Chapter 4)
Introduction to Case Studies Creck o

Safa Bougouffa, Kiana Busch, Robert Heinrich, Christopher Haubeck,
Suhyun Cha, Ralf Reussner, and Birgit Vogel-Heuser

This chapter introduces the case studies used in the DFG Priority Programme
Design For Future — Managed Software Evolution (SPP 1593). Section 4.1 gives an
overview of evolution in information systems and automated production systems.
An open community case study for software architecture modelling and evolution,
the Common Component Modeling Example, is introduced in Sect.4.2. An open
demonstrator for automated production systems, the Pick and Place Unit (PPU)
and its extension (xPPU), is introduced in Sect.4.3. Finally, both case studies are
integrated as Industry 4.0 demonstrator and introduced in Sect. 4.4.

4.1 Evolution of Long-Living Systems to an Industry 4.0
Case Study

Many industrial information systems are operated over decades. During operation,
they face various modifications, for example due to emerging requirements, bug
fixes, and environmental changes, such as legal constraints or technology stack
updates. In consequence, the systems change and evolve continually.

S. Bougouffa (2<) - S. Cha - B. Vogel-Heuser

Technische Universitit Miinchen, Lehrstuhl fiir Automatisierung und Informationssysteme,
Garching, Germany

e-mail: safa.bougouffa@tum.de; suhyun.cha@tum.de; vogel-heuser@tum.de

K. Busch - R. Heinrich (<) - R. Reussner

Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

e-mail: kiana.busch @kit.edu; robert.heinrich@Xkit.edu; reussner @kit.edu

C. Haubeck
Universitdt Hamburg, MIN-Fakultit, Fachbereich Informatik, Hamburg, Germany
e-mail: haubeck @informatik.uni-hamburg.de

© The Author(s) 2019 37
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_4&domain=pdf
mailto:safa.bougouffa@tum.de
mailto:suhyun.cha@tum.de
mailto:vogel-heuser@tum.de
mailto:kiana.busch@kit.edu
mailto:robert.heinrich@kit.edu
mailto:reussner@kit.edu
mailto:haubeck@informatik.uni-hamburg.de
https://doi.org/10.1007/978-3-030-13499-0_4

38 S. Bougouffa et al.

Supporting software evolution is a competitive advantage in software engineer-
ing. A variety of methods aim at supporting different aspects of software evolution.
However, it is hard to assess their effectiveness and to compare them due to divergent
characteristics [Hei+15a]. Empirical research in terms of case studies and controlled
experiments is useful to validate these methods. However, empirical studies on
software evolution are rarely comprehensive.

To study evolution comprehensively, we believe it is important to collaborate
by joint research. Joint research supports sharing of knowledge and resources
[SDJO7]. In particular, this allows replicating studies, which in general is important
to confirm and to strengthen the results of empirical research [JG12] and thus
enhance evidence. Our goal is to support joint research by collaboration and
replication in empirical studies based on common evolution scenarios and artefacts.
Currently, empirical studies on software evolution are seldom comparable as
they vary in analysed subjects and execution process. Furthermore, these studies
are rarely reusable as important artefacts (e.g. requirements, design decisions,
architectural knowledge, or context knowledge) are often not provided to the
community. A common basis for study collaboration and replication is missing.
To overcome these shortcomings in the SPP1593, two case studies are used: the
Common Component Modeling Example (CoCoME) as a community case study
for software architecture modelling and evolution and the Pick and Place Unit
(PPU) and its extension (xPPU) as a community case study for automated produc-
tion systems’ evolution. CoOCoME represents a knowledge base for collaborative
empirical research on information system evolution [Hei+15a]. The knowledge
base for the evaluation process can be exploited and extended by researchers
with different backgrounds and research interests. It provides assistance on diverse
characteristics that are important for software evolution, like artefacts in different
revisions, comprehensive evolution scenarios, and coverage of different life-cycle
phases (development-level evolution and operation-level adaptation). The xPPU
represents a lab-size demonstrator for investigating research on evolution in machine
and plant automation [LFV13]. The original PPU featuring 13 evolution scenarios
is limited in size and complexity, but it has been extended with its functionality,
together with the additional structure with over 10 evolution scenarios. Different
evolution scenarios are provided [LFV13] to demonstrate its various change reasons,
for example changing requirements, fixing of failures, and unanticipated situations
on site. The xPPU evolution scenarios are provided to meet research requirements
of the community, together with their artefacts such as system architecture, models,
runtime data and code.

The community case studies aim at providing several benefits to researchers:

* By building upon existing specifications and settings, less effort in scenario
definition, study setup, and execution is required.

* A common case study increases the comparability of evaluation results with those
of other researchers and leads to increased evaluation confidence.

* A common case study also increases community acceptance by interaction with
other researchers.

4 Introduction to Case Studies 39

Unlike information systems, automated Production Systems (aPS) consist of
artefacts of multi-disciplines and are all closely interwoven; the software for an aPS
is strongly influenced by the hardware, which is implemented by mechanical and
electrical/electronic components. Usually the complexity of the software and the
system itself is very high; therefore, it is not obvious how a change in one discipline
is affecting the software, context or platform of the system. [Jig+11] even though
maintainability is an important aspect for a long-living system.

The three disciplines involved in aPS are regarded as three different aspects of
context, platform, and software [Leg+14]. Context includes the mechanical aspects
of the system, such as pure mechanical components, sensors, and actuators. Platform
represents electric/electronic aspects, which manage signal flows from or to the
interfaces of the Programmable Logic Controller (PLC). Software reflects software
engineering aspects, which consist of data-processing functions using the flow-in
information to generate the flow-out information. The software of the aPS has been
implemented in IEC 61131-3 [Int09], to be run on PLCs.

Modularity, which is one of the key aspects to enable evolution of software-
intensive systems [PCW84], is still rarely fully applied in aPS [Vog+17b]. Moreover,
fundamental methods such as variability modelling and tracing, which enable
software evolution, are still limited to the software domain of the cyber-physical
systems. However, aPS impose special requirements on the development and main-
tenance process. For instance, mechatronic components are designed to function for
several years. However, it is predictable that their development and maintenance will
change over their utility lifetime. To allow for later adaptions to the functionality of
these components, suitable means should be considered during the development. As
software can be adapted more easily than mechanical or electrical parts, changing
the control software of aPS may solve adaption requirements. However, these
changes may result in code smells, as they are usually conducted quickly on site
by technicians.

aPS are supposed to operate for decades. During operation, they are ageing.
For instance, as a result of physical effects like wear, tear, and corrosion, life
expectations of mechanical components are affected. These components have to
be maintained after some years, known as re-engineering and modernisation (cp.
Fig.4.1). There are other reasons for ageing such as changing requirements and
system specifications, market requirements, new technologies or legal requirements.
Many of those changes can be realised by adapting the control software, which is
done more frequent and even during runtime.

40 S. Bougouffa et al.

Project-independent activities to create reusable partial solutions

- == 1 -
Il Requirement Detail Solution element Solution

Il specification || specific. design I implementation 1 i

F S ! Bttt Mol oo B Sesukeesid) S (o S

| Reguirement || System || System || Detall ||System element || System || System I System || Project V) operation) _F'Ia::[t:!:en
| specification |/spacific. || design || design | implementation |/integration delivery || handover ||completion) ©PErEUON/ | operation

Context/ Mechanics (~ every 20-40 years for process industry production systems /
~ every 5-20 years for manufacturing production systems)

Platform/ Automation hardware incl. electrics (~ every 10 — 15 years)

Software (~ once per week — once per year)

Fig. 4.1 V-Model XT integrated into the life cycle of different disciplines in aPS distinguishing
between project-independent activities (top) and project-related activities (bottom) [Vog+15c]

Scenario category:

Causal Order of Ia Ib Ie Id | Ha | 1Ib | He | I (IVa|IVb) IVe | Va | Vb | Ve | Vd |VIa |VIb| VIie

changes and change criteria

PPU scenario (cp. Table 2) ?;lt], se12d] sel fsel2elsels | sel _';’j;,' Sc6 [seab] Sel fsel2elSell, Bel2d] el [Sel2efsel3| Sl [Sel2e
(,]‘ @Hl™mlE ™™ r;vi Mm@ Isczl@ L@ Mm@

{a) Requirements of the plant’s 1

management (informal)

(b) Semi-formal system 5

requirements specification (SRS) -

(c) Software of the aP'S 3. 4. 3. 1. 2.

