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Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) is the premier European machine
learning and data mining conference and builds upon over 16 years of successful events
and conferences held across Europe. This year the conference— ECML PKDD 2018—
was held in Dublin, Ireland, during September 10–14, 2018. It was complemented by a
workshop program, where each workshop is dedicated to specialized topics, to
cross-cutting issues, and to upcoming trends. This year, 19 workshop proposals were
submitted, and after a careful review process, which was led by the workshop co-chairs,
17 workshops were accepted. The workshop program included the following work-
shops:

1. The Third Workshop on Mining Data for Financial Applications (MIDAS)
2. The Second International Workshop on Personal Analytics and Privacy (PAP)
3. New Frontiers in Mining Complex Patterns
4. Data Analytics for Renewable Energy Integration (DARE)
5. Interactive Adaptive Learning
6. The Second International Workshop on Knowledge Discovery from Mobility

and Transportation Systems (KnowMe)
7. Learning with Imbalanced Domains: Theory and Applications
8. IoT Large-Scale Machine Learning from Data Streams
9. Artificial Intelligence in Security

10. Data Science for Human Capital Management
11. Advanced Analytics and Learning on Temporal Data
12. The Third Workshop on Data Science for Social Good (SoGood)
13. Urban Reasoning from Complex Challenges in Cities
14. Green Data Mining, International Workshop on Energy-Efficient Data Mining and

Knowledge Discovery
15. Decentralized Machine Learning on the Edge
16. Nemesis 2018: Recent Advances in Adversarial Machine Learning
17. Machine Learning and Data Mining for Sports Analytics (MLSA)

Each workshop had an independent Program Committee, which was in charge of
selecting the papers. The success of the ECML PKDD 2018 workshops depends on
the work of many individuals. We thank all workshop organizers and reviewers for the
time and effort invested. We would also like to express our gratitude to the members
of the Organizing Committee and the local staff who helped us. Sincere thanks are due
to Springer for their help in publishing the proceedings.



This volume includes the selected papers of the MIDAS and PAP workshops. The
papers of the other workshops will be published in separate volumes. Lastly, we thank
all participants and keynote speakers of the ECML PKDD 2018 workshops for their
contributions that made the meeting really interesting.

October 2018 Carlos Alzate
Anna Monreale
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MIDAS 2018: The 3rd Workshop on MIning
DAta for Financial ApplicationS

Workshop Description

Motivation. Like the famous King Midas, popularly remembered in Greek mythology
for his ability to turn everything he touched with his hand into gold, the wealth of data
generated by modern technologies, with widespread presence of computers, users and
media connected by Internet, is a goldmine for tackling a variety of problems in the
financial domain.

Nowadays, people’s interactions with technological systems provide us with gar-
gantuan amounts of data documenting collective behavior in a previously unimaginable
fashion. Recent research has shown that by properly modeling and analyzing these
massive datasets, for instance representing them as network structures, it is possible to
gain useful insights into the evolution of the systems considered (i.e., trading, disease
spreading, political elections). Investigating the impact of data arising from today’s
application domains on financial decisions is of paramount importance. Knowledge
extracted from data can help gather critical information for trading decisions, reveal
early signs of impactful events (such as stock market moves), or anticipate catastrophic
events (e.g., financial crises) that result from a combination of actions, and affect
humans worldwide.

The importance of data-mining tasks in the financial domain has been long rec-
ognized. For example, in the Web context, changes in the frequency with which users
browse news or look for certain terms on search engines have been correlated with
product trends, level of activity in certain given industries, unemployment rates, or car
and home sales, as well as stock-market trade volumes and price movements. Other
core applications include forecasting the stock market, predicting bank bankruptcies,
understanding and managing financial risk, trading futures, credit rating, loan man-
agement, bank customer profiling. Despite its well-recognized relevance and some
recent related efforts, data mining in finance is still not stably part of the main stream of
data-mining conferences. This makes the topic particularly appealing for a workshop
proposal, whose small, interactive, and possibly interdisciplinary context provides a
unique opportunity to advance research in a stimulating but still quite unexplored field.

Objectives and Topics. The aim of the 3rd Workshop on MIning DAta for
financial applicationS (MIDAS 2018), held in conjunction with the 2018 European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (ECML-PKDD 2018), Dublin, Ireland, September 10–14, 2018,
was to discuss challenges, potentialities, and applications of leveraging data-mining
tasks to tackle problems in the financial domain. The workshop provided a premier
forum for sharing findings, knowledge, insights, experience and lessons learned from
mining data generated in various domains. The intrinsic interdisciplinary nature of the
workshop promoted the interaction between computer scientists, physicists,



mathematicians, economists and financial analysts, thus paving the way for an exciting
and stimulating environment involving researchers and practitioners from different
areas.

Topics of interest included: forecasting the stock market, trading models, discov-
ering market trends, predictive analytics for financial services, network analytics in
finance, planning investment strategies, portfolio management, understanding and
managing financial risk, customer/investor profiling, identifying expert investors,
financial modeling, measures of success in forecasting, anomaly detection in financial
data, fraud detection, discovering patterns and correlations in financial data, text mining
and NLP for financial applications, financial network analysis, time series analysis,
pitfall identification.

Outcomes. MIDAS 2018 was structured as a half-day workshop. We encouraged
submissions of regular papers (long or short), and extended abstracts. Regular papers
could be up to 15 pages (long papers) or 8 pages (short papers), and reported on novel,
unpublished work that might not be mature enough for a conference or journal sub-
mission. Extended abstracts could be up to 5 pages long, and presented work-in-
progress, recently published work fitting the workshop topics, or position papers. All
submitted papers were peer-reviewed by three reviewers from the program committee,
and selected on the basis of these reviews. MIDAS 2018 received 11 submissions,
among which 8 papers were accepted (6 long regular papers, 1 short regular paper, and
1 extended abstract). In accordance with the reviewers’ scores and comments, the paper
entitled “A progressive resampling algorithm for finding very sparse investment
portfolios”, authored by Marko Hassinen and Antti Ukkonen, was selected as the best
paper of the workshop.

MIDAS 2018: The 3rd Workshop on MIning DAta for Financial ApplicationS 3
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A Multivariate and Multi-step Ahead
Machine Learning Approach

to Traditional and Cryptocurrencies
Volatility Forecasting

Jacopo De Stefani1(B) , Olivier Caelen2 , Dalila Hattab3 ,
Yann-Aël Le Borgne1 , and Gianluca Bontempi1

1 MLG, Departement d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe CP212, 1050 Brussels, Belgium

{jacopo.de.stefani,yleborgn,gianluca.bontempi}@ulb.ac.be
2 Worldline SA/NV R&D, Brussels, Belgium

olivier.caelen@worldline.com
3 Equens Worldline R&D, Lille, Seclin, France

dalila.hattab@equensworldline.com

Abstract. Multivariate time series forecasting involves the learning of
historical multivariate information in order to predict the future val-
ues of several quantities of interests, accounting for interdependencies
among them. In finance, several of this quantities of interests (stock
valuations, return, volatility) have been shown to be mutually influenc-
ing each other, making the prediction of such quantities a difficult task,
especially while dealing with an high number of variables and multiple
horizons in the future. Here we propose a machine learning based frame-
work, the DFML, based on the Dynamic Factor Model, to first perform
a dimensionality reduction and then perform a multiple step ahead fore-
casting of a reduced number of components. Finally, the components are
transformed again into an high dimensional space, providing the desired
forecast. Our results, comparing the DFML with several state of the art
techniques from different domanins (PLS, RNN, LSTM, DFM), on both
traditional stock markets and cryptocurrencies market and for different
families of volatility proxies show that the DFML outperforms the con-
current methods, especially for longer horizons. We conclude by explain-
ing how we wish to further improve the performances of the framework,
both in terms of accuracy and computational efficiency.

G. Bontempi acknowledges the support of the INNOVIRIS SecurIT project BruFence:
Scalable machine learning for automating defense system. J. De Stefani acknowledges
the support of the ULB-Worldline Collaboration Agreement. Computational resources
have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI),
funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11.

c© Springer Nature Switzerland AG 2019
C. Alzate et al. (Eds.): MIDAS 2018/PAP 2018, LNAI 11054, pp. 7–22, 2019.
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Keywords: Multivariate time series forecasting ·
Volatility forecasting · Multi-step ahead forecast ·
Dynamic factor models

1 Introduction

The problem of time series forecasting, in its simplest form, deals with the pre-
diction of a given quantity of interest in the future, given its historical values.
Moreover, one could be interested in forecasting the immediate next value in the
future (one-step-ahead forecasting) as well as being concerned with the estima-
tion of a sequence of future values (multi-step-ahead forecasting). In a similar
fashion, the problem might involve a single quantity (univariate forecasting), or
several quantities at once (multivariate forecasting), in order to exploit potential
interrelationships among them. In the context of finance, specific quantities of
interest are: the stock price of a given company over time, its returns or the
intensity of the fluctuations affecting the price (i.e. its volatility), among others.
Specifically, in the case of stock markets, the underlying trend of the market influ-
ences all the stocks that are currently traded. As shown in [18], stock prices of
firms acting on the same market often show similar patterns in the sequel of news
that are important for the entire market. Moreover, analyzing global volatility
transmission, Engle et al. [12] found evidence supporting volatility interdepen-
dence among the world’s major trading areas. For these reasons, while modeling
these time dependent quantities of interest, a multivariate model appears to be
a natural choice to incorporate interdependencies into the forecasting process.

Among all the quantities of interest, in the following, we will focus on the
problem of multivariate volatility forecasting. In this specific case, the quantity
of interest is a latent variable, which cannot be directly observed given the time
series, but only estimated, according to the granularity and the type of the avail-
able data, through different measures, named volatility proxies [27]. According
to the choice of the proxy, several approaches have been proposed to tackle this
multivariate problem. The largest body of the volatility forecasting literature
focus on multivariate extensions of the well known GARCH [2] on traditional
stock market data, for instance, citing some recently published work: [13] and [3].
For a thorough review of the different univariate and multivariate methods, we
refer the interested reader to the latter. Due to the steadily growth of the cryp-
tocurrencies market capitalization [11], coupled with the currencies’ volatility,
GARCH-like models [7], [32] have also been applied for non-traditional markets.
The main problem of these approaches is that traditional multivariate models
often suffers from the “curse of dimensionality”: as the number of dimensions
increase, the number of parameters grows superlinearly in the number of dimen-
sions, making the model estimation heavily computationally intensive, especially
in the case of multiple step ahead forecasts.

In order to profit from the richness of a multivariate model, while maintain-
ing a reasonable computational complexity, we propose to employ the DFML [4],
a multivariate, multistep-ahead machine learning forecasting framework involv-
ing a dimensionality compression process, based on the dynamic factor model
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(DFM) principle [14]. The choice of this generic time series forecasting frame-
work requires the usage of model-independent volatility proxies which will be
discussed in Sect. 3, requiring us to dismiss GARCH as a proxy of volatility, due
to his tight coupling between the proxy and the corresponding forecasting model
to use, as discussed in [8].

At the time of writing, we had been able to find either multivariate techniques
dealing with the forecasting of either cryptocurrencies prices [1,6] or univariate
techniques dealing with the forecasting of volatility either with a one-step ahead
[7,32] or multistep-ahead [10]. Nevertheless, we are not aware of any other work
tackling both the problems of multivariate and multi-step ahead cryptocurren-
cies volatility forecasting, specifically in the case of large dimensionality and a
reduced number of datapoints. Our technique will then be tested on two differ-
ent benchmarks: one concerning cryptocurrencies and a second one, concerning a
traditional regulated stock market (CAC40) being a de facto multivariate exten-
sion of [25].

The rest of the paper is structured as follows: Sect. 2 provides an oveview of
the Dynamic Factor Machine Learner approach. Section 3 introduces the different
tested multivariate models as well as the considered datasets and the formulation
of the relevant forecast quantities. Section 4 concludes the paper with a discussion
of the results and the future research directions.

2 Dynamic Factor Machine Learner

A Dynamic Factor Model (DFM) is a technique for multivariate forecasting
originating in the economic forecasting community [14]. The basic idea of DFM
is that a small number of unobserved series (or factors) can account for the
temporal behavior of a much larger number of variables. If we are able to obtain
accurate estimates of these factors, the forecasting endeavor can be made simpler
by using the estimated dynamic factors for forecasting instead of using all series.
In equations:

Yt+1 = WZt+1 + εt+1 (1)
Zt+1 = AtZt + · · · + At−m+1Zt−m+1 + ηt+1 (2)

where Yt is a multivariate time series vector at time t, Zt is the vector of
unobserved factors of size q (q � n), Ai are q × q coefficient matrices, W is the
matrix (n × q) of dynamic factor loadings and the vectors of disturbances terms
η are assumed to be uncorrelated. As shown in Eq. 2, in the original DFM, the
latent factors follow a VAR time series process. For a detailed review of DFM
models, the interested reader could refer to [28].

Here, we propose to employ a machine learning extension of the DFM (called
DFML - Dynamic Factor Machine Learner). The DFML, first proposed by
Bontempi et al. [4] and further discussed in [9], relies on dimensionality reduction
techniques to extract the factors. Then, the factors are forecast using a nonlinear
model. Finally, the forecasts of the factors are transformed back to the original
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values by inverting the dimensionality reduction process. The basic architecture
of the DFML is depicted in Fig. 1, along with the description of the different
variants. Concerning dimensionality reduction, both linear (PCA) and nonlin-
ear (autoencoder) techniques are employed in the DFML. Linear dimensionality
reduction by PCA transforms the n original time series Y[1], . . . , Y[n] into q
new variables Z[1], . . . , Z[q] (called principal components or factors) such that
the new variables are uncorrelated with each other and account for decreasing
portions of the variance of the original variables. The q principal components are
then expressed as weighted sums of the elements of Y with maximal variance,
where the weights are normalized and constrained to ensure orthogonality:

Z[p] =
n∑

j=1

wjpY[j], p = 1, . . . , q (3)

Given the multivariate time series matrix Y, Z = YW represents the projection
of the series onto the pth principal components and Ŷ = ZWT represent the
reconstruction Ŷ of the values of Y, based on the factors Z. On the other hand,
nonlinear dimensionality reduction is performed through the use of autoencoders.
Autoencoders are neural networks trained to learn identity mapping from inputs
to outputs [31], through a constrained architecture to enforce dimensionality
reduction. As such their input and output layer have the same number of neurons
n as the number of input time series but their hidden layers contain a reduced
number of neurons q. Autoencoders are composed of two stacked multi-layer
networks: an encoder :

Zt = fθ(Yt) (4)

that transforms inputs Yt into some latent (encoded) representation Zt, and a
decoder :

Ŷt = gθ′(Zt) (5)

that reconstructs an approximation Ŷt of the input Yt on the basis of the latent
feature Zt and where the mappings fθ and gθ′ are non-linear. The network is
usually trained using gradient descent techniques such as backpropagation, with
the objective of minimizing the mean-squared error between the input Yt and the
output (its reconstruction Ŷt) [31]. Concerning the forecasting part, the original
DFML paper [4] proposes to forecast each factor independently (given their
orthogonality) using a nonlinear model (lazy learning [5]) and a univariate multi-
step-ahead forecasting strategy. In addition to the basic forecaster, the paper
also proposes an optimized version (DFML′), performing a joint selection of the
hyperparameters (number of factors for the dimensionality reduction, predictor
and multi-step-ahead strategy for the forecaster) using out-of-sample assessment.
Although we consider lazy methods for the forecaster, the modular architecture
of this framework easily allows the replacement of the aforementioned technique
with alternative supervised machine learning approaches (e.g. SVM, RNN).
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Y1
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Fig. 1. Schema of the DFML architecture with a summary of the different components
as implemented in the different proposed methods.

3 Methodology

3.1 Multivariate Forecasting Methods

Multiple Univariate Techniques - {Naive, UNI}: In the case of a multivariate
time series Y, univariate approaches are still of interest since the multivariate
forecasting task can be decomposed in a number of single-output multi-input
tasks (or equivalently in a set of NARX tasks with exogenous variables)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Yt+1[1] = f1(Yt[1], . . . , Yt−m+1[1], . . . ,
Yt[n], . . . , Yt−m+1[n]) + wt[1]

...
Yt+1[n] = fn(Yt[1], . . . , Yt−m+1[1], . . . ,

Yt[n], . . . , Yt−m+1[n]) + wt[n]

(6)

In this case the training set is used to learn the n mapping functions fi,
i = 1, . . . , n, with wt[i] being uncorrelated disturbances. For large n the prob-
lem of large input dimensionality can be addressed by adopting a feature selec-
tion technique, selecting a reduced number q of most correlated features For
these univariate techniques, we will also consider a naive method in which
∀i ∈ {1, . . . , n}, fi(t) = Yt−1[i], i.e. for every series, the forecast for the following
H steps is given by the last available value. These are the baseline methods
against which we will compare the performances of our forecaster.

Partial Least Squares - PLS: Partial Least Squares [15] allows the joint fore-
casting of the H steps ahead of the multivariate time series on the basis of the
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lagged vectors Yt, . . . ,Yt−m. This is a multi-input multi-output regression task
where the number of inputs amounts to nm and the number of outputs to Hn
respectively, with n being the number of variables, m the embedding order of the
model and H being the forecasting horizon. The benefit of PLS is that it allows
at the same time a dimensionality reduction of the inputs and a joint prediction
of the outputs, taking then into consideration the dependency between the future
steps. An example of application of PLS in financial time series forecasting can
be found in [22].

Recurrent Neural Networks - {RNN, LSTM}: Recurrent Neural networks (RNN)
form a class of predictive models based on neural networks, in which recurrent
connections to the network inputs allow to model dynamic temporal depen-
dencies. In their simple form (also known as simple RNN) [17,23], the recurrent
connections come from a hidden state Ht, which is also used for predicting future
values Yt:

Ht = σ(WHY Yt−1 + WHHHt−1 + BH), (7)
Yt = WY HHt + BY (8)

The matrices WHY , WHH , WY H , BH and BY are the parameters (weights and
biases) of the network, typically learned by gradient descent algorithms such as
backpropagation through time [17]. A sigmoid activation function σ allows the
modeling of nonlinear dependencies, while the recurrent connections allow the
modeling of long-term temporal dependencies. Research on RNNs has recently
been boosted by the advent of General Programming Graphic Processing Units
(GPGPU), and improved design of the memory cell (Long-Short Term Memory
cells [20]). These have allowed much more efficient RNN implementations, and
effective training over multiple layers (deep RNNs). RNNs architectures have
reached state-of-the-art performances for volatility either as part of an LSTM-
GARCH hybrid model [21,33] or as standalone model [26].

3.2 Datasets Description

CAC40: The available data consists of 1645 data points of the 40 time series
composing the french stock market index CAC40 from 02/01/2012 to 08/06/2018
(approximately 6 years and 5 months) in OHLC (Opening, High, Low, Closing)
format.

Cryptocurrencies: The available data comes from the Kaggle dataset “Every
Cryptocurrency Daily Market Price”1 constituted of 785,024 observation of 1644
different cryptotokens from 28/04/2013 to 06/06/2018. However the number of
available datapoints per cryptotoken is inversely proportional to the lifespan of
the token itself. In other words, the further we go into the past, the fewer values
we have for our analysis, as depicted in Fig. 2. For these reasons, we restricted
our analysis to the period from 28/01/2017 to 06/06/2018 for which we have
complete OHLC data for 291 tokens.
1 https://www.kaggle.com/jessevent/all-crypto-currencies.

https://www.kaggle.com/jessevent/all-crypto-currencies
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Fig. 2. Number of available datapoints for the cryptocurrencies dataset as a function
of time

3.3 Volatility Proxies

The OHLC available data is composed of several quantities of interest, each of
them on a daily time scale: P

(o)
t , P

(c)
t , P

(h)
t , P

(l)
t , respectively the stock prices

at the opening, closing of the trading day and the maximum and minimum
value for each trading day. In the absence of detailed information concerning the
price movements within a given trading days, stock volatility becomes directly
unobservable [30]. To cope with such problem, several different measures (also
called proxies) have been proposed in the econometrics literature [16,19,24,27]
to capture this information. However, there is no consensus in the scientific
literature upon what volatility proxy should be employed for a given purpose.
Nevertheless, for an empirical analysis of the use of volatility proxies in the case
of univariate forecasting, the interested reader could find more details in [8].

Volatility as Variance. The first family of proxies corresponds to the natural
definition of volatility [27], that is, a rolling standard deviation of a given stock’s
continuously compounded returns over a past time window of size n:

σSD,w
t =

√√√√ 1
w − 1

w−1∑

i=0

(rt−i − r̄w)2 (9)
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where

rt = ln

(
P

(c)
t

P
(c)
t−1

)
(10)

represents the daily continuously compounded return for day t computed from
the closing prices P

(c)
t and r̄w represents the returns’ average over the period

{t, · · · , t − w}. In this formulation, w represents the degree of smoothing that
is applied to the original time series. We will consider here w ∈ {5, 10, 21},
representing respectively one week, two weeks and one month of trading.

Volatility as a Proxy of the Coarse Grained Intraday Information. The second
family of proxies that we will consider is the σi

t one, analytically derived by
[16] by incorporating supplementary information (i.e. opening, maximum and
minimum price for a given trading day) and trying to optimize the quality of
the estimation. Among all the defined proxies, we will focus on:

σ0
t =

[
ln

(
P

(c)
t+1

P
(c)
t

)]2

= r2t (11)

u = ln

(
P

(h)
t

P
(o)
t

)
d = ln

(
P

(l)
t

P
(o)
t

)
c = ln

(
P

(c)
t

P
(o)
t

)
(12)

where u is the normalized high price, d is the normalized low price and c is the
normalized closing price.

σ4
t = 0.511(u − d)2 − 0.019[c(u + d) − 2ud] − 0.383c2 (13)

σ6
t =

a

f
· log

(
P

(o)
t+1

P
(c)
t

)2

︸ ︷︷ ︸
Nightly volatility

+
1 − a

1 − f
· σ̂4(t)

︸ ︷︷ ︸
Intraday volatility

(14)

The value of f ∈ [0, 1] represents the fraction of the trading day in which
the market is closed. It is by definition bounded in the interval [0, 1], In the case
of CAC40, we have that f > 1 − f , since trading is only performed of roughly
one third of the day. Here, a is a weighting parameter, whose optimal value,
according to [16] is shown to be 0.17, regardless of the value of f .

After a preprocessing phase of the datasets, involving removal of missing
values and proxy calculation for each time series, the data is restructured in a
multivariate time series matrix form Y having N (number of observations) rows
and n (number of variables/time series) columns. For each proxy, this matrix is
such that each row Yt represent a n-dimensional vector containing the value of
the given proxy for of the n variables at the time t, and the scalar value Yt[j]
represent the value of jth (j = 1, . . . , n) variable at time t.
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4 Experimental Results

The experimental study assessed and compared the methods previously discussed
in the article. The methods are listed below together with the software used for
the experiments. Note that, for the sake of assessment, we set the lag m = 2 and
the maximum number of latent factors to q = 3 for all methods, unless specified
otherwise.

1. NAIVE: univariate baseline method using the last observed value for each
time series as prediction for the following H steps.

2. UNI: univariate multi-step-ahead Direct forecasting of each individual series
(Eq. 6) with a feature selection process based on correlation.

3. PLS: partial-least-squares forecasting (Sect. 3.1) implemented by the function
mvr of the R package pls. The optimal values for the size of the input space
and the number of principal components q is determined through an out-of-
sample criterion.

4. RNN: recurrent neural network implemented by the keras predict function
of kerasR2, the R keras interface to the keras Deep Learning library3 for
Theano. The network is a fully-connected RNN with 10 hidden units. Since
an automated setting of the number of units would not have been feasible due
to an excessive computational time, this number has been set on the basis of
trial and error over a small number of synthetic series.

5. LSTM: As RNN, the model is a fully connected RNN, with 10 hidden units
implemented using kerasR. It differs from RNN as it employs LSTM cells
[20] in the hidden layer, instead of regular neurons.

6. DFM: linear Dynamic Factor Model where PCA is used for factor estimation,
the number of factors is set to q and the forecasting of the factors is carried
out with a VAR method implemented by the estBlackBox function of the R
package dse. The batch PCA is computed using the base R eigen function.

7. DFMLPCA: Dynamic Factor Machine Learner where PCA is used for factor
estimation, the number of factors is set to q and the forecasting of each factors
is carried out in a univariate manner using a local learning predictor (lazy
learning [5]) and a multi-step-ahead Direct strategy.

8. DFMLA: it differs from DFMLPCA because of the use of an autoencoder
instead of PCA in the process of factor estimation.

9. DFML’PCA: it differs from DFMLPCA because of the automatic selection
strategy (described in [4]): the number of factors (in the range [1, q]) and the
multi-step-ahead strategy (among Direct, Iterated and MIMO) and the lag
m are selected by an out-of-sample strategy carried out on the training set.

4.1 Results Discussion

For each multivariate dataset we performed time series cross-validation following
a rolling origin strategy [29]. The size of the training set is 2N/3 and a sequence
of 50 different test sets of length H is considered.
2 https://github.com/statsmaths/kerasR.
3 https://keras.io.

https://github.com/statsmaths/kerasR
https://keras.io
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For each test set, all methods are assessed in terms of the average Normalized
Mean Squared Error:

NMSE =

∑n
j=1 NMSE[j]

n

where

NMSE[j] =
∑H

h=1(YT+h[j] − ŶT+h[j])2

V [j]H

V [j] is the variance of the series Y [j] and T + 1 is the starting index of the
continuation set.

While dealing with high dimensionality (n = 291) coupled with a relatively
low number of observations (N = 495), as in the case of the Cryptocurrency
dataset (Table 1), using the σi

t family of proxies, the DFML, even without
hyperparameter optimisation, clearly outperforms all the concurrent methods.
It should also be noted that some methods tested in the original DFML paper
[4] (i.e. VAR, DSE, SSA) could not be tested due to numerical problems related
to the limited number of available observations. The performances of DFML are
mitigated while using proxies coming from the σSD,w

t family, where the perfor-
mance of the Naive method improves, even for forecasting horizons up to 20 steps
ahead, as the smoothing provided by the window size parameter w increases. In
both the cases, a linear dimensionality reduction technique with no optimiza-
tion (DFM, DFMLPCA) is shown to improve the performances of the forecaster,
compared to nonlinear (DFMLA) and optimized (DFML’PCA) ones.

A similar ranking among the methods is observed in the case of the CAC40
dataset (Table 2), characterized by a lower dimensionality (n = 40) but an higher
number of points (N = 1641). Here we can observe a generally higher average
normalized NMSE, indicating a higher complexity of the forecasting problem.
For the σi

t family, PLS and DFM appears as competitive alternatives of the
DFML, especially for longer horizons (h > 15). As in the previous case, for the
σSD,w

t family of proxies, the performances of the DFML family are affected by the
value of the smoothing factor w, where, the higher the smoothing factor is, the
less effective the DFML becomes for shorter horizons, with the Naive method
becoming the best one, while still maintaining good forecasting accuracy for
longer horizons.

In addition to forecasting accuracy, we also analyzed the total computational
time required to produce a forecast. The total computational time is obtained
by summing up the time required to train the considered model and the time
needed to generate a forecast. Figure 3a shows that, for low dimensionalities
(n = 40) the total computational time of the different techniques is comparable,
and independent of the forecasting horizon, except for the optimized DFML’PCA,
where the comparison of different forecasting strategies require a computational
time proportional to the length of the forecasting horizon. On the other hand, for
higher dimensionalities (n = 291), the computational time required to train mul-
tiple univariate models (UNI), neural based models (RNN and LSTM) and PLS
increases considerably due to the increase of both dimensionality and forecasting
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Fig. 3. Total computational time (model training + forecast) of the tested methods on
the CAC40 - σ4 (a) (n = 40) and cryptocurrencies - σ4 (b) (n = 291) dataset-proxy
combination.
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Table 1. Cryptocurrencies - volatility time series: NMSE (averaged over all the contin-
uation sets) of the different forecasting methods. The bold notation is used to highlight
all techniques which are not significantly worse (pv = 0.05) than the one with the lowest
NMSE score.

Dataset H Naive UNI PLS DFM DFMLA DFMLPCA DFML′
PCA LSTM RNN

2 0.988 0.660 0.630 0.595 0.631 0.594 0.596 0.630 0.670

5 0.982 0.646 0.613 0.579 0.613 0.576 0.588 0.605 0.656

σ0
t 10 1.042 0.608 0.581 0.543 0.575 0.539 0.538 0.570 0.615

15 1.172 0.602 0.584 0.540 0.569 0.537 0.547 0.563 0.599

20 1.247 0.579 0.555 0.515 0.544 0.512 0.514 0.540 0.593

50 1.024 0.517 0.503 0.451 0.483 0.451 0.466 0.479 0.521

2 0.831 0.607 0.602 0.540 0.611 0.528 0.543 0.585 0.647

5 0.816 0.598 0.585 0.521 0.580 0.510 0.522 0.559 0.638

σ4
t 10 0.945 0.582 0.579 0.505 0.564 0.491 0.494 0.542 0.590

15 0.924 0.582 0.592 0.508 0.565 0.495 0.498 0.551 0.580

20 1.061 0.578 0.584 0.501 0.554 0.489 10.969 0.539 0.575

50 0.950 0.553 0.563 0.474 0.524 0.472 0.476 0.510 0.543

2 0.946 0.587 0.588 0.528 0.580 0.512 0.527 0.547 0.613

5 1.103 0.561 0.578 0.507 0.551 0.479 0.480 0.531 0.587

σ6
t 10 1.101 0.583 0.590 0.516 0.579 0.499 0.500 0.553 0.591

15 1.041 0.592 0.616 0.525 0.574 0.505 0.509 0.554 0.591

20 1.000 0.589 0.592 0.522 0.568 0.507 0.509 0.551 0.586

50 1.185 0.557 0.582 0.481 0.530 0.481 0.474 0.514 0.560

2 0.269 0.351 0.648 0.499 0.662 0.500 0.524 0.647 0.739

5 0.511 0.533 0.674 0.519 0.668 0.514 0.534 0.647 0.717

σSD,5
t 10 0.719 0.612 0.669 0.523 0.647 0.516 0.534 0.635 0.790

15 0.818 0.627 0.662 0.527 0.638 0.520 0.523 0.616 0.794

20 0.852 0.636 0.653 0.517 0.629 0.514 0.526 0.614 0.771

50 0.974 0.611 0.636 0.484 0.577 0.497 0.481 0.558 0.748

2 0.113 0.258 0.754 0.491 0.756 0.494 0.534 0.722 0.796

5 0.238 0.415 0.769 0.501 0.751 0.504 0.541 0.728 0.838

σSD,10
t 10 0.466 0.598 0.781 0.513 0.746 0.507 0.543 0.719 1.027

15 0.606 0.668 0.780 0.526 0.737 0.514 0.558 0.713 0.898

20 0.668 0.706 0.777 0.523 0.741 0.522 0.574 0.701 0.911

50 0.891 0.726 0.778 0.514 0.683 0.547 0.533 0.657 0.907

2 0.052 0.203 0.989 0.493 0.992 0.493 0.570 0.899 1.034

5 0.108 0.316 0.986 0.501 0.977 0.504 0.571 0.864 1.144

σSD,21
t 10 0.199 0.522 0.987 0.513 0.958 0.514 0.573 0.891 1.065

15 0.295 0.658 0.988 0.523 0.963 0.528 0.572 0.848 1.340

20 0.397 0.748 0.990 0.535 0.874 0.544 0.571 0.863 1.117

50 0.775 0.833 1.014 0.586 0.882 0.649 0.612 0.808 1.252
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Table 2. CAC40 - volatility time series: NMSE (averaged over all the continuation
sets) of the different forecasting methods. The bold notation is used to highlight all
techniques which are not significantly worse (pv = 0.05) than the one with the lowest
NMSE score.

Dataset H Naive UNI PLS DFM DFMLA DFMLPCA DFML′
PCA LSTM RNN

2 1.332 1.047 0.972 0.969 0.987 0.962 1.010 1.018 1.006

5 2.177 1.916 1.826 1.857 1.872 1.838 1.822 1.849 1.865

σ0
t 10 1.438 1.246 1.157 1.173 1.184 1.164 1.155 1.164 1.184

15 2.499 1.304 1.220 1.220 1.227 1.209 1.222 1.219 1.242

20 1.566 1.227 1.155 1.153 1.163 1.174 1.146 1.160 1.160

50 2.026 1.221 1.136 1.135 1.144 1.134 1.120 1.160 1.164

2 0.585 0.504 0.463 0.433 0.521 0.434 0.450 0.564 0.496

5 2.295 1.347 1.318 1.292 1.356 1.268 1.275 1.328 1.346

σ4
t 10 1.047 1.003 0.948 0.936 0.991 0.911 0.946 1.014 1.018

15 1.372 1.132 1.078 1.067 1.118 1.048 1.071 1.126 1.120

20 1.272 1.023 0.948 0.926 0.977 0.908 0.933 1.010 1.007

50 1.111 1.036 0.936 0.942 0.987 0.919 0.981 1.052 1.042

2 1.780 0.854 0.805 0.776 0.859 0.767 0.758 0.852 0.822

5 1.859 1.800 1.750 1.741 1.809 1.747 1.715 1.781 1.770

σ6
t 10 1.264 1.171 1.106 1.102 1.154 1.083 1.118 1.149 1.139

15 1.222 1.074 1.001 0.999 1.049 1.001 1.011 1.093 1.046

20 1.332 1.185 1.103 1.107 1.156 1.108 1.116 1.172 1.170

50 1.280 1.188 1.112 1.098 1.139 1.089 1.126 1.206 1.177

2 0.276 0.649 0.834 0.783 0.877 0.787 0.769 0.823 0.864

5 1.122 1.275 1.304 1.289 1.355 1.242 1.215 1.329 1.352

σSD,5
t 10 1.329 1.199 1.163 1.139 1.167 1.095 1.162 1.131 1.201

15 1.408 1.149 1.095 1.068 1.113 1.064 1.066 1.111 1.134

20 1.576 1.215 1.154 1.133 1.166 1.141 1.150 1.203 1.182

50 2.584 1.292 1.316 1.444 1.184 1.243 1.192 1.229 1.273

2 0.453 0.667 0.901 0.805 0.964 0.805 0.788 0.827 0.881

5 0.698 0.886 1.018 0.932 1.073 0.934 0.927 0.910 1.009

σSD,10
t 10 1.133 1.010 1.044 0.970 1.073 1.005 1.005 1.000 1.104

15 1.495 1.065 1.140 1.292 1.271 1.092 1.013 1.066 1.032

20 1.642 1.141 1.181 1.340 1.223 1.145 1.078 1.108 1.178

50 1.916 1.258 1.233 1.256 1.158 1.144 1.171 1.310 1.338

2 0.033 0.306 0.747 0.509 0.772 0.510 0.561 0.776 0.725

5 0.123 0.372 0.732 0.530 0.736 0.595 0.566 0.867 0.716

σSD,21
t 10 0.346 0.520 0.808 0.660 0.853 0.682 0.673 0.992 0.932

15 0.608 0.680 0.862 0.771 0.893 0.795 12.315 0.970 0.868

20 0.827 0.827 0.923 0.905 0.890 0.840 0.777 1.010 1.256

50 1.603 1.259 1.210 1.357 1.109 1.076 1.311 1.282 1.585
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horizons, while DFML models, thanks to the dimensionality reduction compo-
nent, maintain a reduced computational time regardless of the forecasting hori-
zon.

