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Abstract. Image segmentation methods have been actively investi-
gated, being the graph-based approaches among the most popular for
object delineation from seed nodes. In this context, one can design seg-
mentation methods by distinct choices of the image graph and connec-
tivity function—i.e., a function that measures how strongly connected
are seed and node through a given path. The framework is known as
Image Foresting Transform (IFT) and it can define by seed competition
each object as one optimum-path forest rooted in its internal seeds. In this
work, we extend the general IFT algorithm to extract object information
as the trees evolve from the seed set and use that information to esti-
mate arc weights, positively affecting the connectivity function, during
segmentation. The new framework is named Dynamic IFT (DynIFT)
and it can make object delineation more effective by exploiting color,
texture, and shape information from those dynamic trees. In compar-
ison with other graph-based approaches from the state-of-the-art, the
experimental results on natural images show that DynIFT-based object
delineation methods can be significantly more accurate.

Keywords: Image Foresting Transform · Multiple object delineation ·
Graph Cut · Image segmentation by seed competition

1 Introduction

Image segmentation is a challenging task that often requires user’s assistance for
corrections [11]. Deep neural networks can provide impressive object approxima-
tions [10], but object delineation is still not accurate, even when the user provides
careful object localization [12] (Fig. 1). On the other hand, the combination of
interactive object localization and graph-based object delineation may solve the
problem in a few iterations of corrections with simple user effort (Fig. 1c).
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Among many interesting approaches, graph-based object delineation has
become quite popular with methods based on Random Walks [8], Graph Cuts [2],
Watershed Cuts [6], and Image Foresting Transform (IFT) [7]. These frameworks
interpret an image as a graph and, often from some hard constraints (e.g., seed
nodes that were chosen by the user to locate the objects), the methods delineate
the objects by optimizing some energy function [3,13].

In this work, we explore the optimum-path trees that dynamically evolve from
seed nodes during the IFT algorithm for more effective object delineation. This
defines a new framework, named Dynamic IFT (DynIFT), with methods that
can estimate the arc weights in the graph during object delineation by exploiting
the object knowledge that increases at each moment. The methods are compared
with state-of-the-art graph-based delineation approaches [2,3,6] using a natural
image dataset with two types of seed sets provided by users. The experimental
results using color information only already show considerable effectiveness gains
in object delineation using the DynIFT algorithm.

The next sections present the proposed framework, with algorithm and exam-
ples of dynamic arc-weight estimation methods, the experimental results, discus-
sion, and conclusion.

Fig. 1. (a) Original image with four extreme points (magenta) for the method in [12]
and orange and green markers for the proposed algorithm. (b) Result of the method
in [12] with errors and (c) the desired segmentation using the proposed algorithm.
(Color figure online)

2 Dynamic Image Foresting Transform

A 2D image is a pair (DI , I) in which I(p) assigns a set of local image features
(e.g., color components) to each pixel p ∈ DI ⊂ Z2. An image may be interpreted
as a graph (N ,A) in various distinct ways by defining the nodes in N ⊆ DI ,
for example, as pixels, superpixels, or pixel vertices, and using some adjacency
relation A ⊂ N × N in the image domain and/or feature space to define the
arcs. For the sake of simplicity, we focus on pixels as nodes (N = DI), with I(p)
being the CIELab color components of pixel p, and the 4-neighborhood relation
to define the arcs.

