
Chapter 2
The Nature of Software Evolution

Gabriele Taentzer, Michael Goedicke, Barbara Paech, Kurt Schneider,
Andy Schürr, and Birgit Vogel-Heuser

In this chapter, we consider the nature of software evolution: What kinds of
software systems are evolved?Which quality aspects of software systems play a role
throughout evolution? What kinds of software changes exist, and which evolution
processes are considered? What is the impact of these changes? The purpose of
this chapter is to clarify the fundamental aspects of software evolution, which are
being taken up again in the following chapters. Hence, this chapter shall explain
the basic terminology used in this book. To a small extent, it shall also provide a
domain analysis of the area of software evolution. And finally, for more details,

G. Taentzer (�)
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Marburg, Germany
e-mail: taentzer@informatik.uni-marburg.de

M. Goedicke
paluno – The Ruhr Institute for Software Technology, Specification of Software Systems,
Universität Duisburg-Essen, Essen, Germany
e-mail: michael.goedicke@s3.uni-due.de

B. Paech
Universität Heidelberg, Mathematikon - Institut für Informatik, Heidelberg, Germany
e-mail: paech@informatik.uni-heidelberg.de

K. Schneider
Leibniz Universität Hannover, Fachgebiet Software Engineering, Hannover, Germany
e-mail: kurt.schneider@inf.uni-hannover.de

A. Schürr
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik,
Darmstadt, Germany
e-mail: andy.schuerr@es.tu-darmstadt.de

B. Vogel-Heuser
Technische Universität München, Lehrstuhl für Automatisierung und Informationssysteme,
Garching, Germany
e-mail: vogel-heuser@tum.de

© The Author(s) 2019
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_2&domain=pdf
mailto:taentzer@informatik.uni-marburg.de
mailto:michael.goedicke@s3.uni-due.de
mailto:paech@informatik.uni-heidelberg.de
mailto:kurt.schneider@inf.uni-hannover.de
mailto:andy.schuerr@es.tu-darmstadt.de
mailto:vogel-heuser@tum.de
https://doi.org/10.1007/978-3-030-13499-0_2


10 G. Taentzer et al.

further scenarios, and examples of the fundamental aspects of software evolution,
the reader can find references to follow-up chapters. In this way, this chapter helps
to identify how the contributions of subsequent chapters fit into the big picture of
software evolution.

2.1 Introduction

The main purpose of this chapter is to present a conceptual basis for the core
aspects of software evolution. Evolution is a natural phenomenon in the life cycle of
software systems according to diverse reasons for change. Software evolution occurs
in incremental development where large systems are achieved in small steps and as
a reaction to changes in the environment, purpose, or use of the considered software
system. We clarify the core aspects of evolution processes. Changes of a software
system may have an impact on its quality, referring to aspects such as correctness,
consistency, usability, and maintainability. Evolving software shall preserve or
even improve its quality (defined in the ISO standard 25000 on software product
quality [Sta14b]) throughout software changes. Our considerations of the nature
of software evolution are largely independent of application domains for software
systems. Throughout the book, however, two application domains are focused on,
namely business information systems [Hei+15b] and product automation [LFV13].

2.2 Software Systems

As a conceptual basis, we consider fundamental aspects of software systems.
Application domains and system scopes set the environments of software systems;
artefacts and potential software variants refer to the ingredients of software systems
or even software product lines (SPLs) [CN02].

2.2.1 Application Domains

An application domain for software systems is a problem field being characterised
by common requirements, terminology, processes, and functionality for software
systems. Throughout this book, various application domains for software systems
are considered. They are mostly considered from a rather technical point of
view. In particular, two domains—business and product automation—occur very
prominently in the subsequent chapters due to our case studies CommonComponent
Modeling Example (CoCoME) and extended Pick and Place Unit (xPPU). They are
introduced in Chap. 4.