5 Conclusion and Future Work

The empirical analysis shows that DFML is able to produce accurate volatility
forecasts, especially in the case of high-dimensional noisy series (i.e. Cryptocur-
rencies dataset) with non-smoothed volatility proxies σi, by summarizing well
the intrinsic market correlations in a reduced number of factors. However, the
presence of a smoothing factor (as in the σSD,w proxies family) is shown to
worsen the performances of the DFML methods. Moreover, we have shown that,
thanks to the dimensionality reduction component, DFML methods can produce
multi-step ahead forecasts with the same accuracy as concurrent methods with
a great reduction in terms of computational cost. In order to further improve
this framework we foresee different possible extensions. On one hand we believe
that the use of additional volatility proxies, together with an automated vari-
able selection process could further improve the forecasting performances. On
the other hand, the use of incremental dimensionality reduction techniques could
further improve the computational efficiency of the method at the expense of a
small reduction in forecasting accuracy.
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Abstract. Interest rate models are widely used for simulations of inter-
est rate movements and pricing of interest rate derivatives. We focus on
the Hull-White model, for which we develop a technique for calibrating
the speed of mean reversion. We examine the theoretical time-dependent
version of mean reversion function and propose a neural network app-
roach to perform the calibration based solely on historical interest rate
data. The experiments indicate the suitability of depth-wise convolution
and provide evidence for the advantages of neural network approach
over existing methodologies. The proposed models produce mean rever-
sion comparable to rolling-window linear regression’s results, allowing for
greater flexibility while being less sensitive to market turbulence.

Keywords: Neural networks · Time-dependent mean-reversion ·
Calibration · Interest rate models · Hull-White model

1 Introduction

Stochastic models for the evolution of interest rates are a key component of
financial risk management and the pricing of interest rate derivatives. The value
of these products is enormous, with the outstanding notional amount currently
being in the order of hundreds of trillions of US dollars [1]. One of the most
widely used interest rate models is the Hull-White model, introduced in [2].

As with every computational model, the performance of the Hull-White
model is significantly affected by its parameters and an improper calibration
may lead to predictive inconsistencies. Specifically, the speed of mean-reversion
can influence notably its results; a small value may produce more trending sim-
ulation paths, while a larger value can result in steady evolution of the interest
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rate. If the calibrated value does not reflect the actual market conditions, this
may result in unrealistic estimates of risk exposure.

Neural networks have been proposed for the calibration of the speed of mean-
reversion and volatility [3,4], as they are able to learn more complicated struc-
tures and associations in comparison to linear models. The existence of such
structures is apparent, considering the relations described by the term structure
of interest rate. Using neural networks to estimate variables for explicit com-
putational models enables the experimentation with more complex and larger
datasets, which can ultimately improve their performance.

The inability of simple models to exploit complex associations is perceived as
an opportunity to expand the current body of research. We contribute a novel
calibration method, with neural models that handle multiple historical input
points of several parallel time series. Given the wide use of interest rate models
and the data limitations, a future extension of neural models to exploit common
features from several datasets is deemed crucial.

The rest of this paper is organized as follows. In Sect. 2 we summarize the
basic features of the underlying models and methodologies that will be used.
Additionally we outline several approaches related to mean-reversion calibration.
In Sect. 3 we study the Hull-White model. In Sect. 4 we discuss the proposed
neural network approach and the evaluation. Finally, in Sect. 5 we present our
results and in Sect. 6 we summarize our findings.

2 Background and Related Work

2.1 Hull-White Interest Rate Model

The model we consider, describes interest rate movements driven by only a sin-
gle source of risk, one source of uncertainty, hence it is one-factor model. This
translates in mathematical terms having only one factor driven by a stochas-
tic process. Apart from the stochastic term, the models are defined under the
assumption that the future interest rate is a function of the current rates and
that their movement is mean reverting. The first model to introduce the mean
reverting behaviour of interest rate was proposed by Vasicek [5]. The Hull-White
model is considered its extension and its SDE reads:

dr(t) = (θ(t) − αr(t))dt + σdW (t) (1)

where θ stands for the long-term mean, α the mean reversion, σ the volatility
parameter and W the stochastic factor, a Wiener process. Calibrating the model
refers to the process of determining the parameters α and σ based on historical
data. θ(t) is generally selected so that the model fits the initial term structure
using the instantaneous forward rate. However, its calculation involves both the
volatility and mean-reversion, increasing the complexity when both are time-
dependent functions.

Studying the Eq. (1) we observe the direct dependence on previous instances
of interest rate which become even more obvious if we consider that θ indirectly
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relies on the term structure of interest rate as well. Clearly this model incor-
porates both temporal patterns, expressed as temporal dependencies and the
market’s current expectations, while the mean reversion term suggests a cyclical
behaviour, also observed in many other financial indicators.

The concept of mean reversion suggests that the interest rates cannot increase
indefinitely, like stocks, but they tend to move around a mean [6], as they are
limited by economic and political factors. There is more than one definition of
mean reversion, varying by model and scope. Mean reversion can be defined by
historical floors and peaks or by the autocorrelation of the average return of an
asset [7]. In the Vasicek model family, it is defined against the long term mean
value towards which the rate is moving with a certain speed.

2.2 Neural Networks

Neural networks are devised as a computational equivalent of the human brain;
Every neuron is a computation node that applies a non-linear function f (e.g.
sigmoid), which applies a mathematical operation on the input and the con-
necting weights. These nodes, like in the human brain, are interconnected. They
form layers that move information forward from one layer of neurons to the next.
The neurons of each layer are not connected, allowing communication only with
previous and succeeding layers.

Neural networks have evolved both technically and theoretically. The latest
theories that are studied propose that real life data forms lower-dimensional man-
ifolds in its embedding space [8]. For example, a set of images of a hand-written
letters that include size, rotation and other transformations can be mapped to
a lower dimensional space. In this manifold, the distinct variations of the same
letter are topologically close. In this context, neural networks are able to learn
such manifolds from the given high dimensional datasets.

This property is largely exploited in computer vision, where transformation
invariance is essential for most applications. Specific modules that are formed in
this weight-learning schema, such as convolutional layers, have scaled up the per-
formance of neural networks in problems such as tracking or image recognition.
It is not unusual that handcrafted models are constantly updated or replaced by
neural networks.

These qualities are also applied in financial time-series for modelling and
prediction tasks [9]. Models with convolutional architectures extract tempo-
ral patterns as shapes, while models with recurrent architectures learn corre-
lations through time points. Recurrent neural networks, extend the feed-forward
paradigm allowing information to move both ways. The output of a layer is con-
nected back to its input with the appropriate trainable weights, while feeding
the results to the next layer as well.

2.3 Related Work

Currently, practitioners are calibrating the Hull-White model with a variety
of methods: generic global optimizers [10], Jamshidian decomposition and swap
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market model approximation [11], but arguably the most popular is linear regres-
sion [12]. The simplicity of the model, together with the flexibility that can be
achieved by tweaking the length of the input window, make linear regression
able to approximate both the market reality and one’s expectations. The terms
of the Hull-White model are reproduced by a linear model, given t > s:

r(t) = α̂r(s) + θ̂ + ε(t) (2)

where r(t) and r(s) are the interest for the respective time-points t, s, θ̂, α̂ the
historically implied long term-mean and speed of mean-reversion, and ε the mea-
sured error.

The trained variables are translated back to the Hull-White parameters:

α̂ = e−α(t−s) ⇒ α =
− ln α̂

t − s

θ̂ =
θ

α

(
1 − e−α(t−s)

)
⇒ θ =

αθ̂(
1 − e−α(t−s)

)

sdε = σ

√
1 − e−2α(t−s)

2α
⇒ σ = sdε

√
−2 ln α̂

(1 − α̂2)(t − s)

(3)

Although machine learning and neural networks have been widely used in
finance for stock prediction [13], volatility modelling [14], currency exchange
rate movement [15] and many more, only a few attempts have been made to
address the calibration problem, and specifically, the estimation of theoretically
consistent speed of mean-reversion.

Neural networks are utilized to calibrate the time-dependent mean-reversion
of the Ornstein-Uhlenbeck process used for temperature derivatives in [16]. The
neural network, as the approximator γ, is trained to predict the temperature of
the next day. In this way, it is incorporating the dynamics of the process without
explicit parameterization. Then by calculating the derivative with respect to the
input of the network, they yield the value of mean-reversion. Starting from a
simplified discretized version of Ornstein-Uhlenbeck process for dt = 1, using
the paper’s notation:

T̂ (t + 1) = αT̂ (t) + e(t)

T̂ (t + 1) = γ(T̂ (t)) + e(t)

where T̂ denotes the pre-processed temperature data at time t, α the simplified
form of speed of mean reversion, σ the volatility and e(t) the differential of
the stochastic term1. Then computing the derivative, we calculate the time-
dependent mean reversion value:

α(t) =
dT̂ (t + 1)

dT̂ (t)
= dγ/dT̂ (4)

1 Find the full expressions and derivation in [16].
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3 Mean Reversion in the Hull-White Model

We have seen that mean reversion calculation can be approached in different ways
depending on the underlying model. In the Vasicek model, the mean reversion
parameter is assumed to be constant for certain period of time. This assumption
is lifted in more generic versions, accepting it as a function of time. Under Hull-
White, when calibrating with linear regression, α is re-calculated periodically on
historical data as the day-to-day changes are not significant for sufficiently long
historical data. This approximation results in values usually within the interval
(0.01–0.1) [11]. It is common among practitioners to set alpha by hand, based
on their experience and current view of the market.

Consider the generic Hull-White formula:

dr(t) = (θ(t) − αr(t))dt + σdW (t) (5)

Applying Ito’s lemma for some s < t yields:

r(t) = r(s)e−α(t−s) +
θ

α

(
1 − e−α(t−s)

)
+ σe−α(t−s)

∫ t

s

eα(t−u)dW (u) (6)

The discretized form of Eq. (5) for dt = δt is:

r(t + δt) ≈ θ(t)δt + r(t)(1 − αδt) + σε(t) (7)

where ε(t) denotes a value sampled from a Gaussian distribution with mean 0
and variance δt. To avoid notation abuse, this discretized approximation will be
written as an equation in the following sections. Hull defined the expression for
θ with constant α and σ as:

θ(t) = Ft(0, t) + αf(0, t) +
σ2

α

(
1 − e−αt)

)
(8)

where Ft(0, t) is the derivative with respect to time t of f(0, t), which denotes
the instantaneous forward rate at maturity t as seen at time zero. Similar to [6],
in our dataset the last term of the expression is fairly small and can be ignored.

4 Methodology

Our main approach for mean reversion calculation, is based on the assumption
that historical rates can explain the future movement incorporating the sense of
long-term or period mean value. The evolution of the yield curve is exploited in
order to learn latent temporal patterns. This is achieved by training a generic
function approximator that learns to predict the next-day interest rate. Starting
from Hull-White model (Eq. (1)), by discretizing similar to (7) yields:

dr(t) = (θ(t) − αr(t))dt + σdW (t)
r(t + δt) = θ(t)δt + r(t)(1 − αδt) + σε(t)

(9)
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Let δt = 1 and κ = (1 − α)

r(t + 1) = θ(t) + κr(t) + σε(t) (10)

We train a neural network with input r as the function approximator to learn
the generalized version of (10) expressed as:

r(t + 1) = γ(r(t)) + e(t) (11)

where e(t) denotes the measured error. Then by calculating the derivative with
respect to the input of the neural network, we can compute the values of the
time function κ(t) as:

κ(t) =
dr(t + 1)

dr(t)
=

dγ

dr
(12)

Neural networks are constructed to be fully differentiable functions and their
derivation is a well defined procedure, which can be found in [17].

4.1 Can Theta Be Replaced?

Notice that in Eq. (11), θ is not an input of γ, under the assumption that since
the long term mean should be based on the current and historical interest rates,
only them are needed as input to the network, which will infer the implied
relations. In terms of [16], by not including θ, the equivalent preprocessing of
the data is omitted. However, under the Hull-White model long term mean relies
on the forward rate which describes more complex relation between r(t+1) and
r(t) that is not modeled explicitly in the network. Removing this information
from the neural model makes the approximation to have a looser connection
to the assumptions of the Hull-White model; in principle, it breaks the mean
reverting character. To address that, we will describe two different approaches
along with Eqs. (10) and (11). The first incorporates θ, calculated on top of linear
regression-calibrated alpha, resulting to:

r̂(t + 1) = r(t + 1) − θLR(t) (13)

relying on a different model, such linear regression, introduces limitations and
specific assumptions. This approach is not explored in the scope of this work.

As previously mentioned, the prevailing feature in the calculation of a long
term mean is the forward rate. By keeping this information, the theoretical
dependence of the movement of interest rate to the market expectations is par-
tially embodied in the training data. This is realized by subtracting the first
term of θ, Ft , to offer an approximation to long term mean value:

r̂(t + 1) = r(t + 1) − Ft (14)

Using Eqs. (13) and (14) the neural network is used to learn the evolution of r̂:

r̂(t + 1) = γ(r(t)) + e(t) (15)
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4.2 Mapping

In Eq. (3) mappings from linear regression parameters to Hull-White were
provided. Similarly, the calculated values from neural networks need to be
transformed to be usable within the interest rate model. From Eq. (12) let
dr(t+1)

dr(t) = dγ(r)
dr = Y (t). Beginning with the simple discrete form of the Hull-

White model (Eq. (7)) as expressed in Eq. (12) we get:

Y (t) = κ(t)
Y (t) = 1 − α(t)
α(t) = 1 − Y (t)

(16)

The mapping in Eq. (16), is appropriate for networks accepting input only
the rate of the previous time-step δt = 1. To be consistent with the assumption
that multiple historical input points can battle high mean-reversion volatility,
the mapping used should be suitable for functions regardless the distance of the
sampled points. We move back to constant α and Y for simplicity, and starting
with the general continuous expression of Hull-White model, we insert the simple
form of Hull-White model in our derivation:

Y =
d

(
r(t)e−αδt + θ

α

(
1 − e−αδt

)
+ σe−α(t−s)

∫ t

s
eα(t−u)dW (u)

)

dr(t)

Y = e−αδt

α =
−ln(Y )

δt

(17)

The expression for α is the same as the one used for linear regression. The
output of the networks define a partial solution for each historical time-step
that is provided, i.e. the partial derivative with respect to each input, that is
mapped to the time-dependent alpha function. In that sense, the output of the
neural network is treated as the result of the procedure Y (t):

α(t) =
−ln(Y (t))

δt
(18)

4.3 Evaluation and Datasets

Three interest rate yield curve datasets were used for the experiments EUR
(Fig. 2), USD (Fig. 3) and GBP (Fig. 1); The EUR dataset is comprised by 3223
data points from July 19, 2005 until November 22, 2017 with 22 maturities
ranging from 1–12, 18 months, plus 2–11 years, while USD dataset starts from
January 14 2002 until June 6 2011, 2446 data points with 16 maturities 1–10 and
12, 15, 20, 25, 30 and 40 years. Our datasets are fairly limited as the recorded
values are daily, and in order to include all the existing rate regimes, we restricted
the available maturities to 22 and 16. Our GBP data consists of 891 time-points
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Fig. 1. Bootstrapped GBP Libor rates per maturity

from January 2, 2013 until June 1, 2016 with 44 maturities ranging from 0, 1, 7,
14 days, 1 to 24 months, 2 to 10 years and 12, 15, 20, 25, 30, 40, 50 years. The
curve has been bootstrapped on top of OIS and only FRA and swap rates have
been used.

Fig. 2. European swap rate per maturity

In order to approximate the time-dependent speed of mean-reversion sim-
ilarly to the linear regression method, we calculate the Pearson correlation
∈ [−1, 1] in a rolling window manner. This way we avoid negative alpha val-
ues which cannot be used in Hull-White model. Being limited by the extent of
the datasets, the window size varies from 300, 400 to 500 time points.

5 Results

Our experiments were conducted with convolution and recurrent (LSTM) based
neural networks for input length of 5, 15 and 30 data points. Throughout
our tests, CNNs achieved better test-set accuracy than LSTMs in all datasets,
Table 1, which is not the main interest of this work, but affects the calibration
procedure overall and can play a role in deciding which is the most efficient
network.



Calibrating the Mean-Reversion Parameter in the Hull-White Model 31

Fig. 3. USD Libor per maturity

Table 1. Average prediction error

CNN 5 15 30 LSTM 5 15 30

EUR 1.61E−04 1.08E−04 8.18E−05 3.53E−04 3.06E−04 2.96E−04

USD 1.02E−04 5.07E−05 4.92E−05 2.83E−04 2.40E−04 2.35E−04

GBP 2.10E−05 2.01E−05 2.01E−05 2.17E−05 2.24E−05 2.20E−05

The CNN approach (Fig. 5) seem to be in relative accordance with LR trends,
following some of the patterns but not always agree on the levels of mean rever-
sion. While there are mismatches and lags, we can spot several similarities in
the movement. The evolution of alpha from CNN-5 suggests that a shorter
history length results to less flexible model, at least for CNNs. Here we have
three cases, with 5, 15 and 30 input length. On the lower end this behaviour is
quite obvious but moving to more historical data points, the changes become
stronger, resulting to higher and lower levels. In our tests, we have observed
significantly different behaviours of CNNs based on the kernel size/history size

Fig. 4. EUR Mean reversion calibrated by CNN trained with Euro data
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ratio affecting the smoothness and the overall performance. The networks used
here, have ratios of 2/5, 1/3 and 1/3 for CNN 5, 15 and 30 respectively.

Fig. 5. USD Mean reversion calibrated by CNN trained with USD data

On the LSTM side, there is not a similar smoothness adjustment tool, which
enables us to study the effect of history length easier. In Fig. 6 we see that shorter
and longer history affect the outcome, but the relative movement is in close sync.
In comparison to the CNN networks the levels are generally the same. We observe
parallel evolution that is consistent in major changes, the two significant jumps
are followed by all three networks. The first major difference from the evolution
of LR (2012), seems as if the movement of LSTM is an exaggerated jump of
the respective LR and CNN slopes parts. In the second (2014), we can see that
the peak of the NNs coincide with the peak observed in LR-300 only, similar to
CNN-30 but does not follow its level. For the USD dataset both CNN (Fig. 4)
and LSTM (Fig. 7) preserve the same characteristics, while CNN-5 yields results
closer to LSTMs, mostly because of the first part of the dataset (2004–2006),
where lower alpha than LR and CNN (15 & 30) is reported. For the rest, LSTMs
are closer to LR-500 but follow the same trends with CNNs.

Fig. 6. EUR Mean reversion calibrated by LSTM trained with Euro data



Calibrating the Mean-Reversion Parameter in the Hull-White Model 33

Fig. 7. USD Mean reversion calibrated by LSTM trained with USD data

In Sect. 4.1 we have discussed the role of θ in Hull-White and the significance
of forward rate for its calculation. In the previous tests, the forward rate was
not present in any form in the data. Following Eq. (14), we encode forward rate
information by introducing the prime term of θ. The CNN-30 network is trained
on this data producing the results in Fig. 8. The levels of alpha are closer to LR-
500 and generally undergo smoother transitions than the simply trained CNN.

Fig. 8. CNN, LSTM, Prime calibrating GBP-Libor

Depth-wise convolution seems indeed to be suitable for parallel time-series.
We observed a steady change in predictive accuracy from shorter history CNNs
to longer, among the three, the network with 30-step history depth achieved
the best results. However, this comparison is not simple since CNNs require
certain hyper-parameter tuning, which exceeds layer count or history depth, but
concerns the characteristics of the convolution layer itself; separable module,
kernel size and pooling. While we focused on kernel size effects, our early tests
did not favour max-pooling nor separable convolution, which led us to not further
explore these options.

CNNs seem to be affected by input length and kernel size with regard to alpha
calculation. 5-step networks with 2/5 kernel size ratio yield steadier results with
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small day-to-day changes, whereas 15 and 30 step networks generally seem to
be more flexible. Particularly, CNN-15 evolution is closer to CNN-30 movement,
undergoing slightly less abrupt changes. CNN-30 is the best performing network,
in terms of accuracy, but also yields alpha values comparable to linear regres-
sion’s more consistently among all datasets. LSTMs did not follow exactly the
same pattern in terms of predictive accuracy, all three networks, regardless the
history depth, resulted in approximately the same levels.

This can be observed in alpha calculations as well, where all three networks
are mutually consistent and tend to follow the same slope more closely. However,
the outcome in the GBP trained networks suggests that this is the case only when
they are sufficiently trained.

Using the forward prime in the training phase yields smoother results, but
with level mismatches with CNN-30 and LSTM-30. Observe that, overall, all
networks follow the increasing trend of linear regressions, but CNN-Prime is
closer and undergoes smoother changes, while big jumps are absent (Fig. 8).
This is an indication that forward rate, and market expectations as an extension,
can be indeed used to extract knowledge from the market and confirms Hull’s
indication to use the forward rate.

Generally, the behaviour of the networks is consistent in all datasets. We
see that the reported mean reversion moves upward when IR experiences fast
changes. The sensitivity to these changes varies depending on the network and
especially the number of maturities observed. Studying these results, we recog-
nize the main advantage that the inclusion of forward prime offers; it lessens the
sensitivity of the network to partial curve changes, augmenting the importance of
the curve as a whole. Even if the evaluation of these results cannot be exact, the
CNN networks seem to have greater potential and proved more suitable for pre-
diction and mean reversion calculation. However, in real life conditions the use
of a smoothing factor and the inclusion of prime are deemed necessary. LSTMs
may require more data for training, but produce consistent results regardless
of the number of historical data points supplied. These findings suggest that
history depth can play greater role in the performance of CNN networks than
LSTM.

6 Conclusion

We presented a method to calibrate the speed of the mean reversion in the Hull-
White model using neural networks, based only on historical interest rate data.
Our results demonstrate the suitability of depth-wise convolution and provide
evidence for the advantages of neural network approach over existing method-
ologies. The obtained mean reversion is comparable to rolling-window linear
regression’s results, allowing for greater flexibility while being less sensitive to
market turbulence.

In the future, we would like investigate the comparison with more advanced
econometric methods than linear regression, e.g. Kalman filters [18]. Another
interesting direction is the understanding of learning with neural networks.
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Sound model governance and model risk management frameworks are essential
for financial institutions in order to comply with regulatory requirements. This
creates a constrained environment for the growth of black box methods such as
neural networks. Nevertheless, the latest trends in machine learning reveal that
the research in the direction of opening the black box is growing [19].
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Abstract. We propose to represent a return model and risk model in a
unified manner with deep learning, which is a representative model that
can express a nonlinear relationship. Although deep learning performs
quite well, it has significant disadvantages such as a lack of transparency
and limitations to the interpretability of the prediction. This is prone
to practical problems in terms of accountability. Thus, we construct a
multifactor model by using interpretable deep learning. We implement
deep learning as a return model to predict stock returns with various
factors. Then, we present the application of layer-wise relevance propa-
gation (LRP) to decompose attributes of the predicted return as a risk
model. By applying LRP to an individual stock or a portfolio basis,
we can determine which factor contributes to prediction. We call this
model a deep factor model. We then perform an empirical analysis on the
Japanese stock market and show that our deep factor model has better
predictive capability than the traditional linear model or other machine
learning methods. In addition, we illustrate which factor contributes to
prediction.

Keywords: Deep factor model · Deep learning ·
Layer-wise relevance propagation

1 Introduction

An essential tool of quantitative portfolio management is the multifactor model.
The model explains the stock returns through multiple factors. A general multi-
factor model in the academic finance field is sometimes used synonymously with
the arbitrage pricing theory (APT) advocated by Ross [24]. The APT multifac-
tor model includes a method of providing macroeconomic indicators a priori to
explain stock returns and a method of extracting factors by factor analysis from
past stock returns.

However, in practice, the Fama-French approach and the BARRA approach
based on ICAPM [20] are widely used. The Fama-French or Barra multifactor
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models correspond to a method of finding stock returns using the attributes of
individual companies such as investment valuation ratios represented by PER
and PBR.

The Fama-French approach was introduced for the first time by Fama and
French [9]. The Barra approach was introduced by Rosenberg [23] and was
extended by Grinold and Kahn [13]. It is calculated through cross-section regres-
sion analysis since it assumes that stock returns are explained by common fac-
tors.

In addition, there are two uses of the multifactor model. It can be employed
both to enhance returns and to control risk. In the first case, if one is able to
predict the likely future value of a factor, a higher return can be achieved by
constructing a portfolio that tilts toward “good” factors and away from “bad”
ones. In this situation, the multifactor model is called a return model or an alpha
model.

On the other hand, by capturing the major sources of correlation among stock
returns, one can construct a well-balanced portfolio that diversifies specific risk
away. This is called a risk model. There are cases where these models are confused
when being discussed in the academic finance field.

For both the return model and the risk model, the relationship between the
stock returns and the factors is linear in the traditional multifactor model men-
tioned above. By contrast, linear multifactor models have proven to be very
useful tools for portfolio analysis and investment management. The assump-
tion of a linear relationship is quite restrictive. Considering the complexity of
the financial markets, it is more appropriate to assume a nonlinear relationship
between the stock returns and the factors.

Therefore, in this paper, we propose to represent a return model and risk
model in a unified manner with deep learning, which is a representative model
that can express a nonlinear relationship. Deep learning is a state-of-the-art
method for solving various challenging machine learning problems [11], e.g.,
image classification, natural language processing, or human action recognition.
Although deep learning performs quite well, it has a significant disadvantage: a
lack of transparency and limitations to the interpretability of the solution. This
is prone to practical problems in terms of accountability. Because institutional
investors have fiduciary duty and accountability for their customers, it is difficult
for them to use black-box type machine learning technique such as deep learning.
Thus, we construct a multifactor model by using interpretable deep learning.

We implement deep learning to predict stock returns with various factors as
a return model. Then, we present the application of layer-wise relevance propa-
gation (LRP [3]) to decompose attributes of the predicted return as a risk model.
LRP is an inverse method that calculates the contribution of inputs to the pre-
diction made by deep learning. LRP was originally a method for computing
scores for image pixels and image regions to denote the impact of a particular
image region on the prediction of a classifier for a particular test image. By
applying LRP to an individual stock or a quantile portfolio, we can determine
which factor contributes to prediction. We call the model a deep factor model.
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We then perform an empirical analysis on the Japanese stock market and
show that our deep factor model has better predictive power than the traditional
linear model or other machine learning methods. In addition, we illustrate which
factor contributes to prediction.

2 Related Works

Stock return predictability is one of the most important issues for investors.
Hundreds of papers and factors have attempted to explain the cross section of
expected returns [14,19,25]. Academic research has uncovered a large number
of such factors, 314 according to Harvey et al. [14], with the majority being
identified during the last 15 years.

The most popular factors of today (Value, Size, and Momentum) have been
studied for decades as part of the academic asset pricing literature and prac-
titioner risk factor modeling research. One of the best-known efforts in this
field came from Fama and French in the early 1990s. Fama and French [9] put
forward a model explaining US equity market returns with three factors: the
market (based on the traditional CAPM model), the size factor (large vs. small
capitalization stocks), and the value factor (low vs. high book to market). The
Fama-French three-factor model, which today includes Carhart’s momentum fac-
tor [6], has become a canon within the finance literature. More recently, the low
risk [4] and quality factors [21] have become increasingly well accepted in the
academic literature. In total, five factors are studied the most widely [15].

Conversely, the investors themselves must decide how to process and predict
returns, including the selection and weighting of such factors. One way to make
investment decisions is to rely upon the use of machine learning. This is a super-
vised learning approach that uses multiple factors to explain stock returns as
input values and future stock returns as output values. Many studies on stock
return predictability using machine learning have been reported. Cavalcante et
al. [7] presented a review of the application of several machine learning methods
in financial applications. In their survey, most of these were forecasts of stock
market returns; however, forecasts of individual stock returns using the neural
networks dealt with in this paper were also conducted.

In addition, Levin [18] discussed the use of multilayer feed forward neural
networks for predicting a stock return with the framework of the multifactor
model. To demonstrate the effectiveness of the approach, a hedged portfolio
consisting of equally capitalized long and short positions was constructed, and
its historical returns were benchmarked against T-bill returns and the S&P500
index. Levin achieved persistent returns with very favorable risk characteristics.

Abe and Nakayama [2] extended this model to deep learning and investigated
the performance of the method in the Japanese stock market. They showed that
deep neural networks generally outperform shallow neural networks, and the best
networks also outperform representative machine learning models. These results
indicate that deep learning has promise as a skillful machine learning method to
predict stock returns in the cross section.
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However, these related works are only for use as a return model, and the
problem is that the viewpoint as a risk model is lacking.

3 Methodology – Deep Factor Model

3.1 Deep Learning

The fundamental machine learning problem is to find a predictor f(x) of an
output Y given an input X. As a form of machine learning, deep learning trains
a model on data to make predictions, but it is distinguished by passing learned
features of data through different layers of abstraction. Raw data is entered at
the bottom level, and the desired output is produced at the top level, which is
the result of learning through many levels of transformed data. Deep learning is
hierarchical in the sense that in every layer, the algorithm extracts features into
factors, and a deeper level’s factors become the next level’s features.

A deep learning architecture can be described as follows (1). We use l ∈
1, . . . , L to index the layers from 1 to L, which are called hidden layers. The
number of layers L represents the depth of our architecture. We let z(l) denote
the l-th layer, and so X = z(0). The final output is the response Y , which can
be numeric or categorical.

The explicit structure of a deep prediction rule is then

z(1) = f (1)(W (0)X + b(0))
z(2) = f (2)(W (1)z(1) + b(1))

... (1)
z(L−1) = f (L−1)(W (L−2)z(L−2) + b(L−2))

Y = f (L)(W (L−1)z(L−1) + b(L−1))

Here, W (l) are weight matrices, and b(l) are the threshold or activation levels.
z(l) are hidden features that the algorithm extracts. Designing a good predictor
depends crucially on the choice of univariate activation functions f (l). Commonly
used activation functions are sigmoidal (e.g., 1

(1+exp(−x)) , cosh(x), or tanh(x))
or rectified linear units (ReLU) max{x, 0}.

3.2 Layer-Wise Relevance Propagation

LRP is an inverse method that calculates the contribution of the prediction made
by the network. The overall idea of decomposition is explained in [3]. Here, we
briefly reiterate some basic concepts of LRP with a toy example (Fig. 1). Given
input data x, a predicted value f(x) is returned by the model denoted as function
f . Suppose the network has L layers, each of which is treated as a vector with
dimensionality V (l), where l represents the index of layers. Then, according to
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the conservation principle, LRP aims to find a relevance score Rd for each vector
element in layer l such that the following equation holds:

f(x) =
∑

d∈V (L)

R
(L)
d = · · · =

∑

d∈V (l)

R
(l)
d = · · · =

∑

d∈V (1)

R
(1)
d (2)

As we can see in the above formula (2), LRP uses the prediction score as the
sum of relevance scores for the last layer of the network, and maintains this sum
throughout all layers.

Figure 1 shows a simple network with six neurons. wij are weights, zi are
outputs from activation, and R

(l)
i are relevance scores to be calculated. Then,

we have the following equation:

f(x) = R
(3)
6

= R
(2)
5 + R

(2)
4 (3)

= R
(1)
3 + R

(1)
2 + R

(1)
1

Furthermore, the conservation principle also guarantees that the inflow of
relevance scores to one neuron equals the outflow of relevance scores from the
same neuron. z

(l,l+1)
ij is the message sent from neuron j at layer l+1 to neuron i

at layer l. In addition, R
(l)
d is computed using network weights according to the

equation below:

R
(l)
i =

∑

j

z
(l,l+1)
ij

∑
k z

(l,l+1)
kj

R
(l+1)
j , z

(l,l+1)
ij = wijz

(l)
i (4)

Therefore, LRP is a technique for determining which features in a particular
input vector contribute most strongly to a neural network’s output.

3.3 Deep Factor Model

In this paper, we propose to represent a return model and risk model in a unified
manner with deep learning, which is a representative model that can express a
nonlinear relationship. We call the model a deep factor model. First, we formulate
a nonlinear multifactor model with deep learning as a return model.

The traditional fundamental multifactor model assumes that the stock return
ri can be described by a linear model:

ri = αi + Xi1F1 + · · · + XiNFN + εi (5)

where Fi are a set of factor values for stock i, Xin denotes the exposure to
factor n, αi is an intercept term that is assumed to be equal to a risk-free rate
of return under the APT framework, and εi is a random term with mean zero
and is assumed to be uncorrelated across other stock returns. Usually, the factor
exposure Xin is defined by the linearity of several descriptors.



42 K. Nakagawa et al.

Fig. 1. LRP with toy example

While linear multifactor factor models have proven to be very effective tools
for portfolio analysis and investment management, the assumption of a linear
relationship is quite restrictive. Specifically, the use of linear models assumes
that each factor affects the return independently. Hence, they ignore the possi-
ble interaction between different factors. Furthermore, with a linear model, the
expected return of a security can grow without bound as its exposure to a factor
increases.

Considering the complexity of the financial markets, it is more appropriate
to assume a nonlinear relationship between the stock returns and the factors.
Generalizing (5), maintaining the basic premise that the state of the world can
be described by a vector of factor values and that the expected stock return is
determined through its coordinates in this factor world leads to the nonlinear
model:

ri = f̃(Xi1, . . . , XiN , F1, . . . , FN ) + εi (6)

where f̃ is a nonlinear function.
The prediction task for the nonlinear model (6) is substantially more com-

plex than that in the linear case since it requires both the estimation of future
factor values as well as a determination of the unknown function f̃ . As in a
previous study [18], the task can be somewhat simplified if factor estimates are
replaced with their historical means F̄n. Since the factor values are no longer
variables, they are constants. For the nonlinear model (6), the expression can be
transformed as follows:

ri = f̃(Xi1, . . . , XiN , F̄1, . . . , F̄N ) + εi

= f(Xi1, . . . , XiN ) + εi (7)
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where Xin is now the security’s factor exposure at the beginning of the period
over which we wish to predict. To estimate the unknown function f , a family
of models needs to be selected, from which a model is to be identified. In the
following, we propose modeling the relationship between factor exposures and
future stock returns using a class of deep learning.

However, deep learning has significant disadvantages such as a lack of trans-
parency and limitations to the interpretability of the solution. This is prone to
practical problems in terms of accountability. Then, we present the application
of LRP to decompose attributes of the predicted return as a risk model. By
applying LRP to an individual stock or a quantile portfolio, we can determine
which factor contributes to prediction. If you want to show the basis of the pre-
diction for a stock return, you can calculate LRP using the inputs and outputs
of the stock. In addition, in order to obtain the basis of prediction for a portfolio,
calculate LRPs of the stocks included in that portfolio and take their average.
Then, by aggregating the factors, you can see which factor contributed to the
prediction. Figure 2 shows an overall diagram of the deep factor model.