For a given seed set S—e.g., labeled scribbles (markers) drawn by the user
in each object (including background) for object localization and/or segmen-
tation correction—we wish to partition the image into objects such that each
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Fig. 2. (a) Original image with markers (yellow and blue circles) drawn by the user.
(b–e) Dynamic tree evolution in some iterations (each color being one different tree).
Notice that each marker has multiple trees (one for each root pixel), but some roots
may conquer most pixels in the region dominated by the marker. (Color figure online)

object consists of the pixels more closely connected to its internal seeds than
to any other. Each seed p ∈ S is then uniquely identified as belonging to one
among c objects by a labeling function λO(p) ∈ {0, 1, 2, . . . , c}, being 0 the
background. Similarly, one can also identify the marker λM (p) ∈ {1, 2, . . . ,m}
among m markers that contains the seed p. This can be used, for instance, to
control marker deletion and addition during segmentation correction. Therefore,
a connectivity function f measures how closely connected are seed and node
through any given path in the image graph from the former to the latter. A
path πq = 〈p1, p2, . . . , pn = q〉 with terminus q is a sequence of nodes, such that
(pi, pi+1) ∈ A, i = 1, 2, . . . , n − 1, being trivial when πq = 〈q〉. A path πq is
optimum when f(πq) ≤ f(τq) for any other path τq, irrespective to its start-
ing node. Defining Π as the set of all possible paths in the graph, the Image
Foresting Transform (IFT) algorithm [7] minimizes a path cost map C,

C(q) = min
∀πq∈Π

{f(πq)}, (1)

by computing an optimum-path forest P—i.e., an acyclic predecessor map that
assigns to every node q its predecessor P (q) ∈ DI in the optimum path πP

q with
terminus q or a marker P (q) = nil �∈ DI , when q is a root (starting node) of
the map (i.e., πP

q = 〈q〉 is optimum). The algorithm can also propagate to every
node p ∈ DI , the root R(p) ∈ S in the optimum-path forest, the object label
map L(p) = λO(R(p)) ∈ {0, 1, 2, . . . , c} (resulting segmentation), and the marker
label map M(p) = λM (R(p)). The roots of the map are drawn from S, such that
each object is defined by the optimum-path forest rooted in its internal seeds.
Connectivity functions may be defined in different ways, which do not always
guarantee the optimum cost mapping conditions [4], but can produce effective
object delineation [14]. In this work, we explore the connectivity function

fmax(〈q〉) =
{

0 if q ∈ S,
+∞ otherwise,

fmax(πp · 〈p, q〉) = max{fmax(πp), w(p, q)}, (2)
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where πp · 〈p, q〉 indicates the extension of path πp by an arc 〈p, q〉 and w(p, q) is
an arc weight usually estimated from I (e.g., w(p, q) = ‖I(q) − I(p)‖). The IFT
algorithm with fmax computes optimum paths from S to the remaining nodes
by growing one optimum-path tree Tr for each seed r ∈ S.

The dynamic IFT essentially exploits the sets Tr to estimate the arc weights
w(p, q) as the costs of including q, through πp · 〈p, q〉, as part of the same object
that contains p at the time the optimum path πp is found (Fig. 2).

2.1 DynIFT Algorithm for fmax

The dynamic IFT algorithm for fmax is a variant of the IFT algorithm, which
maintains the dynamic trees Tr, for all r ∈ S, object label map L, path cost map
C, marker label map M , predecessor map P , and root map R for possible use
during the segmentation process, especially for arc weight estimation.

Algorithm 1 . Dynamic IFT for fmax

Input: Image (DI , I), adjacency relation A, and seed set S with labeling func-
tions λO and λM .

Output: Object label map L.
Auxiliary: Priority queue Q = ∅, dynamic sets Tr = ∅, ∀r ∈ S, maps C, R, P ,

and M , and variable tmp.

1. For each p ∈ DI

2. C(p) ← +∞, R(p) ← p, and P (p) ← nil
3. If p ∈ S
4. C(p) ← 0, L(p) ← λO(p), and M(p) ← λM (p)
5. Insert p in Q
6. While Q �= ∅
7. Remove p from Q, such that p = argmin∀q∈Q{C(q)}

and TR(p) ← TR(p) ∪ {p}
8. For each (p, q) ∈ A | q ∈ Q
9. Estimate w(p, q) as described in Section 2.2
10. tmp ← max{C(p), w(p, q)}
11. If tmp < C(q)
12. C(q) ← tmp, R(q) ← R(p)
13. L(q) ← L(p), M(q) ← M(p), and P (q) ← p

