
Chapter 8
Performance Analysis Strategies
for Software Variants and Versions

Thomas Thüm, André van Hoorn, Sven Apel, Johannes Bürdek, Sinem Getir,
Robert Heinrich, Reiner Jung, Matthias Kowal, Malte Lochau, Ina Schaefer,
and Jürgen Walter

T. Thüm (�) · M. Kowal · I. Schaefer
Institute for Software Engineering and Automotive Informatics, TU Braunschweig, Brunswick,
Germany
e-mail: t.thuem@tu-braunschweig.de; m.kowal@tu-braunschweig.de;
i.schaefer@tu-braunschweig.de

A. van Hoorn
Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
e-mail: van.hoorn@informatik.uni-stuttgart.de

S. Apel
Chair of Software Engineering I, Department of Informatics and Mathematics, University
of Passau, Passau, Germany
e-mail: apel@uni-passau.de

J. Bürdek · M. Lochau
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik,
Fachgebiet Echtzeitsysteme, Darmstadt, Germany
e-mail: johannes.buerdek@es.tu-darmstadt.de; malte.lochau@es.tu-darmstadt.de

S. Getir
Institut für Informatik, Johann-von-Neumann-Haus, Humboldt-Universität zu Berlin, Berlin,
Germany
e-mail: getir@informatik.hu-berlin.de

R. Heinrich
Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
e-mail: robert.heinrich@kit.edu

R. Jung
Software Engineering Group, Department of Computer Science, Kiel University, Kiel, Germany
e-mail: reiner.jung@email.uni-kiel.de

J. Walter
Chair of Computer Science II, Universität Würzburg, Würzburg, Germany
e-mail: juergen.walter@uni-wuerzburg.de

© The Author(s) 2019
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_8

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_8&domain=pdf
mailto:t.thuem@tu-braunschweig.de
mailto:m.kowal@tu-braunschweig.de;
mailto:i.schaefer@tu-braunschweig.de
mailto:van.hoorn@informatik.uni-stuttgart.de
mailto:apel@uni-passau.de
mailto:johannes.buerdek@es.tu-darmstadt.de
mailto:malte.lochau@es.tu-darmstadt.de
mailto:getir@informatik.hu-berlin.de
mailto:robert.heinrich@kit.edu
mailto:reiner.jung@email.uni-kiel.de
mailto:juergen.walter@uni-wuerzburg.de
https://doi.org/10.1007/978-3-030-13499-0_8

176 T. Thüm et al.

Adaptation is heavily used for today’s software in two dimensions. First, developers
frequently release new versions of software to meet new or changed requirements
(aka. software evolution [BR00]). Second, developers simultaneously develop vari-
ants of software to meet contradictory requirements (aka. configurable software or
software product lines [CE00, Ape+13]). While versions typically replace existing
versions, variants co-exist to meet certain requirements each. Both variants and
versions give rise to software variation. Performance—capturing software quality
properties with respect to timeliness and resource usage—is of particular relevance
to software design, operations, and evolution. It has a major impact on key business
indicators. Consequently, during the software’s life cycle, developers and operators
need to be aware of performance.

Over the last decades, the community has developed methods, techniques, and
tools to analyse performance in different design and operations stages, combining
model-based and measurement-based approaches [WFP07, Bru+15]. Figure 8.1
depicts the artefacts and activities being involved in model-based performance
analysis in combination with measurements. architectural models for the software
versions and variants, for example using Unified Modeling Language (UML), can be
augmented by performance-relevant information, for example using UML profiles
such as MARTE [Obj11]. These models can be used to predict performance indices
of the respective versions and variants, for example CPU utilisation and response
times. Two common approaches are used for prediction [CMI11]: (1) simulating
the models and (2) transforming the architectural models to analytical models, for
example queuing networks or Petri nets and solving or simulating these models
using respective tools. Once implementation artefacts become available, perfor-
mance indices can be obtained by measurements, for example using profilers or
application performance management (APM) tools [Heg+17]. Once measurements
are available from implementation artefacts, performance models can also be

Fig. 8.1 Performance engineering taxonomy including alternative performance evaluation meth-
ods

8 Performance Analysis Strategies 177

extracted automatically. These extracted models can also be used during runtime,
example to react dynamically to changing environmental conditions, such as
changing workload characteristics [CMT16].

Even though variants and versions are quite different in their purpose, their
software variation challenges software analyses in a similar manner. In particular, it
is often infeasible to analyse all variants and all versions of a software, especially
for performance analyses, because of several reasons. First, even when applied
automatically, performance analyses are time-consuming due to the necessity to
execute the software under test using different workloads [WFP07]. Second, the
sheer number of variants and versions of today’s software renders it infeasible to
analyse all of them separately due to combinatorial explosion [Thü+14a]. Even
though variation is often low between certain variants and versions, a small change
can have a huge impact on the performance of the overall software. Hence, we
cannot just measure the performance of one variant or version and, thus, need
strategies to systematically cope with software variation.

Ideally, the performance of software variation would be analysed with an auto-
mated process that incorporates the knowledge of previous performance analyses
steps. We envision a process in which a stakeholder identifies a performance-
related concern. Then a magic box automatically selects a strategy to answer the
concern, including a mixture of predictions, as well as offline and online tests. When
applying this strategy, results are not only propagated to the stakeholder but also to
a knowledge base. While the stakeholder acts on the results by evolving the system
or refining concerns, the growing knowledge base is used by the magic box in the
next iteration.

In this chapter, we report on our experiences with performance evaluation
strategies for software variation. We elaborate on strategies to efficiently analyse the
performance of software variants in Sect. 8.1 and of software versions in Sect. 8.2.
We are using both case studies introduced in Chap. 4 for illustration. Section 8.1 is
exemplified using the Pick-and-Place Unit (PPU) case study, while Sect. 8.2 uses
the Common Component Modeling Example (CoCoME) case study. We conclude
our discussions by giving a unified view over performance analysis strategies for
software variation and a discussion of future challenges in Sect. 8.3.

8.1 Analysis Strategies for Software Variants

Numerous strategies are known to analyse software variants [Thü+14a]. However,
not all of them are applicable for performance evaluation, as some strategies can be
used only for static analysis and not to actually run the software variants. We report
on our experience in applying complementary strategies to analyse the performance
of software variants. In Sect. 8.1.1, we elaborate on approaches that try to focus
on the most relevant variants by sampling the large variant space. As we use test
cases to measure the performance of variants and as manually creating those is
laborious, we discuss how to generate test suites that cover all variants in Sect. 8.1.2.

178 T. Thüm et al.

Fig. 8.2 Excerpt of the feature model of the PPU

Finally, in Sect. 8.1.3, we discuss a strategy to predict the performance of variants
analytically without the need to measure the performance of every variant. That is,
the techniques discussed in Sects. 8.1.1 and 8.1.2 may or may not be combined,
whereas the technique presented in Sect. 8.1.3 is applied in isolation.

Pick-and-Place Unit as a Motivating Example A feature model typically has
a tree-like graphical representation depicting the hierarchically arranged set of
features. Relationships in the feature model regarding parent and child features
are expressed with the common notation of mandatory, optional features and
or-, alternative groups and their underlying semantics (cf. legend in Fig. 8.2 for
the graphical representation) [Kan+90a, CE00]. Abstract features do not contain
realisation artefacts and are only used for structural purposes [Thü+11]. A feature
model of the PPU case study system, as introduced in Chap. 4, is shown in Fig. 8.2.
The PPU can process up to three different kinds of workpieces (WPs): White, Black,
and Metallic workpieces. A Stack stores all workpieces before they are processed
by the Crane. Basic and Crane are two alternative implementations of the crane
behaviour differing in the processing times of workpieces. In addition, the optimised
implementation requires a stamping module, making the metallic workpiece type
necessary. Finally, all workpieces are transported to the Slide, awaiting packaging
or further processing in other automation systems. For illustration, we describe three
selected variants in more detail in the following.

Variant 1 is the minimal system configuration consisting of the concrete features
Stack, Basic, Slide, and Black. The Black workpieces are transported from the
Stack to the Slide by the Crane. This process is repeated until no more workpieces
are present.

Variant 5 can distinguish between two different types of workpieces (Metallic or
Black). While Black workpieces are treated as in Variant 1, metallic pieces take
a different route through the system. They are transported by the Crane to the
new stamp component (i.e. SPressure). After the stamp process is finished, these
pieces are also transported to the Slide.

Variant 9 is identical to the previous variant on the hardware level. The crane
implementation is optimised (cf. feature Optimised) as the crane no longer waits
at the stamp for the stamping process to be finished. Instead, the crane moves

8 Performance Analysis Strategies 179

back to the stack to pick up the next black workpiece (if present) and transports
it to the slide. Afterwards, the crane fetches the stamped workpiece and transports
it to the slide.

