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Abstract. The objective of this work is to evaluate different detrending
methods in the quality of auditory evoked responses. We compared the average
responses obtained by simply removing the DC level and the linear trend, and
also the estimated trends using polynomials and Fourier models up to the 8th

order. Two quality measures were used to compare the results: the standard
deviation ratio, as a measure of the signal-to-noise ratio, and the correlation
coefficient between consecutive responses obtained under the same experimental
conditions. The best results were obtained using a polynomial model of order 7.
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1 Introduction

1.1 Evoked Potentials

The Evoked Potentials are signals that appear embedded in the electroencephalographic
signal (EEG) after a given stimulus is presented to the subject, being of very weak
amplitudes (in the order of 0.1–100 µV) [1]. The EEG signal is considered the main
source of noise [1, 2], but other interferences and noise can also be found that con-
taminate this signal and make difficult to detect them, such as artifacts inside the body,
the environment, sensors and electrodes. Specifically, the sources related to the elec-
trodes and sensors used for the registration have a special attention [3]. In the case
where the recording is done using a single channel, these interferences cannot be
suppressed using linear combinations of channels as in ICA or other linear techniques.

To recover these low-amplitude evoked potentials, the most common technique
performs a Coherent Average (described in more detail in next section) of a large
number or responses to the stimulus. The EEG signal includes slow derivatives [3–5]
from the electrode-gel-skin interfaces. These drifts can affect the result of the Coherent
Average inducing a reproducible pattern that does not exist. Generally, these drifts can
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be treated with high-pass filters, but these in turn include the introduction of other types
of artifacts. New morphological forms appear that depend on the cutoff frequency, the
order, and the type of filter used. Another problem is the size of the signal analysis
window: for very small sizes some trends cannot be eliminated even if high-pass filters
are used.

1.2 Coherent Average

The Coherent Average can be computed from the ensemble matrix P that is formed
with the set of evoked responses [6–11], as shown in Eq. (1):

Pij ¼
p11 . . . p1N
..
. . .

. ..
.

pM1 . . . pMN

2
64

3
75; 1� i�M; 1� j�N ð1Þ

Here, the response pij to the i-th stimulus is assumed to be the sum of the deter-
ministic (constant) component of the signal or evoked response s plus a random noise ri
which is asynchronous with the stimulus. The model for each of the M responses is
given by Eq. (2).

pi ¼ sþ ri ð2Þ

where the deterministic component s is given by Eq. (3):

s ¼ s nð Þ; 1\n\N ð3Þ

and the noise ri is given by Eq. (4):

ri ¼ Ci 1ð ÞCi 2ð Þ. . .Ci Nð Þ½ � ð4Þ

In the model given by Eqs. (1)–(4), N is the number of samples that compose the
epoch, and C(n) (the current noise) is assumed to be stationary and normal, with zero
mean [12–19]. Consequently, the variance of noise must be fixed and equal in all
potentials. The CA average, or arithmetic mean as it is also known, is a simple and
direct method to estimate the deterministic component s and produce an estimate of it,
which we will call ŝ (Eq. 5):

ŝ ¼ 1
M

XM
i¼1

pi nð Þ ð5Þ

In some Coherent Averaging applications, this ŝ can be then used to extract, from
each pi, the noise part and obtain an estimate of the signal-to-noise ratio of the
ensemble, from which the possible biases produced by the number of responses M and
amplitude variability in s has been removed [20, 21].

If the individual responses ri present marked tendencies, the estimated signal ŝ can
show changes in its morphology (given the very low amplitude of the s component),
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and important values in the diagnosis, like the amplitudes of the individual components
of the evoked potential, can be distorted.

1.3 Detrending

One solution to the problems caused by high-pass filtering is to perform detrending.
Detrending consist in removing means, offsets, or linear trends from regularly sampled
time-domain input-output data signals. Detrending can be developed using a smoothing
function, for example a low-order polynomial that fits the data [3, 22–25], and sub-
tracting it from the data, in order to eliminate fluctuations. Other models can be used for
the same purpose [3, 4, 26].

The detrending assumes a model of the signal that must be flexible to the adjust-
ment of the existing trend, if it is inextricable it does not absorb fluctuations of interest.
Choosing the parameters (e.g. the polynomial order) is a critical step. Simple trends are
easily removed with low-order polynomials, or the first terms of a Fourier series. It can
be conceived that the unwanted tendency contains fewer oscillations than the waveform
of the evoked potentials, and this, in turn, contains fewer oscillations than the noise, so
a general concept could be that the order of the detrending is low enough so it does not
adjust to the signal of interest.

In this paper, we propose to select the model and the order that best fits brainstem
evoked potentials to eliminate present tendencies and thereby improve the quality of
the coherent average. Quality measures commonly used to validate the estimate in
Eq. (5) were chosen to evaluate the results.

2 Methods

2.1 Data

The database used in this study consists of Transient Auditory Evoked Potentials
registered in 39 neonatal patients between 1–3 months of age born in Hospital Materno
Ramón González Coro, in Havana, Cuba [27]. The signals were recorded with an
AUDIX electro-audiometer. A click stimulus with duration 0.1 ms was provided at
different intensities (100, 80, 70, 60, 30 dBnHL and 0 dBpSPL) via inserted earphones
(EarTone3A) [28, 29]. Ag/AgCl dry electrodes were used, which were fixed with
electrolytic paste on the forehead (positive), ipsilateral mastoids (negative) and con-
tralateral mastoids (earth). The impedance values were maintained below 5 kX. The
sampling frequency used was 13.3 kHz, and the analysis windows to form the
ensemble matrix P (Eq. 5) and calculate the coherent average were of approximately
15 ms, that is about 200 samples per window (N = 200). From this database, only
records obtained at 100 dBnHL (78 signals) were used, where it was confirmed by
specialists that a response was present. These signals were used in order to guarantee
the maximum values of the quality measures for this database. The signal was ana-
logically filtered with a band-pass filter with cut-off frequencies of 20 and 2000 Hz.
Although it has been said previously that filtering can produce trends, it is necessary in
this type of signals (EEG). The limitation in this case, being the size of the analysis
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window (15 ms), persists, which is much lower than the minimum analysis period of
the filter, equal to 1/20 Hz (50 ms).

