
Modern Aspects of Complexity Within
Formal Languages

Henning Fernau(B)

Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT, Universität Trier,
54286 Trier, Germany
fernau@uni-trier.de

Abstract. We give a survey on some recent developments and achieve-
ments of modern complexity-theoretic investigations of questions in For-
mal Languages (FL). We will put a certain focus on multivariate com-
plexity analysis, because this seems to be particularly suited for questions
concerning typical questions in FL.

Keywords: String problems · Finite automata ·
Context-free grammars · Multivariate analysis ·
Fixed-parameter tractability · Fine-grained complexity

1 Introduction

Formal Languages and Complexity Theory have a long (common) history. Both
fields can be seen as two of the major backbones of Theoretical Computer Sci-
ence. Both fields are often taught together in undergraduate courses, mostly
obligatory in Computer Science curricula. This is also testified by looking at
classical textbooks like [50]. Yet, modern developments in complexity and algo-
rithmics are barely mirrored in Formal Languages. We want to argue in this
paper that this is a fact that need to be changed.

We will work through six case studies to explain several findings in recent
years. We will also expose a number of open problems in each of these cases.
This should motivate researchers working in Formal Languages to look deeper
into recent developments in Complexity Theory, but also researchers more ori-
ented towards these modern aspects of Complexity Theory to look into (possibly
apparently rather old) problems in Formal Languages to see if they could offer
solutions or at least new approaches to these problems.

In most cases, the problems we discuss in the area of Formal Languages
can be easily understood with the already mentioned background knowledge
each computer scientists gets already during the corresponding bachelor courses.
Therefore, we will only fix notations but assume that no further explanations
are necessary. By way of contrast, we will spend some more time explaining
at least some ideas of the concepts discussed nowadays in Complexity Theory
and Algorithms, so that readers with a background rooted in Formal Languages
c© Springer Nature Switzerland AG 2019
C. Martín-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 3–30, 2019.
https://doi.org/10.1007/978-3-030-13435-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_1&domain=pdf
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-13435-8_1

4 H. Fernau

could easily follow this introductory exposition. In any case, we want to make
clear why these modern approaches are particularly suited for attacking decision
problems in Formal Languages.

2 Some Modern Concepts of Complexity Theory

As most of our case studies deal with multivariate analysis, let us first delve into
the general scheme behind this idea. This is intimately linked to the basic ideas
of Parameterized Complexity, which could be paraphrased as follows. If we can
show that some decision problem is computationally complicated, which is typi-
cally formalized by proving that it is NP-hard or PSPACE-hard, what can we do
about it then, assuming that we still like to solve it with the help of computers?
More traditionally, help was expected from approximation algorithms or, more
practically, from heuristics, and in fact the proof of computational hardness often
gave a sort of excuse of using these rules of thumb called heuristics. However,
in particular using heuristics with no success guarantees is not very satisfying
from a more theoretical perspective at least. What can be done about such a
situation?

It is exactly here where Parameterized Complexity and also the more prac-
tical side of it, namely Parameterized Algorithms, steps in. The basic idea is
to not merely look at the bitstring length as the only source of information
that an instance of a computational problem might give as defining or measur-
ing its complexity, but to also look at other aspects of the instance, formalized
in terms of a so-called parameter. What happens if they are always small in
the concrete instances that practitioners look at? Does this still mean that the
problem is computationally hard? Or can we possibly solve these practically rel-
evant instances efficiently, although the problem is NP-hard when considering all
possible instances? Interestingly, one of the most successful approaches within
Parameterized Algorithms can be viewed as an analysis of natural heuristics,
which means, in more formal terms, the use of reduction rules to provide means
to (repeatedly) move from an instance to an equivalent instance of smaller size.

What could these parameter be? Let us look at various examples.

– The most classical NP-hard problem is arguably Satisfiability, or SAT for
short. Given a Boolean formula ϕ in conjunctive normal form (CNF), decide
if ϕ is satisfiable. A possibly natural choice of a parameter could be a bound k
on the number of literals that may appear in clauses. When fixing this upper-
bound to k, we arrive at problems like k-SAT. This parameter choice is not
that helpful, because it is well-known that even 3-SAT remains NP-hard, and
in fact there are quite a number of much more restricted variants of SAT
that cannot be solved in polynomial time, assuming that P does not equal
NP, see [57,61,93] for several such restrictions. Only 2-SAT is still solvable in
polynomial time.

– Looking back at the proof of the theorem of Cook, phrased in (nowadays)
non-standard terminology in [21], one can argue that the more basic NP-
complete problem is in fact the following one, which can be considered as a

Modern Aspects of Complexity Within Formal Languages 5

problem arising in the field of Formal Languages: Given a nondeterministic
Turing machine M , an input string x and an integer k, does M halt within k
steps accepting x? Now, if k is fixed to a small constant, this problem looks
more amenable than the previous one. More precisely, let us focus on one-
tape machines for now. Assume that we have � symbols in the work alphabet
of M and assume that M has t states. Then at each time step, being in a
specific state, upon reading a symbol, M has at most 3�t choices to continue
its computation, the factor three entering because of the different choices
for moves. Moreover, after k steps, at most O(tk�k) many configurations are
possible, simply because at most k tape cells could have been visited within k
steps, and also the current state and head position has to be memorized. The
difference to Turing machines with a dedicated read-only input tape is not of
importance here. It can be easily checked if an accepting configuration can
be reached from the initial configuration within the directed graph implicitly
given by the configuration and the reachability relation. Instead of writing �
and t, we can also consider the size of M , with reasonable ways to measure
this; the size of the state transition table should be always encaptured here,
and this also bounds the number of choices. So, we might write the running
time of this algorithm like O(|M |k), which is polynomial when k is really
fixed, but if k is considered as part of the input, this algorithm is clearly
exponential. Similar considerations are valid for multi-tape nondeterministic
Turing machines. For future reference, let us call these problems Short NTM

Acceptance (when referring to single tapes) and Short Multi-Tape NTM

Acceptance.
– Recall that a hypergraph can be specified as G = (V,E) with E ⊆ 2V .

Elements of V are called vertices, while elements of E are called (hyper-)edges.
In different terminology, V is the ground-set or universe, and E is a set system.
C ⊆ V is called a hitting set if e∩C �= ∅ for all e ∈ E. In the decision problem
Hitting Set, we are given a hypergraph G = (V,E) and an integer k, and
the question is if one can find a hitting set of cardinality at most k for G.
This question is well-known to be NP-hard. There is a simple relation to SAT:
One can view the hyperedges as clauses. Now, a hitting set corresponds to the
set of variables set to true. It is also evident why we need the bound k here:
setting all variables to true corresponds to selecting V as a hitting set, and
this is clearly a satisfying assignment, because none of the clauses contains
any negation. This relation also motivates to study d-Hitting Set, where d
upper-bounds the number of vertices in each hyperedge. In contrast to SAT,
this restriction looks quite promising, considering the following algorithm: As
long as there are hyperedges in G and as long as the integer k is positive, do
the following: pick such a hyperedge e and branch according to the at most
d possibilities for hitting e. In each case, delete all hyperedges from G that
contain e, decrement k and continue. If and only if this loop is ever exited
with E = ∅, the original instance was a YES-instance. As at most dk many
possibilities are tested, the running time of this algorithm can be estimated as
O(dkp(|G|), where p is some polynomial and |G| gives the size of the original

6 H. Fernau

input. Without this additional accounting of d, it is not clear how to solve
this problem better than O(|G|k).

– Observe that hypergraph instances of 2-Hitting Set can be also viewed as
undirected simple graphs, because loops (i.e., singletons in the set of hyper-
edges) can be easily removed, as the constituent elements must be put into
the hitting set. 2-Hitting Set is also known as Vertex Cover. Then, an
alternative parameterization might be kd = |V | − k. This problem is also
known as Independent Set, and it can be rephrased as asking for a set
I of kd many vertices such that no edge contains two vertices from I. Such
a set is also known as an independent set. A related question asks, given a
graph G and an integer �, if there is a clique of size � in G, i.e., a set K of �
vertices such that each pair of vertices from K is adjacent. All these decision
problems are also known to be NP-complete.

With these problems from different fields in mind, it might make sense to
consider a decision problem P equipped with a computable parameterization
function κ that maps instances to integers. Two ways in which algorithms can
behave nicely on instances x might be considered. (a) There is an algorithm
that solves instances x of P in time O(|x|κ(x)). (b) There is an algorithm that
solves instances x of P in time O(|x|df(κ(x))) for some constant degree d and
some (computable) function f . Both definitions imply that P can be solved in
polynomial time, when restricted to instances whose parameter is smaller than
some constant c. Yet, possibility (b) means that, assuming d to be reasonably
small and f not behaving too badly, then P can be solved not only for instances
where the parameter κ(x) is bounded by a constant but it may grow moderately,
i.e., this is a far more desirable property. (Parameterized) problems (P, κ) that
satisfy (a) are also said to belong to XP, while if (P, κ) satisfies (b), it belongs
to FPT (fixed parameter tractable).

