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Abstract. We study the dynamical behavior of linear higher-order cel-
lular automata (HOCA) over Zm. In standard cellular automata the
global state of the system at time t only depends on the state at time
t − 1, while in HOCA it is a function of the states at time t − 1, . . . ,
t−n, where n ≥ 1 is the memory size. In particular, we provide easy-to-
check necessary and sufficient conditions for a linear HOCA over Zm of
memory size n to be sensitive to the initial conditions or equicontinuous.
Our characterizations of sensitivity and equicontinuity extend the ones
shown in [23] for linear cellular automata (LCA) over Z

n
m in the case

n = 1. We also prove that linear HOCA over Zm of memory size n are
indistinguishable from a subclass of LCA over Zn

m. This enables to decide
injectivity and surjectivity for linear HOCA over Zm of memory size n by
means of the decidable characterizations of injectivity and surjectivity
provided in [2] and [20] for LCA over Z

n
m.

1 Introduction

Cellular automata (CA) are well-known formal models of natural computing
which have been successfully applied in a wide number of fields to simulate
complex phenomena involving local, uniform, and synchronous processing (for
recent results and an up-to date bibliography on CA, see [1,6,7,16,25], while for
other models of natural computing see for instance [9,12,17]). More formally,
a CA is made of an infinite set of identical finite automata arranged over a
regular cell grid (usually Z

d in dimension d) and all taking a state from a finite
set S called the set of states. In this paper, we consider one-dimensional CA. A
configuration is a snapshot of all states of the automata, i.e., a function c : Z → S.
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A local rule updates the state of each automaton on the basis of its current state
and the ones of a finite set of neighboring automata. All automata are updated
synchronously. In the one-dimensional settings, a CA is a structure 〈S, r, f〉 where
r ∈ N is the radius and f : S2r+1 → S is the local rule which updates, for each
i ∈ Z, the state of the automaton in the position i of the grid Z on the basis
of states of the automata in the positions i − r, . . . , i + r. A configuration is
an element of SZ and describes the (global) state of the CA. The feature of
synchronous updating induces the following global rule F : SZ → SZ defined as

∀c ∈ SZ,∀i ∈ Z, F (c)i = f(ci−r, . . . ci+r) .

As such, the global map F describes the change from any configuration c at any
time t ∈ N to the configuration F (c) at t + 1 and summarises the main features
of the CA model, namely, the fact that it is defined through a local rule which
is applied uniformly and synchronously to all cells.

Because of a possible inadequacy, in some contexts, of every single one of
the three defining features, variants of the original CA model started appearing,
each one relaxing one among these three features. Asynchronous CA relax syn-
chrony (see [8,10,11,18,26] for instance), non-uniform CA relax uniformity [13–
15], while hormonal CA (for instance) relax locality [4]. However, from the math-
ematical point of view all those systems, as well as the original model, fall in the
same class, namely, the class of autonomous discrete dynamical systems (DDS)
and one could also precise memoryless systems.

In [27], Toffoli introduced higher-order CA (HOCA), i.e., variants of CA in
which the updating of the state of a cell also depends on the past states of the cell
itself and its neighbours. In particular, he showed that any arbitrary reversible
linear HOCA can be embedded in a reversible linear CA (LCA), where linear
means that the local rule is linear. Essentially, the trick consisted in memoriz-
ing past states and recover them later on. Some years later, Le Bruyn and Van
Den Bergh explained and generalized the Toffoli construction and proved that
any linear HOCA having the ring S = Zm as alphabet and memory size n can
be simulated by a linear CA over the alphabet Z

n
m (see the precise definition in

Sect. 2) [2]. In this way, as we will see, a practical way to decide injectivity (which
is equivalent to reversibility in this setting) and surjectivity of HOCA can be
easily derived by the characterization of the these properties for the correspond-
ing LCA simulating them. Indeed, in [2] and [20], characterizations of injectivity
and surjectivity of a LCA over Z

n
m are provided in terms of properties of the

determinant of the matrix associated with it, where the determinant turns out
to be another LCA (over Zm). Since the properties of LCA over Zm (i.e., LCA
over Z

