
Generalized Predictive Shift-Reduce
Parsing for Hyperedge Replacement

Graph Grammars

Berthold Hoffmann1 and Mark Minas2(B)

1 Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

2 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. Parsing for graph grammars based on hyperedge replacement
(HR) is in general NP-hard, even for a particular grammar. The recently
developed predictive shift-reduce (PSR) parsing is efficient, but restricted
to a subclass of unambiguous HR grammars. We have implemented a
generalized PSR parsing algorithm that applies to all HR grammars,
and pursues severals parses in parallel whenever decision conflicts occur.
We compare GPSR parsers with the Cocke-Younger-Kasami parser and
show that a GPSR parser, despite its exponential worst-case complexity,
can be much faster.

Keywords: Hyperedge replacement grammar · Graph parsing

1 Introduction

It is well known that parsing for graph grammars based on hyperedge replace-
ment (HR) is in general NP-hard, even for a particular grammar [8]. In ear-
lier work [6], we have devised predictive shift-reduce parsing (PSR), which lifts
Knuth’s LR string parsing [9] to graphs, is efficient, but unfortunately restricted
to a subclass of unambiguous HR grammars. This makes it unsuitable for appli-
cations in natural language processing (NLP) where grammars are often ambigu-
ous. So we extend the PSR algorithm to arbitrary HR grammars in this paper:
Just like Tomita’s generalized LR string parser [12], the generalized PSR parser
pursues all possible parses of a graph in parallel whenever ambiguity occurs. We
describe the implementation of the generalized PSR parser by Mark Minas,1 and
compare its efficiency with the Cocke-Younger-Kasami parser for arbitrary HR
grammars [11].

The remainder of this paper is structured as follows. After recalling HR
grammars in Sect. 2 and PSR parsing in Sect. 3, we introduce generalized PSR
parsing in Sect. 4, and compare its performance with CYK parsing in Sect. 5.

1 In the graph parser generator Grappa, available at www.unibw.de/inf2/grappa.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 233–245, 2019.
https://doi.org/10.1007/978-3-030-13435-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_17&domain=pdf
www.unibw.de/inf2/grappa
https://www.unibw.de/inf2/grappa/
https://doi.org/10.1007/978-3-030-13435-8_17


234 B. Hoffmann and M. Minas

Due to lack of space, our presentation is driven by a small example—a grammar
for series-parallel graphs—that exhibits many peculiarities of generalized PSR
parsing. In Sect. 6, we conclude by indicating related and future work.

2 Graph Grammars Based on Hyperedge Replacement

Throughout the paper, we assume that X is a global, countably infinite supply
of nodes, and that Σ is a finite set of symbols that comes with an arity function
arity : Σ → N, and is partitioned into disjoint subsets N of nonterminals and T
of terminals.

We represent hypergraphs as ordered sequences of edge literals, where each
literal represents an edge with its attached nodes. This is convenient as we shall
derive (and parse) the edges of a graph in a fixed order.

Definition 1 (Hypergraph). For a symbol a ∈ Σ and k = arity(a) pairwise
distinct nodes x1, . . . , xk ∈ X, a = a(x1, . . . , xk) represents a hyperedge that is
labeled with a and attached to x1, . . . , xk. EΣ denotes the set of hyperedges (over
Σ).

A hypergraph 〈γ, V 〉 consists of a sequence γ = e1 · · · en ∈ E∗
Σ of hyperedges

and a finite set V ⊆ X of nodes that contains all nodes attached to the hyper-
edges of γ. GΣ denotes the set of all hypergraphs (over Σ).

In the following, we usually call hypergraphs just graphs and hyperedges just
edges. Moreover, we denote a graph just by its edges γ, and refer to its nodes
by Vγ .2 The “concatenation” of two graphs α, β ∈ GΣ yields a graph γ = αβ
with nodes Vγ = Vα ∪ Vβ . Two graphs γ and γ′ are equivalent, written γ �� γ′, if
Vγ = Vγ′ and γ is a permutation of γ′.

Note that we order the edges of a graph in rules and derivations. However,
the relation �� makes graphs with permuted edges equivalent, like in ordinary
definitions of graphs. Our parsers will make sure that equivalent graphs are
always processed in the same way.