Let us look at our example problems again.

– Let κ1 map a Boolean formula ϕ to the number of variables that occur in ϕ.
Then, (SAT, κ1) is in FPT, because there are only 2κ1(ϕ) many assignments
one has to check to see if ϕ is satisfiable. Let κ2 map a Boolean formula ϕ in
CNF to the maximum number of literals appearing in any clause of ϕ. Then,
unless P equals NP, (SAT, κ2) does not belong to XP.

– For an instance I = (M,x, k) of Short NTM Acceptance, let κ3(I) = k.
As argued above, (Short NTM Acceptance, κ3) belongs to XP. However, it
seems to be hard to put it in FPT. If we consider the size of M as an additional
parameter, i.e., κ4(I) = |M | + k, then we have also seen that (Short NTM

Acceptance, κ4) belongs to FPT. Similar considerations hold true for the
multi-tape case. Possibly more interestingly, our considerations show that
also with the parameterization κ5 that adds k and the size of the overall
alphabet, we end up in FPT. A reader knowledgeable about the early days
of Descriptional Complexity (within FL) might ponder for a moment if there
might be a possibility to put (Short NTM Acceptance, κ3) into FPT by
resorting to a theorem of Shannon [84] that states that Turing machines with
an arbitrary number of working tape symbols can be simulated by Turing

Modern Aspects of Complexity Within Formal Languages 7

machines with binary tapes. However, this idea is problematic at least for
two reasons: (a) the simulating machine (with binary working tape) needs a
considerable amount of time for the simulation, this way changing the upper-
bound k on the number of steps; (b) in Shannon’s simulation, the order of
magnitude of the product of alphabet size and number of states stays the
same. In combination, both effects counter-act this idea.

– Let us study various parameterizations for Hitting Set. Let G = (V,E) with
E ⊆ 2V and k form an instance and define κ6 : (G, k) �→ k, κ7 : (G, k) �→ |V |,
κ8 : (G, k) �→ |E| and κ9 : (G, k) �→ max{|e| : e ∈ E}. As

(
n
k

) ∈ O(nk),
in roughly O(|V |k) steps, the instance (G, k) can be solved by testing all
k-element subsets if they form a hitting set, putting (Hitting Set, κ6) in
XP. With the same idea, (Hitting Set, κ7) is in FPT. By using dynamic
programming as explained in [30,41], also (Hitting Set, κ8) is in FPT. Due
to the NP-hardness of Vertex Cover, if (Hitting Set, κ9) is in XP, then
P equals NP. When combining parameters, κ10 := κ6 + κ9, we conclude with
the reasoning given above that (Hitting Set, κ10) is in FPT. This is quite
instructive, because it shows that even combining relatively weak parameters,
one can obtain relatively nice algorithmic results. More details, also for special
cases, can be found in [30–32,99].

– Reconsider κ6 : (G, k) �→ k for Vertex Cover. Then, by the equiva-
lence to 2-Hitting Set, (Vertex Cover, κ6) belongs to FPT. However,
reparameterizing by κ11 : (G, k) �→ |V | − k, we only know membership in
XP for (Vertex Cover, κ11). Recall that this is equivalent to considering
(Independent Set, κ6). By moving over from G to the graph complement
G, with (V,E) = (V,

(
V
2

) \ E), one understands that also (Clique, κ6) has
the same complexity status as (Vertex Cover, κ11).

So far, we introduced the classes FPT and XP of parameterized problems.
Clearly, FPT ⊆ XP. As often in Complexity Theory, it is unknown if this inclusion
is strict, but it is generally assumed that this is the case. Moreover, we have
seen examples of parameterized problems that are not in XP, assuming that
P is not equal to NP. In order to have a more refined picture of the world of
parameterized problems, it is a good idea to define appropriate reductions. It
should be clear what properties such a many-one FPTreduction relating problem
(P, κ) to (P ′, κ′) should satisfy: (a) it should translate an instance I of P to an
instance I ′ of P ′ within time f(κ(I))|I|O(1) for some computable function f ;
(b) it should preserve the parameterization in the sense there is a function g
such that κ′(I ′) ≤ g(κ(I)); (c) I is a YES-instance of P if and only if I ′ is a
YES-instance of P ′. Such a notion allows us to define further complexity classes,
based on the idea of being interreducibility with respect to FPT reductions, or
FPT-equivalent. Observe that the classes FPT and XP studied so far are closed
under FPT reductions. Let W[1] be the class of parameterized problems that are
FPT-equivalent to (Short NTM Acceptance, κ3), and let W[2] be the class of
parameterized problems that are FPT-equivalent to (Short Multitape NTM

Acceptance, κ3). In fact, there is a whole (presumably infinite) hierarchy of

8 H. Fernau

complexity classes captured in the following inclusion chain:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

Looking back at our examples, it is known that (Independent Set, κ6) and
(Clique, κ6) are complete for W[1], while (Hitting Set, κ6) is complete for
W[2]. As we will see in the following sections, many natural parameterizations of
computational problems stemming from Formal Languages lead to W[1]-hardness
results. If we still want to employ the idea of getting FPT algorithms, we need
to find different, often multiple parameterizations. This approach is also called
mutlivariate analysis. We refer to [12,28,71] for further discussions. At this point,
we only recall that we also used this idea when looking at (Hitting Set, κ10).

There is a nice characterization of FPT based on the idea of the existence of a
polynomial-time many-one reduction termed kernelization that maps instances
I of (P, κ) to instances I ′, also of (P, κ), satisfying |I ′| ≤ f(κ(I)) for some com-
putable function f , where |I| yields the size of instances I in the classical sense.1
I ′ is also called the kernel of I. The existence of kernelizations is often shown by
providing a collection of so-called reduction rules that should be applied exhaus-
tively in order to produce the kernel. As an example, the two reduction rules
together provide a kernelization for (Vertex Cover, κ6). (a) Delete vertices of
degree zero, or, more formally, ((V,E), k) �→ ((V \ {v | v /∈ ⋃

e∈E e}), k), and (b)
(G, k) �→ (G−v, k−1) if there is some v ∈ V (G) with more than k neighbors. In
fact, it is not hard to see that the resulting kernels (G′, k′) even satisfy a polyno-
mial bound on the size of G′ (with some reasonable size measure) with respect
to κ6(G′, k′) = k′. We also say that (Vertex Cover, κ6) admits a polynomial
kernel.

With this notion at hand, the question is if one can always produce kernels of
polynomial size for parameterized problems in FPT. This is not the case unless
the polynomial-time hierarchy collapses to the third level, which is considered
to be unlikely. For instance, under this condition, it can be shown that both
(Hitting Set, κ7) and (Hitting Set, κ8) and hence also (SAT, κ1) have no
polynomial-size kernels.

Another venue that one could follow is refining the questions about optimality
of existing algorithms further beyond the question if the decision problem at
hand belongs to P or if it is NP-hard. This line of research is nowadays captured
under the umbrella of Fine-Grained Complexity.

For instance, as discussed, there is a trivial algorithm to solve a SAT instance
by testing all assignments. Neglecting polynomial factors, as standard by the
very definition of FPT, we can also state that SAT instances on n variables can
be solved in time O∗(2n), where the O∗-notation was invented just to suppress
polynomial factors. Now, one can ask if there is any algorithm that solves SAT
instances in time O∗((2− ε)n) for any ε > 0. No such algorithm is known today.

1 In the literature, is often required that |I ′| + κ(I ′) ≤ f(κ(I)), but this is equivalent
to the present requirement, because the parameterization can be computed from I ′,
i.e., κ(I ′) is also bounded by a function in κ(I) if |I ′| is.

