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Abstract. In data stream mining, state-of-the-art machine learning
algorithms for the classification task associate each event with a class
belonging to a finite, devoid of structural dependencies and usually small,
set of classes. However, there are more complex dynamic problems where
the classes we want to predict make up a hierarchal structure. In this
paper, we propose an incremental method for hierarchical classification
of data streams. We experimentally show that our stream hierarchical
classifier present advantages to the traditional online setting in three
real-world problems related to entomology, ichthyology, and audio pro-
cessing.

Keywords: Hierarchical classification · Data streams · Online learning

1 Introduction

Most problems in data mining involve the prominent classification task. The
purpose of this task is to find, from a significant number of examples, a func-
tion that maps the features that describe each example in its respective known
class (category). Besides establishing the relationships between features and a
category, the discovery function can predict the class of new examples [1].

Traditional supervised machine learning algorithms lead to the data cate-
gorization in a flat way, i.e., they seek to associate each example with a class
belonging to a finite, devoid of structural dependencies and usually small, set of
classes. However, there are a significant number of problems whose classes can be
divided into subclasses or grouped into superclasses. This structural dependence
between classes characterizes the hierarchical classification [13].

In the hierarchical classification, supervised machine learning methods induce
a hierarchical decision model (hierarchical classifier). Such a model links the
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features of the examples to a class hierarchy, usually structured as a tree or
as an acyclic directed graph, with different levels of specificity and generality.
The main advantage of a hierarchical classifier is that it divides the original
problem into levels to reduce the complexity of the classification function and
give flexibility to the process.

Current hierarchical classification algorithms work in a batch setting, i.e.,
they assume as input a fixed-size dataset that we can fully store in memory. At
this point, a challenge not yet addressed by the data mining community focuses
on the proposition, or even adaptation, of hierarchical classification techniques
capable of dealing with unlimited and evolving data that arrives over time called
data streams [16]. Data streams require real-time responses, adaptive models,
and impose memory restrictions.

In this paper, we extend the state-of-the-art proposing the first incremental
method of hierarchical classification for the data stream scenario. The algorithm
represents the class hierarchy as a tree and performs single path predictions. Our
study has three major contributions:

– We design an incremental method based on k -Nearest Neighbors (kNN) [4]
for the hierarchical classification of data streams. Our algorithm uses a fixed-
size memory buffer and builds a one-class local dataset for each node of the
class tree, except for the root node, using a set of positive examples that
represent the current class. The classification of a new event from the stream
is done top-down. Our method stands out for its simplicity in decomposing
the feature space of the original problem into subproblems with a smaller
number of classes. Thus, every time we go down through the levels of the
class tree, the input and output spaces are reduced;

– We build three stream hierarchical datasets and make them available online.
Such data are from real-world problems related to entomology, ichthyology,
and audio processing;

– We experimentally compare our algorithm with an online kNN flat classifier.
In this comparison, we show that in problems where the class labels naturally
make up a hierarchy, hierarchical classification methods provide better results
than those obtained by flat classifiers. Although other studies have evidenced
this fact with static batch learning [3,13], our work is the first which considers
the data stream scenario.

The remaining of this paper is structured as follows: Sect. 2 introduces the
fundamentals of hierarchical classification and data streams. Section 3 describes
our proposal. Section 4 specifies our experimental evaluation. Section 5 presents
results and discussion. Finally, Sect. 6 reports our conclusions.

2 Background and Definitions

We provide in this section the main concepts and definitions of hierarchical clas-
sification and data streams, which are essential for understanding our proposal.
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Hierarchical Classification. Flat classification differs from hierarchical one by
the way domain classes are organized. In flat classification, while a portion of the
problems is discerned by the non-existence of interrelationships between classes
(single-label classification), the other part is characterized by non-structural
relationships between labels (multi-label classification). Structural dependencies,
which reflect super or subclass relations, configure hierarchical classification.

A dataset in the attribute-value format for hierarchical classification con-
tains N pairs of examples (�xi, Yi), where �xi = (xi1 , xi2 , . . . , xiM ) and Yi ⊂ L =
{L,L.1,L.2, . . .}. That is, each example �xi is described by M predictive features
(attributes) and has a set of labels Yi for which there are relationships that
respect a previously defined hierarchical class structure. The class attribute, in
turn, represents the concept to be learned and described by the built hierarchical
models using supervised machine learning algorithms.

Hierarchical classification methods can be distinguished according to four
main aspects [13]. The first one refers to the type of hierarchical structure – tree
or Direct Acyclic Graph (DAG) –, used to represent the relationships between
classes. In the tree structure (Fig. 1(a)), each node, except the root node, is
associated with at most one parent node. In the DAG structure (Fig. 1(b)), each
node, except the root node, can have one or more parent nodes.
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Fig. 1. Hierarchical class structures

The second aspect indicates whether the algorithm can predict classes in
only one or several (more than one) paths in the hierarchical structure. For
example, in the class hierarchy tree of Fig. 1(a), if the model can predict both
class L.2.1 and L.2.2 for a given example, which equates to paths L→L.2→L.2.1
and L→L.2→L.2.2, then it is able to predict multiple paths – Multiple Path
Prediction (MPP). In contrast, when this type of association is not valid, the
method performs the Single Path Prediction (SPP).

