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1 Introduction

A recurrent theme in group theory is to understand and classify group-theoretic
problems in terms of their formal language complexity [1,9–11,20]. Many authors
have considered the groups whose non-trivial elements, i.e. co-word problem,
can be described as a context-free language [3,14,16,18]. Holt and Röver went
beyond context-free to show that a large class known as bounded automata groups
have an indexed co-word problem [15]. This class includes important examples
such as Grigorchuk’s group of intermediate growth, the Gupta-Sidki groups,
and many more [12,13,21,24]. For the specific case of the Grigorchuk group,
Ciobanu et al. [5] showed that the co-word problem was in fact ET0L. ET0L is
a class of languages coming from L-systems which lies strictly between context-
free and indexed [19,22,23]. Ciobanu et al. rely on the grammar description
of ET0L for their result. Here we are able to show that all finitely generated
bounded automata groups have ET0L co-word problem by instead making use
of an equivalent machine description: check-stack pushdown (cspd) automata.

ET0L languages, in particular their deterministic versions, have recently
come to prominence in describing solution sets to equations in groups and
monoids [4,7,8]. The present paper builds on the recent resurgence of interest,
and demonstrates the usefulness of a previously overlooked machine description.

For a group G with finite generating set X, we denote by coW(G,X) the set
of all words in the language (X ∪X−1)� that represent non-trivial elements in G.
We call coW(G,X) the co-word problem for G (with respect to X). Given a class
C of formal languages that is closed under inverse homomorphism, if coW(G,X)
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is in C then so is coW(G,Y ) for any finite generating set Y of G [14]. Thus, we
say that a group is co-C if it has a co-word problem in the class C. Note that
ET0L is a full AFL [6] and so is closed under inverse homomorphism.

2 ET0L Languages and CSPD Automata

An alphabet is a finite set. Let Σ and V be two alphabets which we will call
the terminals and non-terminals, respectively. We will use lower case letters to
represent terminals in Σ and upper case letters for non-terminals in V . By Σ�,
we will denote the set of words over Σ with ε ∈ Σ� denoting the empty word.

A table, τ , is a finite set of context-free replacement rules where each non-
terminal, X ∈ V , has at least one replacement in τ . For example, with Σ = {a, b}
and V = {S,A,B}, the following are tables.

α :

⎧
⎪⎨

⎪⎩

S → SS | S | AB

A → A

B → B

β :

⎧
⎪⎨

⎪⎩

S → S

A → aA

B → bB

γ :

⎧
⎪⎨

⎪⎩

S → S

A → ε

B → ε

(1)

We apply a table, τ , to the word w ∈ (Σ ∪ V )� to obtain a word w′, written
w →τ w′, by performing a replacement in τ to each non-terminal in w. If a
table includes more than one rule for some non-terminal, we nondeterministically
apply any such rule to each occurrence. For example, with w = SSSS and α as
in (1), we can apply α to w to obtain w′ = SABSSAB. Given a sequence of
tables τ1, τ2, . . . , τk, we will write w →τ1τ2···τk w′ if there is a sequence of words
w = w1, w2, . . . , wk+1 = w′ such that wj →τj wj+1 for each j.

Definition 1 (Asveld [2]). An ET0L grammar is a 5-tuple G = (Σ,V, T,
R, S), where

1. Σ and V are the alphabets of terminals and non-terminals, respectively;
2. T = {τ1, τ2, . . . , τk} is a finite set of tables;
3. R ⊆ T � is a regular language called the rational control; and
4. S ∈ V is the start symbol.

The ET0L language produced by the grammar G, denoted L(G), is

L(G) := {w ∈ Σ� : S →v w for some v ∈ R} .

For example, with α, β and γ as in (1), the language produced by the above
grammar with rational control R = α�β�γ is {(anbn)m : n,m ∈ N}.