4 Experiment on Japanese Stock Markets

4.1 Data

We prepare a dataset for TOPIX index constituents. TOPIX is a well-accepted
stock market index for the Tokyo Stock Exchange (TSE) in Japan, tracking all
domestic companies of the exchange’s First Section. It is calculated and pub-
lished by the TSE. As of March 2016, the index is composed of 1,948 constituents.
The index is also often used as a benchmark for overseas institutional investors
who are investing in Japanese stocks.

We use the 5 factors and 16 factor exposures listed in Table 1. These are used
relatively often in practice and are studied the most widely in academia [15].

In calculating these factors, we acquire necessary data from the Nikkei Port-
folio Master and Bloomberg. Factor exposures are calculated on a monthly basis
(at the end of month) from December 1990 to March 2016 as input data. Stock
returns with dividends are acquired on a monthly basis (at the end of month)
as output data.

4.2 Model

Our problem is to find a predictor f(x) of an output Y , next month’s stock
returns given an input X, various factors. One set of training data is shown in
Table 3. In addition to the proposed deep factor model, we use a linear regression
model as a baseline, and support vector regression (SVR [8]) and random forest
[5] as comparison methods. The deep factor model is implemented with Tensor-
Flow [1], and the comparison methods are implemented with scikit-learn [22].
Table 2 lists the details of each model.

We train all models by using the latest 60 sets of training data from the
past 5 years. The models are updated by sliding one month ahead and carrying
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Fig. 2. Deep factor model

out a monthly forecast. The prediction period is 10 years, from April 2006 to
March 2016 (120 months). This is because we wanted to hold a test period over
10 years including the date of Lehman shock. But, we have to check the impact
of reference period choice on performance for further study. Figure 3 shows the
image of our prediction framework. In order to verify the effectiveness of each
method, we compare the prediction accuracy of these models and the profitability
of the quintile portfolio. We construct a long/short portfolio strategy for a net-
zero investment to buy top stocks and to sell bottom stocks with equal weighting
in quintile portfolios. For the quintile portfolio performance, we calculate the
annualized average return, risk, and Sharpe ratio. In addition, we calculate the
average mean absolute error (MAE) and root mean squared error (RMSE) for
the prediction period as the prediction accuracy.
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Table 1. Factors and factor descriptors

Factor Descriptor Formula

Risk 60VOL Standard deviation of stock returns in the past 60 months

BETA Regression coefficient of stock returns and market risk premium

SKEW Skewness of stock returns in the past 60 months

Quality ROE Net income/Net Assets

ROA Operating Profit/Total Assets

ACCRUALS Operating Cashflow − Operating Profit

LEVERAGE Total Liabilities/Total Assets

Momentum 12-1MOM Stock returns in the past 12 months except for past month

1MOM Stock returns in the past month

60MOM Stock returns in the past 60 months

Value PSR Sales/Market Value

PER Net Income/Market Value

PBR Net Assets/Market Value

PCFR Operating Cashflow/Market Value

Size CAP log(Market Value)

ILLIQ average(Stock Returns/Trading Volume)

Table 2. Details of each method

Model Description

Deep factor model Model 1 The hidden layers are {80-50-10}.
We use the ReLU as the activation function

and Adam [16] for the optimization algorithm

Model 2 The hidden layers are {80-80-50-50-10-10}.
We use the ReLU as the activation function

and Adam [16] for the optimization algorithm

Linear model Linear models is implemented with scikit-learn

with the class “sklearn.linear model.LinearRegression”

All parameters are default values in this class

SVR Support vector regression (SVR) is implemented

with scikit-learn with the class “sklearn.svm.SVR”.

All parameters are default values in this class

Random forest Random Forest is implemented with scikit-learn

with the class “sklearn.ensemble.RandomForestRegressor”.

All parameters are default values in this class
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Table 3. One set of training data for March 2016.

Input: 80 dim Output: 1 dim

Factor descriptors:
16 × 5 dim

Return: 1 dim

February 2016 March 2016

November 2015

August 2015

May 2015

February 2015

Fig. 3. Stock prediction framework.

4.3 Results

Table 4 lists the average MAE and RMSE of all years and the annualized return,
volatility, and Sharpe ratio for each method. In the rows of the table, the best
number appears in bold. Deep factor model 1 (shallow) has the best prediction
accuracy in terms of MAE and RMSE as in the previous study [2,18]. On the
other hand, deep factor model 2 (deep) is the most profitable in terms of the
Sharpe Ratio. The shallow model is superior in accuracy, while the deep one is
more profitable. In any case, we find that both models 1 and 2 exceed the baseline
linear model, SVR, and random forest in terms of accuracy and profitability.
These facts imply that the relationship between the stock returns in the financial
market and the factor is nonlinear, rather than linear. In addition, a model that
can capture such a nonlinear relationship is thought to be superior.
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Table 4. Average MAE and RMSE of all years and annualized return, volatility, and
Sharpe ratio for each method.

Deep factor model Linear model SVR Random forest

Model 1 Model 2

Return [%] 10.81 10.31 8.17 1.46 0.12

Volatility [%] 7.65 6.86 8.20 9.66 5.43

Sharpe ratio 1.41 1.50 1.00 0.15 0.02

MAE 0.0663 0.0669 0.0679 0.1713 0.0728

RMSE 0.0951 0.0953 0.0965 0.1962 0.1024

4.4 Interpretation

Here, we try to interpret the stock of the highest predicted stock return and the
top quintile portfolio based on the factor using deep factor model 2 as of the last
time point of February 2016. In general, the momentum factor is not very effec-
tive, but the value and size factors are effective in the Japanese stock markets.
Nowadays, there is a significant trend in Japan to evaluate companies that will
increase ROE over the long term because of the appearance of the Corporate
Governance Code. In response to this trend, the quality factor including ROE
is gaining attention. But, [17] found that both the RMW and the CMA related
to our quality factor are weakly associated with the cross-sectional variations of
stock returns in long term, which is significantly different from the US evidence.

Figure 4 shows which factor contributed to the prediction in percentages using
LRP. The contributions of each descriptor calculated by LRP are summed for
each factor and are displayed as a percentile.

We observe that the quality and value factors account for more than half of
the contribution to both the stock return and quintile portfolio. The quality fac-
tor and the momentum factor are not effective in the linear multifactor model,
whereas their contribution is remarkably large in the Deep Factor Model. More-
over, the contribution of the size factor is small, and it turns out that there is a
widely profitable opportunity regardless of whether the stock is large or small.
Figure 5 shows that these trends do not change in time series. Therefore, the
Deep Factor Model is stable in terms of interpretability.

Next, we quantitatively verify the risk model by LRP. Table 5 shows the
correlation coefficients between each factor and the predicted return in the top
quintile portfolio. The correlation coefficients are calculated by averaging the cor-
relation coefficients between each descriptor and the predicted return by each
factor. The influence of the value and size factor differs when looking at LRP
and correlation. The value factor has a large contribution to LRP and a small
contribution to the correlation coefficients. The size factor has the opposite con-
tributions. Therefore, without LRP, we could misinterpret the return factors.
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Fig. 4. Interpreting highest predicted return and top quintile portfolio based on factor
using network as of last time point of February 2016

Fig. 5. Interpreting top quintile portfolio based on factor using network from April
2006 to February 2016

Table 5. Correlation coefficients between each factor and predicted return in top
quintile portfolio.

Risk Quality Momentum Value Size

Spearman 0.14 0.22 0.24 0.08 0.14

Kendall 0.10 0.15 0.17 0.06 0.10
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5 Conclusion

We presented a method by which deep-learning-based models can be used for
stock selection and risk decomposition. In terms of fiduciary duty and account-
ability for institutional investors, risk decomposition is important in practice.

Our conclusions are as follows:

– The deep factor model outperforms the linear model. This implies that the
relationship between the stock returns in the financial market and the factors
is nonlinear, rather than linear. The deep factor model also outperforms other
machine learning methods including SVR and random forest.

– The shallow model is superior in accuracy, while the deep model is more
profitable.

– Using LRP, it is possible to intuitively determine which factor contributed to
prediction.

This study reports the main idea of deep factor model and initial results
using Japanese stock market. We should check the stability of our model by
using various stock market such as country-specific or global market [10,12].

For further study, we would like to expand our deep factor model to a model
that exhibits dynamic temporal behavior for a time sequence such as RNN.
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Abstract. Sentiment analysis of Twitter messages is a challenging task
because they contain limited contextual information. Despite the popu-
larity and significance of this task for financial institutions, models being
used still lack high accuracy. Also, most of these models are not built
specifically on stock market data. Therefore, there is still a need for a
highly accurate model of sentiment classification that is specifically tuned
and trained for stock market data.

Facing the lack of a publicly available Twitter dataset that is labeled
with positive or negative sentiments, in this paper, we first introduce a
dataset of 11,000 stock market tweets. This dataset was labeled manually
using Amazon Mechanical Turk. Then, we report a thorough compari-
son of various neural network models against different baselines. We find
that when using a balanced dataset of positive and negative tweets, and
a unique pre-processing technique, a shallow CNN achieves the best error
rate, while a shallow LSTM, with a higher number of cells, achieves the
highest accuracy of 92.7% compared to baseline of 79.9% using SVM.
Building on this substantial improvement in the sentiment analysis of
stock market tweets, we expect to see a similar improvement in any
research that investigates the relationship between social media and var-
ious aspects of finance, such as stock market prices, perceived trust in
companies, and the assessment of brand value. The dataset and the soft-
ware are publicly available. In our final analysis, we used the LSTM
model to assign sentiment to three years of stock market tweets. Then,
we applied Granger Causality in different intervals to sentiments and
stock market returns to analyze the impact of social media on stock
market and visa versa.

Keywords: Sentiment analysis · Neural networks · Social media ·
Stock market

1 Introduction

With the rise of social networks and micro-blogging, the amount of textual data
on the Internet has grown rapidly, and the need to analyze it has increased along
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with it. Sentiment analysis has emerged as a useful and influential approach for
using this data to investigate people’s emotions and understand human behavior
in multiple domains. For example, Bollen and Pepe [2] used social-media senti-
ment analysis to predict the size of markets, while Antenucci et al. [1] used it to
predict unemployment rates over time.

Historically, sentiment analysis has been used to analyze longer form docu-
ments (e.g., reports, news stories, and blogs), but in the last few years, micro-
blogging applications have seen a spike in their usage. These platforms – Twit-
ter, Instagram, and Facebook – have rapidly become popular with profession-
als, celebrities, companies, and politicians, along with students, employees, and
consumers of many services. The popularity of these platforms, and especially
Twitter (which is text-oriented and fine-grained) provides a unique opportunity
for companies and researchers to obtain a concise understanding of a single topic
(e.g., the stock market) from different viewpoints.

Although social media and blogging are popular and widely used channels
for discussing different topics, it is challenging to analyze their content. For
example, Twitter messages generally have many misspelled words, grammati-
cal errors, non-existent words, or unconventional writing styles. Additionally,
the specific vocabulary used for analysis will depend on the topic under con-
sideration, since the meaning and sentiment of a word can change in different
contexts. For example, a word in a professional context might have positive or
neutral sentiment (e.g., tax), while the same word generally has a negative sen-
timent in casual conversations. This prompted Loughran and Mcdonald [13] to
suggest that using non-business word lists for sentiment analysis in a business
context is inappropriate when using a Bag-of-Words approach.

Although many studies have concentrated on Twitter sentiment analysis in
the context of the stock market, most of them either did not use a context-
specific dataset, or they had low accuracy for their sentiment predictions. For
example, Kolchyna et al. [10] combined lexicon-based approaches and support
vector machines to classify tweets, resulting in a final accuracy of 71%. The topic
of task 5 of the SemEval competition [3] was to perform fine-grained sentiment
analysis on stock market tweets. Jiang et. al [7] won the first place in this com-
petition by applying an ensemble method consisting of Random Forest, Support
Vector Machine, various regression algorithms, and a combination of multiple
features, such as word embeddings and lexicons. In our SemEval paper [24], we
achieved an accuracy slightly lower the winning model, but with a simpler app-
roach that used a Random Forest classifier and a revised financial lexicon from
[13] as our feature set. In a recent paper, Sohangir et al. [22] evaluated regression
models, data mining, and deep learning methods for sentiment analysis of finan-
cial tweets derived from StockTwits1, and found that their CNN performed well,
with an accuracy of 90.8%, while their LSTM did not perform as well, achieving
an accuracy of only 69.9%.

In our work, after a precise labeling of our tweet dataset using Amazon
Mechanical Turk (AMT), we applied vigorous and thorough preprocessing tech-

1 www.stocktwits.com.

www.stocktwits.com
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niques on the dataset. Then we created our baseline models, by building on
our previous work [24], and then used SVM, and TF-IDF as our feature vec-
tor. Finally we thoroughly compared different Convolutional Neural Network
(CNN) and Recurrent Neural Network (LSTM) with each other. We found that
when using a balanced dataset of positive and negative tweets, and a specific
pre-processing technique, a shallow CNN achieves the best error rate, while a
shallow LSTM model, with a higher number of cells, achieves the highest accu-
racy of 92.7%. This is a significant improvement from our baseline or previous
work in sentiment analysis in context of stock market.

Although sentiment analysis has been thoroughly studied before, we believe
our work is novel in two different ways. First, there is not a publicly avail-
able annotated tweet dataset in context of stock market. Therefore, we believe
that this dataset can help improve research in this area. Second, to the best of
our knowledge most research on sentiment analysis in context of stock market
has been studied widely using either basic machine learning classifiers or lexi-
con based models. Our work, on the other hand, is a one of the few thorough
comparisons of neural network models that has been used in this context. And
furthermore, none of previous models produced accuracy for the sentiments as
high as our model.

We believe that this paper will open ways for research in a few areas mea-
suring the impact of social media on various aspects of finance, such as stock
market prices, perceived trust in companies, the assessment of brand value, and
more. For instance, having a model that can predict highly accurate sentiment
scores in this context, can help with the understanding of the causality analy-
sis between social media and stock market better, or improve the prediction of
stock prices using social media [2,12,13,17]. In addition, it can also be used to
improve the quality of social media trust networks for stock market [18].

The outline of the paper is as follows. The dataset, the specification of how it
was labeled using the Amazon Mechanical Turk, and information about labels are
explained in Sect. 2. Section 3 covers the preprocessing techniques, and baseline
methods. In Sect. 4, we explain all our deep learning models in details, and
Sect. 5 thoroughly explains our deep learning results. In Sect. 6, first we describe
our Granger Causality model and then we apply that model on the sentiments
derived from Sect. 5 and stock market returns. Further, we analyze this causal
analysis. And finally, we conclude our work in Sect. 7.

2 Data

Tweets were pulled from Twitter using Twitter API between 1/1/2017 and
3/31/2017. In our filters we only pulled tweets that are tweeted from a “Veri-
fied” account. A verified account on Twitter suggests that the account is a public
interest and that it is authentic. An account gets verified by Twitter if the used is
a distinguished person in different key interest areas, such as politics, journalism,
government, music, business, and others. A tweet is considered stock related, if
it contains at least one of the stock symbols of the first 100 most frequent stock
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symbols that were included in SemEval dataset form [24]. We were able to pull
roughly 20,000 tweets in that interval using mentioned filters.

2.1 Labeling Using Amazon Mechanical Turk

The data was submitted to Amazon Mechanical Turk was asked to be labeled by
4 different workers. Snow et al. [21] suggested that 4 workers is sufficient to have
enough people submitted their opinion on each tweet, and to ensure the results
would be reliable. We assigned only AMT masters as our workers, meaning they
have the highest performance in performing wide range of HITs (Human Intel-
ligence Tasks). We also asked the workers to assign sentiments based on the
question: “Is the tweet beneficial to the stock mentioned in tweet or not?”. It
was important that tweet is not labeled based on perspective of how beneficial it
would be for the investor, but rather how beneficial it would be to the company
itself. Each worker assigned numbers from −2 (very negative) to +2 (very pos-
itive) to each tweet. The inter-rater percentage agreement between sentiments
assigned to each tweets by the four different workers had the lowest value of
81.9 and highest of 84.5. We considered labels ’very positive’ and ’positive’ as
positive when calculating the inter-agreement percentage.

At the end, the average of the four sentiment was assigned to each tweet as
the final sentiment. Out of 20013 tweet records submitted to AMT, we assigned
neutral sentiment to a tweet if it had average score between [−0.5, +0.5]. We
picked the sentiment positive/negative if at least half of workers labeled them
positive/negative. Table 1 is a summary of the number of tweets in each category
of sentiment.

One downside of this dataset was that the number of positive and negative
tweets are not balanced. In order to overcome this issue, we tried many things.
At the end balancing the train set by oversampling our negative tweets led to
the best result. We also have tried under-sampling positive train set, but it
performed worse in accuracy.

Table 1. Summary of tweets labeled by Amazon Mechanical Turk.

Range Label assigned to tweets Count

[−2, −0.5] Negative 2082

[−0.5, 0.5] Neutral 9008

[0.5, 2] Positive 8386

3 Method and Models

3.1 Preprocessing

Twitter messages due to its nature of being informal text, requires a thorough
preprocessing step in order to improve classifier’s prediction. Twitter messages
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generally contain a lot of misspelled words, grammatical errors, words that does
not exist, or has been written in a non-conventional way. Therefore, in our pre-
processing step, we attempted to address all these issues in order to retrieve the
most information possible from each tweet.

Text Substitution. We applied two different text substitutions. In our first
attempt, we substitute every word that contains both number and a letter with
<alphanum> tag, and all the numbers with the tag <num>. For instance,
‘12:30’ would be replace with <num>:<num>, ‘ftse100’ will be replaced by
<alphanum>, and ‘500’ with <num>.

This way, all hours and measures are treated the same way. This reduces
the number of non-frequent words in our vocabulary. For example, every time
expression is replaced by <num>:<num>, and every price by $<num>.

Spelling Correction. In order to address the issue of misspelled words and try
to retrieve as many words possible so that it can be recognizable by Word2Vec.2

For example, we removed ‘-’ or ‘.’ in every word and checked whether after this
operation they would be recognizable by Word2Vec. Additional preprocessing
operations included:

– Removing ‘́s’
– Changing word in ‘Word1-word2’ format to ‘word1 word2’
– Deleting consecutive duplicate letters.
– Deleting ‘-’ or ‘.’ between every letter of word.

3.2 Word Embeddings

Word embeddings have been the most effective and popular feature in Natural
Language Processing. The two most popular word embedding are GloVe [16]
and Google’s Word2Vec [14]. We used 300-dimensional pre-trained Word2Vec
vectors whenever we could find a word available, and otherwise we assigned
random initializations. From roughly 10,000 tokens in our vocabulary, around
600 of them was randomly initialized. It was essential for us to use pre-trained
embeddings since we used to create a vocabulary in order to see if a particular
word exists or not.

As future work, it would be interesting to train a new embedding model for
stock market and see if that would increase the accuracy of our model.

3.3 Baseline Model

We used Amazon Mechanical Turk to manually label our stock market tweets. In
order to create a baseline for our analysis, we applied on the current dataset the

2 We applied Google’s Word2Vec pre-trained model with 300 dimension to get word
embeddings from each word.
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preprocessing techniques explained before, and the same machine learning clas-
sification method and feature sets we designed for [24]. We modified Loughran’s
lexicon of positive and negative words [13] to be suited for stock market context,
and used it to calculate the number of positive and negative words in each tweet
as features. For example, ‘sell’ has a negative sentiment in stock market context,
that has been added to Loughran’s lexicon. We ultimately added around 120
new words to his list. Also, we replaced a couple of words that come together in
a tweet, but has different sentiment in stock market context with one word, to
be able to assign their actual sentiment. For example, ‘Go down’ and ‘Pull back’
both contain negative sentiment in stock’s perceptive. Around 90 word-couples
were defined specifically for this purpose. Table 2 shows the baseline for different
machine learning classifiers.

Table 2. Baseline accuracy for 11,000 tweet dataset.

Classifier Feature set Accuracy

Random forest [TF-IDF] 78.6%

Random forest [TF-IDF, pos/neg count] 78.9%

Random forest [TF-IDF, pos/neg count, Wrod-couple] 79.4%

SVM [TF-IDF] 77.9%

SVM [TF-IDF, pos/neg count] 79.9%

SVM [TF-IDF, pos/neg count, Wrod-couple] 79.5%

4 Neural Network Models

4.1 Convolutional Neural Networks

Convolutional Neural networks (CNNs) have been shown to be useful in a variety
of applications, specially in image processing. Although they have been designed
originally for image processing and classification, they found their way into nat-
ural language processing. Thus models created using CNNs led to state of the art
result in text classification [8,15], and specifically in classifying tweets [19,20].

Our CNN model3 contains an input layer, in which after pre-processing, we
reshape each tweet to a matrix. Then we have a convolutional layer with specific
filters, and finally a max-pooling layer. Specification of each layer is described
as follows:

Input Layer: CNNs originally were introduced for image classification, and by
design have a fixed size input layer. Therefore, the problem with using CNNs for
tweet classification is the difference in size (i.e. number of words) in tweets. To
overcome this problem, we made all tweets the same size by adding padding to
3 Our model, was built and modified based on a Convolutional network available at

https://github.com/bernhard2202/twitter-sentiment-analysis.

https://github.com/bernhard2202/twitter-sentiment-analysis
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shorter tweets and cutting off the longer ones to make all our tweets the same
length. We set the length of tweets to 35; and among all the tweets in our data,
we had only 63 tweets that had to be shortened. This way, we could represent
each tweet in our dataset by a 35× 300 dimensional matrix; 35 being the number
of terms in each tweets, and 300 is the dimension of the representative vector in
our pre-trained embeddings.

Convolutional Layer: Having our input matrix and the convolutional layer,
consisting of multiple sliding window functions, the whole matrix embedding
vector (word), and these convolutions slide through the matrix to generate an
output with each move. For example, a filter of length 5 would go through all 35
embedding vectors (words), 5 rows at a time for 30 steps, generating 31 outputs.
In our experiment we used convolutions covering three, four and five words at a
time, and the output is passed to a ReLU activation function.

Max-pooling and Soft-max: Then we create a 384 dimensional vector with
max-pooling on the outputs of our convolutions for each tweet (in example above
each convolution creates 31 outputs for each tweet, we select the maximum and
disregard all others, so we get one output for each of 384 convolutions). This
output vector then will be passed to a soft-max layer to generate a normalized
probability score for classification.

Training and Regularization: Stochastic optimization with cross-entropy-
loss was used to train the CNN using Adam optimizer [9]. The data was divided
90% to 10% as train and development sets. After every 1000 training step the
performance of the CNN on development data was evaluated and the training
was stopped after eight epochs (i.e. 70k training steps) with learning rate of
1e-4. We used this learning rate, because it is low enough to make the neural
network more reliable. Although, this makes the optimization process slow, it
was not our concern because of our relatively small dataset. A dropout layer for
convolutions was used to avoid overfitting during training. This layer disables
each neuron with the probability of 0.5, resulting in a network which uses on
average half the neurons in the network in each training step.

4.2 Experimenting with Recurrent Neural Networks

Recurrent neural networks have been shown to be a powerful tool in many NLP
tasks such as sentiment analysis [25], machine translation [23], and speech recog-
nition [5]. In RNNs the input is fed to the network sequentially as opposed to
CNNs, where you feed the whole input into the network at once. This makes
RNNs a preferred candidate for sequential data with various size inputs, such as
text. They are constructed with inter-unit connections which creates a directed
graph, and their internal state can be considered to be a memory which keeps
track of previous states.
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Fig. 1. Plots of accuracy and loss for
each step in train and test set for best
loss in CNN, from tensorboard. Top-
left is the accuracy and top-right is the
loss for train set. Bottom-left shows the
accuracy and bottom-right shows the
loss for each run in test set.

Fig. 2. Plots of accuracy and loss for
each step in train and test set for best
accuracy in LSTM, from tensorboard.
Top-left is the accuracy and top-right is
the loss for train set. Bottom-left shows
the accuracy and bottom-right shows
the loss for each run in test set.

An issue that arises from this design is that RNNs cannot handle long-term
dependencies reliably during back propagation, resulting in vanishing or explod-
ing gradients. This happens because the error propagates over a long distance in
the network. Long Short-Term Memory (LSTM)network tries to overcome this
issue by adding an explicit memory component to the network’s architecture to
prevent the gradients to decay very fast (and clipping large gradients prevents
the exploding gradient problem). This is why we decided to try a LSTM network.

In this task, we used a network consisting an embedding layer, one layer
of 128 LSTM units and a softmax layer to normalize the output. We also tried
variations of this architecture: once with 256 LSTM cells, and once with two layer
of 128 LSTM cells. You can see the performances for each of these architectures
(along with other models) in Tables 3 and 4.

5 Results

As explained in the discussion of pre-processing, additional challenge of our
dataset was the unbalanced nature of sentiments. In one experiment, we used
an unbalanced test set as well as unbalanced train dataset. However, the result
really jumped in accuracy when we used balanced train and test dataset. We
re-sampled the negative tweets to create the same number of negative tweets as
the positive ones. By doing that, our test set accuracy increased by 8% in CNN
and 10% with LSTM.

Additional changes in preprocessing improved our accuracy drastically. We
tried out two different preprocessing alterations. First attempt was examining
the effect of removing or keeping ’#’ and ’$’ in the dataset. In all of our runs, we
let these two characters remain in our dataset. The idea was that each hashtag
would differentiate the word with or without these character and result in better
capturing of the context. But ultimately, removing them increased the accuracy.
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Table 3. Result of accuracy of different
models

NN Specification Train Test

CNN Unbalanced train/test 91.5% 80.6%

CNN Balanced train/test 89.7% 88.7%

CNN Remove ‘#’ and ‘$’ 89.7% 91.6%

CNN Unique Tag 95.9% 90.4%

LSTM Unbalanced Train/Test 98.3% 81.6%

LSTM Balanced Train/Test 97.9% 91.6%

LSTM Remove ‘#’ and ‘$’ 91.8% 91.8%

LSTM Unique Tag 98.4% 91.1%

LSTM 2 layer + 128 cell 83.6% 86.6%

LSTM 1 layer + 256 cell 98.4% 92.7%

Table 4. Result of Loss of different
models

NN Specification Train Test

CNN Unbalanced train/test 0.25 0.40

CNN Balanced train/test 0.26 0.30

CNN Remove ‘#’ and ‘$’ 0.31 0.253

CNN Unique tag 0.20 0.27

LSTM Unbalanced train/test 0.07 0.68

LSTM Balanced train/test 012 0.31

LSTM Remove ‘#’ and ‘$’ 0.28 0.27

LSTM Unique tag 0.03 0.34

LSTM 2 layer + 128 cell 0.39 0.31

LSTM 1 layer + 256 cell 0.04% 0.259

We believe this was due to the fact that our vocabulary was relatively small
(10643 words), removing these characters helped with eliminating non-frequent
words and reducing number of features. The effect of removing these characters
can be seen in the lowest loss of 0.25 in our CNN model. Figure 1 shows the
accuracy and loss for this model, for both train and test set in each step.

Second, we replaced all of our tags that have been explained in Sect. 3.1 with
just one tag <num> with the same justification for removing characters. But,
for both LSTM, and CNN we had slight decrease in accuracy and increase in
loss.

LSTMs, in general, trained faster than CNNs, and the best accuracy was
achieved when we used the higher number of LSTM cells (256) with only one
layer. Our highest accuracy was 92.7% in this model, which was a significant
jump from baseline. We removed both ‘#’ and ‘$’ from our dataset, for this
model.

The 2-layer LSTM did not perform well in accuracy and loss. We believe
such increase in the complexity of model would require more data for training.
Figure 2 shows the accuracy, and loss for this model.

6 Comparing the Sentiments with Stock Market Returns

To begin, we downloaded the closing prices for the 100 stock ticker symbols
mentioned in our labeled dataset of tweets.4 Then, we calculated the relative
daily return for each company, which is an asset’s return relative to a benchmark
4 Of the 100 companies mentioned, we replaced the stock symbols of companies that

were owned by another with the symbol of the parent company. Specifically, we
replaced $LNKD (LinkdIn) with $MSFT (Microsoft) and replaced $SCTY (Solar
City) with $TSLA (Tesla). We also excluded the following companies from the list
of 100 companies: VXX, GLD, SPY, GDX, SPX, WFM, EMC, APP, BRCM, and
GMCR. These companies were either not currently trading, their trading data could
not be found, or they were a specific index. (e.g., S&P 500).
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per day. This is the preferred measure of performance for an active portfolio5,
because it is normalized, and because it a stationary time-series, a feature that
is essential for most time-series analysis (and specifically, Granger causality).
Stationary time-series means that they have a time-invariant mean and variance.

We used the following formula to calculate relative stock return:

Stock return = (p1−p0)
p0

p0 = Initial stock price
p1 = Ending stock price

(1)

6.1 Granger Causality Models

Granger causality (GC) is a probabilistic theory of causality [6] that determines
if the information in one variable can explain another.

The advantage of this model is that it is both operational and easy to imple-
ment, but it is criticized for not actually being a model of causality (rather, it’s
a model of increased predictability). Critics have pointed out that even when
A has been shown to Granger cause B, it does not necessarily follow that con-
trolling A will directly influence B. Further, nor does it tell us the magnitude of
the effect on B. Granger Causality is primarily used for causal notions of policy
control, explanation and understanding of time-series, and in some cases, for
prediction.

Formal Definition of Granger Causality: A time-series Y can be written as
an autoregressive process6, which means that the past values of Y can, in part,
explain the current value of Y. Formally, an autoregressive model is defined as
follows:

Yt = α +
k∑

i=1

βjYt−i + εt. (2)

To define his version of causality, Granger introduced another variable X to
the autoregressive model, which also has past values like Y.

Yt = α +
k∑

i=1

βjYt−i +
k∑

j

λjXt−j + εt. (3)

If adding X improves the prediction of current values of Y, when compared to
the predictions from the autoregressive model alone, then X is said to “Granger
cause” Y. Technically, Granger causality is an F-test, where the null hypothesis

5 https://www.investopedia.com.
6 An autoregressive (AR) model is a representation of a type of random process; as

such, it is used to describe certain time-varying processes in nature, economics, etc.
The autoregressive model specifies that the output variable depends linearly on its
own previous values and on a stochastic term (an imperfectly predictable term); thus
the model is in the form of a stochastic difference equation. https://en.wikipedia.
org/wiki/Autoregressive model.

https://www.investopedia.com
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_model
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is that all of the λ are equal to zero for all j. Note that you can also test the
reverse case; that is, test whether Y “Granger causes” X. Both causal directions,
or none, are possible. Tests for Granger causality should only be performed on
stationary variables, which means that they have a time-invariant mean and
variance. Specifically, this means that the variables must be I(0)7 and that they
can be adequately represented by a linear AR(p) process8.

6.2 Our Granger Causality Model

Model (1):
RV ∼ Lags(RV,LAG) + Lags(SSC,LAG) (4)

Model (2):
SSC ∼ Lags(SSC,LAG) + Lags(RV,LAG) (5)

Model one determines if sentiment scores have a causal effect on stock return
values, while model two determines if sentiment scores affect stock return values.
In both models, the lag (LAG) is the number of days the cause precedes the
effect, the return value (RV ) is the calculated daily return for 83 different stocks,
and the sentiment scores (SSC) are from Table 3.

6.3 Three Year Comparison of Social Media Sentiment Analysis
and Stock Market Returns

In this section, we performed an in-depth causal analysis for the three stocks
most commonly referred to in social media – Apple, Facebook, and Amazon –
over a period of three years from 2015–2017. We used our LSTM model Table 3
to assign sentiments to an expanded Twitter dataset, which had 386,251 tweets
and covered the same three year period as the stock return values. We then
applied the two GC models described in 5 to find causal relationships between
the sentiments and return values at five different intervals: fifteen and thirty
minutes, one and three hours, and one day. For a particular interval, all of the
sentiments in that interval were summed to get an aggregate score. We found
causal relationship between tweet sentiments and return values for Amazon and
Facebook (in both directions) at fifteen minutes, three hours, and one day. No
causal relationships were found for Apple.

Looking more closely at the results of the causality analysis, we see in Tables 5
and 6 that before three hours, the value of the lag fluctuates, but at three hours
7 In statistics, the order of integration, denoted I(d), of a time series is a summary

statistic, which reports the minimum number of differences required to obtain a
covariance-stationary series. https://en.wikipedia.org/wiki/Order of integration.

8 The autocorrelation function of an AR(p) process is a sum of decaying exponen-
tials. The simplest AR process is AR(0), which has no dependence between the
terms. Only the error/innovation/noise term contributes to the output of the pro-
cess, so in the figure, AR(0) corresponds to white noise. https://en.wikipedia.org/
wiki/Autoregressive model.

https://en.wikipedia.org/wiki/Order_of_integration
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_model
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Table 5. F-test and P-value for three year
data: sentiment causes the stock return

Stock ticker Interval Fvalue Pvalue LagNo

AMZN 1D 3.64 0.026 2

AMZN 3h 4.33 0.013 2

AMZN 1h 2.89 0.033 3

AMZN 30min 2.06 0.043 7

APPL 30min 2.08 0.034 8

FB 15min 4 0.018 2

FB 3h 14.74 4.30E−07 2

FB 30min 2.31 0.04 5

Table 6. F-test and P-value for three
year data: stock return causes sentiment

Stock ticker Interval Fvalue Pvalue LagNo

AMZN 15min 4.314 0.013 2

AMZN 30min 2.069 0.043 7

AMZN 1h 4.59 0.01 2

AMZN 3h 11.857 7.31E−06 2

APPL 1h 2.395 0.014 8

FB 15min 6.24 0.001 2

FB 1h 2.633 0.032 4

FB 3h 6.264 0.001 2

and one day, it stabilizes at a lag of two. We also calculated the causality weight
as suggested by Geweke [4], who proved that the linear dependence of a causal
model (i.e., the causality weight) can be captured by the F-measure. For both
Amazon and Facebook, we found the greatest causality weight at three hours
(Figs. 3 and 4). This result, along with the stabilization of the lag at three hours,
suggests that we should select an interval of three hours for further analysis. The
F-value and the P-value of the analysis is shown in Tables 6 and 5.

(a) Amazon shows significant causal weight on 30MIN, 1HOUR, 3HOUR and 1DAY intervals.

(b) Facebook shows significant causal weight on 15MIN, 3HOUR and 1DAY intervals.

Fig. 3. Statistically significant weights for model 1: sentiment causes the stock return.
For both stocks, the causality weight was strongest at the 3 h time. The lowest causal
weight occurred at 30 min interval.
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(c) Amazon shows significant causal weight on 15MIN, 30MIN, 1HOUR, 3HOUR intervals.

(d) Facebook shows significant causal weight on 15MIN, 1HOUR and 3HOUR intervals.

Fig. 4. Statistically significant weights for model 2: stock return causes the sentiments.
For both stocks, the causality weight was strongest at the 3 h time. The lowest causal
weight occurred at 30 min interval for Amazon and 1 h for Facebook.