2 The Nature of Software Evolution 11

2.2.2 Scopes and Environments of Software Systems

A software system is a set of coherent components that provide services (or features)
to users. A software system needs a platform to run, consisting of hardware
and further software components such as operating systems, libraries, and special
software components provided by the environment. The hardware comprises not
only computers of any kind but also networks of computers (especially the Internet).
Depending on the domain, additional hardware may come into play, such as
mechanical and electrical components. The scope of a software system defines a
range of items that can be shaped and designed when developing software systems
[Int18]. Besides the code for the system itself, it comprises, for example, the system
requirement specification, any kinds of system documentation, models, data sets,
and test suites.

The environment of a system contains not only the platform for running the
system but also any other part relevant to the software system and its scope,
such as users on which the system has an impact and regulations that should be
obeyed. An explicit consideration of the environment is important when it comes
to evolution since various kinds of environment changes can occur, such as new
versions of the underlying operating system or programming language, related
software components, external regulations that shall be obeyed by the software, and
many more.

Two interesting examples of software systems are the following: In
Chaps. 5 and 6, the authors investigate the evolution of socio-technical systems
where developers and/or users are explicitly considered within the system scope.
The interrelation of social and technical aspects and their joint optimisation are of
special relevance here. A very different form of system are mechatronic systems
such as automated Production Systems (aPS), which consider the interplay of
mechanics, electronics, and software (in Chaps. 10 and 8).

2.2.3 Software Artefacts

Software development and software changes usually involve a number of software
artefacts. Even the kinds of software artefacts are manifold: Analysts elicit require-
ments and write requirement specifications that may comprise analysis models.
Software architects take these specifications into account to develop the design of
a software system, often by constructing design models. Software engineers and
programmers develop models and write codes that are structured in various files
and directories. Moreover, they write test cases and documentations organised in
additional file structures. Once a software system is deployed, it may produce even
further artefacts for reporting about continuously running processes, for example.
The system behaviour at runtime and its ad hoc changes, for example, are considered



12 G. Taentzer et al.

in Chap. 10. To summarise, there are usually a vast number of artefacts of various
kinds within the scope of a software system.

Software artefacts are usually not isolated but inter-related. Hence, we have
to take care of consistency relationships between them and we have to maintain
them throughout software evolution. For example, the evolution of requirement
specifications, design decisions (comprising design knowledge about problems,
solution, context, and rationale), and architecture specification models is in the focus
of Chap. 6.

In software engineering, there are quite a number of languages used to create
software artefacts. Besides programming languages such as Java and C, there are
various modelling languages such as the Unified Modeling Language (UML) and
Matlab/Simulink. Documentations are usually semi-structured natural text, often
written in HTML, LaTeX, or Word. Moreover, there are domain-specific languages,
especially for specific modelling purposes, such as AutoFocus [Leg+14, RTV15,
TH15] for embedded system development presented in Chap. 11 and variability-
modelling languages like decision models [SRG11], orthogonal variability mod-
els [PBL05a], and feature models [Kan+90b], as considered in Chaps. 7 and 8.
Furthermore, there exist specific languages to describe the syntax and semantics
of modelling languages, for example EMF [Ecl18], and to specify differences
resp. transformations between models to formally express their evolution, for
example Henshin [Are+10]. They are used in Chap. 10 to understand historical
evolutions between different versions of models, as well as to recommend future
evolutions based on these historic evolutions.

2.2.4 Software Variants

Most modern software systems A collection of software variants that share common
artefacts that are commonly processed is called a software product line. A software
variant is called product in this context. Variants of a software system can occur
independently of any time periods, while chronologically changed software is
usually called a version. Version management is specifically considered in Sect. 2.4.

In Chap. 7, statechart models are presented that are able to integrate all product-
variant behaviour into one model. A feature model serves as configuration specifi-
cation; the product line is implemented by preprocessor-based C-code. Similarly, in
Chap. 8, software variants are explicitly considered for evaluation of performance.
In particular, strategies for performance evolution are discussed for variants co-
existing at the same time and versions that are the result of software evolution.



2 The Nature of Software Evolution 13

2.3 Software Quality

Preserving and improving software quality are often the main drivers of software
evolution, such as improving the performance of a software solution. The ISO
25000 standard [Sta14b] defines software quality based on a number of aspects
covering functional and non-functional ones. Functional software quality refers to
the extent the software conforms to a given functional requirement specification.
Aspects of functional software quality are, for example, correctness, consistency,
dependability, and usability. Non-functional software quality tells us how well a
software system meets non-functional requirements concerning, for example, per-
formance (cf. Chaps. 8 and 10), maintainability, and security aspects (cf. Chap. 9).
In the following, we recall the main quality aspects of software systems and point
out examples.