2.1 CSPD Automata

A cspd automaton, introduced in [17], is a nondeterministic finite-state automa-
ton with a one-way input tape, and access to both a check-stack (with stack
alphabet Δ) and a pushdown stack (with stack alphabet Γ ), where access to
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these two stacks is tied in a very particular way. The execution of a cspd machine
can be separated into two stages.

In the first stage the machine is allowed to push to its check-stack but not its
pushdown, and further, the machine will not be allowed to read from its input
tape. Thus, the set of all possible check-stacks that can be constructed in this
stage forms a regular language which we will denote as R.

In the second stage, the machine can no longer alter its check-stack, but is
allowed to access its pushdown and input tape. We restrict the machine’s access
to its stacks so that it can only move along its check-stack by pushing and
popping items to and from its pushdown. In particular, every time the machine
pushes a value onto the pushdown it will move up the check-stack, and every
time it pops a value off of the pushdown it will move down the check-stack; see
Fig. 1 for an example of this behaviour.
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Fig. 1. An example of a cspd machine pushing w = a1a2, where a1, a2 ∈ Δ, onto its
pushdown stack, then popping a1

We define a cspd machine formally as follows.

Definition 2. A cspd machine is a 9-tuple M = (Q,Σ, Γ,Δ, b,R, θ, q0, F ),
where

1. Q is the set of states;
2. Σ is the input alphabet;
3. Γ is the alphabet for the pushdown;
4. Δ is the alphabet for the check-stack;
5. b /∈ Δ ∪ Γ is the bottom of stack symbol;
6. R ⊆ Δ� is a regular language of allowed check-stack contents;
7. θ is a finite subset of

(Q × (Σ ∪ {ε}) × ((Δ × Γ ) ∪ {(ε, ε), (b, b)})) × (Q × (Γ ∪ {b})�),

and is called the transition relation (see below for allowable elements of θ);
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8. q0 ∈ Q is the start state; and
9. F ⊆ Q is the set of accepting states.

In its initial configuration, the machine will be in state q0, the check-stack will
contain bw for some nondeterministic choice of w ∈ R, the pushdown will contain
only the letter b, the read-head for the input tape will be at its first letter, and the
read-head for the machine’s stacks will be pointing to the b on both stacks. From
here, the machine will follow transitions as specified by θ, each such transition
having one of the following three forms, where a ∈ Σ∪{ε}, p, q ∈ Q and w ∈ Γ �.

1. ((p, a, (b, b)), (q, wb)) ∈ θ meaning that if the machine is in state p, sees b on
both stacks and is able to consume a from its input; then it can follow this
transition to consume a, push w onto the pushdown and move to state q.

2. ((p, a, (d, g)), (q, w)) ∈ θ where (d, g) ∈ Δ×Γ , meaning that if the machine is
in state p, sees d on its check-stack, g on its pushdown, and is able to consume
a from its input; then it can follow this transition to consume a, pop g, then
push w and move to state q.

3. ((p, a, (ε, ε)), (q, w)) ∈ θ meaning that if the machine is in state p and can
consume a from its input; then it can follow this transition to consume a,
push w and move to state q.

In the previous three cases, a = ε corresponds to a transition in which the
machine does not consume a letter from input. We use the convention that, if
w = w1w2 · · · wk with each wj ∈ Γ , then the machine will first push the wk,
followed by the wk−1 and so forth. The machine accepts if it has consumed all
its input and is in an accepting state q ∈ F .

In [17] van Leeuwen proved that the class of languages that are recognisable
by cspd automata is precisely the class of ET0L languages.

3 Bounded Automata Groups

For d � 2, let Td denote the d-regular rooted tree, that is, the infinite rooted
tree where each vertex has exactly d children. We identify the vertices of Td with
words in Σ� where Σ = {a1, a2, . . . , ad}. In particular, we will identify the root
with the empty word ε ∈ Σ� and, for each vertex v ∈ V(Td), we will identify the
k-th child of v with the word vak, see Fig. 2.

