dz

zn+1
, (11.12)

where C can be any close contour inside the radius of convergence of the ERE
expansion, p2 < L . In practice we always take a circle of radius r < L and, for
testing numerically the outcome, we vary r within this limit and check the stability
of the numerical results. As a result

a−1 = − 1

2πi

∮

C

H(z)dz

z
, (11.13)

r = 1

πi

∮

C

H(z)dz

z2
,

vi = 1

2πi

∮

C

H(z)dz

zi+1
.

For coupled PWAs one could proceed analogously but using the eigenvalues of the
S matrix. Making use of this method Ref. [66] is able to calculate a shape parameter
of an order as high as 10, v10, with a numerical precision around 1%.

A more formal point established in Ref. [64], by making use of the Fredholm
theory for linear IEs [18], is to elaborate a compelling argument to conclude that if
the function Δ(p2) behaves asymptotically for p2 → −∞ as p2γ with γ < −1/2,
then any NDmn IE has solution. The perturbative Δ(p2) calculated in a low-energy
EFT typically scales like a power of p2 (modulo logarithmic factors), and indeed
it usually rises with the higher order of the calculation. This is the case for Δ(p2)
calculated in ChPT for NN . At LO it vanishes at least as 1/A, at NLO it diverges at
most like A and at next-to-next-to-leading order as A3/2.

Let us outline themain steps in the derivation given inRef. [64].We take forΔ(p2)
its asymptotic behavior, Δ(p2) → λ(−p2)γ , and start with the once-subtracted DR
form (ND11) for the IE of the function D(p2) along the LHC, p2 < L ,

D(p2) = 1 + ν1
m

√−p2

4π
+ mp2

4π2

∫ L

−∞
Δ(q2)D(q2)dq2

q2(
√−q2 + √−p2)

. (11.14)
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At this stage we replace Δ(p2) by its asymptotic behavior and introduce the new
variables x = L/q2 and y = L/p2. The D function is also multiplied by y−γ/2,
D̃ = y−γ/2D, to obtain an IE with a symmetric kernel in the two variables x and y.
In this way, we have from Eq. (11.14)

D̃(y) = y−γ/2 + y− γ+1
2 ν1

m(−L)
1
2

4π
+ λm

4π2
(−L)γ+ 1

2

∫ 1

0

D̃(x)dx

(xy)
γ+1
2

(
x

1
2 + y

1
2

) .

(11.15)

The symmetric kernel and the independent term for this IE are, in order,

K (y, x) = 1

(xy)
γ+1
2

(
x

1
2 + y

1
2

) , (11.16)

f (y) = y− γ
2 + y− γ+1

2 ν1
m(−L)

1
2

4π
.

Both K (x, y, ) and f (y) are quadratically integrable1 for γ < −1/2 and then,
because of the Fredholm theorem, we conclude that the IE of Eq. (11.15) has a
unique solution for γ < −1/2.2 This result can be easily extended to any IE of the
type NDmn , following again similar steps as explained in Ref. [64] for the case NDnn

(since form = n the largest powers of q2 happen in the integrals along the RHC, the
IEs with m < n are more convergent). The argument used in Ref. [64] goes as fol-
lows. If we increase by one subtraction both N and D then we have a onemore power
of p2 multiplying the integral in Eq. (11.14), one more factor of k2 when inserting
N in the expression for D and another extra factor of 1/k2 from the RHC integral
of D, cf. Eqs. (11.4) and (11.5). The latter two factors cancel and the former gives
rise to an extra factor of L/y. This is compensated when multiplying D by y to end
with the same symmetric kernel K (y, x) of Eq. (11.16). Regarding the independent
term, it does not become more singular either because the extra power of 1/y from
the last subtraction is compensated when the IE is multiplied by one extra factor of

1By this we mean that

∫ 1

0
dy

∫ 1

0
dx K (x, y)2 < ∞ , (11.17)
∫ 1

0
dy f (y)2 < ∞ .

2The only exception might be if the factor λm
4π2 (−L)γ+ 1

2 multiplying the integral in Eq. (11.15)
coincided with an eigenvalue of the kernel K (y, x). Nonetheless, since λ is continuous and the
eigenvalues of a kernel are discrete we could employ a smooth continuation to find the solution in
the a priori unlikely case of such coincidence.
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y, so as to end with the IE with a symmetric kernel. This process can then be iterated
up to the necessary number of subtractions and both the kernel and the independent
term remain square integrable functions as they were in the ND11 case.



Chapter 12
The First-Iterated N/D Solution
with Perturbative Δ( p2)

Given adiscontinuity of aPWAalong theLHC,Δ(p2), thefirst-iterated N/D solution
is obtained from the N/D DRs, cf. Eqs. (11.4) and (11.5), by iterating once along the
RHC. This implies to substituting D(q2) → 1 in the equation for N (p2), Eq. (11.5).
As a result the DR for N (p2) corresponds to the perturbative amplitude V (p2) with
only LHC, which can be calculated by performing the corresponding integration,
whose integrand is known now. Furthermore, the most common situation is that
V (p2) is an input function already calculated from some theory. The integrand for
D(p2) in Eq. (11.4) is also known. Then, it turns out that the first-iterated solution
of the N/D method is

V (p2) =
m−1∑

i=0

νi (p
2 − p20)

i + (p2 − p20)
m

π

∫ L

−∞
Δ(q2)dq2

(q2 − p20)
m(q2 − q2)

, (12.1)

D(p2) = 1 +
n−1∑

i=1

δi (p
2 − p20)

i − (p2 − p20)
n

π

∫ ∞

0

ρ(q2)V (q2)dq2

(q2 − p20)
n(q2 − p2)

. (12.2)

The applications for which this method is easier to implement are those for which
Δ(p2) stems from some tree-level amplitudes. Then, one can directly identify V (p2)
with the resulting PWA stemming from these tree-level amplitudes.1 The only input
a priori unknown are the subtraction constants in D(p2). The minimum number of
them is required by the diverging degree for p2 → ∞ of V (p2), so that if it diverges
like p2(m−1) then m subtractions are needed, as written in Eq. (12.2). One could also
explore adding more subtractions, depending on the requirements of the problem.

This scheme of work has been used recently to study ρρ scattering in Ref. [9]. In
the rest of this section we come back to use s instead of p2 as argument of the PWAs,
since the only DR involved is the one for D(s) along the RHC, and the crossed-
channel cuts are absorbed in the algebraic expression for V (s). Thus, we then do
not perform any explicit DRs on the crossed-channel cuts. Furthermore, the circular

1If there where some s-channel exchange of a bare particle this would give rise to a pole in V (s) that
could be straightforwardly accommodated by a adding a pole in the DR for V (p2), cf. Eq. (4.4).
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cuts are absent because this is a scattering problem with all the masses equal in the
isospin limit, the one that we assume as valid in good approximation.

In Ref. [9] the dynamical input for the ρρ interactions is given by the tree-level
amplitudes obtained from the gauge-boson part of the hidden-gauge Lagrangian
[36, 37]

L′ = −1

4
TrFμνF

μν , (12.3)

Fμν = ∂μVν − ∂νVμ − ig[Vμ, Vν] ,

Vμ =
(

1√
2
ρ0 ρ+

ρ− − 1√
2
ρ0

)
. (12.4)

The resulting vertices either involve three ρs or four of them. For ρρ scattering the
later is a contact interaction while from the three-ρs vertices one has the s-, t- and
u-channel exchanges of one ρ. These latter contributions give rise to the LHC when
projected in PWAs. This is the source of the perturbativeΔ(s) in the present example,
and the sumof all these tree-level diagrams (projected in the appropriatePWA) isV (s)
for a given reaction. The unitarization of ρρ tree-level amplitudes obtained from the
hidden-gauge chiral symmetry Lagrangian was pioneered by Ref. [68]. However,
in this reference all the input tree-level interactions were reduced to contact ones
without LHCs [that we denote by Ṽ (s)], by taking the extreme nonrelativistic limit
in the propagators of the ρ mesons. Nonetheless, this approach is consistent near the
ρρ threshold sth and its unitarization is given by the Eq. (10.7) with N (s) = Ṽ (s),

T̃ (s) = Ṽ (s)

1 + Ṽ (s)g(s)
. (12.5)

Notice that in the simplifying approximation of Ref. [68] the LHC discontinuity is
zero, Δ(s) = 0, and then from Eq. (7.10) the function N (s) is just a polynomial.
Since in the threshold region V (s) → Ṽ (s) we also consider for subsequent use the
analogous expression to Eq. (12.5) but replacing Ṽ (s) by V (s),

Ã(s) = V (s)

1 + V (s)g(s)
. (12.6)

Now, the Eq. (12.6) is used in the near-threshold region to pin down the subtrac-
tion constants in Eq. (12.2). Three subtractions are taken because the amplitudes
V (s) diverge at most like s2 for s → ∞ [9]. We also rewrite Eq. (12.2) so that the
subtraction polynomial is written in powers of s − sth, because the matching with
Eq. (12.6) is made around sth. Namely, the resulting expression for D(s) that we
use is
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D(s) = γ0 + γ1(s − sth) + 1

2
γ2(s − sth)

2 − (s − sth)s
2

π

∫ ∞
sth

ρ(s′)V (s′)ds′
(s′ − sth)(s′)2(s′ − s)

.

(12.7)

Its matching with the denominator of Eq. (12.6) gives rise to the equation

γ0 + γ1(s−th) + 1

2
γ2(s − sth)

2 = 1 + V (s)g(s) (12.8)

+ (s − sth)s2

π

∫ ∞

sth

ρ(s ′)V (s ′)ds ′

(s ′ − sth)(s ′)2(s ′ − s)
.

In the following we denote by ω(s) the rhs of the previous equation and then we are
left with the following expressions for the subtraction constants γi ,

γ0 = 1 + V (sth)g(sth) , (12.9)

γ1 = ω′(sth) ,

γ2 = ω′′(sth) ,

where we indicate by a prime the derivative of ω(s)with respect to s. The subtraction
constant in g(s) is taken according to its natural value, cf. Eq. (8.8).Making use of this
unitarization approach Ref. [9] confirms the finding of a bound-state pole with J = 0
and I = 0 near and below the threshold of ρρ, which could be tentatively associated
with the resonance f0(1370), as obtained previously in Ref. [68]. However, the deep
pole found in the latter article for J = 2 and I = 0 is not confirmed inRef. [9] because
of the strong influence for these quantum numbers of the branch point singularity in
V (s) at s = 3M2

ρ , which is neglected in Ref. [68].
The extension of the formalism of Ref. [9] for the uncoupled scattering to the

coupled-channel case is given in Ref. [69]. The resulting formalism is applied to
an SU (3) study of vector–vector scattering. All the basic equations are completely
analogous to the ones derived here [9], just by making use of a matrix language
and including the appropriate subscripts to refer to the different PWAs coupled. The
resulting T matrix of coupled PWAs is written as

T = D(s)−1N (s) , (12.10)

with the matrices of functions

Ni j (s) = Vi j (s) , (12.11)

Di j (s) = γ0;i j + γ1;i j (s − sth; j ) + 1

2
γ2;i j (s − sth; j )2 (12.12)

− (s − sth; j )s2

π

∫ ∞

sth; j
Vi j (s ′)ρ j (s ′)ds ′

(s ′ − sth; j )(s ′)2(s ′ − s)
.
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The threshold for the j th channel is denoted by sth; j . The same strategy as before is
followed and then the Di j (s) functions are matched with

ωi j (s) = δi j + Vi j (s)g j (s) + (s − sth; j )s2

π

∫ ∞

sth; j

Vi j (s ′)ρ j (s ′)ds ′

(s ′ − sth; j )(s ′)2(s ′ − s)
. (12.13)

at around sth; j . As noticed in Ref. [69] the LHC for Vi j (s) is below the thresholds sth;i
and sth; j and, thus, it makes sense to perform the Taylor expansion of Vi j (s) (present
in ωi j (s)) around sth; j . As a result we have the analogous expressions of Eq. (12.9),
but now involving matrix indices. Thus,

γ0;i j = 1 + Vi j (sth; j )g j (sth; j ) , (12.14)

γ1;i j = ω′
i j (sth; j ) ,

γ2;i j = ω′′
i j (sth; j ) .

A set of poles with J = 0 and 1 of positive parity (only S-wave scattering is con-
sidered) results. For example, pole positions close to the f0(1370) and f0(1710) are
reported. Similarly as in the ρρ-scattering study of Ref. [9], the coupled-channel one
of Ref. [69] did not find any tensor resonance contrary to Refs. [68, 70], which only
employ the contact interactions that result by freezing the vector propagators in the
tree-level amplitudes obtained from the hidden-gauge chiral symmetry Lagrangian.

We would also like to stress that the matching procedure to determine the values
of the subtraction constants that could appear in the N and D functions could also
be made (if appropriate) by reproducing the perturbative T matrix at some particular
energies. By assuming naive dimensional analysis one could determine as well the
power counting of the subtraction constants by varying the position of the subtraction
point and study how the subtraction constants run with the latter, as done in Ref. [64]
for NN scattering and ChPT as EFT. In this way the mentioned matching with the
perturbative T matrix could also be done algebraically.

The first-iterated solution of the N/D method has the virtue that its does not
generate spurious LHC contributions in the D(s) function, which would affect T (s)
as well. This might happen when coupling channels with different masses by using
the perturbative approximation for the matrix N , Eq. 10.2, as well as in the IAM
[35, 71, 72]. In this way, by using the first-iterated solution of the N/D method,
one can avoid the presence of such artifacts when looking for the pole positions of
resonances (in the unphysical RSs) and bound states (in the physical RS). These
poles correspond to zeros of detD in the appropriate RS. Of course, this potential
problem is also cured by fully solving the N/D method in terms of the given Δ(p2),
as in Chap.11, for the case of coupled channels. This is done in Refs. [7, 64–66] for
studying NN scattering.



Chapter 13
Final(Initial)-State Interactions.
Unitarity and Analyticity Requirements.
Watson Final-State Theorem

In order to test the dynamics of a system it is common to use probes that only interact
feeblywith the system,which dynamics is driven by stronger interactions. The former
weaker process can then drive to different final states that interact strongly among
them. One then typically distinguish the triggering mechanism of the weak reaction
from the afterwards strong rescattering processes, due to the strong interactions
between possible different final states. The later are called final-state interactions
(FSI) By time-reversal invariance, we could also have strong interaction processes
driving to feeble probes in the final state, in this case we would call them as initial-
state interactions. Unless the opposite is stated we refer in the subsequent to FSI,
though it should be kept in mind that the formalism developed is also applicable
to the initial-state interacting case. Examples are e+e− ↔ ππ , γ N ↔ πN , J/Ψ →
γππ , etc.