An injective function � : X → X is called a renaming, and γ� denotes the
graph obtained by replacing all nodes in γ (and in Vγ) according to �. A hyperedge
replacement rule r = (A → α) (rule for short) has a nonterminal edge A ∈ EN
as its left-hand side, and a graph α ∈ GΣ with VA ⊆ Vα as its right-hand side.

Consider a graph γ = βĀβ̄ ∈ GΣ with a nonterminal edge Ā and a rule
r = (A → α). A renaming μ : X → X is a match (of r in γ) if Aμ = Ā and
if Vγ ∩ Vαµ ⊆ VAµ .3 A match μ of r derives γ to the graph γ′ = βαμβ̄. This is
denoted as γ ⇒r,μ γ′ . If R is a finite set of rules, we write γ ⇒R γ′ if γ ⇒r,μ γ′

for some match μ of some rule r ∈ R.

Definition 2 (HR Grammar). A hyperedge replacement grammar Γ =
(Σ, T ,R, Z) (HR grammar for short) consists of symbols Σ with terminals
2 Vγ may contain isolated nodes that are not attached to any edge in γ.
3 I.e., a match μ makes sure that the nodes of αμ that do not occur in Ā = Aμ do not

collide with the other nodes in γ.



Generalized Predictive Shift-Reduce Parsing for HR Grammars 235

Z ⇒
0

1 4
G ⇒

3

1 3 4
G G ⇒

2

1 3 4G

G
G ⇒

3

1

2

3 4G
G G

G
4⇒
1

1

2

3 4

Fig. 1. A derivation of the graph e(1, 3) e(1, 2) e(2, 3) e(3, 4). Nodes are drawn as circles,
nonterminal edges as boxes around their label, with lines to their attached nodes, and
terminal edges as arrows from their first to their second attached node; since e is the
only terminal label, we omitted it in the terminal graph.

T ⊆ Σ as assumed above, a finite set R of rules, and a start graph Z = Z()
with Z ∈ N of arity 0. Γ generates the language

L(Γ ) = {g′ ∈ GT | Z ⇒∗
R g, g′ �� g}.

In the following, we simply write ⇒ and ⇒∗ because the rule set R in question
will always be clear from the context.

Example 1 (A HR Grammar for Series-Parallel Graphs). The following rules

Z() →
0
G(x, y) G(x, y) →

1
e(x, y)

G(x, y) →
2
G(x, y)G(x, y) G(x, y) →

3
G(x, z)G(z, y)

generate series-parallel graphs [8, p. 99]; see Fig. 1 for a derivation with graphs
drawn as diagrams.

3 Predictive Shift-Reduce Parsing

The article [6] gives detailed definitions and correctness proofs for PSR parsing.
Here we recall the concepts only so far that we can describe its generalization in
the next section.

A PSR parser attempts to construct a derivation by reading the edges of a
given input graph one after the other.4 However, the parser must not assume
that the edges of the input graph come in the same order as in a derivation. E.g.,
when constructing the derivation in Fig. 1, it must also accept an input graph
e(2, 3) e(1, 2) e(1, 3) e(3, 4) where the edges are permuted.

Before parsing starts, a procedure described in [5, Sect. 4] analyzes the gram-
mar for the unique start node property, by computing the possible incidences of
all nodes created by a grammar. The unique start nodes have to be matched by
some nodes in the start rule of the grammar, thus determining where parsing
begins. For our example, the procedure detects that every series-parallel graph
has a unique root (without ingoing edges), and that the node x in the start rule

4 We silently assume that input graphs do not have isolated nodes. This is no real
restriction as one can add special edges to such nodes.



236 B. Hoffmann and M. Minas

Z() → G(x, y) must be bound to the root of any input graph.5 If the input graph
has no root, or more than one, it cannot be series-parallel, so that parsing fails
immediately.

A PSR parser is a push-down automaton that is controlled by a characteristic
finite automaton (CFA). The stack of the PSR parser consists of states of the
CFA. The parser makes sure that the sequence of states on its stack always
describes a valid walk through its CFA. In order to do so, the parser generator
computes a parsing table with processing instructions that control the parser.

Table 1 shows the parsing table for our example of series-parallel graphs. It
has been generated by the graph parser generator Grappa (see footnote 1), using
the constructions described in [6]. The rows of the table correspond to states of
the CFA. Each of these states has a certain number of parameters. For instance,
Q2(p, q) has two parameters p and q. Parameters remain abstract in the CFA
and in the parsing table; only the parser will bind them to nodes of the input
graph, and store them in concrete states on its stack.