8.1.1 Sample-Based Analysis of Software Variants

As said previously, configurable systems may have configuration spaces of substan-
tial size, so identifying which variant performs best in a concrete setting is difficult.
In the worst case, the size of the configuration space of a configurable system is
exponential in the number of features. While, in practice, the actual number of
desired or relevant software variants is considerably smaller, typically, configuration
spaces of real-world systems are still huge [Ber+13]. In fact, even enumerating all
valid variants—not to speak of performing any measurements—is often computa-
tionally intractable. Due to the small size of our example, enumerating all variants
is possible though, as we illustrate in Table 8.1.

To learn about the performance behaviour of individual variants, practitioners
resort typically to sampling. The idea is not to analyse all variants of a given
configurable system individually, but just a sample set, which is smaller and can
be analysed in feasible time. For the purpose of our example, let us assume that
we analyse variants 1, 4, and 9 (cf. Table 8.1). The key idea of a sampling-based
approach is not just to work with the performance data of the sample set but to
use them also to learn about the performance behaviour of other variants not in
the sample set, say variants 7 and 10, in our example. In other words, we want to
predict the performance behaviour of all (or some) variants of a system based on the
performance measurements we did on a sample set.

Sampling Strategies There are various strategies to select a proper sample set
and to generalise the measurements to the other variants of the system. Let us
illustrate some key strategies here by means of the example of Table 8.1, which
includes a performance value for every variant of the PPU case study. An interesting
observation is that there are only three different kinds of variants: variants that can
process 0.12 workpieces/s, 0.03 workpieces/s, and 0.09 workpieces/s. Interestingly,
in our sample set (variants 1, 4, 9), there is no variant with the value 0.09. While
this is not necessarily a problem, we will we discuss it shortly as it illustrates that
selecting variants for the sample set is a crucial step.

In the literature, there are several strategies for selecting sample sets [Med+16].
One notable strategy—beyond mere random sampling—is t-wise coverage sam-
pling [JHF12]. The idea is that the variants of the sample set should contain or cover
certain features and combinations of features. Feature-wise (t = 1) sampling means
essentially that every feature of the configurable system should be selected in, at
least, one variant and deselected in, at least, one variant of the sample set. In our
exemplary sample set, this is not the case as, for example, feature APressure is not
in any of its variants. In contrast, sets 1, 11, and 12 are a valid feature-wise sample

180 T. Thüm et al.

Table 8.1 Variants of the pick-and-place unit and their performance values

Variant Concrete features Performance (in workpieces/s)

1 Stack, Basic, Slide, Black 0.12

2 Stack, Basic, Slide, White 0.12

3 Stack, Basic, Slide, Black, White 0.12

4 Stack, Basic, Slide, Metallic, SPressure 0.03

5 Stack, Basic, Slide, Black, Metallic, SPressure 0.09

6 Stack, Basic, Slide, White, Metallic, SPressure 0.03

7 Stack, Basic, Slide, Black, White, Metallic,
SPressure

0.09

8 Stack, Optimised, Slide, Metallic, SPressure 0.03

9 Stack, Optimised, Slide, Black, Metallic,
SPressure

0.12

10 Stack, Optimised, Slide, White, Metallic,
SPressure

0.03

11 Stack, Optimised, Slide, Black, White, Metallic,
SPressure

0.12

12 Stack, Basic, Slide, Metallic, APressure 0.03

13 Stack, Basic, Slide, Black, Metallic, APressure 0.09

14 Stack, Basic, Slide, White, Metallic, APressure 0.03

15 Stack, Basic, Slide, Black, White, Metallic,
APressure

0.09

16 Stack, Optimised, Slide, Metallic, APressure 0.03

17 Stack, Optimised, Slide, Black, Metallic,
APressure

0.12

18 Stack, Optimised, Slide, White, Metallic,
APressure

0.03

19 Stack, Optimised, Slide, Black, White, Metallic,
APressure

0.12

but still do not contain a variant with the value 0.09. Pair-wise (t = 2) sampling
requires that for each pair of features there is at least one variant, in which both
are selected and both are deselected and each feature is selected while the other is
deselected. Our exemplary sample set does not attain pair-wise coverage either as
it does not even cover all features. The pair-wise sample sets 1, 2, 3, 6, 9, 12, 16,
and 19 would be sufficient for our example. Selecting higher values of t increases
coverage but also leads to larger sample sets.

Learning from Sample Sets Given a sample set, there are several approaches
that aim at learning the influences of individual features and their combinations
on performance to allow predictions of the performance behaviour beyond the
sample set [Sie+12a, Guo+13, Sar+15, Sie+15, Nai+17]. A simple approach is to
approximate the performance of every individual feature [Sie+12a]. This can be
achieved easily by a comparative measurement: measuring a basic variant with
and without the feature in question and assigning the difference in performance

8 Performance Analysis Strategies 181

behaviour to that very feature. As an example, let us assume that we measured
(denoted using function �) the processing time of variants 6 and 7 of our PPU
case study (in workpieces per second):

�(Stack, Basic, Slide, White, Metallic, SPressure) = 0.03
�(Stack, Basic, Slide, Black, White, Metallic, SPressure) = 0.09

The difference in observed throughput is 0.06, which we consider as the influence
of the feature black (as it is the only feature in which the two configurations differ).
This way we can assign every feature a value. Based on the values for individual
features, we can already make predictions, which are rather imprecise, though. For
example, if want to predict the combined influence of the features black and white,
we would just add their individual influences, say 0.06 + 0.09 = 0.15 (assuming
the individual influence of white is 0.09).1 The point is that this prediction may be
wrong (in fact, it is very likely wrong). The reason is that the two features may
interact interfering at the level of processing time (or other properties).

Feature Interactions Let us revisit the prediction procedure: Essentially, it takes
the influences on the processing time of individual features and adds them up
according to the variant whose processing time shall be predicted. However, due
to feature interactions, the influences of the features involved do not necessarily add
up, as we have seen for the features black and white. To identify the interaction
between the two, we need to measure a variant that has both features selected,
in addition to the measurements that we already have. This way we can pinpoint
the interaction, which amounts, say, to a decrease of 0.03 workpieces/s. Knowing
the influence of this interaction, we can make a more precise prediction, which is
0.06 + 0.09 − 0.03 = 0.12.

So incorporating feature interactions improves the accuracy of the prediction
procedure. The downside is, to identify all feature interactions of a configurable
system, we need again to measure a possibly exponential number of system variants.
This is where the sampling strategies come into play. Using, for example, pair-wise
sampling presumes that the most relevant interactions are among pairs of features,
which are covered by pair-wise sampling.

Experiences and Further Reading In the course of SPP 1593, we extended the
tools FeatureIDE and SPL Conqueror. FeatureIDE is an Eclipse-based development
environment for feature-oriented software development [Thü+14b, Mei+17], in
which we integrated numerous sampling algorithms [AlH+16b, AlH+16a]. We used
FeatureIDE to compute the samples for our running example. SPL Conqueror
bundles various sampling and learning strategies for the performance prediction of
configurable systems [Sie+12b].2 In a number of studies, we applied it successfully
to real-world configurable systems from different domains, including databases,

1Note that for other properties of interest, other ways of combining influence may be preferable,
for example taking the minimum of two values for reliability.
2https://www.infosun.fim.uni-passau.de/se/projects/splconqueror/.

https://www.infosun.fim.uni-passau.de/se/projects/splconqueror/

182 T. Thüm et al.

compilers, video encoders [Sie+12a, Sie+13, Sie+15], and scientific computing
codes [Gre+14, Gre+17]. We further extended the whole approach, including
the notion of feature interaction, to settings where numeric parameters are used
to configure the system (e.g. cache size) [Sie+15], which may also interact in
various ways [SSA17]. As for the learning procedure, we support classification and
regression trees, linear regression, random forests, and others. As for sampling, we
experimented with various coverage criteria [Med+16], as well as progressive and
projective sampling [Sar+15]. Recently, we also surveyed the extensive literature on
product sampling based on feature models [Var+18]. Our literature overview can be
used by practitioners and researchers to find suitable sampling algorithms based on
the available input, such as feature model and source code, and desired coverage
criteria, such as feature interaction coverage or code coverage.

8.1.2 Family-Based Test-Suite Generation for Software
Variants

The idea of sample-based performance prediction, as described in the previous
Section, is to estimate performance values of all possible variants of a configurable
software system, by only investigating a subset (sample) of variants. This approach
enables a reduction of the overall effort required for performance analysis, as
compared to explicitly considering every possible variant one by one. However, the
accuracy of the predicted data naturally depends on the quality of the performance
measurement data available for the sample set. Hence, experimental executions
of the sampled variants are required in order to gather realistic and reliable
performance measures for embedded software systems such as the PPU. To this
end, the collected measurement data should rely on a high diversity of possible
system behaviours, covering a high fraction of default, exceptional, and even
fail-safe execution scenarios. Model-based coverage-driven testing constitutes a
well-suited approach to systematically exercise the behaviours of software systems
in an automated manner [UL07].

