
Carlos Martín-Vide
Alexander Okhotin
Dana Shapira (Eds.)

 123

LN
CS

 1
14

17

13th International Conference, LATA 2019
St. Petersburg, Russia, March 26–29, 2019
Proceedings

Language
and Automata Theory
and Applications

Lecture Notes in Computer Science 11417

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Carlos Martín-Vide • Alexander Okhotin
Dana Shapira (Eds.)

Language
and Automata Theory
and Applications
13th International Conference, LATA 2019
St. Petersburg, Russia, March 26–29, 2019
Proceedings

123

Editors
Carlos Martín-Vide
Rovira i Virgili University
Tarragona, Spain

Alexander Okhotin
Saint Petersburg State University
St. Petersburg, Russia

Dana Shapira
Ariel University
Ariel, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-13434-1 ISBN 978-3-030-13435-8 (eBook)
https://doi.org/10.1007/978-3-030-13435-8

Library of Congress Control Number: 2019931952

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1670-6000
http://orcid.org/0000-0002-1615-2725
http://orcid.org/0000-0002-2320-9064
https://doi.org/10.1007/978-3-030-13435-8

Preface

These proceedings contain the papers that were presented at the 13th International
Conference on Language and Automata Theory and Applications (LATA 2019), held
in Saint Petersburg, Russia, during March 26–29, 2019.

The scope of LATA is rather broad, including: algebraic language theory, algo-
rithms for semi-structured data mining, algorithms on automata and words, automata
and logic, automata for system analysis and program verification, automata networks,
automatic structures, codes, combinatorics on words, computational complexity, con-
currency and Petri nets, data and image compression, descriptional complexity, foun-
dations of finite state technology, foundations of XML, grammars (Chomsky hierarchy,
contextual, unification, categorial, etc.), grammatical inference and algorithmic learn-
ing, graphs and graph transformation, language varieties and semigroups,
language-based cryptography, mathematical and logical foundations of programming
methodologies, parallel and regulated rewriting, parsing, patterns, power series, string
processing algorithms, symbolic dynamics, term rewriting, transducers, trees, tree
languages and tree automata, and weighted automata.

LATA 2019 received 98 submissions. Every paper was reviewed by three Pro-
gramme Committee members. There were also some external experts consulted. After a
thorough and lively discussion phase, the committee decided to accept 31 papers
(which represents a competitive acceptance rate of about 32%). The conference pro-
gram included five invited talks as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

January 2019 Carlos Martín-Vide
Alexander Okhotin

Dana Shapira

Organization

Program Committee

Krishnendu Chatterjee Institute of Science and Technology, Austria
Bruno Courcelle University of Bordeaux, France
Manfred Droste University of Leipzig, Germany
Travis Gagie Diego Portales University, Chile
Peter Habermehl Paris Diderot University, France
Tero Harju University of Turku, Finland
Markus Holzer University of Giessen, Germany
Radu Iosif Verimag, France
Kazuo Iwama Kyoto University, Japan
Juhani Karhumäki University of Turku, Finland
Lila Kari University of Waterloo, Canada
Juha Kärkkäinen University of Helsinki, Finland
Bakhadyr Khoussainov The University of Auckland, New Zealand
Sergey Kitaev University of Strathclyde, UK
Shmuel Tomi Klein Bar-Ilan University, Israel
Olga Kouchnarenko University of Franche-Comté, France
Thierry Lecroq University of Rouen, France
Markus Lohrey University of Siegen, Germany
Sebastian Maneth University of Bremen, Germany
Carlos Martín-Vide (Chair) Rovira i Virgili University, Spain
Giancarlo Mauri University of Milano-Bicocca, Italy
Filippo Mignosi University of L’Aquila, Italy
Victor Mitrana Polytechnic University of Madrid, Spain
Joachim Niehren Inria Lille, France
Alexander Okhotin Saint Petersburg State University, Russian Federation
Dominique Perrin University of Paris-Est, France
Matteo Pradella Polytechnic University of Milan, Italy
Jean-François Raskin Université Libre de Bruxelles, Belgium
Marco Roveri Bruno Kessler Foundation, Italy
Karen Rudie Queen’s University, Canada
Wojciech Rytter University of Warsaw, Poland
Kai Salomaa Queen’s University, Canada
Sven Schewe University of Liverpool, UK
Helmut Seidl Technical University of Munich, Germany
Ayumi Shinohara Tohoku University, Japan
Hans Ulrich Simon Ruhr-University of Bochum, Germany
William F. Smyth McMaster University, Canada
Frank Stephan National University of Singapore, Singapore

Martin Sulzmann Karlsruhe University of Applied Sciences, Germany
Jorma Tarhio Aalto University, Finland
Stefano Tonetta Bruno Kessler Foundation, Italy
Rob van Glabbeek Data61, CSIRO, Australia
Margus Veanes Microsoft Research, USA
Mahesh Viswanathan University of Illinois, Urbana-Champaign, USA
Mikhail Volkov Ural Federal University, Russian Federation
Fang Yu National Chengchi University, Taiwan
Hans Zantema Eindhoven University of Technology, New Zealand

Additional Reviewers

Abdeddaïm, Saïd
Baeza-Yates, Ricardo
Balogh, Jozsef
Beier, Simon
Bernardinello, Luca
Bersani, Marcello M.
Bollig, Benedikt
Bride, Hadrien
Cadilhac, Michaël
Capelli, Florent
Chiari, Michele
Choudhury, Salimur
Ciobanu, Laura
Courcelle, Bruno
Crespi Reghizzi, Stefano
Crosetti, Nicolas
De La Higuera, Colin
Delecroix, Vincent
Dennunzio, Alberto
Dose, Titus
Dück, Stefan
Ferretti, Claudio
Fici, Gabriele
Fülöp, Zoltan
Geffert, Viliam
Gilroy, Sorcha

Giorgetti, Alain
Godin, Thibault
Groote, Jan Friso
Groschwitz, Jonas
Gutiérrez, Martín
Guyeux, Christophe
Heam, Pierre-Cyrille
Hellouin de Menibus,

Benjamin
Hendrian, Diptarama
Hugot, Vincent
Jeandel, Emmanuel
Kari, Jarkko
Kociumaka, Tomasz
Kopczynski, Eryk
Kuske, Dietrich
Lemay, Aurelien
Lisitsa, Alexei
Lonati, Violetta
Luttik, Bas
Maletti, Andreas
Mandrioli, Dino
Mens, Irini
Mhaskar, Neerja
Morawska, Barbara
Morzenti, Angelo

Nakamura, Katsuhiko
Nehaniv, Chrystofer
Nugues, Pierre
Paul, Erik
Penelle, Vincent
Persiano, Giuseppe
Plandowski, Wojciech
Popa, Alexandru
Praveen, M.
Prunescu, Mihai
Pyatkin, Artem
Quaas, Karin
Radoszewski, Jakub
Rossi, Matteo
Sakho, Momar
Sangnier, Arnaud
Schmidt-Schauss,

Manfred
Starikovskaya, Tatiana
Talbot, Jean-Marc
Vaszil, György
Wendlandt, Matthias
Willemse, Tim
Yakovets, Nikolay
Yoshinaka, Ryo
Zetzsche, Georg

VIII Organization

Abstracts of Invited Papers

Searching and Indexing Compressed Text

Paweł Gawrychowski

Institute of Computer Science, University of Wrocław, Wrocław, Poland
gawry@cs.uni.wroc.pl

Abstract. Two basic problems considered in algorithms on strings are pattern
matching and text indexing. An instance of the pattern matching problem
comprises two strings, usually called the pattern and the text, and the goal is to
locate an occurrence of the former in the latter. In the more general text indexing
problem we wish to preprocess a long text for multiple queries with (probably
short) patterns. Efficient solutions to both problems have been already designed
in the 1970s, and by now we know several linear-time pattern matching algo-
rithms as well as linear-space indexes answering queries in linear (or almost
linear) time that are simple enough to be taught in a basic algorithms course.
However, with the ever-increasing amount of data being generated and stored, it
is not clear if the seemingly optimal linear complexity is actually good enough.
This is because linear in the length of the pattern or the text might be larger than
the size of its description, for example when we are working with strings over a
small alphabet and are able to store multiple characters in a single machine
word. The difference might be even more dramatic if we store the data in a
compressed form. For some compression schemes, such as the Lempel-Ziv
family of compression algorithms, it may as well be the case that the length
of the original string is exponential in the size of its compressed representation.
In such a case, we would like to design a solution running in time and space
proportional to the size of the compressed representation, or at least close to it.
This brings the question of developing compressed pattern matching algorithms
and designing compressed text indexes.

I will survey the landscape of searching and indexing compressed text,
focusing on the Lempel-Ziv family of compression algorithms and the related
grammar-based compression. For compressed pattern matching, I will mostly
assume that only the text is compressed, but will also briefly describe the recent
progress on the more general case of fully compressed pattern matching, where
both the text and the pattern are compressed, and on the approximate version
of the problem, in which we seek fragments of the text within small Hamming or
edit distance to the pattern. For compressed text indexing, I will discuss the
known trade-offs between the size of the structure and the query time and
highlight the remaining open questions.

Pattern Discovery in Biological Sequences

Esko Ukkonen

Department of Computer Science, University of Helsinki,
P. O. Box 68 (Gustaf Hällströmin katu 2b), 00014 Helsinki, Finland

esko.ukkonen@helsinki.fi

Abstract. Sequence motifs are patterns of symbols that have recurrent occur-
rences in biological sequences such as DNA and are presumed to have bio-
logical function. Modeling and identification of regulatory DNA motifs such as
the binding sites of so-called transcription factors (TFs) is in the core of the
attempts to understand gene regulation and functioning of the genome as a
whole. Transcription factors are proteins that may bind to DNA, close to tran-
scription start site of a gene. Binding activates or inhibits the transcription
machinery (expression) of the associated gene. As the regulated gene may itself
be a transcription factor, such pairwise regulatory relation between genes
induces a genome-wide network model for gene regulation.

The possible binding sites of a transcription factor T are short DNA seg-
ments (DNA words). Different sites of T are close variants of an underlying
consensus word specific to T. As for most transcription factors an accurate
biophysical modeling of this variation is currently infeasible, simplified com-
binatorial and probabilistic models of binding motifs are used. The parameters
of the models are learned from training DNA sequences that contain plenty of
instances of the motif but their exact location within the sequences may not be
known a priori.

Applying concepts of formal languages and automata, motifs are modeled
with words in generalized alphabets and with other regular-expression-like
structures representing the language of possible words of the motif. Such motifs
can be extracted from training data using string processing algorithms that find
repetitions in sequences.

On probabilistic side, sequence motifs can be modeled with inhomogeneous
Markov chains of order 0 or higher and also with more general Markov models.
Markov chains of order 0, usually called Position Weight Matrices (PWMs) and
visualized with so–called sequence logos, is the motif class commonly used in
motif databases. PWM assumes that the motif positions are independent. For
some TFs this is too weak, and then Markov models of order higher than 0
capable of representing dependencies between two or more positions suit better.
Given training DNA sequences that contain occurrences of motif instances
proportionally to the target distribution, machine learning methods can estimate
the distribution by learning a probabilistic model that fits best the data.

The talk surveys representations and corresponding discovery algorithms for
transcription factor binding motifs. We will discuss suffix-tree based methods
for discovery of combinatorial models as well as expectation maximization
(EM) algorithm based learning of probabilistic models. We consider basic
motifs for single factors (monomers) as well as composite motifs for pairs of
factors (dimers) and for chains of factors. Such chains model regulatory modules

http://orcid.org/0000-0002-5978-1505

that are built of clusters of several factors making together a regulatory complex.
Regulatory modules can be discovered from alignments of genomes of related
species. Alignment-based method is possible as regulatory modules are con-
served in evolution.

References

1. Bailey, T.L., Elkan, C.: The value of prior knowledge in discovering motifs with MEME. In:
Proceedings of Third International Conference on Intelligent Systems for Molecular Biology,
pp. 21–29. AAAI Press (1995)

2. Jolma, A., Yan, J., Whitington, T., Toivonen, J., et al.: DNA-binding specifities of human
transcription factors. Cell, 152(1–2), 327–339 (2013)

3. Khan, A., et al.: JASPAR 2018: update of the open-access database of transcription factor
binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018)

4. Marsan, L., Sagot, M.: Algorithms for extracting structured motifs using a suffix tree with
application to promoter and regulatory site consensus identification. J. Comput. Biol. 7,
345–360 (2000)

5. Omidi, S., Zavolan, M., Pachkov, M., Breda, J., Berger, S., van Nimwegen, E.: Automated
incorporation of pairwise dependency in transcription factor binding site prediction using
dinucleotide weight tensors. PLoS Comput. Biol. 13(7), e1005176 (2017)

6. Palin, K., Taipale, J., Ukkonen, E.: Locating potential enhancer elements by comparative
genomics using the EEL software. Nat. Protoc. 1(1), 368 (2006)

7. Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length in
DNA sequences. Bioinf. 17(Suppl. 1), S207–S214 (2001)

8. Ruan, S., Stormo, G.D.: Inherent limitations of probabilistic models for protein-DNA
binding specificity. PLoS Comput. Biol. 13(7), e1005638 (2017)

9. Stormo, G.D., Schneider, T.D., Gold, L., Ehrenfeucht, A.: Use of the ‘Perceptron’ algorithm
to distinguish translational initiation sites in E. coli. Nucleic Acids Res. 10, 2997–3011
(1982)

10. Siebert, M., Söding, J.: Bayesian markov models consistently outperform pwms at predicting
motifs in nucleotide sequences. Nucleic Acids Res. 44(13), 6055–6069 (2016)

11. Toivonen, J., Kivioja, T., Jolma, A., Yin, Y., Taipale, J., Ukkonen, E.: Modular discovery of
monomeric and dimeric transcription factor binding motifs for large data sets. Nucleic Acids
Res. 46(8), e44 (2018)

Pattern Discovery in Biological Sequences XIII

Contents

Invited Papers

Modern Aspects of Complexity Within Formal Languages 3
Henning Fernau

Observation and Interaction: Invited Paper . 31
Edward A. Lee

From Words to Graphs, and Back . 43
Vadim Lozin

Automata

An Oracle Hierarchy for Small One-Way Finite Automata 57
M. Anabtawi, S. Hassan, C. Kapoutsis, and M. Zakzok

Orbits of Abelian Automaton Groups . 70
Tim Becker and Klaus Sutner

Bounded Automata Groups are co-ET0L . 82
Alex Bishop and Murray Elder

Decidability of Sensitivity and Equicontinuity for Linear Higher-Order
Cellular Automata . 95

Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Luciano Margara,
and Antonio E. Porreca

On Varieties of Ordered Automata . 108
Ondřej Klíma and Libor Polák

Automata over Infinite Sequences of Reals. 121
Klaus Meer and Ameen Naif

Nonuniform Families of Polynomial-Size Quantum Finite Automata
and Quantum Logarithmic-Space Computation
with Polynomial-Size Advice . 134

Tomoyuki Yamakami

Equivalence Checking of Prefix-Free Transducers and Deterministic
Two-Tape Automata . 146

Vladimir A. Zakharov

Efficient Symmetry Breaking for SAT-Based Minimum DFA Inference 159
Ilya Zakirzyanov, Antonio Morgado, Alexey Ignatiev,
Vladimir Ulyantsev, and Joao Marques-Silva

Complexity

Closure and Nonclosure Properties of the Compressible
and Rankable Sets. 177

Jackson Abascal, Lane A. Hemaspaandra, Shir Maimon,
and Daniel Rubery

The Range of State Complexities of Languages Resulting
from the Cut Operation . 190

Markus Holzer and Michal Hospodár

State Complexity of Pseudocatenation . 203
Lila Kari and Timothy Ng

Complexity of Regex Crosswords . 215
Stephen Fenner and Daniel Padé

Grammars

Generalized Predictive Shift-Reduce Parsing for Hyperedge
Replacement Graph Grammars . 233

Berthold Hoffmann and Mark Minas

Transformation of Petri Nets into Context-Dependent Fusion Grammars 246
Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye

Generalized Register Context-Free Grammars . 259
Ryoma Senda, Yoshiaki Takata, and Hiroyuki Seki

Languages

Logic and Rational Languages of Scattered and Countable
Series-Parallel Posets . 275

Amazigh Amrane and Nicolas Bedon

Toroidal Codes and Conjugate Pictures . 288
Marcella Anselmo, Maria Madonia, and Carla Selmi

Geometrical Closure of Binary V3=2 Languages. 302
Jean-Philippe Dubernard, Giovanna Guaiana, and Ludovic Mignot

XVI Contents

Deterministic Biautomata and Subclasses of Deterministic
Linear Languages . 315

Galina Jirásková and Ondřej Klíma

Learning Unions of k-Testable Languages . 328
Alexis Linard, Colin de la Higuera, and Frits Vaandrager

Graphs, Trees and Rewriting

Regular Matching and Inclusion on Compressed Tree Patterns
with Context Variables . 343

Iovka Boneva, Joachim Niehren, and Momar Sakho

Rule-Based Unification in Combined Theories and the Finite
Variant Property . 356

Ajay K. Eeralla, Serdar Erbatur, Andrew M. Marshall,
and Christophe Ringeissen

Extensions of the Caucal Hierarchy? . 368
Paweł Parys

Tight Bounds on the Minimum Size of a Dynamic Monopoly 381
Ahad N. Zehmakan

Words and Codes

Recurrence in Multidimensional Words . 397
Émilie Charlier, Svetlana Puzynina, and Élise Vandomme

A Note with Computer Exploration on the Triangle Conjecture. 409
Christophe Cordero

Efficient Representation and Counting of Antipower Factors in Words 421
Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter,
Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

On the Maximum Number of Distinct Palindromic Sub-arrays 434
Kalpana Mahalingam and Palak Pandoh

Syntactic View of Sigma-Tau Generation of Permutations 447
Wojciech Rytter and Wiktor Zuba

Palindromic Subsequences in Finite Words. 460
Clemens Müllner and Andrew Ryzhikov

Author Index . 469

Contents XVII

Invited Papers

Modern Aspects of Complexity Within
Formal Languages

Henning Fernau(B)

Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT, Universität Trier,
54286 Trier, Germany
fernau@uni-trier.de

Abstract. We give a survey on some recent developments and achieve-
ments of modern complexity-theoretic investigations of questions in For-
mal Languages (FL). We will put a certain focus on multivariate com-
plexity analysis, because this seems to be particularly suited for questions
concerning typical questions in FL.

Keywords: String problems · Finite automata ·
Context-free grammars · Multivariate analysis ·
Fixed-parameter tractability · Fine-grained complexity

1 Introduction

Formal Languages and Complexity Theory have a long (common) history. Both
fields can be seen as two of the major backbones of Theoretical Computer Sci-
ence. Both fields are often taught together in undergraduate courses, mostly
obligatory in Computer Science curricula. This is also testified by looking at
classical textbooks like [50]. Yet, modern developments in complexity and algo-
rithmics are barely mirrored in Formal Languages. We want to argue in this
paper that this is a fact that need to be changed.

We will work through six case studies to explain several findings in recent
years. We will also expose a number of open problems in each of these cases.
This should motivate researchers working in Formal Languages to look deeper
into recent developments in Complexity Theory, but also researchers more ori-
ented towards these modern aspects of Complexity Theory to look into (possibly
apparently rather old) problems in Formal Languages to see if they could offer
solutions or at least new approaches to these problems.

In most cases, the problems we discuss in the area of Formal Languages
can be easily understood with the already mentioned background knowledge
each computer scientists gets already during the corresponding bachelor courses.
Therefore, we will only fix notations but assume that no further explanations
are necessary. By way of contrast, we will spend some more time explaining
at least some ideas of the concepts discussed nowadays in Complexity Theory
and Algorithms, so that readers with a background rooted in Formal Languages
c© Springer Nature Switzerland AG 2019
C. Martín-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 3–30, 2019.
https://doi.org/10.1007/978-3-030-13435-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_1&domain=pdf
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-13435-8_1

4 H. Fernau

could easily follow this introductory exposition. In any case, we want to make
clear why these modern approaches are particularly suited for attacking decision
problems in Formal Languages.

2 Some Modern Concepts of Complexity Theory

As most of our case studies deal with multivariate analysis, let us first delve into
the general scheme behind this idea. This is intimately linked to the basic ideas
of Parameterized Complexity, which could be paraphrased as follows. If we can
show that some decision problem is computationally complicated, which is typi-
cally formalized by proving that it is NP-hard or PSPACE-hard, what can we do
about it then, assuming that we still like to solve it with the help of computers?
More traditionally, help was expected from approximation algorithms or, more
practically, from heuristics, and in fact the proof of computational hardness often
gave a sort of excuse of using these rules of thumb called heuristics. However,
in particular using heuristics with no success guarantees is not very satisfying
from a more theoretical perspective at least. What can be done about such a
situation?

It is exactly here where Parameterized Complexity and also the more prac-
tical side of it, namely Parameterized Algorithms, steps in. The basic idea is
to not merely look at the bitstring length as the only source of information
that an instance of a computational problem might give as defining or measur-
ing its complexity, but to also look at other aspects of the instance, formalized
in terms of a so-called parameter. What happens if they are always small in
the concrete instances that practitioners look at? Does this still mean that the
problem is computationally hard? Or can we possibly solve these practically rel-
evant instances efficiently, although the problem is NP-hard when considering all
possible instances? Interestingly, one of the most successful approaches within
Parameterized Algorithms can be viewed as an analysis of natural heuristics,
which means, in more formal terms, the use of reduction rules to provide means
to (repeatedly) move from an instance to an equivalent instance of smaller size.

What could these parameter be? Let us look at various examples.

– The most classical NP-hard problem is arguably Satisfiability, or SAT for
short. Given a Boolean formula ϕ in conjunctive normal form (CNF), decide
if ϕ is satisfiable. A possibly natural choice of a parameter could be a bound k
on the number of literals that may appear in clauses. When fixing this upper-
bound to k, we arrive at problems like k-SAT. This parameter choice is not
that helpful, because it is well-known that even 3-SAT remains NP-hard, and
in fact there are quite a number of much more restricted variants of SAT
that cannot be solved in polynomial time, assuming that P does not equal
NP, see [57,61,93] for several such restrictions. Only 2-SAT is still solvable in
polynomial time.

– Looking back at the proof of the theorem of Cook, phrased in (nowadays)
non-standard terminology in [21], one can argue that the more basic NP-
complete problem is in fact the following one, which can be considered as a

Modern Aspects of Complexity Within Formal Languages 5

problem arising in the field of Formal Languages: Given a nondeterministic
Turing machine M , an input string x and an integer k, does M halt within k
steps accepting x? Now, if k is fixed to a small constant, this problem looks
more amenable than the previous one. More precisely, let us focus on one-
tape machines for now. Assume that we have � symbols in the work alphabet
of M and assume that M has t states. Then at each time step, being in a
specific state, upon reading a symbol, M has at most 3�t choices to continue
its computation, the factor three entering because of the different choices
for moves. Moreover, after k steps, at most O(tk�k) many configurations are
possible, simply because at most k tape cells could have been visited within k
steps, and also the current state and head position has to be memorized. The
difference to Turing machines with a dedicated read-only input tape is not of
importance here. It can be easily checked if an accepting configuration can
be reached from the initial configuration within the directed graph implicitly
given by the configuration and the reachability relation. Instead of writing �
and t, we can also consider the size of M , with reasonable ways to measure
this; the size of the state transition table should be always encaptured here,
and this also bounds the number of choices. So, we might write the running
time of this algorithm like O(|M |k), which is polynomial when k is really
fixed, but if k is considered as part of the input, this algorithm is clearly
exponential. Similar considerations are valid for multi-tape nondeterministic
Turing machines. For future reference, let us call these problems Short NTM

Acceptance (when referring to single tapes) and Short Multi-Tape NTM

Acceptance.
– Recall that a hypergraph can be specified as G = (V,E) with E ⊆ 2V .

Elements of V are called vertices, while elements of E are called (hyper-)edges.
In different terminology, V is the ground-set or universe, and E is a set system.
C ⊆ V is called a hitting set if e∩C �= ∅ for all e ∈ E. In the decision problem
Hitting Set, we are given a hypergraph G = (V,E) and an integer k, and
the question is if one can find a hitting set of cardinality at most k for G.
This question is well-known to be NP-hard. There is a simple relation to SAT:
One can view the hyperedges as clauses. Now, a hitting set corresponds to the
set of variables set to true. It is also evident why we need the bound k here:
setting all variables to true corresponds to selecting V as a hitting set, and
this is clearly a satisfying assignment, because none of the clauses contains
any negation. This relation also motivates to study d-Hitting Set, where d
upper-bounds the number of vertices in each hyperedge. In contrast to SAT,
this restriction looks quite promising, considering the following algorithm: As
long as there are hyperedges in G and as long as the integer k is positive, do
the following: pick such a hyperedge e and branch according to the at most
d possibilities for hitting e. In each case, delete all hyperedges from G that
contain e, decrement k and continue. If and only if this loop is ever exited
with E = ∅, the original instance was a YES-instance. As at most dk many
possibilities are tested, the running time of this algorithm can be estimated as
O(dkp(|G|), where p is some polynomial and |G| gives the size of the original

6 H. Fernau

input. Without this additional accounting of d, it is not clear how to solve
this problem better than O(|G|k).

– Observe that hypergraph instances of 2-Hitting Set can be also viewed as
undirected simple graphs, because loops (i.e., singletons in the set of hyper-
edges) can be easily removed, as the constituent elements must be put into
the hitting set. 2-Hitting Set is also known as Vertex Cover. Then, an
alternative parameterization might be kd = |V | − k. This problem is also
known as Independent Set, and it can be rephrased as asking for a set
I of kd many vertices such that no edge contains two vertices from I. Such
a set is also known as an independent set. A related question asks, given a
graph G and an integer �, if there is a clique of size � in G, i.e., a set K of �
vertices such that each pair of vertices from K is adjacent. All these decision
problems are also known to be NP-complete.

With these problems from different fields in mind, it might make sense to
consider a decision problem P equipped with a computable parameterization
function κ that maps instances to integers. Two ways in which algorithms can
behave nicely on instances x might be considered. (a) There is an algorithm
that solves instances x of P in time O(|x|κ(x)). (b) There is an algorithm that
solves instances x of P in time O(|x|df(κ(x))) for some constant degree d and
some (computable) function f . Both definitions imply that P can be solved in
polynomial time, when restricted to instances whose parameter is smaller than
some constant c. Yet, possibility (b) means that, assuming d to be reasonably
small and f not behaving too badly, then P can be solved not only for instances
where the parameter κ(x) is bounded by a constant but it may grow moderately,
i.e., this is a far more desirable property. (Parameterized) problems (P, κ) that
satisfy (a) are also said to belong to XP, while if (P, κ) satisfies (b), it belongs
to FPT (fixed parameter tractable).

Let us look at our example problems again.

– Let κ1 map a Boolean formula ϕ to the number of variables that occur in ϕ.
Then, (SAT, κ1) is in FPT, because there are only 2κ1(ϕ) many assignments
one has to check to see if ϕ is satisfiable. Let κ2 map a Boolean formula ϕ in
CNF to the maximum number of literals appearing in any clause of ϕ. Then,
unless P equals NP, (SAT, κ2) does not belong to XP.

– For an instance I = (M,x, k) of Short NTM Acceptance, let κ3(I) = k.
As argued above, (Short NTM Acceptance, κ3) belongs to XP. However, it
seems to be hard to put it in FPT. If we consider the size of M as an additional
parameter, i.e., κ4(I) = |M | + k, then we have also seen that (Short NTM

Acceptance, κ4) belongs to FPT. Similar considerations hold true for the
multi-tape case. Possibly more interestingly, our considerations show that
also with the parameterization κ5 that adds k and the size of the overall
alphabet, we end up in FPT. A reader knowledgeable about the early days
of Descriptional Complexity (within FL) might ponder for a moment if there
might be a possibility to put (Short NTM Acceptance, κ3) into FPT by
resorting to a theorem of Shannon [84] that states that Turing machines with
an arbitrary number of working tape symbols can be simulated by Turing

Modern Aspects of Complexity Within Formal Languages 7

machines with binary tapes. However, this idea is problematic at least for
two reasons: (a) the simulating machine (with binary working tape) needs a
considerable amount of time for the simulation, this way changing the upper-
bound k on the number of steps; (b) in Shannon’s simulation, the order of
magnitude of the product of alphabet size and number of states stays the
same. In combination, both effects counter-act this idea.

– Let us study various parameterizations for Hitting Set. Let G = (V,E) with
E ⊆ 2V and k form an instance and define κ6 : (G, k) �→ k, κ7 : (G, k) �→ |V |,
κ8 : (G, k) �→ |E| and κ9 : (G, k) �→ max{|e| : e ∈ E}. As

(
n
k

) ∈ O(nk),
in roughly O(|V |k) steps, the instance (G, k) can be solved by testing all
k-element subsets if they form a hitting set, putting (Hitting Set, κ6) in
XP. With the same idea, (Hitting Set, κ7) is in FPT. By using dynamic
programming as explained in [30,41], also (Hitting Set, κ8) is in FPT. Due
to the NP-hardness of Vertex Cover, if (Hitting Set, κ9) is in XP, then
P equals NP. When combining parameters, κ10 := κ6 + κ9, we conclude with
the reasoning given above that (Hitting Set, κ10) is in FPT. This is quite
instructive, because it shows that even combining relatively weak parameters,
one can obtain relatively nice algorithmic results. More details, also for special
cases, can be found in [30–32,99].

– Reconsider κ6 : (G, k) �→ k for Vertex Cover. Then, by the equiva-
lence to 2-Hitting Set, (Vertex Cover, κ6) belongs to FPT. However,
reparameterizing by κ11 : (G, k) �→ |V | − k, we only know membership in
XP for (Vertex Cover, κ11). Recall that this is equivalent to considering
(Independent Set, κ6). By moving over from G to the graph complement
G, with (V,E) = (V,

(
V
2

) \ E), one understands that also (Clique, κ6) has
the same complexity status as (Vertex Cover, κ11).

So far, we introduced the classes FPT and XP of parameterized problems.
Clearly, FPT ⊆ XP. As often in Complexity Theory, it is unknown if this inclusion
is strict, but it is generally assumed that this is the case. Moreover, we have
seen examples of parameterized problems that are not in XP, assuming that
P is not equal to NP. In order to have a more refined picture of the world of
parameterized problems, it is a good idea to define appropriate reductions. It
should be clear what properties such a many-one FPTreduction relating problem
(P, κ) to (P ′, κ′) should satisfy: (a) it should translate an instance I of P to an
instance I ′ of P ′ within time f(κ(I))|I|O(1) for some computable function f ;
(b) it should preserve the parameterization in the sense there is a function g
such that κ′(I ′) ≤ g(κ(I)); (c) I is a YES-instance of P if and only if I ′ is a
YES-instance of P ′. Such a notion allows us to define further complexity classes,
based on the idea of being interreducibility with respect to FPT reductions, or
FPT-equivalent. Observe that the classes FPT and XP studied so far are closed
under FPT reductions. Let W[1] be the class of parameterized problems that are
FPT-equivalent to (Short NTM Acceptance, κ3), and let W[2] be the class of
parameterized problems that are FPT-equivalent to (Short Multitape NTM

Acceptance, κ3). In fact, there is a whole (presumably infinite) hierarchy of

8 H. Fernau

complexity classes captured in the following inclusion chain:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

Looking back at our examples, it is known that (Independent Set, κ6) and
(Clique, κ6) are complete for W[1], while (Hitting Set, κ6) is complete for
W[2]. As we will see in the following sections, many natural parameterizations of
computational problems stemming from Formal Languages lead to W[1]-hardness
results. If we still want to employ the idea of getting FPT algorithms, we need
to find different, often multiple parameterizations. This approach is also called
mutlivariate analysis. We refer to [12,28,71] for further discussions. At this point,
we only recall that we also used this idea when looking at (Hitting Set, κ10).

There is a nice characterization of FPT based on the idea of the existence of a
polynomial-time many-one reduction termed kernelization that maps instances
I of (P, κ) to instances I ′, also of (P, κ), satisfying |I ′| ≤ f(κ(I)) for some com-
putable function f , where |I| yields the size of instances I in the classical sense.1
I ′ is also called the kernel of I. The existence of kernelizations is often shown by
providing a collection of so-called reduction rules that should be applied exhaus-
tively in order to produce the kernel. As an example, the two reduction rules
together provide a kernelization for (Vertex Cover, κ6). (a) Delete vertices of
degree zero, or, more formally, ((V,E), k) �→ ((V \ {v | v /∈ ⋃

e∈E e}), k), and (b)
(G, k) �→ (G−v, k−1) if there is some v ∈ V (G) with more than k neighbors. In
fact, it is not hard to see that the resulting kernels (G′, k′) even satisfy a polyno-
mial bound on the size of G′ (with some reasonable size measure) with respect
to κ6(G′, k′) = k′. We also say that (Vertex Cover, κ6) admits a polynomial
kernel.

With this notion at hand, the question is if one can always produce kernels of
polynomial size for parameterized problems in FPT. This is not the case unless
the polynomial-time hierarchy collapses to the third level, which is considered
to be unlikely. For instance, under this condition, it can be shown that both
(Hitting Set, κ7) and (Hitting Set, κ8) and hence also (SAT, κ1) have no
polynomial-size kernels.

Another venue that one could follow is refining the questions about optimality
of existing algorithms further beyond the question if the decision problem at
hand belongs to P or if it is NP-hard. This line of research is nowadays captured
under the umbrella of Fine-Grained Complexity.

For instance, as discussed, there is a trivial algorithm to solve a SAT instance
by testing all assignments. Neglecting polynomial factors, as standard by the
very definition of FPT, we can also state that SAT instances on n variables can
be solved in time O∗(2n), where the O∗-notation was invented just to suppress
polynomial factors. Now, one can ask if there is any algorithm that solves SAT
instances in time O∗((2− ε)n) for any ε > 0. No such algorithm is known today.

1 In the literature, is often required that |I ′| + κ(I ′) ≤ f(κ(I)), but this is equivalent
to the present requirement, because the parameterization can be computed from I ′,
i.e., κ(I ′) is also bounded by a function in κ(I) if |I ′| is.

Modern Aspects of Complexity Within Formal Languages 9

The hypothesis that no such algorithm exists is also called Strong Exponential-
Time Hypothesis, or SETH for short. A weaker assumption is to believe that there
is no function f(n) ∈ o(n) such that SAT, or in this case equivalently also 3-SAT,
can be solved in time O∗(2f(n)). This hypothesis is also known as Exponential-
Time Hypothesis, or ETH for short.2 The outcome of the famous sparsification
lemma is sometimes good to know: Under ETH, there is also no O∗(2o(n))-time
algorithm for 3-SAT on instances that have O(n) many clauses. For instance, it
is known that under ETH, no 2o(n) algorithm exists for solving Hitting Set

on instances with n vertices. We also refer to [22]. Further consequences of this
approach to the (non-)existence of certain types of FPT algorithms are also dis-
cussed in the survey paper [62]. For instance, while there are quite a number of
algorithms that solve (Vertex Cover, κ6) in time O∗(2O(κ6(G))), under ETH
there is no algorithm for doing this in time O∗(2o(κ6(G))). It should be clear
that for obtaining such results, another form of reduction is needed. We do
not explain any details here, but just observe that many well-known reductions
suffice for showing some basic ETH-based results. For instance, the typical text-
book reductions for showing NP-hardness of Vertex Cover start from 3-SAT
and then introduce gadgets with two or three vertices for variables or clauses,
respectively. Hence, by the outcome of the sparsification lemma, under ETH
there is no O∗(2o(|V |))-time algorithm for computing a minimum vertex cover
for G = (V,E). However, not all lower bounds of this type that one assumes to
hold can be shown to be rooted in ETH. For instance, the Set Cover Conjec-
ture claims (using the vocabulary of this paper) that (Hitting Set, κ7) cannot
be solved in time O∗(2o(κ7(G))). As discussed in [22], it is not clear how this
(plausible) conjecture relates to ETH.

Finally, one might wonder how to attack XP-problems, trying to understand
how the parameter(s) influence the running time. For instance, consider the
problem of finding a clique of size k in a graph with n vertices. Using brute-force,
this problem can be solved in time O∗(

(
n
k

)
) = O(nk+c) for some small constant

c. Nešetřil and Poljak showed in [66] that this can be improved to O(nkω/3+c),
where ω is the exponent such that n×n matrices can be multiplied in time O(nω).
The underlying idea is that triangles can be found by multiplying adjacency
matrices. Nowadays, it is believed that this is indeed the correct bound for
detecting k-cliques. The hypothesis that no better algorithms are possible than
those intimately linked to matrix multiplication is known as k-Clique Conjecture.
This is one of the various examples of conjectures within the realm of polynomial-
time algorithms on which several hardness assertions are based. In this context,
it is also worth mentioning that there is a common belief that ω > 2; this also
links to interesting combinatorial conjectures as exhibited in [5]. We will re-
encounter this conjecture in our last case study. Virginia Vassilevska Williams
wrote several surveys on Fine-Grained Complexity, the most recent published one
being [104].3 When dealing with distinguishing problems within P, also adapted

2 The definitions in [52] are a bit different, but this can be neglected in the current
discussion.

3 A new survey is announced to appear in [85].

10 H. Fernau

notions of reductions have to be introduced. For the sake of space and because
this is not that central to this paper, we are not going to present them here but
refer to the mentioned survey papers. Also due to the nature of these reductions,
in this part of the complexity world, polylogarithmic factors in the running time
are often ignored, leading to notations like Õ(n2) for denoting quadratic running
times up to terms like (log(n))3. Vassilevska Williams put the central question
of Fine-Grained Complexity as follows in the survey to appear in [85]: For each
of the problems of interest with textbook running time O(t(n)) and nothing much
better known, is there a barrier to obtaining an O(t(n)1−ε) time algorithm for
ε > 0? Notice this formulation ignores polylogarithmic factors. Also, SETH
perfectly fits into this line of questions.

Many more details can be found in the textbooks that have appeared in
the meantime in the context of Parameterized Complexity, often also capturing
aspects of ETH and also of SETH. We refer to [23–25,40,42,70].

In the following, we present six case studies, focusing on typical effects that
show up when dealing with computational problems in Formal Languages. We
start with a problem dealing with strings only, continuing with problems involv-
ing grammars and automata. There are some common themes throughout all
these studies, for instance, the (sometimes surprising) role played by the size of
the alphabet concerning the complexity status of the problems. Another recur-
ring theme is that rather simple algorithms can be shown to be optimal.

3 First Case Study: String-to-String Correction S2S

The edit distance is a measure introduced to tell the distance between two strings
S, T ∈ Σ∗, where S is the source string and T is the target string, by counting
the number of elementary edit operations that are necessary to turn S into T .
The complexity of this problem depends on the permitted operations. Let O be
the set of permitted operations, O ⊆ {C,D, I,S}, with:

C Change: replace/substitute a letter
D Delete a letter
I Insert a letter
S Swap: transpose neighboring letters

For each O, define the problem O-String-to-String Correction, or O-S2S
for short, with input Σ, S, T ∈ Σ∗, k ∈ N, to be the following question: Is it
possible to turn S into T with a sequence of at most k operations from O?

Wagner [97] obtained a by now classical dichotomy result that can be stated
as follows.4

Theorem 1. Consider O ⊆ {C,D, I,S}.
– If O ∈ {{S,D}, {S, I}}, then O-S2S is NP-complete.
4 The result was phrased in different terminology back in 1975. Wagner actually proved

stronger results in the sense that weights on the operations are permitted.

Modern Aspects of Complexity Within Formal Languages 11

– If O /∈ {{S,D}, {S, I}}, then O-S2S is solvable in polynomial time.

Note: {S,D}-S2S is equivalent to {S, I}-S2S.
How is this dichotomy result obtained? What is the source of NP-hardness?

Conversely, how do the algorithms work? Here, dynamic programming is the key,
and the corresponding algorithms (or variants thereof) have made their way into
textbooks on algorithms.

Let us first study the NP-hard variant, focusing on {S,D}-S2S. What are
natural parameters of an instance I defined by Σ, S, T ∈ Σ∗, k ∈ N? From the
viewpoint of now traditional parameterized complexity, κ1(I) = k is a first pick.
This has been considered in [3]. Its main result can be stated as follows.

Theorem 2. {S,D}-S2S with parameter κ1(Σ, S, T ∈ Σ∗, k) = k is in FPT.
More precisely, an instance I = (Σ, S, T ∈ Σ∗, k) can be solved in time
O(ϕk(|S|) log(|Σ|)), where ϕ < 1.62 is the golden ratio number.

In addition, a polynomial kernel was obtained in [101]. One of the important
observations is that we can assume to always execute k1 = |S| − |T | deletions
prior to swaps. Moreover, the at most k − k1 swaps can be described by one
position in the string. Hence, k is upper-bounded by a function in |S| and we
can use the previously mentioned algorithm to prove:

Proposition 3. {S,D}-S2S with parameter κ2(Σ,S, T, k) = |S| is in FPT.

With quite a similar reasoning, one can obtain the next result.

Proposition 4. {S,D}-S2S with parameter κ3(Σ,S, T, k) = |T | is in FPT.

The previous two results seem to be a bit boring, because |S| and |T | appear
to be the natural choice to describe the overall size of the input. Also, these
string lengths would be rather big in practice, while one could assume k to be
rather small if one compares strings that are somehow similar to each other.

There is one last choice of a parameter that one might tend to overlook
when first being confronted with this problem, namely, the size of the alphabet
over which the strings S and T are formed. Yet, studying the proof of NP-
hardness of Wagner, one is led to the conclusion that |Σ| is crucial for this proof,
which simply does not work if |Σ| is bounded, for instance, if we consider binary
alphabets only. This might look a bit surprising, as it might be hard to imagine
that the alphabet size itself could carry such an importance, given the fact
that the alphabet carries no visible or obvious structure. Yet, the consideration
of the alphabet size will be a recurring theme in this paper, and we will see
various situations where this is in fact a crucial parameter. This problem was
first resolved in [36] for binary alphabets, showing the following result.

Proposition 5. {S,D}-S2S on binary alphabets can be solved in cubic time.

12 H. Fernau

This was soon superseded by a more general result by Meister [64], showing
that indeed the size of the alphabet was the crucial source of hardness for this
problem. This was later improved by Barbay and Pérez-Lantero [10] concerning
the dependence of the degree of the polynomial describing the running time on
the alphabet size parameter.

Theorem 6. {S,D}-S2S with parameter κ4(Σ,S, T, k) = |Σ| is in XP. More
precisely, it can be solved in time O(|S||Σ|+1).

Still, this result is likely only practical only for very small alphabet sizes.
Also, it is still open if one can put the problem in FPT. From a more practical
perspective, as the parameters k and Σ are rather unrelated and also because the
algorithmic approaches leading to Theorems 2 and 6 are quite different, it would
be interesting to see if one can combine both ideas to produce an algorithm
that is really useful for instances with a small alphabet size and a moderate
number of permitted edit operations. Of course, this should be also checked by
computational experiments that seem to be lacking so far.

It would also be interesting to study further parameters for this problem. In
[10], several such suggestions have been considered. For instance, Barbay and
Pérez-Lantero [10] have shown the following consequence for their algorithm.
This relates to the number of deletions (|T | − |S|) already studied above.

Proposition 7. {S,D}-S2S with parameter κ5(Σ,S, T, k) = |Σ|+(|T |− |S|) is
in FPT. More precisely, it can be solved in time O∗((|T | − |S|)|Σ|).

Let us also discuss some fine-grained complexity results for {C,D, I}-S2S.
This problem is also known as computing the edit distance (in a more restricted
sense) or as computing the Levenshtein-distance between two strings. The
already mentioned textbook algorithms, often based on [98], take quadratic
time. Whether or not these are optimal was actually a question already investi-
gated 40 years ago. In those days, however, lower bound results were dependent
on particular models of computation, while more modern approaches to lower
bounds are independent of such a choice. For instance, Wong and Chandra [106]
showed a quadratic lower bound assuming that only equality tests of single
symbols are permitted as the basic operation of comparison. Masek and Pater-
son [63] managed to shave off a logarithmic factor by making some clever use
of matrix multiplication tricks. Yet, whether essentially better algorithms are
possible remained an open question up to recently. Backurs and Indyk [8] finally
proved that assuming SETH, no O(n2−ε)-time algorithm can be expected for
any ε > 0. Interestingly enough, their proof was working only for alphabet sizes
at least seven. This result has then been improved by Bringmann and Künne-
mann [14] to binary alphabets. Let us summarized these results in the following
statement.

Theorem 8. {S,D, I}-S2S can be solved in quadratic time. Assuming SETH,
no O(|S|2−ε)-time algorithm exists even on binary alphabets, for any ε > 0.

Modern Aspects of Complexity Within Formal Languages 13

Suggestions for Further Studies. (a) Does {S,D}-S2S with parameteriza-
tion κ4(Σ,S, T, k) = |Σ| belong to FPT, or is it hard or even complete for
some level of the W-hierarchy? (b) Assuming that {S,D}-S2S with parameter
κ4(Σ,S, T, k) = |Σ| belongs to FPT, is it possible to give, e.g., SETH-based lower
bounds for showing that existing algorithms are (close to) optimal? (c) Assuming
that existing algorithms for {S,D}-S2S with parameter κ4(Σ,S, T, k) = |Σ| are
optimal, it might make sense to study FPT-approaches even for fixed alphabets,
because the running times that are obtainable at present are impractical for,
say, the ASCII alphabet, not to speak about Unicode. (D) We are not aware of
any studies concerning the polynomial-time approximability of the minimization
problem related to {S,D}-S2S.

4 Second Case Study: Grammar-Based Compression

One of the main ideas behind data compression algorithms is to use regularities
found in an input to find representations that are much smaller than the original
data. Although data compression algorithms usually come with their own special
data structures, there are some common schemes to be found in the algorithms
of Lempel, Ziv, Storer, Szymanski and Welch from 1970s and 1980s [90,103,
108] that easily generalize to the idea to use context-free grammars producing
singleton languages for data compression purposes. Such context-free grammars
are also called straight-line programs in the literature. Another perspective on
this question is offered by Grammatical Inference, a perspective that can be
traced back to the work of Nevill-Manning and Witten [67–69] and Kieffer and
Yang [55]. We refer to [86] for quite a number of other papers that link to
Grammatical Inference and applications thereof.

This leads us to consider the following decision problem, called Grammar-

Based Compression, or GBC for short: Given a word w over some alphabet Σ
and an integer k, decide if there exists a context-free grammar G of size at most k
such that L(G) = {w}.

In a sense, this question is still ill-posed, because we did not explain how to
measure the size of a grammar. In fact, there are several natural ways to do this.
The main results that we are citing in the following do not really depend on the
choice. Hence, we follow the common definition that the size of a context-free
grammar G is computed by summing up the lengths of all right-hand sides of
rules of G.

Based on reductions due to Storer [89], Charikar et al. [19] showed the fol-
lowing complexity result.

Theorem 9. GBC is NP-complete (on unbounded terminal alphabets).

Although occasionally there were claims in the literature that such a hardness
result would be also true for bounded alphabet sizes (see [7]), this question was
in fact open until recently. In the journal version of [17], the authors showed the
following result.

14 H. Fernau

Theorem 10. GBC is NP-complete (on terminal alphabets of size at least 17).

Let us now again study this problem with a multivariate analysis. With
grammars, we have some natural choices of parameters, given as input I an
alphabet Σ, a word w ∈ Σ∗ and an integer k: κ1(I) = Σ, κ2(I) = |w|,
κ3(I) = k. Observe that we can assume (after some straightforward reductions)
that κ1(I) ≤ κ3(I) ≤ κ2(I). This indicates that κ1 is the most challenging
parameterization, while finding FPT-results should be easiest for κ2. We now
look at these parameters in the chosen order. Our intuition on the strength of
the parameters will be certified.

From Theorem 10, we can conclude:

Corollary 11. GBC with parameterization κ1 is not in XP, unless P = NP.

Theorem 12 [17]. GBC with parameterization κ2 belongs to FPT. More pre-
cisely, instance I = (Σ,w, k) can be solved in time O∗(3κ2(I)).

We now demonstrate that such an FPT-result also holds for κ3.

Theorem 13. GBC with parameterization κ3 belongs to FPT.

Proof. A context-free grammar G = (N,Σ,R, S) generating a singleton is called
an F -grammar if F = {u ∈ Σ+ | ∃A ∈ N : A ⇒∗ u}. As exhibited in [17], a
related Independent Dominating Set problem can be used to compute, for
a given finite set F with w ∈ F , the smallest F -grammar that generates {w} in
polynomial time. For each F with F ⊆ Σ+,

∑
u∈F |u| ≤ κ3(Σ,w, k) = k we can

find the smallest F -grammar for w in polynomial time. As |Σ| ≤ k, only f(k)
many sets F have to be considered. �

In [17], the idea of a multivariate analysis has been taken further by con-
sidering further properties of the grammars we are looking for. For instance, is
there a shortest grammar for w that uses ≤ r rules? The paper shows that this
question is NP-hard. Considering r as a parameter, this problem is in XP and
W[1]-hard.

There are also some studies on the approximability of the related minimiza-
tion problem Min-GBC, see [7,17,19,51,59,81]. We now summarize the main
results in this direction. Notice the strange role that the size of the alphabet
plays again.

Theorem 14. If m∗(w) denotes the size of the smallest context-free grammar
for string w, then Min-GBC can be approximated in polynomial time up to a
factor of O

(
log

(
|w|

m∗(w)

))
. Conversely, there is no polynomial-time algorithm

achieving an approximation ratio better than 8569
8568 unless P = NP (unbounded

terminal alphabets). Furthermore, if there would be a polynomial-time constant-
factor approximation algorithm for Min-GBC on binary alphabets, there would
be also some polynomial-time constant-factor approximation algorithm for Min-

GBC on unbounded alphabets. Min-GBC is APX-hard on bounded terminal
alphabets.

Modern Aspects of Complexity Within Formal Languages 15

Charikar et al. [19] also proved an interesting connection to a long standing
open problem on approximating so-called addition chains. This approach might
be interesting from a Fine-Grained Complexity perspective.

Suggestions for Further Studies. (A) The most natural complexity task is to
further reduce the size of the terminal alphabet in Theorem 10. More specifically:
Is GBC still NP-hard for binary terminal alphabets? From a practical point of
view, i.e., when applying this technique to compressing data files, this is crucial
to know. (B) Is there a polynomial-time constant-factor approximation algorithm
for the smallest grammar problem? (C) Storer and Szymanski [89,90] studied
macro schemes that can be viewed as extensions of context-free grammars. No
multivariate analysis of the related NP-hard compression problems has been
undertaken so far. Notice that recent experimental studies [60] show the potential
of these ideas. (D) We also mention generalizations of GBC to finite languages
described by context-free grammars (and use them to encode specific words)
as proposed in [86] which have not yet been studied from a more theoretical
perspective.

5 Third Case Study: Synchronizing Words

A word x ∈ Σ∗ is called synchronizing for a deterministic finite automaton A,
or DFA for short, with A = (S,Σ, δ, s0, F) if there is a state sf , such that for
all states s, δ∗(s, x) = sf . An automaton is called synchronizable if it possesses
a synchronizing word. It is known that A is synchronizable iff for every pair
(s, s′) of states, there exists a word xs,s′ such that δ∗(s, xs,s′) = δ∗(s′, xs,s′).
This notion relates to the best known open combinatorial problem in Formal
Languages, namely Černý’s Conjecture: Any synchronizable DFA with t states
has a synchronizing word of length ≤ (t − 1)2. We are not going to give further
details on this famous combinatorial problem, but only refer to the original
paper by Černý [18], to two survey articles [82,95] that also describe a couple of
applications, to one very recent paper [92] that describes the best upper bound
of (85059t3+90024t2+196504t−10648)/511104 on the length of a synchronizing
word for a t-state synchronizable DFA.

Rather, we will now turn to the related decision problem Synchronizing

Words, or DFA-SW for short. The input consists of a DFA A and an integer k.
The question is if there is a synchronizing word w for A with |w| ≤ k. In [26],
Eppstein has shown the following complexity result:

Theorem 15. DFA-SW is NP-complete.

How could a multivariate analysis of this problem look like? Natural param-
eterizations of an instance I = (A, k) with A = (S,Σ, δ, s0, F) include: κ1(I) =
|Σ|, κ2(I) = |S|, and κ3(I) = k. Clearly, one could also study combined param-
eters, like κ4(I) = |I| + k. Also, notice that κ5(I) = |δ| corresponds to |SΣ×S |,
which would therefore be again a combined parameter. We are going to report
on results from [33,96].

16 H. Fernau

Theorem 16. DFA-SW with parameterization κ1(I) = |Σ| does not belong to
XP, unless P = NP.

In fact, the reduction from [26] can be used to show the previous results, as
it shows NP-hardness for binary input alphabets.

Theorem 17. DFA-SW with parameterization κ2(I) = |S| lies in FPT. More
precisely, it can be solved in time O∗(2κ2(I)). Yet, it does not admit polynomial
kernels unless the polynomial-time hierarchy collapses to the third level.

The FPT-algorithm is actually quite simple. It is based on the well-known
subset construction, reducing the problem to a path-finding problem in an expo-
nentially large graph. Yet, this algorithm is close to optimal in the following
sense.

Proposition 18. Assuming ETH, DFA-SW is not solvable in time
O∗(2o(κ2(I))).

This result can be easily obtained by re-analyzing the reduction leading to
Theorem 17.

Theorem 19. DFA-SW with parameterization κ3(I) = |k| is W[2]-hard.

We provide a sketch of this hardness result in Fig. 1, also to give an example
of a parameterized reduction from Hitting Set introduced above. Observe that
now the size of the input alphabet of the resulting DFA is unbounded, as it is the
vertex set of the given hypergraph. Recently, Montoya and Nolasco [65] showed
that (even) for planar automata, DFA-SW with parameterization κ3(I) = |k|
is complete for the parameterized space complexity class NWL that embraces
the whole W-hierarchy. Also, strong inapproximability results are known for the
corresponding minimization problem; see [43].

e1 e2 e3 · · · em

sf

x /∈ e1

x ∈ e1

x /∈ e2

x ∈ e2

x /∈ e3

x ∈ e3

x /∈ em

x ∈ em

x ∈ V

(V, E) has a hit-
ting set of size ≤ k
⇐⇒
A has a synchro-
nizing word of
length ≤ k.

Caveat: Σ = V .

E = {e1, . . . , em}

Fig. 1. An example showing how an FPT reduction works.

Modern Aspects of Complexity Within Formal Languages 17

For the combined parameterization κ4, we can state:

Theorem 20. DFA-SW with parameterization κ4(I) = |Σ| + k lies in FPT.
More precisely, it can be solved in time O∗(|Σ|k). Yet, it does not admit poly-
nomial kernels unless the polynomial-time hierarchy collapses to the third level.
Moreover, there is no O∗((|Σ| − ε)k)-time algorithm, unless SETH fails.

Suggestions for Further Studies. (A) Although the proof sketch in
Fig. 1 indicates that DFA-SW remains NP-hard for rather restricted forms of
automata, it might be interesting to study classes of subregular languages regard-
ing the question if DFA-SW might become simpler when restricted to these
classes. (B) There are quite a number of notions similar to synchronizing words
that have been introduced over the years, also due to the practical motivation of
this notion, see [82]. No systematic study of computational complexity aspects
has been undertaken for all these notions. (C) In view of the FPT result concern-
ing parameterization κ2, the number of states, the parameterization κ5 might
not look that interesting. Yet, as κ2 does not allow for polynomial kernels, this
question could be of interest for the variation κ′

5(I) = |S| + |Σ|.

6 Fourth Case Study: Consistency Problem for DFAs

The problem DFA-Consistency takes as input analphabet Σ, two disjoint
finite sets of words X+,X− ⊆ Σ∗, and some integer t. The question is if there is
a DFA A with ≤ t states that is consistent with X+,X−, i.e., L(A) ⊇ X+ and
L(A) ∩ X− = ∅. This problem arises in various contexts, for instance, also in
connection with Grammatical Inference; see [47]. Its classical complexity status
was settled four decades ago.

Theorem 21 [6,44]. DFA-Consistency is NP-complete.

Let us explore the possible natural choices for parameterizations for instance
I = (Σ,X+,X+, t). We could look at κ1(I) = |Σ|, κ2 = |X+ ∪ X−|, κ3(I) =
max{|w| | w ∈ X+ ∪ X−}, κ4(I) = t, and there are quite a number of further
ways to parameterize with respect to the sets X+ and X−. The NP-hardness
results (with different constructions) extend to situations when κ1(I) = 2 or
when κ3(I) = 2 or when κ4(I) = 2. This immediately entails the following
results.

Theorem 22. DFA-Consistency with parameterization κ1(I) = |Σ| does not
belong to XP, unless P = NP.

Theorem 23. DFA-Consistency with parameterization κ3(I) = max{|w| |
w ∈ X+ ∪ X−} does not belong to XP, unless P = NP.

Theorem 24. DFA-Consistency with parameterization κ4(I) = t does not
belong to XP, unless P = NP.

18 H. Fernau

Intuitively, this last result might appear most surprising, because there are
only four ways how a letter can act with respect to two states. The literature sit-
uation was also a bit weird for some time. The result was mentioned in Sect. 1.2
of [75], as well as in [47], referring to an unpublished work of Angluin. However,
no proof was given in these two references. Therefore, in the process of writ-
ing [33], we contacted Angluin, also to see how our solution compared to hers.
We were quite impressed to receceive an email from Angluin within a couple of
days, sending us a scanned copy of her proof, dating back to August 2nd, 1988.
An NP-hardness proof can now be found in [33].

Interestingly, it is open if DFA-Consistency is NP-hard for any constant
value of κ2(I). In the sense of multivariate analysis, we should continue to look
into combined parameters. Let κi,j for 1 ≤ i < j ≤ 4 the parameterization given
by κi,j(I) = κi(I) + κj(I).

It was shown in [33] that DFA-Consistency is NP-hard even for 3-state
DFAs with word lengths at most two in X+ ∪ X−. This implies:

Theorem 25. DFA-Consistency with parameterization κ3,4(I) does not
belong to XP, unless P = NP.

Conversely, by a trivial algorithm one can show the following (positive) result.
The ETH hardness follows from a construction in [33].

Theorem 26. DFA-Consistency with parameterization κ1,4(I) = |Σ| +
t belongs to FPT, namely in time O∗(t|Σ|t). Assuming ETH, there is no
O∗(to(|Σ|t))-time algorithm for DFA-Consistency.

The remaining parameter combinations seem to be open. Only one three-
parameter combination was found in [33] that admitted a further FPT-result,
combining κ2, κ3 and κ4.

Suggestions for Further Studies. (A) Quite a number of parameter com-
binations are still open regarding their complexity status. Also, there are more
parameters that could be related to X+ and X−. One potentially interesting sce-
nario (pondering practical applications) would be to see what happens if there
are much less negative than positive samples. (B) It might be an idea to look
into classes of subregular languages and find some that allow for efficient con-
sistency checks. (C) There are related questions that have not yet been studied
from a multivariate perspective, for instance, what about Regular Expression

Consistency?

7 Fifth Case Study: Lower Bounds for Universality

Possibly, the reader would have expected that we focus on problems like DFA

Intersection Emptiness and similar problems traditionally studied (with
respect to their complexity) in textbooks on Formal Languages. This will be
partially rectified in this section. We will mainly concentrate on Universality,

Modern Aspects of Complexity Within Formal Languages 19

which is the following problem. Given a finite automaton A with input alphabet
Σ, is L(A) = Σ∗? Clearly, this makes only sense for nondeterministic automata,
as the problem can be solved in linear time for DFAs. Natural parameters are
the number t of states of A and the size of Σ. |Σ| plays again an important role.
Notice that the problem is PSPACE-complete in general, but co-NP-complete for
unary input alphabets; see [56,87,88] and possibly more explicit in [34]. Natural
parameterizations are κ1(A) = |Σ| and κ2(A) = |S|, where A = (S,Σ, δ, s0, F)
is an NFA. By the classical hardness results, we see:

Proposition 27. Universality. parameterized by κ1, is not in XP, unless P =
NP.

Conversely, by the classical subset construction to produce a DFA, followed
by final state complementation and a simple emptiness check, one sees:

Proposition 28. Universality. parameterized by κ2, belongs to FPT.

We are now going to study complexity aspects under the ETH perspective.

Theorem 29 [34]. Unless ETH fails, there is no O∗(2o(t1/3)) -time algorithm
for deciding Universality on t-state NFAs with unary inputs.

There is a slight gap to the known upper bound by Chrobak [20] who showed:

Theorem 30. Universality on t-state NFAs with unary inputs can be solved
in time 2Θ((t log t)1/2).

For larger alphabets, the situation looks a bit different for Universality.

Theorem 31 [34]. Unless ETH fails, there is no O∗(2o(t)) -time algorithm for
deciding Universality on t-state NFAs with binary inputs, or larger alphabets.

The results is obtained by a parsimonous reduction from 3-Colorability.
This is the correct bound, because the power-set construction gives that Uni-

versality on t-state NFAs can be solved in time O∗(2t).
Also to overcome the fact that Universality is PSPACE-complete, a length-

bounded variant has been introduced. LB-Universality: Given NFA A and
length bound �, does A accept all words up to length �? This length bound puts
the problem into NP. In fact, it is NP-complete. From a multivariate perspective,
this introduces a natural third parameter, κ3(A, �) = �.

Theorem 32. LB-Universality, parameterized by κ3, is W[2]-hard.

As there is no formal proof of this result in the literature, we provide an
explicit construction. In fact, it is quite similar to the construction illustrated in
Fig. 1 which the reader might want to consult.

Proof. We show how to solve any instance G = (V,E) and k of Hitting Set,
parameterized by the size k of the solution, with the help of an instance of LB-

Universality, parameterized by κ3. Set Σ = V , S = {s0, sf}∪E. Let s0 be the
initial and E∪{s0} be the set of final states. We include the following transitions
in the transition relation.

20 H. Fernau

– (s0, a, e) for any a ∈ Σ and any e ∈ E;
– (e, a, e) for any e ∈ E and a /∈ e;
– (e, a, sf) for any e ∈ E and a ∈ e;
– (sf , a, sf) for any a ∈ Σ.

Furthermore, we set � = k + 1. Now, we claim that there is a hitting set of
size at most k in G if and only if there is a word of length at most k + 1 that is
not accepted by the constructed automaton. Namely, the only way not to accept
a word by the automaton would be a word ending in sf irrespectively what state
e ∈ E was entered inbetween. This shows that the encoded set of vertices of the
hypergraph indeed hits all hyperedges. �

Membership in W[2] is unknown. As the parameterized complexity results for
the other two parameters transfer, we get a rather diverse picture of what could
happen in a multivariate analysis. As parameters κ1 and κ3 yield intractability
results, the following (straightforward) result is interesting for the combined
parameter κ1 + κ3.

Proposition 33. LB-Universality can be solved in time O∗(|Σ|�).
Namely, just enumerate and test all strings up to length �. This has been

complemented by the following result that proves conditional optimality of this
simple algorithm.

Theorem 34 [34]. There is no algorithm that solves LB-Universality in time
O∗ (

(|Σ| − ε)�
)
for any ε > 0, unless SETH fails.

Let us finally discuss the issue of kernelization for this problem. The size of
an instance is vastly dominated by the size of the transition table. Measured in
terms of number of states and input alphabet size, this size can be as large as
O(2|Σ||S|2). Is there any hope to bring this down to a size only polynomial in |S|, a
result that would complement Proposition 28? Interestingly, this question seems
to be open, while it is possible to show the non-existence of polynomial kernels
for the length-bounded variation. We can even show this result for the combined
parameter κ2 + κ3.

Theorem 35. LB-Universality, parameterized by κ2 + κ3, does not admit
polynomial kernels, unless the polynomial-time hierarchy collapses to the third
level.

Proof. It is known that under the stated complexity assumptions, Hitting Set,
parameterized by the number of hyperedges plus an upper-bound k on the size
of the solution, does not admit polynomial kernels; see [23]. Now, assume that
LB-Universality, parameterized by κ2 + κ3, would have a kernelization algo-
rithm A that produces polynomial kernels. Now, start with an instance (G, k) of
Hitting Set, where G = (V,E), and first translate it to an equivalent instance
(A, �) of LB-Universality, using the construction from Theorem 32. Observe
that κ2(A, �) = |E| and κ3(A, �) = k + 1. Next, run algorithm A, yielding an

Modern Aspects of Complexity Within Formal Languages 21

instance (A′, �′) of size polynomial in κ2(A, �) + κ3(A, �) and hence polynomial
in |E|+ k. Finally, observe that as LB-Universality is in NP, while Hitting

Set is NP-hard, there is a polynomial-time transformation of (A′, �′) into an
equivalent instance (G′, k′) of Hitting Set. Clearly, also (G′, k′) would be of
polynomial size, measured in |E| + k, which contradicts the non-existence of
polynomial kernels. �

Let us mention one further exploit of the construction of Theorem 32.

Theorem 36. Under the Set Cover Conjecture, there is no O∗(2o(κ2(A)))-time
algorithm for solving instances A of Universality.

Suggestions for Further Studies. (A) For the simple FPT-results for this
(and similar) automata problems, polynomial kernel questions have barely been
studied. This is also true for all the related classical automata problems. (B)
There are slight but noticeable gaps between lower and upper bounds on running
times (assuming ETH). More gaps can be found in related automata problems,
as discussed in [34]. Is it possible to close these gaps, possibly using hypotheses
different from ETH? (C) Unlike this section might suggest, most work has been
put into studying automata intersection problems (among the classical algo-
rithmic questions about finite automata); see [34,73,91,100,102]. Relatively few
efforts have been put into related questions or into other automata models; we
only mention here [37,38] and the references given in these papers.

8 Sixth Case Study: Parsing Theory

Coming from FL theory courses, where the Chomsky hierarchy is often taught
with indicating a certain relevance to areas like Compiler Construction or also to
(Computational) Linguistics, one might get disappointed when actually encoun-
tering these two mentioned areas. In the former case, the regular languages seem
to be relevant and also some parts of the context-free languages, but not much
more. In the second case, the situation is even more disillusioning: there, formal
language classes more expressive than context-free but being not much more
complex with respect to parsing are most interesting.

Even the typical parsing algorithms like CYK or Earley’s mostly taught at
FL undergraduate courses are not really relevant, as their cubic complexity is
too much for typical applications in Compiler Construction. Rather, one resorts
to deterministic context-free languages, also because they allow for giving unam-
biguous interpretations in the sense of unique parse trees. But is really necessary
to spend cubic time for parsing context-free languages?

In a positive (algorithmic) sense, this question was answered already by
Valiant [94] in a paper entitled Parsing (general context-free recognition) in time
O(nω). Here, n is the length of the string to be parsed, and ω is the exponent
of multiplying two square matrices. At the time of that paper, this was still
Strassen’s multiplication, i.e., ω ≈ 2.81. If we want to use this method in a

22 H. Fernau

practical algorithm, this might be still a method of choice. Yet, in theory, ω has
improved to 2.3727, as shown by Vassilevska Williams in [105]. Whether it can
be further improved or not, as well as relations to other problems, is discussed
in a recent FOCS paper of Alman and Vassilevska Williams [4]. Alternatives
to Valiant’s original algorithm are discussed in [45,80]. Actually, Rytter called
Valiant’s algorithm probably the most interesting algorithm related to formal lan-
guages. This is a good reason to study it further here.

A natural question in our context is: Can we parse context-free grammars
faster than multiplying matrices? This question was first addressed in a paper
of Lee [58] with the title Fast context-free parsing requires fast Boolean matrix
multiplication. The drawback of the underlying construction is that this is only
true for grammars whose size grows with n6, where n is the length of the string to
be parsed. This is not a very realistic scenario. Abboud, Backurs, and Vassilevska
Williams have fixed this issue in [1]. This fine-grained reduction works for a
specific CF grammar, so that the previous dependence between grammar size
and string length no longer holds. To get an idea how these results look like on
a more technical level, we cite the following theorem.

Theorem 37. There is context-free grammar Gfix of constant size such that if
we can determine if a string of length n belongs to L(Gfix) in T (n) time, then
k-Clique on n-vertex graphs can be solved in O(T (nk/3+1)) time, for any k ≥ 3.

Hence, under the mentioned k-Clique Conjecture, context-free parsing cannot
be faster than O(nω).

We remark that there are extensions of context-free grammars, like Boolean
grammars [72], that admit parsers like Valiant’s; therefore, the lower bounds
transfer to them immediately. For several related problems in computational
biology, we refer to [13,74,107].

We are now reporting on one more problem directly related to parsing,
namely to parsing tree-adjoining grammars. Notice that these are quite impor-
tant for computational linguistics. We are not going to give a detailed introduc-
tion into tree-adjoining grammars, but rather refer to the textbook [54] that cov-
ers this and similar mechanisms from a linguistic yet mathematically profound
perspective. Tree-adjoining grammars extend context-free ones in a way that
allows for representing several linguistically relevant features beyond context-
free languages. They yield one of the basic examples for mildly context-sensitive
languages. The parsing is still possible in polynomial time, more precisely, the
textbook algorithm will be in O(n6), where n is the length of the string to be
parsed. Yet, Rajasekaran and Yooseph’s parser [76,77] runs in O(n2ω). While
this solved a previously well-known open problem in Computational Linguistics,
it is interesting that a negative result pre-dated this algorithmic one. Satta [83]
showed a reverse relation, actually inspiring Lee’s work. But, not surprisingly,
it comes with a similar drawback: This lower-bound is only true for grammars
whose size grows with n6. Bringmann and Wellnitz [15] have improved this result
as follows.

Modern Aspects of Complexity Within Formal Languages 23

Theorem 38. There is a tree-adjoining grammar Gfix of constant size such
that if we can decide in time T (n) whether a given string of length n can be
generated from Gfix, then 6k-Clique can be solved in time O(T (nk+1 log n)),
for any fixed k ≥ 1.

A consequence would be: An O(n2ω−ε)-algorithm for TAL recognition would
prove that 6k-Clique can be solved in time Õ(n(2ω−ε)(k+1)) ⊆ O(n(ω/3−δ)6k),
contradicting the k-Clique Conjecture.

Suggestions for Further Studies. (A) Tree-adjoining grammars (TAGs) have
been quite popular in Computational Linguistics in the 1990s, but this has
calmed down a bit due to various shortcomings, both regarding parsing com-
plexity (as discussed above) and the expressiveness of this formalism. Possibly,
Formal Languages could help in the second issue by coming up with grammatical
mechanisms that are more powerful than TAGs but do not need more compu-
tational resources for parsing. For instance, can the ideas underlying Boolean
grammars be extended towards TAGs? (B) The whole topic of parsing has been
a bit neglected in the Formal Language community. This is something that should
change, in the best interest of the FL community. Whoever likes to start work-
ing in this direction should not overlook the rich annotated bibliography with
nearly 2000 entries by Grune and Jacobs [46], available at https://dickgrune.
com/Books/PTAPG_2nd_Edition/Additional.html. (C) Since four decades, it
is open if EDT0L systems can be parsed in polynomial time [79, Page 315].
Weakening this question, one could also ask [29] if there is some O∗(f(|N |))-
time algorithm for parsing, where N is the set of nonterminal symbols.

9 Conclusions

With this survey, we could only highlight some of the many results that have
been obtained in the meantime regarding multivariate analysis, but also regard-
ing fine-grained complexity results. Yet, there are some common themes, as
the role of the alphabet size, or also the richness of natural parameter choices.
Another typical observation is that often simple parameterized algorithms can-
not be improved under certain complexity assumptions. All this gives these prob-
lem a flavor different from, say, graph problems.

We preferred to focus on six problems, rather than trying to discuss all of
them. Yet, in these conclusions, we are going to mention at least some further
papers.

For instance, there is a vast body of literature on string problems. In fact,
string problems were among the first ones where a true multivariate analysis
was undertaken (without naming it such); see [27]. For a survey on these types
of analyses for string problems, we refer to [16]. String problems have been also
further investigated from the viewpoint of fine-grained complexity; see [2].

The related area of pattern matching would have also deserved a closer look.
Let us suggest [35,39] and the literature cited therein for further reading. To the

https://dickgrune.com/Books/PTAPG_2nd_Edition/Additional.html
https://dickgrune.com/Books/PTAPG_2nd_Edition/Additional.html

24 H. Fernau

readers otherwise more interested in graph-theoretic problems, it might be inter-
esting to learn that the parameter treewidth well-known from graph algorithms
has been also introduced in the context of patterns in [78].

String problems have also tight connections to several problems arising in
computational biology. We refrain from giving any further references here, as
this would finally surpass any reasonable length of the list of citations, but it
should be clear that there are scores of papers on the parameterized and also on
the fine-grained complexity of such problems.

In the context of stochastic automata, the Viterbi algorithm is central; its
optimality is considered in [9].

Finally, let us discuss possible connections to Descriptional Complexity (with-
in FL). One question of this sort is about smallest representations (within certain
formalisms). One such example is also grammar-based compression, another one
the minimization of automata or expressions, see [11,53]. Further on, one could
consider questions as Given an automaton, is there an equivalent representation
with certain additional restrictions? which are typical for this area, but have not
yet been considered from a multivariate or fine-grained angle. We only refer to
two survey papers of Holzer and Kutrib [48,49].

Acknowledgements. We are grateful to many people giving feedback to the ideas
presented in this paper. In particular, Anne-Sophie Himmel, Ulrike Stege, and Petra
Wolf commented on earlier versions of the manuscript.

References

1. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are
optimal, so is Valiant’s parser. In: Guruswami, V. (ed.) IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 98–117. IEEE Computer
Society (2015)

2. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7_4

3. Abu-Khzam, F.N., Fernau, H., Langston, M.A., Lee-Cultura, S., Stege, U.: A
fixed-parameter algorithm for string-to-string correction. Discrete Optim. 8, 41–
49 (2011)

4. Alman, J., Williams, V.V.: Limits on all known (and some unknown) approaches
to matrix multiplication. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pp. 580–591. IEEE Computer Society
(2018)

5. Alon, N., Shpilka, A., Umans, C.: On sunflowers and matrix multiplication. Com-
put. Complex. 22(2), 219–243 (2013)

6. Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control
(Now Inf. Comput.) 39, 337–350 (1978)

7. Arpe, J., Reischuk, R.: On the complexity of optimal grammar-based compression.
In: 2006 Data Compression Conference (DCC), pp. 173–182. IEEE Computer
Society (2006)

https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-662-43948-7_4

Modern Aspects of Complexity Within Formal Languages 25

8. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018)

9. Backurs, A., Tzamos, C.: Improving Viterbi is hard: better runtimes imply faster
clique algorithms. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML, Proceedings of Machine Learn-
ing Research, vol. 70, pp. 311–321. PMLR (2017)

10. Barbay, J., Pérez-Lantero, P.: Adaptive computation of the swap-insert correction
distance. ACM Trans. Algorithms 14(4), 49:1–49:16 (2018)

11. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. Syst. Sci. 78(1), 198–210 (2012)

12. Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.): The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on
the Occasion of His 60th Birthday. LNCS, vol. 7370. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30891-8

13. Bringmann, K., Grandoni, F., Saha, B., Williams, V.V.: Truly sub-cubic algo-
rithms for language edit distance and RNA-folding via fast bounded-difference
min-plus product. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Founda-
tions of Computer Science, FOCS, pp. 375–384. IEEE Computer Society (2016)

14. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS, pp. 79–97. IEEE Com-
puter Society (2015)

15. Bringmann, K., Wellnitz, P.: Clique-based lower bounds for parsing tree-adjoining
grammars. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual
Symposium on Combinatorial Pattern Matching, CPM. LIPIcs, vol. 78, pp. 12:1–
12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

16. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algo-
rithmics for NP-hard string problems. EATCS Bull. 114 (2014). http://bulletin.
eatcs.org/index.php/beatcs/article/view/310/292

17. Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complex-
ity of grammar-based compression over fixed alphabets. In: Chatzigiannakis, I.,
Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) International Colloquium on
Automata, Languages and Programming, ICALP, Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 55, pp. 122:1–122:14. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2016)

18. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

19. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

20. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47,
149–158 (1986)

21. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC, pp. 151–158.
ACM (1971)

22. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms
12(3), 41:1–41:24 (2016)

23. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

24. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4612-0515-9

https://doi.org/10.1007/978-3-642-30891-8
http://bulletin.eatcs.org/index.php/beatcs/article/view/310/292
http://bulletin.eatcs.org/index.php/beatcs/article/view/310/292
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9

26 H. Fernau

25. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013)

26. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

27. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of
Closest Substring and related problems. In: Alt, H., Ferreira, A. (eds.) STACS
2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45841-7_21

28. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: parameter ecology and the deconstruction of computational complexity.
Eur. J. Combin. 34(3), 541–566 (2013)

29. Fernau, H.: Parallel grammars: a phenomenology. GRAMMARS 6, 25–87 (2003)
30. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Univer-

sität Tübingen, Germany, Habilitationsschrift (2005)
31. Fernau, H.: Parameterized algorithmics for d-hitting set. Int. J. Comput. Math.

87(14), 3157–3174 (2010)
32. Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-

hitting set. Algorithmica 57, 97–118 (2010)
33. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard prob-

lems on deterministic finite automata. J. Comput. Syst. Sci. 81(4), 747–765 (2015)
34. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time

hypothesis. Algorithms 10(24), 1–25 (2017)
35. Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with vari-

ables: fast algorithms and new hardness results. In: Mayr, E.W., Ollinger, N.
(eds.) 32nd International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2015), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 30, pp. 302–315. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

36. Fernau, H., Meister, D., Schmid, M.L., Stege, U.: Editing with swaps and inserts
on binary strings (2014). Manuscript

37. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture pro-
cessing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95,
232–258 (2018)

38. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and com-
plexity results on jumping finite automata. Theor. Comput. Sci. 679, 31–52 (2017)

39. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of
string morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)

40. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

41. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for
the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30559-0_21

42. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16533-7

43. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset
word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS,
vol. 9234, pp. 243–255. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48057-1_19

44. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
(Now Inf. Comput.) 37, 302–320 (1978)

https://doi.org/10.1007/3-540-45841-7_21
https://doi.org/10.1007/3-540-45841-7_21
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-662-48057-1_19
https://doi.org/10.1007/978-3-662-48057-1_19

Modern Aspects of Complexity Within Formal Languages 27

45. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer.
ACM Trans. Program. Lang. Syst. 2(3), 415–462 (1980)

46. Grune, D., Jacobs, C.J.H.: Parsing Techniques - A Practical Guide. Monographs
in Computer Science. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
0-387-68954-8

47. Higuera, C.: Grammatical inference. Learning automata and grammars. Cam-
bridge University Press, Cambridge (2010)

48. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found.
Comput. Sci. 22(7), 1533–1548 (2011)

49. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inf. Comput. 209(3), 456–470 (2011)

50. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

51. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In:
Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp.
35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9_4

52. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

53. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

54. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14846-0

55. Kieffer, J.C., Yang, E.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

56. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Sympo-
sium on Foundations of Computer Science, FOCS, pp. 254–266. IEEE Computer
Society (1977)

57. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)

58. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM 49(1), 1–15 (2002)

59. Lehman, E., Shelat, A.: Approximations algorithms for grammar-based compres-
sion. In: Thirteenth Annual Symposium on Discrete Algorithms SODA. ACM
Press (2002)

60. Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative lempel-
ziv dictionaries. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao,
B.Y. (eds.) Proceedings of the 25th International Conference on World Wide Web,
WWW, pp. 807–816. ACM (2016)

61. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343
(1982)

62. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. EATCS Bull. 105, 41–72 (2011)

63. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances.
J. Comput. Syst. Sci. 20(1), 18–31 (1980)

64. Meister, D.: Using swaps and deletes to make strings match. Theor. Comput. Sci.
562, 606–620 (2015)

65. Andres Montoya, J., Nolasco, C.: On the synchronization of planar automata. In:
Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp.
93–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1_7

66. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carolinae 26(2), 415–419 (1985)

https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-3-319-46049-9_4
https://doi.org/10.1007/978-3-642-14846-0
https://doi.org/10.1007/978-3-319-77313-1_7

28 H. Fernau

67. Nevill-Manning, C.G.: Inferring sequential structure. Ph.D. thesis, University of
Waikato, New Zealand (1996)

68. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in
sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)

69. Nevill-Manning, C.G., Witten, I.H.: On-line and off-line heuristics for inferring
hierarchies of repetitions in sequences. Proc. IEEE 88, 1745–1755 (2000)

70. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

71. Niedermeier, R.: Reflections on multivariate algorithmics and problem parame-
terization. In: Marion, J.Y., Schwentick, T. (eds.) 27th International Symposium
on Theoretical Aspects of Computer Science (STACS 2010), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 5, pp. 17–32. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2010)

72. Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars.
Theor. Comput. Sci. 516, 101–120 (2014)

73. de Oliveira Oliveira, M., Wehar, M.: Intersection non-emptiness and hardness
within polynomial time. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol.
11088, pp. 282–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98654-8_23

74. Pinhas, T., Zakov, S., Tsur, D., Ziv-Ukelson, M.: Efficient edit distance with
duplications and contractions. Algorithms Mole. Biol. 8, 27 (2013)

75. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be
approximated within any polynomial. J. ACM 40, 95–142 (1993)

76. Rajasekaran, S.: Tree-adjoining language parsing in O(n6) time. SIAM J. Comput.
25(4), 862–873 (1996)

77. Rajasekaran, S., Yooseph, S.: TAL recognition in O(M(n2)) time. J. Comput.
Syst. Sci. 56(1), 83–89 (1998)

78. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput.
239, 87–99 (2014)

79. Rozenberg, G., Salomaa, A.K.: The Mathematical Theory of L Systems. Academic
Press, Cambridge (1980)

80. Rytter, W.: Context-free recognition via shortest paths computation: a version of
Valiant’s algorithm. Theor. Comput. Sci. 143(2), 343–352 (1995)

81. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302, 211–222 (2003)

82. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490_2

83. Satta, G.: Tree-adjoining grammar parsing and Boolean matrix multiplication. J.
Comput. Linguist. 20(2), 173–191 (1994)

84. Shannon, C.E.: A universal Turing machine with two internal states. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol.
34, pp. 157–165. Princeton University Press (1956)

85. Sirakov, B., de Souza, P.N., Viana, M. (eds.): Proceedings of the International
Congress of Mathematicians 2018 (ICM 2018). World Scientific (2019)

86. Siyari, P., Gallé, M.: The generalized smallest grammar problem. In: Verwer, S.,
van Zaanen, M., Smetsers, R. (eds.) Proceedings of the 13th International Con-
ference on Grammatical Inference, ICGI 2016, JMLR Workshop and Conference
Proceedings, vol. 57, pp. 79–92. JMLR.org (2017)

https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2

Modern Aspects of Complexity Within Formal Languages 29

87. Stockmeyer, L.J.: The complexity of decision problems in automata theory and
logic. Ph.D. thesis, Massachusetts Institute of Technology, Department of Elec-
trical Engineering (1974)

88. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, STOC, pp. 1–9. ACM (1973)

89. Storer, J.A.: NP-completeness results concerning data compression. Technical
report 234, Department of Electrical Engineering and Computer Science, Prince-
ton University, USA, November 1977

90. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982)

91. Swernofsky, J., Wehar, M.: On the complexity of intersecting regular, context-free,
and tree languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 414–426. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6_33

92. Szykuła, M.: Improving the upper bound on the length of the shortest reset word.
In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on Theoretical Aspects
of Computer Science (STACS 2018), Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 96, pp. 56:1–56:13. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2018)

93. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl.
Math. 8, 85–89 (1984)

94. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput.
Syst. Sci. 10(2), 308–315 (1975)

95. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

96. Vorel, V., Roman, A.: Parameterized complexity of synchronization and road
coloring. Discrete Math. Theor. Comput. Sci. 17, 283–306 (2015)

97. Wagner, R.A.: On the complexity of the extended string-to-string correction prob-
lem. In: Proceedings of seventh Annual ACM Symposium on Theory of Comput-
ing, STOC 1975, pp. 218–223. ACM Press (1975)

98. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974)

99. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and
related problems. Ph.D. thesis, Department of Computer and Information Science,
Linköpings universitet, Sweden (2007)

100. Todd Wareham, H.: The parameterized complexity of intersection and composi-
tion operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA
2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44674-5_26

101. Watt, N.: String to string correction kernelization. Master’s thesis, University of
Victoria, Canada (2013)

102. Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp.
354–362. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-
7_30

103. Welch, T.A.: A technique for high-performance data compression. IEEE Comput.
17, 8–19 (1984)

https://doi.org/10.1007/978-3-662-47666-6_33
https://doi.org/10.1007/978-3-540-88282-4_4
https://doi.org/10.1007/3-540-44674-5_26
https://doi.org/10.1007/3-540-44674-5_26
https://doi.org/10.1007/978-3-662-43951-7_30
https://doi.org/10.1007/978-3-662-43951-7_30

30 H. Fernau

104. Williams, V.V.: Hardness of easy problems: basing hardness on popular con-
jectures such as the strong exponential time hypothesis (invited talk). In: Hus-
feldt, T., Kanj, I.A. (eds.) 10th International Symposium on Parameterized and
Exact Computation, IPEC, LIPIcs, vol. 43, pp. 17–29. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015)

105. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC, pp. 887–898. ACM (2012)

106. Wong, C.K., Chandra, A.K.: Bounds for the string editing problem. J. ACM
23(1), 13–16 (1976)

107. Zakov, S., Tsur, D., Ziv-Ukelson, M.: Reducing the worst case running times of
a family of RNA and CFG problems, using Valiant’s approach. Algorithms Mole.
Biol. 6, 20 (2011)

108. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24, 530–536 (1978)

Observation and Interaction
Invited Paper

Edward A. Lee(B)

UC Berkeley, Berkeley, CA 94720, USA
eal@berkeley.edu

https://ptolemy.berkeley.edu/~eal/

Abstract. This paper connects three concepts in computer science,
zero-knowledge proofs, causal reasoning, and bisimulation, to show that
interaction is more powerful than observation. Observation is the use of
input data plus, possibly, tractable computation, in such a way that the
observer has no effect on the source of the data. Interaction is obser-
vation plus action that affects the source of the data. Observation lets
the data “speak for itself” and is objective, whereas interaction is first-
person and subjective. Zero-knowledge proofs are a strategy for building
confidence in some fact while acquiring no additional information other
than that the fact is likely to be true. They fall short of absolute cer-
tainty and they require interaction. This paper shows that absolutely
certainty for such scenarios can be modeled by a bisimulation relation.
Causal reasoning has also been shown to require subjective involvement.
It is not possible by observation alone, and like zero-knowledge proofs,
requires first-person involvement and interaction. This paper shows that
bisimulation relations can reveal flaws in causal reasoning.