n
m with n = 1) have been extensively studied and related decidable char-

acterizations have been obtained [3,5,24], one derives the algorithms to decide
injectivity and surjectivity for LCA over Z

n
m and, then, as we will see, also for

HOCA over Zm of memory size n, by means of the associated matrix. The pur-
pose of the present paper is to study, in the context of linear HOCA, sensitivity
to the initial conditions and equicontinuity, where the former is the well-known
basic component and essence of the chaotic behavior of a DDS, while the latter
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represents a strong form of stability. To do that, we put in evidence that any
linear HOCA over Zm of memory size n is not only simulated by but also topo-
logically conjugated to a LCA over Z

n
m defined by a matrix having a specific

form. Thus, in order to decide injectivity and surjectivity for linear HOCA over
Zm of memory size n, one can use the decidable characterization provided in [2]
and [20] for deciding the same properties for LCA over Z

n
m by means of that

specific matrix. As main result, we prove that sensitivity to the initial condition
and equicontinuity are decidable properties for linear HOCA over Zm of mem-
ory size n (Theorem 2). In particular we provide a decidable characterization of
those properties, in terms of the matrix associated with a linear HOCA. Remark
that if n = 1, starting from our characterizations one recovers exactly the well
known characterizations of sensitivity and equicontinuity for LCA over Zm.

2 Higher-Order CA and Linear CA

We begin by reviewing some general notions and introducing notations we will
use throughout the paper.
A discrete dynamical system (DDS) is a pair (X ,F) where X is a space equipped
with a metric, i.e., a metric space, and F is a transformation on X which is
continuous with respect to that metric. The dynamical evolution of a DDS (X ,F)
starting from the initial state x(0) ∈ X is the sequence {x(t)}t∈N ⊆ X where
x(t) = F t(x(0)) for any t ∈ N. When X = SZ for some set finite S, X is usually
equipped with the metric d defined as follows ∀c, c′ ∈ SZ, d(c, c′) = 1

2n , where
n = min{i ≥ 0 : ci 	= c′

i or c′
−i 	= c′

−i}. Recall that SZ is a Cantor space.
Any CA 〈S, r, f〉 defines the DDS (SZ, F ), where F is the CA global rule

(which is continuous). From now on, for the sake of simplicity, we will sometimes
identify a CA with its global rule F or with the DDS (SZ, F ).

Recall that two DDS (X ,F) and (X ′,F ′) are topologically conjugated if there
exists a homeomorphism φ : X 
→ X ′ such that F ′ ◦φ = φ ◦F , while the product
of (X ,F) and (X ′,F ′) is the DDS (X × X ′,F × F ′) where F × F ′ is defined as
∀(x, x′) ∈ X × X ′, (F × F ′)(x, x′) = (F(x),F ′(x′)).

Notation 1. For all i, j ∈ Z with i ≤ j, we write [i, j] = {i, i + 1, . . . , j} to
denote the interval of integers between i and j. For any n ∈ N and any set Z the
set of all n×n matrices with coefficients in Z and the set of Laurent polynomials
with coefficients in Z will be noted by Mat (n,Z) and Z

[
X,X−1

]
, respectively. In

the sequel, bold symbols are used to denote vectors, matrices, and configurations
over a set of states which is a vectorial space. Moreover, m will be an integer
bigger than 1 and Zm = {0, 1, . . . ,m−1} the ring with the usual sum and product
modulo m. For any x ∈ Z

n (resp., any matrix M(X) ∈ Mat
(
n,Z

[
X,X−1

])
),

we will denote by [x]m ∈ Z
n
m (resp., [M(X)]m), the vector (resp., the matrix)

in which each component xi of x (resp., every coefficient of each element of
M(X)) is taken modulo m. Finally, for any matrix M(X) ∈ Zm

[
X,X−1

]
and

any t ∈ N, the t-th power of M(X) will be noted more simply by M t(X) instead
of (M(X))t.
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Definition 1 (Higher-Order Cellular Automata). A Higher-Order Cellular
Automata (HOCA) is a structure H = 〈k, S, r, h〉 where k ∈ N with k ≥ 1 is the
memory size, S is the alphabet, r ∈ N is the radius, and h : S(2r+1)k → S is the
local rule. Any HOCA H induces the global rule H :

(
SZ

)k → (
SZ

)k associating

any vector e = (e1, . . . , ek) ∈ (
SZ

)k of k configurations of SZ with the vector

H(e) ∈ (
SZ

)k such that H(e)j = ej+1 for each j 	= k and ∀i ∈ Z,H(e)ki =

h

⎛

⎜
⎝

e1[i−r,i+r]

...
ek[i−r,i+r]

⎞

⎟
⎠. In this way, H defines the DDS

((
SZ

)k
,H

)
. As with CA, we

identify a HOCA with its global rule or the DDS defined by it.