Model-Based Testing The term (software) testing in its most general form refers
to any activity being concerned with investigating (and assuring) quality aspects of a
given software system [UL07]. In particular, dynamic testing involves experimental
executions of test cases by executing the software under controlled conditions, in
order to investigate the output behaviours for particular input stimuli. The observed
behaviours may comprise functional aspects (e.g. comparing the observed outputs to
the ones expected for the inputs), as well as non-functional aspects (e.g. the amount
of response time required by the system to produce the outputs).

Concerning model-based testing in particular, a behavioural specification (test
model) of the software is used to automatically derive a set of test cases into a test
suite. Test cases are usually selected into a test suite with respect to a given coverage
criterion, defining a set of test goals, each to be satisfied by at least one test case of
a test suite.

8 Performance Analysis Strategies 183

Stack Crane_B

Crane_M

Slide

Stamp_S

Fig. 8.3 Test model of variant 5 of the pick-and-place unit

Stack Crane_B

Crane_M

Slide

Stamp_A

0 1

3

2

6 7

8 9

Fig. 8.4 Test model of variant 13 of the pick-and-place unit

Figure 8.3 shows an excerpt of a simplified test model for Variant 5 of the
PPU, given as a UML activity diagram. However, the technique described in the
following is not limited to a particular behavioural modelling language but is
likewise applicable, for instance, to UML state machines and similar formalisms.
The model describes the scenarios for the treatment of Black workpieces (branch
with action Crane_B), as well as Metallic workpieces (branch with action Crane_M,
followed by Stamp_S) both coming from the Stack and subsequently going to the
Slide. A test case, therefore, consists of a sequence of actions from the initial action
to the final action of the activity, connected via a path of control-flow edges. For
brevity, we omit further details about the actions performed and the edge labels in
the following examples (cf. [Loc+14] for further details). As coverage criterion, we
consider edge coverage, where the set of test goals is annotated as t0, t1, . . . , t9 in
Fig. 8.3. A test case derived from the test model for reaching, for instance, test goals
t9 may be given as the sequence T1 = (t0, t1, t2, t8, t9). This test case also covers
test goals t0, t1, t2 and t8, whereas test goals t3, t4 and t5 of the alternative branch
remain uncovered. Hence, in order to also cover the alternative branch, a further test
case T2 = (t0, t3, t4, t5, t8, t9) is required such that a test suite consisting of T 1 and
T 2 achieves complete edge coverage.

Considering Variant 13 of the PPU (cf. test model variant in Fig. 8.4), the
behaviour corresponding to test case T 1 remains the same (and may, therefore, be
reused for also testing this variant). In contrast, the behaviour of T 2 is not valid any
more as metallic workpieces are now treated differently by the Stamp, thus requiring
an additional test case T3 = (t0, t3, t6, t7, t8, t9). Nevertheless, re-generating a test
suite anew from scratch for every individual variant in order to finally achieve
complete coverage on all variants tends to become inefficient [Bür+15a]. This is
due to the high amount of similarity among the variants leading to a potentially
high number of redundant test cases. In addition, in case of configurable software
of realistic sizes, this approach even becomes impossible as the number of variants
potentially grows exponentially in the number of features.

184 T. Thüm et al.

Stack Crane_B

Crane_M

Slide

Stamp_S

Stamp_A

Black

Metallic SPressure

APressure

0 1

3

2

4

6

5

7

8 9

Fig. 8.5 150% test model of the pick-and-place unit

Table 8.2 Test models for variants of the pick-and-place unit

Features Edges

Variant Black Metallic SPressure APressure t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

1 x x x x x x

4 x x x x x x x x

5 x x x x x x x x x x x

12 x x x x x x x x

13 x x x x x x x x x x x

Family-Based Test-Suite Generation Family-based product-line analysis in gen-
eral [Thü+14a] and family-based test-suite generation in particular [Bür+15a] aim
to automatically achieve complete test coverage for all variants without considering
every variant individually. To this end, a so-called 150% test model is used that
superimposes all test-model variants into one integrated test model. An excerpt
from the 150% test model of the PPU example is shown in Fig. 8.5, comprising
behaviours for variants 1, 4, 5, 12, and 13. Variable parts (e.g. edges in this example)
of a 150% model are augmented with presence conditions (i.e. propositional
formulae over Boolean feature variables), denoting those subsets of configurations,
in whose corresponding test-model variants the respective part is present.

Table 8.2 summarises for the set of all variants which edges (and, therefore,
which test goals) are present (or relevant) in which variant. This additional
information can be utilised during test-case generation for reasoning about the
reuse of test cases while covering test goals in different variants. For instance, test
goal t1 is only present in variants with feature Black being selected (i.e. variants
1, 5, and 13), whereas t0 is present in all variants. The aforementioned test cases
T 1 (requiring feature Black) and T 2 (requiring features Metallic and SPressure),
therefore, together cover test goal t0 on variants 4 and 5, but they are both not valid
for variants 12 and 13 (requiring feature APressure to be selected). Hence, a third
test case, T 3 = (t0, t3, t6, t7, t8, t9), is to be derived to finally cover test goal t0 on
all variants in which it occurs.

The possible reuse of test cases among variants sharing similar paths achievable
by family-based test-suite generation potentially reduces testing effort as compared
to variant-by-variant testing. For instance, applying variant-by-variant test-case
derivation to the PPU example in Table 8.2 at least produces an overall number
of seven test cases (i.e. 1(V 1)+1(V 4)+1(V 5)+2(V 12)+2(V 13) = 7) according
to the number of paths within the different test-model variants. In contrast, when

8 Performance Analysis Strategies 185

Table 8.3 Test suite for complete transition coverage of the pick-and-place unit test model

Features Variants

TC Path Black Metallic SPressure APressure V1 V4 V5 V12 V13

T1 t0, t1, t2, t8, t9 x x x x

T2 t0, t3, t4, t5, t8, t9 x x x x

T3 t0, t3, t6, t7, t8, t9 x x x x

applying the family-based test-generation strategy, three test cases are sufficient to
achieve complete edge coverage on all variants, as illustrated in Table 8.3. Based on
this information, two variants are sufficient to execute the resulting three test cases
(e.g. variants 5 and 12).

Experiences and Further Reading Besides the PPU case study, the presented
technique has been applied to other application domains, including medical-device
control software, Linux-kernel drivers, and embedded-system utility software. For
those experiments, we observed similar results concerning efficiency improvements
as compared to variant-by-variant testing. Corresponding tool support utilises the
temporal model checker SPIN for model-based (black-box) generation from UML
state charts [Loc+14], as well as the software model checker CPACHECKER for
white-box text generation from product lines implemented in C using compile-
time variability (C pre-processor) [Bür+15a]. Our experience gained from the
various experimental results show that remarkable efficiency improvements of
family-based coverage-driven test generation, as compared to a variant-by-variant
approach, can be observed in almost all cases, at least up to a certain product-
line size (concerning, e.g., the number of features and amount of code). Beyond
this critical threshold, the additional effort required, for example for presence-
condition analysis, may obstruct the applicability of family-based analyses. Finding
a good trade-off between reuse of analysis information and scalability of family-
based product-line analysis strategies therefore is the most emerging issue for future
research.

8.1.3 Family-Based Analysis of Software Variants

While Sects. 8.1.1 and 8.1.2 focused on how to measure and predict the performance
of variants, an orthogonal way is to build and analyse a performance model.
Performance models are well understood for single systems, but applying them to
each variant separately involves redundant effort. Similar to the test-suite generation
of Sect. 8.1.2, we apply a family-based strategy to analyse performance models of
software variants efficiently.

We extend the UML activity diagrams that are already used as test models in
Sect. 8.1.2 by quantitative performance information. For instance, Fig. 8.6 depicts
Variant 5 of the PPU enriched with such performance annotations. In particular, we
assume that the following parameters are provided: (1) rate of arrivals of workpieces

186 T. Thüm et al.

Fig. 8.6 Variant 5 of the pick-and-place unit with performance annotations

into the system, denoted by λ; hence, 1/λ is taken to be the average time between
two successive arrivals at the system (cf. Fig. 8.6, top-left corner of the initial node),
and (2) rate of processing a workpiece by each node, denoted by μ (cf. Fig. 8.6,
top-right corner of a node). Finally, we require annotations on the edge connecting
nodes. Specifically, an edge between nodes Vi and Vj must be annotated with the
probability that a workpiece processed by node Vi goes to Vj . We call this model a
performance-annotated activity diagram (PAAD). Once the annotations are made,
the PAAD is amenable for an automatic performance evaluation. In particular,
we can interpret a PAAD as a continuous-time Markov chain with an underlying
Jackson-type queuing network [Jac63]. The evaluation is executed by solving the
following system of equations: (I −PT)γ = λ. P is the routing probability matrix,
I is the identity matrix, λ is a vector based on the defined arrival rates, and γ is a
vector containing the effective arrival rates that we are interested in. For instance,
the considered PPU variant gives us

P =

⎡
⎢⎢⎢⎢⎢⎣

0.0 0.67 0.33 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0

⎤
⎥⎥⎥⎥⎥⎦

λ =

⎡
⎢⎢⎢⎢⎢⎣

0.09
0.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎦

μ =

⎡
⎢⎢⎢⎢⎢⎣

0.5
0.12
0.03
0.3
1.0

⎤
⎥⎥⎥⎥⎥⎦

Once we solve the system for γ , the steady-state behaviour of the network is fully
characterised and we can interpret the results of the analysis in terms of user-
perceivable performance properties of the system [Ste09]:

• Throughput: the number of workpieces that a node can process in a given amount
of time (i.e. γ)

• Utilisation: the probability that a node is busy processing a workpiece (i.e. γ /μ

whereas μ is the service rate)
• Queue length: the number of jobs waiting at a node, including those in service

(i.e. γ /μ/(1 − γ /μ)).