The total T and S matrices comprise the weaker and strong interacting processes.
These matrices are related in the usual manner by Eq. (1.6). For example, the S
matrix for γ γ → ππ, K K̄ (we consider that the states |ππ〉 and |K K̄ 〉 have some
definite isospin I , which is conserved the strong interactions), may be represented by
a 3 × 3 S matrix (without further specification of helicity and momentum arguments
because we have in mind some definite partial-wave projection),

S =
⎛
⎝
Sγ γ→ππ Sππ→ππ SK K̄→ππ

Sγ γ→K K̄ Sππ→K K̄ SK K̄→K K̄

Sγ γ→γ γ Sππ→γ γ SK K̄→γ γ

⎞
⎠ . (13.1)

The unitarity of the S matrix implies the relations of Eqs. (1.7) and (1.8) Keeping
only terms linear in the weaker interactions (whose matrix element for producing
the channel i is indicated by Fi and generically designated as form factor), we have
from unitarity that

Fi − F†
i = i

∑
j

∫
dQ jθ j Fj T

†
j i , (13.2)
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where only states that are open contribute to the sum, θ j = θ(s − sth; j ). This relation
is valid because of extended unitarity above the lightest threshold open [2], even if
some of the final states |i〉 are closed.

As usual, the unitarity relation becomes simpler when decomposing the T matrix
elements in PWAs. For instance, for the pion form factor corresponding to the tran-
sition 〈γ |T |π+π−〉 only the J = 1 ππ PWA contributes,

〈γ (q)|T |π+(p)π−(p′)〉 = eε(q)μ(p − p′)μFππ (s) (13.3)

Wealso concentrate ourselveswith two-body interactions in thefinal state and assume
time-reversal symmetry, so that the PWAs are symmetric. As a result the unitarity
relation of Eqs. (1.7) and (1.8) between state with definite total spin J , � and S
simplifies as,1

�Fi (s) =
∑
j

Fj (s)ρ j (s)θ j Ti j (s)
∗ (13.4)

=
∑
j

Fj (s)
∗ρ j (s)θ j Ti j (s) ,

where the subscripts i , j denote the different partial-wave projected states.
For the uncoupled case the unitarity relation of Eq. (13.4) already implies an

important result known as the Watson final-state theorem. It states that the phase of
F(s) along the RHC and up to the next higher threshold is the same as the phase of
T (s) modulo π . This follows because from Eq. (13.4) we have in the one-channel
case that

�F1(s) = F1(s)T11(s)
∗ρ1(s)θ1 . (13.5)

Since the lhs is real somust be the rhs and from this observation it follows theWatson
final-state theorem.

Its generalization to coupled channel proceeds in the following manner. Let us
employ Eq. (7.2) to express the T matrix of PWAs in terms of the matrices N and
g(s). We also rewrite the lhs of Eq. (13.4) as (Fi (s) − Fi (s)∗)/2i and group together
the Fi (s)∗ on the rhs. It results

Fi (s) =
∑
j

[
δi j + 2iρ j (s)θ j Ti j (s)

]
Fj (s)

∗ . (13.6)

It is convenient to write this expression in matrix notation and extract to the left
T (s) = (N−1 + g)−1,

1Depending on the nature of the initial state, i.e., the probe, it might be necessary to decompose
it as well in PWAs. For example, for γ γ to meson–meson the reader could consult Refs. [73, 74]
where the γ γ state is decomposed in helicity amplitudes.
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F = (N−1 + g
)−1 (N−1 + g + 2iρ(s)θ

)
F∗ . (13.7)

Notice that the matrix ρ(s) is introduced already in Eq. (6.27) and it includes the
matrix of θ(s) Heaviside functions θi (s). This is consistent with the expression in
Eq. (13.7) since ρθ = ρ. Taking into account that g(s) + 2iρ(s)θ(s) = g(s)∗, one
obtains the following result valid along the RHC,

(N−1 + g
)
F = (N−1 + g∗) F∗ . (13.8)

Multiplying by N on both sides, we obtain the relation

[I + N (s)g(s)] F(s) = [
I + N (s)g(s)∗

]
F(s)∗ . (13.9)

This is the generalization of the Watson final-state theorem to coupled channels.
Notice that in the uncoupled case the phase of 1 + N g is minus the phase of the
PWA and, since Eq. (13.9) requires (1 + N g)F be real, it follows the Watson final-
state theorem.

An important consequence from Eq. (13.9) is that

[I + N (s)g(s)] F(s) (13.10)

is free of RHC [75], since it is the same as its complex conjugate for s above the
lightest threshold. Notice also that N has no RHC and we could have taken its
complex conjugate in Eq. (13.9). As a result we can write F(s) as

F(s) = [I + N (s)g(s)]−1 L(s) , (13.11)

where L(s) is an n × 1 column vector, with n the number of coupled PWAs. The
characteristic feature of L(s) is that it has no RHC, as follows from the previous
discussion. Therefore, it only has LHC.

These results also apply if instead we used the N/D method to write T (s) as
D−1N in Eq. (13.6). By following similar steps, we would have instead of Eq. (13.7)
the relation

F(s) =D−1(s) [D + N2iρθ ] F(s)∗ = D−1(s)D(s)∗F(s)∗ , (13.12)

so that,

D(s)F(s) =D(s)∗F(s)∗ , (13.13)

wherewehave taken into account that�D(s) = −N (s)ρ. Thus,we can also conclude
that F(s) can be written as
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F(s) = D(s)−1L(s) , (13.14)

with L(s) having at most LHC (if any). This expression is even more convenient than
that of Eq. (13.11) because the function D(s) has only RHC, while I + N (s)g(s)
has RHC and LHC (as N (s) has LHC and g(s) has RHC).

As an example, if the vector form factor, Eq. (13.3), is expressed as in Eq. (13.14),
the function L(s) is free of any cut because the form factor F(s) has only RHC.
The latter statement follows because the Mandelstam variable s is the only Lorentz
invariant that can be made out of the momenta of the two on-shell pions (as for each
pion p2i = m2

π and p1 p2 = s/2 − m2
π ).

For the two-coupled channel case from the unitarity relations of Eq. (13.4) one
can actually express F2(s) in terms of F1(s) above the higher threshold [75, 76]. This
is not surprising since unitarity implies two equations and F2(s) comprises two real
functions (its real and imaginary parts). Following this logic, we could then expect
quite generally that in a problem with 2n or 2n + 1 coupled PWAs we could express
n of the form factors in terms of the other n or n + 1 ones. Being more explicit
for the two-coupled channel case we have for the strong S matrix the following
parameterization that guarantees unitarity,

S(s) =
(

ηe2iδ1 i
√
1 − η2ei(δ1+δ2)

i
√
1 − η2ei(δ1+δ2) ηe2iδ2

)
. (13.15)

We take into account the relation between the S and T matrices given in Eq. (2.52),
to express the latter in terms of η ≡ cos 2α (sin 2α = √

1 − η2) and the phase shifts
δi . Next, we write the form factors as

Fi (s) = fi (s)e
i(δi (s)+φi (s)) , (13.16)

and take the real and imaginary parts of the unitarity relations for the form factors
written as in Eq. (13.6). One then has the following relations equivalent to the two
unitarity constraints,

(1 − cos 2α) cosφ1 f1 =
√

ρ2

ρ1
sin 2α sin φ2 f2 , (13.17)

(1 + cos 2α) sin φ1 f1 =
√

ρ2

ρ1
sin 2α cosφ2 f2 .

Dividing the former by the latter equation implies that

tan φ1 tan φ2 = tan2 α . (13.18)

Adding the squared of them, we obtain
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ρ2 f 22
ρ1 f 21

= tan2 α + 4 cos 2α

sin2 2α
sin2 φ1 . (13.19)

Making use of Eqs. (13.18) and (13.19) one can then obtain f2 and φ2 in terms of f1
and φ1 (or viceversa).



Chapter 14
The Omnès Solution. Reasoned Warnings
on the Use of the Omnès Function

We consider along this section that the uncoupled unitarity relation of Eq. (13.5) can
be applied, at least in good approximation, and assume that the strong interacting
PWA is known. Given a form factor with only RHC, like for example the vector
or scalar form factors of two hadrons, the unitarity relation, Eq. (13.5), provides
us with its discontinuity along this cut. The phase of the form factor F(s), ϕ(s), is
the same as the phase of the PWA T (s) [also denoted then by ϕ(s)] because of the
Watson final-state theorem (we are here suppressing any subscript).1 In the strict
elastic region ϕ(s) = δ(s) but, as we show below, it might be that still the phase
of the form factor corresponds approximately to that of the PWA, while the latter
departs strongly from δ(s) in a region with marked inelasticity. The reason is that the
form factor mostly couples to a given eigen-channel that diagonalizes the S matrix,
for which the elastic treatment holds.

The solution for an analytical function in the cut complex s plane, with a branch
point singularity at sth associated with a RHC, along which its phase is known, can
be written in terms of the so-called Omnès function. The idea is relatively straight-
forward and can be implemented in two steps.

First, by the knowledge of ϕ(s) we construct an analytical function with a RHC
and branch point discontinuity at sth by writing down the DR

ω(s) =
n−1∑

i=0

ai s
i + sn

π

∫ ∞

sth

ϕ(s ′)ds ′

(s ′)n(s ′ − s)
, (14.1)

where we have assumed that ϕ(s) does not diverge stronger than sn−1 for s → ∞,
with n a finite integer. We have introduced n subtraction constants so that the result is
independent of the subtraction point. Along the RHC this function fulfills that ω(s +
iε) − ω(s − iε) = 2iϕ(s). Second, we next define the Omnès function, Ω(s), as

1If there is a difference between these two phases of π then just take −F(s).
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Ω(s) = expω(s) . (14.2)

We always have the freedom to normalize the Omnès function such that Ω(0) = 1,
which fixes a0 = 1. It follows also that the combination

R(s) = F(s)

Ω(s)
, (14.3)

is real for s > sth and it has no cuts, so that it is a meromorphic function of s in the
first RS of the whole complex s plane.

Let us consider first that ω(s) is finite along the RHC, so that 0 < |Ω(s)| < ∞,2

and there are no bound states (i.e., F(s) has no poles). It is known in complex
analysis that any function that is analytic in the whole complex s plane is constant
or unbounded. If we apply this theorem to R(s), we learn then that F(s) diverges as
much as or stronger than Ω(s) for s → ∞. As result we conclude in this case that
we can express F(s) as

F(s) = R(s)Ω(s) , (14.4)

with R(s) a constant or an analytical function which is unbounded at infinity. Indeed,
we can expect exponential divergences in Ω(s) from Eq. (14.2) when the DR for
ω(s) requires for convergence more than one subtraction. The conclusion follows by
a similar analysis as the one performed betweenEqs. (4.10) and (4.12) in relationwith
the Sugawara–Kanazawa theorem. Thus, if ϕ(s)/sn−1 (n ≥ 2) were not vanishing
for s → ∞, one would have logarithmic divergences like sn−1 log s (here there is
only RHC). These divergences could not be canceled by the ansn−1 term. Therefore,
R(s) would be an exponential function so as to guarantee that F(s) does not diverge
stronger than a power of s for s → ∞ (and it is then amenable for a DR). Regarding
this point, one would expect that a hadronic form factor would typically vanish for
s → ∞ because of the finiteness of the non-perturbative scale of QCD, ΛQCD , as
also suggested by the quark counting rules [77–79], and then being amenable to a
DR. By the same token, one would also expect intuitively that the phase of the form
factor tends to a constant limit for s → ∞. However, these expectations could fail
in the case of singular interactions at the origin.

We can say more about R(s). Let P(s) be the polynomial made out of the pos-
sible zeroes of F(s) (if any), and let Q(s) be another polynomial whose zeroes
are the possible poles (if there exists any bound state) of F(s). Next, we multiply
F(s) by the rational function Q(s)/P(s) and perform a DR of the analytical func-
tion log

[
F(s)Q(s)/P(s)

]
in the cut complex s plane circumventing the RHC. The

discontinuity of this function along the RHC is 2i[δ(s + iε) − δ(s − iε)], the one
corresponding to functionω(s). Of course, we are assuming also here that F(s) has a
finite number of zeroes and bound states (these numbers are p andq, respectively) and
that log F(s)Q(s)/P(s) is amenable to aDR treatment. There, this procedure implies

2Later we discuss a specific situation when this is not the case.
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that F(s) can be written as in Eq. (14.4) with R(s) = Q(s)/P(s). In the subsequent
we further require that F(s) resulting from this analysis does not grow exponen-
tially, so that we are driven to admit that a once-subtracted DR is possible for ω(s)
in Eq. (14.1). In other terms, we assume that for s → ∞ the ratio |ϕ(s)/s| < s−γ for
some γ > 0, because otherwise we could apply the analysis above below Eq. (14.4),
and based on the process followed for the demonstration of the Sugawara–Kanazawa
theorem.3 We then arrive to the following expression for F(s) that we consider in
the following:

F(s) = P(s)

Q(s)
Ω(s) , (14.5)

Ω(s) = expω(s) , (14.6)

ω(s) = s

π

∫ ∞

sth

ϕ(s ′)ds ′

s ′(s ′ − s)
. (14.7)

Here, P(s) absorbs the required normalization constant to permit our choiceΩ(0) =
1 without loss of generality.

Let us work out the behavior of Ω(s) in the limit s → ∞ by taking for granted
the existence of the limit ϕ(∞) < ∞. For that we again proceed as in Eq. (4.10) and
then we decompose ω(s) in Eq. (14.7) as

ω(s) = ϕ(∞)
s

π

∫ ∞

sth

ds ′

s ′(s ′ − s)
+ s

π

∫ ∞

sth

ϕ(s ′) − ϕ(∞)

s ′(s ′ − s)
ds ′ . (14.8)

Thus, for s → ∞ we have

ω(s + iε) −−−→
s→∞ −ϕ(∞)

π
log

s

sth
+ iϕ(∞) − 1

π

∫ ∞

sth

ϕ(s ′) − ϕ(∞)

s ′ ds ′ , (14.9)

and the logarithmic divergence is the one that dominates for s → ∞. The other two
terms in the previous equation are constant ones, the first one is purely imaginary
and gives the phase of Ω(s) while the latter is a constant stemming from the second
integral in Eq. (14.8) that renormalizes P(s) in the considered limit of s → ∞. As
a result, we have for Ω(s) the limit behavior

3In nonrelativistic scattering we know from the Levinson theorem [17, 80] that δ(0) − δ(∞) =
(n + q/2)π , where n is the number of bound states in the problem and q only applies to S-wave
(
 = 0), being the number of zero energy S-wave resonances. For the precise condition of this later
case consider Eq. (95) of Ref. [17].
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Ω(s) −−−→
s→∞ CΩ eiϕ(∞) ×

( sth
s

) ϕ(∞)

π

. (14.10)

This translates into the form factor F(s), Eq. (14.5), as

F(s) −−−→
s→∞ CF e

iϕ(∞) × s p−q− ϕ(∞)

π , (14.11)

where CΩ and CF are constants.
The Eq. (14.11) offers interesting corollaries

(i) If the high-energy behavior of F(s) is considered to be known and it is of the
form sν , then we have from this equation that

p − q − ϕ(∞)

π
= ν , (14.12)

which is a kind of relativistic Levinson theorem for the form factor.
(ii) When modeling interactions with limited information, so that we are able to
achieve some partial control on the PWA and form factor, we should keep constant
under variation of the parameters the relation of Eq. (14.12). Since ν is fixed then
we would require that

p − q − ϕ(∞)

π
= fixed (14.13)

as the parameters vary. In this way, if, e.g., ϕ(∞)/π decreases by one unit and there
are no bound states in the system then we should introduce an extra zero in the form
factor, so that p increases by one compensating unit. A similar logic would apply
for other possible situations.