Z[(d) electrical parts of the aPS 3. s 215 12 21 1. (P O 5
(e) mechanical parts of the aPS 3. [3.]1™ | 2] 1.) 1]

unchanged

omitted

Arti-

Anticipation of Change
(Buckley et al., 2005)

yes no

Time of change offline online

Fig. 4.2 Categories of evolution scenarios with references to PPU case study examples in
Section 3 [Vog+15¢]

Evolution of aPS can be initiated by different reasons for change, which can
affect the software, mechanical, and/or electrical and electronic parts. A classifica-
tion of evolution was introduced in [Vog+15c], which distinguishes causal orders
of change by which the aPS is affected (see Fig.4.2). The evolution categories can
be related to the history of change and anticipation of change [Buc+05, KVF04].
Anticipated changes include changes during the development of the system and also
during operation in case of a model-based approach (i.e. offline changes). Moreover,
changes during commissioning and operation are categorised as unanticipated
changes (i.e. online changes), as they are implemented directly in the aPS during
runtime.

In order to blur the boundaries between pure information systems and automated
production systems, recent trends in industrial digitalization, known as Industry
4.0, were established. According to Vogel-Heuser et al. [Vog+15c], the proportion
of software in automated production systems is increasing and the demand for

4 Introduction to Case Studies 41

highly customizable production systems will require higher involvement of multiple
engineering disciplines. Consequently, research demonstrators in Industry 4.0 are
required to study evolution cycles in these heterogeneous environments.

There exist demonstrator systems for Industry 4.0 environments targeting spe-
cific problems where the automation aspect is dominant [VH16]. The software
systems interacting with the physical parts of these prototypes do not comprehend
the complexity of information system in real-world scenarios. Additionally, a
community case study is supposed to be a standardised or at least widely used
reference for projects with the same research topics. This requires a demonstrator
that not only is easily accessible and expendable but also comprehends the most
significant aspects of evolution in Industry 4.0 scenarios. Therefore, both case
studiesCoCoME and xPPU are integrated as Industry 4.0 case study.

4.2 Introduction of the CoCoME Case Study

CoCoME represents a trading system as it can be observed in a supermarket chain
handling sales. This includes processing sales at a single store of the chain, like
scanning products or paying, as well as enterprise-wide administrative tasks, like
inventory management or reporting. Each store of the CoCoME supermarket chain
contains several cash desks, whereas the set of cash desks is called cash desk line
(visualised by the dashed line) (Fig.4.3). The cash desk is the place where the

Enterprise Server

I
N o0
X
X

1-——%

Fig. 4.3 Overview of the CoCoME structure

ProcessSale

42 S. Bougouffa et al.
Customer

ManageExpressCheckout ManageExpressCheckout
%Z ReviewOrderedProducts Stock
OrderProducts Manager

Cashi
ashier ProductExchange
% ShowStockReports
4
Store ChangePrice ShowDeliveryProducts Enterprise
Moeer Manager

Fig. 4.4 Basic use cases of CoCoME [Her+08b]

cashier scans the goods that a customer wants to buy. The central unit of each cash
desk is the cash desk PC. The cash desk line is connected to a store server. A set of
stores is organised in the CoCoME enterprise where an enterprise server exists to
which all stores are connected.

A detailed description of the basic use cases supported by CoCoME is given
in [Her+08b]. In the ProcessSale use case, the cashier detects the products that a
customer wants to buy and payment is performed at the cash desk (Fig. 4.4). If the
conditions for express checkout [Her+08b] are fulfilled, a cash desk automatically
switches to express mode in the ManageExpressCheckout use case. Product items
can be ordered by the store manager in the OrderProducts use case. In the
ReceiveOrderedProducts use case, products that arrive at the store are checked and
inventoried by the stock manager. The store manager generates stock-related reports
in the ShowStockReport use case. The ShowDeliveryReports use case provides the
mean times a delivery from each supplier to a considered enterprise takes to the
enterprise manager. The store manager can change the sales price of a product in
the ChangePrice use case. In the ProductExchange use case, products are shipped
from one store to another if a store runs out of a certain product. In this use case, no
human actor is involved. Only the system is involved.

CoCoME uses Java SE in combination with Java Database Connectivity (JDBC),
Java Persistence APl (JPA), and Java Message Service (JMS) (Fig.4.5). JMS
is used to provide a way for communication between the components. The
main component is the TradingSystem component. It consists of the TradingSys-
tem::CashDeskLine component and the TradingSystem::Inventory component. The
TradingSystem::CashDeskLine in turn consists of several CashDesk components
representing the physical cash desks in a store with their corresponding components
like the CashBox, BarcodeScanner, and CardReader. There is one Coordinator
component per store, which receives sales events from the cash desks and changes
the express mode state if needed. The TradingSystem::Inventory consists of the
Console component, which provides a user interface for store-related operations
through its Store component. The Console::Reporting component provides the
user interface to retrieve enterprise or store reports. The central component of the
TradingSystem::Inventory is the Application component. It provides the cash desk

43

[9TMYH] HIN0DO0D JO 2INONYDIE A1emyos [eniu] §'p B

. Kionpesudiow3| o Jeusjedsigionpoid:
ssudisuz:
@ «QuaOdWIoD» V@ «Quauodwod»
Bunoday: O suporeyr o Buppioday:
2oUd)sisiad: 4 o
E Quauoduio HE ERR
203t IBNDBI0IST U\
E «quauoduioon s o
«quauoduioon [3 aweuodioos
eleg: neayddy: ajosu0:
«uauoduioo» mw «Quauodwooy «queuodwioon

Kiojuanuy::wiajshgBuipel L
«uaLodwos

JUBATB[ESIUN0OD)

Ezmz_ssmm
i

J10jeUIPI00D:

@ «uauoduioo»

—o—— 15—k

sngjuaAISIN: 7

g o

}
1
i
7 J——

[

! {
H v 4

uBrsseudxa: _ 7 xoguses: 7

JauuRdSapODIRG:

& =

¥saqused:
«Quauodwoo

= megr C

4 Introduction to Case Studies

ourpisequse::weysAgbuipesy
Qualoduwioon

44 S. Bougouffa et al.

and the store user interface and the operations to retrieve data and to book sales. The
data are transferred in the form of Transfer Objects to provide an abstraction layer
between the database and the other components. To retrieve the reporting informa-
tion for the presentation layer, the Application::Reporting component provides the
needed interface. There is also a ProductDispatcher component available to dispatch
needed stocks from one store to another if necessary. A connection to the underlying
database is realised by the Data component, which relies on JDBC and JPA to persist
and retrieve data. It is divided into three sub-components, Store, Enterprise, and
Persistence. The Store and Enterprise components are only used to query store or
enterprise data, whereas the Persistence component writes objects to the database.

A detailed description of the initial requirements, architecture, and system
behaviour in form of sequence diagrams is given in [Her+08b]. In the course of
the DFG Priority Programme 1593, CoCoME faces changes by various evolution
scenarios. Detailed description of changes to requirements, architecture, and system
behaviour is given in [HRR16].

Since CoCoME has been applied and evolved successfully in various research
projects, like SLA@SOI and Q-Impress funded by the European research council,
several variants exist that span different platforms and technologies. Furthermore,
various development artefacts are available, such as requirement specification or
design documentation, that changed over time. CoCoME is well suited to serve as
a study subject because the supermarket context is commonly comprehensible and
the complexity of the system is appropriate. As CoCoME is a distributed system,
several quality properties are affected by evolution.

In SPP 1593, a hybrid cloud-based variant of CoCoME has been developed
based on the initial CoCoME specification [Her+08b] by implementing various
evolution scenarios. The frontend of the hybrid cloud-based variant of CoCoME
uses Java Server Faces (JSF) to implement the user interface (Fig.4.6). In the
WebFrontend::UseCases component, the presentation logic is implemented, which
uses the components in the TradingSystem component to store the data retrieved
from the ServiceAdapter. The ServiceAdapter component defines and implements
an interface for database access and internally uses JDBC and JPA to access
the underlying database. To query the database, the ServiceAdapter provides a
Representational State Transfer (REST) style interface over Hypertext Transfer
Protocol (HTTP).

Additional abstraction layers are introduced for the communication between
the presentation layer and the business logic. These layers are located in the
WebService component. The inner structure of the TradingSystem was nearly left
unchanged. One exception is the event bus. Instead of the JMS event bus, the
Context and Dependency Injection (CDI) event bus is used. Another change is
that the components in Data now use the ServiceAdapter instead of the database
directly. This allows for more flexibility in the cloud context. The newly introduced
WebService::CashDesk component provides the frontend with a way to access the
cash desk components. It is designed as a wrapper around the business logic so the
method of accessing the business logic can be exchanged just by exchanging the
wrapper classes. This is also the purpose of the WebService::Inventory component.