Recall that an automorphism of a graph is a bijective mapping of the vertex
set that preserves adjacencies. Thus, an automorphism of Td preserves the root
and “levels” of the tree. The set of all automorphisms of Td is a group, which
we denote by Aut(Td). We denote the permutation group of Σ as Sym(Σ).
An important observation is that Aut(Td) can be seen as the wreath product
Aut(Td) �Sym(Σ), since any automorphism α ∈ Aut(Td) can be written uniquely
as α = (α1, α2, . . . , αd)·σ where αi ∈ Aut(Td) is an automorphism of the sub-tree
with root ai, and σ ∈ Sym(Σ) is a permutation of the first level. Let α ∈ Aut(Td)
where α = (α1, α2, . . . , αd) · σ ∈ Aut(Td) � Sym(Σ). For any b = ai ∈ Σ, the
restriction of α to b, denoted α|b := αi, is the action of α on the sub-tree
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ε

a1 a2 ad· · ·

a1a1 a1a2 a1ad· · ·
· · · · · · · · ·

· · · · · ·

Fig. 2. A labelling of the vertices of Td with the root labelled ε

with root b. Given any vertex w = w1w2 · · · wk ∈ Σ� of Td, we can define the
restriction of α to w recursively as

α|w =
(

α|w1w2···wk−1

)∣
∣
∣
wk

and thus describe the action of α on the sub-tree with root w.
A Σ-automaton, (Γ, v), is a finite directed graph with a distinguished vertex

v, called the initial state, and a (Σ × Σ)-labelling of its edges, such that each
vertex has exactly |Σ| outgoing edges: with one outgoing edge with a label of
the form (a, ·) and one with a label of the form (·, a) for each a ∈ Σ.

Given some Σ-automaton (Γ, v), where Σ = {a1, . . . , ad}, we can define an
automorphism α(Γ,v) ∈ Aut(Td) as follows. For any given vertex b1b2 · · · bk ∈
Σ� = V(Td), there exists a unique path in Γ starting from the initial vertex, v,
of the form (b1, b′

1) (b2, b′
2) · · · (bk, b′

k), thus we will now define α(Γ,v) such that
α(Γ,v)(b1b2 · · · bk) = b′

1b
′
2 · · · b′

k. Notice that it follows from the definition of a
Σ-automaton that α(Γ,v) is a tree automorphism as required.

An automaton automorphism, α, of the tree Td is an automorphism for which
there exists a Σ-automaton, (Γ, v), such that α = α(Γ,v). The set of all automaton
automorphisms of the tree Td form a group which we will denote as A(Td). A
subgroup of A(Td) is called an automata group.

An automorphism α ∈ Aut(Td) will be called bounded (originally defined in
[24]) if there exists a constant N ∈ N such that for each k ∈ N, there are no more
than N vertices v ∈ Σ� with |v| = k (i.e. at level k) such that α|v �= 1. Thus,
the action of such a bounded automorphism will, on each level, be trivial on all
but (up to) N sub-trees. The set of all such automorphisms form a group which
we will denote as B(Td). The group of all bounded automaton automorphisms
is defined as the intersection A(Td) ∩ B(Td), which we will denote as D(Td). A
subgroup of D(Td) is called a bounded automata group.

A finitary automorphism of Td is an automorphism φ such that there exists
a constant k ∈ N for which φ|v = 1 for each v ∈ Σ� with |v| = k. Thus, a
finitary automorphism is one that is trivial after some k levels of the tree. Given
a finitary automorphism φ, the smallest k for which this definition holds will
be called its depth and will be denoted as depth(φ). We will denote the group
formed by all finitary automorphisms of Td as Fin(Td). See Fig. 3 for examples
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of the actions of finitary automorphisms on their associated trees (where any
unspecified sub-tree is fixed by the action).

a b

Fig. 3. Examples of finitary automorphisms a, b ∈ Fin(T2)