For instance, the utilisation of each node in Fig. 8.6 is computed with 18% for
the Stack, 50% for the Crane_B, 100% for the Crane_M, 10% for the Stamp, and
9% for the Slide. However, we have to solve the system of equations for each
variant separately since it is not possible to reuse the numerical computations across
variants. Even varying the exogenous arrival rate λ by 0.01 forces us to do a re-
computation.

8 Performance Analysis Strategies 187

Fig. 8.7 Variant 1 of the pick-and-place unit with performance annotations

In SPP 1593, we developed a family-based performance analysis that solves the
system of equations once and enables us to reuse the results across all variants. The
analysis requires the construction of a 150% model of the system. Thus, we need a
variability modelling mechanism in order to incorporate the individual variants into
a 150% model. For this purpose, we introduced the concept of delta modelling in our
approach. Delta modelling is a modular yet flexible variability modelling method
on the implementation artefact level and allows capturing closed and open variant
spaces. Each delta contains a set of basic operations to be performed on a PAAD,
such as the addition and the removal of nodes and edges, or the modification of
parameters, such as the probability of an edge and service rates in nodes. In addition,
we have a core that can be an arbitrary variant of the system. Hence, applying a delta
to the core yields a new variant of the system and in our case a new PAAD, which
has performance characteristics that can again be numerically analysed using the
product-based evaluation.

The PAAD in Fig. 8.6 represents the core of the PPU. Next, we can define a delta
comprised of several transformations, that is removal of the nodes Crane_M and
Stamp_S and their connecting transitions, as well as setting the probability from
Stack to Crane_B to 1.0. An application of this delta to the core gives us the most
basic variant of the PPU, depicted in Fig. 8.7.

We are able to model all variants of the PPU using delta modelling. Merging
all deltas and the core gives us the 150% model of the system (cf. Fig. 8.5, where
performance annotations are omitted). Similar to the analysis of a single variant, we
can derive the routing probability matrix and vectors for arrival and service rates
from the 150% model. However, each value that is different in multiple variants
(i.e., depends on a delta) is now represented by a variable (i.e., symbolically rather
than by a concrete value). For instance, let us consider three variants of the PPU
comprised of our core (cf. Fig. 8.6), the most basic variant (cf. Fig. 8.7), and the
variant introducing the second stamping module Stamp_A leading to the 150%
model, as depicted in Fig. 8.5. The respective matrix and vectors containing symbols
for each changed value are as follows:

Ps =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0 pCB pCM 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 pSS 0.0 pSA

0.0 0.0 0.0 0.0 pSl 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 pSl2 0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

λs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λStack

0.0
0.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

μs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0.12
μCM

μSS

1.0
μSA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

188 T. Thüm et al.

We solve the system of equations, but we are not able to receive concrete
performance properties in terms of throughput or utilisation for individual variants at
this point since the equations are solved symbolically and still contain the unknown
variables from the routing matrix and the rate vectors (e.g. for utilisation):

Util =
[

2 ∗ λStack,
25 ∗ λStack ∗ pCB

3
,
λStack ∗ pCM

μCM

, . . . ,
λStack ∗ pCM ∗ pSA

μSA

]

As a final step, we have to insert the probabilities and rates of a specific variant
into the symbolic solution yielding the desired concrete performance value and thus
the same result as analysing each variant separately. The family-based analysis is
significantly more efficient considering computation times for a given large variant
space. Numerical experiments show that it can be up to two orders of magnitude
faster [KST14]. The computational benefit results from the expensive process of
solving the system of equations over and over again for each variant in isolation,
which is not necessary in our proposed family-based analysis. In addition, the
computation time giving us the symbolic solution is independent of the number of
variants that are analysed afterwards. Each symbol may stand for an infinite number
of values resulting in an infinite number of variants that can be analysed with the
symbolic solution.

Assuming, for instance, that we wish to study the impact of different arrival
rates λ into the PPU, Fig. 8.8 (left part) shows the utilisation at every node for
Variant 0. The results indicate that Crane_B is the bottleneck of the system because
its utilisation is consistently the highest. Figure 8.8 (right part) shows a similar
analysis for the core (i.e. Variant 3). In this case, the bottleneck is the Crane_M node
transporting metallic workpieces to the stamping module, which takes significantly
longer compared to processing a black workpiece directly to the slide. Another
scenario would be to study the distribution of black and metallic workpieces
processed by the PPU in order to identify an optimal system solution. In the standard
configuration, the PPU processes 2/3 black and 1/3 metallic workpieces. We can

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Arrival rate λ

U
til

iz
at

io
n

Stack
Crane (B)
Slide

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Arrival rate λ

U
til

iz
at

io
n

Stack
Crane (B)
Crane (M)
Stamp
Slide

Fig. 8.8 Utilisation of variants 0 and 3 with a varying arrival rate λ

8 Performance Analysis Strategies 189

change this by simply varying the routing probabilities leading from the stack to the
different cranes and look at the performance impact afterwards. We just have to plug
in the desired values into our symbolic solution.

Experiences and Further Reading While we illustrated family-based prediction
with the PPU, we also experimented with larger product lines with up to 430
features [KST14, Kow+15]. Especially for larger product lines, the family-based
strategy significantly outperforms the separate analysis of every variant [KST14].
The above-mentioned approach has two major limitation, which we addressed by
follow-up work [Kow+15]. First, service times are assumed to follow exponen-
tial distribution. Second, all computations are assumed to be performed without
parallelism. For coxian-distributed multi-server stations, we measured similar per-
formance gains of the family-based strategy [Kow+15].

8.2 Analysis Strategies for Software Versions

Section 8.1 covered performance analysis strategies for software variants, focusing
on the problem of how to efficiently analyse large configuration spaces. Orthog-
onally, throughout the development and operation stages of a software system’s
life cycle, numerous software versions are created and evolved over time. With
these versions, also the corresponding software artefacts (and their types) change
and evolve based on the respective life cycle stages. Example types of artefacts
are requirements and architectural models in the design stage, code artefacts that
are available from the implementation stage, and descriptive models obtained from
measurement data in the operations and maintenance stages. Connected with the
changing versions and their related artefacts is the need for continuous quality
assurance, for example with respect to performance as it is in the scope of this
chapter.

This section covers three complementary approaches for supporting performance
analyses of versions incorporating different types of software artefacts (models and
code), analysis techniques (measurement-based and model-based), and suitability
for the respective development stage and use case (e.g. online or offline evaluation).
In Sect. 8.2.1, we present a declarative approach targeted to enable non-performance
experts to select, configure, and execute performance evaluation with changing and
evolving versions throughout the software life cycle. The approach presented in
Sect. 8.2.2 helps to align the evolution and runtime adaptation of software versions
employing models and measurements. Section 8.2.3 focuses on the co-evolution of
architectural and analytical performance models.