Keywords: Zero-knowledge proof · Causal reasoning · Bisimulation ·
Randomized controlled trials

1 Interaction vs. Observation

A number of researchers have argued that interaction is more powerful than
observation [1,4,10,16,18]. What I mean by “observation” here is the use of
input data plus, possibly, tractable computation. What I mean by “interaction”
is observation plus action that affects the input data. Interaction combines obser-
vation with action in a closed feedback loop.

In this paper, which is largely an extract from my forthcoming book [8],
I will connect three Turing-Award-winning concepts that I believe have never
before been connected in this way. Specifically, I will connect zero-knowledge
proofs (Goldwasser and Micali, 2012 Turing Award), bisimulation (Milner, 1991

This work was supported in part by the National Science Foundation, NSF award
#1446619 (Mathematical Theory of CPS).

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 31–42, 2019.
https://doi.org/10.1007/978-3-030-13435-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_2&domain=pdf
http://orcid.org/0000-0002-5663-0584
https://doi.org/10.1007/978-3-030-13435-8_2

32 E. A. Lee

Turing Award), and causal reasoning (Pearl, 2011 Turing Award) with each
other and with the notion that interaction is more powerful than observation.
I will assume in this paper that the reader is familiar with the oldest of these
concepts, bisimulation, but I assume no prior knowledge of the two newer ones.
For a gentle introduction to bisimulation, see [7], Chap. 14. I will also boldly (and
perhaps foolishly) relate these concepts to a treacherous quagmire in philosophy,
the notion of free will.

Interaction as a tool is closely related to the concept of feedback, which has
a long history. In the 1920s, at Bell Labs, Harold Black found that negative
feedback could compensate for the deficiencies in amplifiers of the day [3]. His
feedback circuits push on their environment, measure the extent to which its
reaction deviates from the desired reaction, and adjust the pushing to get closer
to a desired objective.

Wiener, during World War II, also used feedback for the automatic aiming
and firing of anti-aircraft guns. Wiener coined the term “cybernetics” for the
conjunction of physical processes, computation that governs the actions of those
physical processes, and communication between the parts [19]. He derived the
term from the Greek word for helmsman, governor, pilot, or rudder.

Feedback, which is used in many engineered systems today, is a tight inter-
action between a system and its environment. Turing-Church computation can
be used as building blocks, for example to calculate adjustments, but fundamen-
tally, they are just components in a bigger picture. Interactive systems go well
beyond what Turing-Church computation alone can accomplish.

To make a connection with the concept of free will, I will rely on current
trends in psychology, specifically the thesis of embodied cognition, where the
mind “simply does not exist as something decoupled from the body and the
environment in which it resides” [17, p. 7]. The mind does not just interact
with its environment, but rather the mind is an interaction of the brain with
its environment. A cognitive being is not an observer of its environment, but
rather a collection of feedback loops that include the body and its environment,
an interactive system.

Zero Knowledge Proofs

Zero-knowledge proofs were first developed by Goldwasser and Micali [5,6]. They
were a first instance of a more general idea, interactive proofs, which bring ran-
domness and interaction together. An interactive proof, developed independently
by Babai [2], can be thought of as a game with two players, a prover (named
Merlin by Babai) and a verifier (named Arthur by Babai). The verifier, Arthur,
has limited ability to compute. Specifically, Arthur is assumed to be able to
perform only computations that can be completed in a reasonable amount of
time on a modern sequential computer. The prover, Merlin, is allowed to per-
form more difficult computations, but I will not make use of that feature in this
paper.

Zero-knowledge proofs are easy to understand using a story developed by
Quisquater and Guillou [14]. Assume that Merlin knows something important,

Observation and Interaction 33

like a password, and wants to prove to Arthur that he knows this. Merlin is a
very private person, so while he wants to convince Arthur that he knows the
password, he does not want Arthur to be able to convincingly tell anyone else
that he knows the password. His objective is only to convince Arthur and give
him exactly zero additional information. Note that Merlin’s objective cannot be
accomplished by simply telling Arthur the password because then Arthur will
then also know the password.

In this story, there is an oddly shaped cave (see Fig. 1), where the entrance
tunnel forks into two tunnels labeled A and B. Both tunnels are dead ends,
but there is door connecting the two ends. The door can only be opened with a
password that only Merlin knows.

One way that Merlin could prove to Arthur that he knows the password is
to enter the cave together with Arthur, and while Arthur waits at the mouth
of the cave, go down tunnel A and come back out through tunnel B. Arthur
will be convinced that Merlin knows the password, and Arthur will not himself
know the password. But if Arthur surreptitiously records the event with a video
camera, then Arthur would be able to convince anyone else that Merlin knows the
password. This makes the information that Merlin knows the password available
to a third-person observer. The goal is that the information be available only to
the first-person interactor, Arthur.

So, instead, Arthur waits outside the cave while Merlin goes in and picks one
of the tunnels to go down. Suppose he picks tunnel B and goes as far as the
door. Then Arthur comes into the cave as far as the fork and randomly calls out
either A or B. He cannot see which tunnel Merlin went down. If he calls A, then
Merlin has to use his password, open the door, and come out through tunnel
A. Arthur is not yet sure that Merlin knows the password, but he can conclude
that it is equally likely that he knows it as that he doesn’t know it.

Arthur and Merlin then repeat the experiment. If Merlin successfully comes
out of the tunnel that Arthur identifies a second time, then Arthur can conclude
that the probability that he knows the password is now 3/4. It would have

password
required

A

B

Merlin

Arthur

Fig. 1. Ali Baba’s cave, illustrating zero-knowledge proofs.

34 E. A. Lee

required quite a bit of luck for him to not have to use the password twice in
a row. Repeating the experiment again will raise the probability to 7/8. After
10 repeats, the likelihood that he didn’t need the password drops to about 1 in
1000. By repeating the experiment, Merlin can convince Arthur to any level he
demands short of absolute certainty.

Unlike the previous experiment, where Merlin just went in one tunnel and
came out the other, this new experiment does not give Arthur the power to con-
vince a third party, say Sarah, that Merlin knows the password. Arthur could
videotape the whole experiment, but Sarah is a savvy third party, and she sus-
pects that Arthur and Merlin colluded and agreed ahead of time on the sequence
of A’s and B’s that Arthur would call out. Only Arthur and Merlin can know
whether collusion occurred. So Sarah is not convinced that Merlin knows the
password the way Arthur is convinced. Merlin retains plausible deniability, and
only Arthur knows for sure (almost for sure) that Merlin knows the password.

There are several fascinating aspects to this story. First, for Merlin to prove
to Arthur that he knows the password while not giving Arthur the power to
pass on that knowledge, interaction is required. If Arthur simply watches Merlin,
observing but not interacting, then anything Merlin does to convince Arthur that
he knows the password gives Arthur the power to pass on that knowledge, for
example by making a video. He can then convince Sarah that Merlin knows the
password by simply showing her the video. But by interacting, Merlin is able to
convince Arthur and only Arthur. No third party observer will be convinced. You
have to actively participate to be convinced. Interaction is more powerful than
observation, but for interaction to work, you have to be a first-person participant
in the interaction. This is what interaction means! Arthur’s first-person action,
choosing A or B at random, is necessarily subjective. Only he knows that no
collusion was involved.

Another fascinating aspect of this story is the role of uncertainty. Using this
scheme, it is not possible to give Arthur absolute certainty without giving Arthur
more than Merlin wants to. The residual uncertainty that Arthur retains can be
made as small as we like, but it cannot be reduced to zero, at least not by this
technique.

A third fascinating aspect is the role of randomness. Arthur has to know
that the sequence of A’s and B’s that he calls out are not knowable to Merlin
(with high probability), but that fact has to be hidden from anyone else. Arthur
could choose A or B each time using his free will, if he has free will. Actually, all
that is required is that Arthur believe that he has free will and believes that he
has chosen randomly between A and B. Given this belief, he will be convinced
that with high probability Merlin knows the password. It makes no difference
whether the choice is made by Arthur’s conscious mind or by some unconscious
mechanism in his brain.

Suppose that Arthur chooses instead to rely on an external source of random-
ness rather than some internal free will. He could, for example, flip a coin each
time to choose between A and B. But this could result in leaking information
because now he could videotape the coin flipping, and the resulting video would
convince Sarah and any other third party as much as it convinces Arthur. It will

Observation and Interaction 35

be evident to any observer that Arthur is not colluding with Merlin. Observers
could easily imagine themselves flipping the coin, so Arthur is just a proxy for
their own first-person interaction. I will later leverage this strategy to explain
why randomized controlled trials work to determine causal relationships. But
for the goal of preserving Merlin’s privacy, Arthur has to generate the choices
between A and B in a hidden way, and by hiding this, he gives up the ability to
convince any third party.

Even Arthur’s knowledge, however, is not certainty. Some background
assumptions are needed. Arthur has to believe in his free will, and dismiss ideas
like that Merlin is somehow manipulating his subconscious brain to make col-
luding choices. Ultimately, a little bit of trust is required to get past all the
conspiracy theories. Once we open the door to trust, we have to admit that a
third person may decide to trust Arthur and assume that he is not colluding
with Merlin, in which case, despite Merlin’s wishes, his secret will be out.

Merlin and Arthur Bisimulate

Merlin and Arthur’s interaction in Fig. 1 can be modeled using automata, as
shown in Fig. 2. The model for Arthur is shown at the top. It shows that Arthur
enters the cave in the first time instant, then nondeterministically calls out A
or B, ending in one of two possible states, endA or endB. The second model
shows Merlin under the assumption that he does not know the password. He
also enters the cave in the first instant, but nondeterministically goes to one of
two locations, insideA or insideB. Once he is one of these locations, he has no
choice but to come out the same way he went in.

The third model in the figure shows Merlin under the assumption that he
does know the password. One way to understand the difference between the
second and third models is that, in the second, the decision about which tunnel
to exit from is made earlier than in the third model. To make the decision later,
in the second reaction of the state machine, Merlin needs to know the password.
To make it earlier, in the first reaction, there is no need to know the password.

Here is where I will boldly make a connection with the concept of free will.
Arthur has to make one decision, which tunnel to call out, A or B. Merlin has
to make two decisions, which tunnel to enter, and which to exit. If Merlin does
not know the password, the first decision determines the second, and, once the
first decision is made, Merlin has no free will to make the second. On the other
hand, if Merlin does know the password, then the second decision remains free,
and Merlin is free to exit from the tunnel called out by Arthur. Here, “knowing
the password” is a proxy for an ability to exercise the choice to pass through
the door. If Merlin does not know the password, there is no such choice, and the
tunnel by which he exits has been preordained. This lack of free will illustrates
the incompatibilist interpretation in philosophy, where free will is incompatible
with determinism. On the other hand, Arthur’s free will in choosing to call out A
or B illustrates the compatibilist interpretation, where it doesn’t really matter
whether the resolution of alternatives is predetermined or not. If Arthur’s brain
internally uses a deterministic pseudo-random sequence generator, the outcome
is the same as long as he believes the choice was free.

36 E. A. Lee

Fig. 2. Automata models of Arthur and Merlin, with and without the password.

Given the many trajectories that the game can follow, we can ask why one
trajectory occurs over another, how the determination of a trajectory is made,
or when the determination between alternatives is made. If, for example, the
determination between alternative trajectories is made early, then according to
the incompatibilist interpretation, later in the game, there is no free will. If on
the other hand, the determination between alternative trajectories is made as
late as possible, say, just before the selection of alternatives has any effect on
anything else, then there remains at least a possibility of free will. In any case,
the questions of how and why a determination is made can only really make
sense after we answer the question of when.

How can we determine whether the selection between alternatives is made
early or late? I will leverage insights first exposed by Robin Milner, who
showed how to compare automata using simulation and bisimulation relations.
In automata theory, a passive observer of a system cannot tell whether selection
is made early or late. In order to be able to tell, an observer must interact with
the system. It is not sufficient to just observe the system. Interaction is required
to determine whether there is free will, and first-person interaction yields more
than observation. This theory, in fact, helps to explain why first-person interac-
tion is so different from third-person observation. It may even help us understand
what we mean by “first person.”

Observation and Interaction 37

Fig. 3. Automata model Merlin where he guesses the password.

Notice that all three automata in Fig. 2 are language equivalent. Each is capa-
ble of producing the output A or B and nothing more. But language equivalence
is not enough. Milner’s notion of simulation captures the difference between Mer-
lin (without password) and Merlin (with password). Specifically, Merlin (with
password) simulates Arthur, but Merlin (without password) does not. Merlin is
unable to make some of the moves that Arthur may demand.

The fact that Arthur simulates Merlin is what makes it possible for Arthur to
collude with Merlin. Arthur can match the decisions Merlin has already made.
Equivalently, Merlin can anticipate whether Arthur will call out A or B. If Merlin
does know the password, then Merlin is bisimilar to Arthur. They can perfectly
match each other’s moves regardless of who moves first at each time instant. No
collusion is needed.

Simulation relations, however, are not quite enough. Suppose instead that
Merlin does not know the password but rather guesses it each time he needs it.
This can be represented by the automaton in Fig. 3. Here, if Merlin correctly
guesses the password, he is able to fool Arthur no matter how many times they
perform the experiment. This gives Merlin’s automaton the ability to simulate
Arthur’s automaton. So Merlin (with guessing) simulates Arthur, and Arthur
simulates Merlin (with guessing). But Merlin (with guessing) is still not funda-
mentally equivalent to Arthur. The possibility of guessing incorrectly remains.

A bit of history may be helpful here. In the 1970s, Milner had introduced the
idea of simulation relations between automata. In 1980, David Park found a gap
in Milner’s prior notion of simulation. He noticed that even if two automata sim-
ulate each other, they can nevertheless exhibit significant differences in behavior
when they interact. Milner’s prior notion of simulation was unable to distinguish
Merlin (with password) from Merlin (with guessing).

Milner and Park together came up with a stronger notion of modeling that
they decided to call “bisimulation” [9,11]. Milner then fully developed and popu-
larized the idea.1 He showed that the difference between Merlin (with password)

1 Sangiorgi gives a nice overview of the historical development of this idea [15]. He
notes that essentially the same concept of bisimulation had also been developed in
the fields of philosophical logic and set theory.

38 E. A. Lee

and Merlin (with guessing) becomes evident only if the two automata inter-
act with one another. It is not enough to just observe each other, as he had
done previously with his simulation relations. Interaction is more powerful than
observation.

How is bisimulation about interaction whereas simulation is only about obser-
vation? To construct a simulation relation, the automaton being simulated moves
first in each round, and the automaton doing the simulating must match the
move. To construct a bisimulation relation, in each turn, either automaton can
move first and the other automaton has to be able to match the move. The ability
in the game to alternate which automaton moves first makes this fundamentally
an interactive game rather than a one-way observation.

It is easy to verify that there is no bisimulation relation between Merlin
(with guessing) and Arthur, nor between Merlin (with guessing) and Merlin
(with password). The lack of a bisimulation relation reveals the mismatch. But
there is a subtlety. To know that there is no bisimulation relation, we need to
know the structure of the automata. If we know that Merlin’s automaton has the
structure shown in Fig. 3, then we know that he does not know the password,
even if the possibility of a lucky guess remains.

This subtlety lends insight into why zero-knowledge proofs do not yield
certainty. Arthur is never absolutely certain that Merlin knows the password,
though by repeating the trial, be can reach any level of certainty he desires
short of absolute certainty. If Arthur were instead given the bisimulation rela-
tion, he would have a proof that Merlin knows the password. No uncertainty
would remain. But constructing that proof requires knowing the structure of
Merlin’s automaton, or equivalently, knowing that Merlin knows the password.

What really does bisimulation mean in this case? The two automata, Arthur
and Merlin (with password), have different structure, but they are fundamen-
tally indistinguishable. Arthur’s automaton represents what he demands from
someone who knows the password. Merlin’s automaton represents the capabil-
ities he acquires by knowing the password. The fact that these two automata
are bisimilar shows conclusively what Arthur is able to conclude with repeated
experiments, that Merlin knows the password. Hence, the repeated experiments
may provide evidence of bisimilarity that does not require knowing the detailed
structure of the automata. Such evidence will only be provided if the repeated
experiments are fair in the sense that all of the possible nondeterministic tran-
sitions occur in at least some of the trials (or infinitely often in an infinite
experiment).

Causal Reasoning

Pearl has argued that interacting with a system enables drawing conclusions
about causal relationships between pieces of that system, conclusions that are
much harder to defend without interaction [12,13]. Specifically, consider the clas-
sic problem of determining whether administering an experimental drug causes
a patient’s condition to improve. The gold standard for making such a deter-
mination is a double-blind randomized controlled trial (RCT), where a subset

Observation and Interaction 39

of patients from a population is chosen at random to receive the drug, and the
other patients in the trial receive a placebo. “Double blind” means that neither
the medical staff administering the drug nor the patients know whether they
are using the real drug or a placebo. “Randomized” means that the selection
of patients to receive treatment is not causally affected by anything other than
chance.

Why does an RCT work so well? Pearl explains this using causal diagrams,
which represent the ability one variable in a system has to cause perturbations
in another. Consider the causal diagram on the left in Fig. 4. The solid arrows
represent an assumed causal relationship between a “confounding factor” and
both the treatment and health of the patient. For example, suppose that some
treatment, when made available to a population, is more likely to be taken by
males than by females, and males are also more likely to recover than females.
In this case, a statistician will tell you that it is necessary to control for the sex
of the patient. Otherwise, you may derive erroneous conclusions from the data.
But the challenge, in many practical cases, is that the confounding factors are
not known or data about them are not available.

Consider instead the scenario in the center of Fig. 4. Suppose for example
that the “colliding factor” is whether a patient ends up in the hospital. Taking
the treatment, because of side effects, may cause the patient to end up in the
hospital. Poor health, where the treatment has been ineffective, could also result
in the patient ending up in the hospital. In this case, it would be a statistical error
to control for whether the patient ends up in the hospital. An effective treatment
could be rejected because, among patients that end up in the hospital, whether
they got the treatment and whether their health improved could be uncorrelated,
and also among patients who do not end up in the hospital, while in the general
population, there is a correlation between patients who receive treatment and
those whose health improves.

confounding
factor

treatment health?

confounding
factor

treatment health?

intervention
colliding
factor

treatment health?

Fig. 4. A causal diagram on the left guiding the evaluation of a treatment’s effectiveness
that requires controlling for a confounder on the left and not controlling for collider in
the center. On the right, intervention removes the effect of a confounder.

At the right of Fig. 4 is a causal diagram representing an intervention, a form
of interaction that Pearl calls a “do operator.” The intervention in a randomized
controlled trial (RCT) breaks any causal dependencies on whether the treatment
is taken by forcing the treatment to be taken or not taken according to a ran-
dom outcome. This removes the need to control for any other factors, known or
unknown.

40 E. A. Lee

Fig. 5. Randomized controlled trial model and model of a flawed trial.

The intervention is analogous to Arthur’s calling out of A or B to specify the
tunnel from which Merlin should exit. But there is an interesting twist here. The
purpose of a randomized controlled trial is to broadcast the information that a
drug works or does not work, whereas in the Merlin-Arthur scenario, the goal is
to ensure that the information that Merlin knows the password (analogous to the
drug works or does not work) is not available to a third party observer. Recall
that if Arthur visibly flips a coin, as opposed to using free will, to determine
whether to call out A or B, then the information that Merlin knows the password
becomes available to a third party observer. Analogous, in an RCT, the decision
of whether to administer the drug or a placebo should be made by a verifiably
random choice, not secretly by someone’s free will, in order for the outcome of
the trial to be trusted by an outside observer.

A properly constructed RCT can be represented by the automaton at the
top of Fig. 5. The important feature of this automaton is the determination of
whether the patient lives or dies is made after the determination of whether to
administer a placebo or the real drug. In an incorrectly constructed trial, shown
at the bottom of the figure, it is possible for a patient who is doomed to die
will get assigned a placebo and one that is destined to live will be given the
real drug. An unscrupulous researcher could, for example, assign the real drug

Observation and Interaction 41

to younger and healthier patients and the placebo to older and sicker patients,
thereby skewing the results of the trial.

The two automata in Fig. 5 simulate each other, but they are not bisimilar.
These automata say nothing about the probabilities of outcomes. They only
express possibilities. Hence, it is still possible to construct an invalid trial that
is bisimilar to the top automaton. For example, adding transitions from takingA
to dead and not takingB to living would make the lower automaton bisimilar to
the upper one, but the trial could still be skewed. But any automaton that is
not bisimilar to the upper one will surely be invalid.

Humanity Requires Interaction

Interacting components can observe and be observed and can affect and be
affected. Such interaction can accomplish things that are not possible with obser-
vation alone. The implications of this are profound. It reinforces Milner’s obser-
vation that machines that look identical to an observer are not identical if you
can interact with them. It reinforces Goldwasser and Micali’s observation that
interaction can do things that are not possible without interaction. It reinforces
Pearl’s observation that reasoning about causality requires interaction. It also
reinforces the hypothesis of embodied cognition from psychology. If our sense of
self depends on bidirectional interaction, the kind of dialog of Milner’s model,
where either party can observe or be observed, then our sense of self cannot be
separated from our social interactions. Our minds cannot exist as an observer
of the universe alone. And indeed, our interaction with the world around us has
this bidirectional character. Sometimes we react to stimulus in ways that affect
those around us, and sometimes we produce stimulus and watch the reactions of
those around us. Such dialog seems to be an essential part of being human and
may even form the foundations for language and even thought.

Moreover, such dialog has deep roots in physics. Quantum physics has taught
us that no observation of a physical system is possible without disrupting the sys-
tem in some way. In fact, quantum physics has real problems with any attempt
to separate the observer from the observed. The observed automaton necessarily
observes the observer. Passive observation in the form of unidirectional simula-
tion is impossible in our natural universe. This suggests that simulation relations
alone are not a reasonable model of modeling (a “metamodel,” if you will permit
me). Bisimulation is a better choice.

In an objectivist approach to science, we are often taught to let the data
“speak for itself,” to avoid subjective bias, where our actions may affect the data.
I have collected in this paper several powerful arguments that being so objective
has serious limitations. Subjectivity, first-person involvement, and interaction
with the sources of data are sometimes essential.

42 E. A. Lee

References

1. Agha, G.A.: Abstracting interaction patterns: a programming paradigm for open
distributed systems. In: Najm, E., Stefani, J.B. (eds.) Formal Methods for Open
Object-based Distributed Systems. IFIPAICT, pp. 135–153. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-0-387-35082-0 10

2. Babai, L.: Trading group theory for randomness. In: Symposium on Theory of
Computing (STOC), pp. 421–429. ACM (1985). https://doi.org/10.1145/22145.
22192

3. Black, H.S.: Stabilized feed-back amplifiers. Electr. Eng. 53, 114–120 (1934)
4. Goldin, D., Smolka, S., Attie, P., Sonderegger, E.: Turing machines, transition

systems, and interaction. Inf. Comput. 194(2), 101–128 (2004)
5. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-

tive proof systems (extended abstract). In: Symposium on Theory of Computing
(STOC), pp. 291–304. ACM (1985)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

7. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach, Second edn. MIT Press, Cambridge (2017). http://LeeSeshia.
org

8. Lee, E.A.: Living Digital Beings – A New Life Form on Our Planet? MIT Press,
Cambridge (2020, to appear)

9. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

10. Milner, R.: Elements of interaction. Commun. ACM 36, 78–89 (1993)
11. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

12. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge Uni-
versity Press, Cambridge (2000). (2009)

13. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect.
Basic Books, New York (2018)

14. Quisquater, J.-J., et al.: How to explain zero-knowledge protocols to your children.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 628–631. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 60

15. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. 31(4), 15:1–15:41 (2009). https://doi.org/10.1145/1516507.
1516510. Article 15, Pub. date: May 2009

16. Talcott, C.L.: Interaction semantics for components of distributed systems. In:
Najm, E., Stefani, J.B. (eds.) Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS). IFIPAICT, pp. 154–169. Springer, Heidelberg
(1996). https://doi.org/10.1007/978-0-387-35082-0 11

17. Thelen, E.: Grounded in the world: developmental origins of the embodied mind.
Infancy 1(1), 3–28 (2000)

18. Wegner, P.: Why interaction is more powerful than algorithms. Commun. ACM
40(5), 80–91 (1997). https://doi.org/10.1145/253769.253801

19. Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the
Machine. Librairie Hermann & Cie, Paris, and MIT Press, Cambridge (1948)

https://doi.org/10.1007/978-0-387-35082-0_10
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
http://LeeSeshia.org
http://LeeSeshia.org
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1007/978-0-387-35082-0_11
https://doi.org/10.1145/253769.253801

From Words to Graphs, and Back

Vadim Lozin(B)

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
V.Lozin@warwick.ac.uk

Abstract. In 1918, Heinz Prüfer discovered a fascinating relationship
between labelled trees with n vertices and words of length n−2 over the
alphabet {1, 2, . . . , n}. Since the discovery of the Prüfer code for trees,
the interplay between words and graphs has repeatedly been explored
and exploited in both directions. In the present paper, we review some
of the many results in this area and discuss a number of open problems
related to this topic.

1 Introduction

In the beginning was the word. Graphs have appeared much later. Since then,
these two notions frequently interact and cooperate. Graphs help reveal structure
in words and (not necessarily formal) languages (see e.g. [34]). Words are used
to represent graphs, which became a important issue with the advent of the
computer era. We discuss this issue in Sect. 3 of the paper. Section 2 is devoted
to the interplay between words and graphs around the notion of well-quasi-
ordering. In the rest of the present section, we introduce basic terminology and
notation used in the paper.

A binary relation is a quasi-order (also known as pre-order) if it is reflexive
and transitive. A set of pairwise comparable elements in a quasi-ordered set is
called a chain and a set of pairwise incomparable elements is called an antichain.
A quasi-ordered set is well-quasi-ordered if it contains neither infinite strictly
decreasing chains, nor infinite antichains.

Given a finite set B (an alphabet), we denote by B∗ the set of all words
over B. For a word α ∈ B∗, |α| stands for the length of α and αj for the j-
th letter of α. A factor of a word α is a contiguous subword of α. The factor
containment relation is a quasi-order, but not a well-quasi-order, since it contains
infinite antichains, for instance, {101, 1001, 10001, . . .}. A language is factorial
if it is closed under taking factors. It is well-known (and not difficult to see)
that a factorial language L can be uniquely characterized by a set of minimal
forbidden words, also known as the antidictionary of L, i.e. the set of minimal
(with respect to the factor containment relation) words that do not belong to L.

All graphs in this paper are undirected, without loops and multiple edges.
A graph G is an induced subgraph of H if G can be obtained from H by vertex
deletions. The induced subgraph relation is a quasi-order, but not a well-quasi-
order, since the cycles Ck, k ≥ 3, constitute an infinite antichain. A class X

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 43–54, 2019.
https://doi.org/10.1007/978-3-030-13435-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_3

44 V. Lozin

of graphs, also known as a graph property, is hereditary if it is closed under
taking induced subgraphs. Clearly, if X is hereditary, then it can be uniquely
characterized by a set M of minimal forbidden induced subgraphs, in which case
we say that graphs in X are M -free. The speed of X is the number of n-vertex
labelled graphs in X, studied as a function of n.

2 Words, Graphs and Well-quasi-ordering

Well-quasi-ordering (WQO) is a highly desirable property and frequently discov-
ered concept in mathematics and theoretical computer science [19,26]. A simple
but powerful tool for proving well-quasi-orderability is the celebrated Higman’s
Lemma, which can be stated as follows. Let M be a set with a quasi-order ≤.
We extend ≤ from M to M∗ as follows: a1 . . . am ≤ b1 . . . bn if and only if there
is an order-preserving injection f : {a1, . . . , am} → {b1, . . . , bn} with ai ≤ f(ai)
for each i = 1, . . . , m. Higman’s Lemma states the following.

Lemma 1. ([21]) If (M,≤) is a WQO, then (M∗,≤) is a WQO.

Kruskal [25] extended this result to the set of finite trees partially ordered under
homeomorphic embedding. In other words, Kruskal’s tree theorem restricted to
paths becomes Higman’s lemma. Later, Robertson and Seymour [31] generalized
Kruskal’s tree theorem to the set of all graphs partially ordered under the minor
relation. However, the induced subgraph relation is not a well-quasi-order. Other
examples of important relations that are not well-quasi-orders are pattern con-
tainment relation on permutations [35], embeddability relation on tournaments
[16], minor ordering of matroids [22], factor containment relation on words [27].
On the other hand, each of these relations may become a well-quasi-order under
some additional restrictions. Below we present some examples and discuss a
number of open problems related to this topic.

2.1 An Introductory Example

A word can be interpreted as a graph in various ways. Consider, for instance, a
binary word α = α1 . . . αn, and let us associate with this word a graph Gα with
vertices v1, . . . , vn+1 such that for each i = 2, . . . , n+1, vertex vi is adjacent to the
vertices v1, . . . , vi−1 if αi = 1 and vi is not adjacent to the vertices v1, . . . , vi−1

if αi = 0. In other words, Gα can be constructed from a single vertex recursively
applying one of the following two operations: adding a dominating vertex (i.e. a
vertex adjacent to every other vertex in the graph) or adding an isolated vertex.
The graphs that can be constructed by means of these two operations are known
in the literature as threshold graphs.

Obviously, not every graph is threshold. For instance, none of the following
graphs is threshold, since none of them contains a dominating or isolated vertex:
the path on 4 vertices P4, the cycle on 4 vertices C4 and the complement of C4,
denoted C4. Moreover, no graph containing P4, C4 or C4 as an induced subgraph
is threshold, i.e. threshold graphs are (P4, C4, C4)-free. The inverse inclusion also

From Words to Graphs, and Back 45

is true, which leads to the following conclusion: a graph is threshold if and only
if it is (P4, C4, C4)-free.

Let us note that the original definition of threshold graphs differs from both
characterizations presented in the two previous paragraphs. The notion of thresh-
old graphs was introduced in [17] and was inspired by the notion of threshold
Boolean function. Since its original introduction, the notion of threshold graphs
gave rise to a vast literature on the topic, including the book [28].

The relationship between binary words and threshold graphs described ear-
lier is a bijection and it provides an easy way for counting unlabelled threshold
graphs (observe that counting unlabelled graphs is generally a more difficult task
than counting labelled graphs). This relationship also shows, with the help of
Higman’s Lemma, that the class of threshold graphs is well-quasi-ordered under
the induced subgraph relation. The same conclusion can be derived from two
other seemingly unrelated results, which we discuss in the next section.

2.2 Geometric Grid Classes of Permutations and Letter Graphs

Any collection of n points on the plane, with no two on a common vertical or
horizontal line, uniquely defines a permutation π of n elements. This can be
done, for instance, by labeling the points from 1 to n from bottom to top and
then recording the labels reading left to right (see Fig. 1 for an illustration). By
deleting any point, we obtain a permutation π′ of n − 1 elements, in which case
we say that π contains π′ as a pattern.

The notion of a pattern defines a partial order on the set of permutations
known as the pattern containment relation. A pattern class of permutations, or
simply a permutation class, is any set of permutations which is downward closed
under the pattern containment relation.

The pattern containment relation is not a well-quasi-order, since it contains
infinite antichains [35]. However, under certain restrictions, this relation may
become a well-quasi-order. To give an example, let us introduce the notion of
monotone grid classes of permutations.

Let M be an s × t matrix with entries in {0,±1}. An M -gridding of a per-
mutation π represented by a collection of points on the plane is a partition of
the plane into s × t cells by means of vertical and horizontal lines so that the
cell in column i and row j of the partition is empty if M(i, j) = 0, contains the
elements of π in an increasing order if M(i, j) = +1, and contains the elements
of π in a decreasing order if M(i, j) = −1. Figure 1 represents two M -griddings

of the permutation 351624 with M =
(

+1 −1
0 +1

)
and M =

(
+1 −1
−1 +1

)
. The grid

class of M consists of all permutations which admit an M -gridding and is known
as a monotone grid class.

The restriction to monotone grid classes is a strong restriction, but it is not
strong enough to guarantee well-quasi-ordering. To describe more restrictions, we
define the cell graph of M as follows: the vertices of this graph are the non-zero
entries of M , in which two vertices are adjacent if and only if the corresponding

46 V. Lozin

entries share a row or a column and there are no non-zero entries between them
in this row or column.

�1
�

2

�3

�
4

�
5

�

6

�
�

�
��

�
�

�
��

�1
�

2

�3

�
4

�
5

�

6

Fig. 1. Two griddings of the permutation 351624.

Theorem 1. ([38]) For a 0/±1 matrix M , the grid class of M is well-quasi-
ordered under the pattern containment relation if and only if the cell graph of
M is a forest, i.e. a graph without cycles.

Cycles in cell graphs can give rise to infinite antichains of permutations.
However, if we require the elements of each cell in a monotone grid class to
belong to a diagonal of the respective cell (see the gridding on the left of Fig. 1),
then infinite antichains “magically” disappear and the class becomes well-quasi-
ordered. This is known as geometric gridding, a notion introduced in [2]. The
authors of [2] characterized geometric grid classes of permutations in various
ways, of which we quote the following two results.

Theorem 2. ([2]) Every geometrically griddable class of permutations is well-
quasi-ordered and is in bijection with a regular language.

Now we move from words to graphs and define the notion of letter graphs
introduced in [29]. Let Σ be a finite alphabet and let P ⊆ Σ2 be a set of ordered
pairs of symbols from Σ, known as a decoder. With each word w = w1w2 · · · wn

over Σ we associate a graph G(P, w), called the letter graph of w, by defining
the vertex set of this graph to be {1, 2, . . . , n} with i being adjacent to j > i if
and only if the ordered pair (wi, wj) belongs to P.

It is not difficult to see that every graph G is a letter graph in a sufficiently
large alphabet with an appropriate decoder P. The minimum � such that G is
a letter graph in an alphabet of � letters is the lettericity of G. A graph is a
k-letter graph if its lettericity is at most k.

With the help of Higman’s Lemma it is not difficult to conclude that for each
fixed value of k, the set of all k-letter graphs is well-quasi-ordered by the induced
subgraph relation, which was formally proved in [29].

The notion of letter graphs was introduced 11 years earlier than the notion
of geometric grid classes of permutations, and nothing in the definitions of these

From Words to Graphs, and Back 47

two notions suggests any connection between them. However, there is intrigu-
ing relationship between these notions revealed recently in [3]. To describe this
relationship, we define the permutation graph Gπ of a permutation π on the set
{1, 2, . . . , n} to be the graph with vertex set {1, 2, . . . , n} in which two vertices
i and j are adjacent if and only if (i − j)(π(i) − π(j)) < 0.

Theorem 3. ([3]) Let X be a class of permutations and GX the corresponding
class of permutation graphs. If X is a geometrically griddable class, then GX is
a class of k-letter graphs for a finite value of k.

This theorem suggests the idea that geometrically griddable classes of per-
mutations and letter graphs are two languages describing the same concept in
the universe of permutations and permutation graphs, respectively. However,
the inverse of Theorem 3 remains an open problem, which we state below as a
conjecture.

Conjecture 1. Let X be a class of permutations and GX the corresponding class
of permutation graphs. If GX is a class of k-letter graphs for a finite value of k,
then X is a geometrically griddable class.

To support this conjecture, we return to the notion of threshold graphs intro-
duced in Sect. 2.1 and observe that every threshold graph is a 2-letter graph.
Indeed, consider the alphabet Σ = {0, 1} and the decoder P = {(1, 1), (1, 0)},
and let w = w1w2 · · · wn be any binary word. In the graph G(P, w), if wi = 1,
then i is adjacent to every vertex j > i (since both pairs (1, 1) and (1, 0) belong
to P), and if wi = 0 then i is not adjacent to any vertex j > i (since neither (0, 0)
nor (0, 1) belong to P). Therefore, G(P, w) is a threshold graph. Notice that this
representation is similar but not identical to the correspondence between graphs
and words described in Sect. 2.1.

On the other hand, the geometric grid class of M =
(−1 +1

+1 −1

)
, also known as

the X-class, consists of permutations that avoid the following four permutations
as patterns: 2143, 3412, 2413, 3142 (see e.g. [18]). The permutation graphs of
the first two of these permutations are, respectively, C4 and C4, while the last
two permutations both represent a P4. Since a graph is threshold if and only if
it is (P4, C4, C4)-free, we conclude that the permutations graphs corresponding
to the X-class are precisely the threshold graphs.

2.3 Deciding WQO

Deciding whether a permutation class is well-quasi-ordered is a difficult ques-
tion. Decidability of this question for classes defined by finitely many forbidden
permutations was stated as an open problem in [15]. Similar questions have
been studied for the induced subgraph relation on graphs [24], the embeddabil-
ity relation on tournaments [16], the minor ordering of matroids [22]. However,
the decidability of this problem has been shown only for one or two forbidden
elements (graphs, permutations, tournaments, matroids).

48 V. Lozin

A breakthrough result in this area was recently obtained in [9], where decid-
ability was proved for factorial languages. The solution is based on the analysis of
the structure of an automaton describing the input language. The authors of [9]
also discuss an alternative approach, which suggests a possible way to approach
the same problem for graphs and permutations. This approach is based on the
notion of a periodic infinite antichain. Speaking informally, an infinite antichain
of words is called periodic of period p if each element of this set becomes a fac-
tor of some infinite periodic word of period p after dropping some prefix and
suffix. For instance, the set {101, 1001, 10001, . . .} is a periodic infinite antichain
of period 1. The following theorem was proved in [9].

Theorem 4. ([9]) Let D = {α1, α2, . . . , αk} be a finite set of pairwise incompa-
rable words and X be the factorial language with the antidictionary D. Then X
is well-quasi-ordered by the factor containment relation if and only if it contains
no periodic infinite antichains of period at most |α1| + |α2| + . . . + |αk| + 1.

To apply the idea of periodic infinite antichains to graphs, we modify the
notion of letter graphs by distinguishing between consecutive and nonconsecutive
vertices corresponding to a word w = w1w2 · · · wn. For nonconsecutive vertices
i < j the definition remains the same: i and j are adjacent if and only if (wi, wj) ∈
P. For consecutive vertices, we change the definition to the opposite: i and i+1
are adjacent if and only if (wi, wi+1) �∈ P. Let us denote the graph obtained in
this way from a word w by G∗(P, w). For instance, if a is a letter of Σ and (a, a) �∈
P, then the word aaaaa defines a path on 5 vertices. With some restrictions,
the induced subgraph relation on graphs defined in this way corresponds to the
factor containment relation on words, i.e. G∗(P, w) is an induced subgraph of
G∗(P, w′) if and only if w is a factor of w′.

The graph G∗(P, w) constructed from a periodic word w is called a periodic
graph. The period of w is called the period of G∗(P, w). To construct periodic
antichains, we break the periodicity on both ends of the graph (word) by inserting
an appropriate prefix and suffix. The following conjecture was proposed in [9]
and was inspired by Theorem4.

Conjecture 2. There is a function f : N → N such that the class X of graphs
defined by a finite collection F of forbidden induced subgraphs is well-quasi-
ordered by the induced subgraph relation if and only if X contains no periodic
infinite antichains of period at most f(t(F)), where t(F) stands for the total
number of vertices of graphs in F .

To support this conjecture, let us mention the following decidability problem,
which was recently solved in [8]: given a finite collection F of graphs, decide
whether the speed of the class of F -free graphs is above or below the Bell number.
The solution is based on a characterization of minimal classes with speeds above
the Bell number by means of almost periodic words.

Definition 1. A word w is almost periodic if for any factor f of w there is a
constant kf such that any factor of w of size at least kf contains f as a factor.

From Words to Graphs, and Back 49

A jump to the Bell number for hereditary graph properties was identified in
[12]. This paper distinguishes classes of graphs of two types: the classes where a
certain graph parameter, called in [8] the distinguishing number, is finite and the
classes where this parameter is infinite. For the case where the distinguishing
number is infinite, the paper [12] provides a complete description of minimal
classes above the Bell number, of which there are precisely 13. In the case where
this parameter is finite, the family of minimal classes is infinite and all of them
have been characterized in [8] via the notion of almost periodic words as follows.

Let A be a finite alphabet and P a symmetric decoder, i.e. a decoder con-
taining with each pair (ai, aj) the pair (aj , ai). Also, let w be a word over A
and G∗(P, w) the letter graph of w distinguishing between consecutive and non-
consecutive letters, as defined earlier. Finally, let X∗(P, w) be the class of graphs
containing all induced subgraphs of G∗(P, w).

Theorem 5. ([8]) Let X be a hereditary class of graphs with a finite distinguish-
ing number. Then X is a minimal class of speed above the Bell number if and
only if there exists an infinite almost periodic word w over a finite alphabet and
a symmetric decoder P such that X = X∗(P, w).

In [8], it was shown that for hereditary classes defined by a finite collection F
of minimal forbidden induced subgraphs, the word “almost” can be omitted from
this theorem. Moreover, the period of w in this case is bounded by a function of
t(F), where t(F), as before, is the total number of vertices of graphs in F . This
leads to a procedure deciding the Bell number for hereditary graph properties,
as was shown in [8].

Interestingly, the same procedure decides well-quasi-ordering by induced sub-
graphs for classes with a finite distinguishing number, as was recently shown in
[10]. In other words, this result verifies Conjecture 2 for classes with a finite
distinguishing number.

We conclude this section by observing that Theorem5 brings us back from
graphs to words, and it also makes a bridge to the next section, where the speed
of a hereditary graph property is an important issue.

3 Representing Graphs by Words

Representing graphs by words in a finite alphabet, or graph coding, is important
in computer science for representing graphs in computer memory [20,23,37].
Without loss of generality we will assume that our alphabet is binary.

For a class X of graphs, we denote by Xn the set of graphs in X with the
vertex set {1, 2, . . . , n}. Coding of graphs in the class X is a family of bijective
mappings Φ = {φn : n = 1, 2, 3, . . .}, where φn : Xn → {0, 1}∗. A coding Φ is
called asymptotically optimal if1

lim
n→∞

max
G∈Xn

|φn(G)|
log |Xn| = 1.

1 All logarithms are of base 2.

50 V. Lozin

Every labelled graph G with n vertices can be represented by a binary word
of length

(
n
2

)
, one bit per each pair of vertices, with 1 standing for an edge and

0 for an non-edge. Such a word can be obtained by reading the elements of the
adjacency matrix above the main diagonal. The word obtained by reading these
elements row by row, starting with the first row, is called the canonical code of
G and is denoted φc

n(G).
If no a priori information about the graph is available, then

(
n
2

)
is the min-

imum number of bits needed to represent the graph. However, if we know that
our graph possesses some special properties, then this knowledge may lead to a
shorter representation. For instance,

– if we know that our graph is bipartite, then we do not need to describe
the adjacency of vertices that belong to the same part in its bipartition.
Therefore, we need at most n2/4 bits to describe the graph, the worst case
being a bipartite graph with n/2 vertices in each of its parts.

– if we know that our graph is not an arbitrary bipartite graph but chordal
bipartite, then we can further shorten the code and describe any graph in
this class with at most O(n log2 n) bits [36].

– a further restriction to trees (a proper subclass of chordal bipartite graphs)
enables us to further shorten the code to (n−2) log n bits, which is the length
of binary representation of the Prüfer code for trees [30].

How much can the canonical representation be shortened for graphs with a
property X? For hereditary properties this question can be answered through
the notion of entropy.

3.1 Entropy of Hereditary Properties

In order to represent graphs in a class X, we need at least |Xn| different binary
words. Therefore, in the worst case the length of a binary code of an n-vertex
graph in X cannot be shorter than log |Xn|. Thus, the ratio log |Xn|/(

n
2

)
can

be viewed as the coefficient of compressibility for representing n-vertex graphs
in X. Its limit value, for n → ∞, was called by Alekseev in [4] the entropy
of X. Moreover, in the same paper Alekseev showed that for every hereditary
property X the entropy necessarily exists and in [5] he proved that its value
takes the following form:

lim
n→∞

log |Xn|(
n
2

) = 1 − 1
k(X)

, (1)

where k(X) is a natural number, called the index of X. To define this notion let
us denote by Ei,j the class of graphs whose vertices can be partitioned into at
most i independent sets and j cliques. In particular, E2,0 is the class of bipartite
graphs and E1,1 is the class of split graphs. Then k(X) is the largest k such
that X contains Ei,j with i + j = k. Independently, this result was obtained
by Bollobás and Thomason [13,14] and is known nowadays as the Alekseev-
Bollobás-Thomason Theorem (see e.g. [7]).

From Words to Graphs, and Back 51

3.2 Coding of Graphs in Classes of High Speed

In [4], Alekseev proposed a universal algorithm which gives an asymptotically
optimal coding for graphs in every hereditary class X of index k > 1, i.e. of
non-zero entropy. Below we present an adapted version of this algorithm.

Let n > 1 be a natural number and let p be a prime number between
	n/

√
log n + 1� and 2	n/

√
log n�. Such a number always exists by the Bertrand-

Chebyshev theorem (see e.g. [1]). Define k = 	n/p�. Then

p ≤ 2n/
√

log n, k ≤
√

log n, n − kp < p. (2)

Let G be an arbitrary graph with n vertices. Denote by Dn the set of all pairs
of vertices of G. We split Dn into two disjoint subsets R1 and R2 as follows: R1

consists of the pairs (a, b) such that a ≤ kp, b ≤ kp and 	(a−1)/p� �= 	(b−1)/p�,
and R2 consists of all the remaining pairs. Let us denote by μ(1) the binary word
consisting of the elements of the canonical code corresponding to the pairs of
R2. This word will be included in the code of G we construct.

Now let us take care of the pairs in R1. For all x, y ∈ {0, 1, . . . , p − 1}, we
define

Qx,y = {pi + 1 + resp(xi + y) i = 0, 1, . . . , k − 1},

where resp(z) is the remainder on dividing z by p. Let us show that every pair
of R1 appears in exactly one set Qx,y. Indeed, if (a, b) ∈ Qx,y (a < b), then

xi1 + y ≡ a (mod p), xi2 + y ≡ b (mod p),

where i1 = 	(a − 1)/p�, i2 = 	(b − 1)/p�. Since i1 �= i2 (by definition of R1),
there exists a unique solution of the following system

x(i1 − i2) ≡ a − b (mod p)
y(i1 − i2) ≡ ai2 − bi1 (mod p). (3)

Therefore, by coding the graphs Gx,y induced by Qx,y and combining their codes
with the word μ(1) (that describes the pairs in R2) we obtain a complete descrip-
tion of G.

To describe the graphs Gx,y induced by Qx,y we first relabel their vertices
according to

z → 	(z − 1)/p� + 1.

In this way, we obtain p2 graphs G′
x,y, each on the vertex set {1, 2, . . . , k}. Some

of these graphs may coincide. Let m (m ≤ p2) denote the number of pairwise
different graphs in this set and H0,H1, . . . , Hm−1 an (arbitrarily) ordered list of
m pairwise different graphs in this set. In other words, for each graph G′

x,y there
is a unique number i such that G′

x,y = Hi. We denote the binary representation
of this number i by ω(x, y) and the length of this representation by �, i.e. � =
log m�. Also, denote

μ(2) = φc
k(H0)φc

k(H1) . . . φc
k(Hm−1),

52 V. Lozin

μ(3) = ω(0, 0)ω(0, 1) . . . ω(0, p − 1)ω(1, 0) . . . ω(p − 1, p − 1).

The word μ(2) describes all graphs Hi and the word μ(3) indicates for each
pair x, y the interval in the word μ(2) containing the information about G′

x,y.
Therefore, the words μ(2) and μ(3) completely describe all graphs Gx,y. In order
to separate the word μ(2)μ(3) into μ(2) and μ(3), it suffices to know the number �,
because |μ(2)| = �p2 and the number p is uniquely defined by n. Since m ≤ 2(k2),
the number � can be described by at most

log �� = loglog m�� ≤ log
(

k

2

)
� ≤ log k2� ≤ log log n�

binary bits. Let μ(0) be the binary representation of the number � of length
log log n�, and let

φ∗
n(G) = μ(0)μ(1)μ(2)μ(3), Φ∗ = {φ∗

n n = 2, 3, . . .}.

Theorem 6. [4] Φ∗ is an asymptotically optimal coding for any hereditary class
X with k(X) > 1.

3.3 Representing Graphs in Hereditary Classes of Low Speed

The universal algorithm presented in the previous section is, unfortunately, not
optimal for classes X of index k(X) = 1, also known as unitary classes, since
equation (1) does not provide the asymptotic behavior of log |Xn| in this case.
This is unfortunate, because the family of unitary classes contains a variety of
properties of theoretical or practical importance, such as line graphs, interval
graphs, permutation graphs, threshold graphs, forests, planar graphs and, even
more generally, all proper minor-closed graph classes, all classes of graphs of
bounded vertex degree, of bounded tree- and clique-width, etc.

A systematic study of hereditary properties of low speed was initiated by
Scheinerman and Zito in [32]. In particular, they distinguished the first four lower
layers in the family of unitary classes: constant (classes X with |Xn| = Θ(1)),
polynomial (|Xn| = nΘ(1)), exponential (|Xn| = 2Θ(n)) and factorial (|Xn| =
nΘ(n)). Independently, similar results have been obtained by Alekseev in [6].
Moreover, Alekseev described the set of minimal classes in all the four lower
layers and the asymptotic structure of properties in the first three of them. A
more detailed description of the polynomial and exponential layers was obtained
by Balogh, Bollobás and Weinreich in [11]. However, the factorial layer remains
largely unexplored and the asymptotic structure is known only for properties at
the bottom of this layer, below the Bell numbers [11,12]. On the other hand, the
factorial properties constitute the core of the unitary family, as all the interesting
classes mentioned above (and many others) are factorial.

We conclude the paper with an important conjecture, which deals with rep-
resenting graphs in the factorial classes.

Definition 2. A representation of an n-vertex graph G is said to be implicit
if it assigns to each vertex of G a binary code of length O(log n) so that the
adjacency of two vertices is a function of their codes.

From Words to Graphs, and Back 53

This notion was introduced in [23], where the authors identified a variety
of graph classes admitting an implicit representation. Clearly, not every class
admits an implicit representation, since a bound on the total length of the code
implies a bound on the number of graphs admitting such a representation. More
precisely, only classes containing 2O(n log n) graphs with n vertices can admit an
implicit representation. This restriction, however, is not sufficient to represent
graphs implicitly. A simple counter-example can be found in [37]. This example
deals with a non-hereditary graph property, which leaves the question of implicit
representation for hereditary classes of speed 2O(n log n) open. These are precisely
the classes with at most factorial speed of growth. It is known that every hered-
itary class with a sub-factorial speed admits an implicit representation [33]. For
hereditary classes with factorial speeds the question of implicit representation
is generally open and is known as the implicit graph representation conjecture
(see e.g. [37]).

Conjecture 3. Any hereditary class of speed nΘ(n) admits an implicit
representation.

References

1. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 4th edn. Springer, Berlin
(2010). https://doi.org/10.1007/978-3-642-00856-6

2. Albert, M.H., Atkinson, M.D., Bouvel, M., Ruskuc, N., Vatter, V.: Geometric grid
classes of permutations. Trans. Am. Math. Soc. 365, 5859–5881 (2013)

3. Alecu, B., Lozin, V., Zamaraev, V., de Werra, D.: Letter graphs and geometric grid
classes of permutations: characterization and recognition. In: Brankovic, L., Ryan,
J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 195–205. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78825-8 16

4. Alekseev, V.E.: Coding of graphs and hereditary classes. Probl. Cybernet. 39,
151–164 (1982). (in Russian)

5. Alekseev, V.E.: Range of values of entropy of hereditary classes of graphs. Diskret.
Mat. 4(2), 148–157 (1992). (in Russian; translation in Discrete Mathematics and
Applications, 3 (1993), no. 2, 191–199)

6. Alekseev, V.E.: On lower layers of a lattice of hereditary classes of graphs. Diskretn.
Anal. Issled. Oper. Ser. 4(1), 3–12 (1997). (Russian)

7. Alon, N., Balogh, J., Bollobás, B., Morris, R.: The structure of almost all graphs
in a hereditary property. J. Comb. Theory B 79, 131–156 (2011)

8. Atminas, A., Collins, A., Foniok, J., Lozin, V.: Deciding the Bell number for hered-
itary graph properties. SIAM J. Discrete Math. 30, 1015–1031 (2016)

9. Atminas, A., Lozin, V., Moshkov, M.: WQO is decidable for factorial languages.
Inf. Comput. 256, 321–333 (2017)

10. Atminas, A., Brignall, R.: Well-quasi-ordering and finite distinguishing number.
https://arxiv.org/abs/1512.05993

11. Balogh, J., Bollobás, B., Weinreich, D.: The speed of hereditary properties of
graphs. J. Comb. Theory Ser. B 79(2), 131–156 (2000)

12. Balogh, J., Bollobás, B., Weinreich, D.: A jump to the Bell number for hereditary
graph properties. J. Comb. Theory B 95, 29–48 (2005)

13. Bollobás, B., Thomason, A.: Projections of bodies and hereditary properties of
hypergraphs. Bull. London Math. Soc. 27, 417–424 (1995)

https://doi.org/10.1007/978-3-642-00856-6
https://doi.org/10.1007/978-3-319-78825-8_16
https://arxiv.org/abs/1512.05993

54 V. Lozin

14. Bollobás, B., Thomason, A.: Hereditary and monotone properties of graphs. In:
Graham, R.L., Nesetril, J. (eds.) The Mathematics of Paul Erdős, II. AC, vol. 14,
pp. 70–78. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-60406-5 7

15. Brignall, R., Ruškuc, N., Vatter, V.: Simple permutations: decidability and
unavoidable substructures. Theor. Comput. Sci. 391, 150–163 (2008)

16. Cherlin, G.L., Latka, B.J.: Minimal antichains in well-founded quasi-orders with
an application to tournaments. J. Comb. Theory B 80, 258–276 (2000)

17. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming.
Ann. Discrete Math. 1, 145–162 (1977)

18. Elizalde, S.: The X-class and almost-increasing permutations. Ann. Comb. 15,
51–68 (2011)

19. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256, 63–92 (2001)

20. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control 56,
183–198 (1983)

21. Higman, G.: Ordering by divisibility of abstract algebras. Proc. London Math. Soc.
2, 326–336 (1952)

22. Hine, N., Oxley, J.: When excluding one matroid prevents infinite antichains. Adv.
Appl. Math. 45, 74–76 (2010)

23. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5, 596–603 (1992)

24. Korpelainen, N., Lozin, V.V.: Two forbidden induced subgraphs and well-quasi-
ordering. Discrete Math. 311, 1813–1822 (2011)

25. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. Am. Math. Soc. 95, 210–225 (1960)

26. Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept.
J. Comb. Theory A 13, 297–305 (1972)

27. de Luca, A., Varricchio, S.: Well quasi-orders and regular languages. Acta Infor-
matica 31, 539–557 (1994)

28. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Annals of
Discrete Mathematics, vol. 56. North-Holland, Amsterdam (1995)

29. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete
Math. 244, 375–388 (2002)

30. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27,
742–744 (1918)

31. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory Ser. B 92, 325–357 (2004)

32. Scheinerman, E.R., Zito, J.: On the size of hereditary classes of graphs. J. Comb.
Theory Ser. B 61(1), 16–39 (1994)

33. Scheinerman, E.R.: Local representations using very short labels. Discrete Math.
203, 287–290 (1999)

34. Sonderegger, M.: Applications of graph theory to an English rhyming corpus. Com-
put. Speech Lang. 25, 655–678 (2011)

35. Spielman, D.A., Bóna, M.: An infinite antichain of permutations. Electron. J.
Comb. 7, 2 (2000)

36. Spinrad, J.P.: Nonredundant 1’s in Γ -free matrices. SIAM J. Discrete Math. 8,
251–257 (1995)

37. Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, vol.
19, xiii+342 pp. American Mathematical Society, Providence (2003)

38. Vatter, V., Waton, S.: On partial well-order for monotone grid classes of permuta-
tions. Order 28, 193–199 (2011)

https://doi.org/10.1007/978-3-642-60406-5_7

Automata

An Oracle Hierarchy
for Small One-Way Finite Automata

M. Anabtawi, S. Hassan, C. Kapoutsis(B), and M. Zakzok

Carnegie Mellon University in Qatar, Doha, Qatar
{maleka,sabith,cak,mzakzok}@qatar.cmu.edu

Abstract. We introduce a polynomial-size oracle hierarchy for one-way
finite automata. In it, a problem is in level k (resp., level 0) if itself
or its complement is solved by a polynomial-size nondeterministic finite
automaton with access to an oracle for a problem in level k− 1 (resp., by
a polynomial-size deterministic finite automaton with no oracle access).
This is a generalization of the polynomial-size alternating hierarchy for
one-way finite automata, as previously defined using polynomial-size
alternating finite automata with a bounded number of alternations; and
relies on an original definition of what it means for a nondeterministic
finite automaton to access an oracle, which we carefully justify. We prove
that our hierarchy is strict; that every problem in level k is solved by a
deterministic finite automaton of 2k-fold exponential size; and that level 1
already contains problems beyond the entire alternating hierarchy. We
then identify five restrictions to our oracle-automaton, under which the
oracle hierarchy is proved to coincide with the alternating one, thus pro-
viding an oracle-based characterization for it. We also show that, given all
others, each of these restrictions is necessary for this characterization.

1 Introduction

In 2009, a plan was proposed to develop a size-complexity theory for two-way
finite automata [3] (or “minicomplexity theory” [4]), by analogy to the standard
time-complexity theory for Turing machines. An important part of that plan was
to introduce and study a “polynomial-size hierarchy”, as direct analogue of the
polynomial-time hierarchy, i.e., of the well-studied hierarchy

Σ1P = NP Σ2PP ⊆ (Σ1P∩ Π1P) ⊆⊆
⊆
⊆

(Σ2P ∩Π2P) ⊆⊆
⊆
⊆

· · · ⊆ PH =
⋃

k≥1

ΣkP ,
Π1P = coNP Π2P

where ΣkP (resp., ΠkP) is the class of problems decidable in polynomial time by
alternating Turing machines (atms) which start in an existential (resp., univer-
sal) state and alternate fewer than k times between the existential and universal
mode; and P, NP, coNP have their standard meanings. By direct transposition
to minicomplexity, the following hierarchy was described

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 57–69, 2019.
https://doi.org/10.1007/978-3-030-13435-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_4

58 M. Anabtawi et al.

2Σ1 = 2N 2Σ22D ⊆ (2Σ1 ∩ 2Π1) ⊆⊆
⊆
⊆

(2Σ2 ∩ 2Π2) ⊆⊆
⊆
⊆

· · · ⊆ 2H =
⋃

k≥1

2Σk ,
2Π1 2Π2

where 2Σk (resp., 2Πk) is the class of minicomplexity problems decidable by
two-way alternating finite automata (2afas) with polynomially many states, an
existential (resp., universal) start state, and fewer than k alternations; and, as
usual, 2D and 2N are the respective classes for deterministic and nondeteminis-
tic automata (2dfas and 2nfas) with polynomially many states [9]. Soon later,
Geffert proved that this hierarchy is strict above the first level [2].

When it was introduced [7,10], the polynomial-time hierarchy was defined not
by atms, but by nondeterministic Turing machines with oracles (oracle-ntms):
each ΣkP consisted of every problem which is solved by a polynomial-time ntm
with an oracle for a problem in Σk−1P(ΣkP := NPΣk−1P), while Σ0P was P; and
each ΠkP consisted of the complements of problems in ΣkP (ΠkP := coΣkP).
Only later [1], was it proved that this natural “polynomial-time oracle hierarchy”
can also be viewed, as above, as the “polynomial-time alternating hierarchy” that
we get from polynomial-time atms when we bound their number of alternations.

With this in mind, one observes that in minicomplexity, too, the “polynomial-
size hierarchy” above is just the “polynomial-size alternating hierarchy” that we
get from polynomial-size 2afas when we bound their number of alternations. One
then wonders what the “polynomial-size oracle hierarchy” is: What is a natural
definition of it? Does it, too, coincide with its alternating counterpart? [3]

Here, we study the special case where all automata involved are one-way. We
introduce a “one-way polynomial-size oracle hierarchy” as an analogue of the
polynomial-time oracle hierarchy, and compare it with the “one-way polynomial-
size alternating hierarchy” of the classes 1Σk, 1Πk, 1H, defined like 2Σk, 2Πk, 2H
above but for one-way automata (1afas). We quickly find that, contrary to what
is true for polynomial-time Turing machines, our oracle hierarchy is far stronger
than its alternating counterpart: level 1 already contains problems outside the
entire 1H (Theorem 2). So we ask: (i) What is really the power of this new hierar-
chy? and (ii) Are there restrictions under which it matches the alternating one?

For (i), we show that levels 2 and 3 contain even harder problems, beyond the
power of polynomial-size alternating and Boolean finite automata (Theorem2);
that the hierarchy stands strict (Theorem 5); and that every problem in level k
is solved by a 1dfa of 2k-fold exponential size, and thus the full hierarchy lies
within the power of 1dfas of elementary size (Theorem 4). For (ii), we identify
five restrictions to our underlying oracle-automaton model and prove that: under
all five, our hierarchy coincides with the alternating one, thus providing an oracle-
based characterization for it (Theorem 6); and that, in the presence of the other
four, each of these restrictions is necessary for this characterization (Theorem 7).

Prior Work. Just as the polynomial-time oracle hierarchy is based on oracle-
ntms, our hierarchy rests on an analogous model of an “oracle-1nfa”: a nonde-
terministic one-way finite automaton that can query an oracle. This can also be
viewed as a “1nfa reduction” (just as an oracle-ntm can be viewed as a nondeter-
ministic Turing reduction, of the problem solved by the machine to the problem

An Oracle Hierarchy for Small One-Way Finite Automata 59

solved by the oracle), and is then called many-one, if every computation branch
makes exactly 1 query and then halts with the received answer as its own. Eas-
ily, many-one oracle-1nfas are just one-way nondeterministic finite transducers.

Oracle-1nfas have been studied before. In [8], their many-one restriction is
used in defining oracle hierarchies over the context-free languages. In [11], the
full-fledged variant is used for the same purpose, this time as a restriction of the
stronger model of an oracle-npda (i.e., a one-way nondeterministic pushdown
automaton with an oracle). Our work differs from these studies in three funda-
mental respects. First, we do not study computability on the involved automata
(“Can a problem be solved?”), but complexity (“Can a solvable problem be solved
with few states?”). Second, our hierarchy is not built on context-free problems
but on regular problems that are solved by polynomial-size one-way determin-
istic finite automata. Finally, and most crucially, what the oracle in our model
reads at the moment of query is not just the string x printed on the query tape,
but the string uxv, where u and v the prefix and suffix of the input determined
by the current head position. This makes our oracle-1nfas far more powerful
than the previous variants—and we do justify why this extra power is natural.

2 Preparation

If S is a finite set, then |S| and S are its size and complement. If h ≥ 0, then
[h] := {0, 1, . . . , h − 1}, and [[h]] := {α | α ⊆ [h]}. If k ≥ 0, then expk(h) is the
k-fold exponential function in h: exp0(h)= h, exp1(h) = 2h, exp2(h) = 22

h

, etc.
If Σ is an alphabet, then Σ∗ is all finite strings over it. If z ∈ Σ∗ is a string,

then |z|, zi, and zR are its length, i-th symbol (if 1 ≤ i ≤ |z|), and reverse
z|z| · · · z2z1. If L ⊆ Σ∗ is a set of strings, then LR := {zR | z ∈L} is its reverse.

Problems. A (promise) problem over Σ is a pair L= (L, L̃) of disjoint subsets of
Σ∗. Its positive and negative instances are all w ∈L and all w ∈ L̃. A machine
solves L if it accepts every w ∈ L but no w ∈ L̃. If L̃ =L, then L is a language.

Let h ≥ 1. Over the alphabet [[h]], the problem of set equality is: “Given two
sets α, β, check that they are equal” [4]. Formally, this is the promise problem:

seqh :=
({αβ | α = β}, {αβ | α �= β}) = {αβ | α, β ⊆ [h] | α = β}.

Note that the input is promised to be only 2 symbols, each an entire subset of [h].
Also note our notation {format | condition | test}, where format and condition
specify all instances, and test distinguishes the positive ones.

Over the alphabet [[h]]∪{α̌ | α ⊆ [h]}, where each set α induces two symbols,
α and α̌ (a ticked variant), we define the following extensions of seqh:

∃seqh := { α̌β1β2 · · · βt | t ≥ 0 | (∃i)(α = βi) }
oseqh := { α̌lβ1β2 · · · βtα̌r | t ≥ 0 | (∃i)(∃j)(i < j & βi =αr & βj = αl) }.

We also need the variant of ∃seqh where the sequence β1β2 · · · βt is replaced by
a single symbol, for the collection of all sets appearing in it; and, for each k ≥ 0,

60 M. Anabtawi et al.

the equality problem over the k-fold exponential alphabet:

compact ∃seqh := { α̌B | α ⊆ [h] & B ⊆ [[h]] | α ∈ B }
eq[k]h := { ab | a, b ∈ [expk(h)] | a = b }.

The complement and reverse of L = (L, L̃) are the problems ¬L := (L̃, L)
and LR := (LR, L̃R). The conjunctive and disjunctive star of L are the problems:

∧
L := { x1#x2# · · · #xt | t ≥ 0 & (∀i)(xi ∈ L ∪ L̃) | (∀i)(xi ∈ L) }

∨
L := { x1#x2# · · · #xt | t ≥ 0 & (∀i)(xi ∈ L ∪ L̃) | (∃i)(xi ∈ L) } ,

where # is a fresh delimiter. Using these, we build the sequence of problems:

gef[2]h := (∃seqh)R and for all k ≥ 3: gef[k]h :=
∨¬gef[k−1]h (1)

(mimicking Geffert’s witnesses Ek,h from [2]), and then let gef[ω]h := gef[h]h.
Note that each problem above is really a family of problems: seq= (seqh)h≥1,

eq[k] = (eq[k]h)h≥1, etc. To operate on a family L := (Lh)h≥1 means to operate
on its individual components: ¬L := (¬Lh)h≥1, LR := (LR

h)h≥1, etc.

Machines. A one-way alternating finite automaton (1afa) is any sextuple A =
(S,Σ, δ, qs, qa, U), where S is a set of states, Σ is an alphabet, qs, qa ∈ S are the
start and accept states, U ⊆ S and S \U are the universal and existential states,
and δ ⊆ S ×(Σ ∪{�,�})×S ×{s,r} is a transition relation, with �,� /∈ Σ being
the two endmarkers and s,r the head instructions “stay” and“move right”.

An input w ∈Σ∗ is presented to A as �w�. The computation starts in qs on
�. In each step, a next state and head instruction are derived from δ and the
current state and symbol. We never violate �, except if the next state is qa. So,
every computation branch either loops, if it repeats a state on a cell; or hangs,
if it reaches a state and symbol with no tuple in δ; or accepts, if it falls off �.

Formally, a configuration is a pair (q, i)∈ S ×{0, 1, . . . , |w|+2}, representing
A being in q on cell i (hosting �, wi, �, or nothing, if i is respectively 0, from 1
to |w|, |w|+1, or |w|+2). The resulting computation is a tree of configurations,
with root (qs, 0) and each node’s children determined by δ and w. A node (q, i) is
accepting if (q, i) = (qa, |w| + 2); or q ∈U and all children are accepting; or q �∈ U
and at least one child is accepting. If the root is accepting, then A accepts w.

If U = ∅, then A is nondeterministic (1nfa). If moreover δ has at most one
tuple (q, a, . , .) for all q, a, then A is deterministic (1dfa).

Our 1afas are essentially the two-way alternating finite automata of [5] minus
the ability to reverse. They differ substantially from the 1afas of [1], where
each state-symbol pair maps to a Boolean function. We call those automata
Boolean (1bfas). Clearly, 1afas restrict 1bfas to the two functions and and or.

Complexity. For k ≥ 1, 1Σk is all (families of) problems solvable by (families of)
polynomially-large 1afas with existential start and fewer than k alternations [4]:

1Σk :=

{

(Lh)h≥1

∣
∣
∣
∣
∣

there exist 1afas (Mh)h≥1 and polynomial s
such that every Mh solves Lh with s(h) states, an
existential start state, and fewer than k alternations

}

;

An Oracle Hierarchy for Small One-Way Finite Automata 61

and similarly for 1Πk (resp., 1A), except that the start is universal (resp., the
alternations are unbounded). If the Mh are 1dfas, 1nfas, or 1bfas, then we get
1D, 1N = 1Σ1 [9], and 1B. Easily: ¬seq∈ 1Σ1; ∃seqR ∈ 1Σ2.

The following inclusions and equalities in the one-way polynomial-size alter-
nating hierarchy are easy to verify (the strictness of the inclusions is from [2,9]):

1Σ1 = 1N 1Σ2 = co1Π21D � (1Σ1 ∩ 1Π1) �
�

⊆
⊆

(1Σ2 ∩ 1Π2) �
�

⊆
⊆

· · · ⊆ 1H ,
1Π1 = co1N 1Π2 = co1Σ2

where 1H :=
⋃

k≥1 1Σk. Note the standard notation coC := {¬L | L ∈ C} for
the complements of problems in C. Similarly, reC := {LR | L ∈ C}. Also, the
classes 2C , expk(C), and eC are defined like C, except now the automata are
larger than in C by an exponential, k-fold exponential, or elementary function.1

The next facts are easy or known ([6, Corollary 1]), except for gef[ω] ∈ 1A\1H
and for (compact ∃seq)R �∈ 1A (which are of independent interest).

Theorem 1. 1H � 1A � 1B = re21D � 21N � 22
1D

and the inclusions’ strictness
is witnessed respectively by gef[ω], (compact ∃seq)R, ¬eq[2], and eq[2].

3 Oracle-1NFAs

Intuitively, an oracle-1nfa is a 1nfa which can pause its computation to ask
an oracle whether an instance of a problem X is positive; receive an answer
yes/no; and resume accordingly. For example, such a device with O(1) states
and an oracle for seqh should be able to implement the following nondetermin-
istic algorithm A for oseqh: “Scan the input α̌lβ1 · · · βtα̌r and guess a βi; ask
whether βi =αr; if no, reject (in this branch); otherwise, resume scanning and
guess a βj ; ask whether βj = αl; if no, reject (in this branch); otherwise, accept.”

In prior work [8,11], an oracle-1nfa N is a 1nfa augmented by a write-
only, one-way query tape. At every step of its usual computation on the input,
N may also append a string to the query tape. Also at every step, N may enter
a query state q where, in a single step: (i) the oracle (for a language X) reads
the string x on the query tape and answers a :=yes/no based on whether x∈ X
or not; (ii) the query tape is reset; and (iii) N resumes its computation from q
based on a. In the end, NX solves a language L if it accepts exactly all w ∈L.

This model is a natural restriction of an oracle-ntm to a single, read-only,
one-way tape, and serves well the purposes of [8,11]. But does it serve well
our purposes? For example, can it implement our earlier algorithm A? Unfor-
tunately, the answer is no. The natural approach starts by scanning the input
α̌lβ1 · · · βtα̌r, guessing a βi, and printing it, as a first step towards preparing the
first query to the oracle (is βi = αr?). To complete this query, however, we must
then print αr, to form the seqh instance βiαr; for this, we must know αr; hence,
we must resume scanning until αr. But, by then, we have consumed the input,
and we cannot implement the rest of A (i.e., guess a βj and ask whether βj = αl).
1 A function is elementary if it is the composition of finitely many arithmetic opera-

tions, exponentials, logarithms, constants, and solutions of algebraic equations.

62 M. Anabtawi et al.

We conclude that our oracle-1nfas must be stronger than in [8,11]. We choose
to enhance them as follows: Whenever the machine enters a query state, the
oracle reads not just the current string x on the query tape, but the string uxv,
where u is the prefix of the input w up to (and not including) the current cell i of
the input head, and v the suffix of w from the i-th cell onwards (so that w =uv).

With this modification, A is now easy to implement: “Scan the input, guess a βi,
print � , and enter a query state; at this point, uxv = α̌lβ1 · · · � βi · · · βtα̌r and
the query is whether the set after � equals the right ticked set (βi =αr). If no,
reject. Otherwise, resume scanning, guess a βj , print 	 , and enter a query state;
now uxv = α̌lβ1 · · · 	 βj · · · βtα̌r and the query is whether the set after 	 equals
the left ticked set (βj =αl). If no, then reject; else accept.”

Hence, the enhanced model supports our initial intuition. Note, however, that
we had to modify the oracle. Instead of seqh, it now answers for the “marked”
variant mseq: “Given a string α̌lβ1 · · · ∗βi · · · βtα̌r where ∗ ∈ { � , 	 }, check
that βi = αr, if ∗ = � ; or that βi = αl, if ∗ = 	 .” Still, this only modifies the
formatting of the instance (the sets to compare are not alone, but marked in a
list) and not the essence of the test. Such variations should be tolerated.

Definition 1. An oracle-1nfa is a tuple N = (S,Q,Σ, Γ, δ, qs, qa), where S,Q
are disjoint sets of control and query states; qs, qa ∈ S are the start and accept
states; Σ,Γ are the input and query alphabets; and δ is the transition relation:

δ ⊆ (S ∪ Q) × (Σ ∪ {�,�} ∪ {y,n}) × (S ∪ Q) × {s,r} × Γ ∗

with �,� �∈ Σ being the two endmarkers; y,n �∈ Σ ∪ {�,�} being the two oracle
answers; and s,r being the two head instructions.

For any w ∈ Σ∗ and X= (X, X̃) over Γ , the computation of NX on w starts
in qs with the input tape containing �w�; the input head reading �; every query
tape cell containing the blank symbol � �∈ Γ ; and the query head reading the
leftmost �. In every step, N examines the current state p and action symbol a:

– If p ∈ S, then a∈ Σ ∪ {�,�} is the symbol read by the input head.
– If p ∈ Q, then a=y or n, based on whether uxv ∈ X or uxv ∈ X̃, where

x∈ Γ ∗ is the string on the query tape; and u = w1 · · · wi−1 and v = wi · · · w|w|
are the partition of w by the current head position 1 ≤ i ≤ |w| + 1.

For these p, a and every (p, a, q, d, y)∈ δ, the machine: switches to state q; has its
input head stay, if d = s, or advance, if d =r; and appends y to the query tape.
If p ∈ Q then, before y is appended, the query tape is reset to blank.

If more than one (p, a, . , . , .)∈ δ exist, then N nondeterministically follows
all of them in different branches; if no such (p, a, . , . , .)∈ δ exists, then the
current branch hangs. If the input head ever falls off � (into qa), then the current

An Oracle Hierarchy for Small One-Way Finite Automata 63

branch accepts; if the input head stays forever on a cell, then the current branch
loops. We say that NX accepts w if at least one of the branches accepts.

We say N respects X on problem L= (L, L̃) if every query uxv asked in
every computation of NX on every w ∈ L ∪ L̃ is an instance of X. If so and
NX accepts w for all w ∈ L but no w ∈ L̃, then NX solves L. Finally, N is
deterministic (oracle-1dfa) if δ has at most 1 tuple (p, a, . , . , .), for all p, a. ◦

4 The One-Way Polynomial-Size Oracle Hierarchy

We now introduce oracle-based minicomplexity classes, and then the hierarchy.

Definition 2. Let X = (Xh)h≥1 be a family of problems. The class of families
of problems which are “solvable by small 1nfas with access to X” is:

1NX :=
{

(Lh)h≥1

∣
∣
∣
there exist oracle-1nfas (Nh)h≥1 and polynomials s, q
such that every Nh has s(h) states, and NXq(h)

h solves Lh

}
.

If X is arbitrary in a class C of problem families, we write 1NC :=
⋃

X∈C 1NX.
If the Nh are actually deterministic, then we write 1DX and 1DC . ◦
E.g., the earlier implementation of A shows that oseq is in 1Nmseq; and thus
also in 1N1Π1 , since mseq ∈ 1Π1. Now, our hierarchy is built as follows:

Definition 3. The one-way polynomial-size oracle hierarchy is the collection of
classes: 1Δ̂0 = 1Σ̂0 = 1Π̂0 := 1D and, for all k ≥ 0:

1Δ̂k+1 := 1D1Σ̂k , 1Σ̂k+1 := 1N1Σ̂k , 1Π̂k+1 := co1Σ̂k+1.

We also let 1Ĥ :=
⋃

k≥0 1Σ̂k. ◦

Easily, 1D ⊆ 1Δ̂k ⊆ 1Σ̂k, 1Π̂k ⊆ 1Δ̂k+1 ⊆ 1Ĥ for all k; therefore, this is indeed
a hierarchy. So, e.g., our earlier algorithm A implies that oseq∈ 1Σ̂2.

This hierarchy is quite strong: its first, second, and third levels already con-
tain problems which are respectively outside 1H, 1A, and 1B (cf. Theorem 1.)

Theorem 2. gef[ω]∈ 1Δ̂1 and (compact ∃seq)R ∈ 1Δ̂2 and eq[2]∈ 1Δ̂3.

At the same time, the hierarchy is not arbitrarily strong, as we now show.

Lemma 3. If L is solved by NX, where N is an s-state oracle-1nfa and X a
problem solved by an r-state 1dfa, then L is solved by an 1afa with O(sr3) states.

Proof. Let N = (S,Q,Σ, Γ, . , qs, .). Let D = (R,Γ, . , ps, . , ∅) be a 1dfa for X
with |R| = r. We build a 1afa A for L. On every input w, A simulates NX on w.

To see how A works, fix w and follow one branch of the computation of NX

on w. Using existential states, A can easily simulate N along that branch up to
the time t when N asks the first query. At that point, the input head partitions w
into a prefix u and suffix v, and the query tape contains a string x. To continue

64 M. Anabtawi et al.

the simulation, A needs to know the oracle’s answer a, i.e., whether uxv is
in X or X̃ (since N respects X on L, there is no third case), i.e., whether
D accepts uxv. But knowing this at time t is impossible, as A has not seen v yet.

To overcome this problem, A guesses and stores a value ã ∈ {y,n} for a and
then branches universally into: (1) a deterministic branch D(ã), which uses D
to verify that ã is correct; and (2) an alternating tree N(ã), which resumes the
simulation of NX on w assuming ã as the oracle’s answer. This way, A accepts
iff the actual answer a (i.e., the value ã for which (1) accepts) leads the rest of
the simulation to accept. Let us see how each of (1) and (2) is implemented.

(1) To verify ã, the branch D(ã) determines whether D accepts uxv. For
this, it deterministically simulates D from p′ := D(ux) (i.e., D’s state after
reading �ux) on v (which, at time t, is the rest of the input). On �, D(ã) accepts
iff ã = y and the simulation accepted; or ã = n and the simulation rejected.

Of course, this requires knowing p′ at time t. For this, during its computation
on u, A performs two more simulations, parallel to its simulation of N on u:

(i) A simulation D of D on �u (from ps); this way, at time t, A knows
p := D(u).

(ii) A piecemeal simulation D̃ of D from p = D(u) on x, which is advanced
every time the simulation of N on u produces the next piece of x; this way,
at time t, A knows the required state p′, since ps −[�u]→ p −[x]→ p′.

Note, however, that N starts producing x strictly before it finishes reading u; so,
p = D(u) is needed by D̃ before it is produced by D. To overcome this problem,
A implements D̃ as follows: First, it guesses and stores a value p̃ for p; then
simulates D on x from p̃, eventually producing a corresponding value p̃′ for p′

at time t; then, it compares the stored p̃ with the actual p produced by D. If
p̃ �= p, then the guess was wrong, and this branch rejects; otherwise, the guess
was correct, and thus p̃′ is safe to use as p′ =D(ux) at the start of D(ã).

(2) The branch N(ã) works recursively. Using existential states, A simulates N
along a branch of its computation after the first query has been answered by ã
and up to the time when N asks the next query. At that point, it again guesses
a value in {y,n} for the answer and branches universally into a deterministic
branch which verifies the correctness of the guessed answer; and an alternating
tree which resumes the computation assuming that answer. And so on.

Formally, A uses states of two different forms: (ã, p̃; p, p̃′, q) ∈ {y,n}×R3 ×S
and (ã, p) ∈ {y,n} × R. In every state (ã, p̃; p, p̃′, q):

p is the current state of the simulation D of D from ps on w. By advancing D
every time an input symbol is read, A guarantees that p is always D(u), where
u the current prefix of w that has been read.

p̃′ is the current state of the simulation D̃ of D from p̃ (the second component)
on the string x which is produced for the query tape by the simulation of N
between times ti−1 (when the (i − 1)-st query is asked; or the computation
starts, if i = 1) and ti (when the i-th query is asked). By advancing D̃ every
time an infix of x is produced, A guarantees that, at time ti, p̃′ is the state
produced by D when run from p̃ on x. So, if p = p̃ also holds at ti, then p̃′ is
the state D(ux) of D after reading the prefix �ux of the i-th query.

An Oracle Hierarchy for Small One-Way Finite Automata 65

q is the current state of the simulation N(ã1, . . . , ãi−1) of one branch of N on w
and on the guessed values ã1, . . . , ãi−1 for the answers to all queries so far.

