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Foreword

I first met Richard E. Howitt while we were both graduate students; I was hired on
the faculty and became Richard’s Ph.D. Advisor for his dissertation. At the time,
my life was very complicated: traveling back and forth to University of Chicago
from Davis and running a nearby family farm located some 25 miles from Davis.
Richard, along with five other Ph.D. students who had selected me as Director, kept
me grounded. Richard kept me particularly grounded because he had a passion for
evaluating, measuring, and designing policies to address environmental externali-
ties. In fact, at that point in time, I believe that Richard knew more about envi-
ronmental externalities and their practical measurement than any other Ph.D.
student, or for that matter, UC Davis faculty member.

At the University of Chicago, I had arranged for a postdoc for Richard following
the completion of his Ph.D. dissertation. An offer had been made to Richard, by U
Chicago, and he had accepted it. I shortly thereafter decided to leave UC Davis, and
an offer was made to Richard to become a permanent faculty member in the
department. In fact, based on my recollection, there are only three Ph.D. students
who have completed their dissertations at UC Davis that have been hired on the
faculty: Richard, me, and more recently Pierre Mérel. At least with regard to my
departure, a win–win situation emerged. Richard has been an extraordinary faculty
member at UC Davis, and I pursued positions at other universities, landing even-
tually at UC Berkeley.

Shortly after my arrival at Harvard University, I was doing work with the NBER,
and Richard and I published a paper, entitled “Stochastic Control of Environmental
Externalities.” I presented this paper on three separate occasions at NBER con-
ferences. There was much interest among Ph.D. students at UC Davis and else-
where in the country, including myself, in stochastic, adaptive, and dual control
methodologies. Richard continued to pursue this methodological passion over the
course of his academic career, focusing largely on practical applications, not the-
oretic constructs. Our paper was submitted for consideration and was awarded the
Outstanding Publication from the AAEA in 1976. This award provided some
assistance in launching both Richard’s and my academic career.
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Among the many attributes and characteristics of Richard, I most admire that he
has been one of the major intellectual leaders in combining outreach (cooperative
extension) with sound, practical academic research. Richard has advanced his
research through a variety of outreach projects. He has served on numerous CalFed
Cost Allocation Advisory Committees, developed economic modeling workshops
for the US Bureau of Reclamation, and frequently worked on the planning process
for the California Department of Water Resources. I can recall no other faculty
member at any of the three University of California campuses composing the
Giannini Foundation who has been more successful in combining these two major
activities. For those of you who have not been engaged in outreach, it can be an
unbelievable time sink. Because of Richards’s unique characteristics and contri-
butions, he has been able to capture what complementarities exist between these
two activities. Time is too short to enumerate and give my assessments of all of
Richard’s remarkable contributions to our profession. He is certainly one faculty
member at either UC Berkeley or UC Davis that no one questions their contribution
to the original mandate of the Giannini Foundation. His many seminal research
contributions have focused largely on California.

He has also combined fundamental science with his economic analysis. His
interface between water science and water politics in California, the West, as well
as internationally has influenced the development of comprehensive water mar-
keting institutions in many regions. There are many claimed fathers of the water
marketing success, but Richard, without question, is one of its major intellectual
leaders. He has also been instrumental in forging multi-disciplinary collaborations
with hydrologists, engineers, and agronomists.

In the case of California water, he has covered every critically important issue
and offered sound advice and counsel. He has been an intellectual leader in all
aspects of water resources research, including:

• The California drought
• Groundwater sustainability
• Contamination of drinking water resources (particularly nitrates)
• Salinity
• Water recycling
• California’s Sacramento-San Joaquin Delta evaluation and some of the most

important economic analysis that has been done on this critically important
question

• California land use and cropping patterns
• Development of both aggregate and disaggregate frameworks to explain the

response of California farmers and land use to changes in prices, property rights,
as well as evaluation of environmental constraints on resource use.

He has exercised sound judgement in the use of various data sources, most recently
his work on disaggregating land and resource use, exploiting remote sensing
methods in lieu of his earlier work utilizing economic surveys. He is among the
early intellectual leaders to recognize that such approaches provide a much more
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efficient basis for physical land use and responses at a fraction of the cost of
economic surveys. He has always been interested in the use of modern method-
ologies to develop calibrated models based on, for example, maximum entropy
estimators. He has done so recognizing the inherent heterogeneity that exists for the
utilization of California agricultural lands.

For many years, Richard was engaged in developing positive mathematical
programming. The value that is potentially captured by this methodology is the
flexibility introduced to conventional mathematical programming, recognizing the
inherent nonlinearities that exist and are implicitly observed in land allocation
decisions at either a regional or farm level. His methods for calibrating the model in
terms of output/input use, objective function values, and dual values are particularly
insightful. His unique justification for his ultimate publication in the AJAE of the
positive mathematical programming approach offers an unusual motivation for the
paper: Sometimes new methodologies are published but not implemented. Positive
mathematical programming is a methodology that has been implemented but not
published.

In conclusion, during the early 1970s, a number of us who were working closely
at UC Davis (which included some other remarkable Ph.D. students that I had the
pleasure of mentoring during my brief time on the faculty at UC Davis) achieved
much success within and beyond our agriculture and resource economics profes-
sion. No one stands taller than Richard E. Howitt with regard to his seminal
contributions to understanding and generating insights on California cropping
patterns, resource use patterns, and the externalities that arise from private actions
for which there has historically been very little in the way of incentives orchestrated
by governmental policy to move closer to the proper measures of social cost.

Berkeley, USA Gordon Rausser
Robert Gordon Sproul Distinguished Professor

University of California, Berkeley
rausser@berkeley.edu
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Preface

This book covers a range of topics which touch on these important issues and range
from agricultural production and sector modeling, to natural resource management
and—ultimately—to analytically guided decision support to assess various policy
options. The examples laid out in the chapters range beyond California and illus-
trate the wide-ranging applicability of robust quantitative methods that can be
applied to a variety of agricultural policy and resource management problems. The
range of work contained in this book represents the breadth of Richard E. Howitt’s
academic and professional interests, and the immense influence that his research
and teaching career have had on the agricultural and resource economics profession,
and on the professionals themselves, who are represented by the authors in each
chapter.

This book came out of a Festschrift conference that was held for Richard E.
Howitt in late May 2016, in honor of his 40-year career as Professor of Agricultural
and Resource Economics at the University of California at Davis. The presentations
at that conference followed the thematic structure of this book, covered the major
areas of research that Richard engaged in during his UC Davis career, and discussed
innovative analytical methods that he pioneered, in collaboration with his students,
mentors, and colleagues. These approaches still stand, today, at the cutting edge
of the field and cover applied production analysis for agriculture, water resource
management, and information-theoretic methods for doing robust estimation with
limited data.

What has made Richard E. Howitt’s career remarkable is not only his length of
service and dedication to the same institution—the University of California at Davis
—but also his determination to fulfill the mission of an “agricultural experiment
station” that faculty appointments at Davis are supposed to support. Rather than be
wholly absorbed in the pursuit of publishing in academic journals that are seldom
read by agricultural producers and policy-makers, Richard E. Howitt has made
tremendous efforts over the years to make his work relevant and directly applicable
to solving agricultural policy and resource management issues faced by the state of
California. His ongoing partnerships and collaboration with staff in the California
Department of Water Resources, both through the UC Davis-based Center for

ix



Watershed Sciences as well as through direct outreach, are evidence of this—as is
the large number of staff within that institution (and others) that have been trained
by him. In the past, he has advised state water resource managers on how best to set
up drought water banks to deal with periods of severe scarcity, and to take
advantage of the increased willingness to sell/buy of agricultural and urban water
users during those times. His current work through the consulting firm ERA
Economics to advise local water districts on how best to comply with the recently
passed California Groundwater Management Act and set up economically sound
mechanisms for managing resource extraction and potential trading is further evi-
dence of the applicability of his work (and his failure to fully retire!). His contri-
butions to the water policy work of the Public Policy Institute of California as
Collaborator and Visiting Fellow are captured in a number of publications on their
website (https://www.ppic.org/water/) and can serve as a useful reference and
inspiration to those researchers interested in deepening the policy relevance and
impact of their work.

The foreword to this book (by Prof. Gordon Rausser) will refer to many
remarkable aspects of Richard E. Howitt’s career and work. Some of those high-
lights were captured in the comments of those who attended and presented at the
2016 Festschrift conference and could not be documented in this book. Howitt’s
longtime colleague, neighbor, and friend—Prof. James E. Wilen—pointed out to
the conference attendees that the remarkable number of dissertations Richard
chaired during his faculty tenure (28 in total) understates the crucial empirical
contributions he made to many others, of which he might have been the second or
third member on the committee. As Prof. Wilen mentioned, there is usually one
committee member who actually directly helps and enables the student to get down
to the nuts-and-bolts, nitty-gritty of making the empirical model-based analysis
work—and that person was often Richard E. Howitt, in many of the dissertations
involving agricultural production analysis and water resource management. His
ability to remain completely hands-on with any modeling analysis taken on by
himself or his students throughout his entire career is rare among faculty and has
been a source of personal inspiration for myself, in the never-ending effort to keep
up-to-date with modeling approaches and methods.

It was not possible to include contributions from a number of key collaborators
that Richard E. Howitt has worked with over his 40-year career—but we feel that
this collection of papers captures the essence of the kind of applied work that
Richard has led during his professional life. It is our hope that the readers of this
book will find useful ideas and examples embedded within these chapters and that
they will inspire their further use toward other applications and case studies.

Silver Spring, USA Siwa Msangi
Davis, USA Duncan MacEwan
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Chapter 1
Introduction

Siwa Msangi

In a complex world, facing increasing environmental stresses and socioeconomic
challenges, policy-makers have a tremendous need for reliable and robust decision-
support tools to evaluate options and their inherent trade-offs. This describes the
world food situation, fairly accurately, especially when put within the context of
the additional challenge of meeting environmental quality standards and ensuring
long-term sustainability. Within the North American context, the state of California
serves as a good case example that is representative of the larger ‘balancing act’
that many regions try and achieve between sustained profitability and productivity
in the agricultural sector while maintaining environmental quality and ecosystem
health, over a varied and biologically rich landscape. The impressive landscape of
California’s agriculture is supported by critical surface and groundwater resources
whose unevenly distribution must be managed by a complex infrastructure network
thatmust also accommodate the ever-increasing levels of urbanization and settlement
that have occurred throughout California’s history availability, and which are biased
toward wealthy, coastal population centers. The challenges of water management
facing northern China are quite similar to this and are addressed in later chapters of
the book. These competing pressures, in addition to the increasing climatic variability
now facing the region, pose challenges and critical trade-offs that require robust tools
of analysis to assess them and to provide decision support to policy-makers.

Figure 1 captures some key linkages between firm- or household-level agricul-
tural production, markets, the environment, and consumption. In the case of rural
agricultural farm households, they may source their consumption directly from own
production or might choose to use the market for marketing their produce (or to pur-
chase other goods).

To simulate the decisions of the producers, and to evaluate the market-mediated
response to environmental or socioeconomic influences, the analyst needs to resort

S. Msangi (B)
International Food Policy Research Institute, Washington, DC, USA
e-mail: siwamsangi@gmail.com
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1 Introduction 3

to model-based approaches that can reasonably capture the essential components.
This is expanded up on in the following subsections.

1 Capturing Key Behavioral Dimensions at Micro-
and Macro-Level

At the micro-level, the farmer faces complex decisions that depend on prevailing
economic conditions as well as on the physical environment in which she finds her-
self—which largely define the resource constraints on production. The behavioral
dimensions of the farmmanagermust also confront the biophysical realities of agron-
omy that determine crop yields, and any analytical approach that is used to study the
farmer’s behavior must be able to take these realities into account in someway (albeit
simplified or reduced in form). Following in the rich economic tradition of studying
the producer’s decision problem, which have been established in methodological
approaches taught to most economists (Chambers 1988), reduced-form approaches
to studying farm-level behavior have been successful in exploiting the dual relation-
ships of the producer’s fundamental economic decision problem. Adopting a primal
approach, however, can allow the analyst to handle the input/output linkages and
other biophysical aspects of agricultural production more explicitly, and make better
use of the wealth of information and data that can be obtained from agronomic or
environmental studies. Studies where outputs from agronomic models are incorpo-
rated into an economic production analysis (Merel et al. 2014), are a good example
of this.

At a more macro-level, the aggregate behavior of producers and consumers are
more amenable to reduced-form representations that can abstract further away from
the biophysical realities that constrain the day-to-day decisions of both households
and agricultural producers. Careful consideration of howmicro-level behavior should
be properly aggregated up is warranted and has been explored by some studies (Önal
and McCarl 1991). Given the more systematic collection of available information
on prices and costs that often occurs at the market level, over time, dual-based
approaches can be applied more widely and robustly when used to characterize con-
sumer and producer behavior. Nonetheless, primal approaches can still be applicable
if the analyst wants to exploit mathematical programming-based model calibration
methods. This can be done either on the supply side of the market, as has been
doing in numerous examples looking at the European agricultural landscape under
the Common Agricultural Policy (Henry de Frahan et al. 2007; Thomas Heckelei
and Britz 2000; Jansson and Heckelei 2011; Júdez et al. 2001), where the rich FADN
dataset provides researchers and analysts with detailed information on various types
of farm enterprises across Europe. PMP-based methods also allow one to calibrate
directly on trade flows occurring in the market, as the chapter of Paris (in this book)
illustrates. Given that agricultural policies affect a wide range of farmers and con-
sumers, analytical methods that can account for market-level impacts and which
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can also address the distributional impacts across producer and consumer types are
important and useful to employ in policy analysis.

2 Robust Analysis Under Limited Information

All researchers and analysts acknowledge the importance of high-quality data in
carrying out robust and credible analysis, and a situation in which more observations
are available is clearly superior to one in which limited observations can be obtained.
Even in a period, like now, where researchers and analysts find themselves having
more and more access to better, more abundant, and more disaggregated data than
ever before, one is still confronted with situations where some key information might
be limited, poorly or infrequently collected, or missing altogether. Our analytical
methods, therefore, need to be amenable to such situations and provide us with a
means of obtaining robust parameter estimates—or allow us an internally consistent
framework for introducing ‘expert judgement’ or other non-sample information into
the analysis. Bayesian methods provide a well-formalized way of incorporating the
researcher’s ‘priors’ into the process of parameter estimation and offer a useful
alternative to classical methods of statistical and econometric analysis. Information-
theoretic approaches operate in a similar spirit and allow the researcher to extend the
range of econometric problems that can be solved.

Since the early 2000s, the use of information-theoretic approaches has become
more widely incorporated into the range of econometric methods that economists
use, and several important and comprehensive textbooks have helped to mainstream
this approach (Golan et al. 1996; Mittelhammer et al. 2000). Aside from estimation
of parameters for reduced-form functions (Marsh et al. 2014), information-theoretic
approaches can also be applied to the estimation and calibration of behavioral models
of production, in which the number of desired parameters might exceed the num-
ber of observations, such that the analyst faces an inference problem with negative
degrees of freedom (Heckelei and Wolff 2003; Paris and Howitt 1998). This can
be particularly important within the context of developing countries, where national
agricultural information and data-collection systems still have large gaps in cover-
age, or where field-level observations may be limited or not freely available from the
development (or development aid-funded) agencies and entities that collect them.

The chapters in Part 3 of this book illustrate the application of the maxi-
mum entropy principle to various empirical problems—one purely econometric and
another focusing on field-level agricultural production decisions. The chapter of
Msangi et al. in Part 4 of the book also uses entropy-based methods to construct an
internally consistent database for the economicmarket model that is employed, using
the best expert knowledge available and allowing for as much spatial disaggregation
as possible.
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3 Guiding Policy Decisions in Agriculture and Resource
Management with Useful Tools

The ultimate goal of any good analysis of agriculture, environment, and natural
resource management is to be useful to the formation of policy and to help guide
decision-making by those responsible for administration and resource allocation.
Decision-makers often do not want to delve deeply into the underlying complexities
of the analysis, but still appreciate an objective treatment of whatever uncertainty
may exist, and would want to know the range of alternative outcomes that could arise
frommaking different choices or key decisions. The ability of the analyst to calibrate
amodel well and have it reproduce a range of observed (or at least plausible) behavior
goes a long way toward enhancing the confidence that a policy-maker would have in
the results from any given tool or analytical approach. It should, therefore, be the goal
of every policy analysis to provide such a basis for confidence for decision-makers
and to draw upon the best methods that can achieve that objective.

The chapters within this book are aimed at bringing out the importance of utilizing
robust appliedmethods for agricultural policy analysis. The problems that researchers
and policy analysts working on agriculture face are the complexities that characterize
agricultural economies and the biophysical realities of the agricultural landscape.
The analysis of policy issues related to agricultural production and markets cannot
be entirely divorced from the complexities of agriculture itself—although efforts
are always made to simplify and focus. Given that agriculture depends so critically
upon the resource base of production—namely land and water—the degradation and
depletion of those resources also figure prominently in the policy analysis of an
agricultural economy. In this book, there are compelling examples of robust applied
methods that need to be used in order to convincingly address this range of issues.

In the first part of the book, the authors will focus on the empirical modeling of
the agricultural sector, with a heavy focus on production technologies and behavior,
agricultural markets, and evaluating the importance of key resources such as soil and
water availability on the production sector.Many of the examples in this chapter draw
upon the analytical methods agricultural sector modeling calibration that Richard E.
Howitt pioneered—Positive Mathematical Programming (hereafter referred to by its
popular acronym “PMP”). Applications of PMP also show up in other parts of the
book, but are best explained in this first section, which begins with a chapter by
Bruno Henry de Frahan which takes a detailed view of various extensions to the
original PMP methodologies. The paper of Quirino Paris, in this first part, applies
the methodology to the calibration of a spatial equilibrium model of trade.

The second part of the book focuses on water resource management issues, which
Richard E. Howitt has made significant research contributions toward, especially
with regard to the problems facingwatermanagement in California. Here, the authors
discuss a range of examples, ranging from Brazil to China—which draw inspiration
from the work that Howitt and his colleagues have done over the years on applying
production modeling to the estimation of water demands, so that the derived demand
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functions can guide the efficient allocation of scarce water resources around the
state of California.

The third part of the book deals with applications of information theory both to
problems of pure statistical inference and to the empirical analysis of farm-level
crop rotations, using highly disaggregated data. This section reflects the interest
that Richard E. Howitt and his colleagues have shown in the application of robust
inference methods to the analysis of agricultural production, beginning from the
highly influential article of Paris and Howitt which expanded PMP calibration to the
ill-posed case (Paris and Howitt 1998).

The final section of the book addresses a range of agricultural policy and resource
management issues in a variety of settings (not limited to California) and highlights
the applicability of robust empirical methods such as those that have been cov-
ered in earlier parts of the book. The messages in this chapter focus on providing
decision- and policy-makers with robust decision-support tools that make good use
of the existing data and which can address the complexities of producer behavior
and response, within the context of highly constrained natural resources or restrictive
policy regimes. Although much of the book focuses on the technical aspects of mod-
eling agricultural production and resource use—this section highlights the ultimate
relevance and importance of applying these methods to address urgent issues that are
relevant to policy and the key trade-offs that decision-makers face when assessing
investments and alternative strategies and interventions to strengthen the agricultural
sector and the natural resource base upon which it critically depends.
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Chapter 2
Towards Econometric Mathematical
Programming for Policy Analysis

Bruno Henry de Frahan

Abstract This contribution focuses in reviewing the development of positive math-
ematical programming towards econometric mathematical programming. Starting
with the entropy approach it reviews alternative approaches and model specifica-
tions that appeared in the recent PMP-related literature for estimating those non-
linear terms that achieve the accurate calibration of optimisation programmes and
guide the simulation response to policy scenarios. Combining recent contributions
from this literature, it then proposes a possible framework to estimate and calibrate
simultaneously model parameters ready to use for performing policy simulations.

1 Introduction

The formulation of the concept of positive mathematical programming (PMP) is
due to Richard Howitt (1995a) in the American Journal of Agricultural Economics
(AJAE). The core concept of PMP consists in achieving an accurate calibration of
an optimisation programme thanks to the addition of specific nonlinear terms in the
objective function such as to satisfy the optimality conditions of the programme
precisely at the observed levels of the decision variables. Because these nonlinear
terms directly control the response of the optimisation programme to changes in
variables exogenous to the programme, their determination has been subject to close
examination in the PMP literature.

In his seminal paper, Howitt (1995a) relied in the use of information contained in
just one behavioural observation of the economic agent to establish the PMP concept.
Unless to resort to ad hoc specification rules (e.g., arbitrary assumptions on some
calibration parameters) or exogenous parameters (typically rental rates of limiting
inputs and supply elasticities to price) to overcome the under-determination of the
whole system of the first-order optimal conditions to calibrate, it became apparent
that the calibration of any nonlinear objective function in PMP modelling would
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need more than just one observation on decision variables. Several mathematical
programming applications were therefore prompt to extend the PMP concept to the
use of a set of several observations. Some modellers used cross-sectional data across
similar economic units (e.g., Heckelei and Britz 2000; Paris 2001a, 2015, 2017;
Arfini et al. 2008; Arfini and Donati 2011; Louhichi et al. 2016; Arata et al. 2017);
while some others used time series of the same unit (e.g., Paris 2001b; Heckelei and
Wolff 2003; Jansson and Heckelei 2011; Cortignani and Severini 2012). However,
fewer applications made use of panel data, thereby crossing the two dimensions (e.g.,
Buysse et al. 2007a; Henry de Frahan et al. 2011; Britz and Arata 2019).

With several observations to use for determining these nonlinear PMP terms,
different estimation techniques appeared in the related literature. Starting first with
entropy estimators, continuing with Bayesian estimators and nowadays into stan-
dard econometric estimators and bi-level programmes, the PMP-related literature
developed itself into being progressively closer to econometrics with the trick of still
providing a calibratedmodel ready for simulation. Exploiting together the advantages
of mathematical programming and econometric approaches lead to the emergence
of a new field of empirical investigation, which was first named “econometric pro-
gramming” (Henry de Frahan et al. 2007) and then labelled afterwards “econometric
mathematical programming” (Buysse et al. 2007b), which could be viewed as the
econometric estimation of programming model parameters based on multiple obser-
vations.

This chapter reviews the development of this new field of investigation. It takes
a different angle than in recent reviews on PMP (Heckelei et al. 2012; Mérel and
Howitt 2014) because it is interested in showing how the econometric estimation of
those PMP parameters evolved since the pioneering contribution of Paris and Howitt
(1998). To create an even closer bridge between mathematical programming and
econometrics, this chapter also proposes a methodological contribution waiting for
an empirical application, before concluding.

2 From Positive Mathematical Programming
to Econometric Mathematical Programming

As announced in the introduction, the passage of positivemathematical programming
(PMP) to econometric mathematical programming (EMP) is captured in this section
through the successive use of alternative estimation approaches. First, the maximum
entropy approach started to be in fashion since the publication of the book of Golan
et al. in 1996 until reservations for this approach accumulated later on in the 2000s.
Then, the Bayesian approach was suggested as an alternative to the entropy approach
with the paper of Heckelei et al. (2008). In particular, this approach is currently
implemented into an impressive effort of the European Commission to model every
farm contained in its rich Farm Accounting Data Network (FADN) dataset for policy
simulations (Louhichi et al. 2016).More recently, the bi-level programming approach



2 Towards Econometric Mathematical Programming … 13

(Jansson and Heckelei 2009) has started to be applied in a few applications while
the use of standard econometrics is still in its infancy (Henry de Frahan et al. 2011).
In parallel to these estimation approaches, different model specifications have been
used and, hence, reviewed as well. In particular, the book of Paris (2011) proposes
several of them.

2.1 The Maximum Entropy Approach

The move forward from typical programming models into econometric program-
ming models was instigated by the influential paper of Paris and Howitt (1998) in the
American Journal of Agricultural Economics and was thereafter relayed by another
influential paper but of Heckelei and Wolff (2003) in the European Review of Agri-
cultural Economics. Although the paper of Paris and Howitt (1998) kept using just
one single observation with its associated variables, it opened the path of recover-
ing econometrically PMP parameters by resorting to the maximum entropy (ME)
criterion (see Golan et al. 1996: 8) to address first the under-determination problem
of standard calibration of PMP models. Paris and Howitt (1998) and subsequent
programming modellers (e.g., Heckelei and Britz 2000; Paris 2001a, b; Arfini et al.
2008; Graveline and Mérel 2014; Petsakos and Rozakis 2015) actually used the
generalised maximum entropy (GME) formalism for defining discrete probability
distributions over the parameter space to recover by sets of discrete support points
with corresponding probabilities (Golan et al. 1996: 67). These modellers applied
the GME estimator on the so-called pure linear inverse ME formulations of the
under-determinacy problem, therefore implicitly assuming a deterministic underly-
ing relation between observations and their associated variables and an absence of
measurement errors or other disturbances on observations (see Golan et al. 1996:
67–69). None used the generalised cross-entropy (GCE) formalism to include prior
probabilities over the same sets of discrete points as initial hypotheses (see Golan
et al. 1996: 67–69). Instead, some used prior information on elasticities and shadow
prices in the GME estimation process as shown below.

However, if maximum entropy or any other econometric criterion is really to use
several observations, the paper of Heckelei and Wolff (2003) highlighted a funda-
mental inconsistency in the estimation process of the parameters used in the ultimate
calibrated model, seen as representing adequately the true data generating process
and the initial models simulated in the first stage in the PMP procedure. In particular,
the shadow values of the binding constraints implied by the ultimate model in the
last PMP stage are determined differently than those implied by the initial models
in the first PMP stage when several observations are used. As a result, most of the
following PMP applications (e.g., Henry de Frahan et al. 2007, 2011; Buysse et al.
2007a; Kanellopoulos et al. 2010; Mérel and Bucaram 2010; Jansson and Heckelei
2011; Mérel et al. 2011, 2014; Cortignani and Severini 2012; Graveline and Mérel
2014; Louhichi et al. 2016; Garnache et al. 2017; Britz and Arata 2019) skipped
this first PMP stage and simultaneously recovered PMP parameters and shadow
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prices directly from the optimality conditions of the desired programming model.
Most likely, applications relying on shadow values of the binding and calibrating
constraints delivered by the first PMP stage to define the support points in a GME
formalism (e.g., Paris and Howitt 1998; Paris 2001a, b; Arfini et al. 2008) were
prone to recovering biased calibrated parameters and, hence, subject to producing
questionable simulation behaviours as explained by Heckelei and Britz (2000) and
Britz et al. (2003).

By the same juncture, the paper of Heckelei andWolff (2003) turned the recovery
process of PMP parameters in a different direction by still using the GME formalism
but applying it to the stochastic version of the linear inverse ME formulations of
the under-determinacy problem, recognising in this way the stochastic nature of
economic processes as well as measurement errors and other disturbances among
observations (see Golan et al. 1996: 85–88). Adding error terms to decision variables
in GME applications resolutely contributed to move mathematical programming
towards econometric modelling. It made the GME estimator a smooth channel into
the estimation process of PMP parameters, starting from ill-posed problems but
also covering well-posed problems when the number of available observations on
decision variables exceeds the number of unknown parameters to estimate as in
standard econometrics. A couple of subsequent papers (e.g., Buysse et al. 2007a;
Cortignani and Severini 2012) took that direction as, for instance, the rich FADN
dataset of the European Commission became more commonly used. More recent
papers (e.g., Jansson and Heckelei 2011; Paris 2015, 2017) have also capitalised on
that direction, introducing measurement errors in observed decision variables as well
as observed prices and input requirements.

The GME estimator has been used to estimate directly the parameters of the first-
order conditions of the optimisation model at hand. This had a serious advantage
compared with estimating a system of derived behavioural functions as in a standard
duality-based econometric estimation (e.g., Chambers and Just 1989; Guyomard
et al. 1996; Moro and Sckokai 1999; Gorddard 2013) for several reasons outlined in
Heckelei andWolff (2003). First, using directly the optimality conditions as data con-
straints in a GME approach avoids deriving closed-form solutions for these duality-
based behavioural functions and, hence, widens the choice of functional forms and
technological or institutional constraints. Second, it allows the use of a more com-
plex structure of the optimisation model by means of several limiting inputs and
constraints. With the inclusion of complementary slackness conditions, it is possible
to address the additional problem that some of these constraints may not necessar-
ily be binding for every observation in the sample. Third, the resulting simulation
model is as explicit as the initial optimisation model to which possible additional
constraints can be incorporated without jeopardising the validity of the estimated
structural parameters. Gocht (2005), however, reported computational difficulties in
finding solutions for estimation problems that rely on a gradient-based solver. The
direct estimation of first-order conditions may raise additional computational diffi-
culties when these conditions include a large number of inequality constraints, as
in complex agricultural trade simulation models. As explained below, the so-called
bi-level optimisation programme can eventually cope with these difficulties.
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The GME approach can also easily incorporate out-of-sample information on
key parameters or shadow prices of limiting inputs in the estimation process. For
example, externally estimated supply elasticities to prices have been used within the
GME estimation process (e.g., Heckelei and Wolff 2003; Cortignani and Severini
2012; Graveline and Mérel 2014; Petsakos and Rozakis 2015). The use of prior
information on elasticities in the GME estimation process, however, depends on
the availability of their analytical expression. Heckelei and Wolff (2003) derived
an analytical expression of the land allocation elasticities with respect to own gross
margins, that are a function of the unknown parameters to be estimated for the simple
Leontief production function with a quadratic cost adjustment, subject to a single
land constraint. They showed that the use of such external elasticities improves the
convergence of the GME estimator towards the true parameter values, particularly
with small sample sizes.

Some other analytical expressions of supply elasticities were derived in the
recent literature for specific programming models. For instance, Mérel and Bucaram
(2010) provided compatible closed-form expressions for own-price supply elastici-
ties implied by a quadratic programmingmodel characterisedwith a production tech-
nology that is of either Leontief or Constant-Elasticity-of-Substitution (CES) type,
subject to a single binding constraint. Mérel et al. (2011) extended these closed-form
expressions for the case where the production technology is of generalised CES type
with decreasing returns to scale but still in the context of one single binding con-
straint. Mérel et al. (2014) used this closed-form expression to precisely calibrate
their generalised CES programming model against acreages, yields, and exogenous
crop supply elasticities to evaluate nitrogen use in cropping. Finally, Garnache and
Mérel (2015) stretched these closed-form expressions to the general case of multi-
ple constraints but with fixed proportions among inputs and decreasing returns to
scale. All these recently available closed-form expressions of elasticity equations
can therefore also be added as constraints to a GME type of estimation procedure, in
order to help estimate parameters of Leontief-quadratic, Leontief decreasing returns
to scale, CES-quadratic or generalised CES programming models of agricultural
supply against a set of exogenous own-price supply elasticities that are taken to
specify the range of their support points. Closed-form solutions for more complex
programming models may, however, not be always derived.

Available out-of-sample elasticities are, however, most often estimated in a differ-
ent context and, hence, may not reflect the entire set of resource, technological and
institutional constraints present in the programming model to be estimated. There-
fore, it is a good practice to provide a sensitivity analysis on those external elasticity
estimateswhen specifying the elasticity support range in theGMEestimation process
as in Arndt et al. (2002) and Graveline and Mérel (2014). The solution suggested
by Mérel and Bucaram (2010) and Garnache and Mérel (2015) is to include into the
calibration process of the second-order parameters only those constraints implicit in
the external estimates and to introduce the other constraints when calibrating first-
order parameters and using the ultimate simulation model. This procedure could
eventually be imitated in the GME estimation process.
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Exogenous rental rates of limiting resources were also used within the GME
estimation process (e.g., Heckelei and Wolff 2003; Cortignani and Severini 2012;
Graveline and Mérel 2014) when confronted with limited data information. These
rental rates may, however, not be always available for the situation under study at the
appropriate disaggregation level when information on markets for those resources
is not fully transparent to the modeller. For such a situation, Garnache et al. (2017)
proposed a method to calibrate those shadow values of any binding constraints that
are not observable to the reference conditions, subject to the replication of exoge-
nous supply responses. They applied this method for the fixed-input proportions,
quadratic-cost and power models, the CES-quadratic model and the generalised CES
model. This method of calibrating shadow values could also be eventually transposed
when specifying the range of the support points in a GME estimation process.

Frompractitioners ofGMEandGCE, influences of prior information onparameter
estimates can be synthesized as follows. On the one hand, parameter estimates are
indeed sensitive to the design of the sets of their support points, especially their
support end-point values (Paris and Howitt 1998; Léon et al. 1999; Oude Lansink
1999; Heckelei and Britz 2000; Paris 2001a, b; Arndt et al. 2002; Mittelhammer
et al. 2013). When there is little or no reliable prior information about the plausible
values of these parameters, it is therefore recommended to specify relatively wide
bounds on model parameters. On the other hand, parameter estimates begin to be
relatively insensitive to bounds on error terms when these bounds are specified wider
than three standard deviations from the expected value (Preckel 2001). However,
widening the error bounds reduces thefit of the parameter estimates (Lence andMiller
1998). Finally, as the support for either or both the parameters and the errors widens,
parameter values obtained from the entropy estimation approach those obtained from
the least-squares estimation of linear regression (Preckel 2001). Where it is possible,
increasing the number of observations also helps reduce the influence of the selected
support points on the estimation outcomes (Heckelei andWolff 2003; Mittelhammer
et al. 2013). As the sample size increases, such influence can be further modulated
by decreasing progressively the weight of the prior-related probabilities.

Although statistical inference on estimated parameters is not the prime objective
of the GME estimation process for calibrating programming models, there are ways
to perform conventional asymptotic tests for GME estimates. Mittelhammer et al.
(2013) developed formulae to perform those statistical tests on model parameters for
the data-constrained GME and GCE estimators of the general linear model. Marsh
et al. (2014) defined asymptotically tests capable of performing extended asymptotic
tests for the data-constrained GME estimator of the linear simultaneous equations
model. So far, these statistical tests have not been applied in the available empirical
literature. Actually once these parameters are estimated, information theory suggests
to use all parameter estimates, significant or not, in the simulation model since
all available information has already been used in the estimation process. Doing
otherwise would imply the existence of additional information, a possibility that has
already been ruled out according to Arndt et al. (2002).

In addition to the difficulty in deriving closed-form expressions for elasticities
from complex programming models if we want to use them as priors, Heckelei et al.
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(2008) explained some other difficulties of the GME and GCE estimation processes.
First, the prior information employed in those entropy estimation processes actually
results not only from interactions between the chosen discrete support points and the
corresponding reference prior probability distribution on these support points, but
also from the final probability distributions on the support points implied by either
the maximum or minimum cross-entropy criterion. These combined effects cause
poor transparency on prior information. Even in the case that the reference probabil-
ity distribution over the sets of support points is taken as uniform as in the standard
GME estimation process, prior information is not necessarily uninformative on the
parameters of interest as it has been incorrectly interpreted in some of theGME appli-
cations. Second, the nature of the estimation objective that is used to combine data
information with prior information cannot be characterised easily. This could make
the statistical evaluation of the resulting parameter estimates difficult. So far, applica-
tions of the statistical tests proposed by Mittelhammer et al. (2013) and Marsh et al.
(2014) have not yet been seen in the available empirical literature. Third, the intro-
duction of additional variables and equations into the estimation process increases
the computational demand on solving complex optimisation problems. To improve
the transparency of the estimation process and relieve the computational demand
found in typical GME applications, Heckelei et al. (2008) proposed an alternative
Bayesian approach to the solution of under-determined systems of equations.

2.2 Bayesian Approach

The Bayesian approach to estimate unknown values of parameters in cases of a simu-
lation model or unknown values of variables in cases of a data reconciliation exercise
treats these unknowns as stochastic. It joins the posterior density on these stochastic
unknowns to their prior density multiplied by the likelihood function representing
information obtained from the data in conjunction with the assumed model. Applied
to an under-determined system of structural equations with some prior distribution
weights on potential solution values of the unknowns, the Bayesian approach consists
in selecting those unknown values that maximise the pre-selected prior probability
distribution of those values on the condition that these unknown values are also solu-
tions to the structural system of equations. These optimal values are hence said to
provide the Bayesian highest posterior density (HPD) solutions of the equation sys-
tem. In cases where the prior weighting on those unknown values is not sufficiently
informative in the sense that the number of prior probability distributions that are
uniform exceeds the number of independent equations, Heckelei et al. (2008) showed
that it is still possible to solve for the posterior means of the unknowns as long as
the prior uniform distributions integrate to unity. In cases of no informative prior
information at all, the posterior mean solutions to the unknowns become the means
of these unknowns from among all equally likely values within the prior uniform
distributions.
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Practically, the Bayesian HPD estimator results in maximising an objective func-
tion that corresponds to the posterior density function conditional to the prior density
function and the data in conjunction with the structural model. For posterior den-
sity functions being the product of independent and normally distributed densities
of the unknowns, their natural logarithmic transformation gives a sum of squares
of deviations between the observed and unknown values to minimise, each devia-
tion being normalised by their estimated variance. Typically prior normal densities
include those of measurement errors of key random parameters and variables, the
first- and second-order conditions of the optimisation model, the definitions of the
error terms and, possibly, mathematical expressions of prior supply elasticities to
prices and dual values of some constraints as seen in the estimation of regional crop
supplies by Jansson and Heckelei (2011). Louhichi et al. (2016) similarly applied
the HPD estimator but to derive parameters of EU-wide individual farm models with
yield-in-value risks in an expected utility framework (following the mean-variance
approachwith a constant absolute risk aversion specification).Gocht andBritz (2011)
used the HPD estimator to disaggregate sector models into farm-type models and
Jansson et al. (2014) to estimate a farm-level simulation model with yield-in-value
risks in an expected utility framework (following the mean-variance approach with
a relative risk aversion specification). However, to render the estimation of these
large estimation exercises feasible, these modellers still had to assume binding con-
straints (Heckelei et al. 2012). Also, an absence of statistical inference could also
question the empirical reliability of the parameter estimates and, hence, the reliance
on the various simulation results. Aside from these examples, not many studies have
followed the Bayesian approach so far.

2.3 Bi-Level Programming Approach

The bi-level optimisation programme consists in solving an optimisation problem,
called the outer problem, using the solutions of another optimisation problem called
the inner problem, as its domains (Heckelei and Britz 2005). The outer problem, for
example, optimises a statistical benchmark such as a weighted least-squares, entropy
or Bayesian estimator, while the inner problem includes the first- and second-order
conditions of the optimisation problem. The bi-level optimisation programme ends
up identifying the optimal values of the parameters or variables with respect to the
statistical criterion such that these values also satisfy the optimality conditions of the
inner problem. When optimality conditions comprise complementarity slackness,
numerical difficulties, however, start to appear in obtaining a solution to the bi-level
programme, and call for specific algorithms to be employed (Heckelei and Britz
2005).

Jansson and Heckelei (2009) used a bi-level mathematical programme to estimate
the parameters of a transport programming model using observations of regional
prices in addition to observations of transports costs and trade flows as well as
complementary slackness conditions for zero trade flows. In this case, the inner
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problem is composed of the optimality conditions of the transport problem, while
the outer problem minimises the weighted sum of squared measurement errors on
prices and trade costs. They showed that their resulting bi-level programme estimates
regional prices as well as trade costs more precisely than the traditional calibration
method applied in transport models. They used two complementary algorithms based
on smooth approximations from Ferris et al. (2002) to solve their bi-level programme
with complementary slackness conditions.

Britz and Arata (2019) applied the concept of bi-level optimisation with com-
plementary slackness conditions to estimate individual farm models with yield and
price risks in an expected utility framework (following the mean-variance approach
with a relative risk aversion coefficient). In their case, the inner problem maximises
a per hectare (ha) expected utility that is composed of a per ha expected revenue,
a per ha cost function and a variance function with the relative risk aversion coef-
ficient, where the decision variables are crop shares. The outer problem minimises
the weighted sum of squared measurement errors on the allocated crop shares and
per ha total costs. The per ha cost function that is used is, however, not in line with
the standard definition of a per ha dual cost function and fails to meet all theoretical
properties. The bi-level programming model achieves its purpose, in particular in
dealing with inequality constraints such as sale quotas and set-aside obligations, for
estimating the model parameters. They used the so-called extended mathematical
programming (Ferris et al. 2009) package of the general algebraic modelling sys-
tem (GAMS) software to formulate automatically the first-order conditions of their
bi-level mathematical programme and solve it (see Vicente and Calamai 1994). They
also successfully derived confidence intervals around someof the parameter estimates
based on the Cramer-Rao bound and numerical estimation of the Fisher information
matrix. Goodness of fit seems satisfactory for the estimatedmodel. Sinha et al. (2017)
provided an extensive recent review on bi-level optimisation and applications.

2.4 Standard Econometric Approach

Obviously with a sufficiently large number of degrees of freedom, the estimation
problem becomes well-posed. Estimators such as least-squares (LS) or generalised
methods of moments (GMM) can therefore more appropriately be used in place of
entropy-based and Bayesian methods, and statistical inference on parameter esti-
mates can be more straightforwardly performed. This is what Henry de Frahan et al.
(2011) undertook for estimating parameters of individual farm models, but in two
steps. First, they estimated a multi-output, multi-input flexible cost function for each
individual sample farm. Second, they embedded each individual farm cost function
into the objective function of a profit-maximisation programming model with sev-
eral constraints that is designed and calibrated for each farm of the sample as well
as with a regional land constraint. But any other regional constraint that restrict the
volume of output sales or pollution emissions can be added into the structure of the
individual programming models.
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There are several advantages to this approach—namely: theoretical restrictions
can be easily verified or imposed in the estimation step, estimated parameters encap-
sulate constraints whether they are binding or not, full statistical inference can be
easily performed on the estimated parameters, and resource, technological and insti-
tutional constraints can still stay explicit in the programming model. One disadvan-
tage, however, is that the programming model still needs to be augmented with a
calibration term as in any other simulation model.

Arfini andDonati (2011) adopted a similar approach for estimating and calibrating
parameters of individual farm models, but collapsed the two steps into a single
one. Here, however, the error terms whose squares are to be minimised are actually
the linear terms of the activity quadratic cost function. Additional restrictions are
also included in the combined estimation and calibration process: (1) a relationship
between variable marginal costs derived from a linear function and marginal costs
derived from an activity quadratic cost function; (2) a relationship between the total
estimate of the explicit specific costs and the total farm accounting variable costs;
(3) a relationship between total marginal costs, including the marginal use cost of the
fixed factors of production, and total marginal revenues, and; (4) an equality between
the values of the objective function of the primal problem and the objective function
of the corresponding dual problem. This last equality actually imposes a long-run
equalisation between total costs (including rents to fixed factors of production), and
total revenues upon the parameter estimation problem. Such a constraint was not
necessary imposed upon previous attempts at structural parameter estimations. It is,
however, questionable whether individual farms observed in the sample have really
reached their long-run equilibrium, meeting the zero-profit condition.

This specification has the advantage that estimation and calibration are completed
simultaneously. The disadvantages of it are that estimated parameters reflect a long-
run equilibrium of the farm and are not prone to straightforward statistical inference.
Paris (2011: 400) showed that the result of this least-squares minimisation prob-
lem precisely corresponds to the principal set-up of the original PMP specification.
However, the minimisation problem here no longer includes, explicitly, the much
discussed ‘tautological’ relation of the first PMP stage stating that optimal levels
of activities be less or equal to their observed levels. But it implicitly includes the
first-order conditions of the final model specification, hence removing the alleged
disconnect between the first and second PMP stages (Paris 2011: 399).

Using a similar primal–dual approach, Arata et al. (2017) estimated individ-
ual farm models with price risks in an expected utility framework (following the
mean-variance approach with a constant absolute risk aversion specification). Their
approach consists of merging the primal model of the first PMP stage with its corre-
sponding dual model and adding the nonlinear equation of the second PMP stage as a
constraint. The combination of the objective functions of the primal and dual models
of the farmer’s expected utility maximisation problem is included in the objective
function of the final specification of the programming model to estimate as in Paris
(2011: 398). Here again, the estimated parameters of the expected utility maximi-
sation problem reflect a long-run equilibrium of the individual sample farms. This
estimation procedure is also not amenable to straightforward statistical inference.
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Paris (2017) also merged the formulation of the primal model of the first PMP
stage with its corresponding dual formulation. Here, however, he assumed that the
observed values of the activity levels as well as the observed values of the proxies
for limiting input duals contain some measurement error as initiated by Heckelei and
Wolff (2003). First, the sum of squared deviations of both activity levels and limiting
input duals is minimised, as in a weighted least-squares estimation procedure subject
to the duality relations of the initial PMP model. Whether the observed values are
strictly positive or null, Paris (2017) demonstrated that the least-squares solution
is unique. Second, the farm-specific parameters of the cost function are estimated
by importing the optimal least-squares solutions of the activity levels and limiting
input duals into the output marginal cost and limiting input demand functions. If
some priors on regional output supply and limiting input demand elasticities are
available, it is possible to insert their mathematical expressions in the estimation
of the cost parameters with their priors. The final model to estimate can be highly
nonlinear in the constraints. In this case, Paris (2017) reported that the Branch-And-
Reduce Optimisation Navigator (BARON) solver of the GAMS software achieved
an equilibrium solution. Note that here there is no assumption that the sample farms
are achieving a long-run equilibrium with zero profit. The estimated parameters are
still not amenable to statistical inference.

Paris (2015) applied the same approach to estimate individual farm models with
price risks within a mean-standard deviation utility function framework, with any
combination of risk preferences represented by absolute risk aversion and relative
risk aversion. What is interesting in both cases is that the dual formulation of the
profit-maximisation problem or mean-standard utility maximisation problem is used
together with its primal formulation to estimate the measurement error terms on
activity levels and limiting input duals. Still, the first two PMP stages are used: the
first one to obtain the calibrating least-squares values of the activity levels and limiting
input duals; the second to estimate the parameters of the cost function of interest.
Our methodological proposal developed in the next section consists of merging both
stages together so as to avoid the inconsistency highlighted between the traditional
first and third PMP stages, as recommended by studies since the seminal paper of
Heckelei and Wolff (2003).

2.5 Alternative Model Specifications

Mérel andHowitt (2014) already reviewed somemodel specifications andhave shown
the necessity for those specifications to produce globally convex models for cali-
bration and simulation purposes. In the PMP-related literature, this necessity has
typically been translated into a nonlinear, concave objective function subject to a
convex set of constraints in the case of a profit-maximisation problem. Beyond this
practical programming necessity, justifications for the nonlinearity of the concave
profit function differed in the same literature. It is, however, possible to group them
in two distinct strands. A first strand justified it on empirical grounds arguing that
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it captures any type of model mis-specification, data errors, aggregation bias, land
heterogeneity, fixed factors, capacity constraint, risk behaviour and price expecta-
tions (Howitt 1995a, b; Heckelei and Britz 2000; Helming et al. 2001; Kanellopoulos
et al. 2010; Louhichi et al. 2010; Gocht and Britz 2011; Jansson and Heckelei 2011;
Heckelei et al. 2012; Louhichi et al. 2016; Arata et al. 2017). A second strand used
a more standard theoretical view, arguing that it represents the second-order approx-
imation of a dual cost function that depends on output quantity levels but also in
some instances on input prices and fixed inputs (Paris and Howitt 1998; Paris 2001a,
b, 2011, 2015, 2017; Buysse et al. 2007a, b; Arfini et al. 2008; Arfini and Donati
2011; Henry de Frahan et al. 2011; Britz and Arata 2019). Heckelei and Britz (2005),
Mérel and Howitt (2014), and Heckelei et al. (2012), however, concluded that those
justifications from the first strand offer limited rationalisation of the nonlinear terms
of the ultimate objective function.

PMP-relatedmodel specificationsmostly varied according to how the nonlinearity
of the final objective function is actually implemented. Some applications placed it
on the revenue side, whereas some others on the cost side of the profit function.
In practice, few applications (7 out of 36 recorded) aimed to recover parameters
of marginal revenues (Howitt 1995a; Heckelei and Wolff 2003; Mérel et al. 2011,
2014; Graveline and Mérel 2014; Garnache and Mérel 2015; Garnache et al. 2017),
while most applications (29 out of 36 recorded) attempted to recover parameters
of marginal costs (Howitt 1995b; Paris and Howitt 1998; Heckelei and Britz 2000;
Graindorge et al. 2001; Júdez et al. 2001; Paris 2001a, b, 2015, 2017; Heckelei
and Wolff 2003; Henry de Frahan et al. 2007, 2011; Buysse et al. 2007a, b; Arfini
et al. 2008; Cortignani and Severini 2009; Kanellopoulos et al. 2010; Louhichi et al.
2010;Mérel and Bucaram 2010; Arfini andDonati 2011; Jansson andHeckelei 2011;
Cortignani andSeverini 2012; Frisvold andKonyar 2012;Medellín-Azura et al. 2012;
Jansson et al. 2014; Louhichi et al. 2016; Britz and Arata 2019; Arata et al. 2017).
Some of these applications also added the recovery of parameters of input-derived
demands (Howitt 1995b; Graindorge et al. 2001; Helming et al. 2001; Heckelei and
Wolff 2003; Henry de Frahan et al. 2011; Medellín-Azura et al. 2012; Graveline
and Mérel 2014; Mérel et al. 2014; Garnache et al. 2017), limiting input-derived
demands (Paris 2001a, b, 2015, 2017), revenue (Arfini et al. 2008) and risk-aversion
behaviours (Louhichi et al. 2010; Cortignani and Severini 2012; Paris 2015; Petsakos
and Rozakis 2015; Britz and Arata 2019; Arata et al. 2017).

When the nonlinearity was placed on the cost side, the most widely used func-
tional formwas the quadratic form. In some instances, the generalised Leontief or the
weighted-entropy functional forms were used as well (Paris and Howitt 1998; Paris
2001a, b, 2015, 2017). When the nonlinearity was placed on the revenue side, func-
tional forms included the yield function, the Cobb-Douglas, the CES or the power
forms. As long as the functional form meets the standard theoretical properties of a
cost or a revenue function, any functional form can be used. Its choice then mostly
depends on the data and the problem at hand.

PMP-related model specifications also varied according to the identification of
the decision variables. Following the tradition of mathematical programming mod-
els designed for the agricultural sector, most applications (23 out of 35 recorded)
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defined their decision variables in terms of allocable fixed resources (i.e., farm land
or livestock) while fewer (12 out of 35 recorded) were defined in terms of out-
put quantities. Three quarters of the applications selecting allocable fixed resources
for decision variables also recovered the parameters of a cost function, the other
quarter recovering the parameters of a revenue function. All applications, except a
few, selecting output quantities for decision variables recovered the parameters of a
cost function. These applications selecting output quantities for decision quantities
may have the advantage of implicitly endogenizing yield formation. Some applica-
tions selecting allocable fixed resources as the decision variables, endogenized yield
formation by adding a production function with input substitution (Howitt 1995b;
Graindorge et al. 2001; Heckelei and Wolff 2003; Mérel et al. 2011, 2014; Frisvold
and Konyar 2012; Medellín-Azura et al. 2012; Graveline and Mérel 2014; Garnache
et al. 2017). These specifications remove the need to use a discrete approach spec-
ifying different activity variants to capture variations in intensive margin as used
in Röhm and Dabbert (2003), Cortignani and Severini (2009) and Louhichi et al.
(2010). As long as the revenue function or the cost function respects the standard
theoretical properties, there is no strong argument to privilege one specification over
another. What should determine the choice of one specification over the other is,
rather, the data and the problem at hand.

As already discussed above, PMP-relatedmodel specifications also varied accord-
ing to whether decision variables or parameters are deterministic or random. As
noted in the review of Heckelei et al. (2012), discussing which variables or parame-
ters ought to be treated as deterministic or random is not yet well established in the
PMP-related literature. But this is actually the new trend when using econometric
estimation methods such as the LS, GMM, ME and Bayesian estimators as well as
the bi-level programming approaches.

With the exception of a fewmore recent papers, all papers reviewed above relied on
the primal set-up of the profit-maximisation problem to derive the first- and second-
order conditions to calibrate or estimate the parameters of interest. Instead, Arfini and
Donati (2011), Paris (2015, 2017), and Arata et al. (2017) (reviewed above) relied
on both the primal and the dual set-up of the profit-maximisation problem. This
primal–dual approach was actually instigated by a previous paper of Paris (2001a)
further developed in his book (Paris 2011). Paris (2011: 357) motivated his extension
of PMP for avoiding the risk of degeneracy of some of the dual variables associated
with the presence of multiple structural constraints. First, he constructed a symmet-
ric structure of the primal and dual constraints of the maximisation problem and
formulated it as an equilibrium model by resorting to the market price of all limiting
inputs. Information on prices that is generally available at least at the regional level
for land, water, capital, labour, and production or sale rights can, therefore, be useful.
The symmetry of the new structure was judiciously obtained by inserting the pos-
sibility to rent out limiting inputs at market prices. The solution of this equilibrium
model generated estimates of activity levels, effective supplies of limiting inputs,
total marginal costs of activities and marginal costs of limiting inputs. Second, using
a flexible cost function, he estimated the parameters of the marginal cost function of
activities and the derived demand function for limiting inputs. Third, he expressed the
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finalmodel as an equilibrium problem betweenmarginal costs andmarginal revenues
of the output activities, on the one hand, and derived demand and supply functions
of the limiting inputs, on the other hand. Because of this equilibrium and symme-
try, Paris named his novel formulation as a symmetric positive equilibrium problem
(SPEP). Britz et al. (2003), however, raised some doubts about Paris’s (2001a) novel
procedure. Their fundamental critique was again the inconsistency between the out-
comes of the first and third stages of the procedure. Some other critiques were later
addressed in the book of Paris (2011: 357–361).

In the same paper, Paris (2001a) also proposed a solution to the self-selection
process with respect to the choice of activities that is common in farm surveys, where
different farmsof the survey samplemay select to be actively engaged in different sub-
sets of the available activities for unclear reasons. In such a case, parameters for latent
activities cannot be calibrated or estimated at the individual level. To overcome this
self-selection problem during the first and second PMP stages, Paris (2001a) added a
supplementary PMP model for the overall sample to the individual farm models and
calibrated a frontier cost function for every activity observed in the overall sample. In
the third PMP stage, the final calibrated individual farmmodels can eventually resort
to parameters calibrated for every possible activity observed in the overall sample
to simulate the emergence of activities that were not necessarily observed in the
baseline situation of the individual farms. This procedure was also further developed
in Paris’s (2011: 348–353) book. The problem raised by Britz et al. (2003) for this
solution concerned the distribution of costs and prices across the sample that might
bias estimates that are recovered from the overall constructed sample. It seems that
this procedure would not be appropriate when there are not too many unobserved
activities across the individual farms of the sample.

Finally, for the sake of completeness, Paris (2001b) extended SPEP to include a
dynamic structure in it. In the dynamic positive equilibrium problem (DPEP) that
he set up for this purpose, also developed in his book (Paris 2011: 361–369), the
underlying dynamic connection of activity levels through time was modelled by a
process of adaptive expectations for output prices. Theobjective function tomaximise
in this problem consisted of the discounted stream of profits over a time horizon
as well as the discounted value of profits from this time horizon to infinity that
is represented as a salvage function. From this set-up, Paris (2001b) derived an
equilibrium problem with structural relations similar to those of the SPEP but to
solve backward in time. Stages 2 and 3 of DPEP were set up and solved as their
corresponding SPEP stages with some alterations for taking care of the dynamic
character of the new equilibrium model. Again, this novel procedure went through
the traditional three PMP stages, which results in the same inconsistency already
reported between the first and the third stages.

A common problem where Paris (2001a, b, 2011, 2015, 2017) merged the primal
model of the first PMP stagewith its corresponding dual formulation is also the use of
a cost functional form that is not fromstandard production economics since it includes
the prices, not the levels, of the limiting inputs.With the use of a standard cost function
expressed in limiting input levels, then the derivative of such a function with respect
to a limiting input quantitymust equalminus the price of the associated limiting input.
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Consequently, the derived demand for a limiting input should follow the schedule of
minus this derivative over its associated limiting input level, as the derived demand
for a variable input follows the schedule of its marginal value productivity over its
associated variable-input level.

2.6 Preliminary Conclusions

In sum, over the last two decades, the PMP-related literature enriched itself with
alternative approaches andmodel specifications in the aimof estimating the nonlinear
terms that are much critical for achieving calibrated optimisation programmes and
obtaining sound simulation responses.While the entropy approach has dominated the
first decade since the 1998 AJAE paper of Paris and Howitt, the Bayesian approach
as well as more standard econometric approaches that can, in turn, be embedded into
bi-level programmes have started to take off thanks mainly to contributions from
Heckelei and his close collaborators. Notably due to contributions from Paris, model
set-up diversified itself, someof thembeing still questioned in the academic literature.
Methodological solutions started to emerge to tackle this challenging objective.

From this comprehensive review, it is possible to retain several key elements
for motivating the methodological contribution developed in the next section. This
contribution fits into this general aim of estimating and calibrating simultaneously
optimisation model parameters ready to use for performing policy simulation. These
elements are part of the following list:

(1) estimating directly the first- and second-order conditions of the ultimate opti-
misation model, skipping therefore the first PMP stage;

(2) using a flexible functional form for the cost function that fulfils every standard
theoretical property;

(3) setting up both the primal and dual of the problem at hand, i.e., adding the dual
formulation of the profit-maximisation problem to its primal formulation;

(4) defining the decision variables as random variables;
(5) using all available information and observations, including prices and quantities

of limiting inputs and, possibly, prices and quantities of variable inputs;
(6) having the possibility to use priors of elasticities for output supplies and derived

input demands;
(7) relying on standard econometric methods to estimate parameters with the pos-

sibility to resort to a bi-level programme if the presence of complementary
slackness conditions results in numerical difficulties; and

(8) having the opportunity to accommodate the simulation model with additional
constraints not yet included into the estimation process.
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3 Bridging Positive Mathematical Programming
and Econometric Mathematical Programming

Let us start immediately with the ultimate specification of the programmingmodel to
optimise as advocated in Heckelei and Wolff (2003), but express its specification as
in Paris (2017) with an additional constraint expressing the true activity level being
equal to the observed activity level augmented with an error term as in Heckelei and
Wolff (2003). This error term reflects somemeasurement error that either understates
or overstates the level of the activity level consistent with the technical and economic
information of a given producing unit as stated in both papers. Let us further assume
that this error term is stochastic with mean zero and a standard deviation σ .

The following programming model is set up as for one producing unit f for
every time period t in vector notation where lower-case, bold-faced letters represent
items that are column vectors for each time period t, upper-case bold-faced letters
represent matrices, and upper-case italic letters to represent scalars. When needed,
the dimensions of the vectors and matrices are denoted by upper-case letters and
the indices of the elements of these vectors or matrices by a lower-case version of
the same letter. As usual, the prime character (′) denotes the ordinary transpose of a
vector or a matrix and the (−1) exponent the inverse of a matrix. Since all individual
models have identical structure and no cross-unit constraints or relationships are
assumed here to keep the presentation simple, indices for producing units can be
omitted in this generic presentation. The individual programming model for each
period t can then be written as:

MAXxt,htT N Rt � p′
txt − c′xt − 1/2x′

tQxt (1)

subject to

Atxt ≤ bt
[
yt

]
dual variables yt (2)

xt � xot + ht [λt] dual variablesλt (3)

with the vectors xt ≥ 0 and ht free, where the scalar T N Rt represents the total net
revenue of the producing unit f to maximise in period t; the vector xt represents the
true activity levels that are preferably expressed in output quantities for each of the J
production activities to conform to a standard cost function; the vector pt represents
the J vector of output prices when activity levels are expressed in output quantities;
the vector c represents the J vector of linear parameters of the quadratic cost function;
the matrix Q represents the J × J symmetric positive definite matrix of quadratic
parameters of the quadratic cost function; thematrixAt represents theK × Jmatrix of
limiting input coefficients forK limiting inputs; the vector bt represents theK vector
of total availability of limiting inputs; the vector xot represents the observed activity
levels; the vector ht represents the error terms due to measurement on these activity
levels; and the two vectors yt andλt represent the dual variables corresponding to the
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constraints for limiting inputs and the equalisations of the true and observed activity
levels thanks to the error terms, respectively. The dual variable λt can be interpreted
as being the marginal effect of the error term about the true respective activity level
on the true total net revenue.

