
Chapter 1
Introducing Managed Software Evolution

Ralf Reussner, Michael Goedicke, Wilhelm Hasselbring, Birgit Vogel-Heuser,
Jan Keim, and Lukas Märtin

“Software eats the world!” Although this famous statement by the entrepreneur
Marc Andreesen targets the disruptive change of business models enabled through
software, it also describes a process ongoing over decades. Software already invaded
basically all parts of our daily lives, at work as well as in private affairs. As a con-
sequence, there is software in daily use to support critical processes in enterprises,
machines, or production systems, which was initially developed decades ago. And
still this software needs to be maintained and adopted to newly required functional-
ity or modern information technology (IT) platforms. Estimations exist that assume
that more than half of software budgets are spent in software maintenance [Gla01].
Sommerville states that the costs for running, maintaining, and evolution exceed

R. Reussner (�) · J. Keim
Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
e-mail: reussner@kit.edu; jan.keim@kit.edu

M. Goedicke
paluno – The Ruhr Institute for Software Technology, Specification of Software Systems,
Universität Duisburg-Essen, Essen, Germany
e-mail: michael.goedicke@s3.uni-due.de

W. Hasselbring
Software Engineering Group, Department of Computer Science, Kiel University, Kiel, Germany
e-mail: hasselbring@email.uni-kiel.de

B. Vogel-Heuser
Technische Universität München, Institute of Automation and Information Systems, Garching,
Germany
e-mail: vogel-heuser@tum.de

L. Märtin
Institute for Programming and Reactive Systems, Technische Universität at Braunschweig,
Braunschweig, Germany
e-mail: l.maertin@tu-braunschweig.de

© The Author(s) 2019
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_1&domain=pdf
mailto:reussner@kit.edu
mailto:jan.keim@kit.edu
mailto:michael.goedicke@s3.uni-due.de
mailto:hasselbring@email.uni-kiel.de
mailto:vogel-heuser@tum.de
mailto:l.maertin@tu-braunschweig.de
https://doi.org/10.1007/978-3-030-13499-0_1


4 R. Reussner et al.

the development costs by a factor of at least two up to 100 [Som10]. Empirical
studies from the industry support these numbers [Erl00, PA98, PM97]. However, it
is actually even not clear how to interpret such figures. Are they bad signs, showing
efficiency problems in maintenance, or are they good signs, showing that software
is sufficiently good and valuable, that its maintenance is justified, as opposed to
just throwing the software away and writing a new solution from scratch. Anyhow,
the effects of software deterioration through long-running maintenance are well
documented [Par94, VB02].

In the past, there were plenty of examples where software maintenance was
challenging at least. The Year 2000 problem, also known as Millenium bug, struck
many systems. Planning for long-living software did not factor in the turn of the
millennium, causing a wide range of different problems. In 2009, customers of
T-Mobile had no voice services or short message services (SMSs) available for
several hours. Although the case was not a maintenance problem, at least the
lack of knowledge about structural and architectural dependencies delayed the fix
considerably. Flawed software on security chips of EC and credit cards caused a
problem in 2010 because the card readers could not process the year properly. In
2016, the update of the operating system iOS for iPhones to version 10 caused alarm
clocks to not go off any more because the new “bedtime alarm mode” interfered with
the functionality of the existing alarm clock.

All these examples have in common the belief that problems could be related
to lack of knowledge about the already existing system. From a bird’s-eye view
of software engineering, it is clear that knowledge is created during the process of
developing software, but most of the time this type of knowledge is not documented.
This leads to loss of knowledge about these systems, which can lead to problems in
following development cycles and during maintenance. The results are much higher
mean time to repair and much longer cycles until a new version of a system can be
released. Additionally, lack of knowledge can also lead to more bugs, thus leading
to a lower mean time to failure. In some cases, updates even introduce problems
that were previously known and solved. For example, in 2017 an update for macOS
accidentally reintroduced the critical “root bug”.1 Already in 1994 Parnas described
the concept of hidden and lost knowledge [Par94]. Because of size and complexity,
along with the interconnectedness of software systems, this problem gets worse.

Up to now, the focus in research and practice is mainly on developing new
systems. New methods and tools are developed and existing ones refined to
create optimal results for the initial operation of software systems. However,
the long-term operation phase, along with the necessary adjustments and further
development of software, is of paramount importance. This problem gains more
weight when factoring in higher costs for maintenance and evolution in comparison
with initial developments. Even in the research field of software evolution, the
aspect of different evolutionary cycles for software and its execution and operating
environment is yet not properly dealt with. The different life cycles of software and

1https://www.wired.com/story/macos-update-undoes-apple-root-bug-patch/.

https://www.wired.com/story/macos-update-undoes-apple-root-bug-patch/


1 Introducing Managed Software Evolution 5

Fig. 1.1 Integration of the development and operation of hardware/software systems [Li+12]

its platform, as well as the technical systems, are shown in Fig. 1.1. There you can
see the life cycles of software in grey, platforms in black, and technical systems
in light grey. Vertical amplitudes show in which phase the software, platform, or
technical system is. Life cycles of platforms are much longer, starting with longer
design phases, and have much longer operation phases. In contrast, software is pretty
short-lived and new versions replace older software rather fast. These differences
need to be addressed. Some techniques used to simplify the creation of new
software systems like Software-as-a-Service can lead to problems in combination
with these varying life cycles. Although the potential exchange of services is
seen as a benefit on evolution, published service interfaces are even harder to
change than internal interfaces; hence, services lead to frozen interfaces hindering
evolution. In addition, the required complex technology stack creates many—
often undocumented—dependencies, which makes evolution to new platforms even
harder, as the knowledge to decouple business functionality and platforms is lost
rather soon after the initial development.