Modern Aspects of Complexity Within Formal Languages 9

The hypothesis that no such algorithm exists is also called Strong Exponential-
Time Hypothesis, or SETH for short. A weaker assumption is to believe that there
is no function f(n) ∈ o(n) such that SAT, or in this case equivalently also 3-SAT,
can be solved in time O∗(2f(n)). This hypothesis is also known as Exponential-
Time Hypothesis, or ETH for short.2 The outcome of the famous sparsification
lemma is sometimes good to know: Under ETH, there is also no O∗(2o(n))-time
algorithm for 3-SAT on instances that have O(n) many clauses. For instance, it
is known that under ETH, no 2o(n) algorithm exists for solving Hitting Set

on instances with n vertices. We also refer to [22]. Further consequences of this
approach to the (non-)existence of certain types of FPT algorithms are also dis-
cussed in the survey paper [62]. For instance, while there are quite a number of
algorithms that solve (Vertex Cover, κ6) in time O∗(2O(κ6(G))), under ETH
there is no algorithm for doing this in time O∗(2o(κ6(G))). It should be clear
that for obtaining such results, another form of reduction is needed. We do
not explain any details here, but just observe that many well-known reductions
suffice for showing some basic ETH-based results. For instance, the typical text-
book reductions for showing NP-hardness of Vertex Cover start from 3-SAT
and then introduce gadgets with two or three vertices for variables or clauses,
respectively. Hence, by the outcome of the sparsification lemma, under ETH
there is no O∗(2o(|V |))-time algorithm for computing a minimum vertex cover
for G = (V,E). However, not all lower bounds of this type that one assumes to
hold can be shown to be rooted in ETH. For instance, the Set Cover Conjec-
ture claims (using the vocabulary of this paper) that (Hitting Set, κ7) cannot
be solved in time O∗(2o(κ7(G))). As discussed in [22], it is not clear how this
(plausible) conjecture relates to ETH.

Finally, one might wonder how to attack XP-problems, trying to understand
how the parameter(s) influence the running time. For instance, consider the
problem of finding a clique of size k in a graph with n vertices. Using brute-force,
this problem can be solved in time O∗(

(
n
k

)
) = O(nk+c) for some small constant

c. Nešetřil and Poljak showed in [66] that this can be improved to O(nkω/3+c),
where ω is the exponent such that n×n matrices can be multiplied in time O(nω).
The underlying idea is that triangles can be found by multiplying adjacency
matrices. Nowadays, it is believed that this is indeed the correct bound for
detecting k-cliques. The hypothesis that no better algorithms are possible than
those intimately linked to matrix multiplication is known as k-Clique Conjecture.
This is one of the various examples of conjectures within the realm of polynomial-
time algorithms on which several hardness assertions are based. In this context,
it is also worth mentioning that there is a common belief that ω > 2; this also
links to interesting combinatorial conjectures as exhibited in [5]. We will re-
encounter this conjecture in our last case study. Virginia Vassilevska Williams
wrote several surveys on Fine-Grained Complexity, the most recent published one
being [104].3 When dealing with distinguishing problems within P, also adapted

2 The definitions in [52] are a bit different, but this can be neglected in the current
discussion.

3 A new survey is announced to appear in [85].

10 H. Fernau

notions of reductions have to be introduced. For the sake of space and because
this is not that central to this paper, we are not going to present them here but
refer to the mentioned survey papers. Also due to the nature of these reductions,
in this part of the complexity world, polylogarithmic factors in the running time
are often ignored, leading to notations like Õ(n2) for denoting quadratic running
times up to terms like (log(n))3. Vassilevska Williams put the central question
of Fine-Grained Complexity as follows in the survey to appear in [85]: For each
of the problems of interest with textbook running time O(t(n)) and nothing much
better known, is there a barrier to obtaining an O(t(n)1−ε) time algorithm for
ε > 0? Notice this formulation ignores polylogarithmic factors. Also, SETH
perfectly fits into this line of questions.

Many more details can be found in the textbooks that have appeared in
the meantime in the context of Parameterized Complexity, often also capturing
aspects of ETH and also of SETH. We refer to [23–25,40,42,70].

In the following, we present six case studies, focusing on typical effects that
show up when dealing with computational problems in Formal Languages. We
start with a problem dealing with strings only, continuing with problems involv-
ing grammars and automata. There are some common themes throughout all
these studies, for instance, the (sometimes surprising) role played by the size of
the alphabet concerning the complexity status of the problems. Another recur-
ring theme is that rather simple algorithms can be shown to be optimal.

3 First Case Study: String-to-String Correction S2S

The edit distance is a measure introduced to tell the distance between two strings
S, T ∈ Σ∗, where S is the source string and T is the target string, by counting
the number of elementary edit operations that are necessary to turn S into T .
The complexity of this problem depends on the permitted operations. Let O be
the set of permitted operations, O ⊆ {C,D, I,S}, with:

C Change: replace/substitute a letter
D Delete a letter
I Insert a letter
S Swap: transpose neighboring letters

For each O, define the problem O-String-to-String Correction, or O-S2S
for short, with input Σ, S, T ∈ Σ∗, k ∈ N, to be the following question: Is it
possible to turn S into T with a sequence of at most k operations from O?

Wagner [97] obtained a by now classical dichotomy result that can be stated
as follows.4

Theorem 1. Consider O ⊆ {C,D, I,S}.
– If O ∈ {{S,D}, {S, I}}, then O-S2S is NP-complete.
4 The result was phrased in different terminology back in 1975. Wagner actually proved

stronger results in the sense that weights on the operations are permitted.

Modern Aspects of Complexity Within Formal Languages 11

– If O /∈ {{S,D}, {S, I}}, then O-S2S is solvable in polynomial time.

Note: {S,D}-S2S is equivalent to {S, I}-S2S.
How is this dichotomy result obtained? What is the source of NP-hardness?

Conversely, how do the algorithms work? Here, dynamic programming is the key,
and the corresponding algorithms (or variants thereof) have made their way into
textbooks on algorithms.

Let us first study the NP-hard variant, focusing on {S,D}-S2S. What are
natural parameters of an instance I defined by Σ, S, T ∈ Σ∗, k ∈ N? From the
viewpoint of now traditional parameterized complexity, κ1(I) = k is a first pick.
This has been considered in [3]. Its main result can be stated as follows.

Theorem 2. {S,D}-S2S with parameter κ1(Σ, S, T ∈ Σ∗, k) = k is in FPT.
More precisely, an instance I = (Σ, S, T ∈ Σ∗, k) can be solved in time
O(ϕk(|S|) log(|Σ|)), where ϕ < 1.62 is the golden ratio number.

In addition, a polynomial kernel was obtained in [101]. One of the important
observations is that we can assume to always execute k1 = |S| − |T | deletions
prior to swaps. Moreover, the at most k − k1 swaps can be described by one
position in the string. Hence, k is upper-bounded by a function in |S| and we
can use the previously mentioned algorithm to prove:

Proposition 3. {S,D}-S2S with parameter κ2(Σ,S, T, k) = |S| is in FPT.

With quite a similar reasoning, one can obtain the next result.

Proposition 4. {S,D}-S2S with parameter κ3(Σ,S, T, k) = |T | is in FPT.

The previous two results seem to be a bit boring, because |S| and |T | appear
to be the natural choice to describe the overall size of the input. Also, these
string lengths would be rather big in practice, while one could assume k to be
rather small if one compares strings that are somehow similar to each other.

There is one last choice of a parameter that one might tend to overlook
when first being confronted with this problem, namely, the size of the alphabet
over which the strings S and T are formed. Yet, studying the proof of NP-
hardness of Wagner, one is led to the conclusion that |Σ| is crucial for this proof,
which simply does not work if |Σ| is bounded, for instance, if we consider binary
alphabets only. This might look a bit surprising, as it might be hard to imagine
that the alphabet size itself could carry such an importance, given the fact
that the alphabet carries no visible or obvious structure. Yet, the consideration
of the alphabet size will be a recurring theme in this paper, and we will see
various situations where this is in fact a crucial parameter. This problem was
first resolved in [36] for binary alphabets, showing the following result.

Proposition 5. {S,D}-S2S on binary alphabets can be solved in cubic time.

12 H. Fernau

This was soon superseded by a more general result by Meister [64], showing
that indeed the size of the alphabet was the crucial source of hardness for this
problem. This was later improved by Barbay and Pérez-Lantero [10] concerning
the dependence of the degree of the polynomial describing the running time on
the alphabet size parameter.

Theorem 6. {S,D}-S2S with parameter κ4(Σ,S, T, k) = |Σ| is in XP. More
precisely, it can be solved in time O(|S||Σ|+1).

Still, this result is likely only practical only for very small alphabet sizes.
Also, it is still open if one can put the problem in FPT. From a more practical
perspective, as the parameters k and Σ are rather unrelated and also because the
algorithmic approaches leading to Theorems 2 and 6 are quite different, it would
be interesting to see if one can combine both ideas to produce an algorithm
that is really useful for instances with a small alphabet size and a moderate
number of permitted edit operations. Of course, this should be also checked by
computational experiments that seem to be lacking so far.

It would also be interesting to study further parameters for this problem. In
[10], several such suggestions have been considered. For instance, Barbay and
Pérez-Lantero [10] have shown the following consequence for their algorithm.
This relates to the number of deletions (|T | − |S|) already studied above.

Proposition 7. {S,D}-S2S with parameter κ5(Σ,S, T, k) = |Σ|+(|T |− |S|) is
in FPT. More precisely, it can be solved in time O∗((|T | − |S|)|Σ|).