CoCoME as a Motivating Example Figure 8.9 illustrates subparts of a perfor-
mance model for the CoCoME case study, as introduced in Chap. 4. Relating to
Fig. 8.1, it depicts concepts commonly found in architectural performance models,
such as Palladio [Reu+16] or DML [Hub+17]. These formalisms follow common
concepts known from architecture description languages (ADLs), such as config-

190 T. Thüm et al.

«DataCenter»
DC

«ComputingInfrastructure»
vm2

«Service Effect Specification»
ICashDeskView.sale()

«implements»

«ComputingInfrastructure»
vm1

«ComputingInfrastructure»
vm4

org.cocome.
tradingsystem.
inventory

org.cocome.
cloud.web

«ComputingInfrastructure»
vm3

org.cocome.
tradingsystem.
cashdeskline

ICashDeskView
sale()

ICashDeshDeskModel
startSale()
finishSale()

«ConfigurationSpecification»
ResourceType="CPU"
ProcessingRate=2.7GHz
Cores=2

«ConfigurationSpecification»
ResourceType="CPU"
ProcessingRate=2.7GHz
Cores=8

«UsageProfile>>
UserPopulation=10
ThinkTime=5

«ExternalCallAction»
CashDesk.startSale

«ExternalCallAction»
CashDeskDAO.startSale

«ExternalCallAction»
CashDeskQuery.startSale

«ResourceDemand»
(of externally called action)
ResourceType="CPU"
Unit="CpuCycles"
Specfication="0.5506 * 2700"

«ExternalCallAction»
CashDeskModel.startSale

«EmitEventAction»
Fire(startSaleEvent)

Fig. 8.9 Subparts of the CoCoME performance model in a UML-like notation

urations of components, interfaces, and connectors—presented in different views
(e.g. component/connector and deployment). The example shows three CoCoME
components being deployed to a networked computing infrastructure comprised of
four (virtual) machines. The computing infrastructure is annotated by performance
properties, such as information about the CPUs. The behaviour of the components’
operations is modelled using a formalism similar to activity diagrams, including two
types of actions: demands to local resources and calls to other operations. While
architectural models provide a representation very close to software design models,

8 Performance Analysis Strategies 191

analytical models use abstract concepts such as resources and jobs. Their use is
not limited to analysing computer systems. The models can be simulated or solved
as described to predict performance indices, for example statistics about method
response times, system throughput, or resource utilisation. For illustration purposes,
Fig. 8.9 depicts only a subset of the complete Palladio performance model provided
by the CoCoME case study.

8.2.1 Declarative Analysis Strategies for Evolving Software

During the life cycle of a software system, performance analysts repetitively need to
investigate software versions to provide answers to and act on performance-relevant
concerns about response times, resource utilisation, bottlenecks, trends, anomalies,
etc. Their everyday work includes concerns such as What is the response time
of the CoCoME sale service? Does the CoCoME sale service satisfy its service
level agreements (SLAs)? What would be the required resources to ensure the
desired quality of service for the CoCoME sale service? During the software life
cycle, the evaluation of performance concerns for software versions can be based
on different evaluation methodologies requiring specific performance evaluation
artefacts. Supplementing measurement-based analysis, model-based predictions
allow to investigate deployments, architectures, and configurations without the
need to test them in a production system. Model-based performance evaluation
requires a performance model. Measurement-based performance evaluation relies
on a measurable system. To investigate software versions efficiently when needed
requires to switch between various measurement and model-based performance
evaluation approaches. Hereby, two main challenges for a continuous performance
management arise:

1. Application of performance evaluation strategies: Holistic performance engi-
neering applies manifold performance evaluation strategies. Each strategy is
connected to particular parametrisation options and challenges, which makes
them employable only with extensive knowledge and experience [Wal+16a].

2. Selection of performance evaluation techniques: The situation-aware choice of a
performance evaluation approach is challenging. It has to consider aspects like
user concerns and system characteristics to asses applicability and analysis costs.

At system design, predicting the response time of CoCoME’s sale service
involves complex decisions such as the selection of a suitable modelling formalism,
the choice of modelling granularity, solvers and solution techniques (e.g. Markovian
analytical solvers, product-form solution, or simulation-based solvers), and the
derivation of model parameters.

At the system testing and deployment stages, there is the opportunity to eval-
uate the sales service’s response time by conducting performance measurements.
However, complex decisions about the measurement configuration have to be made.
Decision include sufficient experiment run length, the configuration of ramp-up

192 T. Thüm et al.

time, and the choice of an appropriate instrumentation granularity allowing to obtain
the required measurement data.

During system operations, it is about predicting the effects of possible system
reconfigurations or the impact of an increased or changing workload mix. This
enables proactive resource management but requires modelling techniques that
support predicting future system states. At this time, the analysis approach and
parametrisation have to be tuned for a fast response.

The concerns remain the same throughout the stages for the evolving software
versions and artefacts. However, evaluation methodologies change. Selection and
application affect the accuracy, as well as the speed and overhead of the analysis,
and require a lot of expert knowledge.

Declarative Performance Engineering Analysing the performance of versions
during the software life cycle is connected to significant efforts and complexity.
Declarative performance engineering aims to provide a simplified and unified
interface to investigate performance concerns for software versions abstracting from
the underlying artefact and performance evaluation strategy [Wal+16a]. The idea is
to use a declarative language allowing to specify performance concerns independent
of the various approaches that can be applied in the context of the considered system
to obtain the required information. The processing of a performance concern can be
automated and optimised while hiding complexity from the user. The objective is
to support system developers and administrators in performance-relevant decision-
making. The declarative approach aims to reduce the huge abstraction gap between
the level on which performance-relevant concerns are formulated and the level
on which performance engineering techniques are typically applied. It decouples
the specification of user concerns from their automated deduction. Performance
concerns can be defined independent of the development stage, respective type
of artefact, and evaluation method. Subsequently, suitable performance evaluation
methods and techniques can be automatically selected and executed to answer the
concern [Wal+18].

Expressing Performance Concerns Each version can be investigated based on
different performance concerns. Figure 8.10 shows example performance concerns
for CoCoME expressed using a declarative performance engineering language.
Figure 8.10a shows querying of a performance metric. The processing has been
constraint as fast, which can be interpreted by the framework to select a

1
2
3 SELECT sale.respTime

4 FOR SERVICE
5 "processSale" AS sale

6 CONSTRAINED AS fast

7 USING dml@’cocome’;

(a)

1 EVALUATE AGREEMENTS
2 sla CONTAINS slo1

3 GOALS
4 slo1:processSale.respTime<1.3 ms
5 VARYING ’arrival rate workload’

6 AS rps <700 .. 3000 BY 500>

7 USING dml@’cocome’;

(b)

1
2 MIN ’processing units cpu’

3 SATISFYING AGREEMENTS
4 sla CONTAINS slo1

5 GOALS
6 slo1:processSale.respTime<1.3 ms
7 USING dml@’cocome’;

(c)

Fig. 8.10 Exemplary formulation of performance concerns using the declarative language. (a)
Metric and constraint. (b) Contract evaluation and arrival variation. (c) System optimisation

8 Performance Analysis Strategies 193

fast solution strategy and configure the evaluation methodology accordingly, for
example by a low required precision and a low maximum experiment run length.
Figure 8.10b is about the evaluation of conformance to an SLA for different
arrival rates. The concern in Fig. 8.10c proposes a resource efficient configuration
that ensures conformance to SLAs. The declarative language supports further
sophisticated performance analyses. It covers a wide range of performance concerns
from the analysis of performance indices, aggregation, language-based system
variation, determination of upper and lower bounds, SLA evaluation, threshold
generation, system optimisation based on SLAs, etc.

Processing of Performance Concerns The processing of a performance concern
means to automatically derive its answer. The answering process of a performance
concern for a software version depends on available evaluation artefacts and
situational requirements. The proposed language processing exploits a high degree
of automation through a corresponding interpretation and execution infrastructure,
which builds on established low-level performance evaluation methods, techniques,
and tools. The architecture presented in Fig. 8.11 enables automated processing. The
Language & Editor component provides the interface to users. The Concern
Execution Engine provides the main execution logic. Here, all tasks indepen-
dent of a specific performance evaluation technique take place. Implementations
of the Connector interface provide functionality that is dependent on a specific
performance evaluation technique. To integrate different performance evaluation
approaches into the framework, multiple connectors can be subscribed at the
central registry. A lean connector interface, limited to provided metrics, degrees
of freedom [GBK14], and adaptations [Hub+14], allows for an easy technical
connection of performance evaluation tooling to the declarative language processing
framework. We provide exemplary connectors to measurement-based [Blo+16] and
model-based [GBK14] analysis tooling. Besides specification of derivable indices,
adaptation operations and degrees of freedom can be defined enabling additional
kinds of analyses. Several analyses build upon basic performance indices. Such
analyses depict reusable software parts that should be located within the Concern

Concern Language
& Editor

Concern
Execution Engine

Connector Registry Connector

<<register>>

<<submit query>>

External Performance
Evaluation Toolchain

Fig. 8.11 Architecture of the DPE framework

194 T. Thüm et al.

Execution Engine. Indices can be forwarded to reusable algorithms, like the
evaluation of SLAs [WOK17], sensitivity analysis, system optimisation [Rag+17a],
etc. Also, the visualisation of analysis results can be reused independently of how
values have been derived [Wal+16b].

We do not specify how to derive performance models. However, performance
models are cumbersome to create manually. Therefore, automated model extraction
from APM data [Heg+17], as discussed in [Wal+17a, Wal+17b], is essential to
enable interchangeability of measurement and model-based performance evalua-
tion.

Selection of Solution Strategies A solution strategy automates the answering of
performance concerns by wrapping a performance evaluation method with bridging
code, result filtering, and model-to-model transformations. For example, as depicted
in Fig. 8.1, architectural performance models can be solved using simulation and
analytical models. Existing performance engineering solution strategies come with
different strengths and limitations concerning, for example, accuracy, time to result,
or system overhead. While evaluation approaches allow for interchangeability, the
choice of an appropriate approach and tooling to solve a given performance concern
commonly relies on expert knowledge. Hence, it is a challenge to select a suitable
solution strategy.