Right after the (i− 1)-st query is answered (or the computation starts, if i = 1),
A is at a state (. , . ; p, . , q), where p, q the current states of simulations D and N
(if i = 1, this is the start state (y, ps; ps, ps, qs)).

Then, A guesses and stores two values ã∗ ∈ {y,n} and p̃∗ ∈ R, for the answer
to the i-th query and D’s state at the time ti of that query. Then, using states
(ã∗, p̃∗; p, p̃′, q), it continues D (in p) and N (in q) on the incoming input symbols;
and starts D̃ (in p̃′, from p̃′ = p̃∗) on the query symbols produced by N.

At time ti, the input head partitions w into a prefix u and suffix v, and the
query symbols produced by N since ti−1 form a string x. Then A checks whether
p̃∗ = p, i.e., the guess for D(u) was correct. If not, then A rejects (in this branch).
Otherwise, the actual state D(ux) is p̃′ and thus, to check whether ã∗ is correct,
A can simulate D from p̃′ on the suffix v. So, A universally splits into:

– A simulation D(ã∗) which, using states (ã∗, p) (starting with p = p̃′), simu-
lates D from p̃′ on v and accepts iff ã∗ matches D’s final decision.

– A continuation of the simulations D and N from state (ã∗, . ; p, . , q), which
first uses ã∗ as oracle answer to advance N into a state q′ while keeping D in p;
then resumes from (. , . ; p, . , q′) towards the (i+1)-st query (by guessing new
ã∗, p̃∗, restarting D̃, etc.). If no such query occurs, then D, D̃ are ignored and
the branch accepts iff N(ã1, . . . , ãi−1, ã∗) falls off � into the accept state.

Overall, from the two forms of states, we see A has size 2r3s + 2r = O(sr3). �

Now, by Lemma 3 and 1A ⊆ 21N (Theorem 1), we gradually get the following
upper bounds. In the end, 1dfas of elementary size contain the entire hierarchy.

Theorem 4. (i) 1Σ̂1, 1Π̂1 ⊆ 1A. (iii) For k ≥ 0: 1Σ̂k, 1Π̂k ⊆ exp2k(1D).
(ii) For k ≥ 1: 1Σ̂k ⊆ exp2k−1(1N). (iv) 1Ĥ ⊆ e1D.

Finally, we prove that our hierarchy is strict, in the sense that successive
levels are distinct. We arrive at this gradually, in the next theorem. All parts
are straightforward, except (ii), which generalizes the last part of Theorem2.

Theorem 5. The following statements are true:
(i) For k ≥ 0: 1Σ̂k = 1Σ̂k+1 =⇒ 1Σ̂k = 1Ĥ. (iii) For k ≥ 1: 1Σ̂k � 1Δ̂4k−1.

(ii) For k ≥ 1: eq[k] ∈ 1Δ̂2k−1. (iv) For k ≥ 0: 1Σ̂k � 1Σ̂k+1.

Proof (sketch). The proof of (i) is standard; and (iv) follows from (i) and (iii).
In (iii), the witness is eq[2k], which is in 1Δ̂4k−1, by (ii); but not in 1Σ̂k,

by Theorem 4 (ii) and because eq[2k] �∈ exp2k−1(1N) (by a generalization of
seq �∈ 1N).

For (ii), we first introduce two auxiliary problems, for each k ≥ 0:

– Zk = (Zk,h)h≥1: “Given a string of the form w � ab, where a, b ∈ [expk(h)]
and w contains no � , check that a = b.”

66 M. Anabtawi et al.

– Yk = (Yk,h)h≥1: “Given a string of the form w#u#u′#v#v′ where u, u′, v, v′

are strings over [expk(h)] and w contains no #, check that some symbol in u
appears in v′; or some symbol in u′ appears in v.”

We then prove that (a) Yk ∈ 1NZk for k ≥ 0; and (b) eq[k] ∈ 1DYk−1 , for k ≥ 1.
Then, (ii) follows from (a) and (b) with a straightforward induction on k. �

5 A Characterization for the Alternating Hierarchy

We now identify a set of restrictions to our oracle-1nfas from Definition 1, under
which the polynomial-size oracle hierarchy coincides with the alternating one.

Definition 4. An oracle-1nfa is called:

1. many-one: if it makes at most 1 query, and then accepts iff the answer is yes;
2. synchronous: if it prints on the oracle tape only right before asking a query;
3. laconic: if, at every query, the query tape contains at most 1 symbol;
4. omitting : if, at every query with input partition u, v and query tape string x,

the query string omits the prefix u, and is thus only xv;
5. query-deterministic: if, at every query, for every possible prior state-symbol-

move triple, there is at most 1 string that can be printed on the query tape.

If N satisfies all of these restrictions, then it is a weak oracle-1nfa. ◦
Definition 5. The classes (1N)X and (1N)C are defined exactly as the respective
classes in Definition 2, except that now all oracle-1nfas are weak. ◦
Definition 6. The one-way polynomial-size weak-oracle hierarchy consists of
the classes: 1Σ̌0 = 1Π̌0 := 1D and, for all k ≥ 0:

1Σ̌k+1 := (1N)co1Σ̌k and 1Π̌k+1 := co1Σ̌k+1.

We also let 1Ȟ :=
⋃

k≥0 1Σ̌k. ◦
We now prove the promised characterization of the alternating hierarchy.

Theorem 6. For all k ≥ 1: 1Σ̌k = 1Σk and 1Π̌k = 1Πk.

Proof. Since 1Π̌k = co1Σ̌k (by definition) and 1Πk = co1Σk, it is enough to prove
1Σ̌k = 1Σk. We use induction on k. (Always let L= (Lh)h≥1 and X = (Xh)h≥1.)

Base case (k = 1): By definition, 1Σ̌1 = (1N)co1D = (1N)1D and 1Σ1 = 1N.
Obviously (1N)1D ⊇ 1N; so, we just prove (1N)1D ⊆ 1N. Pick any L ∈ (1N)1D.
Then L ∈ (1N)X for some X ∈ 1D. So, every Lh is solved by an s(h)-state weak
oracle-1nfa N with access to an oracle for Xq(h), which is solved by an r(q(h))-
state 1dfa D, for polynomial s, q, r. We build a 1nfa N ′ which simulates NXq(h) .

On input w, N ′ starts simulating some branch of N on w. If N ever enters a
query state q, then this is the only query in the branch and the branch will halt
immediately, accepting iff the answer is yes (since N is many-one), namely iff

An Oracle Hierarchy for Small One-Way Finite Automata 67

D accepts bv, where b the symbol on the transition into q (since N is synchronous
and laconic) and v the current remaining suffix of w (since N is omitting). So, to
find out this branch’s decision, N ′ just simulates D on bv. Equivalently, N ′ just
simulates D from qb := D(b) on the rest of the input. This is clearly doable using
a copy of the states of D. Overall, N ′ is of size O(s(h) + r(q(h)))= poly(h).

Inductive step (k ≥ 1). Assume 1Σ̌k = 1Σk. We prove that 1Σ̌k+1 = 1Σk+1.
[⊆] Let L∈ 1Σ̌k+1. By Definition 6, the inductive hypothesis, and the known

fact co1Σk = 1Πk, this means L∈ (1N)1Πk , i.e., L ∈ (1N)X for some X ∈ 1Πk.
So, Lh is solved by an s(h)-state weak oracle-1nfa N with access to an ora-
cle for Xq(h), which is solved by an r(q(h))-state 1afa U with universal start
and fewer than k alternations, for polynomial s, q, r. We build a 1afa A which
simulates NXq(h) .

On input w, A existentially simulates some branch of N on w until (if ever)
N is ready to make a transition τ = (p, c, q, d, b) into a query state q. As in the
base case (and since 1–4 in Definition 4 hold), A can then find out the branch’s
decision by running a simulation U of U on bv, where u, v is the current partition
of w. Note that c is the first symbol of v, if d = s; or the last symbol of u, if d =r.

An important difference is that now there is not a unique qb to serve as
starting state for simulating U on the rest of the input. Instead, A must run
U on �b more carefully. For as long as U is within �b, A keeps its input head
on the last cell before executing τ , i.e., the cell containing c; consumes no input
symbols at all; and stores in its state the string �b itself and the current state
and position i ∈ {0, 1} of U within �b. Only when U exits from �b into v, does
A start reading input symbols again, to continue U on the rest of the input.

But how does A store �b? The naive approach, of storing b, works only if the
query alphabet has poly(h) symbols. But this is not guaranteed. So, A works dif-
ferently: it stores the states p, q and direction d of the transition τ = (p, c, q, d, b);
then, from p, q, d (stored) and c (current input symbol), it finds b as the last com-
ponent of the unique (since N is query-deterministic) transition (p, c, q, d, .).

Overall, A starts existentially, performs fewer than k + 1 alternations (as U
has fewer than k), and uses O(s(h) + s(h)2 · r(q(h)) + r(q(h)))= poly(h) states.

[⊇] Let L∈ 1Σk+1. Then Lh is solved by a 1afa Ah =A= (S,Σ, . , qs, . , U)
with fewer than k+1 alternations, qs �∈U , |S|= poly(h). By [2, Theorem 2.3], we
may assume that S is partitioned into sets Sk+1, Sk, . . . , S1 such that qs ∈Sk+1;
U =Sk ∪ Sk−2 ∪ · · · ; and every alternation switches from a state in Si to a state
in Sj for some i > j. We build a weak oracle-1nfa N and a problem Xh such
that NXh simulates A.

Intuitively, N simulates a branch of A for as long as A stays in Sk+1. If it ever
enters a state q �∈Sk+1, then N prints symbol q and enters query state q (N is
synchronous; laconic; and query-deterministic, as every (. , . , q, . , y) uniquely
has y = q), to ask (now the query string is qv, where v the current remaining
suffix; so N is omitting) if the computation of A from q on v is accepting, and
accepts iff the answer is yes (N is many-one). This correctly simulates A.

To implement this, we use N = (Sk+1, (S \ Sk+1), Σ, (S \ Sk+1), . , qs, .) with
oracle Xh := “Given qv ∈ (S \Sk+1)Σ∗, check that the computation of Ah from q

68 M. Anabtawi et al.

on v is accepting.” Easily, Xh is solved by a 1afa A′
h which, on input qv, simply

simulates Ah from q on v. This A′
h can be made to start universally, makes

fewer than k alternations, and has at most |S|= poly(h) states. So, X ∈ 1Πk. By
1Πk = co1Σk and the inductive hypothesis, this means X ∈ co1Σ̌k. Overall, Lh is
solved by the weak oracle-1nfa N with |Sk+1|= poly(h) states and an oracle
for Xh. So, L ∈ (1N)X . Since X ∈ co1Σ̌k, we have L∈ (1N)co1Σ̌k = 1Σ̌k+1. �

Finally, we prove that all five restrictions in Definition 4 are necessary for
Theorem 6: lifting any of them results in oracle-1nfas which are strictly stronger
than weak. We say an oracle-1nfa is i-weak if it satisfies Definition 4 except for
restriction i.

Theorem 7. For all i∈ {1, . . . , 5}, there exists j ∈ {1, 2} such that small i-weak
oracle-1nfas accessing 1Πj are strictly stronger than weak ones accessing 1Πj.

Proof (sketch). Small weak oracle-1nfas with access to some 1Πj cannot solve
(compact ∃seq)R—or else the problem would be in 1H, and thus in 1A, contra-
dicting Theorem 1. However, the problem is solved by small 3-weak oracle-1nfas
with access to 1Π2; and by small 5-weak oracle-1nfas with access to 1Π1.

Small weak oracle-1nfas with access to some 1Πj cannot solve ∃seq—or else
the problem would be in 1H, and so in re21D (Theorem 1), so ∃seqR ∈ 21D, which
is false (by a pigeonhole argument, ∃seqR

h needs ≥ 22
h

states on a 1dfa). But
2-weak and 4-weak small oracle-1nfas with access to 1Π1 can solve the problem.

Small weak oracle-1nfas with access to 1Π1 cannot solve seq ∧ (
∧¬seq) =

“Given x#y, where x an instance of seq and y an instance of
∧¬seq, check that

both instances are positive.”—or else the problem is in 1Σ2, which we can prove
is false (by an involved proof of independent interest). However, the problem is
solved by small 1-weak oracle-1nfas with the same access. �

6 Conclusion

We introduced a new oracle-1nfa model, studied the polynomial-size hierarchy
induced by it, and used it to characterize the one-way polynomial-size alternating
hierarchy as a special case. A natural next step is to repeat this study for two-way
automata. Before that, the question 1Σ̂k

?=1Π̂k is still open, for all k ≥ 1. Another
direction is to investigate whether our oracle hierarchy can host analogues of
known theorems about the polynomial-time hierarchy (e.g., BPP ⊆ Σ2P).

References

1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

2. Geffert, V.: An alternating hierarchy for finite automata. Theoret. Comput. Sci.
445, 1–24 (2012)

3. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 4

https://doi.org/10.1007/978-3-642-02737-6_4

An Oracle Hierarchy for Small One-Way Finite Automata 69

4. Kapoutsis, C.: Minicomplexity. J. Automata Lang. Comb. 17(2–4), 205–224 (2012)
5. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack

automata. SIAM J. Comput. 13(1), 135–155 (1984)
6. Leiss, E.: Succinct representation of regular languages by Boolean automata. The-

oret. Comput. Sci. 13, 323–330 (1981)
7. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions

with squaring requires exponential space. In: Proceedings of the Symposium on
Switching and Automata Theory, pp. 125–129 (1972)

8. Reinhardt, K.: Hierarchies over the context-free languages. In: Dassow, J., Kele-
men, J. (eds.) IMYCS 1990. LNCS, vol. 464, pp. 214–224. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-53414-8 44

9. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Proceedings of STOC, pp. 275–286 (1978)

10. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3, 1–22
(1977)

11. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In: Geffert, V., Preneel,
B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
514–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 45

https://doi.org/10.1007/3-540-53414-8_44
https://doi.org/10.1007/978-3-319-04298-5_45

Orbits of Abelian Automaton Groups

Tim Becker1(B) and Klaus Sutner2

1 Department of Computer Sciences, University of Wisconsin-Madison,
1210 W. Dayton St., Madison, WI 53706, USA

tbecker@cs.wisc.edu
2 Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, PA 15213, USA
sutner@cs.cmu.edu

Abstract. Automaton groups are a class of self-similar groups gener-
ated by invertible finite-state transducers [11]. Extending the results of
Nekrashevych and Sidki [12], we describe a useful embedding of abelian
automaton groups into a corresponding algebraic number field, and give
a polynomial time algorithm to compute this embedding. We apply
this technique to study iteration of transductions in abelian automaton
groups. Specifically, properties of this number field lead to a polynomial-
time algorithm for deciding when the orbits of a transduction are a ratio-
nal relation. These algorithms were implemented in the SageMath com-
puter algebra system and are available online [2].

Keywords: Automaton groups · Embedding · Number field · Orbits ·
Rational relation · Classification

1 Introduction

An invertible binary transducer A is a Mealy automaton over the binary alpha-
bet where each state has an invertible output function. The transductions of
A are therefore length-preserving invertible functions on binary strings. These
transductions (along with their inverses) naturally generate a group under com-
position, denoted G(A). Such groups, over a general alphabet, are called automa-
ton groups or self-similar groups; these groups have been studied in great detail,
see [6,11] for extensive studies.

Automaton groups have many interesting properties and are capable of sur-
prising complexity. A number of well-known groups can be generated by fairly
simple transducers, indicating that transducers may be a useful semantic inter-
pretation for many groups. Bartholdi’s recent book review in the Bulletin of the
AMS about the relationship between syntactic and semantic approaches to alge-
bra gives some examples where transducers play such a role [1]. For instance, after
Grigorchuk famously solved the long-open problem of finding a group of inter-
mediate growth, it was realized that his group can be generated by the 5-state
invertible binary transducer. In fact, even 3-state invertible binary transducers

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 70–81, 2019.
https://doi.org/10.1007/978-3-030-13435-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_5

Orbits of Abelian Automaton Groups 71

generate groups which are exceedingly complicated, see [3] for a classification of
all such automata.

Here, we will be primarily concerned with a simpler class of transducers:
those which generate abelian groups. This situation has been previously studied
in [13,17]. It is known that all abelian automaton groups are either boolean or
free abelian [12], and in the free abelian case, one can show that the underlying
automata have nice structural properties. We will summarize and build upon
these results in Sect. 2.2. A running example in this paper will be the transducer
CC3

2, shown in Fig. 1. This transducer generates a group isomorphic to Z
2 and

is perhaps the simplest nontrivial transducer generating an abelian group [18].
We will make connections between abelian automaton groups and other areas

of algebra that will provide useful insight into their structure and complexity.
A result of Nekrashevych and Sidki shows that these groups admit embeddings
into Z

m where transitions in the transducer correspond to affine maps [12]. In
this paper, we describe a related embedding of abelian automaton groups into
associated algebraic number fields and describe how these may be efficiently
computed.

Properties of this embedding can be used to study computational problems
arising in automaton groups. We demonstrate this by studying the complexity of
iteration of transductions. Given a transduction f ∈ G(A), we write f∗ ⊆ 2∗×2∗

for the transitive closure of f . Note that f∗ is a length-preserving equivalence
relation on 2∗. The complexity of this relation was studied in [18], where it was
shown that a certain class of abelian transductions have rational orbit relations.
We will refer to such transductions as orbit-rational. In [4], the authors study a
related problem in a generalization of autmaton groups. In Proposition 6 they
demonstrate a sequential automatic algebra with an orbit relation which is not
context-free. Our results in this paper in a similar spirit. We give a precise char-
acterization of orbit-rational abelian transducers and a corresponding decision
procedure.

Throughout this paper, we will utilize the theory of free abelian groups, linear
algebra, field theory, and some algebraic number theory. See [7] for the necessary
material on the latter subjects, and [8,16] for background on algebraic number
theory.

q1

q2 q3

1/0

0/1a/a

a/a

Fig. 1. The cycle-cum-chord transducer CC3
2

72 T. Becker and K. Sutner

2 Background

2.1 Automata and Automaton Groups

A binary transducer is a Mealy automaton of the form A = 〈Q,2, δ, λ〉 where Q
is a finite state set, δ : Q × 2 → Q is the transition function, and λ : Q × 2 → 2
is the output function. Such a machine is invertible if for each state q ∈ Q, the
output function λ(q, ·) is a permutation of 2. A state q is called a toggle state if
λ(q, ·) is the transposition and a copy state otherwise. We define the transduction
of q, q : 2∗ → 2∗ recursively as follows: q(ε) = ε and q(a ·w) = λ(q, a) ·δ(q, a)(w),
where ε denotes the empty string, · denotes concatenation, and a ∈ 2. Note that
invertibility of transductions follows from invertibility of the transition functions.
We let a boldface character, e.g. a denote an element of 2, and a denote the
flipped character. The inverse machine A−1 is computed by simply flipping the

edge labels of A: if p
a/b−−→ q in A then p−1 b/a−−→ q−1 in A−1.

Invertible transducers define a subclass of automaton groups. The group G(A)
is formed by taking all transductions and their inverses under composition. As
described in [18] the group G(A) can be seen as a subgroup of the automorphism
group of the infinite binary tree, denoted Aut(2∗). Clearly any automorphism
f ∈ Aut(2∗) can be written in the form f = (f0, f1)π where π ∈ S2. Here π
describes the action of f on the root, and f0 and f1 are the automorphisms
induced by f on the two subtrees. We call (f0, f1)π the wreath representation
of f ; this name is derived from the fact that Aut(2∗) ∼= Aut(2∗) � S2, where �
denotes the wreath product. Let σ ∈ S2 denote the transposition. A transduction
f is called odd if f = (f0, f1)σ and even otherwise. In the even case, we’ll
write f = (f0, f1). Here f0 and f1 are called the residuals of f , a concept first
introduced by Raney [14]. We call the maps f 	→ fa for a ∈ 2 the residuation
maps. Residuals can be extended to arbitrary length words by fε = f and
fw·a = (fw)a, where w ∈ 2∗ and a ∈ 2. The complete group automaton for A,

denoted C(A), has as its state set G(A) with transitions of the form f
a/b−−→ fa,

where b = fa.

2.2 Abelian Automata

For any automorphism f ∈ G(A), define its gap to be γf = (f0)(f1)−1, so that
f0 = γff1. An easy induction on the wreath product shows the following [13]:

Lemma 1. An automaton group G(A) is abelian if, and only if, all even ele-
ments of G have gap value I, where I denotes the identity automorphism, and
all odd elements have the same gap.

Thus, for abelian groups, we may denote the shared gap value by γA, and when
the underlying automaton is clear from context, we will simply denote the gap
value by γ. It follows that every odd f satisfies f = (γf1, f1)σ and every even f
satisfies f = (f1, f1).

If G(A) is abelian, we will call A an abelian automaton. It should be noted
that Lemma 1 gives an easy decision procedure to determine if a given machine A

Orbits of Abelian Automaton Groups 73

is abelian. Let B be the minimization of the product machine A×A−1, which can
be computed using a partition-refinement algorithm, where the initial partition
is induced by even and odd states. Then A is abelian if and only if the gap of
each even state is collapsed to the identity state in B and if the gap of each odd
state is collapsed to the same state in B.

3 Affine Residuation Parametrization

In this section we will discuss embeddings of abelian automaton groups where
residuation corresponds to an affine map.

3.1 Residuation Pairs

When G(A) ∼= Z
m, elements of the group may be represented as integer vectors

in Z
m. This section will use this interpretation, and explore the linear-algebraic

properties of the residuation maps. Let H ≤ G(A) be the subgroup of even
automorphisms. It’s clear that H is a subgroup of index 2 and that the resid-
uation maps restricted to H are homomorphisms into G(A). Maps of this form
are known as 1/2-endomorphisms and were studied by Nekrashevych and Sidki
in [12]. The authors proved that when G(A) is free abelian, the residuation maps
take the form of an affine map. The following theorem summarizes their results
to this end.

Theorem 2. If G(A) ∼= Z
m, then there exists an isomorphism φ : G(A) → Z

m,
an m × m rational matrix A, and a rational vector r which satisfy

φ(fa) =

{
A · φ(f) if f is even,

A · φ(f) + (−1)a
r if f is odd.

(1)

Also, the matrix A satisfies several interesting properties:

– A is contracting, i.e., its spectral radius is less than 1.
– The characteristic polynomial χ(z) of A is irreducible over Q, and has the

form χ(z) = zm + 1
2g(z), where g(z) ∈ Z[z] is of degree at most m − 1.

We’ll call the pair A, r a residuation pair for A. Then G(A) (and its residu-
ation relations) is completely determined by the image of one state under φ and
a residuation pair.

Example 3. CC3
2 admits the following residuation pair:

A =
(−1 1

−1/2 0

)
, r =

(−1
−3/2

)
, φ(s1) =

(
1
0

)

This parameterization is a useful tool for performing computations in G(A).
Transduction composition becomes vector addition and residuation becomes an
affine map over Z

m. However, the residuation pair is not unique. In fact, the

74 T. Becker and K. Sutner

matrix A may not be unique even up to GL(m,Z) similarity. A theorem of
Latimer and MacDuffee implies that the GL(m,Z) similarity classes of matrices
with characteristic polynomial χA(z) are in one-to-one correspondence with the
ideal classes of Z[z]/(χA(z)) [9]. Utilizing computer algebra, we can find an
example with multiple similarity classes.

Example 4. The residuation matrices of the automaton CC15
8 have 2 GL(m,Z)

similarity classes.

Furthermore, it is unclear at this point how one may compute a residuation
pair for a general abelian automaton.

3.2 Number Field Embedding

We introduce a parametrization which addresses the above concerns, i.e. it will
be unique for A, and we will give a method to compute it efficiently. We will show
that G(A) can be embedded as an additive subgroup of an algebraic number field
F (A). At this point, it is not clear that F (A) is unique, but this will indeed be
the case, as shown in Theorem 9. In this section, we will use some basic results
from algebraic number theory, see [8,16] for the requisite background.

Suppose A has states q1, . . . , qn. For each state qi, we introduce an unknown

xi, and let R = Q[z, x1, . . . , xn]. For each transition qi
a/b−−→ qj in A, we define

the polynomial pi,j ∈ R as pi,j = zxi − xj + a − b, where we interpret a and b
as integers. Let I be the ideal of R generated by the set of all such polynomials,
and let S be the system of equations defined by I, i.e. by setting each pi,j = 0.

Lemma 5. The polynomial system S has a solution.

Proof. Let A, r be a residuation pair of A and let χ(z) be the characteristic
polynomial of A. Define F = Q(α), where α is any root of χ(z), and let φ :
G(A) → Z

m be the isomorphism from Theorem 2. We will construct a map
ψ : Zm → F such that applying ψ ◦ φ to the states of A yields a solution to S.

Since χ(z) is irreducible, it’s clear that B = {r,Ar, . . . , Am−1r} is a basis
for Q

m. Define ψ : Qm → F on B as ψ(Akr) = αk. Then we have an injective
homomorphism Ψ : G(A) → F , where Ψ = ψ ◦ φ. Now applying ψ to the terms
in Eq. (1) gives

Ψ(fa) =

{
αΨ(f) if f is even,

αΨ(f) + (−1)a if f is odd.
(2)

It follows that α, Ψ(q1), . . . , Ψ(qn) is a solution to S. �
We now analyze the structure of a general solution to S, and show that up to

conjugates, the above solution is unique. For an example of such a solution,
look forward to Example 11. For the following results, let α, β1, . . . , βn ∈ C be
solutions for z, x1, . . . , xn respectively. Define the map Ψ on the generators of
G(A) as Ψ(qi) = βi.

Lemma 6. For each f ∈ G(A), Eq. (2) holds.

Orbits of Abelian Automaton Groups 75

Proof. The definition of the generators of I ensures that it holds for the gen-
erators of G(A). This can be extended to arbitrary products by induction on
the length of the product. Let f ∈ G(A), and write f = s · g, where s is a
generator and g �= I. By induction we have that both s and g obey Eq. (2).
Consider the possible parities of s and g; e.g. if s is odd and g is even, then note
αΨ(s) = Ψ(sa) − (−1)a, and so

αΨ(f) + (−1)a = αΨ(s) + αΨ(g) + (−1)a = Ψ(sa) + Ψ(ga) = Ψ(fa).

The other cases follow similarly. �
Lemma 7. α is unique up to conjugates, i.e. it is a root of χ(z), the character-
istic polynomial of a residuation matrix of A.

Proof. Let γ be the gap value for A discussed in Sect. 3.1. From Lemma 6, we
see Ψ(γ) = 2. Let m be the rank of G(A), and let ζk be a non-identity length-k
residual of γ, so that for k = 1, . . . ,m, Ψ(ζi) is a polynomial in α of degree k.
Then γ, ζ1, . . . , ζm are linearly dependent in G(A), and hence are also under Ψ .
This shows that α is a root of a degree m polynomial, which is the same degree
as the irreducible χ(z) from Lemma 5, implying that α satisfies χ(α) = 0. �
Lemma 8. Let L be the integral span of β1, . . . , βn, and let Ψ : G(A) → L be the
homomorphism defined on the generators as qi 	→ βi. Then Ψ is an isomorphism.

Proof. Suppose for the sake of contradiction that there is a non-identity f ∈
G(A) such that Ψ(f) = 0. If f is even, then some finite residual fw must be odd
(because f is non-identity), and Ψ(fw) = α|w|Ψ(f) = 0. Thus without loss of
generality, we may assume f is odd. It follows from Lemma 6 that Ψ(f0) = 1,
and thus 1 ∈ L.

Then, by induction, we can show that αk ∈ L for all k ∈ N. The base
case of k = 0 follows from the above, and for the inductive case let us assume
αk =

∑n
i=1 ciβi. Let ∂0 βi denote the 0-residual of βi. Then, if qi is even, we

have αqi = ∂0 qi and if qi is odd, we have αqi = ∂0 qi − 1. It follows that

αk+1 = α

n∑
i=1

ciβi =
n∑

i=1

ci∂0 βi −
n∑

i=1

ci,

Because 1 ∈ L, we conclude that the constant term
∑n

i=1 ci ∈ L, implying that
αk+1 ∈ L. Thus, since |α| < 1, there are arbitrarily small nonzero elements in L.
But L is a discrete subgroup of a number field, and hence has a smallest nonzero
element [16], so we have a contradiction. �

We summarize these results in the following theorem:

Theorem 9. There exists a unique (up to conjugates) algebraic number α such
that G(A) embeds into the field F (A) = Q(α), such that if Ψ : G(A) → F (A) is
the embedding, then for all f ∈ G(A),

Ψ(fa) =

{
αΨ(f) if f is even,

αΨ(f) + (−1)a if f is odd.

76 T. Becker and K. Sutner

The existence of a unique solution addresses one of the issues mentioned with
the residuation matrix. What remains is to show the number field embedding is
efficiently computable.

Theorem 10. F (A) and the embedding Ψ : G(A) → F (A) from Theorem9 can
be computed in time O(n6).

Proof. We seek to compute χ(z) along with the unique solution to S as elements
of F (A). By Theorem 9, computing a triangular decomposition of I, with respect
to the lexicographic monomial ordering on x1 < · · · < xn < z, would yield χ(z)
as the first element [10]. The values for xi may then be computed by solving the
linear system in F (A). The work required to compute a triangular decomposition
is dominated by the calculation of a Gröbner basis for I [10]. In general, Gröbner
basis calculation is known to be EXPSPACE-complete. However, the bilinear
structure of the equations allow for better upper bounds on the complexity.
Thus the F5 algorithm from [5] computes a Gröbner basis for I in time O(n6).
�
Example 11. The polynomial ideal for CC3

2 is

I = (zx1 + 1 − x3, zx1 − 1 − x2, zx3 − x2, zx2 − x1).

A triangular decomposition gives the minimal polynomial χ(z) = z2 + z + 1/2.
Letting α denote a root of χ(z), we have

Ψ(q1) =
1
5

(−6α − 2) , Ψ(q2) =
1
5

(4α − 2) , Ψ(q3) =
1
5

(4α + 8) .

4 Orbit Rationality

4.1 Background

We briefly return to the case of a general (possibly nonabelian) automaton group.
For f ∈ G(A) and x ∈ 2∗, we define the orbit of x under f , denoted f∗(x), as
the set of iterates of f applied to x, {f tx | t ∈ Z}. Following this, we define the
orbit language,

orb(f) = {x:y | ∃t ∈ Z such that f tx = y},

where the convolution x:y of two words x,y ∈ 2k is defined by

x:y =
x1 x2 . . . xk

y1 y2 . . . yk
∈ (2 × 2)k.

We concern ourselves with the following question: Given x,y ∈ 2∗, is x:y ∈
orb(f)? We’ll call automorphisms orbit-rational if their orbit language is regular
(and hence their orbit relation is rational). Consider the orbit with translation
language as defined in [18]:

R(f, g) = {x:y | ∃t ∈ Z such that gf tx = y}.

Orbits of Abelian Automaton Groups 77

It was shown that R is closed under quotients. If f, g ∈ G(A) and b = ga, then

(a:b)−1R(f, g) =

{
R(fa, ga) if f is even,

R(fafa, ga) if f is odd.

(a:b)−1R(f, g) =

{
∅ if f is even,

R(fafa, faga) if f is odd.

Consider the infinite transition system MA over 2 × 2 and with transitions

R(f, g) a:b−−→ (a:b)−1R(f, g).

For any f ∈ G(A), R(f, I) is the orbit language for f . By Brzozowski’s theorem,
f is orbit-rational if and only if the subautomaton of MA reachable from (f, I) is
finite. Because G(A) is contracting (see e.g. [11]), this occurs if and only if finitely
many first arguments to R appear in the closure of R(f, I) under residuation.
The first arguments of the quotients depend only on the input bit a, which leads
us to consider the maps

ϕa(f) =

{
fa if f is even,

fafa if f is odd.

Hence to determine if f is orbit-rational, it suffices to determine the cardinality
of the set resulting from iterating ϕ0, ϕ1 starting at f .

4.2 The Abelian Case

Throughout this section we will assume A is abelian. In this case, we have
ϕa = ϕa, so we will drop the subscript and simply refer to ϕ. If f is odd, then
f = (γf1, f1)σ, where γ is the gap value of A. Then, ϕ(f) = γf1

2, and

ϕ(f) =

{
f0 if f is even,

γf1
2 if f is odd.

(3)

We seek to understand the behavior of iterating ϕ on an automorphism, and
in particular, determine when ϕ∗(f) = {ϕt(f) | t ∈ N} is finite. To accomplish
this, will return to the wreath representation for automorphisms and relate ϕ to
an extension of parity for automorphisms in G(A).

Definition 12. The even rank of an automorphism f ∈ G(A), denoted |f |, is
defined as the minimum integer k such that ϕk(f) is odd. If there is no such
integer, then |f | = ∞.

When the context is clear, we will abbreviate “even rank” as “rank”. It is
clear that when f is even, ϕ(f) = f0 = f1, so the rank equivalently measures
the distance from f to its first odd residual. If f has infinite rank, then for every
w ∈ 2∗, the residual fw is even. Thus fx = x for all x ∈ 2∗, implying that
the only automorphism with infinite rank is the identity. We will now prove
the primary connection between rank and ϕ: that rank equality is preserved
under ϕ.

78 T. Becker and K. Sutner

Lemma 13. If f, g ∈ G(A) with |f | = |g|, then |ϕ(f)| = |ϕ(g)|.
Proof. The case when |f | > 0 is clear, but if |f | = 0, then we may write f in
wreath representation as f = (γh, h)σ, where γ is the gap value discussed in
Sect. 3.1, and it follows that ϕ(f) = γh2. If we had |γ| <

∣∣h2
∣∣, it would follow

that |ϕ(f)| = |γ|, so it suffices to show this inequality. Indeed, since h2 is even
and h2 = (γh1

2, γh1
2), we have

∣∣h2
∣∣ ≥ 1+min(|γ| , ∣∣h1

2
∣∣). This inequality would

hold for any square h2; in particular, it also holds for h1
2. It follows that the

min takes value |γ|, so
∣∣h2

∣∣ ≥ 1 + |γ|. Thus, for any odd f , |ϕ(f)| = |γ|, which
completes the proof. �
Corollary 14. If f is an odd automorphism and t = |ϕ∗(f)| is finite, then
ϕt(f) = f .

Proof. Because |ϕ∗(f)| is finite, the sequence {ϕn(f)|n ≥ 0} is eventually peri-
odic. Lemma 13 shows iterating ϕ on f produces a cyclic sequence of ranks of
the form 0, |γ| , |γ| − 1, . . . , 0, We note that ϕ is invertible when restricted
to the automorphisms of rank at most |γ|. Indeed, for any automorphism g, if
|g| < |γ|, then the unique inverse is ϕ−1(g) = (g, g). If instead |g| = |γ|, there
is a unique odd h such that g = ϕ(h) = γh1

2. It follows that the first repeated
automorphism in ϕ∗(f) is f itself, so ϕt(f) = f . �

The preceding results can be interpreted in the corresponding number field.
Recall the map Ψ : G(A) → F (A) satisfying the properties described in Sect. 3.2.
Let χ(z) be the unique characteristic polynomial for A, and let α be a root
of χ such that F (A) = Q(α). Let L = Ψ(G(A)) be the image of the group
elements in F (A). Then Γ = ΨϕΨ−1 is the orbit residuation map in L, so
|ϕ∗(f)| = |Γ ∗(Ψ(f))|, and it follows from Eq. (3) that for any β ∈ L,

Γ (β) =

{
αβ ifΨ−1(β) is even,
2αβ ifΨ−1(β) is odd.

Lemma 15. If f ∈ G(A), f �= I, and ϕ∗(f) is finite, then (2αk)n = 1 for some
k, n ∈ N. Furthermore, ϕ∗(g) is finite for any g ∈ G(A).

Proof. Suppose ϕ∗(f) is finite. Because any non-identity f has finite rank, if we
let f ′ = ϕ|f |(f), then f ′ is odd and ϕ∗(f ′) is finite.

By Corollary 14, we may write ϕt(f ′) = f ′. Let h be the first odd automor-
phism after f ′ in the sequence {ϕn(f ′) | n ≥ 0}, say ϕk(f ′) = h. So in F (A),
Γ kΨ(f ′) = 2αkΨ(h). Then by Lemma 13, the sequence of parities starting from
f ′ and h are identical, meaning that any odd state reachable by f ′ must be of
the form ϕkn(f ′). Thus taking n = t

k shows (2αk)n Ψ(f ′) = Ψ(f ′). Since f ′ �= I,
it follows that Ψ(f ′) �= 0, and so (2αk)n = 1 in F (A). Now if g ∈ G(A) with
g �= I, then g′ = ϕ|g| is odd, and

Γ kn(Ψ(g)) = (2αk)n Ψ(g) = Ψ(g),

so ϕkn(g) = g, and hence ϕ∗(g) is finite. �

Orbits of Abelian Automaton Groups 79

Lemma 16. Some power of α is rational if and only if for some k, n ∈ N,
(2αk)n = 1. In this case, α has magnitude 2− 1

m , where m is the rank of the free
abelian group G(A).

Proof. First assume that (2αk)n = 1 for some integers k and n. Then αkn = 2−n.
Conversely let � be smallest such that α� = r is rational. Then α is a root of
p(z) = z� − r. Let χ(z) be the irreducible characteristic polynomial of A. Since
χ is the minimal polynomial of λ0, then χ(z) | p(z). Thus all roots of χ have
equal magnitude, and since the constant term of χ(z) is ± 1

2 , this magnitude is
|α| = ±2− 1

m , where m is the rank of G(A). Since λ� = r has rational norm, m
divides �. Setting k = m and n = 2�

m guarantees that (2αk)n = 1. �
Our main result follows from the preceding lemmas:

Theorem 17. Let χ(z) be the unique characteristic polynomial for A, and let α
be a root of χ such that F (A) = Q(α). Then for any f ∈ G(A), f is orbit-rational
if and only if some power of α is rational.

Example 18. CC3
2 is orbit rational. Recall from Example 11 that F (CC3

2) =
Q[z]/(χ(z)) for χ(z) = z2 + z + 1/2. If α is a root of χ(z), then α4 = −1/4.

4.3 Decision Procedure

We aim to turn Theorem17 into a decision procedure for orbit rationality.

Lemma 19. Some power of α is rational if and only if α4� is rational, where
� = m

2 if m is even and � = m if m is odd.

Proof. By Lemma 16, all roots of χ(z) have norm 2− 1
m and therefore lie on the

complex disk of radius 2− 1
m . We will follow a technique of Robinson in [15] to

show χ(z) is of the form P (z�), where P has degree at most 2. We write

χ(z) = amxm + am−1x
m−1 + · · · + a1x + a0,

where am = 1 and a0 = ± 1
2 . Now if β is any root of χ(z), then the conjugate

β = 2−2mβ−1 is also a root of χ(z). Consider the polynomial p(z) = zmχ
(

2−2m

z

)
.

Then, p(z) has the same roots and same degree as χ(z), so χ(z) is a constant
multiple of p(z). Computing the leading coefficient shows a0χ(z) = p(z), and
equating the remaining coefficients gives for all k ≤ m, a0am−k = ak2− 2k

m . Thus
2− 2k

m is rational when ak �= 0. Let � be the smallest integer such that 2− 2�
m is

rational, i.e. � = m if m is odd or � = m
2 if m is even. Then ak is nonzero only

if � | k, so there exists a degree m
� polynomial P (z) such that χ(z) = P

(
z�

)
.

That is, the roots of χ(z) are of the form �
√

β for β a root of P . Note that P (z)
is monic and irreducible, has constant term ± 1

2 , and all of its roots have norm
2− �

m . This process reduces χ(z) to a degree 1 or 2 polynomial, depending on the
parity of m. If m is odd, then the only possible polynomials are P (z) = z ± 1

2 ,
both of which have a single rational root. Thus the only interesting case is if

80 T. Becker and K. Sutner

m is even, where we claim there are only 4 possibilities for P (z). The appendix
of [13] lists the 6 polynomials over Q of degree 2 which are monic, irreducible,
contracting, and have constant term ± 1

2 :

P1(z) = z2 − 1
2
, P2(z) = z2 +

1
2
, P3(z) = z2 − z +

1
2
,

P4(z) = z2 + z +
1
2
, P5(z) = z2 − 1

2
z +

1
2
, P6(z) = z2 +

1
2
z +

1
2
.

We claim that, in the orbit-rational case, P (z) cannot be P5(z) or P6(z). The
polynomial P5(z)P6(z) has roots β = ± i

4 (
√

7 ± i), which live in the degree 2
extension Q(

√−7). If one of these roots satisfied βk = r for some integer k and
rational number r, then Q(

√−7) would contain an kth root of unity. Recall that
a kth root of unity has degree ϕ(k) over Q, where ϕ denotes Euler’s totient
function. Thus we would have ϕ(k) = 2, so k = 3 or k = 4. It’s straightforward
to check that βk is not rational for any of the above roots β where k = 3, 4.
Thus, P5(z) and P6(z) are not possible. One can also verify any root β of P1(z),
P2(z), P3(z), or P4(z) satisfies β4 = ± 1

4 . Since the roots of χ(z) satisfy λ� = β
for a root β of P (z), it follows that λ4� is rational. �
Theorem 20. Given an abelian binary invertible transducer A, we can decide
if G(A) is orbit-rational in polynomial time.

Proof. By Theorem 10, we can compute the number field of A and find χ(z) in
time O(n6). Let � be as in Lemma 19. Using standard number field arithmetic
techniques, we compute z4� in the field Q[z]/(χ(z)) and check if it is rational. �

5 Discussion and Open Problems

We extended the results of Nekrashevych and Sidki in [12]. This yielded an
embedding of G(A) into a number field where residuation in A became an affine
map in F (A). This removed redundancies present in the residuation pairs, giving
each automorphism a unique element in a number field. Additionally, we have
demonstrated that this embedding is computable in polynomial time.

Phrasing computational problems about A in terms of F (A) may yield
efficient solutions. We demonstrated this with the question of deciding orbit-
rationality, where the problem reduces to a simple computation in F (A). We
expect other computational problems in A can exploit the algebraic structure
of F (A) in a similar way to yield efficient solutions. It is not clear how these
results may be generalized to non-abelian automaton groups, and this is the
largest open question we raise. At this time we are not aware of any nonabelian
orbit-rational automaton groups.

Acknowlegements. The authors would like to thank Eric Bach for his helpful feed-
back on a draft of this paper. We also thank Evan Bergeron and Chris Grossack for
many helpful conversations on the results presented.

Orbits of Abelian Automaton Groups 81

References

1. Bartholdi, L.: Book review: combinatorial algebra: syntax and semantics. Bull.
AMS 54(4), 681–686 (2017)

2. Becker, T.: Embeddings and orbits of abelian automaton groups (2018). https://
github.com/tim-becker/thesis-code

3. Bondarenko, I., et al.: Classification of groups generated by 3-state automata over
a 2-letter alphabet. Algebra Discrete Math. 1, April 2008

4. Brough, M., Khoussainov, B., Nelson, P.: Sequential automatic algebras. In: Beck-
mann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp.
84–93. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6 9

5. Faugère, J.C., El Din, M.S., Spaenlehauer, P.J.: Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1, 1): algorithms and complexity. J.
Symbolic Comput. 46(4), 406–437 (2011)

6. Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskii, V.I.: Automata, dynamical
systems and groups. Proc. Steklov Inst. Math. 231, 128–203 (2000)

7. Hungerford, T.W.: Algebra. Springer, New York (1974). https://doi.org/10.1007/
978-1-4612-6101-8

8. Ireland, K., Rosen, M., Rosen, M.: A Classical Introduction to Modern Number
Theory. Graduate Texts in Mathematics. Springer, New York (1990). https://doi.
org/10.1007/978-1-4757-2103-4

9. Latimer, C.G., MacDuffee, C.C.: A correspondence between classes
of ideals and classes of matrices. Ann. Math. 34(2), 313–316 (1933).
http://www.jstor.org/stable/1968204

10. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symbolic Com-
put. 13(2), 117–131 (1992). https://doi.org/10.1016/S0747-7171(08)80086-7.
http://www.sciencedirect.com/science/article/pii/S0747717108800867

11. Nekrashevych, V.: Self-similar groups. Mathematical Surveys and Monographs.
American Mathematical Society, Providence (2014)

12. Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed sub-
groups and dynamics of 1/2-endomorphisms. London Math. Soc. Lect. Note Ser.
311, 375–404 (2004)

13. Okano, T.: Invertible binary transducers and automorphisms of the binary tree.
Master’s thesis, Carnegie Mellon University (2015)

14. Raney, G.N.: Sequential functions. J. ACM (JACM) 5(2), 177–180 (1958)
15. Robinson, R.M.: Conjugate algebraic integers on a circle. Mathematische

Zeitschrift 110(1), 41–51 (1969). https://doi.org/10.1007/BF01114639
16. Stein, W.: Algebraic Number Theory, a Computational Approach. Harvard, Mas-

sachusetts (2012)
17. Sutner, K.: Abelian invertible automata. In: Adamatzky, A. (ed.) Reversibility and

Universality. ECC, vol. 30, pp. 37–59. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73216-9 3

18. Sutner, K., Lewi, K.: Iterating inverse binary transducers. J. Automata, Lang.
Comb. 17(2–4), 293–313 (2012)

https://github.com/tim-becker/thesis-code
https://github.com/tim-becker/thesis-code
https://doi.org/10.1007/978-3-540-69407-6_9
https://doi.org/10.1007/978-1-4612-6101-8
https://doi.org/10.1007/978-1-4612-6101-8
https://doi.org/10.1007/978-1-4757-2103-4
https://doi.org/10.1007/978-1-4757-2103-4
http://www.jstor.org/stable/1968204
https://doi.org/10.1016/S0747-7171(08)80086-7
http://www.sciencedirect.com/science/article/pii/S0747717108800867
https://doi.org/10.1007/BF01114639
https://doi.org/10.1007/978-3-319-73216-9_3
https://doi.org/10.1007/978-3-319-73216-9_3

Bounded Automata Groups are co-ET0L

Alex Bishop and Murray Elder(B)

School of Mathematical and Physical Sciences, University of Technology Sydney,
Ultimo, NSW 2007, Australia

{alexander.bishop,murray.elder}@uts.edu.au

Abstract. Holt and Röver proved that finitely generated bounded
automata groups have indexed co-word problem. Here we sharpen this
result to show they are in fact co-ET0L.

Keywords: Formal language theory · ET0L language ·
Check-stack pushdown automaton · Bounded automata group ·
Co-word problem

1 Introduction

A recurrent theme in group theory is to understand and classify group-theoretic
problems in terms of their formal language complexity [1,9–11,20]. Many authors
have considered the groups whose non-trivial elements, i.e. co-word problem,
can be described as a context-free language [3,14,16,18]. Holt and Röver went
beyond context-free to show that a large class known as bounded automata groups
have an indexed co-word problem [15]. This class includes important examples
such as Grigorchuk’s group of intermediate growth, the Gupta-Sidki groups,
and many more [12,13,21,24]. For the specific case of the Grigorchuk group,
Ciobanu et al. [5] showed that the co-word problem was in fact ET0L. ET0L is
a class of languages coming from L-systems which lies strictly between context-
free and indexed [19,22,23]. Ciobanu et al. rely on the grammar description
of ET0L for their result. Here we are able to show that all finitely generated
bounded automata groups have ET0L co-word problem by instead making use
of an equivalent machine description: check-stack pushdown (cspd) automata.

ET0L languages, in particular their deterministic versions, have recently
come to prominence in describing solution sets to equations in groups and
monoids [4,7,8]. The present paper builds on the recent resurgence of interest,
and demonstrates the usefulness of a previously overlooked machine description.

For a group G with finite generating set X, we denote by coW(G,X) the set
of all words in the language (X ∪X−1)� that represent non-trivial elements in G.
We call coW(G,X) the co-word problem for G (with respect to X). Given a class
C of formal languages that is closed under inverse homomorphism, if coW(G,X)

Research supported by Australian Research Council grant DP160100486 and an Aus-
tralian Government Research Training Program PhD Scholarship.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 82–94, 2019.
https://doi.org/10.1007/978-3-030-13435-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_6&domain=pdf
http://orcid.org/0000-0001-6803-1143
http://orcid.org/0000-0002-2438-3945
https://doi.org/10.1007/978-3-030-13435-8_6

Bounded Automata Groups are co-ET0L 83

is in C then so is coW(G,Y) for any finite generating set Y of G [14]. Thus, we
say that a group is co-C if it has a co-word problem in the class C. Note that
ET0L is a full AFL [6] and so is closed under inverse homomorphism.

2 ET0L Languages and CSPD Automata

An alphabet is a finite set. Let Σ and V be two alphabets which we will call
the terminals and non-terminals, respectively. We will use lower case letters to
represent terminals in Σ and upper case letters for non-terminals in V . By Σ�,
we will denote the set of words over Σ with ε ∈ Σ� denoting the empty word.

A table, τ , is a finite set of context-free replacement rules where each non-
terminal, X ∈ V , has at least one replacement in τ . For example, with Σ = {a, b}
and V = {S,A,B}, the following are tables.

α :

⎧
⎪⎨

⎪⎩

S → SS | S | AB

A → A

B → B

β :

⎧
⎪⎨

⎪⎩

S → S

A → aA

B → bB

γ :

⎧
⎪⎨

⎪⎩

S → S

A → ε

B → ε

(1)

We apply a table, τ , to the word w ∈ (Σ ∪ V)� to obtain a word w′, written
w →τ w′, by performing a replacement in τ to each non-terminal in w. If a
table includes more than one rule for some non-terminal, we nondeterministically
apply any such rule to each occurrence. For example, with w = SSSS and α as
in (1), we can apply α to w to obtain w′ = SABSSAB. Given a sequence of
tables τ1, τ2, . . . , τk, we will write w →τ1τ2···τk w′ if there is a sequence of words
w = w1, w2, . . . , wk+1 = w′ such that wj →τj wj+1 for each j.

Definition 1 (Asveld [2]). An ET0L grammar is a 5-tuple G = (Σ,V, T,
R, S), where

1. Σ and V are the alphabets of terminals and non-terminals, respectively;
2. T = {τ1, τ2, . . . , τk} is a finite set of tables;
3. R ⊆ T � is a regular language called the rational control; and
4. S ∈ V is the start symbol.

The ET0L language produced by the grammar G, denoted L(G), is

L(G) := {w ∈ Σ� : S →v w for some v ∈ R} .

For example, with α, β and γ as in (1), the language produced by the above
grammar with rational control R = α�β�γ is {(anbn)m : n,m ∈ N}.

2.1 CSPD Automata

A cspd automaton, introduced in [17], is a nondeterministic finite-state automa-
ton with a one-way input tape, and access to both a check-stack (with stack
alphabet Δ) and a pushdown stack (with stack alphabet Γ), where access to

84 A. Bishop and M. Elder

these two stacks is tied in a very particular way. The execution of a cspd machine
can be separated into two stages.

In the first stage the machine is allowed to push to its check-stack but not its
pushdown, and further, the machine will not be allowed to read from its input
tape. Thus, the set of all possible check-stacks that can be constructed in this
stage forms a regular language which we will denote as R.

In the second stage, the machine can no longer alter its check-stack, but is
allowed to access its pushdown and input tape. We restrict the machine’s access
to its stacks so that it can only move along its check-stack by pushing and
popping items to and from its pushdown. In particular, every time the machine
pushes a value onto the pushdown it will move up the check-stack, and every
time it pops a value off of the pushdown it will move down the check-stack; see
Fig. 1 for an example of this behaviour.

..

.

b b

τ1

τ2

τ3

τn

check-stack

..

.

b

pushdown

read
head

..

.

b b

τ1

τ2

τ3

τn

check-stack

..

.

a2

a1

pushdown

read
head

..

.

b b

τ1

τ2

τ3

τn

check-stack

..

.

a2

pushdown

read
head

Fig. 1. An example of a cspd machine pushing w = a1a2, where a1, a2 ∈ Δ, onto its
pushdown stack, then popping a1

We define a cspd machine formally as follows.

Definition 2. A cspd machine is a 9-tuple M = (Q,Σ, Γ,Δ, b,R, θ, q0, F),
where

1. Q is the set of states;
2. Σ is the input alphabet;
3. Γ is the alphabet for the pushdown;
4. Δ is the alphabet for the check-stack;
5. b /∈ Δ ∪ Γ is the bottom of stack symbol;
6. R ⊆ Δ� is a regular language of allowed check-stack contents;
7. θ is a finite subset of

(Q × (Σ ∪ {ε}) × ((Δ × Γ) ∪ {(ε, ε), (b, b)})) × (Q × (Γ ∪ {b})�),

and is called the transition relation (see below for allowable elements of θ);

Bounded Automata Groups are co-ET0L 85

8. q0 ∈ Q is the start state; and
9. F ⊆ Q is the set of accepting states.

In its initial configuration, the machine will be in state q0, the check-stack will
contain bw for some nondeterministic choice of w ∈ R, the pushdown will contain
only the letter b, the read-head for the input tape will be at its first letter, and the
read-head for the machine’s stacks will be pointing to the b on both stacks. From
here, the machine will follow transitions as specified by θ, each such transition
having one of the following three forms, where a ∈ Σ∪{ε}, p, q ∈ Q and w ∈ Γ �.

1. ((p, a, (b, b)), (q, wb)) ∈ θ meaning that if the machine is in state p, sees b on
both stacks and is able to consume a from its input; then it can follow this
transition to consume a, push w onto the pushdown and move to state q.

2. ((p, a, (d, g)), (q, w)) ∈ θ where (d, g) ∈ Δ×Γ , meaning that if the machine is
in state p, sees d on its check-stack, g on its pushdown, and is able to consume
a from its input; then it can follow this transition to consume a, pop g, then
push w and move to state q.

3. ((p, a, (ε, ε)), (q, w)) ∈ θ meaning that if the machine is in state p and can
consume a from its input; then it can follow this transition to consume a,
push w and move to state q.

In the previous three cases, a = ε corresponds to a transition in which the
machine does not consume a letter from input. We use the convention that, if
w = w1w2 · · · wk with each wj ∈ Γ , then the machine will first push the wk,
followed by the wk−1 and so forth. The machine accepts if it has consumed all
its input and is in an accepting state q ∈ F .

In [17] van Leeuwen proved that the class of languages that are recognisable
by cspd automata is precisely the class of ET0L languages.

3 Bounded Automata Groups

For d � 2, let Td denote the d-regular rooted tree, that is, the infinite rooted
tree where each vertex has exactly d children. We identify the vertices of Td with
words in Σ� where Σ = {a1, a2, . . . , ad}. In particular, we will identify the root
with the empty word ε ∈ Σ� and, for each vertex v ∈ V(Td), we will identify the
k-th child of v with the word vak, see Fig. 2.

Recall that an automorphism of a graph is a bijective mapping of the vertex
set that preserves adjacencies. Thus, an automorphism of Td preserves the root
and “levels” of the tree. The set of all automorphisms of Td is a group, which
we denote by Aut(Td). We denote the permutation group of Σ as Sym(Σ).
An important observation is that Aut(Td) can be seen as the wreath product
Aut(Td) �Sym(Σ), since any automorphism α ∈ Aut(Td) can be written uniquely
as α = (α1, α2, . . . , αd)·σ where αi ∈ Aut(Td) is an automorphism of the sub-tree
with root ai, and σ ∈ Sym(Σ) is a permutation of the first level. Let α ∈ Aut(Td)
where α = (α1, α2, . . . , αd) · σ ∈ Aut(Td) � Sym(Σ). For any b = ai ∈ Σ, the
restriction of α to b, denoted α|b := αi, is the action of α on the sub-tree

86 A. Bishop and M. Elder

ε

a1 a2 ad· · ·

a1a1 a1a2 a1ad· · ·
· · · · · · · · ·

· · · · · ·

Fig. 2. A labelling of the vertices of Td with the root labelled ε

with root b. Given any vertex w = w1w2 · · · wk ∈ Σ� of Td, we can define the
restriction of α to w recursively as

α|w =
(

α|w1w2···wk−1

)∣
∣
∣
wk

and thus describe the action of α on the sub-tree with root w.
A Σ-automaton, (Γ, v), is a finite directed graph with a distinguished vertex

v, called the initial state, and a (Σ × Σ)-labelling of its edges, such that each
vertex has exactly |Σ| outgoing edges: with one outgoing edge with a label of
the form (a, ·) and one with a label of the form (·, a) for each a ∈ Σ.

Given some Σ-automaton (Γ, v), where Σ = {a1, . . . , ad}, we can define an
automorphism α(Γ,v) ∈ Aut(Td) as follows. For any given vertex b1b2 · · · bk ∈
Σ� = V(Td), there exists a unique path in Γ starting from the initial vertex, v,
of the form (b1, b′

1) (b2, b′
2) · · · (bk, b′

k), thus we will now define α(Γ,v) such that
α(Γ,v)(b1b2 · · · bk) = b′

1b
′
2 · · · b′

k. Notice that it follows from the definition of a
Σ-automaton that α(Γ,v) is a tree automorphism as required.

An automaton automorphism, α, of the tree Td is an automorphism for which
there exists a Σ-automaton, (Γ, v), such that α = α(Γ,v). The set of all automaton
automorphisms of the tree Td form a group which we will denote as A(Td). A
subgroup of A(Td) is called an automata group.

An automorphism α ∈ Aut(Td) will be called bounded (originally defined in
[24]) if there exists a constant N ∈ N such that for each k ∈ N, there are no more
than N vertices v ∈ Σ� with |v| = k (i.e. at level k) such that α|v �= 1. Thus,
the action of such a bounded automorphism will, on each level, be trivial on all
but (up to) N sub-trees. The set of all such automorphisms form a group which
we will denote as B(Td). The group of all bounded automaton automorphisms
is defined as the intersection A(Td) ∩ B(Td), which we will denote as D(Td). A
subgroup of D(Td) is called a bounded automata group.

A finitary automorphism of Td is an automorphism φ such that there exists
a constant k ∈ N for which φ|v = 1 for each v ∈ Σ� with |v| = k. Thus, a
finitary automorphism is one that is trivial after some k levels of the tree. Given
a finitary automorphism φ, the smallest k for which this definition holds will
be called its depth and will be denoted as depth(φ). We will denote the group
formed by all finitary automorphisms of Td as Fin(Td). See Fig. 3 for examples

Bounded Automata Groups are co-ET0L 87

of the actions of finitary automorphisms on their associated trees (where any
unspecified sub-tree is fixed by the action).

a b

Fig. 3. Examples of finitary automorphisms a, b ∈ Fin(T2)

Let δ ∈ A(Td) \ Fin(Td). We call δ a directed automaton automorphism if

δ = (φ1, φ2, . . . , φk−1, δ
′, φk+1, . . . , φd) · σ ∈ Aut(Td) � Sym(Σ) (2)

where each φj is finitary and δ′ is also directed automaton (that is, not finitary
and can also be written in this form). We call dir(δ) = b = ak ∈ Σ, where
δ′ = δ|b is directed automaton, the direction of δ; and we define the spine of δ,
denoted spine(δ) ∈ Σω, recursively such that spine(δ) = dir(δ) spine(δ′). We will
denote the set of all directed automaton automorphisms as Dir(Td). See Fig. 4
for examples of directed automaton automorphisms (in which a and b are the
finitary automorphisms in Fig. 3).

x

a

a
a

a
a

a
a

b

y

a
a

a
a

a
a

a
a

a

z

b

b

b

b

a

a

a
a

a

a

Fig. 4. Examples of directed automata automorphisms x, y, z ∈ Dir(T2)

The following lemma is essential to prove our main theorem.

Lemma 3. The spine, spine(δ) ∈ Σω, of a directed automaton automorphism,
δ ∈ Dir(Td), is eventually periodic, that is, there exists some ι = ι1ι2 · · · ιs ∈ Σ�,
called the initial section, and π = π1π2 · · · πt ∈ Σ�, called the periodic section,
such that spine(δ) = ι πω; and

δ|ι πk π1π2···πj
= δ|ι π1π2···πj

(3)

for each k, j ∈ N with 0 � j < t.

88 A. Bishop and M. Elder

Proof. Let (Γ, v) be a Σ-automaton such that δ = α(Γ,v). By the definition
of Σ-automata, for any given vertex w = w1w2 · · · wk ∈ Σ� of Td there exists a
vertex vw ∈ V(Γ) such that δ|w = α(Γ,vw). In particular, such a vertex vw can be
obtained by following the path with edges labelled (w1, w

′
1)(w2, w

′
2) · · · (wk, w′

k).
Then, since there are only finitely many vertices in Γ , the set of all restrictions
of δ is finite, that is,

∣
∣
{

δ|w = α(Γ,vw) : w ∈ Σ�
}∣
∣ < ∞. (4)

Let b = b1b2b3 · · · = spine(δ) ∈ Σω denote the spine of δ. Then, there exists
some n,m ∈ N with n < m such that

δ|b1b2···bn
= δ|b1b2···bn···bm

(5)

as otherwise there would be infinitely many distinct restrictions of the form
δ|b1b2···bk

thus contradicting (4). By the definition spine, it follows that

spine (δ|b1b2···bn
) = (bn+1bn+2 · · · bm) spine (δ|b1b2···bn···bm

) .

and hence, by (5),

spine (δ|b1b2···bn
) = (bn+1bn+2 · · · bm)ω.

Thus,

spine(δ) = (b1b2 · · · bn) spine (δ|b1b2···bn
) = (b1b2 · · · bn) (bn+1bn+2 · · · bm)ω.

Then, by taking ι = b1b2 · · · bn and π = bn+1bn+2 · · · bm, we have spine(δ) = ι πω.
Moreover, from (5), we have Eq. (3) as required.
�

Notice that each finitary and directed automata automorphism is also
bounded, in fact, we have the following proposition which shows that the gener-
ators of any given bounded automata group can be written as words in Fin(Td)
and Dir(Td).

Proposition 4 (Proposition 16 in [24]). The group D(Td) of bounded
automata automorphisms is generated by Fin(Td) together with Dir(Td).

4 Main Theorem

Theorem 5. Every finitely generated bounded automata group is co-ET0L.

The idea of the proof is straightforward: we construct a cspd machine that
chooses a vertex v ∈ V(Td), writing its label on the check-stack and a copy on
its pushdown; as it reads letters from input, it uses the pushdown to keep track
of where the chosen vertex is moved; and finally it checks that the pushdown
and check-stack differ. The full details are as follows.

Bounded Automata Groups are co-ET0L 89

Proof. Let G ⊆ D(Td) be a bounded automata group with finite symmetric
generating set X. By Proposition 4, we can define a map

ϕ : X → (Fin(Td) ∪ Dir(Td))
�

so that x =D(Td) ϕ(x) for each x ∈ X. Let

Y =
{
α ∈ Fin(Td) ∪ Dir(Td) : α or α−1 is a factor of ϕ(x) for some x ∈ X

}

which is finite and symmetric. Consider the group H ⊆ D(Td) generated by Y .
Since ET0L is closed under inverse word homomorphism, it suffices to prove that
coW(H,Y) is ET0L, as coW(G,X) is its inverse image under the mapping X� →
Y � induced by ϕ. We construct a cspd machine M that recognises coW(H,Y),
thus proving that G is co-ET0L.

Let α = α1α2 · · · αn ∈ Y � denote an input word given to M. The execution
of the cspd will be separated into four stages; (1) choosing a vertex v ∈ Σ� of
Td which witnesses the non-triviality of α (and placing it on the stacks); (2a)
reading a finitary automorphism from the input tape; (2b) reading a directed
automaton automorphism from the input tape; and (3) checking that the action
of α on v that it has computed is non-trivial.

After Stage 1, M will be in state qcomp. From here, M nondeterministically
decides to either read from its input tape, performing either Stage 2a or 2b and
returning to state qcomp; or to finish reading from input by performing Stage 3.

We set both the check-stack and pushdown alphabets to be Δ = Γ = Σ�{t}.

Stage 1: Choosing a Witness v = v1v2 · · · vm ∈ Σ�.

If α is non-trivial, then there must exist a vertex v ∈ Σ� such that α · v �= v.
Thus, we nondeterministically choose such a witness from R = Σ�t and store it
on the check-stack, where the letter t represents the top of the check-stack.

From the start state, q0, M will copy the contents of the check-stack onto
the pushdown, then enter the state qcomp ∈ Q. Formally, this will be achieved
by adding the transitions (for each a ∈ Σ):

((q0, ε, (b, b)), (q0, tb)), ((q0, ε, (a, t)), (q0, ta)), ((q0, ε, (t, t)), (qcomp, t)).

This stage concludes with M in state qcomp, and the read-head pointing to
(t, t). Note that whenever the machine is in state qcomp and α1α2 · · · αk has been
read from input, then the contents of pushdown will represent the permuted
vertex (α1α2 · · · αk) · v. Thus, the two stacks are initially the same as no input
has been read and thus no group action has been simulated. In Stages 2a and
2b, only the height of the check-stack is impotant, that is, the exact contents of
the check-stack will become relevant in Stage 3.

Stage 2a: Reading a Finitary Automorphism φ ∈ Y ∩ Fin(Td).

By definition, there exists some kφ = depth(φ) ∈ N such that φ|u = 1 for each
u ∈ Σ� for which |u| � kφ. Thus, given a vertex v = v1v2 · · · vm ∈ Σ�, we have

φ(v) = φ(v1v2 · · · vkφ
) v(kφ+1) · · · vm.

90 A. Bishop and M. Elder

Given that M is in state qcomp with tv1v2 · · · vmb on its pushdown, we will
read φ from input, move to state qφ,ε and pop the t; we will then pop the next
kφ (or fewer if m < kφ) letters off the pushdown, and as we are popping these
letters we visit the sequence of states qφ,v1 , qφ,v1v2 , . . . , qφ,v1v2···vkφ

. From the
final state in this sequence, we then push tφ(v1 · · · vkφ

) onto the pushdown, and
return to the state qcomp.

Formally, for letters a, b ∈ Σ, φ ∈ Y ∩ Fin(Td), and vertices u,w ∈ Σ� where
|u| < kφ and |w| = kφ, we have the transitions

((qcomp, φ, (t, t)), (qφ,ε, ε)), ((qφ,u, ε, (a, b)), (qφ,ub, ε)),

((qφ,w, ε, (ε, ε)), (qcomp, tφ(w)))

for the case where m > kφ, and

((qφ,u, ε, (b, b)), (qcomp, tφ(u)b))

for the case where m � kφ. Notice that we have finitely many states and transi-
tions since Y, Σ and each kφ is finite.

Stage 2b: Reading a Directed Automorphism δ ∈ Y ∩ Dir(Td).

By Lemma 3, there exists some ι = ι1ι2 · · · ιs ∈ Σ� and π = π1π2 · · · πt ∈ Σ�

such that spine(δ) = ι πω and

δ(ιπω) = I1I2 · · · Is (Π1Π2 · · · Πt)
ω

where
Ii = δ|ι1ι2···ιi−1

(ιi) and Πj = δ|ι π1π2···πj−1
(πj).

Given some vertex v = v1v2 · · · vm ∈ Σ�, let � ∈ N be largest such that
p = v1v2 · · · v
 is a prefix of the sequence ιπω = spine(δ). Then by definition
of directed automorphism, δ′ = δ|p is directed and φ = δ|a, where a = v
, is
finitary. Then, either p = ι1ι2 · · · ι
 and

δ(u) = (I1I2 · · · I
) δ′(a) φ(v
+2v
+3 · · · vm),

or p = ιπkπ1π2 · · · πj , with � = |ι| + k · |π| + j, and

δ(u) = (I1I2 · · · Is) (Π1Π2 · · · Πt)k (Π1Π2 · · · Πj) δ′(a) φ(v
+2v
+3 · · · vm).

Hence, from state qcomp with tv1v2 · · · vmb on its pushdown, M reads δ from
input, moves to state qδ,ι,0 and pops the t; it then pops pa off the pushdown, using
states to remember the letter a and the part of the prefix to which the final letter
of p belongs (i.e. ιi or πj). From here, M performs the finitary automorphism
φ on the remainder of the pushdown (using the same construction as Stage 2a),
then, in a sequence of transitions, pushes tδ(p)δ′(a) and returns to state qcomp.
The key idea here is that, using only the knowledge of the letter a, the part of
ι or π to which the final letter of p belongs, and the height of the check-stack,
that M is able to recover δ(p)δ′(a).

Bounded Automata Groups are co-ET0L 91

We now give the details of the states and transitions involved in this stage
of the construction.

We have states qδ,ι,i and qδ,π,j with 0 � i � |ι|, 1 � j � |π|; where qδ,ι,i

represents that the word ι1ι2 · · · ιi has been popped off the pushdown, and qδ,π,j

represents that a word ιπkπ1π2 · · · πj for some k ∈ N has been popped of the
pushdown. Thus, we begin with the transition

((qcomp, δ, (t, t)), (qδ,ι,0, ε)),

then for each i, j ∈ N, a ∈ Σ with 0 � i < |ι| and 1 � j < |π|, we have transitions

((qδ,ι,i, ε, (a, ιi+1)), (qδ,ι,(i+1), ε)), ((qδ,ι,|ι|, ε, (a, π1)), (qδ,π,1, ε)),
((qδ,π,j , ε, (a, πj+1)), (qδ,π,(j+1), ε)), ((qδ,π,|π|, ε, (a, π1)), (qδ,π,1, ε))

to consume the prefix p.
After this, M will either be at the bottom of its stacks, or its read-head will

see a letter on the pushdown that is not the next letter in the spine of δ. Thus,
for each i, j ∈ N with 0 � i � |ι| and 1 � j � |π| we have states qδ,ι,i,a and
qδ,π,j,a; and for each b ∈ Σ we have transitions

((qδ,ι,i, ε, (b, a)), (qδ,ι,i,a, ε))

where a �= ιi+1 when i < |ι| and a �= π1 otherwise, and

((qδ,π,j , ε, (b, a)), (qδ,π,j,a, ε))

where a �= πj+1 when j < |π| and a �= π1 otherwise.
Hence, after these transitions, M has consumed pa from its pushdown and

will either be at the bottom of its stacks in some state qδ,ι,i or qδ,π,j ; or will be in
some state qδ,ι,i,a or qδ,π,j,a. Note here that, if M is in the state qδ,ι,i,a or qδ,π,j,a,
then from Lemma 3 we know δ′ = δ|p is equivalent to δ|ι1ι2···ιi

or δ|ιπ1π2···πj
,

respectively; and further, we know the finitary automorphism φ = δ|pa = δ′|a.
Thus, for each state qδ,ι,i,a and qδ,π,a we will follow a similar construction to

Stage 2a, to perform the finitary automorphism φ to the remaining letters on the
pushdown, then push δ′(a) and return to the state rδ,ι,i or rδ,π,j , respectively.
For the case where M is at the bottom of its stacks we have transitions

((qδ,ι,i, ε, (b, b)), (rδ,ι,i, b)), ((qδ,π,i, ε, (b, b)), (rδ,π,i, b))

with 0 � i � |ι|, 1 � j � |π|.
Thus, after following these transitions, M is in some state rδ,ι,i or rδ,π,j and

all that remains is for M to push δ(p) with p = ι1ι2 · · · ιi or p = ιπkπ1π2 · · · πk,
respectively, onto its pushdown. Thus, for each i, j ∈ N with 0 � i � |ι| and
1 � j � |π|, we have transitions

((rδ,π,i, ε, (ε, ε)), (qcomp, tI1I2 · · · Ii)), ((rδ,π,j , ε, (ε, ε)), (rδ,π,Π1Π2 · · · Πj))

where from the state rδ,π, through a sequence of transitions, M will push the
remaining IΠk onto the pushdown. In particular, we have transitions

((rδ,π, ε, (ε, ε)), (rδ,π,Π)), ((rδ,π, ε, (ε, ε)), (qcomp, tI)),

92 A. Bishop and M. Elder

so that M can nondeterministically push some number of Π’s followed by tI
before it finishes this stage of the computation. We can assume that the machine
pushes the correct number of Π’s onto its pushdown as otherwise it will not see
t on its check-stack while in state qcomp and thus would not be able to continue
with its computation, as every subsequent stage (2a, 2b, 3) of the computation
begins with the read-head pointing to t on both stacks.

Once again it is clear that this stage of the construction requires only finitely
many states and transitions.

Stage 3: Checking that the Action is Non-trivial.

At the beginning of this stage, the contents of the check-stack represent the
chosen witness, v, and the contents of the pushdown represent the action of the
input word, α, on the witness, i.e., α · v.

In this stage M checks if the contents of its check-stack and pushdown differ.
Formally, we have states qaccept and qcheck, with qaccept accepting; for each a ∈ Σ,
we have transitions

((qcomp, ε, (t, t)), (qcheck, ε)), ((qcheck, ε, (a, a)), (qcheck, ε))

to pop identical entries of the pushdown; and for each (a, b) ∈ Σ ×Σ with a �= b
we have a transition

((qcheck, ε, (a, b)), (qaccept, ε))

to accept if the stacks differ by a letter.
Observe that if the two stacks are identical, then there is no path to the

accepting state, qaccept, and thus M will reject. Notice also that by definition of
cspd automata, if M moves into qcheck before all input has been read, then M
will not accept, i.e., an accepting state is only effective if all input is consumed.

Soundness and Completeness.

If α is non-trivial, then there is a vertex v ∈ Σ� such that α · v �= v, which M
can nondeterministically choose to write on its check-stack and thus accept α.
If α is trivial, then α · v = v for each vertex v ∈ Σ�, and there is no choice of
checking stack for which M will accept, so M will reject.

Thus, M accepts a word if and only if it is in coW(H,Y). Hence, the co-word
problem coW(H,Y) is ET0L, completing our proof.
�

Acknowledgments. The authors wish to thank Claas Röver, Michal Ferov and Laura
Ciobanu for helpful comments.

References

1. An̄ıs̄ımov, A.V.: The group languages. Kibernetika (Kiev) 7(4), 18–24 (1971)
2. Asveld, P.R.J.: Controlled iteration grammars and full hyper-AFL’s. Inf. Control

34(3), 248–269 (1977)
3. Bleak, C., Matucci, F., Neunhöffer, M.: Embeddings into Thompson’s group V and

coCF groups. J. Lond. Math. Soc. (2) 94(2), 583–597 (2016). https://doi.org/10.
1112/jlms/jdw04

https://doi.org/10.1112/jlms/jdw04
https://doi.org/10.1112/jlms/jdw04

Bounded Automata Groups are co-ET0L 93

4. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDT0L languages. Int. J. Algebra Comput. 26(5), 843–886 (2016). https://
doi.org/10.1142/S0218196716500363

5. Ciobanu, L., Elder, M., Ferov, M.: Applications of L systems to group the-
ory. Int. J. Algebra Comput. 28(2), 309–329 (2018). https://doi.org/10.1142/
S0218196718500145

6. Culik II, K.: On some families of languages related to developmental systems. Int.
J. Comput. Math. 4, 31–42 (1974). https://doi.org/10.1080/00207167408803079

7. Diekert, V., Elder, M.: Solutions of twisted word equations, EDT0L languages, and
context-free groups. In: 44th International Colloquium on Automata, Languages,
and Programming, LIPIcs. Leibniz International Proceedings in Informatics, vol.
80, Article No. 96, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)

8. Diekert, V., Jeż, A., Kufleitner, M.: Solutions of word equations over partially com-
mutative structures. In: 43rd International Colloquium on Automata, Languages,
and Programming, LIPIcs. Leibniz International Proceedings in Informatics, vol.
55, Article No. 127, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016)

9. Elder, M., Kambites, M., Ostheimer, G.: On groups and counter automata.
Int. J. Algebra Comput. 18(8), 1345–1364 (2008). https://doi.org/10.1142/
S0218196708004901

10. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,
Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston
(1992)

11. Gilman, R.H.: Formal languages and infinite groups. In: Geometric and Compu-
tational Perspectives on Infinite Groups, Minneapolis, MN and New Brunswick,
NJ, 1994. DIMACS: Series in Discrete Mathematics and Theoretical Computer
Science, vol. 25, pp. 27–51. American Mathematical Society, Providence (1996)

12. Grigorchuk, R.: On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen. 14(1), 53–54 (1980)

13. Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Mathematische
Zeitschrift 182(3), 385–388 (1983). https://doi.org/10.1007/BF01179757

14. Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word
problem. J. Lond. Math. Soc. (2) 71(3), 643–657 (2005). https://doi.org/10.1112/
S002461070500654X

15. Holt, D.F., Röver, C.E.: Groups with indexed co-word problem. Int. J. Algebra
Comput. 16(5), 985–1014 (2006). https://doi.org/10.1142/S0218196706003359

16. König, D., Lohrey, M., Zetzsche, G.: Knapsack and subset sum problems in nilpo-
tent, polycyclic, and co-context-free groups. In: Algebra and Computer Science,
Contemporary Mathematics, vol. 677, pp. 129–144. American Mathematical Soci-
ety, Providence (2016)

17. van Leeuwen, J.: Variations of a new machine model. In: 17th Annual Sympo-
sium on Foundations of Computer Science, Houston, Texas 1976, pp. 228–235.
IEEE Computer Society, Long Beach, October 1976. https://doi.org/10.1109/
SFCS.1976.35

18. Lehnert, J., Schweitzer, P.: The co-word problem for the Higman-Thompson group
is context-free. Bull. Lond. Math. Soc. 39(2), 235–241 (2007). https://doi.org/10.
1112/blms/bdl043

19. Lindenmayer, A.: Mathematical models for cellular interactions in development I.
Filaments with one-sided inputs. J. Theoret. Biol. 18(3), 280–99 (1968). https://
doi.org/10.1016/0022-5193(68)90079-9

https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1142/S0218196718500145
https://doi.org/10.1142/S0218196718500145
https://doi.org/10.1080/00207167408803079
https://doi.org/10.1142/S0218196708004901
https://doi.org/10.1142/S0218196708004901
https://doi.org/10.1007/BF01179757
https://doi.org/10.1112/S002461070500654X
https://doi.org/10.1112/S002461070500654X
https://doi.org/10.1142/S0218196706003359
https://doi.org/10.1109/SFCS.1976.35
https://doi.org/10.1109/SFCS.1976.35
https://doi.org/10.1112/blms/bdl043
https://doi.org/10.1112/blms/bdl043
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0022-5193(68)90079-9

94 A. Bishop and M. Elder

20. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-
order logic. Theoret. Comput. Sci. 37(1), 51–75 (1985). https://doi.org/10.1016/
0304-3975(85)90087-8

21. Nekrashevych, V.: Self-similar Groups, Mathematical Surveys and Monographs,
vol. 117. American Mathematical Society, Providence (2005). https://doi.org/10.
1090/surv/117

22. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,
Berlin (1997). https://doi.org/10.1007/978-3-642-59126-6

23. Rozenberg, G.: Extension of tabled OL-systems and languages. Int. J. Comput.
Inf. Sci. 2, 311–336 (1973)

24. Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclic-
ity. J. Math. Sci. (New York) 100(1), 1925–1943 (2000). https://doi.org/10.1007/
BF02677504. Algebra, 12

https://doi.org/10.1016/0304-3975(85)90087-8
https://doi.org/10.1016/0304-3975(85)90087-8
https://doi.org/10.1090/surv/117
https://doi.org/10.1090/surv/117
https://doi.org/10.1007/978-3-642-59126-6
https://doi.org/10.1007/BF02677504
https://doi.org/10.1007/BF02677504

Decidability of Sensitivity and
Equicontinuity for Linear Higher-Order

Cellular Automata

Alberto Dennunzio1, Enrico Formenti2, Luca Manzoni1(B), Luciano Margara3,
and Antonio E. Porreca1,4

1 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milan, Italy

{dennunzio,luca.manzoni,porreca}@disco.unimib.it
2 Universite Côte d’Azur, CNRS, I3S, Nice Cedex, France

enrico.formenti@unice.fr
3 Department of Computer Science and Engineering, University of Bologna,

Cesena Campus, Via Sacchi 3, Cesena, Italy
luciano.margara@unibo.it

4 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
antonio.porreca@lis-lab.fr

Abstract. We study the dynamical behavior of linear higher-order cel-
lular automata (HOCA) over Zm. In standard cellular automata the
global state of the system at time t only depends on the state at time
t − 1, while in HOCA it is a function of the states at time t − 1, . . . ,
t−n, where n ≥ 1 is the memory size. In particular, we provide easy-to-
check necessary and sufficient conditions for a linear HOCA over Zm of
memory size n to be sensitive to the initial conditions or equicontinuous.
Our characterizations of sensitivity and equicontinuity extend the ones
shown in [23] for linear cellular automata (LCA) over Z

n
m in the case

n = 1. We also prove that linear HOCA over Zm of memory size n are
indistinguishable from a subclass of LCA over Zn

m. This enables to decide
injectivity and surjectivity for linear HOCA over Zm of memory size n by
means of the decidable characterizations of injectivity and surjectivity
provided in [2] and [20] for LCA over Z

n
m.

1 Introduction

Cellular automata (CA) are well-known formal models of natural computing
which have been successfully applied in a wide number of fields to simulate
complex phenomena involving local, uniform, and synchronous processing (for
recent results and an up-to date bibliography on CA, see [1,6,7,16,25], while for
other models of natural computing see for instance [9,12,17]). More formally,
a CA is made of an infinite set of identical finite automata arranged over a
regular cell grid (usually Z

d in dimension d) and all taking a state from a finite
set S called the set of states. In this paper, we consider one-dimensional CA. A
configuration is a snapshot of all states of the automata, i.e., a function c : Z → S.
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 95–107, 2019.
https://doi.org/10.1007/978-3-030-13435-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_7

96 A. Dennunzio et al.

A local rule updates the state of each automaton on the basis of its current state
and the ones of a finite set of neighboring automata. All automata are updated
synchronously. In the one-dimensional settings, a CA is a structure 〈S, r, f〉 where
r ∈ N is the radius and f : S2r+1 → S is the local rule which updates, for each
i ∈ Z, the state of the automaton in the position i of the grid Z on the basis
of states of the automata in the positions i − r, . . . , i + r. A configuration is
an element of SZ and describes the (global) state of the CA. The feature of
synchronous updating induces the following global rule F : SZ → SZ defined as

∀c ∈ SZ,∀i ∈ Z, F (c)i = f(ci−r, . . . ci+r) .

As such, the global map F describes the change from any configuration c at any
time t ∈ N to the configuration F (c) at t + 1 and summarises the main features
of the CA model, namely, the fact that it is defined through a local rule which
is applied uniformly and synchronously to all cells.

Because of a possible inadequacy, in some contexts, of every single one of
the three defining features, variants of the original CA model started appearing,
each one relaxing one among these three features. Asynchronous CA relax syn-
chrony (see [8,10,11,18,26] for instance), non-uniform CA relax uniformity [13–
15], while hormonal CA (for instance) relax locality [4]. However, from the math-
ematical point of view all those systems, as well as the original model, fall in the
same class, namely, the class of autonomous discrete dynamical systems (DDS)
and one could also precise memoryless systems.