Remark 1. It is easy to check that for any HOCA H = 〈k, S, r, h〉 there exists a
CA

〈
Sk, r, f

〉
which is topologically conjugated to H.

The study of the dynamical behaviour of HOCA is still at its early stages; a few
results are known for the class of linear HOCA, namely, those HOCA defined by
a local rule f which is linear, i.e., S is Zm and there exist coefficients aj

i ∈ Zm

(j = 1, . . . , k and i = −r, . . . , r) such that for any element

x =

⎛

⎜
⎝

x1
−r . . . x1

r
...

...
...

xk
−r . . . xk

r

⎞

⎟
⎠ ∈ Z

(2r+1)k
m , f(x) =

⎡

⎣
k∑

j=1

r∑

i=−r

aj
ix

j
i

⎤

⎦

m

.

Clearly, linear HOCA are additive, i.e., ∀c,d ∈ (
Z
Z

m

)k
,H(c) + H(d), where,

with an abuse of notation, + denotes the extension of the sum over Zm to both
Z
Z

m and
(
Z
Z

m

)k.
In [2], a much more convenient representation is introduced for the case of

linear HOCA (in dimension d = 1) by means of the following notion.

Definition 2 (Linear Cellular Automata). A Linear Cellular Automaton
(LCA) is a CA L = 〈Zn

m, r, f〉 where the local rule f : (Zn
m)2r+1 → Z

n
m is

defined by 2r + 1 matrices M−r, . . . ,M0, . . . ,M r ∈ Mat (n,Zm) as follows:
f(x−r, . . . ,x0, . . . ,xr) =

[∑r
i=−r M i · xi

]
m

for any (x−r, . . . ,x0, . . . ,xr) ∈
(Zn

m)2r+1.

Remark 2. LCA have been strongly investigated in the case n = 1 and all the
dynamical properties have been characterized in terms of the 1×1 matrices (i.e.,
coefficients) defining the local rule, in any dimension too [3,24].

We recall that any linear HOCA H can be simulated by a suitable LCA, as shown
in [2]. Precisely, given a linear HOCA H = 〈k,Zm, r, h〉, where h is defined by
the coefficients aj

i ∈ Zm, the LCA simulating H is L =
〈
Z
k
m, r, f

〉
with f defined

by following matrices
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M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...
0 0 0 . . . 0 1
a1
0 a2

0 a3
0 . . . ak−1

0 ak
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and M i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
a1
i a2

i a3
i . . . ak−1

i ak
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

for each i ∈ [−r, r] with i 	= 0.

Remark 3. We want to put in evidence that a stronger result actually holds
(easy proof, important remark): any linear HOCA H is topologically conjugated
to the LCA L defined by the matrices in (1). Clearly, the converse also holds:
for any LCA defined by the matrices in (1) there exists a linear HOCA which
is topologically conjugated to it. In other words, up to a homeomorphism the
whole class of linear HOCA is identical to the subclass of LCA defined by the
matrices above introduced. In the sequel, we will call L the matrix presentation
of H.

We are now going to show a stronger and useful new fact, namely, that the
class of linear HOCA is nothing but the subclass of LCA represented by a formal
power series which is a matrix in Frobenius normal form. Before proceeding, let
us recall the formal power series (fps) which have been successfully used to study
the dynamical behaviour of LCA in the case n = 1 [19,24]. The idea of fps is that
configurations and global rules are represented by suitable polynomials and the
application of the global rule turns into multiplications of polynomials. In the
more general case of LCA over Zn

m, a configuration c ∈ (Zn
m)Z can be associated

with the fps

Pc(X) =
∑

i∈Z

ciX
i =

⎡

⎢
⎣

c1(X)
...

cn(X)

⎤

⎥
⎦ =

⎡

⎢
⎣

∑
i∈Z

c1iX
i

...∑
i∈Z

cni Xi

⎤

⎥
⎦ .