45

4 Introduction to Case Studies

[91¥YH] (eamonns 9s1209) FNODOD JO JUBLIEA PISEQ-PNO[O PLIGAY AY) JO MIIAIIAO AINJOAIYIIY 9 "SI

sobBeuepasudiaug|
Buiodayesjidiayug|
19)depyainleg: Kiojuanu::adintaggaM
@ «Quauoduioo» @ «@OINIBS GIMY 1oBeuejyoIolg|
Eamu/\mo?_w%ﬁ Em:dwm__n:m«cm_gU m:_toawm_nﬁ _wmm:ms_ioa:g:_w_ouw_ﬂ
Kioyuanuj::waysAgbuipes)
@ «uauodwody
Ew>m_m_mmEsooo<ﬂ EoEwE_w‘_Em;\
aurysagyse::waysAgbuipes)
@ «uauoduwiod»
_muos_v_wwn_:mmoP_mvo_\EwummmEmoP_wuo_\,_\hm_nm_n_._wwDP _wuos_._wE_._n_P _muo_\,_‘_w::muwwuoo_mmuu _muo_\,:zm_l_wwwaxm% |opoNxogyse|
xoguyse)|

TUBrTsSaIdxa]
ToUUEsgapooIEg Y
g Y
Rerdsigresn)

W v_mwnﬂ_wwo?_wmﬁ_mgﬂwnw TopEeEPIED] | sese 50SN:PUSIICIIGEM
- 5
SSequseED| v|@ «uauodwoo»

46 S. Bougouffa et al.

The WebService::Inventory contains the Enterprise component to enable the fron-
tend to access enterprise-related information. This is necessary to enable several
tasks needed for database administration like the listing of all stores in a specific
enterprise. Design details are given in the technical reports [HRR16] and [HKR18].

We specified and implemented distinct evolution scenarios covering the cate-
gories adaptive and perfective evolution. Corrective evolution is not considered
in the scenarios as this merely refers to fixing design or implementation issues.
An adaptive evolution of the hybrid cloud-based variant of CoCoME is reflected
in the scenarios Platform Migration, Microservice Architecture and Container
Virtualization due to evolving technology. Perfective evolution is represented in
the scenarios Adding a Pick-Up Shop, Adding a Mobile App and Adding Payment
Methods by emerging user requirements. Furthermore, in order to accommodate the
self-adaptiveness of modern software architectures, reconfiguration during system
operation is addressed in the scenario Database Migration.

4.2.1 Platform Migration

The CoCoME enterprise must reduce operating costs of the resources and, therefore,
migrates some resources to the cloud. The enterprise server and its connected
database are now running in the cloud. The introduction of the cloud enables flexible
adaptation and reconfiguration of the system. However, putting the system into the
cloud causes new challenges regarding quality properties that must be considered in
development and operation. For example, a look back in the recent past shows that
privacy is one of the most important quality properties for cloud-based systems.

The evolution scenario Platform Migration transfers the initial variant of
CoCoME to the hybrid cloud-based variant. As mentioned before, for the design of
the hybrid cloud-based variant, additional abstraction layers are introduced for the
communication between the presentation layer and the business logic. These layers
are located in the WebService::CashDesk and WebService::Inventory components.
The WebService::CashDesk component provides the frontend with a way to access
the cash desk components. The WebService::Inventory component enables the
frontend to access enterprise-related information. Wrappers are designed around
the business logic, so the method of accessing the business logic can be exchanged
just by exchanging the wrapper classes.

4.2.2 Adding a Pick-Up Shop

In this scenario, an online shop is added where the customers can order online and
pick up the goods at a chosen store. This design-time modification includes adding
new use cases and modifying existing design models.

4 Introduction to Case Studies 47

e — ________———‘ F
G0z R Serliasalel). - ~ uc 1: ProcessSale H‘“‘\ ____————‘__ / \

d.. \Hanag eEx press(‘,h ec KDU{/* =5 J.f\
[

o) e erm,cluc’es UCZ Man?gequessCheckc i Cashier

‘ QG ShowDel lveryﬂeporb/ \
; T /N

Customer

P {ncl Jceq -~
uca Order rodfcts> (cs ProduciExchangé) “inck v efpriseManager
=3
b4 Productlnfurmallorl \
— uc13 View O
CustomerReport
Y

\v — _'/ UC 7 Chanchrlcc >
L5

3 5'10"‘5‘0‘3"':*99‘@ = ~Uca Flprolv;\, I
StoreManage e — \prderedProduc_/ \

StockManager

\I/

Fig. 4.7 Use cases of the pick-up shop [HRR16]

The CoCoME enterprise is in competition with online shop vendors (such as
Amazon and Taobao). In order to increase its market share, the CoCoME enterprise
management decides to offer a pick-up service for goods to address emerging
customer requirements. The customers can order and pay online. The goods are
delivered to a pick-up place (i.e. a store) of her/his choice. If the order has not been
paid online, the goods have to be paid at the pick-up place (either per credit card or
cash).

Existing use cases are extended, and new use cases are added to cover the pick-up
shop’s functionality (Fig.4.7). In the CreateCustomer use case, a customer creates
a new customer account for the pick-up shop. Users can be authenticated at the
pick-up shop by the use case AuthenticateUser. The use case ProcessOnlineSale
extends the existing use case ProcessSale by enabling a customer of the shop to
select the products he/she wants to buy and to perform payment via credit card.
Product information stored in the system can be changed by the stock manager in
the ManageProductInformation use case.

For implementing the pick-up shop, the hybrid cloud-based variant had to be
modified and extended to fit the needs arising from an online shop (Fig.4.8).
The first extension is to implement a service for customers to register and log in.
This functionality requires the ServiceAdapter to store the login information and
additional data like credit card data and the customer’s preferred store in the data
store.

The second modification is to include the services for the creation, modification,
and authentication of customers into the business logic tier. To this end, the Inven-
tory component is extended by a new UserManager component. This component
implements the communication with the ServiceAdapter to retrieve, modify, or
create the user and customer data.

The ShoppingCart component keeps track of all items that the customer wants
to buy and is responsible for calculating the total price of these items. When
the customer is done adding items to the ShoppingCart and proceeds, the sale is
persisted by the CheckOut component.

S. Bougouffa et al.

48

J19)depyadinies:

@ «uauoduwiod»

M

‘_wamn/\wu_mefﬁ

[9Tq¥H] (eamonms as1eod) uorsudixa doys dn-Yord yim MITAISAO 2INIANIYDIY 8 “SL

K10}UdAUI::3DIAIBSGIM
«9OIAIBS GOm»

obeue|yuIbo:
JaBeuepyuibosy

Jabeuepasudiajug|

Bunuodeyesjidisjug|

19beueyoI0)S|

!

‘_wmmcms_‘_mmﬂ_% ‘_o.mozcmé:(% mc_tcamw_% ‘_wmmcms_boucmé_ﬁo“m%

IE

Kioyuanuj::weysAgbuipes)
«quauodwoo»

Lo

Ew>m_,\.v_mwt._:onnLv Ec.cwé_m._o«m”ﬁ

IE

aulysaqyse)::wajsAgbuipel)
«uauodwoo»

_muos_v_mmn_zmmo%_wno_\fmummmnﬁo

I

_nﬁ_wvo_\,_%_%_o_mm:P _wvo_\me_iP _muc_\Ewccmuwm_uoo_m«.”@V _muos_Em_._mmwaxm_P |epojxogyse)|

I

I

I I | I

Jueg|

doyg dn-sjo1d

@ «uauodwoo»

}SaQYSeD::a0IAIISqIM
«BOIAIBS GOMY,

xogyseQ|

ybrssaidx3|

FENVERISET L])

TBud])
Reidsigiasny D

TopEagpIE))]

SEaqusEs]

qam

@ «uauodwoo»

4 Introduction to Case Studies 49

By introducing the pick-up shop as web application, the CoCoME system
changes from a closed system (only employees can access but not the customers,
and access depends on the location, e.g. a store) to an open system (all customers
can accessed via the Internet). This raises certain consequences such that the number
of users is not restricted any longer. Hence, various quality properties are affected,
for example privacy, security, performance, and reliability.

4.2.3 Database Migration

After a while, the CoCoME enterprise starts a big advertisement campaign.
Advertisements lead to an increased amount of sales. Thus, the performance of the
system may suffer due to limited capacities of the cloud provider currently hosting
the enterprise database. Migrating the database from one cloud provider to another
may solve the scalability issues.

Especially in the cloud, the application usage, performance, pricing, and privacy
are closely interrelated. The application usage impacts on the application’s perfor-
mance and pricing. Continuously appraised elasticity rules trigger the migration
and replication of a cloud application’s software components among geographically
distributed data centers. Both migration and replication may lead to violation
of privacy policies that prescribe certain geo-locations. Furthermore, a cloud
application may also face performance/availability trade-offs as replication is often
done for improving the system’s overall availability, not just performance, which
again might violate privacy policies.