In [27], Toffoli introduced higher-order CA (HOCA), i.e., variants of CA in
which the updating of the state of a cell also depends on the past states of the cell
itself and its neighbours. In particular, he showed that any arbitrary reversible
linear HOCA can be embedded in a reversible linear CA (LCA), where linear
means that the local rule is linear. Essentially, the trick consisted in memoriz-
ing past states and recover them later on. Some years later, Le Bruyn and Van
Den Bergh explained and generalized the Toffoli construction and proved that
any linear HOCA having the ring S = Zm as alphabet and memory size n can
be simulated by a linear CA over the alphabet Z

n
m (see the precise definition in

Sect. 2) [2]. In this way, as we will see, a practical way to decide injectivity (which
is equivalent to reversibility in this setting) and surjectivity of HOCA can be
easily derived by the characterization of the these properties for the correspond-
ing LCA simulating them. Indeed, in [2] and [20], characterizations of injectivity
and surjectivity of a LCA over Z

n
m are provided in terms of properties of the

determinant of the matrix associated with it, where the determinant turns out
to be another LCA (over Zm). Since the properties of LCA over Zm (i.e., LCA
over Z

n
m with n = 1) have been extensively studied and related decidable char-

acterizations have been obtained [3,5,24], one derives the algorithms to decide
injectivity and surjectivity for LCA over Z

n
m and, then, as we will see, also for

HOCA over Zm of memory size n, by means of the associated matrix. The pur-
pose of the present paper is to study, in the context of linear HOCA, sensitivity
to the initial conditions and equicontinuity, where the former is the well-known
basic component and essence of the chaotic behavior of a DDS, while the latter

Decidability of Sensitivity and Equicontinuity for Linear HOCA 97

represents a strong form of stability. To do that, we put in evidence that any
linear HOCA over Zm of memory size n is not only simulated by but also topo-
logically conjugated to a LCA over Z

n
m defined by a matrix having a specific

form. Thus, in order to decide injectivity and surjectivity for linear HOCA over
Zm of memory size n, one can use the decidable characterization provided in [2]
and [20] for deciding the same properties for LCA over Z

n
m by means of that

specific matrix. As main result, we prove that sensitivity to the initial condition
and equicontinuity are decidable properties for linear HOCA over Zm of mem-
ory size n (Theorem 2). In particular we provide a decidable characterization of
those properties, in terms of the matrix associated with a linear HOCA. Remark
that if n = 1, starting from our characterizations one recovers exactly the well
known characterizations of sensitivity and equicontinuity for LCA over Zm.

2 Higher-Order CA and Linear CA

We begin by reviewing some general notions and introducing notations we will
use throughout the paper.
A discrete dynamical system (DDS) is a pair (X ,F) where X is a space equipped
with a metric, i.e., a metric space, and F is a transformation on X which is
continuous with respect to that metric. The dynamical evolution of a DDS (X ,F)
starting from the initial state x(0) ∈ X is the sequence {x(t)}t∈N ⊆ X where
x(t) = F t(x(0)) for any t ∈ N. When X = SZ for some set finite S, X is usually
equipped with the metric d defined as follows ∀c, c′ ∈ SZ, d(c, c′) = 1

2n , where
n = min{i ≥ 0 : ci 	= c′

i or c′
−i 	= c′

−i}. Recall that SZ is a Cantor space.
Any CA 〈S, r, f〉 defines the DDS (SZ, F), where F is the CA global rule

(which is continuous). From now on, for the sake of simplicity, we will sometimes
identify a CA with its global rule F or with the DDS (SZ, F).

Recall that two DDS (X ,F) and (X ′,F ′) are topologically conjugated if there
exists a homeomorphism φ : X
→ X ′ such that F ′ ◦φ = φ ◦F , while the product
of (X ,F) and (X ′,F ′) is the DDS (X × X ′,F × F ′) where F × F ′ is defined as
∀(x, x′) ∈ X × X ′, (F × F ′)(x, x′) = (F(x),F ′(x′)).

Notation 1. For all i, j ∈ Z with i ≤ j, we write [i, j] = {i, i + 1, . . . , j} to
denote the interval of integers between i and j. For any n ∈ N and any set Z the
set of all n×n matrices with coefficients in Z and the set of Laurent polynomials
with coefficients in Z will be noted by Mat (n,Z) and Z

[
X,X−1

]
, respectively. In

the sequel, bold symbols are used to denote vectors, matrices, and configurations
over a set of states which is a vectorial space. Moreover, m will be an integer
bigger than 1 and Zm = {0, 1, . . . ,m−1} the ring with the usual sum and product
modulo m. For any x ∈ Z

n (resp., any matrix M(X) ∈ Mat
(
n,Z

[
X,X−1

])
),

we will denote by [x]m ∈ Z
n
m (resp., [M(X)]m), the vector (resp., the matrix)

in which each component xi of x (resp., every coefficient of each element of
M(X)) is taken modulo m. Finally, for any matrix M(X) ∈ Zm

[
X,X−1

]
and

any t ∈ N, the t-th power of M(X) will be noted more simply by M t(X) instead
of (M(X))t.

98 A. Dennunzio et al.

Definition 1 (Higher-Order Cellular Automata). A Higher-Order Cellular
Automata (HOCA) is a structure H = 〈k, S, r, h〉 where k ∈ N with k ≥ 1 is the
memory size, S is the alphabet, r ∈ N is the radius, and h : S(2r+1)k → S is the
local rule. Any HOCA H induces the global rule H :

(
SZ

)k → (
SZ

)k associating

any vector e = (e1, . . . , ek) ∈ (
SZ

)k of k configurations of SZ with the vector

H(e) ∈ (
SZ

)k such that H(e)j = ej+1 for each j 	= k and ∀i ∈ Z,H(e)ki =

h

⎛

⎜
⎝

e1[i−r,i+r]

...
ek[i−r,i+r]

⎞

⎟
⎠. In this way, H defines the DDS

((
SZ

)k
,H

)
. As with CA, we

identify a HOCA with its global rule or the DDS defined by it.

Remark 1. It is easy to check that for any HOCA H = 〈k, S, r, h〉 there exists a
CA

〈
Sk, r, f

〉
which is topologically conjugated to H.

The study of the dynamical behaviour of HOCA is still at its early stages; a few
results are known for the class of linear HOCA, namely, those HOCA defined by
a local rule f which is linear, i.e., S is Zm and there exist coefficients aj

i ∈ Zm

(j = 1, . . . , k and i = −r, . . . , r) such that for any element

x =

⎛

⎜
⎝

x1
−r . . . x1

r
...

...
...

xk
−r . . . xk

r

⎞

⎟
⎠ ∈ Z

(2r+1)k
m , f(x) =

⎡

⎣
k∑

j=1

r∑

i=−r

aj
ix

j
i

⎤

⎦

m

.

Clearly, linear HOCA are additive, i.e., ∀c,d ∈ (
Z
Z

m

)k
,H(c) + H(d), where,

with an abuse of notation, + denotes the extension of the sum over Zm to both
Z
Z

m and
(
Z
Z

m

)k.
In [2], a much more convenient representation is introduced for the case of

linear HOCA (in dimension d = 1) by means of the following notion.

Definition 2 (Linear Cellular Automata). A Linear Cellular Automaton
(LCA) is a CA L = 〈Zn

m, r, f〉 where the local rule f : (Zn
m)2r+1 → Z

n
m is

defined by 2r + 1 matrices M−r, . . . ,M0, . . . ,M r ∈ Mat (n,Zm) as follows:
f(x−r, . . . ,x0, . . . ,xr) =

[∑r
i=−r M i · xi

]
m

for any (x−r, . . . ,x0, . . . ,xr) ∈
(Zn

m)2r+1.

Remark 2. LCA have been strongly investigated in the case n = 1 and all the
dynamical properties have been characterized in terms of the 1×1 matrices (i.e.,
coefficients) defining the local rule, in any dimension too [3,24].

We recall that any linear HOCA H can be simulated by a suitable LCA, as shown
in [2]. Precisely, given a linear HOCA H = 〈k,Zm, r, h〉, where h is defined by
the coefficients aj

i ∈ Zm, the LCA simulating H is L =
〈
Z
k
m, r, f

〉
with f defined

by following matrices

Decidability of Sensitivity and Equicontinuity for Linear HOCA 99

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
.

...
0 0 0 . . . 0 1
a1
0 a2

0 a3
0 . . . ak−1

0 ak
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and M i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
a1
i a2

i a3
i . . . ak−1

i ak
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

for each i ∈ [−r, r] with i 	= 0.

Remark 3. We want to put in evidence that a stronger result actually holds
(easy proof, important remark): any linear HOCA H is topologically conjugated
to the LCA L defined by the matrices in (1). Clearly, the converse also holds:
for any LCA defined by the matrices in (1) there exists a linear HOCA which
is topologically conjugated to it. In other words, up to a homeomorphism the
whole class of linear HOCA is identical to the subclass of LCA defined by the
matrices above introduced. In the sequel, we will call L the matrix presentation
of H.

We are now going to show a stronger and useful new fact, namely, that the
class of linear HOCA is nothing but the subclass of LCA represented by a formal
power series which is a matrix in Frobenius normal form. Before proceeding, let
us recall the formal power series (fps) which have been successfully used to study
the dynamical behaviour of LCA in the case n = 1 [19,24]. The idea of fps is that
configurations and global rules are represented by suitable polynomials and the
application of the global rule turns into multiplications of polynomials. In the
more general case of LCA over Zn

m, a configuration c ∈ (Zn
m)Z can be associated

with the fps

Pc(X) =
∑

i∈Z

ciX
i =

⎡

⎢
⎣

c1(X)
...

cn(X)

⎤

⎥
⎦ =

⎡

⎢
⎣

∑
i∈Z

c1iX
i

...∑
i∈Z

cni Xi

⎤

⎥
⎦ .

Then, if F is the global rule of a LCA defined by M−r, . . . ,M0, . . . ,M r, one
finds P F (c)(X) = [M(X)Pc(X)]m where

M(X) =

[
r∑

i=−r

M iX
−i

]

m

is the finite fps associated with the LCA F . In this way, for any integer t > 0 the
fps associated with F t is M(X)t, and then P F t(c)(X) = [M(X)tPc(X)]m .
Throughout this paper, M(X)t will refer to [M(X)t]m.

100 A. Dennunzio et al.

A matrix M(X) ∈ Mat
(
n,Z

[
X,X−1

])
is in Frobenius normal form if

M(X) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
.

...

0 0 0 . . . 0 1

m0(X) m1(X) m2(X) . . . mn−2(X) mn−1(X)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

where each mi(X) ∈ Z
[
X,X−1

]
. From now on, m(X) will always make ref-

erence to the n-th row of a matrix M(X) ∈ Mat
(
n,Z

[
X,X−1

])
in Frobenius

normal form.

Definition 3 (Frobenius LCA). A LCA F over the alphabet Z
n
m is said to

be a Frobenius LCA if the fps M(X) ∈ Mat
(
n,Zm

[
X,X−1

])
associated with

F is in Frobenius normal form.

It is immediate to see that a LCA is a Frobenius one iff it is defined by the
matrices in (1), i.e., iff it is topologically conjugated to a linear HOCA. This
fact together with Remark 3 and Definition 3, allow us to state the following

Proposition 1. Up to a homeomorphism, the class of linear HOCA over Zm

of memory size n is nothing but the class of Frobenius LCA over Z
n
m.

Remark 4. Actually, in literature a matrix is in Frobenius normal form if either it
or its transpose has a form as in (2). Since any matrix in Frobenius normal form
is conjugated to its transpose, any Frobenius LCA F is topologically conjugated
to a LCA G such that the fps associated with G is the transpose of the fps
associated with G. In other words, up to a homeomorphism, such LCA G, linear
HOCA, and Frobenius LCA form the same class.

From now on, we will focus on Frobenius LCA, i.e., matrix presentations
of linear HOCA. Indeed, they allow convenient algebraic manipulations that
are very useful to study formal properties of linear HOCA. For example, in [2]
and [20], the authors proved decidable characterization for injectivity and sur-
jectivity for LCA in terms of the matrix M(X) associated to them. We want
to stress that, by Remark 3 and Definition 3, one can use these characterizations
for deciding injectivity and surjectivity of linear HOCA. In this paper we are
going to adopt a similar attitude, i.e., we are going to characterise the dynami-
cal behaviour of linear HOCA by the properties of the matrices in their matrix
presentation.

Decidability of Sensitivity and Equicontinuity for Linear HOCA 101

3 Dynamical Properties

In this paper we are particularly interested to the so-called sensitivity to the
initial conditions and equicontinuity. As dynamical properties, they represent
the main features of instable and stable DDS, respectively. The former is the
well-known basic component and essence of the chaotic behavior of DDS, while
the latter is a strong form of stability.

Let (X ,F) be a DDS. The DDS (X ,F) is sensitive to the initial conditions
(or simply sensitive) if there exists ε > 0 such that for any x ∈ X and any
δ > 0 there is an element y ∈ X such that d(y, x) < δ and d(Fn(y),Fn(x)) > ε
for some n ∈ N. Recall that, by Knudsen’s Lemma [21], (X ,F) is sensitive iff
(Y,F) is sensitive where Y is any dense subset of X which is F-invariant, i.e.,
F(Y) ⊆ Y.

In the sequel, we will see that in the context of LCA an alternative way to
study sensitivity is via equicontinuity points. An element x ∈ X is an equicon-
tinuity point for (X ,F) if ∀ε > 0 there exists δ > 0 such that for all y ∈ X ,
d(x, y) < δ implies that d(Fn(y),Fn(x)) < ε for all n ∈ N. The system (X ,F) is
said to be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ X ,
d(x, y) < δ implies that ∀n ∈ N, d(Fn(x),Fn(y)) < ε. Recall that any CA
(SZ, F) is equicontinuous if and only if there exist two integers q ∈ N and p > 0
such that F q = F q+p [22]. Moreover, for the subclass of LCA defined by n = 1
the following result holds:

Theorem 1 ([24]). Let (ZZ

m, F) be a LCA where the local rule f : (Zm)2r+1 →
Zm is defined by 2r + 1 coefficients m−r, . . . , m0, . . . , mr ∈ Zm. Denote by P
the set of prime factors of m. The following statements are equivalent: (i) F is
sensitive to the initial conditions; (ii) F is not equicontinuous; (iii) there exists
a prime number p ∈ P which does not divide gcd(m−r, . . . , m−1,m1, . . . , mr).

The dichotomy between sensitivity and equicontinuity still holds for general
LCA.

Proposition 2. Let L = 〈Zn
m, r, f〉 be a LCA where the local rule

f : (Zn
m)2r+1 → Z

n
m is defined by 2r + 1 matrices M−r, . . . ,M0, . . . ,M r ∈

Mat (n,Zm). The following statements are equivalent: (i) F is sensitive to the
initial conditions; (ii) F is not equicontinuous; (iii)

∣
∣{M(X)i, i ≥ 1}∣∣ = ∞.

Proof. It is clear that conditions (ii) and (iii) are equivalent. The equivalence
between (i) and (ii) is a consequence of linearity of F and Knudsen’s Lemma
applied on the subset of the finite configurations, i.e., those having a state dif-
ferent from the null vector only in a finite number of cells. ��
An immediate consequence of Proposition 2 is that any characterization of sen-
sitivity to the initial conditions in terms of the matrices defining LCA over Z

n
m

would also provide a characterization of equicontinuity. In the sequel, we are
going to show that such a characterization actually exists. First of all, we recall
a result that helped in the study of dynamical properties in the case n = 1 and we

102 A. Dennunzio et al.

now state it in a more general form for LCA over Zn
m (immediate generalisation

of the result in [3,5]).
Let

(
(Zn

m)Z, F
)

be a LCA and let q be any factor of m. We will denote by [F]q
the map [F]q : (Zn

q)Z → (Zn
q)Z defined as [F]q (c) = [F (c)]q, for any c ∈ (Zn

q)Z.

Lemma 1 ([3,5]). Consider any LCA
(
(Zn

m)Z, F
)

with m = pq and
gcd(p, q) = 1. It holds that the given LCA is topologically conjugated to(
(Zn

p)Z × (Zn
q)Z, [F]p × [F]q

)
.

As a consequence of Lemma 1, if m = pk1
1 · · · pkl

l is the prime factor decomposi-
tion of m, any LCA over Zn

m is topologically conjugated to the product of LCAs
over Z

n

p
ki
i

. Since sensitivity is preserved under topological conjugacy for DDS

over a compact space and the product of two DDS is sensitive if and only if
at least one of them is sensitive, we will study sensitivity for Frobenius LCA
over Z

n
pk . We will show a decidable characterization of sensitivity to the initial

conditions for Frobenius LCA over Z
n
pk (Lemma 8). Such a decidable character-

ization together with the previous remarks about the decomposition of m, the
topological conjugacy involving any LCA over Zn

m and the product of LCAs over
Z
n

p
ki
i

, and how sensitivity behaves with respect to a topological conjugacy and

the product of DDS, immediately lead to state the main result of the paper.

Theorem 2. Sensitivity and Equicontinuity are decidable for Frobenius LCA
over Z

n
m, or, equivalently, for linear HOCA over Zm of memory size n.

4 Sensitivity of Frobenius LCA over Z
n
pk

In order to study sensitivity of Frobenius LCA over Z
n
pk , we introduce two con-

cepts about Laurent polynomials.

Definition 4 (deg+ and deg−). Given any polynomial p(X) ∈ Zpk

[
X,X−1

]
,

the positive (resp., negative) degree of p(X), denoted by deg+[p(X)] (resp.,
deg−[p(X)]) is the maximum (resp., minimum) degree among those of the mono-
mials having both positive (resp., negative) degree and coefficient which is not
multiple of p. If there is no monomial satisfying both the required conditions,
then deg+[p(X)] = 0 (resp., deg−[p(X)] = 0).

Definition 5 (Sensitive Polynomial). A polynomial p(X) ∈ Zpk

[
X,X−1

]

is sensitive if either deg+[p(X)] > 0 or deg−[p(X)] < 0. As a consequence, a
Laurent polynomial p(X) is not sensitive iff deg+[p(X)] = deg−[p(X)] = 0.

Trivially, it is decidable to decide whether a Laurent polynomial is sensitive.

Remark 5. Consider a matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobe-

nius normal form. The characteristic polynomial of M(X) is then P(y) =
(−1)n(−m0(X)−m1(X)y −· · ·−mn−1(X)yn−1 +yn). By the Cayley-Hamilton
Theorem, one obtains

Mn(X) = mn−1(X)M(X)n−1 + · · · + m1(X)M(X)1 + m0(X)I . (3)

Decidability of Sensitivity and Equicontinuity for Linear HOCA 103

We now introduce two further matrices that will allow us to access the informa-
tion hidden inside M(X).

Definition 6 (U(X), L(X), d+, and d−). For any matrix M(X) ∈
Mat

(
n,Zpk

[
X,X−1

])
in Frobenius normal form the matrices U(X),L(X) ∈

Mat
(
n,Zpk

[
X,X−1

])
associated with M(X) are the matrices in Frobenius

normal form where each component ui(X) and li(X) (with i = 0, . . . , n − 1)
of the n-th row u(X) and l(X) of U(X) and L(X), respectively, is defined as
follows:

ui(X) =

{
monomial of degree deg+[mi(X)] inside mi(X) if d+i = d+

0 otherwise

li(X) =

{
monomial of degree deg−[mi(X)] inside mi(X) if d−

i = d−

0 otherwise
,

where d+i = deg+[mi(X)]
n−i , d−

i = deg−[mi(X)]
n−i , d+ = max{d+i }, and d− = min{d−

i }.

Definition 7 (M̂(X) and M(X)). For any Laurent polynomial p(X) ∈
Zpk

[
X,X−1

]
, p̂(X) and p(X) are defined as the Laurent polynomial obtained

from p(X) by removing all the monomials having coefficients that are multiple of
p and p(X) = p(X) − p̂(X), respectively. These definitions extend component-
wise to vectors. For any matrix M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
in Frobenius

normal form, M̂(X) and M(X) are defined as the matrix obtained from M(X)
by replacing its n-th row m(X) with m̂(X) and M(X) = M(X) − M̂(X),
respectively.

Definition 8 (Graph GM). Let M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
be any

matrix in Frobenius normal form. The graph GM = 〈VM , EM 〉 associated with
M(X) is such that VM = {1, . . . , n} and EM = {(h, k) ∈ V 2

M |M(X)hk 	= 0}.
Moreover, each edge (h, k) ∈ EM is labelled with M(X)hk .

Clearly, for any matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal

form, any natural t > 0, and any pair (h, k) of entries, the element M t(X)hk is
the sum of the weights of all paths of length t starting from h and ending to k,
where the weight of a path is the product of the labels of its edges.

Lemma 2. Let p > 1 be a prime number and a, b ≥ 0, k > 0 be integers such
that 1 ≤ a < pk and gcd(a, p) = 1. Then, [a + pb]pk 	= 0.

Lemma 3. Let p > 1 be a prime number and h, k be two positive integers. Let
l1, . . . , lh and α1, . . . , αh be positive integers such that l1 < l2 < · · · < lh and
for each i = 1, . . . , h both 1 ≤ αi < pk and gcd(αi, p) = 1 hold. Consider the
sequence b : Z → Zpk defined for any l ∈ Z as bl = [α1bl−l1 + · · · + αhbl−lh]pk

if l > 0, b0 = 1, and bl = 0, if l < 0. Then, it holds that [bl]p 	= 0 for infinitely
many l ∈ N.

104 A. Dennunzio et al.

For any matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal form, we

are now going to study the behavior of U t(X) and Lt(X), and, in particular, of
their elements U t(X)nn and Lt(X)nn. These will turn out to be crucial in order
to establish the sensitivity of the LCA defined by M(X).

Notation 2. For a sake of simplicity, for any matrix M(X) ∈ Mat(
nZpk

[
X,X−1

])
in Frobenius normal form, from now on we will denote by

u(t)(X) and l(t)(X) the elements (U t(X))nn and Lt(X)nn, respectively.

Lemma 4. Let M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
be a matrix such that M(X) =

N̂(X) for some N(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal form. For

any natural t > 0, u(t)(X) (resp., l(t)(X)) is either null or a monomial of degree
td+ (resp., td−).

Proof. We show that the statement is true for u(t)(X) (the proof concerning
l(t)(X) is identical by replacing d+, U(X) and related elements with d−, L(X)
and related elements). For each i ∈ VU , let γi be the simple cycle of GU from
n to n and passing through the edge (n, i). Clearly, γi is the path n → i →
i + 1 . . . → n − 1 → n (with γn the self-loop n → n) of length n − i + 1 and its
weight is the monomial ui−1(X) of degree (n − i + 1)d+. We know that u(t)(X)
is the sum of the weights of all cycles of length t starting from n and ending to
n in GU if at least one of such cycles exists, 0, otherwise. In the former case,
each of these cycles can be decomposed in a certain number s ≥ 1 of simple
cycles γ1

j1
, . . . , γs

js
of lengths giving sum t, i.e., such that

∑s
i=1(n − ji + 1) = t.

Therefore, (U t(X))nn is a monomial of degree
∑s

i=1(n − ji + 1)d+ = td+. ��
Lemma 5. Let M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
be any matrix in Frobenius

normal form. For every integer t ≥ 1 both the following recurrences hold

u(t)(X)=un−1(X)u(t−1)(X) + · · · + u1(X)u(t−n+1)(X) + u0(X)u(t−n)(X) (4)
l(t)(X) = ln−1(X)l(t−1)(X) + · · · + l1(X)l(t−n+1)(X) + l0(X)l(t−n)(X) (5)

with initial conditions u(0)(X) = l(0)(X) = 1, and u(l)(X) = l(l)(X) = 0 for
l < 0.

Proof. We show the recurrence involving u(t)(X) (the proof for l(t)(X) is iden-
tical by replacing U(X) and its elements with L(X) and its elements). Since
U(X) is in Frobenius normal form too, by (3), Recurrence (4) holds for every
t ≥ n. It is clear that u(0)(X) = 1. Furthermore, by the structure of the graph
GU and the meaning of U(X)nn, Equation (4) is true under the initial conditions
for each t = 1, . . . , n − 1. ��
Lemma 6. Let M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
be a matrix such that M(X) =

N̂(X) for some matrix N(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in Frobenius normal

form. Let υ(t) (resp., λ(t)) be the coefficient of u(t)(X) (resp., l(t)(X)). It holds
that gcd[υ(t), p] = 1 (resp., gcd[λ(t), p] = 1), for infinitely many t ∈ N.
In particular, if the value d+ (resp., d−) associated with M(X) is non null, then

Decidability of Sensitivity and Equicontinuity for Linear HOCA 105

for infinitely many t ∈ N both
[
u(t)(X)

]
pk 	= 0 and deg(

[
u(t)(X)

]
pk) 	= 0 (resp.,

[
l(t)(X)

]
pk 	= 0 and deg(

[
l(t)(X)

]
pk) 	= 0) hold. In other terms, if d+ > 0 (resp.,

d− < 0) then |{u(t)(X), t ≥ 1}| = ∞ (resp., |{lt(X), t ≥ 1}| = ∞).

Proof. We show the statements concerning υ(t), U(X), u(t)(X), and d+. Replace
X by 1 in the matrix U(X). Now, the coefficient υ(t) is just the element of
position (n, n) in the t-th power of the obtained matrix U(1). Over U(1), the
thesis of Lemma 5 is still valid replacing u(t)(X) by υ(t). Thus, for every t ∈ N,
υ(t) = un−1(1)υ(t − 1) + · · · + u1(1)υ(t − n + 1) + u0(1)υ(t − n) with initial
conditions υ(0) = 1 and υ(l) = 0, for l < 0, where each ui(1) is the coef-
ficient of the monomial ui(X) inside U(X). Thus, it follows that [υ(t)]pk =
[un−1(1)υ(t − 1) + · · · + u1(1)υ(t − n + 1) + u0(1)υ(t − n)]pk . By Lemma 3 we
obtain that gcd[υ(t), p] = 1 (and so [υ(t)]pk 	= 0, too) for infinitely many t ∈ N.
In particular, if the value d+ associated with M(X) is non null, then, by the
structure of GU and Lemma 4, both

[
u(t)(X)

]
pk 	= 0 and deg(

[
u(t)(X)

]
pk) 	= 0

hold for infinitely many t ∈ N, too. Therefore, |{u(t)(X), t ≥ 1}| = ∞. The same
proof runs for the statements involving λ(t), L(X), u(t)(X), and d− provided
that these replace υ(t), U(X), u(t)(X), and d+, respectively. ��
Lemma 7. Let M(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
be a matrix in Frobenius nor-

mal form. If either |{u(t)(X), t ≥ 1}| = ∞ or |{l(t)(X), t ≥ 1}| = ∞ then

|{M̂ t
(X)nn, t ≥ 1}| = ∞.

Proof. Assume that |{u(t)(X), t ≥ 1}| = ∞. Since GU is a subgraph of G
̂M

(with different labels), for each integer t from Lemma 6 applied to M̂(X), the
cycles of length t in G

̂M
with weight containing a monomial of degree td+ are

exactly the cycles of length t in GU . Therefore, it follows that |{M̂ t
(X)nn, t ≥

1}| = ∞. The same argument on GL and involving d− allows to prove the thesis
if |{l(t)(X), t ≥ 1}| = ∞.

We are now able to present and prove the main result of this section. It shows
a decidable characterization of sensitivity for Frobenius LCA over Z

n
pk .

Lemma 8. Let
(
(Zn

pk)Z, F
)

be any Frobenius LCA over Z
n
pk and let (m0(X),

. . . ,mn−1) be the n-th row of the matrix M(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
in

Frobenius normal form associated with F . Then, F is sensitive to the initial
conditions if and only if mi(X) is sensitive for some i ∈ [0, n − 1].

Proof. Let us prove the two implications separately.
Assume that all mi(X) are not sensitive. Then, M̂(X) ∈ Mat

(
n,Zpk

)
, i.e., it

does not contain the formal variable X, and M(X) = M̂(X)+pM ′(X), for some
M ′(X) ∈ Mat

(
n,Zpk

[
X,X−1

])
in Frobenius normal form. Therefore, for any

integer t > 0, M t(X) is the sum of terms, each of them consisting of a product in
which pj appears as factor, for some natural j depending on t and on the specific
term which pj belongs to. Since every element of M t(X) is taken modulo pk,

106 A. Dennunzio et al.

for any natural t > 0 it holds that in each term of such a sum pj appears with
j ∈ [0, k − 1] (we stress that j may depend on t and on the specific term of the
sum, but it is always bounded by k). Therefore, |{M i(X) : i > 0}| < ∞ and so,
by Proposition 2, F is not sensitive to the initial conditions.

Conversely, suppose that mi(X) is sensitive for some i ∈ [0, n−1] and d+ > 0
(the case d− < 0 is identical). By Definition 7, for any natural t > 0 there exists a

matrix M ′(X) ∈ Mat
(
n,Zpk

[
X,X−1

])
such that M t(X) = M̂

t
(X)+pM ′(X).

By a combination of Lemmata 6 and 7, we get |{M̂ t
(X)nn, t ≥ 1}| = ∞ and so, by

Lemma 2, |{M t(X)nn, t ≥ 1}| = ∞ too. Therefore, it follows that |{M t(X), t ≥
1}| = ∞ and, by Proposition 2, we conclude that F is sensitive to the initial
conditions. ��

5 Conclusions

In this paper we have studied equicontinuity and sensitivity to the initial con-
ditions for linear HOCA over Zm of memory size n, providing decidable char-
acterizations for these properties. We also proved that linear HOCA over Zm

of memory size n form a class that is indistinguishable from a subclass of LCA
(namely, the subclass of Frobenius LCA) over Z

n
m. This enables to decide injec-

tivity and surjectivity for linear HOCA over Zm of memory size n by means
of the decidable characterizations of injectivity and surjectivity provided in [2]
and [20] for LCA over Z

n
m. A natural and pretty interesting research direction

consists of investigating other chaotic properties for linear HOCA and all the
mentioned dynamical properties, including sensitivity and equicontinuity, for
the whole class of LCA over Z

n
m.

References

1. Acerbi, L., Dennunzio, A., Formenti, E.: Shifting and lifting of cellular automata.
In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 1–10.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73001-9 1

2. Bruyn, L.L., den Bergh, M.V.: Algebraic properties of linear cellular automata.
Linear Algebra Appl. 157, 217–234 (1991)

3. Cattaneo, G., Dennunzio, A., Margara, L.: Solution of some conjectures about
topological properties of linear cellular automata. Theor. Comput. Sci. 325(2),
249–271 (2004)

4. Cervelle, J., Lafitte, G.: On shift-invariant maximal filters and hormonal cellular
automata. In: LICS: Logic in Computer Science, Reykjavik, Iceland, pp. 1–10, June
2017

5. d’Amico, M., Manzini, G., Margara, L.: On computing the entropy of cellular
automata. Theor. Comput. Sci. 290(3), 1629–1646 (2003)

6. Dennunzio, A.: From one-dimensional to two-dimensional cellular automata. Fun-
dam. Informaticae 115(1), 87–105 (2012)

7. Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: Periodic orbits and dynam-
ical complexity in cellular automata. Fundam. Informaticae 126(2–3), 183–199
(2013)

https://doi.org/10.1007/978-3-540-73001-9_1

Decidability of Sensitivity and Equicontinuity for Linear HOCA 107

8. Dennunzio, A., Formenti, E., Manzoni, L.: Computing issues of asynchronous CA.
Fundam. Informaticae 120(2), 165–180 (2012)

9. Dennunzio, A., Formenti, E., Manzoni, L.: Reaction systems and extremal combi-
natorics properties. Theor. Comput. Sci. 598, 138–149 (2015)

10. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: m-asynchronous cellular
automata: from fairness to quasi-fairness. Nat. Comput. 12(4), 561–572 (2013)

11. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E.: Computa-
tional complexity of finite asynchronous cellular automata. Theor. Comput. Sci.
664, 131–143 (2017)

12. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Ancestors, descendants,
and gardens of Eden in reaction systems. Theor. Comput. Sci. 608, 16–26 (2015)

13. Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: classes,
dynamics, and decidability. Inf. Comput. 215, 32–46 (2012)

14. Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language com-
plexity and non-uniform cellular automata. Theor. Comput. Sci. 504, 38–51 (2013)

15. Dennunzio, A., Formenti, E., Provillard, J.: Three research directions in non-
uniform cellular automata. Theor. Comput. Sci. 559, 73–90 (2014)

16. Dennunzio, A., Formenti, E., Weiss, M.: Multidimensional cellular automata: clos-
ing property, quasi-expansivity, and (un)decidability issues. Theor. Comput. Sci.
516, 40–59 (2014)

17. Dennunzio, A., Guillon, P., Masson, B.: Stable dynamics of sand automata. In:
Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol.
273, pp. 157–169. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09680-3 11

18. Ingerson, T., Buvel, R.: Structure in asynchronous cellular automata. Phys. D
Nonlinear Phenomena 10(1), 59–68 (1984)

19. Ito, M., Osato, N., Nasu, M.: Linear cellular automata over Zm. J. Comput. Syst.
Sci. 27, 125–140 (1983)

20. Kari, J.: Linear cellular automata with multiple state variables. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 110–121. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3 9

21. Knudsen, C.: Chaos without nonperiodicity. Am. Math. Monthly 101, 563–565
(1994)

22. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theor. Dyn. Syst. 17, 417–433 (1997)

23. Manzini, G., Margara, L.: Attractors of linear cellular automata. J. Comput. Syst.
Sci. 58(3), 597–610 (1999)

24. Manzini, G., Margara, L.: A complete and efficiently computable topological clas-
sification of D-dimensional linear cellular automata over Zm. Theor. Comput. Sci.
221(1–2), 157–177 (1999)

25. Mariot, L., Leporati, A., Dennunzio, A., Formenti, E.: Computing the periods of
preimages in surjective cellular automata. Nat. Comput. 16(3), 367–381 (2017)

26. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. Biosystems 51(3), 123–143 (1999)

27. Toffoli, T.: Computation and construction universality. J. Comput. Syst. Sci. 15,
213–231 (1977)

https://doi.org/10.1007/978-0-387-09680-3_11
https://doi.org/10.1007/978-0-387-09680-3_11
https://doi.org/10.1007/3-540-46541-3_9

On Varieties of Ordered Automata

Ondřej Kĺıma(B) and Libor Polák

Department of Mathematics and Statistics, Masaryk University,
Kotlářská 2, 611 37 Brno, Czech Republic

{klima,polak}@math.muni.cz

Abstract. The Eilenberg correspondence relates varieties of regular lan-
guages with pseudovarieties of finite monoids. Various modifications of
this correspondence have been found with more general classes of regular
languages on one hand and classes of more complex algebraic structures
on the other hand. It is also possible to consider classes of automata
instead of algebraic structures as a natural counterpart of classes of lan-
guages. Here we deal with the correspondence relating positive C-varieties
of languages to positive C-varieties of ordered automata and we demon-
strate various specific instances of this correspondence. These bring cer-
tain well-known results from a new perspective and also some new obser-
vations. Moreover, complexity aspects of the membership problem are
discussed both in the particular examples and in a general setting.

Keywords: Algebraic language theory · Ordered automata

1 Introduction

Algebraic theory of regular languages is a well-established field in the theory of
formal languages. The basic ambition of this theory is to obtain effective char-
acterizations of various natural classes of regular languages. First examples of
significant classes of languages, which were effectively characterized by prop-
erties of syntactic monoids, were the star-free languages by Schützenberger [17]
and the piecewise testable languages by Simon [18]. A general framework for dis-
covering relationships between properties of regular languages and properties of
monoids was provided by Eilenberg [5], who established a one-to-one correspon-
dence between the so-called varieties of regular languages and pseudovarieties
of finite monoids. Here varieties of languages are classes closed for taking quo-
tients, preimages under homomorphisms and Boolean operations. Thus a mem-
bership problem for a given variety of regular languages can be translated to a
membership problem for the corresponding pseudovariety of finite monoids. An
advantage of this approach is that pseudovarieties of monoids are exactly classes
of finite monoids which have an equational description by pseudoidentities – see
Reiterman [16]. For a thorough introduction to that theory we refer to surveys
by Pin [13] and by Straubing and Weil [20].

The paper was supported by grant GA15-02862S of the Czech Science Foundation.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 108–120, 2019.
https://doi.org/10.1007/978-3-030-13435-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_8

On Varieties of Ordered Automata 109

Since not every natural class of languages is closed for taking all mentioned
operations, various generalizations of the notion of varieties of languages have
been studied. One possible generalization is the notion of positive varieties of
languages introduced by Pin [12] – the classes need not be closed for taking com-
plementation. Their equational characterization was given by Pin and Weil [15].
Another possibility is to weaken the closure property concerning preimages under
homomorphisms – only homomorphisms from a certain fixed class C are used. In
this way, one can consider C-varieties of regular languages which were introduced
by Straubing [19] and whose equational description was presented by Kunc [9].
These two generalizations could be combined as suggested by Pin and Straub-
ing [14].

In our contribution we do not use syntactic structures at all. We con-
sider classes of automata as another natural counterpart to classes of regular
languages. In fact, we deal with classes of semiautomata, which are exactly
automata without the specification of initial nor final states. Characterizing of
classes of languages by properties of minimal automata is quite natural, since
usually we assume that an input of a membership problem for a fixed class of
languages is given exactly by the minimal deterministic automaton. For exam-
ple, if we want to test whether an input language is piecewise testable, we do
not need to compute its syntactic monoid which could be quite large (see Brzo-
zowski and Li [2]). Instead of that, we check a condition which must be satisfied
by its minimal automaton and which was also established in [18]. In [7], Simon’s
condition was reformulated and the so-called confluent acyclic (semi)automata
were defined. In this setting, this characterization can be viewed as an instance
of Eilenberg type theorem between varieties of languages and varieties of semi-
automata.

Moreover, each minimal automaton is implicitly equipped with an order in
which the final states form an upward closed subset. This leads to a notion
of ordered automata. Then positive C-varieties of ordered semiautomata can
be defined as classes which are closed for taking certain natural closure oper-
ations. We recall here the general Eilenberg type theorem, namely Theorem4
from Sect. 3, which states that positive C-varieties of ordered semiautomata cor-
respond to positive C-varieties of languages.

Summarizing, there are three worlds:
(L) classes of regular languages,
(S) classes of finite monoids, sometimes enriched by an additional structure like
the ordered monoids, monoids with distinguished generators, etc.,
(A) classes of semiautomata, sometimes ordered semiautomata, etc.

Most variants of Eilenberg correspondence relate (L) and (S), the relation-
ship between (A) and (S) was studied by Chaubard et al. [3], and finally the
transitions between (L) and (A) were initiated by Ésik and Ito [6]. In the first
version of [8], we continue in the last approach, to establish Theorem 4. In fact,
this result is a combination of Theorem 5.1 of [14] (only some hints to a possible
proof are given there) and the main result of [3] relating worlds (S) and (A). In

110 O. Kĺıma and L. Polák

contrary, in [8], one can find a self-contained proof which does not go through
the classes of monoids.

In the present contribution we concentrate on series of examples, which are
various instances of Theorem 4. These bring certain well-known results from a
new perspective and also some new observations. The complexity aspects of the
membership problem are discussed both in the specific examples and also in a
general setting. Moreover, a construction of the minimal ordered automaton of
a given language is presented here.

Due to space limitations some proofs are omitted – the corresponding results
are marked by the symbol �. All missing proofs could be find in the second
version of [8].

2 Ordered Automata

All automata which are considered in the paper are finite, deterministic and
complete. Moreover, we use the term semiautomaton when the initial and final
states are not explicitly given. Formally saying, a deterministic finite automaton
(DFA) over the finite alphabet A is a five-tuple A = (Q,A, ·, i, F), where Q is a
non-empty finite set of states, · : Q × A → Q is a complete transition function,
i ∈ Q is the initial state and F ⊆ Q is the set of final states. The transition
function can be extended to a mapping · : Q × A∗ → Q by q · λ = q, q · (ua) =
(q ·u) ·a, for every q ∈ Q, u ∈ A∗, a ∈ A and the empty word λ. The automaton
A accepts a word u ∈ A∗ if and only if i · u ∈ F and the language recognized
by A is L (A) = {u ∈ A∗ | i · u ∈ F }. More generally, for q ∈ Q, we denote
L (A, q) = {u ∈ A∗ | q · u ∈ F }.

We recall the construction of a minimal automaton of a regular language
which was introduced by Brzozowski [1]. Since this automaton is uniquely deter-
mined we use also the adjective canonical for it. For a language L ⊆ A∗ and a
pair of words u, v ∈ A∗, we denote by u−1Lv−1 the quotient of L by these words,
i.e. the set u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }. In particular, a left quotient is
defined as u−1L = {w ∈ A∗ | uw ∈ L }. The canonical deterministic automaton
of a regular language L is DL = (DL, A, ·, L, FL), where DL = {u−1L | u ∈ A∗ },
K · a = a−1K, for each K ∈ DL, a ∈ A, and FL = {K ∈ DL | λ ∈ K }. A useful
observation concerning the canonical automaton is that, for each state K ∈ DL,
we have L (DL,K) = K. Since states of the canonical automaton are languages,
they are ordered naturally by the set-theoretical inclusion. The action by each
letter a ∈ A is an isotone mapping: for each pair of states p, q such that p ⊆ q,
we have p · a = a−1p ⊆ a−1q = q · a. Moreover, the set FL of all final states
is an upward closed subset with respect to ⊆. These observations motivate the
following definition.

Definition 1. An ordered automaton over the alphabet A is a six-tuple O =
(Q,A, ·,≤, i, F), where (i) (Q,A, ·, i, F) is DFA, (ii) ≤ is a partial order on the
set Q, (iii) the action by every letter a ∈ A is an isotone mapping from the
ordered set (Q,≤) to itself and (iv) F is an upward closed subset of Q with
respect to ≤.

On Varieties of Ordered Automata 111

If an ordered automaton O = (Q,A, ·,≤, i, F) is given, then we denote by
O the corresponding ordered semiautomaton (Q,A, ·,≤). In particular, for the
canonical ordered automaton DL = (DL, A, ·,⊆, L, F) of the language L, we
have DL = (DL, A, ·,⊆).

We could recall, that the transition monoid of the minimal automaton
of a regular language L is isomorphic to the syntactic monoid of L (see
e.g. [13, Sect. 3]). Similarly, the ordered transition monoid of the minimal ordered
automaton of L is isomorphic to the syntactic ordered monoid of L.

There is a natural question how the minimal ordered (semi)automaton can
be computed from a given automaton.

Proposition 2. There exists an algorithm which computes, for a given automa-
ton A = (Q,A, ·, i, F), the minimal ordered automaton of the language L (A).

Proof. Our construction is based on Hopcroft minimization algorithm for DFA’s.
We may assume that all states of A are reachable from the initial state i. Let
R = (Q × F) ∪ ((Q \ F) × Q). Then we construct the relation R from R by
removing unsuitable pairs of states step by step. At first, we put R1 = R.
Then for each integer k, if we find (p, q) ∈ Rk and a letter a ∈ A such that
(p · a, q · a) �∈ Rk, then we remove (p, q) from the current relation Rk, that is,
we put Rk+1 = Rk \ {(p, q)}. This construction stops after, say, m steps. So,
Rm+1 = R satisfies (p, q) ∈ R =⇒ (p ·a, q ·a) ∈ R, for every p, q ∈ Q and a ∈ A.
Now, we observe that, (p, q) ∈ R if and only if, for every u ∈ A∗, (p ·u, q ·u) ∈ R.
Thus, the condition can be equivalently written as

(p, q) ∈ R if and only if (∀u ∈ A∗ : p · u ∈ F =⇒ q · u ∈ F) . (1)

It follows that R is a transitive relation. So, R is a quasiorder on Q and we can
consider the corresponding equivalence relation ρ = { (p, q) | (p, q) ∈ R, (q, p) ∈
R } on the set Q. Then the quotient set Q/ρ = { [q]ρ | q ∈ Q } has a structure
of the automaton: the rule [q]ρ ·ρ a = [q · a]ρ, for each q ∈ Q and a ∈ A, defines
correctly actions by letters using (1). Furthermore, the relation ≤ on Q/ρ defined
by the rule [p]ρ ≤ [q]ρ iff (p, q) ∈ R, is a partial order on Q/ρ compatible with
actions by letters. So, Aρ = (Q/ρ,A, ·ρ,≤, [i]ρ, Fρ), where Fρ = { [f]ρ | f ∈ F },
is an ordered automaton recognizing L (A). Moreover, if there are two states
[p]ρ, [q]ρ ∈ Q/ρ such that L (Aρ, p) = L (Aρ, q), then (p, q) ∈ ρ. Thus, the
ordered automaton Aρ is isomorphic to the minimal ordered automaton of the
language L (A).
�

Note also that the classical power-set construction makes from a nondeter-
ministic automaton an ordered deterministic automaton which is ordered by the
set-theoretical inclusion. Thus, for the purpose of a construction of the minimal
ordered automaton, one may also use Brzozowski’s minimization algorithm using
power-set construction for the reverse of the given language.

The last technical notion concerning ordered semiautomata is related to a
homomorphism of free monoids f : B∗ → A∗. For a language L ⊆ A∗, we denote
the preimage under the homomorphism f by f−1(L) = { v ∈ B∗ | f(v) ∈ L }.

112 O. Kĺıma and L. Polák

This language can be recognized by a semiautomaton given in the following
construction.

For a homomorphism f : B∗ → A∗ and an ordered semiautomaton
O = (Q,A, ·,≤), we denote by Of the semiautomaton (Q,B, ·f ,≤) where
q ·f b = q · f(b) for every q ∈ Q and b ∈ B. We call Of a f -renaming of O.
Furthermore, we say that (P,B, ◦,) is an f -subsemiautomaton of (Q,A, ·,≤) if
it is a subsemiautomaton of Of .

3 Positive C-Varieties of Ordered Semiautomata

For the purpose of this paper, following Straubing [19], the category of homomor-
phisms C is a category where objects are all free monoids over non-empty finite
alphabets and morphisms are certain monoid homomorphisms among them.
This “categorical” definition means that C satisfies the following properties:
For each finite alphabet A, the identity mapping idA belongs to C(A∗, A∗);
If f ∈ C(B∗, A∗) and g ∈ C(C∗, B∗), then their composition gf belongs to
C(C∗, A∗). As first examples, we mention the category of literal homomorphisms
Cl, where f ∈ Cl(B∗, A∗) if and only if f(B) ⊆ A; and the category of surjective
homomorphisms Cs, where f ∈ Cs(B∗, A∗) if and only if A ⊆ f(B).

Now, for a category of homomorphisms, a positive C-variety of languages V
associates to every non-empty finite alphabet A a class V(A) of regular lan-
guages over A in such a way that (i) V(A) is closed for taking finite unions and
intersections; (ii) V(A) is closed for taking quotients, (iii) V is closed for tak-
ing preimages under homomorphisms of C, i.e. f ∈ C(B∗, A∗), L ∈ V(A) imply
f−1(L) ∈ V(B) . We talk about C-variety of languages if every V(A) is also
closed for taking complements.

If C consists of all homomorphisms we get exactly the notion of the positive
varieties of languages. When adding “each V(A) is closed for taking comple-
ments”, we get exactly the notion of the variety of languages.

Definition 3. Let C be a category of homomorphisms. A positive C-variety of
ordered semiautomata V associates to every non-empty finite alphabet A a class
V(A) of ordered semiautomata over A in such a way that (i) V(A) �= ∅ is closed
for taking disjoint unions and direct products of non-empty finite families, and
homomorphic images and (ii) V is closed for taking f-subsemiautomata for all
f ∈ C(B∗, A∗).

For each positive C-variety of ordered semiautomata V, we denote by α(V)
the class of regular languages given by the following formula

(α(V))(A) = {L ⊆ A∗ | DL ∈ V(A) } .

For each positive C-variety of regular languages V, we denote by β(V) the positive
C-variety of ordered semiautomata generated by all ordered semiautomata DL,
where L ∈ V(A) for some alphabet A. Now we are ready to state the Eilenberg
type correspondence for positive C-varieties of ordered semiautomata.

On Varieties of Ordered Automata 113

Theorem 4 ([14, Theorem 5.1] together with [3]). Let C be a category of
homomorphisms. The mappings α and β are mutually inverse isomorphisms
between the lattice of all positive C-varieties of ordered semiautomata and the
lattice of all positive C-varieties of regular languages.

For a detailed proof, we refer to [8, Sect. 6]. If we consider the positive C-
variety V of regular languages which is closed for taking complements, then the
corresponding positive C-variety β(V) = V of ordered semiautomata is closed for
taking dual ordered semiautomata. Since the ordered semiautomaton (Q,A, ·,=)
is isomorphic to a subsemiautomaton of the product of the ordered semiautomata
(Q,A, ·,≤) and (Q,A, ·,≥), the C-variety β(V) = V is fully described by the
classes of semiautomata { (Q,A, ·) | (Q,A, ·,≤) ∈ V(A) }.

Then we can define a C-variety of semiautomata in the same manner as in
Definition 3. From Theorem 4, it follows that there exists one to one correspon-
dence between C-varieties of regular languages and C-varieties of semiautomata.
The details can be found in [8, Sect. 7].

4 Examples

In this section we present several instances of Eilenberg type correspondence.
Some of them are just reformulations of examples already mentioned in existing
literature. In particular, the first three subsections correspond to pseudovari-
eties of aperiodic, R-trivial and J -trivial monoids, respectively. Also Subsect. 4.4
has a natural counterpart in pseudovarieties of ordered monoids satisfying the
inequality 1 ≤ x. In all these cases, C is the category of all homomorphisms
denoted by Call. Nevertheless, we believe that these correspondences viewed
from the perspective of varieties of (ordered) semiautomata are of some inter-
est. Another four subsections works with different categories C and Subsects. 4.6
and 4.7 bring new examples of (positive) C-varieties of (ordered) automata.

4.1 Counter-Free Automata

The star free languages were characterized by Schützenberger [17] as the lan-
guages having aperiodic syntactic monoids. Here we recall the subsequent char-
acterization of McNaughton and Papert [10] by counter-free automata. We say
that a semiautomaton (Q,A, ·) is counter-free if, for each u ∈ A∗, q ∈ Q and
n ∈ N such that q · un = q, we have q · u = q.

Proposition 5. All counter-free semiautomata form a variety of semiautomata.

Proof. It is easy to see that disjoint unions, subsemiautomata, products and
f -renamings of counter-free semiautomata are again counter-free.

Let ϕ : (Q,A, ·) → (P,A, ◦) be a surjective homomorphism of semiautomata
and let (Q,A, ·) be counter-free. We prove that also (P,A, ◦) is a counter-free
semiautomaton. Take p ∈ P, u ∈ A∗ and n ∈ N such that p ◦ un = p. Let
q ∈ Q be an arbitrary state such that ϕ(q) = p. Then, for each j ∈ N, we

114 O. Kĺıma and L. Polák

have ϕ(q · ujn) = p ◦ ujn = p. Since the set { q, q · un, q · u2n, . . . } is finite,
there exist k, � ∈ N such that q · ukn = q · u(k+�)n. If we take r = q · ukn

then r · u�n = r. Since (Q,A, ·) is counter-free, we get r · u = r. Consequently,
p ◦ u = ϕ(r) ◦ u = ϕ(r · u) = ϕ(r) = p.
�

The promised link between languages and automata follows.

Proposition 6 (McNaughton, Papert [10]). Star free languages are exactly
the languages recognized by counter-free semiautomata.

Note that this characterization is effective, although testing whether a regular
language given by a DFA is aperiodic is even PSPACE-complete problem by Cho
and Huynh [4].

4.2 Acyclic Automata

The content c(u) of a word u ∈ A∗ is the set of all letters occurring in u. We
say that a semiautomaton (Q,A, ·) is acyclic if, for every u ∈ A+ and q ∈ Q, we
have that q · u = q implies ∀ a ∈ c(u) : q · a = q.

One can prove the following result in a similar way as Proposition 5.

Proposition 7. All acyclic semiautomata form a variety of semiautomata.
�
According to Pin [11, Chapt. 4, Sect. 3], a semiautomaton (Q,A, ·) is called

extensive if there exists a linear order on Q such that (∀ q ∈ Q, a ∈ A) q
q · a. Note that such an order need not to be compatible with actions of letters.
One can easily show that a semiautomaton is acyclic if and only if it is exten-
sive. We prefer to use the term acyclic, since we consider extensive actions by
letters (compatible with ordering of a semiautomaton) later in the paper. Any-
way, testing whether a given semiautomaton is acyclic can be decided using the
breadth-first search algorithm.

Proposition 8 (Pin [11]). The languages over the alphabet A accepted by
acyclic semiautomata are exactly disjoint unions of the languages of the form

A∗
0a1A

∗
1a2A

∗
2 . . . A∗

n−1anA∗
n where ai �∈ Ai−1 ⊆ A for i = 1, . . . , n .

4.3 Acyclic Confluent Automata

In our paper [7] concerning piecewise testable languages, we introduced a certain
condition on automata being motivated by the terminology from the theory of
rewriting systems. We say that a semiautomaton (Q,A, ·) is confluent, if for each
state q ∈ Q and every pair of words u, v ∈ A∗, there is a word w ∈ A∗ such that
c(w) ⊆ c(uv) and (q · u) · w = (q · v) · w. In paper [7] this definition was studied
only in the context of acyclic (semi)automata, in which case several equivalent
conditions were described. One of them can be rephrased in the following way.

On Varieties of Ordered Automata 115

Lemma 9. Let Q = (Q,A, ·) be an acyclic semiautomaton. Then Q is confluent
if and only if, for each q ∈ Q, u, v ∈ A∗, we have q · u · (uv)|Q| = q · v · (uv)|Q|.
�

Using the condition from Lemma 9, one can prove that the class of all acyclic
confluent semiautomata is a variety of semiautomata similarly as in Proposi-
tion 5. Finally, the main result from [7] can be formulated in the following way.
It is mentioned in [7] that the defining condition is testable in a polynomial time.

Proposition 10 (Kĺıma and Polák [7]). The variety of all acyclic confluent
semiautomata corresponds to the variety of all piecewise testable languages.

4.4 Ordered Automata with Extensive Actions

We say that an ordered semiautomaton (Q,A, ·,≤) has extensive actions if, for
every q ∈ Q, a ∈ A, we have q ≤ q · a. Clearly, the defining condition is testable
in a polynomial time. The transition ordered monoids of such ordered semiau-
tomata are characterized by the inequality 1 ≤ x. It is known [13, Proposition
8.4] that the last inequality characterizes the positive variety of all finite unions
of languages of the form

A∗a1A
∗a2A

∗ . . . A∗a�A
∗ , where a1, . . . , a� ∈ A, � ≥ 0 .

Therefore we call them positive piecewise testable languages. In this way one can
obtain the following statement.

Proposition 11. The class of all ordered semiautomata with extensive actions
is a positive variety of ordered semiautomata and corresponds to the positive
variety of all positive piecewise testable languages. �

Note that a usual characterization of the class of positive piecewise testable
languages is given by a forbidden pattern for DFA (see e.g. [20, p. 531]). This
pattern consists of two words v, w ∈ A∗ and two states p and q = p · v such that
p · w ∈ F and q · w �∈ F . In view of (1) from Sect. 2, the presence of the pattern
is equivalent to the existence of two states [p]ρ �≤ [q]ρ, such that [p]ρ ·ρ v = [q]ρ
in the minimal automaton of the language. The membership for the class of
positive piecewise testable languages is decidable in polynomial time – see [13,
Corollary 8.5] or [20, Theorem 2.20].

4.5 Autonomous Automata

We recall examples from the paper [6]. We call a semiautomaton (Q,A, ·)
autonomous if for each state q ∈ Q and every pair of letters a, b ∈ A, we have
q · a = q · b. For a positive integer d, let Vd be the class of all autonomous
semiautomata being disjoint unions of cycles whose lengths divide d. Clearly,
the defining conditions are testable in a linear time.

116 O. Kĺıma and L. Polák

Proposition 12 (Ésik and Ito [6]). (i) All autonomous semiautomata form a
Cl-variety of semiautomata and the corresponding Cl-variety of languages consists
of regular languages L such that, for all u, v ∈ A∗, if u ∈ L, |u| = |v| then v ∈ L.

(ii) The class Vd forms a Cl-variety of semiautomata and the corresponding
Cl-variety of languages consists of all unions of (Ad)∗Ai, i ∈ {0, . . . , d − 1}.

4.6 Synchronizing and Weakly Confluent Automata

Synchronizing automata are intensively studied in the literature. A semiautoma-
ton (Q,A, ·) is synchronizing if there is a word w ∈ A∗ such that the set Q ·w is a
one-element set. We use an equivalent condition, namely, for each pair of states
p, q ∈ Q, there exists a word w ∈ A∗ such that p · w = q · w (see e.g. Volkov [21,
Proposition 1]). In this paper we consider the classes of semiautomata which are
closed for taking disjoint unions. So, we need to study disjoint unions of synchro-
nizing semiautomata. Those automata can be equivalently characterized by the
following weaker version of confluence. We say that a semiautomaton (Q,A, ·) is
weakly confluent if, for each state q ∈ Q and every pair of words u, v ∈ A∗, there
is a word w ∈ A∗ such that (q · u) · w = (q · v) · w.

Proposition 13. A semiautomaton is weakly confluent if and only if it is a
disjoint union of synchronizing semiautomata. �

Since the synchronization property can be tested in the polynomial time
(see [21]), Proposition 13 implies that the weak confluence of a semiautomaton
can be tested in the polynomial time, as well.

Proposition 14. All weakly confluent semiautomata form a Cs-variety of semi-
automata. �

4.7 Automata for Languages Closed Under Inserting Segments

We know that a language L ⊆ A∗ is positive piecewise testable if, for every
pair of words u,w ∈ A∗ such that uw ∈ L and for a letter a ∈ A, we have
uaw ∈ L. So, we can add an arbitrary letter into each word from the language
(at an arbitrary position) and the resulting word stays in the language. Now we
consider an analogue, where we put into the word a word of a given fixed length.

For each positive integer n, we consider the following property of a given
regular language L ⊆ A∗:

∀u, v, w ∈ A∗ : uw ∈ L, |v| = n implies uvw ∈ L .

We say that L is closed under n-insertions whenever L satisfies this property.
We show that the class of all regular languages closed under n-insertions form a
positive C-variety of languages by describing the corresponding positive C-variety
of ordered semiautomata.

At first, we need to describe an appropriate category of homomorphisms. Let
Clm be the category consisting of so-called length-multiplying (see [19]) homomor-
phisms: f ∈ Clm(B∗, A∗) if there exists a positive integer k such that |f(b)| = k

On Varieties of Ordered Automata 117

for every b ∈ B. Let n be a positive integer and Q = (Q,A, ·,≤) be an ordered
semiautomaton. We say that Q has n-extensive actions if, for every q ∈ Q and
u ∈ A∗ such that |u| = n, we have q ≤ q · u.

Note that ordered semiautomata from Subsect. 4.4 are ordered semiautomata
which have 1-extensive actions. Of course, these ordered semiautomata have n-
extensive actions for every n. More generally, if n divides m and an ordered
semiautomaton Q has n-extensive actions, then Q has m-extensive actions.

Proposition 15. Let n be a positive integer. The class of all ordered semiau-
tomata which have n-extensive actions forms a positive Clm-variety of ordered
semiautomata. The corresponding positive Clm-variety of languages consists of
all regular languages closed under n-insertions. �

For a fixed n, it is decidable in polynomial time whether a given ordered
semiautomaton has n-extensive actions, because the relation q ≤ q · u has to be
checked only for polynomially many words u.

4.8 Automata for Finite and Prefix-Testable Languages

Finite languages do not form a variety, because their complements, the so-called
cofinite languages, are not finite. Moreover, the class of all finite languages is not
closed for taking preimages under all homomorphisms. However, one can restrict
the category of homomorphisms to the so-called non-erasing ones: we say that
a homomorphism f : B∗ → A∗ is non-erasing if f−1(λ) = {λ}. The category
of all non-erasing homomorphisms is denoted by Cne. Note that Cne-varieties of
languages correspond to +-varieties of languages (see [19]).

We use certain technical terminology for states of a given semiautomaton
(Q,A, ·): we say that a state q ∈ Q has a cycle, if there is a word u ∈ A+ such
that q · u = q and we say that the state q is absorbing if for each letter a ∈ A
we have q · a = q. We call a semiautomaton (Q,A, ·) strongly acyclic, if each
state which has a cycle is absorbing. It is evident that every strongly acyclic
semiautomaton is acyclic.

Proposition 16. (i) All strongly acyclic semiautomata form a Cne-variety.
(ii) All strongly acyclic confluent semiautomata form a Cne-variety. �

Proposition 17. The Cne-variety of all finite and all cofinite languages corre-
sponds to the Cne-variety of all strongly acyclic confluent semiautomata. �

Naturally, one can try to describe the corresponding Cne-variety of languages
for the Cne-variety of strongly acyclic semiautomata. Following Pin [13, Sect. 5.3],
we call L ⊆ A∗ a prefix-testable language if L is a finite union of a finite language
and languages of the form uA∗, with u ∈ A∗. One can prove the following
statement in a similar way as Proposition 17. Note that one can find also a
characterization via syntactic semigroups in [13, Sect. 5.3].

Proposition 18. The Cne-variety of all prefix-testable languages corresponds to
the Cne-variety of all strongly acyclic semiautomata.
�

118 O. Kĺıma and L. Polák

The characterization from Proposition 17 can be modified for the positive Cne-
variety consisting of all finite languages (see [8] for details). Note that, all con-
sidered conditions on semiautomata discussed in this subsection can be checked
in polynomial time.

5 Membership Problem for C-Varieties of Semiautomata

In the previous section, the membership problem for (positive) C-varieties of
semiautomata was always solved by an ad hoc argument. Here we discuss
whether it is possible to give a general result in this direction. For that purpose,
recall that ω-identity is a pair of ω-terms, which are constructed from variables
by (repeated) successive application of concatenation and the unary operation
u �→ uω. In a particular monoid, the interpretation of this unary operation
assigns to each element s its uniquely determined power which is idempotent.

In the case of Call consisting of all homomorphisms, we mention Theorem
2.19 from [20] which states the following result: if the corresponding pseudova-
riety of monoids is defined by a finite set of ω-identities then the membership
problem of the corresponding variety of languages is decidable by a polynomial
space algorithm in the size of the input automaton. Thus, Theorem 2.19 slightly
extends the case when the pseudovariety of monoids is defined by a finite set of
identities. The algorithm checks the defining ω-identities in the syntactic monoid
ML of a language L and uses the basic fact that ML is the transition monoid
of the minimal automaton of L. This extension is possible, because the unary
operation ()ω can be effectively computed from the input automaton.

We should mention that checking a fixed identity in an input semiautomaton
can be done in a better way. Such a (NL) algorithm (a folklore algorithm in
the theory, see [8] for details) guesses a pair of finite sequences of states for two
sides of a given identity u = v which are visited during reading the word u (and
v respectively) letter by letter. These sequences have the same first states and
distinct last states. Then the algorithm checks whether for each variable, there is
a transition of the automaton given by a word, which transforms all states in the
sequence in the right way, when every occurrence of the variable is considered.
If, for every used variable, there is such a word, we obtained a counterexample
disproving the identity u = v.

Whichever algorithm is used, we can immediately get the generalization to
the case of positive varieties of languages, because checking inequalities can be
done in the same manner as checking identities. However, we want to use the
mentioned algorithms to obtain a corresponding result for positive C-varieties of
ordered semiautomata for the categories used in this paper. For such a result
we need the following formal definition. An ω-inequality u ≤ v holds in an
ordered semiautomaton O = (Q,A, ·,≤) with respect to a category C if, for every
f ∈ C(X∗, A∗) with X being the set of variables occurring in uv, and for every
p ∈ Q, we have p ·f(u) ≤ p ·f(v). Here f(u) is equal to f(u′), where u′ is a word
obtained from u if all occurrences of ω are replaced by an exponent n satisfying
the equality sω = sn in the transition monoid of O for its arbitrary element s.

On Varieties of Ordered Automata 119

Theorem 19. Let O = (Q,A, ·,≤) be an ordered semiautomaton, let u ≤ v be
an ω-inequality and C be one of the categories Cne, Cl, Cs and Clm. The problem
whether u ≤ v holds in O with respect to C is decidable. �

The cases of Cne, Cl and Cs are modifications of the algorithms for Call. As
those, they are decidable by a polynomial space algorithms or NL algorithms in
the case when u and v are products of variables. For the case of Clm we are not
able to bound the complexity.

References

1. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events. In: Mathematical Theory of Automata, vol. 12, pp. 529–561. Research
institute, Brooklyn (1962)

2. Brzozowski, J., Li, B.: Syntactic complexity of R- and J -trivial regular languages.
In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 160–171.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39310-5 16

3. Chaubard, L., Pin, J.É., Straubing, H.: Actions, wreath products of C-varieties
and concatenation product. Theor. Comput. Sci. 356(1–2), 73–89 (2006)

4. Cho, S., Huynh, D.T.: Finite automaton aperiodicity is PSPACE-complete. Theor.
Comput. Sci. 88(1), 99–116 (1991)

5. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, Cam-
bridge (1976)

6. Ésik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybern. 16(1), 1–28 (2003)

7. Kĺıma, O., Polák, L.: Alternative automata characterization of piecewise testable
languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 289–
300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5 26

8. Kĺıma, O., Polák, L.: On varieties of ordered automata. CoRR (2017(v1),
2019(v2)). http://arxiv.org/abs/1712.08455

9. Kunc, M.: Equational description of pseudovarieties of homomorphisms. RAIRO
Theor. Inf. Appl. 37(3), 243–254 (2003)

10. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

11. Pin, J.É.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
12. Pin, J.É.: A variety theorem without complementation. Russ. Math. 39, 80–90

(1995)
13. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook

of Formal Languages, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/
10.1007/978-3-642-59136-5 10

14. Pin, J.É., Straubing, H.: Some results on C-varieties. RAIRO Theor. Inf. Appl.
39(1), 239–262 (2005)

15. Pin, J.É., Weil, P.: A Reiterman theorem for pseudovarieties of finite first-order
structures. Algebra Univers. 35(4), 577–595 (1996)

16. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14, 1–10
(1982)

17. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

https://doi.org/10.1007/978-3-642-39310-5_16
https://doi.org/10.1007/978-3-642-38771-5_26
http://arxiv.org/abs/1712.08455
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10

120 O. Kĺıma and L. Polák

18. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

19. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.)
LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45995-2 46

20. Straubing, H., Weil, P.: Varieties. CoRR (2015). http://arxiv.org/abs/1502.03951
21. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,

C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-45995-2_46
https://doi.org/10.1007/3-540-45995-2_46
http://arxiv.org/abs/1502.03951
https://doi.org/10.1007/978-3-540-88282-4_4

Automata over Infinite Sequences of Reals

Klaus Meer(B) and Ameen Naif

Brandenburg University of Technology Cottbus-Senftenberg,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

{meer,naif}@b-tu.de

Abstract. Gandhi, Khoussainov, and Liu introduced and studied a gen-
eralized model of finite automata able to work over algebraic structures,
in particular the real numbers. The present paper continues the study of
(a variant) of this model dealing with computations on infinite strings of
reals. Our results support the view that this is a suitable model of finite
automata over the real numbers. We define Büchi and Muller versions
of the model and show, among other things, several closure properties of
the languages accepted, a real number analogue of McNaughton’s the-
orem, and give a metafinite logic characterizing the infinite languages
acceptable by non-deterministic Büchi automata over R.

Keywords: Automata and logic · Real number computations

1 Introduction

Given the success of finite automata in the realm of computation over finite
alphabets there have been several attempts to generalize the concept of finite
automata to deal with more general structures or data types. One particular
such approach has been introduced by Gandhi, Khoussainov, and Liu [2] and
further extended in [6]. It provides both a finite automata model over algebraic
structures and is able to deal with infinite alphabets as underlying universes.
In the words of the authors of those papers their work fits into several lines of
research and there are different motivations to study such generalizations. In [2]
the authors discuss different previous approaches to design finite automata over
infinite alphabets and their role in program verification and database theory.
One goal is to look for a generalized framework that is able to homogenize at
least some of these approaches. As the authors remark, many classical automata
models like pushdown automata, Petri nets, visibly pushdown automata can
be simulated by the new model. Another major motivation results from work
on algebraic models of computation over structures like the real and complex
numbers. Here, the authors suggested their model as a finite automata variant of
the Blum-Shub-Smale BSS model [1]. They then asked to analyze such automata
over structures like real or algebraically closed fields.

In [10,11] we developed a theory of finite automata for the BSS model over R
and C being based on the approach of Gandhi, Khoussainov, and Liu - henceforth
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 121–133, 2019.
https://doi.org/10.1007/978-3-030-13435-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_9

122 K. Meer and A. Naif

GKL for short. The main outcomes of those papers are as follows: If the original
model of GKL is considered in such an algebraic framework the model turns out
to be too powerful due to its abilities to perform - though in a restricted way
- computations. Many of the classical questions about finite automata become
undecidable, many structural properties of acceptable languages over the reals
are lost, see [10]. Therefore, in [11] the original GKL model is restricted; the
automata are equipped with a period after which all computed results are ‘for-
gotten’ by the automaton. The results in [11] show that this causes the model
to become a reasonable real number variant of a finite automata model.

In the present paper we continue research into the direction of studying the
GKL approach over the structure of real numbers. More precisely, we extend
the periodic GKL automata introduced in [11] to a model working over infinite
sequences of real numbers. We define real number versions of Büchi and Muller
automata and show, among other things, several structural properties of the
languages accepted, an analogue of McNaughton’s theorem, and give a metafinite
logic characterizing the infinite languages acceptable by non-deterministic real
number Büchi automata. Here, ‘metafinite’ refers to a framework extending finite
model theory to deal as well with structures defined over infinite universes [3].

We suppose the reader to be familiar with the classical theory of finite
automata over infinite words, see for example [5,7,13]. Due to space restriction
all missing proofs are postponed to the full version.

2 The Automaton Model

We recall the definition of a periodic GKL automaton over R from [11] working
over finite strings of real numbers. The extension to computations on infinite
strings then is immediate.

Definition 1. (Periodic GKL automata over R). (a) A deterministic periodic
R-automaton A, also called periodic GKL R-automaton, consists of the following
objects:

– a finite state space Q and an initial state q0 ∈ Q,
– a set F ⊆ Q of final (accepting) states,
– a set of � ∈ N registers which contain fixed given constants c1, . . . , c� ∈ R,
– a set of k ∈ N registers which can store real numbers denoted by v1, . . . , vk,
– a counter containing a number t ∈ {0, 1, . . . , T − 1}; we call T ∈ N the period

of the automaton,
– a transition function δ : Q × {0, 1}k+� → Q × {◦1, . . . , ◦k}.
A configuration of A is a tuple from Q×R

k×{0, . . . , T −1} specifying the current
data during a computation.

(b) The automaton processes elements of R
∗ :=

⊔

n≥1

R
n, i.e., sequences of

finite length with real numbers as components. For an input (x1, . . . , xn) ∈ R
n

it works as follows. The computation starts in state q0 with initial assignment
0 ∈ R for the values v1, . . . , vk ∈ R and value 0 for the counter. A reads the

Automata over Infinite Sequences of Reals 123

input components step by step. Suppose a value x is read in state q ∈ Q with
counter value t. The next state together with an update of the values vi and t are
computed as follows:

A performs k + � comparisons xΔ1v1?, xΔ2v2?, . . . , xΔkvk?, xΔk+1c1?, . . . ,
xΔk+�c�?, where Δi ∈ {≥,≤,=}. This gives a vector b ∈ {0, 1}k+�, where a
component 0 indicates that the comparison that was tested is violated whereas
1 codes that it is valid. Depending on state q and b the automaton moves to a
state q′ ∈ Q (which could again be q) and performs on each of the k registers
an operation. If t = T − 1 the counter and all register values vi are reset to
0 and a new period starts. In all other cases the counter is increased by 1 and
the values of all vi are updated applying one of the operations in the structure:
vi ← x◦i vi. Here, ◦i ∈ {+,−,×, null, pr1, pr2}, 1 ≤ i ≤ k, where pr1, pr2 denote
the projections onto the respective component and null sets the register to 0.
Which operation is chosen depends on q and b only. When the final component
of an input is read A performs the tests for this component and moves to its
last state without any further computation. It accepts the input if this final state
belongs to F , otherwise A rejects.

(c) Non-deterministic periodic R-automata are defined similarly with the only
difference that δ becomes a relation in the following sense: If in state q the tests
result in b ∈ {0, 1}k+� the automaton can non-deterministically choose a next
state and as update operations one among finitely many tuples (q′, ◦1, . . . , ◦k) ∈
Q × {+,−,×, null, pr1, pr2}k.1

As usual, a non-deterministic automaton accepts an input if there is at least
one accepting computation.

(d) The language of finite sequences accepted by A is denoted by L(A) ⊆ R
∗.

Note that by using T copies of each state it is easy to make the transitions also
depending on the counter value. Now consider an automaton working on inputs

from R
ω :=

∞∏

i=1

R. For such periodic Büchi R-automata it remains to define an

accepting condition. Given the periodicity there are several options.

Definition 2. A (non-)deterministic periodic Büchi R-automaton (N)DBAR A
with period T is a (non-)deterministic periodic GKL R-automaton with period
T working on w ∈ R

ω under one of the following acceptance conditions:

Acc1 : A accepts w ∈ R
ω iff there is a computation of A and a state q ∈ F

(the final state set) which is visited infinitely often during the computation;
Acc2 : similar, but A is required to pass infinitely often through a q ∈ F at a
full period.

Lemma 3. NDBAR’s and DBAR’s with acceptance conditions Acc1 accept the
same languages as with Acc2.

1 Note that if the counter has value T−1 also non-deterministic automata have to reset
all register values to 0; only the next state can then be chosen non-deterministically.

124 K. Meer and A. Naif

Lemma 4. The class of languages accepted by a DBAR is strictly included in
the class of languages accepted by an NDBAR. The former is not closed under
complementation.

We first establish some closure and decomposition properties of languages
accepted by NDBAR.

Proposition 5. Let A,B be NDBAR with periods TA, TB and accepted languages
L(A), L(B), respectively. Then both L(A) ∪ L(B) and L(A) ∩ L(B) are accepted
by NDBAR’s with period T := TA · TB.

Next, we want to derive a characterization for Büchi languages over R using
concatenations and the Kleene-star of languages accepted by periodic GKL R-
automata. However, in order to do so we have to be a bit careful how to define
concatenation and the Kleene star operation. The reason is that when concate-
nating two sequences accepted by two automata, the first might finish its com-
putation with a counter value different from 0. It is then not clear how to choose
a period of an automaton for the concatenation of the respective languages. The
same problem occurs with the Kleene star. Therefore we define a restricted form
of the two operations depending on a given period. When dealing with Büchi
languages in R

ω this is appropriate since one can split each computation on an
input w ∈ R

ω into blocks of length T or a multiple of T , no matter how T looks
like. This motivates the following definition.

Definition 6. For A ⊆ R
∗, T ∈ N define A(T) := {x ∈ A | |x| = kT for some

k ∈ N}. Moreover, (A(T))∗ and (A(T))ω then are defined as usual concatenating
finitely or countably infinitely many sequences from A(T), respectively.

Lemma 7. Let A be a non-deterministic periodic GKL automaton and B be an
NDBAR both having the same period T ∈ N. Then the languages L(A)T .L(B)
and

(
L(A)T

)ω are accepted by an NDBAR.

Given the previous lemma a decomposition theorem for languages accepted
by Büchi R-automata follows. Before stating it we recall from [11] the definition
of certain semi-algebraic sets attached to the computation of periodic automata.2

Definition 8. Let A be an NDBAR with period T . For two states p, q of A
define the set S(p, q) as those x ∈ R

T for which there is a computation in A on
x which moves from p in T steps to q assuming a new period is started in p.

It is not hard to see that the sets S(p, q) actually are semi-algebraic [11].

Theorem 9. (a) Let L ⊆ R
ω be accepted by an NDBAR A with period T using

Acc2. Let q0 denote the start state and FA the final state set. Then

L =
⋃

p∈FA

S(q0, p)(T).
(
S(p, p)(T)

)ω

.

2 A semi-algebraic set in R
n is a set that can be defined as a Boolean combination

(using finite unions, intersections, and complements) of solution sets of polynomial
equalities and inequalities.

Automata over Infinite Sequences of Reals 125

Moreover, the sets involved in the above description of L are accepted by a peri-
odic GKL R-automaton with period T .

(b) Vice versa, let L ⊆ R
ω be such that there exists a representation of form

L =
s⋃

i=1

(Ui)(Ti).
(
V

(Ti)
i

)ω

,

where s, Ti ∈ N and Ui, Vi are accepted by a periodic GKL R-automaton with

period Ti, 1 ≤ i ≤ s. Then L is accepted by an NDBAR with period T :=
s∏

i=1

Ti.

The next structural result will deal with the closure of languages accepted by
NDBAR under complementation. Also in the real number framework this can be
done along different approaches. We shall extend Büchi’s original construction
as well as using Muller R-automata.

Definition 10. Let A be an NDBAR with period T .

(i) For states p, q and a sequence u ∈ R
∗ of length kT for some k ∈ N,

define p
u→ q iff A can move from p to q when starting a new period in p and

reading u.
Define p

u→f q iff in addition there is such a computation from p to q reading
u along which A passes through FA.
(ii) Two sequences u, v,∈ R

∗ with lengths a multiple of T are called A-
equivalent, in terms u ∼A v, iff for all pairs (p, q) of states in QA it holds

p
u→f q ⇔ p

v→f q

Obviously, ∼A defines an equivalence relation of finite index on
⋃

k∈N

R
kT ⊂ R

∗.

Lemma 11. Let A be an NDBAR with period T .

(a) Each equivalence class of ∼A is accepted by a periodic GKL R-automaton
with period T .

(b) For two equivalence classes U, V ⊆ ⋃

k∈N

R
kT either it holds UV ω ⊆ L(A) or

UV ω ⊆ L(A).
(c) For every w ∈ R

ω there are equivalence classes U, V of ∼A such that w ∈
UV ω.

Theorem 12. The set of languages accepted by NDBAR’s is closed under com-
plementation.

3 Periodic Muller R-automata

Another classical way to prove closure of Büchi acceptable languages under
complementation is by changing the acceptance condition. The resulting non-
deterministic Muller automata have been shown to be equivalent to non-de-
terministic Büchi automata on the one hand side and to deterministic Muller

126 K. Meer and A. Naif

automata on the other, thus yielding the complementation result. In the present
section we show that a periodic version of Muller R-automata can be defined
and used to prove once again Theorem12, this time by extending the well known
concept of Safra trees.

Definition 13. A (non-)deterministic Muller R-automaton (N)DMA
R

A with
period T is defined like a (N)DBA

R
, but with a family F = {F1, . . . , Fs} of finite

state sets Fi ⊆ Q. Again, two acceptance conditions will be considered:

Acc1 : A accepts w ∈ R
ω iff there is an Fi ∈ F and a computation of A on w

which passes through all q ∈ Fi infinitely often, but only finitely often through
all other states q �∈ Fi.
Acc2 : The same as Acc1, but precisely the states in Fi occur infinitely often
along the computation when the counter value is 0.

Lemma 14. Non-deterministic Muller R-automata and non-deterministic
Büchi R-automata accept the same languages in R

ω. This holds for both accep-
tance conditions. Consequently, NDMAR’s accept the same languages under both
acceptance conditions.

Lemma 15. The class of languages accepted by DMAR’s is closed under com-
plementation and intersection.

The main result in this section is a real number analogue of McNaughton’s
theorem [9]. It says that each non-deterministic Büchi R-automaton has an equiv-
alent deterministic Muller R-automaton. Thus, in contrast to NDBAR’s, deter-
ministic and non-deterministic Muller R-automata have the same computational
power by Lemma 14. The proof for periodic Muller R-automata extends Safra’s
construction for the finite alphabet setting [12]. We suppose the reader to be
familiar with this proof, see [5,13]. An important ingredient of Safra’s proof is
the powerset construction to determinize non-deterministic finite automata. The
corresponding construction for periodic GKL R-automata has been given in [11]
and will be used here as well.

Theorem 16. Let A be an NDBAR with period T . Then there is a DMAR B
with period T and L(A) = L(B).

Proof. Though the proof proceeds along Safra’s original one, the extension to
R-automata has some complications. This mainly holds because the determiniza-
tion of non-deterministic periodic GKL R-automata is more involved than that
for classical non-deterministic finite automata. The reason for this is the fact that
in the powerset construction the evolvement of register assignments has to be
protocolled as well. Without recalling the construction from [11] completely the
following aspects are important. Given a non-deterministic periodic automaton
A with period T there is an integer N only depending on A and an equivalent
deterministic periodic automaton A′ with period T such that A′ uses N registers.
For each input w ∈ R

∗ A′ protocols every possible computation of A on w in the
following sense: For each prefix w1 . . . wi of w A′ codes in its configuration states

Automata over Infinite Sequences of Reals 127

reachable by A when reading the prefix together with the corresponding register
assignments. In order not to repeat completely Safra’s construction we give a
brief description only and then point out the decisive additional aspects needed
here. In Safra’s proof the deterministic Muller automaton M has as its states
so called Safra trees. These are trees with at most n := |QA| many nodes, also
called macrostates. Each such macrostate has an integer name chosen from the
set {1, . . . , 2n} and a label that is a subset of QA. A step of M transforms one
Safra tree to another as follows: For each macrostate of the current state (i.e.,
Safra tree) it basically performs the powerset construction. However, there is a
clever way how to dynamically enlarge and reduce the number of macrostates in
a Safra tree. In order to guarantee that accepting runs again and again hit final
state sets there is a procedure of introducing sons of a macrostate; a son gets
as name a currently non-used one from {1, . . . , 2n} (note that at each step at
most n macrostates are contained in a Safra tree) and as label all final states of
A contained in the label of the father macrostate. In the next step the powerset
construction is also performed on the son macrostate. The construction is done
in such a way that a state is at most contained in one son of a macrostate; if
the union of the labels of all sons of a macrostate equals the label of the father
node, then all nodes below the father are deleted and the father gets for the
duration of one step a flash mark �. It can be shown that an accepting run of
A is equivalent to the existence of a run of M in which there is a persistent
macrostate, i.e., a macrostate with an integer name j that from a certain point
in time on is never deleted, and flashes infinitely often.

When simulating an NDBAR by a DMAR we want to use the same idea. How-
ever, some aspects become more involved. For example, in the classical powerset
construction, if a state occurs in several brother nodes of a macrostate only
the one in the oldest such macrostate survives. In the real number framework
this is not possible since the same state might occur in several brother nodes
with different corresponding register assignments, and it is necessary to keep
track of all of them. A way to solve this problem is based on Lemma14. Since
DMAR’s with both acceptance conditions accept the same languages we can
enforce to apply main parts of Safra’s construction only after full periods of the
computation. This allows to restrict to a discrete situation even for R-automata.
More precisely, we define Safra R-trees similarly to discrete ones but with addi-
tional information about the realizable register assignments included. Thus, a
macrostate again has a name in {1, . . . , 2n} and a label. The latter now is a
collection of pairs of reachable states of A together with corresponding register
assignments. If we project those pairs onto their first component we therefore
get a subset of QA of the states reachable by A. Note, however, that the same
state can occur several times as result of the powerset construction in [11]. Given
the above mentioned fact that a fixed number of N registers suffice to store this
information, such a label is well defined. The maximal number of macrostates in
a Safra R-tree just as in the discrete setting is the number n of states of A. For
a Safra R-tree representing the current state of a computation of A by coding in
its macrostates all reachable states and corresponding register assignments, the

128 K. Meer and A. Naif

Muller R-automaton performs on all macrostates the new powerset construction.
As long as the counter value is different from 0 this is repeated without creat-
ing new or merging current macrostates or deleting states in labels. The decisive
point is the behaviour at full periods. It is here where the original Safra construc-
tion is applied. Note that after full periods all register assignments are 0; thus
each macrostate of a Safra R-tree after a full period basically has a subset of QA
as its label. This is the justification in [11] that the powerset construction does
not explode. Now when a period is finished we adjust the R-tree by appending
to each macrostate a son with label all the final states of QA that occur in the
label of the given state. The register values in the corresponding label are set to
0. The powerset construction for R-automata is performed for an entire period
on all macrostates of the Safra R-tree. When the period is finished, the original
merging and deletion steps are performed. This includes two actions:

– if a state from QA occurs in the labels of several macrostates of the current
tree, it is deleted from all but the oldest one and

– if the union of the states in the labels of all sons of a macrostate equals the
states in the label of this macrostate, then all nodes below that macrostate
are deleted. In this situation the macrostate flashes for one time step.