Let δ ∈ A(Td) \ Fin(Td). We call δ a directed automaton automorphism if

δ = (φ1, φ2, . . . , φk−1, δ
′, φk+1, . . . , φd) · σ ∈ Aut(Td) � Sym(Σ) (2)

where each φj is finitary and δ′ is also directed automaton (that is, not finitary
and can also be written in this form). We call dir(δ) = b = ak ∈ Σ, where
δ′ = δ|b is directed automaton, the direction of δ; and we define the spine of δ,
denoted spine(δ) ∈ Σω, recursively such that spine(δ) = dir(δ) spine(δ′). We will
denote the set of all directed automaton automorphisms as Dir(Td). See Fig. 4
for examples of directed automaton automorphisms (in which a and b are the
finitary automorphisms in Fig. 3).
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Fig. 4. Examples of directed automata automorphisms x, y, z ∈ Dir(T2)

The following lemma is essential to prove our main theorem.

Lemma 3. The spine, spine(δ) ∈ Σω, of a directed automaton automorphism,
δ ∈ Dir(Td), is eventually periodic, that is, there exists some ι = ι1ι2 · · · ιs ∈ Σ�,
called the initial section, and π = π1π2 · · · πt ∈ Σ�, called the periodic section,
such that spine(δ) = ι πω; and

δ|ι πk π1π2···πj
= δ|ι π1π2···πj

(3)

for each k, j ∈ N with 0 � j < t.
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Proof. Let (Γ, v) be a Σ-automaton such that δ = α(Γ,v). By the definition
of Σ-automata, for any given vertex w = w1w2 · · · wk ∈ Σ� of Td there exists a
vertex vw ∈ V(Γ ) such that δ|w = α(Γ,vw). In particular, such a vertex vw can be
obtained by following the path with edges labelled (w1, w

′
1)(w2, w

′
2) · · · (wk, w′

k).
Then, since there are only finitely many vertices in Γ , the set of all restrictions
of δ is finite, that is,

∣
∣
{

δ|w = α(Γ,vw) : w ∈ Σ�
}∣
∣ < ∞. (4)

Let b = b1b2b3 · · · = spine(δ) ∈ Σω denote the spine of δ. Then, there exists
some n,m ∈ N with n < m such that

δ|b1b2···bn
= δ|b1b2···bn···bm

(5)

as otherwise there would be infinitely many distinct restrictions of the form
δ|b1b2···bk

thus contradicting (4). By the definition spine, it follows that

spine (δ|b1b2···bn
) = (bn+1bn+2 · · · bm) spine (δ|b1b2···bn···bm

) .

and hence, by (5),

spine (δ|b1b2···bn
) = (bn+1bn+2 · · · bm)ω.

Thus,

spine(δ) = (b1b2 · · · bn) spine (δ|b1b2···bn
) = (b1b2 · · · bn) (bn+1bn+2 · · · bm)ω.

Then, by taking ι = b1b2 · · · bn and π = bn+1bn+2 · · · bm, we have spine(δ) = ι πω.
Moreover, from (5), we have Eq. (3) as required. 
�

Notice that each finitary and directed automata automorphism is also
bounded, in fact, we have the following proposition which shows that the gener-
ators of any given bounded automata group can be written as words in Fin(Td)
and Dir(Td).

Proposition 4 (Proposition 16 in [24]). The group D(Td) of bounded
automata automorphisms is generated by Fin(Td) together with Dir(Td).

4 Main Theorem

Theorem 5. Every finitely generated bounded automata group is co-ET0L.