2.3.1 Consistency

As there may be various artefacts within the scope of a software system, an
immediate question is: Are the various software artefacts within the scope of
a software system consistent with each other? Artefact relations may be purely
syntactical, such as models conforming to their meta-models. Software artefacts
may also be related w.r.t. behaviour. The most prominent shape of behaviour
consistency is behavioural equivalence (also known as bi-simulation). Weaker
notions of behavioural equivalence like conditional and relational equivalence
are introduced as consistency notions in Chap. 11. Besides this outer consistency
being established in between several artefacts, there is also an inner consistency
considering the content of just one artefact. Here, consistencymeans that an artefact
does not contradict itself [EN96]. Inner consistency comprises, for example, the
internal consistency of requirements within one requirement specification or the
declaration of a variable before its use in a program.

Even if artefacts are consistent on creation, changes to one software artefact may
not necessarily be reflected immediately in all related artefacts that are affected
by the same modification. This means that the quality aspect of consistency is
endangered by changes. If changes are made in one place, consistency may call
for changes in several other artefacts. There is the resulting challenge of keeping
systems consistent over time. As consistency cannot be always (re)established
easily; there is also the general need for inconsistency management. Intermediate
inconsistency gives developers the flexibility and the freedom to postpone the
re-establishing of consistency for increasing productivity. If explicit relationships
between artefacts, that is traces, are considered, a form of traceability link manage-
ment is needed here [Fel+16]. Traceability is explicitly considered in the context of
identifying and extracting tacit knowledge in software evolution (Chaps. 5 and 10)



14 G. Taentzer et al.

and continuous design support (Chap. 6) caring about the consistency between
architecture and code.

Inconsistency may also affect system variants. A necessary condition for soft-
ware product lines (defining software variants) is often the following: If a feature
model is available for the system, it is typically assumed to be consistent, that is
there must be at least one valid combination of features (Chaps. 7 and 8). In Chap. 8,
performance is only measured for configurations that are valid according to the
feature model. The product implementation derivable from valid combinations of
features must also be consistent with further development artefacts such as quality-
assurance artefacts. If product implementations evolve, for instance, corresponding
test suites must be updated accordingly (Chap. 7).

2.3.2 Correctness

To validate the correctness of a software system, we should ask: Does the system do
what I want it to do? This question shows that correctness relates to the system’s
functional requirement specification. A software system is considered correct w.r.t.
its requirement specification if it behaves as specified by its requirements. Hence,
correctness can also be considered as a kind of consistency, here of code (and
other artefacts) with the requirement specification. As correctness is such a central
consistency aspect of software systems, it is usually considered explicitly. In most
software projects, functional requirements are validated by testing a software. In
contrast to validating system functionalities, there is also the possibility to verify
them formally. Correctness in the presence of evolution plays a central role in
Chap. 7, which is concerned with software testing of evolving SPLs, and in Chap. 11
as this chapter is concerned with the formal verification of evolving automated
production systems.

2.3.3 Dependability

Dependability comprises quality aspects such as reliability, availability, safety, and
security [Avi+04, LS00]. High dependability allows us to rely on a system func-
tioning as required, even under hampered conditions such as software and hardware
faults. The notion of dependability has been discussed very broadly in literature,
depending on the different perspectives of various stakeholders. Reference [FCÁ16]
gives a literature overview.

Considering reliability, we ask: Does the system show correct behaviour all the
time or for a specific time period?Reliability is closely related to availability, which
is typically described as the ability of a component or a system to function at a
specified moment or interval of time. Reliability is also considered as the probability
of success. In addition, dependability comprises safety, which shows the degree of



2 The Nature of Software Evolution 15

hazard prevention that may result from the operation of the system and threatens
users or the environment [LG99]. Evolution and safety are discussed in Chap. 10. In
contrast, security mainly refers to the absence of unauthorised access from users or
the environment that threatens the operation of the system [HR06, LG99]. Chapter 9
is mainly concernedwith maintaining security in the presence of software evolution.