(iii) We should stress that while we can compensate for the strong-model effects
discussed in (ii), by increasing/decreasing p, q and ϕ(∞)/π , this is not possible for
Ω(s), which then could be driven into a very troublesome behavior. That is, Ω(s) is
expected to be more strongly dependent on fine details of the hadronic model and it
should be used with care, e.g., within a formula like that for F(s) in Eq. (14.5).

As an important example that illustrates the previous points (i)–(iii), we refer to
the pion scalar form factor, associated with the light-quark scalar source ūu + d̄d,
which is defined as

F(s) =
∫

d4xei(p+p′)x 〈0|muū(x)u(x) + mdd̄(x)d(x)|0〉 . (14.14)

Here u and d are the up and down quarks,mu andmd are themasses of these quarks, in
order, and s = (p + p′)2. In the following we consider the isospin limit (nominally,
mu = md ).

The FSI for this form factor are driven by the isoscalar scalar ππ interaction,
which was discussed for low energies with its salient feature of the appearance of the
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f0(500) or σ meson in Chap. 8. Another phenomenologically relevant channel is the
K K̄ one, with a threshold at 991.4MeV [34]. Apart from the f0(500) or σ resonance
there is also the f0(980) resonance, which is relatively narrow [34] and it manifests as
a steep rise of the isoscalar scalar phase shifts at around the two-kaon threshold. This
resonance couples much more strongly to K K̄ than to ππ [81], which causes that as
soon as the K K̄ is open there is an active conversion of pionic flux in a kaonic one. As
a result, the inelasticity parameter η1 rapidly drops from 1 below the K K̄ threshold to
much smaller values for

√
s > 2mK . The aforementioned rapid rise of the phase of the

isoscalar scalar ππ PWA T (s), ϕ(s), could be abruptly interrupted at the K K̄ before
it reached π degrees. All depends on whether δ(s) at s = sK = (2mK )2 is larger or
smaller than π , which might be easily changed within the parameters of the hadronic
model, being both situations compatible with the present experimental phase shifts
at around s = 1 GeV2. As a result, the Omnès function for this case would have two
dramatically different behaviors under tiny changes of the parameters, depending
on whether δ(sK ) is larger or smaller than π . In the former case Ω(s) is huge at
the point where δ(s) = π (this point is below sK ), while for the later case Ω(s) is
nearly zero just below the K K̄ threshold. This pathological situation was discussed
in great detail in Ref. [82]. We also refer to Refs. [10, 81] for explicit accounts of
the mentioned experimental data for the isoscalar scalar meson–meson interactions.

Let us exemplify this situation by performing an explicit calculation by identifying
ϕ(s) with the phase of the PWA T (s) along the RHC. For the numerical evaluation
of the DR for ω(s), Eq. (14.7), it is convenient to rewrite it so as to avoid the explicit
numerical calculation of the Cauchy principal value of the integral involving ϕ(s ′).
We then have

ω(s) = ϕ(s)
s

π

∫ ∞

sth

ds ′

s ′(s ′ − s)
+ s

π

∫ ∞

sth

ϕ(s ′) − ϕ(s)

s ′(s ′ − s)
ds ′ , (14.15)

and the former integral can be evaluated algebraically.
The situation in which δ(sK ) → π drives to a singularity in the Omnès function

Ω(s). When this happens, with a subtraction constant around −2.45, the phase of
the strong PWA becomes discontinuous for s above sK . We plot δ(s) in the left top
panel of Fig. 14.1 and ϕ(s) in the right top one. The PWA T (s) in terms of the phase
shifts δ(s) is given by

T (s) = |T (s)|eiϕ(s) = 1

2ρ
[η sin 2δ + i(1 − η cos 2δ(s))] . (14.16)

Thus, when δ(sK ) < π we have that above sK the real part of T (s) changes sign
(since δ(s) keeps growing), and then the phase of T (s) experiences a rapid decrease
from values near π below sK to values in the interval [0, π/2] (the imaginary part
of T (s) is always positive because of unitarity, η ≤ 1). This transition in ϕ(s) from
values near to π to others below π/2 becomes more abrupt as δ(sK ) → π−, and in
reaching this limit the phase ϕ(s) becomes discontinuous at sK . On the other hand,
when δ(sK ) > π the function ϕ(s) keeps growing because the real part of T (s) does
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not change sign and when η becomes small then it is clear that the imaginary part
of T (s) becomes larger than the real part [ϕ(s) > π for s > sK ]. The presence of
such a discontinuity in ϕ(s) at sK by an amount of π/2 drives to a singularity in
ω(s) at s = sK . This singularity is of the end-point type, as it is clear by splitting the
integral for ω(s) in two parts, from sπ (sπ = 4m2

π ) to sK and from the latter to ∞,
with ϕ(sK − ε) − ϕ(sK + ε) = ±π/2. In the latter expression, the plus sign applies
when δ(sK − ε) → π− and the minus sign when δ(sK − ε) → π+. The resulting
logarithmic singularity in ω(s) stems then from the fact that the Cauchy’s principal
value of the integral around s = sK does not get rid of the pole singularity in the
integrand from the factor 1/(s ′ − s). Thus, we are driving to the divergence

1

π

[∫ sK−Δ ϕ(sK − ε)ds ′

s ′ − sK
+

∫

sK+Δ

ϕ(sK + ε)ds ′

s ′ − sK

]

→ 1

π
[ϕ(sK − ε) − ϕ(sK + ε)] logΔ = ±1

2
logΔ , (14.17)

with Δ → 0+ and δ(sK − ε) → π∓, in order. In this way, when exponentiating
ω(s) to get Ω(s) this divergent contribution in the exponent gives rise to (

√
Δ)±1.

Therefore,Ω(s) has finally a pole when δ(sK ) → π+ and a zero when δ(sK ) → π−.
This behavior is represented in the right bottom panel in Fig. 14.1.

This pathological situation has a reflection in the condition expressed in
Eq. (14.13), because there is a jump by one in ϕ(∞)/π between the two situa-
tions δ(sK − ε) → π±. Thus, imposing continuity in the transition δ(sK − ε) < π

to > π requires that p increases by 1, that is, there should be one more zero for
δ(sK ) > π as compared with the opposite situation. If we would require the conti-
nuity from δ(sK ) > π to < π we would have to increase q by one and had bound
sate (a pole in the first Riemann sheet). This latter situation can be ruled out in pion
physics. It follows then that an Omnès representation of the isoscalar scalar ππ PWA
in the case δ(sK ) > π requires the function Ω(s) to have a zero at the point at which
�T (s) = 0 for s < sK . Well, applying an Omnès representation for T (s) itself this
is also a consequence of unitarity because T (s) = eiδ sin(δ)/ρ in the elastic region
below the K K̄ threshold.

Similar reasoning was applied in Ref. [82] to the pion scalar form factor F(s)
which follows (in good approximation) the phase of the isoscalar scalar ππ PWA
T (s) (even somewhat above the K K̄ threshold). This is shownby explicit calculations
of F(s) within other approaches [11, 83, 84]. Indeed, such a situation might be
expected by realizing that the f0(980) couples much more strongly to kaons than to
pions, e.g., Ref. [81] reports that the coupling to kaons is larger by a factor 3. As a
result, the admixture between the pion and kaon channels is suppressed and both of
them follow their own eigen-channel of the isoscalar scalar meson–meson PWAs.
We refer to Refs. [82, 85] for detailed discussions that provide the explicit expression
for the eigen-channels and eigen-phases.

We would also like to mention that one can precisely determine the point s = s1
at which the form factor has a zero when δ(sK ) > π as find out in Ref. [82]. This
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reference writes down a twice-subtracted DR for the form factor,

F(s) = F(0) + 1

6
〈r2〉πs s + s2

π

∫ ∞

sπ

�F(s ′)ds ′

(s ′)2(s ′ − s)
. (14.18)

In this expression, 〈r2〉πs is the quadratic scalar radius of the pion. Indeed one expects
fromasymptoticQCD [86] that F(s) vanishes at infinity so that thewrittenDR should
converge fast, which is of particular interest for relatively low energies. It is then clear
from the integral representation of F(s) in Eq. (14.18) that the only point at which
F(s) can vanish for s < sk is where �F(s) = 0 (since the subtraction polynomial in
Eq. (14.18) is real). The latter fact can only occur when δ(s) = π since there is only
one zero at such energies and |�F(s)| = |F(s) sin δ(s)|/ρ(s) in the elastic region,
s < sK , and δ(sK ) > π . This in turns fixes the first order polynomial that should
multiply the Omnès function Ω(s) so as to achieve a continuous transition for δ(sK )

greater or smaller than π .
In summary, one should better use the function

Ω(s) =
{
expω(s) , δ(sK ) < π ,
s1−s
s1

expω(s) , δ(sK ) > π .
(14.19)

A clear lesson that follows from the discussion in this section is that one should use
an Omnès function with great care when employing it while doing fits to data. The
latter requires varying the parameters of the theory and one should avoid possible
instable behaviors associated with rapid movements in the phases integrated that
could strongly affect an Omnès function. As we have seen, nonsense results could
arise by a nearby discontinuity in the space of parameters. The fulfillment of the
requirement in Eq. (14.13) should then be pursuit, and for the phase of the isoscalar
scalar ππ PWA one should use the function in Eq. (14.19) instead of a pure Omnès
function, cf. Eq. (14.6).

Given a form factor which also involves LHC,4 e.g., that for γ γ → ππ , we could
also define the function R(s) as in Eq. (14.3), although now this function also contains
LHC, and then we denote it by L(s) [analogously to Eq. (13.14)]. Nonetheless, the
introduction of this function allows a clear splitting between the RHC and LHC
contributions that is also exploited in the literature. One typically writes down a DR
for L(s) along the LHC,

L(s) =
n−1∑

i=1

ai s
i + sn

π

∫ sL

−∞
�L(s ′)ds ′

(s ′)n(s ′ − s)
, (14.20)

F(s) = Ω(s)L(s) ,

�L(s) = Ω(s)−1�F(s) , s < sL ,

4Maybe some readers are used to consider that the form factors should only have RHC. Here we
use the notation introduced in Chap. 13.
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Fig. 14.1 From left to right and top to bottom: Phase shifts, δ(s), phase of T (s),ϕ(s), and theOmnès
function, |Ω(s)|. The solid line corresponds to the subtraction constant a of the g(s) function with
the value a = −2.4 and the dashed line to a = −2.5. We have modeled the ππ and K K̄ channels
with I = 
 = 0 by unitarizing the lowest order ChPT amplitudes. We use Eq. (8.29) and the 2 × 2
matrix N (s) is identified with the leading ChPT amplitudes, Eq. (8.30)

with sL the upper limit for the LHC. In this way, the Omnès function can be known
(at least partially) from the knowledge of the strong PWAs along the RHC and then
one needs to know �F(s) along the LHC. Of course, in the pure elastic case the
phase of the Omnès function is the phase of the strong PWA T (s) and we could
proceed as discussed above in this section. For the particular case of γ γ → π0π0

its S wave contribution is discussed in Refs. [87, 88]. The subtraction constants can
be adjusted by employing the Low’s theorem, which implies that for s → 0 the total
F(s) tends to its renormalized Born term contribution (involving the values of the
physical couplings and masses). The other subtraction constant is fixed by matching
with the one-loop ChPT calculation of Refs. [89, 90]. One could approach �F(s)
by the contributions from the Born terms and the crossed exchanges of the J PC
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resonance multiplets 1−− and 1++ as in Ref. [88], where explicit formulas for the
resonance-exchange tree-level amplitudes can be found.

Incidentally, Refs. [87, 88] use a somewhat different unitarization procedure than
Eq. (14.20) to calculate the low-energy cross section for γ γ → π0π0. These refer-
ences consider only S wave (π0π0 does not have P wave because of Bose–Einstein
symmetry) and two isospin channels are possible, the isoscalar and the isotensor
ones. The first step is to build up a function with only RHC by subtracting to FI (s)
a function L̃ I (s) that contains its LHC. Namely, the new function is

FI (s) = FI (s) − L̃ I (s)

ΩI (s)
. (14.21)

Next, Refs. [87, 88] perform a twice-subtracted DR for the latter, in terms of which
FI (s) reads

FI (s) = L̃ I (s) + aIΩI (s) + cI sΩI (s) + ΩI (s)
s2

π

∫ ∞

4m2
π

L̃ I (s ′) sin ϕI (s ′)ds ′

(s ′)2(s ′ − s)|ΩI (s ′)| .

(14.22)

The subtraction constants are fixed as explained above by considering the Low’s the-
orem and matching with the one-loop ChPT calculations of γ γ → ππ in Refs. [89,
90]. At the practical level L̃ I (s) is also approximated in Refs. [87, 88] by the tree-
level amplitudes including the Born terms and the exchange of the 1−− and 1++
multiplets of vector and axial resonances, in order. In this way, the Low’s theorem
requires that

lim
s→0

[
FI (s) − L̃ I (s)

] = O(s) , (14.23)

fromwhich it follows that aI = 0 in Eq. (14.22). Indeed, the contributions of the 1++
axial resonances are more important at low energies than that of the 1−−. Actually,
the former appear one order lower in the chiral expansion than the latter. Despite
that the explicit axial exchanges are neglected in Ref. [87], while they are taken into
account in Ref. [88]. The calculations performed in this reference confirm that these
contributions are phenomenologically relevant and should not be neglected since their
contributions are around a 30% of the full result. A major step forward of Ref. [88]
compared to Ref. [87] is to use the stable Ω0(s) function as defined in Eq. (14.19),
instead of just a pure Omnès function. In this way, the output at low energies is much
more stable under changes of the parameterizations used for the isoscalar scalar ππ

phase shifts in the region of the f0(980) resonance, accomplishing a reduction of
about a factor of 2 in the uncertainty of the cross section for γ γ → π0π0 at around
the mass of the ρ(770), and about a 25% already at around

√
s = 500 MeV. Notice,

that even if for δ0(sK ) > π one has a zero in the denominator because Ω0(s1) = 0,
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as defined in Eq. (14.19), the ratio sin ϕ0(s ′)/|Ω0(s ′)| in the integrand of Eq. (14.22)
is well defined because the zero of Ω0(s ′) happens at the same point s1 at which
ϕ0(s1) = π , cf. Eq. (14.18).