According to [30], there are up to 8 oscillations with clinical value in the first 15 ms
of the auditory evoked potentials, an aspect of relevance when choosing the order of
the detrending model.

2.2 Models for Detrending Considered

Polynomial Model
Polynomial models for curves are given by Eq. (6).

y ¼
Xnþ 1

i¼1

pixnþ 1�i ð6Þ

where n + 1 is the order of the polynomial, n is the degree of the polynomial. The
order gives the number of coefficients fit, and the degree gives the highest power of the
predictor variable. For instance, a third-degree (cubic) polynomial is given by:

y ¼ p1x
3 þ p2x

2 þ p3xþ p4 ð7Þ

Polynomials are often used when a simple empirical model is required. The main
advantages of polynomial fits include reasonable flexibility for data that is not too
complicated, and they are linear, which means the fitting process is simple. The main
disadvantage is that high-degree fits can become unstable. Additionally, polynomials of
any degree can provide a good fit within the data range, but can diverge wildly outside
that range. Therefore, caution must be exercised when extrapolating with polynomials.

Polynomials of order n can adapt to trends showing up to n − 1 local extremes,
which in turn implies a maximum of (n − 1)/2 full oscillations in the trend. As men-
tioned, there are up to 8 oscillations of clinical relevance for the considered duration of
the auditory evoked potentials. To limit the maximum number of oscillations detrended
to be less than half of these useful oscillations, we evaluated polynomial models from
order 0 to 8. The zero order corresponds to the classical procedure of eliminating the DC
level, while the 1st order polynomial corresponds to a linear detrending.

Fourier Series Models
The Fourier series is a sum of sine and cosine functions that describes a periodic signal.
It is represented in either the trigonometric or the exponential form:

y ¼ a0 þ
Xn
i¼1

ai cosðiwxÞþ bi sinðiwxÞ ð8Þ

where a0 models a constant (intercept) term in the data and is associated with the i = 0
cosine term, w is the fundamental frequency of the signal, and n is the number of terms
(harmonics) in the series. In this case, we evaluated Fourier models up to n = 8, to keep
up with the number of polynomial models considered, even if the number of oscilla-
tions modeled can match the ones with clinical interest.
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2.3 Quality Measures Used

Correlation Coefficient Ratio
The correlation coefficient ratio (CCR) is a statistic that reflects the replicability
between two sub-averages, computed as follows:

CCR ¼
PNM
i¼1

ŝ1ŝ2ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNM
i¼1

ŝ1ð ÞPNM
i¼1

ŝ2ð Þ
s ð9Þ

According to the Audiology Assessment Protocol in [31], for a window of interest
of 10 ms the value of CCR must be greater than 0.7 between two sub-averages
obtained with 2000 epochs each.

Standard Deviation Rate
The standard deviation rate is a signal-to-noise ratio,

SDR ¼ varðŝÞ=varðhÞ ð10Þ

where var(̂s) is the variance of the estimated signal and var(h) is the residual noise
variance. The residual noise is estimated as the difference between the even sub-
average and the odd sub-average.

h ¼ ŝ1 � ŝ2 ð11Þ

The standards [31], suggest values of SDR > 1 to guarantee the presence of
response.

3 Results

To evaluate the results obtained, a Friedman test was performed where the average
values of each of the adjustment models for each of the quality measures used in the 78
signals were evaluated. In all cases, the test resulted in a value of p < 0.05, which
suggests that there are significant differences between at least two models. In order to
identify the models in which the differences existed, a post-hoc test was developed
using the Bonferroni method. Figure 1 shows the results obtained for both quality
measures, CCR in the left and SDR in the right panels, respectively. Non-overlapping
segments are those that show significant differences. There is a consistent performance
of Poly 7 as the best method across both measures, with Poly 5 also consistently
ranking second in both measures.
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There is an obvious tendency for deterioration in Fourier models as they approach
the 8th order, which could be explained by the reduction in the amplitude of the
recovered response due to an increase in its ability to match ŝ. In Fig. 2, an example of
the recovered ŝ using the evaluated methods for one of the 78 subjects is shown.

Figure 2 shows the result of the average potential obtained for a subject using the
different detrending models, where most Polynomial and Fourier models improves the
resulting signal compared to the subtraction of the DC level (standard procedure), in
correspondence with results shown in Fig. 1. The smaller amplitudes of ŝ for the higher
order Fourier approaches are also visible.

4 Conclusions

An adequate detrending can improve the detection of auditory evoked potentials
according to recommended quality measures. It allows obtaining individual responses
better suited to perform the coherent averaging. Although the best results were obtained

Fig. 1. Differences between the average ranks of the different models evaluating: the CCR (left)
and SDR (right). Grayed-out models have rank confidence intervals overlapping with the best
model (Poly 7)

Fig. 2. Auditory evoked potentials recovered using the detrending methods for one subject.
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here for a polynomial model of order 7, the use of a smaller order (i.e. 5) can be
considered as an option given the interest in avoiding a fit to the oscillations of clinical
interest. In future works an analysis of the variance of the remaining noise by sub-
tracting the trends should be considered.
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