Let us also discuss some fine-grained complexity results for {C,D, I}-S2S.
This problem is also known as computing the edit distance (in a more restricted
sense) or as computing the Levenshtein-distance between two strings. The
already mentioned textbook algorithms, often based on [98], take quadratic
time. Whether or not these are optimal was actually a question already investi-
gated 40 years ago. In those days, however, lower bound results were dependent
on particular models of computation, while more modern approaches to lower
bounds are independent of such a choice. For instance, Wong and Chandra [106]
showed a quadratic lower bound assuming that only equality tests of single
symbols are permitted as the basic operation of comparison. Masek and Pater-
son [63] managed to shave off a logarithmic factor by making some clever use
of matrix multiplication tricks. Yet, whether essentially better algorithms are
possible remained an open question up to recently. Backurs and Indyk [8] finally
proved that assuming SETH, no O(n2−ε)-time algorithm can be expected for
any ε > 0. Interestingly enough, their proof was working only for alphabet sizes
at least seven. This result has then been improved by Bringmann and Künne-
mann [14] to binary alphabets. Let us summarized these results in the following
statement.

Theorem 8. {S,D, I}-S2S can be solved in quadratic time. Assuming SETH,
no O(|S|2−ε)-time algorithm exists even on binary alphabets, for any ε > 0.

Modern Aspects of Complexity Within Formal Languages 13

Suggestions for Further Studies. (a) Does {S,D}-S2S with parameteriza-
tion κ4(Σ,S, T, k) = |Σ| belong to FPT, or is it hard or even complete for
some level of the W-hierarchy? (b) Assuming that {S,D}-S2S with parameter
κ4(Σ,S, T, k) = |Σ| belongs to FPT, is it possible to give, e.g., SETH-based lower
bounds for showing that existing algorithms are (close to) optimal? (c) Assuming
that existing algorithms for {S,D}-S2S with parameter κ4(Σ,S, T, k) = |Σ| are
optimal, it might make sense to study FPT-approaches even for fixed alphabets,
because the running times that are obtainable at present are impractical for,
say, the ASCII alphabet, not to speak about Unicode. (D) We are not aware of
any studies concerning the polynomial-time approximability of the minimization
problem related to {S,D}-S2S.

4 Second Case Study: Grammar-Based Compression

One of the main ideas behind data compression algorithms is to use regularities
found in an input to find representations that are much smaller than the original
data. Although data compression algorithms usually come with their own special
data structures, there are some common schemes to be found in the algorithms
of Lempel, Ziv, Storer, Szymanski and Welch from 1970s and 1980s [90,103,
108] that easily generalize to the idea to use context-free grammars producing
singleton languages for data compression purposes. Such context-free grammars
are also called straight-line programs in the literature. Another perspective on
this question is offered by Grammatical Inference, a perspective that can be
traced back to the work of Nevill-Manning and Witten [67–69] and Kieffer and
Yang [55]. We refer to [86] for quite a number of other papers that link to
Grammatical Inference and applications thereof.

This leads us to consider the following decision problem, called Grammar-

Based Compression, or GBC for short: Given a word w over some alphabet Σ
and an integer k, decide if there exists a context-free grammar G of size at most k
such that L(G) = {w}.

In a sense, this question is still ill-posed, because we did not explain how to
measure the size of a grammar. In fact, there are several natural ways to do this.
The main results that we are citing in the following do not really depend on the
choice. Hence, we follow the common definition that the size of a context-free
grammar G is computed by summing up the lengths of all right-hand sides of
rules of G.

Based on reductions due to Storer [89], Charikar et al. [19] showed the fol-
lowing complexity result.

Theorem 9. GBC is NP-complete (on unbounded terminal alphabets).

Although occasionally there were claims in the literature that such a hardness
result would be also true for bounded alphabet sizes (see [7]), this question was
in fact open until recently. In the journal version of [17], the authors showed the
following result.

14 H. Fernau

Theorem 10. GBC is NP-complete (on terminal alphabets of size at least 17).

Let us now again study this problem with a multivariate analysis. With
grammars, we have some natural choices of parameters, given as input I an
alphabet Σ, a word w ∈ Σ∗ and an integer k: κ1(I) = Σ, κ2(I) = |w|,
κ3(I) = k. Observe that we can assume (after some straightforward reductions)
that κ1(I) ≤ κ3(I) ≤ κ2(I). This indicates that κ1 is the most challenging
parameterization, while finding FPT-results should be easiest for κ2. We now
look at these parameters in the chosen order. Our intuition on the strength of
the parameters will be certified.

From Theorem 10, we can conclude:

Corollary 11. GBC with parameterization κ1 is not in XP, unless P = NP.

Theorem 12 [17]. GBC with parameterization κ2 belongs to FPT. More pre-
cisely, instance I = (Σ,w, k) can be solved in time O∗(3κ2(I)).

We now demonstrate that such an FPT-result also holds for κ3.

Theorem 13. GBC with parameterization κ3 belongs to FPT.

Proof. A context-free grammar G = (N,Σ,R, S) generating a singleton is called
an F -grammar if F = {u ∈ Σ+ | ∃A ∈ N : A ⇒∗ u}. As exhibited in [17], a
related Independent Dominating Set problem can be used to compute, for
a given finite set F with w ∈ F , the smallest F -grammar that generates {w} in
polynomial time. For each F with F ⊆ Σ+,

∑
u∈F |u| ≤ κ3(Σ,w, k) = k we can

find the smallest F -grammar for w in polynomial time. As |Σ| ≤ k, only f(k)
many sets F have to be considered. �

In [17], the idea of a multivariate analysis has been taken further by con-
sidering further properties of the grammars we are looking for. For instance, is
there a shortest grammar for w that uses ≤ r rules? The paper shows that this
question is NP-hard. Considering r as a parameter, this problem is in XP and
W[1]-hard.

There are also some studies on the approximability of the related minimiza-
tion problem Min-GBC, see [7,17,19,51,59,81]. We now summarize the main
results in this direction. Notice the strange role that the size of the alphabet
plays again.

Theorem 14. If m∗(w) denotes the size of the smallest context-free grammar
for string w, then Min-GBC can be approximated in polynomial time up to a
factor of O

(
log

(
|w|

m∗(w)

))
. Conversely, there is no polynomial-time algorithm

achieving an approximation ratio better than 8569
8568 unless P = NP (unbounded

terminal alphabets). Furthermore, if there would be a polynomial-time constant-
factor approximation algorithm for Min-GBC on binary alphabets, there would
be also some polynomial-time constant-factor approximation algorithm for Min-

GBC on unbounded alphabets. Min-GBC is APX-hard on bounded terminal
alphabets.

Modern Aspects of Complexity Within Formal Languages 15

Charikar et al. [19] also proved an interesting connection to a long standing
open problem on approximating so-called addition chains. This approach might
be interesting from a Fine-Grained Complexity perspective.

Suggestions for Further Studies. (A) The most natural complexity task is to
further reduce the size of the terminal alphabet in Theorem 10. More specifically:
Is GBC still NP-hard for binary terminal alphabets? From a practical point of
view, i.e., when applying this technique to compressing data files, this is crucial
to know. (B) Is there a polynomial-time constant-factor approximation algorithm
for the smallest grammar problem? (C) Storer and Szymanski [89,90] studied
macro schemes that can be viewed as extensions of context-free grammars. No
multivariate analysis of the related NP-hard compression problems has been
undertaken so far. Notice that recent experimental studies [60] show the potential
of these ideas. (D) We also mention generalizations of GBC to finite languages
described by context-free grammars (and use them to encode specific words)
as proposed in [86] which have not yet been studied from a more theoretical
perspective.

5 Third Case Study: Synchronizing Words

A word x ∈ Σ∗ is called synchronizing for a deterministic finite automaton A,
or DFA for short, with A = (S,Σ, δ, s0, F) if there is a state sf , such that for
all states s, δ∗(s, x) = sf . An automaton is called synchronizable if it possesses
a synchronizing word. It is known that A is synchronizable iff for every pair
(s, s′) of states, there exists a word xs,s′ such that δ∗(s, xs,s′) = δ∗(s′, xs,s′).
This notion relates to the best known open combinatorial problem in Formal
Languages, namely Černý’s Conjecture: Any synchronizable DFA with t states
has a synchronizing word of length ≤ (t − 1)2. We are not going to give further
details on this famous combinatorial problem, but only refer to the original
paper by Černý [18], to two survey articles [82,95] that also describe a couple of
applications, to one very recent paper [92] that describes the best upper bound
of (85059t3+90024t2+196504t−10648)/511104 on the length of a synchronizing
word for a t-state synchronizable DFA.

Rather, we will now turn to the related decision problem Synchronizing

Words, or DFA-SW for short. The input consists of a DFA A and an integer k.
The question is if there is a synchronizing word w for A with |w| ≤ k. In [26],
Eppstein has shown the following complexity result:

Theorem 15. DFA-SW is NP-complete.