Then, if F is the global rule of a LCA defined by M−r, . . . ,M0, . . . ,M r, one
finds P F (c)(X) = [M(X)Pc(X)]m where

M(X) =

[
r∑

i=−r

M iX
−i

]

m

is the finite fps associated with the LCA F . In this way, for any integer t > 0 the
fps associated with F t is M(X)t, and then P F t(c)(X) = [M(X)tPc(X)]m .
Throughout this paper, M(X)t will refer to [M(X)t]m.
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A matrix M(X) ∈ Mat
(
n,Z

[
X,X−1

])
is in Frobenius normal form if

M(X) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 . . . 0 1

m0(X) m1(X) m2(X) . . . mn−2(X) mn−1(X)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

where each mi(X) ∈ Z
[
X,X−1

]
. From now on, m(X) will always make ref-

erence to the n-th row of a matrix M(X) ∈ Mat
(
n,Z

[
X,X−1

])
in Frobenius

normal form.

Definition 3 (Frobenius LCA). A LCA F over the alphabet Z
n
m is said to

be a Frobenius LCA if the fps M(X) ∈ Mat
(
n,Zm

[
X,X−1

])
associated with

F is in Frobenius normal form.

It is immediate to see that a LCA is a Frobenius one iff it is defined by the
matrices in (1), i.e., iff it is topologically conjugated to a linear HOCA. This
fact together with Remark 3 and Definition 3, allow us to state the following

Proposition 1. Up to a homeomorphism, the class of linear HOCA over Zm

of memory size n is nothing but the class of Frobenius LCA over Z
n
m.

Remark 4. Actually, in literature a matrix is in Frobenius normal form if either it
or its transpose has a form as in (2). Since any matrix in Frobenius normal form
is conjugated to its transpose, any Frobenius LCA F is topologically conjugated
to a LCA G such that the fps associated with G is the transpose of the fps
associated with G. In other words, up to a homeomorphism, such LCA G, linear
HOCA, and Frobenius LCA form the same class.

From now on, we will focus on Frobenius LCA, i.e., matrix presentations
of linear HOCA. Indeed, they allow convenient algebraic manipulations that
are very useful to study formal properties of linear HOCA. For example, in [2]
and [20], the authors proved decidable characterization for injectivity and sur-
jectivity for LCA in terms of the matrix M(X) associated to them. We want
to stress that, by Remark 3 and Definition 3, one can use these characterizations
for deciding injectivity and surjectivity of linear HOCA. In this paper we are
going to adopt a similar attitude, i.e., we are going to characterise the dynami-
cal behaviour of linear HOCA by the properties of the matrices in their matrix
presentation.
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3 Dynamical Properties

In this paper we are particularly interested to the so-called sensitivity to the
initial conditions and equicontinuity. As dynamical properties, they represent
the main features of instable and stable DDS, respectively. The former is the
well-known basic component and essence of the chaotic behavior of DDS, while
the latter is a strong form of stability.

Let (X ,F) be a DDS. The DDS (X ,F) is sensitive to the initial conditions
(or simply sensitive) if there exists ε > 0 such that for any x ∈ X and any
δ > 0 there is an element y ∈ X such that d(y, x) < δ and d(Fn(y),Fn(x)) > ε
for some n ∈ N. Recall that, by Knudsen’s Lemma [21], (X ,F) is sensitive iff
(Y,F) is sensitive where Y is any dense subset of X which is F-invariant, i.e.,
F(Y) ⊆ Y.