The declarative performance engineering approach allows for the automated
selection of software performance engineering (SPE) approaches tailored to user
concerns [Wal+16a]. To propose a solution strategy, the decision engine receives
a performance concern and a description of the analysed system as input (which
can be extracted from the concern definition). We provide a generic decision
engine where solution strategy capability models can be registered. Instances of the
capability meta-model represent analysis approaches like measurement, simulation,
or analytical solvers. Compared to static decision trees, the separation of the
decision engine logic and capability models allows to easily modify the description
of characteristics on the evolution of performance evaluation strategies. It also
facilitates the appending of additional solution strategies and rating criteria. To
define capability models, we model three major aspects:

Functional Capabilities Performance evaluation approaches investigate different
elements (e.g. services, processors, hard drives), metrics (e.g. response time,
utilisation), and statistics (e.g. mean, sample, maximum, quantiles). The evalu-
able element specification integrates the named aspects and thereby defines
functional capabilities of a solution approach.

Limitations The applicability of solution strategies can be limited by several
constraints. Exemplary constraints for model-based analysis are on applicable
input models (e.g. for product form solutions) [Bol+06] or limitations of model
transformations [Bro+15]. While concepts can be transferred, measurement
tools are limited to certain supported languages and technologies.

Costs Solution strategies differ in several cost types. The relevance of cost types
depends on the specific application scenario. While for model-based analysis
time to result is the dominating cost type, for measurement-based approaches

8 Performance Analysis Strategies 195

Table 8.4 Excerpt of capabilities for model-based analysis strategies

Analysis Statistics Time-to-result Limitations

SimuCOM Sample High –

LQNS Mean Very low No loops, no fork-join, no parametric
dependencies, no blocking-behavior

SimQPN Sample Medium No loops, no fork-join, no parametric
dependencies

SimQPN MVA mean high No loops, no fork-join, no parametric
dependencies

license costs or system overhead are the more common. Costs can either be
static (e.g. fixed license costs) or dependent on the system characteristics and
analysis configuration. The latter can be specified by arithmetic expressions
capturing expert knowledge or various estimation techniques, for example using
neural networks, machine learning, or regression approaches.

To illustrate, Table 8.4 depicts an excerpt of capabilities for analysis strategies
of architectural performance models presented in [WHK17]. Supported solution
strategies for the Palladio component model include SimuCOM, LQNS, SimQPN,
and SimQPN MVA. SimuCOM transforms a Palladio instance to a process-based
discrete-event simulation. A transformation to layered queueing networks allows
triggering the analytical LQNS solver. A transformation to queueing Petri nets
enables a simulation and a mean value analysis (MVA) using the SimQPN tool.
Additional solution strategies for Palladio model instances, such as using SimuLizar
and EventSim, can be included accordingly.

Summary During the software life cycle, multiple versions (also hypothetical ones
not implemented) can be investigated for manifold performance concerns based
on different evaluation artefacts. Declarative performance engineering simplifies
respective analyses by automating the choice and execution of performance evalua-
tion approaches based on a declarative specification of concerns. Other researchers
have adopted the idea of declarative performance engineering also to load testing
[FP18], which has not been the scope of this chapter.

8.2.2 Align Development-Level Evolution and Operation-Level
Adaptation

Cloud-based software systems are subject to a wide range of changes during the
operations stage [Hei16]. The usage intensity and the user behaviour that a system
has to handle may change over time, which affects the system’s performance. The
deployment of (parts of) the software system may change, for example to address
performance issues by migration and replication of components, which, however,
may cause violations to privacy constraints. Execution contexts, for example virtual

196 T. Thüm et al.

machines and containers, may become available (allocation) or disappear (de-
allocation), which increases or decreases the design space for system adaptation.
Consequently, operating a Cloud-based software system requires to continuously
observe the system and to plan for adaptation to react on changes during the
operation stage that mostly cannot be foreseen during development.

This section describes how to align development-level evolution and operation-
level adaptation for analysis and adaptation planning in Cloud-based software
systems. In extension to Sect. 8.2.1, this section is concerned with keeping architec-
ture and performance models for software version up-to-date while facing repeated
adaptations during operations stage. Operators and developers profit from utilizing
the same kind of performance models as they can communicate and exchange of
knowledge based on the same abstraction. This is especially useful in fast-changing
Cloud-based software systems that rely on performance analysis for their adaptation
planning.

In the following, the sale service of CoCoME and the platform migration
scenario are applied as a demonstrative example. In the platform migration scenario,
increased usage intensity of the sale service causes an upcoming performance
bottleneck due to limited capacities in the given service offering of the Cloud
provider currently hosting the database. A simplified overview of the platform
migration scenario is given in Fig. 8.12. For the sake of simplicity, we assume
that each Cloud provider owns exactly one data centre. Different data centres are
available for deploying the database service of CoCoME. We discuss how the
performance bottleneck can be identified by observing the running system and be
solved by planning for adaptation.

Development-Level Evolution vs. Operation-Level Adaptation Development-
level evolution and operation-level adaptation can be considered as two mutual,
interwoven processes that influence each other. Figure 8.13 illustrates how both
processes are interconnected for Cloud-based software systems.

In addition to the several versions of the software system created throughout the
development and operations stage, as introduced in the previous section, variants
play a central role in Cloud-based software systems when planning for adaptations.
Adaptations rely on the evaluation of alternative variants of the software’s deploy-
ment and configuration to identify a new version that allows to sustain the required
quality properties.

CoCoME:Applicat ion
<<Data Center>><<Data Center>>

<< PaaS >>
Database : DBaaS

<<Data Center>>

Cloud Provider 1 Cloud Provider 2 Cloud Provider 3

<<PaaS>>
Client << PaaS >>

Database : DBaaS
<< PaaS >>

Database : DBaaS

sale()

Fig. 8.12 Actual (solid line) and conceivable (dashed line) deployment in the platform migration
scenario

8 Performance Analysis Strategies 197

Fig. 8.13 Overview of development-level evolution and operation-level adaptation as mutual
interwoven processes

Models are useful to reflect the software system and conduct analysis to identify
quality flaws. A performance model of the sales services in a UML-like notation is
depicted in parts in Fig. 8.9. During operations, software systems often drift away
from their development models. In contrast, runtime models are kept in sync with
the underlying system. Typical runtime models are close to the implementation level
of abstraction. They are constructed based on observations related to source-code
artefacts (e.g. service calls or class signatures) [Ben+14]. For example, observing
the sales service of CoCoME results in monitoring records for the service itself
and all invoked internal services. In addition, the class signature is monitored
and recorded per service. While monitoring the software system, no information
about its architecture is provided. Thus, it is hard to reproduce development
component models from monitoring data as knowledge about the initial component
structure and component boundaries is missing. This knowledge is important
for system comprehension and reverse engineering. Consequently, we argue for
runtime models that reflect extensive knowledge on the underlying architecture, its
variability, deployment, and interaction with external services.

The iObserve Approach The iObserve approach [Has+13, Hei+14, Hei+17b]
developed during the SPP 1593 addresses the aforementioned challenges by fol-
lowing the established MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge)
control loop model. MAPE-K is a feedback cycle for managing system adaptation
[KC03]. iObserve extends the MAPE-K control loop with models shared between
development and operations. These shared models carry architectural knowledge
to ease the transition between development-level evolution and operation-level
adaptation. The evolution activities are performed by human developers, while
the adaption activities are executed automatically by predefined procedures, where
possible, without human intervention.

The executed software system is observed to update architectural knowledge
during operations. The model that reflects the architectural knowledge during
operations is named architectural runtime model. As the architectural runtime model

198 T. Thüm et al.

is constructed by enriching and updating development models with operational
observations, it is comprehensible for developers and operators and can be fed
back into software evolution without the need of conversion and the risk of loss
of knowledge. Each update leads to a new version of the architectural runtime
model. Based on the up-to-date model, the current system configuration is analysed
to reveal anomalies (e.g. increased usage intensity) and predict quality impact
(e.g. upcoming performance bottlenecks). The architectural runtime model is then
applied as input either for adaptation or evolution activities, depending on the
outcome of a planning step. In the adaptation process, an adaptation plan is selected
and evaluated to handle the anomalies. For adaptation planning, various design
variants are created and evaluated on model level. Finally, the plan is executed to
update the software system and its configuration. In the evolution process, changes
are designed, evaluated and implemented by human developers.

The iObserve approach applies a mega-model to bridge the divergent levels of
abstraction in architectural models used during development and operations. Mega-
models describe the relationships of models, meta-models, and transformations
[Fav04]. The iObserve mega-model depicted in Fig. 8.14 serves as an umbrella
to integrate development models, code generation, monitoring, runtime model
updates, as well as adaptation candidate generation and execution. Rectangles
depict models and meta-models, respectively. Solid lines represent transformations
between models, while diamonds indicate multiple input or output models of a
transformation. Dots are used to indicate multiple input or output models of a
transformation. Dashed lines reflect the conformance of a model to a meta-model
and, in case of implementation artefacts, the instance of relationship between data
and data types, for example the monitoring data and their corresponding event types
in the instrumentation aspects, as depicted in Fig. 8.14.