The idea of the proof is straightforward: we construct a cspd machine that
chooses a vertex v ∈ V(Td), writing its label on the check-stack and a copy on
its pushdown; as it reads letters from input, it uses the pushdown to keep track
of where the chosen vertex is moved; and finally it checks that the pushdown
and check-stack differ. The full details are as follows.
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Proof. Let G ⊆ D(Td) be a bounded automata group with finite symmetric
generating set X. By Proposition 4, we can define a map

ϕ : X → (Fin(Td) ∪ Dir(Td))
�

so that x =D(Td) ϕ(x) for each x ∈ X. Let

Y =
{
α ∈ Fin(Td) ∪ Dir(Td) : α or α−1 is a factor of ϕ(x) for some x ∈ X

}

which is finite and symmetric. Consider the group H ⊆ D(Td) generated by Y .
Since ET0L is closed under inverse word homomorphism, it suffices to prove that
coW(H,Y ) is ET0L, as coW(G,X) is its inverse image under the mapping X� →
Y � induced by ϕ. We construct a cspd machine M that recognises coW(H,Y ),
thus proving that G is co-ET0L.

Let α = α1α2 · · · αn ∈ Y � denote an input word given to M. The execution
of the cspd will be separated into four stages; (1) choosing a vertex v ∈ Σ� of
Td which witnesses the non-triviality of α (and placing it on the stacks); (2a)
reading a finitary automorphism from the input tape; (2b) reading a directed
automaton automorphism from the input tape; and (3) checking that the action
of α on v that it has computed is non-trivial.

After Stage 1, M will be in state qcomp. From here, M nondeterministically
decides to either read from its input tape, performing either Stage 2a or 2b and
returning to state qcomp; or to finish reading from input by performing Stage 3.

We set both the check-stack and pushdown alphabets to be Δ = Γ = Σ�{t}.

Stage 1: Choosing a Witness v = v1v2 · · · vm ∈ Σ�.

If α is non-trivial, then there must exist a vertex v ∈ Σ� such that α · v �= v.
Thus, we nondeterministically choose such a witness from R = Σ�t and store it
on the check-stack, where the letter t represents the top of the check-stack.

From the start state, q0, M will copy the contents of the check-stack onto
the pushdown, then enter the state qcomp ∈ Q. Formally, this will be achieved
by adding the transitions (for each a ∈ Σ):

((q0, ε, (b, b)), (q0, tb)), ((q0, ε, (a, t)), (q0, ta)), ((q0, ε, (t, t)), (qcomp, t)).

This stage concludes with M in state qcomp, and the read-head pointing to
(t, t). Note that whenever the machine is in state qcomp and α1α2 · · · αk has been
read from input, then the contents of pushdown will represent the permuted
vertex (α1α2 · · · αk) · v. Thus, the two stacks are initially the same as no input
has been read and thus no group action has been simulated. In Stages 2a and
2b, only the height of the check-stack is impotant, that is, the exact contents of
the check-stack will become relevant in Stage 3.

Stage 2a: Reading a Finitary Automorphism φ ∈ Y ∩ Fin(Td).

By definition, there exists some kφ = depth(φ) ∈ N such that φ|u = 1 for each
u ∈ Σ� for which |u| � kφ. Thus, given a vertex v = v1v2 · · · vm ∈ Σ�, we have

φ(v) = φ(v1v2 · · · vkφ
) v(kφ+1) · · · vm.
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Given that M is in state qcomp with tv1v2 · · · vmb on its pushdown, we will
read φ from input, move to state qφ,ε and pop the t; we will then pop the next
kφ (or fewer if m < kφ) letters off the pushdown, and as we are popping these
letters we visit the sequence of states qφ,v1 , qφ,v1v2 , . . . , qφ,v1v2···vkφ

. From the
final state in this sequence, we then push tφ(v1 · · · vkφ

) onto the pushdown, and
return to the state qcomp.