A new round starts with adding new sons and repeating the above. The
Muller R-automaton accepts with condition Acc2. Its final state sets are all
families of Safra R-trees of macrostates occurring after full time periods such
that at least one node name k ∈ {1, . . . , 2n} occurs as name of a macrostate in
all trees of the family, and at least in one tree this node flashes. �

4 A Logic for Periodic R-automata

In this section we show that also in our setting there is a strong relation between
the languages accepted by periodic R-automata - both for sequences in R

∗ and
infinite sequences in R

ω - and certain logics defined to deal with real numbers as
input data. The latter will be done using the framework of metafinite model the-
ory. Metafinite model theory was introduced in [3] and studied for the BSS model
in [4]. It provides a way to describe real number computations and complexity
in a logical framework by separating its discrete from real number aspects.

Below, a blending of a monadic second order logic on the discrete part and a
certain restricted logic on the real number part will be important. A metafinite
MSO logic in the BSS model over R was introduced and studied in [8]. Here,
due to periodicity and the limited computational abilities of periodic automata
a much weaker fragment of such a real number MSO logic will be considered.

The main result of this section will be a kind of analogue of Büchi’s theorem
for periodic GKL and periodic Büchi R-automata. We suppose the reader to be
familiar with ‘classical’ MSO logic and Büchi’s theorem. For this and proofs of
corresponding classical theorems along Büchi’s work see once more any of the
texts [5,7,13].

Automata over Infinite Sequences of Reals 129

4.1 From Periodic R-automata to Formulas

We first develop a logical description of the computation of a periodic R-
automaton. It uses a mixture of a classical discrete MSO logic and a metafinite
part for dealing with real number data. This outlines a way how to define in
the following subsection in a more precise way a metafinite MSOR logic which
precisely reflects the abilities of periodic R-automata. For case of simplicity we
deal with automata for finite sequences in R

∗. The generalization to R
ω is easy.

In Büchi’s theorem, weak MSO logic over 〈N, <, succ, 0〉 is used to describe
the computation of a finite automaton; ‘weak’ refers to monadic second order
quantifiers only ranging over finite subsets of N. Similarly, MSO logic character-
izes the computation of Büchi automata on infinite words over a finite alphabet.
In particular, assignments of monadic second order variables are used to code in
which state the computation is at a specific step.

For describing the discrete part of periodic R-automata we thus also use MSO
logic. However, we additionally equip it with a unary relation symbol P ⊂ N.
Throughout, it is interpreted as a set PT := {kT | k ∈ N} for a fixed T ∈ N,
describing the time steps after which an automaton with period T resets the
register values to 0. For automata over R

∗ only a finite initial part of such a
set PT is considered. Thus we work with the discrete part 〈N, <, succ, P, 0〉. In
addition, a metafinite real number part for modelling inputs w ∈ R

∗ or w ∈ R
ω,

respectively, is added in form of a function symbol C interpreted for input w
as a function Cw : N → R, Cw(i) := wi. The logic then has to reflect the
(restricted) way the automaton is allowed to compute with reals represented by
the Cw(i), i ∈ N. The metafinite part also involves symbols for the automaton’s
constants.

Suppose A to be a (deterministic) periodic GKL R-automaton with period
T, k registers and real constants c1, . . . , c�. Let Q := {q1, . . . , qs} denote its
state set and F ⊆ Q the accepting states, q1 the start state. Each input
w ∈ R

∗ is modelled as a function Cw : N → R, where Cw(i) := wi for
1 ≤ i ≤ |w|. A’s computation on a w is expressed via a formula ϕA over vocab-
ulary 〈N, <, succ, P,C, c1, . . . , c�〉. Here, P is always interpreted as a PT ⊂ N

as explained before. The interpretation of the constants is always assumed to
include 0 and 1.

On 〈N, <, succ, P 〉 formula ϕA is in MSO logic, i.e., built from P (i),X(i) for
first order variables i and second order variables X, quantifications ∃i,∀i,∃X, ∀X
and Boolean combinations thereof. The use of quantification of first order vari-
ables i when applied to C(i) is limited to ∀i ∈ P : C(i) and ∃i ∈ P : C(i). Beside
this, the metafinite parts of ϕA reflect the way A can compute. If below we deal
with inputs w ∈ R

∗ all discrete second order variables X,PT are finite subsets of
N and the corresponding logic is called weak MSOR logic. For w ∈ R

ω monadic
second order variables range over arbitrary subsets of N.

We now give a high-level description of ϕA. In Subsect. 4.2 we then precisely
define the logical framework characterizing periodic GKL R-automata.

Let ϕA(C) ≡ ∃X1, . . . , Xsϕ1(X1, . . . , Xs) ∧ ϕ2(X1, . . . , Xs, C), where
X1, . . . , Xs are monadic variables ranging over N, and being finite in case we

130 K. Meer and A. Naif

deal with inputs from R
∗. Here, ϕ1 is a (weak) MSO formula on 〈N, <, succ, 0〉

expressing that X1, . . . , Xs is a partition of the set {1, . . . , |w|} for inputs w ∈ R
∗

or of N for inputs from R
ω, respectively. The Xj ’s interpretation is: Xj(i) = 1

iff A is in state j after it read input w(i); for i = 0 it holds X1(0) = 1.
If A works over R

∗ the formula has to express the length |w| of an input w;
this easily can be defined and is left to the reader. Also the accepting condition∨

j∈F

Xj(|w|) has to be added in ϕ1. If A is a periodic Büchi R-automaton instead

we add

(

∃Xinf : Xinf ⊆ P ∧ Xinf is infinite ∧ ∨

j∈F

Xinf ⊆ Xj

)

. This eas-

ily can be formalized in MSO logic over 〈N, <, succ, P, 0〉 and expresses that at
least one final state occurs infinitely often after a full period has been finished.

ϕ2 expresses a correct computation of A on w. In order to do so, for all
i ≤ |w| if Xj(i), then A’s state j′ after having processed wi+1 must describe a
permitted transition of A. This involves A’s computation on the real number
data. In order to start from register assignments 0 we describe the corresponding
conditions in blocks of length T of a full period. More precisely, for i ∈ P a
formula ϕ̃2(X1, . . . , Xs, C, i) consists of a finite collection of formulas containing
for C(i), C(succ(i)), C(succ2(i)), . . . , C(succT−1(i)) MSOR-terms that represent
the register entries generated by a computation of T steps, starting in the correct
state (expressed via Xj(i) for a unique j) with register values 0. The MSOR-terms
describe current register contents and are built from 0 along the computations
that A performs, each time combining an already computed term with the next
input component. Then, ϕ̃2 expresses that tests performed by A, the subsequent
computations and the state visited next correspond to the partition X1, . . . , Xs of
N or {1, . . . , |w|}, respectively. Finally, the formula ϕ2(X1, . . . , Xs, C) is obtained
as ∀i P ϕ̃2(X1, . . . , Xs, C, i). This shows

Proposition 17. For each periodic GKL R-automaton A with period T ∈ N

and the corresponding formula ϕA as constructed above, we have w ∈ L(A) ⇔
Cw |= ϕ(C), when P is interpreted as PT . This holds mutatis mutandis for
periodic Büchi R-automata, inputs w ∈ R

ω and the MSOR-formula ϕA. �

The above description intends to give an idea of the fragments that can be
used in our logic. For the direction from formulas to automata we have of course
to be more precise. This holds in particular with respect to the way the logic
deals with terms and formulas involving reals. One important aspect that shows
up above is the limited way in which terms C(i) enter into formulas. Here, we
only allow quantifiers of the form ∀i ∈ P,∃i ∈ P , where P has to be interpreted
as a periodic subset of N, and the quantified formula only depends on i in that
it contains terms C(i), C(succ(i)), . . . , C(succT−1(i)).

4.2 From MSOR Logic to Periodic Automata

We now introduce more precisely a logic which exactly captures the computa-
tions of periodic GKL R-automata. Since the latter works with inputs from R

∗

Automata over Infinite Sequences of Reals 131

and R
ω, respectively, we always consider the universe N and a function sym-

bol C as part of the vocabulary for the logic. For input w it is interpreted as
(initial fragment) Cw : N → R with Cw(i) := wi. Formulas ϕA attached to an
automaton A have C as (only) free variable; the goal is to construct ϕA in such
a way that Cw |= ϕA iff w ∈ L(A). The logic to be defined is an example of a
metafinite logic as introduced in [3] and studied for real number computations
in [4]. In [8] a monadic second order logic for BSS computations was defined and
analysed in view of the design of efficient algorithms for structures of bounded
treewidth. The logic introduced below also has MSO constructs combining finite
structures and the real numbers; it is, however, (much) weaker than the MSO
logic from [8].

As said above we consider usual MSO logic on 〈N, <, succ, P, 0〉, where the
unary symbol P is always be interpreted as a set PT = {kT | k ∈ N0} for a fixed
T ∈ N. For the metafinite part a function symbol C : N → R and constants
c1, . . . , c� are added. We assume 0 and 1 to be among the constants.

We first define real number terms. Each such term has an index i ∈ N. Terms
depend on the interpretation of P as particular relation PT as explained above.

Definition 18. Real number terms are defined as follows:

(i) 0 ∈ R is a real number term of index 0.
(ii) Let ti be a real number term of index i; then [1−P (succ(i))] · [C(succ(i))◦ ti]

is a term of index i+1. Here, ◦ is any of the allowed binary operations. Note
that 0 is a term for each index and the only term for indexes j where j ∈ P .

Definition 19. Monadic Second Order logic MSOR is defined as follows:

1. All MSO formulas over the discrete part 〈N, <, succ, P, 0〉 are MSOR-
formulas.

2. Purely real formulas prf on the metafinite part are built as follows:
2.1 For all i ∈ N comparisons C(i)Δcj for Δ ∈ {≥,=,≤} and cj one of the

constants are atomic prf.
2.2 Let i ∈ N, ti be a term of index i, then C(succ(i))Δti is a prf.
2.3 For any i ∈ N a finite Boolean conjunction of atomic prf as in 2.2 with

indexes i, succ(i), succ2(i), . . . , succm(i) for some constant m is a prf. We
denote such a formula by ϕR(i) and say that i is bound by a prf.

3. Any finite combination of ∧,∨,¬ of purely real formulas ϕR(i) is an MSOR-
formula; the indexes that are bound by one of the building prf remain bound.

4. If ϕR(i,X) is an MSOR-formula with i bound by a prf and X a discrete free
variable (first or second order), then the following are MSOR-formulas:
∀X : ϕR(i,X), ∃X : ϕR(i,X), ∀i ∈ P : ϕR(i) and ∃i ∈ P : ϕR(i).
In the first two cases if X is a first order variable it is not allowed to be bound
by a prf and i remains bound.

5. All Boolean combinations by ∧,∨,¬ of MSOR-formulas are MSOR-formulas.
Indexes i bound by a prf remain bound under these operations.

It is important to stress that above first order variables i that occur in real
number terms and formulas can only be quantified via ∀i ∈ P and ∃i ∈ P .

132 K. Meer and A. Naif

Obviously, this is necessary if the period of an automaton should be modelled
somehow. Thus, a formula like ∀i ∈ N C(i)·C(succ(i)) > 0 is forbidden. Similarly,
for different i, j that are bound by a prf there is no mix in the formula of real
number terms relating i or one of its successors with j or one of its successors.
Both such constructions would require a related automaton to remember input
components without respecting the reset operation required after each period.
From the discussion in Subsect. 4.1 part (a) of the following theorem should be
obvious now. The proof of harder part (b) has to be postponed to the full version.

Theorem 20. (a) Let A be a periodic Büchi R-automaton with period T ∈ N

working over R
ω and using constants c1, . . . , c�. Then there exists a MSOR-

formula ϕA(C,P) over 〈N, <, succ, P,C, c1, . . . , c�〉 such that w ∈ L(A) if and
only if (Cw, PT) |= ϕA(C,P) with PT = {kT | k ∈ N0}.

(b) Let ϕ(C,P) be a MSOR-formula involving real number constants c1 . . . , c�.
Fix the interpretation of P to be some PT , so C is the only free variable. Then
there is a periodic Büchi R-automaton Aϕ using the above constants such that
w ∈ L(A) iff (Cw, PT) |= ϕ(C,P).

The statement holds similarly if computations on finite sequences in R
∗ and

weak MSOR logic are considered. �

Acknowledgement. We thank all reviewers for their very thorough reading and many
useful comments.

References

1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0701-6

2. Gandhi, A., Khoussainov, B., Liu, J.: Finite automata over structures. In: Agrawal,
M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 373–384.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29952-0 37

3. Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140(1), 26–81
(1998)

4. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. In:
Leighton, F.T., Borodin, A. (eds.) Proceedings of the 27th STOC, pp. 315–324
(1995)

5. Hofmann, M., Lange, M.: Automatentheorie und Logik. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-18090-3

6. Khoussainov, B., Liu, J.: Decision problems for finite automata over infinite alge-
braic structures. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705,
pp. 3–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7 1

7. Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Birkhäuser,
Springer, Berlin (2001)

8. Makowsky, J.A., Meer, K.: Polynomials of bounded tree-width. In: Foundations
of Computational Mathematics, Proceedings of the Smalefest, pp. 211–250. World
Scientific (2002)

9. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Inf. Control 9(5), 521–530 (1966)

https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-3-642-29952-0_37
https://doi.org/10.1007/978-3-642-18090-3
https://doi.org/10.1007/978-3-319-40946-7_1

Automata over Infinite Sequences of Reals 133

10. Meer, K., Naif, A.: Generalized finite automata over real and complex numbers.
Theor. Comput. Sci. 591, 85–98 (2015)

11. Meer, K., Naif, A.: Periodic generalized automata over the reals. In: Dediu, A.-H.,
Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp.
168–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9 13

12. Safra, S.: On the complexity of omega-automata. In: 29th Symposium on FOCS,
New York, pp. 319–327 (1988)

13. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 7

https://doi.org/10.1007/978-3-319-30000-9_13
https://doi.org/10.1007/978-3-642-59126-6_7

Nonuniform Families of Polynomial-Size
Quantum Finite Automata and Quantum

Logarithmic-Space Computation
with Polynomial-Size Advice

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
TomoyukiYamakami@gmail.com

Abstract. The state complexity of a finite(-state) automaton intu-
itively measures the size of the description of the automaton. Sakoda
and Sipser [STOC 1972, pp. 275–286] were concerned with nonuniform
families of finite automata and they discussed the behaviors of nonuni-
form complexity classes defined by families of such finite automata hav-
ing polynomial-size state complexity. In a similar fashion, we introduce
nonuniform state complexity classes using families of quantum finite
automata. Our primarily concern is one-way quantum finite automata
empowered by garbage tapes. We show inclusion and separation rela-
tionships among nonuniform state complexity classes of various one-way
finite automata, including deterministic, nondeterministic, probabilistic,
and quantum finite automata of polynomial size. For two-way quantum
finite automata equipped with garbage tapes, we discover a close rela-
tionship between the nonuniform state complexity of such a polynomial-
size quantum finite automata family and the parameterized complex-
ity class induced by quantum logarithmic-space computation assisted by
polynomial-size advice.

Keywords: Quantum finite automata · State complexity ·
Quantum Turing machine · Bounded-error probability ·
Quantum advice

1 Prelude: Quick Overview

This exposition reports a collection of preliminary results obtained by the cur-
rently on-going study on the state complexity of nonuniform families of quantum
finite automata, which is briefly referred to as the nonuniform state complexity.

1.1 Nonuniform State Complexity of Finite Automata Families

Each finite(-state) automaton is completely described by a set of transitions of
its inner states. The number of inner states is thus crucial to measure the descrip-
tional size of the automaton and it works as a complexity measure, known as
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 134–145, 2019.
https://doi.org/10.1007/978-3-030-13435-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_10

Quantum Logarithmic-Space Computation with Polynomial-Size Advice 135

the state complexity of the automaton. This complexity measure thus naturally
regards as an indicator for the computational power of the automaton. Instead
of taking a single automaton, in this exposition, we consider a “family” of finite
automata in a way similar to a family of Boolean circuits. Such a family of finite
automata may be generated in a uniform way by a certain deterministic algo-
rithm. Unlike Boolean circuits, nevertheless, inputs of automata are not limited
to certain fixed lengths. For brevity, the term “uniform sate complexity” refers to
the state complexity of such a uniform family of finite automata. Opposed to the
uniform state complexity, here we intend to study its “nonuniform” counterpart
under the name of nonuniform state complexity. This nonuniform complexity
measure turns out to be closely related to a nonuniform model of Turing-machine
computations.

Nonuniform state complexity has played various roles in automata theory. An
early discussion that attempted to relate certain state complexity issues to the
collapses of known space-bounded complexity classes dates back to late 1970s.
Sakoda and Sipser [9], following Berman and Lingas [2], argued on the state com-
plexity of transforming one family of 2-way nondeterministic finite automata (or
2nfa’s, for short) into another family of 2-way deterministic finite automata (or
2dfa’s). From their works, we have come to know that the state complexity of a
family of automata is related to the work-tape space of a Turing machine. In this
line of study, after a long recess, Kapoutsis [6] and Kapoutsis and Pighizzini [7]
lately revitalized a discussion on the relationships between logarithmic-space (or
log-space, for short) complexity classes and state complexity classes in connec-
tion to the L = NL question (in fact, the NL ⊆ L/poly question, where L/poly
is the nonuniform analogue of L).

Taking a complexity-theoretic approach, Kapoutsis [4,5] earlier discussed
relationships among the nonuniform state complexity classes 1D, 1N, 2D, and
2N of families of “promise” decision problems, each of which is solved by a
nonuniform family of deterministic and nondeterministic finite automata of poly-
nomially many inner states (see Sect. 2 for their definitions). Along the same line
of study, Yamakami [14] recently gave a characterization of the polynomial-time
sub-linear-space “parameterized” complexity class, known as PsubLIN, and an
NL-complete problem 3DSTCON parameterized by the number of vertices of
an input graph (which is generally referred to as a size parameter) in terms of
the state complexities of restricted 2nfa’s and narrow 2-way alternating finite
automata.

An important discovery of [14] is the fact that a nonuniform family of promise
decision problems is more closely related to parameterized decision problems
than “standard” decision problems (whose complexities are measured by the
binary encoding size of inputs). A decision problem (or a language) L over an
alphabet Σ and a reasonable size parameter m from Σ∗ to N (the set of all natu-
ral numbers) form a parameterized decision problem (L,m) [13]. We can naturally
translate such a parameterized decision problem (L,m) into a uniform family
{(Ln, Ln)}n∈N of promise decision problems and also translate {(Ln, Ln)}n∈N

back into another parameterized decision problem (K,m), which is “almost”

136 T. Yamakami

the same as (L,m). See Sect. 2.2 for more details. These translations between
parameterized decision problems and families of promise decision problems play
an essential role in this exposition. For notational readability, we use the spe-
cial prefix “para-” and write, for example, para-NL to denote the parameterized
analogue of NL, that is, the collection of parameterized NL languages.

After the study of state complexity classes was initiated in [9], a further
elaboration has been long anticipated; however, there has been little research
on how to expand the scope of these classes. Our purpose of this exposition is
to enrich the world of nonuniform state complexity classes toward a whole new
direction.

1.2 An Extension to Quantum Finite Automata

We intend to expand the scope of nonuniform state complexity theory to an
emerging field of quantum finite automata. The behaviors of quantum finite
automata, viewed as a natural extension of probabilistic finite automata, are
governed by quantum physics. Moore and Crutchfield as well as Kondacs and
Watrous modeled the quantumization of finite automata in two quite different
ways. Lately, these definitions have been considered insufficient for implementa-
tion and advantages over classical finite automata and, for this reason, numer-
ous generalizations have been proposed (see, e.g., a survey [1] for references).
Here, we intend to use two distinct models: measure-many 1-way1 quantum
finite automata with garbage tapes (or 1qfa’s, for short) and measure-many 2-
way quantum finite automata with garbage tapes (or 2qfa’s), where garbage tapes
are write-only tapes used to discard unwanted information, which is considered
to be released into a surrounding environment. For an early use of tape tracks
to discard the unnecessary information, see [12]. The above models are simple to
describe with no additional use of mixed states, ancilla qubits, superoperators,
classical inner states, etc. and they are also as powerful as the generalized model
cited in [1].

1.3 Overview of Main Contributions

In analogy to 1D and 2D, we introduce their probabilistic and quantum variants
as follows. We write 1Q for the collection of families {(Ln, Ln)}n∈N, each (Ln, Ln)
of which is solved by a certain 2qfa Mn with unbounded-error probability using
polynomially many inner states. If we relax the unbounded-error requirement
to the bounded-error requirement (i.e., error probability is bounded from above
by a certain constant in [0, 1/2)), we write 1BQ in place of 1Q. Similarly to
Boolean circuits, we often limit the length of input strings fed to given finite
automata. Furthermore, if we replace quantum finite automata by probabilistic
finite automata, then we obtain 1BP and 1P from 1BQ and 1Q, respectively. By

1 We use this term “1-way” in a strict sense that a tape head always moves to the
right and is not allowed to stay still on the same cell. This term is called “real time”
in certain literature.

Quantum Logarithmic-Space Computation with Polynomial-Size Advice 137

allowing 1dfa’s to have 2p(n) states for a certain polynomial p, we obtain 21D

from 1D. Using the 2-way models, we naturally obtain 2D and 2N from 1D and
1N, respectively. The nonuniform state complexity class 2BQ is introduced in
a way similar to 1BQ but using bounded-error 2qfa’s instead of bounded-error
1qfa’s. When nondeterministic quantum computation is used, we obtain 1NQ.
There are a few known separations: 1D � 1N � 21D, 1N �= co-1N [4,5], and
1D � 2D ⊆ 2N � 21D [4]. We also obtain 2BP ⊆ 21D from [3, Theorem 6.1] and
2BP � 2N from [3, Theorem 6.2].

The first part of our main result is summarized as follows.

Theorem 1. 1. 1D � 1BP � 1BQ � 21D ∩ 1Q.
2. 1BQ = co-1BQ and 1P = co-1P.
3. 1D � 1N � 1Q = 1P and 1N � 1NQ.
4. 1D � 21D, 1BP � 21BP, 1BQ � 21BQ, and 1BQ ⊆ 21D.
5. 2D � 2BP ⊆ 2BQ and 2P ⊆ 21P.

To introduce the nonuniformity notion into a model of quantum Turing
machine (or QTM, for short), we equip QTMs with the Karp-Lipton type advice
as supplemental external information to empower those QTMs (see, e.g., [8]).

When the input size |x| of each string x in Ln ∪Ln is limited to at most p(n)
for a certain fixed polynomial p, we write 2N/poly and 2BQ/poly instead of 2N
and 2BQ, respectively. We show the following close connections between advised
complexity classes and nonuniform state complexity classes.

Corollary 2. 1. 2N/poly ⊆ 2BQ iff NL ⊆ BQL/poly.
2. 2BQ/poly ⊆ 2BP iff BQL ⊆ BPL/poly.

Corollary 2 is a consequence of a more general theorem (Theorem 5), which
follows from the exact characterizations (Proposition 6) of parameterized com-
plexity classes in terms of nonuniform state complexity classes, and vice versa.
This proposition helps us translate nonuniform state complexity classes, such as
2D/poly, 2N/poly, 2BP/poly, and 2BQ/poly into their corresponding advised
parameterized complexity classes, para-L/poly, para-NL/poly, para-BPL/poly,
and para-BQL/poly, where the last class para-BQL/poly, for example, denotes
the collection of parameterized decision problems (L,m) solvable by bounded-
error QTMs using work tapes of space logarithmic in |x|m(x) with (determinis-
tic) advice of size polynomial in |x|m(x) (see Sect. 2.2 for their definitions).

Nishimura and Yamakami [8] introduced the notion of quantum advice to
enhance the ability of QTMs. Quantum advice manifests a quantumization of
randomized advice (see, e.g., [11]). To emphasize the use of quantum advice,
we write BQL/Qpoly in accordance with [8]. As discussed in [12], the rewriting
of an advice tape provides extra power for quantum finite automata. We thus
allow a QTM to “erase” advice symbols before terminating to make quantum
interference to take place. In parallel to the change of deterministic advice to
quantum advice, we also modify our basic model of 2qfa’s as follows. Firstly, we
express a (quantum) transition function as the form of a matrix or a table, which
can be easily encoded into a string over a certain alphabet. For readability, we

138 T. Yamakami

use the term “transition table” to address this encoded string. This encoding
further makes it possible to consider a superposition of transition tables. Gener-
ally, we call by a super quantum finite automaton a quantum finite automaton
obtained by substituting superpositions of transition tables for a quantum tran-
sition function. We further add a mechanism of “erasing” its transition tables
without accessing the input before terminating. For convenience, we use the
notion 2sBQ to express the nonuniform state complexity class obtained from
2BQ by substituting super 2qfa’s for ordinary 2qfa’s.

Theorem 3. 2sBQ/poly ⊆ 2BQ iff BQL/poly = BQL/Qpoly.

Due to the page limit, in what follows, we are focused only on Corollary 2
and Theorem 3 and leave the rest to a complete version of this exposition. A
further study on relativization (or Turing reducibility) was conducted in [15].

2 Preparations: Notions and Notation

Let N and C denote respectively the sets of all natural numbers (i.e., nonnegative
integers) and of complex numbers. All polynomials in this exposition are assumed
to have nonnegative integer coefficients. Assume that the logarithms are always
to the base 2. Let Σ be any alphabet, which is a finite nonempty set. We use the
notation λ to denote the empty string of length 0. A function h : N → Σ∗ is
called polynomially bounded if there exists a polynomial p such that |h(n)| ≤ p(n)
for all n ∈ N.

2.1 Machine Models

Our finite automata are always equipped with read-only input tapes, which
use two endmarkers |c (left endmarker) and $ (right endmarker), where a given
input string is written initially in between the two endmarkers. In contrast, each
Turing machine is equipped with a read-only input tape with the two endmarkers
|c and $ as well as a rewritable work tape. Occasionally, we further equip a Turing
machine with a read-only advice tape, which holds a given advice string, together
with the two endmarkers. It is important to note that no machine modifies a
given advice string during its computation (except for the quantum advice model
in Sect. 4).

For clarity reason, we use the term “one way” only to refer to the condition of
a given machine where its tape head always moves to the right without stopping
(i.e., there is no λ-move). On the contrary, if we allow such “λ-moves,” we instead
use the term “1.5 way” to emphasize its difference from “one way” head moves.

An advice function is a function from N to Σ∗ for a certain alphabet Σ. The
advised nondeterministic complexity class NL/poly consists of languages, each L
of which is recognized by a certain nondeterministic Turing machine (equipped
with an advice tape) using a polynomially-bounded advice function.

We assume the reader’s familiarity with the basics of quantum computation.
Since Kondacs and Watrous’s model of 1qfa’s is strictly weaker in power than

Quantum Logarithmic-Space Computation with Polynomial-Size Advice 139

1dfa’s, there have been numerous generalizations proposed in the literature (see,
e.g., a survey [1]). Here, we wish to empower their 1qfa’s by simply equipping
each of them with a write-only garbage tape in which a machine drops any sym-
bol (called a garbage symbol) but never accesses any non-blank symbol written
on the tape again. An early idea of 1qfa’s discarding garbage information down
to a portion of a read-once input tape was materialized in [12] and such a mech-
anism was shown to enhance the computational power of 1qfa’s. The use of a
garbage tape allows us to make 1qfa’s simulate all 1dfa’s. Each tape has the left
endmarker |c, and input and advice tapes additionally have the right endmarker
$. All tape cells are indexed by numbers in N; in particular, |c is always placed
in cell 0.

Formally, a 1-way quantum finite automaton with a garbage tape (where we
hereafter use the term “1qfa” to indicate this particular model unless otherwise
stated) M is a tuple (Q,Σ, {|c, $}, Ξ, δ, q0, Qacc, Qrej), where Q is a finite set
of inner states, Σ is an input alphabet, Ξ is a garbage alphabet, δ is a (quan-
tum) transition function mapping to C, q0 (∈ Q) is the initial inner state, and
Qacc, Qrej are subsets of Q. All inner states in Qacc ∪ Qrej are called halting
states and the rest of inner states are non-halting states. Let Hhalt and Hnon

denote respectively the Hilbert spaces spanned by all halting states and by all
non-halting states. The garbage tape can be considered as a surrounding envi-
ronment that exists “externally,” separated from the essential part of a com-
putation. By observing the garbage tape at every step produces a mixed state
of “internal” configurations of M and therefore, our model turns out to be as
powerful as other generalized models of 1qfa’s (see a survey [1]).

For our convenience, we use the notion of transition table [14, arXiv version],
which is another way to describe δ. Let n be the number of inner states of M .
Formally, letting k = |Q||Σ ∪ {|c, $}| and l = 3|Q||Ξ|, a transition table T of M
on input x is a k × l matrix, each row of which is indexed by (q, σ), each column
is indexed by (q, d, ξ), and the ((q, σ), (p, d, ξ))-entry is an approximation of a
transition amplitude δ(q, σ | p, d, ξ).

In accordance with the aforementioned 1qfa’s and 2qfa’s, we equip quan-
tum Turing machines with garbage tapes. We simply refer to quantum Turing
machines that are equipped with garbage tapes as QTMs. Since we need to han-
dle advice, we further supply an advice tape with an advice alphabet Θ. For
convenience, we call a QTM with an advice tape by an advised QTM.

With the use of logarithmic work space, using one of the work tapes, we
can implement an internal clock that helps quantum interference take place in
a computation.

2.2 Parameterized Problems and Promise Problems

A size parameter is a function from Σ∗ to N for a certain alphabet Σ. Typical
examples include mbin(x) = |x| (binary size of input x) and mver(G) indicates
the number of vertices in a graph G. A parameterized decision problem over an
alphabet Σ is a pair (L,m) with a language (or a decision problem) L over Σ
and a size parameter m : Σ∗ → N. Given a parameterized decision problem

140 T. Yamakami

(L,m), a family L = {(Ln, Ln)}n∈N of promise decision problems is said to be
induced from (L,m) if, for each index n ∈ N, Ln = L ∩ Σn and Ln = L ∩ Σn,
where Σn = {x ∈ Σ∗ | m(x) = n}.

A given size parameter m : Σ∗ → N is said to be polynomially bounded if
there exists a polynomial p such that m(x) ≤ p(|x|) for all x ∈ σ∗. In contrast,
m is polynomially honest if, for a certain fixed polynomial q, |x| ≤ p(m(x)) holds
for any x ∈ Σ∗. We use the notation PHSP to denote the set of all parameterized
decision problems (L,m) such that m is polynomially-honest size parameters.

A promise decision problem is of the form (A,B) over an alphabet Σ satis-
fying both A,B ⊆ Σ∗ and A ∩ B = Ø. As stated in Sect. 1.1, we deal with a
“family” L of promise decision problems, having the form {(Ln, Ln)}n∈N over a
certain fixed alphabet Σ. For such a family L of promise problems and a given
family {Mn}nN of certain specified machines that satisfy appropriate criteria for
acceptance and rejection, we generally say that Mn recognizes (solves or com-
putes) (Ln, Ln) if (1) for any x ∈ Ln, Mn accepts x and, (2) for all x ∈ Ln,
Mn rejects x. There is no requirement for the behavior of Mn on any string x
outside of Ln ∪ Ln and Mn possibly neither accepts nor rejects such an x.

On the contrary, let {(Ln, Ln)}n∈N be a family of promise decision problems
over an alphabet Σ. We set Lall =

⋃
n∈N

(Ln ∪ Ln). Note that Lall is included
in Σ∗ but is not required to equal Σ∗. Let Σ# = Σ ∪ {#}. We define Kn =
{1n#x | x ∈ Ln} and Kn = {1n#x | x ∈ Ln} ∪ {z#x | z ∈ Σn − {1n}, x ∈
Σ∗

#}∪{z | z ∈ Σn} for each index n ∈ N. Furthermore, we set K =
⋃

n∈N
Kn and

K =
⋃

n∈N
Kn. It follows that K ∩ K = Ø and K ∪ K = Σ∗

#. We define m(w)
as follows: m(w) = n if w = 1n#x for a certain x, and m(w) = |w| otherwise.
The pair (K,m) turns out to be a parameterized decision problem. We say that
(K,m) is induced from {(Ln, Ln)}n∈N.

As noted in Sect. 1.1, we use the prefix “para-” to describe parameterized
complexity classes. We define para-BQL as the class of parameterized decision
problems (L,m) solvable by bounded-error QTMs using O(log |x|m(x)) space,
where m is log-space computable in unary (see [13]). The probabilistic counter-
part of para-BQL is denoted by para-BPL. Moreover, we write para-NL/poly
to denote the parameterization of NL/poly, which is obtained by replacing lan-
guages L with parameterized decision problems (L,m).

2.3 Nonuniform State Complexity

Our purpose is to introduce nonuniform complexity classes defined by state
complexities of quantum finite automata families. Related to these classes, we
also consider classes based on probabilistic finite automata.

The state complexity generally refers to the number of inner states used in
a given automaton. However, since we use a (uniform or nonuniform) family
{Mn}n∈N of finite automata, the state complexity of such a family becomes a
function in n. More formally, the state complexity sc(n) (or sc(Mn)) of a family
{Mn}n∈N of finite automata is a function defined by sc(n) = |Qn| for all indices
n ∈ N, where Qn denotes a set of inner states of Mn [10]. In the rest of this
paper, we use nonuniform families of finite automata.

Quantum Logarithmic-Space Computation with Polynomial-Size Advice 141

The nonuniform state complexity class 1D is the collection of all nonuniform
families {(LnLn)}n∈N over certain alphabets Σ satisfying the following: there
are a polynomial p and a nonuniform family {Mn}n∈N of 1dfa’s such that, for
each index n ∈ N, (i) Mn has at most p(n) states and (ii) Mn solves (Ln, Ln)
on all inputs. In a similar way, we can define 1N using 1nfa’s instead of 1dafa’s.
Moreover, the notation 21D indicates the collection of families {(Ln, Ln)}n∈N of
promise decision problems, each of which is recognized by a certain 1dfa of at
most 2p(n) inner states for a certain polynomial p.

Formally, the notation 1BQ denotes the collection of nonuniform families
{(Ln, Ln)}n∈N such that there exist a family {Mn}n∈N of 1qfa’s, a polynomial
p, and a constant ε ∈ [0, 1/2) satisfying the following: (1) for each n ∈ N and
any x, if x ∈ Ln, then Mn accepts x with probability at least 1 − ε; if x ∈ Ln,
then Mn rejects x with probability at least 1 − ε, and (2) each Mn uses at
most p(n) inner states. When Mn satisfies Condition (1), we simply say that
Mn recognizes (Ln, Ln) with error probability at most ε. In this case, Mn is also
said to make bounded-errors. We obtain 1Q if we change Condition (1) into the
following condition: (1′) given any index n ∈ N, for each x ∈ Ln, Mn accepts x
with probability >1/2 and, for any x ∈ Ln, Mn rejects x with probability ≥1/2.

We define 1P in a similar way of defining 1D but using one-way probabilis-
tic finite automata with unbounded-error probability (or 1pfa’s, for short). By
using the bounded-error criteria instead, we define 1BP (where “B” stands for
“bounded error”). Similarly to 21D, we can define 21BQ, 21Q, 21BP, 21P, etc.

As shown below, quantum computation is different from deterministic one.

Proposition 4. 1D = 1.5D, 1BQ �= 1.5BQ, and 1Q �= 1.5Q.

For two-way head moves, the length of accepting computation paths of 2dfa’s
and 2nfa’s are always bounded linearly in input size. This fact shows that 2D and
2N are both included in 21D. We define 2BQ to be the collection of nonuniform
families {(Ln, Ln)}n∈N such that there exist a family {Mn}n∈N of 2qfa’s and a
polynomial p satisfying the following: (1) for each n ∈ N, Mn makes bounded
errors on all inputs in Σn = Ln ∪ Ln and (2) each Mn uses at most p(n) inner
states. Let 2Q be defined similarly to 2BQ by using unbounded-error probability
instead of bounded-error one.

In a similar fashion, we define 2BP to be the collection of nonuniform families
{(Ln, Ln)}n∈N, each (Ln, Ln) of which is recognized by 2-way bounded-error
probabilistic finite automata (or 2bpfa, for short) of polynomially-many states
with error probability at most ε ∈ [0, 1/2). The unbounded-error analogue of
2BP is denoted by 2P.2

3 Advised QTMs and Quantum Finite Automata

Our goal in this section is to prove a general theorem, Theorem 5, from which
Corollary 2 follows immediately. To achieve this goal, we first give a precise
2 In [4], the polynomial-time 2BP was considered under the name of 2P2 and the
polynomial-time 2P was studied under the name of 2P but it is restricted to so-
called “regular” language families. Here, we do not demand such a condition.

142 T. Yamakami

characterization of parameterized decision problems solvable by polynomial-time
logarithmic-space advised QTMs in terms of certain 2qfa’s having polynomially
many states.

Theorem 5. Let A,B ∈ {D,N,BP,BQ}. It then follows that 2A/poly ⊆ 2B iff
AL ⊆ BL/poly, where “DL” is understood as “L”.

3.1 The Roles of Advice and the Honesty Condition

We will prove a central claim, which establishes a close relation between nonuni-
form state complexity classes and parameterized complexity classes. Here, we
state the claim in full generality.

Proposition 6. Let (A,B) ∈ {(2D,L), (2N,NL), (2BP,BPL), (2BQ,BQL)}.
1. For any parameterized decision problem (L,m), let L = {(Ln, Ln)}n∈N be a

family induced from (L,m). It then follows that (L,m) ∈ para-B/poly ∩ PHSP
iff L ∈ A/poly.

2. Let L = {(Ln, Ln)}n∈N be any family of promise decision problems and let
(K,m) be a parameterized decision problem induced from L. It then follows
that L ∈ A/poly iff (K,m) ∈ para-B/poly ∩ PHSP.

In this exposition, we will show the proposition only for the case of A = 2BQ
and B = BQL since the other cases can be proven in a similar way. The proof of
Proposition 6(1) is now split into two lemmas, Lemmas 7 and 8. Lemma 7 states
that we can simulate an advised QTM by a certain nonuniform family of 2qfa’s
with appropriate state complexity.

Lemma 7. Let (L,m) be a parameterized decision problem over an alphabet Σ
and let L = {(Ln, Ln)}n∈N be a family of promise decision problems induced
from (L,m). Let h be an advice function and let r be a polynomial satisfying
|h(n)| ≤ r(n) for all n ∈ N. Assume that m is polynomially honest and that, with
the help of h, an advised QTM M solves L with bounded-error probability. For
any polynomial p and a function
, there exists a family {Nn,l}n,l∈N of 2qfa’s
with O(r(l)2O(�(n,l))) states such that, for any input x satisfying m(x) = n,
M accepts (x, h(|x|)) in expected time p(m(x), |x|) using space
(m(x), |x|) with
bounded-error probability iff Nm(x),|x| accepts x in expected time O(p(m(x), |x|))
with bounded-error probability.

Proof Sketch. Given M and h in the premise of the lemma, the desired 2qfa
Nn,l is designed to simulate M ’s computation using its inner states of the form
(q, k, t, w, a), which indicates that M is in state q, scanning the kth cell of a work
tape containing w, and the tth cell of an advice tape with a = h(|x|).
�

The converse of Lemma 7 is shown in Lemma 8 by giving a simulation of a
family of 2qfa’s by advised QTMs. To make a quantum interference take place
correctly, we need to avoid any time discrepancy caused by the different simu-
lation speed, and thus we need to adjust the timing of reaching the same con-
figurations. For this purpose, we need to implement an internal clock. This is
possible because 2qfa’s in question can use polynomially many inner states.

Quantum Logarithmic-Space Computation with Polynomial-Size Advice 143

Lemma 8. Let (L,m) be a parameterized decision problem over an alphabet
Σ and let L = {(Ln, Ln)}n∈N be induced from (L,m). Let r and p be func-
tions and let {Nn,l}n,l∈N be a family of r(n, l)-state 2qfa’s such that Nm(x),|x|
solves (Ln, Ln) on all inputs x with bounded-error probability within p(m(x), |x|)
time. There exist an advised QTM M and an O(r(m(x), |x|) log r(m(x), |x|))-
bounded advice function h such that, for any n ∈ N and for any input x, Nm(x),|x|
accepts x within p(m(x), |x|) time with bounded-error probability iff M accepts
(x, h(n)) with bounded-error probability within O(p(m(x), |x|)) time using space
O(log r(m(x), |x|)).
Proof Sketch. Taking Nn,l in the premise of the lemma, we build the desired
advised QTM M that simulates Nm(x),|x| using an advice function h, which
encodes a quantum circuit Cm(x),|x| that approximately updates a configura-
tion of Nm(x),|x| at every step. Such Cn,l can be made up of a universal set
{HAD,CNOT, T} of elementary quantum gates.
�

We omit the proof of Proposition 6(2).

3.2 Proof of Theorem5

We will give the proof of Theorem5. For the intended proof, we need two sup-
porting claims.

Lemma 9. Let (A,B) ∈ {(NL,L), (NL,BPL), (NL,BQL), (BQL,BPL)}. It then
follows that A/poly ⊆ B/poly iff A ⊆ B/poly.

Lemma 10. Let (A,B) ∈ {(NL,L), (NL,BPL), (NL,BQL), (BQL,BPL)}. It
then follows that para-A ∩ PHSP ⊆ para-B/poly iff A ⊆ B/poly.

We are ready to give the proof of Theorem5, which is now an easy conse-
quence of Lemmas 9–10 and Proposition 6.

Proof of Theorem 5. Here, we show only the case of A = N and B = BQ.
(⇐) Assume that NL ⊆ BQL/poly. By Lemma 9, this is equivalent to

NL/poly ⊆ BQL/poly. Lemma 10 then implies that para-NL/poly ∩ PHSP ⊆
para-BQL/poly. Using this inclusion, we want to show that 2N/poly ⊆ 2BQ.

Take any family L = {(Ln, Ln)}n∈N in 2N/poly. There are a polynomial s
and a family {Mn}n∈N of 2nfa’s such that, for any index n ∈ N, |x| ≤ s(n) for all
x ∈ Σn = Ln ∪ Ln, and Mn solves (Ln, Ln). Consider (K,m), which is induced
from {(LnLn)}n∈N. By Proposition 6(2), (K,m) belongs to para-NL/poly∩PHSP
since m is polynomially honest. By our assumption, (K,m) is also in para-
BQL/poly. By Proposition 6(2), we conclude that L ∈ 2BQ/poly ⊆ 2BQ.

(⇒) Assume that 2N/poly ⊆ 2BQ. It suffices to prove that para-NL/poly ∩
PHSP ⊆ para-BQL/poly because, once this is proven, Lemma10 implies that
NL/poly ⊆ BQL/poly and Lemma9 further concludes that NL ⊆ BQL/poly.

Let us take any parameterized decision problem (L,m) in para-NL/poly ∩
PHSP. Let L = {(Ln, Ln)}n∈N be induced from (L,m). Proposition 6(1) implies

144 T. Yamakami

that L ∈ 2N/poly. Our assumption then implies that L ∈ 2BQ/poly. Proposi-
tion 6(1) then concludes that (L,m) ∈ para-BQL/poly.
�

From Theorem 5, Corollary 2 follows immediately. This theorem also leads to
the main result of [6] (see also [7]), which relies on the property of a particular
NL-complete problem, the directed graph s-t connectivity problem. Our argu-
ment instead uses the parameterized complexity classes para-L and para-NL as
in Proposition 6.

Corollary 11. [6,7] 2N/poly ⊆ 2D iff NL ⊆ L/poly.

4 Quantum Advice and Quantum Transition Tables

For the proof of Theorem 3, let us consider quantum advice. It is shown in
[8, Lemma 3.1] that a polynomial-time quantum Turing machine with quantum
advice is translated into an equivalent polynomial-size quantum circuit family
starting with additional quantum states. In the case of finite automata, we quan-
tize transition tables and feed them to quantum finite automata. We abbreviate
2-way super quantum finite automata as 2sqfa’s.

Proposition 12. 1. Let (L,m) be any parameterized decision problem and let
L = {(Ln, Ln)}n∈N be induced from (L,m). It then follows that (L,m) ∈
para-BQL/Qpoly ∩ PHSP iff L ∈ 2sBQ/poly.

2. Let L = {(Ln, Ln)}n∈N be any family of promise decision problems and let
(K,m) be induced from L. It then follows that L ∈ 2sBQ/poly iff (K,m) ∈
para-BQL/Qpoly ∩ PHSP.

Proof Sketch. We briefly state a key idea of how to prove (1). Assuming
(L,m) ∈ para-BQL/Qpoly ∩ PHSP, for any given advised QTM M and a quan-
tum advice state |φn〉 =

∑
s αs|s〉 solving (L,m), we define Ms to run M on

(x, s). We then convert it to a 2qfa Nm(x),s that properly simulates Ms on
input x. Take a polynomial p for which m(x) ≤ p(|x|) for all x. Let Ti,s denote
a transition table of Ni,s and define T ′

s = T1,s#T2,s# · · · #Tp(|x|). Finally, we
set |ψ|x|〉 =

∑
s αs|T ′

s〉 and define the desired super 2qfa to operate according
to |ψ|x|〉.

For the converse, assume that L ∈ 2sBQ/poly. Take {Nn}n∈N and {|ψn〉}n∈N

that solve L. We then prepare a quantum function f to indicate how to operate
a single step of Nn. Finally, we define h(x) to be f(x) ⊗ |ψ|x|〉 and design the
desired advised QTM that simulates Nm(x) on (x, h(x)).

Lemma 13. para-BQL/poly ∩ PHSP = para-BQL/Qpoly ∩ PHSP iff
BQL/poly = BQL/Qpoly.

Theorem 3 follows from Propositions 6 and 12 and Lemma 13.

Proof of Theorem 3. (⇒) Assume that BQL/poly = BQL/Qpoly. By
Lemma 13, we obtain para-BQL/poly ∩ PHSP = para-BQL/Qpoly ∩ PHSP. Let
L = {(Ln, Ln)}n∈N be any family in 2sBQ/poly and let (K,m) be induced from

Quantum Logarithmic-Space Computation with Polynomial-Size Advice 145

L. By Proposition 12(2), we obtain (K,m) ∈ para-BQL/Qpoly. By our assump-
tion, we obtain (K,m) ∈ para-BQL/poly. By Proposition 6(2), it follows that
L ∈ 2BQ/poly.

(⇐) Assume that 2sBQ/poly ⊆ 2BQ/poly. Owing to Lemma 13, we need
to show that para-BQL/poly ∩ PHSP = para-BQL/Qpoly ∩ PHSP. Let (L,m)
be any problem in para-BQL/Qpoly ∩ PHSP. Moreover, let L = {(Ln, Ln)}n∈N

be induced from (L,m). By Proposition 12(1), we obtain L ∈ 2sBQ/poly. Our
assumption implies that L ∈ 2BQ/poly. Using Proposition 6(1), we conclude
that (L,m) ∈ para-BQL/poly ∩ PHSP.
�

References

1. Ambainis, A., Yakaryilmaz, A.S.: Automata and quantum computing. manuscript
(2015). https://arxiv.org/abs/1507.01988

2. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Technical Report 304, Institute of Computer Science, Polish Academy
of Science, Warsaw (1977)

3. Dwork, C., Stockmeyer, L.: A time-complexity gap for two-way probabilistic finite
state automata. SIAM J. Comput. 19, 1011–1023 (1990)

4. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 4

5. Kapoutsis, C.A.: Minicomplexity. J. Automat. Lang. Combin. 17, 205–224 (2012)
6. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.

Syst. 55, 421–447 (2014)
7. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly

versus NL. Theory Comput. Syst. 56, 662–685 (2015)
8. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice.

Inf. Process. Lett. 90, 195–204 (2004)
9. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.

In: Proceedings of the STOC 1978, pp. 275–286 (1978)
10. Villagra, M., Yamakami, T.: Quantum state complexity of formal languages. In:

Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 280–291. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19225-3 24

11. Yamakami, T.: The roles of advice to one-tape linear-time turing machines and
finite automata. Int. J. Found. Comput. Sci. 21, 941–962 (2010)

12. Yamakami, T.: One-way reversible and quantum finite automata with advice. Inf.
Comput. 239, 122–148 (2014)

13. Yamakami, T.: The 2CNF Boolean formula satsifiability problem and the linear
space hypothesis. In: Proceedings of MFCS 2017. LIPIcs, vol. 83, pp. 62:1–62:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). A complete version is
found at arXiv:1709.10453

14. Yamakami, T.: State complexity characterizations of parameterized degree-
bounded graph connectivity, sub-linear space computation, and the linear space
hypothesis. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol.
10952, pp. 237–249. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94631-3 20. A complete and corrected version is found at arXiv:1811.06336

15. Yamakami, T.: Relativizations of nonuniform quantum finite automata families
(2019, manuscript)

https://arxiv.org/abs/1507.01988
https://doi.org/10.1007/978-3-642-02737-6_4
https://doi.org/10.1007/978-3-319-19225-3_24
http://arxiv.org/abs/1709.10453
https://doi.org/10.1007/978-3-319-94631-3_20
https://doi.org/10.1007/978-3-319-94631-3_20
http://arxiv.org/abs/1811.06336

Equivalence Checking of Prefix-Free
Transducers and Deterministic Two-Tape

Automata

Vladimir A. Zakharov(B)

Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia
zakh@cs.msu.su

Abstract. Although the equivalence problem for finite transducers is
undecidable in the general case, it was shown that for some classes of
transducers (bounded ambiguous, bounded valued, of bounded length
degree) this problem has effective solutions which, however, require sig-
nificant computational costs. In this paper we distinguish a new class of
transducers (we call them prefix-free since their transitions are character-
ized by this property of languages) such that (1) the equivalence problem
for transducers in this class is decidable in quadratic time, and (2) this
class does not fall into the scope of previously known decidable cases. We
also show that deterministic two-tape finite state automata (2-DFSAs)
are convertible into prefix-free transducers. Due to this translation we
obtain a simple procedure for checking equivalence of 2-DFSAs in poly-
nomial time. We believe that the further development of this approach
could bring us to an efficient equivalence checking algorithm for deter-
ministic multi-tape automata with an arbitrary number of tapes.

Keywords: Transducer · Two-tape automaton ·
Equivalence checking · Prefix-free language · Language equation ·
Decision procedure

Finite transducers and two-tape automata stem from the same concept of Finite
State Automaton. Both models compute the same class of rational relations on
words but the computations are performed differently: transducers read words
on the input tape and write on the output tape whereas two-tape automata
read words alternately on two input tapes. Both models are easily convertible
into each other, and, therefore, many authors do not distinguish them. However,
when studying and applying transducers, it is customary to restrict ourselves to
the consideration of real-time transducers which write on the output tape only
in response to reading the next letter on the input tape. Real time transducers
are widely used in text and speech processing, bioinformatics, verification and
optimization of reactive system, etc. The application capabilities of two-tape
automata turned out to be far more modest.

This research is supported by RFBR Grant 18-01-00854.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 146–158, 2019.
https://doi.org/10.1007/978-3-030-13435-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_11

Equivalence Checking of Transducers and Two-Tape Automata 147

Both models are hard for analysis: the inclusion, equivalence, and even
totality problems are undecidable for real time transducers as well as for two-
tape automata [5,7]. Meanwhile, many classes of transducers were discovered—
sequential, functional, bounded ambiguous, bounded valued transducers—for
which the equivalence problem was proved to be decidable. Decision algorithms
are quite diverse, many of them require significant computational costs, but for
some classes of transducers equivalence checking and minimization procedures
are surprisingly simple and efficient [11]. Two-tape automata are not so much
suitable for analysis: decidability of the equivalence problem was proved only for
deterministic automata, and the only known algorithm [6] that allows solving
this problem in polynomial time is rather sophisticated.

This unequal state of the art, when the diversity of decision procedures and
techniques for the analysis of transducers and two-tape automata are concerned,
gives rise to a natural question: is it possible to find a suitable relationship
between two-tape automata and finite transducers as to allow one to analyze the
behaviour of multi-tape machines with the help of decision procedures designed
for real time transducers. Finite transducers are easily convertible into two-tape
automata: just imagine that instead of writing the words to the output tape,
a transducer reads them. But the reverse translation is less evident. Two-tape
automata display much more freedom than real time transducers in handling
their tapes. Therefore, even deterministic two-tape automata are able to rec-
ognize such binary relations on words that can not be computed by real time
transducers with a bounded degree of nondeterminism (bounded ambiguous,
bounded valued, etc.). As a result, all previously known classes of transduc-
ers, for which the decidability of the equivalence problem has been established,
are useless when it comes to checking the equivalence of deterministic two-tape
automata.

In this paper we show how to overcome these difficulties and to adjust equiva-
lence checking techniques developed for finite transducers to verification of deter-
ministic two-tape automata. To this end we propose to consider a new class of
transducers. A distinctive feature of transducers from this class is that for any
control state q and any input letter a the set of all output words w that can be
written at the state q in response to a forms a prefix-free code. This new class of
transducers does not fall into the scope of previously known decidable cases. We
show that the equivalence of prefix-free transducers can be verified in quadratic
time by checking the solvability of transduction equations. Another advantage of
the new class of transducers is that every deterministic two-tape automaton can
be quite simply converted into an equivalent prefix-free transducer. It should
be noticed, however, that the corresponding prefix-free transducers, although
being finite state machines, may have infinitely many transitions. Nevertheless,
the above mentioned solvability checking techniques for transduction equations
can be appropriately adapted for this case as well. Thus, we obtain an efficient
procedure for checking equivalence of deterministic two-tape automata.

We begin with a brief exposition of the foundations of finite transducers
and two-tape automata, and the main achievements in studying the equivalence

148 V. A. Zakharov

problem for these models. Next we introduce prefix-free transducers and present
the equivalence checking procedure for this class of transducers. Finally, we
explain how to translate deterministic two-tape automata into finite transducers
operating over prefix-free regular languages and how to modify the equivalence
checking procedure to cope with prefix-free transducers of a more general type.

1 Preliminaries

A word over alphabet Σ is any finite sequence w = a1a2 . . . ak of letters in Σ.
The empty word is denoted by ε. Given a pair of words u and v, we write uv
for their concatenation. The set of all words over an alphabet Σ is denoted by
Σ∗. A language over Σ is any subset of Σ∗. Concatenation of languages L1 and
L2 is the language L1L2 = {uv : u ∈ L1, v ∈ L2}. If L1 = ∅ or L2 = ∅ then
L1L2 = ∅. A transduction over alphabets Σ and Δ is any subset of Σ∗ × Δ∗.

A real time finite transducer (briefly, transducer) over an input alphabet Σ
and an output alphabet Δ is a quadruple π = 〈Q, q0, F,−→〉, where Q is a finite
set of states, q0 is an initial state, F ⊆ Q is a subset of final states, and −→ is a
finite transition relation of the type Q × Σ × Δ∗ × Q. Sometimes we will write
π(q0) to emphasize that q0 is the initial state of π. Quadruples (q, a, u, q′) in −→
are called transitions and depicted as q

a/u−→ q′. A run of π on an input word
w = a1a2 . . . an is any finite sequence of transitions

q
a1/u1−→ q1

a2/u2−→ · · · an−1/un−1−→ qn−1
an/un−→ q′ . (1)

The pair (w, u), where u = u1u2 . . . un, is called a label of a run (1). We will

write q
w/u−→∗ q′ to indicate that a transducer π has a run (1) labeled with (w, u)

from a state q to a state q′. If q′ ∈ F then (1) is a final run. A transduction
relation realized by a transducer π at its state q is the set of pairs TR(π, q) =

{(w, u) : q
w/u−→∗ q′, q′ ∈ F}. Transducers π1(q1) and π2(q2) are called equivalent

(π1(q1) ∼ π2(q2) in symbols) iff TR(π1, q1) = TR(π2, q2). Equivalence problem
for transducers is that of checking, given a pair of transducers π1 and π2, whether
π1 ∼ π2 holds.

A transducer π is called

– deterministic if for every letter a and a state q it has at most one transition

of the form q
a/u−→ q′,

– k-ambiguous if for every input word w there is at most k final runs of π on
w from the initial state q0,

– k-valued if for every input word w the transduction relation TR(π, q0) con-
tains at most k images of w,

– of length-degree k if for every input word w, the number of distinct lengths
of the images u of w in TR(π, q0) is at most k.

The study of the equivalence problem for real time transducers began in
the early 60s. First, it was shown that this problem is undecidable for non-
deterministic transducers [7]. But the undecidability displays itself only when

Equivalence Checking of Transducers and Two-Tape Automata 149

some input words may have arbitrary many images. The equivalence problem
was shown to be decidable in polynomial time for deterministic transducers
[3] and in polynomial space for single-valued transducers [2,14]. Later in [8] it
was proved that this problem is decidable for bounded ambiguous transducers.
Moreover, equivalence checking of unambiguous transducers can be performed
in polynomial time. At the next stage bounded-valued transducers were studied.
It was shown how to check in polynomial time whether the cardinality of the
image of every word by a given transducer is bounded [18] and whether it is
bounded by a given integer k [8]. The decidability of the equivalence problem
for k-valued transducers was established in [4,20]. In a series of papers [12,13,15]
a construction to decompose k-valued transducers into a sum of functional and
unambiguous ones was developed and used for checking bounded valuedness,
k-valuedness and equivalence of k-valued transducers in exponential time. In
[21] a straightforward techniques was developed to solve the same problems for
transducers operating over semigroups. The largest among the known classes of
transducers for which the equivalence problem is decidable in the class of trans-
ducers of bounded length-degree [19]. In [16] it was proved that the equivalence
for bounded length-degree transducers is decidable in triple exponential time.

A two-tape finite state automaton (briefly, 2-FSA) over disjoint alphabets Σ
and Δ is a 5-tuple M = 〈S1, S2, s0, F,→〉 such that S1, S2 is a partitioning of a
finite set S of states, s0 ∈ S1 is an initial state, F ⊆ S is a subset of final states,
and → is a transition relation of the type (S1×Σ×S)∪(S2×Δ×S). Transitions
are depicted as s

x→ s′. A run of a 2-FSA M is any sequence of transitions

s
z1→ s1

z2→ · · · zn−1→ sn−1
zn−→ s′ . (2)

A run (2) is complete if s = s0 and s′ ∈ F . We say that a 2-FSA M accepts a
pair of words (w, u) ∈ Σ∗ × Δ∗ if there is a complete run (2) of M such that
w is the projection of the word z1z2 . . . zn−1zn on the alphabet Σ and u is the
projection of the same word z1z2 . . . zn−1zn on the alphabet Δ. A transduction
relation recognized by a 2-FSA M is the set TR(M) of all pairs of words accepted
by M . We say that 2-FSAs M ′ and M ′′ are equivalent if TR(M ′) = TR(M ′′).
A 2-FSA M is called deterministic (2-DFSA) if for every letter a and a state s

it has at most one transition of the form s
a−→ s′.

Undecidability of the equivalence problem for non-deterministic 2-FSAs was
proved in [5]. But soon in [1] and [17] equivalence was shown to be decidable for
2-DFSAs. Later, in [6] it was discovered how to check equivalence of 2-DFSAs
in polynomial time. And, finally, the decidability of equivalence problem for
deterministic automata with arbitrary number of tapes was established in [10].
Strangely enough, since 1991 no new significant results on equivalence checking
techniques for multi-tape automata have appeared.

2 Prefix-Free Transducers

A word u is a prefix of a word w if w = uv holds for some word v. In this case
w is called an extension of u and v = u \ w a left quotient of u with w. We say

150 V. A. Zakharov

that two words u1 and u2 are compatible if one of them is a prefix of the other.
A language L is called prefix-free if all its words are pairwise incompatible. We
say that two languages L′ and L′′ are compatible if every word in any of these
languages is compatible with some word in the other language. Given a word u
and a language L, we denote by Pref(L) the set of all prefixes of the words in
L, and by u \ L a language {v : uv ∈ L} which is a left quotient of u with L.
Notice, that if u /∈ Pref(L) then u \ L = ∅.

Proposition 1. Let L′ and L′′ be finite prefix-free compatible languages. Then

there exist unique partitions L′ =
n⋃

i=1

L′
i and L′′ =

n⋃

i=1

L′′
i of these languages such

that for every i, 1 ≤ i ≤ n, one of the subsets L′
i or L′′

i is a singleton {u} and
all words from the other are extensions of u.

Such partitioning of a compatible pair of prefix-free languages L′ and L′′ will
be called its splitting. The pairs of corresponding subsets L′

i and L′′
i , 1 ≤ i ≤ n,

of a splitting will be called its fractions.
Given a transducer π = 〈Q, q, F,−→〉 over languages Σ and Δ, a state q ∈ Q

and a letter x ∈ Σ, we denote by Outπ(q, x) the set of all pairs (u, q′) such

that q
x/u−→ q′ is a transition of π. A transducer π is called prefix-free if for

every state q and an input letter x the language Lπ(q, x) = {u : ∃p (u, p) ∈
Outπ(q, x)} is prefix-free. Clearly, every deterministic transducer is prefix-free
but not vice verse. Nevertheless, prefix-free transducers have a certain “deter-
ministic”property: for every state q of a prefix-free transducer π and for every
pair (w, u) ∈ TR(π, q) there is the only run of π from the state q labeled with
(u,w). It should be noticed also that some prefix-free transducers don’t have
such properties as bounded ambiguity, bounded valuedness, or bounded length-
degree, i.e. the class of prefix-free transducers does not fall into the scope of
previously known decidable cases of equivalence problem for real time finite
transducers.

Example 2. Consider a prefix-free transducer π = 〈{q0, q1}, q0, {q1},−→〉, which

has only 3 transitions q0
a/g−→ q0, q0

a/hh−→ q0, and q0
b/ε−→ q1. For every input

anb the lengths of outputs vary from n to 2n. Hence, π is not a transducer of
bounded length-degree.

Our equivalence checking technique for prefix-free transducers is based on
manipulations with regular expressions. We associate with each transducer π a
system of linear regular expression equations E(π) which specifies the behaviour
of π. To check the equivalence π′ ∼ π′′ we add to the set of equations E(π′) ∪
E(π′′) the equivalence requirement which is an equation of the form X ′ = X ′′

and then verify whether the resulting system of equations has a solution. To this
end we use Gaussian elimination of variables. In general case this approach does
not offer any advantages, but for prefix-free transducers splitting of compatible
prefix-free languages (see Proposition 1) provides a suitable means for solving
efficiently the systems of equations that specify the equivalence problem.

Equivalence Checking of Transducers and Two-Tape Automata 151

For the sake of clarity and to make the notation more simple we make some
assumptions concerning transducers π′ and π′′ to be analyzed:

– the input alphabet Σ = {a1, . . . , ak} and the output alphabet Δ are disjoint;
we will use symbols x, y, z to denote arbitrary letters from Σ and symbols
u, v, w to denote words from Δ∗,

– π′ = π(q′) and π′′ = π(q′′), i.e. π′ and π′′ have the same transition relation
but different initial states,

– the transducer π is trim, i.e. a final state is reachable from each state of π.

Regular expressions (regexes) are built of variables X1,X2, . . . , constants 0, 1,
and letters from Σ and Δ by means of concatenation ·, and alternation +. They
are interpreted on the semiring of transductions over Σ and Δ. The constants 0,
1, every letter x, and every word u are interpreted as transductions ∅, {(ε, ε)},
{(x, ε)}, and {(ε, u)} respectively. Concatenation of transductions T1 and T2 is
defined as expected: T1T2 = {(h1h2, u1u2) : (h1, u1) ∈ T1, (h2, u2) ∈ T2}. It is
important to mind that x · u = u · x holds for every x ∈ Σ and u ∈ Δ∗.

We will focus on linear regexes of two types. A Δ-regex is any expression of
the form u1 · Xi1 + u2 · Xi2 + · · · + um · Xim

, where variables may have multiple
occurrences. When a set of words {u1, u2, . . . , um} is prefix-free then such a Δ-
regex will be also called prefix-free. A Σ-regex is any expression of the form
a1 · E1 + a2 · E2 + · · · + ak · Ek, where Ei, 1 ≤ i ≤ k, are Δ-regexes. When
referring to such regexes as E(X1, . . . , Xn) (for Δ-regex) or G(X1, . . . , Xn) (for
Σ-regex) we emphasize that X1, . . . , Xn are the only variables involved in them.

Let π = 〈Q, q0, F,−→〉 be a finite transducer over Σ and Δ. With each state
q of π we associate a variable Xq, and for every pair q ∈ Q and x ∈ Σ we build
a Δ-regex Eq,x =

∑

(u,p)∈Outπ(q,x)

u · Xp. For every state q denote by cq either the

constant 1 if q ∈ F , or the constant 0 otherwise. Then the transducer π can be
algebraically specified by the system of equations Eπ:

{Xq =
∑

x∈Σ

x · Eq,x + cq : q ∈ Q} .

Proposition 3. For every finite transducer π the system of equation Eπ has a
unique solution {Xq = TR(π, q) : q ∈ Q}.

The proof is based on Arden’s Lemma adapted for transductions.

Corollary 4. For every pair of states p, q ∈ Q the equivalence π(p) ∼ π(q) holds
iff the system of equations Eπ ∪ {Xp = Xq} has a solution.

Thus, to verify the equivalence of transducers it suffices to learn how to check
the solvability of certain systems of equations E which are the extensions of the
systems Eπ corresponding to transducers. The solvability of some extensions is
quite obvious. We say that a system of linear equations

E = Eπ(X1, . . . , Xn) ∪ {X ′
j = Ej(X1, . . . , Xn) : 1 ≤ j ≤ m},

is reduced if {X1, . . . , Xn} and {X ′
1, . . . , X

′
m} are disjoint sets of variables and

all right-hand sides Ej are Δ-regexes.

152 V. A. Zakharov

Proposition 5. Every reduced system of equations E has the unique solution.

Some other extensions of the systems Eπ have no solutions.

Proposition 6. If languages L1 = {u1, . . . , u�} and L2 = {v1, . . . , vm} are

incompatible then a system of equations Eπ(X1, . . . , Xn) ∪ {
�∑

i=1

ui · Xi =
m∑

j=1

vj ·
Xj} has no solutions.

Proposition 7. If a set of words {u1, . . . , u�} is prefix-free and a system of

equations Eπ(X1, . . . , Xn) ∪ {X1 =
�∑

i=1

ui ·Xi} has a solution then � = 1 and
u1 = ε.

Below we present an iterative procedure which checks the solvability of the
system of equations E1 = Eπ ∪ {Xp = Xq} for prefix-free transducer π by
bringing this system to an equivalent reduced form. At the beginning of each
iteration t the procedure gets at the input a system of equations of the form

Et = Eπt
∪ {Xi = Ei : 1 ≤ i ≤ Nt},

where πt is some prefix-free transducer (not necessarily π) and all Δ-regexes Ei

are prefix-free. If a variable X occurs more than once in Et then we call it active.
At the t-th iteration the following equivalent transformations are applied to Et.

(1) Removing of identities. Equations of the form X = X are removed from Et.
(2) Checking the reducedness of Et. If none of the variables X1, . . . , XNt

from
left-hand sides of equations Xi = Ei occurs elsewhere then the procedure ter-
minates and announces the solvability of the system (due to Proposition 5).

(3) Elimination of variables. Consider an equation of the form Xi = Ei in Et

– if the variable Xi is involved in Δ-regex Ei then the procedure terminates
and announces the unsolvability of the system (by Proposition 7);

– otherwise in all other equations of the system Et all the occurrences of Xi

are replaced with the regex Ei.

After this step the number of active variables in Et decreases. But the use of
these substitutions has a side effect: non-standard equations of the form

(1) E′ = E′′, where E′, E′′ are non-variable Δ-regexes, and
(2) E = G, where E is a non-variable Δ-regex and G is a Σ-regex, may

appear in Et. It may also happen that
(3) several equations of the form X = G with the same variable X appear

in Et.
(4) Elimination of non-standard equations E = G. At this step some equations

which spoil the canonical form of the system are removed from Et. Then
– for every equation of the form E(X1, . . . , X�) = G replace all the occur-

rences of variables Xi, 1 ≤ i ≤ �, in Δ-regex E with Σ-regexes Gi that
correspond to these variables in the equations Xi = Gi from the subsys-
tem Eπt

; then bring the resulting expression E(G1, . . . , G�) to the stan-
dard form of Σ-regex using commutativity law u · x = x · u for letters
from Σ and Δ;

Equivalence Checking of Transducers and Two-Tape Automata 153

– for every pair of equations X = G′ and X = G′′ with the same left-hand
side but different Σ-regexes G′ and G′′ replace one of these equations
with the equation G′ = G′′.

After this step all equations of the form E = G disappear and all equations
of the form X = G will have pairwise different left-hand side variables. But
this is achieved by inserting to the system non-standard equations of the
form 4) G′ = G′′ where G′, G′′ are Σ-regexes.

(5) Elimination of nonstandard equations G′ = G′′. The procedure removes from
the system every equation of the form

k∑

i=1

ai · E′
i =

k∑

i=1

ai · E′′
i

and inserts instead of it k equations E′
i = E′′

i , 1 ≤ i ≤ k. Thus, all equations
of the form G′ = G′′ disappear from the system due to the introduction of
new equations of the form E′ = E′′. After this step equations of this form
are the only non-standard equations that remain in the system.

(6) Elimination of nonstandard equations E′ = E′′. The decisive importance
here is that all Δ-regexes that occur in the equations of the system are
prefix-free. This is due to the fact that the transducer π which gives rise to
the initial system of equations E1 is prefix-free and that all transformations
the equations of the system undergo preserve the prefix-free property of Δ-
regexes that occur in the equations. For every equation

�∑

i=1

ui · X ′
i =

m∑

j=1

vj · X ′′
j (3)

check the compatiblity of the languages L′ = {u1, . . . , u�} and L′′ =
{v1, . . . , vm}.

– if the languages L′ and L′′ are incompatible then the procedure terminates
and announces the unsolvability of the system (due to Proposition 6);

– otherwise the procedure makes a splitting L′ =
n⋃

i=1

L′
i and L′′ =

n⋃

i=1

L′′
i of

these languages, removes the Eq. (3) from Et, and inserts for every fraction
L′

i = {ui0} and L′′
i = {vi1 , . . . , vir

} (or L′
i = {ui1 , . . . , uir

} and L′′
i = {vi0})

an equation X ′
i0

= (ui0 \ vi1) ·X ′′
i1

+ · · ·+(ui0 \ vir
) ·X ′′

ir
(or X ′′

i0
= (vi0 \ui1) ·

X ′
i1

+ · · · + (vi0 \ uir
) · X ′

ir
respectively).

After this step we obtain the system of equations Et+1 which is equivalent to Et

but has a smaller number of active variables than Et.

Proposition 8. For every prefix-free transducer π and a pair of its states p, q
the procedure above when being applied to the system of equations E1 = Eπ ∪
{Xp = Xq} terminates and correctly detects the solvability of E1.

154 V. A. Zakharov

By choosing directed acyclic graphs to represent regexes and by using suitable
reference data structures to represent the equations it is possible to perform all
computations of one iteration of the described procedure in linear time without
using additional memory. Thus, we arrive at

Theorem 9. Equivalence problem for finite prefix-free transducers is decidable
in quadratic time.

3 Two-Tape Automata and Generalized Transducers

Let M = 〈S1, S2, s0, F,→〉 be a 2-DFSA over alphabets Σ and Δ. Without loss
of generality we will assume that F ⊆ S1. For every state ŝ ∈ S1 and a letter
x ∈ Σ define a set of pairs OutM (ŝ, x) ⊆ Δ∗ × S1 as follows. Consider the
transition ŝ

x→ s of M . If s ∈ S1 then OutM (ŝ, x) = {(ε, s)}. If s ∈ S2 then
OutM (ŝ, x) is a set of all pairs (z1z2 . . . zn−1zn, s′) such that there exists a run
(2) of M which passes only via states si of the set S2 and ends at a state s′ ∈ S1.

Proposition 10. For every 2-DFSA M = 〈S1, S2, s0, F,→〉 over alphabets Σ
and Δ, a pair of states ŝ, s ∈ S1, and a letter x ∈ Σ the set of words LM (ŝ, s, x) =
{w : (w, s) ∈ OutM (ŝ, x)} is a regular prefix-free language. Moreover, the union
LM (ŝ, x) =

⋃

s∈S1

LM (ŝ, s, x) is also a regular prefix-free language.

We associate with every 2-DFSA M a transducer πM = 〈S1, s0, F,−→〉
over the alphabets Σ and Δ such that the transition relation −→ meets the

requirement s
x/w−→ s′ ⇔ (w, s′) ∈ OutM (s, x) for every quadruple (s, x, w, s′) ∈

S1 × Σ × Δ∗ × S1. Proposition below follows immediately from the definition of
πM .

Proposition 11. The equality TR(M) = TR(πM , s0) holds for every 2-DFSA
M .

Proposition 10 implies that for every 2-DFSA M the transducer πM is prefix-
free. However, πM may have infinitely many transitions. Therefore, to make use
of Theorem 9 and Proposition 11 for equivalence checking of 2-DFSAs one needs
to find a way for representing every transducer πM as a finite transition system.
A key consideration that allows transducers to be represented as finite transition
systems is that for every state s and a letter x the set of words LM (s, x) which
transducer πM outputs in response to x at s is a regular language. Since regular
languages admit finitary descriptions (say, deterministic finite state automata),
these descriptions themselves can be used for labeling transitions of transducers.
A similar technique was used in the model of generalized finite automata [9].

Denote by PFReg(Δ) the set of prefix-free regular languages over alphabet
Δ. Every such language can be specified by the minimal deterministic finite
state automaton (1-DFSA). The prefix-free property is manifested in the fact
that every such 1-DFSA have a unique accepting state from which no transitions
emerge. Concatenation of automata of this kind is defined in the obvious way.

Equivalence Checking of Transducers and Two-Tape Automata 155

In what follows when dealing with transducers and regexes that involve regular
prefix-free languages we will address to these languages by the names of the
corresponding 1-DFSAs.

A generalized prefix-free finite transducer over languages Σ and Δ is a
quadruple Π = 〈Q, q0, F,−→〉, where Q is a finite set of states, q0 is an ini-
tial state, F is a subset of final states, and ψ : Q × Σ × Q → PFReg(Δ) is a
finite transition function such that for every state q and a letter x the language
⋃

q′∈Q

ψ(q, x, q′) is prefix-free. As usual, we write q
x/L−→ q′ whenever ψ(q, x, q′) = L.

If ψ(q, x, q′) = ∅ then q
x/∅−→ q′ is a “seeming” transition which does not con-

tribute to computations of Π. A run of Π is any finite sequence of transitions

q
a1/L1−→ q1

a2/L2−→ · · · an−1/Ln−1−→ qn−1
an/Ln−→ q′ . (4)

When writing q
w/L−→∗ q′ we mean that Π has a run (4) such that w = a1a2 . . . an

and L = L1L2 . . . Ln. A transduction relation realized by Π in its state q is the

set of pairs TR(Π, q) = {(w, u) : q
w/L−→∗ q′, u ∈ L, q′ ∈ F}.

As it follows from Propositions 10 and 11, for every 2-DFSA M there exists
a generalized prefix-free finite transducer ΠM such that TR(M) = TR(ΠM , s0).

4 Equivalence Checking of Generalized Prefix-Free
Transducers

To check the equivalence of generalized prefix-free finite transducers we adapt
appropriately the approach developed for the analysis of ordinary prefix-free
finite transducers: for a pair of states q′, q′′ in a transducer Π build the system
of transduction equations EΠ ∪ {Xq′ = Xq′′} and check its solvability. We will
discuss only those modifications that need to be made to take into account the
specific features of generalized transducers.

Regexes are built of variables X1,X2, . . . , constants 0, 1, and letters from
Σ, but instead of Δ we will use prefix-free regular languages from PFReg as
constants. Clearly, every such constant L ∈ FPReg is interpreted as a trans-
duction {(ε, w) : w ∈ L}. Modified Δ-regexes are expressions of the form
L1 · X1 + L2 · X2 + · · · + Ln · Xn, where Li ∈ FPReg for every i, 1 ≤ i ≤ n. The
system of equations E1 = EΠ ∪ {Xq′ = Xq′′} for a generalized transducer Π
is constructed in the same way as for ordinary transducers, and the analogues
of Propositions 3–7 also hold for systems of equations with thus modified Δ-
regexes. Therefore, the rules (1)–(5) of the solvability checking procedure remain
the same for the case of modified system of equations. The only rule which needs
an improvement is the rule (6). We modify it as follows.
(6′) Elimination of nonstandard equations E′ = E′′. For every equation

�∑

i=1

L′
i · X ′

i =
m∑

j=1

L′′
j · X ′′

j (5)

156 V. A. Zakharov

check the compatiblity of the languages L′ =
�⋃

i=1

L′
i and L′′ =

m⋃

j=1

L′′
j . If the lan-

guages are incompatible then complete the procedure and announce the unsolv-
ability of the system. Otherwise, proceed as follows.

6.1 For every i, 1 ≤ i ≤ �, such that L′
i ∩ Pref(L′′) �= ∅ find any word

w ∈ L′
i ∩ Pref(L′′), and add an equation X ′

i =
m∑

j=1

(w \ L′′
j) · X ′′

j to the

system. Replace all occurrences of X ′
i in (5) with the right-hand side of this

equation.
6.2 Do the same for every j, 1 ≤ j ≤ m: find any word u ∈ L′′

j ∩ Pref(L′) in

the case when L′′
j ∩ Pref(L′) �= ∅, add an equation X ′′

j =
�∑

i=1

(u \ L′
i) · X ′

i to

the system, and replace all occurrences of X ′′
j in (5) with the right-hand side

of this equation.
6.3 If after applying all the above substitutions, the Eq. (5) does not become
an identity, then complete the procedure and announce the unsolvability of
the system. Otherwise, remove the resulting identity from the system.

It is easy to verify that the system of equations obtained after the elimination
of non-standard equations of the form E′ = E′′ will be equivalent to the original
system. Correctness of transformation rule (6′) follows from

Proposition 12. If an equation L0 · X0 =
n∑

i=1

Li · Xi with a prefix-free Δ-regex

at the right-hand side has a prefix-free solution, and w ∈ L0 ∩ Pref(
n⋃

i=1

Li),

then the equation X0 =
n∑

i=1

(w \ Li) · Xi has the same solution.

All the additional equations inserted in the system of equations by the trans-
formation rule (6′) can be constructed simultaneously by computing the (descrip-
tions of) languages L′ ∩ Pref(L′′) and L′′ ∩ Pref(L′). When prefix-free regular
languages involved in the Eq. (5) are specified by 1-DFSAs, this computation can
be performed in time quadratic of their size. Thus, we arrive at

Theorem 13. The equivalence problem for generalized prefix-free finite trans-
ducers is decidable in cubic time.

Corollary 14. The equivalence problem for deterministic two-tape finite state
automata is decidable in cubic time.

5 Conclusion

Further development of the results presented in this paper can be carried out
in several directions. Perhaps, the most ambitious would be an attempt to
extend the approach proposed for checking equivalence of deterministic two-tape

Equivalence Checking of Transducers and Two-Tape Automata 157

automata to n-tape automata. For example, 3-DFSAs can also be translated into
generalized prefix-free transducers, but in this case we will have to use prefix-
free deterministic 2-DFSAs instead of 1-DFSAs for transition labeling, modify
accordingly the notions of Δ- and Σ-regexes, and, finally, adapt the rule (6′)
of the decision procedure so that it can be applied to work with prefix-free
deterministic rational transductions. The latter could be achieved by introduc-
ing the notion of left quotient on transductions in such a way as to preserve
the analogous of Proposition 12 and by using equivalence checking procedure for
deterministic 2-DFSAs. This provides the grounds for the following hypothesis:
the equivalence problem for multi-tape automata is decidable in polynomial time
but the degree of the polynomial is proportional to the number of tapes.

The author highly appreciates the valuable comments of anonymous referees.

References

1. Bird, M.: The equivalence problem for deterministic two-tape automata. J. Com-
put. Syst. Sci. 7, 218–236 (1973)

2. Blattner, M., Head, T.: Single-valued a-transducers. J. Comput. Syst. Sci. 15,
310–327 (1977)

3. Blattner, M., Head, T.: The decidability of equivalence for deterministic finite
transducers. J. Comput. Syst. Sci. 19, 45–49 (1979)

4. Culik, K., Karhumaki, J.: The equivalence of finite-valued transducers (on HDTOL
languages) is decidable. Theor. Comput. Sci. 47, 71–84 (1986)

5. Fisher, P.S., Rozenberg, A.L.: Multitape one-way nonwriting automata. J. Comput.
Syst. Sci. 2, 88–101 (1968)

6. Friedman, E.P., Greibach, S.A.: A polynomial time algorithm for deciding the
equivalence problem for 2-tape deterministic finite state acceptors. SIAM J. Com-
put. 11, 166–183 (1982)

7. Griffiths, T.: The unsolvability of the equivalence problem for ε-free nondetermin-
istic generalized machines. J. ACM 15, 409–413 (1968)

8. Gurari, E., Ibarra, O.: A note on finite-valued and finitely ambiguous transducers.
Math. Syst. Theory 16, 61–66 (1983)

9. Han, Y.-S., Wood, D.: The generalization of generalized automata: expression
automata. In: Proceedings of 9th International Conference on Implementation and
Application of Automata, pp. 156–166 (2004)

10. Harju, T., Karhumaki, J.: The equivalence problem of multitape finite automata.
Theor. Comput. Sci. 78, 347–355 (1991)

11. Mohri, M.: Minimization algorithms for sequential transducers. Theor. Comput.
Sci. 234, 177–201 (2000)

12. Sakarovitch J., de Souza R.: On the decomposition of k-valued rational relations. In:
Proceedings of 25th International Symposium on Theoretical Aspects of Computer
Science, pp. 621–632 (2008)

13. Sakarovitch J., de Souza R.: On the decidability of bounded valuedness for trans-
ducers. In: Proceedings of the 33rd International Symposium on MFCS, pp. 588–
600 (2008)

14. Schutzenberger, M.P.: Sur les relations rationnelles. In: Proceedings of Conference
on Automata Theory and Formal Languages, pp. 209–213 (1975)

158 V. A. Zakharov

15. de Souza, R.: On the decidability of the equivalence for k-valued transducers. In:
Proceedings of 12th International Conference on Developments in Language The-
ory, pp. 252–263 (2008)

16. de Souza, R.: On the decidability of the equivalence for a certain class of transduc-
ers. In: Proceedings of 13th International Conference on Developments in Language
Theory, pp. 478–489 (2009)

17. Valiant, L.G.: The equivalence problem for deterministic finite-turn pushdown
automata. Inf. Control 25, 123–133 (1974)

18. Weber, A.: On the valuedness of finite transducers. Acta Inform. 27, 749–780
(1989)

19. Weber, A.: On the lengths of values in a finite transducer. Acta Inform. 29, 663–687
(1992)

20. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.
SIAM J. Comput. 22, 175–202 (1993)

21. Zakharov, V.A.: Equivalence checking problem for finite state transducers over
semigroups. In: Proceedings of the 6th International Conference on Algebraic Infor-
matics, vol. 9270, pp. 208–221 (2015)

Efficient Symmetry Breaking for
SAT-Based Minimum DFA Inference

Ilya Zakirzyanov1,2(B), Antonio Morgado3, Alexey Ignatiev3,4,
Vladimir Ulyantsev1, and Joao Marques-Silva3

1 ITMO University, St. Petersburg, Russia
{zakirzyanov,ulyantsev}@corp.ifmo.ru

2 JetBrains Research, St. Petersburg, Russia
3 Faculty of Science, University of Lisbon, Lisbon, Portugal

{ajmorgado,aignatiev,jpms}@ciencias.ulisboa.pt
4 ISDCT SB RAS, Irkutsk, Russia

Abstract. Inference of deterministic finite automata (DFA) finds a wide
range of important practical applications. In recent years, the use of SAT
and SMT solvers for the minimum size DFA inference problem (MinDFA)
enabled significant performance improvements. Nevertheless, there are
many problems that are simply too difficult to solve to optimality with
existing technologies. One fundamental difficulty of the MinDFA prob-
lem is the size of the search space. Moreover, another fundamental draw-
back of these approaches is the encoding size. This paper develops novel
compact encodings for Symmetry Breaking of SAT-based approaches to
MinDFA. The proposed encodings are shown to perform comparably in
practice with the most efficient, but also significantly larger, symmetry
breaking encodings.

