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Abstract. In 1918, Heinz Prüfer discovered a fascinating relationship
between labelled trees with n vertices and words of length n−2 over the
alphabet {1, 2, . . . , n}. Since the discovery of the Prüfer code for trees,
the interplay between words and graphs has repeatedly been explored
and exploited in both directions. In the present paper, we review some
of the many results in this area and discuss a number of open problems
related to this topic.

1 Introduction

In the beginning was the word. Graphs have appeared much later. Since then,
these two notions frequently interact and cooperate. Graphs help reveal structure
in words and (not necessarily formal) languages (see e.g. [34]). Words are used
to represent graphs, which became a important issue with the advent of the
computer era. We discuss this issue in Sect. 3 of the paper. Section 2 is devoted
to the interplay between words and graphs around the notion of well-quasi-
ordering. In the rest of the present section, we introduce basic terminology and
notation used in the paper.

A binary relation is a quasi-order (also known as pre-order) if it is reflexive
and transitive. A set of pairwise comparable elements in a quasi-ordered set is
called a chain and a set of pairwise incomparable elements is called an antichain.
A quasi-ordered set is well-quasi-ordered if it contains neither infinite strictly
decreasing chains, nor infinite antichains.

Given a finite set B (an alphabet), we denote by B∗ the set of all words
over B. For a word α ∈ B∗, |α| stands for the length of α and αj for the j-
th letter of α. A factor of a word α is a contiguous subword of α. The factor
containment relation is a quasi-order, but not a well-quasi-order, since it contains
infinite antichains, for instance, {101, 1001, 10001, . . .}. A language is factorial
if it is closed under taking factors. It is well-known (and not difficult to see)
that a factorial language L can be uniquely characterized by a set of minimal
forbidden words, also known as the antidictionary of L, i.e. the set of minimal
(with respect to the factor containment relation) words that do not belong to L.

All graphs in this paper are undirected, without loops and multiple edges.
A graph G is an induced subgraph of H if G can be obtained from H by vertex
deletions. The induced subgraph relation is a quasi-order, but not a well-quasi-
order, since the cycles Ck, k ≥ 3, constitute an infinite antichain. A class X
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of graphs, also known as a graph property, is hereditary if it is closed under
taking induced subgraphs. Clearly, if X is hereditary, then it can be uniquely
characterized by a set M of minimal forbidden induced subgraphs, in which case
we say that graphs in X are M -free. The speed of X is the number of n-vertex
labelled graphs in X, studied as a function of n.

2 Words, Graphs and Well-quasi-ordering

Well-quasi-ordering (WQO) is a highly desirable property and frequently discov-
ered concept in mathematics and theoretical computer science [19,26]. A simple
but powerful tool for proving well-quasi-orderability is the celebrated Higman’s
Lemma, which can be stated as follows. Let M be a set with a quasi-order ≤.
We extend ≤ from M to M∗ as follows: a1 . . . am ≤ b1 . . . bn if and only if there
is an order-preserving injection f : {a1, . . . , am} → {b1, . . . , bn} with ai ≤ f(ai)
for each i = 1, . . . , m. Higman’s Lemma states the following.

Lemma 1. ([21]) If (M,≤) is a WQO, then (M∗,≤) is a WQO.

Kruskal [25] extended this result to the set of finite trees partially ordered under
homeomorphic embedding. In other words, Kruskal’s tree theorem restricted to
paths becomes Higman’s lemma. Later, Robertson and Seymour [31] generalized
Kruskal’s tree theorem to the set of all graphs partially ordered under the minor
relation. However, the induced subgraph relation is not a well-quasi-order. Other
examples of important relations that are not well-quasi-orders are pattern con-
tainment relation on permutations [35], embeddability relation on tournaments
[16], minor ordering of matroids [22], factor containment relation on words [27].
On the other hand, each of these relations may become a well-quasi-order under
some additional restrictions. Below we present some examples and discuss a
number of open problems related to this topic.