This scenario represents a reconfiguration at runtime. Migrating the database
may cause a privacy issue due to violations of privacy constraints. According to
a privacy constraint' of the European Union (EU), sensitive data must not leave the
EU. Since the CoCoME enterprise is located within the EU, its databases containing
customer data must be hosted on data centers within the EU. This scenario is about
the dynamic analysis of cloud applications at runtime to identify upcoming quality
flaws. It includes model-based observation and prediction techniques in flexible
environments.

4.2.4 Adding a Mobile App Client

In order to outperform its competitors and expand its market share, the CoCoME
enterprise decides to offer a mobile app client. In this perfective evolution scenario,
a mobile client is added where the customers can order through their mobile
phones and pick up the goods at a chosen store. Figure 4.9 depicts the mod-

Thttp://eur-lex.europa.eu.

http://eur-lex.europa.eu

50 S. Bougouffa et al.

UC 14: ProcessAppSale) =~-—____
—] - ------------
———————— uC 16:
E— f) AuthenticateAppUser
\
AppCustomer T / Cashier
\ UC 15: CreateAppCustomer /
\
\\ ,I
\ s /!
\ o ! uc2
\ L 7 ManageExpressCheckout
L UC 1: ProcessSale /
Cmmonlmns f
UC 9: ProzessOnlineSale) »* /
) v
/
=7 ¢ (uc 6: ShowDeliveryReport:
,#’<<Include>> !
7 =(uc 11: AuthenticateUser
. N
/ AN
< <
— UC 12: CreateCustomer \ S
AN UC 10: Manage
\ Productinformation
\
\
\
\
UC 3: OrderProducts UC 8: ProductExchange \
A (UC 13: ViewCustomerReport I

—_

UC 7: ChangePrice
Storage Manager ea
UC 5: ShowStockReports ReveiveOrderdProducts

Fig. 4.9 Use cases of the mobile app [HKR18]

6:
EnterpriseManager
~
<
\
Customer <<Inclyde>>

StockManager

ifications regarding the use cases of CoCoME. In the CreateAppCustomer use
case, a customer creates a new customer account for the mobile app. Customers
can be authenticated on the app by the use case AuthenticateAppUser. The use
case ProcessAppSale extends the existing use case ProcessSale by enabling the
customer to buy products using a mobile app. This scenario introduces mobile
communications to the CoCoME system, which may affect quality properties like
privacy, security, performance, and reliability.

This design-time modification is based on the pick-up shop scenario but
implements a mobile frontend (Fig.4.10). The backend of CoCoME does
not face any changes. An AppShopAdapter is introduced to bridge the
technology gap between the web services of CoCoME and the technology
used by the mobile app client. The AppShopAdapter consumes the three web
services WebService::Inventory::LoginManager, WebService::Inventory::Store, and
WebService::Inventory::Enterprise and provides a Rest API, which is used by the
AppShop. The Rest API contains the service endpoints. Further design details are
described in the technical report [HKR18].

4.2.5 Microservice Architecture

The architectural style of CoCoME is changed to microservices for reducing the
coupling between the services of CoCoME and enable independent deployment,
as well as reuse. In this adaptive evolution scenario, the functionality of CoCoME
remains the same while changing the architectural paradigm of the system. This

4 Introduction to Case Studies 51

<ECompanent=e EJ fr CreditCardControler <<eompanent=e Ej
AppShop \\.__D AppShopAdapter
#7, EnterpriseController
— (
-

“—, lemsController []]
(kf

© LoginController l%

C SaleController

O
o

A

)
S
ILoginManager 15t |IEnterpri
r

<<component>=
™y
(w’ O

CoCaME

O———On
o

:Store

<cweb services> El‘ l <<web services> ‘ﬂ‘ <cweb services> gl
=1

:Enterprise

:LoginManager

Fig. 4.10 Architecture overview with mobile app extension (coarse structure) [HKR18]

design-time modification introduces a collection of loosely coupled microser-
vices where each microservice is internally structured in a layered fashion. Each
microservice has its own graphical user interface (GUI) and business logic. Each
microservice, except for Reports, has its own database. The CoCoME system
(before structured by technical layers) is decomposed into four microservices for
managing the orders, reports, stores, and products (Fig.4.11).

In addition to the four microservices, a Frontend service is introduced. The
Frontend service is required to provide a unique GUI and entry point for users. When
a user requests a service, for example by clicking a button on the GUI, the request
is delegated by the Frontend service to the corresponding microservice. Thus, the
Frontend service handles the orchestration of the microservices. Furthermore, the
Frontend service is responsible for identity and access management.

The evolution of the architectural style shifts complexity from software design
into system operations. While the individual complexity of a microservice is
reduced compared to intermeshed services, additional complexity is introduced
for the orchestration of the single microservies. Moreover, quality properties like
performance and privacy are affected by this evolution scenario.

4.2.6 Container Virtualization

In this scenario, the deployment and operation of the CoCoME system is facilitated
by introducing container-based virtualization with Docker. Docker eases the inte-
gration of CoCoME into build and deployment pipelines. In this adaptive evolution

[STYSIH] N0 JO INIOANIYIIL SDTAIISOIINW A} JO MAIAIOAQ [T “SLI

S. Bougouffa et al.

Kioysodeysionpoid
E <<)uaUOdW0>>

Kioysodayueddng Eo._mon_mwﬂ.:voi

O

91A1850.01S1ONPOId
E [<<iveuoduwoos>
i

1t

!

PUBJUOIJ3DIAIBSOIDINSIONPOIY
B <<lUBUOdWOD>>

+—O2+

Kioysodaysaiols
<<jueuodwoo>>

E]

Asaqused
[B <<weuodwoos>

Nseqused]

o

3DIAI9S0IDINSI0}S
<<weuoduioo>>

£

—1

19zjuebigasudiaug) Ayjeuonsungysaqysed|

Juswebeuepaiolg|
o S S

PUBIUOIJEIIAISSOIINSOIONS
B Z<usuoduwioos>

a01AI195010INSHOdaY

KioysodaysiapiQ
E <<iusuodwoo>>

AioyisodayAu; 19)
Eou_monwmhmvhoﬁz_un:n_._ MJEWL P10

O

3DIAI9S0IDINIBPIO

B <<IUaUOdW0D>> [B <<U8u0dW00>>
. 1 1
{ EwEwmm:nEﬁ«:mhwEO {
spoday| & —:meammE.mv._o
{1 L1 {1

puajuoIJadIAIRsOIDINSHOdaY
<<jusuodwoo>>

PUBJUOIJ3DIAIBSOIDINSIBPIO
=] <<lUBUOdWO00>>

<<osn>>

52

| sai015

<<osn>>

! spodey

<<osn>>

B

pusjuoiy
<<jueuodwod>>

| sipIo

<<asn>>

4 Introduction to Case Studies 53

CONTAINER

CoCoME
Glassfish

[JvM] [Maven]
| JVM | I Maven |
I Docker l
I Operating System l I Host Operating System l
I Infrastructure l I Infrastructure l

Fig. 4.12 Extended technology stack CoCoME [HKR18§]

ProcessSale %
- ®

Customer Cashier

«inchide»

\\
< «extend» {customer is authenticated}
AuthenticateCustomer \\
ExecutePayment
>

PayWithBitcoins PayWithPaypal

PayWithCreditCard

Fig. 4.13 Use cases of CoCoME payment possibilities

scenario, the functionality of CoCoME remains the same, while the technology
stack is extended (see Fig.4.12). The given CoCoME stack is moved into the
Docker Daemon, which runs a Linux distribution. This evolution scenario provides
a platform independent CoCoME that does not require any preconditions like
installing or updating software. By using Docker, a version of CoCoME can be
instantiated on any device without installing additional software. Furthermore, the
building and deployment of CoCoME can be automated and be sped up.

4.2.7 Adding Payment Methods

Currently, customers can only pay via credit card. In this scenario, the CoCoME
sales systems is extended with new payment possibilities such as PayPal and
Bitcoins (Fig. 4.13).

Customers are then enabled to select between various payment options. Payments
are initiated by the TradingSystem::CashDeskLine component (Fig. 4.8). This com-
ponent communicates with an external bank (External::Bank::TrivialBankServer
component) via the IBank interface. The IBank interface defines the methods vali-
dateCard and debitCard. In this scenario, a generic [Payment interface is introduced

54 S. Bougouffa et al.

External g CashDeskLine g
£

«interface»
IPayment

<ty
BitcoinPayment | -f-|-----—— - ___ L !
_

- authenticate : void y
T N X vor TrivialBankServerAdapter

-1 pay : void
PaypalPayment IPayment
—O)— authenticate : void
«interface»

: void
IBank pay - vor

AlternativePayment

Bank g

T validateCard : void | adaptee

TrivialBankServer | I debitCard : void

Fig. 4.14 Excerpt of the CoCoME architecture after adding new payment possibilities

that defines the authentication and payment methods. The IPayment interface is
implemented by the PaypalPayment and the BitcoinPayment components (as part of
the External:: AlternativePayment component). In order to still provide the customer
with the possibility to pay via credit card, the [Payment interface needs to be mapped
to the IBank interface. For this purpose, the adapter design pattern is chosen.
Figure 4.14 shows the resulting architectural structure.

