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Abstract. Phase congruence technique developed by Kovesi allows the
detection of edges in images by analyzing the phases of their frequency
components. A limitation of this technique is that it does not allow the
detection of closely spaced edges that have different intensities. However,
this situation occurs frequently in images, which therefore limits the use
of this method. This study aims to propose a method that can over-
come this limitation. Unlike the original technique, the proposed study
uses a high degree of overlap between different frequency components
to allow the detection of contiguous edges of low intensity. To avoid the
problems that arise from high overlap, we modify the sensitivity of the
phase congruence, allowing us to detect weak edges while discarding the
noise associated with the proposed changes. We present our results and
compare them with the results obtained using the existing technique.

Keywords: Phase congruency · Edge detection · Image processing ·
Segmentation

1 Introduction

Segmentation is one of the most important techniques in image processing as it
allows the separation of regions of interest from the image background. There
are various methods for conducting segmentation. Phase-congruence method,
which was proposed by Kovesi [2], is based on a perception model that uses the
local energy of the image, postulating that its most important characteristics
occur where its frequency components maximize the phase coincidence. Unlike
most popular segmentation techniques, this method uses the frequency spec-
trum, which makes it unattractive due to its high computational cost and high
sensitivity to noise. With recent changes introduced by Kovesi in the definition
of phase congruence coupled with the use of more powerful computers, this tech-
nique has taken on new significance. An important disadvantage of the original
method is that it does not allow the detection of closely spaced edges of variable
intensity. Nevertheless, this technique has been used by a number of researchers
because it is invariant to changes in illumination and contrast [4–10].
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In order to overcome this deficiency in edge detection, in the proposed study,
we analyzed the original technique proposed by Kovesi, and contrary to what he
established, we adjusted the parameters of the banks of wavelet filters, allowing
the spectra of each filter to overlap. This overcomes the limitation of the orig-
inal technique. To overcome the generation of false edges that this overlapping
produces, we have reinterpreted the concept of phase congruence to reduce its
sensitivity to false edges.

This article is organized as follows. In Sect. 2, we first present a brief descrip-
tion of phase congruence proposed by Kovesi, highlighting the above mentioned
problem. In Sect. 3, we discuss our proposed solution, and in Sect. 4 we present
the results obtained from synthetic and real images. Finally, we present our
conclusions in Sect. 5.

2 Phase Congruency

Kovesi [2] describes phase congruency in the following way:
For a one-dimensional signal, the phase congruence (PC) function at a point

x is defined as the local energy function E(x) divided by the sum of the different
Fourier components An, Eq. (1). Figure 1 shows a vector scheme of the concept.

PC(x) =
E(x)

∑N
n=1 An(x)

. (1)
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Fig. 1. The relation between phase congruency, local energy, and the sum of the Fourier
amplitudes, adapted from [2].

Bandpass quadrature filters are often used to extract information such as
energy from images [1]. In phase congruency, Kovesi used log-Gabor (log-normal)
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quadrature filters. The responses of pairs of quadrature filters are treated as the
real and imaginary components of a complex number. In Eq. (2), we present the
pair of responses in vector form, where I is the signal, Me

n the even-symmetry
wavelet, Mo

n is the odd-symmetry wavelet, both for the scale n, and en(x) and
on(x) are the respective results:

[en(x), on(x)] = [I(x) ∗ Me
n, I(x) ∗ Mo

n]. (2)

In Eq. (3), these pairs of responses are used to obtain the amplitude An

for the nth scale, which can be conveniently approximated as the nth Fourier
component of Eq. (1).

An(x) =
√

en(x)2 + on(x)2, (3)

and the phase is obtained using Eq. (4):

φn(x) = atan2(en(x), on(x)). (4)

To reduce the problems that occur when the components are of small mag-
nitude, Kovesi added a positive constant ε to the denominator in Eq. (1). The
effect of noise is also quite important. To reduce this problem, he considered a
noise circle of radius T ; any value less than or equal to T is not considered and
set equal to zero.

Smoothing reduces the high-frequency components of the signal, i.e., it
reduces the span of the frequency spectrum. In an extreme case, where the
locally whispered signal is practically a pure signal, i.e., where it has a single
frequency component, the PC will be maximal throughout the entire signal. To
solve this problem, Kovesi weighted the PC using Eq. (5):

s(x) =
1
N

(∑N
n=1 An(x)

ε + Amax(x)

)

, (5)

s(x) is a measure of the frequency distribution, it takes on values between 0 and
1, and it is used in the weight function in Eq. (6):

W (x) =
1

1 + eγ(c−s(x))
, (6)

where c is the cut-off value for s(x), which penalizes PC when the signal is
formed by only a few frequency components, and γ is a gain factor that controls
the sharpness of the cut-off.

To increase the sensitivity of PC, Kovesi redefines the way in which the
phase difference φn at each scale influences the weighted average phase φ. Kovesi
originally used a cosine function (see Fig. 1), but this has a problem in edge detect
that a significant difference is required between φ(x)n and φ(x) in order for the
value to decrease appreciably. He therefore proposes Eq. (7):

ΔΦn(x) = cos(φn(x) − φ(x)) − ∣
∣sin(φn(x) − φ(x))

∣
∣ . (7)
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The improvements introduced by Kovesi to the phase congruence calculation
are reflected in the Eq. (8), where the effect due to noise is reduced and sensitivity
is increased, even when there are signals with a certain level of smoothing. The
operator �x� indicates that x is positive if x > 0, and zero if x ≤ 0.