How could a multivariate analysis of this problem look like? Natural param-
eterizations of an instance I = (A, k) with A = (S,Σ, δ, s0, F) include: κ1(I) =
|Σ|, κ2(I) = |S|, and κ3(I) = k. Clearly, one could also study combined param-
eters, like κ4(I) = |I| + k. Also, notice that κ5(I) = |δ| corresponds to |SΣ×S |,
which would therefore be again a combined parameter. We are going to report
on results from [33,96].

16 H. Fernau

Theorem 16. DFA-SW with parameterization κ1(I) = |Σ| does not belong to
XP, unless P = NP.

In fact, the reduction from [26] can be used to show the previous results, as
it shows NP-hardness for binary input alphabets.

Theorem 17. DFA-SW with parameterization κ2(I) = |S| lies in FPT. More
precisely, it can be solved in time O∗(2κ2(I)). Yet, it does not admit polynomial
kernels unless the polynomial-time hierarchy collapses to the third level.

The FPT-algorithm is actually quite simple. It is based on the well-known
subset construction, reducing the problem to a path-finding problem in an expo-
nentially large graph. Yet, this algorithm is close to optimal in the following
sense.

Proposition 18. Assuming ETH, DFA-SW is not solvable in time
O∗(2o(κ2(I))).

This result can be easily obtained by re-analyzing the reduction leading to
Theorem 17.

Theorem 19. DFA-SW with parameterization κ3(I) = |k| is W[2]-hard.

We provide a sketch of this hardness result in Fig. 1, also to give an example
of a parameterized reduction from Hitting Set introduced above. Observe that
now the size of the input alphabet of the resulting DFA is unbounded, as it is the
vertex set of the given hypergraph. Recently, Montoya and Nolasco [65] showed
that (even) for planar automata, DFA-SW with parameterization κ3(I) = |k|
is complete for the parameterized space complexity class NWL that embraces
the whole W-hierarchy. Also, strong inapproximability results are known for the
corresponding minimization problem; see [43].

e1 e2 e3 · · · em

sf

x /∈ e1

x ∈ e1

x /∈ e2

x ∈ e2

x /∈ e3

x ∈ e3

x /∈ em

x ∈ em

x ∈ V

(V, E) has a hit-
ting set of size ≤ k
⇐⇒
A has a synchro-
nizing word of
length ≤ k.

Caveat: Σ = V .

E = {e1, . . . , em}

Fig. 1. An example showing how an FPT reduction works.

Modern Aspects of Complexity Within Formal Languages 17

For the combined parameterization κ4, we can state:

Theorem 20. DFA-SW with parameterization κ4(I) = |Σ| + k lies in FPT.
More precisely, it can be solved in time O∗(|Σ|k). Yet, it does not admit poly-
nomial kernels unless the polynomial-time hierarchy collapses to the third level.
Moreover, there is no O∗((|Σ| − ε)k)-time algorithm, unless SETH fails.

Suggestions for Further Studies. (A) Although the proof sketch in
Fig. 1 indicates that DFA-SW remains NP-hard for rather restricted forms of
automata, it might be interesting to study classes of subregular languages regard-
ing the question if DFA-SW might become simpler when restricted to these
classes. (B) There are quite a number of notions similar to synchronizing words
that have been introduced over the years, also due to the practical motivation of
this notion, see [82]. No systematic study of computational complexity aspects
has been undertaken for all these notions. (C) In view of the FPT result concern-
ing parameterization κ2, the number of states, the parameterization κ5 might
not look that interesting. Yet, as κ2 does not allow for polynomial kernels, this
question could be of interest for the variation κ′

5(I) = |S| + |Σ|.

6 Fourth Case Study: Consistency Problem for DFAs

The problem DFA-Consistency takes as input analphabet Σ, two disjoint
finite sets of words X+,X− ⊆ Σ∗, and some integer t. The question is if there is
a DFA A with ≤ t states that is consistent with X+,X−, i.e., L(A) ⊇ X+ and
L(A) ∩ X− = ∅. This problem arises in various contexts, for instance, also in
connection with Grammatical Inference; see [47]. Its classical complexity status
was settled four decades ago.

Theorem 21 [6,44]. DFA-Consistency is NP-complete.

Let us explore the possible natural choices for parameterizations for instance
I = (Σ,X+,X+, t). We could look at κ1(I) = |Σ|, κ2 = |X+ ∪ X−|, κ3(I) =
max{|w| | w ∈ X+ ∪ X−}, κ4(I) = t, and there are quite a number of further
ways to parameterize with respect to the sets X+ and X−. The NP-hardness
results (with different constructions) extend to situations when κ1(I) = 2 or
when κ3(I) = 2 or when κ4(I) = 2. This immediately entails the following
results.

Theorem 22. DFA-Consistency with parameterization κ1(I) = |Σ| does not
belong to XP, unless P = NP.

Theorem 23. DFA-Consistency with parameterization κ3(I) = max{|w| |
w ∈ X+ ∪ X−} does not belong to XP, unless P = NP.

Theorem 24. DFA-Consistency with parameterization κ4(I) = t does not
belong to XP, unless P = NP.

18 H. Fernau

Intuitively, this last result might appear most surprising, because there are
only four ways how a letter can act with respect to two states. The literature sit-
uation was also a bit weird for some time. The result was mentioned in Sect. 1.2
of [75], as well as in [47], referring to an unpublished work of Angluin. However,
no proof was given in these two references. Therefore, in the process of writ-
ing [33], we contacted Angluin, also to see how our solution compared to hers.
We were quite impressed to receceive an email from Angluin within a couple of
days, sending us a scanned copy of her proof, dating back to August 2nd, 1988.
An NP-hardness proof can now be found in [33].

Interestingly, it is open if DFA-Consistency is NP-hard for any constant
value of κ2(I). In the sense of multivariate analysis, we should continue to look
into combined parameters. Let κi,j for 1 ≤ i < j ≤ 4 the parameterization given
by κi,j(I) = κi(I) + κj(I).

It was shown in [33] that DFA-Consistency is NP-hard even for 3-state
DFAs with word lengths at most two in X+ ∪ X−. This implies:

Theorem 25. DFA-Consistency with parameterization κ3,4(I) does not
belong to XP, unless P = NP.

Conversely, by a trivial algorithm one can show the following (positive) result.
The ETH hardness follows from a construction in [33].

Theorem 26. DFA-Consistency with parameterization κ1,4(I) = |Σ| +
t belongs to FPT, namely in time O∗(t|Σ|t). Assuming ETH, there is no
O∗(to(|Σ|t))-time algorithm for DFA-Consistency.

The remaining parameter combinations seem to be open. Only one three-
parameter combination was found in [33] that admitted a further FPT-result,
combining κ2, κ3 and κ4.

Suggestions for Further Studies. (A) Quite a number of parameter com-
binations are still open regarding their complexity status. Also, there are more
parameters that could be related to X+ and X−. One potentially interesting sce-
nario (pondering practical applications) would be to see what happens if there
are much less negative than positive samples. (B) It might be an idea to look
into classes of subregular languages and find some that allow for efficient con-
sistency checks. (C) There are related questions that have not yet been studied
from a multivariate perspective, for instance, what about Regular Expression

Consistency?

7 Fifth Case Study: Lower Bounds for Universality

Possibly, the reader would have expected that we focus on problems like DFA

Intersection Emptiness and similar problems traditionally studied (with
respect to their complexity) in textbooks on Formal Languages. This will be
partially rectified in this section. We will mainly concentrate on Universality,

Modern Aspects of Complexity Within Formal Languages 19

which is the following problem. Given a finite automaton A with input alphabet
Σ, is L(A) = Σ∗? Clearly, this makes only sense for nondeterministic automata,
as the problem can be solved in linear time for DFAs. Natural parameters are
the number t of states of A and the size of Σ. |Σ| plays again an important role.
Notice that the problem is PSPACE-complete in general, but co-NP-complete for
unary input alphabets; see [56,87,88] and possibly more explicit in [34]. Natural
parameterizations are κ1(A) = |Σ| and κ2(A) = |S|, where A = (S,Σ, δ, s0, F)
is an NFA. By the classical hardness results, we see:

Proposition 27. Universality. parameterized by κ1, is not in XP, unless P =
NP.

Conversely, by the classical subset construction to produce a DFA, followed
by final state complementation and a simple emptiness check, one sees:

Proposition 28. Universality. parameterized by κ2, belongs to FPT.

We are now going to study complexity aspects under the ETH perspective.

Theorem 29 [34]. Unless ETH fails, there is no O∗(2o(t1/3)) -time algorithm
for deciding Universality on t-state NFAs with unary inputs.

There is a slight gap to the known upper bound by Chrobak [20] who showed:

Theorem 30. Universality on t-state NFAs with unary inputs can be solved
in time 2Θ((t log t)1/2).