Formally, for letters a, b ∈ Σ, φ ∈ Y ∩ Fin(Td), and vertices u,w ∈ Σ� where
|u| < kφ and |w| = kφ, we have the transitions

((qcomp, φ, (t, t)), (qφ,ε, ε)), ((qφ,u, ε, (a, b)), (qφ,ub, ε)),

((qφ,w, ε, (ε, ε)), (qcomp, tφ(w)))

for the case where m > kφ, and

((qφ,u, ε, (b, b)), (qcomp, tφ(u)b))

for the case where m � kφ. Notice that we have finitely many states and transi-
tions since Y, Σ and each kφ is finite.

Stage 2b: Reading a Directed Automorphism δ ∈ Y ∩ Dir(Td).

By Lemma 3, there exists some ι = ι1ι2 · · · ιs ∈ Σ� and π = π1π2 · · · πt ∈ Σ�

such that spine(δ) = ι πω and

δ(ιπω) = I1I2 · · · Is (Π1Π2 · · · Πt)
ω

where
Ii = δ|ι1ι2···ιi−1

(ιi) and Πj = δ|ι π1π2···πj−1
(πj).

Given some vertex v = v1v2 · · · vm ∈ Σ�, let � ∈ N be largest such that
p = v1v2 · · · v
 is a prefix of the sequence ιπω = spine(δ). Then by definition
of directed automorphism, δ′ = δ|p is directed and φ = δ|a, where a = v
, is
finitary. Then, either p = ι1ι2 · · · ι
 and

δ(u) = (I1I2 · · · I
) δ′(a) φ(v
+2v
+3 · · · vm),

or p = ιπkπ1π2 · · · πj , with � = |ι| + k · |π| + j, and

δ(u) = (I1I2 · · · Is) (Π1Π2 · · · Πt)k (Π1Π2 · · · Πj) δ′(a) φ(v
+2v
+3 · · · vm).

Hence, from state qcomp with tv1v2 · · · vmb on its pushdown, M reads δ from
input, moves to state qδ,ι,0 and pops the t; it then pops pa off the pushdown, using
states to remember the letter a and the part of the prefix to which the final letter
of p belongs (i.e. ιi or πj). From here, M performs the finitary automorphism
φ on the remainder of the pushdown (using the same construction as Stage 2a),
then, in a sequence of transitions, pushes tδ(p)δ′(a) and returns to state qcomp.
The key idea here is that, using only the knowledge of the letter a, the part of
ι or π to which the final letter of p belongs, and the height of the check-stack,
that M is able to recover δ(p)δ′(a).
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We now give the details of the states and transitions involved in this stage
of the construction.

We have states qδ,ι,i and qδ,π,j with 0 � i � |ι|, 1 � j � |π|; where qδ,ι,i

represents that the word ι1ι2 · · · ιi has been popped off the pushdown, and qδ,π,j

represents that a word ιπkπ1π2 · · · πj for some k ∈ N has been popped of the
pushdown. Thus, we begin with the transition

((qcomp, δ, (t, t)), (qδ,ι,0, ε)),

then for each i, j ∈ N, a ∈ Σ with 0 � i < |ι| and 1 � j < |π|, we have transitions

((qδ,ι,i, ε, (a, ιi+1)), (qδ,ι,(i+1), ε)), ((qδ,ι,|ι|, ε, (a, π1)), (qδ,π,1, ε)),
((qδ,π,j , ε, (a, πj+1)), (qδ,π,(j+1), ε)), ((qδ,π,|π|, ε, (a, π1)), (qδ,π,1, ε))

to consume the prefix p.
After this, M will either be at the bottom of its stacks, or its read-head will

see a letter on the pushdown that is not the next letter in the spine of δ. Thus,
for each i, j ∈ N with 0 � i � |ι| and 1 � j � |π| we have states qδ,ι,i,a and
qδ,π,j,a; and for each b ∈ Σ we have transitions