This leads us to problem areas for long-living software systems, which are
explained in the following. Firstly, lacking understanding and knowledge about
functionality, structure, dependencies, and other properties of software systems
impedes a proper evolution of these systems, which are in agreement with the
originally stated requirements. This leads to a deficit in those systems. Secondly,
functional correctness and conformity with the architecture can often not be guar-
anteed because of misunderstood methods and techniques for software evolution.
Finally, the complexity of development from the functional point of view on one
side and the development of platforms and technologies on the other side obstruct
each other regularly and are hindering the evolution of applications and application
systems.



6 R. Reussner et al.

This shows that there is the necessity to make systems adaptable to changing
requirements and environments and to make knowledge about systems accessible.
Additionally, instead of separating the development, adaptation, and evolution of
software and their platforms, as well as operation, monitoring, and maintenance, all
these should be integrated into the process. This new paradigm should be developed
and elaborated. For this we created three major guiding themes that are explained
below.

Following this line of motivation, the German Research Council (“Deutsche
Forschungsgemeinschaft (DFG)”) initiated in 2012 the Priority Programme
“Design for Future – Managed Software Evolution”, to develop fundamentally
new approaches in software engineering with a determined focus on long-living
software systems. Over its funding periods, 59 proposals were evaluated by a board
of scientifically outstanding international reviewers from the fields of software
engineering and automation technology (see Board of reviewers section). The
accepted 14 projects for each funding period included in total over 50 researchers
and 31 principal investigators. As an anchor for these projects, three guiding themes
were put into foreground, namely:

“Knowledge carrying software”
This is the overarching theme of the whole Priority Programme. The principle
of this guiding theme is that knowledge contained in software or its underlying
design needs to be integrated and made accessible, both for functional and
for quality properties. To realise this, sophisticated meta-models need to be
developed for defining and managing suitable models.

“Methods and processes”
They have to ensure that knowledge is preserved and integrated into the design
and evolution of software. Therefore, a new model for the life cycle of software or
software/hardware systems needs to be developed. This model needs to allow and
consider different evolution cycles on different levels of the software, platform,
and hardware stacks.

“Platforms and environments for evolution”
One goal is to develop suitable middleware and robust runtime environments
for monitoring and updating during operation to provide infrastructure for the
evolution of software and software/hardware systems. It is an important principle
for this guiding theme that design and runtime information need to be made
accessible wherever needed during the operation of systems.

In Fig. 1.2 the three guiding themes are set in relation to relevant fields of research
for today’s software engineering [Gol+15]. The guiding themes are embedded into
various areas of software engineering like requirements management, software
architecture design, artefact management, and operation and infrastructure. All these
areas play an influential role for the Priority Programme.

As a second means for project integration, the Priority Programme estab-
lished two community case studies: the Common Component Modelling Example
(CoCoME) for business-oriented software systems and the Pick-and-Place Unit



1 Introducing Managed Software Evolution 7

Fig. 1.2 Guiding themes related to current research in software engineering [Gol+15]

(PPU) as an exemplary automated production system. Each of the projects con-
tributed to at least one of these studies.

Although or even because several hundred internationally high-ranked scientific
publications were created during the course of the Priority Programme, the principal
investigators see the need for a more integrated way to present the results to
the scientific community and to academically trained practitioners in the field.
Therefore, we wrote this book, with all the projects contributing in an integrated
way. Hence, the following chapter overview describes the overarching results of the
Priority Programme.

Overall the book is split into three major parts. The first part of the book
deals with introductions into the topics. In Chap. 2, an introduction to the nature
of software evolution is given, followed by the challenges that occur in Chap. 3.
Lastly in this part, an introduction to the case studies we used is given in Chap. 4.
In the second part of the book, there are the main chapters about knowledge-
carrying software, starting with Chap. 5 on tacit knowledge in software evolution.
Next, continuous design decision support will be covered in Chap. 6. Chapter 7
covers SPL round-trip engineering, followed by performance analysis strategies in
Chap. 8. Maintaining security in software evolution is tackled in Chap. 9, before
the topic about learning from evolution for evolution, which is tackled in Chap. 10.
This second part in the book is completed with Chap. 11 on formal verification of
evolutionary changes. Finally, the last part of the book presents results and spin-
offs. There, Chap. 12 describes the case studies for the community, along with their
benefits and deliverables. The lessons learned are collected in Chap. 13. We close
the book in Chap. 14 with an overview of future research topics.

Chapters without author names are written by the editors of the book, while
other chapters refer to the scientists who contributed as authors. A complete author
list can be found at the end of the book. The editors would like to thank all the
authors for their considerable effort in writing a cohesive book on the results of



8 R. Reussner et al.

the Priority Programme. Additionally, we would like to thank all the authors who
peer reviewed the chapters, which helped improve the quality of this book. We
also would like to thank the office of the DFG, in particular Dr. Gerrit Sonntag
and Dr. Andreas Raabe and their teams, for all their administrative support and for
organising the review process. We also like to thank very cordially our international
reviewers, who not only evaluated projects but also provided us with very valuable
feedback during the whole funding period of the Priority Programme. Special thanks
go to the managers of the Priority Programme, Dr. Lukas Märtin und Jan Keim,
who served and organised the whole programme in an excellent manner and also
managed the writing process of this book extremely well. We also want to thank
Prof. Dr. Wilhelm Schäfer, who supported us invaluably as a programme director
before his health condition unfortunately disallowed further contributions. We are
also deeply indebted to Prof. Dr. Ursula Goltz, the first speaker of the coordination
board. She successfully brought the programme through the review and application
process and set it up in 2012, leading the programme during its first phase. Her
unfortunate and sudden health problems made it impossible for her to carry on with
this responsibility. We wish her good luck and furthermore a good recovery.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	1 Introducing Managed Software Evolution