7 Conclusion

In this paper, we first introduced a stock market related tweet dataset that
has been labeled by positive or negative sentiments using Amazon Mechanical
Turk. In the second part of our paper, we thoroughly compared various deep
learning models, and finally introduced our LSTM model with 256 cells, which
outperformed all the other models, with accuracy of 92.7%.

While this model has the best accuracy achieved in sentiment analysis of
stock market tweets, there are still places for improvement. We suggest some
other steps to be added to the pre-processing analysis. For example, it would
be interesting to analyze the hashtag-ed words, and figure out if they are a real
indicator of a subject or not (e.g. using the frequency of hashtag being mentioned
in dataset). If not, they can be separated and considered to be regular words.
Also, having a larger tweet dataset would help us to try out other types of deep
learning models, e.g. deeper networks. Another attempt in this area could be to
create domain focused word embeddings for finance.

In the final part, we analyzed the causal link between our tweet dataset, and
the stock market return in different intervals. This is one of the few analyses
of causality between tweets and stock prices, the other being [2,11], which has
interesting result. In our analysis, we used an expanded dataset of stock return
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values that spanned a period of three years, from 2015 to 2017. Because we had
a fine granularity of the return values and the sentiments (per minute), we parti-
tioned both our return values and sentiment scores into five intervals: fifteen and
thirty minutes, one and three hours, and one day. For each interval, we then used
Granger to identify causal relationships between return values and sentiments for
three companies: Apple, Facebook, and Amazon. Using Granger causality anal-
ysis at the different intervals for Amazon, Facebook, and Apple, we identified
significant causal links, at a lag of three hours and one day, for Amazon and Face-
book. The strongest causal weight for these two stocks occurred at a three hour
lag. Importantly, the causal link existed in both directions: tweets influenced
future stock market returns, and stock market returns influenced future tweets.
This research can open research areas in social media impact on finance through
creation of better datasets and careful analysis of other models of causality.
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Abstract. The mean-variance framework by Markowitz is a classical
approach to portfolio selection. Earlier work has shown that the basic
Markowitz portfolios obtained by solving a quadratic program tend to
have poor out-of-sample performance. These issues have been addressed
by devising sparse variants of Markowitz portfolios in which the num-
ber of active positions is reduced either by applying a no-short-selling
constraint or L1-regularisation. In this work we consider a combinatorial
approach for finding sparse portfolios, which we call naive k-portfolios,
that allocate available capital uniformly on a fixed number of k assets,
and only take long positions. We present a novel randomised algorithm,
progressive resampling, that efficiently finds such portfolios, and com-
pare this with a number of well-known portfolio selection strategies using
public stock price data. We find that naive k-portfolios can be a viable
alternative to L1-regularisation when constructing sparse portfolios.

Keywords: Portfolio selection · Randomized algorithms ·
Sparse models

1 Introduction

We consider a simple and novel solution to the problem of portfolio selection
with non-fixed income securities. Our work is situated within the mean-variance
framework popularised by Markowitz [16]. At the core of the mean-variance
approach is to view the return of a portfolio as a random variable, and consider
both its expectation and variance. In short, of all portfolios having the same
expected return, a risk averse investor should choose the one with lowest variance
(of returns). An increase in risk should thus always be accompanied with an
increase in expected return, and vice versa.

While the Markowitz model in its basic form is a principled approach to
portfolio selection, it does have some well-known downsides.

1. A solution to the Markowitz model often produces a portfolio where the
investor must take a position on (almost) every available asset. Constructing
(and later updating) the portfolio may thus require the investor to carry out
a large number of transactions, which may be undesirable.
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2. Without additional constraints, the resulting portfolio may require taking a
short position1 on some of the assets, which is usually not possible for small
investors, and might be considered as risky also in general.

3. Constructing the Markowitz model requires estimating a possibly very large
covariance matrix from limited data (the historical asset prices). As a conse-
quence the resulting portfolio may be prone to “overfitting” in the same way
as complex machine learning models tend to overfit when training data is lim-
ited. That is, while the chosen portfolio is optimal given historical returns, it
may generalise poorly to unknown future fluctuations in asset prices [2].

A possible approach to mitigate the problems above is to build a sparse
portfolio, where the number of active positions is limited, and short selling is
explicitly prohibited. It has been observed that sparse portfolios without short
selling can be more stable [5,12], and they are also easier for small investors to
construct due to their smaller size. Methods for constructing sparse portfolios are
usually based on applying L1-regularisation within the Markowitz framework,
see e.g. [5,6,9,20]. This approach is mathematically well-motivated, but it can
be tricky to implement in practice, especially if it is important to impose strict
constraints on the size of the resulting portfolio while simultaneously avoid short
selling. For example, the approach in [5] finds a sparse portfolio that only takes
long positions, but the exact number of positions taken can not be controlled by
the investor.

Furthermore, it is not obvious that portfolio selection always benefits from
explicit optimisation, i.e., finding the best possible portfolio given historical data.
A naive portfolio that simply allocates a uniform amount of capital on every
possible asset (and only allows long positions), can be very difficult to beat by
more complex methods [7] because of the overfitting problem mentioned above.

Our Approach: In this work we combine sparsity and naive allocation to devise
a very simple method for building sparse portfolios without short selling in which
the number of active positions, expected return, and risk can be easily controlled
by the investor. This basic idea as such is not new, combinatorial approaches
(e.g. based on semidefinite programming) to portfolio selection have been pro-
posed earlier [10,21]. However, we view portfolio selection as a combinatorial
search problem instead of a numerical optimisation task. Also, our randomised
search algorithm is novel, as well as is our relaxed notion of “optimality” of the
portfolio.

Our contributions are defining the naive k-portfolio selection problem, and
presenting the Progressive Resampling algorithm for solving it2. We also present
two experiments on stock market data to illustrate the method.
1 “Short selling” means that the investor borrows the asset and immediately sells it on

the market. If the price of the asset decreases after some time, the investor can buy
the asset back at a lower price and keep the difference before returning the asset to
the lender. Short selling is essentially a bet that the price of an asset will decrease,
while simply buying the asset (or, taking a “long position”) is a bet that the assets
price will increase.

2 Variants of these have been introduced in the Master’s thesis of the first author.
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2 Background and Problem Statement

We first discuss basic definitions of the mean-variance framework (please see
e.g. [15] for a more in-depth discussion), then briefly introduce relevant back-
ground related to L1-regularised solutions, and conclude by presenting our novel
problem of naive k-portfolio selection.

2.1 The Markowitz Model and Its L1 Regularised Variant

Let A = {a1, . . . , an} denote a set of n assets, and denote by pi(t) the price
of asset ai at time t. In practice the pi(t) could refer to the daily (or weekly,
monthly) closing price at some stock exchange, for example. The return of asset
ai at time t is denoted ri(t). Returns are defined as the ratio between the price of
the asset at two successive time intervals, i.e., ri(t) = pi(t)/pi(t− 1). A portfolio
is represented by a weight vector w ∈ R

n, where wi is the weight of asset ai in
the portfolio, and

∑n
i=1 wi = 1. The return of portfolio w at time t is simply

the weighted sum of asset returns: rw(t) =
∑n

i=1 wiri(t).
Since in a non-fixed income setting future asset prices are unknown, the

ri(t) = ri are considered to be random variables. Let r ∈ R
n denote the vector

of expected returns for every asset, and denote by Σ the matrix of covariances
between all pairs of assets in A. Both r and Σ are estimated from historical
prices. In this paper we consider their standard estimators. The expected return
and variance of portfolio w are now given by wᵀr and wᵀΣw, respectively.

Given r and Σ, the original Markowitz model is defined by the following
quadratic program that minimizes portfolio risk for a given return level μ0:

min
w

wᵀΣw (1)

st. wᵀr = μ0 (2)
∑

i∈A

wi = 1, (3)

where μ0 is a user-specified expected return given by the investor, and 1 is the
vector of all ones. It is straightforward to show (see e.g. [5]) that this is equivalent
to the least squares problem

min
w

‖μ01 − Rw‖22 (4)

st. wᵀr = μ0, (5)
wᵀ1 = 1, (6)

where R is the matrix of returns over time, i.e., Rti = ri(t). This least squares
formulation immediately leads to standard regularisation approaches, in particu-
lar an L1-penalty term can be added in the objective function to promote sparse
solutions:

min
w

(‖μ01 − Rw‖22 + τ‖w‖1
)

(7)

st. wᵀr = μ0, (8)
wᵀ1 = 1, (9)
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where τ is a regularisation parameter. Unconstrained instances of such problems
can be efficiently solved e.g. with the LARS algorithm [8]. In [5] a variant of
LARS is devised that takes linear constraints, such as the ones required here,
into account. However, as suggested in the Appendix of [5], the constrained
L1-Regularised problem can be solved approximately with standard LARS by
including the constraints in the objective function as follows:

min
w

(‖μ01 − Rw‖22 + γ‖ [1;μ0] − [1; r] w‖22 + τ‖w‖1
)
, (10)

where [1;μ0] denotes a (column) vector with the corresponding entries, and [1; r]
is a 2 × n matrix where the first row contains ones, and the second row is equal
to r. The parameter γ must be set to a large enough value to avoid having
‖μ01 − Rw‖22 dominate the objective function. In the experiments we com-
pare our algorithm against this approximate approach. LARS finds a solution
to Eq. 10 by adding assets one-by-one starting from zero assets. In practice the
constraints are satisfied (approximately) only after a certain number of assets
have been added. Hence, we always use the solution with the smallest number
of active positions that satisfies wᵀ1 ≥ 0.9999.

Next, observe that while the non-regularised Markowitz model (Eqs. 1–3) can
be forced to produce portfolios without short-selling by adding the explicit con-
straint wi ≥ 0 for all ai ∈ A, this can unfortunately not be done for the L1-
regularised variant. If we force all wi ≥ 0 while keeping the constraint wᵀ1 = 1,
the L1-term ‖w‖1 =

∑n
i=1 |wi| is always equal to 1, and hence regularisation does

not have any effect at all! While solutions to the regularised least-squares problem
given in Eqs. 7–9 can be both sparse and non-negative, it is thus not possible to
enforce non-negativity, at least not simply by adding a constraint. Also the degree
of sparsity may vary: sometimes the solutions are very sparse, at other times they
can be less so, depending on the return matrix R and how μ0 is set.

2.2 Naive k-portfolios

We move on to present our variant of the portfolio selection problem that aims
to address these issues. In particular, we want to enforce no short-selling and
have control over portfolio size, but are willing to sacrifice (a little) both in
optimality of return and risk. Basically we look for a portfolio that has a long
position on exactly k assets, with each asset having the same weight 1/k, so that
the expected return of the portfolio is larger than a given threshold μ∗, and the
variance of the portfolio is less than a given threshold σ∗.

Definition 1. Let Uk ⊂ R
n denote the set of vectors w for which wi ∈ {0, 1/k}

for all ai ∈ A, and
∑n

i=1 wi = 1. That is, Uk is the set of all possible portfolios
of assets A that have a positive weight of 1/k on exactly k assets, and all other
assets have zero weight. We call such portfolios naive k-portfolios.

Definition 2. Given return vector r and covariance matrix Σ, define the feasi-
ble set F(μ, σ) = {w ∈ Uk | wᵀr ≥ μ and wᵀΣw ≤ σ}.
Problem 1. Given integer k, minimum return μ∗ and maximum risk σ∗, find at
least one portfolio w ∈ F(μ∗, σ∗).
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Clearly Problem 1 is not an optimisation problem, but a combinatorial search
task. Depending on how the investor sets the parameters μ∗ and σ∗, the num-
ber of feasible portfolios varies. In our approach, all portfolios in F(μ∗, σ∗) are
considered as equally good choices. Notice also that if μ∗ and σ∗ are set inap-
propriately, the set of feasible portfolios is empty, and no solution exists to
Problem 1.

3 A Progressive Resampling Algorithm

3.1 Basic Idea

Since Problem 1 only asks to find one portfolio that satisfies the constraints
on return and risk, it may be possible to use a random search procedure. If
the constraints μ∗ and σ∗ are loose enough, perhaps there are so many feasible
naive k-portfolios that we can simply draw vectors w from Uk at random and it
will not take too long to find one from F(μ∗, σ∗) that satisfies the constraints.
The problem becomes computationally challenging (and interesting) only when
feasible portfolios are rare, meaning that a (uniform) random sampler is unlikely
to find them in a reasonable amount of time.

To remedy this situation, we devise an algorithm that resembles importance
sampling. While the idea of importance sampling in general is to accurately
estimate e.g. the probabilities of rare events, we are only interested in making
one of these rare events happen. This is done by iteratively adjusting the sam-
pling distribution from which the portfolios are drawn. Consider a distribution
that assigns a positive probability to portfolios in F(μ∗, σ∗), and a probability
of zero to all other portfolios. Drawing a single w from this ideal distribution
is guaranteed to yield a solution to Problem1! Obviously this is infeasible in
practice, as setting up such an ideal distribution basically requires us to solve
the problem. But this intuition serves as the basis of our algorithm. We start
from a uniform sampling distribution, and then step-by-step adjust the sampler
towards a distribution that is more likely to produce portfolios from F(μ∗, σ∗),
and assigns a lower probability to the infeasible portfolios.

Algorithm 1. Progressive resampling
Start with relaxed constraints μ1 = μ∗/M and σ1 = Mσ∗ (M is some suitably large
number), and a uniform sampling distribution over Uk. Then on each iteration,

1. draw a random collection S of naive k-portfolios from the current distribution,

2. tighten the relaxed constraints towards μ∗ and σ∗ so that a fixed proportion of
portfolios in S remain satisfied,

3. update the sampling distribution to assign a higher probability on portfolios in S
that satisfy the updated constraints.

Repeat steps 1–3 until a portfolio that satisfies the original constraints μ∗ and σ∗ is
found in S, or the constraints can no longer be tightened.
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An outline of the approach is shown in Algorithm1. Next we discuss steps
1–3 in detail.

Step 1: Sampling Random Portfolios
Let Pr[w;Θ] denote the probability of observing portfolio w from a sampling
distribution parametrised by Θ. We consider distributions where this probability
is expressed in terms of asset-specific weights. The parameters Θ are simply
these asset-specific weights, i.e., Θ ∈ [0, 1]n is a vector of probabilities so that∑n

i=1 Θi = 1.
To draw a random portfolio given Θ, we employ a standard “without replace-

ment” subset sampling algorithm that applies the weights in Θ sequentially to
draw one asset at a time. After each draw, weights of the remaining assets are
normalised so that they sum up to 1. The probability of portfolio w given Θ is
given by

Pr[w;Θ] =
∏

i:wi>0

Θi

⎛

⎝
∑

π

k−1∏

j=1

(
1 −

j∑

i=1

Θπ(i)

)
⎞

⎠

−1

. (11)

Above π runs over all permutations of integers 1, . . . , k. Pr[w;Θ] is thus equal to
the product

∏
i:wi>0 Θi, divided by a sum over all permutations π of the assets

in the portfolio, where every π contributes a term the value of which can be
thought of as inversely proportional to

∑
i:wi>0 Θi. Therefore, clearly Pr[w;Θ]

increases when we increase Θi for those assets i that have a positive weight in w.
It is also straightforward to show that if Θi = 1/n for all i ∈ A, or if Θi = 1/k for
i : wi > 0 and Θi = 0 elsewhere, Eq. 11 simplifies to

(
n
k

)−1 and 1, respectively.

Step 2: Tightening the Constraints
Let μt and σt denote the (relaxed) constraints at the start of the t:th iteration.
We tighten the constraints by moving μt and σt towards μ∗ and σ∗ so that
a (user specified) proportion γ ∈ [0, 1] of portfolios in the collection S remain
satisfied. To do this, we must increase μt and decrease σt. While this could be
accomplished in a number of ways, for now we propose to scale both μt and σt

with the same factor δ. That is, we find a δ > 1, such that |{S∩F(δμt, σt/δ)}| =
γ|{S ∩F(μt, σt)}|, and then let μt+1 = δμt and σt+1 = σt/δ. The δ can be found
e.g. with binary search.

Step 3: Updating the Sampling Distribution
Let Θt denote the asset-specific weights at the start of the t:th iteration. Note
that when t = 1 we have Θ1

i = 1/n for all i ∈ A. The objective of the update is to
increase the probability of those portfolios in collection S that satisfy the updated
constraints μt+1 and σt+1 from step 2. Let SF = S ∩ F(μt+1, σt+1) denote the
subset of S that satisfies the updated constraints, and let qi = |SF |−1

∑
w∈SF wi.

If almost all, or none of the portfolios in SF contain i, qi will be close to 1 or
0, respectively. The sampling weights for all assets i are then updated by the
formula Θt+1

i = (1−α)Θt
i +αqi, where α ∈ [0, 1] can be thought of as a “learning

rate”.
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Stopping Condition
A trivial stopping condition is obviously a check that determines if any w ∈ S
also belongs to F(μ∗, σ∗). In addition to this, the algorithm stops whenever
in Step 2 no δ > 1 + ε can be found, where ε is some very small constant. This
means that even if the constraints are tightened only by a very small amount, all
satisfying portfolios in the current collection S become unsatisfying, and we can
no longer continue with the tightening process. This could mean that F(μ∗, σ∗)
in fact is empty, and stopping without returning a solution is the correct choice.
But we can not rule out that this is simply caused by the collection S missing
exactly those portfolios that reside “on the way” towards F(μ∗, σ∗). A rigorous
analysis of this is left as future work, for now we just consider this as a reasonable
stopping heuristic.

3.2 Why Should Progressive Resampling Work?

The algorithm aims to adjust Θ so that the probability of portfolios in F(μ∗, σ∗)
increases enough so that eventually at least one of them appears in the sample
S. We sketch a brief argument that sheds some light on how the algorithm tries
to achieve this.

We consider an idealised variant of the algorithm in which on each iteration
the collection S is equal to Uk irrespectively of Θt. To simplify matters further,
suppose there is only one portfolio in F(μ∗, σ∗). Also, suppose that α = 1, and
observe that after tightening the constraints we thus always move Θt+1 to the
“center” of F(μt+1, σt+1). (It helps to think that Θt and the portfolios reside in
the same vector space.)

Next, note that the sets F(μ1, σ1),F(μ2, σ2), . . . considered by this idealised
algorithm by construction form a nested (possibly very long) sequence of subsets
of Uk that “approaches” F(μ∗, σ∗), meaning we have

Uk ⊇ F(μ1, σ1) ⊃ F(μ2, σ2) ⊃ . . . ⊃ F(μ∗, σ∗).

This, together with the observation above, means that the vector Θt must con-
verge towards the single feasible portfolio which will hence eventually appear in
S.

The claim is that the progressive resampling algorithm approximates this
idealised procedure using a “small” collection S that is resampled on each iter-
ation from the updated distribution. This idea can be seen as akin to stochastic
gradient descent, where on each iteration the gradient is computed only from a
small batch rather than all of the training data.

The accuracy of this approximation depends on the size of S, as well as the
parameters α and γ. The parameter α serves two purposes. First, it guarantees
that we will always have a small nonzero probability on every i ∈ A, even if some
asset might not have appeared in S at all. Second, since in practice |S| 
 |Uk|,
the qi might be a poor approximation of the center of F(μt+1, σt+1). By letting
α < 1 these issues can be mitigated to some degree. Furthermore, by setting γ in
step 2 to a small (but not too small) value, we can increase the chances of finding
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a large enough δ > 1, and thus the resampling can continue. Note that like in
the idealised algorithm, the sequence of feasible sets will be nested and always
contains F(μ∗, σ∗). However, if γ is set very low, the resulting qis are computed
from very few examples, meaning they might not guide the process “in the right
direction”. This latter problem can be mitigated by drawing a “large enough”
collection S. A more formal study of the interplay of the algorithm’s parameters
is left for future work.

4 Experiments

4.1 Datasets and Baseline Methods

We use two stock market datasets with daily closing prices of securities. These
are (1) a Dow-Jones-30 dataset (DJ30) of 30 stocks3, and (2) a subset of 322
SP500 stocks.

We consider the following well-known portfolio selection methods in the
experiments.

1. In the Naive portfolio we simply set wi = 1/n for all ai ∈ A.
2. The Basic Markowitz portfolio is obtained by solving minw wᵀΣw subject

to wᵀr = μ0 and wᵀ1 = 1.
3. The No-short Markowitz: is obtained in the same way, but with the addi-

tional constraint wi ≥ 0 for all ai ∈ A.
4. To obtain the L1-Markowitz portfolio we solve Eq. 10 with LARS, and

select the solution with the smallest number of active positions that satisfies
wᵀ1 ≥ 0.9999. These portfolios also almost always have no short positions,
but this is not explicitly guaranteed.

4.2 Experiment 1: Are There Any Reasonable Naive k-Portfolios?

The purpose of the first experiment is to study if naive k-portfolios can compete
with optimised portfolios in terms of their risk/return characteristics. We first
estimate daily returns and their covariances using all of the available data for
both DJ30 and SP500, and find the optimal L1-Markowitz portfolio for a number
of return levels with the approximate LARS algorithm. These are shown as black
crosses in Fig. 1 for both DJ30 (top) and SP500 (bottom) with risk and return
on the x and y-axis, respectively.

Since DJ30 has only 30 assets in total, we then enumerate all possible naive
k-portfolios for different values of k, and then plot the efficient frontier of these
(i.e. the Pareto-optimal naive k-portfolios). This is shown for k ∈ {5, 8, 10} by
the red lines in the top panel of Fig. 1. All naive k-portfolios for the given k
reside below (and to the right) of the respective line. Clearly when there are
only few assets in total, the naive k-portfolios have a substantially higher risk
for a given return level than the optimal L1-Markowitz portfolios, and even if k
is increased from 5 to 10, their risk is reduced only by a small amount.
3 http://lib.stat.cmu.edu/datasets/DJ30-1985-2003.zip.

http://lib.stat.cmu.edu/datasets/DJ30-1985-2003.zip
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Fig. 1. Experiment 1. Naive k-portfolios compared with optimal L1-Markowitz port-
folios. Numbers adjacent to the symbols indicate the number of active positions in the
portfolio. Top, DJ30: Exact efficient frontiers of naive k-portfolios for different values
of k. The L1-Markowitz portfolios have substantially lower risk than naive k-portfolios.
Bottom, SP500: In this case there exist naive k-portfolios with comparable risk/return
characteristics as the L1-Markowitz portfolios. See text for details.

For SP500 there are simply too many assets to exhaustively enumerate all
possible naive k-portfolios. However, now we can use the progressive resampling
algorithm to investigate if there are any naive k-portfolios that are reasonably
close by to the optimal L1-Markowitz portfolios. Given return μL1 and risk σL1

of an L1-portfolio wL1, we set the constraints μ∗ and σ∗ so that wL1 ∈ F(μ∗, σ∗),
by letting μ∗ = μL1 − 5 × 10−5 and σ∗ = σL1 + 5 × 10−6. Then, for every L1-
Markowitz portfolio in the bottom panel of Fig. 1, we find the smallest naive
k-portfolio that satisfies the respective μ∗ and σ∗. (The smallest portfolio is
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found simply by running the progressive resampling algorithm with increasing
values of k until a solution is found.) The red plus signs in Fig. 1 (bottom panel)
show risk and return of these. We can observe that there indeed exist naive k-
portfolios that are comparable to the optimal L1-Markowitz portfolios in terms
of return and risk, but have a substantially smaller number of active positions,
especially in the low-risk low-return part.

In summary, we find that naive k-portfolios can have comparable performance
to L1-Markowitz portfolios, but this seems to hold only when the total number
of assets is large enough. If the portfolio must be assembled from a set of only
a few assets, L1-regularisation seems like a more sold approach. However, these
observation are based on “training data”. Next, we proceed to study out-of-
sample performance of the different portfolio selection strategies.

4.3 Experiment 2: Out-of-Sample Performance of Naive k-Portfolios

In this experiment we only use the SP500 data, because above we observed
that for DJ30 the naive k-portfolios have substantially higher excepted risk in
“training data” than optimised portfolios. We use historical prices from a given
two-year period to estimate daily asset returns and their covariances. The result-
ing portfolios are evaluated in terms of the Sharpe-ratio (expected return divided
by its standard deviation) with prices from the one-year period that follows the
day on which the portfolio was constructed (always June 30th, we consider the
years 1998–2013). We thus repeat the portfolio selection process for a number
of (overlapping) training periods to assess how the different portfolio selection
strategies perform in different market conditions. (This is not to suggest that
an investor should construct a new portfolio each year. Our aim is to simply see
how the methods perform over time for different investors. A similar evaluation
methodology was also taken e.g. in [5].)

We set the desired daily return level μ0 so that it corresponds to a 1-year
return of seven percent (7%). The progressive resampling algorithm was called
with μ∗ and σ∗ set to replicate the performance of the L1-Markowitz portfolio
by slightly relaxing its risk and return level. Also, we let k = 15, meaning
the resulting portfolio should consist of exactly 15 assets. Given that there are
322 assets in total, this results in a very sparse portfolios. Since our algorithm
is randomised and is thus likely to return a different portfolio even with the
same input parameters, we run the algorithm 25 times and report the average
performance of the portfolios thus obtained.

Results are shown in Table 1. The selection strategy having the highest
Sharpe ratio is highlighted in bold. The leftmost column shows the date on
which the portfolio was constructed. That is, it was trained on data from the
previous two years, and evaluated on the daily returns of the 12 months that
followed. We find that the naive portfolio that simply allocates all capital uni-
formly over all possible n assets tends to have surprisingly good out-of-sample
performance. This result has been observed also earlier, see e.g. [7]. Also, the
basic Markowitz model without short-selling constraints nor regularisation tends
to perform poorly: in good times it can not really outperform the naive strategy,
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Table 1. Out-of-sample performance on SP500 daily returns (Sharpe ratio)

Naive Basic
Markowitz

No-short
Markowitz

L1-
Markowitz

Naive-15

30-06-1998 0.08 0.00 0.01 0.03 0.02

30-06-1999 0.03 −0.06 −0.03 −0.04 −0.02

30-06-2000 0.09 0.09 0.14 0.12 0.12

30-06-2001 0.01 −0.02 0.05 0.05 −0.05

30-06-2002 0.02 0.02 0.02 0.01 −0.01

30-06-2003 0.14 0.14 0.15 0.13 0.13

30-06-2004 0.09 0.03 0.10 0.09 -

30-06-2005 0.07 0.02 0.03 0.04 0.04

30-06-2006 0.11 0.12 0.12 0.14 0.11

30-06-2007 −0.02 −0.07 −0.03 −0.03 −0.03

30-06-2008 −0.01 −0.05 −0.01 −0.03 −0.01

30-06-2009 0.08 0.10 0.13 0.13 -

30-06-2010 0.13 0.15 0.16 0.17 -

30-06-2011 0.01 0.12 0.06 0.05 0.07

30-06-2012 0.11 0.04 0.08 0.06 0.07

30-06-2013 0.13 −0.01 0.04 0.04 0.04

and in bad times it tends to have substantially lower Sharpe ratio. No-Short
Markowitz on the other hand is another good candidate.

When comparing L1-Markowitz with the average performance of the naive k-
portfolios, we find that neither is a clear winner in out-of-sample performance.
The L1-Markowitz portfolios can consist of substantially more than k = 15
assets, and the might require the investor to take short positions, while the
naive k-portfolios have a very simple structure. This suggests that the naive
k-portfolios found by progressive resampling might be reasonable and simple
alternatives to those found by the (approximately solved) L1-Regularised models.
However, in 2004, 2009 and 2010, progressive resampling failed to find a portfolio
with exactly 15 assets and the given constraints on return and risk. This is a
downside of the approach that can be mitigated either by relaxing the constraints
or allowing a larger portfolio (by setting k to a larger value).

5 Discussion, Limitations, and Conclusions

5.1 Related Approaches

We have discussed related work also earlier in context. Here we highlight some
related research in more detail.

Randomised Portfolio Selection. The authors of [19] consider a problem
very similar to our naive k-portfolio search task in the mean-variance framework.
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However, their algorithm is based on randomised rounding of the solution to a
semidefinite program, and is also not explicitly controlling for portfolio size as
we do. Also, as discussed below, our problem formulation and solution approach
are general enough to cover a variety of portfolio “quality measures”, and can
thus be applied also outside the mean-variance framework.

Pattern Sampling. E.g. frequent patterns [3,4] or subgroups [17] can efficiently
be mined by biasing the sampling distribution to some extent in the same vein
as is done in our algorithm. However, unlike work on pattern sampling, we are
not interested in a representative sample that captures global properties of the
entire pattern distribution. We simply want to find one portfolio that satisfies
the constraints μ∗ and σ∗.

Skyline Algorithms for Subsets of Size k. There exist efficient algorithms for
computing the set of Pareto optimal subsets of size k [13,14]. (E.g. in database lit-
erature this set is called the “skyline” of a set of points.) These algorithms could,
possibly with minor modifications, be used also to find good naive k-portfolios.
However, they rely on linearity and submodularity of the objective functions,
which may not apply for some risk/return measures. Progressive resampling
should yield good solutions also in cases where the techniques from [13,14] are
not applicable.

Genetic/Evolutionary Algorithms. Our approach could also be understood
as a special kind of genetic algorithm with a binary fitness function: either an
individual survives or it does not, without any intermediary outcomes. The main
difference to textbook-style evolutionary optimisation methods is that progres-
sive resampling obtains the next generation not via cross-overs and mutations
of the current generation, but from a sampling distribution that characterises
some global properties of the “survivors” from the previous generation.

Multiplicative Weights Update Method. The multiplicative weights update
method [1] is a meta-algorithm that unifies a number of different algorithms
e.g. from machine learning, flow problems, game theory, etc. It seems that the
progressive resampling algorithm could also be understood as a variant of this
approach. Exploring the connections between these methods in detail is left as
future work, however.

5.2 Generalising the Naive k-portfolio Problem

Problem 1 is only a special case of a more general combinatorial problem:

Problem 2. Given finite set U , integer k, functions fi : 2U → R and thresholds
θi ∈ R for i = 1, . . . , h, find X ⊂ U st. |X| = k and fi(X) ≤ θi for all i, or
determine that no such X exists.

In Problem1 h = 2, the functions fi are return and risk, and the thresholds θi

are μ∗ and σ∗ (the inequality for return must be multiplied by −1). A related
problem is integer linear programming (ILP), in particular the variant where
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we simply must determine if a given ILP has feasible solutions. Clearly ILP-
feasibility is a special case of Problem1, where the functions fi are linear. Since
ILP-feasibility is known to be NP-complete (A6 MP1 in [11]), the decision version
of Problem 2 (that simply asks if an X that satisfies all constraints exists) is NP-
complete as well.

5.3 Limitations

Our work has some limitations:

We Do not Find “The Optimal Portfolio”. By defining the problem as
a search of any 1/k portfolio that satisfies the user-specified constraints, we
clearly do not find a portfolio that is in a strict sense optimal. However, it is not
at all obvious that such an optimal portfolio would have better out-of-sample
performance than a portfolio that is only “reasonably good” in training data.
We argue that by making this more explicit in the problem definition, we to
some extent can steer the investors’ thinking away from optimality, and towards
more realistic notions of the risk/return trade-offs.

No Naive k-Portfolio Might Satisfy the Investors’ Constraints. In con-
trast to the classical Markowitz model, where the user (usually) only sets the
desired return, and risk is minimised given this constraint, in our approach the
user must set a constraint both on return and risk. If no naive k-portfolio sat-
isfies the investors constraints, the options are either to relax the constraints or
increase k. Knowing that no portfolios that satisfy the constraints exist may also
be useful information for an investor.

Setting the Parameters is Difficult. It is true that to make an educated
choice about μ∗ and σ∗ the investor should be given “global” information about
all possible portfolios. A risk-return diagram (Fig. 1) can be helpful here as it
shows how risk and returns are related, and what levels of risk one should be
prepared to take for a given level of expected return.

The Mean-Variance Framework is Outdated Anyway. Clearly one can
think of more sophisticated (and possibly more useful) ways to quantify portfolio
risk than return variance. However, our problem definition nor algorithm do not
require the use of any particular risk/return metrics, nor is it even constrained
to the realm of risks and returns! Basically it can be used in exactly the same
manner with any other approach to quantify relevant properties of a portfolio. Of
course in theory (as well as practice) it is important that the resulting constraints
are convex in the space of all portfolios.

5.4 Conclusion and Future Work

We have presented the problem of finding naive k-portfolios in the mean-variance
framework, proposed a randomised algorithm for finding these, and conducted
two experiments to study their performance. We found that there exist naive
k-portfolios that have (in training data) comparable performance to optimised
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L1-regularised Markowitz portfolios, and that these portfolios also have simi-
lar out-of-sample performance. Overall, our experiments confirm the well-known
result that a very naive investment portfolio that simply allocates a small frac-
tion of capital to all possible assets can be very competitive. Therefore, in the
absence of other constraints the best choice for a small investor is a mutual
fund or ETF that allocates its capital over all possible assets according to some
simple mechanism, e.g. market capitalisation. However, if portfolio sparsity is of
importance, and short-selling is not possible, the naive k-portfolios seem like a
reasonable alternative to L1-Regularisation.

The generalisation of the naive k-portfolio problem (Problem2) and the pro-
gressive resampling algorithm seem like intersting avenues for future work. For
example, showing that progressive resampling is a polynomial Monte Carlo algo-
rithm [18] for some variants of Problem2 seems like an interesting open question.
Also other questions of complexity and performance guarantees of Algorithm1
are left for future studies.
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Abstract. With the rise of new laws around privacy and awareness,
explanation of automated decision making becomes increasingly impor-
tant. Nowadays, machine learning models are used to aid experts in
domains such as banking and insurance to find suspicious transactions,
approve loans and credit card applications. Companies using such sys-
tems have to be able to provide the rationale behind their decisions;
blindly relying on the trained model is not sufficient. There are currently
a number of methods that provide insights in models and their decisions,
but often they are either good at showing global or local behavior. Global
behavior is often too complex to visualize or comprehend, so approxima-
tions are shown, and visualizing local behavior is often misleading as it
is difficult to define what local exactly means (i.e. our methods don’t
“know” how easily a feature-value can be changed; which ones are flexi-
ble, and which ones are static). We introduce the ICIE framework (Inter-
active Contextual Interaction Explanations) which enables users to view
explanations of individual instances under different contexts. We will see
that various contexts for the same case lead to different explanations,
revealing different feature interactions.

Keywords: Explanations · Feature contributions ·
Feature interactions · Model transparency · Awareness · Trust ·
Responsible analytics

1 Introduction

Within the domain of banking, black box models are used to predict fraud,
money laundering and risk in lending, with their main advantage: speed. How-
ever, for real world application of such models, the outcome still has to be aug-
mented by human experts for positive cases, as the bank has to be able to
explain to its customers why a particular decision was made.

The standard accounting software packages of this World all provide features
to perform what is colloquially known as a “What if? analysis”: if we change the
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value of a cell, how does that affect other cells in my spreadsheet? It is a rather
basic technique, and therefore by itself not particularly of interest for data min-
ers. As a research field, we are typically more interested in reverse engineering, a
“What happened? analysis”. A classifier predicts a specific outcome, but which
input attributes contribute most? Which input attributes make it happen? How
far must we go in changing the input, in order to change the outcome?