For larger alphabets, the situation looks a bit different for Universality.

Theorem 31 [34]. Unless ETH fails, there is no O∗(2o(t)) -time algorithm for
deciding Universality on t-state NFAs with binary inputs, or larger alphabets.

The results is obtained by a parsimonous reduction from 3-Colorability.
This is the correct bound, because the power-set construction gives that Uni-

versality on t-state NFAs can be solved in time O∗(2t).
Also to overcome the fact that Universality is PSPACE-complete, a length-

bounded variant has been introduced. LB-Universality: Given NFA A and
length bound �, does A accept all words up to length �? This length bound puts
the problem into NP. In fact, it is NP-complete. From a multivariate perspective,
this introduces a natural third parameter, κ3(A, �) = �.

Theorem 32. LB-Universality, parameterized by κ3, is W[2]-hard.

As there is no formal proof of this result in the literature, we provide an
explicit construction. In fact, it is quite similar to the construction illustrated in
Fig. 1 which the reader might want to consult.

Proof. We show how to solve any instance G = (V,E) and k of Hitting Set,
parameterized by the size k of the solution, with the help of an instance of LB-

Universality, parameterized by κ3. Set Σ = V , S = {s0, sf}∪E. Let s0 be the
initial and E∪{s0} be the set of final states. We include the following transitions
in the transition relation.

20 H. Fernau

– (s0, a, e) for any a ∈ Σ and any e ∈ E;
– (e, a, e) for any e ∈ E and a /∈ e;
– (e, a, sf) for any e ∈ E and a ∈ e;
– (sf , a, sf) for any a ∈ Σ.

Furthermore, we set � = k + 1. Now, we claim that there is a hitting set of
size at most k in G if and only if there is a word of length at most k + 1 that is
not accepted by the constructed automaton. Namely, the only way not to accept
a word by the automaton would be a word ending in sf irrespectively what state
e ∈ E was entered inbetween. This shows that the encoded set of vertices of the
hypergraph indeed hits all hyperedges. �

Membership in W[2] is unknown. As the parameterized complexity results for
the other two parameters transfer, we get a rather diverse picture of what could
happen in a multivariate analysis. As parameters κ1 and κ3 yield intractability
results, the following (straightforward) result is interesting for the combined
parameter κ1 + κ3.

Proposition 33. LB-Universality can be solved in time O∗(|Σ|�).
Namely, just enumerate and test all strings up to length �. This has been

complemented by the following result that proves conditional optimality of this
simple algorithm.

Theorem 34 [34]. There is no algorithm that solves LB-Universality in time
O∗ (

(|Σ| − ε)�
)
for any ε > 0, unless SETH fails.

Let us finally discuss the issue of kernelization for this problem. The size of
an instance is vastly dominated by the size of the transition table. Measured in
terms of number of states and input alphabet size, this size can be as large as
O(2|Σ||S|2). Is there any hope to bring this down to a size only polynomial in |S|, a
result that would complement Proposition 28? Interestingly, this question seems
to be open, while it is possible to show the non-existence of polynomial kernels
for the length-bounded variation. We can even show this result for the combined
parameter κ2 + κ3.

Theorem 35. LB-Universality, parameterized by κ2 + κ3, does not admit
polynomial kernels, unless the polynomial-time hierarchy collapses to the third
level.

Proof. It is known that under the stated complexity assumptions, Hitting Set,
parameterized by the number of hyperedges plus an upper-bound k on the size
of the solution, does not admit polynomial kernels; see [23]. Now, assume that
LB-Universality, parameterized by κ2 + κ3, would have a kernelization algo-
rithm A that produces polynomial kernels. Now, start with an instance (G, k) of
Hitting Set, where G = (V,E), and first translate it to an equivalent instance
(A, �) of LB-Universality, using the construction from Theorem 32. Observe
that κ2(A, �) = |E| and κ3(A, �) = k + 1. Next, run algorithm A, yielding an

Modern Aspects of Complexity Within Formal Languages 21

instance (A′, �′) of size polynomial in κ2(A, �) + κ3(A, �) and hence polynomial
in |E|+ k. Finally, observe that as LB-Universality is in NP, while Hitting

Set is NP-hard, there is a polynomial-time transformation of (A′, �′) into an
equivalent instance (G′, k′) of Hitting Set. Clearly, also (G′, k′) would be of
polynomial size, measured in |E| + k, which contradicts the non-existence of
polynomial kernels. �

Let us mention one further exploit of the construction of Theorem 32.

Theorem 36. Under the Set Cover Conjecture, there is no O∗(2o(κ2(A)))-time
algorithm for solving instances A of Universality.

Suggestions for Further Studies. (A) For the simple FPT-results for this
(and similar) automata problems, polynomial kernel questions have barely been
studied. This is also true for all the related classical automata problems. (B)
There are slight but noticeable gaps between lower and upper bounds on running
times (assuming ETH). More gaps can be found in related automata problems,
as discussed in [34]. Is it possible to close these gaps, possibly using hypotheses
different from ETH? (C) Unlike this section might suggest, most work has been
put into studying automata intersection problems (among the classical algo-
rithmic questions about finite automata); see [34,73,91,100,102]. Relatively few
efforts have been put into related questions or into other automata models; we
only mention here [37,38] and the references given in these papers.

8 Sixth Case Study: Parsing Theory

Coming from FL theory courses, where the Chomsky hierarchy is often taught
with indicating a certain relevance to areas like Compiler Construction or also to
(Computational) Linguistics, one might get disappointed when actually encoun-
tering these two mentioned areas. In the former case, the regular languages seem
to be relevant and also some parts of the context-free languages, but not much
more. In the second case, the situation is even more disillusioning: there, formal
language classes more expressive than context-free but being not much more
complex with respect to parsing are most interesting.

Even the typical parsing algorithms like CYK or Earley’s mostly taught at
FL undergraduate courses are not really relevant, as their cubic complexity is
too much for typical applications in Compiler Construction. Rather, one resorts
to deterministic context-free languages, also because they allow for giving unam-
biguous interpretations in the sense of unique parse trees. But is really necessary
to spend cubic time for parsing context-free languages?

In a positive (algorithmic) sense, this question was answered already by
Valiant [94] in a paper entitled Parsing (general context-free recognition) in time
O(nω). Here, n is the length of the string to be parsed, and ω is the exponent
of multiplying two square matrices. At the time of that paper, this was still
Strassen’s multiplication, i.e., ω ≈ 2.81. If we want to use this method in a

22 H. Fernau

practical algorithm, this might be still a method of choice. Yet, in theory, ω has
improved to 2.3727, as shown by Vassilevska Williams in [105]. Whether it can
be further improved or not, as well as relations to other problems, is discussed
in a recent FOCS paper of Alman and Vassilevska Williams [4]. Alternatives
to Valiant’s original algorithm are discussed in [45,80]. Actually, Rytter called
Valiant’s algorithm probably the most interesting algorithm related to formal lan-
guages. This is a good reason to study it further here.

A natural question in our context is: Can we parse context-free grammars
faster than multiplying matrices? This question was first addressed in a paper
of Lee [58] with the title Fast context-free parsing requires fast Boolean matrix
multiplication. The drawback of the underlying construction is that this is only
true for grammars whose size grows with n6, where n is the length of the string to
be parsed. This is not a very realistic scenario. Abboud, Backurs, and Vassilevska
Williams have fixed this issue in [1]. This fine-grained reduction works for a
specific CF grammar, so that the previous dependence between grammar size
and string length no longer holds. To get an idea how these results look like on
a more technical level, we cite the following theorem.

Theorem 37. There is context-free grammar Gfix of constant size such that if
we can determine if a string of length n belongs to L(Gfix) in T (n) time, then
k-Clique on n-vertex graphs can be solved in O(T (nk/3+1)) time, for any k ≥ 3.

Hence, under the mentioned k-Clique Conjecture, context-free parsing cannot
be faster than O(nω).

We remark that there are extensions of context-free grammars, like Boolean
grammars [72], that admit parsers like Valiant’s; therefore, the lower bounds
transfer to them immediately. For several related problems in computational
biology, we refer to [13,74,107].

We are now reporting on one more problem directly related to parsing,
namely to parsing tree-adjoining grammars. Notice that these are quite impor-
tant for computational linguistics. We are not going to give a detailed introduc-
tion into tree-adjoining grammars, but rather refer to the textbook [54] that cov-
ers this and similar mechanisms from a linguistic yet mathematically profound
perspective. Tree-adjoining grammars extend context-free ones in a way that
allows for representing several linguistically relevant features beyond context-
free languages. They yield one of the basic examples for mildly context-sensitive
languages. The parsing is still possible in polynomial time, more precisely, the
textbook algorithm will be in O(n6), where n is the length of the string to be
parsed. Yet, Rajasekaran and Yooseph’s parser [76,77] runs in O(n2ω). While
this solved a previously well-known open problem in Computational Linguistics,
it is interesting that a negative result pre-dated this algorithmic one. Satta [83]
showed a reverse relation, actually inspiring Lee’s work. But, not surprisingly,
it comes with a similar drawback: This lower-bound is only true for grammars
whose size grows with n6. Bringmann and Wellnitz [15] have improved this result
as follows.