In the sequel, we will see that in the context of LCA an alternative way to
study sensitivity is via equicontinuity points. An element x ∈ X is an equicon-
tinuity point for (X ,F) if ∀ε > 0 there exists δ > 0 such that for all y ∈ X ,
d(x, y) < δ implies that d(Fn(y),Fn(x)) < ε for all n ∈ N. The system (X ,F) is
said to be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ X ,
d(x, y) < δ implies that ∀n ∈ N, d(Fn(x),Fn(y)) < ε. Recall that any CA
(SZ, F ) is equicontinuous if and only if there exist two integers q ∈ N and p > 0
such that F q = F q+p [22]. Moreover, for the subclass of LCA defined by n = 1
the following result holds:

Theorem 1 ([24]). Let (ZZ

m, F ) be a LCA where the local rule f : (Zm)2r+1 →
Zm is defined by 2r + 1 coefficients m−r, . . . , m0, . . . , mr ∈ Zm. Denote by P
the set of prime factors of m. The following statements are equivalent: (i) F is
sensitive to the initial conditions; (ii) F is not equicontinuous; (iii) there exists
a prime number p ∈ P which does not divide gcd(m−r, . . . , m−1,m1, . . . , mr).

The dichotomy between sensitivity and equicontinuity still holds for general
LCA.

Proposition 2. Let L = 〈Zn
m, r, f〉 be a LCA where the local rule

f : (Zn
m)2r+1 → Z

n
m is defined by 2r + 1 matrices M−r, . . . ,M0, . . . ,M r ∈

Mat (n,Zm). The following statements are equivalent: (i) F is sensitive to the
initial conditions; (ii) F is not equicontinuous; (iii)

∣
∣{M(X)i, i ≥ 1}∣∣ = ∞.

Proof. It is clear that conditions (ii) and (iii) are equivalent. The equivalence
between (i) and (ii) is a consequence of linearity of F and Knudsen’s Lemma
applied on the subset of the finite configurations, i.e., those having a state dif-
ferent from the null vector only in a finite number of cells. ��
An immediate consequence of Proposition 2 is that any characterization of sen-
sitivity to the initial conditions in terms of the matrices defining LCA over Z

n
m

would also provide a characterization of equicontinuity. In the sequel, we are
going to show that such a characterization actually exists. First of all, we recall
a result that helped in the study of dynamical properties in the case n = 1 and we
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now state it in a more general form for LCA over Zn
m (immediate generalisation

of the result in [3,5]).
Let

(
(Zn

m)Z, F
)

be a LCA and let q be any factor of m. We will denote by [F ]q
the map [F ]q : (Zn

q )Z → (Zn
q )Z defined as [F ]q (c) = [F (c)]q, for any c ∈ (Zn

q )Z.

Lemma 1 ([3,5]). Consider any LCA
(
(Zn

m)Z, F
)

with m = pq and
gcd(p, q) = 1. It holds that the given LCA is topologically conjugated to(
(Zn

p )Z × (Zn
q )Z, [F ]p × [F ]q

)
.

As a consequence of Lemma 1, if m = pk1
1 · · · pkl

l is the prime factor decomposi-
tion of m, any LCA over Zn

m is topologically conjugated to the product of LCAs
over Z

n

p
ki
i

. Since sensitivity is preserved under topological conjugacy for DDS

over a compact space and the product of two DDS is sensitive if and only if
at least one of them is sensitive, we will study sensitivity for Frobenius LCA
over Z

n
pk . We will show a decidable characterization of sensitivity to the initial

conditions for Frobenius LCA over Z
n
pk (Lemma 8). Such a decidable character-

ization together with the previous remarks about the decomposition of m, the
topological conjugacy involving any LCA over Zn

m and the product of LCAs over
Z
n

p
ki
i

, and how sensitivity behaves with respect to a topological conjugacy and

the product of DDS, immediately lead to state the main result of the paper.

Theorem 2. Sensitivity and Equicontinuity are decidable for Frobenius LCA
over Z

n
m, or, equivalently, for linear HOCA over Zm of memory size n.

4 Sensitivity of Frobenius LCA over Z
n
pk

In order to study sensitivity of Frobenius LCA over Z
n
pk , we introduce two con-

cepts about Laurent polynomials.

Definition 4 (deg+ and deg−). Given any polynomial p(X) ∈ Zpk

[
X,X−1

]
,

the positive (resp., negative) degree of p(X), denoted by deg+[p(X)] (resp.,
deg−[p(X)]) is the maximum (resp., minimum) degree among those of the mono-
mials having both positive (resp., negative) degree and coefficient which is not
multiple of p. If there is no monomial satisfying both the required conditions,
then deg+[p(X)] = 0 (resp., deg−[p(X)] = 0).