4.3 Introduction of the PPU and xPPU Case Studies

The PPU and xPPU represent a laboratory plant for automated production system.
The case studies handle and manipulate workpieces (WP) of different mate-
rial (Fig.4.15). An order for WPs is initially processed at a material storage.
Afterwards, the PPU and xPPU distribute and manipulate the WPs that are detected
by many different kinds of control hardware. Finally, WPs are sorted based on their
material in product storage and delivered.

The original PPU consists of four equipment modules: stack, crane, stamp, and
conveyor. WPs, which are the target of the process of the plant, are stored at the
stack. These WPs are processed differently depending on their type in which the WP
is either directly transported to the conveyor by the crane or moved to the stamping
unit followed by transported to the conveyor. Sorting ramps possibly differ also
depending on the WP type. The xPPU have additional features, such as a reordering
module for logistic flexibility, so-called picalpha; reinforced security and safety;
product recognition using radio-frequency identification (RFID); manual operating
mode; and Industry 4.0 interface (Fig. 4.16).

In the xPPU, production, material, and product managers are responsible for
controlling the plant status, material status, as well as the resulting product status
respectively (Fig.4.17). When the order is initialised, the production manager con-
trol the processes the plant conduct regarding the material and resulting product. The
processes (i.e. basic control functionality) can be manipulating WP (i.e. stamping)

4 Introduction to Case Studies 55

Production department

=N, Material
@ L__v S storage

Order 1 o

Plant

€2 %

A,
=1 _ BEH

Delivery

Product
storage

Fig. 4.15 Overview of the PPU and xPPU production chain

Remote Systems

Fig. 4.16 Overview of the PPU, xPPU, and Industry 4.0 case studies

or sorting WP in different ramps according to their material. The plant operator
is responsible for selecting the mode of operation for the plant (i.e. manual or
automatic), as well as monitoring the status of the plant regarding fault and
emergency handling. By enabling Industry 4.0 interface to the xPPU, remote
operator and system can access the plant over the web or mobile application and
execute processes. The use case for the Industry 4.0 interface is further detailed in
Sect.4.4.1.

56 S. Bougouffa et al.

L —

Selecting Op. Mode @
Reordeﬁnyﬁote operator
e Operating over web
.\\‘\H Recipe Manipulation | _—
Production Manager

‘"‘—‘—-—._________-_-_‘_- = 1
Operating over Remote system
mobile app
.
/ -
Production status report

Fig. 4.17 Basic use cases of xPPU (highlighted use cases are from enabling Industry 4.0 interface)

Manipulation

Plant Operator

Material Manager Product Manager

NamedElement

[name: EString
| Objectld : EString

Constraint |
Propert Body: EStrin
[Popery] S|
[0..] owned [1.1pre | |[1.1] post
Property [1.1] type
. | & ¢ , l ¢ |
| ProcessCell]I = Module | | GeneralOperation |5 -RecipeProcedurei
Body: EString [0. | Body: EString
] | E ¥ ownedGenera is_implented : EBoolean _
[Unit]—. Operation | avallable_for_user: EBoolear) || ypitProcedure]
k | = = Holding_Routine : EString o d
I Reset_Routine : EString
- B | Abort_Routine : EString =
|EquipmentModule || ’ Operation |
| —_—
| ControlModule Phase |

Fig. 4.18 Excerpt of the meta-model developed based on ISA88 [Com+95]

The meta-model used for modelling the system architecture of the xPPU is based
on ISA88 standard [Com+95] (Fig. 4.18), which is a reference model for providing
the essential fundamentals for batch process control (Fig.4.19). The two central
classes are the Module and the GeneralOperation. The Module corresponds to the
physical assets of an enterprise. The GeneralOperation represents the procedural
elements from the ISA88 standard. Both classes inherit the name and Objectld
from the NamedElement class. The Module can have multiple relations to the class

57

(s3red papud)xa oy are pay3Iy31y) Nddx pue Ndd JO ININIYIIL WIISAS oY) U0 MIIA [BINJONIS pue [euonound @Iy “S1q

4 Introduction to Case Studies

UouSOd of BAN i e Ing M B0 w2t B A D 1l suwy duey
EET UL B conmmdos [B coxemsdons] o] IE]
PAIOS di NIEIE
spusls Buggr) AR WGR0g sy i 10g A MEedes ﬁ
Je>] Qs [B <compowmauogss ®) & - @
Imydmong) Bugpuey mau wapsds kswung
= <<INPOR JILBNb x> & M!ﬁn:!!._iuw:
% ')
it
& dmuog (PG Qi
B <womndo]]
daig Asustimaig pug W PILIOS AW
<R [B <coreomomens> AL b FRD sy e
® " [E] ®
PuEg uoaeiRdg 000 Riajes it
OGN [B =<smpoprenuogo oo uu__.u'
Rapg
<< BRI MU T
Wl i D UM QU mpuyls Budumng
[B <ewosmedgss @ e ® s
dumig A RIOd0L e Baprg
] [E] @
okanuag o Ao dumg
[E] [E] <compon wadnb >
spuis Buun Al Umed g
] ®
) PR AR O g amey PuRg LogRRC
=cuogeIdgss <<BNPONIORLOT> <<OpOORITT>
1oy 10, Bununy L L] £) C oou-;m.u?_}
® ® ¥
il gl Ml semBousH mpoptian,
e L] . &) (L]
CHNPON Ktk g
® <conpon vesudnb s
Nddt
il

58 S. Bougouffa et al.

Property, which refers through a type relation to an existing Module. Moreover, a
Module, which is already available and implemented in the overall model, can thus
be referenced and used several times, which allows the creation of a repository (i.e.
area repository). In addition, the Module is also related to GeneralOperation, which
allows the procedural elements to be assigned to the physical plant components.
GeneralOperation has two compositional relations to Constraint via a pre and post
relation, which respectively express pre-conditions and post-conditions of proce-
dural elements to be checked before and after the execution of a GeneralOperation.
Furthermore, the physical assets in terms of process cells, units, equipment modules,
and control modules inherit from the class Module. In the same manner, procedural
elements in terms of recipe procedure, unit procedure, operation, and phase inherit
from the class GeneralOperation.

In order to provide use cases and allow the comparison of different solutions,
24 evolution scenarios have been developed during the SPP 1593. Detailed doc-
umentation of the xPPU evolution scenarios are documented with structural and
behavioural models, PLC control code, Matlab/Simulink simulation projects, and
mechanical CAD files [Vog+14b] and are publicly available to the community
on github.? The evolution scenarios were extended regarding more sophisticated
requirement modelling, as well as fault handling functionality Chap. 12.

The xPPU is also used by the research community outside the SPP1593 to
identify inconsistency [Fel+16], control parameter optimization [Zou+18], and in-
place traceability [Ale+17]. The xPPU is connected to a PLC through EtherCAT,
allowing the process of signals from the xPPU and the control of actuators accord-
ingly (Fig.4.20). The control software runs on a PC with a particular environment
(e.g. CODESYS or TwinCAT). Furthermore, the PLC is connected to an Open
Platform Communications (OPC) server that allows accessing the plant by OPC
clients such as the Industry 4.0 interface.

4.3.1 Evolution Scenarios of the PPU

In Table 4.1, 13 sequential evolution scenarios of the PPU are depicted, which cover
different combinations of platform, context, and software changes.

e Scenario Sc0: The initial scenario is the evolution scenario ScO where the stack,
the crane, and a slide exist. The stack pushes a single black plastic WP out of the
stack into the crane’s pick-up position. At the pick-up position, the crane picks
up single WPs by moving the crane down and by using a vacuum gripper to suck
the separated WP. Upon rotation of 90°, the crane reaches the slide’s position,
where the WP has to be placed. After moving down, the vacuum gripper releases
the WP, which then glides down the slide.

Zhttps://github.com/x-PPU.

https://github.com/x-PPU

4 Introduction to Case Studies 59

4\ Matlab (Simulation) |[%|[oPC client Engineering PC
[}
Simulink Stateflow S A PLC Code PLC Code PLC Code
l § (State Charts) (IEC 61131) (C++) C, C++,
! v v vV o
UML Plugin | =@ | = f "
Visualization R 1 TwinCAT etc.
" CODESYS V3.x L TwinCAT V3
|
\ Compiled and
l executable software
ol =0 PLCIPC | 1]
Control software in OPC § Y hjl Ly
any programming server o2 o CODESYS .
language e [(external § runtime environment 1:’::3?“2T
[} .
= interface) a A i
#include <stdio.h> Q O | _ environment
Hinclude <stdlb.h> 8 A A
int main(int arge, char o
.?vm{ v J EtherCAT y
@ xPPU
]
Middieware >
on Raspberry Pi Real Plant at AIS

Fig. 4.20 Environment frame of engineering and access to xPPU

* Scenario Scl: Within this scenario, the slide was replaced with a Y-shaped slide
to increase the capacity of the slide to five WPs. the evolution in this scenario
affect only the context as solely mechanical component was added.