Modern Aspects of Complexity Within Formal Languages 23

Theorem 38. There is a tree-adjoining grammar Gfix of constant size such
that if we can decide in time T (n) whether a given string of length n can be
generated from Gfix, then 6k-Clique can be solved in time O(T (nk+1 log n)),
for any fixed k ≥ 1.

A consequence would be: An O(n2ω−ε)-algorithm for TAL recognition would
prove that 6k-Clique can be solved in time Õ(n(2ω−ε)(k+1)) ⊆ O(n(ω/3−δ)6k),
contradicting the k-Clique Conjecture.

Suggestions for Further Studies. (A) Tree-adjoining grammars (TAGs) have
been quite popular in Computational Linguistics in the 1990s, but this has
calmed down a bit due to various shortcomings, both regarding parsing com-
plexity (as discussed above) and the expressiveness of this formalism. Possibly,
Formal Languages could help in the second issue by coming up with grammatical
mechanisms that are more powerful than TAGs but do not need more compu-
tational resources for parsing. For instance, can the ideas underlying Boolean
grammars be extended towards TAGs? (B) The whole topic of parsing has been
a bit neglected in the Formal Language community. This is something that should
change, in the best interest of the FL community. Whoever likes to start work-
ing in this direction should not overlook the rich annotated bibliography with
nearly 2000 entries by Grune and Jacobs [46], available at https://dickgrune.
com/Books/PTAPG_2nd_Edition/Additional.html. (C) Since four decades, it
is open if EDT0L systems can be parsed in polynomial time [79, Page 315].
Weakening this question, one could also ask [29] if there is some O∗(f(|N |))-
time algorithm for parsing, where N is the set of nonterminal symbols.

9 Conclusions

With this survey, we could only highlight some of the many results that have
been obtained in the meantime regarding multivariate analysis, but also regard-
ing fine-grained complexity results. Yet, there are some common themes, as
the role of the alphabet size, or also the richness of natural parameter choices.
Another typical observation is that often simple parameterized algorithms can-
not be improved under certain complexity assumptions. All this gives these prob-
lem a flavor different from, say, graph problems.

We preferred to focus on six problems, rather than trying to discuss all of
them. Yet, in these conclusions, we are going to mention at least some further
papers.

For instance, there is a vast body of literature on string problems. In fact,
string problems were among the first ones where a true multivariate analysis
was undertaken (without naming it such); see [27]. For a survey on these types
of analyses for string problems, we refer to [16]. String problems have been also
further investigated from the viewpoint of fine-grained complexity; see [2].

The related area of pattern matching would have also deserved a closer look.
Let us suggest [35,39] and the literature cited therein for further reading. To the

https://dickgrune.com/Books/PTAPG_2nd_Edition/Additional.html
https://dickgrune.com/Books/PTAPG_2nd_Edition/Additional.html

24 H. Fernau

readers otherwise more interested in graph-theoretic problems, it might be inter-
esting to learn that the parameter treewidth well-known from graph algorithms
has been also introduced in the context of patterns in [78].

String problems have also tight connections to several problems arising in
computational biology. We refrain from giving any further references here, as
this would finally surpass any reasonable length of the list of citations, but it
should be clear that there are scores of papers on the parameterized and also on
the fine-grained complexity of such problems.

In the context of stochastic automata, the Viterbi algorithm is central; its
optimality is considered in [9].

Finally, let us discuss possible connections to Descriptional Complexity (with-
in FL). One question of this sort is about smallest representations (within certain
formalisms). One such example is also grammar-based compression, another one
the minimization of automata or expressions, see [11,53]. Further on, one could
consider questions as Given an automaton, is there an equivalent representation
with certain additional restrictions? which are typical for this area, but have not
yet been considered from a multivariate or fine-grained angle. We only refer to
two survey papers of Holzer and Kutrib [48,49].

Acknowledgements. We are grateful to many people giving feedback to the ideas
presented in this paper. In particular, Anne-Sophie Himmel, Ulrike Stege, and Petra
Wolf commented on earlier versions of the manuscript.

References

1. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are
optimal, so is Valiant’s parser. In: Guruswami, V. (ed.) IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 98–117. IEEE Computer
Society (2015)

2. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7_4

3. Abu-Khzam, F.N., Fernau, H., Langston, M.A., Lee-Cultura, S., Stege, U.: A
fixed-parameter algorithm for string-to-string correction. Discrete Optim. 8, 41–
49 (2011)

4. Alman, J., Williams, V.V.: Limits on all known (and some unknown) approaches
to matrix multiplication. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pp. 580–591. IEEE Computer Society
(2018)

5. Alon, N., Shpilka, A., Umans, C.: On sunflowers and matrix multiplication. Com-
put. Complex. 22(2), 219–243 (2013)

6. Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control
(Now Inf. Comput.) 39, 337–350 (1978)

7. Arpe, J., Reischuk, R.: On the complexity of optimal grammar-based compression.
In: 2006 Data Compression Conference (DCC), pp. 173–182. IEEE Computer
Society (2006)

https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-662-43948-7_4

Modern Aspects of Complexity Within Formal Languages 25

8. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018)

9. Backurs, A., Tzamos, C.: Improving Viterbi is hard: better runtimes imply faster
clique algorithms. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML, Proceedings of Machine Learn-
ing Research, vol. 70, pp. 311–321. PMLR (2017)

10. Barbay, J., Pérez-Lantero, P.: Adaptive computation of the swap-insert correction
distance. ACM Trans. Algorithms 14(4), 49:1–49:16 (2018)

11. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. Syst. Sci. 78(1), 198–210 (2012)

12. Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.): The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on
the Occasion of His 60th Birthday. LNCS, vol. 7370. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30891-8

13. Bringmann, K., Grandoni, F., Saha, B., Williams, V.V.: Truly sub-cubic algo-
rithms for language edit distance and RNA-folding via fast bounded-difference
min-plus product. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Founda-
tions of Computer Science, FOCS, pp. 375–384. IEEE Computer Society (2016)

14. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS, pp. 79–97. IEEE Com-
puter Society (2015)

15. Bringmann, K., Wellnitz, P.: Clique-based lower bounds for parsing tree-adjoining
grammars. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual
Symposium on Combinatorial Pattern Matching, CPM. LIPIcs, vol. 78, pp. 12:1–
12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

16. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algo-
rithmics for NP-hard string problems. EATCS Bull. 114 (2014). http://bulletin.
eatcs.org/index.php/beatcs/article/view/310/292

17. Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complex-
ity of grammar-based compression over fixed alphabets. In: Chatzigiannakis, I.,
Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) International Colloquium on
Automata, Languages and Programming, ICALP, Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 55, pp. 122:1–122:14. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2016)

18. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

19. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

20. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47,
149–158 (1986)

21. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC, pp. 151–158.
ACM (1971)

22. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms
12(3), 41:1–41:24 (2016)

23. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

24. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4612-0515-9

https://doi.org/10.1007/978-3-642-30891-8
http://bulletin.eatcs.org/index.php/beatcs/article/view/310/292
http://bulletin.eatcs.org/index.php/beatcs/article/view/310/292
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9

26 H. Fernau

25. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013)

26. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

27. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of
Closest Substring and related problems. In: Alt, H., Ferreira, A. (eds.) STACS
2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45841-7_21

28. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: parameter ecology and the deconstruction of computational complexity.
Eur. J. Combin. 34(3), 541–566 (2013)

29. Fernau, H.: Parallel grammars: a phenomenology. GRAMMARS 6, 25–87 (2003)
30. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Univer-

sität Tübingen, Germany, Habilitationsschrift (2005)
31. Fernau, H.: Parameterized algorithmics for d-hitting set. Int. J. Comput. Math.