In this paper, we propose to stack the two forms of analysis, to provide a
more in-depth analysis of feature interaction and how it affects prediction. We
do so by building onto the concept of SHAP contribution values [11]. Introduced
in 1953 in the context of cooperative game theory, the original Shapley values
[10] provide an answer to the question of how much of the total reward should
be awarded to each member of a winning coalition, based on the individual
contributions. This concept can be exploited [11] to determine to which degree a
certain prediction outcome can be attributed to each individual input attribute.

However, not all real-world interactions can naturally be decomposed into
individual contributions. For instance, a family history of clubfoot and mater-
nal smoking individually both have a positive influence on the probability that
the offspring displays isolated clubfoot. However, if the family history displays
clubfoot, this has a multiplicative effect on the influence of smoking on the prob-
ability of clubfoot in the offspring [5]. Any decomposition of the final effect into
an additive contribution to single input attributes will necessarily misrepresent
what is really going on in this dataset. This is a fundamental problem, that this
paper will also not solve.

Instead, our main contribution allows an end user to explore more convoluted
interactions. A recent paper [6] introduced SHAP interaction values, which allow
a user to find pairs of features which interact differently from their expected
additive contributions. Although these values provide correct explanations of
the case under observation, they are often still hard to interpret, and only give a
limited view of what is actually happening (i.e. in the general context, where each
feature is equally important). Instead, we propose to explore wider interactions,
in the ICIE framework (Interactive Contextual Interaction Explanations). Under
this framework, users can test various contexts to find explanations featuring
unusual attribute interactions (i.e. contexts under which the “contextual SHAP
values” change). Hence, ICIE enables users to find contexts (the “what if?”
part) under which attributes interact unusually with the prediction (the “what
happened?” part). Ultimately, this enables analysts to perform a more targeted
investigation when verifying positive alerts.

2 Related Work

Baehrens et al. [1] propose methods which visualize a limited number of dimen-
sions w.r.t. the class label assigned by the model, for individual classification
decisions. Goldstein et al. [4], have a similar approach and observe the average
global prediction when modifying these features. The LIME method [8] aims
at constructing interpretable models in the vicinity of the case under explana-
tion, and is prone to how exactly this vicinity is defined. Most current works
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on explanation of individual predictions use some form of sensitivity analysis to
determine the impact of a feature. The EXPLAIN method [9] by Robnik-Šikonja
and Kononenko, measures the impact of a removing a feature by comparing
the original prediction to the average predictions for all of the feature’s possi-
ble values. This method however cannot cope with interacting features which
cannot impact the classifier’s outcome alone (e.g. when f(x) = a1 ∨ a2, for
x = {a1 = true, a2 = true}, both a1 and a2 need to change in order to see that
either one of them has an impact on the outcome, consequently, both will be
assigned zero contribution). Štrumbelj et al. address this problem with IME [12],
by observing each of the 2n feature subsets (in case of binary classification) and
hence has an exponential time complexity. While this method is capable of show-
ing contributions for interacting features, it is not feasible for use on datasets
with many attributes and/or attribute values. Štrumbelj et al. follow this up
with an approximation algorithm [11] using the Shapley values from cooper-
ative game theory [10], which makes computation feasible for larger domains.
Lundberg et al. discuss theory and several properties of these SHAP values [7],
provide an algorithm for efficient computation for ensembles of trees, and pro-
vide a generalization of the SHAP contributions which enables them to measure
interaction between two features [6]. Finally, Martens and Foster provide algo-
rithmic approaches to find explanations for high dimensional document data, in
the form of minimal sets of words that change the outcome of the classifier when
removed from the document [13].

As noted by Lundberg et al., many current methods for interpreting indi-
vidual machine learning model predictions fall into the class of additive feature
contribution methods [7]. This class covers methods that explain a model’s out-
put as a sum of real values attributed to each input feature. Additive feature
contribution methods have an explanation model g that is a linear function of

binary variables: g(z′) = θ0 +
n∑

i=1

θiz
′
i, where z′ ∈ {0, 1}n, n is the number of

input features, and θi ∈ R. The z′
i variables typically represent a feature being

observed or unknown, and the θi’s are the feature contribution values.

3 Preliminaries

Given a dataset Ω, which is a bag of N records x ∈ Ω of the form x =
(a1, . . . , an, �), where {a1, . . . , an} are the input attributes of the dataset, taken
from some collective domain X , and � ∈ {�pos, �neg} is the binary class label. A
model f(x) can be trained to predict the class label �.

To explain a model’s decision, SHAP values can be computed for each of the
attributes. These values reveal the additive contributions to the model’s outcome
and hence the sum of these values approximate the predicted class label closely.
It is important to note that these values reveal the local contributions for a
particular instance, consequently, the contribution for some feature a1 can be
positive for an instance x, while it can be negative for an instance x′ (if feature
a1 interacts with one of the changed attributes in x′).
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Definition 1 (Additive SHAP contribution). Let θi(x) be the additive
SHAP contribution value for the ith feature of an instance x, i.e.

θi(x) =
∑

S⊆X\{i}

|S|!(n − |S| − 1)!
n!

[fx(S ∪ {i}) − fx(S)],

where n is the number of attributes in the feature space X , and fx(S) is the
soft classifier output for model f , conditioned only on the features present in the
feature subset S.

Note that negative SHAP values represent feature-values contributing to the
negative class and positive SHAP values to the positive class. Exact computation
of the SHAP values is not feasible, but they can be approximated by the sampling
algorithm described by Štrumbelj et. al. [11, Algorithm 1].

4 The ICIE Method

Providing an overview of only the SHAP contributions gives a limited view of
the model’s logic. After all, changing one feature, could (potentially completely)
change the original contributions. We propose a method to manually explore
contexts under which the SHAP values are different, and allow users to gain
more confidence in for example a fraud alert.

We introduce “context” as our key element of interaction with the user.
Context can be defined as a set of constraints, to describe a subspace of the
feature space. For now, we restrict ourselves to context that take the form of
the well-known descriptions from pattern mining (Definition 2). An instance is
either covered by a description, or not. And hence can be used as a natural way
to restrict the calculation of the SHAP values to a subspace of the feature space.

Definition 2 (Description). A description is a set of constraints, mapping an
instance from a domain, to a binary value: D = x → {true, false}.

SHAP values reflect the contribution of a feature ai for an instance x and
its predicted label �, and are intuitively computed by taking the average change
in soft prediction output for perturbed versions of x. For each perturbation the
difference in output between a version with ai, and one without ai is summed.
We use the context to restrict this perturbation space. Let this be clarified by an
illustrative example. Suppose a model is trained on a dataset about car occasions
to predict whether the price will be ‘low’ or ‘high’, and we are interested in
the model’s opinion on an instance x. Let x = {amileage = 250.000, afuel =
‘gasoline’}, where we are interested in the contribution of amileage. Suppose the
model predicts �price = ‘low’, and feature amileage with SHAP value θmileage = 0.5
is the largest contributor for this decision. When the same case is now observed
under the context of only mileage ≥ 200.000 cars. We likely observe that the
contribution of fuel increases, as ‘diesel’ cars can handle a higher mileage, hence
making the fuel type a more important selection criterion. Such interactions are
not revealed by the SHAP values. In this work we propose a framework to let
an analyst explore such scenarios.
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4.1 Calculation of Contextual SHAP Values

We calculate SHAP values under a given context similarly to [11, Algorithm
1], with a twist. Instead of selecting a sample at random using π(n) to perturb
features (the set of all possible feature permutations), we select them from πD(n)
(the set of all feature permutations satisfying the context D). The effect of the
features in the context is amplified by disregarding the feature effects captured
by the complement of the context. Formally πD(n) is defined as the set of tuples
of the form (d1, . . . , de, dc1, . . . , d

c
n−e) ∈ X , where AD = {d1, . . . , de} is the set

of attribute indices mentioned in D, and (dc1, . . . , d
c
n−e) ∈ dc is the set of all

random permutations of the complement of AD. We refer to a SHAP value θ
under context D by the notation θD. Note that under the general context, ICIE
values reduce to the regular SHAP values.

4.2 UI for Context Exploration

Figure 1 shows the user interface of our application. The next sections discuss its
various components. The software consists of two parts: (1) the computation of
the classification models (from .csv data files) and (contextual) SHAP values are
done on the server (Java); and (2) the user interface runs in the client browser
(ECMAScript 6), and sends requests to the server via a MySQL database, where
asynchronous Java workers are waiting to answer requests (i.e. computing (con-
textual) SHAP values).

SHAP Parameters Controller. In the top of the screen the parameters con-
troller is shown. A dataset (with corresponding model) can be selected here. An
instance from this dataset can be retrieved by inserting its x.id. The m corre-
sponds to the SHAP value sampling criteria (from [11]). The first m value is the
minimum number of samples drawn for each feature to get an initial estimation
for the SHAP value of each feature, the second m number is the maximum num-
ber of samples that can be draw (multiplied by the number of features), and
is divided based on the expect reduction in variance for the SHAP values. The
button fast/quality can be used to set these two values to preset values.

Context Controller. Allows the user to manipulate the context. We restrict
ourselves to contexts that describe subgroups of the data by using simple oper-
ators on a subset of features. In Fig. 1 a context representing non-Asian people,
younger than 46 with “some” capital gain and education are represented. For
ease of use, the 0/1 button next to the close button can toggle the context
on/off.

Feature Contributions View. In this view, we present the contextual SHAP
feature contributions. The user can manipulate the case under investigation here,
allowing him/her to observe explanations for variations of the case. With each
step in either changing the instance or the context, we highlight the aspects that



86 S. B. van der Zon et al.

Fig. 1. The ICIE user interface. In the top of the screen, in the parameters controller,
basic domain- and SHAP sampling parameters can be set. In the center of the screen,
the feature importances for the current case (based on x.id) are shown (red bars on the
left side for negative contributors, and green bars on the right for positive contributors).
A user can modify the instance on the fly by changing its attributes. In the bottom
of the screen the context is shown and can be modified. For each change that the user
makes (either in context or the instance), the contribution values are recalculated, and
the changes are reflected by the delta contributions (next to each contribution) and
the delta rankings (next to the value selector for each attribute). (Color figure online)

change. The difference in contribution value is shown along with the change in
ranking of the feature (based on the sorting by contribution).

5 Use Cases

We demonstrate our method on six datasets, all taken from the UCI repository
[3]. This sample features a mixture of datasets having only binary/nominal or
only numeric attributes, as well as datasets mixing attribute types. Characteris-
tics of the used datasets, including statistics on the available attributes per type,
can be found in Table 1. For each dataset Ω, a classifier is trained on a random
sample of 80% of the data and some common quality measures are reported on
the remaining 20% of the data. The models are depth-16 decision trees [2] (char-
acteristics can be found in Table 2). Note that our approach is model agnostic,
and we simply use decision trees for practical purposes.
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For each dataset we show the additive contributions under the general con-
text, along with a more specific context revealing interacting features (not pos-
sible to obtain from the general SHAP values). We comment on the found inter-
actions revealed by the context and explain the process of navigating to the
specific context. In the next section, some generalizable remarks on the “navi-
gation process” are discussed.

Table 1. Dataset characteristics

Dataset N n nbin nnom nnum

Ω1 = Adult 48842 14 1 7 6

Ω2 = Credit-card-default 3000 24 0 4 20

Ω3 = German-credit 1000 21 1 13 7

Ω4 = Mushroom 8124 22 6 16 0

Ω5 = Tic-Tac-Toe 958 9 0 9 0

Ω6 = Wisconsin 699 9 0 0 9

Table 2. Model characteristics

Dataset Majority Accuracy Kappa Precision Recall F1-score

Ω1 = Adult 0.92 0.83 0.45 0.91 0.91 0.91

Ω2 = Credit-card-default 0.70 0.78 0.45 0.83 0.83 0.83

Ω3 = German-credit 0.54 0.69 0.48 0.82 0.82 0.82

Ω4 = Mushroom 0.53 1.00 1.00 1.00 1.00 1.00

Ω5 = Tic-Tac-Toe 0.63 0.85 0.69 0.82 0.82 0.82

Ω6 = Wisconsin 0.64 0.97 0.93 0.98 0.98 0.98

5.1 Adult

This dataset records instances on the annual revenue of individuals and dis-
cretizes the individuals in two categories (more than 50k, or less than or equal
50k). For this exploration example we observe the instance with id = 90 (the
first instance has id = 0) from the Adult dataset. Figure 2a shows the “before”
situation, and Fig. 2b shows the “after” situation (where the context is lim-
ited to capital gain=0). In the before situation, it is clear which attribute is
dominating the decision (namely capital gain, with θcapital gain=0 = −1.48).
For this reason, we choose to restrict the context to this particular attribute;
the intuition is that now the contributions will be computed only against
instances with this same capital gain, hence amplifying the inner effects in
that subspace of the data. An unexpected finding reflected by our visualiza-
tion is that in the general context age is the biggest positive contributor (with



88 S. B. van der Zon et al.

θage=28 = 0.02), whereas in the specific context, age becomes a negative con-
tributor (with θcapital gain=0

age=28 = −0.02). This implies an interaction between the
two features and can intuitively be interpreted as: generally age = 28 has a
positive impact on the classification, but within the subspace of people with
capital gain = 0, this particular age, contributes negatively.

Fig. 2. Explanations for case 90 from the Adult dataset (we start counting from 0).
On the left (Fig. 2a), we see the explanation in the general context, and on the right
(Fig. 2b), we see the same explanation, but now under the context {capital gain = 0}.

Another interesting observation for case 90 of the Adult dataset is presented
in Fig. 3. The age attribute contributes differently depending on the particular
age ranges we inspect. We observe that the positive contribution of age is ampli-
fied by a factor 10 in the context age ≤ 28 (Fig. 3a). Intuitively interpreted as:
in the subspace of people with an age up to 28, age contributes substantially

Fig. 3. Explanations for case 90 from the Adult dataset. On the left (Fig. 3a), we see
the explanation under the context {age ≤ 28}, and on the right (Fig. 2b), we see the
same explanation, but now under the context {age ≥ 28}.
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more positively than in the general context (this makes sense as people who are
28 years old in the age group of people of age up to 28, generally make more
money than younger ones). When we observe the complement of this context
(age ≥ 28), the contribution of age is actually inverted (which makes sense
for analogous reasons). The general context averages the contributions over the
entire age range, where the negative contributions dominate this example, thus
sketching a limited view which may be interpreted incorrectly.

5.2 Credit-Card-Default

This dataset records credit card clients in Taiwan from April 2005 to Septem-
ber 2005 and are divided in two groups: people who pay duly or people who
default on their credit card payments. The model that was trained on this
dataset reaches 89% accuracy. Figure 4 presents a client that defaulted on her
credit card payment, with biggest contributor payment-amount-6 = 0 (the
amount that was payed back six months ago). Note that the contribution of
education = ‘university’ has a slight positive impact on defaulting (maybe
because this person is actually still in university judging by the age). When
inspected under context {payment-amount-6 = 0}, two interesting observations
can be made. Firstly, within the attribute university grows by a factor 3, imply-
ing that the within this specific subgroup people in university are apparently
more likely to default. Secondly, the importance of the age feature (towards pay-
ing duly) gets smaller, meaning that in this subgroup the positive effect of age
is less.

Fig. 4. Explanations for case 0 from the Credit-card-default dataset. On the left
(Fig. 4a), we see the explanation in the general context, and on the right (Fig. 4b),
we see the same explanation under the context {payment-amount-6 = 0}.



90 S. B. van der Zon et al.

5.3 German-Credit

This dataset records clients from a German bank requesting a loan with a spec-
ified amount, purpose and duration for the loan. The clients are divided in two
groups: clients who did not manage to pay according to agreement (bad class)
and clients who did (good credit class). The model that was trained on this
dataset reaches 69% accuracy. Figure 5 presents a client that was assigned the
bad credit class, with biggest (bad-class) contributor account-duration = 48
(the duration of the loan was 48 months), and as biggest (good-class) contributor
credit-amount = 5951, which is apparently considered low by the model. If we
want to amplify the effects more, we restrict the context to a sub-range of the
biggest contributor, namely {account-duration ≥ 48} (only loans of at least
48 months). We can now observe that under this context the importance for
the biggest good-class contributor completely disappears, implying that while in
the general setting having this low credit amount is not a risk, in the context
of clients with a loan lasting 48 months or longer there actually is an increased
risk.

Fig. 5. Explanations for case 1 from the German-credit dataset. On the left (Fig. 5a),
we see the explanation in the general context, and on the right (Fig. 5b), we see the
same explanation under the context {account-duration ≥ 48}.

5.4 Mushroom

This dataset records mushrooms found in North-America and divides them in
two groups: poisonous or edible. The model that was trained on this dataset
reaches 99.8% accuracy. Figure 6 presents an edible mushroom with biggest con-
tributor odor = ‘Almond’. When inspected under context {odor = ‘Almond’},
two interesting observations can be made. Firstly, there are no negative contrib-
utors anymore, implying that this attribute dictates the outcome (when verify-
ing this claim, we indeed find that all 389 mushrooms with odor = ‘Almond’
are edible). Note that this conclusion cannot be drawn from the contribu-
tions in the general context. Secondly, stalk-root = ‘Bulbous’ goes from
biggest negative contributor (with θstalk-root=‘Bulbous’ = −0.14) to biggest pos-
itive contributor (with θodor=‘Almond’

stalk-root=‘Bulbous’ = 0.13), telling us “yes” in general
stalk-root = ‘Bulbous’ contributes negatively, but when the mushroom smells
like almond, the opposite is true.



ICIE 1.0: A Novel Tool for Interactive Contextual Interaction Explanations 91

Fig. 6. Explanations for case 13 from the Mushroom dataset. On the left (Fig. 6a), we
see the explanation in the general context, and on the right (Fig. 6b), we see the same
explanation under the context {odor = ‘Almond’}.

5.5 Tic-Tac-Toe

This dataset records all possible end games for the Tic-Tac-Toe game, with
corresponding outcome (either × won, or × did not win; note that both a draw
and © wins are counted as negatives). Figure 7 represents a game that was won
by ×, with most important move center = ×. When observed in this particular
context, we find that according to the model × always wins the game when it
occupies the center (all contributions become 0, meaning that no other attribute
influences the game). This is an important finding, as it points out one of the
flaws of the model (we can think of many games where × occupies the center,
but doesn’t win the game).

Fig. 7. Explanations for case 192 from the Tic-Tac-Toe dataset. For the sake of inter-
pretability, we have drawn the board corresponding to this game. On the left (Fig. 7a),
we see the explanation in the general context, and on the right (Fig. 7b), we see the
same explanation under the context {center = ×}, this time visualized for more clar-
ity. The top-left triangles in the cells of the board correspond to the contributions in
the general context, and the ones in the bottom-right correspond to the contributions
in the context, the (intensity of the) color corresponds to the contribution.



92 S. B. van der Zon et al.

5.6 Wisconsin

This dataset records patients diagnosed with breast cancer. The records contain
features about images of the (possible) tumor cells. The patients are divided in
two groups (malignant and benign). First we report an instance similar to the
finding for the Tic-Tac-Toe and Mushroom datasets, namely, where one attribute
dictates the outcome. Figure 8 shows the same behavior, but in this case it is
even more unclear from the initial visualization that uniformity-of-cell-size
is actually dictating the prediction, which is reflected by observing it under the
context {uniformity-of-cell-size ≥ 5}.

Next we use our method to inspect a wrong classification and try to find an
explanation for the error. Figure 8 shows record 59, which is wrongly classified as
‘benign’. In order to find out why the model made this mistake we start limiting
the context to the biggest contributor for this case; uniformity-of-cell-size.
To find out in which “direction” the positive contribution works, we observe
the instance under two contexts: {uniformity-of- cell-size ≤ 3} and
{uniformity-of-cell-size ≥ 3}. If the former removes the contribution of
uniformity-of-cell-size, we conclude that this direction can’t be used to
alter the decision, else we argue the opposite. Figure 8d shows that the former
holds, hence we modify uniformity-of-cell-size = 3 by replacing it with 4.
We now see that negative is predicted (Fig. 8e). This may suggest that either

Fig. 8. Explanations for cases 50 and 59 from the Wisconsin dataset. On the top-
left (Fig. 8a), we see the explanation in the general context, and on the top-right
(Fig. 8b), we see the same explanation under the context {uniformity-of-cell-size ≥
5}. On the bottom-left (Fig. 8d), we see the explanation in the general context,
in the bottom-middle (Fig. 8d), we see the same explanation under the context
{uniformity-of-cell-size ≤ 3}, and on the bottom-right (Fig. 8e), we see the
instance where the value for uniformity-of-cell-size is replaced by 4.
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the model is wrong here or a false measurement was recorded. Note that similar
reasoning can be used in an automated search to find the least expensive path
to changing the class label.

5.7 Guiding the Manual Search for Explanations

When investigating an explanation with our framework it is important to be
aware of some basic strategies. It is often a good idea to start investigating the
key-players (i.e. top-contributors) first, as it is less likely that contexts consisting
of zero-contributors influence the other contributions (however not impossible,
e.g. in the case where a zero-contributor is an average of an equal amount of pos-
itive contributors as negative contributors). In order to amplify the interactions
that are happening within the top-contributors, one can set the context equal
to its value; restricting the calculation of the SHAP values to this particular
feature subspace. For features with large domains (especially numeric feature),
the plain SHAP values provide a very limited amount of information, for exam-
ple, when θage=30 = 0.5, we don’t know whether it is increasing or decreasing
over the interval of [17–90] (or another interval), or whether its adjacent value
θage=31 would be substantially different or not. By using smartly positioned con-
texts (usually at these boundaries), we can make deductions from the resulting
observations.

6 Discussion

Our approach shows to reveal novel information that cannot be obtained by
observing the additive SHAP values alone. In particular it can be used to make
local feature interactions visible by restricting the context to a dominating fea-
ture; to find interacting features (e.g. where one contributes positively in the
general context, but negatively in a more specific context), which is of great
value when it comes to understanding the classifier and the domain (for accu-
rate classifiers); to help in inspecting wrong predictions of a classifier; and to get
insights in the “direction” of the feature contributions when it comes to numeric
features.

We are currently exploring strategies to automatically discover interesting
contexts, making the manual search less time consuming, and allowing us to find
contexts consisting of more features. Ultimately, such tooling helps in answering
more involved questions, such as: “given a context, what is the possible/likely
adversarial activity leading to a change in this predicted label?” Helping experts
in financial domains to target the right sources of information when verifying an
alert.
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Abstract. Self-exciting temporal point processes are used to model a
variety of financial event data including order flows, trades, and news. In
this work, we take a Bayesian approach to inference and model compari-
son in self-exciting processes. We discuss strategies to compute marginal
likelihood estimates for the univariate Hawkes process, and describe a
Bayesian model comparison scheme. We demonstrate on currency, cryp-
tocurrency and equity limit order book data that the test captures exci-
tatory dynamics.

1 Introduction

Many real-world data mining applications, including those in finance, entail mod-
eling event occurrences in a continuous time setting. Examples of such data
abound in finance; including order flows [3], trades [1], news [12], price jumps,
volatility spikes, etc. Temporal point processes, statistical models of points scat-
tered along the real line, are often the primary models used to address these
data sets.

The Poisson process (PP) is one such statistical model that assumes indepen-
dence among occurrences. Points are assumed to occur without any interaction,
sometimes described as completely randomly [6]. PPs have been used in finance
for modeling discrete event systems, e.g. limit orders [3]. While PPs lead to
convenient mathematics for computing many quantities of interest analytically,
they fail our simple intuition that financial events are seldom independent of one
another, i.e. that they excite each other.

Self-exciting point processes, specifically Hawkes processes (HP) [7], are
recently growing more common in quantitative finance [2] as well as machine
learning literatures [8,9]. First explored in the backdrop of seismology, HPs
assume causal, linear non-negative excitation behavior among occurrences. This
is why they have been considered especially suited to modeling financial discrete
events.

Typically, HPs are applied towards prediction tasks. Maximum likelihood
estimates of model parameters are fit to an observation, a collection of occurrence
timestamps, that are assumed to arise from the process. Model validation or
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selection is then performed through predictive likelihood, or some other cross-
validation metric, used to determine how good the fit is on a held out sample.
Here, instead, we present a method of model selection (or equivalently, hypothesis
testing) for self-exciting point process models. We take a Bayesian approach, and
describe approximate inference and marginal likelihood estimation schemes. We
present preliminary experiments on high frequency currency, cryptocurrency and
equity limit order book data. Among a family of Bayesian inference methods,
we posit that Laplace approximation to model evidence is best suited to the
problem at hand.

In Sect. 2 we first give a brief overview of self-exciting processes and Bayesian
model selection before describing our inference scheme. In Sect. 3, we present a
set of preliminary findings on currency price, equity order book, and crypto-
currency event sets, before concluding in Sect. 4.

2 Model

2.1 Hawkes Process

Let {N(t)}t∈R+ denote a counting process, a jump process where jump sizes are
+1 and N(0) = 0. Furthermore, we will use the overloaded notation N(a, b] to
refer to the number of jumps (or equivalently, points) in the interval (a, b] – also
a random variable. In correspondence to a temporal point process, we think of
N(t) as the number of points –event occurrences such as orders or transactions–
until time t.

Homogeneous Poisson processes are characterized by complete independence
and stationarity assumptions. We have that N(a, b] and N(c, d] are independent
random variables given that (a, b] and (c, d] are disjoint intervals on the real line.
Furthermore, by stationarity we have that 〈N(a, b]〉 = 〈N(a + τ, b + τ ]〉 for all
τ , where we let 〈.〉 denote the expectation operator. However, it is these two
assumptions that limit a realistic modeling of sequences of events that might as
well have influenced each other.

Working with general classes of point processes where point occurrences are
interdependent is difficult – both theoretically and computationally [6]. One
alternative that leads to both mathematical and computational convenience is
a class of temporal point processes (or, equivalently, counting processes), deter-
mined by a conditional intensity function [6]. Concretely, let λ∗ denote the con-
ditional intensity function of a self-exciting point process1, defined by

λ∗(t) � lim
δ↓0

δ−1〈N(t, t + δ]|Ht〉.

Here we use Ht to denote the history of events up to time t2. Note that setting
λ∗(t) = ν(t), a deterministic measurable function of t, would simply yield a
(nonhomogeneous) Poisson process.
1 We follow the notation λ∗ of [6], where the superscript ∗ serves as a reminder that
the intensity function is dependent on the history up to time t, Ht.

2 Formally, Ht can be seen as the natural filtration, an increasing sequence of σ-
algebras, with respect to which we define the conditional expectation operator.
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HPs arise as one of the simplest examples of point processes defined through a
conditional intensity [4,6]. They model linear self-excitation behavior, where the
instantaneous probability of an event occurrence is given by a linear combination
of the effects of past events. A (univariate) HP is a point process determined by
the conditional intensity function [6,7].

λ∗(t) = μ +
∑

tj<t

ϕ(t − tj). (1)

Here μ > 0 is the constant background (exogenous) intensity function. ϕ : R+ →
R+ is the triggering kernel, an often monotonically decreasing function that
governs self-excitation.

Fig. 1. Intensity function of a Hawkes process with exponential delay density

Wewillbeconcernedwiththecaseϕ(x) = αθ exp(−θx),whereα ∈ [0, 1), θ > 0.
Here since

∫
θ exp(−θx)dθ = 1, we can interpret the triggering kernel in terms

of its parameters. α governs the infectivity or the average number of new events
that are triggered by an event. The remaining part is the exponential density for
the length of the delay between events triggering each other. Note that α < 1 is
required for stationarity.

One can think of the intensity as a stochastic process itself, which is excited
every time a jump occurs stochastically on the underlying process N(t). That is,
a jump in N(t) leads to a jump of size α in λ∗. This effect then decays according
to a schedule determined by the decay factor in ϕ, which in the case above,
was taken as an exponential decay proportional to exp(−θΔt). We illustrate this
effect in Fig. 1.

We refer the reader to the review by Bacry et al. [2] for further details on
HP and their varied applications in quantitative finance.

Finally, let us note that for any conditional intensity point process the like-
lihood of finitely many points Π = {ti}N

i=1 where 0 < t1 < · · · < tN < T on a
bounded interval (0, T ] is given by

p(Π|λ∗) = exp

(
−

∫ T

0

λ∗(s)ds

)
N∏

i

λ∗(ti),

where the conditional intensity function λ∗(x) uniquely determines the process.
For Poisson processes, granted that the compensator − ∫ T

0
λ(s)ds can be com-

puted, the evaluation of the likelihood is trivial. This is not the case in general,
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however. Note that the computation of the likelihood for a general HP defined
as in (1) would take time O(N2), as each intensity evaluation takes time linear
in the number of events. This crucial aspect prohibits the use of likelihood-based
inference, including many Bayesian methods, in general. In the exponential ker-
nel HP case, however, both the log likelihood and its gradient can be computed
in linear time owing to the memoryless property. In the sequel, we constrain our
attention to HP parameterized as such.

2.2 Bayesian Model Comparison

As mentioned previously, point processes are used mainly as models of discrete
events occurring asynchronously in continuous time. Compared to discrete-time
models that are often used in econometrics or time series forecasting, the meth-
ods of comparing and selecting models are less obvious.

Although HPs have been explored widely in finance, existing works often use
cross-validation – basing model comparison on predictive likelihood, or other
domain-driven measures of error on held out data. On the other hand, there is
earlier work on frequentist hypothesis testing of HP vs PP [5]. In this paper, we
present work in progress regarding a Bayesian approach – bringing the advan-
tages (and potential pitfalls) of encoding prior assumptions on model parameters
and deriving intuitive tests of model validity.

In Bayesian model comparison, one judges models through marginal (inte-
grated) likelihoods, using the same calculus of probability that one judges param-
eter configurations of a fixed model. Let p(Π|Θ) denote the data likelihood, and
p(Θ) a prior distribution under a certain model. Our aim is to compute the
marginal likelihood

p(Π) =
∫

p(Π|Θ)p(Θ)dΘ,

where we let Θ denote the vector of all model parameters. Intuitively, this quan-
tity can be read as 〈p(Π|Θ)〉p(Θ), i.e. the expected likelihood that a given model
will assign to data Π, as parameters are drawn from the prior p(Θ). Note that
this quantity comes with “Occam’s razor” included, i.e. high-dimensional models
with diffuse priors are automatically penalized. One can then use the marginal
likelihoods of two different models to compare them.

Let p1, p0 denote marginal likelihoods under two different models. The ratio

BF =
p1(Π)
p0(Π)

(2)

is known as the Bayes factor. Bayesian hypothesis tests are performed by cal-
culating the marginal likelihood under the null (p0), as well as the alternative
(p1) hypotheses, and computing BF . BF > 10 is taken as strong evidence that
the first model (p1) better explains the observations. Similarly, many models (or
prior configurations) can be compared on the same footing.
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2.3 Proposed Method

Here we propose a simple hypothesis test for “self-excitation” behavior in finan-
cial events. We calculate the Bayes factor (2) by taking a homogeneous PP as the
null hypothesis (p0), and an exponential-decay HP as given in (1) as the alter-
native (p1). In doing so, we explore methods of marginal likelihood estimation
for HP, which also paves the way to comparing HP models.

We equip both models (p0, p1) with appropriate prior distributions. In the
former, we choose a Gamma distribution for the constant intensity parameter.
The Gamma distribution is conjugate to the PP likelihood, making marginal
likelihood computation analytically tractable. For HP, parameters μ, α, θ are
given Gamma, Beta and Gamma priors respectively.

Marginal likelihood for HPs is intractable under any choice of prior, and we
must resort to an approximation. Yet, this approximation is still made difficult
by computational challenges related to the likelihood, outlined above. For exam-
ple, one sampling-based alternative for marginal likelihood estimation, annealed
importance sampling [11], requires a large number of likelihood computations
before a single weighted sample can be drawn. This prohibits a realistic appli-
cation of this method for HPs with large observed samples.

However, especially in the high-frequency context, we can invoke another
approximation method. Financial continuous time data sets, unlike earthquakes,
are characterized by large sample sizes. We find that this leads to peaked, uni-
modal posteriors, with which we can turn to Laplace approximation to the
marginal likelihood [10].

We approximate the posterior with a multivariate Gaussian distribution cen-
tered around the posterior mode, Θ∗ = arg max p(Θ|Π). Given the posterior
potential ϕ(Θ) = p(Θ|Π)p(Θ), we approximate p(Π) =

∫
dΘϕ(Θ) via

ln p(Π) ≈ ln ϕ(Θ∗) +
3
2

ln 2π − 1
2

ln |H|,

where H = ∇2 − ϕ(Θ∗) is the Hessian of −ϕ evaluated at the mode.
This method reduces marginal likelihood estimation to a series of simple

steps. First, maximum a posteriori (MAP) estimates of HP are obtained. This
can be achieved via expectation maximization, as well as gradient-based meth-
ods in the simple case of univariate HP. The Hessian H can be approximated
numerically or computed exactly. Software for estimating marginal likelihood,
as well as other tasks such as posterior inference under univariate Bayesian HP,
is made available online3.

3 Experiments

Our experiments cover a range of financial event sets. FX are high frequency
(millisecond range) tick events in an interbank currency exchange, previously
3 http://www.github.com/canerturkmen/hawkeslib, and on the Python Package
Index (PyPI) as hawkeslib.

http://www.github.com/canerturkmen/hawkeslib
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Fig. 2. Data samples from the three data sets. x-axis denotes time of occurrence, y-axis
is random noise for better visibility

Table 1. Results of experiments on financial data sets. N denotes the number of occur-
rences in the data set. BF is the computed Bayes factor. Bayesian credible intervals at
95% are given for α, θ

Data Set Asset N BF α θ

Lower Upper Lower Upper

FX GBPUSD 1000 >108 0.62 0.75 5.46 8.06

EURUSD 1000 >108 0.53 0.64 6.26 8.37

USDJPY 1000 >108 0.61 0.73 5.15 7.12

Crypto USDT-ETH 5684 0.11 0.15 0.38 0 0.02

BTC-XRP 5710 0.04 0.08 0.45 0 0.02

BTC-ETH 5499 3.69 0.12 0.34 0 0.02

LOB GARAN 1000 >108 0.88 0.99 8.8 18

investigated using HP [13]. We model three large-volume currency pairs selected
at random. Crypto are price increase events on three large-cap cryptocurrencies
on the cryptocurrency exchange Bittrex sampled at five minute (low) frequency.
Finally LOB are limit order arrivals in a large-cap bank stock in the Turkish
equity exchange, Borsa Istanbul, sampled at very high frequency (nanosecond
range). Samples of each data set are given in Fig. 2. In FX and LOB , we limit
event sets to 1000 events, roughly to 10 min of trading. Observe that in both data
sets, the data cluster around certain points in time. This effect is less pronounced
in Crypto .

We report the results of our tests, where we calculate the Bayes factor as
described in Sect. 2.3. We further present 95% Bayesian credible intervals for
the triggering kernel parameters, where we use simple random walk Metropolis
(RWM) [10] algorithm to draw from the posterior.