Note that the quadratic cost function here is expressed in its simplest form, i.e.,
depending solely on the activity levels, not on variable-input prices and limiting
input levels. This functional form can therefore be extended by first adding to it the
variable-input prices as is done with the symmetric generalised McFadden (SGM)
functional form in Henry de Frahan et al. (2011) or with the generalised Leontief
functional form in Paris (2017). For this extension, both quantities and prices of
variable inputs need to be available since the Shephard’s lemma applied to this
extended cost function provides the variable-input demand functions. Variable-input
quantities are most often available from farm data, in particular the FADN dataset,
and variable-input prices are also often observable at least at the regional level, if not
in the form of an input price index. As for the activity levels, let us then express the
true variable-input price level as being equal to the observed variable-input price level
augmentedwith an error term. In such a case, it is possible to add a set of constraints to
the previous programming model, such as the true levels of variable-input prices are
equal to the observed levels of variable-input prices augmented with error terms due
to measurement error on these prices. A system of two sets of equations to estimate
is then formed, which consist of the derivatives of total costs with respect to outputs
and derivatives of total costs with respect to variable-input prices. This extension
is not further developed here so as to focus on the methodological approach, rather
than on the detailed specification of the programming model.

This functional form can also be further extended by adding to it the limiting
input quantities with measurement errors on these quantities and, hence, removing
the corresponding limiting input binding constraints. For this extension, quantities
and prices of limiting inputs need to be available since the derivatives of this extended
cost functionwith respect to their limiting input quantitiesmust equalminus the prices
of their associated limiting inputs. Limiting input quantities are most often available
from farmdata, in particular the FADNdataset, and limiting input prices are also often
the case at least at the regional level, if not in the formof an input price index.As for the
activity levels and the variable-input prices, let us then express the true limiting input
levels being equal to the observed limiting input levels augmented with an error term.
In such a case, it is possible to add a set of constraints to the previous programming
model such as the true levels of limiting inputs are equal to the observed levels of
limiting inputs augmented with error terms due to measurement error on these levels.
A systemof three sets of equations to estimate is then formed: derivatives of total costs
with respect to outputs, derivatives of total costs with respect to variable-input prices
and derivatives of total costs with respect to limiting input quantities. This fully-
fledged cost function removes the last restriction of fixed production coefficients
that could have been still present in the limiting input binding constraints. This
extension is not further developed here to focus on the methodological approach, not
on the detailed specification of the programming model.
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Furthermore, as in Heckelei and Wolff (2003) in the context of an entropy esti-
mator, in Jansson and Heckelei (2011) in the context of a Bayesian estimator or, in
particular, in Paris (2017) in the context of a least-squares estimator, let us add in the
objective function (Eq. 1) the sum of squared deviations h′

tWtht to minimise where
the matrix Wt is diagonal with elements p jt > 0 on the main diagonal, j � 1, …, J
to harmonise the units of measurement in the new objective function. The Lagrange
function and the corresponding necessary Kuhn–Tucker conditions become as the
following expressions:

LMAXt (xt,ht, yt,λt) � p′
txt − c′xt − 1

2
x′
tQxt − 1

2
h′
tWtht

+ y′
t[bt − Atxt] + λ′

t

[
xot + ht − xt

]
(4)

∂LMAXt

∂xt
� pt − c − Qxt − A′

tyt − λt ≤ 0 (5)

∂LMAXt

∂ht
� −Wtht + λt � 0 (6)

∂LMAXt

∂yt
� bt − Atxt ≥ 0 (7)

∂LMAXt

∂λt
� xot + ht − xt � 0 (8)

xt
∂LMAXt

∂xt
� xt

(
pt − c − Qxt − A′

t yt − λt
) � 0 (9)

yt
∂LMAXt

∂yt
� yt(bt − Atxt) � 0 (10)

xt ≥ 0 (11)

yt ≥ 0 (12)

Equations 5 and 6 provide together:

A′
tyt +Wtht ≥ pt − c − Qxt (13)

Let us now state the dual of model Eqs. (1)–(3) as in Paris (2017):

MI Nyt,utTCt � b′
t yt +

1

2
x′
tQxt +

(
xot + ht

)′
λt (14)

subject to

A′
tyt + λt ≥ pt − c − Qxt [xt] dual variables xt (15)

yt � yot + ut
[
ψt

]
dual variablesψt (16)



2 Towards Econometric Mathematical Programming … 29

with the vectors yt and xt ≥ 0 and the vectors ht and ut free, where the scalar
TCt represents the total cost of the producing unit f to minimise in period t; the
vector yt represents the shadow price levels for each of the K limiting inputs; the
vector yot represents the observed price levels for each of the K limiting inputs; the
vector ut represents the error terms due to measurement on these price levels; the
two vectors xt and ψt represent the dual variables corresponding to the constraints
for total marginal costs being greater or equal to output prices and the equalisations
of the shadow and observed limiting input price levels thanks to the error terms,
respectively; and the other vectors and matrices are defined as in the primal model
(1)–(3). The dual variable ψt can be interpreted as being the marginal effect of the
error term about the true shadow price level of the respective limiting input on the
true total cost.

As in Paris (2017) in the context of a least-squares estimator, let us also add in
the objective function (Eq. 14) the sum of squared deviations u′

tVtut to minimise
where the matrix Vt is diagonal with elements bkt/yokt > 0 on the main diagonal,
k � 1, …, K to harmonise the units of measurement in the new objective function.
The Lagrange function and the corresponding necessary Kuhn–Tucker conditions
become as the following expressions:

LM I Nt
(
yt, xt,ut,ψt

) � b′
tyt +

1

2
x′
tQxt +

(
xot + ht

)′
λt +

1

2
u′
tVtut

+ x′
t

[
pt − c − Qxt − A′

tyt − λt
]
+ ψ′

t

[
yot + ut − yt

]

(17)
∂LM I Nt

∂yt
� bt − Atxt − ψt ≥ 0 (18)

∂LM I Nt

∂xt
� pt − c − Qxt − A′

tyt − λt ≥ 0 (19)

∂LM I Nt

∂ut
� Vtut + ψt � 0 (20)

∂LM I Nt

∂ψt
� yot + ut − yt � 0 (21)

yt
∂LM I Nt

∂yt
� yt

(
bt − Atxt − ψt

) � 0 (22)

xt
∂LM I Nt

∂xt
� xt

(
pt − c − Qxt − A′

tyt − λt
) � 0 (23)

yt ≥ 0 (24)

xt ≥ 0 (25)

Equations 18 and 20 provide together:

Atxt ≤ bt + Vtut (26)
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By the substitution of constraints (8) and (21) into constraints (13) and (26) and
the rearrangement of terms, a system of two sets of equations subject to constraints
(11) and (12), or constraints (24) and (25) is obtained:

A′
t

(
yot + ut

)
+Wtht + c +Q

(
xot + ht

) ≥ pt (27)

At
(
xot + ht

) − Vtut ≤ bt (28)

xot + ht ≥ 0 (29)

yot + ut ≥ 0 (30)

With these four relationships, it is possible to proceed with the estimation of cost
parameters c andQ for one individual producing unit over a time frame of t � 1, …,
T using the following weighted least-squares specification:

MI Nht,ut,c,QLS �
T∑

t�1

(
h′
tWht + u′

tVut
)
/2 (31)

subject to Eqs. (27)–(30) and the standard theoretical restrictions on the cost param-
eters.

If those inequalities (27)–(30) generate computational difficulties, then it is pos-
sible to resort to a bi-level programme where those four inequalities form the inner
problem together with the theoretical restrictions and the weighted sum of least-
squares deviations forms the outer problem to minimise as in Britz and Arata (2019).

Otherwise, if it is reasonable to observe that vectors xot and yot have all positive
components, then it is also reasonable to assume that vector xt > 0 and vector yt > 0.
Via the complementary slackness conditions (9) and (22), the previous least-squares
estimation is computationally simplified with the constraints (27)–(30) in equality
mode. If some components of vectors xot and y

o
t are not observed, then the solution to

the self-selection process proposed by Paris (2001a) and developed further in Paris
(2011: 348–353) can be appliedwith, however, the caveat raised byBritz et al. (2003).
In such a case, the weighted least-squares estimator needs to be applied together for
the individual producing units and the constructed regional producing unit.

To increase the number of degrees of freedom, the estimation process can benefit
from a resolution over a group of producing units f if it is reasonable to assume that
those producing units share the same technology and, hence, the cost parameters c
and Q. If the assumption of fixed technology over time is too restrictive to impose
upon the panel estimation, then the inclusion of a time-varying component in the
cost function can be done.

If it is reasonable to use constraints (27–30) in equality mode, then they can be
rearranged to be used with a standard econometric estimation method such as the
nonlinear seemingly unrelated regression estimator over the panel data. In this case,
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one error term is defined over the two dimensions, e.g., the vector hft, and the other
error term is defined over one dimension, e.g., the vector ut:

xoft � Q−1pt − Q−1c − Q−1A′
fty

o
t − Q−1A′

ftut − (1 +Q−1Wft)hft (32)

xoft � A−1
ft bft + A−1

ft Vtut − hft (33)

subject to the theoretical restrictions on the cost parameters. Statistical inference on
the estimated parameters becomes here straightforward. Statistical tests and remedies
for endogeneity and other risks also become available.

If appropriate supply elasticities to output prices are available, then it is also
possible to use their values and add theirmathematical expressions into the estimation
procedure as in Paris (2017).

If interested in calibrating exactly to a base year for simulation purposes, then it
is furthermore possible to impose that the vectors ht and ut be equal to a vector of
zero for t corresponding to the base year as in Arndt et al. (2002). As a result, the
model parameters endogenously calibrate themselves at the base year t.

With the estimates of the cost parameters ĉ andQ
∧

and, possibly, of the additional
parameters for a cost function also defined on variable-input prices, it is finally
possible to formulate a calibrated equilibrium model for each producing unit that
is ready for simulations as in Paris (2017). With the estimation procedure imposing
the vectors ht and ut to zero at base year t, then the simulation model for one single
producing unit f has the following structure:

MI Nzpf ,zdf ,xf ,yfCSC f � z′
dfxf + z′

pfyf (34)

subject to

A′
f yf + c

∧

+Q
∧

xf � pf + zdf (35)

Afxf + zpf � bf (36)

with the vectors yt ≥ 0t, xf ≥ 0, zpf ≥ 0, and zdf ≥ 0, where the scalar CSC f

includes the complementary slackness conditions of the producing unit f ; and the
variables zpf and zdf are slack-surplus variables of the primal and dual constraints,
respectively. If the simulation scenarios contain some regional constraints, then it
is possible to solve the individual simulation models over these regional constraints
as in Henry de Frahan et al. (2011). As it is set-up, the model (34)–(36) is ready to
evaluate responses to changes in output prices, direct subsidies and limiting inputs,
but can be accommodated to evaluate responses to changes in variable-input prices
if a cost function that is also defined on variable-input prices is used.



32 B. Henry de Frahan

4 Conclusions

The PMP concept was formalised by Richard E. Howitt in 1995 within the context
of scarcity of disaggregated bio-physical-agronomic and socio-economic data to
calibrate exactly mathematical programming models for policy simulations. At that
time for that context, this concept was an ingenious leap forward in this empirical
field. Since then, many modellers have examined different econometric methods
to integrate the information contained in more than one observation because this
information most often does exist even within developing and emerging countries,
in terms of either time or cross-sectional series or panel data such as the rich FADN
dataset of the European Commission. Some of these modellers have also questioned
implicit assumptions underlying the original PMP approach and developed, in turn,
methodological advances.

There are, nowadays, a range of estimation methods available to deal with the
information contained in more than one single observation and obtain estimated
model parameters that not only calibrate the simulation model at hand but also pro-
vide more reliable responses to technological, institutional or economic changes in
the variables of interest. These estimation methods span from the entropy approach
to the Bayesian approach and the standard econometric approach with or without
bi-level programming. What is striking about this review of estimation methods is
the realisation that the development of this field mainly rested on a few scientists
and research institutes, be it within the group of Cloé Garnache (nowadays at Uni-
versity of Oslo), Richard E. Howitt, Pierre Mérel and Quirino Paris at the University
of California, Davis, the group of Wolfgang Britz, Alexander Gocht (nowadays at
Thünen Institute for Rural Studies), Thomas Heckelei, and Torbjörn Jansson (nowa-
days at the Swedish University of Agricultural Sciences) at the University of Bonn,
and Filippo Arfini and Michele Donati at the University of Parma. This contribution
has been to trace down the development of these estimation methods and propose a
methodological framework integrating together contributions from these scientists,
in particular Heckelei and Wolff (2003) and Paris (2017).

Of course, the main relevance of this methodological proposal for an application
depends on the availability of sufficiently reliable observations, which was taken
for granted in the previous section. Notwithstanding its interest, this methodological
proposal calls for more careful scrutiny and refinement and requires that it be put
to the test of real-world data. The recent methodological developments in the PMP-
related literature have helped definitively to bridge the gap between mathematical
programming and econometric methods into a new empirical field captured in the
“econometric mathematical programming” denomination.
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Chapter 3
Soil and Crop Choice

Peter Berck and Lunyu Xie

Abstract This contribution uses econometric analysis to uncover the various factors
driving crop choice in six states along the Mississippi River. Aside from temperature
and precipitation, soil characteristics are also included as explanatory factors—which
is a factor often omitted from many studies. The analysis shows soil to be a key
determinant of corn and soybean area in the regions studied.

1 Introduction

Crop choice ultimately depends on market factors, climate, and soil. In this con-
tribution, we will explain the choice of major crops in parts of six states along the
Mississippi River and show how that choice depends upon weather and soil. Using
these regressions, we will then show how changes in climate would affect the choice
of crops.

The recent and classic work of Schlenker and Roberts (2009) shows that very hot
weather leads to large losses in crop yield. This finding implies that even modest
global warming leads to large losses in grain yield. One consequence of large yield
losses would be that land now devoted to corn and soywould be devoted to something
else. This chapter looks at how much land would be diverted from corn and soy in
response to marginal changes in precipitation and extreme temperature. Because
the data on land use are inherently measured at a much finer level than the county
level, which is the usual aggregate to measure crop yield, this contribution examines
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how high temperature, low precipitation, and soil quality interact to determine the
response of acreage to climate change. Looking at the role of soil and looking at the
interactions with other factors gives much finer evidence on how and where climate
change will matter, compared to just looking at temperature and precipitation. The
key interaction is between high heat and low moisture, which go often together. In
this chapter, we add an interaction term for high heat and low precipitation and show
that it is a very significant variable, even when added to a regression that has high
heat alone. This finding is in line with the use of drought indices, which are statistics
based on temperature and precipitation.

This work differs from the extensive literature on adaptation to climate change and
agricultural effects of climate change in its very reduced form approach. There are
neither lagged variables nor spatial fixed effects. By avoiding lagged variables, used
in the classic Nerlove (1956) type regressions, we do notmake crop choice dependent
on prior crop choice. Particularly in our 11-year-long panel, serial dependence would
attribute the use of land for soy and corn to its prior use for soy and corn. There is
no external validity to such a model, as applying it to a new place requires knowing
how much corn and soy there was in the new place, which is of course what one
wanted to find out, not what one knew. The loss in not depending on lagged variables
is that the dynamics of the shift between corn and soy will be lost. The argument is
the same for eschewing fixed land effects. Fixed effects in regressions, such as the
alternative specific constant of logit, make it impossible to extend the regressions to
new places or to new alternatives. To do so requires the heroic assumption that one
knows the new fixed effect.

An alternative to the fixed effects paradigm of crop choice is a hedonic attributes
approach (Anderson et al. 2012). Crops, including new crops, have characteristics
such as water demand and ability to tolerate acidity. Crops are grown when the crop
characteristics match the soil and weather characteristics. This approach allows for
new crops and also allows for changing crops in response to climate change. Climate
change means a different set of crops better matches the soil and weather, and as a
result, different crops are grown as an adaptation. This model properly elaborates
the mechanism behind changing crops; however, it is not parsimonious nor are the
needed data readily available.

The regressions in this chapter take market conditions for granted. That is, a fixed
effect controls for prices. Of course, if climate change reduces the acreage in crops
and that increases price, the regressions will not account for that second-order effect.
The regressions show the shift in the crop supply curve, not the movement from
one equilibrium to another. In the context of devoting cropland to biofuels, there are
many models that close the loop with changing prices. See for example, Searchinger
(2008) or Taheripour et al. (2011).

The plan of the work is to use a panel of 4 km2 that covers parts of six states
from 2000 to 2010. In this study, we use the fraction of land devoted to each crop
in each 4 km2. This data is matched to climate and soil data. We then run a linear
probability system for the major uses. The regression coefficients are then used to
find how changes in soil and weather change the amount of land dedicated to corn
and soy, the two major crops that are grown throughout the study area.
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Table 1 Variable definitions

Sint Coverage share of crop i planted at grid cell n in year t

Soiln Land classification code (LCC), grouped as I and II, III and IV, V and
VI, and VII and VIII

GDDnt−1
A vector of degree-days by month group in the last growing season
(April through November in year t − 1). The data are binned at 10,
15, 20, 25, 29, 30, and 32 °C, where 10 °C is degree-days ≥10 °C,
etc. Months are grouped into (4, 5), (6, 7, 8), and (9, 10, 11)

PDDnt
A vector of degree-days in the current planting season (April and
May in year t). The data are binned at 10 and 15 °C

GPnt−1
A vector of precipitation by month group (see above) in the last
growing season

PPnt A vector of precipitation by month in the current planting season

DD32LCCnt−1
A vector of interactions of the soil type groups and the degree-days at
32 °C and above in the previous summer months (6, 7, 8)

PRECLCCnt−1
A vector of interactions of the inverse (1/x) of the precipitation in the
previous summer months (6, 7, 8) and the LCC group

PRECDD32LCCnt−1
For the previous summer months (6, 7, 8), a vector of interactions of
the inverse (1/x) of the precipitation, the degree-days at 32 °C and
above, and the LCC group

μt Year fixed effects

2 Data

The data come from three sources: the crop data layer (CDL), the PRISM project,
reprocessed by Schlenker and Roberts (2009), and STATSGO2, the USDA soil sys-
tem.

The states included in the analysis are those along theMississippi–Missouri River
corridor for which there are land cover data from 2000: Wisconsin, Iowa, Illinois,
and part of Missouri, Arkansas, and Mississippi. Table 1 presents the definition of
all variables.

Land cover data are derived from the Cropland Data Layer (CDL) of the National
Agricultural Statistics Service, available annually from 2000 to 2010 for the six
states. Mueller and Seffrin (2006) provide a good description of this data. We divide
land cover into major crops, other crops, non-crop and wildland, urban, and water
bodies. The major crops include corn and soybean for Iowa, Wisconsin, and Illinois;
and corn, soybean, rice, and cotton for Missouri, Arkansas, and Mississippi. In this
chapter, we focus on the results for corn and soybeans. The category of non-crop and
wildland includes pasture, forest, improved pasture, and conservation reserve land.
We define agricultural land as the sum of major crops, other crops, and non-crop and
wildland. We exclude urban areas and water bodies. Therefore, we define the share
of major crops as the area of major crops divided by the area of agricultural land.
The limiting factor in determining land use is the number of plots observed on the
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ground (“ground truth”). It is for this reason that the standard errors in classification
in minor crops, such as oats, are quite large. Similarly, it is why pasture, forest, and
improved pasture are not well distinguished in the data.

For soil data, we focus on the land capability class (LCC) variables, which come
from the USDA’s US General Soil Map (STATSGO2). The underlying soil data
include percent clay, sand, and silt, water-holding capacity, pH value, electrical con-
ductivity, slope, frost-free days, depth to water table, and depth to restrictive layer.
These data, as well as soil type, were used by the USDA to construct LCC codes. A
LCC value of one defines the best soil with the fewest limitations for production. A
LCC score of one or two is highly suitable for crops; those beyond four are suitable
for pasture and other extensive use; and an LCC of eight means that agricultural
planting is nearly impossible.

Figure 1 shows the LCCs across the study area. Each square has one or more
LCCs. The LCC variables are the percent of the square in that LCC. The coloring
in the figure corresponds to the average LCC in a 4 km2. LCC I and II are heavily
concentrated in Northern Iowa and in Illinois, parts of Eastern Wisconsin, and near
the Mississippi and other rivers in the southern states. This pattern is a result of
glaciation in the last ice age and subsequent erosion in the river valleys.

For weather data, we use PRISM data processed by Schlenker and Roberts (2009)
to a 4 km by 4 km spatial resolution, with a daily level of temporal resolution.
The data include daily highs and lows, which are then processed to temperature
by hour using the sine curve interpolation method (Baskerville and Emin 1969).
The innovation in Schlenker and Roberts was to count the degree-days in bins, for
instance, degree-days between 20 and 25 °C. In this way, the effect of temperatures
over a critical temperature, such as 29 °C for corn, can be isolated from the effect of
all other temperatures. The data also include precipitation. Unlike modeling yield,
where current summer weather is known, modeling planting requires an estimate
of coming summer weather, since planting happens before the summer season. The
planting decision depends upon the weather observed during the spring in the year
the decision is made and on past weather during the growing season because past
weather is a good predictor of coming summer weather. Therefore, weather variables
are computed separately for the planting season and growing season. The weather is
then further disaggregated by summer and fall, to account for the different stages in
crop growth. In all, this gives three seasons of weather: current spring, last fall, and
last summer.

Figure 2 shows the percent of the landscape covered by corn and soy. The maps
are composed of the 4 km2, each of which has some percentage of corn and soy
coverage.

There is a striking (and well-known) correspondence between Figs. 1 and 2.
The corn–soy complex is heavily concentrated on the better soils. It is this soil
determinism that makes it unlikely that we will find that a warmer climate will result
in much higher corn–soy coverage in places like central Wisconsin. They are north
of the corn belt and so should benefit from some warming, but they are also north of
the better soils.
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Fig. 1 Distribution of land
capability classification
(LCC) levels. Originally
published in Xie et al.
(2018). Reprinted with kind
permission of © Springer
Nature Netherlands 2018.
All rights reserved

Next, we consider what other explanatory variables might be included. Nerlove’s
adaptive price expectations model (Nerlove, 1956) assumed that farmers have ratio-
nal price expectations based on their information set and described the agricultural
system in three equations. Braulke (1982) derived a reduced form from the three
equations by removing the unobserved variables. Choi and Helmberger(1993) com-
bined this reduced form and farmer’s demand functions. Based on their work, Huang
and Khanna (2010) described crop share as a function of lagged shares, climate
variables, economic variables, risk variables, population density, and time trend.
Hausman (2012) included most of these explanatory variables, as well as futures
prices, substitute crop shares, and crop yield. We depart from the literature in pre-
senting the reduced form, without dependent lagged variables. Given that the interest
in this study is the effect of weather and soil, rather than the more common price
elasticity, we are able to use fixed effects to account for many variables that are
common to the observations across space. (1) In many countries (e.g., the USA and
the European Union), government payments are part of the incentive to grow crops.
As these programs change from year to year and have different marginal effects
for different farmers, it is not possible to have a fully satisfactory treatment of the
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Fig. 2 Percentage of land area in corn and soybean. Originally published in Xie et al. (2018).
Reprinted with kind permission of © Springer Nature Netherlands 2018. All rights reserved

payments variable. We use year fixed effects to account for both prices and govern-
ment programs. The year fixed effects also account for differences in input prices.
(2) Many authors (Just 1974; Chavas and Holt 1990; Lin and Dismukes 2007) argue
that the risk of growing a crop, perhaps the variance or lower semi-variance, is an
important determinant of crop choices. So long as the risk of growing a crop is taken
as constant, which is a good approximation in a short time series, crop fixed effects
account for this factor.

In addition to these basic weather and soil variables, we include the interaction
termof heat andmoisture to account for the possibility that drywarming ismuchmore
harmful than warming with moisture (Lobell et al. 2011). The landscape we consider
has a very wide range of precipitation and temperature. In the easternmost part of
Iowa, for instance, the average precipitation during the growing season was less than
7 cm per month, while in Mississippi there was as much as 12 cm of precipitation.
For temperature, the average in northern Wisconsin was close to 10 °C during the
growing season, while it was as high as 24 °C in Mississippi. While this landscape
has hot places and dry places, it generally does not have hot and dry in the same
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place. The wet and hot south can be very hot, but the soil may never become very
dry. So temperature alone, or even temperature and precipitation, is not enough to
predict where crops will be grown. It is hot and dry together that discourages growing
of corn or soy. Even accounting for the interaction of moisture and temperature is
not enough for these purposes. Sandy soils do not hold moisture well and so are
more sensitive to dry spells. Interacting the temperature, precipitation, and soil type
provide a fuller story.

The interaction variables used are made from interacting the LCC group with
degree-days in the summer at the hottest temperature bin (32 °C+), and with the
inverse (1/Precip) of precipitation, a measure of dryness. This produces three vectors
of variables: hot temperature by LCC group, the inverse of precipitation by LCC
group, and the interaction of all three.

The regressions also include time fixed effects. These fixed effects account for
a multitude of variables that have been found important by other authors: prices of
outputs, prices of alternative crops, prices of inputs, price risk, yield risk, support
programs, and so on.While the CDL is an ideal dataset for examining weather, which
varies considerably across space, it does not yet have a long enough time span to be
good at capturing the effects of prices, which vary little across space and are a yearly
phenomenon.

3 Regression Model

The regression model is a linear probability model. For each 4 km2, the dependent
variables are the percent of the agricultural land in that square that is covered by
corn and soy. These are the two crops that are grown throughout most of the study
area. Rice and cotton are grown in substantial quantities in the southern states. The
remaining agricultural area is composed of forest and various types of pasture, aswell
as minor crops, such as oats. The time fixed effects account for the prices or values
of the other uses, so there is no need to explicitly include them in the regression. The
included regressors are all exogenous, as they are the outcome of the weather and
very slow to change soil characteristics. There is very little irrigated agriculture in
this landscape, largely because the better parts of the landscape are quite wet for the
purposes of growing corn and soy.

In the study area, corn occupies 18%, and soy occupies 17% of the agricultural
land. The next largest crops by percent coverage are rice and cotton, at about 1%
each. Less than 1% of the land is classified as LCC I, while nearly half (49%) is LCC
II. LCC III occupies a quarter (24%) of the land and the remaining classes have 14%
or less each. Extreme degree-days are rare. For instance, in July, on average over the
landscape, the temperature was above 32 °C only 2.2% of the time.

Again referring to Table 1, for the definitions of the variables, the estimating
equations are
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Table 2 Marginal effects of temperature and precipitation on land use of corn and soy

Change in percent for Corn Soy

One more degree-day over 32 during the summer at average precipitation
and soil

−0.003 0.008

One more degree-day over 32 during the summer at minimum
precipitation and average soil

−0.009 0.005

More LCC 1–2 soil at av. degree-day and precipitation 0.143 0.146

More LCC 3–4 soil at average degree-day and precipitation 0.024 0.09

One more degree-day over 32 LCC 1–2 and average precipitation −0.012 0.001

One more degree-day over 32 at LCC 3–4 and average precipitation 0.004 0.014

One more degree-day over 32 at LCC 5–6 and average precipitation 0.009 0.018

One more cm summer precipitation at average soil and temperature 0.009 0.003

One more cm summer precipitation at average soil and maximum
temperature

0.015 0.007

All marginal values significantly different from zero at the 99% level

Sint � α + ϕ
′
iSoiln + θ

′
1iGDDnt−1 + θ

′
2iPDDnt + θ3i

′GPnt−1 + θ
′
4iPPnt

+ θ
′
5iDD32LCCnt−1 + θ

′
6iPRECLCCnt−1

+ θ
′
7iPRECDD32LCCnt−1 + μt + εint

The equations are fit by ordinary least squares, and the reported standard errors
are the errors from ordinary least squares. The equations for corn and soy both had
367,000 observations, based on 10 years of data on 36,700 4 km2. The R2 for the
corn and soy equation are 0.63 and 0.47, respectively. All but two coefficients are
significant at the 99% level or higher. The two nonsignificant coefficients come from
the same source. In both corn and soy, the high-temperature effect in September,
October, and November cannot be separated into an over-30 and over-32 effect.

4 Results

The parameters of interest in these equations are the partial derivatives with respect
to temperature and precipitation. They are evaluated at different levels of the other
interaction variables. Table 2 presents these marginal results.

The land use changes for corn and soy are given in change in percent. For ref-
erence, corn and soy average 18 and 17% of the agricultural land in the base year.
So, one more high degree-day at average temperature and soil (first row of the table)
leads to a decrease of 0.3% or a change from 18 to 17.7% coverage. Looking across
both soy and corn, the land allocated to these major crops goes up by 0.5% when
temperature increases (0.008 for soy less 0.003 for corn). When evaluated at mini-
mum precipitation, land usage decreases by 0.4% (0.005 for soy less 0.009 for corn).
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Comparing these two results shows that it is the combination of low precipitation
and higher temperature that leads to a decrease in the area in major crops.

Changing the soil leads to a large change in the coverage of the major crops. The
experiment is to increase the percentage of soil that is LCC I and II from the sample
mean to the sample max (and decrease the LCC VII and VII to compensate). Both
crops respond with large changes in crop coverage: 14% for corn and 15% for soy.
Adding more LCC III and IV land leads to about half this effect. This corroborates
the visual impression that soil quality and corn–soy coverage go together.

The next two results further explore increased temperature. The overall effect of
a higher temperature on coverage was positive. Looking at it by land class, there is
a large positive effect on LCC III and LCC IV. This must be offset by large negative
effects for the higher classes because the effect on LCC I and LCC II is small. Further
research could break down the LCCs in terms of water-holding ability. Heavy clay
soils presumably would be best at resisting or even benefiting from a short period of
higher heat.

Finally, summer precipitation is uniformly positive for the growing of corn and
soy. Thinking in terms of a climate that is less wet, looking at the effect at maximum
temperature, each centimeter of lowered rainfall leads to a 2.2% change in corn and
soy coverage. If climate change were to mean a hotter Midwest, then even marginal
drying would have a dramatic effect on the extent of corn and soy plantings.

5 Conclusion

Soil is the biggest determinant of where corn and soy grow. It is high LCC class soils
that lead to the corn and soy complex in Iowa and Illinois. Given that soil determines
crop coverage to such a large degree, it is not surprising that temperature and precip-
itation play a secondary role. At average precipitation, an additional degree-day over
32 °C has little effect on planting, but at minimum precipitation the effect is about
one-half percent coverage change per degree. Comparing these results to Schlenker
and Roberts (2009), land use responds more to hot and dry changes than to heat
alone.
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Chapter 4
Spatial Equilibrium, Imperfect
Competition, and Calibrating Models

Quirino Paris

Abstract Spatial models of trade among regions require a burdensome series of
information: Commodity demand and supply functions for each region and bilateral
unit transaction costs. Even when this formidable amount of information is avail-
able, the trade flowmatrix resulting from themodel solution is typically very different
from the exchanged trade flow that was realized in a previous economic cycle. This
discrepancy may be attributed to two sources: incorrect measurement of transaction
costs and imprecise knowledge of demand and supply function parameters. To rem-
edy the undesirable result, we assume that the matrix of bilateral trade exchanges is
observed—by the researcher—together with the realized demand and supply prices.
With this additional information, we discuss the calibration of three categories of
spatial models—(a) cartel behavior on the supply and export markets: This model
corresponds to monopsony and monopoly behavior; (b) Nash-Cournot behavior on
the supply and export markets: This model corresponds to oligopsony and oligopoly
behavior; (c) perfect competition on both markets. The calibrating approach pre-
sented in this contribution is in the spirit of positive mathematical programming and
its prescription: To achieve satisfactory results, it is important to use all the avail-
able information. The empirical part of the contribution is divided into two sections.
First, we use only the observed matrix of bilateral trade flows to reveal the necessary
adjustments to the unit transaction costs and achieve a calibrating model. Second,
the observed demand and supply prices are used to reveal the adjustments to the
intercepts of the demand and supply functions that correspond to a more general
calibrating model.
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1 Introduction

Spatial equilibrium deals with a section of economics that attempts to explain the
trade flow of commodities and their price formation among producing and consum-
ing regions. In general, it involves three categories of economic agents: consumers,
producers, and traders. From a behavioral perspective, consumers are considered as
price takers who express their demand for a commodity by means of an aggregate
demand function. Producers can be considered either price takers or agents who may
behave according to imperfect competition rules. Their decisions are aggregated
into regional supply functions. Traders may behave as oligopsonists (monopsonists
in the limit) on the regional supply markets and either as oligopolists or monopolists
(cartels) on the regional demand markets. Often, producers and traders are consid-
ered as the same economic agents. The limit case of perfect competition among all
regions implies that there are no identifiable traders: Commodities are transferred
from producing to consuming regions by the action of the “invisible hand”.

Given the vast range of behaviors characterizing spatial equilibrium, we will limit
the analysis to three behavioral rules: (a) cartel behavior (monopsony) on the sup-
ply market and cartel behavior (monopoly) on the export/consumption market; (b)
oligopsony (Nash-Cournot equilibrium) on the supply market and oligopoly on the
export/consumptionmarket; (a) perfect competition on both the supply and consump-
tion markets. The Nash-Cournot equilibrium refers to non-cooperative oligopoly
and oligopsony firms: Each Nash oligopoly (oligopsony) firm makes production and
profit-maximizing decisions assuming that its choices do not affect oligopolists’
(oligopsonists’) decisions in other regions. There is only one oligopoly–oligopsony
firm in each region.

We consider the exchange of only one commodity amongR regions. The extension
to more than one commodity is straightforward. We assume knowledge of a linear
inverse demand function for each region

pD
j � a j − Dj x

D
j j � 1, . . . , R (1)

where pD
j and xD

j are price and quantity demanded in the j th region. The known
coefficients a j > 0 and Dj > 0 are the intercept and slope of the demand function,
respectively. We assume knowledge also of a linear supply function for each region.
This function can also be regarded as the marginal cost (MCi ) function for each
region

pS
i � bi + Si x

S
i � MCi i � 1, . . . , R (2)

where pS
i and x S

i are price and quantity supplied in the i th region. The known coeffi-
cients bi and Si > 0 are the intercept and slope of the supply function, respectively.
Bilateral unit transaction costs are also known for all pairs of regions and are stated
as ti j .
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In spite of this formidable amount of initial information, it is very likely that the
matrix of bilateral trade flows resulting from the solution of any spatial equilibrium
model will be very different from the trade exchanges realized in the last economic
cycle. To remedy this undesirable result, we will construct calibrating models using
the last cycle trade flows among all regions and the corresponding demand and supply
prices. These categories of information will be indicated as xobsi j , pD,obs

j , and pS,obs
i .

The chapter is organized as follows. Sections 2 and 3 will develop the cartel and
Nash-Cournotmodelswithout the use of the observed trade flows and prices. The per-
fect competition model will be obtained as a special case of these models. Section 4
will illustrate numerically the solution of these three categories of spatial models.
Sections 5, 6 and 7 will discuss calibrating models in the spirit of positive mathe-
matical programming (PMP). In these sections, the source of discrepancy between
optimal and observed trade flows is assumed to be caused by imprecision in the mea-
surement of unit transaction costs. Section 8 will illustrate, numerically, the results
of the calibrating models. Section 9 will assume that imprecision has affected also
the intercepts of the regional demand and supply functions. Calibrating models will
use the observed demand and supply prices. Section 10 will illustrate these models
with numerical examples.

2 Spatial Cartel Equilibrium: Monopoly–Monopsony

When exporters collude, a cartel is formed. The intent of a cartel is to maximize total
aggregate profit for the cartel members. The behavior of cartel members, therefore,
is to maximize the joint profit by selling the monopoly output in each region at the
monopoly price. Furthermore, they acquire the commodity on the supply market at
monopsony prices. Hence, the spatial monopoly–monopsony model assumes that,
in all regions, the output is controlled by one agent identified as the cartel.

The primal structure of this model is stated as

max Cartel π �
R∑

j�1

pD
j x

D
j −

R∑

i�1

pS
i x

S
i −

R∑

i�1

R∑

j�1

ti j xi j

�
R∑

j�1

(a j − Dj x
D
j )x

D
j −

R∑

i�1

(bi + Si x
S
i )x

S
i −

R∑

i�1

R∑

j�1

ti j xi j (3)

subject to dual variables

xD
j ≤

R∑

i�1

xi j regional demand ρ j ≥ 0 (4)

R∑

j�1

xi j ≤ x S
i regional supply φi ≥ 0 (5)
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with all nonnegative variables. The objective function expresses the cartel profit
with the first term represented by the monopolist total revenue, the second term as
the monopsonist total cost due to purchase of the requisite supply and the third term
as the total transaction cost. Constraint (4) specifies that, for equilibrium, the regional
demand must be less than or equal to total supply from all regions. Constraint (5)
states that the demand from all regions must be less than or equal to the supply of
each region.

The Karush–Kuhn–Tucker (KKT) conditions reveal the equilibrium necessary
relations in terms ofmarginal revenue andmarginal cost. From the Lagrange function
of model [(3)–(5)]

L �
R∑

j�1

(a j − Dj x
D
j )x

D
j −

R∑

i�1

(bi + Si x
S
i )x

S
i −

R∑

i�1

R∑

j�1

ti j xi j

+
R∑

j�1

ρ j

(
R∑

i�1

xi j − xD
j

)
+

R∑

j�1

φi

⎛

⎝x S
i −

R∑

j�1

xi j

⎞

⎠ (6)

the relevant KKT conditions are

∂L

∂xD
j

� a j − 2Dj x
D
j − ρ j ≤ 0 (7)

∂L

∂x S
i

� −bi − 2Si x
S
i + φi ≤ 0 (8)

∂L

∂xi j
� ρ j − φi − ti j ≤ 0 (9)

The vertical line originating at the quantity level xD
j � x S

i (see Fig. 1) verifies the
marginal revenue-marginal cost relation expressed by pD

j − Dj xD
j ≤ pS

i + ti j + Si x S
i

as discussed in (10).
Assuming that each region will have a positive demand, xD

j > 0, and a positive
supply, x S

i > 0, relations (7) and (8) will turn into equations (by complementary
slackness conditions) and, thus, ρ j � a j − 2Dj xD

j and φi � bi + 2Si x S
i which, in

turn, will induce relation (9) to take on the following structure

(a j − 2Dj x
D
j ) − (bi + 2Si x

S
i ) − ti j ≤ 0

(a j − Dj x
D
j ) − Dj x

D
j − (bi + Si x

S
i ) − Si x

S
i − ti j ≤ 0

pD
j − Dj x

D
j ≤ pS

i + ti j + Si x
S
i

MR ≤ MC (10)

In relation (10), pD
j −Dj xD

j ≤ pS
i + ti j +Si x

S
i , the terms Dj xD

j and Si x S
i constitute

the markups (over the perfect competition marginal cost pS
i + ti j ) of the monopolist
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Fig. 1 Cartel behavior: monopoly–monopsony

and the monopsonist, respectively. These terms are also regarded as measures of
monopoly and monopsony power. Figure 1 illustrates this cartel spatial model.

The perfect competition solution, originally formulated by Samuelson (1952) and
further elaborated by Takayama and Judge (1964), is easily obtained by setting the
value markups Dj xD

j and Si x S
i equal to zero. In this case, the equilibrium condition

(9) reduces to pD
j ≤ pS

i + ti j , as illustrated in Fig. 1. In the perfect competition case,
ρ j � pD

j and φi � pS
i .

3 Spatial Nash-Cournot Equilibrium:
Oligopoly–Oligopsony

The perfect competition and the cartel (monopoly–monopsony) models represent
limiting specifications of spatial equilibrium. In between these two cases, there
exists a wide series of behavioral performances classified under the two categories
of non-cooperative and cooperative imperfect competition rules. We consider here
an imperfect competition hypothesis that goes under the name of non-cooperative
Nash equilibrium (sometimes, the same hypothesis is called Cournot equilibrium).
The analytical structure of this spatial model was developed by Hashimoto (1985).
In this context, suppliers (who operate under a perfect competition market) are also
exporters. Consumers are price takers, as usual. Each region has one supplier–ex-
porter whomakes profit-maximizing decisions about output quantities assuming that
his choices do not affect the decisions of supplier–exporters in other regions. This is
the non-cooperative feature of the model.
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In the process toward a complete Nash-Cournot model, the i th supplying region
primal problem states the maximization of profit, πi , subject to the supply constraint
of the i th region

max πi �
R∑

j�1

pD
j xi j − (bi + Si x

S
i /2)x S

i −
R∑

j�1

ti j xi j

�
R∑

j�1

(a j − Dj x
D
j )xi j − (bi + Si x

S
i /2)x S

i −
R∑

j�1

ti j xi j

�
R∑

j�1

(a j − Dj

R∑

k�1

xk j )xi j − (bi + Si x
S
i /2)x S

i −
R∑

j�1

ti j xi j (11)

subject to

R∑

j�1

xi j ≤ x S
i (12)

The first term of the profit equation is total revenue. The second term is the cost
of purchasing the commodity supply, and the third term is the transaction costs.
The non-cooperative hypothesis is expressed by the equation xD

j � ∑
k xk j which

is simply the sum of the supply quantities of all the regions satisfying the demand
of the j th region. The relevant KKT conditions of problem [(11)–(12)] are derived
from the Lagrange function

Li �
R∑

j�1

(
a j − Dj

R∑

k�1

xk j

)
xi j − (bi + Si x

S
i /2)x S

i −
R∑

j�1

ti j xi j

+
R∑

i�1

pS
i

⎛

⎝x S
i −

R∑

j�1

xi j

⎞

⎠ (13)

and KKT conditions

∂Li

∂x S
i

� −bi − Si x
S
i + pS

i ≤ 0 (14)

∂Li

∂xi j
� (a j − Dj

R∑

k�1

xk j ) − Dj xi j − pS
i − ti j ≤ 0

� pD
j − Dj xi j − pS

i − ti j ≤ 0 (15)

Assuming a positive tradeflowon the i− j route, relation (15) becomes an equation
pD
j � (pS

i + ti j ) + Dj xi j � MCi j + Dj xi j (by complementary slackness condition).
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In other words, the Nash-Cournot demand price of the i th oligopolistic firm in the
j th region is equal to the marginal cost plus the segment (markup) Dj xi j (oligopoly
power).

The above discussion pertaining to the non-cooperative behavior of the i th region
(oligopoly firm) guides the specification of the overall spatial Nash-Cournot equilib-
riummodel that must be expressed as amathematical programming structure capable
of reproducing the necessary conditions (KKT conditions) of each oligopoly firm
(region) as stated in relations (14) and (15). Such a model assumes the following
specification

max Nash �
R∑

j�1

(a j − Dj x
D
j /2)xD

j −
R∑

i�1

(bi + Si x
S
i /2)x S

i

−
R∑

i�1

R∑

j�1

ti j xi j −
R∑

i�1

R∑

j�1

Dj x
2
i j/2 (16)

subject to

xD
j ≤

R∑

i�1

xi j (17)

R∑

j�1

xi j ≤ x S
i (18)

with all nonnegative variables. The term
∑

i

∑
j D j x2i j/2 is required for deriving the

correct KKT conditions of each non-cooperative Nash-Cournot firm as demonstrated
in [(20)–(21)]. The Lagrange function is stated as

L �
R∑

j�1

(a j − Dj x
D
j /2)xD

j −
R∑

i�1

(bi + Si x
S
i /2)x S

i −
R∑

i�1

R∑

j�1

ti j xi j

−
R∑

i�1

R∑

j�1

Dj x
2
i j/2 +

R∑

j�1

pD
j

(
R∑

i�1

xi j − xD
j

)
+

R∑

i�1

pS
i

⎛

⎝x S
i −

R∑

j�1

xi j

⎞

⎠ (19)

with relevant KKT conditions

∂L

∂xD
j

� a j − Dj x
D
j − pD

j ≤ 0 (20)

∂L

∂x S
i

� −bi − Si x
S
i + pS

i ≤ 0 (21)

∂L

∂xi j
� pD

j − ti j − Dj xi j − pS
i ≤ 0 (22)
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Relations (21) and (22) are identical to relations (14) and (15) which characterize
the Nash-Cournot structure of the spatial problem for the i th oligopoly firm.

Analogous specification can be formulated for the j th oligopsony firm with the
final result that the overall oligopoly–oligopsony Nash-Cournot equilibrium can be
specified as the following primal problem

max Nash π �
R∑

j�1

(a j − Dj x
D
j /2)xD

j −
R∑

i�1

(bi + Si x
S
i /2)x S

i −
R∑

i�1

R∑

j�1

ti j xi j

−
R∑

i�1

R∑

j�1

Dj x
2
i j/2 −

R∑

i�1

R∑

j�1

Si x
2
i j/2 (23)

subject to

xD
j ≤

R∑

i�1

xi j (24)

R∑

j�1

xi j ≤ x S
i (25)

The terms
∑R

i�1

∑R
j�1 Dj x2i j/2 and

∑R
i�1

∑R
j�1 Si x

2
i j/2 are required to obtain the

correct KKT conditions, which are

∂L

∂xD
j

� a j − Dj x
D
j − pD

j ≤ 0 (26)

∂L

∂x S
i

� −bi − Si x
S
i + pS

i ≤ 0 (27)

∂L

∂xi j
� pD

j − ti j − Dj xi j − pS
i − Si xi j ≤ 0 (28)

Relation (28), in particular, expresses the behavioral guidelines of this
oligopoly–oligopsony hypothesis that is reflected in the fundamental MR ≤ MC
relation with the following structure pD

j − Dj xi j ≤ pS
i + ti j + Si xi j . The markups

Dj xi j and Si xi j express the oligopoly and the oligopsony power of the corresponding
exporters and suppliers. Figure 2 illustrates this Nash-Cournot (oligopoly–oligop-
sony) hypothesis.

FromFig. 2, we can deduce that, in general, the cartel quantity will be smaller than
theNash-Cournot quantitywhich, in turn,will be smaller than the perfect competition
quantity. Correspondingly, the cartel monopoly price will be higher than the Nash-
Cournot oligopoly price that, in turn, will be higher than the perfect competition
price. An inverse relation characterizes the supply prices.
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Fig. 2 Nash-Cournot equilibrium: oligopoly–oligopsony

4 Numerical Examples of Spatial Equilibria

We present a numerical example of four regions that produce and exchange one
commodity through one of the three behavioral hypotheses discussed in previous
sections. These results are exhibited from Tables 3, 4, 5, 6, 7 and 8.

We beginwith the given information common to the threemodels. Table 1 presents
the intercepts and slopes of the demand and supply functions for the four regions.

Table 2 presents the unit transaction costs. Notice that the nominal transaction
cost within each region is equal to zero. It could be positive, for example, if we were
to consider a commodity priced at farm gate that is sold at a retail store within the
same region.

Tables 3, 4, 5, 6, 7 and 8 present the solutions of the three behavioral models
discussed in the previous sections. For ease of comparison, we group the results of the

Table 1 Demand and supply functions

Regions Demand intercept
a j

Demand slope Dj Supply intercept
bi

Supply slope
Si

A 40.0 1.2 0.4 1.3

B 32.0 0.8 0.2 2.0

U 25.0 0.8 −0.6 1.9

E 38.0 1.1 −0.5 0.6
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various optimal quantities and prices according to the order: cartel, non-cooperative
Nash-Cournot, and perfect competition.

The obvious comment is that the cartel and the perfect competitionmodels exhibit
positive trade flows in very few locations. In contrast, the Nash-Cournot trade flows
present positive trade in all the locations. Further comments concerning each region
total demand and supply are presented in connection with Tables 4 and 5.

As indicated by Fig. 2, the cartel model chooses the smallest quantity, the non-
cooperative Nash-Cournot firms choose an intermediate quantity, and the perfect
competition model chooses the largest quantity.

Each region follows the trend where the cartel, the non-cooperative Nash-Cournot
firms and the perfect competitive model exhibit, respectively, an increasing quantity
of commodity supplied. Total supply is obviously equal to total demand.

Tables 6 and 7 present the equilibrium prices for the five models.
As indicated in Fig. 2, demand prices are higher for the cartel followed by the

Nash-Cournot and perfect competition behaviors.

Table 2 Unit transaction costs ti j

Regions A B U E

A 0.000 2.050 1.620 10.800

B 2.050 0.000 3.240 10.800

U 1.620 3.240 0.000 9.990

E 10.800 10.800 9.990 0.000

Table 3 Trade flow of the five behavioral models

Cartel (monopoly-monopsony) trade flow, xi j
A 7.699

B 5.459

U 0.460 0.767 3.877

E 11.324

Non-coop Nash (oligopoly-oligopsony) trade flow, xi j
A 4.601 2.434 2.026 0.819

B 2.524 3.464 0.994 0.133

U 3.362 2.196 2.079 0.427

E 2.223 1.766 0.733 10.042

Perfect competition trade flow, xi j
A 15.398

B 10.919

U 0.921 1.535 7.753

E 22.647
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Table 4 Demand of each region, xDj

A B U E Total

Cartel (monopoly–monopsony) quantity demanded

8.159 6.227 3.877 11.324 29.586

Non-cooperative Nash (oligopoly–oligopsony) quantity demanded

12.711 9.861 5.832 11.421 39.825

Perfect competition quantity demanded

16.319 12.453 7.753 22.647 59.173

Table 5 Supply of each region, x Si

A B U E Total

Cartel (monopoly–monopsony) quantity supplied

7.699 5.459 5.105 11.324 29.586

Non-cooperative Nash (oligopoly–oligopsony) quantity supplied

9.880 7.106 8.064 14.775 39.825

Perfect competition quantity supplied

15.398 10.919 10.209 22.647 59.173

Table 6 Demand price for each region, pDj

A B U E

Cartel (monopoly–monopsony) demand prices

30.209 27.019 21.899 25.544

Non-cooperative (oligopoly–oligopsony) Nash demand prices

24.747 24.111 20.335 25.437

Perfect competition demand prices

20.417 22.037 18.797 13.088

Table 7 Supply price for each region, pSi

A B U E

Cartel (monopoly–monopsony) supply prices

10.409 11.119 9.099 6.294

Non-cooperative (oligopoly–oligopsony) Nash supply prices

13.245 14.411 14.722 8.365

Perfect competition supply prices

20.417 22.037 18.797 13.088
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Table 8 Profit of each region

A B U E Total

Cartel (monopoly–monopsony) profit

156.948 90.626 61.530 217.978 527.082

Non-cooperative (oligopoly–oligopsony) Nash profit

81.740 52.107 53.745 194.096 381.688

Perfect competition profit

0.000 0.000 0.000 0.000 0.000

Supply prices follow the inverse relation of demand prices: Cartel supply prices
are the lowest ones followed by the Nash-Cournot prices and finishing with the
perfect competition prices.

Table 8 presents the profit for each region. The cartel acquires the highest level of
profit in each region followed by the profit of the non-cooperativeNash-Cournot firms
and by the perfectly competitive firms whose profit is equal to zero by construction.

5 Spatial Equilibrium Under Imprecise Transaction Costs

In Sect. 2, we assumed that the realized and observed trade flow among regions, xobsi j ,
is known to the researcher. In general, the optimal trade flowmatrix resulted from the

solution ofmodel [(3)–(5)],
[
x∗
i j

]
, (or any othermodel discussed in previous sections)

diverges substantially from the observed trade flow matrix
[
xobsi j

]
. This discrepancy

may be attributed to the imprecision of the given information and especially to the
imprecision of the unit transaction costs ti j .

To remedy this undesirable result, model [(3)–(5)] may be augmented with a
tautological constraint such as

xi j � xobsi j (29)

whose purpose is to uncover the additional marginal transaction cost of producing
a trade flow equal to the observed traded quantities. This additional marginal cost
corresponds to the shadow price of constraint (29) (see Paris et al. 2010).

In order to approach the calibration issue gradually, we will discuss first the cali-
bration of a perfect competition spatial equilibriummodel. The calibration procedure
develops in two phases. Phase I is concerned about an estimate of the adjustments to
the observed unit transaction costs. Phase II uses these adjustments to define a cal-
ibrating model. In phase I, the relevant Lagrange function for a perfect competition
spatial equilibrium model is specified as follows:
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L �
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D
j /2)xD

j −
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i�1

(bi + Si x
S
i /2)x S

i −
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i�1

R∑

j�1

ti j xi j

+
R∑

j�1

pD
j

(
R∑

i�1

xi j − xD
j

)
+
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j�1

pS
i

⎛

⎝x S
i −

R∑

j�1

xi j

⎞

⎠ +
R∑

i�1

R∑

j�1

λi j
(
xobsi j − xi j

)

(30)

while the relevant KKT conditions show that

∂L

∂xD
j

� a j − Dj x
D
j − pD

j ≤ 0 (31)

∂L

∂x S
i

� −bi − Si x
S
i + pS

i ≤ 0 (32)

∂L

∂xi j
� pD

j − pS
i − ti j − λi j ≤ 0 (33)

Relation (33) shows that, for a perfect competition equilibrium, pD
j ≤ pS

i + (ti j +
λi j ) which corresponds to MR j ≤ MCi j , the demand price (marginal revenue) in
the j th region must be less than or equal to the marginal cost of supplying the j th
region by way of the i − j route. Given the equality sign of constraints (29), the
corresponding dual variables λi j are unrestricted. Therefore, using the estimate λ̂i j

of the additional marginal cost of supplying and transporting the commodity over
the i − j route, it is possible to specify a phase II calibrating spatial equilibrium
model that does not include the tautological constraints (29) by simply augmenting
(or reducing) the original measure of the unit transaction costs as in the following
objective quasi-welfare function (QWF)

max QWF �
R∑

j�1

(a j − Dj x
D
j /2)xD

j −
R∑

i�1

(bi + Si x
S
i /2)x S

i −
R∑

i�1

R∑

j�1

(ti j + λ̂i j )xi j

(34)

The solution of model (34) with constraints (4) and (5) exhibits an optimal trade

flow that is identical to the observed trade flow; that is,
[
xcal PCi j

]
�

[
xobsi j

]
. We call

this model a perfectly calibrated (cal) model for perfectly competitive (PC) markets.

6 Calibrated Cartel Spatial Model: Monopoly–Monopsony

It is very likely that also the optimal trade flow matrix in the spatial cartel model
(monopoly–monopsony) [(3)–(5)] will be different from the observed trade flow
matrix. In order to approach the calibration of cartelmodels gradually,we discuss first



60 Q. Paris

the monopoly–perfect competition rule. Therefore, a calibrated monopoly–perfect
competition (cartel) model can be specified in the same two-phase way as the perfect
competitive spatial model discussed in Sect. 5, with an important qualification. The

use of the same observed trade matrix
[
xobsi j

]
for any behavioral hypothesis implies

that the demand quantity of the cartel is equal to the demand quantity of the perfectly
competitive model. This last quantity is determined by the intersection of the demand
and supply functions (plus transaction costs). Therefore, in this calibrating cartel
model—where the demand quantity is equal for both themonopolist and the perfectly
competitive firms—it is as if the given demand function were to act as a marginal
revenue function for the cartel (see Fig. 3). This means that a fictitious demand
function for the cartel becomes pD,F

j � a j − Dj xD
j /2 (where the superscript F

stands for fictitious). The calibrating objective function of this spatial cartel model
is thus

max Cartelπ �
R∑

j�1

pD,F
j x D

j −
R∑

i�1

(bi + Si x
S
i /2)x S

i −
R∑

i�1

R∑

j�1

(ti j + λ̂i j )xi j

�
R∑

j�1

(a j − Dj x
D
j /2)xD

j −
R∑

i�1

(bi + Si x
S
i /2)x S

i

−
R∑

i�1

R∑

j�1

(ti j + λ̂i j )xi j (35)

We remark that—in this case—the revenue term (a j − Dj xD
j /2)xD

j is not the
integral under the original demand function. It is just the monopoly revenue where

Fig. 3 Calibrated cartel (M) and perfect competition (PC) models
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the monopoly price is pD,F
j � a j − Dj xD

j /2: Linear and quadratic specifications
play this trick.

The objective function (35), together with constraints (4) and (5), will produce
an optimal trade flow that is identical to the observed trade flow. The cartel demand
prices, however, will be different from the demand prices of the perfect competition
model as shown in Fig. 3.

We now tackle the cartel (monopoly–monopsony) specification. The fictitious
demand function is the same as for the previous cartel (monopoly–perfect compe-
tition) model. The input prices are given by the familiar function pS

i � bi + Si x S
i .

Then, the calibrating (phase II) objective function of the cartel (monopoly–monop-
sony) assume the following specification

max Cartel π �
R∑
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j x D
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i x

S
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R∑

j�1

(ti j + λ̂i j )xi j

�
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D
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(bi + Si x
S
i )x

S
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(36)

We arrive at this specification by means of the phase I Lagrange function
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i j − xi j ) (37)

and the relevant KKT conditions that show the structure of the marginal revenue and
marginal cost associated with the calibrating trade flow:

∂L

∂xD
j

� a j − Dj x
D
j − ρ j ≤ 0 ⇒ ρ j � a j − Dj x

D
j for xD

j > 0

∂L

∂x S
i

� −(bi + 2Si x
S
i ) + φi ≤ 0 ⇒ φi � (bi + 2Si x

S
i ) for x

S
i > 0

∂L

∂xi j
� −ti j + ρ j − φi − λi j ≤ 0
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Fig. 4 Calibrated cartel: monopoly–monopsony

− ti j + (a j − Dj x
D
j /2) − Dj x

D
j /2 − (bi + Si x

S
i ) − Si x

S
i − λi j ≤ 0

pD,F
j − Dj x

D
j /2 ≤ pS

i + (ti j + λi j ) + Si x
S
i

MR ≤ MC (38)

This cartel (monopoly–monopsony) specification is illustrated in Fig. 4. A com-
parison between Fig. 3 [cartel (monopoly–perfect competition)] and Fig. 4 requires
that the twoquantity solutions be aligned on the samevertical line. In Fig. 4, therefore,
the cartel (monopoly–perfect competition) solution would require setting Si x S

i � 0
and a different adjustment λi j that will intercept the monopoly marginal revenue
according to the relation pD,F

j − Dj xD
j /2 ≤ pS

i + (ti j + λi j ).