When the parser starts, nothing of its input graph has been read yet, and its
stack consists of a single concrete state Q0, where its parameter p is bound to
the unique start node, namely the root of the input graph.

The columns of the table correspond to terminal and nonterminal edges as
well as the end-of-input marker $. Column e(x, y) in Table 1 contains all actions
that can be taken by the parser if the input graph contains an edge e(x, y) that
is still unread. Column $ contains the actions to be done if the input graph has
been read completely. We will come to column G(x, y) later.

The parser looks up its next action in the parsing table by inspecting the top-
most state on its stack and all unread edges of the input graph. For illustration,
let us assume that the parser has state Q3 on top of its stack, with its parameters
p and q being bound (by an appropriate renaming σ) to the input graph nodes
pσ and qσ, resp., so that the parser must look into row Q3(p, q). If the input
graph contains an unread e-labeled edge, the entry in column e(x, y) applies. The
corresponding table entry contains two possible actions, a shift and a reduce.

The shift operation can be selected if the input graph contains an unread
e-labeled edge e that connects pσ, either with qσ, or with any node that has
not yet occurred in the parse, indicated by “−” in the condition. If this shift
operation is selected, it marks e as read and pushes a new concrete state Q1

onto the stack, where the parameters p and q of Q1 are bound to the source and
the target node of e.

The reduce operation does not require any further condition to be satisfied.
It consists of two steps: First, it pops as many states from the top of the stack as
the right-hand side of the rule has edges. In our example “reduce 2, G(p, q)” refers
to rule 2, with two edges in its right-hand side. Second, the reduce operation
looks up the row for the new top-most state of the stack, selects the operation for

5 Actually, series-parallel graphs do also have a unique sink (without outgoing edges),
which could be used as a second start node bound to y. However, this variation of
the grammar would exhibit less peculiarities of the GPSR parser.



Generalized Predictive Shift-Reduce Parsing for HR Grammars 237

Table 1. PSR parsing table for series-parallel graphs.

State e(x, y) $ G(x, y)

Q0(p)
shift Q1(x, y)

if (x, y) = (p, −)
error

goto Q2(x, y)

if (x, y) = (p, −)

Q1(p, q) reduce 1, G(p, q) error

Q2(p, q)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

or (x, y) = (q, −)

accept

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q5(x, y, p)

if (x, y) = (q, −)

Q3(p, q)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

reduce 2,G(p, q)

reduce 2, G(p,q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

Q4(p, q, u)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (q, u)

or (x, y) = (p, −)

or (x, y) = (q, −)

error

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q6(x, y, p)

if (x, y) = (q, u)

goto Q7(x, y, u, p)

if (x, y) = (q, −)

Q5(p, q, u)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

or (x, y) = (q, −)

reduce 3,G(u, q)

reduce 3, G(u, q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q5(x, y, p)

if (x, y) = (q, −)

Q6(p, q, u)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

reduce 3,G(u, q)

reduce 3, G(u, q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

Q7(p, q, u, v)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (q, u)

or (x, y) = (p, −)

or (x, y) = (q, −)

reduce 3,G(v, q)

reduce 3, G(v, q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q6(x, y, p)

if (x, y) = (q, u)

goto Q7(x, y, u, p)

if (x, y) = (q, −)

the new nonterminal edge with label G that connects pσ with qσ, i.e., in column
G(x, y), and pushes the corresponding state onto the stack.

The entries accept and error in column $ express that, if all edges of the
input graph have been read, the parser terminates with success if the top-most
state is Q2, or with failure if it is Q0 or Q4.