Keywords: DFA inference · Boolean satisfiability ·
Symmetry breaking

1 Introduction

The inference of minimum-size deterministic finite automata (DFA) from (pos-
itive and negative) examples of their behavior has been investigated since the
early days of computing, with continued improvements until the present day.
The importance of topic is illustrated not only by recent improvements to
tools for computing minimum-size DFAs [27,30], but also by recent and ever
growing list of applications [29]. The problem of computing the minimum-size

IZ was supported by RFBR (project 18-37-00425). AM, AI and JMS were supported
by FCT grants ABSOLV (PTDC/CCI-COM/28986/2017), FaultLocker (PTDC/
CCI-COM/29300/2017), SAFETY (SFRH/BPD/120315/2016), and SAMPLE
(CEECIND/04549/2017). VU was supported by the Government of Russia (Grant
08-08).

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 159–173, 2019.
https://doi.org/10.1007/978-3-030-13435-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_12

160 I. Zakirzyanov et al.

DFA (MinDFA) witnessed seminal work in the early 70s [6]. Moreover, a num-
ber of visible contributions were made in the 90s. These include the use of
graph coloring [8], constraint programming techniques [9,22], and state merging
approaches [17,18]. Approaches based on SAT and SMT were proposed in the last
decade, with promising results [12,13,20,21,25]. Nevertheless, the size of existing
propositional encodings do not scale for large DFA inference problems. The use
of SMT does not represent a clear improvement, since SMT solving approaches
for the MinDFA problem will also encode to propositional logic. This paper revis-
its SAT encodings for the MinDFA problem as well as recent work on exploiting
symmetry breaking [25,30], and proposes a (novel) tighter propositional repre-
sentation of state-of-the-art symmetry breaking predicates, but it also devises
new symmetry breaking constraints which serve to achieve more effective prun-
ing of the search space. The new propositional encoding proposed in this paper
enables clear performance gains over the state of the art [13,14,26,30].

The paper is organized as follows. Section 2 introduces the definitions used
throughout the paper and briefly overviews related work. Section 3 develops new
ideas to encode symmetry breaking predicates. Section 4 compares a new tool
for the MinDFA problem with the existing state of the art, showing clear per-
formance gains. Section 5 concludes the paper.

2 Background

2.1 Preliminaries

Throughout the paper we assume that automata are defined over some set of
symbols Σ, also known as the alphabet. The number of symbols in the alphabet
is L = |Σ|. For earlier DFA inference examples, it was often the case that
Σ = B = {0, 1} [18,22]. For more recent DFA inference examples [28], larger
alphabets are often considered.

A deterministic finite automaton (DFA) is a tuple D = (D,Σ, δ, d1,D
+,D−),

where D is a finite set of states, Σ is the (input) alphabet, δ : D × Σ → D is
the transition function, d1 is the initial state, D+ is the set of accepting states
and D− = D \ D+ is the set of rejecting sets. For input strings π ∈ Σ∗ we
define δ̂(d1, π) inductively as follows [16]: (i) δ̂(d1, ε) = d1; (ii) If π = π′c, then
δ̂(d1, π) = δ(δ̂(d1, π′), c).

We assume the standard setting of inferring a minimum-size DFA given a
set of samples of its behavior [7,15], i.e. the training set, each sample rep-
resented by an input string that is either accepted or rejected by some DFA
U = (U,Σ, μ, u1, U

+, U−), which is not known. This form of learning is often
referred to as passive learning, as opposed to active learning [2,20], which enables
a learning algorithm (aiming to create a target DFA) to formulate queries to some
teacher (which knows of the unknown DFA).

A training set is a set of pairs T = {(π1, o1), . . . , (πR, oR)}, where each pair
(πr, or) ∈ Σ∗ × {0, 1} denotes the output or observed given input string πr. If
or = 1 (or = 0), then πr is referred to as a positive (negative) example. Given

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 161

Function MinimumDFA(T)
Input : T : APTA
Output: S: minimum size DFA

1 M ← FindLowerBound(T)
2 while true do
3 S ← FindConsistentDFA(T ,M)
4 if S �= ∅ then return S
5 M ← M + 1

Algorithm 1: General lower bound refinement algorithm

a training set, we can construct an APTA (augmented prefix tree acceptor) [1,
13,24], defined as the DFA T = (T,Σ, τ, t1, T

+, T−), where any input string
sharing the same prefix ends up in the same state. Concretely, given input strings
π1 = πaπb1 and π2 = πaπb2 the common prefix πa will be associated to a unique
sequence of states in the APTA. For an APTA T , we have T+ ∪ T− �= T , and
we define N = |T |. When clear from the context, the states of T are referred to
by their index, ti by i, i = 1, . . . , N . In some settings, θ(i) will be used to denote
the distance from the APTA root state t1 to state ti.

The minimum-size DFA inference problem (MinDFA) is to identify a DFA
S = (S,Σ, σ, s1, S

+, S−), with a minimum number of states, such that for any
training pair (πr, or), σ̂(s1, πr) ∈ S+ iff or = 1 and σ̂(s1, πr) ∈ S− iff or = 0.
For a prospective DFA S, we define M = |S|.

Throughout the paper [R] is used to denote the set {1, . . . , R}, for some
positive integer R. Moreover, we will use integers to refer to either symbols or
states. For a given alphabet, by associating states and symbols with integers
facilitates imposing a fixed lexicographic order, which will be required later in
the paper (see Sect. 3). Additionally, standard SAT definitions are assumed and
used [5].

2.2 Minimum Size DFA Inference

This paper focuses on constraint-based exact approaches for the MinDFA prob-
lem. Different constraint programming approaches for solving the MinDFA prob-
lem have been proposed over the years. More recently, the use of SAT [12–14]
and SMT [20,21] has been investigated. A more detailed account of past work
is available for example in Neider’s PhD thesis [20, Chap. 3].

Algorithm 1 summarizes the most widely used approach for computing a
minimum size DFA consistent with a given APTA T (obtained from the training
set). Initially a lower bound on the size of the inferred DFA is computed. An
often used heuristic is to compute a maximal clique on states of the APTA
that cannot be assigned to the same DFA state [12–14,20–22,26]. Afterwards,
starting from the lower bound and for each possible value on the number of states
of the DFA, some algorithm decides whether there exists a DFA S which can
be shown consistent with the samples of behavior summarized as the APTA T .

162 I. Zakirzyanov et al.

Algorithm 1 is referred to as LSUS (linear-search, UNSAT until SAT) and is used
in different settings. Other algorithms can be envisioned. These include binary
search, assuming some upper bound is known or can be identified (e.g. with
merge-based algorithms). Another alternative is unbounded search with a final
binary search step. These algorithms have been used in recent years for solving
MaxSAT [19] and for extracting MUSes [4]. The use of propositional encodings
can be traced to the work of Grinchtein, Leucker & Piterman [12]. By using
two different representations for integers, one in unary and the other in binary,
this work proposes two propositional encodings. For the unary representation,
the encoding size is in O(N × M2 + N2 × M) over O(N × M) variables1. For
the binary representation, the encoding size is in O(N × M × log M + N2 × M)
on O(N × log M) variables. More recent work by Heule&Verwer (HV) [13,14]
proposed encodings that have been shown effective in practice [28]. The HV
encoding builds on the graph coloring analogy proposed in earlier work [8]. The
proposed encoding has size O(M3 + N × M2) over O(M2 + N × M) variables.
This encoding is revisited in Sect. 2.3.

2.3 SAT-Based MinDFA

Given an APTA T and a bound M on the number of states of the inferred
DFA S, this subsection provides a derivation of the HV encoding [13,14], based
on a different motivation. By careful analysis of this formulation, we achieve a
more compact propositional encoding. Instead of relating the MinDFA problem
with graph coloring, we formulate it as the problem of matching the N states
of the APTA T to the M states of a target DFA S. The sets of variables of the
propositional encoding are as follows:

1. mi,p which is 1 iff state ti in T is matched with state sp in S.
2. ev,p,q which is 1 iff there is a transition from sp to sq on symbol lv in S.
3. ap which is 1 iff sp is accepting in S.

The constraints of the proposed encoding are summarized in Table 1. Observe
that for encoding the Equals1 constraints, [14] uses a clause to encode an AtLeast1
constraint, and the Pairwise Encoding for encoding an AtMost1 constraint.
A simple improvment is to use a more compact encoding, among the many
that exist. Concrete examples include sequential counters [23], cardinality net-
works [3], the ladder encoding [11], sorting networks [10], among several other
options. As can be concluded, the proposed encoding grows with O(N × M2).
Thus, the encoding is asymptotically (somewhat) tighter than the encoding pro-
posed in [13], in that the encoding of the cardinality constraints changes from
O(M3) to O(M2). This difference can be significant for large values of M . As
observed in earlier work [13,14], for some benchmarks [18], the target DFA has
hundreds of states, and so an encoding in O(M3) is expected to be beyond the
memory capacity of existing compute servers. It is straightforward to map the
1 The encoding size shown is adapted from the results in [20], taking into account that

both |T+| and |T−| can grow with N = |T |. The size of |Σ| is assumed constant.

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 163

Table 1. Constraints of the SAT encoding

Constraint Range

(
∑M

p=1 mi,p) = 1 i ∈ [N] Each state ti in T is matched
with exactly one state in S

mi,p → ap i ∈ [N]; ti ∈ T +;
p ∈ [M]

Each accepting state ti in T is
matched with an accepting
state in S

mi,p → ¬ap i ∈ [N]; ti ∈ T −;
p ∈ [M]

Each rejecting state ti in T is
matched with a rejecting state
in S

(
∑M

q=1 ev,p,q) = 1 v ∈ [L]; p ∈ [M] There is exactly one transition
from sp on some symbol lv in S

mi,p ∧ mk,q → ev,p,q i, k ∈ [N]; v ∈ [L];
σ(ti, lv) = tk;
p, q ∈ [M]

A transition between ti and tk
on lv in T forces a transition
between its mapped nodes on
the same lv in S

mi,p ∧ ev,p,q → mk,q i, k ∈ [N]; v ∈ [L];
σ(ti, lv) = tk;
p, q ∈ [M]

A transition between ti and tk
on lv in T , with a transition
between the mapped state p
and a state q on lv in S, forces
a mapping between tk and q

sets of clauses in the HV formulation [13,14] into the constraints described above.
The main difference is that we explicitly use a tighter encoding for the AtMost1
constraints, which are listed as sets of clauses (capturing the well-known pairwise
encoding) in [13]. Additionally, the HV formulation [13] considers different sets
of redundant constraints to the basic formulation above. A technique that has
been proposed for the SAT formulation is the breaking of symmetries of the DFA
constructed [26,30]. Symmetry breaking for the SAT formulation is described in
depth in Sect. 3, together with new improvements.

3 Efficient Symmetry Breaking

This section revisits recent symmetry breaking for the MinDFA problem, which
imposes an order on the states of the DFA [26,30]. Although effective in practice,
the existing propositional encoding is not tight, and so unlikely to scale for larger
DFAs. Section 3.2 develops a significantly tighter encoding. Section 3.3 devises
novel constraints that serve to furhter prune the search space that a SAT solver
needs to explore.

3.1 Propositional Formulation for Breaking Symmetries

This section summarizes the recent work on breaking symmetries of the DFA
being constructed, by imposing an ordering on the states of the DFA [26,30].
In this section we follow the original formulation [26]. The approach can be

164 I. Zakirzyanov et al.

formalized as follows. Assume a target DFA S = (S,Σ, σ, s1, S
+, S−). The states

of the DFA S are required to be numbered according to the tree induced by a
breadth-first search (BFS) of the target DFA. As a result, the formulation of
symmetry breaking depends only on the states and transitions of the target
DFA S (independent of the APTA T). In this section we require some fixed (e.g.
lexicographic) ordering on the symbols of Σ. Any order of the symbols is valid.
The symbols will be numbered from 1 to L, but the numbers respect the fixed
ordering.

The propositional variables used in the formulation are as follows:

1. pq,r, with 1 ≤ r < q ≤ M . pq,r = 1 iff state r is the parent of q in the BFS
tree.

2. tp,q, with 1 ≤ p < q ≤ M . tp,q = 1 iff there is a transition from p to q in S.
3. mv,p,q, with v ∈ Σ and 1 ≤ p < q ≤ M . mv,p,q = 1 iff there is a transition

from state p to state q on symbol lv and there is no such transition with a
lexicographically smaller symbol.

The clauses of the propositional formulation are summarized in Eqs. (1–6).
∧

2≤q≤M (pq,1 ∨ pq,2 ∨ · · · ∨ pq,q−1) (1)
∧

1≤r<s<q<M (pq,s → ¬pq+1,r) (2)
∧

1≤r<q≤M (tr,q ↔ e1,r,q ∨ · · · ∨ eL,r,q) (3)
∧

1≤r<q≤M (pq,r ↔ tr,q ∧ ¬tr−1,q ∧ · · · ∧ ¬t1,q) (4)
∧

1≤r<q≤M

∧
1≤v≤L (mv,r,q ↔ ev,r,q ∧ ¬ev−1,r,q ∧ · · · ∧ ¬e1,r,q) (5)

∧
1≤r<q<M

∧
1≤u<v≤L (pq,r ∧ pq+1,r ∧ mv,r,q → ¬mu,r,q+1) (6)

There are six types of conjunction of clauses considered. (1) relates to the states,
and with the exception of the initial state (numbered 1), each clause says that a
state must have a parent with smaller number. (2) says that a state q must be
enqueued (in the BFS traversal) before the next state q + 1, and so the parent
r of q + 1 cannot be less than the parent s of q. (3) and (4) define the tq,r
variables based on the ev,q,r variables and relate them to the parent variables
pq,r. (5) defines the mv,p,q variables using DFA transitions, and the (6) imposes
consecutive states q and q+1 with the same parent r to be arranged in the order
of the symbols. It is plain to conclude that the size of the encoding grows with
O(M3 + M2L + M2L2). Observe that the contribution of M3, which dominates
the other components assuming L � M , results from (2) and (4). Moreover,
when |Σ| = 2, [26] proposes to replace (5) and (6) with

∧

1≤r<q<M

(pq,r ∧ pq+1,r → e1,r,q) (7)

3.2 A Tighter SAT Encoding

A propositional encoding in O(M3 +M2L2 +M2L) is impractical for the larger
DFA inference instances [18,28]. This section shows how to modify the symmetry

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 165

breaking propositional encoding of Sect. 3.1 such that the encoding size becomes
O(M2L). The new encoding develops alternative representations for (2) and the
(4), but also for (5) and (6). In addition, one needs to require:

∑q−1
r=1 pq,r = 1 1 < q ≤ M (8)

We first investigate the encoding of (2) and (4). We can view the values of
pq,r, with 1 ≤ r ≤ q − 1, as a binary string, with q − 1 bits, and compare this
string with the one of pq+1,r, with 1 ≤ r ≤ q, and so with q bits. We introduce
pq,q = 0, and so can also view the values of pq,r as a binary string with q bits
(same size).

Observe that (2) encodes the value associated to the binary string of the
pq,r variables to be smaller or equal than the value associated to the binary
string of the pq+1,r variables. To compare the binary strings, we inspect the bits
in order, starting at position q, and moving down to position 1. We consider
variables ngq,r, such that ngq,r = 1 iff the most significant q − r + 1 bits of the
string associated with pq,r are lexicographically no greater than those of pq+1,r.
The value associated to the binary string of the pq,r variables is smaller or equal
than the value associated to the binary string of the pq+1,r variables iff ngq,1 = 1
holds. Since we enforce pq,q = 0, then we must have ngq,q = 1. Moreover, we
also require ngq,1 ↔ 1. Thus we obtain:

(ngq,1 ↔ 1) ∧ (ngq,q ↔ 1) ∧
∧

1≤r<q

(ngq,r ↔ ngq,r+1 ∧ eqq,r ∨ pq,r ∧ ¬pq+1,r) (9)

where, eqq,r ↔ (pq,r ↔ pq+1,r).
Second, a similar approach can be exploited for encoding of (4). We introduce

variables ntr,q, where ntr,q = 1 iff there exists no ts,q = 1 with s < r. Thus, ntr,q
can be defined inductively as follows:

(nt0,q ↔ 1) ∧
∧

1<r<q

(ntr,q ↔ ntr−1,q ∧ ¬tr,q) (10)

Thus, (4) can be rewritten, using the ntr,q variables as follows:

pq,r ↔ tr,q ∧ ntr−1,q (11)

As can be concluded, by using auxiliary variables ngq,r and ntr,q, and Eqs. (9),
(10) and (11), we achieve an overall propositional encoding in O(M2L+M2L2).

However, we can tighten further the propositional encoding for breaking sym-
metries using a BFS tree. This is achieved by devising alternative encodings for
(5) and (6). As shown next, this yields a propositional encoding in O(M2L).
With respect to (5), we use the additional variables nev,r,q such that nev,r,q = 1
iff all variables eu,r,q = 0 with u < v, i.e. there are no variables eu,r,q taking
value 1, when u < v.

(ne1,r,q ↔ ¬e1,r,q) ∧
∧

1<v<L

(nev,r,q ↔ ¬ev,r,q ∨ nev−1,r,q) (12)

166 I. Zakirzyanov et al.

Thus given (12), (5) can be rewritten as follows:
∧

1≤r<q≤M

∧

1≤v≤L

(mv,r,q ↔ ev,r,q ∧ nev−1,r,q) (13)

With respect to (6), we use the additional variables zmv,r,q such that
zmv,r,q = 1 iff all variables mu,r,q are 0-valued, mu,r,q = 0, for u < v.

(zm1,r,q ↔ ¬m1,r,q) ∧
∧

1<v<L

(zmv,r,q ↔ ¬mv,r,q ∧ zmv−1,r,q) (14)

Thus given (14), (6) can be rewritten as follows:
∧

1≤r<q≤M

∧

1≤v≤L

(pq,r ∧ pj+1,r ∧ mv,r,q → zmv−1,r,q+1) (15)

One can thus conclude that the resulting propositional encoding size is in
O(M2L).

3.3 Exploiting BFS-Based Breaking of Symmetries

This section investigates techniques for developing additional constraints when
imposing the ordering of states dictated by a BFS tree of the DFA. Figure 1
shows a possible BFS tree illustrating the largest state numbers that can be the
children of some other state. The additional constraints proposed in this section
will relate with Fig. 1.

1

2

L+ 2 L+ j + 1 2L+ 1

...

r

(r − 1)L+ 2 (r − 1)L+ j + 1 rL+ 1 1 ≤ j ≤ L

L+ 1

L2 + 2 L2 + j + 1 L2 + L+ 1

1 L

1
j

L 1
j

L

1
j

L

.. ..

..

.. ..

Fig. 1. (Worst case) BFS tree with the largest state numbers that can be the children
of some other state. Note that 1 ≤ j < L.

BFS-Induced Properties. Although we have introduced pq,r such that r <
q ≤ M , it is possible to refine the range of q given r.

Property 1. Given a state r, with 1 ≤ r ≤ M , in the BFS tree, r can be the
parent of states in the range r + 1 to rL + 1.

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 167

Figure 1 illustrates the argument for the upper bound on the number of
the children of r. We can conclude that the value of pq,r can be non-zero for
r + 1 ≤ q ≤ rL + 1, which also impacts the possible values of some of the ev,r,q
and the tr,q variables.

Property 2. For q > rL + 1 and v ∈ [L], then pq,r = 0, ev,r,q = 0, and tr,q = 0.

Given that the BFS tree assumes a fixed ordering not only on the states but
also on the input alphabet, it is possible to identify other transitions that must
be forced to value 0 (based on the ordering of the symbols). Hence, we have the
following.

Property 3. ev,r,rL+2−j = 0 for j ∈ [L − 1] and v ∈ [L − j].

The above observations enable to devise the additional constraints described
in the remainder of this section. The constraints are organized as shape or range,
but also result from information from the APTA and the BFS distance.

Shape Constraints. The possible values of pq,r respect a continuity property,
dictated by the BFS traversal, in that all children of r are consecutively num-
bered, and there can be at most L of these. This continuity property can be
encoded using additional variables. Let lnpq,r be assigned value 1 iff r is the
parent of q + 1 but not of q (lnp stands for left-no-parent). Thus,

¬pq,r ∧ pq+1,r → lnpq,r (16)

Moreover, we have the following:

(lnpq,r → ¬pq,r) ∧
∧

r+1<q≤M

(lnpq,r → lnpq−1,r) (17)

Thus, lnpq,r is 1 from q = 1 until the value of q such that pq+1,r holds.
In a similar fashion, let rnpq,r be assigned value 1 if and only if r is the

parent of q − 1 but not of q (in this case, rnp stands for right-no-parent). Thus,

pq−1,r ∧ ¬pq,r → rnpq,r (18)

Similarly to the previous case, one can exploit the rnpq,r variables, and derive
the following constraints:

rnpq,r → rnpq+1,r r ≤ q < M
rnpq,r → ¬pq,r
rnpq,r → ¬ev,q,r v ∈ [L]

(19)

Thus, rnpq,r is 1 from q = M until the value of q such that pq−1,r holds.
Another observation is that r can be the parent of at most L states, due to

L outgoing transitions. As a result, we get,

pq,r → rnpq+L,r if q + L ≤ M
pq,r → lnpq−L,r if q − L ≥ r + 1 (20)

168 I. Zakirzyanov et al.

The lnpq,r and rnpq,r variables serve to force pq,r variables to be assigned value
0. However, under some circumstances, we can infer that some pq,r variables
must be assigned value 1. For example, for the range of values of q for which
both lnpq,r and rnpq,r are 0, the value of pq,r must be 1. Thus,

¬lnpq1,r ∧ ¬rnpq2,r → pq′,r

q1 < q′ < q2
q1 < q2 ≤ min(q1 + L − 1, rL + 1,M)

r + 1 ≤ q1 < min(rL + 1,M)
(21)

For any q1, q2 can range from q1 + 1 to at most q1 + L. Similarly, we can write,

pq,r ∧ ps,r → ps−1,r
q < s ≤ min(q + L − 1, rL + 1,M)

r + 1 ≤ q < min(rL + 1,M) (22)

As above, for any r, s can range from r + 1 to at most r + L.

Range Constraints. Given a reference state r, we have shown above that the
states of which r can be a parent of range from r + 1 until rL + 1. Moreover,
we also know there is a continuity property, which causes r to be the parent
of at most L states, numbered consecutively. This information can be used for
constraining the pq,r variables, between states for which r cannot be a parent,
as follows,

pq,r → ¬pq+L,r q ∈ {l | (l ≥ r + 1) ∧ (l + L ≤ M) ∧ (l + L ≤ rL + 1)} (23)

In addition, we get the following stronger condition by directly forcing the value
of ev,r,q variables,

pq,r → ¬ev,r,q+L
q ∈ {l | (l ≥ r + 1) ∧ (l + L ≤ M) ∧ (l + L ≤ rL + 1)}

v ∈ [L] (24)

Furthermore, we can exploit Property 3, and the imposed ordering of the symbols
in the BFS to identify a similar extension to (24) as follows,

pq,r → ¬ev,r,q+j

r + 1 ≤ q ≤ min(rL + 1,M)
j ∈ {l | l ∈ [L − 1] ∧ (q + l ≤ M) ∧ (q + l ≤ rL + 1)}

v ∈ [j]
(25)

Minimum BFS Distance. Given the way the BFS vertices are visited, one can
guarantee a minimum BFS shortest path distance for each state. For state q, the
shortest BFS path length is given by Dmin(q) = �logL (q(L − 1) + 1) − 1�, with
q > 1, i.e. no matter how the BFS is organized starting at state 1, the shortest
path from 1 to q is never less than Dmin(q). As a result, if Dmin(q) > θ(i), then
mi,q = 0. Observe that, under any possible setting in the DFA, the shortest path
to q is larger than the distance to state i in the APTA. Thus, to get to q it would
require more transitions that those allowed to get from inital state to i.

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 169

Exploiting APTA Information. By exploiting the variables and constraints
used for breaking symmetries and using a BFS tree on the target DFA, we can
devise additional constraints. Observe that, if the depth of a state i in the APTA
is some value K, then in the DFA, we must be able to move from 1 to q in K of
fewer transitions. However, if the shortest path from 1 to q in the DFA exceeds
the depth K of vertex of i in the APTA, then it would be impossible to move
from state 1 to state q in K or fewer transitions.

We consider the propositional variables dq,j , with q ∈ [M] and 1 ≤ j < q,
such that dq,j = 1 iff the length of the shortest path in the BFS tree from state
1 to q is j. Moreover, we consider propositional variables seq,j , with q ∈ [M] and
1 ≤ j < q, such that seq,j = 1 iff the length of the shortest path in the BFS
tree from state 1 to q is smaller than or equal to j. We can use an inductive
definition for seq,j as follows:

seq,0 ↔ 0 and seq,j ↔ seq,j−1 ∨ dq,j (26)

Similarly to Sect. 3.2, we devise a tight encoding for the definition of the dq,j
variables, suitable for larger problem instances. The insight is to introduce addi-
tional variables, which are inductively defined. Let erq,r,j be such that erq,r,j = 1
iff there exists some index r < q such that pq,r = 1 and dr,j = 1.

erq,r,j ↔ pq,r ∧ dr,j ∨ erq,r+1,j j < r < q − 1
erq,q−1,j ↔ pq,q−1 ∧ dq−1,j

(27)

we can now derive constraints on the mi,p variables. Let ti be a state of the
APTA such that the depth of ti is I. We can define dq,j as follows:

dq,j ↔ ¬seq,j−1 ∧ erq,j,j−1 (28)
¬seq,I → ¬mi,q (29)

One can conclude that the modified constraints have an encoding size in O(N ×
M2).

4 Experimental Results

This section evaluates the ideas described above, namely a compact SAT encod-
ing and symmetry breaking predicates for solving the MinDFA problem. For
this, the ideas were implemented on top of a known MinDFA solver called
DFA-Inductor [26,30] written in Java2. The new prototype is referred to as
DFA-Inductor 2. For comparison, two competitors were considered: the original
DFA-Inductor and also dfasat [13]. All the selected tools apply the Glucose 4.13

SAT solver iteratively and non-incrementally, i.e. each call to the oracle is made
from scratch. All the conducted experiments were performed in Ubuntu Linux
on an AMD Opteron 6378 2.40 GHz processor with 496GByte of memory. For

2 https://github.com/ctlab/DFA-Inductor.
3 http://www.labri.fr/perso/lsimon/glucose/.

https://github.com/ctlab/DFA-Inductor
http://www.labri.fr/perso/lsimon/glucose/

170 I. Zakirzyanov et al.

0 200 400 600 800
instances

0

100

200

300

400

500

600
C
PU

tim
e
(s
)

DFA-Inductor 2

DFA-Inductor

dfasat

(a) Cactus plot

101 102 103

DFA-Inductor 2

101

102

103

D
FA

-I
nd
uc
to
r

600 sec. timeout

60
0
se
c.

tim
eo
ut

(b) DFA-Inductor vs. DFA-Inductor 2

Fig. 2. Detailed performance of dfasat, DFA-Inductor, and DFA-Inductor 2

each individual process, the time limit was set to 600 s and the memory limit to
1 GByte. For the comparison, a number of benchmark instances were randomly
generated, following the procedure described in [30]. Concretely, starting from a
randomly generated APTA of even size N , N ∈ [20, 36], 50 × N samples were
generated. The size of the Σ is two. For each even number N ∈ [20, 36], exactly
100 benchmark instances were created such that given value N , the resulting
DFA for each of the corresponding 100 instances is guaranteed to be N . This
way, the number of benchmark families defined by values N is 9. Thus, the total
number of instances considered is 900. Figure 2a shows a cactus plot depicting the
performance of all the selected solvers. As one can observe, dfasat is significantly
outperformed by the compact encoding implemented in DFA-Inductor. In total,
dfasat is able to solve only 51 benchmark instances (out of 900). Also observe that
the symmetry breaking predicates described above further improve the perfor-
mance of DFA-Inductor (see DFA-Inductor 2 compared to DFA-Inductor in the
Fig. 2a). A comparison between DFA-Inductor and DFA-Inductor 2 is detailed
in Fig. 2b and also in Table 2. Except for a few outliers, the symmetry breaking
predicates of DFA-Inductor 2 are responsible for 20–40% performance improve-
ment on average. Also it is important to note that the harder the problems are,
the smaller is the performance gap between the two configurations. Although
this can be seen as a drawback, the phenomenon requires further investigation
on the use of symmetry breaking with various SAT solvers and a multitude
of families benchmark sets. In total, the number of instances solved by DFA-
Inductor and DFA-Inductor 2 is 678 and 731, respectively, thus, comprising a
gap of 53 benchmark instances. Therefore, symmetry breaking brings more 7.2%
instances solved.

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 171

Table 2. The effect of applying the symmetry breaking predicates described above.
The solver configuration using the proposed symmetry breaking is referred to as DFA-
Inductor 2 and compared to the base configuration, i.e. DFA-Inductor. If an instance is
timed out, its contribution to the average time of the corresponding benchmark family
is assumed to be 600 s. The corresponding values are written in italic.

N DFA-Inductor DFA-Inductor 2
min avg max # solved min avg max # solved

20 86.8 148.3 221.0 100 33.3 91.9 228.4 100

22 85.5 147.1 — 99 49.2 100.4 — 99

24 128.6 181.5 287.8 100 80.4 136.8 262.5 100

26 158.1 251.8 — 99 114.8 209.3 — 99

28 223.4 317.9 534.5 100 164.2 268.9 — 99
30 307.2 443.8 — 91 227.1 389.2 — 95

32 326.0 506.5 — 76 249.2 447.4 — 86

34 414.5 591.1 — 13 392.1 569.9 — 41

36 — 600.0 — 0 448.4 594.8 — 12

5 Conclusions

This paper proposes a number of novel techniques for encoding and reason-
ing about symmetries when exploiting SAT oracles for inferring minimum-size
DFAs. The experimental results provide evidence of the improvements that can
be achieved when compared with the state of the art [26,30], also enabling
significant gains over the best exact methods proposed in recent years [13].
The novel symmetry-breaking ideas described in the paper can be applied to
other approaches for inferring minimum-size DFAs, including the use of SMT
solvers [20], and also in other settings.

References

1. Abela, J., Coste, F., Spina, S.: Mutually compatible and incompatible merges for
the search of the smallest consistent DFA. In: ICGI, pp. 28–39 (2004)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

4. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

172 I. Zakirzyanov et al.

6. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)

7. Bugalho, M.M.F., Oliveira, A.L.: Inference of regular languages using state merging
algorithms with search. Pattern Recognit. 38(9), 1457–1467 (2005)

8. Coste, F., Nicolas, J.: Regular inference as a graph coloring problem. In: IWGI
(1997)

9. Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce
the DFA induction search tree. In: ICGI, pp. 199–210 (1998)

10. Eén, N., Sörensson, N.: Translating Pseudo-Boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

11. Gent, I.P., Nightingale, P.: A new encoding of all different into SAT. In: Workshop
on Modelling and Reformulating Constraint Satisfaction Problems, pp. 95–110
(2004)

12. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483–497. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 40

13. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sem-
pere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 66–79.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 7

14. Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir.
Softw. Eng. 18(4), 825–856 (2013)

15. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nit. 38(9), 1332–1348 (2005)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation - International Edition, 2nd edn. Addison-Wesley,
Boston (2003)

17. Lang, K.J.: Faster algorithms for finding minimal consistent DFAs. Technical
report, NEC Research Institute (1999)

18. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054059

19. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

20. Neider, D.: Applications of automata learning in verification and synthesis. Ph.D.
thesis, RWTH Aachen University (2014)

21. Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: NFM, pp. 16–31 (2013)

22. Oliveira, A.L., Marques-Silva, J.: Efficient algorithms for the inference of minimum
size DFAs. Mach. Learn. 44(1/2), 93–119 (2001)

23. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

24. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata: Behavior and Synthesis.
North-Holland Publishing Company, Amsterdam (1973)

25. Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using SAT-
solver. In: ICMLA, pp. 346–349 (2011)

https://doi.org/10.1007/11814771_40
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1007/11564751_73

Efficient Symmetry Breaking for SAT-Based MinDFA Inference 173

26. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symmetry breaking pred-
icates for DFA identification. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 611–622. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15579-1 48

27. Verwer, S., Hammerschmidt, C.A.: flexfringe: a passive automaton learning pack-
age. In: ICSME, pp. 638–642 (2017)

28. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)

29. Wieman, R., Aniche, M.F., Lobbezoo, W., Verwer, S., van Deursen, A.: An expe-
rience report on applying passive learning in a large-scale payment company. In:
ICSME, pp. 564–573 (2017)

30. Zakirzyanov, I., Shalyto, A., Ulyantsev, V.: Finding all minimum-size DFA consis-
tent with given examples: SAT-based approach. In: Cerone, A., Roveri, M. (eds.)
SEFM 2017. LNCS, vol. 10729, pp. 117–131. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74781-1 9

https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1007/978-3-319-74781-1_9
https://doi.org/10.1007/978-3-319-74781-1_9

Complexity

Closure and Nonclosure Properties
of the Compressible and Rankable Sets

Jackson Abascal(B), Lane A. Hemaspaandra, Shir Maimon, and Daniel Rubery

Department of Computer Science, University of Rochester,
Rochester, NY 14627, USA

jabascal@u.rochester.edu

Abstract. The rankable and compressible sets have been studied for
more than a quarter of a century, ever since Allender [2] and Goldberg
and Sipser [7] introduced the formal study of polynomial-time ranking.
Yet even after all that time, whether the rankable and compressible
sets are closed under the most important boolean and other operations
remains essentially unexplored. The present paper studies these ques-
tions for both polynomial-time and recursion-theoretic compression and
ranking, and for almost every case arrives at a Closed, a Not-Closed, or a
Closed-Iff-Well-Known-Complexity-Classes-Collapse result for the given
operation. Even though compression and ranking classes are capturing
something quite natural about the structure of sets, it turns out that
they are quite fragile with respect to closure properties, and many fail
to possess even the most basic of closure properties. For example, we
show that with respect to the join (aka disjoint union) operation: the
P-rankable sets are not closed, whether the semistrongly P-rankable sets
are closed is closely linked to whether P = UP ∩ coUP, and the strongly
P-rankable sets are closed.

Keywords: Complexity theory · Closure properties · Compression ·
Ranking · Computability

1 Introduction

A compression function f for a set A is a function over the domain Σ∗ such that
(a) f(A) = Σ∗ and (b) (∀a, b ∈ A : a �= b)[f(a) �= f(b)]. That is, f puts A in 1-to-
1 correspondence with Σ∗. This is sometimes described as providing a minimal
perfect hash function for A: It is perfect since there are no collisions (among
elements of A), and it is minimal since not a single element of the codomain is
missed. Note that the above does not put any constraints on what strings the
elements of A are mapped to, or even about whether the compression function
needs to be defined on such strings. A ranking function is similar, yet stronger,
in that a ranking function sends the ith string in A to the integer i; it respects
the ordering of the members of A.

Supported in part by a CRA-W Collaborative Research Experiences for Undergradu-
ates (CREU) grant. S. Maimon’s current affiliation: Cornell CS.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 177–189, 2019.
https://doi.org/10.1007/978-3-030-13435-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_13

178 J. Abascal et al.

The study of ranking was started by Allender [2] and Goldberg and Sipser [7],
and has been pursued in many papers since, especially in the early 1990 s, e.g.,
[3,6,10,14]. The study of ranking led to the study of compression, which was
started—in its current form, though already foreshadowed in a notion of [7]—
by Goldsmith, Hemachandra, and Kunen [8] (see also [9]). The abovementioned
work focused on polynomial-time or logarithmic-space ranking or compression
functions. More recently, both compression and ranking have also been studied in
the recursion-theoretic context ([12], and see the discussion therein for precursors
in classic recursive function theory), in particular for both the case of (total)
recursive compression/ranking functions (which of course must be defined on all
inputs in Σ∗) and the case of partial-recursive compression/ranking functions
(i.e., functions that on some or all elements of the complement of the set being
compressed/ranked are allowed to be undefined).

In the present paper, we continue the study of both complexity-theoretic and
recursion-theoretic compression and ranking functions. In particular, the earlier
papers often viewed the compressible sets or the rankable sets as a class. Our
main contributions can be seen in Table 1, where we obtain closure and nonclo-
sure results for many previously studied variations of compressible and rankable

Table 1. Overview of results for closure of these classes under boolean operations. If
an entry does not contain “No” or “Yes” then the class is closed under the oper-
ation if and only if the entry holds. A special case is semistrong-P-rankable and
semistrong-P-rankable�, in which we deliberately use the ≈ symbol to indicate that
the implication is true in one direction and in the other direction currently is known
to be true only for a broad subclass of these sets. Specifically, if P = UP ∩ coUP
then the complements of all “nongappy” semistrong-P-rankable sets are themselves
semistrong-P-rankable.

Class ∩ ∪ Complement

strong-P-rankable P = P#P (Theorem4.2) P = P#P (Theorem4.2) Yes (Proposition 4.3)

semistrong-P-rankable P = P#P (Theorem4.2) P = P#P (Theorem4.2) ≈ P = UP ∩ coUP

(Theorem4.5,

Corollary 4.8)

P-rankable,

P-compressible′,
FREC-rankable,

FREC-compressible,

FPR-rankable, and

FPR-compressible

No (Theorem4.9) No (Theorem4.10) No (Theorem4.11)

strong-P-rankable� No (Theorem4.12) No (Theorem4.12) Yes (Proposition 4.3)

semistrong-P-rankable� No (Theorem4.12) No (Theorem4.12) ≈ P = UP ∩ coUP

(Theorem4.5,

Corollary 4.8)

P-rankable�,
P-compressible�,
FREC-rankable�,
FREC-compressible�,
FPR-rankable�, and
FPR-compressible�

No (Theorem4.12) No (Theorem4.12) No (Theorem4.11)

Closure and Nonclosure Properties of the Compressible and Rankable Sets 179

sets under boolean operations (Sect. 4). We also study the closure of these sets
under additional operations, such as the join, aka disjoint union (Sect. 5). And
we introduce the notion of compression onto a set and characterize the robust-
ness of compression under this notion. In particular, by a finite-injury priority
argument with some interesting features we show that there exist RE sets that
each compress to the other, yet that nonetheless are not recursively isomorphic
(Sect. 3).

2 Definitions

Throughout this paper, “P” when used in a function context (e.g., the P-rankable
sets) will denote the class of total, polynomial-time computable functions from
Σ∗ to Σ∗. Additionally, throughout this paper, Σ = {0, 1}. FREC will denote
the class of total, recursive functions from Σ∗ to Σ∗. FPR will denote the class
of partial recursive functions from Σ∗ to Σ∗. ε will denote the empty string. We
define the function shift(x, n) for n ∈ Z. If n ≥ 0, then shift(x, n) is the string
n spots after x in lexicographical order, e.g., shift(ε, 4) = 01. For n > 0, define
shift(x,−n) as the string n spots before x in lexicographical order, or ε if no such
string exists. The symbol N will denote the natural numbers {0, 1, 2, 3, . . . }.

We now define the notion of compression onto a set, and subsequently use it
to define the classical notion of compressible sets from [12].

Definition 2.1 (Compressible to B)

1. Given sets A ⊆ Σ∗ and B ⊆ Σ∗, a (possibly partial) function f is a com-
pression function for A to B exactly if
(a) domain(f) ⊇ A,
(b) f(A) = B, and
(c) for all a and b in A, if a �= b then f(a) �= f(b).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A
set A is F-compressible to B if some f ∈ F is a compression function for A
to B.

Note that a compression function for A to B may have any behavior on
elements not in A. In particular, for the case of FPR, the function need not even
be defined outside of A. We now use the general notion of compressibility to B
to define compressible sets.

A set is compressible if it is compressible to Σ∗. A compression function
for A to Σ∗ is simply called a compression function for A. We define the class
F-compressible = {A | A is F-compressible}. Note that no finite sets are com-
pressible, as they do not contain enough elements to map onto Σ∗. So that finite
sets do not affect whether we consider a class of sets to be compressible, we
define F-compressible′ as the union of F-compressible with the class of finite
sets and say that a class of sets C is F-compressible if C ⊆ F-compressible′.

Ranking can be informally thought of as a sibling of compression that pre-
serves lexicographical order within the set. We consider three classes of rankable

180 J. Abascal et al.

functions that differ in how they are allowed to behave on the complement of the
set they rank. Although ever since the paper of Hemachandra and Rudich [10],
which introduced two of the three types, there have been those three types of
ranking classes, different papers have used different (and sometimes conflict-
ing) terminology for these types. Here, we use the (without modifying adjective)
terms “ranking function” and “rankable” in the same way as Hemaspaandra and
Rubery [12] do, for the least restrictive form of ranking (the one that can even
“lie” on the complement). That is the form of ranking that is most naturally
analogous with compression, and so it is natural that both terms should lack
a modifying adjective. For the most restrictive form of ranking, which even for
strings x in the complement of the set A being ranked must determine the num-
ber of strings up to x that are in A, like Hemachandra and Rudich [10] we use the
terms “strong ranking function” and “strong(ly) rankable.” And for the version
of ranking that falls between those two, since for strings in the complement it
need only detect that they are in the complement, we use the terms “semistrong
ranking function” and “semistrong(ly) rankable.”

For a set A ⊆ Σ∗, we define rankA(y) = ‖{z | z ≤ y ∧ z ∈ A}‖ [2,7]. A
ranking function for A is a (possibly partial) compression function for A which
preserves lexicographical order of elements in A. In other words, it sends the ith
string in A to the ith string in Σ∗, ordered lexicographically. If we identify the
ith string in Σ∗ with the natural number i, we may alternatively define a ranking
function f for A as any (possibly partial) function such that f(x) = rankA(x) for
x ∈ A. We adopt this perspective, and for the remainder of this paper identify
the codomain of ranking functions with N, allowing arithmetic operations to be
performed. A semistrong ranking f function for A is a ranking function for A
such that for x /∈ A, f(x) indicates “not in set” (e.g., via the machine computing
f halting in a special state; we still view this as a case where x belongs to
domain(f)). A strong ranking function f is a ranking function such such that
f(x) = rankA(x) for all inputs x, not just those in A.

Let F be any class of (possibly partial) functions from Σ∗ → Σ∗. A
set A is F-rankable if some f ∈ F is a ranking function for A. We define
F-rankable as {A | A is F-rankable}. A class of sets C is F-rankable if all
sets in C are F-rankable. Analogous definitions hold for both the strong and
semistrong ranking cases: A set A is (semi)strong-F-rankable if some f ∈ F
is a (semi)strong ranking function for A. We define (semi)strong-F-rankable as
{A | A is (semi)strong-F-rankable. A class of sets C is (semi)strong-F-rankable
if all sets in C are (semi)strong-F-rankable.

For almost any natural class of functions, F , we will have that F-rankable
⊆ F-compressible′. In particular, P, FPR, and FREC each have this property. If
f is a ranking function for A, for our same-class compression function for A we
can map x ∈ Σ∗ to the f(x)-th string in Σ∗ (where we consider ε to be the first
string in Σ∗) if f(x) > 0, and if f(x) = 0 what we map to is irrelevant so map
to any particular fixed string (for concreteness, ε). For each class C ⊆ 2Σ∗

, C�

will denote the complement of C, i.e., 2Σ∗ − C. For example, P-rankable� is the
class of non-P-rankable sets.

Closure and Nonclosure Properties of the Compressible and Rankable Sets 181

The class semistrong-P-rankable is a subset of P (indeed, a strict subset
unless P = P#P [10]), but there exist undecidable sets that are P-rankable.
Clearly, semistrong-REC-rankable = strong-REC-rankable.

3 Compression onto B: Robustness with Respect to
Target Set

A natural question to ask is whether compression to B is a new notion, or
whether it coincides with our existing notion of compression to Σ∗, at least for
sets B from common classes such as REC and RE. The following result shows
that for REC and RE this new notion does coincide with our existing one.

Theorem 3.1. Let A and B be infinite sets.

1. If B ∈ REC, then A is FREC-compressible to B if and only if A is FREC-
compressible to Σ∗.

2. If B ∈ RE, then A is FPR-compressible to B if and only if A is FPR-
compressible to Σ∗.

Theorem 3.1 covers the two most natural pairings of set classes with function
classes: recursive sets B with FREC compression, and RE sets B with FPR com-
pression. What about pairing recursive sets under FPR compression, or RE sets
under recursive compression? We note as the following theorem that one and a
half of the analogous statements hold, but the remaining direction fails.

Theorem 3.2. 1. Let A and B be infinite sets and suppose that B ∈ REC.
Then A is FPR-compressible to B if and only if A is FPR-compressible to Σ∗.

2. Let A and B be infinite sets with B ∈ RE. If A is FPR-compressible to
Σ∗, then A is FPR-compressible to B. In fact, we may even require that the
compression function for A to B satisfies f(Σ∗) = B.

3. There are infinite sets A and B with B ∈ RE such that A is
FREC-compressible to B but A is not FREC-compressible to Σ∗.

Proof. The first part follows immediately from Theorem 3.1, part 2. The second
part follows as a corollary to the proof of Theorem3.1, part 2. In particular, the
proof of the “⇐” direction proves the second part, since it is clear that if f is a
recursive function the f ′ defined there is also recursive.

The third part follows from [12] in which it is shown that any set in RE −
REC is not FREC-compressible to Σ∗. Thus if we let A = B be any set in
RE − REC, then A is FREC-compressible to B by the function f(x) = x but B
is not FREC-compressible to Σ∗. �

Another interesting question is how recursive compressibility to B is, or is not,
linked to recursive isomorphism. Recall that two sets A and B are recursively
isomorphic (notated A ≡iso B) if there exists a recursive bijection f : Σ∗ →
Σ∗ with f(A) = B. Although recursive isomorphism of sets implies mutual
compressibility to each other, we prove via a finite-injury priority argument that

182 J. Abascal et al.

the converse does not hold (even when restricted to the RE sets). The argument
has an interesting graph-theoretic flavor, and involves queuing infinitely many
strings to be added to a set at once.

Theorem 3.3. If A ≡iso B, then A is FREC-compressible to B and B is FREC-
compressible to A.

Theorem 3.4. There exist RE sets A and B such that A is FREC-compressible
to B and B is FREC-compressible to A, yet A �≡iso B.

Proof of Theorem 3.3. Now A is FREC-compressible to B by simply letting our
FREC-compression function be the recursive isomorphism function f . Since each
recursive isomorphism has a recursive inverse, B is FREC-compressible to A by
letting our FREC-compression function be the inverse of f . �
Proof of Theorem 3.4. Before defining A and B, we will define a function f which
will serve as both a compression function from A to B and a compression function
from B to A. First, fix a recursive isomorphism between Σ∗ and {〈t, j, k〉 | t ∈
{0, 1, 2, 3} ∧ j, k ∈ N}. Now we will define f as follows. For each j, k ∈ N,
let f(〈3, j, k〉) = 〈3, j + 1, k〉. For each j, k ∈ N, j > 0, and t ∈ {0, 1, 2}, let
f(〈t, j, k〉) = 〈t, j − 1, k〉. Finally, for each k ∈ N, let f(〈0, 0, k〉) = 〈3, 0, k〉,
f(〈1, 0, k〉) = 〈0, 0, k〉, and f(〈2, 0, k〉) = 〈3, 0, k〉. Let � : Σ∗ → {0, 1} be the
unique function such that �(〈0, 0, k〉) = 0 for all k ∈ N and �(f(x)) = 1 − �(x).
Let Df be the directed graph with edges (x, f(x)). Note that � is a 2-coloring of
Df if we treat the edges as being undirected. See Fig. 1.

...

〈3, 2, k〉

〈3, 1, k〉

〈3, 0, k〉

〈0, 0, k〉

〈0, 1, k〉

〈0, 2, k〉

...

〈1, 0, k〉

〈1, 1, k〉

...

〈2, 0, k〉

〈2, 1, k〉

〈2, 2, k〉

...

Fig. 1. A diagram of Df , for
fixed k.

Call a set C a path set if for all x ∈ C, f(x) ∈ C
and there is exactly one y ∈ C such that f(y) = x.
Suppose C is a path set. Let Ci = {x ∈ C | �(x) =
i} for i ∈ {0, 1}. By the assumed property of C,
we have C0 and C1 are FREC-compressible to each
other by f . Furthermore, if C is RE then so are
C0 and C1 since Ci = C ∩ {x | �(x) = i} is the
intersection of an RE set with a recursive set. Thus
if we provide an enumerator for a path set C such
that C0 �≡iso C1, we may let A = C0 and B = C1

and be done.
Our enumerator for C proceeds in two inter-

leaved types of stages: printing stages Pi and eval-
uation stages Ei. More formally, we proceed in
stages labeled Ei and Pi for i ≥ 1, interleaved as
E1,P1,E2,P2,. . . ,En,Pn,. . . when running. We also
maintain a set Q of elements of the form 〈t, k〉,
where t ∈ {0, 1, 2} and k ∈ N. This set Q will only
ever be added to as the procedure runs.

In the printing stage Pi, we do the following for
every 〈t, k〉 in Q. Enumerate 〈3, j, k〉 and 〈t, j, k〉 for
all j ≤ i. If t = 1, additionally enumerate 〈0, 0, k〉.

Closure and Nonclosure Properties of the Compressible and Rankable Sets 183

Adding an element 〈t, k〉 to Q in some evaluation stage Ei is essentially adding
an infinite path of nodes in Df to C.

In addition to Q, we also maintain an integer b and a set R of elements
〈n, k〉 where n, k ∈ N. If 〈n, k〉 ∈ R after stage i, it signifies that we have not
yet satisfied the condition that ϕn, the nth partial recursive function, is not an
isomorphism function between C0 and C1. In stage Ei we perform the following.
Add 〈i, b〉 to R. Increment b by one. For each 〈n, k〉 ∈ R, run ϕn, the nth partial
recursive function, on 〈0, 0, k〉 for i steps. If none of these machines halt in their
allotted time, end the stage. Otherwise, let ni be the smallest number such that
ϕni

produced an output wi = 〈xi, yi, zi〉 on its respective input 〈0, 0, ki〉. We
now break into cases:

1. If �(wi) = 0 add 〈0, ki〉 to Q.
2. If zi �= ki and �(wi) = 1 and as it stands wi would not be printed eventually

if there were only type P stages from now on, add 〈0, ki, 〉 to Q.
3. If zi �= ki and �(wi) = 1 and as it stands wi would be printed eventually if

there were only type P stages from now on, do nothing.
4. If zi = ki and �(wi) = 1 and xi = 0, add 〈1, ki〉 to Q.
5. If zi = ki and �(wi) = 1 and either xi = 1 or xi = 2, add 〈0, ki〉 to Q.
6. If zi = ki and �(wi) = 1 and xi = 3, add 〈2, ki〉 to Q.

Set b = max(ki, zi) + 1. Remove all pairs 〈n, k〉 with n ≥ ni from R. Then for
each n from ni + 1 to i, first add 〈n, b〉 and subsequently increment b by 1.

We will first prove that C is a path set. If x ∈ C, then it is printed in some
printing stage Pi. By tracing the definition of f and the procedure for printing
stages, one can verify that both f(x) and exactly one y such that f(y) = x will
be printed in stage Pj for j ≥ i. This string y will be the only one ever printed,
since no two elements with the same second coordinate will ever be added to Q,
as every element added to Q has the current state of b as its second coordinate,
and b only ever strictly increases between additions to Q.

Let Fn be the condition that ϕn fails to be a recursive isomorphism of C0 onto
C1. Fix n. Say during Ei we have ni = n. In cases 1, 2, 4, and 5, we force ϕn to
map 〈0, 0, ki〉 ∈ C0 to something out of C1. In cases 3 and 6, we force ϕn to map
〈0, 0, ki〉 /∈ C0 to something in C1. Thus whenever at stage i we have ni = n,
condition Fn becomes satisfied, though perhaps not permanently. Specifically,
in case 2, w could be printed later to satisfy some other Fm and in doing so
“injure” Fn. However, note that during Ei the variable b is set to max(ki, zi),
thus Fn can only be injured when satisfying conditions Fm for m < n. Pairs
with first coordinate n will only ever be added to R when after satisfying some
such Fm, in addition to once initially, so in total only a finite number of times.
If ϕn always halts, Fn will eventually be satisfied and never injured again.

This proves that C is a path set such that C0 �≡iso C1. Thus C0 and C1 are
RE sets that are FREC-compressible to each other by f , but are not recursively
isomorphic. �

For those interested in the issue of isomorphism in the context of complexity-
theoretic functions, which was not the focus above, we mention that: Hemas-
paandra, Zaki, and Zimand [13] prove that the P-rankable sets are not closed

184 J. Abascal et al.

under ≡p
iso; Goldsmith and Homer [9] prove that the strong-P-rankable sets are

closed under ≡p
iso if and only if P = P#P; and [13] notes that the semistrong-P-

rankable sets similarly are closed under ≡p
iso if and only if P = P#P.

4 Closures and Nonclosures Under Boolean Operations

We now move on to a main focus of this paper, the closure properties of
the compressible and the rankable sets. We explore these properties both in
the complexity-theoretic and the recursion-theoretic domains. Table 1 (which
appears in Sect. 1) summarizes our findings.

Lemma 4.1. Let A and B be strong-P-rankable. Then A ∪ B is strong-
P-rankable if and only if A ∩ B is.

Proof. The identity rankA∩B(x)+ rankA∪B = rankA(x)+ rankB(x) allows us to
compute either of rankA∩B(x) or rankA∪B(x) from the other. �
Theorem 4.2. The following conditions are equivalent:

1. the classes strong-P-rankable and semistrong-P-rankable are closed under
intersection,

2. the classes strong-P-rankable and semistrong-P-rankable are closed under
union, and

3. P = P#P.

Proof. It was proven in [10] by Hemachandra and Rudich that P = P#P implies
P = strong-P-rankable = semistrong-P-rankable. Since P is closed under inter-
section and union, this shows that 3 implies 1 and 2. To show, in light of
Lemma 4.1, that either 1 or 2 would imply 3, we will construct two strong-
P-rankable sets whose intersection is not P-rankable unless P = P#P.

Let A1 be the set of x1y1 such that |x| = |y|, x encodes a boolean formula,
and y (padded with 0s so that it has length |x|) encodes a satisfying assignment
for the formula x. Let A0 be the set of x1y0 such that |x| = |y|, and x1y1 /∈ A1.
Let A2 be the set of strings x0|x|+11. Let A = A0∪A1∪A2. For every x, and every
y such that |x| = |y|, exactly one of x1y0 and x1y1 is in A. Thus, for any x, we
can find rankA0∪A1(x) in polynomial time. Clearly A2 is strong-P-rankable. Since
A0 ∪A1 and A2 are disjoint, rankA0 ∪ A1∪A2(x) = rankA0∪A1(x) + rankA2(x), so
A is strong-P-rankable.

Let B = Σ∗1. Then A ∩ B = A1 ∪ A2 is the set of x1y1 such that y encodes
a satisfying assignment for x, along with all strings x0|x|+11. If A1 ∪ A2 were
P-rankable, then we could count satisfying assignments of a formula x in polyno-
mial time by computing rankA∩B(shift(x, 1)0|shift(x,1)|+11)−rankA∩B(x0|x|+11)−
1. Thus #SAT is polynomial-time computable and so P = P#P. �
Proposition 4.3. strong-P-rankable and strong-P-rankable� are closed under
complementation.

Closure and Nonclosure Properties of the Compressible and Rankable Sets 185

Proof. If A is strong-P-rankable, the identity rankA(x) + rankA(x) = rankΣ∗(x)
allows us to compute either of rankA(x) or rankA(x) from the other. �
Lemma 4.4. The class semistrong-P-rankable is closed under complementation
if and only if semistrong-P-rankable = strong-P-rankable.

Proof. The “if” direction follows directly from Proposition 4.3. For the “only
if” direction, let A be a semistrong-P-rankable set with ranking function rA,
and suppose A is semistrong-P-rankable with semistrong ranking function rA.
Then rankA(x) = rA(x) if x ∈ A, and equals rankΣ∗(x) − rA(x) otherwise. The
function rA decides membership in A, so we can compute rankA(x) in polynomial
time. �
Theorem 4.5. If semistrong-P-rankable is closed under complementation, then
P = UP ∩ coUP.

Proof. Suppose semistrong-P-rankable is closed under complementation. Let A
be in UP ∩ coUP. Then there exists a UP machine U recognizing A, and a UP
machine Û recognizing A. If x ∈ A, let f(x) be the unique accepting path for x
in U . Otherwise, let f(x) be the unique accepting path for x in Û . Choose a poly-
nomial p such that, without loss of generality, p(x) is monotonically increasing
and |f(x)| = p(|x|) (we may pad accepting paths with 0s to make this true).

The language B = {xf(x)1 | x ∈ Σ∗} ∪ {x0p(|x|)+1 | x ∈ Σ∗}
is semistrong-P-rankable since rankB(x0p(|x|)+1) = 2rankΣ∗(x) − 1 and
rankB(xf(x)1) = 2rankΣ∗(x). Since semistrong-P-rankable is closed under com-
plementation, and B is semistrong-P-rankable, B is also strong-P-rankable by
Lemma 4.4. Let x be a string, and let y = shift(x, 1). We can binary search on
the value of rankB in the range from x0p(|x|)+1 to y0p(|y|)+1 to find the first value
xz where |z| = p(|x|)+1 and rankB(xz) = 2rankΣ∗(x). See that f(x) must equal
z. We then simulate U on the path z and Û on the path z. Now z must be an
accepting path for one of these machines, so either U accepts and x ∈ A, or Û
accepts and x /∈ A. �
Definition 4.6. A set is nongappy if there exists a polynomial p such that, for
each n ∈ N, there is some element y ∈ A such that n ≤ |y| ≤ p(n).

Theorem 4.7. If P = UP ∩ coUP then each nongappy semistrong-P-rankable
set is strong-P-rankable.

Proof. Let A be a nongappy semistrong-P-rankable set, and let p be a polynomial
such that, for each n ∈ N, there is y in A such that n ≤ |y| ≤ p(y). Let
r be a polynomial-time semistrong ranking function for A. The coming string
comparisons of course will be lexicographical. Let L be the set of 〈x, b〉 such
that there exists at least one string in A that is less than or equal to x and b a
prefix of the greatest string in A that is lexicographically less than or equal to
x. L is in UP∩ coUP by the following procedure. Let x0 be the lexicographically
first string in A. If x < x0 output 0. Otherwise, guess a string z > x such that
|z| ≤ p(|x|+1). Then guess a y ≤ x. If y and z are in A and r(y)+1 = r(z), then

186 J. Abascal et al.

we know that and y and z are the (unique) strings in A that most tightly bracket
x in the ≤ and the > directions. We can in our current case build the greatest
string less than or equal to x that is in A bit by bit, querying potential prefixes,
in polynomial time. Since rankA(x) = rankA(y), we can compute rankA(x) in
polynomial time for arbitrary x. �

From Proposition 4.3 and Theorem 4.7, we obtain the following corollary.

Corollary 4.8. If P = UP ∩ coUP then the complement of each nongappy
semistrong-P-rankable set is strong-P-rankable (and so certainly is semistrong-
P-rankable).

The proofs of the following four theorems can be found in the technical report
version of this paper [1].

Theorem 4.9. There exist P-rankable sets A and B such that A ∩ B is infinite
but not FPR-compressible.

Theorem 4.10. There exist infinite P-rankable sets A and B such that A ∪ B
is not FPR-compressible.

Theorem 4.11. There exists an infinite P-rankable set whose complement is
infinite but not FPR-compressible.

Theorem 4.12. There exist sets A and B that are not FPR-compressible, yet
A ∪ B is strong-P-rankable. In addition, there exist sets A and B that are not
FPR-compressible, yet A ∩ B is strong-P-rankable.

5 Additional Closure and Nonclosure Properties

We focus on the join (aka disjoint union), giving a full classification of the closure
properties of the P-rankable, semistrong-P-rankable, and strong-P-rankable sets,
as well as their complements, under this operation. The literature is inconsistent
as to whether the low-order or high-order bit is the “marking” bit for the join.
Here, we follow the classic computability texts of Rogers [15] and Soare [17] and
the classic structural-complexity text of Balcázar, Dı́az, Gabarró [5], and define
the join using low-order-bit marking: The join of A and B, denoted A ⊕ B, is
A0 ∪ B1 = {x0 | x ∈ A} ∪ {x1 | x ∈ B}. For classes invariant under reversal,
which end is used for the marking bit is not important (in the sense that the
class itself is closed under upper-bit-marked join if and only if it is closed under
lower-bit-marked join). However, the placement of the marking bit potentially
matters for ranking-based classes, as those classes rely on lexicographical order.

The join is such a basic operation that it seems very surprising that any class
would not be closed under it, and it would be even more surprising if the join of
two sets that lack some nice organizational property (such as being P-rankable)
can itself have that property (can be P-rankable, and we indeed show in this
section that that happens)—i.e., the join of two sets can be “simpler” than either

Closure and Nonclosure Properties of the Compressible and Rankable Sets 187

of them (despite the fact that the join of two sets is the least upper bound for
them with respect to ≤p

m [16], and in the sense of reductions captures the power-
as-a-target of both sets). However, there is in the literature a precedent for the
just-mentioned surprising behavior. It is known that (EL2)� is not closed under
the join [11], where EL2 is the second level of the extended low hierarchy [4].

Theorem 5.1. If P �= P#P then there exist sets A ∈ P and B ∈ P that are not
P-rankable yet A ∩ B, A ∪ B, and A ⊕ B are strong-P-rankable.

Proof. We construct a set A1 whose members represent satisfying assignments
of boolean formulas. We force certain elements, or beacons, into A1 to obtain
a set A such that if A were rankable, we could count the number of satisfying
assignments to a boolean formula using the ranks of the beacons. The set B is
built similarly, but so that A ∪ B, A ∩ B, and A ⊕ B are strong-P-rankable.

Let A1 = {α01β | α, β ∈ Σ∗ ∧ |α| = |β| ∧ α encodes a boolean formula F
with (without loss of generality) k ≤ |α| variables, the first k bits of β encode
a satisfying assignment of F , and the remaining |β| − k bits of β are 0}. Given
a string x = α01β ∈ A1, we can unambiguously extract α and β because they
have length (|x| − 2)/2. Let B1 = {α01β | α, β ∈ Σ∗ ∧ |α| = |β| ∧ α01β /∈ A1}.
Let Beacons = {α000|α| | α ∈ Σ∗}∪{α110|α| | α ∈ Σ∗}. Similarly to A1, strings
in B1 and Beacons can be parsed unambiguously. Let A = A1 ∪ Beacons and
B = B1 ∪ Beacons . Note A and B are both in P as A1, B1, and Beacons are.

We will now demonstrate that if either A or B are P-rankable, then #SAT
is polynomial-time computable. Suppose that A is P-rankable and let f be a
polynomial-time ranking function for A. Let α be a string encoding a boolean
formula F with k variables. Then we can compute j = f(α110|α|) − f(α000|α|)
in polynomial time. Both α110|α| and α000|α| are in Beacons and thus in A,
so f gives a true ranking for these values. Every string in A strictly between
these Beacons strings is from A1 and so represents a satisfying assignment for
F , and every satisfying assignment for F is represented by a string between these
Beacons strings. The last |β| − k bits of β are 0, so each satisfying assignment
for F is represented exactly once between the two Beacons strings. Thus F
has j − 1 satisfying assignments. We can find j in polynomial time, so #SAT is
polynomial-time computable and P = P#P, contrary to our P �= P#P hypothesis.

Now suppose that B is P-rankable and let f be a P-time ranking function for
it. Let α be as before and j = f(α110|α|)−f(α000|α|). The strings in B between
α110|α| and α000|α| are the strings of the form α01Σ|α| except for those that
are in A1 (and recall that those that are in A1 are precisely the padded-with-
0s satisfying assignments for F). We know the number of strings of the form
α01Σ|α|, so we can find the number of satisfying assignments for F . Namely, we
have that j = 1 + 2|α| − s, where s is the number of satisfying assignments of F .
Thus if B is P-rankable then #SAT is polynomial-time computable contrary to
our P �= P#P hypothesis.

We omit the construction of strong-ranking functions for A ∪ B, A ∩ B, and
A ⊕ B, which can be found in the technical report version of this paper [1]. �

188 J. Abascal et al.

Theorem 5.2. The following are equivalent: (1) strong-P-rankable� is closed
under join, (2) semistrong-P-rankable� is closed under join, and (3) P = P#P.

Theorem 5.3. (1) The class P-rankable� is not closed under join.
(2) The class P-rankable is not closed under join.
(3) The class strong-P-rankable is closed under join.
(4) The class semistrong-P-rankable is closed under complement if and only if

it is closed under join.
(5) The class P-compressible′ is closed under join.

Proofs of Theorems 5.2 and 5.3 can be found in our technical report ver-
sion [1].

6 Conclusions

Taking to heart the work in earlier papers that views as classes the collections of
sets that have (or lack) rankability/compressibility properties, we have studied
whether those classes are closed under the most important boolean and other
operations. For the studied classes, we in almost every case prove that they are
closed under the operation, or prove that they are not closed under the operation,
or prove that whether they are closed depends on well-known questions about
standard complexity classes. Additionally, we introduced compression onto a set
and showed the robustness of compression under this notion, as well as the limits
of that robustness.

Acknowledgments. We thank the anonymous referees for helpful comments.

References

1. Abascal, J., Hemaspaandra, L., Maimon, S., Rubery, D.: Closure and non-
closure properties of the compressible and rankable sets. Technical report.
arXiv:1611.01696 [cs.LO], Computing Research Repository, arXiv.org/corr/,
November 2016. Revised, October 2018

2. Allender, E.: Invertible functions. Ph.D. thesis, Georgia Institute of Technology
(1985)

3. Álvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107, 3–30 (1993)

4. Balcázar, J., Book, R., Schöning, U.: Sparse sets, lowness and highness. SIAM J.
Comput. 15(3), 739–746 (1986)

5. Balcázar, J., Dı́az, J., Gabarró, J.: Structural Complexity I. EATCS Texts in The-
oretical Computer Science, 2nd edn. Springer, Heidelberg (1995). https://doi.org/
10.1007/978-3-642-79235-9

6. Bertoni, A., Goldwurm, M., Sabadini, N.: The complexity of computing the number
of strings of given length in context-free languages. Theoret. Comput. Sci. 86(2),
325–342 (1991)

7. Goldberg, A., Sipser, M.: Compression and ranking. SIAM J. Comput. 20(3), 524–
536 (1991)

http://arxiv.org/abs/1611.01696
http://arxiv.org/abs/org/corr/
https://doi.org/10.1007/978-3-642-79235-9
https://doi.org/10.1007/978-3-642-79235-9

Closure and Nonclosure Properties of the Compressible and Rankable Sets 189

8. Goldsmith, J., Hemachandra, L., Kunen, K.: Polynomial-time compression. Com-
put. Complex. 2(1), 18–39 (1992)

9. Goldsmith, J., Homer, S.: Scalability and the isomorphism problem. Inf. Process.
Lett. 57(3), 137–143 (1996)

10. Hemachandra, L., Rudich, S.: On the complexity of ranking. J. Comput. Syst. Sci.
41(2), 251–271 (1990)

11. Hemaspaandra, L., Jiang, Z., Rothe, J., Watanabe, O.: Boolean operations, joins,
and the extended low hierarchy. Theoret. Comput. Sci. 205(1–2), 317–327 (1998)

12. Hemaspaandra, L., Rubery, D.: Recursion-theoretic ranking and compression. J.
Comput. Syst. Sci. 101, 31–41 (2019)

13. Hemaspaandra, L., Zaki, M., Zimand, M.: Polynomial-time semi-rankable sets. J.
Comput. Inf. 2(1), 50–67 (1996). Special Issue: Proceedings of the 8th International
Conference on Computing and Information

14. Huynh, D.: The complexity of ranking simple languages. Math. Syst. Theory 23(1),
1–20 (1990)

15. Rogers Jr., H.: The Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York (1967)

16. Schöning, U. (ed.): Complexity and Structure. LNCS, vol. 211. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-16079-5

17. Soare, R.: Recursively Enumerable Sets and Degrees: A Study of Computable Func-
tions and Computably Generated Sets. Springer, Heidelberg (1987). Perspectives
in Mathematical Logic

https://doi.org/10.1007/3-540-16079-5

The Range of State Complexities
of Languages Resulting from the

Cut Operation

Markus Holzer1 and Michal Hospodár2(B)

1 Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

2 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com

Abstract. We investigate the state complexity of languages resulting
from the cut operation of two regular languages represented by mini-
mal deterministic finite automata with m and n states. We show that
the entire range of complexities, up to the known upper bound, can be
produced in the case when the input alphabet has at least two symbols.
Moreover, we prove that in the unary case, only complexities up to 2m−1
and between n and m+n−2 can be produced, while if 2m ≤ n−1, then
the complexities from 2m up to n − 1 cannot be produced.

1 Introduction

It is well known that for every n-state nondeterministic finite automaton (NFA),
there exists a language-equivalent deterministic finite automaton (DFA) with at
most 2n states [21]. This bound is tight in the sense that for an arbitrary integer n
there is always some n-state NFA which cannot be simulated by any DFA with
less than 2n states [17–19,23].

Nearly two decades ago a very fundamental question on determinization was
raised by Iwama, Kambayashi, and Takaki [9]: does there always exist a minimal
n-state NFA whose equivalent minimal DFA has α states for all n and α with
n ≤ α ≤ 2n? Iwama, Matsuura, and Paterson [10] called a number α in the range
from n to 2n magic if no minimal n-state NFA has an equivalent minimal α-state
DFA. The simple question whether for every n no number is magic turned out to
be harder than expected. In a series of papers, non-magic (attainable) numbers
were identified [6,11,12] until the problem was solved in [14] showing that for
ternary languages no magic numbers exist. On the contrary, Geffert [5] proved
that most of the numbers in the range from n up to F (n) + n2, where F (n)

M. Hospodár—Research supported by VEGA grant 2/0132/19 and by grant APVV-
15-0091. This work was conducted during a research visit at the Institut für Informatik,
Universität Giessen, Germany, funded by the DAAD short-term grant ID 57314022.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 190–202, 2019.
https://doi.org/10.1007/978-3-030-13435-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_14

The Range of Complexities of Languages Resulting from the Cut Operation 191

is the Landau function, is not attainable as the state complexity of a language
accepted by a minimal unary n-state NFA. However, his proof is existential, and
no specific value is known to be unattainable. For binary languages, the original
problem from [9] is still open.

The idea behind the magic number problem is not limited to the determiniza-
tion of NFAs. In fact every (regularity preserving) formal language operation
can be used to define a magic number problem for the operation in question.
For instance, consider the intersection operation on languages. Let A and B
be minimal finite automata with m and n states, respectively. Then the size
of the minimal automaton for the intersection of L(A) and L(B) is between 1
and mn. The value one is induced by the intersection of disjoint languages and
the value mn by the standard cross-product construction for the intersection
operation. Thus, in a similar way as for the determinization, one may now ask,
whether every α within the range between 1 and mn can be attained by the
size of minimal automaton for intersection of languages given by two minimal
automata with m and n states, respectively? In other words, is the outcome of
the intersection operation in terms of the number of states contiguous or are
there any gaps, hence magic numbers? In [8] it was shown that for the intersec-
tion on DFAs no number from 1 up to mn is magic—this already holds for binary
automata. Besides intersection, also other formal language operations were inves-
tigated from the “magic number” perspective. It turned out that magic numbers
are quite rare, and most of them occur in the unary case. For example, Čevorová
[2] studied the complexity of languages resulting from the Kleene star operation
in the unary case. In such a case, the known upper bound is (n − 1)2 + 1 [24].
She proved that the values from 1 to n, as well as the values n2 − 2n + 2 and
n2 − 3n + 3, are attainable, while the value n2 − 3n + 2 is attainable if n is
odd and it is not attainable otherwise. Moreover, she showed that all the values
from n2 − 3n + 4 up to n2 − 2n + 1 and from n2 − 4n + 7 up to n2 − 3n + 1
cannot be attained by the state complexity of the Kleene star of any language
accepted by minimal unary DFA with n states. The magic number problem was
also examined for concatenation [13,16], square [3], star on general alphabet [15],
and reversal [22].

We contribute to the list of magic number problems for formal language
operations by studying the cut operation. The cut operation was introduced
in [1] as a machine implementation of “concatenation” on Unix text proces-
sors which behaves greedy-like in its left term of concatenation. Tight upper
bounds for the state complexity of the cut and iterated cut operations on DFAs
were obtained in [4]. While the state complexity of concatenation is growing
linearly with the first parameter (the number of states of the left automaton)
and exponentially with the second parameter (the number of states of the right
automaton), the state complexity of the cut operation is only linearly growing
with both parameters. In the general case, the known tight upper bound is given
by the function f(m,n) such that f(m, 1) = m and f(m,n) = (m − 1)n + m if
n ≥ 2. In the unary case, the known tight upper bound is given by the function

192 M. Holzer and M. Hospodár

f1(m,n) such that f1(1, n) = 1, f1(m, 1) = m, f1(m,n) = 2m − 1 if m,n ≥ 2
and m ≥ n, and finally let f1(m,n) = m + n − 2 if m,n ≥ 2 and m < n [4].

In this paper, we show for every value from 1 up to f1(m,n) whether or not
it can be attained by the state complexity of the cut of two languages accepted
by minimal unary DFAs with m and n states. We show that only complexities
up to 2m − 1 and between n and m + n − 2 can be attained, while complexities
from 2m up to n − 1 turn out to be magic. To get these results, the tail-loop
structure of minimal unary DFAs is very valuable in the proofs.

On the other hand, we show that the entire range of complexities, up to the
known upper bound f(m,n), can be produced by the cut operation on minimal
DFAs with m and n states, respectively, in case when the input alphabet consists
of at least two symbols. The proof of this result resembles some ideas used in [8]
for the magic number problem of the intersection and union operations on DFAs.

To the best of our knowledge, this is the first operation where for every
alphabet, every value in the range of possible complexities is known to be either
attainable or not, and not all values are attainable in the unary case. However,
all values are attainable in every other alphabet size. Hence, the magic number
problem for the cut operation is completely solved in this paper.

2 Preliminaries

We recall some definitions on finite automata as contained in [7]. Let Σ∗ denote
the set of all words over a finite alphabet Σ. The empty word is the word with
length zero. If u, v, w are words over Σ such that w = uv, then u is a prefix of w.
Further, we denote the set {i, i + 1, . . . , j} by [i, j] if i and j are integers.

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, δ, s, F)
where Q is a finite nonempty set of states, Σ is a finite nonempty set of input
symbols, s ∈ Q is the initial state, F ⊆ Q is the set of final (or accepting) states,
and δ : Q × Σ → Q is the transition function which can be extended to the
domain Q×Σ∗ in the natural way. The language accepted (or recognized) by the
DFA A is defined as L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F}.

Two DFAs A and B are equivalent if they accept the same language, that
is, if L(A) = L(B). An automaton is minimal if it admits no smaller equivalent
automaton with respect to the number of states. For DFAs this property can
be verified by showing that all states are reachable from the initial state and all
states are pairwise distinguishable. It is well known that every regular language
has a unique, up to isomorphism, minimal DFA.

The state complexity of a regular language is the number of states in the
minimal DFA recognizing this language.

In [1] the cut operation on languages K and L, denoted by K !L, is defined as

K ! L = {uv | u ∈ K, v ∈ L, and uv′ �∈ K for every nonempty prefix v′ of v}.

The above defined cut operation preserves regularity as shown in [1]. Since we
are interested in the descriptional complexity of this operation we briefly recall

The Range of Complexities of Languages Resulting from the Cut Operation 193

the construction of a DFA for the cut operation; we slightly deviate from the
presentation of the construction given in [4].

Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) be two DFAs.
Let ⊥ /∈ QB . Define the cut automaton A ! B = (Q,Σ, δ, s, F) with the state
set Q = (QA ×{⊥})∪ (QA ×QB), the initial state s = (sA,⊥) if the empty word
is not in L(A) and s = (sA, sB) otherwise, the set of final states F = QA × FB,
and for each state (p, q) in Q and each input a in Σ we have

δ((p,⊥), a) =

{
(δA(p, a),⊥), if δA(p, a) /∈ FA;
(δA(p, a), sB), otherwise;

and

δ((p, q), a) =

{
(δA(p, a), δB(q, a)), if δA(p, a) /∈ FA;
(δA(p, a), sB), otherwise.

Then L(A ! B) = L(A) ! L(B).
In [4], the following functions were introduced.

f(m,n) =

{
m, if n = 1;
(m − 1)n + m, if n ≥ 2

(1)

and

f1(m,n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if m = 1;
m, if m ≥ 2 and n = 1;
2m − 1, if m,n ≥ 2 and m ≥ n;
m + n − 2, if m,n ≥ 2 and m < n

(2)

It was proven in [4, Theorems 3.1 and 3.2] that if A and B are DFAs with m
and n states, respectively, then f(m,n) states, resp. f1(m,n) states if A and B
are unary, are sufficient and necessary in the worst case for any DFA accepting
the language L(A) ! L(B).

3 The Descriptional Complexity of the Cut Operation

In this section we investigate the range of attainable complexities for the cut
operation. In the first subsection we investigate the unary case and we show that
some values may be unattainable. In the second subsection we study this problem
for regular languages over an arbitrary alphabet, and we obtain a contiguous
range of complexities from one up to the known upper bound already in the
binary case.

194 M. Holzer and M. Hospodár

3.1 The Cut Operation on Unary Regular Languages

When working with unary DFAs, we use the notational convention proposed by
Nicaud in [20].

Every unary DFA consists of a tail path, which starts from the initial state,
followed by a loop of one or more states. Let A = (Q, {a}, δ, q0, F) be a unary
DFA with |Q| = n. We can identify the states of A with integers from [0, n − 1]
via q
→ min{ i | δ(q0, ai) = q }. In particular the initial state q0 is mapped
to 0. Let � = δ(q0, an). Then the unary DFA A with n states, loop number �
(0 ≤ � ≤ n − 1), and set of final states F (F ⊆ [0, n − 1]) is referred to as
A = (n, �, F). The following characterization of minimal unary DFAs is known.

Lemma 1 ([20]). A unary DFA A = (n, �, F) is minimal if and only if

1. its loop is minimal, and
2. if � �= 0, then states n − 1 and � − 1 do not have the same finality, that is,

exactly one of them is final.

Now we are ready for our first result on the cut operation of unary regular
languages represented by DFAs. In a series of lemmata we consider the state
complexity α of the resulting language in increasing order of α. The first interval
we are going to discuss is [1,m].

Lemma 2. Let m,n ≥ 1 and 1 ≤ α ≤ m. There exist a minimal unary m-
state DFA A and a minimal unary n-state DFA B such that the minimal DFA
for L(A) ! L(B) has α states.

Proof. The proof has five cases:

1. Let m = 1, so we must have α = 1. Let A be the one-state DFA accepting
the empty language and B be the minimal n-state DFA for an−1a∗. Then
L(A) ! L(B) = ∅ which is accepted by a minimal one-state DFA.

2. Let m ≥ 2 and n = 1. Let A be the minimal m-state DFA for aα−1(am)∗

and B be the one-state DFA for a∗. The reachable part of the cut automa-
ton A ! B consists of the tail of non-final states (i,⊥) with 0 ≤ i ≤ α − 2 and
the loop of final states (i, 0) with 0 ≤ i ≤ m − 1. Since all the final states are
equivalent, the minimal DFA for L(A) ! L(B) has α states.

3. Let m,n ≥ 2 and α = 1. Consider the unary languages am−1a∗ and an−1a∗

accepted by minimal DFAs A and B of m and n states, respectively. Then
the reachable part of the cut automaton A ! B consists of the tail of non-final
states (i,⊥) with 1 ≤ i ≤ m − 2, and the loop consisting of a single non-final
state (m − 1, 0); notice that 0 is a non-final state in B. Hence L(A) ! L(B) is
the empty language accepted by a one-state DFA.

4. Let m ≥ 2, n = 2, and 2 ≤ α ≤ m. Consider the unary languages K and L
defined as follows. If m−α is even, then K = { aα−2, am−2 } and L = a(aa)∗,
otherwise, K = { aα−1, am−2 } and L = (aa)∗. The minimal DFAs for K and
L have m and 2 states, respectively. We have K ! L = aα−1(aa)∗, which is
accepted by a minimal α-state DFA.

The Range of Complexities of Languages Resulting from the Cut Operation 195

5. Let m ≥ 2, n ≥ 3, and 2 ≤ α ≤ m. Consider the unary deterministic finite
automata A = (m,α−2, [α − 1,m − 1]) and B = (n, n − 1, [0, n − 2]). By
Lemma 1, the DFAs A and B are minimal. The reachable part of the cut
automaton consists of the tail of α−1 non-final states and of the loop of m−
α +2 final states. Hence the minimal DFA (α, α − 1, {α − 1}) for L(A) ! L(B)
has α states. �
Our next interval is [m + 1, 2m − 1]; cf. f1(m,n) defined by (2) on page 4.

Lemma 3. Let m,n ≥ 2 and m+1 ≤ α ≤ 2m−1. There exist a minimal unary
m-state DFA A and a minimal unary n-state DFA B such that the minimal DFA
for L(A) ! L(B) has α states. �

The last interval we are considering in this series of lemmata is [n,m+n−2].

Lemma 4. Let m,n ≥ 2, α ≥ m, and n ≤ α ≤ m + n − 2. There exist a min-
imal unary m-state DFA A and a minimal unary n-state DFA B such that the
minimal DFA for L(A) ! L(B) has α states. �

For certain values of m and n the intervals stated in the previous lemmata
may not be contiguous. For instance, if we choose m = 2 and n = 5, then the
intervals from Lemmata 2, 3, and 4 cover {1, 2, 3, 5}. Hence the value 4, which
comes from the interval [2m,n − 1], is missing. In fact, we show that whenever
this interval is nonempty, these values cannot be obtained by an application of
the cut operation on minimal DFAs with an appropriate number of states.

Lemma 5. Let m,n ≥ 2 be numbers satisfying 2m ≤ n − 1. Then for every α
with 2m ≤ α ≤ n−1, there exist no minimal unary m-state DFA A and minimal
unary n-state DFA B such that the minimal DFA for L(A) ! L(B) has α states.

Proof. We discuss two cases depending on whether L(A) is infinite or finite.
If L(A) is infinite, then A must have a final state in its loop. Denote the size

of loop in A by � and the smallest final state in the loop of A by j. Consider
the cut automaton A ! B. Notice that its initial state is sent to the state (j, 0)
by the word aj . Next, the state (j, 0) is sent to itself by the word a�. It follows
that A ! B is equivalent to a DFA (j + �, j, F) for some set F ⊆ [0, j + l − 1].
Since j ≤ m− 1 and � ≤ m, the DFA for L(A) ! L(B) has at most 2m− 1 states.

If L(A) is finite, then A has a loop in the non-final state m − 1 and the
state m − 2 is final. Let A = (m,m − 1, F) and B = (n, k, F ′) be minimal unary
DFAs for some sets F ⊆ [0,m − 1] and F ′ ⊆ [0, n − 1]. It follows that in the cut
automaton A ! B, the state (m−2, 0) and the states (m−1, j) with 1 ≤ j ≤ n−1
are reachable. Two distinct states (m − 1, j) and (m − 1, j′) are distinguishable
by the same word as the states j and j′ in B, and the state (m − 2, 0) and a
state (m− 1, j) are distinguishable by the same word as 0 and j are distinguish-
able in B. It follows that the cut automaton has at least n reachable and pairwise
distinguishable states, and the theorem follows. �

196 M. Holzer and M. Hospodár

Now let us summarize the results of this subsection; recall that the state com-
plexity of the cut operation on unary languages is given by the function f1(m,n)
defined by (2) on page 4 such that f1(1, n) = 1, f1(m, 1) = m, f1(m,n) = 2m−1
if m,n ≥ 2 and m ≥ n, and f1(m,n) = m + n − 2 if m,n ≥ 2 and m < n.