Chapter 15
The Muskhelishvili-Omnès Problem
in Coupled-Channel form Factors

The basic problem that we consider in this section is to find the possible solutions for
a set of form factors Fi (s), i = 1 . . . n, ordered in increasing value of their thresholds
sth;i . Each of the Fi (s) has LHC for s < sL and RHC for s > sth, where sth is the
lightest of all the thresholds sth;i involved and sL was defined above.

Along the RHC the imaginary part of Fi (s) is given by the unitarity relation
expressed in Eq. (13.4). The latter also allows us to know the discontinuities of these
form factors along the RHC because they fulfill the Schwarz reflection principle,

Fi (s
∗) = Fi (s)

∗ , (15.1)

since the form factors are real in the interval sL < s < sth. As a result, the disconti-
nuity of Fi (s) along the RHC obeys

�Fi (s + iε) − �Fi (s − iε) = 2i�Fi (s + iε) , s > sth . (15.2)

On the other hand, the discontinuity of these functions along the LHC is assumed
to be given, cf. the example of Eq. (14.20), and it is denoted in the following by
ΔL Fi (s). Namely,

Fi (s + iε) − Fi (s − iε) = ΔL Fi (s) , s < sL . (15.3)

We already have shown in Eq. (13.14) that the n × 1 column vector F(s) ofmatrix
elements Fi (s) can be expressed as the product of the inverse of the n × n matrix
D(s), whose matrix elements are the functions Di j (s), times L(s). The latter is an
n × 1 vector columnof n analytical functions in the cut complex s plane, Li (s), which
do not have RHC. They could have only LHC (if any) [the possible bound-state poles
in F(s) would correspond to zeroes in the detD(s)].

To characterize the different solutions for F(s) it is convenient to introduce an
n × n matrix S(s) defined as
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S(s) = I + T (s)2iρ(s) . (15.4)

Notice that although T (s) is a symmetric this is not the case in general for S(s).
From Eq. (15.4) and the unitarity relation for T (s), Eq. (2.50), it is straightforward
to prove that for s > sth;n this matrix satisfies the property,

S(s)S(s)∗ = S(s)∗S(s) = I . (15.5)

To avoid any confusion let us indicate that the asterisk refers to complex conjugation
and not to the Hermitian conjugate of the matrix S(s). Since S(s) is not symmetric
they are not equivalent. Note also the while the S matrix in partial waves, defined in
Eq. (2.52), is symmetric and unitary neither of these properties hold in general for
S(s) when n > 1.

If we use the N/D method to express T (s) = D(s)−1N (s), we notice that S(s)
can also be written as

S(s) = I + 2i D(s)−1N (s)ρ(s) = D(s)−1 [D(s) + 2i N (s)ρ(s)]

= D(s)−1D(s)∗ , (15.6)

an expression valid in the whole complex s plane.
Now, let us assume that we have found an n × n matrix D(s) with only RHC

that satisfies Eq. (15.6). From the previous equation, and taking into account that
D(s)∗ = D(s∗) it also follows the discontinuity relation

D(s)−1 = S(s)D(s∗)−1 . (15.7)

Multiplying both sides by L(s), cf. Eq. (13.14), and taking into account that L(s) is
real along the RHC, we then have an analogous relation for the form factors

F(s) = S(s)F(s∗) . (15.8)

As stated, L(s) = D(s)F(s) has only LHC and its discontinuity along this cut is
given by

ΔL L(s) = D(s)ΔL F(s) , (15.9)

since D(s) is regular along the LHC because of extended unitarity. Assuming that
L(s) diverges for s → ∞ less strongly than sm for some integer m ≥ 0,1 we can
write the following m-times subtracted DR

1More rigorously we should say that L(s) diverges less strong than sm−1, m ≥ 1, to avoid just a
logarithmic vanishing of L(s)/sm . However, for the statement above we always have in mind a
power-like vanishing, |L(s)/sm | < |s|−γ , γ > 0, for s → ∞.
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L(s) =
m−1∑

i=0

ai s
i + sm

π

∫ sL

−∞
D(s ′)ΔL F(s ′)ds ′

(s ′)m(s ′ − s)
, (15.10)

such that if m = 0 there is no subtractive polynomial. The latter equation allows to
write the following DR representation for F(s),

F(s) = D(s)−1
m−1∑

i=0

ai s
i + sm

π

∫ sL

−∞
D(s)−1D(s ′)ΔL F(s ′)ds ′

(s ′)m(s ′ − s)
. (15.11)

Now, for a given PWA T (s) we can work out S(s), Eq. (15.5). The problem of
finding an n × n matrix D(s) of functions Di j (s) with only RHC that allows one
to write S(s) = D(s)−1D(s)∗ as in Eq. (15.6) is called the Hilbert problem. From
Eq. (15.7) it is clear that each column of D(s)−1 satisfies the same discontinuity
relation as Eq. (15.8) for the form factors along the RHC. Therefore, every column
of D(s)−1 is itself a form factor with RHC only. The final form factors Fi (s) are
obtained by a linear combination of the columns D(s)−1, where the coefficients in
this linear superposition are the Li (s) functions that comprise the possible LHC, cf.
Eq. (15.10).

First, let us notice that the determinant of the S matrix, S(s), and that of S(s) are
the same,

detS(s) = detS(s) . (15.12)

This is clear if we consider that

detS = det
(
I + 2iρ

1
2 Tρ

1
2

)
= det

(
ρ

1
2

[
ρ− 1

2 + 2iTρ
1
2

])
= det (I + 2iTρ) = detS .

(15.13)

Notice also that detS is given by the sum of the eigen-phase shifts ϕi (s) as

detS = exp 2i
n∑

i=1

ϕi (s) = detS . (15.14)

For the important two-coupled channel case the sum of the eigen-phase shifts is the
sum of the phase shifts, as it is clear from Eq. (13.15).

The fact that S(s) = D(s)−1D(s)∗, Eq. (15.6), allows us to write an Omnès rep-
resentation for detD−1. The point is that detD−1 has only RHC (as the function D
itself) and fromEq. (15.6) we learn that the phase of detD−1 is half the phase of detS,
which is denoted in the following as Φ(s), Φ(s) = 2

∑
i ϕi (s).2 In addition detD−1

could have zeroes and poles (the former are the generalization of the CDD poles to
the coupled-channel case). Out of the zeros and poles of detD(s)−1 we make up the

2The number of open channels changes. However, Φ(s) is a continuous function of s along the
RHC.
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polynomials P(s) and Q(s), respectively, cf. Eq. (14.5). To simplify the notation we
further introduce the symbols

Δ(s) = detD(s)−1 , (15.15)

sR = sth;1 .

We take the function e−i Φ(sR )

2 Q(s)Δ(s)/P(s), which is amenable to an Omnès rep-
resentation in the form,

Δ(s) = P(s)

Q(s)
expω(s) , (15.16)

ω(s) = Φ(sR)

2
+ s − sR

2π

∫ ∞

sR

Φ(s ′) − Φ(sR)

(s ′ − sR)(s ′ − s)
ds ′ . (15.17)

We have multiplied Δ(s) by exp (−iΦ(sR)/2) so that the resulting function has a
zero phase at sR , which allows the integral in the DR of the previous equation to stay
finite (even if Φ(sR) is not zero).

Taking into account that the asymptotic behavior of an Omnès function for s →
∞ is given by the asymptotic phase Φ(∞), cf. Eq. (14.10), we then have from
Eqs. (15.16) and (15.17) the following limit behavior for Δ(s),3

Δ(s) −−−→
s→∞ s p−q− Φ(∞)−Φ(sR )

2π . (15.18)

Which is the relativistic coupled-channel version of the Levinson theorem, cf.
footnote 3.

An interesting result in connectionwith Eq. (15.18) is that it relates the asymptotic
behavior of Δ(s) with the leading power behavior in s of the columns in D(s)−1

[75, 91, 92]. Let φi (s) be the ith column of D(s)−1 which, as follows fromEq. (15.7),
satisfies the same discontinuity linear relation as a form factor,

S(s)φi (s)
∗ = φi (s) , s > sR . (15.19)

Assuming as in Refs. [75, 92] that S(s) → I for s → ∞ it is clear that the leading
behavior of φi (s) should be integer-power like (no cut remains in this limit and we
always assume that all these functions are amenable to aDR treatment). Furthermore,
by appropriate linear combinations we can always choose these φi (s) such that if
χi is the leading degree in s of φi (s) [which corresponds to the degree in s of the
dominant component among all the components of φi (s)] then

Δ(s) −−−→
s→∞ sχ1+χ2+···+χn . (15.20)

3We assume that the zeroes and poles of Δ(s) do not occur at the threshold sR .
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To see this result let us discuss first the two-coupled channel case and to fix ideas
let us assume that χ2 ≥ χ1. If the leading behavior for φ2 gives rise to a column
vector linearly independent to the leading one for φ1, then the result of Eq. (15.20) is
clear. However, if the leading-components vector φ2 is linearly dependent with the
leading one from φ1, then multiply φ1 by sχ2−χ1 times a constant and remove it to
φ2, which is then the new φ2. In this way (iterated if needed), the leading behavior
for φ2(s) is now a linearly independent vector to φ1. On the other hand, if χ1 > χ2

we would proceed analogously exchanging 1 ↔ 2. It is clear that this process can be
further iterated to treat the case with n coupled PWAs, and then Eq. (15.20) results
for an appropriately built matrix D(s)−1. Notice also that the exponent in the rhs of
Eq. (15.20) must match with the one in Eq. (15.18). Thus, we also have that

χ1 + χ2 + . . . + χn = p − q − Φ(∞) − Φ(sR)

2π
. (15.21)

These results were applied in Ref. [76] to study the strangeness-changing scalar
form factors for Kπ(1), Kη(2) and Kη′(3), following an analogous set up as in
Ref. [83] for the calculation of theππ and K K̄ isoscalar scalar form factors (this latter
problem was addressed also by Ref. [84] with a similar approach). The strangeness-
changing or ΔS = 1 scalar form factors are defined by

〈0|∂μ(s̄γμu)(0)|KφK 〉 = −i

√
3

2
ΔKπFk(s) , (15.22)

ΔKπ = m2
K − m2

π .

The state |Kπ〉 is in the isospin basis so that its form factor is
√
3 that of |K+π0〉,

and |0〉 is the vacuum state.
The I = 1/2 scalar Kπ, Kη′ PWAs of Ref. [93] were used for driving the FSI.

Reference [76] also checked that the results barely change when considering the Kη
channel as well, so that we disregard it in the following and concentrate in the two-
coupled channel problem of Kπ and Kη′ scattering. It was further taken for granted
in Ref. [76] that the scalar form factors vanish for s → ∞ because the hadrons are
composite objects. This is also in agreement with expectations from QCD counting
rules [77–79]. As a result, the following unsubtracted DRs were written for the
hadronic form factors F1(s) and F3(s),

F1(s) = 1

π

∫ ∞

sth;1
ρ1(s ′)F1(s ′)T11(s ′)∗ds ′

s ′ − s
+ 1

π

∫ ∞

sth;3
ρ3(s ′)F3(s ′)T13(s ′)∗ds ′

s ′ − s
,

(15.23)

F3(s) = 1

π

∫ ∞

sth;1
ρ1(s ′)F1(s ′)T13(s ′)∗ds ′

s ′ − s
+ 1

π

∫ ∞

sth;3
ρ3(s ′)F3(s ′)T33(s ′)∗ds ′

s ′ − s
.

These coupled linear IEs were solved numerically in Ref. [93] by iteration. The
numerical iterativemethoddeveloped in this reference is summarized in the appendix.
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ThePWAsconsidered inRef. [93] have nobound states,q = 0, and the D−1 matrix
has no CDD poles [they were reabsorbed in the function N (s)], p = 0. Furthermore,
Φ(sR) = 0. As a result, the rhs of Eq. (15.18) reads

Δ(s) −−−→
s→∞ s− Φ(∞)

2π . (15.24)

The first set of T matrices used in Ref. [93], and derived in Ref. [76], give rise to
Φ(∞) = 2π (δ1(∞) = π and δ3(∞) = 0). It follows then from Eq. (15.21) that

χ1 + χ2 = −1 . (15.25)

Since it is not possible that simultaneously χ1 and χ2 are negative integers, we then
conclude that there is only one linearly independent solution that vanishes at infinity
with χ1 = −1. This is the solution obtained by solving numerically Eq. (15.23)
employing the PWAs from the fits (6.10) and (6.11) of Ref. [76]. As starting input
Ref. [93] takes for F1(s) its solution according to an Omnès representation, cf.
Eq. (14.5), with constant P(s) and Q(s), while F3(s) is taking zero initially. The
normalization factor corresponds to FKπ(0) according to its value calculated at NLO
in ChPT [94].

Next, Ref. [93] also matched smoothly the unitarized ChPT PWAs of Ref. [76]
with a K -matrix ansatz at an energy around

√
s = 1.75 GeV. The point is to improve

the reproduction of the experimental data of Ref. [95] on Kπ scattering, that was
somewhat deficiently accomplished by the PWAs of Ref. [76] for energies above
1.9 GeV. Once this is done Ref. [93] could consider the transition from Φ(∞) = 2π
to Φ(∞) = 4π by changing some suitable parameters in the K -matrices employed,
while reproducing satisfactorily the experimental data up to the largest energy avail-
able in Ref. [95] (

√
s = 2.5 GeV). For the case Φ(∞) = 4π we then have from

Eq. (15.21) that (q = p = Φ(sR) = 0)

χ1 + χ2 = −2 . (15.26)

In this case we can then have two linearly independent solutions with negative χi for
χ1 = χ2 = −1. This second linearly independent solution was found in Ref. [93]
by solving Eq. (15.23) with different input values for the form factors at the origin.
Apart from a global normalization another piece of information is needed, since now
there are two linearly independent solutions. The Ref. [93] uses the value of the Kπ
form factor at the Callan-Treiman point, where s = ΔKπ , because it can be related
quite accurately with the ratio of the weak decay constants of the pseudoscalar kaons
( fK ) and pions ( fπ). The precise relation is

FKπ(ΔKπ) = fK
fπ

+ ΔCT , (15.27)
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with ΔCT estimated as −3 × 10−3 [94], while fK / fπ is taken in Ref. [93] as
1.22 ± 0.01, according to the phenomenological information then available. It is
worth emphasizing that once the chiral unitary amplitudes of Ref. [76] were imple-
mented with the K -matrix ansätze, independently of whether Φ(∞) = 2π (one lin-
early independent solution) or 4π (two linearly independent solutions) the value of
FKπ(ΔKπ) is in both cases compatible, which indicates the great stability of the
results. For the case with only one linearly independent solution it turns out that
FKπ(ΔKπ) = 1.219 − 1.22 in impressive agreement with Eq. (15.27).