The third aspect concerns the hierarchical level of the classification. An algo-
rithm can make predictions using only classes depicted by leaf nodes – Manda-
tory Leaf-Node Prediction (MLNP) – or by using classes represented by any
node, internal or leaf, of the hierarchical structure – Non-Mandatory Leaf-Node
Prediction (NMLNP). Figure 1(a) illustrates the difference between these strate-
gies. In this figure, the path L→L.1→L.1.2 represents the NMLNP strategy,
while the path L→L.1→L.1.2→L.1.2.1 portrays the MLNP strategy. We need to
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emphasize that the NMLNP is especially useful in applications that opt for the
freedom to conduct a more generic prediction, but with higher reliability.

The fourth and last aspect is related to the mode adopted by machine learning
methods to manipulate the hierarchical structure. We can divide the approaches
described in the literature into three broad groups: (i) flat approach, (ii) local
approach, and (iii) global approach. Further details are available in [13].

Data Stream Mining. A data stream is a sequence of examples (or events)
generated continuously over time that imposes severe processing and storage
limitations [12]. The features that describe such events can undergo variations
over time due to the volatility of the dynamic environment in which they are.
These changes are known as concept drift [8,16]. Concept drifts impose the use
of adaptive models to maintain a stable classification accuracy over time.

3 Proposed Method

We propose an incremental algorithm based on kNN to classify data streams
hierarchically. Our method represents the class hierarchy as a tree and performs
single path predictions using a top-down strategy. Algorithm 1 shows the pseudo-
code of the proposal.

Algorithm 1. kNN for Hierarchical Classification of Data Streams
/* Initial training set T ; Unlabeled data stream DS; Number of nearest neighbors k; Reliability

threshold δ; Size of the memory buffer η; Set of predicted labels Ŷ for each �x ∈ DS */

Input: T , DS, k, δ, η
Output: Ŷ

1 begin
2 H ← buildClassHierarchy(T );
3 H ← oneClassLocalDatasetPerNode(H, T );
4 forall the �x ∈ DS do
5 node ← H;

6 Ŷ ← {node.label};
7 while ¬node.isLeaf do
8 children ← node.children;
9 d ← {};

10 for i ← 1 to |children| do
11 local dataset ← node[children[i].label];
12 d ← {d, averageDistance(�x, local dataset, k)};
13 end
14 dists ← d/max(d);
15 dists ← dists − min(dists);
16 if |dists <= δ| > 1 then
17 break;
18 end
19 predicted node ← children[getIndex(d == min(d))];

20 Ŷ ← {Ŷ , predicted node.label};
21 node ← predicted node;

22 end
23 Y ← getCorrectLabelSet(�x);
24 H ← includeExampleLabeled(H, {�x, Y }, η);

25 end

26 end

In the 2nd line of Algorithm 1, we build a class hierarchy H from the ini-
tial labeled training set T . In the 3rd line, each node of the class hierarchy,
except the root node, is associated with a one-class local dataset. We generate
these one-class local datasets using the inclusive heuristic admitting only posi-
tive examples [2]. In the 7th line, we employ the top-down prediction strategy, so
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that to classify an example �x belonging to stream DS the hierarchical structure
H is traversed from the root node to an internal or leaf node depending on the
value of δ (δ ∈ [0, 1]). We expanded a node when the average distance of the
k examples from the local dataset nearest to �x is the lowest compared to the
others in the same branch and level. In the 16th line, if δ is greater than zero,
we apply the NMLNP. In practical terms, we interrupt the traverse in the class
hierarchy when the differences between the average distances calculated for each
node of the same branch and level are less than or equal to δ. In the 24th line,
we associated the current �x to its set of correct labels and inserted it into the
training dataset. Here, we use a fixed-size memory buffer that holds only the
most recent η examples of each class.

4 Experimental Setup

We conducted our experiments using three stream hierarchical datasets related
to entomology, ichthyology, and audio processing. These datasets are available
online at https://goo.gl/4pxeWx and are an original contribution of this paper.

We partitioned each dataset into two sets: (i) initial training set, which covers
five labeled examples per class. The class is a set of labels that represents a
complete path – from the root to a leaf node – in the label hierarchy; and
(ii) test set, composed of the remaining unlabeled examples of the dataset.

We apply our method considering Euclidean distance, k = 3, δ = 0, and η =
1000. The parameter δ set to zero indicates a mandatory leaf-node prediction.