Lines 1–5 of the DynIFT algorithm initialize the maps, being all pixels p ∈ DI

defined as trivial paths 〈p〉 in P and inserted in Q. The main loop (Lines 6–13)
computes in P optimum paths from the minima of the cost map (i.e., the seeds
in S) to the remaining pixels in DI \S. When a pixel p is removed from Q in Line
7, the current path πP

p , that can be obtained backward in P , is optimum and p is
inserted in the dynamic tree TR(p) of the root of p. The internal loop (Lines 8–13)
considers only the adjacent pixels q ∈ Q that does not belong to any dynamic
set yet. It can estimate the arc weight w(p, q) by extracting object information
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from the maps and dynamic sets (Sect. 2.2). The remaining lines compute the
cost of the extended path πP

p · 〈p, q〉 and if this cost is lower than the current
path cost C(q), it updates the maps and the path πP

q becomes πP
p · 〈p, q〉 in P .

Next we explore simple and yet effective ways to estimate the arc weights.

2.2 Dynamic Arc Weight Estimation

Algorithm 1 executes in |DI | iterations of the main loop. By the time a pixel
p is removed from Q in Line 7, the tree TR(p) contains information about the
region conquered by the root R(p) ∈ S (which includes p), the map P contains
the optimum path πP

p , the map M contains the union
⋃

∀r∈S|M(r)=M(p) Tr of
trees rooted in each marker M(p) ∈ {1, 2, . . . ,m}, and the map L contains
the union

⋃
∀r∈S|L(r)=L(p) Tr of trees rooted in each object L(p) ∈ {1, 2, . . . , c}.

Therefore, color, texture, and shape information about the object or its regions
can be explored for dynamic arc weight estimation—i.e., to estimate the cost of
including q as part of the object that contains p. We then evaluate the following
dynamic arc weight functions based on the tree mean color μR(p) of the pixels
p ∈ TR(p) and the object mean color μL(p) of the pixels p ∈

⋃
∀r∈S|L(r)=L(p) Tr.

w1(p, q) = ‖μR(p) − I(q)‖, (3)
w2(p, q) = min

∀r∈S|L(r)=L(p)
{‖μr − I(q)‖}, (4)

w3(p, q) = ‖μL(p) − I(q)‖, (5)
w4(p, q) = w1(p, q) + ‖I(q) − I(p)‖, (6)
w5(p, q) = w2(p, q) + ‖I(q) − I(p)‖, (7)
w6(p, q) = w3(p, q) + ‖I(q) − I(p)‖. (8)

DynIFT with w1 assumes that the mean color of the region of the object
that contains p (i.e., the dynamic tree TR(p)) is more representative than I(p).
However, it also assumes that each seed can only conquer pixels q whose color
is similar to the mean color of that region. The purpose of w2 is to relax this
criterion by considering the closest mean color of all dynamic trees rooted in the
same object. This allows, for instance, to delineate object regions not necessarily
connected to their most similar seeds (Fig. 3). Function w3 extends the concept
of w1 for the entire object, which should not be a good idea since the object
may be represented by different parts. The remaining functions essentially add
the local arc weight ‖I(q) − I(p)‖ to the previous ones in order to evaluate the
importance of the local contrast between regions.

3 Experimental Results

For comparison, we use the power watershed (PWq=2) algorithm [5] (i.e., image
segmentation based on minimum spanning forest and random walk), the IFT
algorithm for fmax with arc weight function w(p, q) = ‖I(q) − I(p)‖ (i.e., a
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Fig. 3. (a) Original image with markers (red and blue) and ground-truth delineation
(magenta). Segmentation results using arc weight functions (b) w4 and (c) w5. Even
without object markers on the swimmer’s legs, w5 is still able to delineate it, because
of the global similar tree search. (Color figure online)