7 Calibrated Nash-Cournot Equilibrium:
Oligopoly–Oligopsony

Also in this case, the optimal trade flow resulting from the solution of model
[(23)–(25)] is likely to be different from the observed trade flow, xobsi j . Again, we
proceed gradually and discuss first a Nash-Cournot model where firms behave as
oligopolies on the export market and as perfect competitors on the supply market.
By adopting the two-phase procedure described above, it is possible to define a cali-
brating Nash-Cournot equilibriummodel that reproduces an optimal trade flow equal
to the observed commodity exchange. In this case, and keeping in mind that the ficti-
tious demand function is defined as pD,F

j � a j − Dj xD
j /2, the calibrating objective

function for a Nash-Cournot equilibrium assumes the following specification
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max Calibrated − Nash �
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where λ̂i j are—as before—the optimal shadow prices of the tautological constraints
(29). The objective function (39) together with constraints (4) and (5) reproduces
an optimal trade flow that is identical to the observed exchanges. The relevant KKT
conditions are derived from the following Lagrange function
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with KKT conditions

∂L

∂xD
j

� a j − Dj x
D
j /2 − pD

j ≤ 0 (41)

∂L

∂x S
i

� −bi − Si x
S
i + pS

i ≤ 0 (42)

∂L

∂xi j
� pD

j − (ti j + λ̂i j ) − Dj xi j/2 − pS
i ≤ 0 (43)

Although quantities and prices of the calibrated non-cooperative Nash-Cournot
equilibrium are equal to the quantities and prices of the cartel problem, the overall
calibrated Nash-Cournot profit is lower than the calibrated cartel profit because of the
higher adjustments of the transaction costs, as exemplified inFig. 5.Algebraically, the
lower profit of the non-cooperative Nash-Cournot model is established by recalling
that all the quantities are the same for the cartel and the Nash-Cournot models.
Furthermore, the demand prices of the two models are also identical. Hence,

pD
j,M � pS

i + (ti j + λi j,M ) + Dj x
D
j /2 � pD

j,N � pS
i + (ti j + λi j,N )

+ Dj xi j/2λi j,M + Dj x
D
j /2 � λi j,N + Dj xi j/2 (44)

Notice that, in general, Dj xD
j /2 > Dj xi j/2 with the consequence that (λi j,N >

λi j,M ). This conclusion reduces the profit of the non-cooperative Nash-Cournot equi-
librium firms (regions) below the profit of the cartel, as illustrated in Fig. 5.
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Fig. 5 Calibrated cartel (M) and Nash (N) equilibria

To deal with the Nash-Cournot case where firms behave as oligopolies on the
export market and oligopsonies on the supply market, we modify the preceding
objective function and integrate it with the oligopsony specification to exhibit
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Si x
2
i j/2 (45)

By now, we know how to state the relevant KKT conditions that, in this case, take
on the following structure

∂L

∂xi j
� pD

j − (ti j + λ̂i j ) − Dj xi j/2 − pS
i − Si xi j ≤ 0 (46)

that, when rearranged as MR ≤ MC, assumes the analytical form of

pD
j − Dj xi j/2 ≤ pS

i + (ti j + λ̂i j ) + Si xi j (47)

We remind the reader that the term Dj xi j/2 is the markup (from the perfect
competition marginal cost) due to oligopoly power and Si xi j is the markup due to
oligopsony power.
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8 Example of Spatial Equilibria with Imprecise
Transaction Costs

The “observed” trade matrix is presented in Table 9.
This table will apply to each of the three behavioral models. This means that the

regional total demand and supply quantities are the same for the three behavioral
hypotheses. In turn, the demand prices of the three behavioral hypotheses must be
aligned on the same vertical line, as in Figs. 4 and 5.

Given the application of the tautological constraint (29), all three models calibrate
precisely the trade flow matrix. Therefore, we do not report the achieved calibration
of the trade flow matrix. One must remark that, given the transportation structure
of the trade flow matrix, it would be possible for optimal solutions to exist that are
different from the trade flow matrix. However, if the initial point of the nonlinear
problem is chosen as the observed trade flow, it is very likely that the optimal solution
will correspond to the observed trade flow.

Table 10 presents the adjustment to the transaction costs and the total transaction
costs.

Negative transaction costs can be interpreted as subsidies. The complex pattern
of adjustments and the many negative entries may be due to the subjective choice of
parameter values.

Tables 11 and 12 exhibit the demand and supply prices under calibration of the
observed trade flow.

Table 13 presents the profit under calibration.
The calibrated total profit follows the trend discussed in a previous section. The

highest profit level accrues to the cartel. The non-cooperative Nash-Cournot firms
(regions) exhibit a lower profit level even though the demand and supply prices are
identical to those of the cartel model. Within regions U and E, this trend does not
apply.

Given the observed trade flow, xobsi j , the question arises as to which of the three
behavioral models would better fit (interpret economically) the observed empiri-
cal scenario. In general, this type of question requires a statistical test that—in this
case—is precluded by the single observation of the trade flow. We can make the
following remarks. First, the observed trade flow matrix indicates the routes that are
activated between two regions. Hence, the model that approximates more closely the
pattern of activated routes may have an edge over the others spatial rules. Second,

Table 9 Observed trade flow
matrix, xobsi j

Regions A B U E Total supply

A 3.0 2.5 2.0 7.5

B 0.5 5.0 1.0 6.5

U 1.0 6.0 4.0 11.0

E 10.0 3.0 5.0 18.0

Total demand 14.5 10.5 9.0 9.0
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Table 10 Transaction cost adjustments (λ̂i j ) and total transaction costs (TTC)

Transaction cost adjustments Total transaction costs

Cartel (monopoly–monopsony) transaction costs

A B U E A B U E

A 2.70 −0.35 −5.07 −2.60 A 2.700 3.700 2.100 8.200

B −7.65 −2.60 −11.6 −8.90 B −3.600 −2.600 −8.40 1.900

U −21.6 −20.8 −23.4 −23.1 U −18.6 −17.6 −23.4 −13.1

E −9.30 −8.30 −13.3 7.00 E 1.500 2.500 −3.30 7.000

Non-cooperative Nash (oligopoly–oligopsony) transaction costs

A B U E A B U E

A 5.700 −2.15 −6.07 2.350 A 5.700 1.900 −3.15 13.150

B 0.100 −10.4 −10.3 −3.95 B 4.150 −10.40 −7.10 6.850

U −17.70 −16.64 −33.6 −22.7 U −11.80 −13.40 −33.6 −12.75

E −19.60 −11.30 −9.69 6.200 E −8.800 −0.500 0.300 6.200

Perfect competition transaction costs

A B U E A B U E

A 12.450 9.400 4.680 7.150 A 12.450 13.450 7.650 17.950

B 5.350 10.400 1.360 4.100 B 9.400 10.400 4.600 14.900

U −0.670 0.060 −2.50 −2.190 U 2.300 3.300 −2.50 7.800

E 1.500 2.500 −2.49 17.800 E 12.300 13.300 7.500 17.800

Table 11 Demand price for each region (with calibration), pDj

A B U E

Cartel (monopoly–monopsony) demand prices

31.300 27.800 21.400 33.050

Non-cooperative Nash (oligopoly–oligopsony) demand prices

31.300 27.800 21.400 33.050

Perfect competition demand prices

22.600 23.600 17.800 28.100

Table 12 Supply price for each region (with calibration), pSi

A B U E

Cartel (monopoly–monopsony) supply prices

10.150 13.200 20.300 10.300

Non-coop Nash (oligopoly–oligopsony) supply prices

10.150 13.200 20.300 10.300

Perfect competition supply prices

10.150 13.200 20.300 10.300
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Table 13 Regional total profit (with calibration)

A B U E Total

Cartel (monopoly–monopsony) profit

199.275 128.600 262.300 238.950 829.125

Non-cooperative Nash (oligopoly–oligopsony) profit

70.625 118.325 282.900 310.400 782.250

Perfect competition profit

0.000 0.000 0.000 0.000 0.000

the level of traded commodity is another important factor. To gauge a measure of
discrepancy between observed levels of the traded commodity and the levels gener-
ated by the three behavioral models, we compute the average squared deviation for
those matching routes that are activated in both the models and the observed trade
matrix.

For this numerical example, those results are as follows:

Activated routes in the observed trade flow
matrix

12

Activated routes in the cartel
(monopoly–monopsony) matrix

6

Matching activated routes in the cartel
(monopoly–monopsony) matrix

5

Activated routes in the Nash
(oligopoly–oligopsony) matrix

16

Matching activated routes in the Nash
(oligopoly–oligopsony) matrix

12

Activated routes in the perfect competition
matrix

6

Matching activated routes in the perfect
competition matrix

6

On the basis of these matching results, it appears that the non-cooperative Nash-
Cournot model (oligopoly–oligopsony) would be preferred. The average squared
deviation for the quantities transported on the matching routes is as follows:

Cartel (monopoly–monopsony) 40.834

Non-cooperative Nash (oligopoly–oligopsony) 11.335

Perfect competition 104.442

The Nash-Cournot model (oligopoly–oligopsony) is preferred also on the basis
of this measure.
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9 Imprecise Intercepts of Demand and Supply Functions

Let us suppose, again, that the trade flow between regions, xobsi j , is known. As a

consequence, also the regional total demand and supply, xD,obs
j and x S,obs

i , are known.
Furthermore, when the trade flow is observed, also demand and supply prices may
be known. We assume, therefore, that also these prices are observed: pD,obs

j and

pS,obs
i . Often, the demand elasticities for the various regions are assumed known, say

ηobs
j . From the above available information, it is possible to reconstruct the implied

demand function, albeit with some imprecision of the intercept:

ηobs
j � ∂xD

j

∂pD
j

pD,obs
j

x D,obs
j

< 0 → xD,obs
j

pD,obs
j

ηobs
j � ∂xD

j

∂pD
j

(48)

and the demand function can be stated as

xD
j � a +

(
xD,obs
j

pD,obs
j

ηobs
j

)
pD
j (49)

with the inverse demand function as

pD
j � −a

(
pD,obs
j

x D,obs
j

1

ηobs
j

)
+

(
pD,obs
j

x D,obs
j

1

ηobs
j

)
xD
j (50)

It is clear that the choice of the parameter a may likely lead to imprecision in
the intercept. With the given observed quantities and prices, xobsi j , pD,obs

j and pS,obs
i ,

we deal first with the perfect competition specification. This time, because of the
presence of observed prices, both phases I and II must take on the structure of a
linear complementarity problem (LCP) that combines primal and dual constraints.

Phase I—Perfect Competition

min LSPC �
R∑

j�1

e2j/2 +
R∑

i�1

v2
i /2 +

R∑

j�1

ε2j/2 +
R∑

i�1

ψ2
i /2 (51)

subject to

(primal and dual constraints) Dual variables

xD
j ≤

R∑
j�1

xi j pD
j

(52)

R∑

i�1

xi j ≤ x S
i pS

i (53)
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xi j � xobsi j λi j (54)

(a j + e j ) − Dj x
D
j ≤ pD

j x D
j (55)

pS
i ≤ (bi + vi ) + Si x

S
i x S

i (56)

pD
j ≤ pS

i + (ti j + λi j ) xi j (57)

pD
j � pD,obs

j + ε j ε j (58)

pS
i � pD,obs

i + ψi ψ j (59)

(complementary slackness conditions)

pD
j

[
R∑

i

xi j − xD
j

]
� 0 (60)

pS
i

⎡

⎣x S
i −

R∑

j

xi j

⎤

⎦ � 0 (61)

xD
j

[
pD
j − (a j + e j ) + Dj x

D
j

] � 0 (62)

x S
i

[
(bi + vi ) + Si x

S
i − pS

i

] � 0 (63)

xi j
[
pS
i + (ti j + λi j ) − pD

j

] � 0 (64)

The least squares approach minimizes the squared adjustments of the intercepts
and the squared deviations from the observed prices. The structure of theLCPexhibits
the primal and dual constraints in relations (52)–(59) and the corresponding comple-
mentary slackness conditions in relations (60)–(64).

Phase II uses the least squares estimates of the intercept deviations, ê j and v̂i , and
the dual variables of the tautological constraints (54), λ̂i j , to minimize the sum of all
the complementary slackness conditions (CSC) which, by definition, must equal to
zero. This specification uses slack variables in the primal, zP1j ≥ 0, zP2i ≥ 0, and the
dual constraints, zD1

j ≥ 0, zD2
i ≥ 0, zD3

i j ≥ 0:

min CSC �
R∑

j�1

zP1j pD
j +

R∑

i�1

zP2i pS
i +

R∑

j�1

zD1
j x D

j +
R∑

i�1

zD2
i x S

i +
R∑

i�1

R∑

j�1

zD3
i j xi j � 0

(65)

subject to xD
j + zP1j �

R∑

j�1

xi j (66)
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R∑

i�1

xi j + zP2i � x S
i (67)

(a j + ê j ) − Dj x
D
j + zD1

j � pD
j (68)

pS
i + zD2

i � (bi + v̂i ) + Si x
S
i (69)

pD
j + zD3

i j � pS
i + (ti j + λ̂i j ) (70)

Model (65)–(70) calibrates the solution to be equal to the observed trade flow,
while the equilibrium demand and supply prices are within the smallest possible
deviation from the observed demand and supply prices.

The same observed information, when applied to a cartel (monopoly–monopsony)
specification, induces a modification of three dual constraints [(55), (56) and (57)]
and the corresponding complementary slackness conditions, namely

Phase I—Cartel (monopoly–monopsony)

(a j + e j ) − Dj x
D
j ≤ ρ j

(a j + e j ) − Dj x
D
j ≤ pD

j − Dj x
D
j /2

(a j + e j ) − Dj x
D
j /2 ≤ pD

j (71)

and

φi ≤ (bi + vi ) + 2Si x
S
i

pS
i + Si x

S
i ≤ (bi + vi ) + 2Si x

S
i

pS
i ≤ (bi + vi ) + Si x

S
i (72)

and assuming that each regionwill have positive demand and supply, xD
j > 0, x S

i > 0

ρ j ≤ φi + (ti j + λi j )

(a j + e j ) − Dj x
D
j /2 − Dj x

D
j /2 ≤ (bi + νi ) + Si x

S
i + Si x

S
i + (ti j + λi j )

pD
j ≤ pS

i + (ti j + λi j ) + Dj x
D
j /2 + Si x

S
i (73)

Finally, the same observed information, when applied to a non-cooperative Nash-
Cournot (oligopoly–oligopsony) specification, induces a modification of the same
three dual constraints [(55), (56) and (57)] and the corresponding complementary
slackness conditions, namely

Phase I—Non-cooperative Nash (oligopoly–oligopsony)
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(a j + e j ) − Dj x
D
j /2 ≤ pD

j (74)

and

pD
j ≤ pS

i + (ti j + λi j ) + Dj xi j/2 + Si xi j (75)

The solution of the calibrated models for the cartel (monopoly–monopoly) and
the non-cooperative Nash-Cournot (oligopoly–oligopsony) rules requires solving
the same set of relations stated in [(51)–(64)] with the replacement of relations (55),
(56) and (57) (together with the corresponding complementary slackness conditions)
with relations (71), (72) and (73) for the cartel model and with (74) and (75) for the
Nash-Cournot model.

10 Numerical Example of Spatial Equilibria
with Imprecise Trade Flow and Imprecise Intercepts
of the Demand and Supply Functions

Table 14 exhibits the observed information dealing with the trade flow as well as the
demand and supply prices, xobsi j , pD,obs

j , pS,obs
i . The transaction costs are the same

as in Table 2.
The three behavioral models calibrate precisely the observed trade flow matrices

which, therefore, are not reported again. Table 15 presents the adjustments to the
transaction costs and the total transaction costs.

The adjustments to the intercepts of the demand functions are given in Table 16.
The adjustments to the intercepts of the supply functions are presented in Table 17.
The demand prices of the three behavioral hypotheses are presented in Table 18

together with the observed prices.
The supply prices of the three behavioral hypotheses are presented in Table 19

together with the observed prices.
Table 20 presents the profit under this general calibration.

Table 14 Observed trade flow, demand, and supply prices, xobsi j , pD,obs
j , pS,obs

i

Regions A B U E Total
supply

Demand
prices

Supply
prices

A 3.0 2.5 2.0 7.5 24.0 16.0

B 0.5 5.0 1.0 6.5 22.5 19.0

U 1.0 6.0 4.0 11.0 19.1 15.0

E 10.0 3.0 5.0 18.0 18.0 11.0

Total
demand

14.5 10.5 9.0 9.0
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Table 15 Transaction cost adjustments (λ̂i j ) and total transaction costs (TTC)

Transaction cost adjustments Total transaction costs

Cartel (monopoly–monopoly) transaction costs

A B U E A B U E

A −3.875 −5.93 −9.15 10.450 A −3.875 −1.875 −6.175 21.250

B −14.20 −8.15 −15.7 10.425 B −10.15 −8.150 −12.45 21.225

U −22.57 4.260 −21.9 −27.96 U −19.60 7.500 −21.90 −17.97

E −13.30 −11.3 1.500 −0.875 E −2.500 −0.500 11.490 0.875

Non-cooperative Nash (oligopoly–oligopsony) transaction costs

A B U E A B U E

A 8.875 3.775 0.805 20.900 A 8.875 7.825 3.775 31.700

B 6.200 −2.95 −1.49 20.850 B 10.250 −2.950 1.750 31.650

U 4.530 4.260 −11.2 −11.91 U 7.500 7.500 −11.20 −1.925

E −5.800 0.700 3.000 9.125 E 5.000 11.500 12.990 9.125

Perfect competition transaction costs

A B U E A B U E

A 10.225 5.925 2.405 7.975 A 10.225 9.975 9.650 18.775

B 3.150 6.950 −0.89 7.950 B 7.200 6.950 2.350 18.750

U 2.680 2.160 0.800 −4.590 U 5.650 5.400 0.800 5.400

E 1.850 1.600 −0.30 12.400 E 12.650 12.400 9.690 12.400

Table 16 Adjustments to the intercept of the demand functions, ê j

A B U E

Cartel (monopoly–monopsony)

−3.650 −2.650 −1.150 −7.525

Non-cooperative Nash (oligopoly–oligopsony)

−3.650 −2.650 −1.150 −7.525

Perfect competition

0.700 −0.550 0.650 −5.050

Table 17 Adjustments to the intercept of the supply functions, v̂ j

A B U E

Cartel (monopoly–monopsony)

2.925 2.900 −2.650 0.350

Non-cooperative Nash (oligopoly–oligopsony)

2.925 2.900 −2.650 0.350

Perfect competition

2.925 2.900 −2.650 0.350
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Table 18 Observed and calibrated demand prices, pDj

A B U E

Observed demand prices

24.000 22.500 19.100 18.000

Cartel (monopoly–monopsony)

27.650 25.150 20.250 25.525

Non-cooperative Nash (oligopoly–oligopsony)

27.650 25.150 20.250 25.525

Perfect competition

23.300 23.050 18.450 23.050

Table 19 Observed and calibrated supply prices, pSi

A B U E

Observed demand prices

16.000 19.000 15.000 11.000

Cartel (monopoly–monopsony)

13.075 16.100 17.650 10.650

Non-cooperative Nash (oligopoly–oligopsony)

13.075 16.100 17.650 10.650

Perfect competition

13.075 16.100 17.650 10.650

Table 20 Regional and total profit (with calibration of quantities and prices)

A B U E Total

Cartel (monopoly–monopsony) profit

331.813 218.238 212.415 66.659 829.125

Non-cooperative Nash (oligopoly–oligopsony) profit

34.525 63.050 124.500 157.750 379.825

Perfect competition profit

0.000 0.000 0.000 0.000 0.000

The profit trend corresponds to the predicted outcome: The cartel exhibits the
highest level of profit followed by the non-cooperative Nash behavior. Perfect com-
petition has always zero profit.
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11 Conclusion

The analysis of three combinations of behavioral rules and the use of all the available
information have given insight into the structure of spatial equilibrium specifications
suitable for trade models. PMP has shown how to calibrate all those models to repro-
duce the realized and observed matrix of trade flows. Imprecisions in the transaction
costs and in the intercepts of demand and supply functions have been easily taken
care by means of a PMP approach.
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Chapter 5
Payment for Environmental Services:
How Big Must Be the Check
to Multiproduct Farmers?

Marcelo Torres and Richard E. Howitt

Abstract Environmental conservation policies based on the payment for environ-
mental services (PES) are being increasingly adopted around the world. Among
several factors that may dictate the success of a PES conservation program is the
payment or monetary compensation level. As participation in the program is vol-
untary, if payments are not enough to compensate for the eventual economic losses
faced by the users, users will not participate, and conservation goals will not be
achieved. Also if payments are set significantly higher than the users’ opportunity
costs, conservation goals are more likely to be achieved, but the program will not be
cost-effective. In this context, by using primary data from a watershed in the Brazil-
ian Savannah, this contribution calculates opportunity costs using an agricultural
net-revenue multiproduct model, parameterized with the use of positive mathemati-
cal programming (PMP) method and coupled with a hydrological model. It is shown
that land and water opportunity costs not only vary from farmer to farmer due to
differences in crop and input mix but also the variations in water supply affect land
use opportunity costs. And, in turn, land supply affects water use opportunity costs.
Given this, researchers and policy makers should not be surprised that agricultural
PES programs that rely on a flat, crop-and-farmer invariant compensation value per
hectare often result in failure and cost-ineffectiveness.

1 Introduction

Around the world, several environmental protection programs based on the principal
of ‘payment for environmental services’ (PES) have been implemented (World Bank
2014; Pagiola et al. 2013; Wunder and Alban 2008; Grima et al. 2016; Ly and Nam
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2014; Porras et al. 2008). Although scheme and design mechanisms differ, the idea
(in principle) is rather simple. Users of a natural resource, such as land, air, andwater,
are viewed as potential providers of ecosystem services and goods, either because
they can use more or less of it, or, given the quantity used, they can adopt more
or less environmentally sound practices. For example, by using less (or not using
more) of their forested land, landowners supply hectares of standing forest with its
biodiversity and water resources that benefit humans and wildlife. This implies that
natural resource users have to adopt costly changes in production and consumption
patterns, which must then be compensated.

Since well-functioning markets for most environmental goods and services are
unlikely to evolve naturally due to high transaction costs, the ‘public good’ nature
of environmental services, and their inherent free-rider and asymmetric information
problems, they must be accounted for and regulated and that is what PES programs
ultimately do. Once property rights are defined and enforced, beneficiaries and sup-
pliers of the environmental services are linked through a formally designed payment
system that may be directly funded by public institutions (e.g., national governments,
World Bank, etc.) that use monetary resources to compensate the suppliers of the
environmental good service and/or by the beneficiaries themselves.

Among several factors thatmay dictate the success of a PES conservation program
is the payment or monetary compensation level. If the payment corresponds to the
benefit of the services provided, it must also be enough to compensate for the even-
tual economic losses faced by the users. As participation in the program is voluntary,
if payments are less than the opportunity cost of the natural resource preservation,
users will not participate, and conservation goals will not be achieved. For example,
in a farming and deforestation context, payments must be at least equal to the net-
revenue obtained from converting forested land to agriculture minus any foregone
economic benefits that could be extracted from the standing forest, Börner andWun-
der (2008). Also if payments are set significantly higher than the users’ opportunity
costs, conservation goals are more likely to be achieved, but the program will not be
cost-effective.

Payment levels have been a subject of evaluation and discussion in several PES
programs and studies (Alix-Garcia et al. 2008; Pagiola and Platais 2007; Garcia
2015; Muñoz-Piña et al. 2005; Börner and Wunder 2008; Chomitz 2004; Wunder
et al. 2008; Serra and Russman 2006; Pagiola et al. 2008, 2013). Among other
factors, these papers highlight the need to accurately estimate opportunity costs and
the importance of using them in the design process of PES programs.

Opportunity costs evaluation is generally challenging, particularly in the context
of multiproduct and irrigated agriculture. Farmers’ opportunity costs of land and
water vary with agricultural net-revenues, which in turn vary due to highly volatile
input and output prices. Also, as net-revenues vary across crops, opportunity costs
vary with the type of crop farmers decide to grow. An additional complication is
that since land and water are spatially linked, the opportunity cost associated with
land is affected by water scarcity, and the opportunity cost of water is affected by
land scarcity. Given this, researchers and policy makers should not be surprised that
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agricultural PESprograms that rely on a flat, crop-and-farmer invariant compensation
value per hectare often result in failure and cost-ineffectiveness.

In this chapter, we calculate opportunity costs using an agricultural net-revenue
multi-product model based on Torres et al. (2016), parameterized with the use of
positive mathematical programming (PMP) method and coupled with a hydrological
model. We show that land and water opportunity costs not only vary from farmer
to farmer due to the differences in crop and input mix but also that variations in
water supply affect land use opportunity costs, and in turn, land supply affects water
use opportunity costs. The model is applied, using primary data, to a community of
farmers that belong to the Buriti Vermelho subwatershed near Brasília, Brazil.

2 Methodology

Farmers are assumed to be net-revenuemaximizers in amulti-product andmulti-input
context, where crops may be irrigated or rainfed. More specifically, each farmer g
chooses amounts of inputs in order to maximize their annual net-revenues, which is
defined as

∑

i, j

[piq
ir
i (xland, xaw, xm, xhl, xl) + p jq

r
j (xland, xm, xhl, xl)

− pland(xlandi + xland j ) − pswxswi − MatCosti + MatCost j

− phl(xhli + xhl j ) − pfl(xfli + xfl j ) − lciri (xland) − lcrj (xland)] (1)

Where xland, xaw, xm, xhl, and xfl are the amounts of land (land), applied water
(aw), materials (m), hired labor (hl), and family labor (fl). pi and pj are the received
crop prices of irrigated crop i and rainfed crop j, respectively. q ir

i (•) and q r
j (•) are irri-

gated (ir) and rainfed (r) production functions, respectively. lciri (xland) and lc
r
j (xland)

are implicit land cost functions associatedwith land allocation to irrigated and rainfed
crops. Both production functions are specified as a CES function with the difference
that in the rainfed production function, precipitation enters as a shifter parameter
(Precip j ) defined as the ratio of the actual (x

a
p) and expected (x

e
p) amounts of precip-

itation to fall onto crop j, that is, Precip j � xap
xep
. Since rainfall is exogenous it is not

part of a farmer’s decision set, although the amount of rain affects optimal input allo-
cation through the first-order conditions. lciri (xland) and lc

r
j (xland) follow exponential

functional forms as in Medellín-Azuara et al. (2010).
Applied water used on irrigated crop i (xawi ) is defined as the sum of the amount

of water used from surface water (xswi ) and actual precipitation (x
a
pi ). That is, xawi �

xswi + xapi . The price of surface (psw) water for farmer g is composed of the sum of
the costs of hired labor used in irrigation, pumping electricity, and irrigation capital
over all irrigated crops divided by the number of crops irrigated. The cost of hired
labor is the price of a man-hour of work (phl) multiplied by the number of man-hours
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used (xhl). The price of a man-hour of family labor (pfl) is set to be equal to phl.
For materials, prices are not modeled as separate from quantities, so the expenditures
(unitary price paid times input quantity used)with each input in thematerials category
are summed up by crop. In the case of a irrigated crop i, total expenditures are called
MatCosti and for a rainfed crop j,MatCostj.

By using (1) and its related first-order conditions for a maximum, in addition to
the assumption of constant returns to scale, the expressions for each parameter of the
production functions can be then derived. These expressions are functions of the input
quantities,market input prices, scarcity values for the limited availability inputs (land,
surface water, and family labor), and the crop- and farm-specific marginal implicit
cost of land. A prior on the elasticity of substitution is also required and assumed to
be 0.3 for rainfed crops and 0.7 for irrigated crops. These values are based on studies
by Salhofer (2001), Gomez et al. (2004), Boyd and Newman (1991), and Seung et al.
(1998). For implicit land cost functions, parameter estimation requires another prior
on the crop supply elasticity, which is assumed to be 0.7 for all crops. All scarcity
values and the marginal implicit cost of land are calculated through a mathematical
linear programming optimization model.

The parameters are calculated from the primary data collected on input quantities
by crop and farmer, input and output prices faced by each farmer, and the other
information described above. These parameters are then reintroduced in a regional
net-revenue model built as the sum of Eq. (1) over all farmers subject to a set of
constraints. The regional model chooses xland, xsw, xm, xhl, and xfl for each farmer
such that the regional annual net-income is maximized. The constraints establish that
the annual amount of land and family labor farmer g can use is restricted by the annual
amount of land and family labor available. The annual amount of surface water a
farmer g can use is restricted by the sum of the monthly surface water available.
Also the amount of precipitation farmer g uses as applied water is restricted by the
monthly precipitation that falls onto each crop area. Lastly, a water stress constraint
is added to put an upper limit on the amount of water stress.

All estimates of farmer-specific surface water availability are calculated with the
use of a natural flow model (Rodrigues et al. 2012), which was parameterized with
estimates of river discharges in the Buriti Vermelho subwatershed calculated by a
hydrological model based on Liebe et al. (2009).

3 Data

The data used for the model calibration describe the agricultural input (prices paid
and amounts used) and output (prices received and amounts produced) of 23 farmers
located within the Buriti Vermelho watershed near Brasília, Brazil, during the agro-
nomic year of 2007/2008. The estimates of surface water used by each farmer and
crop were calculated with data collected on the frequency and duration of irrigation,
irrigation technology, and pump characteristics. Also, data on daily millimeters of
precipitation that fell onto the subwatershed and a farmer- and crop-specific planting
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and harvesting calendar are used as the basis for the calculation of the amount of
precipitation used as part of the total applied water.

The vast majority of farmers located in the watershed can be considered small
with an average annual cropping land of 3.5 ha and average annual net-income of
20,000 reais (US$ 13,000.00 approximately).1 Most of their crops (vegetables and
fruits) are irrigated with annual average water use of 1500 m3/ha. A larger farmer,
specialized in grain crops, that uses center-pivot irrigation technology, is also located
in the watershed.

4 Results

With the regional net-income model calibrated, simulations of restrictions on the
amount of land and water were used to derive the estimates of opportunity costs.
Farmers were divided into groups according to their access to surface water. Farmers
in group 1 and group 2 withdraw water from the most upstream reservoir. Water is
carried to these groups through a channel that splits in two: one with a larger diameter
that brings water to group 1 and another with a smaller diameter that brings water to
group 2.What remains in this upstream reservoir goes to another midstream reservoir
that is used by the farmers in group 3. The larger farmer in group 4 can use up the
water that remains in the downstream reservoir. Assuming that proportional cuts in
surface water are proportional to cuts in precipitation, Tables 1 and 2 present the
estimated opportunity costs in terms of foregone net-revenue associated with cuts
in the amount of water available for irrigation, keeping the amount of arable land
available as in the base year. Not only do the opportunity costs vary by farmer but
also by crop.

Table 1 presents that averaging over all farmers, predicted regional net-income
would fall by 3.5% in the event of a 10% cut in water availability. Successively, cuts
are followed by predicted nonlinear decreases in net-revenue. The same pattern is
similar for the smaller farmer groups. Table 1 also presents that the impact is not
uniform across farmer types. Farmers in group 1 have the highest opportunity costs
and farmers in group 2 have the lowest.

The differences between farmer groups probably reflect differences in crop mix,
as we can see in Table 2 that opportunity costs vary by crop type. Grains have the
highest opportunity costs, followed by fruits and then vegetables.

Tables 3 and 4 present the impact of cuts in land availability keeping surface water
and precipitation amounts at base year levels. Land opportunity costs are also not
homogenous across farmers groups, being highest for group 1 and lowest on average
for farmers in group 2. Table 4 presents that the land opportunity costs also vary
significantly across crops, being highest for fruits, then grains, and finally vegetables.

1Using the 2008 yearly average exchange rate of 1US$� 1.5BR$ provided by the Brazilian Central
Bank.



82 M. Torres and R. E. Howitt

Tables 1 through 4 present either the predicted impacts of cuts in water availabil-
ity on farmers’ net-revenue by keeping the amount of arable land constant at base
year levels, or the impacts of arable land availability on net-revenue, keeping water
availability fixed. Alternatively, however, cuts in surface water use often result in cuts
in arable land in cases where water conservation implies land conservation, and vice
versa. In this case, cuts in land availability may affect the magnitude of opportunity
costs associated with reduced water availability. This is, in fact, presented in Table 5.

For example, we saw that a 10% cut in water availability, holding arable land
constant at base year levels, would cause a 3.5% decrease in regional net-revenue
(see Table 1). If, however, this cut happens when arable land must also be reduced
by 10%, regional net-revenue would decrease in average by 7.1% (Table 5). This
percentage ranges from 4.5 to 8.3% depending on the farmer groups. If arable land
availability is reduced by 20 or 30%, the impacts on net-revenue of a 10% cut in
water availability would be much higher (13.6 and 20.1%, respectively).

Table 1 Farmers net-revenue impacts due to cuts in surface water availability

% cuts in
water
availability

Farmers groups

All
farmers

1 2 3 4

Valuea (%) Value (%) Value (%) Value (%) Value (%)

0 734 – 149 – 66 – 191 – 382 –

10 708 −3.5 145 −2.7 65 −1.5 187 −2.1 365 −4.5

20 670 −8.7 140 −6.0 62 −6.1 181 −5.2 340 −11.0

30 624 −15.0 131 −12.1 60 −9.1 175 −8.4 311 −18.6

40 581 −20.8 122 −18.1 57 −13.6 166 −13.1 286 −25.1

50 540 −26.4 110 −26.2 53 −19.7 153 −19.9 270 −29.3

60 498 −32.2 95 −36.2 48 −27.3 133 −30.4 261 −31.7

aValues in thousands of Brazilian reais as of 2008

Table 2 Net-revenue impacts due to cuts in water availability by crop groups

% cuts in
water
availability

Grains Vegetables Fruits

Valuea (%) Value (%) Value (%)

0 386 – 259 – 136 –

10 370 −4.1 254 −1.9 135 −0.7

20 343 −11.1 246 −5.0 132 −2.9

30 313 −18.9 238 −8.1 127 −6.6

40 287 −25.6 226 −12.7 117 −14.0

50 270 −30.1 210 −18.9 104 −23.5

60 262 −32.1 187 −27.8 89 −34.6

aValues in thousands of Brazilian reais as of 2008
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Table 3 Farmers net-revenue impacts due to cuts in arable land

% cuts in land
availability

Farmers groups

All
Farmers

1 2 3 4

Valuea (%) Value (%) Value (%) Value (%) Value (%)

0 734 – 149 – 66 – 191 – 382 –

10 719 −2.0 144 −3.4 66 0.0 182 −4.7 372 −2.6

20 686 −6.5 135 −9.4 64 −3.0 175 −8.4 353 −7.6

30 642 −12.5 123 −17.4 61 −7.6 166 −13.1 329 −13.9

40 590 −19.6 110 −26.2 58 −12.1 154 −19.4 301 −21.2

50 533 −27.4 96 −35.6 53 −19.7 140 −26.7 273 −28.5

60 469 −36.1 80 −46.3 48 −27.3 121 −36.6 242 −36.6

aValues in thousands of Brazilian reais as of 2008

Table 4 Net-revenue impacts due to cuts in arable land availability by crop groups

% cuts in land availability Grains Vegetables Fruits

Valuea (%) Value (%) Value (%)

0 386 – 259 – 136 –

10 377 −2.3 252 −2.7 130 −4.4

20 357 −7.5 241 −6.9 124 −8.8

30 331 −14.2 226 −12.7 115 −15.4

40 304 −21.2 209 −19.3 104 −23.5

50 274 −29.0 190 −26.6 91 −33.1

60 243 −37.0 167 −35.5 76 −44.1

aValues in thousands of Brazilian reais as of 2008

5 How Fat Should the Check Be?

As we can see from the results displayed above, opportunity costs of land and water
in a multi-product, agricultural context vary across crops and farmers. Also, since
land and water are spatially linked, the amount of forgone net-revenue associated
with lower water uses depends on the amount of arable land and vice versa. This
suggests that PES programs that focus on agricultural water and/or land conservation
based on flat rate compensations will either fail in achieving a given regional goal,
or succeed to achieve a given goal but not at a minimum cost. For example, suppose
the objective of the environmental planner in the Buriti Vermelho watershed is to
induce each farmer to reduce its use of arable land by 20%. Once intact, the unused
land would then be converted into a non-primary cerrado forest. Table 6 presents the
foregone net-revenue by farmer.

Assuming that farmers would have to leave the non-used area intact and that
participation in the PES program is voluntary, numbers in Table 6 reveal that to leave
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Table 6 Annual forgone net-revenue from a 20% reduction in arable land use

Farmers Forgone
annual
net-
revenue

Farmers Forgone
annual
net-
revenue

Farmers Forgone
annual
net-
revenue

Farmers Forgone
annual
net-
revenue

v35 28,400 v32 1906 v27 465 v10 219

v31 7348 v17 1448 v18 390 v12 128

v22 6909 v25 1072 v26 350 v30 97

v20 3526 v28 732 v13 296 v15 30

v23 3276 v24 729 v19 244 v29 2

v21 1974 v16 687 v14 226

Table 7 Annual forgone net-revenue from a 10% reduction in surface water availability in the
event a uniform 20% drop in monthly rainfall

Farmers Forgone
annual
net-
revenue

Farmers Forgone
annual
net-
revenue

Farmers Forgone
annual
net-
revenue

Farmers Forgone
annual
net-
revenue

v35 41,498 v27 1565 v21 726 v14 536

v32 4693 v13 1537 v28 712 v18 498

v20 2407 v17 1132 v26 687 v23 326

v25 2280 v12 870 v31 683 v10 308

v19 1898 v22 841 v30 640 v15 19

v16 1672 v24 739 v29 626

20% of the arable land within each farm intact at a minimum cost, each farm should
receive a compensation per year at least equal to the annual foregone net-revenue.
Summing it over all farmers, that means that the PES program would cost, in terms
of compensation, around 60,000.00 Brazilian reais. The same goal could be achieved
off course if the program sets an annual flat compensation per farmer at the highest
level (28,400), but that would not be cost-effective. If set at the mean value (≈2700),
only farmers v35, v31, v22, v20, and v23 would adhere to the program and the goal
would not be achieved.

Suppose now that the policy goal is to keep a minimum environmental flow in the
Buriti Vermelho River during droughts. Table 7 presents the foregone revenue when
the surface water available for irrigation is reduced by 10% in the event of a drop of
monthly rainfall by 20%. Again the PES program would be cost-effective at a much
lower cost (around 67,000.00 Brazilian reais) if based on a compensation rate that
reflects the foregone net-revenue for each farmer.
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6 Conclusions

This contribution shows, by using a multi-product agricultural production model
calibrated with positive mathematical programming methods, that the opportunity
costs associated with land and water, in the context of multi-product farming, vary
considerably from farmer to farmer and across crops. More importantly, restrictions
on surfacewater use have significant impacts on themagnitudeof the landopportunity
costs, and vice versa. For example, given the level of arable land available in the base
year, a 10% cut in surface water available for irrigation would imply a 3.5% decrease
in the farmers’ net-revenues. Or given the level of water availability in the base
year, a 10% cut in arable land would, on average, reduce the regional net-revenue by
2.0%. However, the negative impacts of a 10% cut in water availability, in a situation
where 10% of the total arable land must be preserved, would more than double (from
3.5 to 7.1%). In short, the results show that the water opportunity costs increase
non-linearly with restrictions on arable land and vice versa.

These results have clear implications for market-based environmental conser-
vation policies and in particular policies based on the payment for environmental
services (PES). Since the biggest users of land and water are farmers, and participa-
tion in PES programs are voluntary, the results show that a successful PES program
requires the use of a more flexible system for farmer compensation that can vary
across multi-crop farmers. In fact, the simulations show that compensation rates that
vary across farmers and that are based on their foregone net-revenue would bring
down PES program costs and increase efficacy considerably. While the spatial extent
of the current empirical example is too small to be scaled up, results do indicate that
PES programs applied in the context of multi-product farmers are likely to fail if
farmer heterogeneity in crop and input mixes is not taken into account.
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Chapter 6
Optimal Allocation of Groundwater
Resources: Managing Water Quantity
and Quality

Qiuqiong Huang, Scott D. Rozelle, Richard E. Howitt and James E. Wilen

Abstract Despite the importance of groundwater in the economy of the Hai River
Basin (HRB), falling water tables and salinization of aquifers are both occurring in
the region. Hydrological and hydrogeological studies have shown that increases in
the salinization of parts of the freshwater aquifers are closely related to the extraction
of groundwater. This study uses a framework that considers the interaction between
water quantity and quality to examine how the presence of the prehistoric saline
water layer affects groundwatermanagement. Simulation results show that in a region
where there is a salinization problem like in the HRB, it is optimal to pump at high
rates in the early stage of extractionwhen the quality of groundwater is high. It is then
optimal to reduce the pumping rate rapidly as the quality of groundwater deteriorates.
Given this characteristic of the optimal pumping path, the heavy extraction currently
observed in the HRB does not necessarily indicate that groundwater resources are
being overused. However, unregulated extraction by non-cooperative users would
eventually cause both the depletion of the water resource and the deterioration of
water quality. Hence, joint quantity–quality management is required in the HRB.
The study also shows that benefits to groundwater management are higher and costs
are lower in regions with salinization problems.
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1 Introduction

Despite the importance of groundwater resources in stimulating the rapid develop-
ment of the Hai River Basin (HRB), one of the main economic and political centers
of China, the resource base is diminishing. Between 1958 and 1998, the level of the
groundwater in the HRB fell by up to 50 m in certain shallow aquifers and by more
than 95 m for some deep aquifers (Ministry of Water Resource et al. 2001). During
a field trip to Cang County, Hebei province (the province in which most of the HRB
resides) in July 2004, the authors observed farmers extracting deep aquifer freshwa-
ter from tubewells that were sunk to a level of more than 400 m. Given the fact that
the depth to the bottom of the deep aquifers is between 500 and 600 m in most places
in the HRB and that the current level of extraction of deep aquifer water far exceeds
the rate of recharge (Chen 1999; Hebei Bureau of Geology Reconnaissance 2003),
many policymakers are worried that China is using its water resources too rapidly.

In addition to the declining water levels, another potential problem is arising
in some places in the middle and eastern parts of the HRB, namely the increased
salinization of some aquifers. The salinity level of freshwater in certain parts of the
deep aquifers, measured by the level of total dissolved solutes (TDS), is known to
have increased by 14.3 mg/L annually in Hengshui County (Song and He 1996). In
some places in Cang County, the TDS level increased from less than 2000 mg/L to
more than 5000 mg/L, a level above which water is considered to be saline (Hebei
Bureau of Geology Reconnaissance 2003).

Hydrological and hydrogeological studies have shown that increases in the salin-
ization of parts of the freshwater aquifers are likely to be closely related to the
extraction of groundwater (Mu and Zhang 2002; Zhu et al. 2002). Large layers of
prehistoric saline water exist between the shallow and deep freshwater aquifers in
the middle and eastern parts of the HRB. When groundwater is extracted and the
stock of groundwater declines, the pressure difference between the freshwater and
the overlying saline water layers increases. Although the saline water and freshwa-
ter are separated by a layer of clay (an aquitard), the pressure difference, according
to hydrologists, can push saline water past the clay layer and into the freshwater
layer—a process that can increase the salinity level of the freshwater.

Since the level of the groundwater and the degree of salinization are both related
to the rate of extraction of groundwater, when determining how to use groundwater
optimally, a framework that considers the interaction between water quantity and
quality is required for complete and more efficient management of groundwater
resources. When groundwater is pumped and the level of water changes in the HRB,
water users incur two costs. First, pumping costs rise as groundwater levels fall—even
when the quality of water remains the same. Second, when groundwater is extracted,
the intrusion of saline water into the freshwater, as seen above, increases the salinity
level of the groundwater. When this happens, the application of saline water in
irrigation can cause salt accumulation in the soil. Agronomic studies have shown
that crop productivity falls when there is an excessive level of salinity in the soil
[e.g., Maas and Hoffman (1977)]. Because of these dual effects, it is likely that the
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way to optimally extract groundwater in the HRB is different from what it would be
in an area without a salinization problem.

Given the importance of the North China Plain in the nation’s economy, and given
the changes that will continue in the future, one of the key issues facing policymakers
is how to manage the quantity of water and maintain water quality. As an attempt
to start addressing this issue, the overall goal of this contribution is to examine how
the presence of the prehistoric saline water layer affects groundwater management.
Specifically, we will address three questions: (1) How does the optimal allocation
of groundwater resource (both the pumping path and the level of pumping lift and
salinity level at the steady state) differ between the regionswith salinization problems
and regions without such problems? (2) In regions with salinization problems, how
does the impact of pumping on groundwater quantity and quality differ when water
users extract in a cooperative way as if they are managed by a social planner and
when water users extract in a non-cooperative way? (3) What are the implications
for policies that we can draw for managing groundwater in the HRB?

This study will make several contributions. It will be one of the first studies that
take into account the interaction between the quantity and quality of groundwater to
analyze the optimal use of groundwater resources in North China. Lessons learned
from this study will also help tackle salinity problems that relate to groundwater
extraction in other countries such as Australia, India, and Bangladesh. Few studies
have utilized joint quantity–quality framework outside of China. Some of the excep-
tions are Roseta-Palma (2003, 2002). However, these papers only have a general
model of quantity–quality problem. Scholars also have worked on salinity issues
extensively (e.g., Dinar et al. 1993; Kan et al. 2002; Knapp 1992a, b, c). However, to
our knowledge there have been none inside China, this study will contribute to the
resource economics literature by providing an example of a resource problem where
the interlinks between the quantity and quality are considered.

There are several subjects, however, that are not addressed in this study. First, the
conjunctive use of groundwater and surface water is not considered. Water users in
many places in the HRB depend solely on groundwater resources from deep confined
aquifers. Unlike shallow aquifers that are recharged directly by surface water supply
such as precipitation, deep aquifers in the HRB are recharged by a much slower
horizontal flow from themountain area, which is far less stochastic than surfacewater
supply. Hence, a deterministic framework is used since the stochastic surface water
is not included. Second, the irrigation salinity problem that occurs when irrigation
water causes the water table to rise and brings salt to the surface is not addressed.
In fact, this irrigation salinity problem ceased to exist after the heavy extraction of
groundwater resources started in the 1970s in the HRB (Nickum 1988). This study
only analyzes the increase in salinity due to the intrusion of saline water.



92 Q. Huang et al.

2 Analytical Framework and Propositions

Webeginwith the standard groundwater extraction problem, focusing on the decision
of the extraction quantity that balances the current and future benefits from extraction
versus the current and future costs of doing so. In the first instance, we ignore salin-
ization (Model 1). Second, we then consider the case when there is a saline water
layer and use a cooperative extraction model in which water users cooperate with
each other and act as if their extraction is managed by a social planner (Model 2).
Since the social planner is maximizing the total benefits of society, this solution will
provide the optimal solution to groundwater extraction in the presence of a saline
water layer in the aquifer. We use this model to establish a baseline against which we
can compare the results when there is no social planner and there is inevitably a less
optimal allocation of water. In the third step, we use a non-cooperative extraction
model to more accurately reflect the real-world situation in the HRB where water
users are not regulated (Model 3). Comparing the case with salinization when there
is a social planner (Model 2) and without one (Model 3), we can show the differences
that occur when there is no effective regulation of water use.

2.1 Cooperative Extraction Model

Model 1
In most studies in the literature, groundwater is pumped in an environment in which
the pumping of groundwater does not have any impacts on its quality (e.g., Burt
1964). We begin with this assumption and treat the resource from the viewpoint
of a social planner to analyze the optimal extraction of groundwater. Under such
a circumstance, each water user extracts cooperatively (or under the guidance of a
social planner) in order to maximize the total benefit from utilizing groundwater
(Model 1). Thus, he is called a cooperative user. Cooperative users are solving the
following quantity-only problem:

Max{wt }
M

∞∑

t�0

β t f (wt , ht )

s.t. ht+1 � ht + φ1Mwt − φ2R (1)

In Model 1,M is the number of water users. We assume water users are identical
so they have the same net benefit function f (·). The net benefit is a function of the
pumping rate wt . It is also a function of the pumping lift ht , since the pumping cost
is directly associated with the pumping lift.1 The change in ht is a function of the
difference between the recharge to the aquifer R and the net aggregate withdrawal

1Pumping lift is defined as the depth from the ground surface to groundwater.
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of all M users Mwt . The parameters φ1 and φ2 convert changes in the volume of
groundwater stock into changes in the lift of pumping. The net benefit function
satisfies the following properties: f w> 0, f ww< 0, f h< 0, f hh ≤ 0 and f wh< 0. In
Eq. (1), we did not include the return flow of irrigation water since the return flow
will mostly stay in the shallow aquifer. In this way, we are modeling the actual water
consumption.2

Model 2
In the HRB, when there is a saline water layer present in the aquifer, the increase
in the pumping lift will induce the intrusion of saline water and then leads to an
increase in the salinity level of the water resource, denoted as Et in this contribution.
Net benefits are now a function of three variables: wt , ht , and Et . Since the marginal
productivity of a given quantity of water decreases with its salinity level (f wE < 0),
the net benefit decreases in Et (f E < 0, f EE < 0 and f Eh � 0).3 In regions with
salinization problems, water users need to solve a more complicated problem that
we henceforth call the quantity–quality problem:

Max
{wt }

M
∞∑

t�0

β t f (wt , Et , ht )

s.t. ht+1 � ht + φ1Mwt − φ2R

Et+1 � Et + δ(ht+1 − ht ) (2)

where δ measures the impact of changes in the depth to groundwater on the changes
in its level of quality. One unit increase in the pumping lift leads to a δ unit increase
in the salinity level of groundwater. The derivation of the equation of motion for Et

is in Appendix 1.
After solving problem (2), cooperative users will follow the optimal allocation

rule (Appendix 2):

fwt � −M
∞∑

l�1

β�φ1 fht+�
− M

∞∑

l�1

β�φ1δ fEt+�
(3)

Equation (3) says that along the optimal pumping path, the marginal net benefit
of groundwater fwt is equated with the marginal cost of pumping, which is made
of costs that occur in the future. Since pumping one unit groundwater leads to both

2In practice, what determines the level of the water table is the actual water consumption, not
pumping rates. Inmost uses of groundwater, someof thewater pumped is returned to the groundwater
system. The only water that does not return to the aquifer is what evapotranspires from crops
and soils. The part of evapotranspiration is the actual water consumption. Pumping rates may be
irrelevant to the level at which a water table stabilizes. For example, Kendy (2003) shows that
pumping decreases in some counties in Hebei province by more than 50%, yet the water table
declines at the same rate over years. The modeling in this study also reflects this fact.
3The benefit and cost function are separate in the net benefit function. Since Et only enters the
benefit function and ht only enters the cost function, the cross-derivative, f Eh, is zero.
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a φ1 unit increase in the pumping lift and a φ1δ unit increase in the salinity level
(both of these changes are in the future), the marginal cost has two components.
The first term −M

∑∞
��1 β�φ1 fht+�

reflects an increase in the pumping cost of all M
water users due to a larger pumping lift in all the future periods. The second term
−M

∑∞
��1 β�φ1δ fEt+�

reflects the decrease in the benefit for all M water users due
to a higher salinity level in all the future periods. The term on the right-hand side
discounts future costs into current ones.

Comparing the decision rules in the quantity-only problem (Model 1) and that
in the quantity–quality problem (Model 2), it can be seen that the decisions made
by the social planner in seeking the optimal extraction of groundwater resources
are different. One fundamental difference is that the optimal steady-state water level
differs. In a region in which the pumping of groundwater does not affect the salinity
level (i.e., in the case of the quantity-only problem), the second term on the RHS of
Eq. (3) vanishes. Therefore, the marginal cost of extraction is higher in a region with
a salinization problem. Higher marginal costs results in lower pumping rates, which
in turn leads to more water left in the ground at the steady state. Based on this set of
ideas, we develop the first proposition:

Proposition 1: The socially optimal pumping lift is smaller in a region with a salin-
ization problem, compared to that in a region without such a problem (Proof in
Appendix 3).

A second difference is that the value of the groundwater resources also differs in
the two cases. Specifically, when δ is higher (i.e., when the change in the quantity of
groundwater by pumping has a greater impact on the change in quality), the aquifer
becomes more saline given the same volume of pumping. Since higher salinity levels
reduce benefits from using groundwater in the future, the value of groundwater is
lower. Following this logic, we establish a second proposition:

Proposition 2: In a regionwith a salinization problem, the value of groundwater (the
present value of net benefits from using groundwater in all future periods) decreases
in the magnitude of impact that groundwater extraction has on the salinity level of
groundwater (Proof in Appendix 4).

2.2 Non-cooperative Extraction Model

Model 3
Unlike the assumption of the social planner model, water users in China are not
regulated when withdrawing water from a common aquifer. Without any regulations,
water users are not likely to cooperate among themselves. Each individual water user
extracts groundwater in order tomaximize his ownprofit independent of that of others
and thus is called a non-cooperative user. Mathematically, a non-cooperative user i
is solving the following non-cooperative extraction problem (Model 3):
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Max{wi t }

∞∑

t�0

β t f (wi t , Et , ht )

s.t. ht+1 � ht + φ1[wi t +
M∑

j ��i

w∗
j ] − φ2R

Et+1 � Et + δ(ht+1 − ht ) (4)

Here, user i is involved in a non-cooperative difference game with other water
users. When user i makes his decision, he takes the pumping rates of other users,
w*
j as given. The solution of this model is a feedback Nash equilibrium. In our

work, since we will only solve the non-cooperative extraction problem in the case
in which there is a saline water layer in the aquifer, we identify Model 3 as the
non-cooperative extraction problem (although its complete name would be the non-
cooperative extraction problem in the presence of salinization).After solvingproblem
(4), the non-cooperative user i will follow the decision rule that can be expressed as
(Appendix 5):

fwi t � −
s∑

��1

β�φ1 fht+�
−

s∑

��1

β�φ1δ fEt+�
+

s∑

��1

β�

M∑

j ��i

φ1

∂w∗
j

∂ht+�

+
s∑

��1

β�

M∑

j ��i

φ1δ
∂w∗

j

∂Et+�

(5)

Comparison of the RHSs of Eqs. (3) and (5) shows that, given the same pumping
lift and the same level of salinity, non-cooperative users (Model 3) extract more than
cooperative users (Model 2, Appendix 6). Similar to the quantity–quality case, the
term−∑s

��1 β�φ1 fht+�
−∑s

��1 β�φ1δ fEt+�
reflects the marginal cost of pumping due

to higher pumping lifts and higher salinity levels in the future. However, when water
users are pumping groundwater in an environment characterized by non-cooperative
extraction, no single individual accounts for the social cost of his pumping, which is
the increased future pumping costs of other users that will accrue due to the drawing
down of the water level. Hence, non-cooperative users underestimate the marginal
cost by (M −1)

∑s
��1 β�φ1 fht+�

+ (M −1)
∑s

��1 β�φ1δ fEt+�
. In addition, water users

also react to a lower pumping lift or a salinity level by increasing their pumping rates

(
∂w∗

j

∂ht
< 0 and

∂w∗
j

∂Et
< 0,Appendix 6). This strategic behavior ofwater users (awater user

may pump more than what he would had there been no other users to discourage the
extraction of others) is discussed in detail in Negri (1989) and Provencher and Burt
(1993). Knowing this, user i places a lower value on themarginal cost of pumping (by

a degree of
∑s

��1 β�
∑M

j ��i φ1
∂w∗

j

∂ht+�
+

∑s
��1 β�

∑M
j ��i φ1δ

∂w∗
j

∂Et+�
). This lower valuation

occurs because any water he conserves for future use (as would occur in the case of
the social planner in the quantity–quality problem)will be pumped out by other users.
As a result, given the same pumping lift and the same salinity level, non-cooperative
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users will extract more than what they would extract had water users cooperate in
pumping.

Although the over-extraction of non-cooperative users does not necessarily lead
to both higher pumping lifts and higher salinity levels at the steady state, it does in
this case. The linear relationship between changes in salinity level and changes in
pumping lifts makes it that higher pumping lifts are always accompanied by higher
salinity levels. Following this logic, we form

Proposition 3 In regions with salinization problems, compared to cooperative
extraction, non-cooperative extraction leads to both a higher pumping lift and a
higher salinity level at the steady state (Proof in Appendix 6).

3 Empirical Specification and Parameterization
of the Model

Analyses of the theoretical models in the previous models have provided a basic
understanding of the way to optimally use groundwater in the specific environment
of theHRBwhere extraction affects both the quantity and quality of groundwater. The
next step is to empirically examine the propositions developed from the theoretical
models. In this section, before presenting the results of the empirical analysis, we
will first specify the functional form of the benefit function and introduce the data
sources and information that will be drawn on to parameterize the models.

The specified net benefit function is as follows:

f (wt , ht , Et ) � eαEt−θ(Et )2 (awt − 0.5bw2
t ) − chtwt (6)

Following several economics studies that analyze a quantity-only problem (Fein-
erman and Knapp, 1983; Rubio and Casino, 2001), we use a quadratic benefit func-
tion, awt −0.5bw2

t , where a and b are the intercept and slope of the demand function
for irrigation water, respectively. Pumping cost is a function of the volume pumped,
wt , and the pumping lift, ht . The parameter c is the marginal cost of lifting one
unit of groundwater by one unit of pumping lift. Unlike the studies that analyze a
quantity-only problem, in the net benefit function there is an exponential function
eαEt−θ(Et )2 that measures the magnitude of the reduction in the crop yield in response
to higher salinity level of the irrigation water. This exponential function has been
used in several agronomic studies, and the parameters α and θ in the exponent are
also estimated in these studies [e.g., Van Genuchten and Hoffman, 1985].
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3.1 Parameterization of the Model

Parameter values are obtained from different sources. Values of parameters in the
quadratic benefit function and the pumping cost are estimated using the ChinaWater
Institutions and Management (CWIM) survey data that we collected in 2004.4 Net
benefit from water use is calculated as revenue from agricultural production minus
cost of variable inputs other than water. These inputs include labor, fertilizer, pesti-
cide, herbicide seed, plastic sheeting, and machinery (for most rural households in
China, this means the cost of renting machine). The linear parameter a and quadratic
parameter b are estimated using a random-coefficient model with net benefit as the
dependent variable and water use in linear and quadratic terms as explanatory vari-
ables. In the 2004 CWIM, we collected information on the depth of water in the
village, characteristics of pumps (size, water per hour, lift, etc.), electricity price,
level of water use, and the amount farmers pay for water. Using this set of informa-
tion, we calculate the average pumping cost to be used in the model.

Rarely will farmers know the level of salinity of the irrigation water they use, so
we are unable to estimate parameters in the exponential function eαEt−θ(Et )2 using
our survey data. These parameters are estimated using the experimental data on the
levels of crop yields and different salinity levels of irrigation water that are reported
in Shao et al. (2003).

Even less is known about the exact relationship between changes in salinity level
and changes in the depth of water. Hengshui County is among the areas that have the
highest degree of salinization problem inHebei province. The salinity levelmeasured
byEC increases by 0.81 dS/m (≈0.5427 g/L) between 1975 and 1995; thewater levels
dropped by 43.53 m during the same period (Fig. 1).

The value of δ, the parameter that measures the relationship between the changes
in the salinity level and the water level, is around 0.012 gL/ m for Hengshui County.
Hence, a value of 0.02 can be considered as large. Since the value of δ will differ
across places, in the simulations, we choose a range of values of δ. These values
range from very small to large, 0.0001, 0.04, 0.1, and 0.2.