Theorem 6 (Unary Case). For every m,n, α ≥ 1 such that

(i) α = 1 if m = 1,
(ii) 1 ≤ α ≤ m if m ≥ 2 and n = 1, or
(iii) 1 ≤ α ≤ 2m − 1 or n ≤ α ≤ m + n − 2 if m,n ≥ 2,

there exist a minimal unary m-state DFA A and a minimal unary n-state DFA B
such that the minimal DFA for L(A) ! L(B) has α states. In the case of m,n ≥ 2
and 2m ≤ α ≤ n − 1, there do not exist minimal unary m-state and n-state
DFAs A and B such that the minimal DFA for L(A) ! L(B) has α states. �

3.2 The Cut Operation on Binary Regular Languages

Next we consider the range of state complexities of languages resulting from
the cut operation on regular languages over an arbitrary alphabet. The aim of
this subsection is to show that the entire range of complexities up to the known
upper bound can be produced in this case, even for languages over a binary
alphabet. First, we show that the numbers in [1,m+n− 2] are attainable in the
binary case. The values in [1, 2m − 1] as well as the cases of m = 1 or n = 1 are
covered by Theorem 6 since duplicating the symbols does not change the state
complexity.

Lemma 7. Let m,n ≥ 2 and 2m ≤ α ≤ m+n−2. There exist a minimal binary
m-state DFA A and a minimal binary n-state DFA B such that the minimal DFA
for L(A) ! L(B) has α states.

Proof. Notice that in this case we must have and m < n. Consider the binary
DFA A = ([0,m − 1], {a, b}, δA, 0, {m − 1}), where

δA(i, a) = (i + 1) mod m and δA(i, b) =

{
(i + 1) mod m, if i �= m − 2,

m − 2, otherwise.

Next, consider the binary DFA B = ([0, n − 1], {a, b}, δB , 0, {m − 1}), where

δB(j, a) = (j + 1) mod n and δB(j, b) =

{
(j + 1) mod n, if j �= α − m,

m − 1, otherwise.

Both automata A and B are depicted in Fig. 1.
In the cut automaton A ! B we consider the following sets of states:

R1 = { (i,⊥) | 0 ≤ i ≤ m − 2 } ∪ {(m − 1, 0)} ∪ { (i, i + 1) | 0 ≤ i ≤ m − 3 },

R2 = { (m − 2, j) | m − 1 ≤ j ≤ α − m }.

The Range of Complexities of Languages Resulting from the Cut Operation 197

A 0 1 . . . m−1
a, b a, b a, b a, b a

b

a, b

B 0 . . . m−1 m . . . α−m . . . n−1
a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b
a, b

Fig. 1. The DFAs A (top) and B (bottom) for the case m < n and 2m ≤ α ≤ m+n−2

0, ⊥

1, ⊥

..
.

m−2, ⊥

m−1, 0

0, 1

. . .

m−3, m−2

m−2, m−1 m−2, m . . . m−2, α−m

a, b

a, b

a, b

b

a

a, b

a, b

a, b

a, b

a

a

b b b

a b

Fig. 2. The cut automaton for the DFAs in Fig. 1

Each state in R1 ∪ {(m − 2,m − 1)} is reached from (0,⊥) by a word in a∗, and
each state in R2 is reached from (m − 2,m − 1) by a word in b∗. Figure 2 shows
that no other state is reachable in the cut automaton.

To prove distinguishability, notice that two distinct states in R1 are distin-
guishable by a word in a∗ and two distinct states in R2 are distinguishable by
a word in b∗. The states (i,⊥) in R1 are distinguishable from each state in R2

by a word in b∗. Every other state in R1 is distinguishable from each state in
the set R2 by a word in a∗. Since |R1 ∪ R2| = α, our proof is complete. �

Since the state complexity of the cut operation for regular languages in gen-
eral is higher than those for unary languages, we have to consider the remaining
interval [m + n − 1, (m − 1)n + m]. This is done in the following steps (cf. [8]):

1. First we show that some special values of α, corresponding to the number of
states of the cut automaton in the first r rows and the first s columns, see
Fig. 3, are attainable, namely α = 1 + (r − 1)n + (m − r)s for some r, s with
2 ≤ r ≤ m and 1 ≤ s ≤ n.

2. Then we show that all the remaining values of α in [m + n − 1, (m − 1)n + 1]
are attainable.

3. Finally, we show that all the values of α in [(m − 1)n + 2, (m − 1)n + m] are
attainable.

198 M. Holzer and M. Hospodár

m

n

r

s

1

(r − 1)n

(m − r)s

Fig. 3. A schematic drawing of the reachable part of the cut automaton

Let us start with the first task.

Lemma 8. Let m,n ≥ 2 and let r, s be any integers such that 2 ≤ r ≤ m and
1 ≤ s ≤ n. Then there exist a minimal binary m-state DFA Ar,s and a minimal
binary n-state DFA Br,s such that the minimal DFA for L(Ar,s) ! L(Br,s) has
exactly 1 + (r − 1)n + (m − r)s states.

Proof. Our aim is to define the DFAs Ar,s = ([0,m − 1], {a, b}, δA, 0, {0}) and
Br,s = ([0, n − 1], {a, b}, δB , 0, {n − 1}) in such a way that in the DFA Ar,s ! Br,s

the states in the following set would be reachable and pairwise distinguishable:

R = {(0, 0)} ∪ { (i, j) | 1 ≤ i ≤ r − 1 and 0 ≤ j ≤ n − 1 }
∪ { (i, j) | r ≤ i ≤ m − 1 and 0 ≤ j ≤ s − 1}.

Moreover, we have to assure that no other state of the cut automaton is reach-
able. Because |R| = 1 + (r − 1)n + (m − r)s, the DFAs Ar,s and Br,s will be the
desired DFAs. To this aim, we define δA and δB as follows:

δA(i, a) = (i + 1) mod m and δA(i, b) =

{
i, if i ≤ r − 1;
r, if i ≥ r;

and

δB(j, b) = (j + 1) mod n and δB(j, a) =

{
j, if j ≤ s − 1;
s − 1, if j ≥ s.

In the cut automaton Ar,s ! Br,s, the state (0, 0) is the initial state, and each
state (i, j) in R is reached from (0, 0) by aibj . To show that no other state is
reachable, notice that each state (i, j) in R goes on a to a state (i′, j′) where j′ ≤
s − 1, and it goes on b to a state (i′′, j′′) where i′′ ≤ r − 1. Since both resulting
states are in R, no other state is reachable in the cut automaton.

It remains to prove the distinguishability of states in R. The state (0, 0) and
any other state in R are distinguishable by a word in b∗. Two states in different
columns are distinguishable by a word in b∗ since exactly one of them can be

The Range of Complexities of Languages Resulting from the Cut Operation 199

moved to the last column containing the final states of the cut automaton. Two
states in different rows are distinguishable by a word in a∗ since exactly one
of them can be moved to the state (0, 0). This proves distinguishability and
concludes the proof. �

In the above lemma we obtained the values αr,s = 1 + (r − 1)n + (m − r)s in
[m+n−1, (m−1)n+1]. We still need to get the values between αr,s and αr+1,s

resp. αr,s+1. We have αr+1,s − αr,s = n − s and αr,s+1 − αr,s = m − r, so we
need to obtain the complexities αr,s + t, where 1 ≤ t ≤ min{n − s,m − r} − 1.
The next lemma produces these complexities.

Lemma 9. Let m,n ≥ 2 and let r, s be any integers such that 2 ≤ r ≤ m
and 1 ≤ s ≤ n. Moreover let t satisfy 1 ≤ t ≤ min{n − s,m − r} − 1. Then
there exist a minimal binary m-state DFA Ar,s,t and a minimal binary n-state
DFA Br,s,t such that the minimal DFA for the language L(Ar,s,t) ! L(Br,s,t) has
exactly 1 + (r − 1)n + (m − r)s + t states.

Proof. Let αr,s = 1 + (r − 1)n + (m − r)s. Then in the cut automaton Ar,s ! Br,s

described in the previous proof, exactly αr,s states are reachable and distin-
guishable. Our aim is to modify both automata in such a way that the resulting
cut automaton has t more reachable states. To achieve this goal, we modify
DFAs Ar,s and Br,s as follows.

In Ar,s we replace each transition (r + i, b, r − 1) by (r + i, b, r + i − 1), if
2 ≤ i ≤ t and i is even. Since i ≤ t ≤ (m − r) − 1, we have r + i ≤ m − 1. In Br,s

we replace each transition (s+ i, a, s−1) by (s+ i, a, s+ i−1), if 1 ≤ i ≤ t and i
is odd. Since i ≤ t ≤ (n − s) − 1, we have s + i ≤ n − 1. Denote the resulting
DFAs by Ar,s,t and Br,s,t, respectively. Consider the cut automaton Ar,s,t ! Br,s,t.
Let R be the same set as in the previous proof. Then each state (i, j) in R is
reachable from (0, 0) by aibj . Next, if i is odd, then each state qi = (r, s + i − 1)
is reached from (r − 1, s + i) by a, and otherwise, each state qi = (r + i − 1, s)
is reached from (r + i, s − 1) by b.

Now, let us show that no other state is reachable. Notice that each state
in R goes either to a state in R or to a state in {q1, q2, . . . , qt} on a and b; each
state (r − 1, s+ i) with i even goes to (r, s− 1) on a, and each state (r + i, s− 1)
with i = 0 or i odd goes to (r − 1, s) on b. Next, each state qi with i odd goes to
the state (r+1, s−1) on a and to a state in row r−1 on b. Finally, each state qi

with i even goes to a state in column s − 1 on a and to the state (r − 1, s + 1)
on b. Since all the resulting states are in R ∪ {q1, q2, . . . , qt}, no other state is
reachable in the cut automaton.

The proof of distinguishability is exactly the same as in Lemma8. �
In the two lemmata above, we have produced all the complexities in the

range from m + n − 1 to (m − 1)n + 1. It remains to show that the complexities
in [(m − 1)n + 2, (m − 1)n + m] are attainable.

Lemma 10. Let m,n ≥ 2 and (m − 1)n + 2 ≤ α ≤ (m − 1)n + m. There exist a
minimal binary m-state DFA A and a minimal binary n-state DFA B such that
the minimal DFA for L(A) ! L(B) has exactly α states.

200 M. Holzer and M. Hospodár

Proof. We have α = (m − 1)n + 1 + β for some β with 1 ≤ β ≤ m − 1. Let A be
a minimal m-state DFA over {a, b} that accepts the words in which the number
of a’s modulo m is β. Let B be a minimal n-state DFA over {a, b} that accepts
the words in which the number of b’s modulo n is n − 1.

Consider the cut automaton A ! B. Denote

R1 = { (i,⊥) | i ∈ [0, β − 1] } ∪ {(β, 0)},

and

R2 = { (i, j) | i ∈ [0, β − 1] ∪ [β + 1,m − 1] and j ∈ [0, n − 1] }.

Notice that each state (i,⊥) in R1 is reachable from the initial state (0,⊥) by ai,
and each state (i, 0) is reachable by am+i. Each state (i, j) in R2 is reached
from (0, 0) by aibj . Since the state β is a final state in A, it follows from the
construction of the cut automaton that no state (i,⊥) with i ≥ β and no state
in row β except for (β, 0) is reachable.

To prove distinguishability, let p and q be two different states in R1 ∪ R2.
If p ∈ R1 and q ∈ R2, then p is a non-final state with a loop on b, while a word
in b∗ is accepted from q. If both p and q are in R1, then a word in a∗ leads
one of them to the state ((β + 1) mod m, 0) in R2, while it leads the second one
to a state in R1, and the resulting states are distinguishable as shown above.
Finally, let p and q be two states in R2. If they are in different columns, then
a word in b∗ distinguishes them. If p and q are in different rows, then a word
in a∗ leads one of them to the state (β, 0) in R1, and it leads the second one to
a state in R2. �

The next theorem summarizes the results of this section; recall that the state
complexity of the cut operation is given by the function f(m,n) defined by (1)
on page 4 such that f(m, 1) = m and f(m,n) = (m − 1)n + m if n ≥ 2.

Theorem 11 (General Case). Let m,n ≥ 1 and f(m,n) be the state com-
plexity of the cut operation. For each α such that 1 ≤ α ≤ f(m,n), there exist a
minimal binary m-state DFA A and a minimal binary n-state DFA B such that
the minimal DFA for L(A) ! L(B) has α states. �

Observe that this theorem solves the magic number problem for the cut
operation for every alphabets of size at least two by duplicating input symbols.

4 Conclusions

We examined the state complexity of languages resulting from the cut operation
on minimal DFAs with m and n states. We showed that the range of state
complexities of languages resulting from the cut operation is contiguous from
one up to the known upper bound for every alphabet of size at least two. Our
results in the unary case are different. We proved that no value from 2m up
to n − 1 is attainable by the state complexity of the cut of two unary languages

The Range of Complexities of Languages Resulting from the Cut Operation 201

represented by minimal deterministic finite automata with m and n states. All
the remaining values up to the known upper bound are attainable. This means
that the problem of finding all attainable complexities for the cut operation is
completely solved for every size of alphabet. To the best of our knowledge, the
cut operation is the first operation where this is the case.

Acknowledgments. We thank Juraj Šebej and Jozef Jirásek Jr. for their help on bor-
der values in our theorems. Moreover, also thanks to Galina Jirásková for her support
and to all who helped us to improve the presentation of the paper.

References

1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in
regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 70–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-
5 8

2. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis,
R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39310-5 26

3. Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In:
Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 136–147. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08846-4 10

4. Drewes, F., Holzer, M., Jakobi, S., van der Merwe, B.: Tight bounds for cut-
operations on deterministic finite automata. Fundam. Inform. 155(1–2), 89–110
(2017)

5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Comput.
205(11), 1652–1670 (2007)

6. Geffert, V.: State hierarchy for one-way finite automata. J. Autom. Lang. Comb.
12(1–2), 139–145 (2007)

7. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

8. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. In: DCFS 2005, pp. 170–181. Università degli Studi
di Milano, Italy (2005)

9. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states
of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237(1–2),
485–494 (2000)

10. Iwama, K., Matsuura, A., Paterson, M.: A family of NFA’s which need 2n − α
deterministic states. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol.
1893, pp. 436–445. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44612-5 39

11. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nonde-
terministic finite automata over a fixed alphabet. Internat. J. Found. Comput. Sci.
19(3), 617–631 (2008)

12. Jirásková, G.: Deterministic blow-ups of minimal NFA’s. RAIRO-ITA 40(3), 485–
499 (2006)

13. Jirásková, G.: Concatenation of regular languages and descriptional complexity.
Theory Comput. Syst. 49(2), 306–318 (2011)

https://doi.org/10.1007/978-3-642-38771-5_8
https://doi.org/10.1007/978-3-642-38771-5_8
https://doi.org/10.1007/978-3-642-39310-5_26
https://doi.org/10.1007/978-3-319-08846-4_10
https://doi.org/10.1007/3-540-44612-5_39
https://doi.org/10.1007/3-540-44612-5_39

202 M. Holzer and M. Hospodár

14. Jirásková, G.: Magic numbers and ternary alphabet. Int. J. Found. Comput. Sci.
22(2), 331–344 (2011)

15. Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-free
languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp.
226–237. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08846-4 17

16. Jirásková, G., Szabari, A., Šebej, J.: The complexity of languages resulting from
the concatenation operation. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS
2016. LNCS, vol. 9777, pp. 153–167. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41114-9 12

17. Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kiber-
netiki 9, 321–326 (1963). (in Russian). German translation: Über den Vergleich
zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)

18. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of the 12th Annual Symposium on Switching and
Automata Theory, pp. 188–191. IEEE Computer Society Press (1971)

19. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. C–20, 1211–1219 (1971)

20. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-
3 21

21. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

22. Šebej, J.: Reversal on regular languages and descriptional complexity. In: Jur-
gensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 265–276. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39310-5 25

23. Yershov, Y.L.: On a conjecture of V. A. Uspenskii. Algebra i logika 1, 45–48 (1962).
(in Russian)

24. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

https://doi.org/10.1007/978-3-319-08846-4_17
https://doi.org/10.1007/978-3-319-41114-9_12
https://doi.org/10.1007/978-3-319-41114-9_12
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1007/978-3-642-39310-5_25

State Complexity of Pseudocatenation

Lila Kari and Timothy Ng(B)

School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{lila.kari,tim.ng}@uwaterloo.ca

Abstract. The state complexity of a regular language Lm is the number
m of states in a minimal deterministic finite automaton (DFA) accept-
ing Lm. The state complexity of a regularity-preserving binary operation
on regular languages is defined as the maximal state complexity of the
result of the operation, where the two operands range over all languages
of state complexities ≤m and ≤n, respectively. We consider the deter-
ministic and nondeterministic state complexity of pseudocatenation. The
pseudocatenation of two words x and y with respect to an antimorphic
involution θ is the set {xy, xθ(y)}. This operation was introduced in the
context of DNA computing as the generator of pseudopowers of words
(a pseudopower of a word u is a word in u{u, θ(u)}∗). We prove that
the state complexity of the pseudocatenation of languages Lm and Ln,
where m, n ≥ 3, is at most (m − 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1.
Moreover, for m, n ≥ 3 there exist languages Lm and Ln over an alpha-
bet of size 4, whose pseudocatenation meets the upper bound. We also
prove that the state complexity of the positive pseudocatenation closure
of a regular language Ln has an upper bound of 22n−1 −2n +1, and that
this bound can be reached, with the witness being a language over an
alphabet of size 4.

1 Introduction

In the context of DNA computing, the fact that one can consider a DNA strand
and its Watson-Crick complement “equivalent” from the point of view of their
information content led to several natural, as well as theoretically interesting,
extensions of notions in combinatorics of words and formal language theory
such as the pseudo-palindrome [21], pseudo-commutativity [18], or pseudoknot-
bordered words [19]. In this context, Watson-Crick complementarity has been
modelled mathematically by an antimorphic involution θ, i.e., a function that is
an antimorphism, θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗, and an involution, θ(θ(x)) = x,
∀x ∈ Σ∗. For example, in [10], a word w is called a θ-power or pseudopower
if it is of the form w ∈ u{u, θ(u)}∗, and the related notions of θ-periodicity
and θ-primitivity can be analogously defined. The static notions of the power

This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada Discovery Grant R2824A01, and a University of Waterloo School of
Computer Science Grant to L.K.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 203–214, 2019.
https://doi.org/10.1007/978-3-030-13435-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_15

204 L. Kari and T. Ng

and period of a word are intrinsically connected to the word operation that
dynamically generates that power. In the case of the classical notion of power
and period of a word, that operation is catenation, and in the case of θ-power and
θ-periodicity, that operation is θ-catenation, defined and studied in [17]. Here
we continue the investigation of θ-catenation, defined by x �θ y = {xy, xθ(y)},
by studying its state complexity.

The state complexity of a language operation is a complexity measure based
on the number of states of the machine that recognizes the result of the language
operation, expressed as a function of the size of the machines recognizing the
operand languages. Operational state complexity has been studied since the early
90s and continues to be an active area of research [12,26]. Recently, there have
been several investigations of state complexity for operations modelling biological
phenomena, such as hairpin completion [16], inversion [6], duplication [5], and
overlap assembly [3].

The state complexity of combinations of operations has also been studied
extensively, as many language operations can be expressed as a combination of
several basic operations. While one can obtain an upper bound for the state com-
plexity of multiple operations by simply composing the state complexities of each
operation, in many cases, the exact state complexity of the combination of oper-
ations is much lower than the bound obtained in this fashion [23]. Furthermore,
the exact state complexity of a combination of operations is undecidable [24],
thus motivating further study in this direction [1,2,7–9,13,14,20].

In this paper, we consider the deterministic and nondeterministic state com-
plexity of the pseudocatenation and positive pseudocatenation closure operations
with respect to an antimorphism θ. We note that for our constructions, θ need
not be an involution. We fix notation and definitions in Sect. 2. In Sect. 3, we
consider the state complexity of the pseudocatenation operation. In Sect. 4, we
consider the positive closure of a language with respect to pseudocatenation. We
conclude in Sect. 5.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ,
including the empty word, which we denote by ε. We denote the length of a word
w = a1a2 · · · an by |w| = n. The reversal of a word w = a1a2 · · · an is denoted by
wR = an · · · a2a1. If w = xyz, then we say that x is a prefix of w, y is a factor or
subword of w, and z is a suffix of w. For a word u ∈ Σ∗, we denote the number
of occurrences of u as a factor of w by |w|u.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, s, F) where
Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → Q, s ∈ Q
is the initial state, and F ⊂ Q is a set of final states. We extend the transition
function δ to a function Q × Σ∗ → Q in the usual way. A DFA A is complete
if δ is defined for all q ∈ Q and a ∈ Σ. We will also make use of the notation
q

w−→ q′ for δ(q, w) = q′ whenever convenient.
A word w ∈ Σ∗ is accepted by A if δ(s, w) ∈ F . The language recognized

by A is L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F}. A state q is reachable if there exists

State Complexity of Pseudocatenation 205

a string w ∈ Σ∗ such that δ(s, w) = q. Two states p and q of A are equivalent
if δ(p,w) ∈ F if and only if δ(q, w) ∈ F for every word w ∈ Σ∗. A DFA A is
minimal if each state q ∈ Q is reachable from the initial state and no two states
are equivalent. The state complexity of a regular language L, denoted sc(L) is
the number of states of the minimal complete DFA recognizing L [25].

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, I, F)
where Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → 2Q,
I ⊆ Q is a set of initial states, and F is a set of final states. The language
recognized by an NFA A is L(A) = {w ∈ Σ∗ | ⋃

q∈I δ(q, w) ∩ F 	= ∅}. The
nondeterministic state complexity of a regular language is the minimum number
of states for any NFA which accepts L. We denote the nondeterministic state
complexity of L by nsc(L).

A set of pair of strings S = {(x1, y1), . . . , (xm, ym)} with xi, yi ∈ Σ∗ for
1 ≤ i ≤ m is a fooling set for a regular language L if xiyi ∈ L for 1 ≤ i ≤ m and
for all 1 ≤ i < j ≤ m, either xiyj 	∈ L or xjyi 	∈ L. If L has a fooling set S, then
nsc(L) ≥ |S| [15].

Let θ : Σ∗ → Σ∗ be a mapping. We say θ is a morphism if for u, v ∈ Σ∗, we
have θ(uv) = θ(u)θ(v). We say θ is an antimorphism if we have θ(uv) = θ(v)θ(u).
The mapping θ is an involution if for all words u ∈ Σ∗, we have θ(θ(u)) = u.
For example, if Σ = {A,C,G, T} we can define Watson-Crick complementarity
for DNA as an antimorphic involution θ by θ(A) = T , θ(C) = G, θ(G) = C,
and θ(T) = A. Then the Watson-Crick complement of a DNA string w is given
by θ(w).

Definition 1. Let θ be an antimorphic involution and x, y ∈ Σ∗. We define the
θ-catenation operation �θ, also called pseudocatenation with respect to θ, by

x �θ y = {xy, xθ(y)}.

We can define θ-catenation for languages by

L1 �θ L2 = {xy, xθ(y) | x ∈ L1, y ∈ L2}.

This operation can be extended to an iterated variant by L�θ
0 = {ε}, L�θ

1 = L,
and L�θ

n = L�θ
n−1 �θ L. Then we can take the positive θ-catenation closure by

L�θ
+ =

⋃

i≥1

L�θ
i .

Although θ-catenation is defined for both morphisms and antimorphisms, we will
consider only the state complexity for antimorphisms. For morphic θ, many state
complexity results are the same as the state complexity of combined operations
studied previously. Furthermore, we note that the condition that θ be involutive
is not strictly necessary in our constructions.

We will make use of the following notation for the NFA recognizing θ(L(A))
for a given DFA A and antimorphism θ. Let A = (Q,Σ, δ, s, F) be a DFA. Let
P ⊆ Q be a set of states of Q. We denote by P = {q | q ∈ P}. Then define the

206 L. Kari and T. Ng

DFA A = (Q,Σ, δ−1, F , {s}), where the transition function δ−1 : Q × Σ → 2Q

is defined for q ∈ Q and a ∈ Σ by δ−1(q, a) = {q′ | δ(q′, θ(a)) = q}. In other
words, every transition of A is reversed and relabeled according to θ in A. Then
L(A) = θ(L(A)).

3 State Complexity of θ-Catenation

We will consider the state complexity of the θ-catenation of two regular lan-
guages. It was shown in [17] that the class of regular languages is closed under θ-
catenation. This is easy to see from the following expression for the θ-catenation
of L1 and L2, which follows directly from the definition.

Proposition 2. Let L1, L2 ⊆ Σ∗ be languages and θ an antimorphism. Then
L1 �θ L2 = L1(L2 ∪ θ(L2)).

First, we consider an NFA for recognizing L1 �θ L2 and its nondeterministic
state complexity.

Proposition 3. For m,n ≥ 1, let A and B be NFAs defined over an alphabet
Σ with m and n states and let θ be an antimorphism. Then there exists an NFA
that recognizes L(A) �θ L(B) with at most m + 2n states and this bound can be
reached.

The proof of Proposition 3 makes use of the following construction for
an NFA C that recognizes L(A) �θ L(B). Let A = (QA, Σ, δA, IA, FA) and
B = (QB , Σ, δB , IB , FB). We denote by B the NFA for θ(L(B)), defined
B = (QB , Σ, δ−1

B , FB , IB). We define an NFA C = (QC , Σ, δC , IC , FC) where
QC = QA ∪ QB ∪ QB , IC = IA, FC = FB ∪ IB, and the transition function
δC : QC × Σ → 2QC is defined for q ∈ QC and a ∈ Σ by

δC(q, a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δA(q, a) if q ∈ QA,

δB(q, a) if q ∈ QB ,

δ−1
B (q, a) if q ∈ QB ,

δA(q, a) ∪ IB ∪ FB if (δA(q, a) ∩ FA) 	= ∅.

From this construction, it follows that C has at most m + 2n states, and this
bound is also reachable.

We will now consider the deterministic state complexity of θ-catenation. We
note again that L(A) �θ L(B) = L(A)(L(B) ∪ θ(L(B))). By directly computing
the state complexity of the union L(B) ∪ θ(L(B)) and composing it with the
state complexity for the catenation L(A)(L(B) ∪ θ(L(B))), we obtain an upper
bound of m2n2n −2n2n−1 states for L(A)�θ L(B). This is clearly incorrect, since
determinizing the NFA from Proposition 3 gives at most 2m+2n states. Instead,
we apply a construction similar to the one from [7] to L(A)(L(B) ∪ θ(L(B))).

State Complexity of Pseudocatenation 207

Proposition 4. Let m,n ≥ 3, θ be an antimorphism, and A and B be DFAs
defined over an alphabet Σ with m and n states, respectively. Then there exists
a DFA that recognizes L(A) �θ L(B) with at most (m − 1)(22n − 2n+1 + 2) +
22n−2 − 2n−1 + 1 states.

Proof. We will define a DFA C that recognizes L(A) �θ L(B) given two DFAs
A and B. Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB). We define
the DFA C = (QC , Σ, δC , sC , FC) by the set of states

QC ={〈q, P,R〉 | q ∈ QA − FA, P ∈ 2QB − {∅}, R ∈ 2QB − {∅}}
∪ {〈q, ∅, ∅〉 | q ∈ QA − FA}
∪ {〈q, P ∪ {sB}, R ∪ FB〉 | q ∈ FA, P ∈ 2QB−{sB}, R ∈ 2QB−FB},

the initial state

sC =

{
〈sA, ∅, ∅〉 if sA 	∈ FA,

〈sA, {sB}, FB〉 otherwise,

the set of final states FC = {〈q, P,R〉 ∈ QC | (P ∪R)∩(FB ∪{sB}) 	= ∅}, and the
transition function δC(〈q, P,R〉, a) = 〈q′, P ′, R

′〉 for a ∈ Σ where q′ = δA(q, a),

P ′ =

{⋃
p∈P δB(p, a) ∪ {sB} if q′ ∈ FA,

⋃
p∈P δB(p, a) otherwise,

R
′
=

{
δ−1
B (R, a) ∪ FB if q′ ∈ FA,

δ−1
B (R, a) otherwise.

Informally, the DFA C operates as follows. The states of C are 3-tuples
〈q, P,R〉, where q is a state of A, and P and R are subsets of states of B. The
first component q denotes the current state of a computation on A, the second
component P denotes a set of states corresponding to the current states of com-
putations on B, and the third component R denotes a set of states corresponding
to the current states of computations on B, the NFA recognizing θ(L(B)).

Upon reading a symbol a ∈ Σ, the computations advance one step to
〈q′, P ′, R′〉. If q′ is a final state of A, then in addition to updating the sets
P and R′ to advance one step in computation, the initial state sB of B is added
to P ′ and the set of initial states FB of B, the NFA recognizing θ(L(B)), is
added to R

′
.

We will now consider the size of QC , the state set of C. Let kA = |FA| and
kB = |FB |. We have

|QC | = (m − kA)(2n − 1)(2n − 1) + (m − kA) + kA(2n−1)(2n−kb).

However, note that since B is a complete DFA, we have δ−1
B (QB , σ) = QB for

all σ ∈ Σ. Then for all states q ∈ QA, P ⊆ QB , and symbols σ ∈ Σ, we have
δC(〈q, P,QB〉, σ) = 〈q′, P ′, QB〉. Since s ∈ QB , any state of the form 〈q, P,QB〉
is a final state. Thus, for all states q ∈ QA, P ⊆ QB , and words w ∈ Σ∗, we have

208 L. Kari and T. Ng

δC(〈q, P,QB〉, w) ∈ FC . Therefore, all states with the third component R = QB

are equivalent and indistinguishable and we revise our upper bound down to

(m − kA)(2n − 1)(2n − 1) + (m − kA) + kA(2n−1)(2n−kB − 1) + 1.

This value is maximized when kA = 1 and kB = 1, giving a total of (m−1)(22n−
2n+1 + 2) + 22n−2 − 2n−1 + 1 states. ��

We will now show that this bound is reachable.

Lemma 5. For m,n ≥ 3, there exist an m-state DFA A, an n-state DFA B,
and an antimorphism θ over an alphabet of size 4 such that

sc(L(A) �θ L(B)) ≥ (m − 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1.

The main idea of the proof of Lemma5 is to demonstrate that the bound
from Proposition 4 is reachable by using the witness Wn(a, b, c, d) defined by
Brzozowski [2]. Let Σ = {a, b, c, d} and let θ : Σ∗ → Σ∗ be the Watson-Crick
antimorphism defined by

θ(a) = d θ(b) = c θ(c) = b θ(d) = a.

We set A = Wm(a, b, c, d) with m states and B = Wn(a, b, c, d) with n states.
Then we define B = Wn(a, b, c, d). That is, L(B) = θ(L(Wn(a, b, c, d))) =
L(Wn(d, c, b, a))R. The DFA W3(a, b, c, d) is shown in Fig. 1 and the DFA B
and the NFA B are shown in Fig. 2.

q0start q1 q2

b, c, d d c, d

a

c

a, b

b

a

Fig. 1. The DFA W3(a, b, c, d)

Proposition 4 and Lemma 5 are summarized in the following theorem.

Theorem 6. For m,n ≥ 3, regular languages Lm and Ln with sc(Lm) = m and
sc(Ln) = n, and antimorphism θ,

sc(Lm �θ Ln) ≤ (m − 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1

and this bound can be reached in the worst case.

Furthermore, observe that the witnesses used in Lemma5 belong to the same
family of DFAs Wn(a, b, c, d). Setting m = n gives us the same DFA and we
obtain a tight bound for the state complexity of the pseudosquare of L, L�θ

2 , via
Lemma 5.

State Complexity of Pseudocatenation 209

q0start q1 q2 · · · qn−2 qn−1

B b, c, d b, d b, c, d
c, d c, d

a

c

a a a a, b

b

a

qn−1start qn−2 · · · q2 q1 q0

B a, b a, b
a, b, c a, c a, b, c

c, d

c

d d d d

b

d

Fig. 2. The DFA B = Wn(a, b, c, d) and the NFA B = Wn(a, b, c, d)

Corollary 7. For n ≥ 3, let Ln be a regular language with sc(Ln) = n and let
θ be an antimorphism. Then

sc(L�θ
2

n) ≤ (n − 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1

and this bound can be reached in the worst case.

4 State Complexity of θ-Catenation Closure

In this section, we consider the θ-catenation closure of a regular language. This
is analogous to the positive Kleene closure, but with respect to θ-catenation. It
was shown in [17] that the positive closure of a regular language with respect to
θ-catenation is also regular. The following equality follows from the definition.

Proposition 8. Let L be a language and let θ be an antimorphism. Then the
positive θ-catenation closure is L�θ

+ = L(L ∪ θ(L))∗.

It is important to note that the positive closure with respect to θ-catenation
is not (L ∪ θ(L))+, as words w ∈ L�θ

+ have the form w = uv1v2 · · · vk−1 where
u ∈ L and vi ∈ L ∪ θ(L) for 1 ≤ i ≤ k [17], whereas (L ∪ θ(L))+ also contains
words of the form θ(u)v1v2 · · · vk−1.

We will first consider an NFA for recognizing L�θ
+ and its nondeterministic

state complexity.

Proposition 9. For n ≥ 1, let A be an NFA with n states defined over an alpha-
bet Σ and let θ be an antimorphism. Then there exists an NFA that recognizes
L(A)�θ

+ with at most 2n states. Furthermore, this bound can be reached in the
worst case.

210 L. Kari and T. Ng

The proof of Proposition 9 defines an NFA A′ that recognizes L(A)�θ
+ . Let

A = (Q,Σ, δ, I, F) be an n-state NFA. We denote by A the NFA recognizing
θ(L(A)), A = (Q,Σ, δ−1, F , I). We will define an NFA A′ which recognizes A�θ

+

with respect to an antimorphism θ by A′ = (Q′, Σ, δ′, I ′, F ′), where Q′ = Q∪Q,
I ′ = I, F ′ = F ∪ I, and the transition function δ′ : Q′ × Σ → 2Q′

is defined for
q ∈ Q′ and a ∈ Σ by

δ′(q, a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(q, a) if q ∈ Q,

δ−1(q, a) if q ∈ Q,

δ(q, a) ∪ I ∪ F if q ∈ Q and (δ(q, a) ∩ F) 	= ∅,

δ−1(q, a) ∪ I ∪ F if q ∈ Q and (δ−1(q, a) ∩ I) 	= ∅.

From this construction, it follows that A′ has at most 2n states, and this bound
is also reachable.

We will now consider the deterministic state complexity of the positive θ-
catenation closure. In [23], it was shown that the state complexity of (L1 ∪ L2)∗

was much lower than the straightforward upper bound of 2mn−1+2mn−2. Indeed,
the bound obtained from the NFA of Proposition 9 is already 22n states. We will
show that the state complexity of θ-catenation closure is still lower than this.

Proposition 10. For n ≥ 3, let A be a DFA defined over an alphabet Σ with
n states and let θ be an antimorphism. Then there exists a DFA that recognizes
L(A)�θ

+ with at most 22n−1 − 2n + 1 states.

Proof. We define a DFA A′ that recognizes L(A)�θ
+ given a DFA A. Let A =

(Q,Σ, δ, s, F). We define the DFA A′ = (Q′, Σ, δ′, s′, F ′) with the set of states

Q′ ={〈P,R〉 | ∅ 	= P ⊆ Q − F,R ⊆ Q − {s}}
∪ {〈P ∪ {s}, R ∪ F 〉 ⊆ Q × Q | (P ∪ R) ∩ (F ∪ {s}) 	= ∅},

the initial state

s′ =

{
〈{s}, ∅〉 if s 	∈ F,

〈{s}, F 〉 if s ∈ F,

the set of final states F ′ = {〈P,R〉 ⊆ Q × Q | (P ∪ R) ∩ (F ∪ {s}) 	= ∅}, and the
transition function for a state 〈P,R〉 and symbol a ∈ Σ with P ′ = δ(P, a) and
R

′
= δ−1(R, a) is defined by

δ′(〈P,R〉, a) =

{
〈P ′ ∪ {s}, R

′ ∪ F 〉 if (P ′ ∪ R
′
) ∩ (F ∪ {s}) 	= ∅,

〈P ′, R
′〉 otherwise.

Informally, DFA A′ operates by first simulating a computation of A, since by
definition, we have L(A)�θ

+ = L(A)(L(A) ∪ θ(L(A)))∗. Once the computation
reaches a final state of A, an initial state for A and A is added to the current
state set and the computation continues. Whenever the current state of A′ con-
tains a final state of A or A, the initial states of both machines are added. The

State Complexity of Pseudocatenation 211

computation continues until the input is read and accepts if and only if a final
state of A or A is contained in the state of A′ when the input has been read.

Now let us consider the state set Q′ of A′,

Q′ = Q1 ∪ Q2,

Q1 = {〈P,R〉 | ∅ 	= P ⊆ Q − F,R ⊆ Q − {s}},

Q2 = {〈P ∪ {s}, R ∪ F 〉 ⊆ Q × Q | (P ∪ R) ∩ (F ∪ {s}) 	= ∅}.

The size of Q′ will depend on k and whether or not s ∈ F . We will consider each
term. Let k = |F |.

First, Q1 is the set of states with components that do not contain any final
state of A or A. There are 2n−k − 1 nonempty subsets of Q − F and there are
2n−1 subsets of Q − {s}. This gives us |Q1| = (2n−k − 1)(2n−1).

Then, Q2 is the set of states of the form 〈P,R〉 with P ⊆ Q and R ⊆ Q such
that (P ∪ R) ∩ (F ∪ {s}) 	= ∅. That is at least one of a final state of A is in P or
s is in R. Then s ∈ P and F ⊆ R. This gives up to (2n−1)(2n−k) states.

This count may include states such that s ∈ P and F ⊆ R but (P ∪ R) ∩
(F ∪ {s}) = ∅, depending on whether or not s ∈ F . If s ∈ F , then there are no
such states, since s ∈ F and s ∈ P implies that (P ∪ R) ∩ (F ∪ {s}) 	= ∅.

However, if s 	∈ F , there are up to (2n−1−k)2 states 〈P,R〉 such that s ∈ P ,
F ⊆ R, and (P ∪ R) ∩ (F ∪ {s}) = ∅ which must be removed from the total,
resulting in at most (2n−1)(2n−k) − (2n−1−k)2 states when s 	∈ F .

Finally, we must account for states of the form 〈P,Q〉. Since A is a complete
DFA, we have δ−1(Q,σ) = Q for all σ ∈ Σ. Since s ∈ Q, we have 〈P,Q〉 for
all P ⊆ Q and therefore δ′(〈P,Q〉, w) ∈ F ′ for all P ⊆ Q and w ∈ Σ∗. Thus,
all such states are equivalent and indistinguishable. Since s ∈ Q, for all states
〈P,Q〉, we have s ∈ P and thus there are 2n−1 such states to be merged into a
single state.

Thus, in total, we have

|Q′| ≤
{

(2n−k − 1)(2n−1) + (2n−1)(2n−k) − 2n−1 + 1 if s ∈ F,

(2n−k − 1)(2n−1) + (2n−1)(2n−k) − (2n−1−k)2 − 2n−1 + 1 if s 	∈ F.

From this, we can see that the size of Q′ is maximized when k = 1 and s ∈ F .
Thus, Q′ has size at most (2n−1−1)2n−1+(2n−1)2−2n−1+1 = 22n−1−2n+1. ��
Lemma 11. Let n ≥ 3. Then there exists an n-state DFA A and an antimor-
phism θ over an alphabet of size 4 such that

sc(L(A)�θ
+) ≥ 22n−1 − 2n + 1.

To prove Lemma 11, we demonstrate that the upper bound from Propo-
sition 10 is reachable via the following witness. Let Σ = {a, b, c, d} and let
θ : Σ∗ → Σ∗ be the antimorphism defined by

θ(a) = b θ(b) = a θ(c) = d θ(d) = c.

212 L. Kari and T. Ng

0start 1 2 · · · n− 2 n− 1

A d b, d b, d
b, d b, d

a, b, c a, c a, c a, c a, c

a

c

0start 1 2 · · · n− 2 n− 1

A c a, c a, c
a, c a, c

a, b, d b, d b, d b, d b, d

b

d

Fig. 3. The DFA A and the NFA A

We define a DFA A, shown in Fig. 3 together with the NFA A which recognizes
the language θ(L(A)).

From Proposition 10 and Lemma 11, we can summarize our results in the
following theorem.

Theorem 12. For n ≥ 3, a regular language L with sc(L) = n, and an anti-
morphism θ,

sc(L�θ
+) ≤ 22n−1 − 2n + 1

and this bound can be reached in the worst case.

5 Conclusion

We have given tight bounds for the deterministic and nondeterministic state com-
plexity of pseudocatenation and positive pseudocatenation closure. The deter-
ministic state complexity bounds for each operation differ from those for the
corresponding classical operations, catenation and star, and the bounds derived
from combined operations. A comparison between the bounds is given in Table 1.

One question that arises is to consider variants of the pseudocatenation oper-
ation. The definition of �θ on two words u and v was defined by Kari and Kulka-
rni [17] to be the set comprising uv and uθ(v). This definition coincides with
θ-powers and θ-primitivity as defined by Czeizler et al. [10]. However, a defini-
tion of θ-catenation that incorporates θ(u)v also makes sense to consider from
the biological point of view, since it is the Watson-Crick complement of uθ(v).

State Complexity of Pseudocatenation 213

Table 1. A comparison of the deterministic state complexity for each operation

Operation State complexity

Lm �θ Ln (m − 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1 Theorem 6

LmLn m2n − 2n−1 [26]

Lm(Ln ∪ Lp) (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 [7]

L
�θ

2
n (n − 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1 Corollary 7

L2
n n2n − 2n−1 [22]

L
�θ

+
n 22n−1 − 2n + 1 Theorem 12

L∗
n 2n−1 + 2n−2 [26]

(Lm ∪ Ln)∗ 2m+n−1 − 2m−1 − 2n−1 + 1 [23]

There are also further questions considering the state complexity of the cur-
rent pseudocatenation operation �θ. We can consider the state complexity of
pseudocatenation for sub-regular language classes, such as finite languages. We
also noted earlier that as a result of our choice of witnesses in Lemma 5, we were
also able to obtain the state complexity for the pseudosquare L�θ

2 (Corollary 7).
Domaratzki and Okhotin [11] gave a tight state complexity bound for the cube
of a language L3, which was improved by Caron et al. [4]. Asymptotic state
complexity bounds for the kth power of a language Lk are also given in [11].
A natural next question to consider is the state complexity of pseudocubes and
pseudopowers with respect to θ.

References

1. Brzozowski, J., Liu, D.: Universal witnesses for state complexity of basic operations
combined with reversal. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982,
pp. 72–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39274-
0 8

2. Brzozowski, J., Liu, D.: Universal witnesses for state complexity of boolean oper-
ations and concatenation combined with star. In: Jurgensen, H., Reis, R. (eds.)
DCFS 2013. LNCS, vol. 8031, pp. 30–41. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39310-5 5

3. Brzozowski, J.A., Kari, L., Li, B., Szyku�la, M.: State complexity of overlap assem-
bly. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 109–120. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94812-6 10

4. Caron, P., Luque, J.G., Patrou, B.: State complexity of multiple catenation.
arXiv:1607.04031 (2016)

5. Cho, D.J., Han, Y.S., Kim, H., Palioudakis, A., Salomaa, K.: Duplications and
pseudo-duplications. Int. J. Unconv. Comput. 12(2–3), 157–168 (2016)

6. Cho, D.J., Han, Y.S., Ko, S.K., Salomaa, K.: State complexity of inversion opera-
tions. Theoret. Comput. Sci. 610, 2–12 (2016)

7. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:
catenation-union and catenation-intersection. Int. J. Found. Comput. Sci. 22(08),
1797–1812 (2011)

https://doi.org/10.1007/978-3-642-39274-0_8
https://doi.org/10.1007/978-3-642-39274-0_8
https://doi.org/10.1007/978-3-642-39310-5_5
https://doi.org/10.1007/978-3-642-39310-5_5
https://doi.org/10.1007/978-3-319-94812-6_10
http://arxiv.org/abs/1607.04031

214 L. Kari and T. Ng

8. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with
two basic operations. Theoret. Comput. Sci. 437, 82–102 (2012)

9. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:
catenation-star and catenation-reversal. Int. J. Found. Comput. Sci. 23(01), 51–66
(2012)

10. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret.
Comput. Sci. 411(3), 617–630 (2010)

11. Domaratzki, M., Okhotin, A.: State complexity of power. Theoret. Comput. Sci.
410(24–25), 2377–2392 (2009)

12. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Automata Lang. Comb. 21(4), 251–310 (2016)

13. Gao, Y., Yu, S.: State complexity of four combined operations composed of union,
intersection, star and reversal. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.)
DCFS 2011. LNCS, vol. 6808, pp. 158–171. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22600-7 13

14. Gao, Y., Yu, S.: State complexity of combined operations with union, intersection,
star and reversal. Fundamenta Informaticae 116, 79–92 (2012)

15. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inf. Process. Lett. 59(2), 75–77 (1996)

16. Kari, L., Konstantinidis, S., Losseva, E., Sosik, P., Thierrin, G.: A formal language
analysis of DNA hairpin structures. Fundamenta Informaticae 71, 453–475 (2006)

17. Kari, L., Kulkarni, M.: Generating the pseudo-powers of a word. J. Automata
Lang. Comb. 19(1–4), 157–171 (2014)

18. Kari, L., Mahalingam, K.: Watson-Crick conjugate and commutative words. In:
Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77962-9 29

19. Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput.
Syst. Sci. 75, 113–121 (2009)

20. Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language
operations combined with reversal. Inf. Comput. 206(9–10), 1178–1186 (2008)

21. de Luca, A., Luca, A.D.: Pseudopalindrome closure operators in free monoids.
Theoret. Comput. Sci. 362(1–3), 282–300 (2006)

22. Rampersad, N.: The state complexity of L2 and Lk. Inf. Process. Lett. 98(6),
231–234 (2006)

23. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oret. Comput. Sci. 383(2–3), 140–152 (2007)

24. Salomaa, A., Salomaa, K., Yu, S.: Undecidability of state complexity. Int. J. Com-
put. Math. 90(6), 1310–1320 (2013)

25. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-59136-5 2

26. Yu, S., Salomaa, K., Zhuang, Q.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

https://doi.org/10.1007/978-3-642-22600-7_13
https://doi.org/10.1007/978-3-642-22600-7_13
https://doi.org/10.1007/978-3-540-77962-9_29
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

Complexity of Regex Crosswords

Stephen Fenner(B) and Daniel Padé(B)

University of South Carolina, Columbia, SC 29201, USA
fenner@cse.sc.edu, pade@email.sc.edu

Abstract. In a regular expression crossword puzzle, one is given two
non-empty lists 〈〈R1, . . . , Rm〉 and 〈C1, . . . , Cn〉〉 over some alphabet,
and the challenge is to fill in an m × n grid of characters such that the
string formed by the ith row is in L(Ri) and the string in the jth column
is in L(Cj). We consider a restriction of this puzzle where all the Ri are
equal to one another and similarly the Cj . We consider a 2-player version
of this puzzle, showing it to be PSPACE-complete. Using a reduction
from 3SAT, we also give a new, simple proof of the known result that
the existence problem of a solution for the restricted (1-player) puzzle is
NP-complete.

Keywords: Complexity · Regular expressions · Regex crossword ·
Picture language · NP-complete

1 Introduction

Regular expression crossword puzzles (regex crosswords, for short) share some
traits in common with traditional crossword puzzles and with sudoku. One is
typically given two lists R1, . . . , Rm and C1, . . . , Cn of regular expressions label-
ing the rows and columns, respectively, of an m × n grid of blank squares. The
object is to fill in the squares with letters so that each row, read left to right as
a string, matches (i.e., is in the language denoted by) the corresponding regular
expression, and similarly for each column, read top to bottom. The solution itself
may have some additional property, e.g., spelling out a phrase or sentence in row
major order.

Regex crosswords have enjoyed some recent popularity, having been discussed
in several popular media sources [5,7], and thanks to some websites where people
can solve the puzzles online [1,2]. Some variants of the basic puzzle have also
been posed [3].

A natural complexity theoretic question to ask is: How hard is it to solve
a regex crossword in general?1 The folklore answer—easy to show and appar-
ently found by several people independently—is that it is NP-hard, and the
corresponding decision problem (“Does a solution exist?”) is NP-complete.

1 Glen Takahashi posted this question to Stack Exchange in 2012 [13], but it has been
asked by others independently.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 215–230, 2019.
https://doi.org/10.1007/978-3-030-13435-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_16

216 S. Fenner and D. Padé

In this paper, we consider two variations on the basic regex crossword puzzle:
(1) a restriction of the puzzle where all the row regexes R1, . . . , Rm are equal
and all the column regexes C1, . . . , Cn are equal; and (2) a 2-player game where
players take turns attempting to fill in successive rows and columns of the grid.
Variation (2) can also be restricted to having equal row regexes and equal column
regexes for the two players. These variants have corresponding decision problems:
Let RC be the solution existence problem for variation (1), RCG′ the first-
player-win problem for variation (2), and RCG the first-player-win problem for
the restricted version of (2) (see Sects. 3 and 4 for precise definitions). Our main
result is that RCG′ and RCG are both PSPACE-complete (see Sect. 4, below).
We give explicit polynomial reductions from TQBF to RCG′ and from RCG′

to RCG.
The NP-completeness of RC was shown in [8],2 but the polynomial reduction

used there was indirect and needlessly complicated for its purpose. As a warm-
up to our main result, we give a simple, straightforward polynomial reduction
from 3SAT to RC.

In the spirit of the Post Correspondence Problem in computability, our results
have the pedagogical benefit of showing the hardness of some decision problems
in automata theory that are simply stated and accessible to any undergraduate
theory student. The proofs given here are similarly accessible.

1.1 Connections to Other Work

Regex crossword techniques bear some similarity to results in cellular automata,
to the Cook-Levin theorem, and to results of Berger from the 1960s showing
the undecidability of tiling the plane with Wang tiles (the so-called “domino
problem” [6], which was the first proof that there exist finite tile sets that tile
the whole plane but only aperiodically).

The particular problems we study here are perhaps chiefly inspired by results
in the theory of two-dimensional languages (picture languages) from formal
language theory [10]. Given two regexes R and C for the rows and columns,
respectively, the unbounded (R,C)-crossword problem asks whether a solution
grid exists of any size. One can show that the recognizable picture languages
coincide exactly with the letter-to-letter projections of (R,C)-crossword solu-
tions [10, Theorem 8.6] (except that the empty picture may also be included in
the language). Recognizable picture languages can be defined in terms of finite
objects known as tiling systems [9] (cf. [10, Definition 7.2]), and given a tiling
system T , it is not hard to show that one can effectively find two regular expres-
sions R and C (over some alphabet) and a projection π that defines the same
picture language as T . The existence problem for recognizable picture languages
(“Given a tiling system, does it define a nonempty language?”) is known to be
undecidable ([10, Theorem 9.1]), and so, putting these results together, we get
that the existence problem for unbounded (R,C)-crosswords is undecidable as

2 In the same paper, a restriction of RC where the unique row and column regexes
are equal to each other was also shown NP-complete.

Complexity of Regex Crosswords 217

well. A much more direct reduction from the halting problem to unbounded
(R,C)-crossword existence was given in [8], where it was also shown that one
could even fix the column regex C once and for all, as well as restricting R and
C to be over a binary alphabet.

The unbounded regex crossword problem naturally assumes one regex R for
all rows and one regex C for all columns, since the number of rows and columns
is unspecified. This directly motivates us to impose similar restrictions on the
bounded regex crossword problems we study here, where the dimensions of the
grid are given as part of the input.

We give some basic concepts and definitions in Sect. 2. Section 3 gives our
polynomial reduction from 3SAT to RC. This reduction suggests the technique
we use to show our main results about 2-player crossword games in Sect. 4. We
give open problems in Sect. 5.

2 Preliminaries

We fix an alphabet Σ once and for all and assume it contains the symbols 0
and 1 at least. For the NP-completeness result of Sect. 3, one can assume that
Σ = {0, 1}. For the PSPACE-completeness result of Sect. 4, it suffices that
Σ = {0, 1, 2}.

2.1 3SAT

An instance of 3SAT is described by a Boolean formula ϕ over k variables
x1, . . . , xk, given in conjunctive normal form:

ϕ := Ci ∧ · · · ∧ Cd

where each Ci is a clause of three literals (each a variable or its negation) con-
nected by disjunctions:

Ci := �i,1 ∨ �i,2 ∨ �i,3

The question is, is ϕ true (is it satisfied) for some assignment of the variables.
This is the canonical complete problem for NP. In Sect. 3 we show that the
language RC—the language of (R,C)-crosswords—is NP-complete by giving
reduction from 3SAT.

2.2 TQBF

An instance of TQBF is described by a closed Boolean formula ϕ, given in
prenex normal form:

ϕ := ∃x0∀y0 · · · ∃xk−1∀yk−1∃xkϕ̃(x0, y0, . . . , xk−1, yk−1, xk) (1)

218 S. Fenner and D. Padé

where ϕ̃ is a quantifier-free Boolean formula which can be assumed to be in
conjunctive normal form with c clauses and 2k + 1 variables, for some positive c
and k.

The sentence ϕ is naturally viewed as a two-player game, where the players
alternate choosing truth values for the variables in order, the first player wishing
to make the formula ϕ̃ true and second player wishing to make it false. The
question to be answered is whether ϕ is true when the quantified variables range
over the Boolean values False and True.3 That is, whether the first player has
a winning strategy in the corresponding game.

As 3SAT is for NP, TQBF is the canonical complete problem for PSPACE.
In Sect. 4, RCG—the language of (R, C)-crossword games (defined below) with
a winning strategy for the first player—is PSPACE-complete by reduction from
TQBF.

3 (R, C)-Crosswords

For two given regexes R and C over Σ, an (R,C)-crossword solution is a two-
dimensional m by n grid of symbols from the alphabet. Interpreting rows and
columns as strings, each row must match R and each column must match C.

An (R,C)-crossword is represented as a 4-tuple 〈0m, 0n, R,C〉 where the
number of rows and columns are given in unary as m and n, and R and C are
row and column regexes over Σ (defined in the usual way, using the operators
∪, ‖, ∗, where ‖ or juxtaposition both indicate concatenation).

Definition 1. The language RC is the set of all (R,C)-crosswords for which
there exists an (R,C)-crossword solution of the given dimensions.

RC was shown to be NP-complete in [8] via an indirect, complicated reduc-
tion. In this section, we give a much more straightforward polynomial reduction
from 3SAT to RC.

3.1 The Reduction

Given a Boolean formula ϕ with k ≥ 1 variables and d clauses as defined
in Sect. 2.1 above (where we can assume d ≥ 3), we construct an instance
〈0d+1, 0k+d, R,C〉 of RC as follows: For 1 ≤ i ≤ d, we define ti to be the
regex

ti = 0i−110d−i = 0 · · ·0
︸ ︷︷ ︸

i−1

10 · · ·0
︸ ︷︷ ︸

d−i

.

3 More precisely, the question is whether the sentence ∃x0∀y0 · · · ∃xk−1∀yk−1∃xk

[ϕ̃(x0, y0, . . . , xk−1, yk−1, xk) = True] holds in the two-element Boolean algebra
({False,True}, ∧, ∨, ¬).

Complexity of Regex Crosswords 219

Then we define

S = 1d0∗

R =

(

d
⋃

i=1

tiRi

)

∪ S

C = 1 (0∗10∗) ∪ 0(0∗ ∪ 1∗)

where S is called the ‘spine,’ and for 1 ≤ i ≤ d, Ri is derived from the formula
ϕ as follows:

Ri = (ai,1 · · · ai,k) ∪ (bi,1 · · · bi,k) ∪ (ci,1 · · · ci,k)

where, for 1 ≤ j ≤ k,

ai,j =

⎧

⎨

⎩

1 if the first literal in the ith clause is xj

0 if the first literal in the ith clause is xj

(1 ∪ 0) otherwise

and bi,j , ci,j are set similarly according to the second and third literals in each
clause.

We show that ϕ is satisfiable iff an (R,C)-crossword solution exists.
First, assuming that ϕ is satisfiable, where 〈z1, . . . , zk〉 is a satisfying assign-

ment, then this sets up a d + 1 by d + k crossword solution of the following
form:

c1 c2 c3 . . . cd cd+1 . . . cd+k

r0 1 1 1 . . . 1 0 . . . 0

r1 1 0 0 . . . 0 z1 . . . zk

r2 0 1 0 . . . 0 z1 . . . zk

...
...

...
. . .

...
...

z1 . . . zk

rc 0 0 0 . . . 1 z1 . . . zk

Fig. 1. Solution

Here, the first row is the spine (matching S); the block on the left below
the spine is akin to an identity matrix; and the block on the right consists of
columns where each column is either all 1’s or all 0’s (save the first element,
which is always 0), according to each zi. An overview representation is shown
below:

220 S. Fenner and D. Padé

Spine

Calibration
Region

Clause
Verification

Where the spine is the string that matches S. The ‘clause verification region’
is determined by the satisfying assignment to ϕ, i.e., if zj is true in the satis-
fying assignment, then column cd+j will match the regex 01∗; otherwise it will
match 00∗.

By construction, it is clear that if ϕ is satisfiable, then the (R,C)-crossword
constructed above is solvable. In other words, there is a way to fill in the cross-
word such that all rows match the regular expression R, and all columns match
the regular expression C.

In fact, since the calibration region requires only one 1 per row and column,
the solution given in Fig. 1 is not the only valid one. It is easy to see that once
any solution is given, any rearranging of the (non-spine) rows gives another valid
solution. Due to this fact it is guaranteed that for each i, some row matches tiRi,
which is important for the converse below.

3.2 An (R, C)-Crossword Solution Guarantees ϕ Is Satisfiable

To complete the proof, it must be shown that if the crossword is solvable, this
implies that ϕ is satisfiable. We do this via a series of lemmas.

Here we assume an (R,C)-crossword solution exists with rows 〈r0, . . . , rd〉
and columns 〈c1, . . . , cd+k〉.

Observe that since each rj matches R, it must either start with d many 1’s
or else have exactly one 1 among its first d symbols.

Lemma 1. The string r0 matches S.

Proof. Assume not. Then r0 must match tiRi for some 1 ≤ i ≤ d. Fix such an
i. The picture below shows the case where r0 matches t2R2, i.e., r0 = 010 · · · :

c1 c2 c3 c4 · cd · ·
r0 0 1 0 0 · 0

...

From the definition of C, we see that ci must match 1(0∗10∗), that is, ci =
10j−110d−j for some 1 ≤ j ≤ d. The picture below shows the case where i = 2
and j = 2, that is, where ci = c2 = 10100 · · · 0:

Complexity of Regex Crosswords 221

c1 c2 c3 c4 · cd · ·
r0 0 1 0 0 · 0

r1 0

r2 1

r3 0

...
...

For rj , we have two cases, both leading to contradiction:

rj matches S: This requires that all of the first d columns other than ci match
01∗, which means rj′ starts with 1i−101d−i · · · for all j′ ≥ 1 such that j′ = j.
These rows do not match R.

rj matches tiRi, that is, rj = 0i−110d−i · · · : This requires that all of the first
d columns other than ci match 0∗, which means no rows other than rj and
r0 will match R, since they all start with 0d.

This proves the lemma.

By Lemma 1, the first d columns must match 1(0∗10∗); we call such columns
calibration columns.

Lemma 2. No row other than r0 matches S.

Proof. Again assume this not the case. By the previous lemma, r0 must match
S. Suppose rj also matches S for some j ≥ 1. Then C forces rj′ to start with d
many 0’s for all 1 ≤ j′ = j, because the calibration columns are only allowed a
single 1 below the spine. Thus none of these rj′ matches R.

Lemma 3. For any i, 1 ≤ i ≤ d, some row matches tiRi

Proof. By Lemmas 1 and 2, we have that r0 is the only row to match the spine
S. Since R = (

⋃d
i=1 tiRi)∪S, it follows that each of the other rows matches tiRi

for some i. For the purposes of contradiction, assume that there is some tiRi

not matched by any row. Then by the pigeonhole principle, there must be two
distinct rows rn and rm both matching t�R� for the same �. By the definition of
t�, the column c� will thus have at least two 1’s:

222 S. Fenner and D. Padé

c1 · c�−1 c� c�+1 · cd cd+1 ·
r0 1 · 1 1 1 · 1 ·
...

...

rn 0 · 0 1 0 · 0 ·
...

...

rm 0 · 0 1 0 · 0 ·
...

But then column c� does not match C. This completes the proof.

Lemma 4. ϕ is satisfiable.

Proof. Because of the spine in the first row, note that for 1 ≤ j ≤ k, cd+j

matches either 01∗ or 00∗. Set

zj =
{

1 if cd+j matches 01∗,
0 if cd+j matches 00∗.

We show that 〈z1, . . . , zk〉 is a satisfying truth assignment for ϕ. Consider the
ith clause Ci of ϕ. By Lemma 3, some non-spine row matches tiRi. Let r be the
suffix of that row obtained by removing its first d symbols. Then r matches either
ai,1 · · · ai,k, bi,1 · · · bi,k, or ci,1 · · · ci,k. Suppose r matches ai,1 · · · ai,k (the other
two cases are handled similarly). Let xj be the variable mentioned by the first
literal �i,1 of Ci. If �i,1 = xj , then ai,j = 1, whence r has a 1 as its jth symbol,
whence cd+j matches 01∗, whence zj = 1, which makes �i,1 true, satisfying Ci.
Similarly, if �i,1 = xj , then zj = 0, also satisfying Ci.

Since i was arbitrary, we have that ϕ is satisfied by 〈z1, . . . , zk〉.

4 (R, C)-Crossword Games

For two given regexes R and C over Σ, an (R,C)-game is a two-player combina-
torial game that can be thought of as follows: we start with a two-dimensional
grid X with m rows and n columns (m and n are positive integers). X is initially
empty. Player 1, who we call Rose, fills in the first row of X with symbols from
Σ to form a string matching R.

Player 2, who we call Colin, responds by filling the remainder of the first
column of X with symbols from Σ so that the entire column matches C. Rose
then fills the remainder of the second row so that it matches R, then Colin the

Complexity of Regex Crosswords 223

remainder of the second column to match C, etc. The first player unable to fill
a row (respectively, column) in this way loses, and the other player wins.4

We represent an (R,C)-game as a 4-tuple 〈0m, 0n, R,C〉, where m and n are
positive integers (the number of rows and columns of the grid, respectively), and
R and C are the corresponding regexes over Σ (defined in the usual way, using
the operators ∪, ‖, ∗).

Note that the numbers m and n are given in unary.

Definition 2. The language RCG is the set of all (R,C)-games where Rose
has a winning strategy.

4.1 RCG ∈ PSPACE

It is straightforward to observe that RCG ∈ PSPACE. This follows from the
properties of (R,C)-games: Given an instance of RCG of size N = m · n,

– all game positions are representable by strings of polynomial length (in N),
– any play of the game lasts for at most polynomially many turns, and
– given any game position, whether a given next move is legal can be determined

in polynomial space (polynomial time, in fact).

For this it is crucial that the dimensions of the board be given in unary. If
the dimensions were given in binary, then we conjecture that the corresponding
language would be complete for EXPSPACE. Also note that the regex matching
problem (“Given a regex E and string w, does w match E?”) is in P.

4.2 Hardness of RCG

Here is the main result of our paper.

Theorem 1. TQBF ≤p RCG.

To prove Theorem 1, our main result, we first consider a variant of RCG,
where each row and each column may correspond to a different regex, that is, the
input is a pair 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉 of lists of regexes. Rose and Colin
alternate turns as before, but on her ith turn, Rose must fill the remainder of
the ith row so that it matches Ri, and similarly, on his jth turn, Colin must fill
the remainder of the jth column so that it matches Cj . Call this variant RCG′.

We show our main result in two steps: in Lemma 5 we show how to poly-
nomially reduce TQBF to RCG′; then we give a polynomial reduction from
RCG′ to RCG (Theorem 2 below). In using RCG′, the goal is to first consider
a ‘simpler’ game to verify that there is a correspondence between the formulæ
in TQBF and the possible games in RCG.

4 For the last move of the game, Rose or Colin may encounter a row or column,
respectively, that is already completely filled in. In this case, she or he wins if and
only if the row or column matches the corresponding regular expression.

224 S. Fenner and D. Padé

Lemma 5. TQBF ≤p RCG′.

Proof. Given an instance ϕ of TQBF as in Eq. (1) of Sect. 2.2 with c clauses and
2k+1 variables, we construct an equivalent instance of RCG′ with m := k+c+1
rows and n := k + c columns. The intersection of the first k + 1 rows and first
k+1 columns we will call the variable region. There are c rows below this region,
one for each clause of ϕ̃, which we collectively call the clause region. The regular
expressions for each player in RCG′ are over the alphabet {0, 1} and are defined
as follows (with an explanation afterward): for 1 ≤ i ≤ m, we let

Ri :=
{

(0 ∪ 1)∗0c−1 if 1 ≤ i ≤ k + 1,
(0 ∪ 1)∗1(0 ∪ 1)∗0c−1 if k + 2 ≤ i ≤ m,

and for all 1 ≤ i ≤ n, we let

Ci :=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

⋃

a,b∈{0,1}
(0 ∪ 1)i−1

ab(0 ∪ 1)k−i‖Siab if 1 ≤ i ≤ k,
⋃

a∈{0,1}
(0 ∪ 1)k

a‖Ta if i = k + 1,

0∗ if k + 2 ≤ i ≤ n,

where given 1 ≤ i ≤ k + 1, and a, b ∈ {0,1}, the regexes Siab and Ta are defined
as follows: First, for 1 ≤ j ≤ c let

uj :=

⎧

⎨

⎩

0 if xi−1 occurs negatively in the jth clause,
1 if xi−1 occurs positively in the jth clause,
⊥ if xi−1 does not occur in the jth clause.

vj :=

⎧

⎨

⎩

0 if yi−1 occurs negatively in the jth clause,
1 if yi−1 occurs positively in the jth clause,
⊥ if yi−1 does not occur in the jth clause.

Now for 1 ≤ j ≤ c, define

dj :=
{

1 if uj = a or vj = b,
0 otherwise. ej :=

{

1 if uj = a,
0 otherwise.

Finally, we let Siab := d1‖ · · · ‖dn and Ta := e1‖ · · · ‖en.
Each of the first k + 1 rows and columns corresponds to the truth value (0

or 1) of one or two particular variables in the original formula, as depicted in
Fig. 2. The remainder of the rows (c of them) correspond to the clauses of ϕ.

Here is how this RCG′ game reflects the original instance of TQBF viewed
as a game. When Rose plays the ith row (for 1 ≤ i ≤ k +1) she is able to choose
the truth value of xi−1 by placing a 0 or 1 in the corresponding square in Fig. 2
(Rose can play any binary string in the remainder of her row, because Ri =
(0 ∪ 1)∗). Then when Colin plays the remainder of the ith column according to
Ci, he can similarly choose the truth value of yi−1 by placing a 0 or 1 in the
corresponding square. However, because of the Siab component of Ci, Colin is

Complexity of Regex Crosswords 225

x0 ? ? . ?

y0 x1 ? . . . ?

? y1 x2 . . . ?

...
. . .

. . .
. . .

...

? ? . yk−1 xk

Fig. 2. The layout of the variable region. The question marks represent either 0 or 1.

forced to then place a 1 in each of the last c positions corresponding to a clause
that is satisfied by the truth settings of these two variables. (The minor exception
is the (k + 1)st column, where there is only the variable xk to consider.)

Also note that in order for Rose to complete the board, there must be a 1 in
at least one of the first k +1 positions in every row of the clause region. That is,
Rose can win just when the chosen truth values of the variables satisfy all clauses
of ϕ̃, making the two games equivalent. Our construction is clearly polynomial
time, which finishes the proof.

4.3 Constraining the Players

Theorem 2. RCG′ ≤p RCG.

The rest of this section is a proof of Theorem 2. To reduce from RCG′ to RCG
we need to provide a method to consolidate the families of regular expressions
into one regex per player. Here, we present a generic construction that forces
the players to play in order, which can be applied to any RCG′ game—forcing
each player to play their families of regexes in index order.

Given an arbitrary instance G := 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉 of RCG′,
we construct an equivalent instance of RCG. Our construction requires the
alphabet Σ to contain a third symbol “2” that is not part of any string matching
any of the Ri or Ci. We currently do not know how to remove this requirement.
We can assume that the given RCG′ grid is square, i.e., m = n: Suppose this is
not the case; for example, suppose m < n. Then we can pad the grid with n−m
bottom rows by

– concatenating each Ci with 0n−m on the right, and
– defining Ri := 1∗ for m < i ≤ n,

yielding an evidently equivalent n×n game. We can do something similar if m >
n. The instance of RCG we construct from G will then be a (2n + 1) × (2n + 1)
game H := 〈02n+1, 02n+1, R,C〉. We may also assume that n ≥ 2.

The regular expressions R and C we construct for the respective players are
given below, again with explanations afterwards (Fig. 3):

226 S. Fenner and D. Padé

R := 210∗ ∪ (2)
n−2⋃

i=0

0i130n−i−2

I

‖0i10n−i−1

II

∪ (3)

00n−211
Ir

‖0n−11
II

∪ (4)

n⋃

i=1

0i10n−i

III

‖Ri (5)

(a) Rose’s regular expression. Regex (2) is the
‘spine’, while regexes (3–4) define the ‘calibra-
tion’ region (I, II). Regex (5) continues calibra-
tion in region III while also including the row
regexes from G.

C := 210∗ ∪ (6)
n−2⋃

i=0

0i130n−i−2

I

‖0i10n−i−1

III

∪ (7)

00n−211
Ic

‖0n−11
III

∪ (8)

n⋃

i=1

0i10n−i

II

‖Ci ∪ (9)

(0 ∪ 1 ∪ 100 ∪ 00∗10)2∗ (10)

(b) Colin’s regular expression. Regex (6) is the
‘spine’, regexes (7–8) are the calibration region
(I and III), regex (9) continues calibration in re-
gion II while also including the column regexes
from G, and regex (10) is a ‘bomb’ to punish
Rose for cheating.

Fig. 3. The regular expressions wrapping games in RCG. Regexes are bracketed with
the regions they describe, illustrated in Fig. 4a.

Figure 4a illustrates how H ‘wraps’ around the game G: players first fill in
the spine, then regions I, II, and III before simulating the game G in the lower
right square (light grey).

I

Ir

Ic

III IV

II

Sp
in
e

Spine

(a) Regions of the board

= 0

= 2

= 1

(b) An example of normal play

Fig. 4. Regions to constrain the players. Each ‘block’ is a n × n square.

4.4 Normal Play

By a round, we mean a pair of consecutive turns, starting with Rose. We index
the rounds starting with round 0. Normal play is in three stages:

Complexity of Regex Crosswords 227

–Spine: In round 0, both players play the spine, i.e., a string matching 210∗.
–Calibration: In round i, where 1 ≤ i ≤ n, Rose and Colin each play a ‘calibra-

tion string,’ i.e. either the string matching 0i130n−i−2‖0i10n−i−1 (if i < n)
or 00n−211‖0n−11 (if i = n).

–Simulation: Rose and Colin now simulate the given RCG′ game: In round (n+
i), for 1 ≤ i ≤ n, Rose plays a string matching 0i10n−i−1‖Ri (if she can),
and Colin plays a string matching 0i10n−i−1‖Ci (if he can).

Figure 4b illustrates the state of the grid after round n of normal play (here,
n = 16). If either player deviates from normal play, we say that the first player
to do so is cheating. The next lemmas show that Colin cannot cheat, and if
Rose cheats, then Colin can force her to lose in a constant number of rounds by
playing a bomb, i.e., a string matching (0 ∪ 1 ∪ 100 ∪ 00∗10)2∗, once or twice.

Lemma 6. In round 0, if Rose does not play the spine, then Colin can win;
otherwise, Colin must also play the spine.

Proof. If Rose does not play 210∗, she has two choices for the first character. If
she chooses 0, say, then Colin has a quick kill by playing a bomb (see Fig. 5),
with similar results if she cheats with a 1.

In either case,Rose would quickly lose. If Rose does play 210∗ on her first
turn, Colin must play a string prefixed with 2, his only option matching the
regex 210∗.

Lemma 7. After normal play through round (i − 1) for 1 ≤ i ≤ n, Rose prefers
regex (3) to regex (5) in round i.

Proof. If i = 1, then Rose must play a string with prefix 1, and so she must
play a string matching regex (3). Now suppose i ≥ 2, and consider the following
portion of the board at the start of round i when both players have been playing
normally:

1 1 0 0

1 1 1 0

0 1

0 0

Rose has a choice of regexes (3) or (5), as each can match a string pre-
fixed by 0i−11. Say Rose chooses regex (5), thus playing a string matching
0i−110n−i‖Ri−1. Colin can then respond with a bomb:

228 S. Fenner and D. Padé

0:

0 ? ? ? 0 ? ? ?

2

2

2

1:

0 ? ? ?

2 1 0 0

2

2

0 1 ? ?

2 1 0 0

2 1

2 0

2:

0 1 ? ?

2 1 0 0

2 1 0 0

2 0

0 1 1 ?

2 1 0 0

2 1 0 0

2 0 2

Fig. 5. Each round when Rose cheats with 0 · · · in her first move and Colin plays a
bomb. Note that Rose has no regex to match the prefix 20. We replace a ‘?’ with a
1 in round 1 to show the worst case, where Colin must survive through round 2 (not
required in the 0 case).

1 1 0 0

1 1 1 0

0 1 0 0

0 0

(a) Rose plays
regex (5)

1 1 0 0

1 1 1 0

0 1 0 0

0 0 2

(b) Colin plays
regex (10), Rose loses

Rose cannot then play any string with prefix 0i2, so she loses in round (i+1).

Lemma 8. Colin cannot cheat in rounds 1 through n.

Proof. By Lemma 6, we begin round 1 with the spine having been played by both
players. Rose is then forced to play a string prefixed with 1, the only matching
regex being regex (3) with i = 0: 1110n−2‖10n−1. From this point on through

Complexity of Regex Crosswords 229

round n, assuming Rose plays normally, Colin will be faced with prefix 0i−111
in round i, and thus must play a string matching regex (7) or (8), i.e., play
normally.

The preceding lemmas show that normal play is optimal for both players
(even required for Colin) through round n. Thus we can assume normal play
through round n, filling regions II and III of the grid with 1’s along their diago-
nals and 0’s elsewhere (as with the identity matrix).

Lemma 9. Assume normal play through round n. For 1 ≤ i ≤ n, in round (n+
i), Rose must play a string matching 0i10n−i‖Ri and Colin must play a string
matching 0i10n−i‖Ci.

Proof. In round (n + i), Rose and Colin are both faced with prefix 0i10n−i, and
the only regexes that this matches are the respective regexes given above for
Rose and Colin.

In rounds (n + 1) through 2n, the players are essentially playing the game G
in region IV, so the winner of H is the winner of G. This completes the proof of
Theorem 2.

5 Open Problems

The most immediate question arising from our work is whether RCG is
PSPACE-hard restricted to a binary alphabet. Our proof shows only that it is
PSPACE-hard for a ternary alphabet. Doing without the third symbol “2” in
the alphabet currently seems like a daunting task, despite the fact that under
normal play, that symbol appears only once in the upper left-hand corner.

Another question is whether we still get PSPACE-hardness if we restrict the
regexes R and C to be equal to each other. If one can show PSPACE-hardness
for RCG′ restricted so that Ri = Ci for all i, then it may be easy to get R = C
for the constructed instance of RCG, since these two latter regexes are close to
being equal anyway.

Acknowledgments. We would like to thank Thomas Thierauf for several interesting
discussions on this topic and to Joshua Cooper for finding for us a particularly chal-
lenging and fun regex crossword puzzle. We are also grateful to Klaus-Jörn Lange for
suggesting the connection between our work and the theory of picture languages.

References

1. http://regexcrossword.com
2. http://www.regexcrosswords.com
3. MIT Mystery Hunt. http://www.mit.edu/∼puzzle
4. Royal dinner. http://regexcrossword.com/challenges/experienced/puzzles/1
5. Slashdot discussion, February 2013. http://games.slashdot.org/story/13/02/13/

2346253/can-you-do-the-regular-expression-crossword

http://regexcrossword.com
http://www.regexcrosswords.com
http://www.mit.edu/~puzzle
http://regexcrossword.com/challenges/experienced/puzzles/1
http://games.slashdot.org/story/13/02/13/2346253/can-you-do-the-regular-expression-crossword
http://games.slashdot.org/story/13/02/13/2346253/can-you-do-the-regular-expression-crossword

230 S. Fenner and D. Padé

6. Berger, R.: The undecidability of the domino problem. No. 66 in memoirs of
the American Mathematical Society. American Mathematical Society, Providence,
Rhode Island (1966). mR0216954

7. Black, L.: Can you do the regular expression crossword? I programmer,
February 2013. http://www.i-programmer.info/news/144-graphics-and-games/
5450-can-you-do-the-regular-expression-crossword.html

8. Fenner, S.: The complexity of some regex crossword problems (2014)
9. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern

Recogn. Artif. Intell. 31–46 (1992)
10. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-

maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Hei-
delberg (1997). https://doi.org/10.1007/978-3-642-59126-6 4. Chap. 96

11. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theor.
Comput. Sci. 178(1–2), 275–283 (1997). Note

12. Rosenfeld, A., Rheinboldt, W.: Picture Languages: Formal Models for Picture
Recognition. Computer Science and Applied Mathematics. Elsevier Inc., Academic
Press Inc., New York (1979)

13. Takahashi, G.: Are regex crosswords NP-hard? cS Stack Exchange question 30143,
answered by FrankW, September 2014. http://cs.stackexchange.com/questions/
30143/are-regex-crosswords-np-hard

14. Takahashi, G.: Are regex crosswords NP-hard? CS Stack Exchange question 30143,
answered by FrankW (2014). http://cs.stackexchange.com/questions/30143/are-
regex-crosswords-np-hard

http://www.i-programmer.info/news/144-graphics-and-games/5450-can-you-do-the-regular-expression-crossword.html
http://www.i-programmer.info/news/144-graphics-and-games/5450-can-you-do-the-regular-expression-crossword.html
https://doi.org/10.1007/978-3-642-59126-6_4
http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard
http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard
http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard
http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard

Grammars

Generalized Predictive Shift-Reduce
Parsing for Hyperedge Replacement

Graph Grammars

Berthold Hoffmann1 and Mark Minas2(B)

1 Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

2 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. Parsing for graph grammars based on hyperedge replacement
(HR) is in general NP-hard, even for a particular grammar. The recently
developed predictive shift-reduce (PSR) parsing is efficient, but restricted
to a subclass of unambiguous HR grammars. We have implemented a
generalized PSR parsing algorithm that applies to all HR grammars,
and pursues severals parses in parallel whenever decision conflicts occur.
We compare GPSR parsers with the Cocke-Younger-Kasami parser and
show that a GPSR parser, despite its exponential worst-case complexity,
can be much faster.

Keywords: Hyperedge replacement grammar · Graph parsing

1 Introduction

It is well known that parsing for graph grammars based on hyperedge replace-
ment (HR) is in general NP-hard, even for a particular grammar [8]. In ear-
lier work [6], we have devised predictive shift-reduce parsing (PSR), which lifts
Knuth’s LR string parsing [9] to graphs, is efficient, but unfortunately restricted
to a subclass of unambiguous HR grammars. This makes it unsuitable for appli-
cations in natural language processing (NLP) where grammars are often ambigu-
ous. So we extend the PSR algorithm to arbitrary HR grammars in this paper:
Just like Tomita’s generalized LR string parser [12], the generalized PSR parser
pursues all possible parses of a graph in parallel whenever ambiguity occurs. We
describe the implementation of the generalized PSR parser by Mark Minas,1 and
compare its efficiency with the Cocke-Younger-Kasami parser for arbitrary HR
grammars [11].

The remainder of this paper is structured as follows. After recalling HR
grammars in Sect. 2 and PSR parsing in Sect. 3, we introduce generalized PSR
parsing in Sect. 4, and compare its performance with CYK parsing in Sect. 5.

1 In the graph parser generator Grappa, available at www.unibw.de/inf2/grappa.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 233–245, 2019.
https://doi.org/10.1007/978-3-030-13435-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_17&domain=pdf
www.unibw.de/inf2/grappa
https://www.unibw.de/inf2/grappa/
https://doi.org/10.1007/978-3-030-13435-8_17

234 B. Hoffmann and M. Minas

Due to lack of space, our presentation is driven by a small example—a grammar
for series-parallel graphs—that exhibits many peculiarities of generalized PSR
parsing. In Sect. 6, we conclude by indicating related and future work.

2 Graph Grammars Based on Hyperedge Replacement

Throughout the paper, we assume that X is a global, countably infinite supply
of nodes, and that Σ is a finite set of symbols that comes with an arity function
arity : Σ → N, and is partitioned into disjoint subsets N of nonterminals and T
of terminals.

We represent hypergraphs as ordered sequences of edge literals, where each
literal represents an edge with its attached nodes. This is convenient as we shall
derive (and parse) the edges of a graph in a fixed order.

Definition 1 (Hypergraph). For a symbol a ∈ Σ and k = arity(a) pairwise
distinct nodes x1, . . . , xk ∈ X, a = a(x1, . . . , xk) represents a hyperedge that is
labeled with a and attached to x1, . . . , xk. EΣ denotes the set of hyperedges (over
Σ).

A hypergraph 〈γ, V 〉 consists of a sequence γ = e1 · · · en ∈ E∗
Σ of hyperedges

and a finite set V ⊆ X of nodes that contains all nodes attached to the hyper-
edges of γ. GΣ denotes the set of all hypergraphs (over Σ).

In the following, we usually call hypergraphs just graphs and hyperedges just
edges. Moreover, we denote a graph just by its edges γ, and refer to its nodes
by Vγ .2 The “concatenation” of two graphs α, β ∈ GΣ yields a graph γ = αβ
with nodes Vγ = Vα ∪ Vβ . Two graphs γ and γ′ are equivalent, written γ �� γ′, if
Vγ = Vγ′ and γ is a permutation of γ′.

Note that we order the edges of a graph in rules and derivations. However,
the relation �� makes graphs with permuted edges equivalent, like in ordinary
definitions of graphs. Our parsers will make sure that equivalent graphs are
always processed in the same way.

An injective function � : X → X is called a renaming, and γ� denotes the
graph obtained by replacing all nodes in γ (and in Vγ) according to �. A hyperedge
replacement rule r = (A → α) (rule for short) has a nonterminal edge A ∈ EN
as its left-hand side, and a graph α ∈ GΣ with VA ⊆ Vα as its right-hand side.

Consider a graph γ = βĀβ̄ ∈ GΣ with a nonterminal edge Ā and a rule
r = (A → α). A renaming μ : X → X is a match (of r in γ) if Aμ = Ā and
if Vγ ∩ Vαµ ⊆ VAµ .3 A match μ of r derives γ to the graph γ′ = βαμβ̄. This is
denoted as γ ⇒r,μ γ′ . If R is a finite set of rules, we write γ ⇒R γ′ if γ ⇒r,μ γ′

for some match μ of some rule r ∈ R.

Definition 2 (HR Grammar). A hyperedge replacement grammar Γ =
(Σ, T ,R, Z) (HR grammar for short) consists of symbols Σ with terminals
2 Vγ may contain isolated nodes that are not attached to any edge in γ.
3 I.e., a match μ makes sure that the nodes of αμ that do not occur in Ā = Aμ do not

collide with the other nodes in γ.