2.1 An Introductory Example

A word can be interpreted as a graph in various ways. Consider, for instance, a
binary word α = α1 . . . αn, and let us associate with this word a graph Gα with
vertices v1, . . . , vn+1 such that for each i = 2, . . . , n+1, vertex vi is adjacent to the
vertices v1, . . . , vi−1 if αi = 1 and vi is not adjacent to the vertices v1, . . . , vi−1

if αi = 0. In other words, Gα can be constructed from a single vertex recursively
applying one of the following two operations: adding a dominating vertex (i.e. a
vertex adjacent to every other vertex in the graph) or adding an isolated vertex.
The graphs that can be constructed by means of these two operations are known
in the literature as threshold graphs.

Obviously, not every graph is threshold. For instance, none of the following
graphs is threshold, since none of them contains a dominating or isolated vertex:
the path on 4 vertices P4, the cycle on 4 vertices C4 and the complement of C4,
denoted C4. Moreover, no graph containing P4, C4 or C4 as an induced subgraph
is threshold, i.e. threshold graphs are (P4, C4, C4)-free. The inverse inclusion also
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is true, which leads to the following conclusion: a graph is threshold if and only
if it is (P4, C4, C4)-free.

Let us note that the original definition of threshold graphs differs from both
characterizations presented in the two previous paragraphs. The notion of thresh-
old graphs was introduced in [17] and was inspired by the notion of threshold
Boolean function. Since its original introduction, the notion of threshold graphs
gave rise to a vast literature on the topic, including the book [28].

The relationship between binary words and threshold graphs described ear-
lier is a bijection and it provides an easy way for counting unlabelled threshold
graphs (observe that counting unlabelled graphs is generally a more difficult task
than counting labelled graphs). This relationship also shows, with the help of
Higman’s Lemma, that the class of threshold graphs is well-quasi-ordered under
the induced subgraph relation. The same conclusion can be derived from two
other seemingly unrelated results, which we discuss in the next section.

2.2 Geometric Grid Classes of Permutations and Letter Graphs

Any collection of n points on the plane, with no two on a common vertical or
horizontal line, uniquely defines a permutation π of n elements. This can be
done, for instance, by labeling the points from 1 to n from bottom to top and
then recording the labels reading left to right (see Fig. 1 for an illustration). By
deleting any point, we obtain a permutation π′ of n − 1 elements, in which case
we say that π contains π′ as a pattern.

The notion of a pattern defines a partial order on the set of permutations
known as the pattern containment relation. A pattern class of permutations, or
simply a permutation class, is any set of permutations which is downward closed
under the pattern containment relation.

The pattern containment relation is not a well-quasi-order, since it contains
infinite antichains [35]. However, under certain restrictions, this relation may
become a well-quasi-order. To give an example, let us introduce the notion of
monotone grid classes of permutations.

Let M be an s × t matrix with entries in {0,±1}. An M -gridding of a per-
mutation π represented by a collection of points on the plane is a partition of
the plane into s × t cells by means of vertical and horizontal lines so that the
cell in column i and row j of the partition is empty if M(i, j) = 0, contains the
elements of π in an increasing order if M(i, j) = +1, and contains the elements
of π in a decreasing order if M(i, j) = −1. Figure 1 represents two M -griddings

of the permutation 351624 with M =
(

+1 −1
0 +1

)
and M =

(
+1 −1
−1 +1

)
. The grid

class of M consists of all permutations which admit an M -gridding and is known
as a monotone grid class.

The restriction to monotone grid classes is a strong restriction, but it is not
strong enough to guarantee well-quasi-ordering. To describe more restrictions, we
define the cell graph of M as follows: the vertices of this graph are the non-zero
entries of M , in which two vertices are adjacent if and only if the corresponding
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entries share a row or a column and there are no non-zero entries between them
in this row or column.
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Fig. 1. Two griddings of the permutation 351624.