4In the 2004 ChinaWater Institutions andManagement Survey, the enumeration team collected data
in 24 communities in Hebei province. In order to guarantee an adequate sample of communities in
each of several water usage situations, the communities were chosen randomly from three randomly
selected counties according to location, which in the Hai River Basin often is correlated with water
scarcity levels. Xian County is located along the coastal belt (the most water scarce area of China);
Tang County is located along the inland belt (an area with relatively abundant water resources that
are next to the hills and mountains that rise in the eastern part of Hebei province); and Ci County
is located in the region between the coastal and inland belts. The survey was conducted by inter-
viewing three different types of respondents in each community (or village): the community leader;
well manager (typically three randomly selected well managers per community); and households
(four randomly selected households). We use separate questionnaires for each type of respondents.
Although most of the data in the analysis come from the household questionnaire, we also use some
data from the community leader and well manager questionnaires. Two major blocks of data are
used from the household survey: data on household production activities and data on household
water use.
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Fig. 1 Changes in the water level and the salinity level 1975–1995, Hengshui County, Hebei
Province. Source Hebei Bureau of Geology Reconnaissance (2003)

Table 1 Values of
parameters in the model

Parameter Description Value

β Discount factor 0.9434

a Intercept of marginal
net benefit

$0.39/m3

b Slope of marginal net
benefit

0.007

EC0 Initial salinity level 0.582 g/L

h0 Initial depth-to-water 60 m

S Specific yield 0.00157

c Marginal pumping
cost

$0.000128/m3/m lift

α Coefficient on the
linear term in
salinity-yield
function

0.0025627

θ Coefficient on the
quadratic term in
salinity-yield
function

0.0111101

A discount rate of 6% is used. The initial water depth is set at 60 m. The value
of a specific yield is taken from Chen et al. [P167, 1999]. The level of recharge is
set at 5 cm expressed in terms of water depth, which is the value used by Shen et al.
(2000). In an analysis in Table 2, we also increase it to 1 m. The rest of the parameter
values are listed in Table 1.
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4 Results of the Empirical Analysis

We solve the dynamic optimization problems numerically (the quantity-only prob-
lem, the quantity–quality problem, and the non-cooperative extraction problem)
using the general algebraic modeling system (GAMS). When using the dynamic
programming technique with the value-iteration algorithm to solve the problems
numerically, we use the “collocation” method described in Judd (1998) and Miranda
and Fackler (2002). In particular, the Chebychev polynomial is used to approxi-
mate the infinite horizon value function of water users. The solutions will provide
the pumping path, the level of value function, and the level of the pumping lift
and salinity level at the steady states in different problems. Using these results, we
will compare the dynamic properties of the pumping path and test the propositions
developed in the previous section.

4.1 Quantity-Only Problem Versus Quantity–Quality
Problem

In the first part of the empirical analysis, we vary the value of the parameter, δ which
measures the impact of groundwater extraction on changes in the salinity level.
When δ is zero, there is no salinization problem and users are solving a quantity-
only problem (Model 1). When δ takes on nonzero values, there is a salinization
problem and users are solving a quantity–quality problem (Model 2). Comparison
of the solutions to the two problems will enable us to examine Propositions 1 and
2 in order to answer the question “How does the optimal allocation of groundwater
resource differ between the regions with salinization problems and regions without
such problems?”

Comparison of the solution to a quantity-only problem and the solution to a quan-
tity–quality problem shows that the way to optimally use groundwater is different
between a region with a salinization problem and a region without a salinization
problem. The pumping paths differ (Fig. 2a).

When the value of δ is between 0.04 and 0.2, compared to awater user in the region
without a salinization problem, in a region with a salinization problem a water user
pumps less at all times. The pumping path is more complicated when the value of is
0.0001 (Fig. 3a).

Compared to a water user in the region without a salinization problem and in
a region with a salinization problem, a water user pumps more at the beginning of
extraction. The rate of fall in his pumping rate is higher. After a certain period of time,
his pumping rate drops below that of a water user in a region without a salinization
problem. Intuitively, in the region with a salinization problem, pumping will lead to
an increase in the salinity level of groundwater and thus reduces the benefit of future
groundwater use. Under such a circumstance, if the impact of changes in water depth
on the salinity level is small, it is optimal to pump more at the beginning when the
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Fig. 2 Comparison of cooperative extraction with and without salinization problem (δ � 0.04; 0.1;
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quality of groundwater is high. It is then optimal to reduce the pumping rate rapidly
as the quality of groundwater deteriorates. If the impact of changes in water depth on
salinity level is large, pumping will be penalized heavily in terms of benefit reduction
even at the beginning, so it is optimal to pump less at all periods.

The comparison also provides evidence for Proposition 1 that the socially optimal
pumping lift is smaller in regions with salinization problems (Figs. 3b and 4b). Even
in the case of δ is 0.0001, although the heavy pumping ofwater users in the early stage
leads to a more rapid increase in the pumping lift in the region with a salinization
problem, the increase slows later when the pumping rate drops rapidly. At the steady
state, the pumping lift is smaller when there is a salinization problem compared to
when there is no salinization problem. Intuitively, since the pumping of groundwater
leads to increases in the salinity level (Figs. 2c and 3c), the marginal net benefit of
groundwater decreases and more water is left in the groundwater at the steady state.

The result of comparison also supports Proposition 2 that in regions with saliniza-
tion problems, the value of groundwater decreases in the magnitude of impact that
groundwater extraction has on the salinity level of groundwater. When δ is 0.04 and
assume the level of recharge is five centimeter expressed in terms of water depth, the
present value of net benefits from using groundwater is reduced by more than 10%
compared to the scenario when δ is 0 (Table 2, Column 3).

The present value of net benefits from using groundwater is reduced by almost
half when δ is 0.2. It is also consistent with what we have observed in the field. In
our pretest and formal interviews with farmers in the HRB, we asked the following
question: “Suppose China’s government starts a payment for water program. You
will be paid to stop cultivation to conserve water, how much is your willingness to
accept?” We interviewed farmers in two different counties. In Cang County, there
is a serious salinization problem in most places, and in Luancheng County there
is no salinization problem. In Cang County, the willingness of farmers to accept
($656/ha/year) is about $300 less than that in Luancheng County ($938/ha/year). In
the region with a salinization problem, since the future benefits water users could
obtain are lower due to the more saline water, water users value groundwater less.

4.2 Cooperative Extraction Versus Non-cooperative
Extraction

In the second part of the empirical analysis, we solve the quantity–quality problem
numerically using the same nonzero value of δ as in the non-cooperative extrac-
tion problem (Model 3). A different game approach is used for the non-cooperative
extraction problem. By comparing the solutions to the two problems, we are able to
examine Proposition 3 in order to answer the question “In regions with salinization
problems, how does the impact of pumping on groundwater quantity and quality
differ when water users extract in a cooperative way and when water users extract in
a non-cooperative way?”
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Comparison of the solution to the quantity–quality problem and the non-
cooperative extraction problem uncovers the difference in the pumping path of
cooperative users and non-cooperative users (Fig. 4a). At the early stage of extrac-
tion, non-cooperative users pumpmore than cooperative users since non-cooperative
users ignore the social cost of their pumping. As a result, the pumping lift that non-
cooperative users face increases rapidly and they are forced to reduce their pumping
rates sooner due to the higher pumping costs. In fact, after a period of time, non-
cooperative users are pumping less than cooperative users.

It is also observed that at the steady state, both the pumping lift and the salinity
level in the cooperative extraction problem are smaller than that in a non-cooperative
problem (Figs. 4b and 5c). This result supports Proposition 3. Thus, over-extraction
by non-cooperative users causes both the depletion of the water resource and the
deterioration of water quality.

4.3 Cooperative Extraction Versus Different Types of Myopic
Extraction

Since currently there is no effective management in the Hai River Basin, we are
also interested in the extraction behaviors when there is no regulation. We look at
three different types of water users that display different types of myopic behavior:
the purely myopic water users; the myopic with update water users; the only salinity
myopic water users. The purely myopic water users maximize their own net benefit
from the current period. They completely ignore the dynamics of both water stock
and water salinity. The myopic with update water users also only maximize one-
period net benefit. However, they realize that somehow the benefit they obtain from
the same amount of water is less than that from previous years, although they do not
realize it is the result of the interaction between water stock and salinity level. So
they will update their benefit function based upon observations from previous years.5

The only salinity myopic water users maximize own net benefit over time, but they
do not realize the interaction between water stock and salinity level. The difference
between the cooperative water users and the only salinity myopic water users is the
latter does not consider the dynamics of salinity when maximizing the present value
of net benefit.

The results show that all types of myopic water users lead to higher water depth
(Fig. 5b) and higher salinity level (Fig. 5c) at the steady state in comparison with
the optimal pumping case. Among the myopic users, the purely myopic users are
pumping more than other types of myopic users in all periods (Fig. 5a). As a result,
they deplete the water stock and quality more severely than other types of myopic
users. Between the only salinity myopic users and the myopic with update water
users, the pumping behavior of the only salinity myopic users is closer to that of
optimal users. This is because they are maximizing the net benefit over time. Hence,

5In simulations, the benefit function is parameterized using values from the year before.
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Fig. 5 Comparison of cooperative and myopic extraction with salinization. a Comparison of the
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depending on the characteristics of farmers and the village, pumping patterns are
different when there is no regulation. In villages where the village leader puts efforts
in playing the role of the social planner, farmers may be more like the only salinity
myopic users since they are guided by the village leader to internalize their externality
on other users. In those villages, the pumping of users is quite close to the optimal
pumping case. In villages where farmers are more experienced or more motivated,
farmers may behave like the myopic with update users, taking time to update their
benefit function and revise their input uses. In these villages, farmers will also pump
less than purely myopic users.

Our results also show that magnitudes of Gain From Management (GFM) are
also different, depending on the degree of salinization types of behavior (Table 2,
columns 5 and 6). In most cases, the GFM is larger when there is a salinization
problem in comparison with when there is no salinization problem. The GFM can be
double or more than five times higher when there is a salinization problem (column
6). The GFM is higher when water users are purely myopic than when water users
are myopic with an update or only salinity myopic. However, when the recharge
rate is high and farmers are only salinity myopic users, the GFM is much smaller
than other cases. It is only 0.4 or 0.9 of the GFM when there is no salinization. Our
findings indicate that the management decisions may differ across places. In villages
where the aquifer receives high volume of recharge and farmers are only salinity
myopic users, the cost of managing groundwater may be higher than the benefit, as
pointed out in Gisser and Sanchez (1980). In other villages, however, the benefit of
managing groundwater may overweigh the cost.

5 Conclusion

In this contribution, we have discussed the analytical framework for the optimal allo-
cation of groundwater, both when there is no salinization problem and when there
is a salinization problem. We also have compared the case when water users coop-
erate in pumping and the case when water users do not. Results from the numerical
computation of the models are used to empirically examine propositions developed
from the theoretical models. The lessons learned can help scholars and policymakers
understand water use patterns in the HRB and provide some insights into how China
should manage water (or whether they should manage it at all.

Results of the empirical analysis show that in a region where there is a salinization
problem like in the HRB, the way to manage groundwater depends crucially on local
conditions. For example, when extraction leads to small declines in the salinity level,
it is actually optimal to pump at high rates in the early stage of extraction. Given
this characteristic of the optimal pumping path, the heavy extraction we observe in
some areas in the HRB does not necessarily indicate that groundwater resources are
being overused. To judge whether we are overusing groundwater resources, we need
to know which stage of extraction we are in. In fact, as already pointed out by Howitt
and Nuckton (1981), even over-extraction is not necessarily bad during the earlier
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stages of extraction. If we are still in the early stage of extraction and it is still a long
time before the steady state is reached, the pumping lift is still lower than the socially
optimal level. Over-extraction is not harmful since it accelerates the convergence to
the steady state by increasing the pumping lift rapidly.

Despite the potential danger of losing freshwater stock caused by both aquifer
salinization and groundwater extraction, currently, the quality of groundwater and
its quantity are managed in isolation of each other in the HRB. Inmost counties in the
HRB, environmental protection bureaus are responsible formaintainingwater quality
and water resource bureaus are in charge of regulating groundwater extraction (Min-
istry ofWater Resource et al. 2001). Under such a disjoint managing scheme, policies
recommended by environmental protection bureaus may be inefficient. For exam-
ple, massive investments in improving water quality may stimulate more extraction
by farmers. Heavy extraction of water, by raising the salinity level of groundwater,
makes these investments totally wasted. In fact, if the extraction of groundwater is
not regulated, any measures that are intended to maintain the salinity level of fresh-
water will be in vain. In addition, the target level of optimal pumping lift set by the
water resource bureaus will be incorrect. Hence, joint quantity–quality management
is required in the HRB.

An equally important aspect that requires consideration before leaders make poli-
cies to manage groundwater resources is the cost and benefit of management. Empir-
ical results of our study show that without regulations, the total benefit of all non-
cooperative users obtain from extracting groundwater is lower than that obtained by
cooperative users who act as if their extraction ismanaged by a social planner. Hence,
there is a gain from managing groundwater and it is measured by the increase in the
total benefit from using groundwater. However, the cost of management may easily
exceed the benefit due to the fragmented and small-scale nature of China’s farmers in
hundreds of villages in the HRB. For example, the cost of measuring and enforcing
water use on tens of millions of small parcels throughout HRB and collecting fees
on a farmer-by-farmer basis may exceed the benefits of volumetric pricing.

If the result of cost-benefit analysis favors the implementation of a certain policy,
regions with lower cost of implementation should be given priority. One such policy
could be the ‘payment-for-water’ program. Empirical results of our study indicate
that the payment that farmers are willing to accept to retire land is lower in regions
with salinization problem. Thus, if China’s government is to implement payment-
for-water program, regions with salinization problems should be given priority since
the cost (the payment to retire land) is lower there.

Appendix 1. Derivative of the Equation of Motion
for the Groundwater Salinity Level (Et)

In this study, we simplify our analysis by only focusing on the case when the saline
water moves into the deep aquifer. In Fig. 6, the extraction of deep aquifer water,
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Fig. 6 The process of saline water intrusion due to groundwater extraction

Mwt , leads to an increase in the depth-to-water in the deep aquifer, ht . The hydraulic
head in the deep aquifer,H1, keeps declining as a result.When the pressure difference
between the head in the saline water layer, H2, and that in the deep aquifer is large
enough, the saline water can move into the deep aquifer through the aquitard. The
movement of saline water in response to the change in the head difference, Q12,
accounts for the phenomenon of increasing salinity level in the deep aquifer.

In the language of hydrology, Darcy’s Law can be employed to formalize the
movement of saline water.6 Suppose the hydraulic head of the deep aquifer is linear
in the depth-to-water: H1t � −c1ht + d1 and H2t � c2

Qt

As + d2, where Qt is the stock
of the saline water, A is the area of saline water layer, and s is the specific yield, the
volume of saline water that moves into the deep aquifer at time t can be expressed as

Qt − Qt+1 � Q12 � −K A
H1t − H2t

b
� −K A

b

[
(−c1ht + d1) −

(
c2

Qt

As
+ d2

)]

(7)

where K is the hydraulic conductivity of the aquitard (unit: volume per unit of time),
and b is the thickness of the aquitard. From (7), we have Qt − Qt+1 ∝ ht+1 − ht .7 We
assume that the change in the level of salinity, Et+1 − Et , is proportional to the total
amount of intruded saline water at time t, Q12. Hence, we have Et+1 − Et ∝ ht+1 −
ht . Suppose Et+1 − Et� δ(ht+1 − ht), we obtain the equation of motion for Et :

Et+1 � Et + (ht+1 − ht)

6Darcy’s Law states that the volume discharge rate Q is directly proportional to the head drop h1 −
h2 and to the cross-section area A, but it is inversely proportional to the length difference, L (Wang
and Anderson 1995): Q � −K A h1−h2

L where K is the hydraulic conductivity of the medium (e.g.,
clay or sand). The negative sign signifies that groundwater flows in the direction of head loss.
7Qt −Qt+1 � K Ac1

b ht +
K Ac2
Asb Qt − K A

b (d1−d2)�> Qt+1 � (1− K Ac2
Asb )Qt − K Ac1

b ht + K A
b (d1−d2)

�> Qt+2 � (1 − K Ac2
Asb )Qt+1 − K Ac1

b ht+1 + K A
b (d1 − d2) �> Qt+1 − Qt+2 � (1 − K Ac2

Asb )(Qt −
Qt+1) +

K Ac1
b (ht+1 − ht ).
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Appendix 2. Derivation of the Euler Equation
for the Cooperative Extraction Model

We rewrite (2) as

Max{w[t]} L � M
∞∑

t�0

β t f (wt , Et , ht )

−
∞∑

t�0

β t+1λt+1[ht+1 − (ht + φ1Mwt − φ2R)]

−
∞∑

t�0

β t+1μt+1[Et+1 − (Et + δ(φ1Mwt − φ2R)]

The first-order condition for this problem gives:

∂L

∂wt
� fwt (wt , Et , ht ) + βφ1(λt+1 + δμt+1) � 0 (8)

∂L

∂ht
� M fht (wt , Et , ht ) + βλt+1 − λt � 0 (9)

∂L

∂Et
� M fEt (wt , Et , ht ) + βμt+1 − μt � 0 (10)

�> λt+1 + δμt+1 � − fwt (wt , Et , ht )/(βφ1) (8)

Lagging (8) by one period gives:

λt + δμt � − fwt−1 (wt−1, Et−1, ht−1)/(βφ1) (11)

(9) +δ∗ (10)⇒

β(λt+1 + δμt+1) − (λt + δμt ) � −M[ fht (wt , Et , ht ) + δ fEt (wt , Et , ht )] (12)

Plugging (8) and (11) into (12) gives:

fwt−1 (wt−1, Et−1, ht−1) � β fwt (wt , Et , ht ) − βφ1M[ fht (wt , Et , ht )

+ δ fEt (wt , Et , ht )] (11)

Rolling equation (11) forward one period gives:

fwt � β fwt+1 − βφ1M( fht+1 + δ fEt+1 )

� β[β fwt+2 − βφ1M
(
fht+1 + δ fEt+1

)
] − βφ1M

(
fht+2 + δ fEt+2

)
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� · · ·

� βs fwt+s −
s∑

��1

β�φ1M
(
fht+�

+ δ fEt+�

)
(12)

Leading it forward into infinite future, we obtain

fwt � lim
s→∞

{
βs fwt+s −

s∑

��1

β�φ1M( fht+�
+ δ fEt+�

)

}
(13)

Since β is the discount factor that is well within the range of 0 and 1, (13) gives

fwt � −M
∞∑

��1

β�φ1 fht+�
− M

∞∑

��1

β�φ1δ fEt+�
(14)

Appendix 3. Derivation of Proposition 1

At the steady state, wt-1� wt� w∗. We use w*, E*, and h*to denote the value at the
steady state. Equation (14) now becomes:

(1 − β) fw(w
∗, E∗, h∗) + βφ1 fh(w

∗, E∗, h∗) + βφ1δ fE (w
∗, E∗, h∗) � 0

Using the implicit function theorem gives:

∂h
∗

∂δ
� − βφ1 fE (w∗, E∗, h∗)

(1 − β) fwh(w∗, E∗, h∗) + βφ1 fhh(w∗, E∗, h∗)

We have f E < 0, 1− > 0, f wh< 0 and f hh< 0. Therefore,

∂h∗

∂δ
� − (−)

(+)(−) + (−)
< 0

Appendix 4. Derivation of Proposition 2

Bellman equation for problem s(2) is:

V (h, E) � Max
w

{
f (w, h, E) + βV (h′, E ′)

}

s.t. h′ � h + φ1Mw − φ2R

E ′ � E + δ(h′ − h) (15)
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Using the Envelope Theorem gives:
Vδ � βVE ′ (h′, E ′) · (h′ − h) ⇒ Vδ < 0 since VE ′ < 0 and h′ > h.

Appendix 5. Derivation of the Euler Equation
for Non-cooperative Extraction Model

we rewrite (4) as

Max{wi t }
L �

∞∑

t�0

β t f i (wi t , Et , ht ) −
∞∑

t�0

β t+1λt+1(ht+1 − ht − φ1wi t − φ1

M∑

j ��i

w∗
j + φ2R)

−
∞∑

t�0

β t+1μt+1(Et+1 − Et − φ1δwi t

− φ1δ

M∑

j ��i

w∗
j + φ2δR)

The first-order condition for this problem gives:

∂L

∂wt
� f iwt

(wt , Et , ht ) + βφ(λt+1 + δμt+1) � 0 (16)

∂L

∂ht
� fht (wt , Et , ht ) + βλt+1 − λt + φ1β(λt+1 + δμt+1)

M∑

j ��i

∂w∗
j

∂ht
� 0 (17)

∂L

∂Et
� fEt (wt , Et , ht ) + βμt+1 − μt + φ1β(λt+1 + δμt+1)

M∑

j ��i

∂w∗
j

∂Et
� 0 (18)

Using the same manipulations as in the steps to obtain the Euler equation for the
cooperative model, we obtain:

fwi t−1 (wi t−1, Et−1, ht−1) � β fwi t (wi t , Et , ht )

⎧
⎨

⎩1 +
M∑

j ��i

φ1

∂w∗
j

∂ht
+

M∑

j ��i

φ1δ
∂w∗

j

∂Et

⎫
⎬

⎭

− βφ1 fht (wi t , Et , ht ) − βφ1δ fEt (wi t , Et , ht ) (19)

Rolling equation (19) forward one period and continuing to substitute for terms
in t + 1 gives:

fwi t � βs fwi t +
s∑

��1

β�

M∑

j ��i

φ1

∂w∗
j

∂ht+�

+
s∑

��1

β�

M∑

j ��i

φ1δ
∂w∗

j

∂Et+�
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−
s∑

��1

β�φ1 fht+�
−

s∑

��1

β�φ1δ fEt+�
(20)

which as s goes to infinity becomes

fwi t �
s∑

��1

β�

M∑

j ��i

φ1

∂w∗
j

∂ht+�

+
s∑

��1

β�

M∑

j ��i

φ1δ
∂w∗

j

∂Et+�

−
s∑

��1

β�φ1 fht+�
−

s∑

��1

β�φ1δ fEt+�

(21)

Appendix 6. Derivation of Proposition 2: Over-Extraction
Under Non-cooperative Extraction

Applying the implicit function theorem to (16) gives

∂w∗
t

∂ht
� − fwh

fww
� − (−)

(−) < 0 and ∂w∗
t

∂Et
� − fwE

fww
� − (−)

(−) < 0.

Therefore the term, φ1
∑M

j ��i

(
∂w∗

j

∂ht
+

∂w∗
j

∂Et

)
, is negative.

Given the same depth-to-water and the same salinity level, the right-hand side of
(5) is lower than that of (3). Consequently, wit-1 > wt-1 since f ww < 0.
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Chapter 7
Managing Urban and Agricultural Water
Demands in Northern China: The Case
of Luancheng County, Hebei Province

Siwa Msangi

Abstract Despite efforts to reform management of water resources, groundwater
levels have continued to decline steadily on the North China Plain, leading to serious
environmental concerns and impacts. While policy makers have looked to efforts
aimed at improving the efficiency of field-level irrigation and strengthening owner-
ship and property rights in local resource management, hydrologists have asserted
that more direct control of consumptive use patterns of water is needed. In this contri-
bution, we show how both agricultural and urban demands for water can bemanaged,
so as to ameliorate the depletion of groundwater resources in the North China Plain
and promote long-run sustainability of limited water resources.

1 Introduction

Northern China’s deepening water crisis has attracted increasing attention from pol-
icy makers and water specialists over recent years (Crook and Diao 2000). The threat
of a water crisis has always loomed over the region, given the bias in the distribu-
tion of water resources toward the South and an increasingly dense urban and rural
populace. Although the Huai, Hai, and Huang (Yellow) river basins in the North
China Plain account for 24% of GDP (Kahrl et al. 2005) and generate 27% of the
national production of grain (Liu 1998), the region has 7.5% of China’s water (Varis
and Vakkilainen 2001). The decreasing reliability of water available for irrigation
has also raised concerns about national food security (Heilig et al. 2000; Moench
et al. 2003; Crook 1999) and the potential deepening of poverty and inequality for
rural farmers who depend on irrigated agriculture for household income (Huang et al.
2002).

The gradual expansion of irrigated acreage in North China has had a severe effect
on groundwater resource levels over time. A tremendous increase in grain production
was achieved largely by expanding the acreage under maize and wheat, while that
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of dryland crops (millet and sorghum) decreased (Crook 1999). The expanded culti-
vation of winter wheat, in particular, requires an increase in irrigation during the dry
winter months and is one of the main causes for the drawdown on groundwater levels
(Yang et al. 2002). China’s falling water table also has created other environmental
problems, such as land subsidence (Zhang and Zhang 1995) and seawater intrusion
(Lohmar et al. 2003; World Bank 2002).

Urban demand for water has also been increasing rapidly in China, causing greater
water stress and competition with the agricultural sector for limited water resources.
While agriculture accounts for most of the water use in China (about 65% in 2003),
the increasing rural to urban migration and the resulting domestic and industrial
water requirements have intensified the competition for water (World Bank 2001b).
Migration from rural to urban regions is taking place at an unprecedented rate in
China; from 1952 to 2003 the proportionate urban population tripled from 13 to 39%
to more than half a billion (Liu and Diamond 2005). This has exerted pressure on
water resources for domestic and industrial use, and between 1980 and 1993, urban
water consumption increased by 350%, and industrial water consumption doubled
at the cost of irrigation use, which declined by about 4%, even though irrigated area
increased by about 10% (World Bank 2001b).

Given the increasing stress onwater resources on theNorthChinaPlain fromurban
and agricultural uses, policymakers and resource managers have considered several
options to expand supply—including that of large-scale surface water transfers. To
alleviate the heavy dependence of the North on groundwater, which accounts for
64% of its total water use (Kahrl et al. 2005), a large-scale project to transfer water
between the Yangtze River in the south to the North China Plain was conceived.
The infrastructure costs of such an undertaking are high, and the Ministry of Water
Conservancy undertook a feasibility study to determinewhich transfer route (Eastern,
Western, orMiddle)will be chosen.1 However, given the high unit costs of transferred
water, it is challenging for agricultural and rural users to afford it.Given the increasing
levels of urbanization and industrialization in Northern China, it would primarily be
used to meet growing urban domestic and domestic demands.

Given that transfers may not benefit agricultural users, other policy interventions
need to be considered to address the continuing competition between agricultural
and urban demands for limited groundwater resources. According to some experts
(Zhong et al. 2017; World Bank 2001a), one of the reasons why China’s past policy
efforts failed to halt the decline of the groundwater table on the North China Plain
is because they did not promote any real water savings.2 Although the promotion of
improved irrigation technologies and irrigationmanagement practices aid in reducing
the total water applied to a farmer’s fields, increasing evidence has pointed to the fact
that such measures are not enough in promoting sustainability of water usage within

1Themiddle route is themost likely option to be chosen andwould supply the northwith high-quality
water with the help of gravitational force (Liu 1998).
2In the rest of the chapter, the term “real water savings” refers to the reduction in non-recoverable
water losses that occur through such mechanisms as evapotranspiration or nonessential transporta-
tion, rather than through the reduction in seepage losses, which can be recovered further downstream
in the water basin (Foster et al. 2003).
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a groundwater basin (Zhong et al. 2017). In fact, with the exception of reducing water
flows into “sinks,” only those modifications to irrigation and cropping patterns that
reduce non-beneficial evaporation and evapotranspiration actually represent “real”
water savings (Foster 2000). As Kendy (2003) points out, in groundwater villages
in most places in Northern China, the real losses in water from the aquifer are
represented by that water which does not return to the aquifer after it is pumped onto
the field; water accounting exercises mostly show clearly that the main consumption
of water from agriculture is mostly that which evapotranspires from the crop and the
soils.

Therefore, researchers andpolicy analysts should consider a range of policy instru-
ments that might achieve real water savings through a reduction in the consumptive
use of water on the North China Plain, including the regulation of land usage, so as to
limit the total irrigated area of a highly consumptive crop such as winter wheat. Such
a policy would run counter to the government’s efforts to promote grain security,
which necessitates a strong case being made for this type of an instrument, over an
alternative price-based one for agricultural or urban water use.

In this contribution, we examine possible strategies to deal with the steady deple-
tion of the groundwater resources on the North China Plain and to compare their
efficacy and impact. In order to carry out our analysis, we employ an economic
framework to demonstrate the impact of optimally managing the consumptive use of
water in agriculture at the aggregate basin level through the adjustment of cropping
patterns, so as to create real water savings and promote both the long-term hydrologi-
cal and economic sustainability of the groundwater aquifer. We also showwhat other
policy instruments might be applied to manage the demand of urban water use and
evaluate the overall effect on user benefits and the groundwater basin, in relation to the
optimal policy. Embedded within our analytical framework is a dynamic economic
model of groundwater usage for a specific area of theNorth China Plain—Luancheng
County—which determines the optimal cropping pattern that will achieve the reduc-
tion in total evapotranspiration necessary to maintain sustainable groundwater use
within the region’s agricultural economy.

2 Materials and Methods

In this section, we describe the essential features of an integrated economic model
of agricultural production and groundwater usage that is used to prescribe necessary
adjustments to the cropping patterns on the North China Plain, aimed at reducing
the consumptive use of water to a sustainable level. The essential features of both
the local hydrology and the agricultural economy are combined into an integrated
analytical framework in which the usage of groundwater in agricultural production
can be studied. The results of this analysis are then compared to the recommendations
of other authors in the literature and motivate the institutional analysis that follows
in the later sections of the contribution.
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The economic model used to study the aggregate-level management of crop con-
sumptive use and groundwater usage in Luancheng County consists of two essential
components. The first component of the model is an agricultural production model
that represents the cropping behavior of agricultural producers in Luancheng County
and their use of groundwater for irrigation. The second component is a simplified
hydrological model of the aquifer underlying Luancheng County and the neighbor-
ing urban center of Shijiazhuang City. We briefly discuss each of these components
and describe how they are integrated into a unified analytical framework.

2.1 Agricultural Production Model

The agricultural model is calibrated to the cropping patterns that are observed within
the county and incorporates a measured relationship between yields and the amount
of water and fertilizer used as inputs. By embedding an explicit yield function within
the model, we allow the model to respond to changes in water availability by either
changing the intensity of the inputs used in production or by adjusting the area of land
put into cultivation. The specific form of the yield function is given by the following
quadratic function

y � [
αN αW

]
[
xN
xW

]
− [

xN xW
]
[

γNN γNW

γWN γWW

][
xN
xW

]
� α′x − x′0x (2.1.1)

where y is the yield a given crop, and xN are the quantities of water and fertilizer
allocated to crop production. The equation below for the full multi-input, multi-
output production model shows how the yield function is incorporated into the profit
maximization problem of the producer.

max
xk

∑

k

[
pkak

(
α′

kxk − x′
k�kxk

) − φk(ak)
2 − ω′

kxk
]

subject to
∑

k

ak ≤ A (land) (2.1.2)

In this multi-input and multi-output production model, each crop has a separate
yield function, and the crop-specific production decisions are linked solely through
the constraint on total land available—in manner similar to that used by Just et al.
(1983).

The calibration in crop area is achieved through the employment of the positive
mathematical programming principle of Howitt (1995)—referred to, popularly, as
PMP. The PMP calibration is embodied in the parameter φk , which is derived from
a shadow value λk on the constraints that restrict the non-calibrated model to the
base crop areas {a1 . . . ak}. The parameter value is calculated from the relationship,
φk � 2λk

ak
, and is added to the model as a coefficient of the nonlinear term for the
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cultivated area, as shown above, which allows the model to calibrate exactly to the
observed acreages. ThePMPcalibrationmethod has foundwide-ranging applications
to the construction of policy analysis models, and numerous examples of its use can
be found in the work of various authors in the agricultural economics literature
(Barkaoui and Boutault 2000; Heckelei et al. 2012; Mérel and Howitt 2014; Merel
et al. 2011).

2.2 Hydrological Model of Luancheng County

The second essential component of the economic model used to study the aggregate-
levelmanagement of consumptive use and groundwater usage is a simplifiedmodel of
the groundwater aquifer underlying Luancheng County and the neighboring urban
center of Shijiazhuang City. We use a single-cell aquifer model to represent the
groundwater aquifer and link it to the agricultural production model through ground-
water pumping and return flow relationships, and the consumptive use of water
implied by a given economically driven cropping pattern. While this model does not
match the complexity anddetail of the hydrologicalmodel used byKendy et al. (2003)
in their study of Luancheng County, it captures the important linkages between the
withdrawals of the agricultural and urban users, and the return flow to the aquifer,
that are essential to the modeling framework used in this contribution, and which
determine the evolution of the groundwater stock over time.

The hydrological model is specified with parameters appropriate for Luancheng
County and Hebei Province (Table 1), and the flow relationships in and out of the
groundwater aquifer are shown in Fig. 1.

The withdrawals of agricultural producers in Luancheng County and indus-
trial/urban users in Shijiazhuang city from the aquifer are represented by Wi�ag,ur,

agw

ag tot

r
(recharge)

GW pumping

return flow

urw

A = Aag+ Aur

GW Height (H)

GW Lift

Fig. 1 Single-cell model of groundwater aquifer in Luancheng County
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Table 1 Parameters for integrated economic-hydrological model

Description Value Source

Aag Area overlying aquifer for
agricultural sector

30,700 ha Kendy et al. (2003)

Aur Area overlying aquifer for
urban area

25,000 ha Kendy et al. (2003)

Sy Specific yield of aquifer 0.2 Kendy et al. (2003);
Zhang et al. (2003)

θ Deep percolation
coefficient

0.2 Own estimate

e Energy cost per unit
pumping lift

15.46 yuan/m-ha per m
lift

Hebei 2001 survey data

R Reference level for
aquifer recharge

370 m Own calculation

G Ground surface level 370 m Foster et al. (2001)

r Maximum recharge flow
to aquifer

0.057 m/yr Kendy et al. (2003)

αR
Proportionality constant
for recharge flow

1.907 m−1 Own calculation

wur
Fixed urban groundwater
pumping

43,900 m-ha Kendy et al. (2003)

p Annual average
precipitation

469.2 mm/yr Zhang et al. (2003)

Note Hebei 2001 survey carried out by Jinxia Wang of the Chinese Center for Agricultural Policy,
Beijing, PRC, and referenced in Zhang et al. (2010)

while the return flows to the aquifer are governed by the deep percolation coefficient
θ and the total evapotranspiration of crops grown by agricultural producers (ETtot).
The difference between the water applied to the irrigated crops (wag) and the total
evapotranspiration of the crops being cultivated (ETtot) will determine the amount of
water that returns to the aquifer from agricultural users, according to the relationship
θ (wag −ETtot), while the return flow from urban uses is θwur. Therefore, as the con-
sumptive use of water increases in the agricultural region (through an increase in total
evapotranspiration), then the return flow to the aquifer will decrease, accordingly.

In addition to this return flow from applied irrigation water, there is also subter-
ranean inflow into the aquifer fromnatural sources of recharge (r). Using a constant of
proportionality αR, we get the amount of recharge in a given period as αR

(
R − H

)
r ,

where the difference between the height (H) and the reference level
(
R
)
provides

the hydraulic gradient that drives the flow of recharge into (or out of) the aquifer.
In Fig. 1, H represents the groundwater level in the aquifer, such that the distance

over which the user must lift the groundwater that is pumped from the aquifer to the
surface, in order to make beneficial use of it, is given by the difference

(
G − H

)
,
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called the “lift”—where G is the height of the ground surface above a common
reference level.

The height of thewater in the aquifer evolves fromone period to the next according
to the following equation of motion,

H+ � H −
(
wag − θ

(
wag − ETtot

)
+ (1 − θ)wur

)

A · sy + αR
(
R − H

)
r (2.1.3)

where H+ is the height of the groundwater level in the next period and sy is the
specific yield of the aquifer material, and A is the areal extent of the aquifer.

2.2.1 Integrated Dynamic Economic Model of Groundwater Usage

In order to completely specify the formulation of the dynamic economic model of
water usage that will be used in this contribution, we combine the economically based
objective criterion, which reflects agricultural production behavior and benefits from
water usage, with the hydrology of the single-cell groundwater model. By doing so,
we are able to link groundwater usage and return flows to the aquifer, explicitly, with
the cropping patterns observed from the model behavior. The groundwater usage by
urban users is fixed at a constant level (wur)which corresponds to the observed with-
drawals reported by Kendy et al. (2003), while the groundwater withdrawals by the
agricultural users are driven by the economic criterion embedded in the agricultural
production model.

The full dynamic problem of combined agricultural production and groundwater
usage can now be written, in terms of the Bellman equation shown below.

V (H ) � max
wag

{ak }k�K
k�1

⎧
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∑

k

[
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) − φk(ak)2 − ω′
kxk

] − e
(
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)
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+βV
(
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ag

(
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s.t. ETtot � ∑

k
(ETkak), wag + p � ∑

k
xkW ,

∑

k
ak ≤ A

⎫
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where

H+ � H −
[
wag − θ

(
wag − ETtot

)
+ (1 − θ)wur

]

A · sy + αR
(
R − H

)
r (2.3.1)

and where the water requirements of the crops can also be met by precipitation (p).
In this model, the economic planner behaves in a manner which is dynamically opti-
mal, by maximizing the combined agricultural and urban net benefits for the current
period, while also taking into account the future state of the groundwater table as
a result of withdrawals from the aquifer and total evapotranspiration in the current
period. In this way, the equation of motion links the decisions made in the current
period to the evolution of the groundwater over time. The function V (H ) represents
the maximized value of the dynamic problem starting with the current groundwa-
ter level (H), for a given time period forward, assuming that the actions taken in
subsequent periods will be done optimally, with respect to the groundwater stock
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carried over to later periods. This recursive relationship linking the implied optimal-
ity of behavior from period-to-period captures the essence of Bellman’s “Principle
of Optimality” (Bellman 1957) and holds for the entire time horizon over which
groundwater is withdrawn.

In this formulation, we have an explicit linkage between the agricultural produc-
tion decisions taken in every period of the optimal path and the evolution of the
groundwater resource over time. The cropping patterns are linked to the ground-
water hydrology through the total evapotranspiration of a given cropping pattern,
given by the relationship, ETtot � ∑

k (ak · ETk), where ETk is the consumptive use
requirement of crop k, and ak is its irrigated area. There is also a direct tie between
the water pumped from the aquifer cell underlying the agricultural area, and the total
water used in agricultural production, through the relationship wag � ∑

k x
k
W .

3 Results and Discussion

By solving the dynamic economic model (2.3.1), we obtain results (Table 2) which
recommend a drastic change of cultivation patterns in LuanchengCounty and demon-
strate a sizable reduction of the total ET requirements in the county, in order to sta-
bilize the groundwater levels and maintain long-run economic sustainability for the
groundwater basin. The groundwater level in the aquifer model is stabilized at 47 m
depth below the ground surface, which is slightly below the current 40 m of depth
that is observed in the area (Foster et al. 2001; Crook 1999). In order to achieve
this equilibrium level, the model makes a significant shift from the cropping patterns
currently observed in Luancheng County, as given in Table 2.

This table shows that the cultivation of winter wheat is abandoned in favor of
maize and that more cotton and millet are grown than before. This shift in cultivation
pattern implies an overall reduction of nearly 17% in the total evapotranspiration

Table 2 Cropping pattern changes suggested by economic model (ha)

Irrigated crops Observed pattern in
Luancheng

Pattern suggested
by model results

ET requirements
(mm/year)a

Wheat 24,219 0 490.9

Cotton 427 985 649.8

Summer maize 15,793 34,217 359.5

Spring maize 100 182 431.3

Millet 43 82 341

Implied ET of water
(mm/year)

441.1 367.9

aSource Zhang et al. (2003)
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Fig. 2 Comparisonof long-rungroundwater levels under optimally chosen croppingpatterns versus
myopic extraction

within the county and is a little more than half of the 30% reduction endorsed by
Kendy et al. (2003).

In comparison to this, we observe the groundwater level that is reached when
there is sub-optimal and myopic extraction from the aquifer, as shown in Fig. 2.

FromFig. 3,we see that the groundwater stabilizes at a lower level of 315m,which
is achieved solely through the equilibration of pumping benefits and costs, which
increase to the level that forces the pumping level to reduce to a level that allows for
equilibration with the recharge into the aquifer. This is in contrast to the results of
Kendy et al. (2003), which show, for a fixed cropping pattern, that the groundwater
levels would drop far below that, which would be economic for extraction, and which
are derived purely from considering the physical water balance and the extraction
rates implied by the ET requirements of a given fixed cropping pattern. This contrast
illustrates the difference between an economically motivated analysis and one which
is driven purely by the physical characteristics and underlying hydrological processes
in the system.

Alternatively, we could impose a number of possible policy instruments and com-
pare their efficacy vis-à-vis the optimal, dynamic result, which are, namely a vol-
umetric tax on pumping or a per-unit tax on the irrigated area under cultivation of
winter wheat. The results from these policies are shown in Fig. 3.
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Fig. 3 Comparison of long-run groundwater levels under alternative policies

From this figure, we see that the pump tax policy differs only slightly from the
base myopic extraction case in which no policy is applied. The per-unit area tax on
the irrigated area under winter wheat, however, has a much more dramatic effect,
from the point at which it is applied (t � 30). In this case, the tax was set at a
level that caused a switch out of winter wheat, but no compensating increase in the
area under maize, cotton, or millet, unlike the result in Table 2. Because of this, the
overall groundwater table is higher than under the optimal solution, due to the less
total irrigated area, even though the total revenues from agriculture are lower than
optimal.

In both cases, the tax revenue was assumed to be redistributed as lump sum
payments to prevent overall welfare loss under the policies.

4 Conclusions

In this contribution, we address the urgent problem of rapidly declining groundwater
tables on theNorth China Plain through the application of a broad range of analytical,
economic methods so as to better understand the behavioral dimensions of an issue
that has been treated as purely hydrological in nature. The results of our analysis
show that a nearly 17% reduction in total evapotranspiration is possible through
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affecting a shift in cropping pattern that abandons the cultivation of winter wheat in
favor of expanded summer maize production as well as continued cotton and millet
production. While this result echoes the recommendations given by many experts
who have studied the groundwater resource problem in Northern China, the criteria
that were applied in reaching this conclusion were both economic and hydrological
in origin and not solely based on the physical water balances performed in other
studies.

This contribution has shown that while the physical depletion of the groundwa-
ter table is hydrological in nature, the economic behavior underlying the cropping
patterns that contribute to it cannot be ignored. This fact should be recognized by
any policy that aims to reduce irrigated acreage of winter wheat in favor of alter-
nate cropping patterns. The pump tax has no real effect on groundwater levels, as it
does not promote real water savings. The tax on irrigated area, however, does have
potential to reduce the overall consumptive use of water, although its effect on the
area of other crops may be sub-optimal compared to the central planner’s solution.
The practical question of how to implement land usage policy is critical, as it will
determine the overall welfare effects on farmers. This contribution has shown that
policies which directly affect the usage of land can have an important role to play in
solving Northern China’s deepening groundwater depletion problem.
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Chapter 8
Using Moment Constraints in GME
Estimation

Richard E. Howitt and Siwa Msangi

Abstract In this contribution, we explore the sensitivity of parameter estimates
derived through the generalized maximum entropy (GME) approach under alterna-
tive specifications of thewidth of the error term supports. Althoughmany recommend
a “three-sigma” rule for setting the width of this term, there can be noticeable dif-
ferences in the results if it is expanded beyond that, as others in the literature have
suggested.We use aMonte Carlo analysis to see how imposing amoment-based con-
dition into the GME problem, as an additional constraint, affects the results. We find
that it removes the sensitivity of the parameter estimates to the width of the supports
for the error term and that this remains robust even when the data is ill-conditioned.
Based on this, we recommend that researchers impose this condition when doing
GME-based estimation, to improve the performance of the estimator.

1 Introduction

The use of information theoretic approaches to statistical estimation and inference
has become increasingly widespread in the econometric literature and has proved to
be a useful alternative to classical estimation techniques. The generalized maximum
entropy (GME) estimation approach, introduced by Golan, Judge and Miller (GJM,
hereafter) in their seminal monograph “Maximum Entropy Econometrics: Robust
Estimation with Limited Data” (1996a) is an extension of Jaynes’ original maximum
entropy procedure for solving inverse problems (1957a, b, 1984). This method of
estimation has made several inroads to applied economic research particularly where
the data sample is small or ill-conditioned (Fernandez 1997; Ferreira 2013; Fragaso
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and Carvalho 2012; Gohin 2000; Golan et al. 1996b; Howitt and Msangi 2014;
Kaplan et al. 2003; Lence and Miller 1998; Wu 2009; Zhang and Fan 2001).

While many researchers have made use of the basic GME framework offered by
GJM, we feel that there has been a misunderstanding in the empirical literature as to
the implications of using their basic model formulation. GJM offer three alternative
GME formulations—the most basic of which uses just the proposed data-generating
process (y � Xβ + e) as an informative constraint for each observation, and the other
two make use of moments of the data. While GJM give some brief discussions as
to the choice of data constraint to use (p. 114), the significance of this choice and
its implications for the resulting properties of the estimator seem to have been lost
on most researchers. Most of the applied research using GME methods makes use
of the basic GJM model, regardless of the sample size, and makes no mention of
alternative formulations of the estimating equations (Fraser 2000; Zhang and Fan
2001; Lansink et al. 2001; Leon et al. 1999).

Furthermore, most researchers implicitly assume that the property of large sam-
ple consistency properties that GJM demonstrate for their normalized cross-entropy
model (GCE-NM) carry over to the commonly used basic GME formulation. How-
ever,we have found this not to be the case and that the resulting bias can be remedied if
youmove beyond the basic GME formulation and use sample moments as estimating
equations.

While more recent theoretical econometric research has considered the incorpo-
ration of moment-based estimation within the generalized entropy framework (van
Akkeren et al. 2002), this has been done only within the context of stochastic regres-
sors and instrumental variable estimation. We show that moment-based estimation is
appropriate for the basic GME problem and use the primal formulation of the GME
problem to demonstrate this.

GJM use the moment-based formulations to prove that GME estimates are con-
sistent in large samples, but don’t mention the potential for bias in small samples,
when comparing the properties of the resulting estimates with other estimators (least
squares, maximum likelihood, and Bayes estimators). In their discussion of finite
sample properties, they use the basic GME formulation and don’t compare its results
to the moment-based one, citing the potential problems of moment-based estimation
in small samples. This contribution arose from an analysis of the small sample bias
of GME estimates, but it also shows that the estimates from the basic GJM model
formulation are biased in both large and small samples. We show that the inherent
large sample bias in the basic GME estimate can be avoided by adding a simple
moment constraint to the solution approach.

The rest of the chapterwill be organized as follows. In the next section, the solution
to the primalGMEproblem is derived, and the effect of the error support specification
on the resulting estimates is shown. The moment constrained basic GME estimator
(GME-MC) is shown to eliminate the error support bias in the basic GME estimate
and also decouple the resulting GME-MC estimate from the error support values.
In the following section, a Monte Carlo example is used to compare the estimates
from four methods, namely the method of moments, empirical likelihood, and the
GME formulation both with (GME-MC) and without the moment constraints. These
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initial results suggest that the GME-MC estimator is robust and scalable in that it
is unbiased for standard sample sizes, but also substantially outperforms traditional
estimators and is equivalent to the GME estimator when the sample is ill-conditioned
or ill-posed.

2 Primal GME Estimation

Let us consider a simple data-generating process described by the following equation:

y j � x jβ + ε j (1)

where there are n observations on y and x, which are indexed over the set j. For
simplicity, the parameter of interest is a scalar and is estimated by solving the stan-
dard primal GME optimization problem. The problem defined in Eq. (2) is exactly
equivalent to that defined by GJM in their Eqs. (6.3.1)–(6.3.4).

Max
⇀
p
b
,
⇀
p
e
−
∑

i

pbi ln pbi −
∑

j

∑

i

pei, j ln pei, j

subject to

y j �
(
∑

i

pbi z
b
i

)
x j +

∑

i

pei, j z
e
i ∀ j

∑

i

pbi � 1,
∑

i

pei, j � 1 ∀ j (2)

where the β parameter and ε error terms are expressed as expected values and defined
over a discretized support space defined by zbi and z

e
i and indexed over the set i . The

support values for β are restricted to the positive orthant, whereas those for the error
term ε can take on both positive and negative values and are symmetric around zero.
The range of the support values for e typically satisfies the three-sigma rule suggested
by GJM, when applied in the empirical literature (Pukelsheim 1994; Fraser 2000).
The Lagrangian associated with this optimization problem can be written as:

L � −
∑

i

pbi ln pbi −
∑

i

∑

j

pei, j ln pei, j

+
∑

j

λ j

[
y j −

(
∑

i

pbi z
b
i

)
x j −

∑

i

pei, j z
e
i

]
+ μb

[
∑

i

pbi − 1

]

+
∑

j

μe
j

[
∑

i

pei, j − 1

]
(3)
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For simplicity, however, we will consider a simple case where there are only three
supports for the parameter and error terms, so that we can rewrite the Lagrangian as:

L � −pb1 ln pb1 − (
1 − pb1 − pb3

)
ln
(
1 − pb1 − pb3

) − pb3 ln pb3

−
∑

j

[
pe1, j ln pe1, j +

(
1 − pe1, j − pe3, j

)
ln
(
1 − pe1, j − pe3, j

)
+ pe3, j ln pe3, j

]

+
∑

j

λ j
[
y j − (

pb1z
b
1 +

(
1 − pb1 − pb3

)
zb2 + pb3z

b
3

)
x j

− (
pe1, j z

e
1 +

(
1 − pe1, j − pe3, j

)
ze2 + pe3, j z

e
3

)]
(3a)

The first-order conditions for (3a) are:

∂L/
∂pb1

� −(1 + ln pb1) + ln
(
1 − pb1 − pb3

)
+ 1 −

∑

j

λ j x j
(
zb1 − zb2

) � 0

∂L/
∂pb3

� −(1 + ln pb3) + ln
(
1 − pb1 − pb3

)
+ 1 −

∑

j

λ j x j
(
zb3 − zb2

) � 0

∂L/
∂pe1, j

� −(1 + ln pe1, j ) + ln
(
1 − pe1, j − pe3, j

)
+ 1 − λ j

(
ze1 − ze2

) � 0 ∀ j

∂L/
∂pe3, j

� −(1 + ln pe3, j ) + ln
(
1 − pe1, j − pe3, j

)
+ 1 − λ j

(
ze3 − ze2

) � 0 ∀ j (4)

By re-arranging the FOCs for the error terms, we obtain:

ln
(
1 − pe1, j − pe3, j

) − ln pe1, j � λ j
(
ze1 − ze2

) ∀ j (4a)

ln
(
1 − pe1, j − pe3, j

) − ln pe3, j � λ j
(
ze3 − ze2

) ∀ j (4b)

And similarly, the FOCs for the β supports can be rewritten as

ln
(
1 − pb1 − pb3

) − ln pb1 �
∑

j

λ j x j
(
zb1 − zb2

)
(4c)

ln
(
1 − pb1 − pb3

) − ln pb3 �
∑

j

λ j x j
(
zb3 − zb2

)
(4d)

By subtracting Eq. (4b) from (4a), we obtain Eq. (5a) as

ln pe3, j − ln pe1, j � λ j
(
ze1 − ze3

) ∀ j

and λ j �
ln
(
pe3, j

/
pe1, j

)

(
ze1 − ze3

) ∀ j (5a)

Similarly, by subtracting Eq. (4d) from (4c), we obtain Eq. (5b) as
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ln pb3 − ln pb1 � ln
(
pb3
/
pb1

)
� (

zb1 − zb3
)∑

j

λ j x j (5b)

Substituting the expression for λ j into 5b, we obtain:

ln
(
pb3
/
pb1

)
� (

zb1 − zb3
)∑

j

⎡

⎢⎣x j

ln
(
pe3, j

/
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)
�

(
zb1 − zb3

)
(
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)
∑

j

[
x j ln

(
pe3, j

/
pe1, j

)]
(6)

which further simplifies to

ln
(
pb3
/
pb1

)
�

(
zb1 − zb3

)
(
ze1 − ze3

)
∑

j

ln
[(

pe3, j
/
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)x j
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�
(
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)
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) ln
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⎣
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)x j

⎤

⎦

� ln
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/
pe1, j

)x j

⎫
⎬

⎭

(zb1−zb3)
(ze1−ze3)

⎤

⎥⎥⎦

So by taking the anti-log of both sides, we obtain

(
pb3
/
pb1

)
�

⎡

⎣
∏

j

(
pe3, j

/
pe1, j

)x j

⎤

⎦

(zb1−zb3)
(ze1−ze3)

(7)

Given the supports specified, the ratio of parameter probabilities in Eq. (7) deter-
mines the resulting estimation value. Equation (7) shows that the parameter prob-
abilities are a function of the data, the error probabilities, and the ratio of support
values for the parameter and the error term. Two papers that examine the effect on
GME parameter estimates of changing the error support values are [Preckel (2001)
and Paris and Caputo (2001)]. Both papers use Monte Carlo experiments, but come
to differing conclusions. Paris and Caputo conclude that GME estimates are sensitive
to changes in error support bounds, while Preckel concludes that wide, symmetric
error support values result in identical estimates for OLS and GME. It can be seen
from Eq. (7) that as the numerical value of the error supports ze1 and z

e
3 increase (note

that they have opposite signs) the exponent will go to zero, and the expression for
the ratio of the parameter probabilities will go to one. This unit value for the ratio
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will result in the GME estimate for beta converging on the mean of the parameter
support values as the error support bounds are widened. This analytical conclusion
is consistent with both the Preckel and Paris and Caputo Monte Carlo results. The
Preckel results converge on the unbiased OLS parameter values because the param-
eter supports are centered on these values, not because of any property of the GME
estimator apart from those shown in Eq. (7). An empirical counter example where
the parameter supports are centered far from the unbiased coefficient values is shown
in the next section. Preckel’s results seem to reinforce the general folk wisdom that
using wider error supports is “safer” (Paris and Caputo 2001). In contrast, Lence
and Miller (1998) conclude that “GME results are not sensitive to changes in the
width of the error supports.” The results of this contribution support the Paris and
Caputo conclusion that GME estimates are influenced by error support bounds, but
also show that wider error support values are not “safer” as they introduce greater
bias in the resulting GME estimators.

2.1 Moment Constrained GME (GME-MC)

The bias from the error support values and the resulting sensitivity to their bounds can
be avoided by solving a simplifiedGMEestimation problemwith amoment condition
on the errors. The resulting estimator can be termed the GME-MC estimator.

The moment constraint is specified in terms of the previous problem as

n∑

j�1

3∑

i�1

x j
(
zei p

e
i, j

) � 0,where
3∑

i�1

(
zei p

e
i, j

) � y j − x j

3∑

i�1

zbi p
b
i , ∀ j,

Substituting for the error terms in the moment condition, the Lagrangian for the
GME-MC primal problem can be written as

max
⇀
p
b
L � −pb1 ln pb1 − (1 − pb1 − pb3) ln(1 − pb1 − pb3) − pb3 ln pb3

+ λ
∑

j

x j [y j − (pb1z
b
1 + (1 − pb1 − pb3)z

b
2 + pb3z

b
3)x j ]

(8)

where we only solve for the parameter probabilities that maximize the Shannon
entropy measure. The FOCs for this reduced problem, simplify to

ln
(
1 − pb1 − pb3

) − ln pb1 � λ
∑

j

x j x j
(
zb1 − zb2

)
(9a)

ln
(
1 − pb1 − pb3

) − ln pb3 � λ
∑

j

x j x j
(
zb3 − zb2

)
(9b)
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After further simplification and taking the anti-log of both sides, we can obtain
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� exp
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x j x j

⎤
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A comparison of Eqs. (7) and (10) shows that the GME-MC problem with the
embeddedmoment restriction on the estimated errors gives a solution for the parame-
ter probabilities that only depend on the parameter supports and the data. The shadow
value λ is also a function of the parameter supports and the data and is a scalar value.
So by imposing moment conditions on the GME errors, we have freed the parame-
ter probabilities—and their resulting estimates—from any dependence on the error
supports. Paris (2001) and Marsh and Mittelhammer (2001) have proposed other
alternatives to traditional GME procedures in order to address the sensitivity of the
parameter estimates to support specification.

2.2 Bias in GME Estimates

The explicit dependence of traditional GME estimates on the support specification
of the error terms is not the only issue that raises concern when considering the
properties of the GME estimator. There is also a potential for bias in the estimate,
in both large and small samples, which is best illustrated by considering the result
from Eq. (5a) and expressing it in anti-log form as

pe3, j
pe1, j

� exp
[
λ j

(
ze1 − ze3

)] ∀ j or
pe1, j
pe3, j

� exp
[
λ j

(
ze3 − ze1

)] ∀ j (11)

This can be rewritten as the following pair of equations, after multiplying on both
sides by the appropriate error support term

ze1 p
e
1, j � ze1 p

e
3, j exp

[
λ j

(
ze3 − ze1

)] ∀ j (12a)

ze3 p
e
3, j � ze3 p

e
1, j exp

[
λ j

(
ze1 − ze3

)] ∀ j (12b)
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By adding (12a) and (12b) together, we obtain an expression for the expected
error ê j for the jth observation as:

�

e j � ze1 p
e
1, j + ze3 p

e
3, j � ze1 p

e
3, je

λ j(ze3−ze1) + ze3 p
e
1, je

λ j(ze1−ze3) ∀ j (13)

Note that the symmetry of the error supports implies that ze2 � 0,
∣∣ze1

∣∣ � ∣∣ze3
∣∣ �

z̄e and ze1 − ze3 � 2z̄e

So that we can rewrite the expected error expression and sum over all j to obtain

n∑

j�1

�
e j � ze1

n∑

j�1

pe3, je
−2λ j z̄e + ze3

n∑

j�1

pe1, je
2λ j z̄e � z̄e

⎡

⎣
n∑

j�1

pe3, je
−2λ j z̄e −

n∑

j�1

pe1, je
2λ j z̄e

⎤

⎦ (14)

So for the zero bias condition
∑n

j�1 x j
�

e j � 0 to hold, it requires that the GME
errors satisfy the condition

n∑

j�1

pe3, j x je
−2λ j z̄e �

n∑

j�1

pe1, j x je
2λ j z̄e (15)

Recalling the moment condition that yields unbiased estimates, we imposed on
the modified GME problem

∑n
j�1

∑3
i�1 x j

(
zei p

e
i, j

)
� 0 we realize that it requires the following condition

which in turn implies that the following condition must hold

n∑

j�1

x j p
e
1, j �

n∑

j�1

x j p
e
3, j (16)

However, the only situation in which (15) and (16) can both hold in the basic
GME specification is if the following is true

e−2λ j z̄e � e2λ j z̄e � 1 ∀ j ⇒ λ j � 0 ∀ j

But this is an implausible condition, since it implies that the marginal contribution
of each observation to the objective function in terms of expected information is zero.
We would only expect this to be the case if the data is completely uniformative, and
the optimal GME solution is the equiprobable solution that maximizes the entropy
and satisfies the adding up conditions on the probabilities.
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So we can conclude, from this, that the GME estimation will result in biased
parameter estimates—despite the symmetry of the error supports—unless we impose
an explicit moment condition on the error terms. Notice that this bias is inherent in
the basic GME specification and is not changed by an increase in the sample size
or by an increase in the width of the support space. Also, this result is unchanged
if there are more than three support values for the error, say five, as long as the
error support values are distributed around zero. Differences between the number of
support values for the errors and parameters likewise do not change the fundamental
effect of the support structure on the parameter bias; see Appendix.

By adding the moment constraint to the GME primal problem (2), we obtain
a new primal GME-MC problem (17), which satisfies the moment condition
∑n

j�1 x j

(
y j − x j β̂

)
� 0 for the resulting estimate. This moment condition arises

naturally out of the first-order necessary conditions for maximum likelihood estima-
tion and from the normal equations of ordinary least-squares estimation.