2.3.4 Performance

Performance of a software system is considered by asking questions like: Does
the system perform the indicated behaviour as fast as required? Performance
engineering comprises all kinds of optimising the timing behaviour and resource
consumption of a software system, as well as guaranteeing available or specified
resource limitations. Considered aspects are, for example, the throughput, latency,
memory usage, and energy consumption of software systems. Performance for the
specific case of automated production systems is discussed in Chap. 10. Perfor-
mance issues can result in loss of productivity for the user. When software engineers
start improving the systems’s performance, corresponding evolution steps may lead
to cost overruns due to tuning or redesign. Moreover, it is likely that tuning may
disrupt the original software architecture or its behaviour.

Considering a software system with variants, there are often variants with
better or worse performance. Here, checking performance refers to the accessible
computation effort and the resulting impact on resource usage and timeliness of a
system variant (Chap. 8).

2.3.5 Usability

Users expect a software that is easy to learn, as well as pleasant and efficient to use.
Moreover, they appreciate a system that easily recovers from usage errors and whose
usage can be easily memorised after some period of not using it. To check usability,
the degree to which a software system can be used by specified consumers should
be investigated on to achieve quantified objectives with effectiveness, efficiency, and
satisfaction in a determined context of use. In Chap. 5, usability is a major aspect in
the sense that expectations or assumptions about the usability and the functionality
of a system are derived from the users’ behaviour.



16 G. Taentzer et al.

2.3.6 Maintainability

A software system is well maintainable if it can be easily changed with respect to
its environment to, for example, correct defects, realise new requirements, or adapt
the system to a changed platform. Specific aspects of maintainability are testability,
analyzability, and changeability. A software is well testable if its artefacts support
testing in given test contexts. Often, testability is a question of good software design
featuring strong cohesion and loose coupling. Testability of variant-rich software
systems is a key aspect in Chap. 7 as it is concerned with model-based testing of
evolving SPLs. A software system is considered analysable if system parts causing
deficiencies or failures of the system can be easily identified. In Chap. 11, analysable
models are considered to bridge the conceptual gap between requirements and
target system implementations. And centrally for software evolution, software shall
be easily changeable to be adaptable to continuously occurring changes in the
environment with considerable effort.

2.4 Software Evolution

Software system changes show a wide variety, which has been investigated on
and classified in the literature, such as [LS80, Cha+01, Buc+05]. In [Buc+05], the
authors present a taxonomy for software evolution distinguishing four different
dimensions of system change: They consider temporal properties (i.e. when do
changes happen), objects of change (i.e. where in the system do we make changes),
system properties (i.e. what is changed), and change support (i.e. how is it changed).
They do not consider who is doing system changes and why; this has already been
done before in [Cha+01]. This split-up of dimensions is driven by the basic idea
that activities and processes form the core of software engineering methods. The
purpose of taxonomies as the ones found on software evolution is, among others, to
provide a framework for comparing and combining individual tools and techniques
and to provide an overview of the research domain of software evolution. We take it
up in this section: Considering different kinds of software change in the following,
we will focus on reasons for change, as well as participating artefacts and users, that
is the why and what. Thereafter we consider evolution processes where temporal
properties, change support, and stakeholders, that is the when, how, and who, are
focused. Finally, configuration management is considered to capture all changes of
software artefacts that emerge throughout evolution.



2 The Nature of Software Evolution 17

2.4.1 Kinds of Software Change

Software changes have been studied for a long time; comprehensive works in this
direction are [LS80, Cha+01], where types of software evolution are classified along
with the kind of artefacts changed, as well as the reason for change. The authors
focus on code versus documentation changes; reasons for change are functionality
changes, adaptations to the environment, as well as performance and maintenance
issues. Documentation comprises all kinds of software artefacts except of the code.

Early works such as [LS80] and the ISO/IEC standard for software maintenance
[Sta14a] propose to distinguish software changes into corrective, adaptive, perfec-
tive, and preventivemodifications.

• Corrective modifications subsume all kinds of bug fixing to eliminate system
failures and feature requests as long as they reflect corrected requirements.