Theorem 1. ([38]) For a 0/±1 matrix M , the grid class of M is well-quasi-
ordered under the pattern containment relation if and only if the cell graph of
M is a forest, i.e. a graph without cycles.

Cycles in cell graphs can give rise to infinite antichains of permutations.
However, if we require the elements of each cell in a monotone grid class to
belong to a diagonal of the respective cell (see the gridding on the left of Fig. 1),
then infinite antichains “magically” disappear and the class becomes well-quasi-
ordered. This is known as geometric gridding, a notion introduced in [2]. The
authors of [2] characterized geometric grid classes of permutations in various
ways, of which we quote the following two results.

Theorem 2. ([2]) Every geometrically griddable class of permutations is well-
quasi-ordered and is in bijection with a regular language.

Now we move from words to graphs and define the notion of letter graphs
introduced in [29]. Let Σ be a finite alphabet and let P ⊆ Σ2 be a set of ordered
pairs of symbols from Σ, known as a decoder. With each word w = w1w2 · · · wn

over Σ we associate a graph G(P, w), called the letter graph of w, by defining
the vertex set of this graph to be {1, 2, . . . , n} with i being adjacent to j > i if
and only if the ordered pair (wi, wj) belongs to P.

It is not difficult to see that every graph G is a letter graph in a sufficiently
large alphabet with an appropriate decoder P. The minimum � such that G is
a letter graph in an alphabet of � letters is the lettericity of G. A graph is a
k-letter graph if its lettericity is at most k.

With the help of Higman’s Lemma it is not difficult to conclude that for each
fixed value of k, the set of all k-letter graphs is well-quasi-ordered by the induced
subgraph relation, which was formally proved in [29].

The notion of letter graphs was introduced 11 years earlier than the notion
of geometric grid classes of permutations, and nothing in the definitions of these
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two notions suggests any connection between them. However, there is intrigu-
ing relationship between these notions revealed recently in [3]. To describe this
relationship, we define the permutation graph Gπ of a permutation π on the set
{1, 2, . . . , n} to be the graph with vertex set {1, 2, . . . , n} in which two vertices
i and j are adjacent if and only if (i − j)(π(i) − π(j)) < 0.

Theorem 3. ([3]) Let X be a class of permutations and GX the corresponding
class of permutation graphs. If X is a geometrically griddable class, then GX is
a class of k-letter graphs for a finite value of k.

This theorem suggests the idea that geometrically griddable classes of per-
mutations and letter graphs are two languages describing the same concept in
the universe of permutations and permutation graphs, respectively. However,
the inverse of Theorem 3 remains an open problem, which we state below as a
conjecture.

Conjecture 1. Let X be a class of permutations and GX the corresponding class
of permutation graphs. If GX is a class of k-letter graphs for a finite value of k,
then X is a geometrically griddable class.

To support this conjecture, we return to the notion of threshold graphs intro-
duced in Sect. 2.1 and observe that every threshold graph is a 2-letter graph.
Indeed, consider the alphabet Σ = {0, 1} and the decoder P = {(1, 1), (1, 0)},
and let w = w1w2 · · · wn be any binary word. In the graph G(P, w), if wi = 1,
then i is adjacent to every vertex j > i (since both pairs (1, 1) and (1, 0) belong
to P), and if wi = 0 then i is not adjacent to any vertex j > i (since neither (0, 0)
nor (0, 1) belong to P). Therefore, G(P, w) is a threshold graph. Notice that this
representation is similar but not identical to the correspondence between graphs
and words described in Sect. 2.1.

On the other hand, the geometric grid class of M =
(−1 +1

+1 −1

)
, also known as

the X-class, consists of permutations that avoid the following four permutations
as patterns: 2143, 3412, 2413, 3142 (see e.g. [18]). The permutation graphs of
the first two of these permutations are, respectively, C4 and C4, while the last
two permutations both represent a P4. Since a graph is threshold if and only if
it is (P4, C4, C4)-free, we conclude that the permutations graphs corresponding
to the X-class are precisely the threshold graphs.