238 B. Hoffmann and M. Minas

A PSR parser must always be able to select the correct operation; it must
not happen that the parser must choose between two or more operations where
one of them leads to a successful parse whereas another one leads to failure. Such
a situation is called a conflict. It is clear that a PSR parser always selects the
correct action if conflicts cannot occur. However, a PSR parser does not know
a priori which unread edge must be selected next. Hence, there are not only the
shift-reduce or reduce-reduce conflicts (well known from LR parsing [9]). Shift-
shift conflicts may also occur if the parser has to choose which input edge should
be read next. Moreover, a shift alone may raise a conflict, since the unread input
graph may contain more than one edge matching a pattern like e(p,−). Only if
the free edge choice property holds, the parser knows that any of these edges
may be processed, without affecting the result of the parse.6

For our example of series-parallel graphs, conflicts arise in all states, except
for Q0 and Q1. For Q3(pσ, qσ), e.g., the parser can always select the reduction,
but it can also shift any edge connecting pσ with qσ or with any other unread
node. Apparently, not every choice will lead to a successful parse, even if the
input graph is valid.

Thus the parsing table does not always allow to predict the next correct
action, and the grammar does not have a PSR parser. This problem can be
solved by generalizing PSR parsing as described in the next section.

4 Generalized Predictive Shift-Reduce Parsing

Before we describe GPSR parsing for HR grammars, let us briefly recapitulate
LR(k) parsing for context-free string grammars ([9], with k = 1 symbols of
lookahead) and how this is extended to generalized LR (GLR) parsing [12].
An LR(1) parser is controlled by a parsing table derived from the CFA of the
grammar. The parsing table assigns a unique parser action to each state of the
CFA and to each terminal symbol: shift, reduce, accept, or error. In each step,
the parser executes the action specified for the current state on top of the stack
and the next unread input symbol (the look-ahead). However, LR(1) parsing is
not possible if the parsing table has conflicts, i.e., if there is a state q and a
look-ahead symbol a associated with two actions or more. A parser that reaches
q with a look-ahead symbol a has as many choices how it may continue, i.e., the
parse stack can be modified in different ways. A search process must then explore
which of the resulting parse stacks can be further extended to a successful parse.

A GLR parser organizes this search process as a breadth-first search. It reads
the input string from left to right. At any time, it has read a certain prefix α of
the input string. It maintains the set of all (parse) stacks which can be obtained
by reading α. This set of stacks is in fact processed in rounds as follows: For each
stack, the parser determines all possible actions based on the parsing table, the
top-most state of the stack, and the look-ahead symbol. The parser has found a
successful parse if the action is accept and the entire input string has been read.
6 This property can be determined by the parser generator as well. However, it does

not hold for the grammar of series-parallel graphs.



Generalized Predictive Shift-Reduce Parsing for HR Grammars 239

(It may proceed if further parses shall be found.) If the action is an error, the
parser just discards this stack, stops if this has been the last remaining stack,
and fails altogether if it has not found a successful parse previously. If the parsing
table, however, indicates more than one possible action, the parser duplicates
the stack for each of them, and performs each action on one of the copies. If the
action is a shift, the resulting stack is no longer considered in this round, but
only in the next one. This way, at the beginning of the next round, each stack
is the result of reading the look-ahead symbol in a shift action, and having read
the same prefix of the input string.

In fact, a GLR parser does not store complete copies of stacks, but shares
their common prefixes and suffixes. The resulting structure is known as a graph-
structured stack (GSS). An individual stack is represented as a path in the GSS,
from some top-most state to the unique initial state.

A GPSR parser generalizes a PSR parser in the same way as a GLR parser
generalizes an LR parser. It also maintains a set of parse stacks, which contain
concrete states whose parameters are bound to nodes of the input graph. How-
ever, a GPSR parser must also deal with the fact that there is no a priori reading
sequence of edges of the input graph.

This affects a GPSR parser even more than a PSR parser since a GPSR
parser may be forced to pursue different reading sequences in parallel while it
performs the search process. This has consequences as follows:

– Each parse stack corresponds to a specific part of the input graph that has
been read already. Hence, the parser must store, for each stack separately,
which edges of the input graph have been read.
Sets of stacks are stored as a GSS like in GLR parsers. Each GSS node
corresponds to a concrete state. Additionally, each GSS node keeps track of
the set of input graph edges that have been read so far. Note that GSS nodes
may be shared only if both their concrete states and their sets of read edges
coincide.

– GPSR parsers cannot process their sets of stacks in rounds. When a stack is
obtained by executing a shift action, the parser must not wait until the same
edge has been read in all the other stacks; they may read other edges first.
As a consequence, a GPSR parser needs other strategies to control the order
in which stacks are processed. Strategies are discussed in Sect. 5.