The new GME-MC primal problem is given as

Max
p̄b, p̄e

−
∑

i

pbi ln pbi −
∑

j

∑

i

pei, j ln pei, j

subject to

y j �
(
∑
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pbi z
b
i

)
x j +

∑
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pei, j z
e
i ∀ j

n∑

j�1

∑

i

x j
(
pei, j z

e
i

) � 0

∑

i

pbi � 1,
∑

i

pei, j � 1 ∀ j (17)

The GME-MC problem bears a strong resemblance to maximum entropy empiri-
cal likelihood (MEEL) formulation put forward byMittelhammer et al. (2000), which
serves to extend the empirical likelihood estimation framework (Owen 1988, 1991;
Qin and Lawless 1994). The MEEL primal problem can be stated as

Max
p̄,β

−
∑

j

p j ln p j

subject to
n∑

j�1

p jhm
(
y j , x j , β

) � 0 ∀m
∑

j

p j � 1 (18)
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where there are m possible moment conditions hm
(
y j , x j , β

) � 0, that serve as
estimating equations. The Shannon entropy measure serves, in effect, as a criterion
function for optimally choosing the weights for the estimating equations, over all
observation, in similar fashion to empirical likelihood. Notice, however, that the
parameter of interest, β, is not expressed in terms of discretized support values and
associated probability weights, as in GME, thereby freeing it of any dependence on
defined support values supplied by the researcher. However, this also prevents the
researcher from incorporating any prior information into the estimation of β, which
is one of the appealing aspects of entropy-based estimation methods. So the modified
GME model that we propose in (17) extends the MEEL framework to include an
added Shannon entropy measure for choosing the optimal probability weights that
define the parameter β in terms of expected value over defined supports. While
the resulting estimate of β will ultimately depend on the defined parameter support
values, within our estimation framework, they do not depend on the support values
for the error terms.

In Chap. 6 of their book, GJM use a dual specification of the more general cross-
entropy specification to prove that the resulting estimates are asymptotically consis-
tent. This result has been used to increase the comfort level of practitioners who have
applied GME to obtain small and medium sample estimates. While it is theoretically
possible to have an estimator with a large sample bias that converges in probability to
the true parameters in the limit, the ability to have an estimator that reflects the mean
of the data sample and is invariant to the selection of the error support values seems
much more comforting for those small sample problems where the GMEmethod has
a comparative advantage.

3 An Empirical Example

An empirical test of the analytic development was performed using a Monte Carlo
generation of a range of 100–3 observations for a five explanatory variable linear
equation. Four different methods were used to recover the distribution from the gen-
erated sample. Maximum likelihood, empirical likelihood (Owen 1988, 1991 (EL);
Qin and Lawless 1994), the method of moments (MM), standard GME, and moment
constrained GME-MC.

The observationswere generated fromanormal distributionwith a truemeanvalue
of 10 and standard deviation of 1. The support values for the two GME estimations
had five values for both the parameter and error distributions. The values for the
mean were [−6.0, −3.0, 0.0, 3.0, 6.0] while the supports for the error terms were
based on the three-sigma rule [−6.0, −3.0, 0.0, 3.0, 6.0]. The true values for the five
coefficients are [1.0, 0.75, 0.5, 0.25, 0.1] note that the mean of the parameter support
values (0) is not in the set of the true coefficient values to minimize any “prior”
influence on the resulting estimates and to test the assertion that the GME parameter
values will tend toward the value zero as the error bounds are increased. The model
was run using GAMS (Brooke et al. 1988).
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Table 1 Comparison of alternative parameter estimation methods (50 observations)

Beta 1 Beta 2 Beta 3 Beta 4 Beta 5

True Betas 1 0.75 0.5 0.25 0.1

OLS Betas 0.9718 0.68 0.6333 0.1458 0.1491

MM Betas 0.9718 0.68 0.6333 0.1458 0.1491

EL Betas 0.9718 0.68 0.6333 0.1458 0.1491

GME-MC Betas 0.9718 0.68 0.6333 0.1458 0.1491

GME Betas 0.8834 0.6948 0.6389 0.1507 0.1518

A comparison of the parameter results using different estimators and a sample
size of 50 is shown in Table 1.

The GME-MC estimator results in an unbiased estimate of all coefficients and is
exactly the same as the benchmark methods of OLS, the method of moments, and
empirical likelihood. In contrast, all coefficients from the standard GME estimator
differ from the unbiased OLS estimates. Comparison of the average mean squared
error of the beta estimates from the generating values shows less difference in the
estimators. The parameter mean squared error for OLS and GME-MC is 0.0073. The
basic GME is slightly larger at 0.0097.

The selection of error bounds and their influence on the parameter estimates is
examined in Table 2. FromEqs. (7) and (10), we would expect that the GME estimate
values converge toward themean of the parameter supports (0) as the error bounds are
increased, but that the GME-MC estimates remain unchanged by the error bounds.
Table 2 empirically shows this to be the case. The first five increases in error bounds
from 3 sigma to 40 sigma are those used by Preckel (2001) who concludes that:

as the width of the support increases, the entropy-based values approach the least squares-
based values

In Preckel’s paper, the parameter support space1 of the GME problem is centered
on the OLS estimates of the true parameters. His example shows that his GME
estimates converge to the OLS estimates as the width of the support space for the
GME errors increases, and seems to suggest that by doing so one reduces the bias
in the resulting parameter estimates, that would otherwise cause it to deviate from
OLS results. However, the results in Table 3 show that as the error bounds increase,
the parameter estimates systematically depart from the OLS values and tend to the

1Preckel refers to a “reference distribution” when describing the support space, since he is using the
cross-entropy formulation to motivate the similarity between GME and the least-squares estimation
procedure, in terms of minimizing deviations. However, the “reference” distribution actually used
in his discussion is uniform, which makes the Generalized Cross-Entropy (GCE) minimization
problem equivalent to the primal GME maximization problem that we use for our discussion,
here. So we will avoid confusion of terminology by solely referring to the support space of the
parameter—which Preckel suggests should be chosen by placing the OLS estimate at its center and
placing values symmetrically on either side that are equal to multiples of the standard error of the
OLS estimate (pp. 370 & 373).
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Table 2 Effect of changing
error support bounds on
estimates (50 observations)

Beta1 Beta2 Beta3 Beta4 Beta5

True value 1 0.75 0.5 0.25 0.1

OLS 0.9718 0.68 0.6333 0.1458 0.1491

GME

3 sigma 0.8834 0.6948 0.6389 0.1507 0.1518

5 sigma 0.1303 0.6447 0.6165 0.2364 0.2344

10 sigma 0.0916 0.5297 0.5212 0.2924 0.2896

20 sigma 0.0584 0.3101 0.3267 0.2602 0.2601

40 sigma 0.0282 0.1435 0.1554 0.1345 0.1348

80 sigma 0.0152 0.0766 0.0836 0.0736 0.0738

160 sigma 0.0093 0.0464 0.0508 0.045 0.0451

320 sigma 0.0062 0.0308 0.0337 0.03 0.0301

GME-MC

3 sigma 0.9718 0.68 0.6333 0.1458 0.1491

5 sigma 0.9718 0.68 0.6333 0.1458 0.1491

10 sigma 0.9718 0.68 0.6333 0.1458 0.1491

20 sigma 0.9718 0.68 0.6333 0.1458 0.1491

40 sigma 0.9718 0.68 0.6333 0.1458 0.1491

80 sigma 0.9718 0.68 0.6333 0.1458 0.1491

160 sigma 0.9718 0.68 0.6333 0.1458 0.1491

320 sigma 0.9718 0.68 0.6333 0.1458 0.1491

mean value of the parameter supports. This shows that Preckel’s conclusion results
from his selection of the center of his support space and is not a result of the width
of the support space.

The results in Table 3 also show that the GME-MC estimator is equal to the OLS
under well posed and well-conditioned data. Under these data sets, it performs better
than the basic GME estimator. However, when the data is ill-conditioned, but well
posed, the GME-MC estimator outperforms OLS and is equal to the GME results.

It seems that the GME-MC moment constraint dominates the resulting estimates
when the data set has a sufficient structure to uniquely determine the parameters.
However, if the data is collinear the coefficient support values provide the necessary
structure and the GME-MC estimates mirror the standard GME results. The perfor-
mance of our numeric OLS solution using the ill-posed data set (three observations)
in Table 3 is currently unexplained.
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Table 3 MSE of beta estimates using well- and Ill-conditioned data (symmetric supports, sigma
� 1)

Number of Observations No collinearity

OLS GME-MC GME

100 0.0884 0.0884 0.0926

50 0.0018 0.0018 0.0019

10 0.0354 0.0354 0.0554

3 0.1905 0.1903 0.19

Collinearity

OLS GME-MC GME Condition number

100 4.611E+07 0.0605 0.0621 3.4172E+07

50 1.136E+07 0.055 0.0514 4.1607E+07

10 1.402E+08 0.0542 0.0467 8.5139E+06

3 0.2288 0.2285 0.2281 2.2972E+06

4 Conclusions

We have demonstrated that estimates using the standard GME approach (GJM) can
be very different from any consistent estimate of the true distribution parameters if the
error bounds are increased beyond a reasonable boundwhich, in the current empirical
literature, remains the three-sigma bound originating from Pukelsheim (1994) and
advocated by Golan et al. (1996a, b). On the other hand, adopting a moment-based
approach to GME estimation removes this sensitivity to the error support bounds
and still allows the GME-MC estimates to remain robust under conditions of high
collinearity and sparse observations. In addition, within the GME-MC formulation,
the only prior information required is thatwhichdefines the supports for the parameter
estimates, and this can be based on economic theory and prior empirical studies.
In contrast, the GME formulation requires additional prior information in order
to specify the error supports. The only cited theoretical basis for specifying these
priors is the three-sigma rule, which in turn relies on estimates of sigma that may be
unreliable when there is limited data. In addition, this chapter shows that the results
in Preckel’s paper showing the convergence of standardGME estimates to those from
OLS results from his choice of reference distribution for his experiments and is not
a general property of standard GME estimators.

We conclude that when making a choice between GME and GME-MC estimators
that researchers use the quality of prior information to choose whether to use the
GME formulation over the GME-MC moment-based model. The choice should be
based on the assessed precision of the researcher’s prior information, which is defined
in terms of the range of the parameter and error support bounds. Despite the warning
offered by Golan et al. (1996a, b) in adopting moment-based GME formulations in
empirical applications, we recommend it over expanding the error support bounds
that appears to be suggested by Preckel. If remaining consistent with OLS under
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“close-to-ideal” conditions is of concern to the researcher, then incorporating the
moment constraints into the GME-MC problem seems reasonable, as they are in
essence the first-order conditions of MLE and the normal equations of OLS. By
doing so, one not only achieves equivalence with classical estimation results under
“close-to-ideal” conditions, but one is assured of robust estimation results under
adverse conditions—which is really where the strength of the GME approach lies.
To use a historical analogy, it seems that the GME-MC specification is an “estimator
for all seasons.”

Appendix

General Derivation for Basic GME Problem
We can write the GME problem as

max −
2I+1∑

i�1

pbi ln pbi −
N∑

j�1

2K+1∑

k�1

pejk ln pejk

s.t. y j � x j

(
2I+1∑

i�1

pbi z
b
i

)
+

2K+1∑

k�1

pejk z
e
k ∀ j
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ze1, . . . z

e
K+1, . . . , z

e
2K+1

}
, zeK+1 � 0 and − zek � ze2(K+1)−k ∀k �� K + 1

which can be rewritten as
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Which give the first-order conditions
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∂L

∂pbi
� −(

1 + ln pbi
)
+ ln(1 −

∑

i ′ ��I+1

pbi ′) + 1 −
N∑

j�1

λ j x j
(
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) � 0 ∀i �� I + 1
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)
+ ln(1 −

∑

k ′ ��K+1

pejk ′) + 1 − λ j
(
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) � 0 ∀ j, k �� K + 1

taking the k � 1 and k � 2 K + 1 cases, we can derive the result λ j �
1

ze1−ze2K+1
ln
(

pej,2K+1

pej,1

)
and substitute it into the following expression derived from the

FOCs for pbi

ln pbi ′ − ln pbi �
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λ j x j
(
zbi − zbi ′
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Chapter 9
Estimating Field-Level Rotations
as Dynamic Cycles

Duncan MacEwan and Richard E. Howitt

Abstract Crop rotation systems are an important part of agricultural production for
managing pests, diseases, and soil fertility. Recent interest in sustainable agricul-
ture focuses on low input-use practices which require knowledge of the underlying
dynamics of production and rotation systems. Policies to limit chemical applica-
tion depending on proximity to waterways and flood management require field-level
data and analysis. Additionally, many supply estimates of crop production omit the
dynamic effects of crop rotations. We estimate a dynamic programming model of
crop rotation which incorporates yield and cost intertemporal effects in addition to
field-specific factors including salinity and soil quality. Using an Optimal Match-
ing algorithm from the Bioinformatics literature, we determine empirically observed
rotations using a geo-referenced panel dataset of 14,000 fields over 13 years.We esti-
mate the production parameters which satisfy the Euler equations of the field-level
rotation problem and solve an empirically observed four-crop rotation.

1 Introduction

The history of agricultural production over the past 100 years has been one of a steady
increase in input intensification and a simplification of crop rotations. An example
of this long-term shift toward intensification of inputs can be shown in the nitrogen
use statistics in Fig. 1.

Most economic prescriptions for a more sustainable agriculture devolve to input
reduction by moving back down the static intensive and extensive margins of adjust-
ment with consequent reductions in productivity. This contribution characterizes the
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Corn Cotton

Fig. 1 Average nitrogen application index for US crops, base 1964. Note Data compiled from the
USDA’s fertilizer consumption and use index

potential productivity gains from crop rotations as a third potential adjustment along
the dynamic margin and shows how an economic model of rotations can be specified
and estimated.

The present interest in sustainable systems is stimulated by recognition that inten-
sified use of agricultural inputs can impose serious external effects on other areas of
agricultural production, or environmental effects such as soil erosion, groundwater
contamination, or the eutrophication of rivers. Recognition of these impacts makes
it clear that the pricing of many agricultural inputs is incomplete and does not reflect
the external costs that result from their use.

The reduction of agricultural externalities by reducing the intensification of input
use is clearly a movement back along the intensive margin of production, with con-
sequent negative effects on agricultural productivity. In the long term, this is partic-
ularly difficult when faced with the increasing needs of agricultural production in
many areas to address changing diets and food demands as well as the basic food
requirements in developing nations. In addition, the technical change that has simul-
taneously boosted much of agricultural production is predicted by some studies to
be slowing down due to a lack of investment (Alston et al. 2010).

Crop rotations have been an integral part of agricultural production for the past
300 years, but have received scant attention from agricultural economists due to their
decline in importance of agricultural production. Practical policies for sustainable
agriculture should be based on existing farmer’s behavior and response. Thus if
rotations are a promising agronomic avenue to a more sustainable system, we need
to understand the current behavior and motivation behind input allocation if we are
to propose sustainable policies that utilize rotations to a greater extent. It follows
that with increasing interest in the full costs of agricultural intensification, there may
be a renewal of interest in the economics of agricultural rotations. Accordingly, we
are attempting to analyze rotations from an economic perspective and measure the
switching costs of rotations as reflected by farmer’s decisions. If we can measure
and understand switching costs, we will be able to predict whether the adoption of
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more rotational practices is an effective tool in moving toward a more sustainable
agricultural production system.

At this point, we want to draw the distinction between agricultural diversity and
agricultural rotations. The positive externalities of rotations in terms of fertility,
pest control, and weed control are agronomically dependent on rotating a given field
through different crops. A farmmay have diverse production without using rotations,
and from a single cross section, one cannot identify which fields are being rotated and
which are in single-crop diversified production. It is only by using field-level panel
data, that rotations can be identified and estimated. This significant data problem is
very likely one of the reasons why economists have made so few empirical studies
of field-level rotations. A second reason may be that the theoretical structure of the
rotation problem is a complex control problem, with a combination of continuous
states driven by agronomic and physical processes combined with discreet switch
points driven by economic considerations. In addition, the resulting problem must
demonstrate the ability to reflect a steady-state cycle of crop rotations, but also be
responsive to exogenous shifts in prices, costs, or technology. Clearly, the decision
of whether and howmany crops to rotate is a joint economic and agronomic question
which we term the dynamic margin of agricultural production. Another reason for
the lack of research on rotations is that while this interdependence between multi-
output production is ubiquitous in agriculture, in most other multi-output production
systems it is much less common.

Historically, decisions at the field level of detail have been difficult to observe
consistently across time in anything other than experimental plots. We employ a
unique geo-referenced panel dataset of field-level production covering over 14,000
fields (over 1 million acres) and 13 years. Using these data, we estimate the observed
rotations using an Optimal Matching algorithm from the Bioinformatics literature
originally developed for determining common genetic sequences (DNA base pairs).
We specify a stochastic-dynamic economic field-level rotation problem and solve
the model using dynamic programming. We estimate the parameters of the rotation
problem, including yield and cost carry-over effects as well as soil and salinity effects
for a four-crop, seven-year, alfalfa–cotton–grain–fallow rotation.We estimate the ill-
posed stochastic-dynamic rotation parameters using GeneralizedMaximum Entropy
(GME).We show that the estimated crop rotations are an endogenous result of relative
stochastic prices andfield physical capital and result in field-level dynamic cycles.We
apply the model to estimate the dynamic margin response to changes in groundwater
salinity in California’s Central Valley and discuss policy implications for moving
toward a more salinity-sustainable agriculture.

We want to emphasize four main contributions to the literature on sustainability
and crop rotations. In this contribution, we (i) apply a unique remote sensing panel
dataset of land andwater use, (ii) specify the rotation decision as a stochastic-dynamic
programming problem with switching costs, (iii) estimate the economic rotation
parameters using Generalized Maximum Entropy, and (iv) quantify the dynamic
margin of agricultural supply response. We conclude with an empirical example and
estimate grower’s response to changes in groundwater salinity in California’s San
Joaquin Valley.
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2 Existing Literature on Crop Rotations

Heady (1948) first formalized the crop rotation problem with a static analysis of the
hay–grain rotations observed in the US Corn Belt. Heady (1948) followed work by
Johnson (1933), who should be credited as the first to consider the rotation problem.
Burt and Allison (1963) formalized the dynamics of rotations in the context of a
wheat–fallow rotation. They considered a dynamic programming approach to crop
planting decisions,wheat or fallow, in every year depending on the underlying state of
the field (soil moisture). Contemporary research on the economics of crop rotations
stems from these seminalworks and falls into fourmain areas: (i) linear programming
models of production with fixed proportion rotation constraints, (ii) models that lend
themselves to econometric analysis and control for lagged crop choice, (iii) dynamic
analysis whichmodels crop rotation as a control variable consisting of the proportion
of total land use, and (iv) multiple-phase optimal control dynamic models which
estimate the switch point between two successive crops.

Linear programming models of production with fixed rotation constraints were
introduced to the literature by Hildreth and Reiter (1951). They analyzed a corn–oat-
s–hay rotation in the Corn Belt of the USA and treated specific rotations as individual
production processes. Linear programming models impose rotation constraints, in
essence fixed proportions, on production activities (Swanson 1956; Peterson 1955;
Beneke and Winterboer 1973). El-Nazer and McCarl (1986) built on the previous
methodology and specified a set of rotation constraints that made the optimal rota-
tion endogenous. They specified a static model that they hypothesized would sat-
isfy steady-state conditions and, consequently, represent a dynamic solution. The
tendency for overspecialization limits linear programming methods and typically
requires significant constraints in order to reproduce observed rotation decisions.

Hennessey (2006) formalized the theory behind models that lend themselves to
econometric specification for a two-crop rotation. He considered rotation effects
through changes in yield or changes in input use in a framework that allows for
positive effectswithout excluding thepossibility of negative effects.Other studies that
employ a reduced-form econometric specification include Wu et al. (2004) and Wu
and Babcock (1998). Both authors specified a reduced-formmultinomial logit model
to analyze land-use decisions. Tanaka and Wu (2004) evaluated the Conservation
Reserve Program in the USA in a similar framework to investigate the effect of
taxes on fertilizer, payments for land retirement, and payments on rotations. Other
researches analyzed the effects of rotations in the context of environmental concerns
including Langpap and Wu (2008), Langpap et al. (2008), Antle and Stoorvogel
(2006), and Antle and Valdivia (2006).

The field-level rotation is the solution to a complicated discrete-switching
stochastic-dynamic control problem. To recast the problem in a continuous frame-
work, one can view the control variable as proportion of total land use in a region
or farm. A continuous control variable, as well as the underlying state equations,
makes it such that traditional control theory applies. Jaenicke (2000) and Orazem
andMiranowski (1994) apply this framework in the context of dynamic data envelop
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analysis and fertility carry-over rotation effects, respectively. The central vein of this
literature focuses on the optimal fertilizer application rate and dynamic carry-over
effect, following the work of Kennedy et al. (1973), Kennedy (1981, 1986), and Tay-
lor (1983). Thomas (2002) developed a structural dynamic model to account for this
trade-off and estimated a restricted version of the model using generalized method
of moments (GMM).

Dynamic multi-phase optimal control represents a relatively new approach to
modeling crop rotations and focuses on the field-level decisions and switch points
between crops. The method specifies a set of controls which determine a set of
optimal switching times between regimes. The number of regimes (stages) must be
exogenously specified in this approach since large state spaces render these models
intractable. Doole (2009) provided an algorithm for solving these problems with
transition costs, and Doole (2008) provided an application of the algorithm.

Livingston et al. (2012) adopt a hybrid estimation approach that uses field obser-
vations and other empirical data to estimate a corn–soybean rotation model. The fun-
damental framework of their model is similar to our approach, in that the sequence
of crops affects profitability and farmers act as dynamically optimizing agents. How-
ever, our estimation approaches are very different due, in large part, to differences
in available data.

We want to design a framework to estimate the soil quality, salinity, and rotation
parameters that the grower faces. In order to do this, we need to specify a struc-
tural dynamic model. Structure includes addressing unobservable variables, such as
management effects and weather shocks, in addition to specifying functional forms
and assumptions about grower actions. In the next section, we review the application
region, Kern County, California, and geo-referenced panel dataset. In the following
section, we develop the GME estimation framework, add structure to the model, and
specify error terms and unobservable variables.

3 An Estimable Model of Field Rotations

In contrast to previous approaches which consider the dynamics of rotations in terms
of aggregate land-use proportions, fixed rotation constraints, or lagged crop choice,
we explicitly model the discrete switching of field-level decisions subject to contin-
uous underlying agronomic and economic states. We specify fertility and physical
capital at the field level and represent rotations as an endogenous cycle resulting
from observed behavior of dynamically optimizing farmers. We allow for one-year
rotation carry-over effects in both yield and cost.

Consider a farmer managing a specific field within the farm, which can be planted
to annual or multi-year crops on a seasonal (annual) basis. The field has a fixed
(unit) size and is not sub-divided in any given year. The farmer seeks to maximize
the present discounted value of a future stream of profits by choosing the sequence
of crops planted every season, i.e., the crop rotation. We allow for one-year carry-
over rotation effects and treat the physical capital endowment of the field as fixed
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and exogenous. We characterize the state of a given field in terms of its aggregate
“fertility” that depends on both rotation- and field-specific effects. Rotation effects
include pest and disease management and soil fertility, as reflected in the sequence of
crops. Field-specific effects include physical capital such as soil quality and shallow
groundwater salinity, both of which are known to affect yield. Furthermore, the
optimal rotation decision may be affected by farmer expectations for stochastic crop
prices and exogenous weather shocks.

Formally, consider the management of a single field, of unit size, in a multi-crop
rotation system. We define the two sets of crops as the current crop i and k in the
previous time period that includes activities such as fallow and perennial crops. We
denote the crop-specific prices as pti for crop i at time t. We define yields as yi and
variable costs of production as Fi where y∗

i and F∗
i represent the average yield and

average variable cost. Note that this model allows for prices to change over time but
assumes stationary yields and production costs.

Yield variation may stem fromweather shocks, changes in water supply, manage-
ment effects, and other factors which we define as νi . Prices and yields are typically
correlated; however, we specify these as independent processes in order to keep an
estimable dynamic model. To account for yield shocks, define the yield variance as
σ 2
i and let νi ∼ N (0, σ 2

i ). We allow for stochastic yields in the estimation frame-
work; the dynamic programming model only allows for stochastic crop prices as a
first-order Markov process.

Crop rotation affects both crop yields and production costs. Yield effects result
from changes in soil fertility and management of pests and disease cycles. Cost
effects stem from soil fertility management which may reduce fertilizer and other
chemical costs. We introduce parameters �i |k and �i |k to represent the yield and
cost carry-over effects, respectively. In general, these parameters may be functions
that represent the effect of planting crop i today, given that crop k was planted in
the previous period. Furthermore, this framework can accommodate multiple-year
carry-over effects if we define the set k to include the relevant crop planting sequence
history. Accounting for yield and cost rotation effects and stochastic crop yields, we
can define field profits at any time t as

πti � pti
(
(yi + νi ) − �i |k

) − (
Fi − �i |k

)
. (1)

Farmers form expectations about future prices in order tomake current production
decisions in addition to considerations of rotation effects and field-specific physical
capital. We model farmer’s price expectations as a stationary first-order Markov
process. Thus, current prices and price transition probabilities completely describe
the future period price expectations. Formally,

Pr
(
pt+1 � p′|pt � p′′) � Pr

(
pt � p′|pt−1 � p′′). (2)

Intertemporal cost and yield rotation effects are, in general, crop-specific functions
which depend on the relevant crop history of the field. To write down an estimable
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model, we consider rotation effects as deviations from the average yield and cost with
a one-year memory. As such, �i |k and�i |k represent i x k matrices of rotation effects.
On any given field, yield and cost equal the mean within a region, plus or minus a
rotation adjustment effect. Rotation effects may be positive or negative, depending
on the relationship between the crop planted in the current and previous period. For
example, cotton and grain extract a relatively large amount of nutrients from the soil
whereas alfalfa replaces soil nutrients. As such, a cotton–grain rotation may increase
production costs and decrease mean yield, or both, whereas an alfalfa–cotton (or
grain) rotation may have the opposite effect.

Yields and production costs may vary with changes in physical capital. For exam-
ple, poor soil quality requires more intensive input use and management and, there-
fore, higher production costs. We allow physical capital to affect crop yields but not
crop prices in order to keep the model tractable. We introduce two coefficients to
capture the effects of salt and soil on yields, β1

i and β2
i , which represent the marginal

effects of salt (ec) and soil (sl) on mean crop yield, respectively. We will assume
these effects are stationary and unaffected (directly) by crop rotation such that we
can write crop yield as

yi � (
y∗
i + νi

) − �i |k − β1
i · ec − β2

i · sl. (3)

Combined we can write the current period profits on any given field of unit size
as

πt i � pti
(
(yi + νi ) − �i |k

) − (
Fi − �i |k

) − β1
i · ec − β2

i · sl. (4)

This equation fundamentally describes the rotation decision between two crops
at any point in time, given field physical capital. We use this equation to estimate
the parameters of the model based on observed rotation (switching) decisions using
a panel dataset of land-use and production data, discussed in the following section.

3.1 Stochastic-Dynamic Programming Model of Field
Rotations

To transform the rotation problem into a dynamic programming framework, we need
to specify the evolution of state variables and the nature of rotation effects. We
slightly redefine the i, k notation in order to clearly define the dynamic programming
problem. Let ct denote planting crop c in period t for t � 1, 2, . . . , T on a field of
unit size. Consider discrete time and assume an infinite time horizon. Let st be the
state variable that represents the underlying rotation state (fertility) of the field, which
depends solely on a function of the crop planted in the previous period, st � g(ct−1).
Finally, let δ signify the discount factor of the farmer and allow average crop yields to
be deterministic.We canwrite the farmer dynamic programming problem as follows.
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max
ct

T∑

t�0

δt
{
pt (ct )

(
y∗(ct ) − �(ct , st ) − β1(ct ) · ec − β2(ct ) · sl)

−(
F∗(ct ) − �(ct , st )

)}
(5)

subject to Eq. (2) and

st+1 � g(ct ). (6)

Under this formulation, we can derive the Bellman equation which becomes a
vector fixed-point equation in the value function. Bertsekas (1976) showed that if
the discount factor equals less than one, then the mapping underlying the Bellman
equation is a strong contraction on Euclidean space. Consequently, the Contraction
Mapping Theorem guarantees the existence and uniqueness of the solution value
function. In other words, the dynamic programming formulation of the rotation prob-
lem has a theoretically guaranteed unique solution which we can find by solving for
the fixed point of the Bellman equation.

4 Kern County Geo-referenced Panel Data

Kern County, California, is located at the southern end of the San Joaquin Valley
and produced over $5.3 billion in gross value of agriculture in 2011. The top gross-
ing commodities include milk, almonds, grapes, citrus, carrots, alfalfa, cotton, and
tomatoes. The top crops by acreage include cotton, alfalfa, wheat, and almonds.
Crops are primarily irrigated with water coming from state and federal surface water
projects in addition to local surface supplies and groundwater. The data we have
compiled include all irrigated agricultural land in Kern County between 1997 and
2009. On each field and year, we observe the crop grown, field size in acres, farm
owner, and farmmanager of the field.We are able to uniquely identify and track fields
across time using a geo-referenced dataset provided by the Kern County Agricultural
Commissioner’s Office.

We observe physical characteristics of each field from data that we aggregate
up to the field level. Soil data are from the United States Department of Agriculture
(USDA) Soil Survey Geographic Database (SSURGO). Since soil type is unchanged
from year to year over the time horizon of the data, we take a cross section from
2002. The data are geo-referenced, provided in polygon layers, and include seven
classifications for agricultural uses, developed by USDA.We use the Soil Capability
Class Index polygon layer and the tools in ArcGIS to estimate the dominant soil
class for each field in the sample. Shallow groundwater salinity data are from a
2002 survey analysis completed by the California Department of Water Resources
(DWR). DWR surveyed salinity levels, measured in electrical conductivity (mS/cm),
over a sample grid in California’s Central Valley and created a polygon layer map of
salinity levels. The average depth to groundwater varies across the Central Valley;
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the sample average reported by DWR was 3 m. We use the DWR survey polygon
layers to determine the salinity level at each field in the sample.

We additionally observe actual crop evapotranspiration (ET) and dry biomass
production on a 30-by-30-m scale for 2002, 2005, 2008, and 2009. These data are
provided as monthly and seasonal raster layers by SEBAL North America. The
Surface Energy Balance Algorithm for Land (SEBAL) is an algorithm which uses
LANDSAT thermal images and a series of energybalance equations to estimate actual
crop ET and dry biomass on a 30-by-30-m pixel scale (Thoreson et al. 2009). We use
the standard tools in ArcGIS to smooth the seasonal ET and biomass raster layers and
remove pixel observations near field boundaries. We average the remaining pixels
within each field to estimate average ET and biomass for each field in the sample.
We augment the geo-referenced field data with economic data from the Kern County
Agricultural Commissioner’s Office. The Kern Agricultural Commissioner’s Office
conducts farmer surveys and consults with county experts and extension agents in
order to estimate county average prices, yields, and input costs. We include Kern
County average crop price, yield, input use, and input costs for 1997–2009.

GIS field data in Kern County enable us to identify crop rotations that are directly
observable as crops change on the same field across years and consist of grains,
cotton, corn, and processing tomatoes.

4.1 Rotation Identification—Optimal Matching

In order to specify and estimate a dynamic programming model of rotations, we
need to know common rotation practices. Kern County produces vegetables, grains,
cotton, forage crops, grapes, citrus, and nuts, in addition to a range of other crops. For
rotation systems with two crops, such as corn and soybeans, even with a multiple-
year lag effect there are a limited number of potential rotation systems. Rotation
systems in Kern County and other diverse regions will likely include multiple crops
and depend on a number of factors such as field characteristics, farmer knowledge,
micro-climate, pests and disease, and inputs. We need to identify some common
rotation sequences in order to specify and estimate the rotation problem.

We can think of a rotation as a subsequence of crops on a given field, and we
want to identify common subsequences across all fields. This is a parallel problem
to identification of common DNA subsequences, such as single-nucleotide polymor-
phisms, in the genetic sciences. To apply this approach, we aggregate crops into 20
groups according to DWR Crop Group Classification used for land use and plan-
ning in California. After excluding perennial crops and groups not produced in Kern
County, we are left with ten groups. We use a Sequence Analysis algorithm to deter-
mine common subsequences across fields in Kern County and define the identified
sequences as base crop rotations.

Sequence Analysis (SA) is a branch of research within the field of Bioinformatics
that identifies sequences of amino acids andDNAbase pairs. Needleman andWunsch
(1970) were the first to consider the problem and developed an algorithm based on
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the principles of dynamic programming to estimate common subsequences between
two sequences. A sequence can be transformed using insertion (additional elements),
deletion (removing elements), or gap (adding/subtracting breaks). Each of these
transformations has an associated cost, similar sequences or subsequences have a
low (or zero) cost of transformation. Given a range of possible transformations, it
becomes a dynamic programming problem to estimate the minimum distances and
identify similar subsequences. Subsequent to Needleman and Wunsch’s work, the
method has been expanded to includeMultiple Sequence Analysis where similarities
are identified across and within multiple sequences. Other fields that use similar
algorithms include finance, string editing, and language processing.

We employ a version of a SAalgorithmcalledOptimalMatching in order to empir-
ically identify crop rotations. We use the package, SQ-Ados, developed in Stata by
Brzinsky-Fay et al. (2006)with the default substitution and insertion/deletion costs (2
and 1, respectively).We use a sequence “suppression” option that condensesmultiple
sequential crops, of the same type, into a single observation and identifies common-
alities across reduced-form sequences. We take this approach because rotations are
a dynamic process, subject to external shocks, and we model the underlying process
that results in multiple years in the same crop. Economic and agronomic considera-
tions such as price expectations and heterogeneity in land characteristics will affect
rotation decisions. Table 1 summarizes the aggregate data, and Table 2 summarizes
the results. We report the five most common sequences in Table 2.

We will focus on the base rotation of alfalfa–cotton–grain–fallow in the rest of
this chapter.

Since alfalfa is a perennial crop, we use satellite data to estimate the mean yield
in any given year and treat different years of alfalfa as different crops. Specifically,
we allow for four years of alfalfa and estimate the mean yield of a field at any point
in the four-year sequence. We use SEBAL satellite data to identify the mean alfalfa

Table 1 Summary of rotations, by field, in Kern County

Fields in top 20 rotation 4500

Total fields in annual crops (plus Alfalfa) 7939

Total fields in perennials 6290

Total fields 14,229

Table 2 Summary of top five common rotation systems in Kern County

Rotation system Number of fields Percent of total

Alfalfa–cotton–grain–fallow 963 12.14

Alfalfa–corn–grain 479 6.04

Vegetable–grain 357 4.50

Alfalfa–grain 356 4.49

Alfalfa–corn–cotton–grain 353 4.45
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Table 3 Conditional rotation statistics for Kern County 2000–2009

Base
crop

Rotation
crops

# of
fields

% of
total

Base
crop

Rotation
crops

# of
fields

% of
total

Cotton 4424 Alfalfa 3459

Monoculture 131 2.96 Monoculture 16 0.46

Alfalfa,
grain

534 12.07 Cotton,
grain

534 15.44

Corn,
alfalfa,
grain

353 7.98 Corn, grain 479 13.85

Veg, grain 328 7.41 Grain 356 10.29

Alfalfa 297 6.71 Corn,
cotton, grain

353 10.21

Alfalfa, veg,
grain

208 4.70 Cotton 297 8.59

Grain 194 4.39 Veg, cotton,
grain

208 6.01

Fallow 2425 Grain 5240

Monoculture 226 9.32 Monoculture 60 1.11

Veg, grain 357 14.72 Alfalfa,
cotton

534 10.19

Veg 286 11.79 Alfalfa,
corn

479 9.14

Alfalfa 226 9.32 Veg 357 6.81

Grain 215 8.87 Alfalfa 356 6.79

Cotton,
grain

194 8.00 Alfalfa,
corn, cotton

353 6.74

Veg, grain 130 5.36 Veg, cotton 328 6.26

yield by field for 2002 and the Kern geo-referenced land-use data to determine the
age of the stand.

The SA algorithm does not differentiate between the relative numbers of
sequences; only the most common sequences are reported. For example, cotton,
alfalfa, and grain are the most commonly observed crops in Kern County. However,
vegetables are likely part of an important rotation even though they are only observed
on a small portion of fields. SA on the subsets of fields that are observed to be in
a given crop at any point in the data illustrates what we term “conditional” rotation
statistics. In other words, the statistics show other crops that are grown on a field,
conditional on a specific crop being produced. Table 3 summarizes the results.

For example, we observe cotton at least once on 4242 fields in Kern County
between 2000 and 2009. Cotton is grown in monoculture on 131 fields and rotated
with alfalfa on 297 fields over the 2000–2009 data.
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5 Parameter Estimation

We observe marginal rotation decisions in terms of switching between crops on a set
of n fields in addition to average (county-wide) data on prices, yields, and costs. Our
estimation strategy is to observe the field-level rotation, as a sequence of discrete
switches, from which we infer the parameter values that farmers are responding
to, given they behave according to the model specified above. We use the data to
model farmer rotation decisions in terms of deviations from the mean yield and
costs, depending on the dynamic sequence of crops planted.

We estimate yield variance and Markov price transition probabilities from empir-
ical data. We use the County Agricultural Commissioner time series data, from 1980
to 2009, to estimate the yield variance for alfalfa, cotton, and grain. We additionally
use these data to estimate price state transition probabilities and allow for eight price
states for each crop. We select the eight states as the high and low observed between
2000 and 2009 (the range of our field observations) and the evenly distributed per-
centiles for the other six states. The soil state of the field is allowed to take six
values, corresponding to the USDA index described in the previous section. Finally,
the salinity state is allowed to take eight discrete values of 0, 3, 5, 7, 11, 13, 16, and
30, corresponding to min, max, and percentile values.

Farmers typically plant alfalfa for four years, thus the base
rotation sequence that we identified with the SA algorithm is
alfalfa1–alfalfa2–alfalfa3–alfalfa4–cotton–grain–fallow. It follows that the model
we have outlined has 106 parameters. After imposing restrictions on second-,
third-, and fourth-year alfalfa, the dynamic model reduces to 54 parameters. These
include 4 by 1 vectors, β1 and β2, of the crop-specific soil and salinity yield effects.
We expect β1 and β2 to have positive signs because decreasing soil quality and
increasing shallow groundwater salinity decrease yields. The 7 by 7 parameter
matrices � and � represent cost and yield carry-over effects due to crop rotation,
respectively. The i, k entry of each matrix represents the yield or cost effects from
planting crop i today given that the farmer planted crop k in the previous year. We
anticipate that these parameters can take any sign, representing both positive and
negative agronomic effects from rotating crops.

The model we specified in the previous section yields a of 42 Euler equations that
define the base alfalfa–cotton–grain–fallow rotation. Importantly, note that multiple
years in a single crop or other variations on this rotation system can occur. Variations
on the base rotation system result from economic factors including changes in relative
prices, costs, resource constraints, or changes in field-specific physical capital, which
we will simulate in the following section.

With 54 parameters and 42 equations, the estimation problem is underdetermined
and standard econometric techniques do not apply. We could impose restrictions
to reduce the number of unknown parameters; however, this would lead to a miss-
specified model because we need all of the cross-crop rotation effects to satisfy
the Euler equations. Cross-crop rotation effects become important when we allow
relative crop prices to change in the dynamic programmingmodel policy simulations.
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GeneralizedMaximumEntropy (GME) provides an estimation procedure that can
handle underdetermined problems (Mittelhammer et al. 2003). Given that we have
incomplete observations about a statistical process, an information-theoretic consis-
tent method to recover parameters for inference is to impose probabilistic structure
on the model in such a way that it is consistent with observed data and imposes
as little additional information as possible. This concept represents an extension of
Laplace’s “principal of insufficient reason.” Subsequent to Shannon (1948) various
researchers have expanded and extended the entropy estimation procedure (Kull-
back 1959; Levine 1980; Csiszar 1991; Skilling 1989). We introduce estimation
error terms and write the estimation equations as

πn,c|a4 ≥ πn,ia4 + ε j for all i �� c (7)

πn,g|c ≥ πn,i |c + ε j for all i �� g (8)

πn, f |g ≥ πn, i |g + ε j for all i �� f (9)

πn,a1| f ≥ πn,i | f + ε j for all i �� a1 (10)

πn,a2|a1 ≥ πn,i |a1+ε j for all i �� a2 (11)

πn,a3|a2 ≥ πn,i |a2 + ε j for all i �� a3 (12)

πn,a4|a3 ≥ πn,i |a3 + ε j for all i �� a4 (13)

In order to estimate the parameters using GME, we need to transform the basic
problem from one of finding specific parameters, as defined above, to one of find-
ing probability weights over parameter-specific support values. Let the convex sets
described by Eqs. 7–13 define the set of relevant possible parameter solutions.

ϑγ �
{

γ̃k,l : γ̃k,l �
s∑

i�1

π
γk,l
i γ i

k,l, π
γk,l
i ≥ 0,

s∑

i�1

π
γk,l
i � 1

}

for all k, l, (14)

ϑψ �
{

ψ̃k,l : ψ̃k,l �
s∑

i�1

π
ψk,l

i ψ i
k,l , π

ψk,l

i ≥ 0,
s∑

i�1

π
ψk,l

i � 1

}

for all k, l, (15)

ϑβ1 �
{

β̃1
k,l : β̃1

k,l �
s∑

i�1

π
β1
k

i β
1,i
k,l , π

β1
k

i ≥ 0 ,

s∑

i�1

π
β1
k

i � 1

}

for all k, (16)

ϑβ2 �
{

β̃2
k,l : β̃2

k,l �
s∑

i�1

π
β2
k

i β
2,i
k,l , π

β2
k

i ≥ 0,
s∑

i�1

π
β2
k

i � 1

}

for all k, (17)

Thus, given that the solution to the underdetermined system is restricted by
Eqs. 14–17 as the convex hull of the respective support values, where s represents



158 D. MacEwan and R. E. Howitt

the number of discrete support values for each parameter. We define the unknown
parameters as

s∑

i�1

π
γ j,k

i γ i
j,k, (18)

s∑

i�1

π
ψ j,k

i ψ i
j,k, (19)

s∑

i�1

π
β1
k

i β
1,i
k , (20)

and

s∑

i�1

π
β2
k

i β
2,i
k . (21)

Similarly, let the error terms lie in a convex set,

ϑε j �
{

ε̃ j : ε̃ j �
s∑

i�1

π
ε j

i εij , π
ε j

i ≥ 0,
s∑

i�1

π
ε j

i � 1

}

for all j, k, (22)

and we write the unknown error terms as

s∑

i�1

π
ε j

i εij . (23)

We have transformed the problem from finding the parameters into finding the
solutions for the parameter-specific probability weights π1, . . . , πs which define the
convex combinations of the parameter-specific support values. Restricting solutions
to probability weights over a finite support space may seem like a strong assump-
tion; however, the parameters of the rotation problem naturally conform to a reason-
able support range because of agronomic conditions. The transformed problem is
to choose the parameter-specific probability weights (π ) over the parameter-specific
support values (s). However, the problem is still underdetermined as there are an infi-
nite number of probability distributions which satisfy the Euler equations and proba-
bility distribution requirements. GME offers a solution procedure which chooses the
maximally uninformative probability weights over each parameter’s support values
subject to the known data constraints (Euler equations). Mittelhammer et al. (2003)
(pg. 23) showed that a unique solution to the GME problem exists and that one can
solve for it numerically. Intuitively, GME maximizes a concave function subject to
a compact constraint set, which guarantees a unique solution.
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Table 4 Soil, salinity, cost ($/ac), yield (tons/ac), and error support values for GME program

Crop Avg.
yield

Soil
(%)

Salinity
(%)

Yield
(%)

Avg.
vari-
able
cost

Cost
(%)

Avg.
rev-
enue
(Total)

Error
(%)

Alfalfa 1 8.16 ±35 ±35 ±50 152 ±50 1016 ±100

Alfalfa 2 8.30 ±35 ±35 ±50 152 ±50 1016 ±100

Alfalfa 3 7.40 ±35 ±35 ±50 152 ±50 1016 ±100

Alfalfa 4 6.90 ±35 ±35 ±50 152 ±50 1016 ±100

Cotton 0.67 ±35 ±35 ±50 441 ±50 1016 ±100

Grain 2.72 ±35 ±35 ±50 257 ±50 1016 ±100

TheGMEprogrammaximizes the cumulative entropymeasure over all the param-
eter distributions

max

⎧
⎪⎨

⎪⎩

−∑

i

∑

k

∑

l
π

γk,l
i ln(πγk,l

i ) − ∑

i

∑

k

∑

l
π

ψk,l

i ln(πψk,l

i )− ∑

i

∑

k
π

β2
k

i ln(π
β2
k

i )

−∑

i

∑

k
π

β1
k

i ln(π
β1
k

i ) − ∑

i

∑

j
π

ε j

i ln(π
ε j

i )

⎫
⎪⎬

⎪⎭

(24)

by choosing π
γ j,k

i , π
ψ j,k

i , π
β1
k

i , π
β2
k

i , and π
ε j

i subject to the Euler conditions, 7–13,
with Eqs. 18–21 and 23 substituted in for parameter values. Additionally, we have
to add two more sets of constraints that ensure that the probabilities sum to one, and
the probability weights have a positive signs.

The objective function is concave and the constraint set is compact, thus a global
maximum to the problem exists. The probability weights over the support values
for each of the parameters that minimize additional information subject to the data
constraints form the solution.

5.1 Generalized Maximum Entropy Estimation Results

For the rotation problem, we set s � 5 and use a truncated uniform support space for
each of the parameters. The parameters we estimate include the rotation yield and
cost effects, salinity effects, soil effects, and the first-order condition error terms.
Thus, each parameter has a set of five support values for which the GME program
will choose the optimal respective probability weights. The support space is based
on agronomic priors and summarized in Table 4.

Soil, salinity, and yield rotation effects have a support space (in percentage terms)
around the average yield as specified in columns 3, 4, and 5, respectively. Cost
rotation effects have a support space of plus or minus 50% of average variable cost.
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Table 5 Salt and soil parameter estimates (standard errors in parentheses)

Salinity yield parameters

ALF1 ALF2 ALF3 ALF4 COT GRN FAL

0.6750 0.6750 0.6750 0.6750 0.0576 0.2305 n/a

(0.000) (0.00) (0.00) (0.000) (0.030) (0.110) .

Soil yield parameters

ALF1 ALF2 ALF3 ALF4 COT GRN FAL

0.1197 0.1197 0.1197 0.1197 0.0120 0.0386 n/a

(0.000) (0.000) (0.000) (0.000) (0.011) (0.002) .

We solve theGMEprogram in theGeneralAlgebraicModeling Software (GAMS)
using the CONOPT3 nonlinear solver and bootstrap standard errors. Table 5 sum-
marizes the marginal effect of salinity and soil on average yields.

Parameters are interpreted as the marginal adjustment in tons per acre to mean
yield due to a one unit change in salinity or soil quality. Salinity is measured in dS/m
and soil is by SSURGO definitions, as discussed previously. The estimated marginal
effect of salinity on crop yield is consistent with the literature. Namely, alfalfa is
relatively salt-intolerant and cotton and grain are more salt-tolerant. The estimated
marginal effects, in percentage terms, reflect this agronomic information with alfalfa
realizing the largest yield decrease.

Parameter estimates for the rotation adjustment effects for costs and yield are
reported in Tables 6 and 7.

An entry in the matrix is interpreted as given that crop (column) was planted
last period the marginal change in costs/yield relative to the average if crop (row) is
planted this period. Parameter estimates are based on farmer behavior and, as such,
should be interpreted as the implied yield and cost rotational adjustments based on
observed farmer behavior. Entries denoted with “n/a” represent imposed restrictions.

The elements below the main diagonal (and in the top right corner) in Table 6
represent the key cost carry-over effects in the rotation problem. Alfalfa year 1
through alfalfa year 4, cotton, grain, and then fallow represents the base sequence
of crops in the rotation is. Then the cycle repeats. When grain follows cotton, it
translates into an average cost savings of $51.40 per acre. For example, the UC
Davis Integrated Pest ManagementWeb site recommends rotating cotton with grains
to control nematodes and seedling diseases. This, in turn, translates into reduced
chemical applications and cost savings in the following season. When cotton follows
cotton, our estimates imply an increase in variable production costs of $88.20 per
acre. Part of this cost increase may stem from additional chemical costs to control
nematodes and seedling diseases. We also know that grains replenish soil organic
content back into the soil when they follow cotton in a rotation. Thus, some of the cost
increase from planting cotton after cotton likely comes from reduced soil fertility,
which requires additional fertilizer application.
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Table 6 Estimated effect of rotation on costs (standard errors in parentheses)

Cost adjustment parameters

ALF1 ALF2 ALF3 ALF4 COT GRN FAL

ALF1 14.73 15.59 16.32 14.26 22.83 14.03 −17.45

SE (0.113) (0.024) (0.011) (0.000) (0.393) (0.020) (0.010)

ALF2 −17.60 n/a n/a n/a n/a n/a n/a

SE (0.005) . . . . . .

ALF3 n/a −21.85 n/a n/a n/a n/a n/a

SE . (0.711) . . . . .

ALF4 n/a n/a −26.83 n/a n/a n/a n/a

SE . . (0.006) . . . .

COT 51.64 61.06 77.62 −58.30 88.20 94.50 64.54

SE (0.000) (0.130) (0.045) (0.056) (0.000) (0.002) (0.004)

GRN 29.50 29.55 29.55 29.50 −51.40 55.20 30.72

SE (0.000) (0.000) (0.003) (0.001) (0.002) (0.000) (0.000)

FAL 23.00 23.00 23.00 23.00 23.00 −200.00 23.00

SE (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note This table is read as crop (row) follows crop (column)

Table 7 Estimated effect of rotation on yields (standard errors in parentheses)

Yield adjustment parameters

ALF1 ALF2 ALF3 ALF4 COT GRN FAL

ALF1 −0.90 −1.10 −1.11 −0.72 −1.20 −0.61 1.57

SE (0.003) (0.004) (0.007) (0.000) (0.000) (0.000) (0.009)

ALF2 1.02 n/a n/a n/a n/a n/a n/a

SE (0.004) . . . . . .

ALF3 n/a 1.19 n/a n/a n/a n/a n/a

SE . (0.001) . . . . .

ALF4 n/a n/a 1.19 n/a n/a n/a n/a

SE . . (0.004) . . . .

COT −0.07 −0.12 −0.13 0.07 −0.10 −0.33 −0.12

SE (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000)

GRN −0.22 −0.33 −0.22 −0.22 0.58 −1.09 −0.24

SE (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.053)

FAL n/a n/a n/a n/a n/a n/a n/a

SE . . . . . . .

Note This table is read as crop (row) follows crop (column)
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We want to emphasize and important point for interpreting our parameter esti-
mates. Parameter estimates represent implied cost and yield effects based on observed
farmer decisions and the dynamic program specified in the previous section. It is
tempting to interpret results, such as yield effects, in terms of physical units and
compare to observed yields at the field. These numbers should only be used as a
general guide, not for direct comparison of magnitudes.

6 Model Simulation

Given the estimated parameters of the model, we formulate and solve the dynamic
programming model defined in the previous section. Figure 2 demonstrates the opti-
mal sequence of crops for the model solution, which, as expected, reproduces the
observed base rotation.

As shown, the base alfalfa–cotton–grain–fallow rotation represents the optimal
crop rotation, with alfalfa as a four-year crop. In the absence of external shocks, the
field stays in an infinite cycle of alfalfa–cotton–grain–fallow. In years 1–4, the farmer
plants alfalfa, then rotates into cotton in year 5, grain in year 6, and fallow in year 7
before the cycle repeats again.

Variations on the base rotation fromchanges in relative prices, soil quality, salinity,
or resource constraints constitute the main results. We expect that rotations vary with
differences in field-specific physical capital in addition to changes in relative crop
prices. Our model shows that the optimal rotation shifts as soil quality and field
salinity levels change, even with average relative prices. For example, with average
prices over low salinity the optimal rotation is alfalfa (four years) followed by one
year of cotton. Thus, the model satisfies one of the proposed criteria, the flexibility to
represent spatial variation in rotation systems. For brevity,we omit policy simulations

Fig. 2 Simulation of base
crop solution—average
conditions over 30 years
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of the model with changes in relative prices and focus on simulation of a salinity
policy.

6.1 Policy Application: The Dynamic Margin Response
to Salinity

In California’s Central Valley, direct agricultural salinity costs are estimated between
$450 and $750 million per year. Including damages to urban users, the environment,
and industry increase total cost estimates to over $1 billion per year. Most of the costs
to agriculture are due to declining crop yields as salinity increases. However, not all
crops are affected by salinity in the same way and, as such, we expect that farmers
may be able to mitigate some of the losses though increased rotation management.
The cost estimates cited above treat production as a static process and only allow
for adjustments along the intensive and extensive margin. It follows that the costs of
increasing salinity may change if we additionally consider the dynamic margin.

Reduced crop yields account for the largest direct cost of salinity to agriculture.
The relationship between root-zone salinity and crop yield varies by crop and field-
specific conditions. Farmers faced with high salinity have a number of management
options which may change the nature of this relationship. For example, with suffi-
cient depth to groundwater, applying water in excess of crop consumption will allow
leaching of salts below the root zone. With saline groundwater intrusion into the root
zone, switching to micro-irrigation or facilitating drainage may mitigate the impacts
of salinity. In addition to adjusting irrigation and technology, other salinity manage-
ment strategies include crop rotation, field flushing, adjusting fertilizer application,
field drainage, establishing native salt-tolerant vegetation, and land fallowing. The
extent to which farmers use these different options depends on the type of salinity and
field-specific factors including micro-climate, soil characteristics, and the quality of
the available irrigation water.

We expect that the farmer considers the relative costs of the management alterna-
tives, the marginal crop-specific yield effects of management strategies, and relative
crop prices when making rotation system management decisions. This suggests that
adjustment to higher salinity is not an immediate extensive margin shift, as static
models would predict, but rather a gradual intensive and dynamic margin adjust-
ment. Figure 3 shows the effect of salinity levels on the optimal rotationwhen salinity
changes from 5, 13, 16, and 30 dS/m.

These levels represent the upper range of the salinity state space estimated in
the dynamic programming model. With moderate salinity of 5 dS/m, the optimal
rotation is two years of alfalfa followed by one year of cotton. Cotton is relatively
salt-tolerant whereas alfalfa is relatively intolerant but valuable, thus the farmer
manages higher salinity levels by rotating between these crops. Additionally, alfalfa
is known to fix nitrogen, which benefits cotton production in the following year. As
salinity increases, it is no longer profitable to include cotton and the optimal rotation
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Fig. 3 Crop rotation with average prices and good soil (USDA SCCI � 2) under varying salinity
levels
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shifts to an alfalfa–fallow rotation. At some point between 15 and 30 dS/m, the field
is removed from production. Note that this analysis assumes constant relative crop
prices, at average observed levels, and that a change in relative prices would shift the
optimal rotation.

If we estimate the model under a range of relative prices and physical capital, the
optimal rotation shifts as expected. For example, with a higher price, cotton remains
in the optimal rotation system longer with higher salinity levels. Similarly, high grain
prices outweigh rotation adjustment costs and salinity effects and grain is included
in the optimal rotation. Thus, the model satisfies one important criterion, the ability
to reproduce a range of rotation systems which respond, endogenously, to changing
relative process and field conditions. Furthermore, the model reproduces shifts out
of a base rotation into nested rotation cycles in response to changing relative prices
or salinity levels.

To demonstrate the rotation response to changes in relative prices, we simulate
an alfalfa price increase from the sample average of $132.60 per ton to $257 per ton.
We simulate the spike in years 7 through 12, hold soil quality constant, and allow
salinity levels to increase. Figure 4 illustrates the results.

The relevant comparison is to Fig. 3. First, note that under relatively low salinity
levels, of 5 dS/m, the optimal rotation shifts from 2 years of alfalfa and one year of
cotton to alfalfa monoculture for the duration of the spike. Note that this actually
corresponds to two four-year alfalfa stands planted in succession. The increase in the
price of alfalfa, combined with elevated field salinity levels, outweighs the negative
rotation costs of sequential alfalfa and the farmer switches to alfalfa monoculture.

Figure 4 also illustrates an interesting response to the alfalfa price spike under
moderate salinity levels (13 dS/m). With higher alfalfa prices, the model estimates
that the dynamically optimizing grower will switch to a two-year, one-year fallow
rotation cycle instead of three-year alfalfa under the lower prices. This counterin-
tuitive result is explained by noting that first- and second-year alfalfa stands have
higher yields than third-year alfalfa. As such, the farmer can increase profits on the
field during the price spike by shortening the rotation, incurring higher switching
costs, and realizing higher yields during the price spike. Under higher salinity levels,
Fig. 4 shows that the optimal rotation cycle remains unchanged.

Our model demonstrates that the endogenous dynamic cycle of a field rotation
responds as expected to changes in field capital and relative prices. The dynamic
margin of adjustment leads to a more gradual shift in rotation systems in response
to changes in salinity than that which static models may predict. If we think about
the continuous nature of field capital, then we can visualize how fields in a region
like Kern County are in a continuous range of dynamic rotation cycles. Importantly,
fields are at different points in their respective rotation cycles at any point in time
(i.e., different years of the alfalfa stand, cotton, or grain) and this will additionally
affect the response of individual fields to changes in salinity. Policies aimed at more
sustainable agriculture, such as a salt balance, need to be aware of the intensive,
extensive, and dynamic margins of response to salinity.
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Fig. 4 Crop rotation with average prices and good soil (USDA SCCI � 4) under varying salinity
levels with alfalfa price spike in years 7 through 12
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7 Conclusion

Cropping decisions aremade on a field and farmbasis. Inmany cases, it is the relevant
level of disaggregation for agricultural policy analysis. Farm-wide considerations
such as risk and input smoothing are certainly important for aggregate planting
decisions but, fundamentally, we hypothesize farmers understand variation in land
characteristics andmanage rotations on individual fields.Within a region, we observe
that agricultural production exhibits significant spatial specialization, and it follows
thatwheremaybe as important aswhat formany agricultural–environmental policies.
For example, environmental effects of nitrogen runoff depend on the spatial location
(e.g., proximity to waterways) of the field(s) producing a specific set of crops. As
another example, salinity levels vary across fields and our model shows that the
rotation response will vary accordingly. Treating agricultural production as part of a
dynamic cycle at the field level offers valuable insights into these and related policy
questions.

In addition to sustainable agriculture and spatially dependent agricultural–en-
vironmental policies, field-level analysis is relevant for incorporating the dynamic
margin into supply response. Researchers have established, in various contexts, that
there is a difference between dynamic and static supply elasticities (Orazem and
Miranowski 1994; Tegene et al. 1988). An interesting extension, which our frame-
work encompasses, is how production cycles, or rotation systems, respond to price
shocks. For example, two different sets of fieldsmay be growing cotton in a given sea-
son but one may be part of a one-year cotton–vegetable rotation, to control seedling
diseases, whereas the other may be in a multi-year cotton–alfalfa–vegetable rotation,
perhaps to control nematodes. Both changes in relative prices and the dynamic cost
of breaking the rotation are important.