watershed transform [7]), and the min-cut/max-flow algorithm [2,15]. The IFT-
based watershed transform provides a cut in the graph given hard constraints
(seed set) such that the lowest arc weight in the cut is maximum (i.e., it is an
energy maximizer, GCmax, as defined in [3] or a watershed cut as defined in [6]).
Its counterpart is the energy minimizer, GCsum, as defined in [3], which uses
the min-cut/max-flow algorithm [2,15] and obtains a cut in the graph given
the seed set such that the sum of the arc weights in the cut is minimum. For
that, one can simply use the normalized complementary arc weight function
w̄(p, q) = |wmax−w(p,q)

wmax
|α, where α ≥ 1 and wmax is the maximum value of w(p, q)

in the graph, in the min-cut/max-flow algorithm with source and sink connected
to the seed set.

As proposed by Andrade and Carrera [1], our experiments run on two prede-
fined sets of markers to avoid bias of prior knowledge of the process of segmenting
with each algorithm. The first is the dataset from [9], in which about four mark-

Table 1. Experimental results.

Method Gulshan’s markers dataset Andrade’s markers dataset

Dice Acc. (%) Time (secs) Dice Acc. (%) Time (secs)

GCsum 76.2 ± 1.6 0.230 ± 0.167 90.6 ± 0.08 0.123 ± 0.075

GCmax 75.6 ± 1.6 0.038 ± 0.012 89.5 ± 0.09 0.039 ± 0.012

PWq=2 72.3 ± 1.7 0.966 ± 0.300 89.9 ± 0.08 1.015 ± 0.299

DynIFT w1 84.0 ± 1.3 0.042 ± 0.016 92.1 ± 0.08 0.046 ± 0.018

DynIFT w2 81.9 ± 1.8 4.633 ± 2.573 95.4 ± 0.04 8.460 ± 3.802

DynIFT w3 74.7 ± 2.2 0.035 ± 0.012 82.8 ± 0.16 0.036 ± 0.013

DynIFT w4 83.1 ± 1.4 0.047 ± 0.017 91.7 ± 0.08 0.048 ± 0.017

DynIFT w5 84.3 ± 1.7 4.538 ± 2.484 95.3 ± 0.04 8.030 ± 3.485

DynIFT w6 74.4 ± 2.1 0.039 ± 0.013 82.9 ± 0.16 0.037 ± 0.013
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Fig. 4. Examples of segmentation results using DynIFT and the baselines. First row
shows the images with the chosen markers for the objects (blue and yellow) and back-
ground (red), and the borders of the ground-truth segmentations (magenta and green).
The remaining rows show the segmentations from the considered methods for the cho-
sen markers. Note that GCsum is only able to produce binary segmentations. (Color
figure online)

ers cover a small area of both the background and foreground on each image.
The second dataset contains a more carefully selected set of scribbles [1].

Table 1 shows the mean and standard deviation of the results over the 50
images of the GrabCut dataset and their respective markers, two baselines (with
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α = 100 for the GCsum algorithm), and the six proposed arc weight functions.
Computations were performed on an Intel Core i7-7700 CPU 3.60 GHz.

In all cases, except for w3 and w6, as predicted, the DynIFT-based methods
can considerably improve the accuracy of object delineation in comparison with
the baselines. Note that the relaxed versions, represented by w2 and w5, can
obtain better results than using the local mean color only of the tree TR(p),
represented by w1 and w4. Figure 4 illustrates these results on a few examples.

4 Conclusion

In this paper, we present a new framework, named Dynamic IFT (DynIFT),
that explores the object knowledge from the evolution of optimum-path trees
during the IFT algorithm for more effective object delineation. We evaluated
the DynIFT with some arc-weight estimation methods using color information.
Experimental results show that DynIFT attains considerable accuracy gains in
object delineation when compared to three well-established baselines. As future
work, we intend to explore the dynamic proprieties of the optimum-path forest
and its combination with pattern recognition algorithms to better understand
how image delineation can be improved.
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