We demonstrate GPSR parsing using the example of series-parallel graphs
and the input graph e(1, 2) e(2, 3) e(1, 3) e(3, 4) derived in Fig. 1. We refer to
these edges by the letters a, b, c, and d. We write GSS nodes in compact form:
e.g., 5341cd refers to the concrete state Q5(3, 4, 1) and indicates that the edges
c = e(2, 3) and d = e(3, 4) have been read already.

The parser determines node 1 as the unique start node, i.e., it starts with
concrete state Q0(1), with all edges of the input graph unread. So the GSS in
step 0 consists of 01

∅
(cf. Table 2). The parsing table in Table 1 indicates that the

parser can shift both edge a = e(1, 2) and edge c = e(1, 3), resulting in the stacks
01

∅
112a and 01

∅
113c . Table 2 shows the corresponding GSS in step 1. (Note that

“new” GSS nodes are set in boldface.) Step 1 continues with processing stack



240 B. Hoffmann and M. Minas

Table 2. Graph-structured stacks and steps of the GPSR parser when parsing the
graph consisting of the hyperedges a = e(1, 2), b = e(2, 3), c = e(1, 3), d = e(3, 4).

0 01
∅

shift a, c

1 01∅
112
a reduce 1

113
c

2 01∅
212
a

113c reduce 1

3 01∅
212a shift b, c

213
c

4 01∅
212a

113
ac

123
ab

213c shift a, d

5 01∅

212a
113ac
123ab reduce 1

213c
112
ac

134
cd

6 01∅

212a
113ac
5231
ab

213c
112ac
134cd reduce 1

7 01∅

212a
113ac
5231ab

shift d
reduce 3

213c
112ac
5341
cd

8 01∅

212a
113ac
5231ab 134

abd

213c
112ac
5341cd reduce 3*

213
ab

9 01∅

212a
113ac
5231ab 134abd

213c 112ac

213ab shift c, d

10 01∅

212a
113ac
5231ab 134abd reduce 1

213c 112ac

213ab 113
abc

11 01∅

212a
113ac
5231ab 5342

abd

213c 112ac

213ab
5341
abd

113abc reduce 1

12 01∅

212a
113ac
5231ab 5342abd reduce 3*

213c 112ac

213ab
5341abd

313
abc

13 01∅

212a 113ac

213c 112ac

213ab
5341abd reduce 3*
313abc

14 01∅

212a 113ac

213c 112ac

213ab 313abc reduce 2

15 01∅

212a 113ac

213c 112ac

213
abc shift d

16 01∅

212a 113ac

213c 112ac

213abc 134
abcd reduce 1

17 01∅

212a 113ac

213c 112ac

213abc 5341
abcd reduce 3

18 01∅

212a 113ac

213c 112ac

214
abcd

accept



Generalized Predictive Shift-Reduce Parsing for HR Grammars 241

01
∅

112a . (See Sect. 5 for a discussion of strategies.) State Q1(1, 2) just allows a
reduction by rule 1, producing a nonterminal edge G(1, 2). This pops 112a from the
stack; processing G(1, 2) pushes the concrete state Q2(1, 2), which is represented
by 212a in step 2.

State 5231ab in step 7 allows both, to shift d = e(3, 4), and to reduce by rule 3,
with nonterminal edge G(1, 3). The resulting GSS nodes are 134abd and 213ab in
step 8. State 5341cd allows just a reduce action by grammar rule 3. However, this
reduce operation with nonterminal edge G(1, 4) is invalid. If it were valid, G(1, 4)
could be derived to the graph consisting of just c = e(2, 3) and d = e(3, 4), i.e.,
it would generate node 3. However, this contradicts the fact that the unread
edge b = e(2, 3) is attached to node 3, which must be generated earlier in the
derivation. Therefore, the stack with top-most state 5341cd is discarded in this step
(indicated by the asterisk), and analogously in steps 12 and 13.

Note that the shift action in step 9 results in a GSS where 134abd is the top-
most state of two stacks. The reduce operation in step 10, however, removes 134abd

from the GSS and from the corresponding stacks again, and produces the two
stacks with top-most states 5341abd and 5342abd.

The GSS in step 18 contains node 214abcd, i.e., the accept state Q2(1, 4) with
the entire input graph being read. The GPSR parser, therefore, has found a
successful parse of the input graph.