Definition 5 (Sensitive Polynomial). A polynomial p(X) ∈ Zpk

[
X,X−1

]

is sensitive if either deg+[p(X)] > 0 or deg−[p(X)] < 0. As a consequence, a
Laurent polynomial p(X) is not sensitive iff deg+[p(X)] = deg−[p(X)] = 0.

Trivially, it is decidable to decide whether a Laurent polynomial is sensitive.

Remark 5. Consider a matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobe-

nius normal form. The characteristic polynomial of M(X) is then P(y) =
(−1)n(−m0(X)−m1(X)y −· · ·−mn−1(X)yn−1 +yn). By the Cayley-Hamilton
Theorem, one obtains

Mn(X) = mn−1(X)M(X)n−1 + · · · + m1(X)M(X)1 + m0(X)I . (3)
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We now introduce two further matrices that will allow us to access the informa-
tion hidden inside M(X).

Definition 6 (U(X), L(X), d+, and d−). For any matrix M(X) ∈
Mat

(
n,Zpk

[
X,X−1

])
in Frobenius normal form the matrices U(X),L(X) ∈

Mat
(
n,Zpk

[
X,X−1

])
associated with M(X) are the matrices in Frobenius

normal form where each component ui(X) and li(X) (with i = 0, . . . , n − 1)
of the n-th row u(X) and l(X) of U(X) and L(X), respectively, is defined as
follows:

ui(X) =

{
monomial of degree deg+[mi(X)] inside mi(X) if d+i = d+

0 otherwise

li(X) =

{
monomial of degree deg−[mi(X)] inside mi(X) if d−

i = d−

0 otherwise
,

where d+i = deg+[mi(X)]
n−i , d−

i = deg−[mi(X)]
n−i , d+ = max{d+i }, and d− = min{d−

i }.

Definition 7 (M̂(X) and M(X)). For any Laurent polynomial p(X) ∈
Zpk

[
X,X−1

]
, p̂(X) and p(X) are defined as the Laurent polynomial obtained

from p(X) by removing all the monomials having coefficients that are multiple of
p and p(X) = p(X) − p̂(X), respectively. These definitions extend component-
wise to vectors. For any matrix M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
in Frobenius

normal form, M̂(X) and M(X) are defined as the matrix obtained from M(X)
by replacing its n-th row m(X) with m̂(X) and M(X) = M(X) − M̂(X),
respectively.

Definition 8 (Graph GM ). Let M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
be any

matrix in Frobenius normal form. The graph GM = 〈VM , EM 〉 associated with
M(X) is such that VM = {1, . . . , n} and EM = {(h, k) ∈ V 2

M |M(X)hk 	= 0}.
Moreover, each edge (h, k) ∈ EM is labelled with M(X)hk .

Clearly, for any matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal

form, any natural t > 0, and any pair (h, k) of entries, the element M t(X)hk is
the sum of the weights of all paths of length t starting from h and ending to k,
where the weight of a path is the product of the labels of its edges.

Lemma 2. Let p > 1 be a prime number and a, b ≥ 0, k > 0 be integers such
that 1 ≤ a < pk and gcd(a, p) = 1. Then, [a + pb]pk 	= 0.

Lemma 3. Let p > 1 be a prime number and h, k be two positive integers. Let
l1, . . . , lh and α1, . . . , αh be positive integers such that l1 < l2 < · · · < lh and
for each i = 1, . . . , h both 1 ≤ αi < pk and gcd(αi, p) = 1 hold. Consider the
sequence b : Z → Zpk defined for any l ∈ Z as bl = [α1bl−l1 + · · · + αhbl−lh ]pk

if l > 0, b0 = 1, and bl = 0, if l < 0. Then, it holds that [bl]p 	= 0 for infinitely
many l ∈ N.
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For any matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal form, we

are now going to study the behavior of U t(X) and Lt(X), and, in particular, of
their elements U t(X)nn and Lt(X)nn. These will turn out to be crucial in order
to establish the sensitivity of the LCA defined by M(X).