• Adaptive modifications refer to changes of system environments, as well as
additional requirement elicitation. More recently, studies of adaptive systems
have led to further kinds of evolution activities being runtime adaptations, that
is system modifications at runtime [De +13].

• Perfective modifications subsume all kinds of system improvements such as per-
formance optimisation, structure re-engineering or optimisation (refactoring),
and all kinds of documentation activities, especially knowledge extraction from
the software system.

• Preventive modifications summarise all changes that prevent problems from
software systems before they occur.

Software changes may take place continuously, such as planned or ad hoc changes.
Throughout this book, various kinds of system changes are presented: Chap. 4

discusses a variety of concrete evolution steps as they occur in the case studies.
Chapter 5 is concerned with detecting and reducing mismatches between stake-
holder’s mental models during software evolution. The basic problem is that the
system may gradually diverge from a given specification or customer demand.
This deviation may come from incomplete implementation of requirements—or
from changing requirements that are not complemented by a corresponding change
of the system. Such deviations shall be reduced. In Chap. 6, continuous software
engineering is considered as being a special kind of software evolution. Chapter 7
discusses implementation changes and corresponding updates of quality-assurance
artefacts in software product lines such that consistency is preserved. Maintaining
performance as a prerequisite for evolving software artefacts is considered in
Chap. 8. Analysis strategies are presented that can efficiently assess and predict
the system’s performance. On this basis, performance improvements over time are
considered. Moreover, software variants with the best performance are identified.
Chapter 9 is dedicated to maintaining security throughout changing requirements
and changing environments such that changes do not affect the system’s level
of security. The maintenance of safety is addressed in Chap. 10. Capturing and
transferring knowledge to next software versions and projects are addressed in



18 G. Taentzer et al.

Chaps. 6 and 10; in particular, ad hoc changes with respect to learning are presented
in Chap. 10. To be able to distinguish wanted from unwanted system changes,
the maintenance of correctness is considered in Chap. 11 by applying formal
verification techniques to show the correctness of evolving software systems. Newer
revisions of the software must not violate existing software properties and should
comply with them even more.

Change may also take place during runtime. A knowledge elicitation technique,
well known in software engineering, is the Post-Mortem Analysis (PMA) [Stå+03].
PMA of a system’s runtime behaviour simply consists of gathering knowledge about
a process and to analyse it in order to improve the next runs of this process in future.
An example application of PMA is presented in Chap. 10.

2.4.2 Evolution Processes

Several iterative and incremental software development processes have been pro-
posed, such as the Unified Process [Kru03], V-ModelXT [Vog+15c], and agile
software development [Bec99]. Agile software development processes already
acknowledge and embrace change as an essential fact of life. One of the agile
development principles is to welcome changing requirements, even in late develop-
ment. Furthermore, software development shall be sustainable and software quality
shall remain high. How do software development processes actually incorporate
evolution? According to [MD08] (referring to [LR03]), the software evolution
process is a multi-loop, multi-level, multi-agent feedback system that cannot be
treated in isolation. A specific form of evolution process is round-trip engineering
(also called horseshoe process [KWC98]) where developers alternate between
models and code. This process consists of three phases: The reverse engineering
phase is needed to understand the structure and behaviour of a larger part of a legacy
code by means of models. In the subsequent restructuring phase, (a part of) the
software is redesigned on the level of models, and finally, forward engineering is
needed to implement the new design and to integrate it into the existing system.

While a clear separation between development and maintenance has already
dissolved in agile software development, this is even more the case in continuous
engineering [FS17]. Continuous activities are meant to eliminate discontinuities
that occur from following development activities in a specific order. Continuous
engineering specifically includes continuous improvement and innovation. An early
proposed activity that can be considered as continuous innovation activity is that
of beta testing, which became a widespread practice, even in industrial software
development. It is used to elicit early customer feedback prior to the formal
release of software products [Col02]. Following the trend of continuous engineering,
software engineers have commonly accepted that software must continually evolve
according to changes. Otherwise, the software does not fulfil its ever-changing
requirements and therefore will become outdated earlier than expected.