The current implementation stops when the first successful parse has been
found. Another successful parse could have been found if 112ac had been processed
in step 5 or later.

5 Parsing Experiments

We now report on runtime experiments with different parsers applied to series-
parallel graphs and to structured flowcharts. The latter are flowcharts that do
not allow arbitrary jumps, but represent structured programs with conditional
statements and while loops. They consist of rectangles containing instructions,
diamonds that indicate conditions, and ovals indicating begin and end of the
program. Arrows indicate control flow; see Fig. 2 for an example. Flowcharts are
easily represented by graphs as also shown in Fig. 2. Figure 3 defines the rules of
an HR grammar generating all graphs representing structured flowcharts. This
grammar is not PSR because a state of its CFA has conflicts.

We generated three different parsers for the grammar of series-parallel graphs
and for structured flowcharts: a Cocke-Younger-Kasami style parser (CYK, [11])
using DiaGen7, and two variants of the GPSR parser using Grappa (see foot-
note 1). The CYK parser was in fact optimized in two ways: the parser creates
nonterminal edges by dynamic programming, and each of these edges can be
derived to a certain subgraph of the input graph. The optimized parser makes
sure that it does not create two or more indistinguishable nonterminals for the
same subgraph, even if the nonterminals represent different derivation trees. And
it stops as soon as it finds the first derivation of the entire input graph.
7 Homepage: www.unibw.de/inf2/diagen.

https://www.unibw.de/inf2/diagen/


242 B. Hoffmann and M. Minas

Fig. 2. A structured flowchart (text within the blocks has been omitted) and its graph
representation.

Fig. 3. HR rules for structured
flowcharts.

Fig. 4. Definition of flowchart graphs Fn.

The GPSR parsers differ in the strategy that controls which of the currently
considered stacks is selected for the next step. GPSR 1 simply maintains a FIFO
queue of all such stacks, i.e., new states are enqueued as soon as they are created,
and a top-most state is selected for processing as soon as it is next in the queue.
GPSR 2, however, applies a more sophisticated strategy. It requires grammar
rules to be annotated with either first or second priority. The GPSR 2 parser
provides two queues, the first one using FIFO and the second LIFO. New states
that result from handling a first priority rule go into the first queue, the others
into the second. The parser always tries to select states from the first queue; it
selects from the second queue only if the first queue is empty. This way one can
control, by annotating grammar rules, which rules should be considered first.
This does not affect the correctness of the parser; it can still examine the entire
search space. However, it will stop as soon as it finds the first successful parse.
By appropriately annotating grammar rules, one can thus speed up the parser if
the input graph is valid. However, there is no speed-up for invalid input graphs,
since the parser must inspect the entire search space in this case.

The GPSR 2 parser for series-parallel graphs gives rule 3 (series) precedence
over rule 2 (parallel); it has been applied to graphs



Generalized Predictive Shift-Reduce Parsing for HR Grammars 243

Sn =

· · ·
· · ·
· · ·
· · ·1

2 3
n

with different values of n. The GPSR 2 parser for structured flowcharts gives
sequences priority over conditional statements; it has been applied to flowcharts
Fn defined in Fig. 4 and consisting of n conditions and 3n + 1 instructions. The
flowchart in Fig. 2 is in fact F3. Fn has a subgraph Dn, which, for n > 0, contains
subgraphs Dm and Dm′ with n = m + m′ + 1. Note that the conditions in Fn

form a binary tree with n nodes when we ignore instructions. We always choose
m and m′ such that it is a complete binary tree.

0 20 40 60 80 100
0

200

400

600

800

1 000

Series-parallel graphs

0 1 000 2 000 3 000
0

200

400

600

800

1 000

Structured flowcharts

GPSR 1
GPSR 2
CYK

Fig. 5. Runtime (in milliseconds) of different parsers for series-parallel graphs and
structured flowcharts.

Figure 5 shows the runtime of the different parsers applied to Sn and Fn with
varying value n. Runtime has been measured on an iMac 2017, 4.2 GHz Intel Core
i7, Java 1.8.0 181 with standard configuration, and is shown in milliseconds on
the y-axis while n is shown on the x-axis.