The iObserve mega-model exhibits four sections defined by two dimensions: one
for development vs. operations and one for model vs. implementation level. We
discuss these four sections based on the CoCoME case study and the migration
scenario.

M
od

el
 L

ev
el

Development Operations

Im
pl

em
en

ta
tio

n
Le

ve
l

<<conforms to>> <<conforms to>>

RAC

Architecture
Metamodel

Deployment &
Implementation

Artifacts

Instrumentation
Model

<<conforms to>>

Architectural
Model

TMonitTT oring

TAppT

Instrumentation
Aspect

<<instances of>>

Architectural
Runtime Model

Aggregated &
Refined Events

Monitoring Data

TRuntime UpTT date

TPreproceTT ss

Quality-Assessed
Candidate

Architectures

Execution Plan

TPlanningTT

Adaptation Plan

TExecTT ution

<<conforms to>>Instrumentation
Metamodel

Transformation

Single model input
T

Name

Additional model input

Model Relationships

<<conforms to>>
Model conformance

<<instances of>>
Data conformance

Inter-model references

TCandidaT te
Generation

Fig. 8.14 Overview of the iObserve mega-model

8 Performance Analysis Strategies 199

For the interaction of the transformations in iObserve, we rely on the GECO
approach [JHH16]. GECO defines patterns and methods to work with views
and aspects on model and implementation level and describes how relationships
between models and code can be shared between different transformations. These
relationships are essential to map runtime observations to their corresponding
runtime model elements, like classes and services, and design-time models to code
artefacts. In iObserve, these relationships are created at design time with code
generation or may be specified by hand in scenarios where the code is implemented
by a developer. Subsequently, they are stored in the Runtime Architecture Cor-
respondence Model (RAC). The RAC is the central element of the mega-model
and is crucial for the use of an architectural model at development and operation
time. At design time, they are used when generating and configuring the monitoring
probes to map model-level pointcuts to implementation-level join points, select the
correct probe technology, and probe introduction methods. At runtime, the same
relationships are used in reverse to map runtime monitoring events, like an operation
call, to their corresponding class and service instances.

Development Side On the development side at model level, the mega-model
depicts the combination of an architectural model with our model-driven monitoring
approach. We model the software architecture and deployment in a component-
oriented fashion and generate the artefacts that are deployed and executed during
operations. Therefore, iObserve relies on the Palladio Component Model [Reu+16]
as an architecture description language defined through meta-models. The Palladio
Component Model consists of several partial meta-models reflecting different
architectural views on a software system. The monitoring part is specified using
the instrumentation meta-model from our model-driven monitoring approach, con-
sisting of two domain-specific languages used to describe monitoring events, for
example operation calls, and the monitoring aspect [JHS13, JW16]. The aspect
language allows to specify monitoring probes and their placements within the
software system. For planning, we use probes to observe allocations/de-allocations,
deployments/un-deployments, and user behaviour to learn the present system
configuration and utilisation. The architectural and instrumentation models are then
used to generate corresponding source code artefacts with the transformations TApp,
for the software application, and the TMonitoring, for the instrumentation [JW16].

At implementation level, the mega-model depicts development artefacts, includ-
ing event types, instrumentation probes, and technology specific artefacts that
implement the software system. For the CoCoME example, the software system
is implemented by Enterprise Java Beans, and the monitoring uses Enterprise Java
Beans interceptors to collect monitoring data.

Operations Side On the operation side at model level, monitoring data that adheres
to source code artefacts is associated with the elements of the architectural runtime
model. Consequently, the iObserve mega-model enables the reuse of develop-
ment models during the operations stage by updating them based on operational
observations. Moreover, the operation side shows the generation of adaptation
candidate models and the adaptation plan construction. On implementation level,

200 T. Thüm et al.

a continuous stream of events is gathered by the monitoring probes. iObserve filters
and aggregates the monitoring data (TPreprocess), relates the monitoring data to
architectural model elements, and finally uses the aggregated information to update
the architectural runtime model (TRuntime Update). Following the CoCoME exam-
ple, increased usage intensity of the sale service triggers changes in the workload
specification. TPreprocess filters out single-entry and -exit events of the sales service
and aggregates them to sequences of events. Based on the sequences, the new
usage intensity is calculated, which is then transformed to the architectural runtime
model by TRuntime Update. Therefore, the architectural runtime model connects
the development and operation stages. It allows for stage-spanning consideration
of software architecture. Furthermore, it enables quality analyses based on the
architecture specification and is the basis for adaptation planning.

If a performance or privacy issue has been recognised, adaptation candidates are
generated by transformation TCandidate Generat ion in the form of candidate archi-
tectural runtime models. These candidate models are generated based on a degree
of freedom model that specifies variation points in the software architecture, which
have been specified at design time. Once an adaptation candidate has been selected,
the model is operationalised by deriving concrete tasks of a plan for adaptation
execution. The tasks are derived by transformation TP lanning while comparing a
candidate model to the original model. The adaptation plan is transferred to an
execution plan at implementation level by TExecution.

For example in our CoCoME scenario, increasing utilisation of the sales service
results in increasing response time. Performance forecasts indicate that the average
response time of the service may exceed the performance SLA. Therefore, the
deployment must be altered. Thus, various candidate models of the CoCoME archi-
tecture model are generated by TCandidate Generat ion each differing in deployment of
the database service to data centres. The candidate models are analysed for quality.
Once an appropriate candidate is found, the system is adapted based on the candidate
model using TExecution. Subsequently, the monitoring observes events that cover the
deployment changes and updates the runtime model.

In case that no specific model among the candidates can be selected fully
automatically, for example when there are trade-offs between quality aspects, or
if an adaptation plan cannot be derived fully automatically, the human operator
chooses among the presented adaptation alternatives. Also when no candidate model
can be generated, for example due to lack of information or criticality of decision,
the operator will be involved.

Summary In conclusion, this section describes how design-time architecture
models can be used at runtime for performance forecasts and to generate candidate
architectures used to steer the adaptation. These candidate models are, in essence,
different versions of the running system with variations that are assessed for per-
formance during candidate selection. As iObserve utilises the same model type for
runtime and design time, the updated runtime models can be used during evolution
and adaptation to assist performance forecasts and predictions, receptively. Thus, it
keeps evolution and adaptation models aligned.

8 Performance Analysis Strategies 201

8.2.3 Co-evolution of Architecture and Analysis Models

As introduced previously, model-based performance evaluation is conducted using
architectural and analytical performance models, as well as transformations among
these models. In our work, we refer to both architectural and analytical performance
models as quality models. When being constructed at design time, quality models
are constructed from a system model, and it is assumed that the quality models
reflect the system. However, architectural models can evolve in the life cycle of
software, and this new version can lead to unexpected results if the quality model
does not represent the system anymore. An example problem is the addition of a new
software component without a corresponding addition of the state in the respective
Markov chain. This inconsistency can lead to wrong performance analysis results.
Hence, any version has to be realised as a co-evolution of all related design and
quality models.

Handling this (co-)evolution is not a straightforward task [Get+18] because the
quality evaluation model cannot be completely generated out of the system models,
and most relations between the different models are not one to one.

We developed a framework called CoWolf [Get+15a] that is capable of incre-
mental transformations. Therefore, it isolates changes that were done to a model
to selectively propagate only these changes to the other models. In detail, the
contribution of the CoWolf tool comprises mainly two aspects:

1. The co-evolution of an associated model on the basis of model versions. As
described, models may have to be updated if other models changed. Often, those
updates can be described canonically. CoWolf features the definition of rules that
define the relation between model types. Using these rules, co-evolutions can be
done (semi)-automatically for all associated models.

2. Deliver utilities for model development and analysis. For consistent development
of the models, CoWolf provides a common environment with graphical and
textual editors. Furthermore, it implements interfaces to external tools to analyse
models.

Such tool is proposed to help system and performance viewpoint versions consis-
tent during the evolution. First, the outcome of the performance analysis remains to
present more accurate results. Second, different versions of the performance models
are provided from the system model versions to be used for a possible incremental
performance analysis.

In the remainder of this section, we are presenting the incremental transforma-
tions and co-evolution between sequence diagrams and Layered Queueing Networks
(LQNs), as well as state charts and Markov chains. We show the relations between
architectural models and various performance models for incremental changes.
Accordingly, we discuss how a co-evolution on the performance models helps for
performance analysis. A detailed and generic description of the CoWolf framework
is provided by Getir et al. [Get+15a].