* Scenario Sc2: Within this scenario, the PPU processes black plastic WPs, as
well as metallic WPs. In order to distinguish between the processed WPs, an
additional inductive sensor was installed at the stack.

* Scenario Sc3: For tractability reasons, a stamp module was added within this
scenario to allow the labelling of the WPs. The stamp is located at position 180°
of the crane. Once the WP is detected at the stack, the crane picks up the WP
and turns to the stamp position to place it at the magazine, which then retracts to
position the WPs under the stamp. The stamp moves down to press the WPs for
a while and retracts. The magazine extrudes, and the crane then picks the WPs
and place them at the slide. The evolution in this scenario results in modification
of all dimensions of the crane.

* Scenario Sc4a: To increase availability, inductive sensors are installed for crane
positioning replacing micro switches as they are more robust against pollution.
The inductive sensors provide the same signals as the old position sensors.
Therefore, the software is not affected; only the crane platform is modified.

* Scenario Sc4b: To increase the reliability of crane positioning, micro switches
were installed in addition to the existing inductive sensors. As a result, each
inductive sensor has a redundant micro switch.

* Scenario Sc5: Within this scenario, the crane behaviour is changed to allow the
processing of more than one WP at a time. As soon as the crane places a metallic
WP at the stamp, the stack checks if a plastic WP is available for pickup. In this

S. Bougouffa et al.

jun dureys oy Je soqyoid
amssaid juarefjiq
IOSU9S

431 & Jo SurqreIsuy
Teoyynq

[edrueydau [eUonIppy
Iopnq

e se dwe)s ay) Jo asn

91 ySnoIy) moraeyaq
auero pestundQ

[OIIMS OIOTW pue

JIOSUQs dAONpUI Y3noIyy
Kouepunpal 10SuUdg

SIOSUDS
JueId Jo Juawaoe[dey

jrun duwress € Jo uonippy
IOSUAS 9AT}ONpU]

durer oy jo odeys-x
suyoew
Ay Jo Juawdo[aAdp MmN

uoneZIEdy

60

d D
I0KAU0D)

o

= =

uer)

14
o)
Youis

saoordsyIom JUIRHIP

10J s9ss9001d JuaIepIg
doa1dyIom [euonippe

JO uonIuS00Yy
Qoa1dyzom Jo ndySnoayy
ur SuIseaIour Joy}In,g

Qoardyyrom
Jo ndy3nouayy ursearouy

Suruonrsod asueId

Jo Ayiqerfar Sursearouy
uonnyjod Iosuas 0}

onp an[rej SuIseaIdq
QoardyIom ® Jo Jurf[eqe|
sooo1dyIom o1feIow

Jjo Surssadoid euonIppy
a3e10)s ndino o

Jo Kyoedeo Jursearouy
Qoardyyrom

Jo ndy3nouayy ursearouy

UoNN[OA? JO asne))

v

ki

BN

Ndd 9y} JO SOLIRUads UonN[oAq T'p el

61

4 Introduction to Case Studies

Josuas an3ofeuy
Qoardyyrom

) Jo Junios payroadg
sdwrex

Jo SuIq[y 9AISS00Ng
3199 J0A2AU0D A}

uo sdwel [euonIppe omJ,
durer

[enpIAIpUL YiIm 3[q
J0K2AU0D ® AQ 9PI[S-X
Y Jo Juowaoe[doy

AIBM}JOS § WIOJIR[d J IXQIU0D)) ‘SaSueyd OU 0 ‘PAYIPOIN A ‘POPPV V ‘OLIBUDS OF

o o o "W \4 144 o o o

o o o o o o o o o
o o o o o o o o o
o o o o o o o o o
o o o [e) [e) o o o o

JueId Ay Jo
uorstoaid oY) Jursearouy

sdurer ur seoordyzom
Jo 3uros 100110)

SuonEBO0|
93e103S JUAIYJI

ERAON
ndino Fursearouy

uonestundo sonsi3o

€l

4!

I

0l

62 S. Bougouffa et al.

case, the crane uses the stamping time to transport the plastic WP to the slide.
The realised evolution only affects the software of the crane.

¢ Scenario Sc6: Within this scenario, a mechanical buffer was mounted next to the
stamp, which allows another metallic WP to be placed next to the stamp even if
the stamp is processing metallic WP. The behaviour of the crane is similar to Sc5.

* Scenario Sc7: Within this scenario, the PPU processes additional white plastic
WP. Therefore, the stack was modified with additional optical digital sensor to
detect the brightness of the WP. Combining the already existing inductive sensor
with the new sensor, the stack is able to differentiate all kinds of WPs. The white
plastic WPs are stamped like metallic ones. Black WPs are transported directly
to the slide.

* Scenario Sc8: Due to the fragility of white plastic WPs compared to metallic
ones, the stamp was modified with two different pressure profiles each for
specific types of WP. Therefore, the present two-way valve was replaced by a
proportional valve that handle analogue values.

* Scenario Sc9: Within this scenario, a conveyor was installed in the place of the
slide. The crane now places the WPs directly on the conveyor, which transports
WPs to a slide mounted at the end of the conveyor.

* Scenario Sc10: Additional two output slides were added in this scenario at the
side of the conveyor. Therefore, to separate the WPs, two pneumatic pushers
are mounted at the opposite side of the conveyor, facing towards the two slides.
Right before each pusher, an optical sensor is attached to detect whether a WP
is available. The slide mounted at the end of the conveyor is filled first, then the
mid slide, and finally the slide at the beginning of the conveyor (first slide).

* Scenario Scl1: Within this scenario, only one type of WPs is separated into one
slide. Therefore, two inductive sensors are installed in front of the optical sensors
right before the two slides on the side. In the first slide, white WPs are separated;
on the mid slide, metallic WPs are separated; on the last slide (at the end if the
conveyor) black WPs are sorted.

* Scenario Scl2: In this scenario, the sorting order of WPs is changed at slides.
Now WPs have to be mixed in all slides. The change in this scenario only affects
the software.

* Scenario Sc13: Until this scenario, the positioning of the crane is done using
digital position sensors. To increase the accuracy and to avoid spending cables
and terminal blocks, the digital sensors are replaced by analogue sensors
(potentiometer).

4.3.2 Incremental Evolution Scenarios

Within scenario 11, the sorting of WPs at the conveyor is targeted. The scenario
follows a specific sorting regarding the WP types. The first ramp collects white
WPs, the second ramp collects metal WPs, and the third ramp collects black WPs.
The change is implemented by checking the type of WP with a diffuse and inductive

4 Introduction to Case Studies 63

sensor after the WP is placed on the conveyor belt. When a white WP is identified,
the first pneumatic cylinder pushes the WP in the first ramp, and after another
sensor check the metal WPs are pushed in the second ramp by the next cylinder.
Black WPs pass both the lateral ramps and are transferred to the ramp at the end
of the conveyor. According to the categories of changes, scenario 11 is a change of
category 5 without adaption of the requirement and specification.

Because of the various possibilities to sort WPs, this scenario is used to
implement so-called mini-scenarios. Mini-scenarios are evolution scenarios of
the PPU that only have a very limited impact on the whole system. The mini-
scenarios were introduced because some technologies such as verification are not
feasible for large change. The mini-scenarios reflect ad hoc changes that are often
instantaneously performed to quickly react to avoid standstills of the production
system. The mini-scenarios are simplifications in the material flow of scenario 11
and are implemented as simple code adaptations of the software code. Table 4.2
shows the implemented mini-scenarios. Scenario 11a and 11b simplify the material
flow of the PPU by exclusively using only one ramp. In scenario 11c, two ramps
are used by an alternating pattern that arise a very unique material flow. Scenario
11d and 11le are preliminary stages to the original scenario 11 by sorting just one
or two WPs in a specific ramp. The mini-scenarios can be used to investigate
approaches that consider undocumented or unknown changes during operation. The
platform and context are not affected by any mini-scenario, and the changes in the
behaviour arising out of the software modification are much smaller than in the
other evolution scenarios. Therefore, these scenarios can, for example, be used to
evaluate approaches that try to ensure consistency between specifications, models,
and the running system and consider transformation of models or focus on atomic
modification steps.