((qδ,ι,i, ε, (b, a)), (qδ,ι,i,a, ε))

where a �= ιi+1 when i < |ι| and a �= π1 otherwise, and

((qδ,π,j , ε, (b, a)), (qδ,π,j,a, ε))

where a �= πj+1 when j < |π| and a �= π1 otherwise.
Hence, after these transitions, M has consumed pa from its pushdown and

will either be at the bottom of its stacks in some state qδ,ι,i or qδ,π,j ; or will be in
some state qδ,ι,i,a or qδ,π,j,a. Note here that, if M is in the state qδ,ι,i,a or qδ,π,j,a,
then from Lemma 3 we know δ′ = δ|p is equivalent to δ|ι1ι2···ιi

or δ|ιπ1π2···πj
,

respectively; and further, we know the finitary automorphism φ = δ|pa = δ′|a.
Thus, for each state qδ,ι,i,a and qδ,π,a we will follow a similar construction to

Stage 2a, to perform the finitary automorphism φ to the remaining letters on the
pushdown, then push δ′(a) and return to the state rδ,ι,i or rδ,π,j , respectively.
For the case where M is at the bottom of its stacks we have transitions

((qδ,ι,i, ε, (b, b)), (rδ,ι,i, b)), ((qδ,π,i, ε, (b, b)), (rδ,π,i, b))

with 0 � i � |ι|, 1 � j � |π|.
Thus, after following these transitions, M is in some state rδ,ι,i or rδ,π,j and

all that remains is for M to push δ(p) with p = ι1ι2 · · · ιi or p = ιπkπ1π2 · · · πk,
respectively, onto its pushdown. Thus, for each i, j ∈ N with 0 � i � |ι| and
1 � j � |π|, we have transitions

((rδ,π,i, ε, (ε, ε)), (qcomp, tI1I2 · · · Ii)), ((rδ,π,j , ε, (ε, ε)), (rδ,π,Π1Π2 · · · Πj))

where from the state rδ,π, through a sequence of transitions, M will push the
remaining IΠk onto the pushdown. In particular, we have transitions

((rδ,π, ε, (ε, ε)), (rδ,π,Π)), ((rδ,π, ε, (ε, ε)), (qcomp, tI)),
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so that M can nondeterministically push some number of Π’s followed by tI
before it finishes this stage of the computation. We can assume that the machine
pushes the correct number of Π’s onto its pushdown as otherwise it will not see
t on its check-stack while in state qcomp and thus would not be able to continue
with its computation, as every subsequent stage (2a, 2b, 3) of the computation
begins with the read-head pointing to t on both stacks.

Once again it is clear that this stage of the construction requires only finitely
many states and transitions.

Stage 3: Checking that the Action is Non-trivial.

At the beginning of this stage, the contents of the check-stack represent the
chosen witness, v, and the contents of the pushdown represent the action of the
input word, α, on the witness, i.e., α · v.

In this stage M checks if the contents of its check-stack and pushdown differ.
Formally, we have states qaccept and qcheck, with qaccept accepting; for each a ∈ Σ,
we have transitions

((qcomp, ε, (t, t)), (qcheck, ε)), ((qcheck, ε, (a, a)), (qcheck, ε))

to pop identical entries of the pushdown; and for each (a, b) ∈ Σ ×Σ with a �= b
we have a transition

((qcheck, ε, (a, b)), (qaccept, ε))

to accept if the stacks differ by a letter.
Observe that if the two stacks are identical, then there is no path to the

accepting state, qaccept, and thus M will reject. Notice also that by definition of
cspd automata, if M moves into qcheck before all input has been read, then M
will not accept, i.e., an accepting state is only effective if all input is consumed.

Soundness and Completeness.

If α is non-trivial, then there is a vertex v ∈ Σ� such that α · v �= v, which M
can nondeterministically choose to write on its check-stack and thus accept α.
If α is trivial, then α · v = v for each vertex v ∈ Σ�, and there is no choice of
checking stack for which M will accept, so M will reject.

Thus, M accepts a word if and only if it is in coW(H,Y ). Hence, the co-word
problem coW(H,Y ) is ET0L, completing our proof. 
�
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