2.3 Deciding WQO

Deciding whether a permutation class is well-quasi-ordered is a difficult ques-
tion. Decidability of this question for classes defined by finitely many forbidden
permutations was stated as an open problem in [15]. Similar questions have
been studied for the induced subgraph relation on graphs [24], the embeddabil-
ity relation on tournaments [16], the minor ordering of matroids [22]. However,
the decidability of this problem has been shown only for one or two forbidden
elements (graphs, permutations, tournaments, matroids).
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A breakthrough result in this area was recently obtained in [9], where decid-
ability was proved for factorial languages. The solution is based on the analysis of
the structure of an automaton describing the input language. The authors of [9]
also discuss an alternative approach, which suggests a possible way to approach
the same problem for graphs and permutations. This approach is based on the
notion of a periodic infinite antichain. Speaking informally, an infinite antichain
of words is called periodic of period p if each element of this set becomes a fac-
tor of some infinite periodic word of period p after dropping some prefix and
suffix. For instance, the set {101, 1001, 10001, . . .} is a periodic infinite antichain
of period 1. The following theorem was proved in [9].

Theorem 4. ([9]) Let D = {α1, α2, . . . , αk} be a finite set of pairwise incompa-
rable words and X be the factorial language with the antidictionary D. Then X
is well-quasi-ordered by the factor containment relation if and only if it contains
no periodic infinite antichains of period at most |α1| + |α2| + . . . + |αk| + 1.

To apply the idea of periodic infinite antichains to graphs, we modify the
notion of letter graphs by distinguishing between consecutive and nonconsecutive
vertices corresponding to a word w = w1w2 · · · wn. For nonconsecutive vertices
i < j the definition remains the same: i and j are adjacent if and only if (wi, wj) ∈
P. For consecutive vertices, we change the definition to the opposite: i and i+1
are adjacent if and only if (wi, wi+1) �∈ P. Let us denote the graph obtained in
this way from a word w by G∗(P, w). For instance, if a is a letter of Σ and (a, a) �∈
P, then the word aaaaa defines a path on 5 vertices. With some restrictions,
the induced subgraph relation on graphs defined in this way corresponds to the
factor containment relation on words, i.e. G∗(P, w) is an induced subgraph of
G∗(P, w′) if and only if w is a factor of w′.

The graph G∗(P, w) constructed from a periodic word w is called a periodic
graph. The period of w is called the period of G∗(P, w). To construct periodic
antichains, we break the periodicity on both ends of the graph (word) by inserting
an appropriate prefix and suffix. The following conjecture was proposed in [9]
and was inspired by Theorem4.

Conjecture 2. There is a function f : N → N such that the class X of graphs
defined by a finite collection F of forbidden induced subgraphs is well-quasi-
ordered by the induced subgraph relation if and only if X contains no periodic
infinite antichains of period at most f(t(F )), where t(F ) stands for the total
number of vertices of graphs in F .

To support this conjecture, let us mention the following decidability problem,
which was recently solved in [8]: given a finite collection F of graphs, decide
whether the speed of the class of F -free graphs is above or below the Bell number.
The solution is based on a characterization of minimal classes with speeds above
the Bell number by means of almost periodic words.

Definition 1. A word w is almost periodic if for any factor f of w there is a
constant kf such that any factor of w of size at least kf contains f as a factor.
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A jump to the Bell number for hereditary graph properties was identified in
[12]. This paper distinguishes classes of graphs of two types: the classes where a
certain graph parameter, called in [8] the distinguishing number, is finite and the
classes where this parameter is infinite. For the case where the distinguishing
number is infinite, the paper [12] provides a complete description of minimal
classes above the Bell number, of which there are precisely 13. In the case where
this parameter is finite, the family of minimal classes is infinite and all of them
have been characterized in [8] via the notion of almost periodic words as follows.