We present the results in Table 1. The test accurately captures that low-
frequency price jumps do not present sufficient evidence in favor of self-
excitation. In FX and LOB , however, we find overwhelming evidence that HP
outperforms PP. Note however that, if one were to register only large return
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jumps as events, HPs could still fit the data at lower frequencies. This is not
surprising, its analogue in the discrete-time setting would be known as volatility
clustering.

There are, however, two issues we must address. First, Bayesian analysis is
well known to be sensitive to choice of priors. In our analyses, we find that large
data sets easily mitigate this effect. In Fig. 2, we change the scale hyperparameter
of the prior for θ, the delay distribution. We find that, except for unrealistic
choices of priors which set the average delay to less than 0.01 ms, the conclusion
is largely unaffected. Varying other hyperparameters lead to similar conclusions.

Finally, let us note that this paper and many others in the field assume
constant background intensity μ. The test in this paper also assumes a homoge-
neous PP as the null hypothesis. However, the exogenous process that governs
financial events is often not stationary. For example, financial events follow intra-
day, weekly and yearly cycles. Our test, and many other investigations in HP,
are prone to capturing this effect and explaining it away using the endogenous
component of HP. We test this effect using a toy data set drawn from a non-
homogeneous PP with intensity λ(t) ∝ exp(sin t) (see, e.g. Figure 4). On this
data, our test easily passes (rejects PP), although the nonstationarity is purely
exogenous. In our experiments, we mitigate the potential effect of periodicity by
sampling short time intervals (Fig. 3).

Fig. 3. Logarithm of the Bayes factor as the scale hyperparameter of p(θ) is changed;
for EURUSD in the FX data set.

Fig. 4. A draw from a nonhomogeneous Poisson process with periodic intensity
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4 Conclusion

We combined techniques from Bayesian machine learning and evolutionary point
processes for modeling high-frequency financial data. We cast HP to a Bayesian
setting, and discussed the computation of a Bayesian model comparison scheme
for testing “self-excitation” behavior in financial events as well as posterior infer-
ence. Early experiments confirm basic intuition regarding high-frequency finan-
cial events.

Our method can be used to capture self-excitation effects in financial discrete
event data, much in the same way conditional heteroskedasticity models capture
volatility clustering. However, the test assumes that background intensities are
stationary, and can lead to pitfalls in financial analysis. This issue constitutes
the next step to this study.

Acknowledgement. We gratefully acknowledge the support of Scientific and Tech-
nological Research Council of Turkey (TUBITAK), under research grant 116E580.
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Abstract. We provide an overview on the development and the inte-
gration in ENEAGRID of a web crawling tool to retrieve data from the
Web, manage and display it, and extract relevant information. We col-
lected all these instruments in a collaborative environment called Web
Crawling Virtual Laboratory, offering a GUI to operate remotely. Finally,
we describe an ongoing activity on semantic crawling and data analysis
to discover trends and correlations in finance.

Keywords: Web crawling · Big data · Machine learning ·
Market trends

1 Introduction

Internet is certainly the World’s largest data source. Web data has characteris-
tics that involve a considerable effort of analysis and organization. The ability of
extracting strategical information in big data from the Web is becoming a crucial
task that involves several contexts, such as cyber security, business intelligence,
and finance. All the applications in these fields have to face with computational
and storing issues. For this reason, the advanced computing center of ENEA Por-
tici, hosting the ENEAGRID/CRESCO infrastructure [2] offers the possibility
to perform this activity. In the following, we introduce the web crawling envi-
ronment integrated in ENEAGRID to retrieve and analyze data from the Web,
and we provide some details on a work-in-progress activity in finance describing
how to obtain financial information and correlation with market trends.

c© Springer Nature Switzerland AG 2019
C. Alzate et al. (Eds.): MIDAS 2018/PAP 2018, LNAI 11054, pp. 103–107, 2019.
https://doi.org/10.1007/978-3-030-13463-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13463-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-13463-1_8


104 G. Ponti et al.

2 Web Crawling and Web Data Analysis in ENEAGRID

A crawling technique analyzes systematically and automatically the content of
a network to search for documents to download. Web crawlers are based on a
list of URLs to visit that is continuously updated by new records retrieved by
parsing the explored web pages. In the next, we provide a description of our web
crawling environment installed and configured in ENEAGRID.

2.1 Web Crawling Tool: BUbiNG

We resorted to BUbiNG [1] as the web crawling product to integrate in
ENEAGRID. This software allows the parallel execution of multiple crawling
agents. Each agent communicates with each other one to ensure not repeated
visits of same pages and to balance the computational load. BUbiNG also allows
to set up at runtime all configuration options in a single parameter setting file,
such as thread number and initial seeds. BUbiNG saves contents in compressed
warc.gz files. This data compression is very important because it allows to save
space up to around 80%.

2.2 Virtual Laboratory and Web Application

We created a collaborative Web Crawling Project integrated in ENEAGRID.
Here, the main issue consisted in harmonize the tool in a typical HPC envi-
ronment to exploit infrastructure resources, that are computational nodes, net-
working, storage systems, and job scheduler. All the web crawling instruments
are collected in a ENEAGRID virtual laboratory, named Web Crawling1. The
virtual lab has a public web site (Fig. 1(a)) where information about the research

(a) (b)

Fig. 1. (a) The virtual lab site. (b) The virtual lab GUI.

1 http://www.afs.enea.it/project/webcrawl/.

http://www.afs.enea.it/project/webcrawl/
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activity is collected, and a web application (Fig. 1(b)) to submit snapshot and
to use tools for analysis, displaying and clustering of web data.

2.3 Tests and Experimental Results

We performed experiments to analyze the performance of our solution for web
crawling tool integrated in the ENEAGRID infrastructure. For this reason, we
designed two types of experiments. In the first one, we performed long-time
crawling sessions (of more than 8 h), in order to assess the ability of the tool
in crawling and storing web contents at a high network speed, i.e., efficiency
and robustness. The second experiment consisted in periodic crawling to test
software reliability, a typical scenario to collect periodic snapshots to analyze
changes in the network. Both tests provide good results [3].

3 Proposal of Current Development

We are currently working in extending our tool to support semantic crawling
and apply it in finance, in order to discover how news and discussions in the
Web on a specific topic are correlated with market trends and how can influence
them.

3.1 Thematic Web Crawling

Working on proper crawling settings and pre-processing strategies, it is possible
to have a reduced version of the crawled dataset on a specific topic. In this way
we reached two main goals: saving memory space and speeding up the post-
crawling indexing time. To obtain this result, we have developed a proper filter
that selects web pages according to the topic. Such a filter does not take into
account only at the page body, but also title and tags. We integrated it into
BUbiNG source code (in JAVA) to have thematic snapshot sessions.

3.2 Web Crawling for Financial Strategies

By using the filtered dataset we aim to discover news and discussions in the
Web on a specific topic. Information retrieval and deep learning algorithms can
be employed to extract strategical information. More specifically, we want to
reach two important results: (i) searching for a correlation index of web news
with market trends and their influence, (ii) and developing a tool in order to
predict a price behaviour and then to adopt appropriate trading strategy. Below
we explain the five steps that we have considered:

1. First of all, for any day di we run a web crawling filtered on web news about
a financial topic to build a dataset Di of gi,j web pages:

Di = {gi,1, gi,2, . . . , gi,Ni
};
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2. After, for any web page gi,j we apply a Sentiment Analysis algorithm, based
on Natural Language Processing, (e.g. the VADER Sentiment Analysis coded
in JAVA2) to compute a weight of positive/negative opinion:

wi,j = w(gi,j) ∈ [−1;+1] , ∀j ∈ [1;Ni];

3. Then, we compute a normalized daily opinion index:

wi =

∑Ni

j=1 wi,j

Ni
;

4. By means of a machine learning approach, we train a neural network (i.e., a
Recurrent Neural Network - RNN) to estimate the daily increasing/decreasing
rate ri for the asset:

ri =
pi+1 − pi

pi
,

where pi+1 is the estimated price at the day di+1 obtained by the RNN
computation.

5. Finally, we compute a correlation between rate R and opinion index W apply-
ing the Pearson correlation coefficient :

cov(R,W ) =
E [RW ] − E [R]E [W ]

√

E [R2] − E [R]2
√

E [W 2] − E [W ]2
.

For our purpose, in a day di, we want to discover a correlation between the
expected increasing/decreasing rate ri and the overall opinion index wi.

4 Conclusions

To summarize, we provided a parallel implementation of a web crawling product
to periodically download contents from web and to analyze them. The tool is
fully integrated in our HPC ENEAGRID/CRESCO infrastructure, in order to
use computation and storage power. Currently we are equipping our framework
with a sentiment analysis tool and training a neural network to correlate opinions
and price trend. In the future work we want to perform experiments to tune our
framework and refine our semantic filter to obtain a more accurate dataset.

Acknowledgements. The computing resources and the related technical support
used for this work have been provided by ENEAGRID/CRESCO High Performance
Computing infrastructure and its staff [2]. ENEAGRID/CRESCO High Performance
Computing infrastructure is funded by ENEA, the Italian National Agency for New
Technologies, Energy and Sustainable Economic Development and by Italian and Euro-
pean research programmes, see http://www.cresco.enea.it/english for information.

2 https://github.com/apanimesh061/VaderSentimentJava.
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Workshop Description

In the era of Big Data, every single user of our hyper-connected world leaves behind a
myriad of digital breadcrumbs while performing her daily activities. This enormous
amount of personal data can be exploited to improve the lifestyle of each individual by
extracting and analyzing user’s behavioral patterns like the items frequently purchased,
the routinary movements, the favorite sequence of songs listened, etc. Moreover, users
have a very limited capability to control and exploit their personal data: although some
user-centric models like the Personal Information Management System and the Per-
sonal Data Store are emerging, currently there is still a significant lack in terms of
algorithms and models specifically designed to capture the knowledge from individual
data and to ensure privacy protection in a user-centric scenario.

Personal data analytics and individual privacy protection are the key elements to
leverage nowadays services to a new type of systems. The availability of personal
analytics tools able to extract hidden knowledge from individual data while protecting
privacy can help the society to move from organization-centric systems to user-centric
systems, where the user is the owner of her personal data and is able to manage,
understand, exploit, control and share her own data and the knowledge deliverable
from them in a completely safe way.

The workshop is addressed to researchers interested on the advancement of per-
sonal data analytics, personal services development, privacy, data protection and pri-
vacy risk assessment, with a focus on issues related to personal analytics, personal data
mining and privacy in the context where real individual data (spatio-temporal data, call
details records, tweets, mobility data, social networking data, etc.) are used for
developing a data-driven service, for realizing a social study aimed at understanding
nowadays society, and for publication purposes.

The second edition of the International Workshop on Personal Analytics and Pri-
vacy (PAP 2018) has been held in Dublin, Ireland, in conjunction with the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD 2018). The format of the workshop included two keynote
presentations and several technical presentations. The workshop has been attended by
more than thirty people on average. The workshop received 6 submissions: after an
accurate peer-review process, made in accordance with the reviewers in Program
Committee, we selected 4 papers for presentation at the workshop, with an acceptance
rate of 60%.

We would like to thank the PAP 2018 Program Committee, whose members made
the workshop possible with their review process, and the ECML-PKDD conference for
hosting the workshop.
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Abstract. The Rasch model is used to estimate student performance
and task difficulty in simple test scenarios. We design a workflow for
enhancing student feedback by release of difficulty parameters in the
Rasch model with privacy protection using differential privacy. We pro-
vide a first proof of differential privacy in Rasch models and derive the
minimum noise level in objective perturbation to guarantee a given pri-
vacy budget. We test the workflow in simulations and in two real data
sets.

Keywords: Rasch model · Differential privacy · Student feedback

1 Introduction

Protection of private information is a key democratic value and so-called ‘privacy
by design’ is core to the new European General Data Protection Regulatory
(GDPR) [6].

Privacy by design as a concept has existed for years now, but it is only
just becoming part of a legal requirement with the GDPR. At its core,
privacy by design calls for the inclusion of data protection from the onset
of the designing of systems, rather than an addition. More specifically -
‘The controller shall..implement appropriate technical and organisational
measures..in an effective way.. in order to meet the requirements of this
Regulation and protect the rights of data subjects’.

Differential privacy is one such tool allowing a ‘controller’ to train a machine
learning model on inherently private data, but with mathematical bounds on
the actual loss of privacy when results are released [4,8]. Differential privacy is
based on randomized algorithms using noise to reduce the probability of breach
of privacy. The key idea is to secure that the randomized output does not in a
significant way depend on any of the possible data subjects’ data.
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Educational technology is important to serve the increasing needs for life-
long learning [10]. Learning processes and tests are typically highly personal, yet,
significant gains are conceivable from integrating and sharing such information.
Sharing could, e.g., be used to provide more detailed feedback on tests, hence,
enhance the learning process. The basic question addressed in the present work
is if differentially private machine learning methods can be used to provide more
detailed feedback on students’ tests, while still respecting the privacy of the
individual students.

The concept is illustrated in Fig. 1. The use case concerns a class of students
each answering a set of tasks. The teacher (‘the controller’) can by conven-
tional means estimate each students performance and release this information
in private to the given student. Here our aim is in addition to share a diffi-
culty score for each task and investigate whether it is feasible to compute this
score in a differentially private manner, hence, with mathematical bounds on
the amount of individual information leaked by releasing the difficulty scores.
Given the privatized difficulty scores, every student can then use their sensitive
data to estimate their own ability scores and probabilities of passing a subject.
The paper is organized as follows. We first present the differential privacy model
in the educational technology context. Student performance and test scores are
inferred using item response theory (‘Rasch model’). Next, we investigate the
loss of accuracy when privacy is enforced at various privacy budgets. Finally, we
demonstrate viability in a real world data set. The proof of the differential pri-
vacy mechanism (so-called objective perturbation) is provided in an appendix.
The original contributions can be summarized as follows: (1) We define a work-
flow and model for privacy preserving machine learning of student performance
and task difficulty. (2) We show by simulation that the student performance is
well estimated for each student separately. (3) We give the first proof of differ-
ential privacy for the Rasch model based on so-called objective perturbation. (4)
We derive the minimum noise level that allows us to release the task difficulty
at a given privacy budget.

All code can be found at the following github repository.

Fig. 1. Concept of the differentially private Rasch model and its use in enhanced
feedback in teaching.

https://github.com/DavidEnslevNyrnberg/PrivRaschPuplish.git
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2 Preliminaries

The concept of differential privacy is based on a privacy parameter or ‘budget’
ε. The algorithm A is ε-differentially private if for all data sets D1 and D2 that
differ by a single entry (data subject)

P [A(D1) = w] ≤ P [A(D2) = w] exp(ε), (1)

where P is the probability taken over the randomness used by the algorithm
A, and w is the output of the algorithm. The privacy budget quantifies how
likely it is that a well-informed adversarial can determine whether a specific
data subject participated or not. The randomness is added to the algorithm to
hinder this identification. This randomness is achieved e.g. through the addition
of noise. This noise is scaled as Δf/ε where Δf is the sensitivity of a function f ,
defined as

Δf = max ‖f(D1) − f(D2)‖1, (2)

where again D1 and D2 differ in a single entry [8].
The data sets we work with are arranged as a (number of students N) ×

(number of test items I) matrix X, and every entry stands for a right or wrong
answer of a student to an item. In this work, we consider differential privacy in
the sense that the output from our model should not depend much on whether
a particular student is in the set or not. That is, for X and X̃ with Xn,i = X̃n,i

for all n = 1, . . . , N − 1 and i = 1, . . . , I, so two data sets that can differ in at
most one row (corresponding to one student), we want to achieve

P (w|X)
P (w|X̃)

≤ eε, (3)

where w is the output of the algorithm.
The Rasch model [3] is a simple example of item response theory (IRT).

IRT concerns performance testing quantifying the probability that students can
answer a specific test task in terms of the difficulty of the task and their general
ability. The model is similar to the logistic regression and used to estimate the
probability of passing a task

P (Xn,i = 1|βn, δi) =
exp(βn − δi)

1 + exp(βn − δi)
, (4)

where βn models the ability of student n and δi is the difficulty of task i. Xni

is a dichotomous observation of a student’s (n) correct or incorrect answer to a
task (i), where 1 is a correct answer, and 0 is an incorrect answer. The model
is generated by estimating δi and βn from the results of a particular test. The
parameters are estimated by maximizing the likelihood
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Λ =
∏

n

∏

i

exni(βn−δi)

1 + e(βn−δi)
. (5)

In our work, we will introduce differentially private methods of estimating β and
δ, but only the δ-values will be released to the public. Every student can then,
based on the public δ and their personal results, estimate their own parameter βn.

3 Methods

We will implement this workflow, i.e., release differentially private δ parame-
ters and then re-estimate the parameters βn on Xn,:, by first calculating both
parameters with differentially private algorithms, assuring a private δ, then re-
estimating each βn given that δ. The re-estimation was also proposed in Choppin
[3]. We will investigate the impact of the re-estimation compared to the global
parameter estimation in Sect. 4.

We consider two different methods for constructing a differentially private
Rasch Model. The first one is the objective perturbation, first introduced by
Chaudhuri and Monteleoni for logistic regression [1], and analyzed in more detail
by Chaudhuri et al. [2]. For the differentially private Rasch model, we use a
slightly modified version of the objective perturbation, and prove that it is ε-
differentially private as defined in Eq. (3).

We will also consider a simple reference method based on perturbing sufficient
statistics as discussed in [7]. By adding enough noise to the sufficient statistics,
we may release them as differentially private. Then any algorithm based on
these statistics will be differentially private. The latter observation follows from
the post-processing theorem [5]. For the Rasch model, the sufficient statistics
are rn =

∑I
i Xn,i and si =

∑N
n Xn,i, since those are all that is needed for

minimizing the regularized objective function. We add noise to the vectors r
and s, scaled with their sensibilities: if student n in the data set is changed,
rn will change by at most I, and so the L1 norm of r will change by at most
I. Similarly, si can change by at most 1 for every i, so again, the L1 norm of
s changes by at most I. So the noise we add to both vectors is scaled with
I/ε as in [7]. Since making the sufficient statistics differentially private is more
general than objective perturbation, and does not use the specific structure of
the learning algorithm, we expect it to be weaker (adding more noise).

As we notice below, the objective perturbation approach effectively perturbs
the sufficient statistics with noise scaling as

√
I/ε, while direct perturbation of

the sufficient statistics requires noise scaling as I/ε [7]. In the following we will
show the costs of the less favorable scaling.

An important aspect of learning the Rasch model parameters is to quantify
the available prior information. In the educational technology context we could
imagine substantial prior information to be present from earlier exams etc. Here
we for simplicity assume that the test difficulties and student abilities both follow
normal distributions, hence, we add a regularization term λ

2wT w, where w is the
entire parameter vector w = [β δ], to the Log likelihood function in equation (5).
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A discussion on how to estimate parameter λ while preserving differential privacy
can be found below.

Algorithm 1 describes the details of the modified objective perturbation algo-
rithm for the differentially private Rasch model.

Algorithm 1:

– Draw vector b with dimension I from density function h(b) ∝ exp (− ε√
I
). To

do that, draw direction uniformly at random from the I dimensional unit
sphere, and draw the norm from Γ(I,

√
I

ε ).
– Minimize

F (β, δ) =
N∑

n

I∑

i

log(1 + exp(βn − δi)) +
I∑

i

δi

N∑

n

Xn,i

−
N∑

n

βn

I∑

i

Xn,i +
λ

2
(βT β + δT δ) +

I∑

i

biδi (6)

with respect to β, δ for λ > 0.

Theorem 1. Algorithm 1 is ε-differentially private.

The proof follows the strategy developed in Chaudhuri et al. [1,2], details
are found in the appendix.

Naive approaches of estimating the regularization parameters by f.e. cross
validation can lead to a loss of privacy, since information is leaked by every
evaluation of the model, and this information accumulates. Chaudhuri et al. [2]
propose two different methods on how to handle this, which we can also apply.
The first one is to use a small publicly available data set that follows roughly the
same distribution for the estimation of λ. The second one is an algorithm which
splits the data set into (m + 1) subsets, calculates the model for m different
guesses of λ on respective subsets, and evaluates the model on the last one.
Then, based on the number zi of errors made by the ith estimate, λi is chosen
with probability

e−εzi/2

∑m
j=1 e−εzj/2

. (7)

For our model, we split the data into subsets of students. For the m different
estimates of δ, we first compute the β values for the last subset and the corre-
sponding probabilities. We then compare the rounded probabilities to the actual
0 or 1 entries in the (m + 1)st subset in the data.
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4 Experiments

Experiments were run for simulated data, real data from Vahdat et al. [9], as
well as a data set from a course at the Technical University of Denmark.

The first experiment is run on simulated data and compares the results of
calculating both β and δ globally to re-estimating β.

The next experiments compare the performance of the two methods for intro-
ducing privacy, the objective perturbation and sufficient statistics. We use corre-
lation coefficients between the estimated probabilities and the true probabilities
(i.e., the ones used to simulate the data) resp. the non-private estimates with
95% confidence intervals. Further, we show test misclassification rates (how well
do we predict if a student passes a test) on a new data set drawn from the same
distribution as the training data. Experiments were run for the two real data
sets. The first one had to be modified to fit the Rasch model, so the answers
were rounded to 1 or 0 depending on whether half of the points for a question
were scored. The DTU data set are the results of a multiple choice test, so the
original data can be used. For the real data sets, we use bootstrapping with 1000
samples to calculate confidence intervals.

We used MATLAB’s fminunc function for minimizing the objective function
in all experiments - with the following settings:

options = optimoptions(’fminunc’,’Algorithm’,’quasi-newton’,
’off’,’SpecifyObjectiveGradient’,true,’MaxIter’,10^5,
’MaxFunEvals’,10^5,’TolX’,10^-5);

The experiments on simulated data were run with 50 repetitions, used a
regularization parameter of 0.01, and privacy budgets of 1, 5 and 10. The amount
of students (N) vary from 40 to 200 in steps of 40 and amount of questions (I) is
fixed to 20. The parameters βn and δi were drawn from normal distributions with
mean 0, and standard deviation 1 and 2, respectively. The Rasch probabilities
were then calculated with the given βn and δi and used to simulate a data set
by drawing from a Bernoulli distribution with the given probabilities.

The M. Vahdat et al. data set has 62 students and 16 questions. The DTU
data set has 212 students and 27 questions.

In pilot experiments we found that fine-tuning of the regularization parame-
ter λ was not essential. So for simplicity reasons we use a common regularization
parameter in all experiments.

4.1 Results

To test the impact of introducing differential privacy to the Rasch model, we ran
several experiments. In the first one we test the retraining of β in the non-private
setting, to show the students can calculate their own abilities from a given,
private δ. The second experiment show the performance of the two methods
on simulated data, while the third and fourth show the performance on the M.
Vahdat real data and DTU data, respectively.
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Experiment 1: Global Vs. Re-estimated Rasch Parameters. In Fig. 2
we compare the Rasch model with global parameter estimation with the results
obtained by re-estimating the student abilities. We plot correlation coefficients
with 95% confidence intervals between the probabilities, also with respect to the
true model parameters, as well as misclassification rates on a new data set drawn
from the same distribution as the train data.
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Fig. 2. The plots show: (a) Correlation coefficient for non-private global and re-
estimation method compared to the true Rasch model. (b) Misclassification for non-
private global and retrain estimation method compared to the true Rasch model.

From the correlation coefficients between the estimated probabilities and the
ground truth probabilities used to simulate the data, we can see that there is
practically no difference in accuracy between re-estimation and global estima-
tion. From now on, we will only consider the re-estimation method, since this is
the one defined by our workflow.

Experiment 2: Differential Privacy on Simulated Data. In Fig. 3 we show
a comparison of the objective perturbation and sufficient statistics method with
three different values of epsilon: 1, 5 and 10. We compare their performance
by calculating the correlation coefficients between the private estimation to the
non-private resp. true estimation. Again, we show 95% confidence intervals.

In Fig. 4, we show the missclassification rates on a simulated data set of the
same distribution as the training set.

We make several observations. First, the objective perturbation performs
better in general. This is due to the smaller amount of noise added to the objec-
tive perturbation, as mentioned in Sect. 3. Next, we see that for lower epsilon
values, i.e. higher privacy, the model generally performs worse, but converges
with larger class size. This is what we would expect and consistent with what is
broadly observed in applications of differential privacy.
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Fig. 3. Correlation coefficient of objective perturbation and sufficient statistics meth-
ods with ε = (1, 5 and 10) to: (a) the non-Private estimates. (b) the true model.
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Fig. 4. Misclassification rates of objective perturbation and sufficient statistics method
with ε = (1, 5 and 10): (a) objective perturbation estimates. (b) sufficient statistics
estimates.

Experiment 3 and 4: Differential Privacy on Real Data. Experiment 2
illustrated the impact of privacy so for experiments 3 and 4, the privacy budget
was fixed to ε = 5 with changing data sizes. In experiment 3 we use the data set
from Vahdat et al. [9]. Experiment 4 is run on the DTU data set.

Figure 5 shows the objective perturbation and sufficient statistics perfor-
mance on real data with ε = 5. The misclassification rate here is calculated
on the original data set (so corresponds to a train, not a test error).

In experiment 3, Fig. 5 (a) and (b), we show that the impact of introducing
privacy on real data sets is limited, even in relatively small data sets. For both
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Fig. 5. Objective perturbation and sufficient statistics methods on real data: (a) Cor-
relation coefficients on Vahdat et al.’s data [9]. (b) misclassification on Vahdat et al.’s
data [9]. (c) Correlation coefficients on DTU data. (d) misclassification on DTU data.

the Vahdat et al. data and the DTU data we find useful correlation between the
probabilities of passing the test as inferred in non-private and private models
(ε = 5).

In experiment 4, Fig. 5 (c) and (d), our results are comparable to those on
the simulated data. In general, we see that the objective perturbation method
performs better than the sufficient statistics method.

In Fig. 6, we illustrate the impact of data set size by showing comparisons of
the probability estimates of the non-private model to the two private methods
on the data set from Vahdat et al. [9], again with fixed ε = 5.

We see how the estimates are very noisy for small data set sizes, but correlate
strongly with the non private for a data set size of 62. Again, the objective
perturbation yields more accurate results.
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Fig. 6. Rasch estimates of objective perturbation and sufficient statistics methods on
Vahdat et al.’s data [9]: (a) nStudent = 21. (b) nStudent = 42. (c) nStudent = 62

5 Conclusion

We have demonstrated viability of the proposed workflow for more detailed, yet
differentially private, feedback for students. We proved analytically that objec-
tive perturbation for this model satisfies differential privacy and give the min-
imum noise level necessary. Our experiments based on simulated data suggest
that the workflow provides estimates of similar quality as the non-private for
medium sized classes and industry standard privacy budgets1. These findings
were confirmed in two real data sets. As expected, the objective perturbation
mechanism performs better than the sufficient statistic method as less noise is
added.

1 See e.g., https://www.wired.com/story/apple-differential-privacy-shortcomings/.

https://www.wired.com/story/apple-differential-privacy-shortcomings/
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Appendix

Proof (of Theorem 1). Since the objective function is differentiable everywhere
and a minimizing pair (β∗, δ∗) satisfies ∇F (β∗, δ∗) = 0, for every output (β∗, δ∗)
there exists exactly one b which maps the input to the output. On the other
hand, since the objective function (6) for λ > 0 is strongly convex (which can be
seen by computing the Hessian matrix H and realizing that H − λI is positive
semidefinite), for any fixed b and X, there is exactly one pair β∗, δ∗ which
minimizes the function. As such there is a bijection between (β∗, δ∗) and b.

Now consider two data sets X and X̃ that differ in exactly one student
(w.l.o.g., the last one). For β∗, δ∗ minimizing (6) for both X and X̃ denote the
corresponding noise vectors b and b̃. By the transformation property of proba-
bility density functions, we get

P (δ∗, β∗|X)
P (δ∗, β∗|X̃)

=
h(b)

∣∣∣det
(
J(β∗,δ∗,X̃)(b̃)

)∣∣∣

h(b̃)
∣∣det

(
J(β∗,δ∗,X)(b)

)∣∣ , (8)

where J(β∗,δ∗,X)(b) denotes the Jacobian matrix of b as a function of (β∗, δ∗),
given input set X.

We get bi as a function of (β∗, δ∗) by setting the gradient of the objective
to zero:

bi =
N∑

n=1

eβ∗
n

eβ∗
n + eδ∗

i
−

N∑

n=1

Xni − λδ∗
i . (9)

Since the sum over X will disappear in any derivative for δ∗
i and β∗

n, the Jacobian
matrices in (8) are identical and the determinants cancel.

Furthermore, since Xni = X̃ni for all i = 1, . . . , I and all n = 1, . . . , (N − 1),
equation (9) also gives

XN + b = X̃N + b̃.

By the reverse triangle inequality we get
∣∣∣‖b‖ − ‖b̃‖

∣∣∣ ≤ ‖b − b̃‖ = ‖XN − X̃N‖ ≤
√

I

and thus

P (δ∗, β∗|X)
P (δ∗, β∗|X̃)

=
h(b)
h(b̃)

= e
− ε√

I
(‖b‖−‖b̃‖) ≤ eε (10)

��
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Abstract. We present a novel client/vertical-servers architecture for
hybrid multi-party classification problem. The model consists of clients
whose attributes are distributed on multiple servers and remain secret
during training and testing. Our solution builds privacy-preserving ran-
dom forests and completes them with a special private set intersection
protocol that provides a central commodity server with anonymous con-
ditional statistics. Subsequently, the private set intersection protocol can
be used to privately classify the queries of new clients using the commod-
ity server’s statistics. The proviso is that the commodity server must not
collude with other parties. In cases where this restriction is acceptable, it
allows an effective method without computationally expensive public key
operations, while it is still secure and avoids precision losses. We report
the runtime results on some real-world datasets, and discuss different
security aspects and finally give an outlook on further improvements.

Keywords: Vertically partitioned data · Private evaluation ·
Secure multi-party computation · Privacy preserving data mining ·
Random forest

1 Introduction

In the era of big data, the costs of storing and processing data is decreasing
and as a result, the amount of collected data for analyzing purposes is also
increasing. In this context, the goal is to make use of the potential knowledge,
which additionally measured or mined data can provide. At the same time, the
challenges of preserving privacy of personal and other sensitive data grow. This
challenge becomes more important especially when partners collaborate with
the intention to benefit from the union of their data. These partners can also
be competitors, for example, and more or less trusted. Legal privacy concerns
have to be considered as constraints in these cases. Aspects of privacy-preserving
data include randomization, k-anonymity and l-diversity, downgrading applica-
tion effectiveness, and secure multi-party computing (SMC) [1]. While random-
ization, k-anonymity and effectiveness downgrading require a trade-off between
effectiveness (quality of the output) and privacy, SMC techniques do not effect
c© Springer Nature Switzerland AG 2019
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the effectiveness. In SMC, the data sets remain completely private and hence
need not be modified. Instead, special cryptographic communication protocols
allow two or more parties to obtain aggregated results from their combined
data, but each of them does not learn any information more than what can be
derived from their common output. Thereby, the SMC algorithms lead to the
same results as non-private algorithms do. This research area is also known as
distributed privacy preservation, because the integrated data are partitioned on
multiple parties who protect their shares. A special and upcoming case of secure
multi-party computing is private evaluation, where a server has a sensitive model
and a client has sensitive attribute vectors as input. The goal is that the client
obtains a classification of her attribute vector with the use of the server’s model,
while the client does not see the model in plain text and the server is not able
to get any parts of the client’s input and output.

In this work, we consider a special case of the aforementioned private evalu-
ation scenario for decision tree-based classification and set intersection in the
secure multi-party computation scenario. We assume that the data of some
clients is vertically partitioned and distributed across multiple servers. It is suffi-
cient if at least one server knows the class values of the training instances. Each
party can only see her attributes of the common decision trees. The leaf node
statistics are stored by a trusted third party, which does not know any instances
or tree attributes. To new test instances are classified with the following steps:

– The attribute vector of the client is vertically partitioned on the servers.
– The servers run a novel private set intersection protocol so that the client

gets a shared sum of her leaf node identifier from each party. No server learns
other attributes or information about the output at this step.

– Then a client can anonymously ask the commodity server about the class
value statistics of her leaf node.

Our proposed architecture benefits from the following features:

1. A fast computation run time by removing computationally expensive prim-
itives that are used in public key encryption methods such as Vaidya and
Clifton’s method [26],

2. Linear scaling with respect to the number of parties,
3. Accurate results in contrast to randomization based techniques [12,14],
4. Similar to private evaluation methods, no other party is able to learn any

node statistics and cannot detect the similarities among different records,
however, in contrast to them, our framework can handle distributed decision
trees.

Moreover, there are several applications for this framework in spam filtering,
crime reduction or credit assessment. Police forces, tax authority and financial
institutions might be willing to cooperate in terms of fraud prevention, but only
want to share uncoded personal data in case of reasonable suspicion. Another
typical application is clinical diagnosis. In a real-world setting, the sensitive
data of several institutions might be necessary to come up with a good diagnosis
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for a client or a responsible expert, while none of them want to disclose their
information to the others.

The rest of the paper establishes the proposed secure architecture in details.
First, we give an overview on the background in the next section. Section 3
presents the problem setting and the proposed client/vertical server random for-
est model. We elaborate experimental results in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Background

In the multi-party computing scenario, data can be partitioned among parties
vertically, where the parties have different attributes of the same data objects,
or horizontally, where the parties have different data objects of a compatible
structure. There have been extensive studies on both partitioning approaches
for privacy preserving decision tree based methods. In the rest of this section,
we first provide an overview of decision tree induction and random forests, then,
we briefly review the private decision tree learning literature for both vertically
distributed data and private evaluation. As the focus of our work lies only on
vertically partitioned data and private evaluation, we discard reviewing the hor-
izontal private decision tree approaches [11,18,20].

ID3 and Random Forest: Decision trees are commonly used not only for solv-
ing classification and regression problems, but also for clustering with cluster
descriptions [2]. A widely-used, intuitive decision tree algorithm is the ID3 algo-
rithm [21] and its extension C4.5. Both use the Shannon entropy and information
gain to create tree branches efficiently. The entropy can be replaced by other
impurity measures with different sensitivities to costs [9]. Decision trees have
shown promising results on many problems, nevertheless, their performance can
be improved by a majority vote that combines the outcomes from many largely
independent decision trees. A single tree is inclined to overfitting which causes a
high variance. The random forest algorithm [5] tackles this instability by build-
ing several trees based on two randomization concepts: First, the training sets
are varied by bootstrap aggregating, an equally-distributed random selection of
records with replacement. Second, at each splitting step, it selects only s random
attributes. This has the additional advantage that the trees can be constructed
with very few or even without any data queries in the first step, if s is set to one.
As a successful and well-interpretable learning model, in this paper, we focus on
secure multi-party computation models for decision trees.