In this contribution, we propose that understanding how farmers determine rota-
tions andmono-cropping is important for the implementation of effective sustainable
agricultural policies. We hypothesized that an economic analysis of sustainable agri-
culture should account for the dynamic margin of adjustment in addition to the static
intensive and extensive margins. The dynamic programming model we formulated
explicitly accounts for the switching costs of rotations as reflected by farmer deci-
sions. To measure and understand switching costs is one step toward predicting the
adoption of more rotational practices and represents an effective tool in evaluation of
policies that seek to move toward a more sustainable agricultural production system.
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Chapter 10
Water into Wine and Cheese:
Implications of Substitution and Trade
for California’s Perennial Water Woes

Daniel A. Sumner and Qianyao Pan

Abstract Waterwoes are growing globally as farmers and others struggle to develop
infrastructure and institutions that allow the agricultural economy to thrive in the face
of competing uses for water. While not new, these struggles are deeply important,
and nowhere more so than to agriculture within arid regions. This chapter uses the
California water context to trace through the simple economics of how irrigation
water availability and price affect prices and quantities of tradeable food products.
We highlight a few key relationships within the supply chains for wine and cheese
using the simplest framework possible—fixed proportions and elastic input supplies
at each stage of a multi-market chain. First, we consider irrigation water used to
produce grapes that are transformed into wine and highlight the role of cost shares
and final product demand elasticities. We show that irrigation water is a far more
important driver of prices and quantities in the low-cost San Joaquin Valley region,
which faces a more elastic demand for wine than in the high-cost (and price) North
Coast region, which faces a less elastic demand. When we consider the irrigation
water used to produce feed crops for dairy cows—which, in turn, produce milk that
is transformed into cheese, we find that water has only a moderate cost share in
forage production and that forage has a moderate share in milk output. Nevertheless,
because California cheese faces an elastic demand in the global market, a rise in
water costs could reduce California cheese production significantly.

1 Introduction

Like many arid agricultural regions, California faces perennial irrigation water
concerns including (a) periodic droughts, (b) competing demands from environ-
mental and urban uses, (c) limited storage capacity, (d) distribution costs, and
(e) complexities of property rights in surface water and groundwater
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(Hanak et al. 2018a, b). Market signals struggle to be heard fully within this
cacophony of concerns.

Market signals have not traditionally been used to guide allocation and man-
agement of water resources. Surface water is often allocated for irrigation under
horrendously complicated rules, with prices charged to growers that seem to be some-
times only loosely connected to underlying supply and demand fundamentals. As
with other storable commodities, long-term contract prices deviate from spot-market
prices, while temporal and locational variations in prices are based on physical and
regulatory costs of moving water over time and space. At the same time, a legacy of
governmentmandates and regulations limitmarket transactions. Groundwater pump-
ing is often expensive, and overuse of groundwater causes external impacts and the
potential for rising costs over time (Hanak and Jezdimirovic 2016).

The implementation of the Sustainable Groundwater Management Act (SGMA)
passed in 2014 may help address the groundwater overdraft issue, and the further use
of water markets, and incentives for groundwater recharge and groundwater storage
(Hanak and Stryjewski 2012), could also help in aligning water use with costs and
benefits (Hanak et al. 2018a, b).

Farming and processing of farm production are vulnerable to water availability
and price. This contribution takes the simplest possible approach to trace through the
impacts from changes in irrigation water costs to the supply of processed farm prod-
ucts that face alternative demand conditions. In California, wine and cheese are
important tradeable products derived from local irrigation water, through the pro-
duction of grapes used for wine and through the production of hay and silage used to
produce the milk that is used for cheese. We illustrate how cost shares and demand
elasticities are key parameters influencing the market-level implications of changes
in water availability and price.

2 Some Economic Implications of Higher Irrigation Water
Costs

Economic trends augmented by new regulations and climate change are likely to
increase irrigation water scarcity and price in the San Joaquin Valley. Population
growth in California and shifts toward water-intensive crops raise additional water
scarcity concerns. Regulations also shift irrigation costs. More demand for environ-
mental uses of water has been the most prominent of the regulation-driven impacts
on water scarcity. Limits on groundwater pumping may further reduce availability
of irrigation water. Additional or more streamlined tradability of water rights raises
explicit costs of water in some districts while lowering the water prices elsewhere.
Climate trends toward higher growing season temperatures raise the demand for
irrigation, while higher winter temperatures reduce snowpack available for irriga-
tion supply. Less surface water available for irrigation reduces groundwater recharge
and raises subsequent costs of groundwater access. Thus, long-term prospects point
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Fig. 1 Heterogeneous farm-level water demand for surface and groundwater supply

toward higher average water costs and for periodic droughts to cause higher spikes
in water prices.

Before considering some simple simulations, let us review the impacts of more
scarcity in water supply for irrigation in a simple conceptual framework. Farms use
both groundwater and surface water. Groundwater incurs pumping costs that rise as
more is pumped and the vertical distance to the aquifer (i.e., the ‘lift’) increases.
Surface water scarcity is reflected in lower allocation quantities and higher prices
for the quantity that is made available. Movement (sales or other transactions) of
water between farms is limited, so no full equilibrium of equal prices or marginal
value products is established. For illustration, Fig. 1 shows the case of two farms
with distinct demand functions that share access to groundwater and have separate
surface water allocations, but the same prices.

In Fig. 1, SG0 represents the upward sloping groundwater supply function that
represents marginal pumping costs as a function of collective use of the two farms.
SW0 is the combined supply of groundwater and surface water available. We assume
a constant price Ps0 for surface water, which is higher than the cost to pump the
first unit of groundwater. The amount of surface water is initially limited to Qs0 for
each farm. For simplicity, we allow each farm to be allocated equal shares of surface
water. With N farms, the total amount of surface water available for irrigation would
be Qs0 * N .

The demand curve Db represents the water demand from farm B, which is small
relative to farm A, represented by Da. Each farm uses both groundwater and surface
water for irrigation. In Fig. 1, Db intersects with SW0 at Qw′0, which means farm B
uses Qw′0 amount of water in total. Farm B uses an initial amount of groundwater
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that costs less than surface water and uses only about half of its allocation of surface
water.

The demand curve for farm A, Da, intersects SW0 at Qw0, which means farm A
usesQw0 amount of water in total. Farm A utilizes its full allocation of surface water
available (Qs0) and pumped the additional groundwater (Qw0 − Qs0). Notice that
the initial amount of groundwater costs less per unit than does surface water and
the second amount of groundwater costs more per unit than does surface water. We
assume that the two farms cannot trade surface water with each other.

Consider application of three shocks to water supply in the context of this simple
framework. First, the amount of surface water allocated to each farm is reduced. In
Fig. 1, the amount of surface water declines from Qs0 to Qs1. Second, the price of
surface water rises.

In Fig. 1 the price of surface water increases from Ps0 to Ps1. Third, the marginal
cost of groundwater rotates up, say because of an area-wide decline in the water table
or some other added cost imposed on the use of groundwater. In Fig. 1, groundwater
marginal cost rotates from SG0 to SG1.

Three outcomes follow from the three changes in the water supply system. For
farm A, the marginal cost of water is still that of the supplementary groundwater that
is used. Farm A uses less water in total and specifically less surface water. As drawn
in Fig. 1, groundwater use rises for farm A, but the amount is ambiguous in theory.
For farm B, the marginal price of water is that for surface water which increases by
�Pb. Farm B uses less surface water and more groundwater. Total water for farm B
falls fromQw′0 toQw′1. Note that the changes in the effective marginal price of water
differ between the two farms and the responses differ as well.

The analysis illustrated in Fig. 1 shows how an observed change in water prices
may differ across farms and water districts when there are shocks in water supply.
Therefore, it may be important to include the heterogeneity in the changes in water
prices when evaluating the impact of water price change. We do not consider the
potential heterogeneity in water price change across farms in this chapter when
we simulate the impact of water price change on hay production. We assume the
same percentage change in water prices for both farms growing alfalfa hay and
corn silage. This simplification may introduce bias in the projected impacts of water
price changes, especially when considering different water demands from alfalfa hay
production and silage production.

A rising cost of irrigation results in an increase in the cost of production for
irrigated crops. The magnitude of the increase in cost of production depends on
the derived demand elasticity and the supply elasticity for irrigation water. Farms
adapt to the higher water cost in several ways. Farms may switch to less water-
intensive crops—crops with higher marginal value product for water utilized. In
equilibrium, the expected marginal value of water will equalize across crops. Farms
also use less water for each given crop by being more water-efficient, such as by
substituting capital or labor for irrigation water. Reduced irrigation per area is a form
of substituting land for irrigation water.
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3 Simulating Water Price Impacts Using the SWAP Model

One alternative for simulating responses to water scarcity is the Statewide Agricul-
tural Production (SWAP) model–a regional optimization model of irrigated agricul-
tural production tailored to California (Howitt et al. 2012; CH2MHill 2012). The
SWAP model has 27 base regions in the Central Valley in addition to agriculture in
the Central Coast, South Coast, South Lahontan, and Colorado River regions—giv-
ing a total of 37 regions in the current model. The SWAP model is a mathematical
programming-based model that maximizes the objective of producer profits, and is
calibrated to observed crop production and area patterns using the positive mathe-
matical programmingmethod (Howitt 1995a, b). An early application to Sacramento
Valley Water was Lee et al. (1999, 2001).

SWAP incorporates surface water supplies and access to groundwater into its
representation of inputs that go into agricultural production. When the quantity of
surfacewater or the cost of groundwater changes, themodel optimizes crop choice by
adjusting the productionmix, water input, and other inputs (Howitt et al. 2012, 2015).
SWAP generates the agricultural water demand curves that are used in a larger engi-
neering model of California’s water infrastructure—CALVIN (Draper et al. 2003).
Howitt et al. (2015) estimate the drought impacts on California agriculture using
SWAPmodel—where the water allocation to the agricultural sector coming from the
larger CALVIN model determines the amounts of surface and groundwater that the
SWAP model has available.

In this contribution, we examine multi-market dynamics that link the market for
feed to that for raw milk and processed dairy products. We model the equilibrium
displacements within the input and product markets and trace the impacts through
the supply chain. We consider first impacts from supply shifts of irrigation water
on markets for grapes and wine under alternative wine market conditions. We then
consider irrigation water price impacts on prices and quantities of dairy feed, raw
milk, and California cheese that is sold on global markets.

4 FromWater to Wine in California’s San Joaquin Valley

Almost all water used in wine production is applied to vineyards to grow grapes.
Wine output and price are affected (over a relatively long horizon) as a change in
the cost of water passes through the vertical chain from water to grapes to wine. In
this section, we develop a detailed example to demonstrate the impact of high water
costs on the wine market. We use a single-product, partial-equilibrium model with
two inputs at each stage (water and other inputs to produce grapes and grapes and
other inputs to produce wine) and assume fixed proportions. The supply conditions
of inputs and final output are discussed first. We then proceed with derived demand
for grapes and water given wine demand conditions. We include numerical examples
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to illustrate the impacts of high water costs on quantities and prices of wine in two
representative regions in California.

With fixed proportions in grapes production, the supply of grapes is defined by the
supply conditions for the underlying inputs. Let us assume water supply facing grape
production is perfectly elastic, which is a reasonable approximation because water
use for grapes alone is a relatively small share of total water use in the regions. This
means that the price of irrigation water,Pw, is exogenous and set to P ′

w.Writing these
conditions more specifically, grape production and the supply function for water to
grapes are given by,

G � min(λW, βZ), and Pw � P ′
w,

where G is the quantity of grape production, and W is the amount of water going
into grapes. Other inputs to grape production are represented by the composite, Z ,
and the supply of Z is an upward-sloping function of quantity used,

Pz � ms(Z).

These considerations yield an inverse supply function for grapes, G, written as

Pg � d[(P ′
w)(G/λ) + ms(G/β)(G/β)]dG � gs(G).

Because the inputs are used in fixed proportions, the marginal cost of grape pro-
duction is the sum of marginal cost from water and marginal cost from non-water
inputs. If the supply function for non-water inputs is upward sloping, the supply
function for grapes is also upward sloping, even with the perfectly elastic supply of
water to the wine grape industry.

Now, move downstream to wine production using grapes and non-grape inputs.
Again, we assume fixed proportions and composite non-grape inputs. The marginal
cost of wine is again the sum of the marginal cost of underlying inputs. The derived
demand function for grapes is derived using the wine demand and non-grape input
supply. Similarly, the derived demand function for non-grape inputs is given by the
wine demand and the grape supply. The production function, whereQ is the quantity
of wine, is

Q � min(αG, γ O).

The inverse supply function for non-grape inputs, O, may be written simply as

Po � hs(O).

Putting these together means that the inverse supply of wine expressed as the price
of wine quantity, Pq, as a function of the parameters is
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Pq � d(gs(Q/α)(Q/α) + hs(Q/γ λ)(Q/γ λ))dQ � f s(Q).

Turning to the demand side, the inverse demand for wine is

Pq � f d(Q), and

the implied derived demand for the two inputs, grapes and other inputs, is as follows:

Pg � f d(Gα) − (Gα/γ ) · hs(Gα/γ ) � gd(G), and

Pg � f d(Oγ ) − (Oγ /α) · hs(Oγ /α) � hd(O).

Going one link further up the supply chainwe can now express the derived demand
for water and non-water inputs. The inverse demand functions for water and non-
water inputs are expressed as follows:

Pw � gd(Wλ) − (Wλ/β) · ms(Wλ/β) � wd(W ), and

Pz � gd(Zβ) − (Zβ/λ) · P ′
w � md(Z).

4.1 Decrease in the Supply of Water for Wine Grapes

Now, consider implications of an increase in theprice ofwater. Thewater price change
affects the equilibrium in all markets involved in the multi-stage wine production,
including the quantity of grapes supplied, the quantity of wine supplied, the quantity
demanded for non-grape inputs in wine production, and the quantity demanded of
non-water inputs in grape production. Suppose the marginal cost for wine increases
by k percent due to an increase in water costs. This would generate a decrease in
quantity demanded for wine and thus the quantity demanded for grapes and water.
In log terms, change in the supply price of wine is

d ln P s � (1/η)d ln Qs + k

where the supply elasticity for wine is η. The log change in the quantity of wine
demanded is

d ln Qd � ε d ln Pd

where the demand elasticity is ε. Market clearing in price and quantities require that

d ln P s � d ln Pd and

d ln Qs � d ln Qd.
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Therefore, the equilibrium change in quantity of wine is

d ln Q∗ � (ηε/(η − ε))k.

4.2 Numerical Simulations of the Effects of Water Cost
Increases on the Markets for California Grapes and Wine

This section provides an example of the impacts of high water prices on the quantity
demanded for wine and grapes in two representative regions in California: the North
Coast and the San Joaquin Valley. The wine grapes grown in the North Coast face
very different demand fromwine grapes grown in the San Joaquin Valley due to their
distinct market and production conditions.

4.2.1 Data for Simulations of Effects of Water Cost Increases
on the Wine Market

Based on Lapsley and Sumner (2016), wine grapes in the San Joaquin Valley use
about 7616 m3/ha of irrigation water. Wine grapes yield about 32 metric tons per
hectare. These assumptions indicate that 232 m3 of water produces one metric ton
of grapes. One metric ton of grapes produces about 730 liters (l) of wine. Finally,
about 4−6 liters of water is used directly used within a winery to produce one liter
of wine (Lapsley and Sumner 2016).

In the North Coast of California, less water is used for irrigation due to the cooler
and wetter climate. We assume 1523 m3 of irrigation water per hectare of grapes and
8.9 metric tons of grapes per hectare. This implies that 169 m3 of irrigation water
produces one metric ton of grapes in the North Coast district (Lapsley and Sumner
2016).Within a winery, one metric ton of North Coast grapes produces 667 l of wine.
The water directly used within the winery ranges from 4 to 6 l of water/l of wine
(Lapsley and Sumner 2016).

For prices, we assume that 440 US $/metric ton of grapes in the San Joaquin
Valley and wine using San Joaquin Valley grapes has a wholesale price of 2.2 US
$/l of wine. Grapes and wine produced in the North Coast are much more costly.
We assume grapes produced in the North Coast cost 4409 US $/metric ton and the
wholesale price of wine using the North Coast grapes is 27.8 US $/l of wine.

Wine market demand parameters also differ by region. In the wine market, the
demand for the wine produced in the San Joaquin Valley is more elastic than the wine
produced in the North Coast. The San Joaquin Valley wine competes with imported
bulk wine in the USA and exported wine from all over the world outside the USA
(Gabrielyan 2018). Wine produced in the North Coast faces a less elastic demand
thanks to the long established unique characteristics of the market. Here, we assume
the short run (one year or less) demand elasticity is−0.5 for both San Joaquin Valley
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Table 1 Statistics for grape and wine productions in the San Joaquin Valley and the North Coast

Simplified estimates Unit San Joaquin
Valley

Sonoma/Napa

Grape price $/metric ton 440 4409

Water usage m3/ha 7616 1523

Grape yield metric
ton/hectare

32 8.9

Wine from grapes l/metric ton 730 667

Water use in processing wine l/l 4−6 4–6

Wholesale price for wine $/l 2.2 27.8

Demand elasticity short run/long
run

− −0.5/−3.0 −0.5/−1.0

Source Lapsley and Sumner (2016), Smith et al. (2010), CDFA (2013), and authors’ estimates

wine and North Coast wine. In the long run, the demand elasticity is −3 for the San
Joaquin Valley wine and −1 for the North Coast wine.

Table 1 lists data and parameters and allows a comparison of grapes and wine
grown in the San Joaquin Valley and in the North Coast.

4.2.2 Simulations of the Impacts of Water Cost Increases on Grapes
and Wine

Now, we simulate the impact of a higher water cost, by increasing water price from
0.16 US $/m3 to 0.32 US $/m3. The increase in the cost of production in grapes
increases the price of wine. For simplicity, we assume the marginal cost of non-water
inputs and non-grape inputs are constant in the vertical chain of wine production.
In that case, the marginal cost of grapes and wine production increases as follows,
where � is a discrete change,

�Pg � (1/λ)�Pw
�Pq � (1/α)�Pg � (1/λ)(1/α)�Pw

.

The percentage changes in prices and equilibrium quantities of wine are just,

d ln Pq � �Pq/Pq∗, and

d ln Q∗ � ε d ln Pq∗ .

Using the data in Table 1, the price of grapes increases by 9% in the San Joaquin
Valley and only 1% in the North Coast. The price of wine increases by 2% in the
San Joaquin Valley and only 0.15% in the North Coast. In the short run, the quantity
demanded for wine produced in San Joaquin Valley decreases 1%, and the quantity
demanded for wine produced in North Coast decreases 0.08%. The long run impacts
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Fig. 2 Estimates of the impact of higher water prices on grape costs, wine prices, and quantities
demanded. Source Author estimates and calculations

are substantially higher for the San Joaquin Valley. For the long run, we consider a
shock that is expected to be permanent. The quantity demanded for wine produced
in the San Joaquin Valley decreases 7%, while the change in quantity demanded for
wine produced in the North Coast remains very small.

Figure 2 summarizes the estimates of the changes in prices and quantities for
wine and allows comparisons of impacts for the San Joaquin Valley and in the North
Coast.

4.3 Implications for Wine Grapes and Wine

Based on simulation results presented in Fig. 2, the cost of water has a much larger
impact on grapes and wine where the demand is more elastic. Wine produced in the
San Joaquin Valley has close substitutes in the US market from bulk imports and
faces similar substitutes in the world market (Gabrielyan 2018). North Coast wine
faces less potential substitution and thus demand for wine from that region is less
elastic, even in the long run.

Given the inelastic demand for water in grape production, the significant cost
share of irrigation water in that region, and fixed proportions in wine production,
the increase in cost of irrigation water significantly increases the cost of production
for wine produced in San Joaquin Valley. North Coast grapes use less irrigation
water, and the cost share of water in grape production is lower. That, plus the less
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elastic demand for North Coast wine, means that the increase in water cost in grape
production will change the quantity demanded for North Coast wine only slightly.

5 Water into Cheese in the San Joaquin Valley

Next, we use a similar framework to investigate a more complex vertical chain. The
linkage from forage for dairy cows to raw milk to cheese is a multi-stage production
process that takes place in the San Joaquin Valley, where almost all California dairy
cows reside and almost all milk and cheese is produced. Moreover, the two main
forage crops, alfalfa hay and corn silage, are important in terms of acreage and value
and use substantial amounts and shares of irrigation water.

We investigate how higher water costs in California affect the multi-stage supply
chain where the end product is cheese. We could have examined a similar chain for
non-fat dry milk and butter, which also uses both milk fat and milk solids other than
fat. The vertical chain of markets that affects cheese supply includes markets for
water, forage crops, raw milk, and cheese. Again, we assume a single final product
in partial equilibrium, where each stage has two inputs used in fixed proportion. We
include a realistic numerical illustration to show the potential impacts of higher water
costs on the California dairy sector.

Two forage crops are fed to the dairy cows in the San Joaquin Valley—wet
roughage (mostly corn silage) and dry roughage (mostly alfalfa hay). Alfalfa and
silage face different water prices and non-water input costs because the silage mar-
ket is very local, due to the high transport costs that cause silage to be cultivated
very near to dairy farms. Hay is grown both in the San Joaquin Valley and trans-
ported from other places. We assume both crops have two-input, fixed-proportion
production functions using water and non-water inputs.

According toLong et al. (2015), alfalfa hayproductionuses 10,668m3 of irrigation
water per hectare and yields 15.7 metric tons per hectare. This implies that 680 m3

of water produces one metric ton of alfalfa hay. Based on Klonsky et al. (2015), corn
silage uses 9144 m3 of water per hectare and yields 71.7 metric tons per hectare. This
implies that 127.5 m3 of water produces one metric ton of corn silage. The prices
for hay and silage are weighted feed costs based on 2015 Holstein Feed Summary
reported by California Department of Food and Agriculture (CDFA 2015b) and the
authors’ calculation. We use a representative alfalfa hay price of 262 US $/metric
ton and an estimated silage price of 80 US $/metric ton.

Feed use is based on the assumed life cycle of a milk cow (Anderson and Sumner
2016),milk yields fromCaliforniaDairyStatistics reported byCDFA, the feed rations
reported in the Holstein Feed Summary (CDFA 2015a, b), and authors’ estimates.
We find that a dairy cow on average consumes 1.67 metric tons of hay and 5.89
metric tons of silage per year, with annual milk production per milking cow of 10.6
metric tons within the standard 305 milking days per year. Thus, we estimate 0.22
metric tons of hay and 0.79 metric tons of silage are used to produce 1 metric ton of
milk for a dairy cow, on average across its life cycle. We use a price of milk used in
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Table 2 Estimated statistics
for forage, milk, and cheese
productions in California

Unit Value

Water in hay m3/metric ton 680

Water in silage m3/metric ton 128

Hay in milk metric ton/metric ton 0.22

Silage in milk metric ton/metric ton 0.79

Milk in cheese kg/kg 9.80

Hay price $/metric ton 262

Silage price $/metric ton 80

Milk price $/kg 0.34

Non-milk cost in cheese $/kg 0.52

Estimated cheese price $/kg 3.81

Demand elasticity for
cheese

– −5

Source Long et al. (2015), Klonsky et al. (2015), Anderson and
Sumner (2016), CDFA (2015a, b) and author estimates

cheese production based on the minimum milk price for California class 4b, which
is 0.34 US $/kg (CDFA 2016).

Milk price regulations imply that the price of milk components used for cheese
may differ from the price of identical components in the same region when that
milk is used for other products. Farmers receive regulated prices for milk that are
a blend of the component prices by end use based on the market-wide use of milk
in California. California pricing rules changed in November 2018, but we use milk
prices, from 2015 to be consistent with the other data.

According to California Dairy Statistics, about 9.8 kg of milk produces one kilo-
gram of cheese. Based on CDFA manufacturing cost reports, (CDFA 2014), proces-
sors spend 0.52 US dollars on non-milk inputs to produce one kilogram of cheese.
The cheese price is estimated based on the sum of the milk cost and non-milk cost,
given input prices and production ratios, which is 3.81 US $/kg.

We assume the demand facing California cheese is very elastic because California
cheese is mostly generic, competes in global markets, and has a high degree of
substitution with cheese produced outside California. California’s dairy processing
plants account for almost 40% of US dairy exports (Matthews et al. 2016). Here,
we use −5 as the demand elasticity for California cheese in the long run. Table 2
summarizes the parameters used to estimate impacts of water cost increases in the
multi-stage cheese production.

Because much alfalfa hay is produced in the North Sacramento Valley or other
places and corn silage is produced in the San Joaquin Valley, we assume different
water prices for the two crops. Based on the 2015 data in Long et al. (2015) and
Klonsky et al. (2015), the base prices of water are 0.04 US $/m3 in alfalfa hay
production, and 0.08 US $/m3 in silage production. We simulate the impacts of



10 Water into Wine and Cheese: Implications of Substitution … 185

higher water prices by doubling water prices from 0.04 to 0.08 US $/m3 for alfalfa
hay production, and from 0.08 to 0.16 US $/m3 for silage production.

The derivation of model equations is similar to what was presented for grapes and
wine except that here we have two inputs affected by the water price change and we
have an addition stage (animal product production) from crop production through to
the final farm product sold to consumers. Here, we show the key equations used in the
numerical simulations. The subscript h represents hay, and the subscript s represents
silage. The subscript m stands for milk, and c stands for cheese. As before, P is price
and Q is the quantity of the final output. Parameters are defined analogously as in
the wine modeling.

�Ph � (1/λ1) �Pw
�Ps � (1/λ2)�Pw
�Pm � (1/α1)�Ph + (1/α2)�Ps
�Pc � (1/ω)�Pm.

We consider proportional changes as,

d ln Pc � �Pc/Pc ∗ .

The equilibrium cheese market impact in quantity is

d ln Qc∗ � εd ln Pc ∗ .

A higher water cost causes an increase in the cost of production of hay and silage.
As before, we assume the marginal cost of non-water inputs in crop production does
not change and the non-forage inputs per unit of milk production do not change. We
also assume that the non-milk inputs per unit of cheese production do not change.
Hence, moving through the vertical chain of cheese production, the marginal cost of
cheese production increases by a fixed amount, which is determined by the increase
in the cost of irrigation water.

Before the water cost shock, the water represents about 10% of total hay produc-
tion cost and about 13% of total silage production costs. Hay represents about 17%
and silage about 19% of average milk production costs. The cost share of milk in
cheese production is about 86.5%. When water price doubles, the water cost share
rises to 18% in hay production and 23% in silage production. As a consequence,
the hay cost share in milk production rises to 18%, and the silage cost share rises
to 21%. The cost share of milk in cheese rises to 87%. For simplicity, these calcu-
lations assume that the prices and usage of other inputs involved in the multi-stage
production remain constant.

Table 3 shows the impacts of an irrigation water cost increase (a doubling of cost
of water for each crop) that is expected to be long-lasting on the price and quantity
of California cheese.
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Table 3 Estimated impacts
of higher irrigation water
prices on forage, raw milk,
and cheese prices and
quantities in California

Estimates Unit Before
water price
change

After water
price
change

Water price
for
hay/silage

$/m3 0.04/0.08 0.08/0.16

Hay price $/metric ton 262 293

Silage price $/metric ton 80 92.4

Milk price $/kg 0.34 0.36

Cheese
price

$/kg 3.81 4.01

Cheese
price
change (%)

– – 4.2

Cheese
quantity
change (%)

– – −21

Source Author calculations

The higher cost of water implies a higher cost of alfalfa hay by 12% and a higher
cost of silage by about 16%. As a result of these feed cost increases, the cost of
producing milk and therefore the farm price of milk rise. A higher price of milk
translates into as higher cost of production of California cheese. The price of Cali-
fornia cheese increases by about 4%, and because demand facing California cheese
is elastic, the quantity of California cheese falls substantially.

The challenge for the California dairy industry is that the own-price elasticity
of demand for California cheese is very high. We assume an own-price demand
elasticity of −5. The implication is that the quantity demanded of California cheese
falls by more than 20% in the long run. A similar result would follow from a similar
simulation non-fat dry milk (or skim milk powder) and butter. Together cheese and
the butter/powder production comprise about 80% of the use of California farmmilk.
That means a substantial irrigation water cost increase would reduce competitiveness
of the California dairy industry, which faces a highly elastic demand.

6 Conclusions

This chapter has highlighted the vulnerability to irrigation water increases of San
Joaquin Valley farm industries that face elastic demands for processed products to
which they contribute. We used fixed proportion frameworks to link water costs to
farm outputs and farm outputs to processed products. This simple approach shows
clearly how changes in the water price translate directly into changes in the market
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prices for grapes, wine, milk, and cheese. These price increases mean less quantity
demanded and less production in California.

The more that farms can use capital and innovations to substitute away from
increasingly costly water, the more these major impacts can be mitigated. For exam-
ple, if higher water costs cause more sub-surface drip irrigation use to reduce water
per ton of alfalfa hay, the smaller the impact on the price of hay and therefore a
smaller resultant cost increase for of milk and cheese. Similarly, if grapevine root
innovations can reduce the amount of water used per ton of grapes—and, therefore,
reduce the water used per liter of wine—then the smaller will be the impact of higher
water prices on that of wine. As has been true for more than a century, innovation is
the key for sustainability of California agriculture.
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Chapter 11
Climate Policies as Water Policies

Kazim Konyar and George Frisvold

Abstract This study uses an updated version of the U.S. Agricultural Resource
Model (USARM)—a multi-region U.S. agricultural sector programming model—to
examine effects of climate change mitigation policies on U.S. water resources. One
scenario considers effects of increasing prices of energy and energy-intensive inputs
(primarily fertilizers) through a carbon tax or cap-and-trade program. A second sce-
nario combines the first scenario with an agricultural offset program where farmers
are paid to retire cropland for carbon sequestration. The consequences of climate
mitigation policies for agricultural water use and pollution control have received
relatively little attention in part because—unlike USARM—many national agricul-
tural sector models do not explicitly include water as an input. USARM also allows
for input substitution among seven inputs in a CES framework, while accounting
for all major crops as well most specialty crops, federal commodity programs, and
crop exports. Major results are as follows. First, climate mitigation policies have
scope to significantly reduce agricultural water use. Whether domestic offsets are
included has little effect on the total amount of water conserved, but has a large
effect on which parts of the country the conservation takes place. Second, either
carbon taxes or cap-and-trade combined with domestic offsets combines two poli-
cies often modeled as potential solutions to the hypoxic “dead zone” in the Gulf of
Mexico—increased fertilizer prices and land retirement. Climate policies may have
unanticipated, near-term, environmental benefits by addressing the hypoxia prob-
lem. Third, while domestic offsets reduce total fertilizer and agricultural chemical
use, they increase their use per acre. Particularly in watersheds with significant land
retirement, there could be unintended intensive margin effects where fertilizer and
chemical use are increased. Despite this last, cautionary finding, a key insight into
decision makers is that climate policies can have unanticipated, near-term benefits of
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water pollution control and water conservation that could be included in benefit-cost
analyses of climate policy proposals.

1 Introduction

In 2009, the U.S. House of Representatives passed the American Clean Energy and
Security Act (ACESA) of 2009 (H.R. 2454, known as the Waxman-Markey bill).
H.R. 2524 would impose a “cap-and-trade” system on carbon dioxide and other
greenhouse gas (GHG) emissions. While the effects of H.R. 2454 on agricultural
markets have received considerable attention, there has been little consideration of
effects on agricultural water use and water quality. This contribution seeks to fill this
gap in assessment of policies tomitigate climate change. H.R. 2524 has three features
with important implications for agriculture and water resources. First, agricultural
practices or GHG emissions are not regulated directly. Second, however, it would
increase the costs of fossil fuels and energy-intensive products and production prac-
tices. It would significantly increase costs of fertilizers and irrigation water pumping
and affect water demand (for irrigation) and quality (via fertilizer and pesticide use).
Third, farmers would be able to earn offset credits by reducing carbon emissions or
sequestering carbon, either in soils or through tree planting. The most likely means
of earning offset credits would be for farmers to plant trees on cropland (afforesta-
tion) to sequester carbon (Brown et al. 2010). Offsets would become a new source of
income for agricultural landowners. By taking cropland out of production, it would
also act as a supply-control program, raising the price of agricultural commodities.
Even growers who did not participate in an offset program would receive higher
output prices as an indirect result. In sum, farmers’ practices would not be directly
regulated, but farmers would face higher input costs. Offset sales would be a new
source of income. Afforestation under the offset program would limit supply and
increase agricultural prices.

Under H.R. 2454’s cap-and-trade policies, industrial manufacturers and energy
utilities would need a permit for every unit of GHGs they emit. Regulations would
cap the total number of permits issued and reduce the number of permits issued over
time. Generators of greenhouse gases would have to limit their emissions consis-
tent with the permits they own or purchase additional permits from willing sellers.
Anyone selling permits would need to cut emissions accordingly. Firms that can
cut emissions at low costs can sell permits to firms with high costs of cutting emis-
sions. Tradable permit systems can substantially reduce costs of cutting emissions
compared to command-and-control methods that require industries to adopt specific
technologies or that set emission limits at the industry or plant level (Field and Field
2009). The USA has implemented tradable permit systems for other air pollutants
(e.g., sulfur dioxide and nitrous oxides) (Schmalansee and Stavins 2013; Goulder
2012) and water pollutants (Fisher-Vanden and Olmstead 2013). Trading systems
for carbon have been initiated in California, the Northeast United States, the EU,
Quebec, Australia, New Zealand, and South Korea (Newell et al. 2013). A critical
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issue in cap-and-trade policy design is how emission permits are distributed. As the
government distributes fewer permits over time, permits become increasingly valu-
able. If the government auctions off all permits, the market-clearing price would
be equivalent to a carbon tax rate required to cut emissions to the permitted level.
Cap-and-trade policies provide greater incentives for reducing emissions by equating
marginal abatement costs, which reduces overall compliance costs. It also creates
greater incentives to innovate to reduce emissions. In these two respects, cap-and-
trade policies are superior to command-and-control approaches of uniform emission
mandates or reliance on technology standards and similar to the effects of a carbon
tax (Field and Field 2009; Goulder 2013). A significant distinction between cap-and-
trade and carbon taxes is uncertainty about quantities and prices. Under a carbon tax,
the price of carbon (the tax rate) is known, but the actual level of emission reduction
is uncertain ex ante. Under cap-and-trade, the level of emissions is set, but the price
of carbon (price of emission allowances) is uncertain. In tradable permit markets,
permit prices can be highly volatile. This volatility could present challenges for agri-
cultural offset markets that would rely on long-lived decisions about tree planting. A
full discussion of the scope and limits of a cap-and-trade system is beyond the scope
of this contribution. We direct interested readers to papers published in a symposium
on Tradable Pollution Permits published in the Journal of Economic Perspectives
(Fisher-Vanden and Olmstead 2013; Goulder 2013; Newell et al. 2013; Schmalansee
and Stavins 2013).

While other climate change bills have been introduced in the USA, H.R. 2454
is the first passed by any house of Congress. Consequently, potential impacts H.R.
2454 might have on U.S. agriculture have received considerable attention (USDA,
OCE 2009a, b; FAPRI 2010; Brown et al. 2010; Baker et al. 2009; De la Torre Ugarte
et al. 2009; Pan et al. 2011; Gramig 2012; Golden et al., 2009 survey several earlier
studies). These studies have examined impacts on agricultural production, prices,
exports, and farm income, but have not addressed effects on agricultural water use
or potential impacts on water quality. H.R. 2454 has never come up for a full vote
in the U.S. Senate and is not scheduled to do so in the near future. However, given
continuing policy debates over federal deficits and the national debt, the auctioning
of carbon permits or carbon taxes has been continually discussed as a future source
of revenue and as an alternative to other forms of taxation (Metcalf 2010; Gale et al.
2013; Rausch and Reilly 2012).

This study uses the U.S. Agricultural Resource Model (USARM) a multi-region
programming model of the U.S. agricultural sector to examine effects of H.R. 2454
on U.S. agriculture. It differs from previous research in that we explicitly examine
how H.R. 2454 might affect national and regional water use by agriculture. We also
consider the implications of changes in fertilizer, pesticide, and land use for water
quality. Konyar (2001) illustrated how U.S. adherence to the Kyoto Protocol on
climate change would have significantly altered U.S. fertilizer, pesticide, and water
use. Though not addressing H.R. 2454 specifically, Pattanayak et al. (2002) and
Feng et al. (2003) examined how carbon sequestration may provide environmental
“co-benefits” of reduced fertilizer and sediment pollution of water bodies.
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This study also differs from previous research in the scenarios used for future
energy prices. Previous agricultural studies have relied on price estimates from
U.S. Environmental Protection Agency (EPA) analysis (U.S. EPA 2009) or from
the “basic” scenario developed by Energy Information Administration of the U.S.
Department of Energy (U.S., DOE-EIA 2009). The EIA basic scenario projects
higher energy price increases than does the EPA scenario, but also assumes “key
low-emissions technologies, including nuclear, fossil with carbon capture and stor-
age (CCS), and various renewables, are developed and deployed on a large scale
… without encountering any major obstacles” (p. viii). The EIA report acknowl-
edges, “There is great uncertainty about the costs of these technologies, as well as
the feasibility of introducing them rapidly on a large scale” (p. 6). However, safety
concerns raised by the Fukushima nuclear disaster in 2011 may be just such a “ma-
jor obstacle” to deploying nuclear power “rapidly” in the USA. Rapid deployment
of large-scale solar plants has also met with political opposition (Schwartz 2011).
Given uncertainties about non-fossil fuel technologies, we assume energy prices will
change according to the EIA “high-cost” scenario, where costs of nuclear, coal with
CCS, and biomass technologies are assumed 50% higher than in the basic scenario.
The effects of H.R. 2454 on energy markets would be phased in slowly over time.
Some previous analyses suggest that near-term impacts on agricultural input markets
would be relativelymodest (USDA,OCE 2009a, b). In particular, there are additional
provisions that would limit increases in fertilizer costs until 2025. Our interest is in
impacts of H.R. 2454 once provisions have been fully phased in, so the analysis
focuses on impacts as of 2030.

2 USARMModel

USARM is a 32-commodity, 12-region U.S. agricultural sector model. Earlier ver-
sions have been applied to examine impacts of U.S. commodity and conservation
programs, agricultural biotechnology adoption, water shortages in the Western U.S.,
and U.S. adherence to the Kyoto Protocol (Howitt 1991; Ribaudo et al. 1994; Konyar
andHowitt 2000;Konyar 2001;Kimet al. 2002; Frisvold andKonyar 2012).USARM
is a nonlinear, mathematical programmingmodel designed to simulate farmer behav-
ior under external market and policy shocks. It includes 10 major field and 22 fruit
and vegetable crops (Table 1).

Nested constant elasticity of substitution (NCES) production functions determine
each production activity, with separate functions for irrigated and dryland crops.
Use of seven inputs—land, water, labor, capital, fertilizer, agricultural chemicals,
and energy/other inputs—is determined endogenously for each activity. The NCES
functions allow for different substitution possibilities between inputs, allowing acres
planted and per-acre input use to vary. Deficit irrigation is possible where less water
is applied per acre. This reduces costs, but lowers yields. Each production activity
has a cost function that is quadratic in the land input, but linear in all the others.
The quadratic function captures the fact that as more land is allocated to a specific
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Table 1 Commodity and regional groupings in USARM model

Field crops

Barley Rice Sugar cane

Corn Sorghum Soybeans

Cotton Sugar beets Wheat

Alfalfa hay

Fruit, vegetable, and nut crops

Almond Raisin Grapes Pears

Apple Green Beans Peppers

Asparagus Green Peas Potatoes

Broccoli Lettuce Strawberry

Cauliflower Melons Tomato, Fresh

Citrus Onions Tomato, Processing

Cucumber Peaches Walnuts

Grapes

Production region States

Appalachian Kentucky, North Carolina, Tennessee, Virginia, West Virginia

California California

Corn Belt Illinois, Indiana, Iowa, Missouri, Ohio

Delta States Arkansas, Louisiana, Mississippi

Lake States Michigan, Minnesota, Wisconsin

Northeast Connecticut, Delaware, Maine, Maryland, New Hampshire,
New Jersey, New York, Pennsylvania, Rhode Island, Vermont

Northern Mountain Idaho, Montana, Wyoming

Northern Plains Kansas, Nebraska, North Dakota, South Dakota

Pacific Northwest Oregon, Washington

Southeast Alabama, Georgia, Florida, South Carolina

Southern Mountain Arizona, Colorado, Nevada, New Mexico, Utah

Southern Plains Oklahoma, Texas

crop, the marginal cost increases as marginal lands with lower yield potential come
into production. It also allows for the exact calibration of the model solutions to base
year crop acreage following Howitt’s (1995a, b) positive mathematical programming
(PMP) method. More details of USARM equation specification and data sources are
provided in Frisvold and Konyar (2012).

USARM divides the USA into 12 production regions (Table 1). Regions are mod-
eled as aggregate farm units producing crops in their respective areas. Regional
agriculture adjusts to shocks by changes at the extensive margin (change in total
acres planted) and the intensive margin (choices of crops to grown, whether or not
to irrigate, how much to irrigate, and application rates for other inputs).
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The model includes domestic and export demand equations for each crop that
(along with production behavior) endogenously determine crop prices. USARM
accounts for federal commodity programs. Loan deficiency payments (LDPs), when
in effect, are coupled payments that encourage greater production at the margin.
Countercyclical payments (CCPs) are based on the difference between the market
price and a target price, but payments are based on historic, rather than current, pro-
duction. CCPs do not affect marginal production decisions, but aggregate production
alters the level of CCPs via its impact on market prices.

Variable inputs (fertilizer, chemicals, labor, capital, and energy/other) are supplied
elastically at fixed national prices. Initially, total dryland and total irrigated land uses
are calibrated tomatch actual total regional land use patterns in each region in the base
period. For each region, an upward-sloping supply curve for agricultural land allows
land rent to be determined endogenously for each region. Total water applications
to agriculture in each region are subject to a regional water constraint in the base
scenario, consistent with empirical findings that irrigation water use is frequently
quantity-constrained (e.g., Moore and Dinar 1995). For each region, the cost of
water is a weighted average, capturing the purchase price of water and the cost of
water pumping and accounting for regional differences in surface and groundwater
use.

3 Market and Policy Shocks

3.1 2030 Baseline

USARM was originally calibrated to match acreage and price data for field crops
in 2002 and specialty crops in 2000. Because our interest is the effects of climate
legislation in 2030, we develop a new baseline to reflect projected market conditions
in that year. This was done in two steps. First, crop demand curves and variable input
prices were shifted to replicate relative output prices, input prices, and production
levels in 2012. Next, 2012 values were adjusted based on data from various projec-
tions. These included USDA’s Agricultural Baseline Projections to 2022, the Food
and Agricultural Policy Research Institute’s (FAPRI) U.S. and World Agricultural
Outlook (with projections to 2022), a FAPRI (2010) analysis of H.R. 2454, which
included projections to 2030, and energy price projections to 2030 of the Energy
Information Administration (EIA) of the U.S. Department of Energy. The changes
in relative agricultural prices from 2002 to 2012 were greater than projected changes
to 2022. For our analysis, we assumed minimal changes in relative prices from 2022
to 2030.

There are some significant differences between the 2002 baseline and the updated
2030 baseline. The first is the increase in feed grain and oilseed prices along with
higher costs of energy and energy-intensive inputs, such as fertilizer. The second
difference is that U.S. agriculture uses more land, but less water. Water use in the
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Southeast, Southern Plains, Southern Mountain States, Pacific Northwest, and Cal-
ifornia all fall below 2002 levels, while regional water constraints remain binding
elsewhere in the USA. More land comes into production, primarily in the Corn Belt,
Lake States, and Northern Plains. Dryland acreage increases while irrigated acreage
declines nationally.

These projections are consistent with some projections from some studies, but
not others. Between the 2002 and 2007 Census of Agriculture, harvested cropland
increased 2%. Since 2002, there are nearly 7 million fewer acres of cropland retired
under the Conservation Reserve Program as higher commodity prices have induced
farmers to placemore land under cultivation. TheUSARM simulation projects a 0.35
million acre-foot (MAF) reduction in agricultural water demand in the Southern
Mountain Region for 2030. This is reasonably close to the 0.3–0.5 MAF range
reductions projected for 2035 for the same area in the Bureau of Reclamation’s
Colorado River Basin Water Supply and Demand Study. USARM projects irrigation
water demand for the Southern Plains (Texas and Oklahoma) falling by 14% from
2002 to 2030. The Texas Water Development Board has projected an 8% reduction
from 2010 to 2030 (TWDB 2012). The TWDB projections have been criticized,
however, for overstating future irrigation water demands (Ball and Kelly 2003).
Brown (1999) projected reductions in the Arkansas-White-Red River Basin and
Texas Gulf Coast Basins of 9% from 2005 to 2030 and a 12% reduction in the Rio
Grande Basin for the same period. These basins roughly correspond to the Southern
Plains. Brown’s (1999) estimates for the basins most comparable to the Southern
MountainRegion project declines of 3% from2005 to 2030 compared to theUSARM
projections of 4% from 2002 to 2030. Brown projected reductions of 11% in the
Pacific Northwest compared to USARM’s 13%. Houston et al. (2003) projected
a more modest decrease for the Pacific Northwest, 4% from 2000 to 2030. Most
projections for California suggest greater reductions than the USARM projections
of 2%. For California, Houston et al. project a decline of 7%, while Brown projects a
decline of 4%.ThePacific Institute (Gleick et al. 2005) and theCaliforniaDepartment
of Water Resources (Groves et al. 2005) project reductions of 5–10%. For all the
regions that USARM projects the regional water supply constraint to be binding,
Brown projects increases in demand. Our projections treat those demands as supply-
constrained.

Our projections diverge from some other projections for the Southeast. The
USARM projections suggest a decline in agricultural water demand of 11% from
2002 to 2030. The Florida Department of Environmental Protection (Florida DEP
2010) projected that irrigation demand would rise 6% from 2005 to 2030, but revised
this estimate to a <1% increase the next year (Florida DEP 2011). Hutson et al.
(2004) projected a 37% increase in water use in the Tennessee Valley from 2000
to 2030. However, according to the two most recent USDA Farm and Ranch Irri-
gation Surveys, irrigation water applications fell by 19% between 2003 and 2008
in the Southeast. According to the two most recent USGS Water Use in the United
States reports, water withdrawals in the Southeast fell 27% from between 2000 and
2005 (Hutson et al. 2005; Kenny et al. 2009). These are sizeable reductions, so even
with significant growth in demand between 2005–2008 and 2030, Southeast water
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demands could quite conceivably remain 11% below 2002 levels. Revised projec-
tions of Tennessee Valley Authority irrigation water use show an actual drop of 51%
from 2000 to 2010, but project a 35% increase from 2010 to 2035, for a net reduction
of 33% from 2000 to 2010 (Bohuc and Bowen 2012).

3.2 Cap-and-Trade Without Carbon Offsets

This scenario considers the impacts of the cap-and-trade portion ofH.R. 2454without
the possibility that agricultural producers can earn carbon offsets by planting trees on
cropland (afforestation) to sequester carbon and selling the offsets for a return. Here,
the effect of cap-and-trade is simply to increase input prices. Energy price increases
were based on the “high-cost” scenario used by the EIA to evaluate effects of H.R.
2454 (EIA 2009). Industrial natural gas prices increase by 39.9%. Using estimates
from Huang (2007) the elasticity of fertilizer price with respect to natural gas price
is about 0.8, so it is assumed that cap-and-trade increases average fertilizer price
by 31%. Following procedures used in Konyar (2001) to map energy price changes
to agricultural chemical price changes, agricultural chemical prices are assumed to
increase by 4%. Increases in diesel fuel, gasoline, propane, and electricity affect the
price of the energy/other input categories in two ways. First, there are increases in
direct costs for purchasing energy inputs. Second, there are costs of hauling and
other custom services that increase with energy costs and fall under the category
of other inputs. It is assumed that the price of energy/other increases by 45%. The
costs of irrigation pumping are treated separately from other energy-related costs
and are specific to each of the 12 regions in the model. Pumping costs per acre-foot
dependondepth towater, relative reliance on surface versus groundwater, and relative
reliance on different fuel sources to pump water. The costs of energy price shocks
were computed based on data from the 2008 Farm and Ranch Irrigation Survey.
Implicitly, this assumes that fuel sources for pumps in each region are used in fixed
proportions and does not allow for fuel substitution for irrigation pumping. This lack
of substitution may overstate effects on irrigation pumping costs. Another limitation
of this approach is that pumping costs are not tied to changes in the groundwater table
through a hydrological model. The increase in pumping costs per acre-foot ranges
from 21% in the Southern Plains to more than 41% in the Northeast (Table 2).

3.3 Cap-and-Trade with Carbon Offsets

In this scenario, input prices increase as in the previous scenario, but farms can
now earn and sell carbon offset credits. Producers may obtain payments for taking
land out of crop production to sequester carbon through afforestation. Cropland is
taken out of production to varying degrees in different regions. Different areas have
different potentials to sequester given amounts of carbon. If industrial emitters pay
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Table 2 Simulated input price increases (%) from cap-and-trade and acres of cropland converted
to forest (million acres) from carbon offset program

Input/region Percent change price Million acres of cropland converted

Agricultural chemicals 4

Fertilizer 31

Capital 0

Labor 0

Energy/other 45

Irrigation pumping costs (per acre-foot)

Appalachia 41 0

California 32 0

Corn Belt 39 25

Delta 41 16

Lake States 35 2

Northeast 41 0

Northern Mountain 30 0

Northern Plains 38 0

Pacific Northwest 30 1

Southeast 39 2

Southern Mountain 28 0

Southern Plains 21 5

U.S. total 51

farmers to sequester carbon, they will have an incentive to pay for such sequestration
where it will achieve the most carbon reduction per dollar spent. Brown et al. (2010)
developed regional estimates of acreage afforested by 2023 based on initial analysis
by the EPA (2005), which projected 50 million acres converted from cropland to
forests. Areas identifiedwith themost scope for afforestation correspond closelywith
those identified in separate analysis by McNulty et al. (2011). Brown et al. (2010)
estimated that the Delta and Corn Belt states had the largest absolute potential for
sequestering carbon. Agricultural landowners may currently receive payments for
planting trees on cropland under USDA’s Conservation Reserve Program. Currently,
about 153,000 acres are enrolled for bottomland timber establishment. Of these, 67%
are in the Delta and 14% are in the Corn Belt. About 250,000 acres are enrolled for
longleaf pine establishment, 71% of which is in the Southeast and 10% is in the
Delta (USDA, FSA 2013). We do not explicitly model receipt of offset payments
and acreage reallocation by region. Rather, the simulation removes land from crop
production by the sameproportion as theBrown et al. (2010) analysis. The percentage
of total cropland retired for carbon sequestration is 89% in theDelta, 26% for theCorn
Belt, 11% in the Southern Plains, 4% for the Southeast and Pacific Northwest, 2%
in the Lake States, and zero elsewhere. Our simulation initially removes 51 million
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acres from crop production. The ultimate number of acres reduced in the simulation
differs slightly from this initial shock. This occurs because taking 51million acres out
of production reduces agricultural production and raises agricultural prices. Higher
production prices induce some producers to put more land back into production.

4 Results

4.1 Output, Prices, and Revenue

Production of all crops declines under the cap-and-trade policy (Table 3).
Including carbon offsets leads to further reductions in output for every crop. For

many specialty crops, the differences are less than 0.1%, however. Rice is the crop
most affected by the climate policies, with production declining as much as 70%
under offsets. Brown et al. (2010) and USDA-OCE (2009b) also found that rice
was the crop whose output was most affected by H.R. 2454. Our analysis assumes
larger fuel, and fertilizer price increases than those studies. Compared to most crops,
rice production has relatively high fertilizer costs per acre and per-acre fuel costs
2–4 times other crops (USDA-OCE 2009b). Although rice faces the greatest output
reduction, the USA sells most of its rice in the world market and faces a relatively
elastic demand curve. The price of rice only rises 2–3% under the climate policies.
The sharp input price increases, and limited scope for passing those costs on to con-
sumers causes a sharp contraction in U.S. production in general and Delta production
in particular. Prices of corn, soybeans, and sugarcane rise by the highest percentages.
For most crops, the percent increase in price is greater than the percent reduction in
output, so that gross revenues increase. Important exceptions are barley, cotton, rice,
sorghum, wheat, and citrus. For most specialty crops, adding carbon offsets to the
cap-and-trade policy has little additional effect on production, prices, or revenue.

4.2 Water Use Trends, 2002–2030

Table 4 shows changes in regional water use compared to the original 2002 model
baseline.

With no climate policy, irrigation demand is projected to decline 3% nationally by
2030, with demands falling in five of twelve regions. The cap-and-trade provisions
by themselves accelerate this process, so that by 2030, national agricultural water
demand falls by 15%, compared to 2002. In half the regions, irrigation water demand
falls by 19% ormore below 2002 levels. Nationally, water use is slightly higher under
offsets, so that water use falls 13% from 2002 levels. This occurs because although
acreage is taken out of production, higher output prices encourage greater water use
per acre on remaining cropland.
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Table 3 Effects of climate change policy on agricultural output, prices, and gross revenues (%
change from 2030 baseline)

Crop Output Price Gross revenues

Cap-and-
trade
(%)

Cap-and-
trade
with
offsets
(%)

Cap-and-
trade
(%)

Cap-and-
trade
with
offsets
(%)

Cap-and-
trade
(%)

Cap-and-
trade
with
offsets
(%)

Alfalfa −4.5 −10.3 5.2 11.8 0.4 0.3

Barley −14.8 −18.1 7.3 9.0 −8.5 −10.8

Corn −5.5 −14.2 15.6 40.2 9.2 20.3

Cotton −4.0 −16.9 2.6 11.1 −1.5 −7.7

Rice −45.2 −70.1 2.1 3.3 −44.0 −69.1

Sorghum −24.5 −33.1 4.5 6.1 −21.1 −29.0

Soybeans −2.0 −14.9 4.9 36.5 2.8 16.2

Sugarcane −4.7 −10.1 21.2 45.1 15.5 30.5

Sugar beets −2.3 −3.1 11.6 15.7 9.0 12.0

Wheat −18.6 −24.5 6.8 9.0 −13.0 −17.7

Almonds −3.9 −3.9 3.1 3.1 −0.9 −0.9

Apples −2.6 −3.0 4.1 4.8 1.4 1.6

Asparagus −2.3 −2.6 3.1 3.5 0.7 0.8

Broccoli −0.6 −0.6 13.4 13.4 12.7 12.7

Cauliflower −5.7 −5.7 13.4 13.5 7.0 7.0

Citrus −5.1 −5.1 4.7 4.7 −0.6 −0.6

Cucumbers −2.6 −3.1 6.9 8.1 4.1 4.8

Grapes −3.3 −3.4 3.5 3.6 0.1 0.1

Grapes, raisin −4.6 −4.6 5.2 5.2 0.4 0.4

Green beans −5.7 −9.7 4.7 7.9 −1.3 −2.5

Lettuce −3.3 −3.3 8.4 8.4 4.8 4.8

Melons −0.4 −0.5 7.8 8.7 7.4 8.2

Onions −1.8 −1.8 8.7 8.9 6.8 6.8

Peaches −1.9 −2.1 1.8 2.0 −0.1 −0.1

Pears −0.9 −0.9 2.8 2.9 1.9 1.9

Peas −14.3 −19.6 6.3 8.7 −8.9 −12.6

Peppers −3.0 −3.0 10.1 10.2 6.8 6.9

Potatoes −3.5 −3.7 11.8 12.5 7.9 8.4

Strawberries −5.2 −5.2 10.1 10.2 4.4 4.4

Tomatoes, fresh −2.9 −3.0 10.2 10.4 7.0 7.1

Tomatoes,
processed

−2.7 −2.7 9.0 9.2 6.1 6.2

Walnuts −2.8 −2.8 8.9 8.9 5.9 5.9
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Table 4 Percentage change in water use from 2002 baseline

Region 2030 baseline (no
policy) (%)

2030 cap-and-trade
(%)

2030 cap-and-trade
with offsets (%)

Delta 0 −11 −48

California −2 −19 −13

Southeast −11 −27 −21

Southern Mountain −4 −24 −8

Southern Plains −14 −24 −7

Pacific Northwest −13 −28 −18

Remaining Regions 0 0 0

U.S. total −3 −15 −13

Including offsets affects regions differently. Water use falls dramatically in the
Delta, where a huge share of acreage goes out of crop production. With no climate
policies, Southern Plains water use is projected to decline 14% from 2002 levels.
With cap-and-trade and afforestation, the decline is only 7%. The higher crop prices
induceSouthernPlains growers to demandmorewater than theywould otherwise. For
other regions where the regional water constraint is no longer binding, afforestation
causes water use to fall less than under cap-and-trade alone. For six regions, the
regional water constraint remains binding under all scenarios and water use remains
unchanged. For California, the Pacific Northwest, the SouthernMountain States, and
the Southeast, declines in water use from 2002 are greatest with cap-and-trade alone,
followed by cap-and-trade with afforestation, then no climate policies.

4.3 Agricultural Inputs

Table 5 compares national input use under climate policies to a “no-policy” 2030
baseline.

Cap-and-trade alone has no effect on total cropland acres as reductions in irrigated
cropland are balanced by increases in dryland acres. When effects of afforestation
under an offset program are included, total cropland falls by >18% with larger per-
centage reductions in dryland than irrigated acreage. Final crop acreage falls by
49.4 million acres even though 51 million were originally converted to forestland.
Higher farm prices encourage other acreages to come into production. Compared
to the 2030 baseline, water use falls 11.5% under cap-and-trade and by 9.8% with
afforestation. With afforestation, water use per irrigated acre increases by 5.4%. As
cropland declines with afforestation, a higher share of acreage is irrigated and that
share is irrigated more intensively.

Fertilizer and energy use decline significantly under both climate policy scenar-
ios, again with slightly larger effects under cap-and-trade only. Fertilizer use falls
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Table 5 Effects of climate policies on national use of agricultural inputs (percentage change from
2030 baseline)

Input Cap-and-trade (%) Cap-and-trade with offsets (%)

Cropland 0.0 −18.4

Irrigated cropland −1.3 −14.4

Non-irrigated cropland 0.2 −19.1

Water −11.5 −9.8

Water per acre −11.5 10.5

Water per irrigated acre −10.4 5.4

Fertilizer −18.7 −16.3

Fertilizer per acre −18.7 2.6

Agricultural chemicals −0.5 −2.8

Agricultural chemicals per acre −0.7 20.2

Capital −0.3 −3.0

Labor 1.4 0.2

Energy/other −20.4 −19.0

16–19%, as it is an energy-intensive input and thus sensitive to rising energy costs.
Fertilizer use per acre increases slightly under afforestation as acreage falls more
than fertilizer use. Reductions in agricultural chemicals are far more modest, but
are larger under cap-and-trade with afforestation. In addition, under afforestation
agricultural chemical use per acre increases significantly (by >20%). Konyar (2001)
estimated that U.S. adherence to the Kyoto Protocol would reduce pesticide usemore
than would H.R. 2454, although both raise energy prices. That analysis was based
on mid-1990 prices. Since then, agricultural chemical prices have fallen relative to
average input prices by 23%, while fertilizer and fuel prices have risen by 34 and
51%. Thus, there is less incentive to switch away from agricultural chemicals and
more incentive to switch from fertilizers and fuel.