202 T. Thüm et al.

Sequence Diagram to Layered Queueing Network

We implemented the transformation of sequence diagrams to LQNs based on the
description of Cortellessa et al. [CMI11]. They suggest a transformation from three
source models as activity diagrams, component diagrams, and sequence diagrams
to one target LQN model. The CoWolf co-evolution framework currently supports
one-to-one transformations and aims to help the developer in the co-evolution of
LQNs and Markov chains.

Since sequence diagrams do not include hardware information, the initial
assumption is that multiple associated tasks are performed on one CPU. In the first
step of every sequence diagram to LQN transformation, CoWolf checks if a CPU is
part of the model and creates a new processor if it is missing. The user can increase
the number of processors and change their properties, for example type and name,
in the graphical editor. Each lifeline from the sequence diagram is transformed to
a new task and a new entry type in the target LQN. We demonstrate the mapping
elements, namely a new task and a new entry in Fig. 8.15. The new task is associated
with the default processor created in the initial step.

All synchronous messages directed from a lifeline l1 to a lifeline l2 in a sequence
diagram are mapped to exactly one synchronous call in the LQN. The source task of
the call is the task mapped from lifeline l1. The target task of the synchronous call
is the task corresponding to lifeline l2.

All asynchronous messages directed from a lifeline l1 to a lifeline l2 in a sequence
diagram are mapped to exactly one asynchronous call in the LQN (see Fig. 8.16).
The source task of the call is the task mapped from lifeline l1. The target task of the
asynchronous call is the task corresponding to lifeline l2.

State Charts to Continuous Time Markov Chains

The transformations between state charts and Continuous Time Markov Chains
(CTMCs) can be achieved via two-step transformations, namely state charts to Dis-
crete Time Markov Chains (DTMCs) and DTMC to CTMC. These transformations

(a) (b)

Worker

CPU
Worker
Entry

Worker {1}

Fig. 8.15 Each lifeline will be transformed to a task. (a) Sequence diagram. (b) LQN

8 Performance Analysis Strategies 203

write(string x)

Worker {1}

Worker
Entry

IOManager {1}

IO Manager
Entry

(a) (b)

Fig. 8.16 All asynchronous messages between two lifelines (on direction) will be transformed to
one asynchronous call in an LQN model. (a) Sequence diagram. (b) LQN

are implemented in a bidirectional way such that any change and any version can be
reflected in both directions. The rules that are needed for the transformation between
both model types are in all cases a simple bidirectional one-to-one mapping, where
traces between elements of different diagram types could easily be created.

A CTMC is a common mathematical model to analyse software performance
metrics like utility, throughput, etc. CTMC is a very similar but simpler model than
PAAD, described in Sect. 8.1.3. However, this model is including more architectural
information since it is an annotated form of an activity diagram.

The transformation is implemented only for the topmost states and transitions of
a state chart model. States and transitions that are part of a composite state are not
considered in the transformation. This does not match for Action elements (Do,
Entry, Exit), which can call another sub-statemachine. For these actions, it is
needed to find the first parent state that got transformed to DTMC and connect it by
a transition to the initial state of the called sub-statemachine.

The transformation from DTMC to state chart has applied essentially the same
transformation mappings. Additionally, some restrictions apply here:

• Created transitions in a DTMC always create a transition in the state chart model
to avoid null name in the transformed model.

• Created states in DTMC always map to a state in the main sub-statemachine in
the state chart model if there is no existing trace to a state elsewhere. It is not
possible to transform a created state into another sub-statemachine.

After obtaining a DTMC from state charts, the user has to provide the probability
distribution in the model. This looks a time-consuming task. However, assuming
adding small information after many but small changes in the model, incremental
transformations can be useful for the structural mapping and recommendations for

204 T. Thüm et al.

the co-evolution step. Unlike in a state chart model, transitions cannot be named in
a DTMC model.

DTMC and CTMC are very similar models—especially structurally. Every
CTMC state equates to a DTMC state, every CTMC transition equates to a DTMC
transition, and every CTMC label equates to a DTMC label. The only difference is
that CTMC states have an exit rate. The exit rate is calculated automatically from all
outgoing transitions of a state. Furthermore, each transition t, outgoing from a state
s, in a CTMC contains a rate. This rate is calculated as a fixed point by:

t.rate = t .prob ∗ s.exitRate (8.1)

Both models have the same elements. Changes can be directly applied from source
to target models in both directions (CTMC to DTMC and DTMC to CTMC). The
difference mapping is executed by a graph transformation rule.

Analysis of LQN and CTMC Models with Model Solvers

The analysis of an LQN model is performed by the LQN Solver [Car18]. In order
to solve an LQN model with the LQN Solver, it is necessary to transform the model
into a .lqn file.

Fig. 8.17 CTMC properties
wizard

8 Performance Analysis Strategies 205

DTMC and CTMC models are analysed using the PRISM model checker
[KNP11]. CTMC models are used for performance and reliability analyses. Reli-
ability can be validated using the reachability of critical states, for example error
states. Performance can be validated in multiple ways. CoWolf provides a wizard
(see Fig. 8.17) that helps to create default properties, which are “Steady State
Probability”, “Probabilistic Response”, “Probabilistic Until”, and “Probabilistic
Existence”. “Steady State Probability” calculates the probability that condition A
will eventually become true. “Probabilistic Response” calculates the probability
that condition B will always become true in a time frame after condition A was
true. “Probabilistic Until” checks if condition A is always true before condition B
becomes true. “Probabilistic Existence” checks if a condition becomes true in a time
frame. As there are many more possibilities to evaluate CTMC models, additional
properties can be created and edited in a text editor.

8.3 Conclusion and Road Map

Variants and versions of software challenge the measurement and prediction of
performance. We illustrated selected strategies by means of two running examples,
namely the PPU automation system and the service-oriented application CoCoME.
The PPU comes with numerous variants, for which it does not scale to analyse each
variant separately. We discussed solutions that reduce the variants that have to be
measured and reduce the effort in assessing the performance for each variant by
exploiting commonalities. CoCoME is an application that frequently evolves and
requires to incorporate versions and different types of artefacts during performance
analysis throughout the software life cycle. We discussed complementary solutions
for performance analysis of software versions by making analysis techniques
accessible and continuous by combining models and measurements.

In our experience, performance analysis of software does often not incorporate
variants or versions at all. While all authors worked on improving the situation
by explicitly supporting variants or versions, there is a research gap with respect
to their combination. On the one hand, software being available in variants does
indeed evolve over time, such that each variant exists in numerous versions. On
the other hand, frequently evolving software is often also available in variants to
tailor software to certain customers. However, techniques being used to address
variants are often agnostic to versions, and techniques devoted to versions ignore the
necessity to support variants. We envision that techniques for variants and versions
are better integrated in the future but also that researchers focusing on variants can
learn from research on versions and vice versa.

Performance analysis for variants can learn from research on versions. We and
others have actively worked on sampling techniques to select a subset of variants
that is sufficient to analyse. However, there is not a single sampling technique that
incorporates the evolution of a product line. Furthermore, it is unclear to which
extent currently available sampling techniques are stable (i.e. produce a largely

206 T. Thüm et al.

similar sample after evolution). Stability is especially important when assessing the
performance evolution of variants, as different variants are likely to have different
performance. Similarly, family-based techniques exploiting the commonality of a
product line during performance analysis are typically oblivious to evolution. The
encoding of the commonality of variants, however, may also be applied to encode
the commonality of versions. This could lead to more efficient analyses for evolving
product lines but may also be applied to versions of a software that does not come
in several variants.

Performance analysis for versions can learn from research on variants. For
versions, we have focused on the challenges associated with evolving and changing
types of artefacts throughout the software life cycle. Possible areas in which the
approaches from variants could be promising for versions is the efficient evalua-
tion of design space and runtime reconfiguration alternatives—which essentially
comprise variants of possible next versions. Another possible point of interac-
tion emerges from modern software engineering paradigms such as DevOps and
Continuous Software Engineering (CSE). In this context, new versions are created
with an increasing velocity, multiple variants of a version are developed in parallel
branches, and fast feedback about the quality is expected as part of the continuous
delivery infrastructure and processes. This requires novel approaches for selecting
and prioritizing performance analysis tasks, such as performance predictions or
load tests. The sampling-based and family-based approaches for variants will be
promising sources of knowledge.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	8 Performance Analysis Strategies for Software Variants and Versions
	8.1 Analysis Strategies for Software Variants
	8.1.1 Sample-Based Analysis of Software Variants
	8.1.2 Family-Based Test-Suite Generation for Software Variants
	8.1.3 Family-Based Analysis of Software Variants

	8.2 Analysis Strategies for Software Versions
	8.2.1 Declarative Analysis Strategies for Evolving Software
	8.2.2 Align Development-Level Evolution and Operation-Level Adaptation
	8.2.3 Co-evolution of Architecture and Analysis Models
	Sequence Diagram to Layered Queueing Network
	State Charts to Continuous Time Markov Chains
	Analysis of LQN and CTMC Models with Model Solvers

	8.3 Conclusion and Road Map