Secure Multi-party ID3 on Vertically Partitioned Data: The first work on ver-
tically partitioned data for two parties was proposed by Du and Zahn [10]. In
order to count the records that support a particular attribute or class value, they
suggest that every party fills a binary vector with a one, if a record conforms
with the currently examined attributes, and a zero, if a record does not. A secure
shared two-party scalar product protocol and a secure shared logarithm proto-
col on these vectors allow to calculate the conditional entropy without revealing
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the involved records. Similar to our architecture, these protocols are lightweight
solutions, and require a commodity server that should not collude with any of the
parties. However, this approach is hardly extensible to an n-party solution. The
other drawback is the possibility of revealing sensitive data by making inferences
from the public decision tree.

To solve the inference problem, some approaches use trees whose nodes
are mapped to the attributes that are only visible for the corresponding
party [23,26]. Vaidya and Clifton propose a private set intersection protocol
(PSIP) [26], which can be applied in the same way as the scalar product protocol
[10]. Their PSIP is based on public homomorphic encryption [8], and it requires
a high number of key bits which increases the runtime significantly. Recently,
some private set intersection protocols that use symmetric key encryption have
been developed [16,17], however, the communication costs still remain relatively
high. In another approach [23], each party finds the attributes with the highest
information gain independently from the other parties at each branch step. The
party with the attribute of the highest gain executes the split and broadcasts
the separation of the records, but not the identity of the split attribute. This
approach is only feasible if each party holds the class attribute. The other down-
side of this approach is that the similarities among different records can still be
leaked. Both of these two approaches can support two or several parties.

Decision Trees on Randomized Data: Randomization approaches usually lead
to faster results, but imply a trade-off between the individual’s privacy and the
quality of the results. The first randomization based multi-party tree induction
used a multi-group randomized response (MRR) scheme [27] that works as fol-
lows: The attributes are partitioned into groups. In a first step, coin-flipping is
conducted for each group and a user either tells the truth about all attributes
in the same group or tells a lie about all of them. The trade-off between privacy
and performance is regulated by a fixed probability of lie. One party works as
a data collector of all randomized data sets and executes the ID3 algorithm on
the collection. The cost of tree building and the accuracy loss can be reduced
by employing a hybrid of MRR and SMC [25]. The ω attributes that have the
highest information gains on the combined randomized data are selected and
evaluated on a private dot product or intersection protocol.

Recently, many ε-differential solutions for ID3 [12,15] and tree ensembles [3,
14,19,22] were proposed. A solution is ε-differential private if the outcome of a
calculation is insensitive to any particular record in the data set:

Definition 1. A randomized computation M provides ε-differential privacy, if
for any datasets A and B with symmetric difference A�B = 1, and any set of
possible outcomes S ⊆ Range(M), Pr[M(A) ∈ S] ≤ Pr[M(B) ∈ S]× eε.

The randomization is obtained by the addition of noise, and the ε-parameter
can be seen as a “privacy budget”. As it fulfills the composability property, the
parameters of consecutive queries can be accumulated. The major drawback,
especially of the ID3 solutions, is the high variance in the accuracies, and that
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only the individual’s privacy is preserved, but not the private attribute distri-
butions. Therefore, random decision trees have been shown to be more efficient
and provide better security than ID3 induced trees in the context of differential
privacy [22].

Private Tree Evaluation with a Client-Server Architecture: The field of privacy-
preserving decision tree evaluation is a different, yet somewhat related to what
we already discussed. Here, a server has a sensitive model and a client has sensi-
tive attribute vectors as input. The goal is to classify the client’s data while the
sensitive inputs (model and query) remain hidden from the counterparty. Many
approaches use homomorphic encryption [4,6,13,24]. Wu et al. [4] and Tai et
al. [24] reduce the protocol complexity to be linear with respect to the num-
ber of decision nodes by representing the decision trees, which are high-degree
polynomials, as linear functions.

3 Client/Vertical-Servers Random Forest

In this section, we explain our proposed client-server architecture in detail. First,
we establish the problem definition. Then, we explain the private set intersec-
tion protocol, and how to build and apply the decision tree in a client-server
architecture. Finally, we analyze the security of our proposed architecture.

3.1 Problem Setting

Problem Description: In this work, we consider the classification problem in the
hybrid context of vertically partitioned data and the client-server architecture.
Our proposed architecture is composed of two modes: a training phase in which
the decision tree is built, and an evaluation mode where a test instance of a client
is classified by the existing private model. In the training phase, we have m input
vectors (training instances), whose attributes are distributed on n vertical servers
pi. Let Xi[j] denote the attribute values of the record j that is known by pi.
The target value is held by the class server pc, which can be one of the vertical
servers, individual clients, or any other party. In the evaluation phase, one client
c’s query is classified by a trained model f(x).

Constraints and Assumptions: The classification is a private service, such that
no vertical server pi is able to reveal any information about the attributes (Xi[j])
and the target value of c or similarities to other clients or training records. The
client should not learn anything about the underlying model or any Xi[j] than
what can be deduced from f(c). We allow the use of a semi-honest commodity
server cs, which must not collude with any pi and receives nothing but anony-
mous data.
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Algorithm 1. Client/Vertical-Servers Set Intersection (CVSSI)
input : A vector Di ∈ {0, 1}s for each server pi, i ∈ {1, ..., n},

a collusion threshold parameter T

output: A vector Y ∈ {0, 1}s, where Y [j] =
n∏

i=1

Di[j]

1 for j ← 1 to s do
2 foreach server pi do
3 r0i [j] ← new random number
4 for t ← 1 to T do
5 rt

i [j] ← new random number
6 send rt

i [j] to server pi+t mod n

7 Ri[j] ←
T∑

t=0

rt
i [j]

8 send Ri[j] to client
9 for t ← T to 1 do

10 receive rt
i−t mod n[j] from server pi−t mod n

11 Si[j] ←
⎧
⎨

⎩

T∑

t=0

rt
i−t mod n[j] ifDi[j] = 0

new random number else

12 send Si[j] to client

13 for client do

14 Y [j] ←
⎧
⎨

⎩

1 if
n∑

i=1

(Ri[j] − Si[j]) = 0

0 else

3.2 Client/Vertical-Servers Set Intersection Protocol

We provide a special variant of a private set intersection as a major building
block of both our model training and classification protocol. Assume that each
vertical server pi contains a binary vector Di ∈ {0, 1}s, where Di[k] = 1 if pi

supports the element k, and Di[k] = 0, otherwise. The output is a binary vector
Y ∈ {0, 1}s with

Y [j] =
n∏

i=1

Di[j]. (1)

No vertical server pi is allowed to reveal any value of Dj , j �= i or f(c). Let
T be a collusion threshold parameter. If less than T servers collude with each
other, they can only exchange their inputs, but cannot induce input values of
any other server or f(c). A client cl receives the output, but should not learn
anything else. Algorithm 1 solves this problem and calculates each Y [j] ∈ Y
independently from the others via a zero-sharing method. In zero-sharing, the
servers distribute random numbers that sum up to zero. Then, every pi sends
its shares to cl if Di[j] = 1.
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Fig. 1. Example of a random tree skeleton.

Table 1. Example of privately labeled tree.

Vertical server Node Attribute

p1 1 Outlook

p1 3, 4, 5 Humidity

p2 2, 6, 7 Overcast

Algorithm 1 explains the steps of checking whether an element d is supported
by all vertical servers in detail. All arithmetics are modulo integer operations
in a sufficiently large field with the bit length b and all random numbers are
uniformly distributed within this field. First, every pi generates T + 1 random
numbers, {r0i , . . . , rT

i }, where T ∈ [1, n−1] (lines 3–5), sends their sum to cl (lines
7–8) and scatters {r1i , . . . , rT

i } to T other servers (line 6 and 10). Then, every
pi sends the sum of r0i [j] and all received values to cl, if it holds d; otherwise,
it sends a random number (lines 11–12). The client cannot distinguish between
this random number or the sum, which is composed of other random numbers.
The client adds up all values it received in the first round and subtracts all the
values that were received in the second round (line 14). If the result is zero,
d is not held by all servers with certainty, but in case the results do not sum
up to zero, all the servers hold d with a probability of 1 − 1/2b. The probability
of a false positive is therefore negligible. For our classification purposes, the
size of an intersection should be always one (see Sects. 3.3 and 3.4). Hence, the
occurrence of a false positive can be detected easily and the procedure restarts
for the candidate elements with new random seeds.

3.3 Building a Privacy-Preserved Random Forest

Algorithm 2 presents the training steps of a private random forest. The model is
distributed over all vertical servers and a commodity server. Each one receives the
same tree skeletons similar to the model already proposed by other authors [23,
26] (lines 1–3). It maps an identifier and a party pi to each branch in a random
assignment process. Every server maps selected attributes to each node randomly
(lines 4–6). Figure 1 illustrates a sample tree skeleton and Table 1 indicates its
privately labeled tree.

As the tree is built randomly, no data records have been used yet. In the
following steps, only the commodity server cs learns the class value distributions
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Algorithm 2. Client/Vertical-Servers Random Forest Training
input : An attribute vector Xi[j] for each training instance j ∈ {1, ..., m} of

each vertical server pi, i ∈ {1, ..., n},
a collusion threshold parameter T ,
a commodity server cs,
a server pc, that holds the class values C[j] ∈ C,
the number of trees in a forest o

output: A mapping M : N �→ C, that maps the index of each leaf node to the
most associated class value

1 for one arbitrary server do
2 for k ← 1 to o do // for each tree of random forest do

3 treek ← new RandomTreeSkeleton()

4 for k ← 1 to o do // for each tree of random forest do

5 foreach vertical server pi do

6 treek
i ← pi.labelPrivately(tree

k)

7 for j ← 1 to m do // for each record do

8 for k ← 1 to o do // for each tree of random forest do

9 foreach vertical server pi do

10 Di ← pi.getAllCandidateLeafs(Xi[j], tree
k
i )

11 leafID ← CVSSI({Di}, T)

12 cs.store(leafID, pc.getClassValue(C[j]))

of the leaves. It receives an assignment of a leaf node to each instance for each
decision tree of the random forest. As long as cs does not collude with any
vertical server, it cannot associate any attribute or class label with the identity
of any instance. Algorithm 1 generates the leaf node that is provided to cs and
the commodity server is treated as a client in this context. First, a preprocessing
step is executed and each pi assigns Di[l] with a one if the instance j reaches the
leaf l (based on the attributes in Xi[j]), or a zero if not (line 10). Let {Di} denote
the collection of private vectors Di of all pi. We get the output of Algorithm1 for
the record j, which is the leaf ID, leafID (line 11). Then the commodity server
updates the class distribution statistics of leafID with f(j) which is received
from the class server pc (line 12).

3.4 Client/Vertical-Servers Random Forest Classification

To classify a test instance c for a client whose attributes are stored at the vertical
servers, we apply Algorithm 3. For that, all vertical servers pi need to initialize a
vector Di with one at Di[l] if c reaches the leaf l or with zero, otherwise (line 3).
Client c conforms to cl in Algorithm 1, so it receives the leafID = c.leafIDstree

corresponding to its attributes for each decision tree (line 4). Subsequently, it
sends a request with all the leaf IDs to the commodity server to receive the most
likely class label.



Privacy Preserving Client/Vertical-Servers Classification 133

Algorithm 3. Client/Vertical-Servers Random Forest Classification
input : an attribute vector Xi[c] of each vertical server pi, i ∈ {1, ..., n},

a collusion threshold parameter T ,
a commodity server cs with a mapping M : N �→ C, that maps the
index of each leaf node to the most associated class value,
a client c,
an ensemble of o × n decision trees {treek

i }
output: Classification of c

1 for k ← 1 to o do // for each tree of random forest do

2 foreach vertical server pi do

3 Di ← pi.getAllCandidateLeafs(Xi[c], tree
k
i )

4 c.leafIDs tree ← CVSSI({Di}, T)

5 c.classValue ← cs.classify(c.leafIDs )

Note About the Client-Commodity Server Communication: The communication
between c and cs is straightforward. Note that cs can read the client’s request
in clear text, but the client can communicate with the commodity server anony-
mously, so that cs cannot link the request with any other sensitive data or
the identity of c. This communication can be done via a string-select oblivi-
ous transfer protocol, so that the commodity server does not learn the input of
the client (leafIDs) and the output of the protocol. Kolesnikov et al. [17] pro-
vide an efficient 1-of-n oblivious transfer protocol, which can be applied here. It
requires roughly four times the costs of a 1-out-of-2 oblivious transfer in an amor-
tized setting and, therefore, is highly scalable. Moreover, c should get a shared
one-time-password by one or more parties to prevent it from sending multiple
malicious requests to cs, and not to be able to deduce sensitive information
about the model and the underlying data. If these passwords are generated by
the vertical servers, cs cannot associate them with individual clients even if the
communication is not oblivious.

3.5 Security Analysis

In this section, we analyze the robustness of Algorithms 1–3 to information leak-
age. In Algorithm 2 (line 11) and 3 (line 4), the interactions among servers are
limited to the interactions in Algorithm1, hence, the security aspects of Algo-
rithm1 are directly transferable to them. Assuming that cs does not collude
with any other server, the leaf IDs, class labels and input of vertical servers are
secure against semi-honest and malicious attacks. The security level of the com-
munication between the client and the commodity server (line 5 of Algorithm3)
is adaptable as discussed in Sect. 3.4. Here, we will discuss different security
aspects of Algorithm 1:

– Disclosure of the output: The goal of Algorithm 1 is that the vertical
servers input their private sets and the commodity server receives the inter-
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section as the output. Assume that one or more parties try to reveal infor-
mation about the output. The only messages they receive are random based
zero-shares of other servers, which are independent from both their own input
and any input of other parties. Consequently, even malicious parties have no
opportunity to disclose anything about the output.

– Association of input and output: In case of a collusion between the
commodity server and a vertical server, the collaborators can associate the
identities of all the training records to their corresponding sensitive class
values and leaf nodes, and therefore, similarities between the records as well.
That is the reason for the requirement of having a trusted commodity server,
which does not collude with any vertical server. Despite this restriction, using
a commodity server improves the runtime effectively, and – according to [10] –
finding such a cs is feasible in practice. It makes no difference if the cs is semi-
honest (also known as honest-but-curious) or malicious, because it acts only
as a receiver in the training mode and receives only unconditional messages
that it cannot manipulate by own messages in the classification mode.

– Disclosure of the input of other parties: In the multi-party setting, there
is a general risk of collusion between the data holding parties to combine their
input data maliciously in order to violate an individual’s privacy. However,
this risk exists independent of the data mining protocols, hence it cannot be
prevented in their design. As a protocol dependent aspect, we consider a case
where b colluding vertical servers try to reveal the input data of one or more
other servers. Looking into the Algorithm1 indicates that there is no differ-
ence between semi-honest and malicious behaviour again. In the first part of
algorithm (lines 3–8), every vertical server distributes numbers independent
of each other. In the second part (lines 9–12), Si[j] comprises either r0i [j]
or another random number but no direct input data besides the numbers of
other parties. This procedure happens independent of the messages of other
parties, and consequently the public input of any party (Si[j]) does not reveal
any information if the numbers sent by other parties are generated randomly
or with a malicious intention.
One adversary might try to find out whether an element d is supported by all
parties or a particular vertical server px. The question if all parties hold d is
defined by

∑n
i=0(Ri − Si). Since each Si[j] is directly sent to the commodity

server, only the commodity server (or all pi together) is able to learn it. In
order to find out whether a particular vertical server px holds d, adversaries
have to know if:

Sx =
T∑

t=0

rt
x−t mod n ⇔ Sx =

T∑

t=1

rt
x−t mod n + r0x. (2)

The only exception is if all pi support d, because in that case, it is trivial
that a particular vertical server does it too. Sx is only known by px and
the commodity server. Given a random Sx, it cannot be calculated from
other values. Arranging the vertical servers in a cycle in clockwise direction,∑T

t=1 rt
x−t mod n can only be calculated by the T servers on the right side of
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px. r0x is only known by px or can be calculated from Rx −∑T
t=1 rt

x, where Rx

is only known by px and commodity server and
∑T

t=1 rt
i can only be calculated

by the T servers on the left side of pi. In conclusion, at least min(n − 1, 2T )
colluding vertical servers and the commodity server are necessary to find out
whether a particular party px supports an element d.

4 Experimental Results and Complexity

4.1 Experiment Settings and Datasets

We implemented and tested the main random forest framework in Java, with
four versions of the private set intersection:

1. The CVSSI protocol as designed in Algorithm 1.
2. Du02 version where we used a modified version of the scalar product protocol

by Du and Zhan [10], such that the commodity server receives the output.
This version has the constraint of a commodity server like our CVSSI protocol
and is very fast, but can only be used for two-party problems.

3. A simple asymmetric public-key encryption scheme (Paillier encryption)
that Vaidya and Clifton first used in the distributed decision tree context
[8,26], because it fulfills the requirement of additive homomorphy. One party
encrypts the identifier of d if it supports the element d else a zero with the
public key. Then, each vertical server multiplies the encrypted intermediate
result of its predecessor with a one if it supports d and with a zero if it does
not. At the end, the results for each d are summed up, so that the total
result is the encryption of d, because in our case only one d is supported by
all parties together. Only the commodity server has the private key and can
decrypt the result of the last vertical server and gets either a one or a zero.
For simplicity, we do not use the state-of-the-art Paillier encryption, but give
an idea of homomorphic encryption techniques.

4. A procedure with public splits like by Suthampan and Maneewongvatana
[23] instead of a private set intersection method as a baseline, which is very
straightforward, but reveals information we want to protect.

All experiments were executed on a single device with a dual core intel i7-5500U
cpu and a 8 GB RAM. For the current results, we did not use a framework to
simulate bandwidth and latency of a network of different devices. We tested
the scalability on different real-world datasets of the UCI Machine Learning
Repository with different parameters: number of vertical servers n, the collusion
threshold parameter T , and the number of leaf nodes. The number of leaf nodes
is βδ, if the tree depth δ and the number of splits in a branch β are fixed in our
experiments.
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Table 2. Communication costs

Intersection protocol 2 vertical server >2 vertical server

Du02 4 s ∗ b –

CVSSI 6 s ∗ b s ∗ n ∗ (T + 2) ∗ b

Paillier encryption 2 s ∗ B s ∗ n ∗ B

Non private – –
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Fig. 2. Runtime of Paillier set intersection with three parties and vector length 1000.

4.2 Complexity Comparison

The computational complexity of Algorithm 1 is O(s × n × T ), with the vec-
tor length s, the number of vertical servers n and T < n. The algorithm Du02
requires O(s) elementary operations, which is of the same order in a two-party
setting. The Paillier encryption version consumes (s+1)n bit multiplications for
the encryption and summation and one bit exponentiation for the decryption.
The fourth, not private version does not use a set intersection protocol. Instead,
one responsible party broadcasts the supported records at each branch and leaf
node. Hence, there are no computation and communication costs for a set inter-
section computation. Table 2 shows the communication costs depending on the
bit length b of a data type and B as the bit length of a public key.

Apart from some initialization costs, Algorithm2 calls m × o times a private
set intersection protocol with the input size βδ. Before the set intersection can
be executed, every vertical server has to do the preprocessing step of filling the
input vectors with a complexity of O(βδ). This equates to a total computation
and communication complexity of O(m × n × o × T × βδ) in connection with
Algorithm 1 (CVSSI). The total complexity of the non-private version is O(m ×
n×o×βδ). This is because all supported records are broadcast to every vertical
server at each tree node once. In the deeper nodes, the number of supported
instances is much smaller than m.
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4.3 Performance Analysis

Figure 2 visualizes the exponential dependency of the runtime of homomorphic
encryption schemes in relation to key bit length B. The German federal office for
information security recommends a key length of 2,000 to 3,000 bits [7], which
leads to a runtime of a few minutes for a single small vector with 1,000 elements
in [26] and our experiments. This is rather infeasible for the whole tree building
and classification procedure. Our CVSSI algorithm requires 1 ms for this task.
The recently published private set intersection protocol by Kolesnikov et al. [17]
runs also in less than a second in their environment and might be an alternative
building block. However, one has to consider that the authors in [17] used a
much more elaborate framework to simulate communication costs than we did.
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Fig. 3. Runtime of CVSSI (number of vertical servers: 4, T = 3, 100 repetitions).
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Fig. 4. Runtime of CVSSI (vector length: 106, T = 3).

Figures 3 and 4 confirm the linear scalability of our CVSSI algorithm in
terms of n and o. We obtain similar results for T . They also show that the
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protocol is feasible for larger vector sizes and a higher number of involved servers.
Table 3 contrasts the runtimes of the four versions on the small car dataset (1728
instances) with a small number of trees (5) in a two vertical server setting. 90%
of the instances are used for training and 10% for testing. As expected, the
Paillier encryption version requires several minutes, although we set B to the
unacceptably low value of 64. Our approach, the CVSSI protocol, takes less than
half a second per tree. The Du02 version performs up to six times faster than
our approach, which might be due to more effective vector operations in our
implementations. The variant without private set intersection suggests further
potential for improvement, but suffers from the inference problem. Table 4 shows
the runtime of CVSSIP on real-world data sets with five parties and 20 randomly
generated trees in seconds. This suggests that the approach is feasible in practice.

Table 3. Runtime on the car dataset, with two parties, 4 splits per branch, tree depth
5, in seconds and 10 random trees.

Trees Paillier enc. CVSSIP Du02 Without PSI

1 115.519 0.464 0.080 0.003

2 238.991 0.922 0.169 0.006

4 461.899 1.796 0.321 0.008

6 693.079 2.701 0.466 0.011

8 919.099 3.591 0.639 0.014

10 1,165.374 4.631 0.833 0.015

Table 4. Runtime of CVSSIP on UCI ML data sets with five parties and 20 random
trees.

Dataset n βδ runtime (s)

Cars 1,728 46 155.7

Contraceptive 1,473 29 16.8

Hepatitis (no missing values) 80 217 11,507.4

Nursery 12,960 57 22,783.6

Phishing websites 11,055 213 16,231.7

Thoraric surgery 470 213 173.1

5 Conclusion

We presented a new architecture which is a hybrid approach of private evaluation
and classification on vertically partitioned data. This setting might become more
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interesting in the future with the increasing use of private data and collaborations
of companies, governments and different organizations. We provided a closed,
lightweight and feasible solution with adaptable security levels. Additionally,
it is highly parallelizable. The main drawback is the assumption of a central
non-colluding commodity server. Making use of the results of Kolesnikov et al.
on 1-out-of-n oblivious transfer and private set intersection [16,17], it may be
possible to overcome this dependency in the future.
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Abstract. Retail data are of fundamental importance for businesses
and enterprises that want to understand the purchasing behaviour of
their customers. Such data is also useful to develop analytical services
and for marketing purposes, often based on individual purchasing pat-
terns. However, retail data and extracted models may also provide very
sensitive information to possible malicious third parties. Therefore, in
this paper we propose a methodology for empirically assessing privacy
risk in the releasing of individual purchasing data. The experiments on
real-world retail data show that although individual patterns describe a
summary of the customer activity, they may be successful used for the
customer re-identifiation.

1 Introduction

Retail data are one of the most important source of information that enables
commercial companies in understanding their customers behavior by analyzing
their purchasing patterns. In the literature, many data mining methods have
been proposed to extract customer patterns describing frequent itemsets [2],
top-k frequent itemsets [29], regular itemsets [14]. All these individual purchas-
ing models may enable not only the understanding of collective and individual
behaviors, but also the development of data-driven services such as personal
recommendation systems able to capture the customers’ preferences.

Unfortunately, the analysis of retail data might lead to the inference of highly
sensitive information about individuals. Thus, in the literature some works have
addressed the problem of privacy issues in market basket data. Some of them
proposed a methodology for the empirical privacy risk evaluation [20], while
others proposed some approaches for guaranteeing privacy protection [15,30].
However, all these works are focused on the study of the privacy issues in the
released purchasing data, that is, they study the potential privacy risk related
to the release of raw data collected from individuals. Instead, in this paper we
propose to study the privacy risk assessment of individual purchasing models
extracted from the purchasing data of individuals during analysis processes.
Specifically, we identify two types of individual purchasing models: individual
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models composed by a single pattern and individual models composed by a set
of patterns. Then, we define the privacy attack models and the methods for their
simulation. Finally, we simulate these attacks on real-world retail data and we
analyze the privacy risk distributions trying also to identify the properties of
bought items that can lead to customer re-identification by her patterns. The
results show that, although individual patterns are models that abstract from
the details of the raw data, they are able to capture peculiarities of the customer
behavior which often lead to the customer re-identification.

The rest of the paper is organized as follows. In Sect. 2, we discuss the related
work. Section 3 introduces the data models used for representing retail data. In
Sect. 4, we define the privacy risk assessment methodology including the pri-
vacy attacks. Section 5 shows the results of our experiments and, finally, Sect. 6
concludes the paper.

2 Related Work

Customer profiling is a process widely used in economy since long time ago for
direct marketing, site selection, and customer relationship management. The
process of construction and extraction of a personal data model formed by per-
sonal patterns is generally referred to as user profiling. A user profile contains the
systematic behaviors expressing the repetition of habitual actions, i.e., personal
patterns. These patterns can be expressed as simple or complex indexes [10],
behavioral rules [14], set of events [13], typical actions [28], etc. Profiles can be
classified as individual or collective according to the subject they refer to [9,16].
An individual profile is built considering the data of a single person. This kind of
profiling is used to discover the particular characteristics of a certain individual,
to enable unique identification for the provision of personalized services. We talk
about collective data models when personal data or individual models generated
by individual profiling are aggregated without distinguishing the individuals.

With respect to market basket analysis, customer profiling can play today
a very important role. Nowadays the market is characterized by being global,
products and services are almost identical and there is an abundance of suppliers.
Therefore, instead of targeting all the customers equally, a company can select
only those customers who meet certain profitability criteria based on their indi-
vidual needs and buying patterns [4]. To achieve this goal, the customers must be
described by characteristics valuable for the business, like the demographic ones,
the lifestyle, and the shopping habits. These targets can be reached through cus-
tomer profiling. By knowing the profile of each customer, a company can treat a
customer according to her individual needs and increase the lifetime value of the
customer [4]. Furthermore, customer profiling is a key element which impacts
into the decisions in product life cycle cost [7]. One of the first methodology
proposed to analyzed shopping session is [3] where frequent patter mining rules
are defined. In [1] is described a system exploiting these rules for building per-
sonal profiles on transactional histories. The profiles consists of a set of rules
describing customers’ behavior. However, this system requires a constant user
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feedback to assess the pattern validity and parameter setting. An automatic and
parameter-free approach to derive personal patterns is proposed in [13]. An evo-
lution of [13] that also consider the temporal dimension is described in [14]. In
[31] the authors analyze customers’ shopping behaviors with respect to both on
product profiles and customer profiles. The product profile is characterized by a
set of features describing the product. The customer profile this time is an index
expressing the level of interest in product features calculated using the product
profiles. A two-stage clustering technique is used to find the group of customers
that have similar interests and then extract rules from each cluster. In [10] the
authors propose two indexes that consider the level of repetitiveness in both the
basket composition and also in the temporal and spatial dimension of shopping
purchases, i.e., when and where the customers go to the supermarket. Other
forms of customer profiling on market basket data like those described in [11,12]
adopt ad vector based modeling.

In existing literature, the privacy risk for the sharing of retail data or cus-
tomer’s profiles is not considered. This is especially interesting considering the
high amount of privacy related literature.

A vastly used privacy-preserving model, and one of the models of our choosing
for this paper, is k-anonymity [23], which requires that an individual should not
be identifiable from a group of size smaller than k based on a subset of her
own attributes used to univocally identify her, called quasi-identifiers. In [5]
the authors present a set of attacks on the k-anonymity model to prove it’s
possible weaknesses while in [34] a graph-attack method based on k-anonymity
to defend from possible privacy attacks is proposed. More recently, in [19] the
k-anonymity model has been used as a base to propose a privacy framework for
the systematic simulation of privacy attacks, then applied to mobility data. For
retail data very little has been done in terms of privacy risk assessment. In [21]
authors propose a framework for anonymizing transactional data, and in [33] and
[32] the authors propose various methods for privacy preserving data publishing
with transactional and retail data.

For privacy risk assessment, a fundamental work is the LINDDUN method-
ology, presented in [6]. The LINDDUN framework for privacy threats analysis
is largely based on the privacy threat modeling framework STRIDE [25] used
in software-based systems. Other methods for privacy risk evaluation have been
published recently such as in [27], where the authors elaborate an entropy-based
method to evaluate the disclosure risk of personal data, trying to manage quan-
titatively privacy risks.

In this paper we use a well known technique to match records of different
data-set known as distance based record linkage. This technique was first intro-
duced in [17], and allows for the matching of records from different data-sets
based on a measure of distance between records. Records that have minimal dis-
tance between each other are considered to belong to the same individual and
are matched. Different variations of this technique have been used in privacy
literature such as in [26], where the Mahalanobis distance is used for distance
based record linkage.
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3 Retail Data

Retail data is generally collected through membership programs: customers who
wish to do so, voluntarily agree to such programs in order to receive some benefits
through the use of a specific membership card, the data about their purchases is
subsequently collected. The raw data of each individual is represented by baskets.
A basket is a set of items purchased by the individual during a shopping session.
We consider baskets with no repetitions, i.e., proper sets where items can appear
only once. Therefore, and individual may have multiple baskets associated to her.

Definition 1 (Basket). We define a basket (or transactions) b as a subset of
items such that ∅ ⊂ bi ⊆ I where I = {i1, . . . , iD} is the set of all D items.

Definition 2 (Basket History). We define the basket history Bu =
{b1, . . . , bN} as the set of N baskets (or transactions) belonging to the indi-
vidual u.

Such data is usually used to perform analysis of various kind, from association
rule mining [2] to clustering [8]. In this paper we focus on transactional cluster-
ing, as performed with the state-of-the-art algorithm TX-Means [13]. TX-Means
is a parameter-free clustering method that follows a clustering strategy similar
to TX-Means [18] designed for finding clusters in the specific context of transac-
tional data. TX-Means automatically estimates the number of clusters and it also
provides the representative basket of each cluster, which summarizes the pattern
captured by that cluster. The representative baskets correspond to the centroids
of the sub-clusters and are calculated adopting the procedure described in [8].
Therefore, the output of TX-means, consisting in the representative baskets, is
a set of typical patterns that represent recurring purchasing behavior of each
individual. Note that, TX-means is only one of the algorithms able to discover
purchasing patterns. We point out that different algorithms may discover pur-
chasing patterns capturing different properties. For example, a standard pattern
mining algorithm as Apriori [2] is able to extract frequent patterns that differ
from recurrent patterns. However, it requires the minimum support as param-
eter that, from a personal data analytics perspective [9], should be personally
tuned of each user. Another example of pattern can represent the top-k frequent
items. However, in all these cases a pattern may be modelled similarly to a set
of baskets.

Definition 3 (Patterns). We define as Pu = {p1, p2, . . . , pM} the sets of pat-
terns of the individual u, where each pi ⊆ I and I is the set of all D items.

4 Privacy Risk Assessment Methodology

In literature there are several notable methodologies proposed to assess privacy
risks. The definition of privacy that we use was first introduced in [23]. To assess
privacy risk we adopt the framework proposed in [22] that is also used in [19].
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The basic assumption is that a malicious third party, commonly referred to as
the adversary, gathers some background knowledge about an individual, i.e., a
subset of the information related to the individual. Then, the adversary tries to
re-identify the individual in a published data-set using that background knowl-
edge. If successful, the adversary could then be able to retrieve the complete
information associated to the individual, i.e., the adversary could gain access to
all the records regarding the individual. Thus, the general approach in applying
this framework is to first determine the possible background knowledge of an
adversary, then simulate an attack on the data using such background knowl-
edge, empirically compute the privacy risk, and finally explore and analyze the
results to assess privacy risk.

In order to understand the nature of privacy risk in retail data we define a
set of attacks based upon the above framework to explore the privacy risk in
this kind of data.

Patterns Against Patterns. In the first attack we consider an adversary who
tries to understand how unique the individual patterns extracted by clustering
algorithms are. To this end, we conducted our study on two types of individual
purchasing patterns, extracted by using two different clustering algorithms. The
first one is a very simple baseline approach that for each individual u extracts a
single pattern consisting in the set of her most frequent k items. In other words,
for each individual u we have only one pattern in Pu, i.e., p = {i1, i2, . . . , ik}.
In the rest of the paper we refer to this patterns as simple patterns. The sec-
ond approach is the state-of-the-art clustering algorithm, TX-Means [13]. Using
this more complex approach every customer can be characterized by a differ-
ent number of patterns. Every pattern pj ∈ Pu corresponds to a representative
basket extracted by TX-Means. In the rest of the paper we refer to this pat-
terns as TX-means patterns. A representative basket is a virtual transaction
that approximates a set of similar baskets, therefore capturing the items that
best characterize it, i.e., the typical combination of items expected to appear
in any of its baskets. Then, we define an attack where an adversary gathers a
certain number of the patterns for each individual and tries to re-identify the
individual in the whole set of published patterns.

For the first approach, the privacy risk of an individual is given by the number
of other individuals sharing the same pattern.

Definition 4 (Single Pattern Risk). Given an individual u with a single
pattern in Pu, we define her privacy risk as: Risku = 1

|MPu | , where |MPu
| is the

cardinality of the set of individuals having the same pattern in Pu. This measure
ranges from 0 to 1.

For the second approach, where multiple patterns belong to the same individual,
we relied on a systematic exploration of all the possible background knowledge
of a certain length h. For instance, if a customer has 3 patterns {p1, p2, p3}
and we assume an adversary knows 2 of them, we calculate the privacy risk
exploring all the possible combinations of the 3 patterns with length 2. In the
above example, the following three background knowledge would be used: (i)
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{p1, p2}, (ii) {p1, p3}, (iii) {p2, p3}. Each combination is compared with all the
patterns in the published dataset, i.e., we check how many customers have the
same patterns in the data.

Definition 5 (Multiple Patterns Risk). Let u an individual with multiple
patterns in Pu and let Ch be the set of possible combinations of patterns with
length h. The customer privacy risk is defined as: Risku = 1

minc(|Mc|) , where Mc

is the set of customers having a particular combination of patterns c ∈ Ch. This
measure ranges from 0 to 1.

This is a worst-case based approach, as we use the most unique patterns to
calculate the risk, given by the use of minimum value of |Mc|.
Patterns Against Baskets. In the definition of the second attack we assume
that an adversary might get access to the patterns dataset P = {Pu1 , . . . PuU

}
and use it to attack the basket history data B = {Bu1 , . . . BuU

}, where U is
the number of different customers. This could happen for example in the case
when the patterns are publicly made available because considered safe, and the
adversary gets access to the anonymized basket history data. In this case, we
cannot directly compare the pattern of an individual with the customer baskets
to find a match, but we need to identify the possible basket history Bi ∈ B
that could have generated the known pattern Pi ∈ P. Thus, we should link the
different basket histories in B with each pattern in P through the use of a distance
measure. In particular, we propose to use the distance function introduced in
[17]. The adversary will match each pattern in P with the closest basket history
in B. Clearly, if the distance between the pattern of the customer u in P and
the basket history of u is the minimum, then the two records of that customer
are correctly matched.