Table 4.2 Mini-scenarios: limited software modifications of the sorting of conveyor belt

Conveyor belt

Scenario Cause of evolution cC P S Realization
11 Specific sorting regarding o o M White workpieces are stored in
workpiece type Ramp 1, metal in Ramp 2, and
black in Ramp 3
11a Exclusive use of Ramp 1 o o M All workpieces are stored in
Ramp 1
11b Exclusive use of Ramp 2 o o M All workpieces are stored in
Ramp 2
11c Use of two ramps o o M All workpieces are alternatively
stored in Ramp 1 and Ramp 2
11d Sorting of one workpiece o o M White workpieces are stored in
type Ramp 1, and the others in Ramp 2
11e Sorting of two workpiece o o M White and black products are stored
types in Ramp 1 and the others in Ramp 2

M Modified, o no changes, C Context, P Platform, S Software

64 S. Bougouffa et al.
4.3.3 Evolution Scenarios of the xPPU

In Table 4.3, extended sequential evolution scenarios of the xPPU are depicted.

e Scenario Scl4: Within this scenario, the XPPU processes additional metallic
WPs of different weights. Therefore, the stack was modified with a weighting
module to distinguish between the processed WPs based on their weight. The
introduction of new WPs will also affect the crane’s behaviour. During the
transportation of different WPs by the crane to the stamp or the conveyor, the
heavier WPs need more time to stop oscillating after the crane’s rotation. This
latter modification can be adapted by modifying the software. Furthermore, the
stamp is modified with different stamping pressures (e.g. heavy, medium, and
light pressure).

* Scenario Scl5: To allow re-feeding of WPs that are detected as being faulty,
the xPPU was extended with a conveyor system containing three additional
conveyors.

* Scenario Sc16: Within this scenario, the xPPU allows the processing of WPs in
priority at the conveyor system. A picalpha module was mounted on the first
conveyor of the conveyor system, which has a handling module for reordering
WPs by picking and placing the WP ahead in a different position.

e Scenario Scl7 and Sc18: With the evolution in these scenarios, the xPPU is
extended with a safety door for the prevention of accidents at the stamp, as
well as a light grid to prevent accidents at the picalpha module. The mounted
hardware incorporates emergency stop buttons, as well as additional control
elements.

* Scenario Sc19: The xPPU in this scenario has an additional control button to
switch between automatic operating mode and the additional manual mode.
Within the manual mode, the operator is allowed to control the xPPU in any
required function sequence.

* Scenario Sc20: Within this scenario, the xPPU was extended with energy
monitoring hardware. This hardware allow to measure the energy consumed by
the different clamps. Therefore, three Wattmeter were installed. Not only does it
allow to measure the electric energy consumed by the plant, but with flow sensor
it is also possible to measure the air pressure and the air flow through the xPPU.
This information can be used to optimise the plant focusing on energy-saving
aspects. It also allows to monitor if some parts consume more energy than usual,
which might lead to the conclusion that these parts have to be replaced due to
malfunction.

¢ Scenario Sc21: Within this scenario, the XPPU has four valve blocks that allow
to turn off the air flow on some xPPU modules. This feature allows to simulate
failures in the air flow, as well as turn off the air pressure in specific hardware
parts for safety reasons.

* Scenario Sc22: To enable more flexible production management, the xPPU was
extended with two RFID-Reader/writer. One was mounted at the crane parallel
to the gripper position, and the other on the conveyor belt. Each WP now was

65

4 Introduction to Case Studies

(panunuod)

suorjerado

[enuew Mmo[[e 0}

pappe aIe suo)nq ysng
q[npowr SuryoIIMs

doys AouaSiows pue
pui3 131y Juowraduy
9[npowr 3uryoms

doys AouaSiowe pue
I00p Ajojes juowraorduy

o[npowr
Surpuey Sunuowadwy
ssao01d Jurrmioejnuew
oy} ojur soa1dyIoM
SuIpagy-a1 o[qeud

0] WRISAS JOAIAUOD)
SSEUI JO JUSUWIINSBAW
oy} 9[qeud

0] o[npowr JuTyITopN

UoneZIEdY

S d

D

J0KQAUODX

o o

d D
10KoAu0D)

W o o
o W o
o W o
o o o
o o o

nw w mw
S d O

Fders

(Tenuewr) spowr
Sumneredo [euonIppy
WAISAS JOAIAUOD

oy} Je suonenyIs prezey
uewIny Jo UOTIUOAI]
duwe)s

Je suonenyIs prezey
uewIny Jo UOTIUOAI]
WISAS

J0K2Au00 Je Ayrrotad Aq
Surssaooid aoardyIop

sassaooxd

xo[dwos axouw

Jo uonejuawafduy
ssewt

19y Aq saoardyIom
Jo uonounsiq

UuonnjoA9 Jo asne)

61

81

LT

91

Sl

i4!
BN

NddX 2y} JO SOLIRUDS UONN[OAT €' IqEL

S. Bougouffa et al.

66

NddX 0} UOTIUUOD
DdO @1qeuyg

yoe)s pue ‘dureys
Queld st jey ‘yred
suryoewr 19d Hq AuQ

JIOKQAUOD puB QUBID
) 031 pappe e s

$Y00[q 9ATEA [RUOHIPPY

drempirey SuLIOUOW
A310u0 [eUOT)IPPY

uonezIeay

o o o
nw m o
[e] [e] o
nw mnw o
nw ° n
S d DO
10K0AUODX

S

° N
d D
10KoAu0D)

w

AIBMOS § “WIOHR[J “IXIU0D)) ‘SITUBYD OU 0 “PIYIPOIAl J/ ‘PIPPY V ‘OLIBUIG OF

w

d D
dwerg

Yours

Nddx
JO AJTATIOQUUOD QM

suiojyerd paynqInsip
O71d PHOMIBN
JuowaSeURW
uorjonpoid

J[qIxay 2Jow Jurjqeury
uone[osI

pue uono9Iep Jney I0¥
ainssaid 1re Jursearoog
(are

passardwiod pue A310u9
[eo11399]2) uondwnsuod
A310u0 SurI0)TUOIN

uonnjoAd Jo asne))

¥C

4

(44

Ic

0¢
oS

(Panunuoo) €'y AqeL

4 Introduction to Case Studies 67

labelled with an RFID tag, which contains specific information about the WP
(e.g. weight and date of labelling).

e Scenario Sc23: Within this scenario, the xPPU is controlled in a decentralised
way by a set of (PLCs). Four different controllers where used. One for the
crane, stamp, stack, and conveyor belt and three for each conveyor of the
conveyor system.

* Scenario Sc24: Within this scenario, an Open Platform Communications Unified
Architecture (OPC UA) connection was enabled to read and write data informa-
tion from the xPPU to an online server. The OPC UA standard is a collaboration
partner of IEC 61131-3 officially® and enables flexible process planning as a
feature of Industry 4.0. The read and write data information is used to monitor
and control the xPPU. Using OPC UA allows us to monitor many variables and
values of the xPPU and still have a quick response time. Third-party programs
can access the online server and, therefore, the data and use them for monitoring
purposes, data gaining, and big data mining purposes. With specified algorithms,
statements can be made on the reliability of hardware parts. Also, the usage
of each hardware part can be optimised, reducing maintenance work, energy
consumption and, therefore cost.

4.4 Industry 4.0 Case Study

In this section, we present the Industry 4.0 community case by integrating both
community case studies XPPU and CoCoME (cp. Fig.4.16). This new case study
implements common use cases in Industry 4.0 environments, such as ordering
a customizable product, creating a production plan for a customizable product
on multiple abstraction layers, and observing the progress of batch size one
productions. We enabled event-based communications between information system
and automated production components by providing a web-service-based com-
munication model. The Industry 4.0 case study allows to define and emulate the
automated production systems in a web-based frontend. Moreover, an automated
production system (i.e. the xPPU) is interconnected to an information system (i.e.
CoCoME) by a REST-based web services.

4.4.1 Industry 4.0 Interface of the xPPU

aPS are mostly controlled by PLCs, which are programmed in order to execute
specific tasks. A program code is loaded onto the PLC through dedicated connection
with the computer (i.e. EtherCAT). The PLC then performs, in a cyclic execution,

3https://opcfoundation.org/markets-collaboration/plcopen/.

https://opcfoundation.org/markets-collaboration/plcopen/

68 S. Bougouffa et al.

ISA 88 Metamodel |
z Modelling xPPU based
o on the metamodel
S
= Model-to-text Importing
o transformation model
=]
&
Importing Deploying
PLCopenXML middleware
g
g PLC Middleware @
= Web
; Control software i web client
@« g o
& OPCUA server<, - OPC UA client L "
@
e

Fig. 4.21 Overview of the concept of dynamic reconfiguration and generation of the Industry 4.0
interface [Bou+17a]

the processing of internal operations, reading of inputs, execution of the program,
and updating of outputs. In [Bou+17a], a design concept that enables flexible entry
of orders in a production system during its operation, through dynamic reconfigu-
ration of orders and process planning via a remote interface, was introduced. The
developed concept allows dynamic services to the CoCoME via web services. The
remote interface of the xPPU is considered as an evolution scenario that also affects
the environment frame of the xPPU (cp. Fig. 4.20).