Let A be a finite alphabet and P a symmetric decoder, i.e. a decoder con-
taining with each pair (ai, aj) the pair (aj , ai). Also, let w be a word over A
and G∗(P, w) the letter graph of w distinguishing between consecutive and non-
consecutive letters, as defined earlier. Finally, let X∗(P, w) be the class of graphs
containing all induced subgraphs of G∗(P, w).

Theorem 5. ([8]) Let X be a hereditary class of graphs with a finite distinguish-
ing number. Then X is a minimal class of speed above the Bell number if and
only if there exists an infinite almost periodic word w over a finite alphabet and
a symmetric decoder P such that X = X∗(P, w).

In [8], it was shown that for hereditary classes defined by a finite collection F
of minimal forbidden induced subgraphs, the word “almost” can be omitted from
this theorem. Moreover, the period of w in this case is bounded by a function of
t(F ), where t(F ), as before, is the total number of vertices of graphs in F . This
leads to a procedure deciding the Bell number for hereditary graph properties,
as was shown in [8].

Interestingly, the same procedure decides well-quasi-ordering by induced sub-
graphs for classes with a finite distinguishing number, as was recently shown in
[10]. In other words, this result verifies Conjecture 2 for classes with a finite
distinguishing number.

We conclude this section by observing that Theorem5 brings us back from
graphs to words, and it also makes a bridge to the next section, where the speed
of a hereditary graph property is an important issue.

3 Representing Graphs by Words

Representing graphs by words in a finite alphabet, or graph coding, is important
in computer science for representing graphs in computer memory [20,23,37].
Without loss of generality we will assume that our alphabet is binary.

For a class X of graphs, we denote by Xn the set of graphs in X with the
vertex set {1, 2, . . . , n}. Coding of graphs in the class X is a family of bijective
mappings Φ = {φn : n = 1, 2, 3, . . .}, where φn : Xn → {0, 1}∗. A coding Φ is
called asymptotically optimal if1

lim
n→∞

max
G∈Xn

|φn(G)|
log |Xn| = 1.

1 All logarithms are of base 2.
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Every labelled graph G with n vertices can be represented by a binary word
of length

(
n
2

)
, one bit per each pair of vertices, with 1 standing for an edge and

0 for an non-edge. Such a word can be obtained by reading the elements of the
adjacency matrix above the main diagonal. The word obtained by reading these
elements row by row, starting with the first row, is called the canonical code of
G and is denoted φc

n(G).
If no a priori information about the graph is available, then

(
n
2

)
is the min-

imum number of bits needed to represent the graph. However, if we know that
our graph possesses some special properties, then this knowledge may lead to a
shorter representation. For instance,

– if we know that our graph is bipartite, then we do not need to describe
the adjacency of vertices that belong to the same part in its bipartition.
Therefore, we need at most n2/4 bits to describe the graph, the worst case
being a bipartite graph with n/2 vertices in each of its parts.

– if we know that our graph is not an arbitrary bipartite graph but chordal
bipartite, then we can further shorten the code and describe any graph in
this class with at most O(n log2 n) bits [36].

– a further restriction to trees (a proper subclass of chordal bipartite graphs)
enables us to further shorten the code to (n−2) log n bits, which is the length
of binary representation of the Prüfer code for trees [30].

How much can the canonical representation be shortened for graphs with a
property X? For hereditary properties this question can be answered through
the notion of entropy.