Let us finish this section by connecting with the use of the function N (s) to
express the form factors Fi (s) as in Eq. (13.11), by using the matrix of functions
[I + N (s)g(s)]−1. In the special case in which N (s) is modeled without LHCs,
as discussed in Chap. 6, we could end with explicit expressions for Ω(s) (in the
uncoupled case) and for D(s) in the coupled case. For the former case we would
have

Ω(s) =
∏q

i=1(s − sP;i )∏p
j=1(s − sZ; j )

1

1 + N (s)g(s)
, (15.28)

with the subscripts P and Z referring to the poles and zeroes of 1/[1 + N (s)g(s)],
which are removed by multiplying this function by the appropriate rational function.
For the case of coupled channels, we can identify the matrix D(s) in Eq. (15.7) with

D(s) = [I + N (s)g(s)] . (15.29)

We can also introduce like in Ref. [92] the analogous of Ω(s) in coupled channels,
denoted byD−1(s), so thatD−1(s) satisfies Eq. (15.7), it is holomorphic and nonsin-
gular in the cut complex s plane. Given the function D(s) in Eq. (15.29) we notice
that the product D(s)D(s)−1 has no cuts because from Eq. (15.7)

D(s + iε)D(s + iε)−1 − D(s − iε)D(s − iε)−1 (15.30)

=D(s − iε)S(s − iε)S(s + iε)D(s − iε)−1 − D(s − iε)D(s − iε)−1 = 0 ,

taking also into account Eq. (15.5) and thatD(s∗) = D(s)∗. The same propertywould
also hold for D(s)D(s)−1. Therefore, the product D(s)D(s)−1 is a rational function
R(s) and we can write [92]

D(s)−1 = D(s)−1R(s) . (15.31)

Of course, this result applies to any possible matrix of functions D(s) satisfying
Eq. (15.6), independently of the modeling of N (s).



Chapter 16
Near-Threshold Scattering

In this section we consider the physics in a near-threshold region so that the nonrela-
tivistic limit is appropriate. Furthermore, we assume that the LHC is relatively weak
and/or far away. In the later case the LHC admits a Taylor expansion in the region
of interest and its effects can be accounted for without explicitly including it. For
the former case we assume that it can be neglected in good approximation because
of its weakness. With this scenario in mind we use the general results deduced in
Chap. 6, cf. Eq. (6.24), which are applicable when the cut associated with the LHC
is not explicitly realized.

We consider the S-wave scattering, which is expected to be dominant since the
energy is supposed to be near the threshold of the reaction of the two particles with
massesm1 andm2. In such circumstances the general structure of a PWAcorresponds
to Eq. (6.24) with L = 0. The relativistic phase space in the integral along the RHC is
p(s)/8π

√
s. We also introduce the kinetic energy E by its nonrelativistic expression,

namely,

E = p2

2μ
, (16.1)

p = √
2μE ,

which is more appropriate for nonrelativistic dynamics, with the relation
√
s = m1 +

m2 + E + O(p4).
The unitary loop function, that corresponds to the integral along the RHC in

Eq. (6.24), is already given in Eq. (8.3). Its series in powers of p = |p| around
threshold gives rise to an expansion involving powers of p2 [it corresponds to the
expansion in real variable of its real part for physical values of s > sth. This is given
by the Cauchy’s principal value of the integral in Eq. (8.3)] and odd powers of p
[which stems from the expansion of its imaginary part −p/8π

√
s ]. The first terms

of this nonrelativistic series of g(p) in powers of p read
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g(p) = a

16π2
+ 1

8π2(m1 + m2)
(m1 log

m1

μ
+ m2 log

m2

μ
) (16.2)

− i
p

8π(m1 + m2)
+ O(

p2

Σ2
) ,

where Σ has dimension of mass and it is made out of the masses m1 and m2. For
every O(pm) term with m ≥ 1 there is always a neat power of mass mi , i = 1, 2,
in the denominator, avoiding any relative enhancement from powers of the factor
m1/m2 with m1 � m2. This is clear from the nonrelativistic reduction of the RHC
integral in Eq. (8.3),

g(p) = ã − s

π

∫ ∞

0

dq2

ω′
1(q)ω′

2(q)

q

8π[ω′
1(q) + ω′

2(q)] (16.3)

× 1

[ω′
1(q) + ω′

2(q) − ω1(p) − ω2(p)][ω′
1(q) + ω′

2(q) + ω1(p) + ω2(p)]
= ã + 1

8π(m1 + m2)

∫ ∞

0

qdq2

p2 − q2
+ O(

p2

Σ2
) ,

with ωi (q) already introduced in Eq. (8.5).
In the following we adopt the more standard nonrelativistic normalization of the

PWA t (p2), already introduced in Eq. (11.9) for m1 = m2 = m. Additionally, we
denote by β the momentum-independent contribution on the rhs of Eq. (16.2) (times
8π(m1 + m2) because of the change in normalization). Namely,

β = a(m1 + m2)

2π
+ 1

π
(m1 log

m1

μ
+ m2 log

m2

μ
) . (16.4)

Attending to Eq. (6.24) with L = 0, in addition to the subtraction constant we also
have the sum over the CDD poles. Looking for relevant structures in the near-
threshold region apart from the threshold branch-point singularity, we explore the
consequences of including a CDD pole. In this way, we recast Eq. (6.24) as

t (E) =
(

γ

E − MCDD
+ β − i p(E)

)−1

, (16.5)

where we use the kinetic energy E as variable, cf. Eq. (16.1). In this equation γ is
the residue of the CDD pole and MCDD is its position in energy E .

Despite the straightforward derivation ofEq. (16.5) by attending to basic analytical
properties of PWAs, in this case, the presence of the RHC and of a pole in the inverse
of the PWA, goes beyond an ERE, up to an including O(p4), cf. Eq. (11.10). The
reason is because the presence of a zero in t (p2) [or a pole in 1/t (p2)] sets a limit in
the applicability of the ERE because at this point p cot δ = ∞ and it is singular. Thus,
if this zero happens very close to threshold it makes the ERE to have a very small
region of validity,whichwould typically invalidate it as an adequate approach to study
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the near-threshold scattering. One can work out straightforwardly the relationship
between the parameters a, r2, and v2 in the ERE with γ, MCDD and β in Eq. (16.5),
it reads

1

a
= γ

MCDD
− β , (16.6)

r = − γ

μM2
CDD

,

v2 = − γ

4μ2M3
CDD

.

An important output of these relations [96] is that a near-threshold CDD pole,
MCDD → 0, is characterized by giving rise to large values of r in absolute mod-
ule (γ can take any sign). This is also the expected situation for v2 and higher shape
parameters vi , i ≥ 4. However, the value for the scattering length in the same limit
MCDD → 0 would tend to zero as MCDD/γ. Of course, the actual situation in which
this limit takes place depends on the value of the residue of the CDD pole, the larger
is γ the sooner this scenario takes place.

Another parameterization that is usually employed in the literature to describe
near-threshold resonances is the so-calledFlatté parameterization [97], thatwedenote
as tF (E) and corresponds to

tF (E) = g2/2

MF − i 12Γ (E) − E
, (16.7)

Γ (E) = g2 p(E) , E > 0 ,

Γ (E) = ig2|p(E)| , E < 0 ,

and Γ (E) ≥ 0 for E > 0, which determines that g2 ≥ 0. The Flatté mass MF is the
value of the energy for which the real part of the denominator in tF (E) vanishes. The
energy dependence of Γ (E) is a characteristic aspect of a Flatté parameterization.

We notice here that tF (E) is a particular case of an ERE, with the denominator in
Eq. (16.7) involving up to quadratic powers in p. The relationship between the ERE
parameters a, r and those in the Flatté parameterization g2, MF is

a = − g2

2MF
, (16.8)

r = − 2

g2μ
.

Thus, a Flatté parameterization can only give rise to negative values for the effective
range, r < 0. The scattering length changes of sign with MF and, for fixed coupling
g2, it is infinity forMF = 0, in which case tF (0) becomes infinity too. There is indeed
a qualitatively different behavior of the pole content of tF (E) depending on whether
MF is positive or negative. Solving the roots in p of the denominator of tF (E), we
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can write the latter as

tF (E) = −μg2

(p(E) − p1)(p(E) − p2)
, (16.9)

p1,2 = −i
g2μ

2

(

1 ±
√

1 − 8MF

g4μ

)

, (16.10)

with the subscript 1(2) corresponding to the +(−) sign in front of the square root.
Thus, if MF ≤ 0 then p1,2 are purely imaginary, but with opposite signs. In this way,
	p1 < 0 and it corresponds to a virtual state in the second RS, while 	p2 > 0 and it
gives rise to a bound state (in the first RS). Furthermore, |p1| > |p2| and the virtual
state is deeper than the bound state, which is then closer to threshold. For MF = 0
the bound state has zero binding energy. When MF becomes positive and lies in the
interval 0 < MF < g4μ/8, the second pole turns out as another virtual state closer
to threshold than p1.

For MF > g4μ/8 the two pole positions p1,2 have the same negative imaginary
part but real parts with opposite signs. These are poles corresponding to resonances,
such that in the limit MF → g4μ/8 + ε the real part tends to zero and we would end
with a a double virtual-state pole [98]. This is also a limitation of the Flatté model,
no higher than double poles can arise from this parameterization.

The resonance poles happens in complex conjugate positions in the complex E
plane (E = p2/2μ), which is generally required because of the fulfillment by the
PWAs of the Schwarz reflection principle. For this situation, we read from Eq. (16.7)
that in the limit in which Γ (MF ) 
 MF the nearest pole position to the physical
axis occurs in good approximation at

EF = MF − i
Γ (MF )

2
, (16.11)

where the equation MF − iΓ (E)/2 − E = 0 is solved by iterating it once in Γ (E).
This is the situation corresponding to the narrow resonance case. The other pole at
E = E∗

F in the second RS is further away from the physical or first RS, because the
physical values are obtained in the latter sheet by taking E + iε with ε → 0+. This
upper part of the physical axis is connected smoothly with the negative vanishing
imaginary part in the second RS, which is the region in which the approximate pole
position of Eq. (16.11) lies. Nonetheless, the pole with positive complex imaginary
part is connected with the values of the scattering amplitudes in the complex E plane
below the real axis (where the scattering amplitude is the complex conjugate of the
physical one).

The poles of tF (E) in the second RS of the complex E plane are E1,2 = p21,2/2μ,
with p1,2 given in Eq. (16.10). The corresponding expressions for E1,2 are
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E1,2 = MF − g4μ

4
∓ i

g4μ

4

√
8MF

g4μ
− 1 , MF >

g4μ

8
, (16.12)

There is a variation of the real part of E1,2 with respect to MF due to the self-energy
contribution −g4μ/4. On the one hand, from Eq. (16.12) we identify the resonance
mass, MR , as 
E1,2,

MR = MF − g4μ

4
. (16.13)

On the other hand, twice the modulus of the imaginary part of E1,2 is identified with
the width of the resonance, Γ , given then by

Γ = g4μ

2

√
8MF

g4μ
− 1 . (16.14)

Let us notice that, this expression for Γ is only equal to g2
√
2μMR , cf. Eq. (16.7),

for the case in which MF � g4μ. In this situation the expression for Γ in Eq. (16.11)
also holds in good approximation. Thus, the narrow resonance limit actually requires
that MF � g4μ.

It is also interesting to workout the residues of tF (E) at the pole positions, either
in the complex momentum or energy spaces,

γ2
k = − lim

p→pi
(p − pi )tF (p2/2μ) , (16.15)

γ2
E = − lim

E→EP

(E − Ei )tF (E) , (16.16)

in order. Both types of residues are related by

γ2
E = γ2

k

dE

dp

∣∣∣∣
p1,2

= g2k
p1,2
μ

. (16.17)

Working out the residue γ2
k is straightforward from Eq. (16.9), with the result

γ2
k = ± μg2

p1 − p2
= ± 1

√
8MF
g4μ

− 1
, (16.18)

with+(−) for the pole p1(p2), in this order. Notice that in the narrow resonance case,
MF � g4μ/8, the coupling γ2

k → 0. The opposite situation occurs forMF → g4μ/8
in which case the coupling diverges, because we end with a double virtual-state
pole [98]. Let us recall that this is the starting point for having resonance poles, cf.
Eq. (16.12).
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There is also another interesting limit that corresponds to the case in which the
real part of E1,2 starts becoming positive. According to Eq. (16.12), this occurs for
g4μ/4 < MF < ∞ and then 1 ≥ |γk |2 ≥ 0. Indeed, one can develop a probabilistic
interpretation for |γk |2 when the real part of the pole position in energy of the reso-
nance is larger than zero. According to this interpretation, |γk |2 is the weight of the
two-body continuum component in the composition of the resonance [96, 99].

As noted above, the effective range r for a Flatté parameterization must be nega-
tive, cf. Eq. (16.8). In general terms, a PWA t (p2) from an ERE up to and including
p2, cf. Eq. (11.9), and denoted by tr (E), is given by

tr (E) = 1

− 1
a + 1

2rp(E)2 − i p(E)
. (16.19)

Given the quadratic nature of the denominator in p we also have two poles corre-
sponding to the values

p1,2 = 1

r

(

i ∓
√
2r

a
− 1

)

. (16.20)

We have resonance poles for

r/a > 1/2 and r < 0 . (16.21)

Notice that the imaginary part for a resonance pole should be negative as it lies on
the second RS, and this is why we have required that r < 0. Let us also indicate
that, if the requirements in Eq. (16.21) are applied to the expressions for a and r of a
Flatté parameterization in Eq. (16.8), we have the constraint MF > g2μ/8, which we
already derived as necessary so as to end with resonance poles. It is also interesting
to work out the residues γ2

k of tr (E) for the poles in Eq. (16.20). The corresponding
expression is

γ2
k = 1

rp1,2 − i
= ∓ 1

√
2r
a − 1

. (16.22)

The requirement for 0 ≤ |γ2
k | ≤ 1 implies that

r

a
≥ 1 . (16.23)

Again, if we consider this constraint in terms of the values of a and r as corresponding
to the Flatté parameterization we then have the condition MF ≥ g2μ/4, which is
also needed so that the real part of the resonance energy is positive. Indeed, from
Eq. (16.20) the pole energy E1,2 = p21,2/2μ is given by
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E1,2 = p21,2
2μ

= 1

arμ

(
1 − a

r

)
∓ i

1

r2μ

√
2r

a
− 1 . (16.24)

It is then concluded form the previous expression that r/a > 1 so that 
E1,2 ≥ 0,
and then the criterion for the probabilistic interpretation of |γk |2, as developed in
Refs. [96, 99], can be applied. From Eq. (16.24) we also have for the width of the
resonance (identified as twice the modulus of the imaginary part of E1,2),

Γ = 2

r2μ

√
2r

a
− 1 . (16.25)

FromEq. (16.22) |γk |2 decreases as r/a increases. At this point it is worth connecting
with the values of a and r given by a near-threshold CDD pole, worked out in
Eq. (16.6). From this equation it follows that as MCDD → 0 one is driven towards
values of a and r for which |r/a| increases and, therefore, |γk |2 decreases. This fact
is interpreted as that the resonance when MCDD → 0 becomes purely elementary, in
the sense that the weight in the resonance state of the two-body asymptotic states,
whose scattering is described by tr (E), tends to vanish. Precisely, this is connected
with the standard interpretation for a CDD pole which is typically associated with
the need to introduce explicitly in the equations the exchange of an explicit bare
resonance. In particular, notice that a bare resonance is characterized by two basic
parameters, its mass and coupling to a given state. Similarly, a CDD pole implies
two free parameters, its mass and residue. According to Eq. (16.24) in the limit
MCDD → 0 we have for the resonance poles positions

E1,2 −−−−−→
MCDD→0

−M3
CDD

λ2
∓ i

(−MCDD)7/2
√
2μ

λ2
(16.26)

and we see that the width vanishes faster than the mass (the real part of E1,2) by an
extra factor (−MCDD)1/2. This pole is then characterized by a small mass but even a
much smaller width, so that the narrow resonance limit holds. Indeed, the decoupling
limit of a bare resonance from the two-body continuum requires a zero in the PWA
in order to remove the bare pole of the resonance from t (E). This shows in simple
terms that the weak coupling limit of a resonance and the presence of a CDD pole
are related. We also mention that in order to fulfill the requirements in Eq. (16.21) it
is necessary to have negative MCDD and positive γ in the limit MCDD → 0.