A model-based approach was used for the implementation of the PLC code,
which controls the plant itself, and a middleware application that enables external
access for interacting with the plant (Fig.4.21). The model-based approach aims
at configuring a model of a planned or an existing aPS and allowing a continuous
extension and modification of the model. In case of additional functionalities or
changes of the system, the model-based approach allows the engineer to efficiently
perform modifications within the model.

The underlying meta-model is based on the ISA88 standard [Com+95]. Based on
the ISA88 standard, an editor for modelling the plants was implemented. Using this
editor the PLC control code is generated together with the industry 4.0 interface,
allowing remote access and control through executing available services of the
plant. It is designed to enable flexible entry of orders during the operation of the
aPS through dynamic reconfiguration of orders and process planning. The aPS
should independently check whether the services can be performed from a technical
perspective. For the verification of the technical limits, pre-conditions and post-
conditions are stored within the offered services.

4 Introduction to Case Studies 69

/
OPC-UA Communication

/ ____,___..,.---'-""""
= i i elr Client User
Reporting Operation Result (5. CoCoME)
Plant
(e.g. xPPU) Delivering Operations

Reporting Operation Data

Resolving Operations Taking Recipes
Checking Operation Validity

Fig. 4.22 Use cases of the Middleware

\/

Mobile App User

One of the main features of Industry 4.0 is connectability of the plant. Thus,
besides the use case of the plant (cp. Fig.4.17), it also includes the Middleware
interconnect between the plant (i.e. XPPU) and the users (Fig.4.22). Over this
interconnection, it takes the execution orders from the user side and delivers them
to the plant side. Users can be an external operator to execute the system from
the remote site or another system to be connected with the plant. From the plant,
information regarding the status of the plant or the execution of the operations is
delivered to the user side. The communication between the PLC of the xPPU and
the Middleware is established over an OPC-UA architecture, which is the official
collaboration partner of IEC 61131-3. Middleware executes an OPC-UA client to
connect to the OPC-UA server in the PLC and communicates with the PLC over
this connection.

For the user side, RESTful (Representational State Transfer) web service is
implemented to provide simpler and more lightweight access (Fig.4.23). Thus,
users can have access using an HTTP request (GET or POST) over a web-client
application and execute their desired functionality, such as getting a history list,
getting variable values, executing a single operation, or executing batch operations.
This interface is also implemented in a mobile application form and provided to the
users. The Middleware is available for the community on github.*

“https://github.com/x-PPU/I4.0_Interface.

https://github.com/x-PPU/I4.0_Interface

70 S. Bougouffa et al.

<<component>> 8] <<component>> g
Controller CoCoME::TradingSystem::Inventory::
Application::Plant
i 1
<<component>> 3 |
InstanceModelLoad I I
<<component>> E I i
OperationinformationLoad E C) ~<~!EI)mponelal>> E
s WebService
J ©
<<component>> E]
OperationResolve
<<component>> £ |
History
<< ==
L e component>> & |
= OpcUaConnection
<<component>> |] ©
User

Fig. 4.23 Overview of the Middleware architecture (highlighted are the connection to CoCoME)

4.4.2 Integration of CoCoME and xPPU to Form an Industry
4.0 Case Study

The integration of both case studies, CoCoME and xPPU, can be considered as
a further evolution scenario for CoCoME [Bic+18]. The integration of CoCoME
and xPPU is based on the hybrid cloud-based variant of CoCoME. Figure 4.21
in the previous subsection shows that the xPPU plant provides a REST interface.
The REST interface allows retrieving data and executing the production operations.
CoCoME is extended to communicate with this interface (Fig. 4.24).

The main goal of integrating both case studies is to support the OrderCustom-
Product use case (Fig.4.25). In this use case, the customer can order individualised
products in a store, which are then forwarded to the CoCoME enterprise. In the
DefineProductRecipe use case, the enterprise manager creates a product recipe
based on the order as an ordered list of the needed plant operations, and the
CoCoME enterprise triggers the production. In the SpecifyProductionPlant use case,
the plant operation templates are defined by the plant manager and then forwarded
to the connected plants. The production units of the plants use this list to execute
the appropriate operations [Bic+18].

4 Introduction to Case Studies 71

I
Store o0 5o
=3 =
cacone <+ E E

BEEE BEEE EE—B—E E—EH

Enterprise e Cash Desk Line
Server, =1\
)

@
| 1Order ISensor|
—_— ! ———— 1 -
r Information Model B |
i 1_1q |l?d NKPI
||0rdernKP|| ‘@r}..‘?r.)

||0rdernKP —— Y

Pick
andPlace
Unit

Fig. 4.24 Overview of the integration of CoCoME and xPPU enlarged from [Vog+09, VPF17]

OrderCustom
Product

«includes»

Customer

%

Enterprise
Manager

SpecifyProduction

‘l «includes» Plant
an

DefineProduct
Recipe

Fig. 4.25 Overview of the use cases for COCoME after the integration of CoCoME and xPPU,
adapted from [Bic+18]

Figure 4.26 illustrates our extensions to a hybrid cloud-based variant of
CoCoME to enable the integration of CoCoME and xPPU. In the following, we
describe the new components and the relevant changes to the existing components.
The TradingSystem: : CashDeskLine: :Configurator component and
the corresponding WebService: :CashDesk: :Configurator-Service
component enable the customer to configure the custom products. The
TradingSystem: : Inventory: :Application: :Production compo-
nent schedules the production order. The TradingSystem: : Inventory: :
Application: : Plant component provides the functionalities of plant servers,

S. Bougouffa et al.

72

[81+0161] HINODOD JO JUBLIEA ('t A1ISIPUT 9 JO MITAIINO AIMOAYOIY 9T “BLA

sovdepyoaos

soidepyosiniog
“Auauniosn

g
auauodu

tngasuduz

uauodtuoes

Y
ooosueIsIId [bones osudionz)

5 (esg ass)

osudioiuz: loe————
«aonses Gan

eoweld)

o

tenos
auau

o)
alcioor

A
ogpmis |

>

o
wongopesunoaoy

oreupioo:

[wevodiuoss

snguoraiga:
“auauoduicon

[iopeowpiey:
[padeuoducss

WBssoiea:

| o [

H

s

eieqysaquse
bt
£ ausuodioo

gﬁ o

[iovodoor

e e ¢
[Eaetsis, [

uoneBpen:
[G wsueduchs

monuBor:
Auatoduioss

nuspvonEBEN

seo:

vorkwIOUBIOISI
o>

— — w
R [S | R | B | SR il sl
z

[

"toowes gow

4 Introduction to Case Studies 73

such as creating production unit types. The TradingSystem: : Inventory: :
Data: :Plant involves various data structures, for example for production units.
Additionally, we had to extend the TradingSystem: : Inventory: :Data: :
Enterprise to include further data structures, such as ordering plant or
production operations. The TradingSystem: : Inventory: :Data: : Store
component was extended to manage customised products. The WebService: :
Inventory::Plant component represents the web service of the
TradingSystem: : Inventory: :Application: : Plant component. Fur-
ther, we extended the WebService: : Inventory: : Store and WebService
::Inventory: :Enterprise components by the event-based messag-
ing and the corresponding operations for the added data structures. The
WebFrontend: :Web: : PlantView component provides the plant manager
web-based views managing the production unit and plant operations. The
WebFrontend: :Web: :EnterpriseView enables enterprise manager
to manage the production order, plants, and custom products. Further, the
WebFrontend: :Web: : EnterpriseView: : Store allows configuring and
managing custom products. A detailed descriptions of the components of the
industry 4.0 variant of CoCoME are given in the technical report [Bic+18].

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	4 Introduction to Case Studies
	4.1 Evolution of Long-Living Systems to an Industry 4.0 Case Study
	4.2 Introduction of the CoCoME Case Study
	4.2.1 Platform Migration
	4.2.2 Adding a Pick-Up Shop
	4.2.3 Database Migration
	4.2.4 Adding a Mobile App Client
	4.2.5 Microservice Architecture
	4.2.6 Container Virtualization
	4.2.7 Adding Payment Methods

	4.3 Introduction of the PPU and xPPU Case Studies
	4.3.1 Evolution Scenarios of the PPU
	4.3.2 Incremental Evolution Scenarios
	4.3.3 Evolution Scenarios of the xPPU

	4.4 Industry 4.0 Case Study
	4.4.1 Industry 4.0 Interface of the xPPU
	4.4.2 Integration of CoCoME and xPPUto Form an Industry 4.0 Case Study