4.4 Farm Income and Economic Surplus

Cap-and-trade by itself reduced grower returns per acre about $1/acre nationally,
although effects ranged from losses of $20/acre in California to $4/acre gains in the
Lake States and in the Pacific Northwest (Table 6).

Gainswere<$0.50/acre in theCornBelt andNorthernPlains, but these two regions
accounted for 57% of cropland. The effect of cap-and-trade with afforestation on
per-acre returns was positive in all regions except California, with losses of $1/acre.
Nationally, average returns rose by $75/acre. In the Delta, per-acre returns rose by
$352/acre. However, recall that 89% of Delta cropland is converted to forestland in
this scenario. The only cropland that remains under cultivation earns high returns.
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Table 6 Effect of climate policies on net returns per acre (change in $/acre from 2030 no-policy
baseline)

Region Cap-and-trade Cap-and-trade with afforestation

Appalachian −$7 $56

Corn Belt $0a $131

Delta −$12 $352

California −$20 −$1

Lake $4 $123

Northeast −$4 $50

Northern Mountain −$0b $9

Northern Plains $0a $53

Southeast −$17 $19

Southern Mountain $2 $36

Southern Plains −$2 $21

Pacific Northwest $4 $24

USA −$1 $75

agains < $0.50/acre; blosses < $0.50/acre

Table 7 Change in economic surplus in $U.S. billions from climate policies

Change in Cap-and-trade Cap-and-trade with afforestation

Consumer surplus (CS) −$9.2 −$27.0

Producer surplus (PS) −$0.3 $10.0

Government payments (GP) $0.2 −$1.7

Total surplus (CS + PS − GP) −$9.7 −$15.3

While per-acre returns rose dramatically, total income from crop production fell by
63% in the region. Table 7 reports changes in economic welfare to producers and
consumers nationally.

Under cap-and-trade alone, producer surplus (crop net income) falls by $0.3 bil-
lion, while consumer surplus falls by $9.2 billion. These latter are losses from having
fewer agricultural commodities to buy and having to pay a higher price for them.
Foreign importers of U.S. exports feel some of this loss, but most are felt by U.S.
consumers. Consumers here may be best thought of as first purchasers of agricul-
tural commodities. These are often agricultural producers themselves, specifically
livestock, poultry, and dairy producers. Prices for feed grains (corn, sorghum, bar-
ley), soybeans, and alfalfa all increase substantially (Table 3). Most soybeans are
processed for oil and protein for animal feed. Alfalfa hay is also a major expense in
U.S. dairy production.

When the land retirement effects of carbon offsets on acreage and output prices
are included, producer surplus increases by $10 billion, while consumer surplus
falls by $27 billion. By taking land out of production, afforestation acts as a supply
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control program, raising agricultural prices and incomes. The positive effect of cap-
and-trade with afforestation on crop producer income may seem counterintuitive to
some readers. However, other studies have similarly found that policies that take
agricultural land out of production (e.g., the CRP and wetland protection) have a
similarly positive effect (Ribaudo et al. 1994: Claassen et al. 1998). Purchasers of
agricultural commodities suffer from higher prices. Within the agricultural sector,
livestock, poultry, and dairy producers will face losses from higher feed prices. The
offset program also reduces government price support payments, by raising market
prices. This would reduce the U.S. budget deficit by $1.7 billion. These payments
are already accounted for in producer surplus but funded by taxpayers. Economic
welfare measures net out this transfer of income.

The payments for carbon offsets to agricultural producers are not included in
our welfare calculations. Although important to producers, they represent transfers
from industries wishing to emit more GHGs. Thus, receipts by farmers will equal
payments by emitters and be netted out of a social welfare calculation. Under the
high-cost scenario, EIA (2009) projects the price of carbon offsets to be $72/ton.
Brown et al. (2010) estimate that Delta farmers could sequester 6.3 ton of carbon per
acre by converting cropland to forestland, while Corn Belt farmers could sequester
3.43 ton per acre. This would represent offset income of $250–$450 per acre per
year. Including other regions, national agricultural offset income could exceed $20
billion. The one-time, up-front costs of planting trees would also be a consideration.
Average Forest Service costs of establishing forest vegetation are >$500 per acre,
but can be as low as $200 per acre (Gorte 2009).

However, total offset payments per acre and total absolute payments could be
considerably less than the $20 billion figure above. Brown et al.’s (2010) simulation
model results suggested that the target land retirement could be reached with offset
payments of $103/acre. At this payment level, sequestering carbon through tree
planting would yield higher per-acre returns that farm on over 25% of the region’s
cropland. Brown et al. (2010) compared this simulation result with regional cash
rent values for cropland in the Corn Belt. They found that, “an offset value of $117
per acre, 25.3% of cropland in the Corn Belt would have an annual value in an
afforestation programgreater than its current value as estimated by cash rents” (p. 17).
InUSARM, afforestation payments needed to exceedper-acre returns on25%ofCorn
Belt cropland would have to reach $131/acre at the margin. In the Delta, payment
rates would need to reach $165/acre at the margin. Marginal rates in the Lake States
would be comparable to theCornBelt. Elsewhere, rates could bemuch lower (roughly
half) to hit the regional acreage targets. Crop-specific, regional net returns inUSARM
suggest that offset payments of roughly $6 billion could be sufficient (assuming a
single, regional offset price) to retire the 51 million acres for carbon sequestration.

The net cost of the climate policies (from impacts on agricultural producers,
consumers, and taxpayers) ranges from $9.7 billion to $15.3 billion. Some of this
cost will be passed on to foreign importers of U.S. exports. These cost estimates do
not include the benefits of limiting effects of climate change, nor do they include
benefits to industrial emitters of GHGs who are purchasing carbon offsets from
farmers and reducing their regulation compliance costs. Such emitters will only
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purchase agricultural offsets if this is cheaper than reducing their own emissions or
buying emission permits from other industrial emitters. Thus, our cost estimates do
not include these “cost-savings” as benefits.

Alsomissing from these estimates are calculations of the costs of implementation,
monitoring, enforcement, offset market establishment and participation and other
transaction costs associated with the legislation. The U.S. Congressional Budget
Office (CBO)-estimated administrative costs for federal agencies implementing H.R.
2454 would be $8.2 billion from 2010 to 2019 (CBO 2009). Their estimates relied on
information provided by EPA and other agencies responsible for implementing the
law. It is not clear from the CBO report the extent to which costs associated with a
domestic offsets programwere included. TheCongressional Research Service (CRS)
noted that transaction costs to farmers and others participating in offsetmarkets could
be substantial, especially in the first years of implementation (Johnson et al. 2010).
CRS also noted that EPA and USDA analyses did not account for such transaction
costs and criticized earlier analyses of H.R. 2454 for this omission.

Existing USDA land retirement programs may serve as a guide about the order
of magnitude of these costs. The Conservation Reserve Program has retired between
30 and 36 million of acres of farmland. From 1996 to 2002, a USDA agency transac-
tion costs averaged $93.3 million per year with cumulative acres enrolled averaging
32.4 million acres (Heimlich 2005). This is approximately $2.88 (1996 constant)
per cumulative acres enrolled. Heimlich (2005) notes that per-acre costs fall over
time because there are many up-front initiating costs, while agency staff “learn-by-
doing” over the longer term, reducing implementation costs. At $3 per cumulative
acre retired, a 50-million acre offset program could have $150 million per year
in administrative costs. This may be a lower bound estimate of transaction costs,
however. First, it does not account for farmer time spent in program participation.
Second, a program of afforestation for long-term carbon sequestration may require
longer-term easements to prevent land conversion. USDA administers the Wetlands
Reserve Program (WRP) and the Healthy Forests Reserve Program (HFRP) that
includes such easements. Heimlich (2005) notes the process of arranging for ease-
ments greatly increases the cost of administering the WRP relative to the CRP. The
HFRP is at present a small-scale pilot program with only some states participating.
To date, <250,000 acres are enrolled in the program. Payments for forest restora-
tion are combined with payments for 10 years, 30 years, or permanent easements.
Information about this program’s performance could be an important indicator of the
nature and size of transaction costs associated with an offset program. Finally, the
federal government administers these programs centrally although multiple agencies
may be involved. If an offset program were more decentralized, then there will be
transaction costs (particularly during initiation) as markets form so that willing buy-
ers and sellers can negotiate terms. Federal agencies such as USDA may serve the
role of monitoring and enforcing offset contracts.
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5 Implications for Water Use and Pollution

5.1 Water Use

Climate policies have potentially large, underappreciated implications for water use,
both positive andnegative.With no climate policy, our projections suggest a decline in
agricultural water use of 3% between 2002 and 2030. Under cap-and-trade alone, the
decline would be 15%. With both cap-and-trade and the offsets, the decline is 13%.
Reducing irrigationdemandmay reduce threats to aquatic species.Moore et al. (1996)
note that in the 17Western contiguous U.S. states, agriculture is reported as a “factor
in decline” in federal decisions to list 50 fish as threatened or endangered under the
Endangered Species Act (ESA). Irrigated agriculture in 235 counties relies on rivers
with ESA-listed fish. Moore et al. (1996) also found a positive correlation between
agricultural reliance on surface water and the number of ESA-listed species in a
county. Reducing agricultural water demand may ease groundwater management in
those areaswhere agriculture is amajor source of aquifer depletion.Baker andMurray
(2009) have modeled the issue from both directions, considering GHG reduction
effects on groundwater management and how optimal groundwater management
may reduce GHG emissions.

While climate policies may lower national irrigation water use and reduce com-
petition for water in some regions, they may increase competition for water in other
regions. Our analysis suggests significant regional differences in water conserva-
tion potential. In 6 of 12 U.S. regions, we found no water conservation effect of
the climate policies. In the Southern Plains, the combination of cap-and-trade with
offsets increased water use, relative to a no-policy baseline. Instead of irrigation
water demands declining by 14% from 2002 to 2030, they decline by only 7% under
cap-and-trade with offsets. By bidding up farm output prices, the offset program
encourages greater production and resource use in the Southern Plains.

Another important area of research would be the water consumption implications
of converting 51 million acres of cropland to forestland. Especially compared to
dryland crops, forests can use more water and reduce surface runoff and aquifer
recharge (Jackson et al. 2005; van Dijk and Keenan 2007; Dymond et al. 2012).
Forestwater usemaycomeat the expense of agricultural users orwetlanddownstream
(Dymond et al. 2012;Nordblom et al. 2012). Thismay present less of a problem in the
Delta where cap-and-trade with afforestation reduced agricultural water use by 48%.
However, our simulations assumed that landowners did not necessarily relinquish
water rights with land conversion from cropland to forestland. Irrigation water use in
the Corn Belt was initially assumed supply-constrained and continued to be so even
with the climate policies. Under afforestation, irrigation water use remained constant
absolutely, but water use per irrigated acre increased by >28%. To put this differently,
under afforestation, the Corn Belt uses as much water for irrigated crops as it did
before, but there is additional water consumption demand from 26 million acres
of forestland. This suggests two extreme scenarios. If agriculture maintains all its
pre-policy water use, afforestation would place significant (and likely unsustainable)
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pressure on regional water resources. If water rights were acquired from farmers to
support all the new consumptive uses of forestland, this would decrease agricultural
production in the Corn Belt significantly. Scenarios between these two extremes are
possible, but the capacity to assess trade-offs between the two is limited by the state
of knowledge of forest water use. This in turn is limited by the sheer number of
factors affecting forest water use and limitations in the state of the art in regression-
based and model-based methods of estimating forest–water relationships (van Dijk
and Keenan 2007).

Water use considerationsmight become a factor in tree planting for carbon seques-
tration. The choice of tree species planted and the spatial configuration of tree plant-
ings can influence impacts on streamflows (vanDijk andKeenan 2007). Dense forests
of fast-growing tree species will use more water. For a given level of carbon seques-
tration, species and planting designs that reduce streamflows less may be preferable.
At a regional level, water carbon trade-offs may become important considerations.

5.2 Water Pollution

By reducingnational agricultural fertilizer use by roughly6–19%, the climate policies
may provide various water quality benefits. Nutrients (from fertilizers and manure)
were top sources of impairment of 7% of U.S. river and stream miles, 12% of lake
and reservoir acres, and 4% of square miles of bays and estuaries that were assessed
in the EPA Water Quality Inventory (EPA 2004). Reducing fertilizer use can reduce
pollution avoidance and water treatment costs. Consumers spend >$800million each
year on bottled water because of taste and odor problems associated with nutrients
(Dodds et al. 2009). Ribaudo et al. (2011) estimated that agriculture’s share of costs
to water treatment plants of removing nitrate from U.S. drinking water supplies was
about $1.7 billion per year. They further suggest that reducing nitrate concentrations
in sourcewaters by 1%would reduceU.S. water treatment costs by over $120million
per year.

H.R. 2454 would produce “co-benefits” of addressing problems of the hypoxic
“dead zone” in theGulf ofMexico. Fertilizer loadings (both nitrogen andphosphorus)
have been identified as major contributors to hypoxia problems there. These loadings
come from agricultural production throughout the Mississippi Basin, with much of
it originating in the Corn Belt (Ribaudo et al. 2001). Studies considering ways to
address this problem have focused on reductions in fertilizer use and land retirement
and reductions in fertilizer use, applied to a large regional basis as 31 states drain
the Mississippi Basin (Ribaudo et al. 2001; Pattanayak et al. 2002; Rabotyagov
et al. 2010, 2012). By raising fertilizer prices, the cap-and-trade provisions of H.R.
2454 act as a fertilizer tax. Retiring land from crop production would further reduce
fertilizer loadings. Planted forests contribute to reductions in nutrient runoff (Jackson
et al. 2005; van Dijk and Keenan 2007), and “tree belts” have the potential to act as
filter strips that can capture runoff and prevent nutrients and sediments from reaching
water bodies (Ellis et al. 2006). Pattanayak et al. (2002) suggest that co-benefits of
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water pollution control from an offset program would be largest in Corn Belt, Delta,
and Southern Plains states.

Converting cropland to forestland also has potential to reduce soil erosion.USDA’s
CRP already provides incentives to convert cropland to trees for soil erosion control
and other environmental benefits. Tree planting accounts for only 6%ofCRPacreage,
where planting of legumes and grasses as cover crops dominates (USDA-FAS 2013).
Estimates of water-related benefits of erosion control range from $1.46 to $7.12
per ton of sediment (Hansen and Ribaudo 2008). Feng et al. (2003), however, have
illustrated that cropland targeted for carbon sequestrationmay provide quite different
(and lower) erosion control benefits than acreage currently in the CRP or acreage
targeted specifically for erosion control. The types of benefits under carbon offsets
may be similar to those obtained under the CRP. However, the dollar value of per-acre
benefits could be quite different.

The environmental implications of the climate policies on pesticide use are more
problematic. Cap-and-trade alone produces only slight reductions in agricultural
chemicals (herbicides, insecticides, fungicides). Cap-and-trade with offsets reduces
agricultural chemical use less than 3%, but increases applications per acre >22%. As
more acres are taken out of production, more pesticides are used on the remaining
acres. Moreover, both pesticide and water use increase in remaining cropland. This
may suggest increased runoff of pesticides on those acres that remained cropped.

6 Conclusions

This study used a mathematical programming model of the U.S. crop sector to exam-
ine how the proposed American Clean Energy and Security Act (H.R. 2454) would
affect U.S. agriculture and water resources. Unlike many previous studies, we con-
sider a more pessimistic scenario for deployment of non-fossil fuels, which leads to
higher regulatory costs. By 2030, the bill’s cap-and-trade provisions for greenhouse
gases reduce U.S. irrigation water use by >11% and fertilizer use by >18% with
positive implications for water conservation and quality. Carbon offset provisions
reduce agricultural production and raise prices. Including the offset program causes
the legislation to increase total U.S. crop producer income. However, not all crop
producers benefit and feed grain purchasers (livestock, poultry, and dairy producers)
would suffer from higher costs. The offset program has complex implications for
water use and pollution that vary by region. In some areas, it reduces agricultural
demand for water via land retirement. By raising agricultural prices, however, it
creates incentives to apply more water per acre.

The simulation results also highlight several interesting questions thatmerit future
research. First, with large-scale afforestation (on a scale of 50 million acres), how
much will regional consumptive water demands increase? What is the scope and
nature of trade-offs between carbon emission reduction and water conservation?
Second, what is the value of co-benefits from water pollution reduction provided by
policies tomitigate climate change?Our simulations suggest that these are potentially
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quite large. Yet, more research is needed to quantify the water pollution control
benefits of climate policies. Third, how will climate policies interact with other
agricultural conservation programs? Design of programs will provide different (and
sometimes competing) incentives to limit carbon, reduce erosion, or reduce other
water pollutants. Optimal design of water conservation or pollution control policies
will depend on carbon abatement impacts, while optimal climate policies will be
affected by water use and quality impacts.
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Access for Key Staples in the EAC
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Abstract In this chapter, we show how the current crop areas under three key
staples—rice, maize, and beans—could be better aligned with the crop suitabili-
ties that are inherent in the East African Community (EAC) region, through some
key policy interventions. We take a multi-market model that was constructed for the
5 main countries in the EAC and use it to demonstrate how reducing transport costs,
and increasing crop productivities can lead to market-level welfare improvements,
as well as a closer alignment between the areas where the crops are cultivated, and
the areas with the best agronomic suitability for those crops. At present, a signif-
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icant proportion of those staples are grown in areas with limited growth potential,
but opening up markets in combination with productivity-focused investments can
allow countries to make better use of the crop potential they already have, and take
advantage of regional market opportunities.

1 Introduction

Like in the rest of the world, the growing demand for food, feed, and fiber products
in East Africa continues to place increasing pressure on the region’s agricultural
production base and represents both an opportunity and concrete challenges for its
agricultural economy. As in much of the rest of sub-Saharan Africa, there remains
tremendous biophysical potential for agricultural production, across a range of prod-
ucts (cereal, root and tuber, pulses, fruit and vegetables) within the East African
region—although much of that potential still remains under-exploited. Within the
geographical region covering the East Africa Community (EAC),1 a large portion
of agricultural area is under semiarid conditions, and with a history of low-yielding,
subsistence agriculture and under-exploited irrigation potential (Salami et al. 2010;
Waithaka et al. 2013). Much donor interest and nationally driven efforts are focused
on improving this history of under-performance, so as to take advantage of the avail-
able land and water resources, and to create a more favorable policy environment
for encouraging farmers to increase their on-farm productivity of key agricultural
products (EAC 2011; USAID 2017).

Given that roughly three-quarters of the region’s agricultural production is pro-
duced by smallholders (Salami et al. 2010), a good deal of the un-exploited potential
lies in the intensification of production to use more yield-enhancing inputs and mak-
ing greater use of labor-saving technologies that can increase on-farm productivity.
Given that the opportunities for area expansion are limited, the emphasis on enhanc-
ing productivity to meet regional food needs is urgent (Waithaka et al. 2013). In
order to avoid an excessive application of chemical inputs in order to grow crops
where the suitability of soils is unfavorable toward its cultivation, the alignment of
crop production with the native suitability of the soils and land would be an ideal
strategy for intensification. Given constraints on land availability, historical patterns
of human settlement and land use, and other socio-economic factors that run contrary
to creating a natural alignment of production with potential, we find a good deal of
the EAC’s agricultural production occurs on soils that are of limited suitabilities for
the key staple crops that are grown. In order to meet the agricultural development
goals of the EAC regional policy body, however, some efforts will need to be made
to re-align crop production to take better advantages of the regions suitabilities.

1The East African Community consists of five key countries—Burundi, Kenya, Rwanda, Tanzania,
and Uganda. South Sudan is now also an official part of the EAC; however, a lack of reliable data
and links to research experts in that area has led to its omission from this study.
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In this chapter, we look at the agricultural markets of the EAC region, with respect
to the three key staple crops that grow within it, and show how policy-focused
investments in transportation and marketing infrastructure as well as productivity-
enhancing technologies can shift the supply, demand and trade of the region in favor
of the agricultural areas with better suitabilities in certain crops. We employ an
agricultural multi-market model to simulate these policy-driven changes and show
the resulting impacts on demand, supply, and trade—as well as on the distribution of
harvested area in these crops—across the EAC countries. Through these empirical
illustrations, and evidence drawn from the literature, we argue for a ‘market-focused’
approach to the EAC’s agricultural policy—given that the best chance for meeting
growing food demands occurswhen productivity gains aremaximized and themarket
access for the agricultural sector is secure.

The technical novelty of this chapter lies not only in the economic model
used—which embeds positive mathematical programming (PMP) methods to cal-
ibrate the production side of the multi-market model—but also in the way that
information-theoretic methods were used to make use of important biophysical data
provided by agronomy experts based in the EAC region. As is the case with many
modeling-based exercises, the creation of a robust and reliable database is usually
more than half the effort needed and might even exceed the technical demands rep-
resented by the main analytical engine that runs the final simulation results. This is
certainly the case in this chapter, where the aggregate-level information on crop pro-
duction, market supply, trade, and demand might not align well with the biophysical
information that is available from agronomic assessments. Given the increasing vol-
ume of high-quality information on crop suitability, soil characteristics, weather con-
ditions, and other biophysical data for Africa (at various scales of spatial resolution),
and the relatively coarse resolution of publicly available socio-economic information
that describe the agricultural sector, the need for tools to carry out data reconciliation
and processing to generate a complete database that is suitable for policy-relevant
economic analysis is clear. As efforts to generate better socio-economic data on agri-
cultural producers (and consumers) continue, through international organizations,
NGOs, and private foundations committed to generating public goods,2 then we
might hope to achieve a better match in resolution and detail between the biophysi-
cal and socio-economic dimensions of the agricultural landscape, in the future.

The rest of the chapter is designed as follows. The following section describes the
agroecological characteristics of the EAC region, with respect to a few key staple
crops of interest, and the way in which this data was prepared for our market-focused
study. The subsequent section gives a description of the multi-market model for the
EAC region that will be used for the empirical analysis, with key references to a
detailed technical annex. The subsequent session introduces the scenarios that are
used to illustrate how the production patterns of the focus staple crops shift in relation

2Like the Bill and Melinda Gates Foundation’s efforts to support the World Bank in adding details
relevant to agricultural in their Living-Standards and Measurement Surveys (LSMS)—resulting in
the LSMS-ISA (i.e., ‘Integrated Surveys on Agriculture’) project.
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to their agro-ecological potential, as well as other market-level impacts within the
EAC region. The final section concludes with recommendations for policy and future
research.

2 Key Agro-Ecological Characteristics for Staples
in the EAC

In this section, we describe the characterization of biophysical suitability for impor-
tant staples within the EAC region, and how they are captured within customized
agro-ecological classifications. We will use these classifications of crop suitability
to define the yield potential that exists for three staple crops of interest for this
study—rice, maize, and beans. Other crops could have been chosen for this kind
of exercise, but we chose to start with these three since their value chains are well-
defined, and since there is already a good deal of knowledge about their agronomical
potential and growth characteristics, across the five East African countries. Within
the five EAC countries, a number of key growing areas were identified as being
representative agro-ecological zones that capture the crop growth potential for these
three major staples within the EAC region. These were the Lake Victoria Basin in
Kenya, the Kyoga plains, and south-western highlands of Uganda, the lake zone and
southern highlands area of Tanzania, and essentially all of Rwanda and Burundi.

Carrying out a process of expert consultation with a team of agronomists drawn
from the EAC region, a set of criteria for crop suitability were derived for the three
key staple crops of interest—although it should be noted that a key distinction was
made between upland and lowland rice, and between climbing beans and bush beans.
For each of these crops, a set of suitability criteria drawn from those used by Kaaya
et al. (1994) were evaluated for key growing regions within the EAC, to determine
the level of suitability of the soils with respect to the requirements for growth for
each crop. There were five broad land qualities that were evaluated for each crop,
namely themoisture availability (in terms of total rainfall within the growing period);
the temperature regime (in terms of mean temperature during the growing period);
the nutrient availability (measured in terms of soil reaction and topsoil organic car-
bon); the rooting conditions (in terms of effective soil depth); and the erosion hazard
(in terms of the slope angle). Using digitized maps of soil and land characteristics
for the target growing areas of the EAC region, the existing growing conditions, in
terms of these criteria, can be observed and overlaid with the distribution of crop
areas in the region that come from digitized crop maps, such as those produced
by HarvestChoice3 and made publically available for analysis. The cut-off values
of alternative suitability classes had to be determined for each of the crop suitabil-
ity criteria defined above, in order to arrive at a determination of whether a given
area is highly suitable, moderately suitable, marginally suitable or not suitable for a
particular crop.

3See the data products available at: https://harvestchoice.org/.

https://harvestchoice.org/
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Using this methodology, a map of suitability such as the one shown for rainfed
maize (Fig. 1) could be produced.

A similar map for bush beans can be generated, applying a different set of cutoffs
for the key criteria of suitability described above, and applying them to the target
agro-ecological zones for the EAC region (Fig. 2).

Based on these maps—as well as those for climbing beans, lowland and upland
rice—we are able to create a database of crop area and yield under the various zones
of suitability that is used to define a model of agricultural production, demand, and
trade for the EAC region that we describe in greater detail in the following section.

3 Quantifying Market Impacts to Key Staples of the EAC
Region

In this section, we summarize the basic features of a national, agricultural multi-
market model for the EAC region and describe how it links the supply and demand
of agricultural commodities within the various countries within the EAC, to regional
and global agricultural markets. This will provide a useful understanding of how the
information on crop suitability, described in the previous section, is applied in the
construction of a regional model of production, consumption, and trade in the three
key staple crops of interest. The resulting model is then used to evaluate the effect
of different market-relevant scenarios on the distribution of production across the
suitability zones and the resulting implications for prices, consumption, and trade
within the EAC region.

3.1 The Basic Agricultural Multi-market Model

In this study, we have used an analytical approach that can address the issue of trade
directly—both within the EAC, as well as the trade between the EAC region and
the rest of the world. We use an economic modeling framework that accounts for
the supply and demand response of the three commodities of interest (maize, rice,
and beans) to prices within the EAC region and the trade flows that result from
this interaction. The five EAC countries (Burundi, Kenya, Rwanda, Tanzania, and
Uganda) are included within the modeling framework as separate units with sub-
national definitions that define both administrative boundaries, as well as different
zones of agro-ecological potential. Since we have access to data that can describe
the distribution of maize, beans, and rice production across various administrative
and agro-ecological boundaries, we have a much more disaggregated view of crop
production and market supply, compared to consumption and market demand. Since
data on trade is collected at the national level, we have to model the price formation
within the market at that level of aggregation. This allows us to calibrate the model to
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Fig. 1 Agro-ecosystems suitability for rainfed maize production in the EAC region. Source Were
et al. (2016)
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Fig. 2 Agro-ecosystems suitability for rainfed bush beans production in the EAC region. Source
Were et al. (2016)
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replicate the observed patterns of production, consumption, and trade, which gives
us confidence in being able to carry out policy-based experiments.

Our model is ‘partial-equilibrium’ in nature because it focuses on the particular
parts of the economy that we’re interested in (i.e., the three commodity markets)
and leaves out other parts of the economy that are beyond the scope of our interest,
or ability to capture at this stage—such as the market for non-agricultural goods,
the market for land and labor. While other sectors of the economy do, in reality,
interact with the decisions of farms and affect the overall economic environment in
which they leave, we omit them from our analysis, so that we can focus on certain
aspects of the three commodity markets in more detail. For example, we are able to
model agricultural production in more detail than the ‘economy-wide’ multi-market
model of Omamo et al. (2006), which uses highly simplified supply functions in
order to allow for more computational detail to be given to the key economy-wide
linkages with the agricultural sector that they are interested in. In our case, we
separate yield from area response, so that the effects of crop-specific technological
improvements that boost productivity can be differentiated from land-use changes
that affect the expansion potential of harvested area—allowing us to differentiate
between the responses on the intensive and extensive margins of production, when
modeling supply changes.

In order to make the best use of the detailed statistical and biophysical data that
is available on crop areas and yields for maize, beans, and rice, we subdivide the
regional production of the three key crops into spatial units that represent the produc-
tion potential within the defined agro-ecological zones. Since most of the statistics
are collected at the level of administrative units (especially for consumption), we
will have to simultaneously make use of provincial or district-level supply data and
intersect it with the boundaries of defined agro-ecological zones, so that we can
reconcile the supply, demand, and trade relationships that have to be respected.

In constructing the multi-market model, we have built upon a framework that
allows for straightforward expansion in the future, should additional data or research
questions need to be explored. Rather than using an existing model of agricultural
markets, like the global IMPACTmodel of IFPRI (Rosegrant et al. 2001, 2002, 2012),
we build a customizedmodel that can provide greater flexibility with the sub-national
data that we have on hand and focus on the issues of interest. Since we focus on the
EAC region, we have no need for a global market model and can hold the conditions
in the ‘rest-of-the-world’ constant and exogenous to the model solution. The overall
schematic for the model is shown in Fig. 3.

3.1.1 Structure of the Economic Multi-market Model

Here, we give a summary explanation of the structure of the market model, to make
the methodological approach clear to the reader. As in any representation of a mar-
ket which has to ‘clear,’ the heart of the market model lies in the satisfaction of a
fundamental balance between demand, supply, and the exchange of goods between
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Fig. 3 Schematic of model structure. Source Authors

regions. For any of the countrieswithin theEAC region, the following general balance
is satisfied:

Supply +

⎛
⎝ ∑

other EACRegs

(inflows) + iMportRoW

⎞
⎠ � Demand

+

⎛
⎝eXprtRoW+

∑
other EACRegs

(outflows)

⎞
⎠ + StockChange (1)

where supply is comprised of the production of the three key crops of interest in each
EAC region (aggregated up from the sub-national level), demand is the national-
level food and non-food consumption of each crop, and stock change is the amount
of good that is subtracted from the available market supply and put into inventory
(i.e., storage) from period to period. In our current model, we have not endogenized
stock change, due to lack of information about the actual stocks of goods being
held publically or privately in the five EAC countries We have also chosen to keep
non-food demand4 as exogenous and non-price responsive, as it relates to livestock,
processing, and other activities which are outside the scope of our model.

In the balance shown in Eq. (1), we have divided the imports into the region and
the exports out of the particular EAC region between those trade flows going to other
EAC countries, and those going to the rest of the world. This is a useful distinction
which we will refer to in the policy analysis that will follow later.

4Non-food demand also contains categories such as ‘seed use’ and ‘waste’ which are tracked in the
FAO food balances, but which we do not have sufficient information for to model explicitly.
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Both supply and demand are described by analytical equations which relate the
price levels in each region to the level of production that is realized. In the case of
demand, the total demand within an EAC country is described by the relationship

Q̄non-food
D Demand � fD(P, y) · popn + Q̄non-food

D (2)

where the non-food demand (Q̄non-food
D ) is a fixed and exogenous parameter, and

where the per-capita food demand responds to both price (P) and per-capita hold
income (y) levels, according to the function fD(P, y)—which is multiplied by the
population, in order to give the total food demand in the country. The per-capita food
demand function, itself, takes on the form

fD(P, y) � cdmd · Pε · yη (3)

where the parameters ε and η denote the food preferences of the consumer, in terms
of their tendency to change income with response to price changes or the level of
per-capita income, respectively. The parameter cdmd is a constant and denotes the
‘intercept’ of the demand equation—which is calculated in a way that allows per-
capita food demand to calibrate to the observed data, at a given price and income
level.

On the supply side, we take into account both area and yield when calculating the
production of each of the three key crops represented in the model, according to the
following relationship.

Supply � Area · Yield �
∑

R

∑
s

(
AR,s · YR,s

)
(4)

where each country is divided into sub-regions (provinces or districts) denoted by
R which, in turn, are subdivided into zones of crop suitability that were defined by
the GIS-based analysis of regional experts.5 The multiplication of harvested area
and yield and their addition over the sub-regions and crop suitability zones of each
country are what constitute the national production of each crop.

The yield of the crop, in each suitability zone, has been informed by the inputs
of agronomic experts from each of the EAC regions covered in the study. The infor-
mation gained from these experts—which indicated the share of maximum potential
yield of each crop that would be attainable within that zone—was used to allocate the
base areas and yields of the model, for all the EAC countries, such that the national-
level supply was matched, and could be balanced to demand and trade. The process
of calibrating base area and yields is described briefly in Sect. 3 of this report—and
in more detail in the technical appendix.

The harvested area of each crop responds to prices, according to the net revenues
that can be realized per hectare of each crop across the available cropland area.

5The GIS-based analysis of crop suitability is described in a separate technical document of Were
et al. (2016).
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The key essence of this decision process is captured in the following optimization
problem

max
∑

j

[
p j,R · Y j,R,s · A j,R,s − c

(
A j,R,s

)]

s.t.
∑

j
A j,R,s ≤ ĀR,s

(5)

where the regional prices of each crop (j) are p j,R , and c
(

A j,R,s
)
represents a nonlin-

ear relationship between the total area harvested and the per-hectare cost of cultiva-
tion. This nonlinear relationship is a necessary component of calibrating themodel to
observed crop areas and is part of the ‘positive’ mathematical programming (PMP)
approach. The PMP approach to calibrating agricultural models is described in fur-
ther detail, in the technical appendix.

This method for allocating crop area is in contrast to the ‘reduced-form’ approach
used in an earlier version of this work, in which an iso-elastic area response function
was hypothesized (AR,r � f A(P) � cR,r

A · Pγ 6). In this function, the reaction of area
to price changes reflects the behavior that is embodied in the optimization problem
that we now model explicitly.

In themodel, the prices play a key role in the response of supply and demand—but
are also fundamental in determining the direction of trade flows into and out of the
region. The difference between prices in two adjacent regions essentially determines
the direction of the trade flow. The following relationship shows the no-arbitrage
condition that is hypothesized to hold between two regions, where the transportation
cost (TC) provides the ‘wedge’ between the two prices and accounts for the cost of
delivering each unit of good from its origin to its destination

PRegion(R) + TCR,R′ ≥ POther Region(R′) (6)

In this relationship, the price that one receives in the destination region (R′) should
be no less than the purchase price in the region of origin (R) and the cost of transport-
ing it between the two (TCR,R′ ). Where the purchase + transport cost is greater, then
it is not optimal to export from R to neighboring R′(or, conversely, to import into
R′ from R). Where this relationship holds with equality (i.e., PR + TCR,R′ � PR′ ),
then one could expect to have nonzero levels of trade. This complementary relation-
ship between the levels of trade and the equality or non-equality of the no-arbitrage
constraint can be written as

PR + TCR,R′ > PR′ and TradeR,R′ � 0

PR + TCR,R′ � PR′ and TradeR,R′ ≥ 0 (7)

And it can, in turn, be summarized by the following equality statement

6In this function, the parameter cR,r
A is a calibrating constant, and the ‘elasticity’ γ gives the response

of area to a change in price.
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[
PR + TCR,R′ � PR′

] · TradeR,R′ � 0 (8)

which must hold at all times. This type of relationship determines the trade levels
between the EAC countries, as well as between each EAC country and the rest of the
world.

In addition to this, there could be other taxes on imports or exports, such that the
unit price of each traded good is affected, or there could be a quantitative limit on
total exports and imports such that we have either a quota on imports

QuotaR
Import ≥

∑
r

M R
r (9)

Or a quota on exports

QuotaR
Export ≥

∑
r

X R
r (10)

where the quota (and tax) levels are decided by policy, and the levels of import
(
M R

r

)
and export

(
X R

r

)
for each country R are summed over the quantities going from each

sub-region, r.7 In our model, we only apply import and export taxes (and quotas) on
non-EAC trade, leaving the EAC region a ‘free-trade zone,’ as it was intended. But
this could, of course, be relaxed if we wanted to examine a counter-factual case.

This brief exposition summarizes the basic structure of the multi-market model
which we use in this study. Further details are in the Technical Annex.

3.2 Base Data and Model Calibration

In order to carry out the quantitative analysis that is required for this project, we
draw upon some key empirical methods for the analysis of agricultural production
and trade. The key sources of data that were used in this work can be summarized as
follows:

• Biophysical data encompasses the areal extent and productivity of cropping activ-
ities, with reference to their rainfed or irrigated nature. The information on crop
suitability classes also falls into this class, which is a key to the determination of
overall crop productivity.

• Economic data captures the traded volumes of commodities, prices, andmarketing
costs. Where possible, the physical levels of stockholding can also be used to
measure the total supply potential of a commodity (beyond that which is being
harvested from the land within a particular time period).

7In our implementation, we did not model trade between the sub-regions (r) of each country, as that
would have imposed an enormous computational burden on the model, and require detailed data
beyond what we possess. So, we only model trade at the national level, in this model.
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Table 1 Key data used in the model

Data source Notes

Area and yields (irrigated,
rainfed) according to
administrative boundaries in the
five EAC countries

HarvestChoice dataset Available at www.
harvestchoice.com

Crop suitability classifications for
cropland area in the EAC
countries

GIS-based model analysis
of spatial data for EAC

This work was done as a
separate component of the
WaLETS program of work
by Dr. Kennedy Were and
colleagues

Food/non-food demand for
commodities

FAOSTAT data Downloaded through the
Knoema Web site
(knoema.com)

Import and exports for
commodities

FAOSTAT data Downloaded through the
Knoema Web site
(knoema.com)

Supply response elasticities and
demand response elasticities

Database of IFPRI
ASARECA regional
multi-market modela

Technical appendix
available from www.ifpri.
org

Transportation costs between
EAC regions and between
regions and the rest of the world

Initial estimates from WB
studyb and various sources

Final calculation of costs
was done as part of the
model calibration process
described in the report

Regional prices for the three
commodities in ECA region

Knoema price database International ‘world’ prices
were calibrated in a way
consistent with the
region-specific data,
observed transportation
costs, and net trade

Potential and attainable yields
across the classifications of crop
suitability

Country agronomy experts
from within the WaLETS
project team

These were used in the
determination of the yield
distribution across the
suitability classes

aSee technical appendix of Omamo et al. (2006)
bSee Teravaninthorn and Raballand (2009)

• Other socio-economic data particularly on population (urban and rural), income
levels, and the indicators of food security or poverty that help define the overall
welfare of the population. These kinds of data are critical to defining the ‘demand’
side of the market and the consumers that depend upon these key staple crops.

Drawing from these broad categories of data, we have a basis uponwhich to construct
a multi-market model of the agricultural sector that focuses on the three commodities
of particular interest. The particular sources of data that we drew upon are summa-
rized in Table 1.

http://www.harvestchoice.com
http://www.ifpri.org
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3.2.1 Calibration of the Model to Data

Socio-economic parameters

One of the key challenges we face in specifying the model correctly is finding the
correct magnitude of transportation costs and border prices that allow the model to
find a solution that is consistent with observed data.

Essentially, we have three major unknowns:

• The exact magnitude of the transportation costs that exist between the various
countries (or sub-national regions) of the EAC region, both internally, and with
the rest of the World

• The exact magnitude of the inter-EAC trade that exists between the countries
• The exact border prices which would define the fixed ‘rest-of-the-World’ price that
defines the export and import parity values that each country faces when engaging
in an exchange with the countries outside of the EAC.

Based upon the price relationships given in Eq. (8), that determine the levels of
trade, this means that we had to find the value of TCR,R′ that would make the total

imports and exports
(
TradeR,RoW +

∑
R′
EAC

TradeR,R′
EAC

)
match the values observed

from the FAO trade balance data, while also solving for the prices in each region (PR)

as well as the trade between each region (R) in the EAC with each neighboring EAC
country

(
TradeR,R′

EAC

)
. The fixed border prices that determine the level of imports

or exports from the rest of the world and each region—i.e., the import
(
P̄RoW

M

)
and

export
(
P̄RoW

X

)
parity prices—also had to be found in this calibration process, as we

do not observe it directly in the data.8

The calibration of the demand side of the model was relatively straightforward,
as it only entails calculating the ‘intercept’ of the demand function (i.e., the constant
cdmd in the equation fD(P, y) � cdmd · Pε · yη) for given values of the demand
elasticities (ε, η), per-capita income (y), and prices (P).

Biophysical aspects

The other component of calibrating the supply side to the observed data is obtaining
the distribution of areas and yields across the suitability zones that are consistent
with the GIS-based modeling outputs, as well as with the distribution of crop area
and production (as in Figs. 1 and 2) that are obtained from statistical data and other
data sources, like the HarvestChoice spatial dataset. Some key information from
agronomy experts within our research team also provided a means of calibrating the

8In our formulation, we treat the ‘rest of the World’ as a homogeneous entity, knowing that it
represents something different to each EAC country, in reality. For the inland, landlocked countries,
for example, the rest of the World, would be the bordering Congo or the Sudan, whereas the coastal
countries receive goods from the ‘rest of the World’ over ocean-based routes at Mombasa, Dar-
es-Salaam, Tanga, Mtwara, or from neighboring, Ethiopia, Malawi, Zambia, or Mozambique. By
simplifying the representation of RoW to one entity, we cannot (therefore) tie a particular landed
price at a given point of entry or exit as the border price—but hypothesize a composite world price
which we have to solve for in the calibration process.
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yields within the model, such that they conformed to the attainable yield levels that
are consistent with the biophysical conditions captured in the suitability classes.

The calibration procedure made use of the following pieces of information:

• The area of cropland that falls into a given suitability classification within each
EAC country

• The amount of area under each of the three key staples (maize, rice, and beans)
which falls into each administrative sub-region of the five EAC countries.

By using a data processing procedure that makes us of maximum entropy esti-
mation methods,9 we were able to obtain the following distribution of crop areas,
according to suitability classifications in the five EAC countries (Table 2).

This distribution of areas and yields provides the model with the starting point
it needs to calibrate the base-year supply, demand, and trade levels to the observed
levels. This base-year calibration is described further, both in the following section
(briefly)—and in more detail in the technical appendix.

Based on the specified structure of the model that we’ve described in the previous
section, we carried out a calibration of the model to match the model results to the
observed supply, demand, and trade for the five EAC countries and the three key
commodities. This calibration gives us confidence in the proper functioning of the
model and also verifies that the calibration of transportation costs and border prices
(with the rest of the World) was done correctly. The calibration results of the model
are shown in Tables 13 and 14, in the technical appendix.

We will now consider how the base distribution of areas under the three staple
crops changes, according to the scenarios that are discussed in the following section.

4 Key Policy Scenarios for the EAC Region

Once the calibration of the model has been checked, we can then proceed to carry
out some illustrative policy simulations to see how the base case will shift with
the imposition of key policy-relevant changes that are introduced into the model. We
focus on the policies relating to openness of trade aswell as to productivity-enhancing
agricultural technologies, as we will now discuss in further detail.

4.1 Scenario #1—Reducing Regional Transportation Costs

One of the key policy scenarios that we carry out is that of reducing the transportation
costs across the EAC region to see the effect on regional trade and the implications
for prices, consumption, and welfare.

9The application of maximum entropy inference methods is explained in further detail in the Tech-
nical Annex (2).
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Table 2 Calibration of base area and yield levels across suitability classes for each EAC country

Area (‘000 ha) Yield (mt/ha)

Rice Maize Beans Rice Maize Beans

Kenya Maize/high suitability 85.2 2.1

Kenya Maize/moderate
suitability

1520.1 1.8

Kenya Maize/low suitability 45.9 1.3

Kenya Rice/high suitability 3.7 3.1

Kenya Rice/moderate
suitability

4.6 2.7

Kenya Rice/low suitability 4.7 2.1

Kenya Rice/unsuitable 4.5 1.3

Kenya Beans/high suitability 279.7 0.5

Kenya Beans/moderate
suitability

377.3 0.4

Kenya Beans/low suitability 248.5 0.3

Tanzania Maize/moderate
suitability

1477.1 1.5

Tanzania Maize/low suitability 1373.1 1.1

Tanzania Rice/high suitability 13.1 1.74

Tanzania Rice/moderate
suitability

201.0 1.69

Tanzania Rice/low suitability 203.4 1.3

Tanzania Rice/unsuitable 178.2 0.8

Tanzania Beans/high suitability 38.2 1.1

Tanzania Beans/moderate
suitability

392.3 0.8

Tanzania Beans/low suitability 395.1 0.7

Tanzania Beans/unsuitable 1.1 0.4

Uganda Maize/high suitability 177.5 2.3

Uganda Maize/moderate
suitability

434.9 1.5

Uganda Maize/low suitability 163.6 0.7

Uganda Rice/moderate
suitability

33.9 1.5

Uganda Rice/low suitability 34.1 0.9

Uganda Rice/unsuitable 33.7 0.5

Uganda Beans/high suitability 238.3 0.6

Uganda Beans/moderate
suitability

330.4 0.56

Uganda Beans/low suitability 255.7 0.45

(continued)
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Table 2 (continued)

Area (‘000 ha) Yield (mt/ha)

Rice Maize Beans Rice Maize Beans

Rwanda Maize/moderate
suitability

54.2 1.1

Rwanda Maize/low suitability 53.4 0.6

Rwanda Rice/moderate
suitability

5.1 6.3

Rwanda Rice/low suitability 1.7 2.3

Rwanda Rice/unsuitable 1.4 1.4

Rwanda Beans/high suitability 32.8 1.2

Rwanda Beans/moderate
suitability

135.1 0.9

Rwanda Beans/low suitability 142.7 0.5

Burundi Maize/moderate
suitability

56.8 1.4

Burundi Maize/low suitability 56.6 0.8

Burundi Rice/moderate
suitability

8.7 4.1

Burundi Rice/low suitability 4.0 1.5

Burundi Rice/unsuitable 3.4 0.9

Burundi Beans/moderate
suitability

119.8 1.2

Burundi Beans/low suitability 125.2 0.5

In carrying out this scenario, we impose a 50% reduction in all transportation costs
(TC), which affects the prices relationships that are determined by the no-arbitrage
conditions given in Eq. (8). What we would expect a priori is that the quantities
traded in the model (both between the EAC regions and with the rest of the World)
would generally increase with a reduction in transportation costs.

To see more clearly what actually happens in the model, as a result of these
changes, we divide the total trade for each country between the net trade of that
country with the rest of the World—i.e., the quantity eXprtRoW − iMportRoW in
Eq. (1)—and the net trade between that country and other EAC countries [i.e.,∑

other EACRegs (outflows) − ∑
other EACRegs (inflows)].

Table 3 shows the results for net trade10 with the rest of the world.
These results show that the net imports for the landlocked countries (like Uganda,

Rwanda, and Burundi) go to zero, whereas there is an increase in net imports from
the rest of the world from the countries with sea access (Tanzania and Kenya) for
most of the commodities. In total, the sum of net trade with the rest of the world,

10Here, we interpret net trade as net exports (exports minus imports)—which means a positive
quantity makes the country a net exporter and a net importer of the good if negative.



230 S. Msangi et al.

Table 3 Changes in net tradewith the rest of theWorld under reduced transportation costs (‘000mt)

Base case Reduced transport costs

Rice Kenya −241 −209

Rice Tanzania −113 −229

Rice Uganda −48

Rice Rwanda −12

Rice Burundi −7

Maize Kenya −160 −220

Maize Tanzania −134 −213

Maize Rwanda −31

Maize Burundi −66

Beans Kenya −6 −8

Beans Rwanda −2

Beans Burundi −0.3

Total −820 −881

across the EAC region, increases the level of net imports from 820 thousand metric
tons to 881 thousand, with all of the increases in occurring in the coastal countries.
In total, this means that the landlocked countries become less reliant on the rest of
the world for its imports, since it is now easier to trade with their neighbors who have
better sea access. In order to understand what happens to the increased net imports
of rice, maize, and beans, we have to examine the internal patterns of trade within
the EAC region.

When we look at the volume of trade within the EAC region, between its con-
stituent countries, we see an increase in trade activity, as is shown in Table 4.

Here, we see that the intra-regional trade in rice increases from zero to a point
where Tanzania is exporting rice that supplies Uganda, Rwanda, and Burundi. In the
case of maize, Tanzania exports the same volume of maize that is now imported by
Rwanda. In the case of beans, both Tanzania and Uganda become a net exporters
of beans to Rwanda and Burundi, with Burundi now receiving most of the regional
imports. Looking at Tables 3 and 4 together, we see that the EAC countries that are
big net importers from the rest of the world (i.e., Tanzania and Kenya) remain big
net importers—with Tanzania and Kenya increasing net imports in order to supply
their EAC neighbors with the goods that they would have otherwise obtained from
outside the region.

Given that Kenya and Tanzania are the coastal countries with direct sea access, it
makes sense that they would remain the large-volume importers from the rest of the
world. But given infrastructure improvements that would lower transportation costs
to the interior—including railway and road improvements, besides improvements to
the capacity and handling efficiency at the ports ofMombasa, Dar-es-Salaam, Tanga,
and Mtwara—the other EAC countries can source their imports directly through
the transportation network within their EAC neighbors, rather than trying to face
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Table 4 Changes in net trade within the EAC region under reduced transportation costs (‘000 mt)

Base case Reduced transport costs

Rice Tanzania 117

Rice Uganda −77

Rice Rwanda −19

Rice Burundi −20

Maize Kenya −2

Maize Tanzania 69

Maize Uganda 2

Maize Rwanda −69

Beans Kenya −3

Beans Tanzania 3 60

Beans Uganda 9 51

Beans Rwanda −4

Beans Burundi −9 −107

higher costs of trading directly with regions outside the EAC. So, there is a logical
re-alignment of trade, with infrastructure improvements (and lowering of transport
costs). The coastal EAC countries—in particular, Tanzania—become the new ‘con-
duits’ for sourcing external imported goods into the region. This makes sense, since
Tanzania provides the best connection for Rwanda and Burundi, and has three major
ports, as opposed to the single port of Mombasa in Kenya.

In terms of other impacts from this scenario, we can consider the effects on
commodity prices within the EAC countries, as is shown in Table 5.

Here, we see that there are some notable changes in prices, as a result of trans-
portation cost decreases. In the case of rice, the prices in Uganda, Rwanda, and
Burundi—the landlocked EAC countries—go down between 2 and 5% compared to
the base case. This reflects the fact that they are now importing goods from their
closer EAC neighbors, rather than facing higher import costs from other regions in
the rest of the world. We see the same effect for the case of maize and beans in
Rwanda and Burundi, where consumers are now receiving goods more cheaply from
their neighbors. In contrast to the price decreases that occur in countries receiving
more net imports, we see that the prices within the countries exporting maize and
beans goes up, due to there being less supply within their national markets, compared
to the baseline. The higher prices are a benefit for the producers in those countries,
who are encouraged to produce more and supply their neighbors with needed goods.
The price decreases, on the other hand, are a clear benefit to consumers, such as those
within the landlocked countries of the EAC.

A priori, we’d expect a decrease in price to boost demand in the countries that
showed negative price changes in Table 5—which is exactly the case that we observe
in Table 6.
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Table 5 Changes in regional EAC prices under reduced transportation costs (USD/mt)

Base case Reduced transport costs % difference under scenario

Rice Kenya 383 383 0

Rice Tanzania 367 367 0

Rice Uganda 417 397 −5

Rice Rwanda 410 402 −2

Rice Burundi 426 407 −5

Maize Kenya 319 319 0

Maize Tanzania 303 303 0

Maize Uganda 286 333 17

Maize Rwanda 346 338 −2

Maize Burundi 363 343 −5

Beans Kenya 656 656 0

Beans Tanzania 619 639 3

Beans Uganda 622 641 3

Beans Rwanda 683 671 −2

Beans Burundi 699 679 −3

Table 6 Changes in food demand within the EAC region under reduced transportation costs (‘000
mt)

Base case Reduced transport costs % difference under scenario

Rice Kenya 276 276 0

Rice Tanzania 792 792 0

Rice Uganda 130 137 5

Rice Rwanda 45 46 2

Rice Burundi 42 44 5

Maize Kenya 2942 2942 0

Maize Tanzania 2348 2348 0

Maize Uganda 751 692 −8

Maize Rwanda 110 111 1

Maize Burundi 163 168 3

Beans Kenya 344 344 0

Beans Tanzania 498 484 −3

Beans Uganda 377 367 −3

Beans Rwanda 237 240 2

Beans Burundi 202 207 3

Total 9258 9199 −0.6
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Table 7 Changes in production within the EAC region under reduced transportation costs (‘000
mt)

Base case Reduced transport costs % difference under scenario

Rice Kenya 39 71 81

Rice Tanzania 763 763 0

Rice Uganda 95 72 −25

Rice Rwanda 38 31 −18

Rice Burundi 45 34 −25

Maize Kenya 2920 2861 −2

Maize Tanzania 3735 3725 −0.3

Maize Uganda 1169 1109 −5

Maize Rwanda 92 56 −40

Maize Burundi 125 196 56

Beans Kenya 397 398 0.1

Beans Tanzania 626 668 7

Beans Uganda 452 484 7

Beans Rwanda 227 230 1

Beans Burundi 226 134 −41

Total 10,952 10,832 −1.1

The rice importers increase their demand by the same percentage change as was
seen for the price reductions in those countries. The strong increase in prices for
maize in Uganda, seen in Table 5, causes the demand for maize to go down there, as
it does for beans in Uganda and Tanzania. By contrast, the regions in which we saw
a decrease in price in Table 5 are showing a decrease in production in Table 7.

The changes in production that we see in Table 7 reflect a mix of changes within
the EAC region that result from the scenario which reduces regional transportation
costs. On the one hand, the reduction in net imports from the rest of the world that we
observed in Table 3 is reflected here, such as the increase in rice production in Kenya
whichmatches the decrease in imported rice from the rest of the world that was noted
in Table 3. In other cases, the changes in production reflect the increased importation
of goods fromwithin the region,which require less production domestically—such as
the reduction in rice production for the three landlocked countries, which now source
it from within the EAC region (as shown in Table 4). In other cases, the changes in
production reflect the price changes as shown in Table 5, such as the strong increase
in beans prices in Tanzania and Uganda, which now export to neighboring Rwanda
and Burundi (as shown in Table 4).

In total, the sumof overall production of the three key staples goes down across the
region, as a result of reducing regional transportation costs. This, despite the increase
of production in some regions, reflects the fact that freeing up the movement of
goods allows some countries to release land from production, so that they can import
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Table 8 Changes in harvested area across the various crop suitability classes within the EAC
region, under reduced transportation costs (‘000 ha)

Base case Reduced transport Costs %diff

Rice Rice/high suitability 17 17 0

Rice Rice/moderate suitability 253 251 −1

Rice Rice/low suitability 248 238 −4

Rice Rice/unsuitable 221 208 −6

Maize Maize/high suitability 263 255 −3

Maize Maize/moderate suitability 3543 3458 −2

Maize Maize/low suitability 1693 1746 3

Beans Beans/high suitability 589 597 1

Beans Beans/moderate suitability 1355 1376 2

Beans Beans/low suitability 1167 1139 −2

Beans Beans/unsuitable 1.1 −100

Total 9350 9284 −0.7

the good they want, and put the agricultural land they have to better use growing
commodities that are better suited to their local conditions. This will be reflected in
the patterns of the harvested area that we will examine next.

4.1.1 Implications for Cropland Area

Finally, we can see what the impact of this scenario is on the physical landscape of
the region, by looking at changes in harvested area of each crop. For this case, we can
take advantage of the disaggregation of harvested area and yield to the sub-national
boundaries of each country—and aggregate the effects up to the crop suitability
classifications that cut across the EAC region. Table 8 shows how the changes in
harvested areas across the different suitability classes appear for the region.

Here, we see that there is (overall) a small decrease in total harvested area for
these three crops (−0.7%) across the entire EAC region. For rice, there is a reduction
in total area, especially in those suitability zones that are moderate or lower. The
area for maize in the zones with low suitability increases somewhat, whereas those
in zones of moderate or high suitability go down. For beans, the zones which have
high or moderately suitability increase their area slightly, whereas those with lower
suitability decrease. The area of beans that falls into unsuitable zones goes to zero
(albeit from a very small number, in the base case).
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Table 9 Changes in harvested area across the various crop suitability classes within the EAC
region, under the scenario with increased productivity (‘000 ha)

Base case Increased productivity %diff

Rice Rice/high suitability 17 17 2

Rice Rice/moderate suitability 253 242 −5

Rice Rice/low suitability 248 225 −9

Rice Rice/unsuitable 221 289 30

Maize Maize/high suitability 263 272 4

Maize Maize/moderate suitability 3543 3535 −0.2

Maize Maize/low suitability 1693 1260 −26

Beans Beans/high suitability 589 612 4

Beans Beans/moderate suitability 1355 1389 3

Beans Beans/low suitability 1167 950 −19

Beans Beans/unsuitable 1.1 −100

Total 9350 8791 – 6.0

4.2 Scenario #2—Increasing Crop Productivity

The scenario in which transportation costs (and trade barriers) are lowered, leads to
favorable trade patterns, lower overall prices and increased production. But this, by
itself, does not necessarily align the production of the 3 staple crops into zones of
higher suitability. If we impose, instead of this scenario, an alternative case in which
the productivity (i.e., yield) of the key staple crops11 is increased by 10%, then we
see a much stronger re-alignment of crop areas with more favorable suitabilities, as
is seen in Table 9.

From these results, we see that the productivity increase has a clear ‘land-saving’
effect that reduces the overall harvested area more strongly than the scenario with
reduced transportation costs. We also see that there is a sharp reduction in the areas
under low levels of suitability and an increase in the area under higher levels of crop
suitability, for each of the staples. This illustrates the effect that on-farm technological
improvements can have in helping re-align the production patterns to make better
use of the agro-ecological potential that exists on the ground.

In terms of the impact that this particular scenario has on trade patterns, where
the original transportation costs between regions are the same as the base case, we
show the changes to trade patterns within the EAC region in Table 10.

In contrast to Table 4, where the lowered transportation costs made the coastal
countries the largest regional exporters to their neighbors, we see here that the effects
are limited to the landlocked countries, which still face high costs of importing
goods from either the rest of the world, or their neighbors. With an increase in yield

11In this scenario, this yield increase is implemented for those crops falling into zones where less
than 60% of the maximum potential is currently being realized.
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Table 10 Changes in net trade within the EAC region under increased staples productivity (‘000
mt)

Base case Increased productivity

Rice Uganda −86

Rice Rwanda 116

Rice Burundi −30

Maize Kenya −2

Maize Uganda 2 149

Maize Rwanda −53

Maize Burundi −96

Beans Kenya −3

Beans Tanzania 3

Beans Uganda 9 174

Beans Rwanda −77

Beans Burundi −9 −97

productivity, the local comparative advantage across the landlocked countries in the
various key staples shifts, allowing some to become exporters to their neighbors. In
terms of rice, Rwanda starts exporting to Uganda and Burundi, whereas in terms of
maize and beans, Uganda becomes the major exporter of those commodities to its
landlocked neighbors, Rwanda and Burundi. From Table 2, we saw that Uganda has
a sizable area of maize and beans under zones of moderate or low suitability—so the
effect of this scenarios seems to enable it to meet more of its productive potential,
such that it is able to start exporting and supplying the needs of its neighbors, who
face even more severe constraints on land availability.

4.2.1 Combined Scenario—Increased Crop Productivity and Reduced
Transport Costs

If we now combine the two policy scenarios—such that we cut the costs of trans-
portation within the EAC region by 50% at the same time that we raise the crop
productivity levels in the less-favored zones by 10%—we can see the combined
effects on trade and production patterns within the EAC region.

The effect on harvested crop area within the EAC region (divided into the various
suitability zones) is shown in Table 11.