The situation in Eq. (16.26) is opposite to the one when γ2
k → 1, which according

to Eq. (16.22) happens for r/a → 1. In such a case, we infer fromEq. (16.24) that the
mass of the resonance vanishes in this limit and the energy becomes purely imaginary
and finite. Therefore, a resonance that is purely composite of the asymptotic two-
body state whose interaction is given by tr (E) is characterized by having a width
much larger than its mass.

We have shown that the parameterization in Eq. (16.5) is more general than an
ERE up to an including O(p4), because the former accounts for the possibility of
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near-threshold zeroes while the latter loses its meaning for energies beyond the zero
and its convergence is much worse for lower energies. If the parameterization based
on the ERE is restricted to terms up to O(p2) in the p2 expansion one then has a
PWA, Eq. (16.19), that is more general than the one obtained by applying the Flatté
parameterization, Eq. (16.7), because the later can only give rise to negative values
of r .

Another type of parameterization that one usually finds in the literature for describ-
ing near-threshold scattering stems from the use of a dynamical model based on
solving a LS equation with a potential that also includes the exchange of an explicit
bare resonance. This is a definite model that exemplifies the connection between the
exchange of a bare resonance and the appearance of a CDD pole in the PWA, as
commented above. We qualify the scattering due to an energy-independent potential
V (p,p′) as direct scattering between the two-body states in the continuum. On top
of it, the exchange of a bare state is also considered, so that the total potential in the
continuum, VT (p,p′, E), is given by

VT (p,p′, E) = V (p,p′) + f (p) f (p′)
E − E0

. (16.27)

Here E0 is the bare mass of the discrete state that is exchanged. The real function
f (p) is the bare coupling of this state to the two-body states. The scattering amplitude
is given by solving the LS equation in momentum space, cf. Eq. (2.65),

T (p,p′, E) = VT (p,p′, E) +
∫

d3q

(2π)3

VT (p,q, E)T (q,p′, E)

q2/(2μ) − E − iε
. (16.28)

The solution of this IE is clear and intuitive by employing a graphical method. First
consider those diagrams without the exchange of any bare-state propagator. This
is represented in the panel (a) of Fig. 16.1, where the point vertices, each with four
lines attached, indicate the insertion of a factor of V (q,q′). In turn, the circles joining
vertices correspond to the loops with two propagators associated with the two-body
intermediate states in the continuum.The panel (a) of Fig. 16.1 represents the iteration
of V (p,p′) that gives rise to the direct-scattering amplitude TV (p,p′, E), that results
by solving the LS equation of the pure potential problem,

TV (p,p′, E) = V (p,p′) +
∫

d3q

(2π)3

V (p,q)TV (q,p′, E)

q2/(2μ) − E − iε
. (16.29)

Next, we consider those contributions containing at least the exchange of one
bare state, which is represented pictorially by a double line. When iterating these
contributions we have as intermediate states both two particles in the continuum and
extra bare-state exchanges. In this way, we have the standard Dyson resummation for
the bare-state propagator, giving rise to the dressed one, as represented in the panel
(b) of Fig. 16.1. In addition, we also have the dressing of the bare coupling of the
exchanged state to the continuum by the direct scattering of the latter, as represented
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+ + + + · · ·
(a)

+ + + + · · ·
(b)

+ + + + · · ·
(c)

Fig. 16.1 Diagrammatic representation of the solution for T (p,p′, E) in Eq. (16.28). The dia-
grams in a represents the iteration of V (p,p′) without any bare-state exchange, which generates
TV (p,p′, E), Eq. (16.29). The panel b represents the self-energy for getting the dressed propagator.
Those diagrams in panel c correspond to the dressing of the bare coupling due to the self-interactions
(or final-state interactions) between the two-body states in the continuum

in the panel (c) of Fig. 16.1. Thus, the set of diagrams in the panels (b) and (c) of
Fig. 16.1 gives rise finally to the exchange of a particle with dressed propagator and
couplings, in the form

R(p,p′, E) = Θ(p, E)Θ(p′, E)

E − E0 + G(E)
, (16.30)

whereΘ(p, E) represents the dressed coupling and 1/[E − E0 + G(E)] the dressed
propagator.We then conclude that the scattering amplitude T (p,p′, E)must be given
by the sum of TV and R,

T (p,p′, E) = TV (p,p′, E) + Θ(p, E)Θ(p′, E)

E − E0 + G(E)
. (16.31)

First, we are going to show directly that indeed Eq. (16.31) is a solution of the LS
equation in Eq. (16.28), for appropriate functionsΘ(p, E) andG(E). Next, we give a
more general derivation of the solution for the LS equation in terms of the solution of
another LS equation with one less discrete intermediate state. In the present example
for the total potential in Eq. (16.27), this is the scattering amplitude TV (p,p′, E),
which satisfies the LS equation of Eq. (16.29) without the intermediate bare state.

By inserting the tentative solution of Eq. (16.31) into Eq. (16.28), and taking into
account that TV (p,p′, E) fulfills Eq. (16.29), we are then left with the following IE
for R(p,p′, E),
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Θ(p, E)Θ(p′, E)

E − E0 + G(E)
= f (p) f (p′)

E − E0
+

∫
d3q

(2π)3
1

q2/(2μ) − E − iε

[
V (p, q)

Θ(q, E)Θ(p′, E)

E − E0 + G(E)

+ f (p) f (q)

E − E0
TV (q, p′, E) + f (p) f (q)

E − E0

Θ(q, E)Θ(p′, E)

E − E0 + G(E)

]
. (16.32)

We can derive the equations satisfy by G(E) and Θ(p, E) by taking E → E0 and
E → E0 − G(E) in the previous equation. In order, we are then left with

Θ(p′, E)
−1

G(E)

∫
d3q

(2π)3
f (q)Θ(q, E)

q2/(2μ) − E − iε
= f (p′) +

∫
d3q

(2π)3
f (q)TV (q,p′, E)

q2/(2μ) − E − iε
.

(16.33)

Θ(p, E) = − f (p)

G(E)

∫
d3q

(2π)3
f (q)Θ(q, E)

q2/(2μ) − E − iε
+

∫
d3q

(2π)3
V (p,q)Θ(q, E)

q2/(2π) − E − iε
.

These two equations can be made equivalent by identifying1

G(E) = −
∫

d3q

(2π)3

f (q)Θ(q, E)

q2/(2μ) − E − iε
, (16.34)

and requiring that Θ(p, E) satisfies the inhomogeneous IE

Θ(p′, E) = f (p′) +
∫

d3q

(2π)3

f (q)TV (q,p′, E)

q2/(2μ) − E − iε
. (16.35)

Let us notice that this IE can also be rewritten as

Θ(p′, E) = f (p′) +
∫

d3q

(2π)3

TV (p′,q, E) f (q)

q2/(2μ) − E − iε
(16.36)

= f (p′) +
∫

d3q

(2π)3

V (p′,q)Θ(q, E)

q2/(2μ) − E − iε
.

The three IEs in Eqs. (16.35) and (16.36) are equivalent as it is clear by performing
the Neumann series expansion of TV (q,p′, E) from Eq. (16.35), and by solving
iteratively the last IE for Θ(p′, E) in Eq. (16.36). It is straightforward to show that
Eq. (16.32) is fulfilled once Eqs. (16.34) and (16.35) are satisfied. For instance, by
inserting Eq. (16.35) in Eq. (16.32), we can combine the first and third terms on
the rhs of this equation as f (p)Θ(p′, E)/(E − E0). Therefore, we can simplify the
factor Θ(p′, E) on both sides of the resulting equation, which then reads

1In Eq. (16.33) we have renamed E0 as E because there is nothing special on E0, so that it can also
be considered as a variable energy.
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Θ(p, E)

E − E0 + G(E)
= f (p)

E − E0
+

∫
d3q

(2π)3
1

q2/(2μ) − E − iε

[
V (p, q)Θ(q, E)

E − E0 + G(E)

+ f (p) f (q)Θ(q, E)

(E − E0)(E − E0 + G(E))

]
(16.37)

= f (p)

E − E0
+ 1

E − E0 + G(E)

∫
d3q

(2π)3
V (p, q)Θ(q, E)

q2/(2μ) − E − iε
− f (p)G(E)

(E − E0)(E − E0 + G(E))

= f (p)

E − E0 + G(E)
+

∫
d3q

(2π)3
1

q2/(2μ) − E − iε

V (p, q)Θ(q, E)

E − E0 + G(E)
,

which is fulfilled in virtue of Eq. (16.36).
Now, let us give a more general derivation of the separation of the total T -matrix

T (p,p′, E) as in Eq. (16.31). Let the full Hamiltonian H be split as in Chap. 2 in
the free part H0 and the potential V , H = H0 − V , and let |0〉 be an eigenstate of
H0, H0|0〉 = E0|0〉. Let T1(E) be the T matrix that fulfills a LS equation without the
discrete intermediate state |0〉, namely,

T1(E) = V +
∑

n

∫
dW V |Wn〉(Wn − E)−1〈Wn|T1(E) (16.38)

= V + V (H0 − E)−1θT1(E) ,

where θ|0〉 = 0 and this state is then excluded in the sum over intermediate states.
In the previous equation we have also used a compressed notation for the sum over
discrete states and indexes, represented by n (n �= 0), and integration over the contin-
uum ones, represented byW . The corresponding intermediate state is then indicated
by |Wn〉. The Eq. (16.38) can be recast as the IE for the resolvent of the kernel of
a linear IE. For that, we multiply this equation to the right by (H0 − E)−1θ, which
then reads

T1(E)(H0 − E)−1θ = V (H0 − E)−1θ + V (H0 − E)−1θT1(E)(H0 − E)−1θ .

(16.39)

The kernel of this IE is V (H0 − E)−1θ and its resolvent K1(E) is therefore [18]

K1(E) = T1(E)(H0 − E)−1θ . (16.40)

Now,we take into account thatwe can formallywrite from theLS thatT (E) = V (I −
(H0 − E)−1V )−1 = V (H − E)−1(H0 − E). It follows then that the resolvent of the
kernel of the LS equation, as identified in Eq. (16.40), is T (E)(H0 − E)−1 = V (H −
E)−1, cf. Eq. (2.64). The inclusion of θ in Eq. (16.40) is just a projection in the
subspace orthogonal to |0〉.

The full T matrix T (E) satisfies a LS equation in which the state |0〉 contributes
as intermediate state. Thus,
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T (E) = V + V |0〉(E0 − E)−1〈0|T (E) +
∑

n

∫
dWV |Wn〉(Wn − E)−1〈Wn|T (E)

(16.41)

= V + V |0〉(E0 − E)−1〈0|T (E) + V (H0 − E)−1θT (E) .

We can clearly identify from the previous equation the same kernel, V (H0 − E)−1θ,
as in the IE for T1(E), cf. Eq. (16.38). Thus, by considering V + V |0〉(E0 −
E)−1〈0|T (E) as the new independent term, we can write that a solution for T (E)

must satisfy

T (E) = V + V |0〉(E0 − E)−1〈0|T (E) + K1(E)
[
V + V |0〉(E0 − E)−1〈0|T (E)

]

= T1(E) + T1(E)|0〉(E − E0)
−1〈0|T (E) . (16.42)

We now multiply the previous IE to the left by 〈0|, so as to express 〈0|T (E) in terms
of known matrix elements. It then results that

〈0|T (E) = 〈0|T1(E) + 〈0|T1(E)|0〉(E − E0)
−1〈0|T (E) , (16.43)

and then

〈0|T (E) =
[
1 − 〈0|T1(E)|0〉(E0 − E)−1

]−1〈0|T1(E) . (16.44)

Substituting the previous result into Eq. (16.42) we arrive to the final expression for
T (E),

T (E) = T1(E) + T1(E)|0〉
[
E − E0 − 〈0|T1(E)|0〉

]−1〈0|T1(E) . (16.45)

From here we read the full propagator

Δ(E) = 1

E − E0 − 〈0|T1(E)|0〉 , (16.46)

and the coupling squared operator T1(E)|0〉〈0|T1(E). The latter when acting over
the states in the continuum gives rise to the coupling function

Θ(pn, E) = 〈pn|T1(E)|0〉 . (16.47)

The Eq. (16.45) is the general expression of the scatteringmatrix T (E) in terms of the
reduced one T1(E), which results after a bare state |0〉 is removed from the sum over
the intermediate states. In particular, it is clear that T1(E), cf. Eq. (16.38), corresponds
to panel (a) of Fig. 16.1, Δ(E) in Eq. (16.46) arises from the Dyson resummation
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depicted in the panel (b), and the coupling functionΘ(p, E) of Eq. (16.47) originates
from the FSI of the continuum states, drawn in the panel of (c) of the same figure.

The Eq. (16.31) is a particular case of Eq. (16.45) when projected over states in
the continuum. The latter equation can be found in Ref. [100], but not its derivation,
which has been offered here in detail for completeness and also for pedagogical
reasons.

In particular, let us compare the expression in Eq. (16.5), given in terms of a
subtraction constant and a CDD pole, with the model of Ref. [101] that results by
applying Eq. (16.31) with TV (p,p′, E) corresponding to the plain scattering length
approximation,

TV (p,p′, E) = 2π

μ

1

− 1
aV

− ik(E)
, (16.48)

k(E) = √
2μE .