Notation 2. For a sake of simplicity, for any matrix M(X) ∈ Mat(
nZpk

[
X,X−1

])
in Frobenius normal form, from now on we will denote by

u(t)(X) and l(t)(X) the elements (U t(X))nn and Lt(X)nn, respectively.

Lemma 4. Let M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
be a matrix such that M(X) =

N̂(X) for some N(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal form. For

any natural t > 0, u(t)(X) (resp., l(t)(X)) is either null or a monomial of degree
td+ (resp., td−).

Proof. We show that the statement is true for u(t)(X) (the proof concerning
l(t)(X) is identical by replacing d+, U(X) and related elements with d−, L(X)
and related elements). For each i ∈ VU , let γi be the simple cycle of GU from
n to n and passing through the edge (n, i). Clearly, γi is the path n → i →
i + 1 . . . → n − 1 → n (with γn the self-loop n → n) of length n − i + 1 and its
weight is the monomial ui−1(X) of degree (n − i + 1)d+. We know that u(t)(X)
is the sum of the weights of all cycles of length t starting from n and ending to
n in GU if at least one of such cycles exists, 0, otherwise. In the former case,
each of these cycles can be decomposed in a certain number s ≥ 1 of simple
cycles γ1

j1
, . . . , γs

js
of lengths giving sum t, i.e., such that

∑s
i=1(n − ji + 1) = t.

Therefore, (U t(X))nn is a monomial of degree
∑s

i=1(n − ji + 1)d+ = td+. ��
Lemma 5. Let M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
be any matrix in Frobenius

normal form. For every integer t ≥ 1 both the following recurrences hold

u(t)(X)=un−1(X)u(t−1)(X) + · · · + u1(X)u(t−n+1)(X) + u0(X)u(t−n)(X) (4)
l(t)(X) = ln−1(X)l(t−1)(X) + · · · + l1(X)l(t−n+1)(X) + l0(X)l(t−n)(X) (5)

with initial conditions u(0)(X) = l(0)(X) = 1, and u(l)(X) = l(l)(X) = 0 for
l < 0.

Proof. We show the recurrence involving u(t)(X) (the proof for l(t)(X) is iden-
tical by replacing U(X) and its elements with L(X) and its elements). Since
U(X) is in Frobenius normal form too, by (3), Recurrence (4) holds for every
t ≥ n. It is clear that u(0)(X) = 1. Furthermore, by the structure of the graph
GU and the meaning of U(X)nn, Equation (4) is true under the initial conditions
for each t = 1, . . . , n − 1. ��
Lemma 6. Let M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
be a matrix such that M(X) =

N̂(X) for some matrix N(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal

form. Let υ(t) (resp., λ(t)) be the coefficient of u(t)(X) (resp., l(t)(X)). It holds
that gcd[υ(t), p] = 1 (resp., gcd[λ(t), p] = 1), for infinitely many t ∈ N.
In particular, if the value d+ (resp., d−) associated with M(X) is non null, then
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for infinitely many t ∈ N both
[
u(t)(X)

]
pk 	= 0 and deg(

[
u(t)(X)

]
pk) 	= 0 (resp.,

[
l(t)(X)

]
pk 	= 0 and deg(

[
l(t)(X)

]
pk) 	= 0) hold. In other terms, if d+ > 0 (resp.,

d− < 0) then |{u(t)(X), t ≥ 1}| = ∞ (resp., |{lt(X), t ≥ 1}| = ∞).

Proof. We show the statements concerning υ(t), U(X), u(t)(X), and d+. Replace
X by 1 in the matrix U(X). Now, the coefficient υ(t) is just the element of
position (n, n) in the t-th power of the obtained matrix U(1). Over U(1), the
thesis of Lemma 5 is still valid replacing u(t)(X) by υ(t). Thus, for every t ∈ N,
υ(t) = un−1(1)υ(t − 1) + · · · + u1(1)υ(t − n + 1) + u0(1)υ(t − n) with initial
conditions υ(0) = 1 and υ(l) = 0, for l < 0, where each ui(1) is the coef-
ficient of the monomial ui(X) inside U(X). Thus, it follows that [υ(t)]pk =
[un−1(1)υ(t − 1) + · · · + u1(1)υ(t − n + 1) + u0(1)υ(t − n)]pk . By Lemma 3 we
obtain that gcd[υ(t), p] = 1 (and so [υ(t)]pk 	= 0, too) for infinitely many t ∈ N.
In particular, if the value d+ associated with M(X) is non null, then, by the
structure of GU and Lemma 4, both