The experiments first demonstrate that the more sophisticated strategy of
GPSR 2 really pays off as GPSR 2 finds a derivation much faster than GPSR 1.
For parsing F1000, e.g., GPSR 1 needs 4 013 880 steps, but GPSR 2 just 13 004.
The experiments also show that GPSR 1 is in fact much slower than CYK,
which demonstrates the need for a sophisticated strategy for the GPSR parser.
But for series-parallel graphs, even GPSR 2 is much slower than CYK. Because,
the grammar of series-parallel graphs is highly ambiguous. For instance, S100

has the ridiculous number of 6.1 · 10281 derivation trees. The CYK parser has to
create 40 422 nonterminal edges for S100, and for S40 just 6 582, where most of
them represent a high number of different derivation trees. GPSR 2, however,
needs 908 122 steps to find a derivation for S40. Apparently, the compactification
by the optimized CYK is more effective to cut down the number of choices the
parser has to follow.



244 B. Hoffmann and M. Minas

6 Conclusions

We have generalized PSR parsing for HR grammars [6] to cope with ambiguous
graph grammars, by pursuing all possible parses of a graph in parallel until the
first derivation has been found. This work is inspired by Tomita’s GLR string
parsers [12], which extend D.E. Knuth’s LR string parsers [9]. For the academic
example grammars examined in Sect. 5, in particular the highly ambiguous gram-
mar for series-parallel graphs, comparison of our parser with the CYK parser
does not give a clear picture. Moreover, the speed-up obtained by choosing an
appropriate strategy only helps when parsing valid graphs, but not when process-
ing invalid graphs. Our experiments shall be extended in two respects: First, we
shall study more, and more realistic HR grammars, e.g., the modestly ambiguous
(and big) grammars used for processing abstract meaning representations in nat-
ural language processing (NLP). Second, we shall compare the GPSR parser with
the two parsers used for NLP: the Bolinas parser [1] by D. Chiang, K. Knight
et al. implements the polynomial algorithm for a restricted class of HR gram-
mars devised in [10]; the s-graph parser [7] by A. Koller et al. uses a similar
formalism.

We also intend to extend both the original and the generalized PSR parsers
to contextual HR grammars [2,3], which have greater generative power, and can
be used for analyzing graph models that are more general, and more relevant
in practice. Our experience with PTD parsing [4] suggests that this should be
relatively easy.

References

1. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual
Meeting Association for Computational Linguistics, vol. 1, pp. 924–932 (2013)

2. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Inf. 52, 497–
524 (2015)

3. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In:
Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–
197. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34176-2 16

4. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge
replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21145-9 2

5. Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for generating
deterministic graph parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF
2016. LNCS, vol. 9946, pp. 112–128. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50230-4 9

6. Drewes, F., Hoffmann, B., Minas, M.: Formalization and correctness of predic-
tive shift-reduce parsers for graph grammars based on hyperedge replacement. J.
Log. Algebr. Meth. Program. (2018). https://doi.org/10.1016/j.jlamp.2018.12.006.
https://arxiv.org/abs/1812.11927

https://doi.org/10.1007/978-3-642-34176-2_16
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-50230-4_9
https://doi.org/10.1007/978-3-319-50230-4_9
https://doi.org/10.1016/j.jlamp.2018.12.006
https://arxiv.org/abs/1812.11927


Generalized Predictive Shift-Reduce Parsing for HR Grammars 245

7. Groschwitz, J., Koller, A., Teichmann, C.: Graph parsing with s-graph grammars.
In: Proceedings of the 53rd Annual Meeting Association for Computational Lin-
guistics, ACL 2015, Volume 1: Long Papers, pp. 1481–1490. The Association for
Computer Linguistics (2015)

8. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

9. Knuth, D.E.: On the translation of languages from left to right. Inf. Control 8(6),
607–639 (1965)

10. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Inf. 27, 399–421 (1990)

11. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Sci. Comput. Program. 44(2), 157–180 (2002)

12. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp.
756–764. Morgan Kaufmann (1985)

https://doi.org/10.1007/BFb0013875

	Generalized Predictive Shift-Reduce Parsing for Hyperedge Replacement Graph Grammars
	1 Introduction
	2 Graph Grammars Based on Hyperedge Replacement
	3 Predictive Shift-Reduce Parsing
	4 Generalized Predictive Shift-Reduce Parsing
	5 Parsing Experiments
	6 Conclusions
	References