2 The Nature of Software Evolution 19

Change impact analysis techniques can identify system parts that are likely to
be affected by additional changes. These techniques support knowledge elicitation
from change histories to inform all interested stakeholders. On this basis, these
techniques can also give an estimation of how costly an intended change will
be and how risky it is to make that change. This analysis is used to decide
whether it is worthwhile to carry out that change. The risk has a strong relation to
software quality. If proper support for measuring quality is available, a measurement
report can provide crucial information to determine whether the software quality is
degrading and to take corrective actions if this turns out to be the case.

Throughout the book, the following aspects of evolution processes are tackled:
The roundtrip model is used in Chaps. 6–8 and 10. In Chap. 6, we show that
the small iterations of continuous engineering support lightweight design decision
capture and use. Chapter 7 considers an SPL evolution scenario covering a complete
family of software products to be evolved. The efficient performance analysis of
software variants and versions based on monitoring and model extraction is focused
on in Chap. 8. The dynamic nature of running self-adaptive systems and their
environments requires continuous validation and verification to assess the system at
runtime, which was traditionally done at development time and which requires new
and efficient techniques for the runtime case [De +13]. An example for evolving
self-adaptive systems is given in Chap. 10. In Chap. 11, regression verification is
applied to evolving systems again based on a round-trip model.

2.4.3 Configuration Management

To capture all changes throughout software evolution, emerging changes of software
artefacts are usually managed with the help of development tools. Change manage-
ment refers to a systematic consideration of change requests, which may be bug
reports and feature requests. To ensure that the most urgent and cost-efficient change
requests are prioritised, each request is collected and assessed first and addressed
along its priority thereafter. Especially for software product lines where versions of
variants may occur, a systematic management of change requests is necessary.

Version management is needed to store and track emerging versions of software
artefacts. Moreover, it allows developers to work on these versions concurrently
in a coordinated way. To save memory, subsequent versions may be stored in a
list of deltas. A delta just stores the differences of one version from its successor.
Applying these deltas to a root version (usually the newest one), the other versions
can be computed. Several developers are allowed to work on the same artefacts
concurrently. The version management system tracks the edited artefacts, ensures
that changes to one and the same artefact do not get lost, and supports the resolution
of conflicting changes. To allow developers working in isolation, the artefacts
within the scope of a software system may be duplicated into several branches
(of the version tree). The ability of branching implies the later facility to merge



20 G. Taentzer et al.

changes back onto one branch. The usage of branching in the context of continuous
integration is tackled in Chap. 6.

Release management is the process by which source code is converted to a final
software product, often being built for a specific environment. Version management
is usually involved and is recommended but is not a requirement. A reliable release
process is as much automatic as possible and supports a quick and frequent deploy-
ment, a prerequisite for continuous integration. Recently, continuous integration
has emerged as a practice to eliminate discontinuities between development and
deployment. However, continuous integration is not yet used in aPS (only 33% of
companies use it to some extent and 15% by default) [Bou+17b]. In a similar vein,
the recent emphasis on DevOps recognises that the integration between software
development and its operational deployment needs to be a continuous one [FS17].
The concept of continuous deployment, that is the ability to deliver software more
frequently to customers, enables frequent customer feedback, which has become
very attractive to companies, in the area of production automation; however, it is
often not implemented due to confidentiality.

As configuration management may become very complex for software product
lines, this problem is the subject in Chaps. 7 and 10. Each variant, or in more
detail each feature, can occur in various versions, which have to be integrated
in a consistent way. In Chap. 10, the evolution of variants is considered focusing
specifically on the continuous correctness of the system.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 The Nature of Software Evolution
	2.1 Introduction
	2.2 Software Systems
	2.2.1 Application Domains
	2.2.2 Scopes and Environments of Software Systems
	2.2.3 Software Artefacts
	2.2.4 Software Variants

	2.3 Software Quality
	2.3.1 Consistency
	2.3.2 Correctness
	2.3.3 Dependability
	2.3.4 Performance
	2.3.5 Usability
	2.3.6 Maintainability

	2.4 Software Evolution
	2.4.1 Kinds of Software Change
	2.4.2 Evolution Processes
	2.4.3 Configuration Management