The table shows an even greater reduction in crop harvested area compared to the
case with only yield increases (Table 9) and by a bigger percentage than the simple
sum of the area reductions under that scenario and the scenario with only reduced
transportation costs (Table 8). The combined scenario leads to a complete shift out
of rice production in areas that are unsuitable for that crop, in addition to the shift
out of unsuitable bean area (as was the case in the previous two scenarios). Even
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Table 11 Changes in harvested area across the various crop suitability classes within the EAC
region, under increased productivity and lower transport costs (‘000 ha)

Base
case

Increase yield and reduce
transport cost

%diff

Rice Rice/high suitability 17 17 2

Rice Rice/moderate suitability 253 255 0.5

Rice Rice/low suitability 248 247 −0.5

Rice Rice/unsuitable 221 −100

Maize Maize/high suitability 263 245 −7

Maize Maize/moderate suitability 3543 3402 −4

Maize Maize/low suitability 1693 1506 −11

Beans Beans/high suitability 589 613 4

Beans Beans/moderate suitability 1355 1380 2

Beans Beans/low suitability 1167 967 −17

Beans Beans/unsuitable 1.1 −100

Total 9350 8631 −7.7

though the area of maize in high suitability areas does not increase as it did in the
scenario with just increased yield (Table 9), there is still a strong shift out of areas
with low maize suitability, as is also the case with rice and beans. So there is still a
strong re-alignment effect of production away from low suitability areas, when the
two policy interventions are combined. In order to see a more complete picture of
how harvested area changes under the alternative policy scenarios, for each country,
we can refer to Table 13 in the annex.

In terms of trade within the EAC region, we see the emergence of strong regional
exporters like Tanzania, as is shown in Table 12.

In this table, we see that the landlocked countries become strong importers of
products supplied by their EAC neighbors, such as Tanzania, with Uganda remain-
ing a big regional exporter of beans, similar to the case with just yield increases
(Table 10). The combination of lowering the barriers to regional trade and increas-
ing crop productivities increases region-wide exchange of key staple goods, while
encouraging countries with enhanced comparative production advantage to benefit
from greater trade opportunities.

These results illustrate the potential that policy interventions focused on trade can
have, in comparison to those coming from technology-focused interventions that are
directly aimed at on-farm improvement. The combined effect enhances the environ-
mental benefits of avoided land expansion by allowing the region to reduce overall
crop area in favor of higher productivity growth and to reduce areas under crops that
can be more productively grown elsewhere and sourced through an enhanced trade
network.
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Table 12 Changes in net trade within the EAC region under increased staples productivity and
lower transport costs (‘000 mt)

Base case Increase yield and reduce transport cost

Rice Tanzania 97

Rice Uganda −58

Rice Rwanda −19

Rice Burundi −20

Maize Kenya −2

Maize Tanzania 179

Maize Uganda 2

Maize Rwanda −63

Maize Burundi −116

Beans Kenya −3

Beans Tanzania 3 9

Beans Uganda 9 194

Beans Rwanda −90

Beans Burundi −9 −112

Source model simulations

5 Implications for Policy

Based on these results, we can conclude that lowering the costs of transportation
within the EAC region, through improvements in infrastructure, can play a big role
in promoting trade of staples within the EAC region. For a country like Tanzania
which is the ‘doorway’ to the ocean for six landlocked countries in Africa, the
infrastructure improvements that it can make to its roads, railways, and harbors
can have a tremendous effect on the patterns of production and trade within the
region. This has been noted by other studies such as Foster and Briceño-Garmendia
(2010) and Anyango (1997). These same patterns of trade and production are also
affected strongly by the increases in crop productivity that are introduced in the
second policy scenario—and by the combined effect of both of them. The patterns
of trade are moved by two primary forces that are in operation in these scenarios: (1)
The changes in transport cost open up new possibilities for exchange across the EAC
region and allow for goods to flow in ways that take the best advantage of relative
regional differences in price, and (2) from the changing levels of supply and demand
within each region, that are affected by the scenario-induced changes in price, and
which require a shift in trade to bring the individual countries (and the entire EAC
region) into a new equilibrium and trade balance.

The lowering of prices that we observe in the EAC countries that can now import
goods more easily from their neighbors has a clear benefit to consumers in those
countries,who can now source their consumption at a lower price.While this provides
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a disincentive to the pure producers in those countries, the farm households that both
consume and produce these commoditieswill experience an offsetting effect from the
consumption side. In those countries that now have the opportunity to export to their
neighbors, the prices will tend to go up as a way of encouraging increased output,
and which provide benefits to the producers in those countries (at some disadvantage
to the consumers). So, the distribution of welfare benefits is differentiated between
the producers and consumers, and the kind of price changes that they face, with
some regions experiencing greater consumer benefits for some goods, while others
have greater benefits going to the producers of those goods which experience price
increases.

Any benefits that go to either producers or consumers, under these scenarios,
should be balanced against other consumer- or producer-focused policy measures
(such as subsidy or voucher programs) to evaluate the cost-effectiveness of this
policy. Since we’re only looking at three commodities, we are not even capturing
the widespread benefits that improving infrastructure can have on the rest of the
agricultural sector and the rest of the economy. The high costs of transport are often
cited as some of the biggest barriers to growth and development that many of Africa’s
landlocked countries face. Sowe are certainly understating the overall economy-wide
benefits to improving infrastructure, which might make this scenario look even more
attractive, when comparedwith other policy alternatives. This kind of comprehensive
assessment can (and should) be taken up in further work.

The scenario on productivity gains illustrates that there is an important role for
improving on-farm performance potential in re-aligning East Africa’s agricultural
production such that it takes better advantage of its agro-ecological potential, while
also unlocking its latent trade potential. A policy instrument purely focused on trade
cannot achieve this re-alignment, by itself, but must be coupled with other measures,
in order to be effective in improving both producer and consumer welfare, as well
as moving production patterns toward better exploitation of existing suitabilities that
exist on the agricultural landscape. The combined scenario in which the reduction
of transportation costs was coupled with the increase in crop productivity clearly
illustrated this and gave the greatest reduction in overall crop harvested area across
the various crop suitability zones of the EAC region.

Given that the goal of sustainable intensification is now becomingmore prominent
in the agricultural policy objectives of many countries, any combination of instru-
ments which leads to less land conversion and better utilization of existing crop
growth potential will contribute strongly toward this goal. The re-alignment of crop
production away from areas of low suitability (where more chemical inputs would
be required to achieve acceptable growth levels) would also enhance the suitability
of agricultural production within the EAC region, and we see that the combined
scenario makes the most progress in this direction. This opens up some promising
possibilities for further development of the agricultural sector that can go beyond the
three key staples that we have focused on for the purposes of this study.

As was noted earlier in this report, we do not have sufficient information on the
actual quantities of stocks being held of the three key staple commodities to model
the way in which inventories might be accumulated or released, in response to prices



240 S. Msangi et al.

or other policy-relevant factors. This may be leaving out an important component of
food security-focused policy that governments might be actively taking to manage
the quantities of important food grains such as maize on the markets (and their
prices). If better information on this were to become available—such that we could
model stockholding behavior (on the part of private or parastatal agencies) with
some confidence—then the effect of policy-induced changes in stock management
onmarket-level availability and prices of the commodity of interest could be explored
further.

6 Limitations of the Study and Extensions

As with all studies, there are limitations to the analysis that we have provided here.
Nevertheless, the results from the study, so far, provide intuitive and interesting
results that we will continue to build upon in further improvements and extensions
to the existing modeling framework. The map of agro-ecological potential that was
developed by experts within the study might be updated, in the future—and the
disaggregation of area and yield that was used by the model can be adjusted to
this data, using the same techniques described here. In addition to this, other data
improvements (on prices, base transport costs, the disaggregation of urban and rural
demand, etc.) can also be used to refine the analysis in future.

In carrying out this work, we recognize that there are a number of methodological
and empirical challenges that need to be met to bring out further details on the
functioning of the key staple markets of interest that we examined—such as the
issue of stock management that was mentioned in the previous section. Due to time
and resource constraints, we were not be able to fully address some of these—but
will aim to have a better understanding of how these can be addressed in follow-up
activities, as a basis of further research.

An important challenge that we face in our modeling work is being able to cap-
ture the process by which market access to the key commodities we’re interested
in can be improved or change, as a function of infrastructure improvements or pol-
icy changes. We provide the ‘entry points’ in our modeling to capture transaction
(i.e., transportation and/or marketing) costs and policies that affect the openness of
trade and commercial exchange—but the relationship between these levels of market
‘friction’ and the degrees of investment in better roads, market storage, infrastruc-
ture, etc., cannot be precisely defined or measured. Given this uncertainty, we have
limited ourselves to the examination of alternative cases in which these costs can be
‘low’ or ‘high’ and describe the change in market outcomes and welfare in relation
to specific policy measures or interventions that might be able to bring these changes
about. In effect, we have done sensitivity analysis, without being able to ascribe a
precise degree of causality between specific interventions and the mechanisms by
which they affect the market. Amore comprehensive study that could engage experts
in thinking more systematically through these linkages could help to unpack these
important policy dimensions.
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7 Conclusions

In this chapter, we have explored a number of illustrative results for the agricultural
sector of the EAC region that point to ways in which policy can intervene to promote
greater productivity, food security, and more favorable market conditions for trade
within the region. Although we have just focused on three staple crops, the key com-
ponents of this analysis could be extended to other commodities in a straightforward
way, in order to illustrate the implications of lower transport costs and improved
productivity for the wider agricultural sector.

Our analysis makes a clear case for coupling investments focused on boosting
on-farm productivity with those that improve the marketability of the products pro-
duced on-farm. This is not a new message, in agricultural policy circles, but is one
which comes out strongly from our results. The way in which we have combined the
expert assessment and analysis of agronomists in the EAC region with an economic
analysis of production/supply, demand and trade points towards a methodology that
can actively engage economic and agronomic experts in the policy analysis process.
Taking this approach, useful information from both disciplines is combined and uti-
lized within an analytical engine that can evaluate scenario-based policy alternatives.
Oftentimes, this kind of linkage between agronomic and economic assessments is
not done in a way that is useful for policy-making and has left many potentially use-
ful analyses of agricultural investment and policy only telling half of the story that
decision-makers need to consider. We hope that this chapter helps to point toward a
way in which the important biophysical and socio-economic constraints and realities
that underlie developing agricultural economies can be captured in policy-relevant,
model-based assessments.

Technical Annex: Details of the EAC Multi-market Model

Annex 1: Structure of the Partial Equilibrium, Multi-market
Model

The general schematic of a multi-market model is shown in Fig. 4 and encompasses
a wide variety of models that are in common use in empirical economic work.

Figure 4 shows the basic conceptual outline of the class of economicmodel thatwe
are building, following the theoretical treatment described in Sadoulet and De Janvry
(1994). A model of agricultural markets has to take into account the markets for the
products themselves—which we will mostly focus upon—as well as the markets for
key factors that are necessary for production—chiefly labor and marketed inputs like
fertilizer. In the case where agriculture is relatively low in input use and mostly uses
un-paid household labor—which is common in the African context—then much of
what is supplied to crop production may not be captured in this kind of framework
and may not have observable data (without a detailed household-level production
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survey, which is beyond the scope of this study). In the case of high-value and highly
commercialized crops, this may be possible—and agricultural may compete with
other sectors for these inputs, in which case a multi-sector representation of input
and outputmarketsmight be needed (as inmany applied general equilibriummodels).
Our modeling work falls into the ‘partial equilibrium’ category—which signifies the
fact that not all inputs and outputs within the economy are modeled, and the circular
flow of revenue from production activities, to the consumer and the returns to the
use of key inputs like capital are not accounted for fully. We have built upon the
basic framework of a partial-equilibrium, multi-market model of agricultural trade
described by Minot (2009). There are models of this class that have been built for
many of the EAC countries—but they do not have the detail on agriculture that is
needed for this project—so we have adopted this approach.

The key elements of Fig. 4 that we will take into account are:

• The assumption of profit-maximization on the part of agricultural producers.
• The assumption of utility maximization on the part of consumers of agricultural
products.

• The influence of income growth on demand, although the growth in income will
not be fully endogenized, as we do not capture the full picture of payments to
households (from ag and non-ag activities) and their expenditure on food and
non-food goods.

• We will consider the per-capita demand for products, and use exogenous projec-
tions of population growth to extrapolate it to the national-level demand.

The key components of the multi-market model are as follows:

Fig. 4 Key relationships within a generic multi-market model
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• The supply, demand, and trade balance that occurs at the national level for each
country in the EAC region

• The relationship that describes the response of crop production to price
changes—in terms of irrigated and rainfed harvested area and yield

• The relationship that describes the commodity food demand to price and income
changes

• The key relationships that link prices across regions and relate them to the trans-
portation costs and the volume of trade between those regions.

These relationships comprise the essential components of the EAC multi-market
model that we use in this study.

The overall balance between supply, demand, and trade is captured in this equation

Supply +

⎛
⎝ ∑

other EACRegs

(inflows) + iMportRoW

⎞
⎠ � Demand

+

⎛
⎝eXprtRoW +

∑
other EACRegs

(outflows)

⎞
⎠ + StockChange

where ‘Supply’ is the aggregate production coming from the harvested area and
yields across the sub-regions of each of the EAC countries, as is given here

Supply � Area · Yield �
∑

R

∑
s

(
AR,s · YR,s

)

where each country is divided into sub-regions (provinces or districts) denoted by
R which, in turn, are subdivided into zones of crop suitability that were defined by
the GIS-based analysis of other WaLETS team members.12 The multiplication of
harvested area and yield and their addition over the sub-regions and crop suitability
zones of each country is what constitutes the national production of each crop.

Calibrating the supply side of the model

The yield of the crop, in each suitability zone, has been informed by the inputs of
agronomic experts from each of the EAC regions covered in the WaLETS project.
The information gained from these experts—which indicated the share of maximum
potential yield of each crop that would be attainable within that zone—was used
to allocate the base areas and yields of the model, for all the EAC countries, such
that the national-level supply was matched, and could be balanced to demand and
trade. This process is described in more detail, in the next subsection of this technical
appendix.

12The GIS-based analysis of crop suitability is described in separate technical documentation of the
WaLETS project and has been led by Kennedy Were of KALRO and his colleagues. This can be
accessed at: https://www.kilimotrust.org/documents/reports/2017/walets/WaLETS_Final_Reports/
WaLETS_GIS_TechnicalReport.pdf.

https://www.kilimotrust.org/documents/reports/2017/walets/WaLETS_Final_Reports/WaLETS_GIS_TechnicalReport.pdf
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The harvested area of each crop responds to prices, according to the net revenues
that can be realized per hectare of each crop across the available cropland area.
The key essence of this decision process is captured in the following optimization
problem

max
∑

j

[
p j,R · Y j,R,s · A j,R,s − c

(
A j,R,s

)]

s.t.
∑

j
A j,R,s ≤ Ās

where the regional prices of each crop (j) are p j,R , and c
(

A j,R,s
)
represents a nonlin-

ear relationship between the total area harvested and the per-hectare cost of cultiva-
tion. This nonlinear relationship is a necessary component of calibrating themodel to
observed crop areas and is part of the ‘positive’ mathematical programming (PMP)
approach (explained in the next subsection).

This method for allocating crop area is in contrast to the ‘reduced-form’ approach
used in an earlier version of this work, in which an iso-elastic area response function
was hypothesized (AR,r � f A(P) � cR,r

A · Pγ 13). In this function, the reaction of area
to price changes reflects the behavior that is embodied in the optimization problem
that we now model explicitly.

The Positive Mathematical Programming Approach

The positivemathematical programming principle of Howitt (1995a, b)—referred to,
popularly, as PMP—is a method of calibrating economic models of agricultural pro-
duction, that exploits the mathematical principles of duality that is embedding in all
mathematical programming models. In essence, the PMP approach imposes a degree
of curvature upon the objective function of the mathematical programming model,
such that it causes the model solution to exactly equate the implied marginal costs of
land allocation that are reflected, implicitly, in the observed behavior of the decision-
maker. Since we, typically, do not observe the marginal costs that the decision-maker
faces—but, rather, the average costs that are reflected in the collected data—we often
have trouble calibrating economic models to replicate the land allocation behavior
that we observe from farmers.

The PMP approach takes the valuation of land (and other) resources that is implicit
in the observed allocation of crop area and uses the ‘shadow values’ derived from
a constrained ‘stage 1’ problem, in order to reconstruct the nonlinear cost function
that allows the model to calibrate exactly to the observed data in ‘stage 2’.

To illustrate, let us suppose that we start with a mathematical programming prob-
lem of land allocation among alternative crops that is linear in both the revenue and
cost terms—such as the following problem.

13In this function, the parameter cR,r
A is a calibrating constant, and the ‘elasticity’ γ gives the

response of area to a change in price.
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max
∑

j

[
p j,R · Y j,R,s · A j,R,s − c j,R,s · A j,R,s

]

s.t.
∑

j
A j,R,s ≤ ĀR,s

In this case, the parameter c j,R,s reflects the per-hectare cost of cultivation (specific
to crop, region, and soil class) which remains constant at all scales of production
activity. This is a classic linear programming type of problem which would tend
to over-specialize in one activity—such that all of the available cropland would be
allocated to the most profitable crop (i.e., the crop with the largest gross margin per
hectare—p j,R ·Y j,R,s −c j,R,s). This type of solution does not typically reflect the kind
of behavior that one usually observes among farmers, where there is often a mix of
crops in the farming portfolio. Sincewe only observe the average costs of production,
per hectare (c j,R,s), we seek to obtain a better measure of the actual marginal costs
of production that an economically optimizing farmer would equate with marginal
revenue when reaching the mixed allocation of cropland that we observe in data
({ā1, . . . , āk} for k crop types).

Therefore, if we posit the existence of a nonlinear cost function in crop area that
would allow the model to replicate these implicit (but un-observed) marginal costs
of the quadratic form: T C

(
A j,R,s

) � φ0
j,R,s · A j,R,s + 1

2φ
1
j,R,s · (

A j,R,s
)2
.14

Then, we can use the PMP procedure to obtain the values of the parameters of
this cost function in three separate stages.

In the first stage, we modify the linear programming problem, shown above, to
include constraints on crop area, such that themodel is forced to replicate the solution
that we observe in the data

max
∑

j

[
p j,R · Y j,R,s · A j,R,s − c j,R,s · A j,R,s

]

s.t.
∑

j
A j,R,s ≤ ĀR,s

A j,R,s ≤ Aobs
j,R,s · (1 + ε)

In the solution of the model, we expect (according to economic principle) for the
marginal revenue of production to be equated to the marginal cost of production for
each of the crops in the optimal allocation.

The ‘shadow value’ that comes from the calibration constraints of the constrained
programming problem, above, at the optimal solution represents the difference
between the marginal costs that the decision-maker is hypothesized to equate at
the observed data point and the average costs which we observe in the data. In other
words, MC j,R,s � AC j,R,s + λ j,R,s , where MC and AC are the marginal and average
costs per hectare of crop activity (j) in region R and on suitability class s. If we
take our total cost function and manipulate it to obtain the functional form for the
marginal and average cost, i.e.,

14The function does not have to be quadratic—but must be convex in curvature. We have chosen the
quadratic form simply for analytical convenience (in implementation and exposition to the reader).
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TC
(

A j,R,s
) � φ0

j,R,s · A j,R,s + 1
2φ

1
j,R,s · (

A j,R,s
)2

MC
(

A j,R,s
) � ∂TC

(
A j,R,s

)
∂ A j,R,s

� φ0
j,R,s + φ1

j,R,s · A j,R,s

AC
(

A j,R,s
) � TC

(
A j,R,s

)
A j,R,s

� φ0
j,R,s +

1
2φ

1
j,R,s · A j,R,s

so that

MC − AC � λ j,R,s � (
φ0

j,R,s + φ1
j,R,s · A j,R,s

) − (
φ0

j,R,s +
1
2φ

1
j,R,s · A j,R,s

)

� 1
2φ

1
j,R,s · A j,R,s

Sowe are able to recover the ‘slope’ of our cost function
(
φ1

j,R,s

)
from the shadow

values derived in ‘stage 1’, such that φ̂1
j,R,s � 2λ j,R,s

Aobs
j,R,s

. The ‘intercept’ of the quadratic

cost function
(
φ0

j,R,s

)
can then be obtained by using the average costs obtained from

data
(
c j,R,s

)
, and equating it to the functional form we derived earlier, such that:

cobsj,R,s � AC
(

A j,R,s
) � φ0

j,R,s +
1
2 φ̂

1
j,R,s · Aobs

j,R,s

so that

φ̂0
j,R,s � cobsj,R,s − 1

2 φ̂
1
j,R,s · Aobs

j,R,s

And we are able to obtain the values that define our cost function
(
φ̂0

j,R,s, φ̂
1
j,R,s

)
.

We can now insert this calibrated cost function into the mathematical program-
ming problem, in place of the linear cost term, such that we obtain the following
nonlinear programming problem

max
∑

j

[
p j,R · Y j,R,s · A j,R,s −

(
φ̂0

j,R,s · A j,R,s + 1
2 φ̂

1
j,R,s · (

A j,R,s
)2)]

s.t.
∑

j

A j,R,s ≤ ĀR,s

And solving this un-constraint, mathematical programming problem, with the
nonlinear term for cultivated area embedded in it, will now allow the model to find
an optimal solution that matches exactly to the observed crop areas observed in the
data. This is the essence of the PMP methodology, as we have implemented it in our
model.

The PMP calibration method has found wide-ranging applications to the con-
struction of policy analysis models, and numerous examples of its use can be found
in the work of various authors in the agricultural economics literature (Gohin and
Chantreuil 1999; Barkaoui and Boutault 2000; Heckelei and Britz 2000, 2005; Heck-
elei andWolff 2003; Heckelei et al. 2012; Judez et al. 2001; Röhm andDabbert 2003;
Henry de Frahan et al. 2007; Kanellopoulos et al. 2010; Howitt et al. 2012;Mérel and
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Bucaram 2010; Mérel et al. 2011, 2014; Mérel and Howitt 2014; Doole and Marsh
2014).

Calibrating the demand side of the model with trade

On the demand side, we divide this between food and non-food demand—keeping
non-food demand as an exogenous parameter

(
Q̄non-food

D

)
.

Demand � fD(P, y) · popn + Q̄non-food
D

Like harvested area, food demand also responds to prices—albeit negatively, as
we’d expect demand to go down with increasing prices. The per-capita demand
function fD(P, y) � cdmd · Pε · yη also has a response to per-capita income, which is
generally positive for the three key crops we consider, but could be negative in other
cases.15

The stock change at the national level is also kept fixed and exogenous, in our
model. In principle, this can represent a component of supply response, as public
and private managers of cereal stocks could decide to release stocks in response to
price and augment national supply—or withdraw supply by adding to stocks. We
do not have sufficient data on public and private stockholding, at the moment, to
operationalize a behavioral model of this.

The price relationships lie at the heart of the way in which the model adjusts
both demand and supply within each region—as well as the trade flows that happen
across regions. The difference between prices in two adjacent regions determines
the direction of the trade flow. The following relationship shows the ‘no-arbitrage’16

condition that is hypothesized to hold between two regions, where the transportation
cost (TC) provides the ‘wedge’ between the two prices and accounts for the cost of
delivering each unit of good from its origin to its destination

PRegion(R) + TCR,R′ ≥ POther Region(R′)

In this relationship, the price that one receives in the destination region
(
R′) should

be no less than the purchase price in the region of origin (R) and the cost of transport-
ing it between the two

(
TCR,R′

)
. Where the purchase + transport cost is greater, then

it is not optimal to export from R to neighboring R′(or, conversely, to import into
R′ from R). Where this relationship holds with equality (i.e., PR + TCR,R′ � PR′ ),
then one could expect to have nonzero levels of trade. This complementary relation-

15In cases where a good is ‘inferior’ to other preferred goods, the per-capita consumption could go
down with income. An example could be the declining demand for coarse grains (millet/sorghum)
as household income increases, in favor of rice- and wheat-based products.
16The ‘no-arbitrage’ condition describes a competitive market equilibrium, where any opportunity
for selling a good for a higher price than the original purchase price + transport cost is exhausted.
So, at best, an agent can break even by selling a good for exactly the cost at which it was purchased
plus the cost of delivering it to the destination, but no more. This assumption could be relaxed in a
less competitive market environment—but that is beyond the scope of this study.
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ship17 between the levels of trade and the equality or non-equality of the no-arbitrage
constraint, which can be written as

PR + TCR,R′ > PR′ and TradeR,R′ � 0

PR + TCR,R′ � PR′ and TradeR,R′ ≥ 0

And it can, in turn, be summarized by the following equality statement

[
PR + TCR,R′ � PR′

] · TradeR,R′ � 0

which must hold at all times. This type of relationship determines the trade levels
between the EAC countries, as well as between each EAC country and the rest of the
world.

In addition to this, there could be other taxes on imports or exports, such that the
unit price of each traded good is affected—or there could be a quantitative limit on
total exports and imports such that we have either a quota on imports

QuotaR
Import ≥

∑
r

M R
r

Or a quota on exports

QuotaR
Export ≥

∑
r

X R
r

where the quota (and tax) levels are decided by policy, and the levels of import
(
M R

r

)
and export

(
X R

r

)
for each country R are summed over the quantities going from each

sub-region, r.18 In our model, we only apply import and export taxes (and quotas)
on non-EAC trade, leaving the EAC region a ‘free-trade zone’, as it was intended.

In terms of defining the prices that exist on the ‘border’ and which are relevant
to determining the levels of exports (PX ) to and imports (PM ) from the rest of the
world, these can be adjusted from the fixed and exogenous ‘world price’ (Pworld) to
determine the import and export parity prices.

We can account for export taxes (tX ) vis-à-vis FOB price that is relevant for
exporters as

PX � NER × Pworld × (1 − tX )

17This describes the kind of ‘mixed complementarity’ formulation that is commonly applied to solve
trade equilibrium problems and is found in other types of mathematical programming problems.
In such a problem, one does not need to maximize or minimize an economic objective function,
since these complementary relationships summarize the first-order necessary conditions required
to solve the implicit optimization problem. See Paris (2010) for more details.
18In our implementation, we did not model trade between the sub-regions (r) of each country, as
that would have imposed an enormous computational burden on the model and require detailed data
beyond what we possess. So, we only model trade at the national level, in this model.
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whereas the import taxes (tM) can be applied to the world price to define the relevant
CIF price that an importer would care about

PM � NER × Pworld × (1 + tM)

In each case, NER denotes the exchange rate between local currency and the US
dollar (which the world price is denominated in).

In summary, the key endogenous variables that are solved by the model are:

X, M, Pregion, inflows, outflows, Demand, Supply

whereas the exogenous and fixed parameters of the model are

PM , PX , Pworld,Quota
R
export,Quota

R
import,TC, tM , tX ,NER

Themodel is solved as amixed complementarity problem—inwhich the following
relationships must be satisfied by the optimal solution (i.e., the market equilibrium):

Export price relationship

[
PR + TC + ImTaxexport − PX

] · X � 0

Import price relationship

[
PM + TC + ImTaximport − PR

] · M � 0

Domestic price relationships

[
PR + TCR,R R − PR′

] · TQR,R′ � 0

where TQR,R′ represents the quantity traded between regions (going from R to R′),
such that∑

R′ TQR′,R � ∑
other Regs (inflows) and

∑
R′ TQR,R′ � ∑

other Regs (outflows) for
any region R

Quota on exports

[
QuotaR

Export −
∑

r

X R
r

]
· ImTaxexport � 0

Quota on imports

[
QuotaR

Import −
∑

r

M R
r

]
· ImTaximport � 0
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where the implicit tax on exports or imports is nonzero if the quantity constraint on
total exports or imports becomes binding. In such a case, the export and import price
relationships have to account for nonzero values of both transportation costs and the
implicit tax in the no-arbitrage condition.

This structure obviates the need for an explicit objective function (the maximiza-
tion of joint consumer and producer surplus, for example)—but requires that the
model have an equal number of equations and free variables. This requires us to
exercise particular care in the preparation and checking of the data before use in the
model.

Calibration of model in Supply, Demand, and Trade

Based on the specified structure of the model, that we’ve described, and the data with
which it has been built, we now have a complete framework for doing simulation of
supply, demand, and trade in the EAC region. To ensure that the results are congruent
with what wewould expect, wemust validate the basemodel results against observed
data. As a first step in themodel validation process, we verify that themodel is able to
reproduce the observed supply, demand, and trade that is observed in the data, in order
to gain confidence in its proper functioning. This will verify that the calibration of
transportation costs and border prices (with the rest of theWorld)were done correctly.

In Table 13,we show that the production and demand of the three key commodities
in the EAC countries match the data from FAO exactly when the market equilibrium
is simulated by the model.

Similarly, in Table 14, we show that the imports and exports of the three key com-
modities in the EAC countries also match the data found in the FAO trade balances.

Based on this, we can now have confidence that the national-level supply, demand,
and trade balances can be captured correctly by themodel, which allows us to proceed
in carrying out alternative policy simulations. In addition to this level of calibration,
we must also obtain sub-national values of area and yield for the three key staple
commodities that adds up to the national-level totals for production that are shown
(Table 13). This process of calibration is described in the next subsection.

Annex 2: Calibrating Base Areas and Yields to GIS-Based
Modeling Outputs

In order to ensure that the model is completely consistent with the key underlying
data, we had to undertake an extensive exercise to disaggregate the national-level
production for eachEACcountry into sub-national areas and yields that are consistent
with both (1) the administrative region-level statistics on irrigated and rainfed areas
and yields provided by the HarvestChoice project database and (2) the division of
total cropland into zones of suitability provided by the GIS analytical component of
WaLETS.
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Table 13 Calibration of model to observed production and consumption at the national level of
each EAC country (‘000 tons)

Production Food demand

Model solution FAO data Model solution FAO data

Rice Kenya 39.3 39.3 275.7 275.7

Rice Tanzania 763.3 763.3 792.0 792.0

Rice Uganda 95.3 95.3 130.3 130.3

Rice Rwanda 38.0 38.0 45.0 45.0

Rice Burundi 44.7 44.7 42.3 42.3

Maize Kenya 2920.0 2920.0 2942.0 2942.0

Maize Tanzania 3735.3 3735.3 2348.3 2348.3

Maize Uganda 1169.3 1169.3 750.7 750.7

Maize Rwanda 92.3 92.3 110.0 110.0

Maize Burundi 125.0 125.0 163.0 163.0

Beans Kenya 397.3 397.3 344.3 344.3

Beans Tanzania 626.0 626.0 498.3 498.3

Beans Uganda 452.3 452.3 377.3 377.3

Beans Rwanda 227.0 227.0 236.7 236.7

Beans Burundi 226.3 226.3 201.7 201.7

These two sources of information provide the basis for calculating a plausible
sub-national distribution of areas and yields for the three staple crops that meet these
criteria:

(1) They add up (across administrative units) to the national totals, reflected in the
national-level supply—that must balance with total demand, stock change, and
trade.

(2) They add up (across suitability classes) to the same national totals.
(3) They constitute a share of total cropland that is consistentwith theGIS analytical

outputs.
(4) They reflect the relative yields across suitability classes that was suggested by

the expert agronomists working on the WaLETS team.

In order to satisfy all of these criteria simultaneously, we had to use amodel-based
method to process the inputs from HarvestChoice, the WaLETS GIS team, and the
agronomy experts, so that the outputs used for the economic model could reflect the
best use of that information, and satisfy the necessary trade balance and adding-up
conditions that are embedded in the trade model structure.

Since we are trying to obtain unique values for area and yield across sub-regions
(r), crops (j), suitability classes (s), and countries (R), we end up solving a problem
which is ill-posed. In other words, it contains more unknowns than data points and
has negative degrees of freedom.
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The maximum entropy formalism provides an efficient and robust way of solving
ill-posed estimation problems and has been applied widely by scientists (ranging
from the social to the physical sciences) to complex empirical problems.

Maximum Entropy/Minimum Cross-Entropy Approach

In order to meet the challenge of simultaneously satisfying various balancing and
adding-up constraints, while trying to get the estimates for shares of irrigated areas
and yields in total area and production that are most consistent with the various
(although not always compatible) sources of information that we have, requires an
optimization-based approach. While a least-squares type curve-fitting approach can
be used, in order to minimize the distance between a target level of ‘closeness’ to
the existing data, while satisfying certain constraints that have to be met exactly
can be used for problems like this, there is often the issue of how to satisfy several
different targets simultaneously, without imposing undue weight on any particular
objective criterion over another. The problem becomes particularly vexing when one
is confronted with a relative scarcity of reliable data—which might be far fewer in
number than the many unknowns which have to be determined. This situation leads
to the type of ‘ill-posed’ problems, where the degrees of freedom are non-positive,
and solving a classical inverse-type problem, where the unknowns may be solved for
by linear algebraic inversion of a data matrix with respect to a vector of variables,
becomes impossible.

Table 14 Calibration of model to observed trade at national level

Imports Exports

Model solution FAO data Model solution FAO data

Rice Kenya 241.3 241.3

Rice Tanzania 112.7 112.7

Rice Uganda 47.7 47.7

Rice Rwanda 11.7 11.7

Rice Burundi 6.7 6.7

Maize Kenya 161.7 161.7

Maize Tanzania 133.7 133.7

Maize Uganda 1.7 1.7

Maize Rwanda 31.3 31.3

Maize Burundi 65.7 65.7

Beans Kenya 9.0 9.0

Beans Tanzania 3.3 3.3

Beans Uganda 9.0 9.0

Beans Rwanda 3.0 3.0

Beans Burundi 9.3 9.3
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In order to resolve this issue, we turn to cross-entropy-based techniques which
are used to derive unknown distributions from fairly limited data and includes one’s
own ‘prior’ beliefs on the underlying nature of the distribution, where possible.
Cross-entropy methods have been used successfully in many types of statistical
analyses in both the physical and social sciences and have even been used in IFPRI’s
own work, such as balancing the social accounting matrix (SAM) of a computable
general equilibrium model (Robinson et al. 2000), or in calculating the distribution
of irrigated and rainfed crops based on global data from a variety of (sometimes
inconsistent) datasets (You and Wood 2004).

The cross-entropy method is built upon the same ‘information-theoretic’ princi-
ples that underlie the principle of ‘maximumentropy’ thatwas introducedbyShannon
(1948a, b) to describe the degree to which a distribution differs from a uniform and
un-informative profile—thereby capturing the ‘surprise’ that is embodied in a (ran-
dom) outcome. In juxtaposition to Shannon’s entropymeasure H � ∑

n −pn log(pn)
for n discrete, random events, we can also express the cross-entropy of a distribution

by the measure CE � ∑
n −pn log

(
pn

p̄n

)
, which includes the prior distribution of

weights (or probabilities) { p̄n} that can be assigned for each random outcome. As
shown by Kullback (1959), the maximization of the Shannon criterion with respect
to the adding-up constraint

∑
n pn � 1 is equivalent to the minimization of the

cross-entropy criterion, similarly constrained, if the prior distribution is uniform
(i.e., assigns an equal likelihood to each outcome). The divergence of a calculated
distribution from prior beliefs as calculated by the cross-entropy criterion conveys
information content in a similar way to that calculated by the Shannon measure of
information (Kullback and Leibler 1951).

Implementation of Optimization Procedure

In applying this method to the problem of disaggregating areas and yields to the
sub-national-level, based on the various sources of information that were available,
we constructed an entropy-based estimation procedure which has the additional fol-
lowing features:

• It specifies the ‘shares’ of cropharvested area that belong to each suitability class, in
each region—thus allowing them to act as ‘weights’ within the entropy framework.

• It specifies the shares of total cropland that belong to the suitability classes indi-
cated in the outputs of the WaLETS GIS-analysis.

• It forces all shares to add up to one.
• It enforces all the adding-up relationships between total harvested crop and total
cropland area that we would expect.

The key ‘known’ sources of data and ‘unknown’ variables that we have to solve
for are summarized in Table 15.

Some of the ‘known’ parameters are outputs from the GIS modeling exercise
and expert opinion (and, therefore, perhaps not 100% consistent with the underlying
reality). But we treat these as inputs to the data processing program, which seeks to
divide total cropland area into the area into:
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Table 15 Key known and unknown variables in calibration model

Data and ‘known’ parameters • Areas by crop and admin sub-region
• Total cropland areas by admin sub-region
• Total cropland areas by suitability classa

• Shares of total cropland in admin sub-regions
that are occupied by maize, beans, and rice

• Total production by country and sub-region
• Shares of maximum potential yield attainable
over the suitability classes in each countryb

‘Unknown’ parameters to be solved for • Areas by crop, admin sub-region, disaggregated
to suitability class

• Total cropland area by suitability class
disaggregated to admin sub-regions

• The total cropland area (excluding maize, rice
and beans) disaggregated to sub-region and
suitability class

• Yields by crop and sub-region, across all
suitability classes

aAt the time of writing this chapter, only the suitability classes for Tanzania and Kenya were
available. Therefore, we assume that Rwanda and Burundi have the same area share of suitability
classes in total cropland as Tanzania, and that Uganda has the same shares as those for Kenya. As
further information is made available, these can be updated
bAt the time of writing this chapter, there were no estimates of attainable yield shares for Rwan-
da—so the values for Burundi were assumed to apply for Rwanda

(1) the area occupied by the three key staples of interest and
(2) the area occupied by all other crops that are not of interest to the modeling

exercise.

Therefore, we seek to enforce the following identities:

ATotcropland
r,s �

∑
j

A j,r,s

︸ ︷︷ ︸
staples

+AOther
r,s

ATotcropland
r �

∑
j

A j,r

︸ ︷︷ ︸
staples

+AOther
r

ATotcropland
s �

∑
r

ATotcropland
r,s

where the quantities ATotcropland
s , ATotcropland

r , A j,r are known prior to the estimation,
and the values of ATotcropland

r,s , AOther
r , AOther

r,s , A j,r,s must be solved for.
In order to disaggregate the areas of staples and croplands across the appropri-

ate suitability classes, we must find the shares alpha beta, such that the following
relationships hold
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A j,r,s � α j,r,s · A j,r α j,r,s ∈ (0, 1]

ATotcropland
r,s � βr,s · ATotcropland

r βr,s ∈ (0, 1]∑
s∈Sj

α j,r,s � 1

where we carry out the summation of shares for staple crops (
∑

s∈Sj
α j,r,s � 1) only

over a defined sub-set of suitabilities that match with the crop type. In other words,
we don’t sum values for maize over bean suitabilties, and likewise for others. Since
we know that the land areas defined by the maize, bean, and rice suitabilties overlap
strongly with each other, we do not enforce the summation over the ‘beta’ values
(i.e.,

∑
s βr,s � 1).

Since we must also enforce the adding up of total production to the national
and sub-national totals provided by the multiplication of areas and yields, across
sub-regions and suitability classes, we must consider these identities

∑
r

Q j,r �
∑

s

∑
r

A j,r,s · Y j,r,s

Y j,r,s � YMaxPotential
j · θ attain

s · � j,r,s θ attain
s ∈ (0, 1],� j,r,s ∈ (0,+∞)

where we allow the sub-regional, suitability-specific yields to be informed by expert
opinion, but ultimately allowed to deviate from it to the extent necessary to make
the overall balance of area and production hold. The country-level agronomy experts
from theWaLETS team described the maximum potential yield for each crop in each

country
(

YMaxPotential
j

)
, and the share of that maximum potential that is attainable in

each suitability class
(
θ attain

s

)
. We allow the yields we ultimately solve for to deviate

from that amount by an allowable margin
(
� j,r,s

)
that we try and keep as close to

1 as possible—so as to preserve as much of the expert information as possible. So,
we place a ‘penalty’ upon any deviations in the value of � j,r,s from one, using the
cross-entropy principle in the objective function of the estimation program.

Now that we’ve described the key components of the program, we can now write
out the entropy-based mathematical programming problem we are trying to solve as
follows:

max
α j,r,s ,βr,s ,Y j,r,s ,� j

A j,r,s ,ATotcropland
r,s

AOther
r,s ,AOther

r

∑
j

∑
r

∑
s

[−α j,r,s · log(α j,r,s
)]

+
∑

j

∑
r

∑
s

[−βr,s · log(βr,s
)]

+
∑

j

[
� j · log

(
� j

/
1

)]

s.t.∑
r

Q j,r �
∑

s

∑
r

A j,r,s · Y j,r,s
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Y j,r,s � YMaxPotential
j · θ attain

s · � j

ATotcropland
r,s �

∑
j

A j,r,s

︸ ︷︷ ︸
staples

+AOther
r,s

ATotcropland
r �

∑
j

A j,r

︸ ︷︷ ︸
staples

+AOther
r

ATotcropland
s �

∑
r

ATotcropland
r,s

A j,r,s � α j,r,s · A j,r

ATotcropland
r,s � βr,s · ATotcropland

r∑
s∈Sj

α j,r,s � 1,

α j,r,s ∈ (0, 1], βr,s ∈ (0, 1], θ attain
s ∈ (0, 1],� j ∈ (0,+∞)

where the objective function is a hybrid of the maximum entropy problem (with
respect to the α j,r,s, βr,s variables and a cross-entropy problem (with respect to the
� j variable).

This program is run for the existing data in order to obtain a distribution of areas
and yields over each country’s sub-regions and suitability classes that can be used
as base data for the economic market model. Given that production was constrained,
within the program, to match the national-level production of the three staples, the
model will replicate the base-year supply, demand, and trade when it is simulated.

As better information becomes available—either from the GIS-based analysis or
the yield potential assessments of the agronomy experts—this data can be put into
the calibration model so that it can be rerun and generate a new base data set of
disaggregated areas and yields.

Table 16 shows the results from the model—aggregated across administrative
sub-regions for each country—to display in a more convenient fashion.
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Table 16 Calibration of base area and yield levels across suitability classes for each EAC country

Area (‘000 ha) Yield (mt/ha)

Rice Maize Beans Rice Maize Beans

Kenya Maize/high suitability 85.2 2.1

Kenya Maize/moderate
suitability

1520.1 1.8

Kenya Maize/low suitability 45.9 1.3

Kenya Rice/high suitability 3.7 3.1

Kenya Rice/moderate
suitability

4.6 2.7

Kenya Rice/low suitability 4.7 2.1

Kenya Rice/unsuitable 4.5 1.3

Kenya Beans/high suitability 279.7 0.5

Kenya Beans/moderate
suitability

377.3 0.4

Kenya Beans/low suitability 248.5 0.3

Tanzania Maize/moderate
suitability

1477.1 1.5

Tanzania Maize/low suitability 1373.1 1.1

Tanzania Rice/high suitability 13.1 1.7

Tanzania Rice/moderate
suitability

201.0 1.7

Tanzania Rice/low suitability 203.4 1.3

Tanzania Rice/unsuitable 178.2 0.8

Tanzania Beans/high suitability 38.2 1.1

Tanzania Beans/moderate
suitability

392.3 0.8

Tanzania Beans/low suitability 395.1 0.7

Tanzania Beans/unsuitable 1.1 0.4

Uganda Maize/high suitability 177.5 2.3

Uganda Maize/moderate
suitability

434.9 1.5

Uganda Maize/low suitability 163.6 0.7

Uganda Rice/moderate
suitability

33.9 1.5

Uganda Rice/low suitability 34.1 0.9

Uganda Rice/unsuitable 33.7 0.5

Uganda Beans/high suitability 238.3 0.6

Uganda Beans/moderate
suitability

330.4 0.56

Uganda Beans/low suitability 255.7 0.45

(continued)
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Table 16 (continued)

Area (‘000 ha) Yield (mt/ha)

Rice Maize Beans Rice Maize Beans

Rwanda Maize/moderate
suitability

54.2 1.1

Rwanda Maize/low suitability 53.4 0.6

Rwanda Rice/moderate
suitability

5.1 6.3

Rwanda Rice/low suitability 1.7 2.3

Rwanda Rice/unsuitable 1.4 1.4

Rwanda Beans/high suitability 32.8 1.2

Rwanda Beans/moderate
suitability

135.1 0.9

Rwanda Beans/low suitability 142.7 0.5

Burundi Maize/moderate
suitability

56.8 1.4

Burundi Maize/low suitability 56.6 0.8

Burundi Rice/moderate
suitability

8.7 4.1

Burundi Rice/low suitability 4.0 1.5

Burundi Rice/unsuitable 3.4 0.9

Burundi Beans/moderate
suitability

119.8 1.2

Burundi Beans/low suitability 125.2 0.5

References

Anyango, G. (1997). Comparative transportation cost analysis in East Africa. Technical Paper no
22, SD Publications Series, Office of Sustainable Development, Bureau for Africa, United States
Agency for International Development (USAID), Washington D.C.

Barkaoui, A., & Boutault, J.-P. (2000). Cereal and oil seeds supply with EU under agenda 2000: A
positive mathematical programming application. Agricultural Economics Review, 1(2), 7–17.

Doole, G., &Marsh, D. (2014). Use of positive mathematical programming invalidates the applica-
tion of the NZFARMmodel. Australian Journal of Agricultural and Resource Economics, 58(2),
291–294.

East African Community (EAC). (2011). EAC food security action plan (2011–2015). East African
Community Secretariat, Arusha, Tanzania. Available at http://www.agriculture.eac.int/.

Foster, V., & Briceño-Garmendia, C. (2010). Africa’s infrastructure: A time for transformation.
Washington, D.C.: The World Bank.

Gohin, A., & Chantreuil, F. (1999). La Programmation Mathématique Positive dans les Modèles
d’Exploitation Agricole. Principes et Importance du Calibrage. Cahiers d’Économie et de Soci-
ologie Rurales, 52, 59–79.

Heckelei, T., & Britz, W. (2000). Positive mathematical programming with multiple data points: A
cross-sectional estimation procedure. Cahiers d’Economie et Sociologie Rurales, 57, 28–50.

http://www.agriculture.eac.int/


12 Enhancing Productivity and Market Access for Key Staples … 259

Heckelei, T., & Wolff, H. (2003). Estimation of constrained optimisation models for agricultural
supply analysis based on generalised maximum entropy. European Review of Agricultural Eco-
nomics, 30(1), 27–50.

Heckelei, T., & Britz, W. (2005). Models based on positive mathematical programming: State of
the art and further extensions. In F. Arfini (Ed.), Modelling agricultural policies: State of the art
and new challenges: Proceedings of the 89th European Seminar of the European association of
agricultural economists (pp. 48–73). Parma: Monte Università.

Heckelei, T., Britz, W., & Zhang, Y. (2012). Positive mathematical programming approaches—re-
cent developments in literature and applied modelling. Bio-based and Applied Economics, 1(1),
109–124.

Henry de Frahan, B., Buysse, J., Polomé, P., Fernagut, B., Harmignie, O., Lauwers, L., et al.
(2007). Positive mathematical programming for agricultural and environmental policy analysis:
Review and practice. In A. Weintraub, C. Romero, T. Bjørndal, & R. Epstein (Eds.), Handbook
of operations research in natural resources (pp. 129–154). New York: Springer.

Howitt, R. E. (1995a). Positive mathematical programming. American Journal of Agricultural
Economics, 77(2), 329–342.

Howitt, R. E. (1995b). A calibration method for agricultural economic production models. Journal
of Agricultural Economics, 46(2), 147–159.

Howitt, R. E., Medellín-Azuara, J., MacEwan, D., & Lund, J. R. (2012). Calibrating disaggregate
economic models of agricultural production and water management. Environmental Modelling
and Software, 38, 244–258.

Judez, L., Chaya, C., Martınez, S., & González, A. (2001). Effects of the measures envisaged in
“Agenda 2000” on arable crop producers and beef and veal producers: An application of Positive
Mathematical Programming to representative farms of a Spanish region. Agricultural Systems,
67(2), 121–138.

Kaaya, A. K., Msanya, B. M., & Mrema, J. P. (1994). Soils and land evaluation of part of the
Sokoine University of Agriculture farm (Tanzania) for some crops under rain-fed conditions.
African Study Monographs, 15(2), 97–117.

Kanellopoulos, A., Berentsen, P., Heckelei, T., Van Ittersum, M., & Oude Lansink, A. (2010).
Assessing the forecasting performance of a generic bio-economic farm model calibrated with
two different PMP variants. Journal of Agricultural Economics, 61, 274–294.

Kullback, S. (1959). Information theory and statistics. New York: John Wiley.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical

Statistics, 22, 79–86.
Mérel, P., & Howitt, R. (2014). Theory and application of positive mathematical programming in
agriculture and the environment. Annual Review of Resource Economics, 6(1), 451–470.

Mérel, P. R., &Bucaram, S. (2010). Exact calibration of programmingmodels of agricultural supply
against exogenous sets of supply elasticities. European Review of Agricultural Economics, 37(3),
395–418.

Mérel, P. R., Simon, L. K., & Yi, F. (2011). A fully calibrated generalized constant-elasticity-
of-substitution programming model of agricultural supply. American Journal of Agricultural
Economics, 93, 936–948.

Mérel, P. R., Yi, F., Lee, J., & Six, J. (2014). A regional bio-economic model of nitrogen use in
cropping. American Journal of Agricultural Economics, 96(1), 67–91.

Minot, N. (2009).Using GAMS for agricultural policy analysis. Technical Guide.WashingtonD.C.:
International Food Policy Research Institute. Aavailable at: http://www.ifpri.org/publication/
using-gams-agricultural-policyanalysis.

Omamo, S.W., Diao, X.,Wood, S., Chamberlin, J., You, L., Benin, S., et al. (2006). Strategic priori-
ties for agricultural development in Eastern and Central Africa. Research Report 150.Washington
D.C.: International FoodPolicyResearch Institute. https://doi.org/10.2499/9780896291584rr150.

Paris, Q. (2010). Economic foundations of symmetric programming. Cambridge: University Press.

http://www.ifpri.org/publication/using-gams-agricultural-policyanalysis
https://doi.org/10.2499/9780896291584rr150


260 S. Msangi et al.

Robinson, S., Cattaneo, A., & El-Said, M. (2000). Updating and estimating a social accounting
matrix using cross entropy methods. Trade and MacroEconomics Division Discussion Paper No.
58. Washington, D.C.: IFPRI.

Röhm, O., & Dabbert, S. (2003). Integrating agri-environmental programs into regional production
models: An extension of positive mathematical programming. American Journal of Agricultural
Economics, 85(1), 254–265. https://doi.org/10.1111/1467-8276.00117.

Rosegrant,M.W., Paisner,M. S.,Meijer, S., &Witcover, J. (2001).Global food projections to 2020:
Emerging trends and alternative futures. Washington, D.C.: International Food Policy Research
Institute.

Rosegrant, M. W., Cai, X., & Cline, S. A. (2002). Water and food to 2025: Dealing with scarcity.
Washington, D.C.: International Food Policy Research Institute.

Rosegrant, M.W., et al. (2012). International model for policy analysis of agricultural commodities
and trade (IMPACT): Model description. Washington, D.C.: International Food Policy Research
Institute.

Sadoulet, E., & de Janvry, A. (1994). Quantitative development policy analysis. Baltimore, MD:
Johns Hopkins University Press.

Salami, A., Kamara, A. B., & Brixiova, Z. (2010). Smallholder agriculture in East Africa:
Trends, constraints and opportunities. Working paper no. 105, African Development
Bank Group, Tunisia. Available at https://www.afdb.org/fileadmin/uploads/afdb/Documents/
Publications/WORKING%20105%20%20PDF%20d.pdf.

Shannon, C. E. (1948a). A mathematical theory of communication. The Bell System Technical
Journal, 27(July), 379–423.

Shannon, C. E. (1948b). A mathematical theory of communication. The Bell System Technical
Journal, 27(October), 623–656.

Teravaninthorn, S., & Raballand, G. (2009). Transport prices and costs in Africa: A review of the
main international corridors. Washington D.C.: The World Bank.

USAID. (2017). East Africa Regional profile: Feed the future country profile. United States Agency
for International Development (USAID). Available at https://www.feedthefuture.gov/country/
east-africa-regional-0.

Waithaka, M., Nelson, G., Thomas, T. S., & Kyotalimye, M. (2013). East African agriculture
and climate change: A comprehensive analysis. IFPRI monograph, International Food Pol-
icyResearch Institute. Available at http://www.ifpri.org/publication/east-african-agriculture-and-
climate-change-comprehensive-analysis.

Were, K., Musana, B., Mudiope, J., Tanui, L., & Muhutu, J.-C. (2016). A GIS-based analysis
of agro-ecosystems suitability for production of staple crops in the East African Community
region. A technical report for the project on Water, Land, Ecosystems and Trade in Staples
(WaLETS). Available at https://www.kilimotrust.org/documents/reports/2017/walets/WaLETS_
Final_Reports/WaLETS_GIS_TechnicalReport.pdf.

You, L., & Wood, S. (2004). Assessing the spatial distribution of crop production using a cross-
entropy method. Environment and Production Technology Division Discussion Paper No. 126.
Washington, D.C.: IFPRI.

https://doi.org/10.1111/1467-8276.00117
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/WORKING%20105%20%20PDF%20d.pdf
https://www.feedthefuture.gov/country/east-africa-regional-0
http://www.ifpri.org/publication/east-african-agriculture-and-climate-change-comprehensive-analysis
https://www.kilimotrust.org/documents/reports/2017/walets/WaLETS_Final_Reports/WaLETS_GIS_TechnicalReport.pdf

	Foreword
	Preface
	Acknowledgements
	Contents
	Contributors
	1 Introduction
	1 Capturing Key Behavioral Dimensions at Micro- and Macro-Level
	2 Robust Analysis Under Limited Information
	3 Guiding Policy Decisions in Agriculture and Resource Management with Useful Tools
	References

	Applied Methods for Agricultural Production and Sector Modeling
	2 Towards Econometric Mathematical Programming for Policy Analysis
	1 Introduction
	2 From Positive Mathematical Programming to Econometric Mathematical Programming
	2.1 The Maximum Entropy Approach
	2.2 Bayesian Approach
	2.3 Bi-Level Programming Approach
	2.4 Standard Econometric Approach
	2.5 Alternative Model Specifications
	2.6 Preliminary Conclusions

	3 Bridging Positive Mathematical Programming and Econometric Mathematical Programming
	4 Conclusions
	References

	3 Soil and Crop Choice
	1 Introduction
	2 Data
	3 Regression Model
	4 Results
	5 Conclusion
	References

	4 Spatial Equilibrium, Imperfect Competition, and Calibrating Models
	1 Introduction
	2 Spatial Cartel Equilibrium: Monopoly–Monopsony
	3 Spatial Nash-Cournot Equilibrium: Oligopoly–Oligopsony
	4 Numerical Examples of Spatial Equilibria
	5 Spatial Equilibrium Under Imprecise Transaction Costs
	6 Calibrated Cartel Spatial Model: Monopoly–Monopsony
	7 Calibrated Nash-Cournot Equilibrium: Oligopoly–Oligopsony
	8 Example of Spatial Equilibria with Imprecise Transaction Costs
	9 Imprecise Intercepts of Demand and Supply Functions
	10 Numerical Example of Spatial Equilibria with Imprecise Trade Flow and Imprecise Intercepts of the Demand and Supply Functions
	11 Conclusion
	References

	Applied Methods for Water Resource Management
	5 Payment for Environmental Services: How Big Must Be the Check to Multiproduct Farmers?
	1 Introduction
	2 Methodology
	3 Data
	4 Results
	5 How Fat Should the Check Be?
	6 Conclusions
	References

	6 Optimal Allocation of Groundwater Resources: Managing Water Quantity and Quality
	1 Introduction
	2 Analytical Framework and Propositions
	2.1 Cooperative Extraction Model
	2.2 Non-cooperative Extraction Model

	3 Empirical Specification and Parameterization of the Model
	3.1 Parameterization of the Model

	4 Results of the Empirical Analysis
	4.1 Quantity-Only Problem Versus Quantity–Quality Problem
	4.2 Cooperative Extraction Versus Non-cooperative Extraction
	4.3 Cooperative Extraction Versus Different Types of Myopic Extraction

	5 Conclusion
	Appendix 1. Derivative of the Equation of Motion for the Groundwater Salinity Level (Et)
	Appendix 2. Derivation of the Euler Equation for the Cooperative Extraction Model
	Appendix 3. Derivation of Proposition 1
	Appendix 4. Derivation of Proposition 2
	Appendix 5. Derivation of the Euler Equation for Non-cooperative Extraction Model
	Appendix 6. Derivation of Proposition 2: Over-Extraction Under Non-cooperative Extraction
	References

	7 Managing Urban and Agricultural Water Demands in Northern China: The Case of Luancheng County, Hebei Province
	1 Introduction
	2 Materials and Methods
	2.1 Agricultural Production Model
	2.2 Hydrological Model of Luancheng County

	3 Results and Discussion
	4 Conclusions
	References

	Application of Information-Theoretic Methods
	8 Using Moment Constraints in GME Estimation
	1 Introduction
	2 Primal GME Estimation
	2.1 Moment Constrained GME (GME-MC)
	2.2 Bias in GME Estimates

	3 An Empirical Example
	4 Conclusions
	Appendix
	References

	9 Estimating Field-Level Rotations as Dynamic Cycles
	1 Introduction
	2 Existing Literature on Crop Rotations
	3 An Estimable Model of Field Rotations
	3.1 Stochastic-Dynamic Programming Model of Field Rotations

	4 Kern County Geo-referenced Panel Data
	4.1 Rotation Identification—Optimal Matching

	5 Parameter Estimation
	5.1 Generalized Maximum Entropy Estimation Results

	6 Model Simulation
	6.1 Policy Application: The Dynamic Margin Response to Salinity

	7 Conclusion
	References

	Using Quantitative Methods to Inform Decision-Making in Agricultural and Resource Policy
	10 Water into Wine and Cheese: Implications of Substitution and Trade for California’s Perennial Water Woes
	1 Introduction
	2 Some Economic Implications of Higher Irrigation Water Costs
	3 Simulating Water Price Impacts Using the SWAP Model
	4 From Water to Wine in California’s San Joaquin Valley
	4.1 Decrease in the Supply of Water for Wine Grapes
	4.2 Numerical Simulations of the Effects of Water Cost Increases on the Markets for California Grapes and Wine
	4.3 Implications for Wine Grapes and Wine

	5 Water into Cheese in the San Joaquin Valley
	6 Conclusions
	References

	11 Climate Policies as Water Policies
	1 Introduction
	2 USARM Model
	3 Market and Policy Shocks
	3.1 2030 Baseline
	3.2 Cap-and-Trade Without Carbon Offsets
	3.3 Cap-and-Trade with Carbon Offsets

	4 Results
	4.1 Output, Prices, and Revenue
	4.2 Water Use Trends, 2002–2030
	4.3 Agricultural Inputs
	4.4 Farm Income and Economic Surplus

	5 Implications for Water Use and Pollution
	5.1 Water Use
	5.2 Water Pollution

	6 Conclusions
	References

	12 Enhancing Productivity and Market Access for Key Staples in the EAC Region: An Economic Analysis of Biophysical and Market Potential
	1 Introduction
	2 Key Agro-Ecological Characteristics for Staples in the EAC
	3 Quantifying Market Impacts to Key Staples of the EAC Region
	3.1 The Basic Agricultural Multi-market Model
	3.2 Base Data and Model Calibration

	4 Key Policy Scenarios for the EAC Region
	4.1 Scenario #1—Reducing Regional Transportation Costs
	4.2 Scenario #2—Increasing Crop Productivity

	5 Implications for Policy
	6 Limitations of the Study and Extensions
	7 Conclusions
	Technical Annex: Details of the EAC Multi-market Model
	References