We face the proposed algorithm with an online 3NN flat classifier with
Euclidean distance and η = 1000, where we consider the online flat model as
a baseline method. To make a fair comparison, we retrieve from the hierarchi-
cal structure all the ancestor labels of each class predicted by the flat classifier
(complete path). Thus, we can directly compare a label path predicted by the
hierarchical algorithm with a label path predicted by the flat method.

We analyzed the results according to the following performance measures
[9]: hierarchical Precision (hP), hierarchical Recall (hR), and hierarchical F-
measure (hF). They are defined as follows:

hP =

∑
i |Yi ∩ Ŷi|
∑

i |Ŷi|
(1) hR =

∑
i |Yi ∩ Ŷi|
∑

i |Yi| (2) hF =
(β2 + 1) × hP × hR

β2 × hP + hR
(3)

In Eqs. 1 and 2, Ŷi refers to the set of labels predicted for a test example i
and Yi denotes the set of true classes of this example. During the computation
of hP and hR, we need to disregard the root node of the label hierarchy, since
by definition it is common to all examples.

In Eq. 3, β belongs to [0,∞) and corresponds to the importance assigned to
the hP and hR values. When β = 1, the two measures have the same weight in
the calculation of the final average. With β = 2, hR receives double the weight
given to hP, whereas for β = 1/2 the inverse situation occurs, i.e, hP receives
twice the weight than hR. We use β = 1.

https://goo.gl/4pxeWx
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5 Experimental Results

In this section, we present and discuss the experimental results for each of the
three datasets evaluated. Note that the sequence of our discussion accompanies
the classification task complexity, which is proportional to the number of classes.

5.1 Online Hierarchical Classification of Insect Species

The first problem evaluated comprises an entomology and public health applica-
tion of insect species recognition by optical sensors [14]. This task is the core of
intelligent traps developed to catch only target species such as disease vectors.
The hierarchical dataset built for this problem has 21,722 examples distributed
in 14 different classes. To perform the classification, we extracted 33 features
from the signals generated by the sensor such as the energy sum of frequency
peaks and harmonic positions. Figure 2 illustrates the class hierarchy of this
dataset.
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insects dataset

Figure 3 shows, in terms of hF, the results achieved by the online classifica-
tion algorithms using the insect species dataset. In this figure, the hierarchical
classifier reached a hF of 61.91% while the baseline method obtained a hF of
59.95%. Our algorithm had an average gain of 1.96% on the flat classifier. It is
important to note that this difference is small because we “force” our classifier
to return the complete paths for the sake of a fair comparison. However, our
approach can return less specific outputs in situations with high uncertainty. We
deem that a correct generic response is more useful than an incorrect specific
one.
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5.2 Online Hierarchical Classification of Fish Species

Our second hierarchical classification problem contemplates fish species auto-
matic identification based on image analysis [7]. In this problem, we extracted
15 features: 14 based on Haralick descriptors [6] and one involving fractal dimen-
sion [10]. Our dataset includes 22,444 examples and 15 classes (Fig. 4).

Figure 5 exhibits the hF results obtained from the online methods employing
the fish species dataset. Precisely, the hierarchical model reached a hF of 62.30%
while the baseline algorithm achieved a hF of 58.35%. In general, our classifier
had a gain of 3.94% over the flat setting.

5.3 Online Hierarchical Classification of Musical Instruments

The last real-world problem evaluated is related to the musical instrument clas-
sification based on the analysis of audio signals. We extracted from the signals,
30 features from the Mel Frequency Cepstral Coefficients [11]. The generated
dataset has 9,419 examples distributed into 31 classes (Fig. 6).
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Fig. 6. Hierarchy of musical instruments
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Figure 7 displays, in terms of hF, the results achieved from the online clas-
sification methods using the musical instruments dataset. In this figure, the
hierarchical classifier reached a hF of 84.77% while the baseline model obtained
a hF of 82.22%. Our algorithm had an average gain of 2.55% on the flat classifier.
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Fig. 7. hF over time for the musical instruments dataset

6 Conclusion and Future Work Prospects

In this paper, we presented an incremental method based on kNN for hierarchical
classification of data streams. The algorithm expresses the class hierarchy as a
tree and applies a top-down strategy to perform single path predictions. It also
adopts a fixed-size memory buffer to store the most recent data and to adapt to
concept drift.

To the best of our knowledge, our method is the first that benefits from
local information to label events of a stream. We get that local information by
decomposing the feature space of the problem into subproblems with a smaller
number of classes. Thus, the process gains simplicity, flexibility, and robustness.

We have compared our method with an online kNN flat classifier. The pro-
posed method outperformed the baseline algorithm in all datasets evaluated.
This result shows that we can use the information intrinsic to the class hier-
archy structure to improve the classification task. In future work, we intend to
explore the use of drift detectors [5] and scenarios with delayed labels [15].
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