We recall that the set of the representative patterns of each individual is
computed with either TX-means or the baseline approach. To calculate the dis-
tance between this the records in the data to be matched we propose to use a
modified version of the Jaccard distance.

Definition 6 (Jaccard Distance). Let A and B be two sets. The Jaccard
distance is defined as: J(A,B) = |A∩B|

|A∪B| .

Definition 7 (Minimum Jaccard). Let A and Y = 〈b1, b2, . . . , bm〉 be a set
and a set of sets respectively. The Minimum Jaccard distance is defined as:
MJ(A, Y ) = mini=1,2,...,m(J(A, bi)).

Definition 8 (Best Jaccard). Let X = 〈a1, a2, . . . , an〉 and Y =
〈b1, b2, . . . , bm〉 be two set of sets, with n ≤ m. The Best Jaccard distance is
defined as: BJ(A, Y ) =

∑n
i=1 MJ(ai, Y ).

Using the Best Jaccard distance, we can calculate the number of correct
matches that an adversary could make using the pattern dataset to attack the
basket history dataset. Now, we are ready to introduce the definition of the
privacy risk in this particular setting.
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Definition 9 (Patterns Against Baskets Risk). Let U be the set of all indi-
viduals and M be the set of individuals for whom BJ(Pu, Bu) has the minimum
value. Then, we define the privacy of the dataset as: Risk = |M |

|U | . This measure
ranges from 0 to 1.

This approach dates back to [24]. Note that, in this case, we cannot directly
express a measure for individual risk, since an adversary either correctly matches
two records of the same individual or doesn’t.

5 Experiments

We performed experiments on real world dataset provided by UniCoop Tirreno,
a large Italian supermarket chain. Customers are provided with a loyalty card
which allows to link different shopping sessions, and therefore reconstruct their
personal shopping history. We analyzed a dataset of 2,021,414 shopping ses-
sions, i.e., baskets, performed by 8564 individuals between the 2010 and 2012 in
Leghorn province. These customers are “loyal customers”, i.e., customers active
in at least ten months every year. For each customer we have on average 240
baskets, containing 100 different items, and the average basket length is 8 items.

For each customer we extracted her typical patterns using the two approaches
discussed previously in Sect. 4. Using the baseline approach for the patterns
extraction, we obtained patterns considering the k-most frequent items for each
person, with k ranging from 1 to 10. Applying TX-Means we extracted a total
of 38,068 patterns, more than 4 patterns per individual on average.

5.1 Patterns Against Patterns

In this section we analyze the empirical results related to the privacy risk for
the patterns against patterns attack.

Simple Patterns Against Simple Patterns Risk. The first experiment that
we performed is the simulation of the patterns against patterns attack using
simple patterns, i.e., the top k items by frequency for each individual.

In Fig. 1 we show the distribution of privacy risk for this attack using the
baseline approach, by increasing the value of k, i.e., increasing the number of
items in the k-most frequent patterns. We observe that, with 2 items (Fig. 1(a)),
we have a lower distribution of the privacy risk. But increasing the number of
known items, the level of risk increases rapidly. With 4 items (Fig. 1(c)), more
than half of the population shows risk 1, i.e. maximum risk. Beyond k = 5 the
risk becomes 1 for more than 95% of the population. Starting from the different
top-k items of each individual for any value of k, we analyzed the length of the
shortest simple pattern of each individual that yields privacy risk 1. The idea is
to understand for the customers the distribution of risky k values.

Figure 2 reports the result of this analysis. We found a rather classical Gaus-
sian distribution, with a peak around 4 as expected. Moreover, we also tried to
characterized the risky top-k items. To this end, for each customer we selected
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Fig. 1. Distribution of risk in simple patterns attack

length

mean 4.150514
std 1.243128
min 1.000000
max 9.000000

Fig. 2. Distribution of the length of the shortest simple patterns that yield risk 1

the shortest pattern that yield risk 1 and among the item composing them we
identify those having the lowest global frequency in the basket history data and
the lowest frequency in the set of top-k patterns. In practice, these items are
bought by very few customers but are very frequent in the basket history of
their customers. Given this property they probably are the cause of the cus-
tomer high privacy risk. In Table 1 we report the list of the 10 items with lowest
global frequency that appear in a low number of simple patterns. We observe
that they are very particular items and most of them are not food items.
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Table 1. Infrequent items within the simple patterns

Macro-sector Category

No food Deodorants for environments

Grocery Honey

No food Hardware

No food Anniversary card

Fresh food Fruit beverages

No food Woman’s socks

No food Sandpaper

Fresh food Sheep meat

No food Flowers

No food Chemical products

TX-means Patterns Against TX-means Patterns Risk. The second
experiment is focused on the simulation of a patterns-against-patterns attack
using the individual models extracted with the TX-means algorithm. Each indi-
vidual is hence represented by multiple patterns. To compute the privacy risk we
checked all possible combinations of patterns of length h, with h values ranging
from 1 to 3. We report the results in Fig. 3. We can see that changing the value
of h does not impact on the level of risk as with just one pattern (Fig. 3(a)),
it is possible to correctly re-identify more than 99% of the individuals. This
means that almost every individual has at least one unique pattern that repre-
sents him. This is not surprising, since TX-means is an advanced algorithm for
personal data analytics and yields highly personalized results. We can further
explore the results by looking at the length of the patterns and the privacy risk
that they yield.

Figure 4 highlights that there is no clear correlation between privacy risk val-
ues and pattern length. However, we observe that there is no pattern with length
greater than 5 that yield a risk lower than 1. As for simple patterns, this sug-
gests that longer and more complex patterns are more unique and personal; as a
consequence, they lead to the identification of the individuals. For the TX-means
patterns we performed the same analysis already presented for simple patterns;
in other words, we analyzed the distribution of the length of the shortest pattern
that for each individual yields the maximum risk.

We observe that TX-means provides longer patterns on average and the dis-
tribution presents a typical long tail shape. In Table 2 we report the list of the
10 items with lowest global frequency that appear in a low number of TX-means
patterns. As for the simple patterns, we highlight that most of them are not food
items but their categories are more common with respect to the simple patterns.
Overall these experiments suggests that representative patterns extracted with
either naive or advanced techniques are inherently unique. An individual may
be easily re-identifiable using these patterns even with a small number of items.
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Fig. 3. Distribution of risk in TX-means patterns attack

Fig. 4. Correlation between pattern length and privacy risk
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length

mean 9.046007
std 8.473491
min 1.000000
max 71.000000

Fig. 5. Distribution of the length of the shortest TX-means patterns that yield maxi-
mum risk

Table 2. Infrequent items within the TX-means patterns

Macro-sector Category

No food Manual tools

Fresh food Frozen meat

Fresh food Poultry for birds and rabbits

Fresh food Milk

No food Christmas decoration

No food Underwater gear

No food Electrical equipment

No food House carpets

No food House decoration

No food Glasses

As for the items themselves we see a fairly broad characterization, however, we
can conclude that non-food related items are much more distinctive and may
lead to higher chances of re-identification (Table 2).

5.2 Patterns Against Baskets

In this section we analyze the empirical privacy risk in case of the patterns
against baskets attack.

Simple Patterns Against Baskets. The first experiment is based on the
simulation of a patterns against baskets attack using simple patterns. We recall
that for this attack risk is evaluated globally for the entire data-set and not
individually. We performed distance based record linkage with simple patterns
of 2, 4 and 5 items. For simple patterns of length 2 we have only 27 correct
matches out of the total population of 8,564 customers. This yields a risk of
0.003. For simple patterns of length 4 we have 298 correct matches, yielding a
risk of 0.034. For patterns of length 5 we have 388 correct matches, yielding
a risk of 0.045. These low values are probably due to several factors: while
we have shown previously that simple patterns are quite unique, they are not
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particularly representative of the individual’s baskets. Also, having only one
pattern significantly diminishes the information used for the linkage. Because
of how we compute distance, having only one simple pattern implies that such
distance fall in the range 0 to 1. This leads to a high number of individuals with
minimum distance, therefore impeding a univocal matching. We can conclude
that simple patterns pose a relatively low threat when used to attack the raw
data.

TX-means Patterns Against Baskets. The second experiment is based on
the simulation of a patterns against baskets attack using the patterns extracted
with the TX-means clustering algorithm. As for the previous case, the risk is cal-
culated for the entire data-set. With the TX-means patterns we have that 5,781
individuals out of the total population of 8,564 customers are correctly matched,
i.e., the distance between the TX-means patterns of those individuals and their
basket data is minimal. This yields a risk of 0.675. We can now characterize the
individuals correctly matched, by looking at their patterns and baskets.

Table 3. Characterization of matched individuals in the TX-means patterns against
baskets attack

Patterns:
std of length

Patterns:
mean length

Number of
patterns

Number of
baskets

Baskets:
std of length

Baskets:
mean length

Mean 4.811004 13.049558 4.820446 244.230064 6.002396 10.897940

Std 3.996948 7.899513 3.453788 201.790281 2.873166 5.264362

Min 0.000000 2.200000 1.000000 10.000000 0.708363 1.744063

Max 26.051631 71.000000 25.000000 1646.000000 26.411782 43.282051

Table 4. Characterization of non matched individuals in the TX-means patterns
against baskets attack

Patterns:
std of length

Patterns:
mean length

Number of
patterns

Number of
baskets

Baskets:
std of length

Baskets:
mean length

Mean 2.884773 10.653819 3.665469 219.015451 4.884745 8.000338

Std 3.385043 7.122223 3.735964 220.721776 2.372840 3.951333

Min 0.000000 1.000000 1.000000 10.000000 0.535428 1.221429

Max 25.500000 53.000000 26.000000 2025.000000 16.146130 31.976744

In Tables 3 and 4 we gathered some statistics for the individuals correctly
matched and those who were not matched. For each individual, we gathered the
mean length of her patterns and her baskets as well as the standard deviation for
such lengths and the number of patterns and baskets. In the tables we show mean,
standard deviation, min value and max value for the aforementioned measures.
If we compare the statistics in the two table we can see that there are not
many differences. However, we observe that, for the individuals that were not re-
identified by the attack, we have fewer, shorter patterns and baskets on average,
again, confirming that higher risk is related to lengthier baskets and/or patterns.



Privacy Risk for Individual Basket Patterns 153

6 Conclusion

In this paper we have studied the privacy risk assessment of individual pur-
chasing patterns. In the study we have taken into consideration two different
individual patterns: the top-k items of an individual and the representative pat-
terns extracted by TX-means. After defining, two possible attacks that exploit
individual patterns for customers re-identification, we have performed their sim-
ulation on real-world data. The empirical results on the privacy risk distributions
show that individual patterns often lead to the re-identification of most of the
customers because they accurately describe some customer habits that make him
unique. This preliminary study suggests the need of the application of privacy-
preserving methods for guaranteeing the privacy protection during the analysis
and publishing of individual patterns. An interesting future work would involve
the study of privacy methods that exploit the knowledge provided by the risk
assessment methodology for reducing the model perturbations.
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Abstract. Individual well-being strongly depends on food habits, there-
fore it is important to educate the general population, and especially
young people, to the importance of a healthy and balanced diet. To this
end, understanding the real eating habits of people becomes fundamen-
tal for a better and more effective intervention to improve the students’
diet. In this paper we present two exploratory analyses based on centroid-
based clustering that have the goal of understanding the food habits of
university students. The first clustering analysis simply exploits the infor-
mation about the students’ food consumption of specific food categories,
while the second exploratory analysis includes the temporal dimension
in order to capture the information about when the students consume
specific foods. The second approach enables the study of the impact of
the time of consumption on the choice of the food.

Keywords: Food analytics · Individual models · Clustering analysis

1 Introduction

Nutrition is a crucial factor of an individual’s lifestyle, that may influence both
their physical health and subjective well-being [3,19]. On the one hand, food is a
major source of pleasure, meals are an important opportunity of social aggrega-
tion in many cultures [1,22] and dining together reduce people’s perceptions of
inequality [13]. On the other hand, an excessive consumption, as well as a defi-
cient intake, of specific aliments can lead to severe physical disorders [2]. In this
regard, it has been showed that fast-food and sugar-sweetened drinks consump-
tion is associated with risk of obesity and diabetes [20,23], whereas adopting a
high-fiber diet can improve blood-glucose regulation [29] and consuming fruit
and vegetable could have a potentially large impact in reducing many noncom-
municable diseases [15]. Given the strong relationship between eating habits and
individual well-being, it is important to educate the general population, and
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especially young people, to the importance of a healthy and balanced nutrition
[5,16].

Unfortunately, publicly available datasets describing eating habits and food
consumption – such as the EFSA database1 and the ERS database2 – suffer
from several limitations, mainly consisting in the presence of biases of diverse
nature, the lack of information at individual level, the short period of data col-
lection and the limited number of individuals involved. Being based on surveys,
daily journals or food diaries in which respondents write down what they eat
and drink, the information on food consumption is often incomplete and can be
affected by the well-known problem of memory effect related to self-report [25],
or by the bias due to the tendency in survey respondents to answer questions in
a way that will be viewed favorably by others, the so-called “social desirability”
bias [21]. Moreover, the great effort required by food diaries can force the sur-
vey respondents to simplify the registration of food intake, hence reducing the
accuracy of the registered information [14,18].

Motivated by the criticalness of these aspects, in this paper we propose a
data-driven approach to the understanding of eating habits, leveraging the access
to a real-world database describing all the meals consumed by around 82,000
students at the canteen of University of Pisa during a 7-years period. This dataset
provides us an unprecedented picture of the foods consumed by young people
according to their gender, age, geographic origin, course of study, both at lunch
and dinner, and their possible evolution over time. We highlight that the food
consumption data are collected automatically by means of students electronic
cards, hence overcoming the problems that afflict survey-based data collection.
The analysis of our data with data mining techniques reveals interesting patterns.
In particular, we present two clustering analyses with the aim of segmenting
the students under observation based on their food habits. The first clustering
analysis is based on a student profile called foodprint, which summarizes the
food consumption of each student in specific food categories. It leads to the
discovery of four main groups of eating habits, which are characterized by the
students’ propensity to follow a healthy diet. For example, the cluster of balanced
students describe individuals with a varied diet, including both healthy dishes
and junk food, while in the cluster of voracious students with a more manifold
and fatty diet is preferred. These results show a variation of eating habits across
the population, allowing for the possibility of proper interventions to improve the
students’ diet and subjective well-being. The second clustering analysis exploits
the information about when the students consume their meals. To this end,
we introduce the definition of temporal foodprints and we apply an analytical
process that uses the clustering analysis for both discovering typical food habits
and identifying groups of students having similar food habits. The results of this
additional clustering analysis allows us to study the impact of the seasons and
the time of consumption on the food choice.

1 https://www.efsa.europa.eu/it/food-consumption/comprehensive-database.
2 https://www.ers.usda.gov/data-products/food-consumption-and-nutrient-intakes.

aspx.
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The paper is organized as follows. Section 2 discusses the related work.
Section 3 provides a description of real food data under analysis. Section 4
describes the clustering analysis based on student food consumption, while
Sect. 5 shows the clustering analysis based on the temporal food habits of stu-
dents. Finally, Sect. 6 concludes the paper.

2 Related Work

The process of construction and extraction of a personal data model is gener-
ally referred to as user profiling. A personal data model contains the systematic
behaviors expressing the repetition of habitual actions, i.e., personal patterns.
These patterns can be expressed as simple or complex indexes [7], behavioral
rules [11], set of events [10], typical actions [27], etc. On the one hand, users’
profiles are employed to analyze and understand human behaviors and interac-
tions. On the other hand, profiles are exploited by real services to make predic-
tions, give suggestions, and group similar users [6]. Profiles can be classified as
individual or collective according to the subject they refer to [12]. An individual
profile is built considering the data of a single individual. This kind of profiling is
used to discover the particular characteristics of a certain individual, to enable
unique identification for the provision of personalized services. We talk about
collective data models when personal data or individual models generated by
individual profiling are aggregated without distinguishing the individuals.

In this work we propose an approach using a data modeling similar to [4,8,9],
i.e., a vector-based modeling. Moreover, all these approaches and the presented
one adopt clustering as methodology to extract the individual and collective
patterns. In particular, in [4] the authors defined how to build individual profiles
based on mobile phone calls such that the profiles are able to characterize the
calling behavior of a user. By analyzing these data model three categories of users
are identified: residents, commuters and visitors. Similarly, in [8] the temporal
dimension of retail market data is used to discriminate between residents and
tourists. A more analytical approach, similar to the one presented in this paper,
is described in [9]. The authors present an individual and collective profiling
of shopping customers according to their temporal preferences. However, these
works focusing on the temporal dimension do not consider what the customers
buy. On the other hand, in this work we also take into account the different
types of food purchased per meal producing in this way more valuable profiles.

With respect to the field of food there are various work analyzing food habits,
food consumption, consequences of a certain diet, etc. However, to the best of
our knowledge, this project is the first attempt of using an automatic data-driven
approach for extracting the groups of individuals with similar food consumption
habits [17]. In the literature it has been shown various predefined groups of
people having a certain relationship with certain categories of food. For example
in [20,24,28] is shown how fast-food and sugar-sweetened drinks consumption is
associated with risk of obesity among teenagers, the environmental influences of
adolescent, and which is the result of a healthy behavior in school-aged children,
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respectively. With respect to adults, in [5] is examined the link between dietary
habits and depression, in [23] the relationship between local food environments
and obesity, and in [22] the role of food in life in various countries. In all these
works the group of food consumers are predefined a priori while in this work our
target is to extract group of students having similar patterns of food habits.

3 Food Dataset

As proxy of our study we have access to a dataset provided by the Tuscan
Institute of Right to Study (DSU)3 describing 10 millions of meals consumed
by about 82,871 students at the canteen of University of Pisa during a period
of seven years, from January 1, 2010 to December 26, 2016 (see Table 1 left for
more detailed information). The cost of a meal at the canteen varies over the
years and with the number of dishes composing the meal. The dataset contains
also meals of 19,141 students (23%) who have free meals at the canteen.

Table 1. Basic statistics of the dataset (left) and description of meals in the Mensana
dataset (right). Each meal consists of a student identifier, a timestamp and the list of
dishes composing the meal.

meals: 10,034,413
students: 82,871

grant students: 19,141
free meals: 4,730,658

dishes: 950
food categories: 41

period: 2,551 days
from: 01/01/2010

to: 12/26/2016

student id time dishes
A4578A 18/04/2015

12:42:00
pasta with tomato sauce,
chicken breast, fruit

G23T20 18/04/2015
12:43:00

mushroom risotto, salad,
fruit

GE54Y7 18/04/2015
12:44:00

pasta with tomato, fruit

...
...

...

Each meal is described by a record indicating the student who consumed
the meal, the type of the meal, and the list of dishes (e.g., pasta with tomato
sauce, salad, apple, etc.) composing the meal (see Table 1 right for an example).
While there are 950 different dishes in the dataset, they are grouped in 41 food
categories, each containing dishes with homogeneous nutrients characteristics.

The composition of a meal in terms of the dish composing it changes accord-
ing to the student’s choice based on the menu available at that day. Figure 1
(left) reports that the most popular meal composition is that one with 4 items
(i.e., first course, second course, side course and fruit or dessert). The second
preferred composition is that one with 3 items (typically, first or second course,
side dish and fruit or dessert). Only few students choose additional items with
respect to the complete meal (6 items) or meals with only 1 or 2 items.

3 https://www.dsu.toscana.it/.

https://www.dsu.toscana.it/
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Fig. 1. Distributions: number of dishes per meal (left), meals per student (right).

Table 2. Number of students based on consumed meals

All students

Students with at least 10 meals 60,112

Students with at least 100 meals 22,647

Students with at least 1000 meals 1,448

The total number of meals consumed at the canteen does not vary signifi-
cantly over the years and it is about 1,400K each year. On the other hand, there
is a slightly decrease of the number of students going to the university canteen,
passing from the 30k of 2010 to the 27k of 2016. As shown in Table 2, most
of the students (around 60,000) consume less than 10 meals in total, denoting
the presence of a heavy-tail distribution of the number of meals consumed by
the students (see Fig. 1 (right)). This means that the students going at the can-
teen with regularity are the minority. Only students with scholarships, for whom
meals at the canteen are for free, show a slightly higher regularity.

4 Food Consumption Analytics

The dataset described in the previous section enables us to understand students’
food habits by means of an appropriate vector-based user profiling. In this section
we present a clustering analysis that aims at grouping students, who regularly eat
at the canteen, by using information describing their typical food consumption.

We describe the student food consumption by using an individual model
named foodprint. In practice, this model summarizes the consumption of the
student in each food category of Table 3. We represent a foodprint fu of a student
u by using a vector of 41 attributes ai with i = 1, . . . , 41 (i.e., an attribute for
each food category). Let D

(u)
i be the number of dishes of the student u in the

food category i and M (u) be the total number of meals of the student u, the
value of the i-th attribute is a

(u)
i = D

(u)
i /M (u). We underline that if a student

takes two dishes of the same category in a meal (e.g., potato dishes as second
course and as side), then in D

(u)
i is counted twice, while in M (u) we count only

one meal.
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Fig. 2. Clustering process based on student foodprints

4.1 Data Preprocessing

Since we are interested in analyzing the behavior of regular students, we select
a sub-population of the whole students in the dataset. In particular, we do not
include in the analysis students who use the canteen sporadically by applying
to the data a filter on the student meals based on the frequency in the use of
the canteen. We studied the frequency distribution of the consumption of meals,
and this leaded to select only students who had consumed at least 100 meals and
having a distance between two meals of a maximum of 100 days. The number of
days is defined considering the long periods of summer holidays or exam sessions
where students may not be in Pisa. After this filtering we obtain 1,607,993 meals
related to 6,890 different students. Therefore, we build a foodprint summarizing
the food consumption for each one of these students.

Before proceeding with the cluster analysis we compute the correlation
between the attributes of the students’ profiles to identify (if present) high cor-
relations among food categories. We observed only two strong correlations. A
correlation of 0.8 between category a33 (soups only vegetables) and category a34
(potato and vegetable soups), and a correlation of 0.68 between category a101
(tofu o soybeans with cheese) and category a102 (tofu or soy with vegetables).
Therefore we kept all of the categories separated using all the 41 attributes.

4.2 Clustering Analysis

The goal of the cluster analysis on the student foodprints is to identify groups
of students with similar behaviors in terms of food choices. To this aim, we
adopt the K-Means [26] clustering algorithm as it is shown in the literature to
have good effects in grouping profiles when a vector based model is used [4,9].
K-Means requires to specify the number of clusters k as parameter. To identify
the best value for k, we applied the standard approach (see [26]) that runs
the clustering with several values for k and selects the one such that a further
increase in k generates no significant improvement in the cluster’s compactness.
This aspect is measured using the Sum of Squared Error (SSE). The optimal
number of clusters should be that in which the curve has a significant inflection
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(elbow). As consequence, we selected k = 4. Figure 2 describes the clustering
process based on student foodprints, that starts with the modelling of meals and
dishes of a student with a foodprint and ends by extracting students food habits.

The characterization of the four clusters provides some interesting informa-
tion that allows us to understand how students behave in the university canteen.

We assigned a name to each cluster with respect to their characterization
given by the food categories of the cluster centroids using the following four
adjectives that well describe the feeding behavior of the students of these clusters:

– Cluster 0: Balanced (30.95%)
– Cluster 1: Foodie (17.43%)
– Cluster 2: Health fanatic (33.64%)
– Cluster 3: Voracious (17.98%)

Figure 3 depicts a graphical representation of the 4 clusters that summarizes
the food profile of each cluster and that we discuss in detail in the following.

Balanced. The cluster called balanced covers 31% of the total observed students
and most of them are males. Figure 3 depicts a radar chart showing the typical
food choices of this group pf students. These students have a rather varied diet:
they eat both complex dishes and healthy dishes. Moreover, they take almost
always fruit and just in few occasions the dessert; they eat enough vegetables,
but also pasta (or couscous) with meat.

Foodie. The foodie cluster contains 1,198 students and most of them are males.
This cluster differs from the voracious cluster because these students insert a
greater quantity of healthy food into their diet (see Fig. 3). In particular, 50% of
their meals contain fruit while 35% contain desserts. They often consume flour
with meat, cheese or eggs, but often also eat cooked or grilled vegetables and
raw vegetables. Therefore, they have a rather fatty diet, but in some cases they
try to include more healthy food in their diet.

Voracious. The cluster named voracious involves 1,235 students and most of
them are females. Observing the typical food choices of this group in Fig. 3
we can see that they tend to eat mostly fatty foods. It is evident that they
prefer flour with meat, they often take dessert instead of fruit and they eat
a lot of dishes based on potatoes, red meat and salami. Moreover, compared
to others students, voracious students have the highest consumption of fried
dishes (potatoes or vegetables) and the lower consumption of cooked or grilled
vegetables.

Health Fanatic. The cluster called health fanatic includes 2,311 students with
an almost equal distribution between male (58%) and female (42%), and it is
characterized by a healthy diet, as shows the radar chart in Fig. 3. Indeed, they
eat very often fruit, raw vegetables and cooked or grilled vegetables. These stu-
dents, compared to others, consume the lowest share of flours with meat, cheese
or eggs, and they have a low consumption of red meats or salami, desserts, white
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Fig. 3. Main food categories choices among clusters

meats, potato dishes and fried foods. They are the main consumers of tofu or
soy-based dishes. Although the share of consume is low, we underline that the
supply of these categories in the canteen is limited with respect to the others.

We also perform a study on the clusters aiming at verifying the influence
of the demographical origin of students on the food choices. We observe that,
looking at the origin of the students in the various clusters, the differences are not
significant. There is a tendency towards the prevalence of students from southern
Italy and Islands (Sicily and Sardinia) in the foodie group, but in general it
does not seem that geographical origin is an important feature in the definition
of clusters. Moreover, we also investigate the distribution of students within
cluster according to their course of study, in order to verify whether there are
differences among students attending humanistic courses and students attending
scientific courses. Although the majority of students attends a scientific course,
we find that in the voracious cluster there is the largest quota of students from
humanistic courses.

5 Temporal Food Habits Analytics

The profiling and the clustering analysis presented in the previous section do
not consider any temporal information of when the student consumes the meals.
In this section, we extend the previous analysis that is able to group students on
the basis of their food habits taking into consideration the time of food consump-
tion. This clustering process, depicted in Fig. 4, is based on the definition of the
temporal foodprints of a student, and on two tasks called food habits discovery
and student grouping.

The student temporal foodprint is an extension of the foodprint fu with the
following temporal information: the year and the season of the meals consump-
tion and the knowledge that discriminates between lunch and dinner. This exten-
sion allows us to define the typical consumption of the student in each food cat-
egory during the lunch or dinner in a specific year and season (winter, spring,
summer and autumn). Therefore, for each student we have the set of his tempo-
ral foodprints Fu = {f t1

u , . . . , f tn
u }, where each f ti

u is a temporal foodprint with
ti = (yi, si, µi) representing the temporal information composed of three ele-
ments: yi denoting the year, si denoting the season, and µi indicating lunch or
dinner.
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Fig. 4. Two-steps clustering process based on temporal foodprints: segmentation of
the temporal foodprints (top) and grouping of the food habits profiles (bottom)

Temporal Food Habits Discovery. Similarly to the previous section, given
the temporal foodprints of the students, we can apply a clustering algorithm to
extract typical food habits by exploiting the specificity of the student consump-
tion with respect to the temporal information t used. This clustering does not
provide a students’ segmentation but a segmentation of the temporal foodprints,
i.e., the students temporal habits (see Fig. 4 (top)). Thus, as highlighted in Fig. 4
(bottom), a student can have his temporal foodprints distributed over different
clusters, meaning that he is characterized by different food habits.

Student Grouping. The knowledge of how temporal foodprints are distributed
for each student enables a student segmentation on the basis of the temporal
food habits. To this aim, for each student we construct a food habit profile that
describes the intensity of the student presence in each cluster (food habit). We
represent the student habit profile through a vector of attributes hj with j =
1, . . . k, where each attribute hj represents the intensity of a certain temporal
food habit. Given the set of temporal foodprints of a student u, we denote by N

hj

(u)

the number of his temporal foodprints belonging to the food habit hj , and by
Nu the total number of his temporal foodprints. Finally, we model the intensity
of a student u in a cluster as hj = N

hj

(u)/Nu. We can now group the students
according to their temporal food habits by re-applying a clustering algorithm on
the student food habits profiles as shown in Fig. 4 (bottom).
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Fig. 5. Sorted levels of intensity for the temporal foodprints within the centroid of
clusters 0, 1, 2. With the exception of cluster 0 which has three temporal foodprints
consistently higher than the rest for all the other centroids it is possible to isolate a
unique dominant temporal foodprint.

5.1 Clustering Analysis

In order to perform the double-cluster analysis described above we selected stu-
dents having at least 10 meals over the whole observed period. After this filter
there are 45,952 students to be analyzed. Note that, the filter is different from the
previous analysis because now we are not interested only into regular students.

For discovering the temporal food habits (Fig. 4 (bottom)) we adopt again
the k-means algorithm. Following the same procedure described above we select
k = 50 as number of cluster. In other words, we fix the number of different
temporal food habits to be equal to 50. The 50 different temporal habits are
used to build the food habits profiles. For each student, his food habits profile
describes how his food behavior is distributed over the different temporal food
habits.
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Fig. 6. Levels of intensity for the temporal foodprints using different temporal dis-
cretizations: year-lunch/dinner with three clusters, year-month-lunch/dinner with six
clusters, and year-season-lunch/dinner with seven clusters, respectively.

On top of the food habits profiles we employ k-means for grouping the stu-
dents according to their food habits. We performed this analysis using differ-
ent temporal aggregations t: year and lunch/dinner information, month and
lunch/dinner information, season and lunch/dinner information. In this paper
we report only the results related to this last combination. However, similar
results (in terms of the presence of the same pattern of having a unique domi-
nant temporal foodprint) are obtained using the other temporal combinations.
Using again the elbow method we selected k = 7 as number of different groups
for the food habits profiles.

We analyze the clusters of the students’ temporal food habits with respect to
three dimensions: seasonality, time of the meals (lunch or dinner) and consump-
tion of food categories. The first aspect we considered are the levels of intensity
of the temporal food habits in the centroids of the clusters obtained. Figure 5
reports the sorted intensities for the clusters of food habits with identifiers 0, 1
and 2, respectively. On the y-axes is reported the intensity of the corresponding
food habit that we have in the x-axis.
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Fig. 7. Dominant attributes among clusters
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We found out that, with the exception of cluster 0, which has three food
habits consistently higher than the rest, for all the other centroids it is possible
to isolate a unique dominant food habit. Therefore, we can characterize the seven
groups by means of the dominant food habits of their centroids.

Before analyzing the dominant food habits we highlight in Fig. 6 how a dif-
ferent choice of the temporal dimension t and consequently of the number of
clusters k, lead to different centroids. However, for all these centroids, the pat-
tern of having a unique dominant temporal foodprint always holds. Thus, this
seems a prerogative of this kind of modeling that is independent from the choice
of the temporal dimension and of the number of clusters, that can be adjust to
the needs of the data analyst without loosing the possibility to describe an entire
food habit profile with a unique temporal foodprint.

In the following we present the results of characterization of the 7 clusters
obtained by setting as temporal information the seasons and time of the meal
consumption (the third graph in Fig. 6). Figure 7 shows for each cluster the
information about the highest levels of food consumption over the different food
categories, the impact of the season and of the time of consumption. We observe
that the seasons have no impact on the food choice of the observed students.
This aspect can be due to the fact that the food categories generalize too much
the food consumption, i.e., it does not properly consider the recipes ingredients
putting for example a light “summer pasta” with tomato and basil in the same
category of a more rich“winter pasta” with cooked tomato and other vegetables.
On the other hand, some differences are present with respect to the distribution
between lunch and dinner. In Cluster 4 we have the dominant food habit with
the largest percentage of meals consumed during dinner time. The students in
this group have a proper and nutrient dinner mainly consisting in meat (red and
white) with potato or other vegetables as side dishes. We highlight that fruit is
the top ten of all the dominant food habits, and it is almost always the most
frequent, except for Cluster 1 and Cluster 3. This can be due to the fact that
in every possible meal composition a fruit or a dessert can be added: the fact
that fruit is preferred over dessert is a good indication of the students choices.
It is interesting to notice how for the students of Cluster 1 the dessert is far
more important than fruit. We can finally differentiate Cluster 1, Cluster 3 and
Cluster 4 from the others. Indeed, these three clusters identify a quite fat diets
and diets rich of starches and animal proteins, while the other are more based
on the consumption of raw and cooked vegetables.

6 Conclusion

In this paper we have presented two exploratory analyses based on centroid-
based clustering aiming at understating the food habits of university students.
The first clustering analysis, based on a student profile that describes the stu-
dent consumption in specific food categories, allow us to discover four different
clusters: voracious, health fanatic, foddies and balanced. The second analysis
instead is based on a student profile that takes into account also the temporal
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information describing when the meal is consumed. This additional information
together with a double clustering analysis allows us to perform a deeper analysis
of the students’ food habits also studying the impact of the seasons and the
time of consumption on the food choice. The results of our analyses could be
useful for suggest improvements to the students diet. Clearly, individual sug-
gests might lead to privacy concerns that should be addressed appropriately.
Interesting future improvements of the work include the use of food categories
that introduce a lower generalization of the recipes of the consumed dishes and
the link of the students’ consumption with the nutrient values of the meals.
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A Appendix

Table 3. The food categories.

Cat Foodcat Category

a8 Potato Potato dishes

a10 Plain flours Plours (pasta, couscous, dumplings) in white

a11 Meat flours Flours (pasta, couscous, dumplings) with meat/cheese/eggs

a12 Fish flours Flours (pasta, couscous, dumplings) with fish

a13 Veg flours Flours (pasta, couscous, dumplings) with vegetables

a20 Plain rice Graminaceae (rice, spelled, etc.) in white

a21 Meat rice Graminaceae (rice, spelled, etc.) with meat/cheese/eggs

a22 Fish rice Graminaceae (rice, spelled, etc.) with fish

a23 Veg rice Graminaceae (rice, spelled, etc.) with vegetables

a31 Meat soup Soups with meat/cheese/egg

a32 Fish soup Soups with fish

a33 Veg soup Soups with vegetables

a34 Legumes soup Potato and legumes soups

a51 Read meat Red meat/salami

a52 White meat White meat

a53 Processed meat Meat (white/red) - processed

(continued)

http://www.sobigdata.eu
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Table 3. (continued)

Cat Foodcat Category

a60 Fish Fish

a62 Fried fish Fish - fried

a71 Cheese salad Cheese salad

a81 Raw veg Raw vegetables

a82 Cooked veg Cooked or grilled vegetables

a83 Legumes Legumes

a91 Meat pie Eggs, molded, pies with meat and cheeses

a92 Veg pie Eggs, molded, pies with vegetables

a93 Fried veg Vegetables/fried potatoes/other fried

a101 Soy cheese Tofu or soy with cheeses

a102 Veg soy Tofu or soy with vegetables

a212 Cheese Cheese

a213 Sandwiches Sandwiches, piadines, pizzas, bunnies

a415 Fruit Fruit

a416 Dessert Dessert
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