For this particular case indeed TV (p,p′, E) only depends on the energy and we
better denote it simply as TV (E). As a result, the evaluation of the self-energy G(E)

and the dressed coupling Θ(p, E), cf. Eqs. (16.34) and (16.35), respectively, is
straightforward once f (p) is known. Nonetheless, Ref. [101] argues that, since one
is focusing in the low-energy region so that kα 
 1, with α the typical range of the
interaction involved, one could parameterize the whole f (p) by f0 = f (0)/(2π) and
then, the diverging integrals from Eqs. (16.34) and (16.35) are regularized by naive
dimensional analysis as

g̃1(E) =
∫

d3q

(2π)3

f (p)2

q2/(2μ) − E − iε
= f 20 (R + μik) , (16.49)

g̃2(E) =
∫

d3q

(2π)3

f (p)

q2/(2μ) − E − iε
= f0(R

′ + μik) ,

where one expects that the constants R and R′ take values of O(μ/α). It is just
a matter of simple algebra to deduce from Eqs. (16.34), (16.35) and (16.31) the
following expression for the on-shell T matrix (|p| = |p′| = k) [101],

t (E) = −2π

μ

E − E f + 1
2g f γV

(E − E f )(γV + ik) + i 12g f γV k
, (16.50)

where γV = 1/aV , while g f and E f are functions of the original parameters R, R′
and E0 of the model (the interested reader can consult Ref. [101] for the relations).
Notice that g f has the meaning of a bare coupling and E f is the energy at which the
real part of the denominator in Eq. (16.50) vanishes. Redefining the normalization
multiplying t (E) by μ/(2π), we end with a particular case of Eq. (16.5), previously
obtained making use of general analytic and unitarity principles. The parameters in
Eq. (16.5) are related to those in Eq. (16.50) by
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β = −γV , (16.51)

γ = 1

2
g f γ

2
V ,

MCDD = E f − 1

2
g f γV .

However, the reverse is not true and Eq. (16.5) is not a particular case of Eq. (16.50)
from the scatteringmodel of Ref. [101]. As a proof of this statement, let us notice that
from Eq. (16.50) the resulting effective range r can only be negative [98]. Applying
Eq. (16.6) with the particular values of Eq. (16.51) we have

r = − g f γ
2
V

2μ(E f − g f γV /2)2
≤ 0 , (16.52)

because g f = 2μ f 20 (R − RV )2/R2
V and RV = μγV [101].

The situation described in this section is particularly interesting for the scat-
tering of heavy-quark mesons near their thresholds where several states with rather
exotic properties have been found that go beyond well-established quarkonium spec-
troscopy [34, 102]. In these systems the coupling to the pion is relatively suppressed
compared to that in the light-quark sector. For instance, for the P∗P potential worked
out in Ref. [103] (where P∗ is a heavy-quark vector-meson resonance and P is a
heavy-quark pseudoscalar, with the heavy quark being the c or the b), one has that
the strength of the central and tensor components of the one-pion mediated inter-
action is weaker by around a factor g2/(2g2A) � 0.06 compared to that for the NN
interactions. Here g is the coupling for P∗Pπ which is around 0.5 [103]. This makes
that even though there would be a LHC due to pion exchanges, this can be treated
perturbatively and one could neglect its effects in a first approximation. In such a
situation we can then apply the results presented in this section [96, 98].

We have only introduced by pass the interesting matter of quantifying the com-
positeness and elementariness of a pole in the S matrix, since a full discussion on
it should imply to abandon the strict realm of DRs and enter in QFT developments.
For more discussions the interested reader can consult Ref. [14]. For earlier results
one has, e.g., Refs. [96, 98–100, 104–108].



Chapter 17
An Example of Application of Analyticity
in the Nuclear Medium: The Nuclear
Energy Density

In this section, following Ref. [8], we apply DRs to calculate the nuclear-matter
energy density, E , as a function of the Fermi momenta for the protons and neutrons,
ξp and ξn , respectively. Ref. [8] evaluates the contributions to the energy density
of the nuclear medium up to and including NLO in the in-medium chiral counting
developed in Ref. [109]. The different contributions are represented in Fig. 17.1.
Without entering in the details of this in-medium chiral power counting, for what
we refer to the latter reference, we focus our attention here to the contributions
that generally stem from the iteration in the nuclear medium of the two-nucleon
interactions, represented by the diagrams (c.1) and (c.2) in Fig. 17.1. The former
corresponds to the direct NN interactions (Hartree diagrams) and the later to the
crossed ones because of the Fermi statistics (Fock diagrams).

The contribution from the sum over the kinetic energies of the nucleons is given
by the diagram (a) of Fig. 17.1, it is denoted by E1 and its expression is

E1 = 3

10m

(
ρpξ

2
p + ρnξ

2
n

)
, (17.1)

where ρp and ρn are the proton and neutron densities. The latter read in terms of the
corresponding Fermi momentum ξi ,

ρi = 2
∫

d3k

(2π)3
θ(ξi − |k|) = ξ 3

i

3π2
, (17.2)

with i = 1(2) for the proton(neutron). Themagnitude ofE1 is suppressedwith respect
to its chiral order because it is divided by the relatively large nucleon mass. It is a
contribution of recoil nature.

For the analysis of the rest of contributions in Fig. 17.1 we need to discuss the
nucleon propagator in the nuclear medium with four-momentum k, G0(k). It can be
written as [8, 110]
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G0(k) =
(
1 + τ3

2
θ(ξp − |k|) + 1 − τ3

2
θ(ξn − |k|)

)
1

k0 − E(k) − iε

+
(
1 + τ3

2
θ(|k| − ξp) + 1 − τ3

2
θ(|k| − ξn)

)
1

k0 − E(k) + iε
. (17.3)

In this expression E(k) is the nucleon energy, E(k) = √
m2 + k2 (we take the isospin

limit for vacuum dynamics), and the τi are the Pauli matrices. We can also rewrite
equivalently the nucleon propagator in Eq. (17.3) by doing the transformation 1/(x −
iε) = 1/(x + iε) + 2iπδ(x), with x → k0 − E(k). It then reads,

G0(k) = 1

k0 − E(k) + iε
(17.4)

+ i(2π)δ(k0 − E(k))

(
1 + τ3

2
θ(|k| − ξp) + 1 − τ3

2
θ(|k| − ξn)

)
.

The first term is the free part of the propagator and the second one is the in-medium
one. The latter one is also indicated as an in-medium insertion of a baryon propagator,
or simply as an in-medium insertion. In Feynman diagrams an in-medium part of the
nucleon propagator is depicted by a thick line, the free part by a line with a slash, and
the full in-medium propagator is drawn by a plain line. The one-baryon propagator in
Eqs. (17.3) and (17.4) is given in a matrix notation, while its components are denoted
by G0(k)i .

The contribution (b) in Fig. 17.1, E2, arises from the nucleon self-energy due to
a pion loop. It entails only one in-medium insertion, because a contribution with
two in-medium insertions is already accounted for by the diagram (c.2) [due to the
isovector nature of the pion–nucleon coupling there is no one-pion loop (c.1)-like
diagram for this case]. We denote by 
π

f the nucleon self-energy in vacuum by a
pion loop, which expression reads [8, 111]


π
f (k) = 3g2Ab

32π2 f 2π

[

−ω + √
b

(

i log
ω + i

√
b

−ω + i
√
b

+ π

)]

− 3g2Am
3
π

32π f 2π
, (17.5)

with gA � 1.26 the axial coupling of the nucleon related by chiral symmetry (par-
tially conserved axial-vector current) to the pion–nucleon coupling constant. In the
previous equation ω = k0 is the nucleon energy once its rest mass is discounted and
b = m2

π − ω2 − iε. The last term in Eq. (17.5) is subtracted because the self-energy
is zero for the ω = 0, which corresponds to the vacuum nucleon mass at rest. Since
in the diagram (b) of Fig. 17.1 the nucleon energy is a kinetic one, with ξi � m, it
follows that this diagram is indeed a small contribution to the total energy density in
the medium.

For evaluating the contributions (c.1) and (c.2) of Fig. 17.1we need the in-medium
NN interactions, that are depicted by the iteration of the zig-zag lines. For an in-
medium NN PWA we use Eq. (7.2) in terms of N , that only has LHC, and the
two-nucleon unitary function, that in the nuclear medium corresponds to L I3

10 instead
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Vρ = 1

O(p5)

LO

(a) (b)

Vρ = 2

O(p6)

NLO

· · ·

(c.1)

· · ·

(c.2)

Vρ = 2

O(p6)

NLO

+

Fig. 17.1 Set of diagrams for the evaluation of the energy per baryon in nuclear matter up to an
including two-nucleon interactions in the nuclear medium. In-medium insertions are represented
in the figure by thick solid lines, and the thin ones correspond to the full baryon propagator G0(k),
cf. Eq. (17.4). The diagram (a) is the kinetic energy, (b) represents the nucleon self-energy due to
a pion loop [it involves one in-medium and one free baryon propagator (solid line with a dash), so
as not to double count with the diagrams in (c)]. Finally, diagrams (c.1) (Hartree) and (c.2) (Fock
diagrams) are the contributions due to the direct and exchange two-nucleon interactions, in order,
with at least two in-medium interactions in the baryon propagators. Its evaluation [8], by making
use of a partial-wave expansion and the analytical properties of the PWAs in the nuclear medium,
is the main point of the present section

of g(s). Contrarily to the vacuumcase, the in-mediumunitarity loop function function
also depends on the total CM three-momentum of the two nucleons. In terms of the
four-momenta k1 and k2 of the two nucleons we introduce the four-momenta a and
p defined as

a = 1

2
(k1 + k2) , (17.6)

p = 1

2
(k1 − k2) .

We also use below the quantity

A = 2ma0 − a2 . (17.7)

The two-nucleon unitarity function depends also on the total charge of the two
nucleons because the different values that theFermimomenta of protons andnucleons
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could have. This is indicated by the superscript I3 in L I3
10 which corresponds to the

total third component of the isospin of the NN system. The explicit expression for
L I3
10 is [8]

L I3
10 = i

∫
d4k

(2π)4

[
θ(ξ1 − |a − k|)

a0 − k0 − E(a − k) − iε
+ θ(|a − k| − ξ1)

a0 − k0 − E(a − k) + iε

]

(17.8)

×
[

θ(ξ2 − |a + k|)
a0 + k0 − E(a + k) − iε

+ θ(|a + k| − ξ2)

a0 + k0 − E(a + k) + iε

]
.

Performing explicitly the integration over k0 we have for this loop function

L I3
10 = m

∫
d3k

(2π)3

[
θ(|a − k| − ξ1)θ(|a + k| − ξ2)

A − k2 + iε
(17.9)

−θ(ξ1 − |a − k|)θ(ξ2 − |a + k|)
A − k2 − iε

]
,

in which the first term between square brackets is the free particle-free particle part
(in the following we drop the adjective “free” as usual in the literature) and the last
one is the so-called hole–hole part (because it involves two insertions of Fermi seas
due to the Heaviside functions in the numerator). The integration over k can also be
performed algebraically and the explicit expressions can be found in the Appendix
C of Ref. [8]. It is clear from Eq. (17.9) the dependence of L I3

10 on I3 and the CM
variables contained in a and A. In this respect, notice that in the CM frame and
for on-shell k1 and k2, it follows from Eq. (17.7) that A = p2. The Eq. (17.9) also
establishes the appearance of the RHC when the real part of any of its denominators
vanishes. The resulting imaginary part has the same sign from both contributions
because of the minus sign in front of the hole–hole term. At LO in the in-medium
chiral counting of Ref. [109] the matrixN is the same as the one already determined
in vacuum. In general its characteristic facet at any order in the chiral expansion,
as expressed above, is that it has no RHC, being the latter contained entirely in
L I3
10. Employing the notation of Ref. [8] we denote the former by NJ I (�̄, �, S) and

similarly for the PWA, T I3
J I (�̄, �, S). Here, J is the total angular momentum, S the

total spin, �̄ the final orbital angular momentum and � the initial one, always referred
to the initial/final NN systems (themeaning of the different labels is in harmonywith
the notation introduced in Chap. 2). After this preamble, the in-medium expression
equivalent to Eq. (7.2) is

T I3
J I (�̄, �, S;p2, a2, A) =

[
N I3

J I (�̄, �, S;p2, a2, A)−1 + L I3
10(a

2, A)
]−1

. (17.10)

It is worth clarifying that the total isospin I of a NN state is a good quantum number
because the L I3

10 function is symmetric under the exchange of the two particles, cf.
Eq. (17.8). This is a general rule because the I3 = 0 operators are symmetric under
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the exchange p ↔ n, and therefore the symmetric properties under the transposition
of the two particles in the I3 = 0 NN state are not altered by the iterative interacting
process.

Let us come back to evaluate the diagrams (c.1) and (c.2) in Fig. 17.1. Its sum is
denoted by E3 and it is given by

E3 = 1

2

∑

σ1,σ2

∑

α1,α2

∫
d4k1
(2π)4

d4k2
(2π)4

eik
0
1ηeik

0
2ηG0(k1)α1G0(k2)α2 (17.11)

× T σ1σ2
α1α2

(p, a, A) .

In this equation η → 0+ at the end of the calculation. It is introduced so as to enforce
that at least two in-medium insertions get involved in the calculation [8, 110]. The
NN scattering amplitude from the initial state |k1, k2, σ1σ2, α1α2〉S , cf. Eq. (2.55),
to the same final one is indicated in the previous equation by T σ1σ2

α1α2
(p, a, A). The

two states are the same because one has to take the trace of the scattering amplitudes
when calculating the self-interactions of the system giving rise to E3. As in Chap. 2,
the labels σi and αi refer to the third components of the spin and isospin of the
i th nucleon, in order. Since Eq. (17.11) is already a NLO contribution we can use
for its evaluation the LO NN PWAs amplitudes, by employing Eq. (17.10) with N
calculated as in vacuum. In such a case, NJ I (�̄, �, S) is a function only of p2, the
momentum transfer squared, cf. Eqs. (17.6), and (17.10) becomes

T I3
J I (�̄, �, S;p2, a2, A) =

[
N I3

J I (�̄, �, S;p2)−1 + L I3
10(a

2, A)
]−1

. (17.12)

Once the integration variables k1 and k2 are changed by A, a and p in Eq. (17.11), it
is then possible to perform straightforwardly the integration over p0. Notice that the
only dependence on p0 in the integrand of Eq. (17.11) is in the propagators G0(ki )αi .
It results,

∫
dp0

2π
G0(a + p)α1G0(a − p)α2 =

− i
[ θ(|a + p| − ξα1)θ(|a − p| − ξα2)

2a0 − E(a + p) − E(a − p) + iε
− θ(ξα1 − |a + p|)θ(ξα2 − |a − p|)

2a0 − E(a + p) − E(a − p) − iε

]
.

(17.13)

For convenience we also introduce the splitting of the particle–particle contribution
in the form

θ(|a + p| − ξα1)θ(|a − p| − ξα2) = [1 − θ(ξα1 − |a + p|)][1 − θ(ξα2 − |a − p|)]
= 1 − θ(ξα1 − |a + p|) − θ(ξα2 − |a − p|) + θ(ξα1 − |a + p|)θ(ξα2 − |a − p|) .