PC(x) =
∑N

n=1 W (x)�An(x)ΔΦn(x) − T �
∑N

n=1 An(x) + ε
. (8)

δ(x)

E(x)

∑N

n=1
An(x)

Fig. 2. Phase congruence such as the cosine of an angle δ

To use the Eq. (8) in images, the same transfer function is assumed for filters
in all directions. However, the obtained phase congruence results do not allow
the precise location of the edges. For this reason, Kovesi uses additional steps to
improve the results, which consist of the adaptation in the space of phase congru-
ence of Canny’s techniques for localization of local maxima and the suppression
of false edges by hysteresis. However, some additional improvements, which have
not been published in articles, were introduced by the same author in the code
available on his website [3]. The most striking change affects the very definition
of phase congruence. In the initial definition according to the Eq. (1), the phase
congruence can be understood as the cosine of an angle δ, which arises from the
right triangle, which hypotenuse sums the magnitudes of each component, and
as an adjacent leg the magnitude of the signal energy (see Fig. 2). The change
in the definition of phase congruence consists of going from cos(δ(x)) to being
1 − |δ(x)|. With the new adjustment, introducing the previous improvements,
and adding a gain α to the phase deviation (δ(x)) we have the Eq. (9).

PC(x) = W (x)�1 − α |δ(x)|��E(x) − T �
E(x) + ε

. (9)

In the implementation of the Eq. (9), several parameters can be modified to
apply the filter. Those of special interest in this work correspond to σo and α.
The value of σo directly influences the transfer function of the filter bank (see
Eq. 10), it is related to the bandwidth [1], and α, helps to better discriminate
phase congruence. It should be added that in order to apply phase congruence
to images, monogenic filters are used for the present study.

G(ω) = exp

(−(log(ω/ω0))2

2(log(σo))2

)

. (10)
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It is important to mention that in order to model the effect of noise in
the calculation of phase congruence, three premises are required: (I) the noise
is an additive character, (II) the noise power is constant and (III) they are
close together. This latter restriction limits proper edge detection in images. As
illustrated by the example in Fig. 3b.

Fig. 3. Phase Congruency at microscopy image of a real case. (a) Diatom image.
(b) With default parameters. (c) Parameters: σo at 0.3, α at 3.5

3 Analysis of nearby edges

Phase congruence has difficulties in detecting nearby edges with different width
and intensity, as illustrated by the Fig. 4, where two parallel edges appear, one
high and one low intensity. If phase congruence is used following the recommen-
dations suggested by Kovesi the result obtained does not allow to differentiate
the low intensity edge (see Fig. 4c). However, if the image consists only of the
low intensity line, this edge is correctly identified.
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Fig. 4. Synthetic image filtered at phase congruency with default parameters. (a) Image
with near edges at 255 and 20 intensity. (b) Vertical profile of (a). (c) Image filtered
at phase congruency with default parameters. (d) Vertical profile of (c).

In phase congruence, the frequency spectrum of the edges to be identified is
quite important, which, following the definitions given by Kovesi, conforms to a
power distribution of a square signal [2]. In this way, each wavelet is associated
with a Gabor filter, and the overlap of all filters covers the entire spectrum (see
Fig. 5).
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(b) σo at 0.3

Fig. 5. Spectrum of wavelets. (a) Suggested by Kovesi. (b) The new proposal. The
upper panel displays the individual wavelets, while the lower panel shows the sum of
the spectra

In Fig. 4a, the different intensities of the signals produced by the edges overlap
in frequency space, hiding the smaller one. This problem disappears, to a certain
extent, if the signal intensities are similar, but there is a delocalization of the
edges, due precisely to this overlap. To solve the problem of the detection of
closely spaced edges, we propose to increase the bandwidths of the filters in such
a way that the attenuation of the weaker signal can be reduced. This can be
achieved by reducing the value of σo, beyond the range recommended by Kovesi.
The disadvantage of increasing the filter bandwidths is that false edges appear
due to the high degree of overlap (see Fig. 7a). Figure 6a shows the result of
varying σo in the range from 0.55 down to 0.3 (From left to right in the Figure),
which is below the theoretical range of 0.55–0.85 established by Kovesi.

To solve this overlap problem, which arises due to the increases in the band-
widths of the filters (σo = 0.3), it is necessary to increase the sensitivity of the
PC by adjusting the gain α. In this way, it is possible to reduce the noise gen-
erated by the frequency overlap of the different filters. In Fig. 6b we show the
result obtained by varying α from 1.5 to 3.5 (from left to right in the Figure).
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(a) Variation of σo (b) Variation of α

Fig. 6. Changes from Phase congruency when vary σo and α.
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Fig. 7. Synthetic image filtered at phase congruency, (a) σo = 0.3, (b) vertical profile
of (a), (c) σo at 0.3 and α at 3.5, and (d) is a vertical profile of (c).

4 Results for Synthetic and Real Images

From our synthetic images, we have found heuristically that the appropriate
values of σo and α, which are necessary to obtain a PC that allows the detection
of low intensity edges that appear close to high intensity edges are σo = 0.3,
and α = 3.5. As shown in Fig. 7c, applying PC to the Fig. 4a with these values
allows to detection of both edges.

The distribution of the frequency spectrum after this adjustment of the filter
band passes is shown in Fig. 5b.

5 Conclusions

One of the limitations of phase congruence is its inability to detect closely spaced
edges. In this work we have presented a solution based on allowing the overlap of
the Gabor filter responses through which it is possible to reinforce the responses
to weak signals. This solution leads to the generation of spurious signals, but
we have eliminated them by readjusting the sensitivity of the PC. The results
obtained from synthetic and real images have allowed us to verify the quality of
this solution.
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