[
u(t)(X)

]
pk 	= 0 and deg(

[
u(t)(X)

]
pk) 	= 0

hold for infinitely many t ∈ N, too. Therefore, |{u(t)(X), t ≥ 1}| = ∞. The same
proof runs for the statements involving λ(t), L(X), u(t)(X), and d− provided
that these replace υ(t), U(X), u(t)(X), and d+, respectively. ��
Lemma 7. Let M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
be a matrix in Frobenius nor-

mal form. If either |{u(t)(X), t ≥ 1}| = ∞ or |{l(t)(X), t ≥ 1}| = ∞ then

|{M̂ t
(X)nn, t ≥ 1}| = ∞.

Proof. Assume that |{u(t)(X), t ≥ 1}| = ∞. Since GU is a subgraph of G
̂M

(with different labels), for each integer t from Lemma 6 applied to M̂(X), the
cycles of length t in G

̂M
with weight containing a monomial of degree td+ are

exactly the cycles of length t in GU . Therefore, it follows that |{M̂ t
(X)nn, t ≥

1}| = ∞. The same argument on GL and involving d− allows to prove the thesis
if |{l(t)(X), t ≥ 1}| = ∞.

We are now able to present and prove the main result of this section. It shows
a decidable characterization of sensitivity for Frobenius LCA over Z

n
pk .

Lemma 8. Let
(
(Zn

pk)Z, F
)

be any Frobenius LCA over Z
n
pk and let (m0(X),

. . . ,mn−1) be the n-th row of the matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in

Frobenius normal form associated with F . Then, F is sensitive to the initial
conditions if and only if mi(X) is sensitive for some i ∈ [0, n − 1].

Proof. Let us prove the two implications separately.
Assume that all mi(X) are not sensitive. Then, M̂(X) ∈ Mat

(
n,Zpk

)
, i.e., it

does not contain the formal variable X, and M(X) = M̂(X)+pM ′(X), for some
M ′(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
in Frobenius normal form. Therefore, for any

integer t > 0, M t(X) is the sum of terms, each of them consisting of a product in
which pj appears as factor, for some natural j depending on t and on the specific
term which pj belongs to. Since every element of M t(X) is taken modulo pk,
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for any natural t > 0 it holds that in each term of such a sum pj appears with
j ∈ [0, k − 1] (we stress that j may depend on t and on the specific term of the
sum, but it is always bounded by k). Therefore, |{M i(X) : i > 0}| < ∞ and so,
by Proposition 2, F is not sensitive to the initial conditions.

Conversely, suppose that mi(X) is sensitive for some i ∈ [0, n−1] and d+ > 0
(the case d− < 0 is identical). By Definition 7, for any natural t > 0 there exists a

matrix M ′(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
such that M t(X) = M̂

t
(X)+pM ′(X).

By a combination of Lemmata 6 and 7, we get |{M̂ t
(X)nn, t ≥ 1}| = ∞ and so, by

Lemma 2, |{M t(X)nn, t ≥ 1}| = ∞ too. Therefore, it follows that |{M t(X), t ≥
1}| = ∞ and, by Proposition 2, we conclude that F is sensitive to the initial
conditions. ��

5 Conclusions

In this paper we have studied equicontinuity and sensitivity to the initial con-
ditions for linear HOCA over Zm of memory size n, providing decidable char-
acterizations for these properties. We also proved that linear HOCA over Zm

of memory size n form a class that is indistinguishable from a subclass of LCA
(namely, the subclass of Frobenius LCA) over Z

n
m. This enables to decide injec-

tivity and surjectivity for linear HOCA over Zm of memory size n by means
of the decidable characterizations of injectivity and surjectivity provided in [2]
and [20] for LCA over Z

n
m. A natural and pretty interesting research direction

consists of investigating other chaotic properties for linear HOCA and all the
mentioned dynamical properties, including sensitivity and equicontinuity, for
the whole class of LCA over Z

n
m.
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