87(14), 3157–3174 (2010)
32. Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-

hitting set. Algorithmica 57, 97–118 (2010)
33. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard prob-

lems on deterministic finite automata. J. Comput. Syst. Sci. 81(4), 747–765 (2015)
34. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time

hypothesis. Algorithms 10(24), 1–25 (2017)
35. Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with vari-

ables: fast algorithms and new hardness results. In: Mayr, E.W., Ollinger, N.
(eds.) 32nd International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2015), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 30, pp. 302–315. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

36. Fernau, H., Meister, D., Schmid, M.L., Stege, U.: Editing with swaps and inserts
on binary strings (2014). Manuscript

37. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture pro-
cessing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95,
232–258 (2018)

38. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and com-
plexity results on jumping finite automata. Theor. Comput. Sci. 679, 31–52 (2017)

39. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of
string morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)

40. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

41. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for
the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30559-0_21

42. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16533-7

43. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset
word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS,
vol. 9234, pp. 243–255. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48057-1_19

44. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
(Now Inf. Comput.) 37, 302–320 (1978)

https://doi.org/10.1007/3-540-45841-7_21
https://doi.org/10.1007/3-540-45841-7_21
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-662-48057-1_19
https://doi.org/10.1007/978-3-662-48057-1_19

Modern Aspects of Complexity Within Formal Languages 27

45. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer.
ACM Trans. Program. Lang. Syst. 2(3), 415–462 (1980)

46. Grune, D., Jacobs, C.J.H.: Parsing Techniques - A Practical Guide. Monographs
in Computer Science. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
0-387-68954-8

47. Higuera, C.: Grammatical inference. Learning automata and grammars. Cam-
bridge University Press, Cambridge (2010)

48. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found.
Comput. Sci. 22(7), 1533–1548 (2011)

49. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inf. Comput. 209(3), 456–470 (2011)

50. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

51. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In:
Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp.
35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9_4

52. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

53. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

54. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14846-0

55. Kieffer, J.C., Yang, E.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

56. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Sympo-
sium on Foundations of Computer Science, FOCS, pp. 254–266. IEEE Computer
Society (1977)

57. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)

58. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM 49(1), 1–15 (2002)

59. Lehman, E., Shelat, A.: Approximations algorithms for grammar-based compres-
sion. In: Thirteenth Annual Symposium on Discrete Algorithms SODA. ACM
Press (2002)

60. Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative lempel-
ziv dictionaries. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao,
B.Y. (eds.) Proceedings of the 25th International Conference on World Wide Web,
WWW, pp. 807–816. ACM (2016)

61. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343
(1982)

62. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. EATCS Bull. 105, 41–72 (2011)

63. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances.
J. Comput. Syst. Sci. 20(1), 18–31 (1980)

64. Meister, D.: Using swaps and deletes to make strings match. Theor. Comput. Sci.
562, 606–620 (2015)

65. Andres Montoya, J., Nolasco, C.: On the synchronization of planar automata. In:
Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp.
93–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1_7

66. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carolinae 26(2), 415–419 (1985)

https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-3-319-46049-9_4
https://doi.org/10.1007/978-3-642-14846-0
https://doi.org/10.1007/978-3-319-77313-1_7

28 H. Fernau

67. Nevill-Manning, C.G.: Inferring sequential structure. Ph.D. thesis, University of
Waikato, New Zealand (1996)

68. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in
sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)

69. Nevill-Manning, C.G., Witten, I.H.: On-line and off-line heuristics for inferring
hierarchies of repetitions in sequences. Proc. IEEE 88, 1745–1755 (2000)

70. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

71. Niedermeier, R.: Reflections on multivariate algorithmics and problem parame-
terization. In: Marion, J.Y., Schwentick, T. (eds.) 27th International Symposium
on Theoretical Aspects of Computer Science (STACS 2010), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 5, pp. 17–32. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2010)

72. Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars.
Theor. Comput. Sci. 516, 101–120 (2014)

73. de Oliveira Oliveira, M., Wehar, M.: Intersection non-emptiness and hardness
within polynomial time. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol.
11088, pp. 282–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98654-8_23

74. Pinhas, T., Zakov, S., Tsur, D., Ziv-Ukelson, M.: Efficient edit distance with
duplications and contractions. Algorithms Mole. Biol. 8, 27 (2013)

75. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be
approximated within any polynomial. J. ACM 40, 95–142 (1993)

76. Rajasekaran, S.: Tree-adjoining language parsing in O(n6) time. SIAM J. Comput.
25(4), 862–873 (1996)

77. Rajasekaran, S., Yooseph, S.: TAL recognition in O(M(n2)) time. J. Comput.
Syst. Sci. 56(1), 83–89 (1998)

78. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput.
239, 87–99 (2014)

79. Rozenberg, G., Salomaa, A.K.: The Mathematical Theory of L Systems. Academic
Press, Cambridge (1980)

80. Rytter, W.: Context-free recognition via shortest paths computation: a version of
Valiant’s algorithm. Theor. Comput. Sci. 143(2), 343–352 (1995)

81. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302, 211–222 (2003)

82. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490_2

83. Satta, G.: Tree-adjoining grammar parsing and Boolean matrix multiplication. J.
Comput. Linguist. 20(2), 173–191 (1994)

84. Shannon, C.E.: A universal Turing machine with two internal states. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol.
34, pp. 157–165. Princeton University Press (1956)

85. Sirakov, B., de Souza, P.N., Viana, M. (eds.): Proceedings of the International
Congress of Mathematicians 2018 (ICM 2018). World Scientific (2019)

86. Siyari, P., Gallé, M.: The generalized smallest grammar problem. In: Verwer, S.,
van Zaanen, M., Smetsers, R. (eds.) Proceedings of the 13th International Con-
ference on Grammatical Inference, ICGI 2016, JMLR Workshop and Conference
Proceedings, vol. 57, pp. 79–92. JMLR.org (2017)

https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2

Modern Aspects of Complexity Within Formal Languages 29

87. Stockmeyer, L.J.: The complexity of decision problems in automata theory and
logic. Ph.D. thesis, Massachusetts Institute of Technology, Department of Elec-
trical Engineering (1974)

88. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, STOC, pp. 1–9. ACM (1973)

89. Storer, J.A.: NP-completeness results concerning data compression. Technical
report 234, Department of Electrical Engineering and Computer Science, Prince-
ton University, USA, November 1977

90. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982)

91. Swernofsky, J., Wehar, M.: On the complexity of intersecting regular, context-free,
and tree languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 414–426. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6_33

92. Szykuła, M.: Improving the upper bound on the length of the shortest reset word.
In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on Theoretical Aspects
of Computer Science (STACS 2018), Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 96, pp. 56:1–56:13. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2018)

93. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl.
Math. 8, 85–89 (1984)

94. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput.
Syst. Sci. 10(2), 308–315 (1975)

95. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

96. Vorel, V., Roman, A.: Parameterized complexity of synchronization and road
coloring. Discrete Math. Theor. Comput. Sci. 17, 283–306 (2015)

97. Wagner, R.A.: On the complexity of the extended string-to-string correction prob-
lem. In: Proceedings of seventh Annual ACM Symposium on Theory of Comput-
ing, STOC 1975, pp. 218–223. ACM Press (1975)

98. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974)

99. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and
related problems. Ph.D. thesis, Department of Computer and Information Science,
Linköpings universitet, Sweden (2007)

100. Todd Wareham, H.: The parameterized complexity of intersection and composi-
tion operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA
2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44674-5_26

101. Watt, N.: String to string correction kernelization. Master’s thesis, University of
Victoria, Canada (2013)

102. Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp.
354–362. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-
7_30

103. Welch, T.A.: A technique for high-performance data compression. IEEE Comput.
17, 8–19 (1984)

https://doi.org/10.1007/978-3-662-47666-6_33
https://doi.org/10.1007/978-3-540-88282-4_4
https://doi.org/10.1007/3-540-44674-5_26
https://doi.org/10.1007/3-540-44674-5_26
https://doi.org/10.1007/978-3-662-43951-7_30
https://doi.org/10.1007/978-3-662-43951-7_30

30 H. Fernau

104. Williams, V.V.: Hardness of easy problems: basing hardness on popular con-
jectures such as the strong exponential time hypothesis (invited talk). In: Hus-
feldt, T., Kanj, I.A. (eds.) 10th International Symposium on Parameterized and
Exact Computation, IPEC, LIPIcs, vol. 43, pp. 17–29. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015)

105. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC, pp. 887–898. ACM (2012)

106. Wong, C.K., Chandra, A.K.: Bounds for the string editing problem. J. ACM
23(1), 13–16 (1976)

107. Zakov, S., Tsur, D., Ziv-Ukelson, M.: Reducing the worst case running times of
a family of RNA and CFG problems, using Valiant’s approach. Algorithms Mole.
Biol. 6, 20 (2011)

108. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24, 530–536 (1978)

	Modern Aspects of Complexity Within Formal Languages
	1 Introduction
	2 Some Modern Concepts of Complexity Theory
	3 First Case Study: String-to-String Correction S2S
	4 Second Case Study: Grammar-Based Compression
	5 Third Case Study: Synchronizing Words
	6 Fourth Case Study: Consistency Problem for DFAs
	7 Fifth Case Study: Lower Bounds for Universality
	8 Sixth Case Study: Parsing Theory
	9 Conclusions
	References