3.1 Entropy of Hereditary Properties

In order to represent graphs in a class X, we need at least |Xn| different binary
words. Therefore, in the worst case the length of a binary code of an n-vertex
graph in X cannot be shorter than log |Xn|. Thus, the ratio log |Xn|/(

n
2

)
can

be viewed as the coefficient of compressibility for representing n-vertex graphs
in X. Its limit value, for n → ∞, was called by Alekseev in [4] the entropy
of X. Moreover, in the same paper Alekseev showed that for every hereditary
property X the entropy necessarily exists and in [5] he proved that its value
takes the following form:

lim
n→∞

log |Xn|(
n
2

) = 1 − 1
k(X)

, (1)

where k(X) is a natural number, called the index of X. To define this notion let
us denote by Ei,j the class of graphs whose vertices can be partitioned into at
most i independent sets and j cliques. In particular, E2,0 is the class of bipartite
graphs and E1,1 is the class of split graphs. Then k(X) is the largest k such
that X contains Ei,j with i + j = k. Independently, this result was obtained
by Bollobás and Thomason [13,14] and is known nowadays as the Alekseev-
Bollobás-Thomason Theorem (see e.g. [7]).
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3.2 Coding of Graphs in Classes of High Speed

In [4], Alekseev proposed a universal algorithm which gives an asymptotically
optimal coding for graphs in every hereditary class X of index k > 1, i.e. of
non-zero entropy. Below we present an adapted version of this algorithm.

Let n > 1 be a natural number and let p be a prime number between
	n/

√
log n + 1� and 2	n/

√
log n�. Such a number always exists by the Bertrand-

Chebyshev theorem (see e.g. [1]). Define k = 	n/p�. Then

p ≤ 2n/
√

log n, k ≤
√

log n, n − kp < p. (2)

Let G be an arbitrary graph with n vertices. Denote by Dn the set of all pairs
of vertices of G. We split Dn into two disjoint subsets R1 and R2 as follows: R1

consists of the pairs (a, b) such that a ≤ kp, b ≤ kp and 	(a−1)/p� �= 	(b−1)/p�,
and R2 consists of all the remaining pairs. Let us denote by μ(1) the binary word
consisting of the elements of the canonical code corresponding to the pairs of
R2. This word will be included in the code of G we construct.

Now let us take care of the pairs in R1. For all x, y ∈ {0, 1, . . . , p − 1}, we
define

Qx,y = {pi + 1 + resp(xi + y) i = 0, 1, . . . , k − 1},

where resp(z) is the remainder on dividing z by p. Let us show that every pair
of R1 appears in exactly one set Qx,y. Indeed, if (a, b) ∈ Qx,y (a < b), then

xi1 + y ≡ a ( mod p), xi2 + y ≡ b ( mod p),

where i1 = 	(a − 1)/p�, i2 = 	(b − 1)/p�. Since i1 �= i2 (by definition of R1),
there exists a unique solution of the following system

x(i1 − i2) ≡ a − b ( mod p)
y(i1 − i2) ≡ ai2 − bi1 ( mod p). (3)

Therefore, by coding the graphs Gx,y induced by Qx,y and combining their codes
with the word μ(1) (that describes the pairs in R2) we obtain a complete descrip-
tion of G.

To describe the graphs Gx,y induced by Qx,y we first relabel their vertices
according to

z → 	(z − 1)/p� + 1.

In this way, we obtain p2 graphs G′
x,y, each on the vertex set {1, 2, . . . , k}. Some

of these graphs may coincide. Let m (m ≤ p2) denote the number of pairwise
different graphs in this set and H0,H1, . . . , Hm−1 an (arbitrarily) ordered list of
m pairwise different graphs in this set. In other words, for each graph G′

x,y there
is a unique number i such that G′

x,y = Hi. We denote the binary representation
of this number i by ω(x, y) and the length of this representation by �, i.e. � =
log m�. Also, denote

μ(2) = φc
k(H0)φc

k(H1) . . . φc
k(Hm−1),
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μ(3) = ω(0, 0)ω(0, 1) . . . ω(0, p − 1)ω(1, 0) . . . ω(p − 1, p − 1).