(17.14)



130 17 An Example of Application of Analyticity in the Nuclear Medium …

It follows from Eqs. (17.13) and (17.14) that the result of the integration in p0 of
Eq. (17.11) can be written as

E3 = −4i
∑

σ1,σ2

∑

α1,α2

∫
d3a

(2π)3

d3 p

(2π)3

d A

2π
ei(A+a2)ηT σ1σ2

α1α2
(p, a, A)

[
1

A − p2 + iε

− θ(ξα1 − |a + p|) + θ(ξα2 − |a − p|)
A − p2 + iε

− 2π iδ(A − p2)θ(ξα1 − |a + p|)θ(ξα2 − |a − p|)
]

. (17.15)

Here we have expressed all the explicit denominators having +iε by employing the
trick explained just before Eq. (17.4).

The next step is to perform the integration over A, which actually implies to
compute

∫ ∞

−∞
d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) , (17.16)

since the last term in the integrand of Eq. (17.15) is proportional to δ(A − p2) and the
integral in A is then trivial. We proceed with Eq. (17.16) by enclosing the integration
contour in A with a semicircle at infinity in the half complex A plane with positive
imaginary part, by taking advantage of the factor ei Aη with η → 0+. As it is evident
from Eq. (17.9), the particle–particle contribution gives rise to a cut in A with a
slightly negative imaginary part, so that it is not within the domain that results after
closing the integration contour. Similarly the denominator in Eq. (17.16) gives rise to
a pole singularity in A with also a negative imaginary part. However, the hole–hole
part in L I3

10(a, A) generates a cut in A than runs slightly above the real axis with a
positive imaginary part. This cut is of finite extent because of the Heaviside functions
in the hole–hole part and extends from A1(|a|) up to A2(|a|) as depicted in Fig. 17.2
by the dashed line (explicit expressions for these limits are given in Eq. (C.19) of
Ref. [8].)1

In order to go on and perform the integration in A we proceeds as follows. We
consider two closed contours in the form stated above, but one of them runs above
the hole–hole cut and the other below it. The former integration contour is denoted
by CI ′ , the latter by CI , and both are represented in Fig. 17.2. We have the following
preliminary results,

1These limits depend on I3, although this is not explicitly written, since no ambiguity arises once
the partial-wave expansion of the T matrix is performed below.
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Fig. 17.2 Integration
contours used to evaluate the
A integration in Eq. (17.16).
The dashed line is the RHC
due to the hole–hole
contribution in L I3

10(a
2, A)

∞

CI

CI

∫ ∞

−∞
d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) =

∮

CI

d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) ,

∮

CI ′

d A

2π

ei Aη

A − p2 + iε
T σ1σ2

α1α2
(p, a, A) = 0 . (17.17)

Therefore, the subtraction of the two integrals gives

∮

CI

d A

2π

ei Aη

A − p2 + iε
−

∮

CI ′

d A

2π

ei Aη

A − p2 + iε

=
∫ A2(|a|)

A1(|a|)
d A

2π

T σ1σ2
α1α2

(p, a, A) − T σ1σ2
α1α2

(p, a, A + 2iε)

A − p2 + iε
. (17.18)

Notice that this result is also a consequence of deforming the integration contour CI

for avoiding the cut.
An interesting result in Ref. [8] is the derivation of the partial-wave expansion of

the NN scattering amplitude in the nuclearmedium, despite its dependence on a. This
is a generalization of the results in Chap. 2. The scattering amplitude T σ1σ2

α1α2
(p, a, A)

in terms of the in-medium NN PWAs, by making use of Eq. (A.8) of Ref. [8], reads

T σ1σ2
α1α2

= 4π
∑

(σ1σ2s3|s1s2S)2(m ′s3μ|�′SJ )(ms3μ|�SJ )(α1α2i3|τ1τ2 I )2 (17.19)

× Ym ′
�′ (p̂′)Ym

� (p̂)∗χ(S�′ I )χ(S�I )T I3
J I (�

′, �, S) .

For NN scattering τ1 = τ2 = s1 = s2 = 1/2 and the symbol χ(S�I ) arises because
Fermi statistics and it is

χ(S�I ) = 1 − (−1)�+S+I

√
2

=
{√

2 � + S + I = odd ,

0 � + S + I = even .
(17.20)

This factor accounts for the unitary normalization introduced in Chap. 2.
The sum over the isospin and spin indices is straightforward,
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∑

α1α2

(α1α2i3|τ1τ2 I )2 = 1 , (17.21)

∑

σ1σ2

(σ1σ2s3|s1s2S)2 = 1 .

We continue next with the sum over s3 and the third components of orbital angular
momentum, which can also be summed in a close form as

∑

m ′,m,s3

(m ′s3μ|�′SJ )(ms3μ|�SJ )Ym ′
�′ (p̂)Ym

� (p̂)∗ = δ�′�
2J + 1

4π
. (17.22)

To arrive to this result we have used the following symmetry property of the Clebsch–
Gordan coefficients [6],

(m1m2m3| j1 j2 j3) = (−1)m2+ j2

(
2 j3 + 1

2 j1 + 1

)1/2

(−m2m3m1| j2 j3 j1) . (17.23)

This property allowsus towrite the sumofClebsch–Gordan coefficients inEq. (17.22)
as

∑

s3,μ

(m ′s3μ|�′SJ )(ms3μ|�SJ ) = 2J + 1√
(2� + 1)(2�′ + 1)

∑

s3,μ

(−s3μm
′|S�′ J )

× (−s3μm|S�J ) = 2J + 1

2� + 1
δ�′�δm ′m ′ . (17.24)

Notice that we could have included a sum over μ already in Eq. (17.22), because μ

is fixed by the properties of the Clebsch–Gordan coefficients. Finally, the result in
Eq. (17.22) follows by employing the addition theorem of the spherical harmonics

1

2� + 1

∑

m

|Ym
� (p̂)|2 = 1

4π
. (17.25)

Thus, the sum over the PWAs for calculating E3 simplifies to

∑

α1,α2

∑

σ1,σ2

T σ1σ2
α1α2

(p, a, A) =
∑

I,I3,J,�,S

(2J + 1)χ(S�I )2 T I3
J I (�, �, S;p2, a2, A) .

(17.26)

In the rest of this section we suppress the arguments (�, �, S) in T I3
J I and N I3

J I for
brevity in the writing. We now perform the difference between PWAs needed to
implement Eq. (17.18),
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T I3
J I (p

2, a2, A) − T I3
J I (p

2, a2, A + i2ε) =
[
N I3

J I (p
2) + L I3

10(a
2, A)

]−1

−
[
N I3

J I (p
2) + L I3

10(a
2, A + i2ε)

]−1 =
[
N I3

J I (p
2) + L I3

10(a
2, A)

]−1

×
[
L I3
10(a

2, A + i2ε) − L I3
10(a

2, A)
] [

N I3
J I (p

2) + L I3
10(a

2, A + i2ε)
]−1

. (17.27)

It follows from Eq. (17.9) that the difference L I3
10(a

2, A + i2ε) − L I3
10(a

2, A) is due
entirely to the hole–hole part and it gives

L I3
10(a

2, A + i2ε) − L I3
10(a

2, A) = −m
∫

d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
(

1

A − q2 + iε
− 1

A − q2 − iε

)

= i2πm
∫

d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)δ(A − q2) . (17.28)

Now, we come back to Eq. (17.15) and from Eqs. (17.26), (17.27) and (17.28) it
follows that after performing the integration in A, cf. Eq. (17.18), we can write
Eq. (17.15) as

E3 = −4
∑

I,I3,J,�,S

(2J + 1)χ(S�I )2
∫

d3a

(2π)3
d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
(
T I3
J I (q

2, a2, q2) + m
∫

d3 p

(2π)3
1 − θ(ξα1 − |a + p|) − θ(ξα2 − |a − p|)

p2 − q2 − iε

×
[
N I3

J I (p
2)−1 + L I3

10(a
2, q2)

]−1[N I3
J I (p

2)−1 + L I3
10(a

2, q2)∗
]−1

)

(�,�,S)

. (17.29)

This is our final equation for E3. In this equation we have dropped the exponent
eia

2η since the integration in |a| is bounded because of the product of the Heaviside
functions θ(ξα1 − |a + q|)θ(ξα2 − |a − q|). Related to this factor, we have also writ-
ten that L I3

10(a
2,q2 + i2ε) = L I3

10(a
2,q2)∗, because only the hole–hole part in this

functions enters, cf. Eq. (17.9). The rest of sums and integrations in Eq. (17.29) are
performed numerically in Ref. [8].

It is also of pedagogical interest to show explicitly followingRef. [8] that�E3 = 0,
as it must be because E is a real quantity. The imaginary part of the second term
between the round brackets in Eq. (17.29) stems only from the denominator of
1/(p2 − q2 − iε) → iπδ(p2 − q2). We then have
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�E3 = −4
∑

I,I3,J,�,S

(2J + 1)χ(S�I )2
∫

d3a

(2π)3
d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
(

�T I3
J I (q

2, a2, q2) + m
∫

d3 p

(2π)3

[
1 − θα1(ξα1 − |a + p|) − θα2 (ξα2 − |a − p|)]

× πδ(p2 − q2)T I3
J I (p

2, a2,q2)T I3
J I (p

2, a2, q2)∗
)

(�,�,S)

. (17.30)

It is clear from Eq. (17.12) (with A = q2) that the imaginary part of T I3
J I (q

2, a2,q2)

arises from the one of L I3
10(a

2,q2), which in turn is only due to the hole–hole part
because of the product of the two Heaviside functions on the rhs of Eq. (17.30).
Substituted the expression for �T I3

J I into the previous equation one finds

�E3 = −4
∑

I,I3,�,S

(2J + 1)χ(S�I )2
∫

d3a

(2π)3

d3q

(2π)3
θ(ξα1 − |a + q|)θ(ξα2 − |a − q|)

×
∫

d3 p

(2π)3
mπδ(p2 − q2)

[
1 − θ(ξα1 − |a + p|) − θ(ξα2 − |a − p|)

+ θ(ξα1 − |a + p|)θ(ξα2 − |a − p|)]T I3
J I T

I3
J I

∗∣∣∣
(�,�,S)

= 0 . (17.31)

To conclude that this expression is zero, we have taken into account from Eq. (17.14)
that the function between square brackets in the previous equation is only the particle–
particle part, given by θ(|a + p| − ξα1)θ(|a − p| − ξα2). But since |p| = |q| there is
no way that this product of step functions can be satisfied because a and q are already
constrained to satisfy the product of the two Heaviside functions in the first line of
Eq. (17.31). Thus, this equation is zero.



Appendix A
Numerical Method to Solve
the Coupled Linear IEs in Eq. (15.23)

We now discuss briefly how Ref. [93] proceeds to solve numerically the IEs of
Eq. (15.23). It also introduces a general interesting method to deal with the Cauchy’s
principal value prescription, which is very often found in actual applications of DRs.
This method was exposed originally in the Appendix C of the eprint version [112].

To explain the method it is enough to consider the reduction of Eq. (15.23) to the
uncoupled case. After using the well-known result that under an integration over x
one has that 1/(x ± iε) = Principal Value ± iπδ(x), we write

�F(s) = 1

π
−
∫ ∞

sth

f (s ′)ds ′

s ′ − s
, (A.1)

f (s) = �F(s) = ρ(s)F(s)T (s)∗ .

Here sth = m2
K + m2

π and the integral symbol with the dash refers to the Cauchy’s
principal value. The integration is split in two pieces by introducing scut > sth, such
that the first integral comprises the energy interval in which the form factor has more
structure (and therefore it requires a higher numerical load). Next, we perform a
change of variables to x so that the range of integration in both integrals is [0, 1].
For the first integral s ′ ∈ [sth, scut] the variable x is defined as

x =
√

s ′ − sth
scut − sth

. (A.2)

For the second integral s ′ ∈ [scut,∞) the new integration variable z is

z = s ′ − sth
s ′ − b sth

, (A.3)

with b < 1. This parameter is introduced to test the numerical stability of the method
as well as for increasing the numerical convergence for reaching the result. In this
way, Eq. (A.1) is recast as
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�F(s) = −
∫ 1

0

2x ′ f (s ′(x ′))dx ′

x ′2 − x2
+ −

∫ 1

0

(1 − z′) f (s ′(z′))dz′

(1 − z′)(z′ − z)
. (A.4)

Now, let us discuss the numerical algorithm to perform the Cauchy’s principal
value integrals. We employ the Gaussian quadrature algorithm to integrate the pro-
totype integral

I (x) =
∫ 1

−1

f (y)dy

x − y
, (A.5)

where the weight function ω(y) = 1/(x − y) is the appropriate one for the integral
in Eq. (A.1). First we have to find a set of orthogonal functions un(y; x) given the
weight function, such that

〈un|um〉 =
∫ 1

−1

un(y; x)um(y; x)dy
x − y

= 0 . (A.6)

One can easily check that a set of orthogonal function is given by

un(y; x) = Pn(y) − Qn(x)

Qn−1(x)
Pn−1(y) , (A.7)

where the Pn(y) are the Legendre polynomials and the Qn(x) are the associated
Legendre function of the second kind (Chap.7.22 of Ref. [113]). The normalization
can be also easily found with the same techniques,

〈un|un〉 = 2Qn(x)un(x; x) . (A.8)

For implementing a Gaussian algorithm of order N for evaluating I (x), the set
of points in which f (y) is evaluated to perform the integrals corresponds to the
zeroes of uN (y; x) (with respect to the argument y). This problem in principle gets
complicated because of the fact that the orthogonal function uN (y; x) depends also
on x . To avoid that, one first evaluate the integral along the points xi that are zero of
QN (x), QN (xi ) = 0. For such values the orthogonal function is just the Legendre
polynomial. The weights in the numerical integral

I (xi ) =
N∑
j=1

ω j (xi ) f (y j ) , (A.9)

can be evaluated from a generic formula given in the Numerical Recipes [114], with
the result

ω j (xi ) = 2(1 − y2j )

N (xi − yi )

QN−1(xi )PN (xi )

PN−1(y j )2
. (A.10)
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The integral I (x) for other values of x (x 
= xi ) can be obtained by employing
interpolating algorithms [114]. It is also worth indicating that the zeros of PN (x), x ∈
[−1, 1], can also be found making use of standard algorithms [114]. The finding of
the N + 1 roots of QN (x) get simplified if one takes into account that they interleave
the roots of PN (x).

Let us indicate that in order to calculate the integral for a generic interval z ∈
(a, b), with the integration variable z, one can make the linear transformation y =
(2z − a − b)/(b − a), so that y ∈ [−1, 1]. Finally, in the Appendix D of Ref. [112]
one can find a Fortran implementation of this method which is based on the Gauss–
Legendre algorithm that can be found in the Numerical Recipes [114].
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