The word μ(2) describes all graphs Hi and the word μ(3) indicates for each
pair x, y the interval in the word μ(2) containing the information about G′

x,y.
Therefore, the words μ(2) and μ(3) completely describe all graphs Gx,y. In order
to separate the word μ(2)μ(3) into μ(2) and μ(3), it suffices to know the number �,
because |μ(2)| = �p2 and the number p is uniquely defined by n. Since m ≤ 2(k2),
the number � can be described by at most

log �� = loglog m�� ≤ log
(

k

2

)
� ≤ log k2� ≤ log log n�

binary bits. Let μ(0) be the binary representation of the number � of length
log log n�, and let

φ∗
n(G) = μ(0)μ(1)μ(2)μ(3), Φ∗ = {φ∗

n n = 2, 3, . . .}.

Theorem 6. [4] Φ∗ is an asymptotically optimal coding for any hereditary class
X with k(X) > 1.

3.3 Representing Graphs in Hereditary Classes of Low Speed

The universal algorithm presented in the previous section is, unfortunately, not
optimal for classes X of index k(X) = 1, also known as unitary classes, since
equation (1) does not provide the asymptotic behavior of log |Xn| in this case.
This is unfortunate, because the family of unitary classes contains a variety of
properties of theoretical or practical importance, such as line graphs, interval
graphs, permutation graphs, threshold graphs, forests, planar graphs and, even
more generally, all proper minor-closed graph classes, all classes of graphs of
bounded vertex degree, of bounded tree- and clique-width, etc.

A systematic study of hereditary properties of low speed was initiated by
Scheinerman and Zito in [32]. In particular, they distinguished the first four lower
layers in the family of unitary classes: constant (classes X with |Xn| = Θ(1)),
polynomial (|Xn| = nΘ(1)), exponential (|Xn| = 2Θ(n)) and factorial (|Xn| =
nΘ(n)). Independently, similar results have been obtained by Alekseev in [6].
Moreover, Alekseev described the set of minimal classes in all the four lower
layers and the asymptotic structure of properties in the first three of them. A
more detailed description of the polynomial and exponential layers was obtained
by Balogh, Bollobás and Weinreich in [11]. However, the factorial layer remains
largely unexplored and the asymptotic structure is known only for properties at
the bottom of this layer, below the Bell numbers [11,12]. On the other hand, the
factorial properties constitute the core of the unitary family, as all the interesting
classes mentioned above (and many others) are factorial.

We conclude the paper with an important conjecture, which deals with rep-
resenting graphs in the factorial classes.

Definition 2. A representation of an n-vertex graph G is said to be implicit
if it assigns to each vertex of G a binary code of length O(log n) so that the
adjacency of two vertices is a function of their codes.
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This notion was introduced in [23], where the authors identified a variety
of graph classes admitting an implicit representation. Clearly, not every class
admits an implicit representation, since a bound on the total length of the code
implies a bound on the number of graphs admitting such a representation. More
precisely, only classes containing 2O(n log n) graphs with n vertices can admit an
implicit representation. This restriction, however, is not sufficient to represent
graphs implicitly. A simple counter-example can be found in [37]. This example
deals with a non-hereditary graph property, which leaves the question of implicit
representation for hereditary classes of speed 2O(n log n) open. These are precisely
the classes with at most factorial speed of growth. It is known that every hered-
itary class with a sub-factorial speed admits an implicit representation [33]. For
hereditary classes with factorial speeds the question of implicit representation
is generally open and is known as the implicit graph representation conjecture
(see e.g. [37]).

Conjecture 3. Any hereditary class of speed nΘ(n) admits an implicit
representation.
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15. Brignall, R., Ruškuc, N., Vatter, V.: Simple permutations: decidability and
unavoidable substructures. Theor. Comput. Sci. 391, 150–163 (2008)

16. Cherlin, G.L., Latka, B.J.: Minimal antichains in well-founded quasi-orders with
an application to tournaments. J. Comb. Theory B 80, 258–276 (2000)
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