Generalized Predictive Shift-Reduce Parsing for HR Grammars 235

Z ⇒
0

1 4
G ⇒

3

1 3 4
G G ⇒

2

1 3 4G

G
G ⇒

3

1

2

3 4G

G G
G

4⇒
1

1

2

3 4

Fig. 1. A derivation of the graph e(1, 3) e(1, 2) e(2, 3) e(3, 4). Nodes are drawn as circles,
nonterminal edges as boxes around their label, with lines to their attached nodes, and
terminal edges as arrows from their first to their second attached node; since e is the
only terminal label, we omitted it in the terminal graph.

T ⊆ Σ as assumed above, a finite set R of rules, and a start graph Z = Z()
with Z ∈ N of arity 0. Γ generates the language

L(Γ) = {g′ ∈ GT | Z ⇒∗
R g, g′ �� g}.

In the following, we simply write ⇒ and ⇒∗ because the rule set R in question
will always be clear from the context.

Example 1 (A HR Grammar for Series-Parallel Graphs). The following rules

Z() →
0
G(x, y) G(x, y) →

1
e(x, y)

G(x, y) →
2
G(x, y)G(x, y) G(x, y) →

3
G(x, z)G(z, y)

generate series-parallel graphs [8, p. 99]; see Fig. 1 for a derivation with graphs
drawn as diagrams.

3 Predictive Shift-Reduce Parsing

The article [6] gives detailed definitions and correctness proofs for PSR parsing.
Here we recall the concepts only so far that we can describe its generalization in
the next section.

A PSR parser attempts to construct a derivation by reading the edges of a
given input graph one after the other.4 However, the parser must not assume
that the edges of the input graph come in the same order as in a derivation. E.g.,
when constructing the derivation in Fig. 1, it must also accept an input graph
e(2, 3) e(1, 2) e(1, 3) e(3, 4) where the edges are permuted.

Before parsing starts, a procedure described in [5, Sect. 4] analyzes the gram-
mar for the unique start node property, by computing the possible incidences of
all nodes created by a grammar. The unique start nodes have to be matched by
some nodes in the start rule of the grammar, thus determining where parsing
begins. For our example, the procedure detects that every series-parallel graph
has a unique root (without ingoing edges), and that the node x in the start rule

4 We silently assume that input graphs do not have isolated nodes. This is no real
restriction as one can add special edges to such nodes.

236 B. Hoffmann and M. Minas

Z() → G(x, y) must be bound to the root of any input graph.5 If the input graph
has no root, or more than one, it cannot be series-parallel, so that parsing fails
immediately.

A PSR parser is a push-down automaton that is controlled by a characteristic
finite automaton (CFA). The stack of the PSR parser consists of states of the
CFA. The parser makes sure that the sequence of states on its stack always
describes a valid walk through its CFA. In order to do so, the parser generator
computes a parsing table with processing instructions that control the parser.

Table 1 shows the parsing table for our example of series-parallel graphs. It
has been generated by the graph parser generator Grappa (see footnote 1), using
the constructions described in [6]. The rows of the table correspond to states of
the CFA. Each of these states has a certain number of parameters. For instance,
Q2(p, q) has two parameters p and q. Parameters remain abstract in the CFA
and in the parsing table; only the parser will bind them to nodes of the input
graph, and store them in concrete states on its stack.

When the parser starts, nothing of its input graph has been read yet, and its
stack consists of a single concrete state Q0, where its parameter p is bound to
the unique start node, namely the root of the input graph.

The columns of the table correspond to terminal and nonterminal edges as
well as the end-of-input marker $. Column e(x, y) in Table 1 contains all actions
that can be taken by the parser if the input graph contains an edge e(x, y) that
is still unread. Column $ contains the actions to be done if the input graph has
been read completely. We will come to column G(x, y) later.

The parser looks up its next action in the parsing table by inspecting the top-
most state on its stack and all unread edges of the input graph. For illustration,
let us assume that the parser has state Q3 on top of its stack, with its parameters
p and q being bound (by an appropriate renaming σ) to the input graph nodes
pσ and qσ, resp., so that the parser must look into row Q3(p, q). If the input
graph contains an unread e-labeled edge, the entry in column e(x, y) applies. The
corresponding table entry contains two possible actions, a shift and a reduce.

The shift operation can be selected if the input graph contains an unread
e-labeled edge e that connects pσ, either with qσ, or with any node that has
not yet occurred in the parse, indicated by “−” in the condition. If this shift
operation is selected, it marks e as read and pushes a new concrete state Q1

onto the stack, where the parameters p and q of Q1 are bound to the source and
the target node of e.

The reduce operation does not require any further condition to be satisfied.
It consists of two steps: First, it pops as many states from the top of the stack as
the right-hand side of the rule has edges. In our example “reduce 2, G(p, q)” refers
to rule 2, with two edges in its right-hand side. Second, the reduce operation
looks up the row for the new top-most state of the stack, selects the operation for

5 Actually, series-parallel graphs do also have a unique sink (without outgoing edges),
which could be used as a second start node bound to y. However, this variation of
the grammar would exhibit less peculiarities of the GPSR parser.

Generalized Predictive Shift-Reduce Parsing for HR Grammars 237

Table 1. PSR parsing table for series-parallel graphs.

State e(x, y) $ G(x, y)

Q0(p)
shift Q1(x, y)

if (x, y) = (p, −)
error

goto Q2(x, y)

if (x, y) = (p, −)

Q1(p, q) reduce 1, G(p, q) error

Q2(p, q)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

or (x, y) = (q, −)

accept

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q5(x, y, p)

if (x, y) = (q, −)

Q3(p, q)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

reduce 2,G(p, q)

reduce 2, G(p,q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

Q4(p, q, u)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (q, u)

or (x, y) = (p, −)

or (x, y) = (q, −)

error

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q6(x, y, p)

if (x, y) = (q, u)

goto Q7(x, y, u, p)

if (x, y) = (q, −)

Q5(p, q, u)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

or (x, y) = (q, −)

reduce 3,G(u, q)

reduce 3, G(u, q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q5(x, y, p)

if (x, y) = (q, −)

Q6(p, q, u)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (p, −)

reduce 3,G(u, q)

reduce 3, G(u, q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

Q7(p, q, u, v)

shift Q1(x, y)

if (x, y) = (p, q)

or (x, y) = (q, u)

or (x, y) = (p, −)

or (x, y) = (q, −)

reduce 3,G(v, q)

reduce 3, G(v, q)

goto Q3(x, y)

if (x, y) = (p, q)

goto Q4(x, y, q)

if (x, y) = (p, −)

goto Q6(x, y, p)

if (x, y) = (q, u)

goto Q7(x, y, u, p)

if (x, y) = (q, −)

the new nonterminal edge with label G that connects pσ with qσ, i.e., in column
G(x, y), and pushes the corresponding state onto the stack.

The entries accept and error in column $ express that, if all edges of the
input graph have been read, the parser terminates with success if the top-most
state is Q2, or with failure if it is Q0 or Q4.

238 B. Hoffmann and M. Minas

A PSR parser must always be able to select the correct operation; it must
not happen that the parser must choose between two or more operations where
one of them leads to a successful parse whereas another one leads to failure. Such
a situation is called a conflict. It is clear that a PSR parser always selects the
correct action if conflicts cannot occur. However, a PSR parser does not know
a priori which unread edge must be selected next. Hence, there are not only the
shift-reduce or reduce-reduce conflicts (well known from LR parsing [9]). Shift-
shift conflicts may also occur if the parser has to choose which input edge should
be read next. Moreover, a shift alone may raise a conflict, since the unread input
graph may contain more than one edge matching a pattern like e(p,−). Only if
the free edge choice property holds, the parser knows that any of these edges
may be processed, without affecting the result of the parse.6

For our example of series-parallel graphs, conflicts arise in all states, except
for Q0 and Q1. For Q3(pσ, qσ), e.g., the parser can always select the reduction,
but it can also shift any edge connecting pσ with qσ or with any other unread
node. Apparently, not every choice will lead to a successful parse, even if the
input graph is valid.

Thus the parsing table does not always allow to predict the next correct
action, and the grammar does not have a PSR parser. This problem can be
solved by generalizing PSR parsing as described in the next section.

4 Generalized Predictive Shift-Reduce Parsing

Before we describe GPSR parsing for HR grammars, let us briefly recapitulate
LR(k) parsing for context-free string grammars ([9], with k = 1 symbols of
lookahead) and how this is extended to generalized LR (GLR) parsing [12].
An LR(1) parser is controlled by a parsing table derived from the CFA of the
grammar. The parsing table assigns a unique parser action to each state of the
CFA and to each terminal symbol: shift, reduce, accept, or error. In each step,
the parser executes the action specified for the current state on top of the stack
and the next unread input symbol (the look-ahead). However, LR(1) parsing is
not possible if the parsing table has conflicts, i.e., if there is a state q and a
look-ahead symbol a associated with two actions or more. A parser that reaches
q with a look-ahead symbol a has as many choices how it may continue, i.e., the
parse stack can be modified in different ways. A search process must then explore
which of the resulting parse stacks can be further extended to a successful parse.

A GLR parser organizes this search process as a breadth-first search. It reads
the input string from left to right. At any time, it has read a certain prefix α of
the input string. It maintains the set of all (parse) stacks which can be obtained
by reading α. This set of stacks is in fact processed in rounds as follows: For each
stack, the parser determines all possible actions based on the parsing table, the
top-most state of the stack, and the look-ahead symbol. The parser has found a
successful parse if the action is accept and the entire input string has been read.
6 This property can be determined by the parser generator as well. However, it does

not hold for the grammar of series-parallel graphs.

Generalized Predictive Shift-Reduce Parsing for HR Grammars 239

(It may proceed if further parses shall be found.) If the action is an error, the
parser just discards this stack, stops if this has been the last remaining stack,
and fails altogether if it has not found a successful parse previously. If the parsing
table, however, indicates more than one possible action, the parser duplicates
the stack for each of them, and performs each action on one of the copies. If the
action is a shift, the resulting stack is no longer considered in this round, but
only in the next one. This way, at the beginning of the next round, each stack
is the result of reading the look-ahead symbol in a shift action, and having read
the same prefix of the input string.

In fact, a GLR parser does not store complete copies of stacks, but shares
their common prefixes and suffixes. The resulting structure is known as a graph-
structured stack (GSS). An individual stack is represented as a path in the GSS,
from some top-most state to the unique initial state.

A GPSR parser generalizes a PSR parser in the same way as a GLR parser
generalizes an LR parser. It also maintains a set of parse stacks, which contain
concrete states whose parameters are bound to nodes of the input graph. How-
ever, a GPSR parser must also deal with the fact that there is no a priori reading
sequence of edges of the input graph.

This affects a GPSR parser even more than a PSR parser since a GPSR
parser may be forced to pursue different reading sequences in parallel while it
performs the search process. This has consequences as follows:

– Each parse stack corresponds to a specific part of the input graph that has
been read already. Hence, the parser must store, for each stack separately,
which edges of the input graph have been read.
Sets of stacks are stored as a GSS like in GLR parsers. Each GSS node
corresponds to a concrete state. Additionally, each GSS node keeps track of
the set of input graph edges that have been read so far. Note that GSS nodes
may be shared only if both their concrete states and their sets of read edges
coincide.

– GPSR parsers cannot process their sets of stacks in rounds. When a stack is
obtained by executing a shift action, the parser must not wait until the same
edge has been read in all the other stacks; they may read other edges first.
As a consequence, a GPSR parser needs other strategies to control the order
in which stacks are processed. Strategies are discussed in Sect. 5.

We demonstrate GPSR parsing using the example of series-parallel graphs
and the input graph e(1, 2) e(2, 3) e(1, 3) e(3, 4) derived in Fig. 1. We refer to
these edges by the letters a, b, c, and d. We write GSS nodes in compact form:
e.g., 5341cd refers to the concrete state Q5(3, 4, 1) and indicates that the edges
c = e(2, 3) and d = e(3, 4) have been read already.

The parser determines node 1 as the unique start node, i.e., it starts with
concrete state Q0(1), with all edges of the input graph unread. So the GSS in
step 0 consists of 01

∅
(cf. Table 2). The parsing table in Table 1 indicates that the

parser can shift both edge a = e(1, 2) and edge c = e(1, 3), resulting in the stacks
01

∅
112a and 01

∅
113c . Table 2 shows the corresponding GSS in step 1. (Note that

“new” GSS nodes are set in boldface.) Step 1 continues with processing stack

240 B. Hoffmann and M. Minas

Table 2. Graph-structured stacks and steps of the GPSR parser when parsing the
graph consisting of the hyperedges a = e(1, 2), b = e(2, 3), c = e(1, 3), d = e(3, 4).

0 01
∅

shift a, c

1 01∅
112
a reduce 1

113
c

2 01∅
212
a

113c reduce 1

3 01∅
212a shift b, c

213
c

4 01∅
212a

113
ac

123
ab

213c shift a, d

5 01∅

212a
113ac
123ab reduce 1

213c
112
ac

134
cd

6 01∅

212a
113ac
5231
ab

213c
112ac
134cd reduce 1

7 01∅

212a
113ac
5231ab

shift d
reduce 3

213c
112ac
5341
cd

8 01∅

212a
113ac
5231ab 134

abd

213c
112ac
5341cd reduce 3*

213
ab

9 01∅

212a
113ac
5231ab 134abd

213c 112ac

213ab shift c, d

10 01∅

212a
113ac
5231ab 134abd reduce 1

213c 112ac

213ab 113
abc

11 01∅

212a
113ac
5231ab 5342

abd

213c 112ac

213ab
5341
abd

113abc reduce 1

12 01∅

212a
113ac
5231ab 5342abd reduce 3*

213c 112ac

213ab
5341abd

313
abc

13 01∅

212a 113ac

213c 112ac

213ab
5341abd reduce 3*
313abc

14 01∅

212a 113ac

213c 112ac

213ab 313abc reduce 2

15 01∅

212a 113ac

213c 112ac

213
abc shift d

16 01∅

212a 113ac

213c 112ac

213abc 134
abcd reduce 1

17 01∅

212a 113ac

213c 112ac

213abc 5341
abcd reduce 3

18 01∅

212a 113ac

213c 112ac

214
abcd

accept

Generalized Predictive Shift-Reduce Parsing for HR Grammars 241

01
∅

112a . (See Sect. 5 for a discussion of strategies.) State Q1(1, 2) just allows a
reduction by rule 1, producing a nonterminal edge G(1, 2). This pops 112a from the
stack; processing G(1, 2) pushes the concrete state Q2(1, 2), which is represented
by 212a in step 2.

State 5231ab in step 7 allows both, to shift d = e(3, 4), and to reduce by rule 3,
with nonterminal edge G(1, 3). The resulting GSS nodes are 134abd and 213ab in
step 8. State 5341cd allows just a reduce action by grammar rule 3. However, this
reduce operation with nonterminal edge G(1, 4) is invalid. If it were valid, G(1, 4)
could be derived to the graph consisting of just c = e(2, 3) and d = e(3, 4), i.e.,
it would generate node 3. However, this contradicts the fact that the unread
edge b = e(2, 3) is attached to node 3, which must be generated earlier in the
derivation. Therefore, the stack with top-most state 5341cd is discarded in this step
(indicated by the asterisk), and analogously in steps 12 and 13.

Note that the shift action in step 9 results in a GSS where 134abd is the top-
most state of two stacks. The reduce operation in step 10, however, removes 134abd

from the GSS and from the corresponding stacks again, and produces the two
stacks with top-most states 5341abd and 5342abd.

The GSS in step 18 contains node 214abcd, i.e., the accept state Q2(1, 4) with
the entire input graph being read. The GPSR parser, therefore, has found a
successful parse of the input graph.

The current implementation stops when the first successful parse has been
found. Another successful parse could have been found if 112ac had been processed
in step 5 or later.

5 Parsing Experiments

We now report on runtime experiments with different parsers applied to series-
parallel graphs and to structured flowcharts. The latter are flowcharts that do
not allow arbitrary jumps, but represent structured programs with conditional
statements and while loops. They consist of rectangles containing instructions,
diamonds that indicate conditions, and ovals indicating begin and end of the
program. Arrows indicate control flow; see Fig. 2 for an example. Flowcharts are
easily represented by graphs as also shown in Fig. 2. Figure 3 defines the rules of
an HR grammar generating all graphs representing structured flowcharts. This
grammar is not PSR because a state of its CFA has conflicts.

We generated three different parsers for the grammar of series-parallel graphs
and for structured flowcharts: a Cocke-Younger-Kasami style parser (CYK, [11])
using DiaGen7, and two variants of the GPSR parser using Grappa (see foot-
note 1). The CYK parser was in fact optimized in two ways: the parser creates
nonterminal edges by dynamic programming, and each of these edges can be
derived to a certain subgraph of the input graph. The optimized parser makes
sure that it does not create two or more indistinguishable nonterminals for the
same subgraph, even if the nonterminals represent different derivation trees. And
it stops as soon as it finds the first derivation of the entire input graph.
7 Homepage: www.unibw.de/inf2/diagen.

https://www.unibw.de/inf2/diagen/

242 B. Hoffmann and M. Minas

Fig. 2. A structured flowchart (text within the blocks has been omitted) and its graph
representation.

Fig. 3. HR rules for structured
flowcharts.

Fig. 4. Definition of flowchart graphs Fn.

The GPSR parsers differ in the strategy that controls which of the currently
considered stacks is selected for the next step. GPSR 1 simply maintains a FIFO
queue of all such stacks, i.e., new states are enqueued as soon as they are created,
and a top-most state is selected for processing as soon as it is next in the queue.
GPSR 2, however, applies a more sophisticated strategy. It requires grammar
rules to be annotated with either first or second priority. The GPSR 2 parser
provides two queues, the first one using FIFO and the second LIFO. New states
that result from handling a first priority rule go into the first queue, the others
into the second. The parser always tries to select states from the first queue; it
selects from the second queue only if the first queue is empty. This way one can
control, by annotating grammar rules, which rules should be considered first.
This does not affect the correctness of the parser; it can still examine the entire
search space. However, it will stop as soon as it finds the first successful parse.
By appropriately annotating grammar rules, one can thus speed up the parser if
the input graph is valid. However, there is no speed-up for invalid input graphs,
since the parser must inspect the entire search space in this case.

The GPSR 2 parser for series-parallel graphs gives rule 3 (series) precedence
over rule 2 (parallel); it has been applied to graphs

Generalized Predictive Shift-Reduce Parsing for HR Grammars 243

Sn =

· · ·
· · ·
· · ·
· · ·1

2 3
n

with different values of n. The GPSR 2 parser for structured flowcharts gives
sequences priority over conditional statements; it has been applied to flowcharts
Fn defined in Fig. 4 and consisting of n conditions and 3n + 1 instructions. The
flowchart in Fig. 2 is in fact F3. Fn has a subgraph Dn, which, for n > 0, contains
subgraphs Dm and Dm′ with n = m + m′ + 1. Note that the conditions in Fn

form a binary tree with n nodes when we ignore instructions. We always choose
m and m′ such that it is a complete binary tree.

0 20 40 60 80 100
0

200

400

600

800

1 000

Series-parallel graphs

0 1 000 2 000 3 000
0

200

400

600

800

1 000

Structured flowcharts

GPSR 1
GPSR 2
CYK

Fig. 5. Runtime (in milliseconds) of different parsers for series-parallel graphs and
structured flowcharts.

Figure 5 shows the runtime of the different parsers applied to Sn and Fn with
varying value n. Runtime has been measured on an iMac 2017, 4.2 GHz Intel Core
i7, Java 1.8.0 181 with standard configuration, and is shown in milliseconds on
the y-axis while n is shown on the x-axis.

The experiments first demonstrate that the more sophisticated strategy of
GPSR 2 really pays off as GPSR 2 finds a derivation much faster than GPSR 1.
For parsing F1000, e.g., GPSR 1 needs 4 013 880 steps, but GPSR 2 just 13 004.
The experiments also show that GPSR 1 is in fact much slower than CYK,
which demonstrates the need for a sophisticated strategy for the GPSR parser.
But for series-parallel graphs, even GPSR 2 is much slower than CYK. Because,
the grammar of series-parallel graphs is highly ambiguous. For instance, S100

has the ridiculous number of 6.1 · 10281 derivation trees. The CYK parser has to
create 40 422 nonterminal edges for S100, and for S40 just 6 582, where most of
them represent a high number of different derivation trees. GPSR 2, however,
needs 908 122 steps to find a derivation for S40. Apparently, the compactification
by the optimized CYK is more effective to cut down the number of choices the
parser has to follow.

244 B. Hoffmann and M. Minas

6 Conclusions

We have generalized PSR parsing for HR grammars [6] to cope with ambiguous
graph grammars, by pursuing all possible parses of a graph in parallel until the
first derivation has been found. This work is inspired by Tomita’s GLR string
parsers [12], which extend D.E. Knuth’s LR string parsers [9]. For the academic
example grammars examined in Sect. 5, in particular the highly ambiguous gram-
mar for series-parallel graphs, comparison of our parser with the CYK parser
does not give a clear picture. Moreover, the speed-up obtained by choosing an
appropriate strategy only helps when parsing valid graphs, but not when process-
ing invalid graphs. Our experiments shall be extended in two respects: First, we
shall study more, and more realistic HR grammars, e.g., the modestly ambiguous
(and big) grammars used for processing abstract meaning representations in nat-
ural language processing (NLP). Second, we shall compare the GPSR parser with
the two parsers used for NLP: the Bolinas parser [1] by D. Chiang, K. Knight
et al. implements the polynomial algorithm for a restricted class of HR gram-
mars devised in [10]; the s-graph parser [7] by A. Koller et al. uses a similar
formalism.

We also intend to extend both the original and the generalized PSR parsers
to contextual HR grammars [2,3], which have greater generative power, and can
be used for analyzing graph models that are more general, and more relevant
in practice. Our experience with PTD parsing [4] suggests that this should be
relatively easy.

References

1. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual
Meeting Association for Computational Linguistics, vol. 1, pp. 924–932 (2013)

2. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Inf. 52, 497–
524 (2015)

3. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In:
Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–
197. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34176-2 16

4. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge
replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21145-9 2

5. Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for generating
deterministic graph parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF
2016. LNCS, vol. 9946, pp. 112–128. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50230-4 9

6. Drewes, F., Hoffmann, B., Minas, M.: Formalization and correctness of predic-
tive shift-reduce parsers for graph grammars based on hyperedge replacement. J.
Log. Algebr. Meth. Program. (2018). https://doi.org/10.1016/j.jlamp.2018.12.006.
https://arxiv.org/abs/1812.11927

https://doi.org/10.1007/978-3-642-34176-2_16
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-50230-4_9
https://doi.org/10.1007/978-3-319-50230-4_9
https://doi.org/10.1016/j.jlamp.2018.12.006
https://arxiv.org/abs/1812.11927

Generalized Predictive Shift-Reduce Parsing for HR Grammars 245

7. Groschwitz, J., Koller, A., Teichmann, C.: Graph parsing with s-graph grammars.
In: Proceedings of the 53rd Annual Meeting Association for Computational Lin-
guistics, ACL 2015, Volume 1: Long Papers, pp. 1481–1490. The Association for
Computer Linguistics (2015)

8. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

9. Knuth, D.E.: On the translation of languages from left to right. Inf. Control 8(6),
607–639 (1965)

10. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Inf. 27, 399–421 (1990)

11. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Sci. Comput. Program. 44(2), 157–180 (2002)

12. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp.
756–764. Morgan Kaufmann (1985)

https://doi.org/10.1007/BFb0013875

Transformation of Petri Nets into
Context-Dependent Fusion Grammars

Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye(B)

University of Bremen, Department of Computer Science and Mathematics,
P.O. Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske,lye}@informatik.uni-bremen.de

Abstract. In this paper, we introduce context-dependent fusion gram-
mars as a new type of hypergraph grammars where the application of
fusion rules is restricted by positive and negative context conditions. Our
main result is that Petri nets can be transformed into these grammars
such that the reachable markings are in one-to-one correspondence to
the members of the generated language. As a corollary, we get that the
membership problem for context-dependent fusion grammars is at least
as hard as the reachability problem of Petri nets.

1 Introduction

In this paper, we introduce context-dependent fusion grammars generalizing
fusion grammars that we introduced in [1] as a novel approach to the gen-
eration of hypergraph languages. A fusion grammar imitates the basic DNA
operations that Adleman employed in his seminal experiment [2] where tubes of
molecules are replaced by disjoint unions of connected hypergraphs, the fusion
of complementary sticky ends by the fusion of complementary hyperedges, the
duplication of DNA molecules based on polymerase chain reaction by a mul-
tiplication of connected hypergraphs, and the filtering of molecules of interest
by a special extraction of terminal hypergraphs from derived ones. These gram-
mars become context-dependent if the fusion takes only place if certain positive
and negative context conditions are satisfied. As the main result, we construct a
transformation of Petri nets into context-dependent fusion grammars in such a
way that the reachable markings of a Petri net are in a one-to-one relation with
the members of the language generated by the corresponding grammar. The key
of the transformation is to simulate the firing of a transition by a sequence of
applications of fusion rules. The firing of a transition adds as many tokens to
the post-places and consumes as many tokens from the pre-places as the weight
function requires. While a fusion can do the appropriate addition in a single
step, the consumption needs more than one step in general because each fusion
consumes exactly two hyperedges. As a corollary, we get that the membership
problem for context-dependent fusion grammars is at least EXPSPACE-hard.
Recent research results conjecture that reachability problem for Petri nets is
non-elementary-hard [3].
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 246–258, 2019.
https://doi.org/10.1007/978-3-030-13435-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_18

Transformation of Petri Nets into Context-Dependent Fusion Grammars 247

Petri nets have been related to graph transformation before (cf., e.g., [4–
6]). But in these cases, the transformation of Petri nets is easier because the
employed graph transformation approaches are universal and hence more flexible
than context-dependent fusion grammars. In particular, the simulation of firing
a transition can be done by a single rule application.

The paper is organized as follows. In Sect. 2, basic notions and notations of
hypergraphs are recalled. Section 3 recalls the notion of Petri nets. In Sect. 4,
context-dependent fusion grammars are defined. Section 5 presents the reduc-
tion of Petri nets to context-dependent fusion grammars and the main theorem.
Section 6 concludes the paper pointing out some open problems.

2 Preliminaries

In this section, the basic notions and notations of hypergraphs are recalled as
far as needed.

We consider hypergraphs the hyperedges of which have multiple sources and
multiple targets. A hypergraph over a given label alphabet Σ is a system H =
(V,E, s, t, lab) where V is a finite set of vertices, E is a finite set of hyperedges,
s, t : E → V ∗ are two functions assigning to each hyperedge a sequence of sources
and targets, respectively, and lab : E → Σ is a function, called labeling. The
components of H = (V,E, s, t, lab) may also be denoted by VH , EH , sH , tH , and
labH respectively. The class of all hypergraphs over Σ is denoted by HΣ .

Let H ∈ HΣ , and let ≡ be an equivalence relation on VH . Then the
fusion of the vertices in H with respect to ≡ yields the hypergraph H/≡ =
(VH/≡, EH , sH/≡, tH/≡, labH) with the set of equivalence classes VH/≡ = {[v] |
v ∈ VH} and sH/≡(e) = [v1] · · · [vk1], tH/≡(e) = [w1] · · · [wk2] for each e ∈ EH

with sH(e) = v1 · · · vk1 , tH(e) = w1 · · · wk2 .
Given H,H ′ ∈ HΣ , a hypergraph morphism g : H → H ′ consists of two

mappings gV : VH → VH′ and gE : EH → EH′ such that sH′(gE(e)) = g∗
V (sH(e)),

tH′(gE(e)) = g∗
V (tH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where

g∗
V : V ∗

H → V ∗
H′ is the canonical extension of gV , given by g∗

V (v1 · · · vn) = gV (v1)
· · · gV (vn) for all v1 · · · vn ∈ V ∗

H .
Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′, denoted by H ⊆ H ′, if

VH ⊆ VH′ , EH ⊆ EH′ , sH(e) = sH′(e), tH(e) = tH′(e), and labH(e) = labH′(e)
for all e ∈ EH . H ⊆ H ′ implies that the two inclusions VH ⊆ VH′ and EH ⊆ EH′

form a hypergraph morphism from H → H ′. Given a morphism g : H → H ′, the
image of H in H ′ under g is a subhypergraph g(H) ⊆ H ′.

Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of (V,E)
from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, sH , tH , labH) with
sH(e) = sH′(e) tH(e) = tH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E
defines a subgraph H ⊆ H ′ if sH′(e), tH′(e) ∈ (VH′ − V)∗ for all e ∈ EH′ − E.

Let H ∈ HΣ and let att(e) be the set of sources and targets for e ∈ EH .
H is connected if for each v, v′ ∈ VH , there exists a sequence of triples
(v1, e1, w1) . . . (vn, en, wn) ∈ (VH × EH × VH)∗ such that v = v1, v

′ = wn and
vi, wi ∈ att(ei) for i = 1, . . . , n and wi = vi+1 for i = 1, . . . , n − 1.

248 H.-J. Kreowski et al.

A subgraph C of H, denoted by C ⊆ H, is a connected component of H if it
is connected and there is no larger connected subgraph, i.e., C ⊆ C ′ ⊆ H and
C ′ connected implies C = C ′. The set of connected components of H is denoted
by C(H).

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
Further, k · H denotes the disjoint union of H with itself k times. We use the
multiplication of H defined by means of C(H) as follows. Let m : C(H) → N be
a mapping, called multiplicity, then m · H =

∑

C∈C(H)

m(C) · C.

3 Petri Nets

In this section, we shortly recall some basic definitions of Petri nets (for more
details see, e.g., [7–11] to mention just a few publications among the large number
of existing ones.)

A Petri net is defined as PN = (P,T,F,W,M0), where P and T are disjoint
finite sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the
flow relation, W : F → N>0 is the weight function, and M0 : P → N is the initial
marking where a marking is a function M : P → N that specifies a number of
tokens for every place.

If the places are numbered, i.e., P = {p1, . . . , p|P|}, where |X| denotes the
cardinality of the set X, a marking M is also denoted by (M(p1), . . . ,M(p|P|)).
Figure 1 shows an example of a Petri net with P = {p1, . . . , p5}, T = {t1, . . . , t4},
W(x) = 2 if x = (t4, p5) and W(x) = 1 otherwise, and M0 = (1, 0, 2, 1, 0).

p1 p2 p3 p4 p5

t1 t3

t2 t4 2

Fig. 1. A sample Petri net

For each t ∈ T, •t = {p ∈ P | (p, t) ∈ F} is the preset of t and t• = {p ∈ P |
(t, p) ∈ F} is the postset of t.

A transition t is enabled in some marking M if M(p) ≥ W(p, t) for each
p ∈ •t. In the Petri net in Fig. 1 only the transitions t1 and t4 are enabled.
If t is enabled in M, it may fire yielding the marking M

′ given by M
′(p) =

M(p) + W0(t, p) − W0(p, t) for each p ∈ P where for each x ∈ (P × T) ∪ (T × P)
W0(x) = W(x) if x ∈ F and W0(x) = 0 otherwise. This means that by firing t
in each p ∈ •t W(p, t) tokens are consumed and to each p ∈ t• W(t, p) tokens are

Transformation of Petri Nets into Context-Dependent Fusion Grammars 249

added. The firing of t from M to M
′ is denoted by M[t〉M′. For example, after

firing the transition t4 in Fig. 1, we get the marking (1, 0, 1, 0, 2).
A marking M

′ is reachable from a marking M, denoted by M[∗〉M′, if M = M
′

or there is a marking M
′′ and a transition t such that M[∗〉M′′[t〉M′. For each

PN = (P,T,F,W,M0) Reach(PN) is the set of markings reachable from M0.

4 Context-Dependent Fusion Grammars

In this section, we introduce context-dependent fusion grammars as a general-
ization of fusion grammars introduced in [1].

Fusion grammars generate hypergraph languages from start hypergraphs via
successive applications of fusion rules, multiplications of connected components,
and a filtering mechanism. The application of a fusion rule consumes two comple-
mentary hyperedges and fuses the sources of the one hyperedge with the sources
of the other as well as the targets of the one with the targets of the other.
Complementarity is defined on a set F of fusion labels that comes together with
a complementary label A for each A ∈ F . Given a hypergraph, the set of all
possible fusions is finite as fusion rules never create anything. To overcome this
limitation, arbitrary multiplications of disjoint components within derivations
are allowed. The language consists of the terminal part of all resulting con-
nected components that contain no fusion labels and at least one marker label,
where marker labels are removed in the end. These marker labels allow us to
distinguish between wanted and unwanted terminal components.

Definition 1. 1. F ⊆ Σ is a fusion alphabet if it is accompanied by a comple-
mentary fusion alphabet F = {A | A ∈ F} ⊆ Σ where F ∩ F = ∅ and A �= B
for A,B ∈ F with A �= B and a type function type : F ∪ F → (N × N) with
type(A) = type(A) for each A ∈ F .

2. For each A ∈ F with type(A) = (k1, k2), the fusion rule fr(A) is the hyper-
graph, depicted in Fig. 2, with the following components:

– Vfr(A) = {vi, v
′
i | i = 1, . . . , k1} ∪ {wj , w

′
j | j = 1, . . . , k2},

– Efr(A) = {e, e},
– sfr(A)(e) = v1 · · · vk1 , sfr(A)(e) = v′

1 · · · v′
k1

,
– tfr(A)(e) = w1 · · · wk2 , tfr(A)(e) = w′

1 · · · w′
k2

,
– labfr(A)(e) = A and labfr(A)(e) = A.

3. The application of fr(A) to a hypergraph H ∈ HΣ proceeds according to the
following steps: (1) Choose a matching morphism g : fr(A) → H. (2) Remove
the images of the two hyperedges of fr(A) yielding X. (3) Fuse the sources and
targets of the removed edges yielding the hypergraph H ′ = X/ ≡ where ≡ is
generated by the relation {(vi, v

′
i) | i = 1, . . . , k1} ∪ {(wj , w

′
j) | j = 1, . . . , k2}.

The application of fr(A) to H is denoted by H =⇒
fr(A)

H ′ and called a direct

derivation.

250 H.-J. Kreowski et al.

vk1

. . .
v1 v′

1
. . .

v′
k1

A A

wk2

. . .

w1 w′
1

. . .

w′
k2

k11

k21

k11

k21

Fig. 2. The fusion rule fr(A) with type(A) = (k1, k2)

Example 1. Let F = {t4, ◦} with type(t4) = (2, 1) and type(◦) = (0, 1). Let H
be the hypergraph depicted in Fig. 3a. The rule fr(t4) can be applied to the
hypergraph by fusion of the t4-hyperedge with the upper t4-hyperedge. In this
case, one gets the hypergraph in Fig. 3b. Please note that the enumeration of
the sources and targets is omitted in drawings if it is clear from the context.

t4

◦

◦
◦

t4

t4

◦

◦
◦

(a)

=⇒
fr(t4) t4

◦
◦

◦
◦
◦

◦

(b)

Fig. 3. Application of the fusion rule fr(t4)

Definition 2. 1. A context-dependent fusion rule is a triple cdfr = (fr(A), PC,
NC) for some A ∈ F where PC and NC are two finite sets of hypergraph
morphisms with domain fr(A) defining positive and negative context condi-
tions respectively.

2. The rule cdfr is applicable to some hypergraph H via a matching morphism
g : fr(A) → H if for each (c : fr(A) → C) ∈ PC there exists a hypergraph
morphism h : C → H such that h is injective on the set of hyperedges and
h ◦ c = g, and for no (c : fr(A) → C) ∈ NC there exists a hypergraph
morphism h : C → H such that h ◦ c = g.

3. If cdfr is applicable to H via g, then the direct derivation H =⇒
cdfr

H ′ is the

direct derivation H =⇒
fr(A)

H ′.

Transformation of Petri Nets into Context-Dependent Fusion Grammars 251

Example 2. Consider the two context-dependent fusion rules fire(t4) = (fr(t4),
{fr(t4) → Mt4 + Lt4

}, {fr(t4) → Nt4,p3 + Lt4
, fr(t4) → Nt4,p4 + Lt4

}) where
Mt4 , Nt4,p3 , Nt4,p4 , and Lt4

are depicted in Fig. 4. The morphisms are uniquely
defined because the matching of the hyperedges is unique. fire(t4) can be applied
to the hypergraph H in Fig. 3a matching the upper t4-hyperedge and the t4-
hyperedge because both sources of the t4-hyperedge are attached to ◦-hyperedges
and neither the first nor the second source of the t4-hyperedge is attached to a
◦-hyperedge. Again H =⇒

fire(t4)
H ′ yields the hypergraph in Fig. 3b.

t4
◦

◦

(a) Mt4

t4

(b) Lt4

t4
◦

(c) Nt4,p3

t4
◦

(d) Nt4,p4

Fig. 4. The hypergraphs of the context-conditions of fire(t4) in Example 2

Definition 3. 1. A context-dependent fusion grammar is a system cdfg =
(Z,F,M, T, P) where Z ∈ HF∪F∪T∪M is a start hypergraph, F ⊆ Σ is a
fusion alphabet, M ⊆ Σ with M ∩ (F ∪ F) = ∅ is a set of markers, T ⊆ Σ
with T ∩ (F ∪ F) = ∅ = T ∩ M is a set of terminal labels, and P is a set of
context-dependent fusion rules.

2. A direct derivation is either a context-dependent fusion rule application
H =⇒

cdfr
H ′ or a multiplication H =⇒

m
m·H for some multiplicity m : C(H) → N.

A derivation H
n=⇒H ′ of length n ≥ 0 is a sequence of direct derivations

H0 =⇒H1 =⇒ . . . =⇒Hn with H = H0 and H ′ = Hn. If the length does not
matter, one may write H

∗=⇒H ′.
3. L(cdfg) = {remM (Y) | Z

∗=⇒H,Y ∈ C(H) ∩ (HT∪M − HT)} is the generated
language where remM (Y) is the terminal hypergraph obtained by removing
all hyperedges with labels in M from Y .

Remark 1. Graph grammars with context conditions have been studied before
(cf., e.g., [12–15]). Our definition is an adaption of the definition in [13].

5 Transformation of Petri Nets into Context-Dependent
Fusion Grammars

In this section, Petri nets are transformed into context-dependent fusion gram-
mars in such a way that the set of reachable markings of a Petri net coincides with
the language generated by the corresponding context-dependent fusion grammar
up to representation. The basic ideas of this transformation, formally constructed
in Definition 4, are the following.

252 H.-J. Kreowski et al.

Given a Petri net as input, one must choose suitable alphabets, construct
the connected components of the start hypergraph and equip fusion rules with
appropriate context conditions.

The main connected component, called net component, reflects the Petri net
structure and the initial marking. The static structure of the net is a bipartite
graph that is represented by a hypergraph where the transitions are considered
as hyperedges. Each such transition hyperedge is labeled with the transition
itself so that the label identifies the hyperedge uniquely. The initial marking is
represented by token-labeled flags, where a flag is a hyperedge without sources
and a single target node, attached to places where a place gets as many flags
as the marking requires. For technical reasons, the net component gets an extra
marker hyperedge that is attached to all places serving two purposes. On one
hand, it marks the components that can deliver members of the generated lan-
guage. On the other hand, it guarantees connectedness even if the net is not
connected.

To model the firing of a transition, the transition labels and the token labels
are used as fusion labels, and for each transition a connected component is
constructed as follows. Copy the corresponding transition hyperedge with its
sources, targets and label and accomplish it with a parallel hyperedge that is
labeled with the complementary transition. Moreover, the pre- and post-places
get flags according to the weight function. While the flags at the post-places are
labeled with the token label ◦, the flags at the pre-places are labeled with the
complementary token label ◦. If such a connected component is fused with the
respective transition hyperedge in the net component, then the transition hyper-
edge is reconstructed and the pre- and post-places get the additional flags. A flag
with the complementary token label can be seen as a reminder that the token has
been spent and must be removed from this place. This can be done by a fusion of
flags with token and complementary token labels. The context conditions make
sure that the firing fusion takes only place if the pre-places carry as many token
flags as the enabling requires and that the token fusion happens at a single
place. The construction so far guarantees a close relationship between firing and
fusion. If the net component has no complementary token flags, then the number
of flags at each place defines a marking M. If a transition can be fired yielding
the marking M

′, then the respective firing fusion can be performed. Moreover,
after performing then all possible token fusions the marking represented by the
net component is M

′.
The rest of the construction concerns the termination of a fusion derivation.

All transitions in the net component are removed, all tokens are converted into
terminal tokens and the marker is deleted. Each of these termination steps can
be done by fusion of hyperedges in the net component with complementary
hyperedges in additional components. Finally we get a member of the generated
language that represents a reachable marking. This and the converse is formally
stated in the theorem after the construction.

Transformation of Petri Nets into Context-Dependent Fusion Grammars 253

Definition 4. Let PN = (P,T,F,W,M0) be a Petri net. Let P = {p1, . . . , p|P|}.
Let order(X) = pi1 . . . pi|X| with ij < ij+1 for j = 1, . . . , |X| − 1 for all X =
{pi1 , . . . , pi|X|} ⊆ P. Then

CDFG(PN) = (ZPN , {◦} ∪ T, {μ}, {•}, PPN)

is the corresponding context-dependent fusion grammar with type(◦) = (0, 1)
and type(t) = (|•t|, |t•|) for each t ∈ T where ZPN and PPN are defined as
follows.
ZPN = hg(P,T,M0) + C• +

∑

t∈T

Ct +
∑

t∈T

Dt where

– hg(P,T,M0) represents the net component and is defined by the hypergraph
(P, {pn} + T + {(p, i) | p ∈ P, i = 1, . . . ,M0(p)}, shg, thg, labhg) where +
denotes the disjoint union of sets and

• shg(pn) = p1 . . . p|P|, thg(pn) = ε, and labhg(pn) = μ, where ε denotes the
empty sequence,

• shg(t) = order(•t), thg(t) = order(t•) and labhg(t) = t, and
• shg((p, i)) = ε, thg((p, i)) = p and labhg((p, i)) = ◦.

– C• = • ◦ (This component serves for the replacement of ◦-flags
by terminal •-flags.)

– Ct = (•t ∪ t•, {e, e} + {(p, i, pre) | p ∈ •t, i ∈ {1, . . . ,W(p, t)}} ∪ {(p, i, post) |
p ∈ t•, i ∈ {1, . . . ,W(t, p)}}, s, t, lab) with

• s(e) = s(e) = order(•t), t(e) = t(e) = order(t•), lab(e) = t, lab(e) = t,
• s((p, i, pre)) = ε, t((p, i, pre)) = p and lab((p, i, pre)) = ◦, and
• s((p, i, post)) = ε, t((p, i, post)) = p and lab((p, i, post)) = ◦.

A sketch of Ct is depicted in Fig. 5a. (The component Ct is used for modeling
the firing of t by fusing the t-hyperedge in Ct with the t-hyperedge in the net
component.)

– Dt is obtained from Ct by removing e and all flags, i.e., the t-hyperedge and
all hyperedges labeled with ◦ or ◦. A sketch of Dt is depicted in Fig. 5b.

...
...

t

k1

1

k2

1

t
k1

1

k2

1

◦

...

◦

◦

...

◦

◦

...

◦

◦

...

◦

(a) Ct

...
...t

k1

1

k2

1

(b) Dt

...
...

t

k1

1

k2

1

t
k1

1

k2

1

(c) Pt

Fig. 5. A sketch of Ct, Dt and Pt for a transition t

254 H.-J. Kreowski et al.

PPN = {consume, replace} ∪ {delete(t), fire(t) | t ∈ T} where

– consume = (fr(◦), {fr(◦) → ◦ ◦ }, ∅), i.e., the positive context
condition requires that only complementary token flags attached to the same
vertex are fused.

– replace = (fr(◦), {fr(◦) → ◦ + • ◦ }, {fr(◦) →
◦ ◦ + ◦ , fr(◦) → ◦ + ◦ ◦ }), where

the three hypergraph morphisms map the two connected components of
fr(◦) into different connected components of the codomain each, i.e., the
positive context condition requires that the fusion rule can only be applied
if a •-hyperedge is attached to the same vertex to which the ◦-hyperedge
is attached; the negative context conditions forbids the rule application
if consume can be applied and if the matched vertex attached to the ◦-
hyperedge is attached to some ◦-hyperedge. As a result only the ◦-hyperedge
attached to C• is a possible match.

– delete(t) = (fr(t), ∅, {fr(t) → Lt + Pt}), where Lt is the t-hyperedge of fr(t)
with its sources and targets, Pt is obtained from Ct by removing all flags, and
the morphism maps the t-hyperedge into Lt and the t-hyperedge into Pt, i.e.,
the negative context condition makes sure that Ct is not used for deletion of
transitions. A sketch of Pt is depicted in Fig. 5c.

– fire(t) = (fr(t), {fr(t) → Mt + Lt}, {fr(t) → Nt,p + Lt | p ∈ •t}), where
• Lt is the t-hyperedge of fr(t) with its sources and targets.
• Mt = (•t ∪ t•, {e} ∪ {(p, i) | p ∈ •t, i ∈ {1, . . . ,W(p, t)}}, s, t, lab)

∗ s(e) = order(•t), t(e) = order(t•), lab(e) = t
∗ s((p, i)) = ε, t((p, i)) = p and lab((p, i)) = ◦,

• Nt,p = (•t ∪ t•, {e, ep}, s, t, lab)
∗ s(e) = order(•t), t(e) = order(t•), lab(e) = t
∗ s(ep) = ε, t(ep) = p and lab(ep) = ◦,

i.e., the positive context condition makes sure that each pre-place of t carries
at least as many token flags as the weight requires, and the negative context
conditions forbid any ◦-flag on the pre-places.
The mappings are uniquely determined by the labels t and t.

Example 3. The transformation of the sample Petri net in Sect. 3 yields
the context-dependent fusion grammar (Zexample, {◦, t1, t2, t3, t4}, {μ}, {•},
{consume, replace, fire(t1), . . . , fire(t4), delete(t1), . . . , delete(t4)}). Zexample

is depicted in Fig. 6 where flags are not shown, but their labels are depicted
inside their targets. The contexts of fire(t4) are shown in Fig. 4 in Sect. 4. For
the other fire rules the contexts are analogue. A sample derivation looks as
follows: Zexample =⇒

fire(t4)
Z1

2=⇒
consume

Z2
4=⇒

delete
Z3 =⇒

4·C•
Z4

4=⇒
replace

Z5. The first direct

derivation matches the two complementary t4- and t4-hyperedges in the net com-
ponent and Ct4 , respectively. The fusion yields the net component depicted in
Fig. 7a. Afterwards, consume is applied twice consuming the two complementary
flags yielding the net component depicted in Fig. 7b. Because this net component
has no complementary token flags, the numbers of flags at the places define a

Transformation of Petri Nets into Context-Dependent Fusion Grammars 255

marking. One may continue with applying a different fire-rule followed by con-
sume as long as possible. However, our sample derivation continues with applying
delete four times deleting all four transition hyperedges in the net component by
matching in each step one of the transition hyperedge in the net component and
the complementary transition hyperedge in the respective deletion component
(out of the Dt1 , . . . , Dt4). In order to obtain a terminal hypergraph each ◦-flag
is replaced by a •-flag. Because the start hypergraph contains each connected
component only once, C• must be multiplied. Afterwards, replace is applied four
times. The removal of the μ-hyperedge from the resulting net component yields
the terminal hypergraph .

◦ ◦◦

µ

◦ ◦•

1

2 3 4

5

t1 t3

t2 t4

(a)

◦
◦

◦

t1

t1

◦

◦
◦◦

t2

t2

◦
◦

◦

t3

t3

◦

◦
◦

t4

t4

(b)

t1 t2 t3 t4

(c)

Fig. 6. The start hypergraph Zexample where (a) shows the net component and C•;
(b) shows Ct1 , . . . , Ct4 ; and (c) shows Dt1 , . . . , Dt4 .

We can now state the main result of the paper using the following definition
of (hyper)graph representation of markings in which the places are the nodes
and the number of tokens of each place equals the number of terminal token
flags at this place.

Definition 5. Let M : P → N be a marking. Then its (hyper)graph representation
is given by gr(M) = (P, {(p, i) | p ∈ P, i = 1, . . . ,M(p)}, sM, tM, labM) with

256 H.-J. Kreowski et al.

◦ ◦◦ ◦◦

µ

◦◦
◦

t1 t3

t2 t4

(a)

◦ ◦ ◦◦

µ

t1 t3

t2 t4

(b)

Fig. 7. The net components of Z1 and Z2 of the derivation

sM((p, i)) = ε, tM((p, i)) = p and lab((p, i)) = • for all flags. This operator is
extended to a set X of markings by gr(X) = {gr(M) | M ∈ X}.

Theorem 1. Let PN = (P,T,F,W,M0) be a Petri net. Let CDFG(PN) be the
corresponding context-dependent fusion grammar. Then

L(CDFG(PN)) = gr(Reach(PN)).

Proof (Sketch). A firing M[t〉M′ in PN is reflected by an application of fire(t)
fusing the t-hyperedge in hg(P,T,M) with the t-hyperedge of some Ct followed
by the application of consume as long as possible. This yields hg(P,T,M′). By
induction, one gets that a firing sequence M[∗〉M′ is reflected by a derivation
from the start hypergraph with hg(P,T,M0) to a hypergraph with hg(P,T,M).
The latter can be terminated by applying delete and replace as long as possible.
This yields gr(M) by removing the marker. Altogether, we get L(CDFG(PN)) ⊆
gr(Reach(PN)). The converse follows from the fact that the derivation con-
structed above is a normal form in CDFG(PN).

The full proof is omitted because of lack of space.

It is well-known that the reachability problem of Petri nets is EXPSPACE-
hard. Due to our construction, reachability is reduced to the membership prob-
lem of context-dependent fusion grammars, which in consequence, is at least as
hard as the reachability problem.

Corollary 1. The membership problem for context-dependent fusion grammars
is EXPSPACE-hard.

In [3], it is claimed that the reachability problem of Petri nets is not elemen-
tary. In this case, the mebership problem of context-dependent fusion grammars
would be non-elementary-hard.

Transformation of Petri Nets into Context-Dependent Fusion Grammars 257

6 Conclusion

In this paper, we have started the study on context-dependent fusion grammars
by transforming Petri nets into this type of hypergraph grammars. To get a
better insight, further research is needed including the following issues.

1. Is it true (as we believe) that Petri nets cannot be embedded into fusion
grammars without context conditions? Is it even true that only positive or
only negative context conditions are not powerful enough to cover Petri nets?

2. Is the membership problem of context-dependent fusion grammars decidable?
In this context, it should be noted the even the decidability of the membership
problem of fusion grammars is an open problem.

3. In [16], we introduced splicing/fusion grammars enhancing fusion grammars
by the inversion of fusions. How does a natural transformation of context-
dependent fusion grammars into splicing/fusion grammars look like?

4. A promising application area of fusion grammars is the modeling of bio-
chemical reactions. This should be demonstrated by convincing examples.

References

1. Kreowski, H.-J., Kuske, S., Lye, A.: Fusion grammars: a novel approach to the
generation of graph languages. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS,
vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 6

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266, 1021–1024 (1994)

3. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachability
problem for Petri nets is not elementary. CoRR. arXiv.org, abs/1809.07115 (2018)

4. Kreowski, H.-J.: A comparison between petri-nets and graph grammars. In: Nolte-
meier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 306–317. Springer, Heidelberg (1981).
https://doi.org/10.1007/3-540-10291-4 22

5. Corradini, A.: Concurrent computing: from Petri nets to graph grammars. Elec-
tron. Notes Theoret. Comput. Sci. 2, 56–70 (1995)

6. Ehrig, H., Padberg, J.: Graph grammars and Petri net transformations. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 496–536.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 14

7. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

8. Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-662-05324-9

9. Priese, L., Wimmel, H.: Petri-Netze. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-76971-2

10. Best, E., Wimmel, H.: Structure theory of Petri nets. In: Jensen, K., van der
Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets
and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 162–224. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38143-0 5

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
http://arxiv.org/abs/org
https://doi.org/10.1007/3-540-10291-4_22
https://doi.org/10.1007/978-3-540-27755-2_14
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-540-76971-2
https://doi.org/10.1007/978-3-540-76971-2
https://doi.org/10.1007/978-3-642-38143-0_5

258 H.-J. Kreowski et al.

11. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

12. Ehrig, H., Habel, A.: Graph grammars with application conditions. In: Rozenberg,
G., Salomaa, A. (eds.) The Book of L, pp. 87–100. Springer, Berlin (1986). https://
doi.org/10.1007/978-3-642-95486-3 7

13. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Inform. 26(3,4), 287–313 (1996)

14. Dediu, A.-H., Klempien-Hinrichs, R., Kreowski, H.-J., Nagy, B.: Contextual hyper-
graph grammars – a new approach to the generation of hypergraph languages. In:
Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 327–338. Springer,
Heidelberg (2006). https://doi.org/10.1007/11779148 30

15. Ehrig, H., Hermann, F., Sartorius, C.: Completeness and correctness of model
transformations based on triple graph grammars with negative application condi-
tions. In: Proceedings of the 8th International Workshop on Graph Transformation
and Visual Modeling Techniques, vol. 18, pp. 1–18 (2009)

16. Kreowski, H.-J., Kuske, S., Lye, A.: Splicing/fusion grammars and their relation
to hypergraph grammars. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS,
vol. 10887, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92991-0 1

https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-95486-3_7
https://doi.org/10.1007/978-3-642-95486-3_7
https://doi.org/10.1007/11779148_30
https://doi.org/10.1007/978-3-319-92991-0_1
https://doi.org/10.1007/978-3-319-92991-0_1

Generalized Register Context-Free
Grammars

Ryoma Senda1(B), Yoshiaki Takata2, and Hiroyuki Seki1

1 Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa, Nagoya 464-8601, Japan

ryoma.private@sqlab.jp, seki@i.nagoya-u.ac.jp
2 Graduate School of Engineering, Kochi University of Technology,

Tosayamada, Kami City, Kochi 782-8502, Japan
takata.yoshiaki@kochi-tech.ac.jp

Abstract. Register context-free grammars (RCFG) is an extension of
context-free grammars to handle data values in a restricted way. This
paper first introduces register type as a finite representation of the reg-
ister contents and shows some properties of RCFG. Next, generalized
RCFG (GRCFG) is defined by permitting an arbitrary relation on data
values in the guard expression of a production rule. We extend register
type to GRCFG and introduce two properties of GRCFG, the simulation
property and the type oracle. We then show that ε-rule removal is possi-
ble and the emptiness and membership problems are EXPTIME solvable
for GRCFG that satisfy these two properties.

1 Introduction

This paper focuses on register context-free grammars (abbreviated as RCFG),
which were introduced by Cheng and Kaminsky in 1998 [6]. Recently, register
automata (abbreviated as RA) [10] have been paid attention [11–13] as a core
computational model of query languages for structured documents with data
values such as XPath. For example, XPath can specify both a regular pattern of
node labels (e.g., element names) and a constraint on data values (e.g., attribute
values and PCDATA) in a tree representing an XML document. While RA have
a power sufficient for expressing regular patterns on paths of a tree or a graph,
it cannot represent tree patterns (or patterns over branching paths) that can be
represented by some query languages such as XPath. Hence, a computational
model that can represent both local tree patterns and constraints on data values
is expected.

RCFG [6] is defined as an extension of CFG in a similar way to extending
finite automata to RA. In a derivation of a k-RCFG, k data values are associated
with each occurrence of a nonterminal symbol (called a register assignment) and
a production rule can be applied only when the guard condition of the rule,
which is a Boolean combination of the equality check between an input data
value and the data value in a register, is satisfied. In [6], properties of RCFG were

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 259–271, 2019.
https://doi.org/10.1007/978-3-030-13435-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_19

260 R. Senda et al.

shown including the decidability of the membership and emptiness problems, and
the closure properties. In our previous study [17], the membership problem for
RCFG, ε-rule free RCFG and growing RCFG are shown EXPTIME-complete,
PSPACE-complete and NP-complete, respectively, and the emptiness problem
for these classes are shown EXPTIME-complete.

In this paper, we first show that ε-rules can be removed from a given RCFG
without changing the generated language. To prove this property, we introduce
a notion called register type, which is the quotient of registers by the equivalence
classes induced by equality relation among the contents of registers. Next, we
move to the main topic of this paper, a generalization of RCFG abbreviated
as GRCFG. As we mentioned, what an RCFG (and also an RA) can do when
applying a rule is the equality check between the content of a register and an
input data value. Then, we come to a natural question that what happens if we
allow the check of an arbitrary relation (such as the total order on numbers).
Generally, basic problems including membership and emptiness become unde-
cidable. Hence, we want to introduce appropriate conditions for such extensions
of RCFG to keep the decidability and complexity of those problems unchanged.
For this aim, we extend the above mentioned register type for an arbitrary rela-
tion and then we introduce two conditions, namely, the simulation and the type
oracle. We show that the emptiness and membership are decidable and ε-removal
is possible for GRCFG that satisfies these two conditions. As a corollary, we also
show that those properties hold for GRCFG with a total order on a dense set.

Related Work. Register automata (RA) was proposed in [10] as finite-memory
automata where they show that the membership and emptiness problems are
decidable, and the class of languages recognized by RA are closed under union,
concatenation and Kleene-star. Later, the computational complexity of the for-
mer two problems are analyzed in [7,16]. In [6], register context-free grammars
(RCFG) as well as pushdown automata over an infinite alphabet were intro-
duced and the equivalence of the two models were shown. Also, the decidability
of membership and emptiness problems and the closure under union, concate-
nation, Kleene-star were shown in [6]. Extension of RA to a totally ordered set
was discussed in [1,9], which is also provided in RCFG in the last section of this
paper.

There have been many studies on other extensions of finite models to deal
with data values in restricted ways. Other automata for data words: As exten-
sions of finite automata other than RA, data automata [5], pebble automata
(PA) [14] and nominal automata (NA) [4] are known. Libkin and Vrgoč [13]
argue that register automata (RA) is the only model that has efficient data
complexity for membership among the above mentioned formalisms. Neven, et
al. consider variations of RA and PA, which are either one way or two ways,
deterministic, nondeterministic or alternating. They show inclusion and separa-
tion relationships among these automata, FO(∼, <) and EMSO(∼, <), and give
the answer to some open problems including the undecidability of the univer-
sality problem for RA [15]. Nominal (G-)automata (NA) is defined by a data
set with symmetry and finite supports, and properties of NA are investigated

Generalized Register Context-Free Grammars 261

including Myhill-Nerode theorem, closure and determinization in [4]. (Usual) RA
with equality and RA with total order can be regarded as NA where the data
sets have equality symmetry and total order symmetry, respectively. In [4], nom-
inal CFG is also introduced but decidability of related problems is not discussed.
Finiteness of orbits and that of register types in this paper are related, but deeper
observation is left as future study. LTL with freeze quantifier: Linear temporal
logic (LTL) was extended to LTL↓ with freeze quantifier [7,8]. The relationship
among subclasses of LTL↓ and RA as well as the decidability and complexity of
the satisfiability (nonemptiness) problems are investigated [7]. They especially
showed that the emptiness problem for (both nondeterministic and determin-
istic) RA are PSPACE-complete. Two-variable logics with data equality: It is
known that two-variable FO2(<,+1) where < is the ancestor-descendant rela-
tion and +1 is the parent-child relation is decidable and corresponds to Core
XPath. The logic was extended to those with data equality. It was shown in [3]
that FO2(∼, <,+1) with data equality ∼ is decidable on data words. Note that
FO2(∼, <,+1) is incomparable with LTL↓ of [7]. Also it was shown in [2] that
FO2(∼,+1) and existential MSO2(∼,+1) are decidable on unranked data trees.

2 Register Context-Free Grammars

Let N = {1, 2, . . .} and N0 = {0} ∪ N. We assume an infinite set D of data
values as well as a finite alphabet Σ. For a given k ∈ N0 specifying the number
of registers, a mapping θ : [k] → D is called an assignment (of data values
to k registers) where [k] = {1, 2, . . . , k}. We assume that a data value ⊥ ∈ D
is designated as the initial value of a register. Let Θk denote the collection of
assignments to k registers. For θ, θ′ ∈ Θk, we write θ′ = θ[i ← d] if θ′(i) = d and
θ′(j) = θ(j) for j 	= i. Let Fk denote the set of guard expressions over k registers
defined by ψ := tt | x=

i | ¬ψ | ψ ∨ψ where xi ∈ {x1, . . . , xk}. Let ff, x�=
i , ψ1 ∧ψ2

denote ¬tt,¬x=
i ,¬(¬ψ1 ∨ ¬ψ2), respectively. The description length of a guard

expression ψ, denoted as ‖ψ‖, is defined as usual where ‖x=
i ‖ = 1 + log k. For

d ∈ D, θ ∈ Θk and ψ ∈ Fk, the satisfaction relation d, θ |= ψ is defined as
d, θ |= x=

i iff θ(i) = d and is recursively defined for ¬ and ∨ in a usual way.
For a finite alphabet Σ and a set D of data values disjoint from Σ, a data

word over Σ × D is a finite sequence of elements of Σ × D and a data language
over Σ × D is a subset of (Σ × D)∗. |β| denotes the cardinality of β if β is a set
and the length of β if β is a finite sequence.

For k ∈ N0, a k-register context-free grammar (k-RCFG) over Σ and D is a
triple G = (V,R, S) where

– V is a finite set of nonterminal symbols (abbreviated as nonterminals) where
V ∩ (Σ ∪ D) = ∅,

– R is a finite set of production rules (abbreviated as rules) having either of the
following forms: (A,ψ, i) → α or (A,ψ) → α where A ∈ V , ψ ∈ Fk, i ∈ [k]
and α ∈ (V ∪ (Σ × [k]))∗; we call (A,ψ, i) (or (A,ψ)) the left-hand side and
α the right-hand side of the rule, and,

262 R. Senda et al.

– S ∈ V is the start symbol.

A rule whose right-hand side is ε is an ε-rule. If R contains no ε-rule, G is called
ε-rule free. A k-RCFG G for some k ∈ N0 is just called an RCFG.

In the following, we write (A,ψ, i)/(A,ψ) → α ∈ R to represent (A,ψ, i) →
α ∈ R or (A,ψ) → α ∈ R. The description length of a k-RCFG G = (V,R, S) is
defined as ‖G‖ = |V |+|R|max{(|α|+1)(log |V |+log k)+‖ψ‖ | (A,ψ, i)/(A,ψ) →
α ∈ R}, where ‖ψ‖ is the description length of ψ.

We define ⇒G as the smallest relation containing the instantiations of rules
in R and closed under the context as follows. For A ∈ V , θ ∈ Θk and X ∈ ((V ×
Θk)∪(Σ×D))∗, we say (A, θ) directly derives X, written as (A, θ) ⇒G X if there
exist d ∈ D (regarded as an input data value) and r = (A,ψ, i) → c1 . . . cn ∈ R
(resp. r = (A,ψ) → c1 . . . cn ∈ R) such that

d, θ |= ψ,X = c′
1 . . . c′

n, θ′ = θ[i ← d] (resp. θ′ = θ) where

c′
j =

{
(B, θ′) if cj = B ∈ V,
(b, θ′(l)) if cj = (b, l) ∈ Σ × [k].

For X,Y ∈ ((V ×Θk)∪(Σ×D))∗, we also write X ⇒G Y if there are X1,X2,X3 ∈
((V ×Θk)∪ (Σ ×D))∗ such that X = X1(A, θ)X2, Y = X1X3X2 and (A, θ) ⇒G

X3. If we want to emphasize the applied rule r and the input data value d, we
write X ⇒d

G,r Y .

Let ∗⇒G and +⇒G be the reflexive transitive closure and the transitive closure
of ⇒G, respectively, called the derivation relation of zero or more steps (resp.
the derivation relation of one or more steps). We abbreviate ⇒G, ∗⇒G and +⇒G

as ⇒, ∗⇒ and +⇒ if G is clear from the context.
We denote by ⊥ the register assignment that assigns the initial value ⊥ to

every register. We let L(G) = {w | (S,⊥) +⇒ w ∈ (Σ × D)∗}. L(G) is called
the data language generated by G. (S,⊥) +⇒ w is called a derivation of w in G.
RCFGs G1 and G2 are equivalent if L(G1) = L(G2).

Example 1. For Σ = {a, b}, let G = ({S,A}, R, S) be a 2-RCFG where R =
{(S, tt, 1) → (a, 1)A(a, 1), (A, x�=

1 , 2) → (b, 2)A(b, 2), (A, x=
1) → (a, 1)}. Then,

L(G) = {(a, d0)(b, d1) . . . (b, dn)(a, d0)(b, dn) . . . (b, d1)(a, d0) | n ≥ 0, di 	= d0 for
i ∈ [n]}.

3 Register Type, Normal Forms and ε-rule Removal

3.1 Register Type

In this subsection, we will define register type, which is useful in expressing
equalities among the contents of registers, transforming a given RCFG into a
certain normal form and proving some important properties of RCFG. The idea
is simple; instead of remembering concrete data values in registers, it suffices to
remember the induced equivalence classes of the indices of registers as long as
the equalities among data values in the registers are concerned.

Generalized Register Context-Free Grammars 263

Definition 2. A decomposition of [k] into disjoint non-empty subsets is called a
register type of k-RCFG. Let Γk denote the collection of all register types of k-
RCFG. For a register type γ ∈ Γk, let γ[i] (i ∈ [k]) denote the subset containing
i. ��
For example, γ1 = {{1, 2}, {3, 5}, {4}} is a register type of 5-RCFG and γ1[1] =
{1, 2}, γ1[5] = {3, 5}. For a register assignment θ ∈ Θk and a register type
γ ∈ Γk, we define the typing relation as:

θ |= γ :⇐⇒ ∀i, j.(θ[i] = θ[j] ⇐⇒ γ[i] = γ[j]).

For example, θ1 ∈ Θ5 such that θ1(1) = θ1(2) = 8, θ1(3) = θ1(5) = 10, θ1(4) = 5
satisfies θ1 |= γ1. By definition, for each θ ∈ Θk, there is exactly one γ ∈ Γk such
that θ |= γ. In this case, we say that the type of θ is γ.

3.2 Normal Forms for Guard Expressions

By using register types, we show that a given RCFG can be transformed into
an equivalent RCFG G′ such that for any rule r = (A,ψ, i)/(A,ψ) → α, r can
be applied for any (A, θ), that is, the guard ψ never blocks any (A, θ) and only
specifies the equality or inequality among an input data value d and the current
contents of the registers. This transformation is the key of the ε-rule removal
shown in the next subsection.

First, it is easy to transform a given k-RCFG into an equivalent k-RCFG
where the guard expression ψ of every rule has the following form:

ψ = (x=
i1 ∧ . . . ∧ x=

im) ∧ (x�=
j1

∧ . . . ∧ x�=
jn

) (1)

The above guard can be obtained by the following equivalence transformations:

1. Transform the guard expression of every rule to an equivalent disjunctive
normal form.

2. Replace a rule (A,ψ1 ∨ ψ2, i) → α into (A,ψ1, i) → α and (A,ψ2, i) → α.

For a guard expression ψ in (1), we let ψ= = {i1, . . . , im} and ψ �= = {j1, . . . , jn}.
We assume ψ=∩ψ �= = ∅ (the rule with ψ=∩ψ �= 	= ∅ can be removed). For γ ∈ Γk

and ψ ∈ Fk in the form of (1), we define

γ |= ψ :⇐⇒
∧

i∈ψ=

(
∧

j∈ψ=

γ[i] = γ[j] ∧
∧

j∈ψ �=
γ[i] 	= γ[j]).

Note that ψ= = ∅ implies γ |= ψ for any γ. It is easy to see that the following
property holds, which means that for an assignment θ that conforms to γ, there
is a data value d that satisfies ψ if and only if γ |= ψ.

θ |= γ ⇒ (γ |= ψ ⇐⇒ ∃d. d, θ |= ψ).

Lemma 3. For an arbitrary k-RCFG G, we can construct a k-RCFG G′ such
that L(G′) = L(G) and the guard expression of every rule in G′ is one of the
following k + 1 expressions: x=

1 , x=
2 , . . . , x=

k , x�=
1 ∧ · · · ∧ x�=

k .

264 R. Senda et al.

Proof. We assume that the guard expression of every rule of G has the form of
(1). For such a guard expression ψ and a register type γ ∈ Γk, let [ψ, γ] be the
set of guard expressions defined as follows.

[ψ, γ] =

{
{x=

i | i = min ψ=} if ψ= 	= ∅,

{x=
i | i ∈ [k] \ ⋃

j∈ψ �= γ[j]} ∪ {x�=
1 ∧ . . . ∧ x�=

k } if ψ= = ∅.

Then the following properties hold.

(i) ψ′ ∈ [ψ, γ] ⇒ ∀θ ∃d. d, θ |= ψ′ (The guard in [ψ, γ] is always satisfiable.)

(ii) θ |= γ ⇒ ∀d. (d, θ |= ψ ⇐⇒ ∃ψ′ ∈ [ψ, γ]. d, θ |= ψ′)
(The same input value can be used for ψ and [ψ, γ].)

(iii) ψ′ ∈ [ψ, γ] ⇒ ∀i∃γ′ ∀θ, d. ((θ |= γ ∧ d, θ |= ψ′) ⇒ θ[i ← d] |= γ′).
(The register type after the rule application is unique.)

The register type γ′ in the above third property is uniquely determined by γ,
ψ′, and i, and we write the register type as after(γ, ψ′, i).

We construct k-RCFG G′ = (V ′, S′, R′) from G = (V, S,R) where V ′ =
V × Γk, S′ = (S, {[k]}), and R′ is the smallest set that satisfies the following
inference rule, where αaug(γ′) is the sequence obtained from α by replacing every
occurrence of every nonterminal A in V with (A, γ′); that is, (X1 . . . Xn)aug(γ

′) =
X ′

1 . . . X ′
n where X ′

� = (X�, γ
′) if X� ∈ V and X ′

� = X� otherwise for every
� ∈ [n].

(A,ψ, i) → α ∈ R (resp. (A,ψ) → α ∈ R)
γ |= ψ, ψ′ ∈ [ψ, γ], γ′ = after(γ, ψ′, i) (resp. γ′ = γ)
((A, γ), ψ′, i) → αaug(γ′) ∈ R′ (resp. ((A, γ), ψ′) → αaug(γ′) ∈ R′)

We can show the following properties, which establish the lemma.

– For a derivation of a data word w in G, if we replace each (A, θ) with ((A, γ), θ)
where γ is the register type that satisfies θ |= γ, then we obtain a derivation
of w in G′. Note that by the above property (ii), there must exist ψ′ ∈ [ψ, γ]
that allows this derivation in G′ where ψ is the guard expression of the rule
used for the derivation in G.

– For every ((A, γ), θ) appearing in a derivation in G′, it holds that θ |= γ.
– For a derivation of a data word w in G′, if we replace each ((A, γ), θ) with

(A, θ), then we obtain a derivation of w in G.

3.3 ε-rule Removal

Theorem 4. For an arbitrary k-RCFG, we can construct an equivalent k-RCFG
having no ε-rule.

Proof. By Lemma 3, we can transform any k-RCFG G = (V,R, S) into another
k-RCFG G′ = (V ′, R′, S′) such that L(G′) = L(G) and the guard expression
of every rule in G′ is either x=

1 , . . . , x=
k , or x�=

1 ∧ . . . ∧ x�=
k . Because the guard

Generalized Register Context-Free Grammars 265

expressions of G′ never block the application of each rule, we can compute the
set Nu of nullable nonterminals (i.e. the set that consists of every nonterminal
A such that A ⇒∗

G′ ε) in the same way as CFG; that is, we can compute Nu as
the smallest set that satisfies the following conditions:

– If (A,ψ, i)/(A,ψ) → ε ∈ R′, then A ∈ Nu.
– If (A,ψ, i)/(A,ψ) → α ∈ R′ and α consists of nonterminals in Nu, then

A ∈ Nu.

And thus we can remove the ε-rules of G′ also in the same way as CFG.

4 Generalized RCFG

4.1 Definitions

We define generalized register context-free grammar by allowing an arbitrary
binary relation on the set of data values. Let Σ be a finite alphabet, D be a set
of data values such that Σ ∩D = ∅ equipped with a finite set of binary relations
R. We call D = (D,R) a data structure. For k ∈ N0, a generalized k-register
context-free grammar (k-GRCFG) is a triple G = (V,R, S) where V , R and S
are the same as in k-RCFG except that an atomic formula in a guard expression
is x��

i and x��−1

i (i ∈ [k], � ∈ R) and its semantics is defined by

d, θ |= x��
i iff θ(i) � d and d, θ |= x��−1

i iff d � θ(i)

for any d ∈ D and θ ∈ Θk. We sometimes write k-GRCFG(R) to emphasize R
and abbreviate it as k-GRCFG(�) when R = {�}. Notions and notations for
RCFG such as ε-rule, derivation relation ⇒, the data language L(G) generated
by G are defined in the same way. We also write k-GRCFG(=) to denote a
(usual) k-RCFG.

The following properties can be proved in a similar way to the case of k-
GRCFG(=) [6].

Theorem 5. The class of data languages generated by k-GRCFG(R) is closed
under union, concatenation and Kleene-closure. It is not closed under intersec-
tion, complement, homomorphisms or inverse homomorphisms.

4.2 Simulation Property and Type Oracle

In Sect. 3, we showed that a given RCFG can be transformed to an equivalent
RCFG where the guard expression of a production rule never blocks its applica-
tion by associating a register type with each nonterminal symbol. We can extend
register type to GRCFG in a natural way, but the above transformation cannot
guarantee the equivalence because the register type no longer has information
enough to represent the applicability of a rule in GRCFG.

266 R. Senda et al.

Example 6. Consider the set of integers with the usual strict total order Z =
(Z, {<Z , >Z}) as a data structure. We might extend register type of GRCFG(=)
by introducing <Z among the equivalence classes of [k]. For example, let ϕ =
x<
1 ∧x>

2 be a guard expression of 3-GRCFG(Z) and consider register assignments
θ1, θ2 ∈ Θ3 such that θ1(1) = θ1(3) = 4, θ1(2) = 7 and θ2(1) = θ2(3) = 5, θ2(2) =
6. Also let γ be the register type (informally) defined as γ = {{1, 3} <Z {2}}.
Both θ1 |= γ and θ2 |= γ hold. However, there is no d ∈ Z such that d, θ2 |= ϕ
while 5, θ1 |= ϕ. ��
Similarly, the membership and emptiness lose decidability for GRCFG because a
binary relation appearing in a guard expression may be an undecidable relation.
To limit the influence of binary relations in a data structure so that GRCFG
have mild expressive power, we introduce two properties of a GRCFG, namely,
the simulation property and (the existence) of type oracle.

In the rest of this paper, we assume R is a singleton R = {�} for simplicity.
The properties we show below can be extended in a general case that R has more
than one binary relation. We first extend a register type as a binary relation
γ : ([k] × [k])\{(i, i) | i ∈ [k]} → {tt, ff}1. We say that the type of a register
assignment θ is γ (and write θ |= γ) iff for all i, j ∈ [k] (i 	= j),

γ(i, j) = tt iff θ(i) � θ(j).

We write θ ∼�� θ′ if the types of register assignments θ and θ′ are the same. The
collection of all register types of k-GRCFG is denoted by Γk as before.

Definition 7 (Simulation). Let G be a k-GRCFG(�) G = (V,R, S). G has
the simulation property (with respect to �) if the following condition is met.

For all θ, θ′ ∈ Θk, d ∈ D, r = (A,ϕ, i)/(A,ϕ) → α ∈ R such that θ ∼�� θ′

and d, θ |= ϕ, there exists d′ ∈ D such that d′, θ′ |= ϕ, and if the left-hand
side of r is (A,ϕ, i), then θ[i ← d] ∼�� θ′[i ← d′].

The following diagram illustrates the condition of the simulation property.

(A, θ) =⇒d
r . . . (B, θ[i ← d]) . . .

� �
(A, θ′) =⇒d′

r . . . (B, θ′[i ← d′]) . . .

Definition 8 (Type Oracle). Let O : Γk × Fk → {tt, ff} be the predicate
defined by: for γ ∈ Γk and ψ ∈ Fk, O(γ, ψ) = tt iff

there are θ ∈ Θk and d ∈ D such that θ |= γ and d, θ |= ψ.

We say that D has the type oracle if there is a polynomial time algorithm that
answers whether O(γ, ψ) = tt or ff for given γ ∈ Γk and ψ ∈ Fk. ��

1 We exclude the diagonal elements {(i, i) | i ∈ [k]} from the domain of a register type
because the applicability of a rule does not depend on whether θ(i) �� θ(i).

Generalized Register Context-Free Grammars 267

Finally, we define data type as an extension of register type by adding the infor-
mation on equality between data values in the registers and data values appear-
ing in a given data word w.

Definition 9 (Data Type). Let w be a data word and Dw be the set of data
values appearing in w; i.e. Dw = {di | i ∈ [n], w = (a1, d1) . . . (an, dn)}. Also let
d �= 	∈ Dw be a newly introduced symbol. We use a function e : [k] → Dw ∪ {d �=},
whose codomain is finite, to represent the register assignment by replacing every
data value that does not appear in w with d �=. We write θ |= e iff for all i ∈ [k],

e(i) = θ(i) if θ(i) ∈ Dw and e(i) = d �= otherwise.

The collection of all such functions e : [k] → Dw ∪ {d �=} is denoted by Ew,k.
The data type of a register assignment θ ∈ Θk for a data word w is a pair

(γ, e) ∈ Γk × Ew,k. We write θ |= (γ, e) iff θ |= γ and θ |= e. We define
the simulation property with data type and the data type oracle Ow(γ, e, ϕ) of
w ∈ (Σ ×D)∗ defined for γ ∈ Γ, e ∈ Ew,k, ϕ ∈ Fk in the same way as in the case
of register types.

5 Properties of GRCFG

5.1 ε-rule Removal

Theorem 10. For an arbitrary GRCFG(�) G such that G has the simulation
property and D has the type oracle, we can construct an equivalent GRCFG(�)
G′ having no ε-rule.

Proof. The theorem can be proved in a similar way to Theorem 4 by using the
simulation property and the type oracle. Let G = (V,R, S) be a k-GRCFG(�).
We assume that the guard expression of every rule in R is the conjunction of
literals (atomic formulas or their negations). We first construct k-GRCFG(�)
G′ = (V ′, R′, S′) from G where

– V ′ = V × Γk,
– R′ is the smallest set of rules defined as follows. Define the subset of guard

expressions Ψ as

Ψ = {
∧

i∈[k]

ζi ∧
∧

i∈[k]

ηi | ζi ∈ {x��
i ,¬x��

i }, ηi ∈ {x��−1

i ,¬x��−1

i }}.

Let r = (A,ϕ, i) → α ∈ R. (A rule (A,ϕ) → α can be processed in a similar
way.) Also let γ ∈ Γk and ψ ∈ Ψ . If O(γ, ϕ ∧ ψ) = tt,

((A, γ), ϕ ∧ ψ, i) → αaug(γ′) ∈ R′

where γ′ ∈ Γk is a register type that satisfies θ[i ← d] |= γ′ for any θ and d
such that θ |= γ and d, θ |= ϕ∧ψ (see the proof of Lemma 3 for the definition
of αaug(γ′)). Note that γ′ must exist and γ′ is uniquely determined by γ,
ϕ∧ψ and i because γ specifies whether θ(i) � θ(j) holds or not for each pair
i, j ∈ [k] (i 	= j) and also ψ specifies whether θ(i) � d and d � θ(i) hold or
not for each i ∈ [k] and an input data value d.

268 R. Senda et al.

– S′ = (S, γ0) where ⊥k |= γ0.

See an example of the construction in Example 11. We can show L(G) = L(G′)
by induction on the length of derivations in G and G′, using the simulation
property (to show L(G′) ⊆ L(G)) and the type oracle (to show both inclusions).

The rest of the proof is similar to the one in Theorem 4.

Example 11. Let k = 2 and consider a rule r = (A,ϕ, 1) → α where ϕ =
x��
1 ∧ x��−1

2 . The possible register types are γ1 = (δ12 ∧ δ21), γ2 = (δ12 ∧ ¬δ21),
γ3 = (¬δ12 ∧ δ21) and γ4 = (¬δ12 ∧ ¬δ21) where δ12 = (θ(1) � θ(2)) and
δ21 = (θ(2) � θ(1))2. After the elimination of the unsatisfiable ones and Boolean
simplification, we can assume that Ψ = {ψ1, ψ2, ψ3, ψ4} where ψ1 = x��−1

1 ∧ x��
2 ,

ψ2 = x��−1

1 ∧¬x��
2 , ψ3 = ¬x��−1

1 ∧x��
2 and ψ4 = ¬x��−1

1 ∧¬x��
2 . If O(γi, ϕ∧ψj) = tt,

the register type γ′ after the rule application is γ1, γ2, γ1, γ2 for ψ1, ψ2, ψ3, ψ4,
respectively. In this example, the type γ′ is determined depending only on ψj

and independent of γi because k = 2 and an input data value is loaded to the
first register when r is applied.

5.2 Emptiness and Membership

Theorem 12. The emptiness problem for GRCFG(�) such that G has the sim-
ulation property and D has the type oracle, is EXPTIME-complete.

Proof. Let G = (V,R, S) be such a k-GRCFG(�) and G′ = (V ′, R′, S′) be the
k-GRCFG(�) constructed from G in the proof of Theorem 10. As shown in that
proof, L(G′) = L(G). We construct CFG G′′ = (V ′, R′′, S′) from G′ where

R′′ = {(A, γ) → X1 . . . Xn | ((A, γ), ϕ, i)/((A, γ), ϕ) → X ′
1 . . . X ′

n ∈ R′ for
some ϕ and i, and Xj = X ′

j if X ′
j ∈ V ′ and Xj = a if Xj /∈ V ′ for each

j ∈ [n]}.

We can easily show L(G′) = ∅ ⇔ L(G′′) = ∅ because a rule application is never
blocked in G′.

Because the size of the CFG constructed in this way is exponential to k
and the emptiness problem for CFG is decidable in linear time, the emptiness
problem for GRCFG is decidable in deterministic time exponential to k.

The lower bound can be obtained from EXPTIME-completeness of the empti-
ness problem for k-GRCFG(=) [17].

Theorem 13. The membership problem for GRCFG(�) such that G has the
simulation property with data type and D has the data type oracle, is EXPTIME-
complete.

(This theorem can be proved in a similar way to Theorem 12.)

2 For readability, we denote a register type as a Boolean formula on a register assign-
ment θ. For example, γ2(1, 2) = tt and γ2(2, 1) = ff if we follow the notation defined
in Sect. 4.2.

Generalized Register Context-Free Grammars 269

5.3 GRCFG with a Total Order on a Dense Set

Lemma 14. Every GRCFG(<Q) has the simulation property and Q has the type
oracle where <Q is the strict total order on the set Q of all rational numbers.
Similarly, it has the simulation property with data type and Q has the data type
oracle.

Proof. We abbreviate <Q as <. Let G = (V,R, S) be a k-GRCFG(<), θ ∈ Θk,
γ ∈ Γk and r = (A,ϕ, i) → α ∈ R where ϕ is the conjunction of literals (of the
form x<

i or ¬x<
j). (The case r = (A,ϕ) → α ∈ R can be treated in a similar

way.) Assume that θ |= γ. The rule r can be applied to (A, θ) iff there is d ∈ Q
such that d, θ |= ϕ. The condition d, θ |= ϕ as well as the assumption θ |= γ
can be represented as a set of inequations on d, θ(1), . . . , θ(k). Whether this
set of inequations has a contradiction does not depend on the concrete values
θ(1), . . . , θ(k), and if it does not have a contradiction, then there must exist d ∈ Q
that satisfies it because Q is dense. Moreover, whether θ[i ← d] |= γ′ holds for a
given γ′, which can also be represented as the consistency of a set of inequations
on d, θ(1), . . . , θ(k), does not depend on θ. Hence, if θ |= γ, θ′ |= γ, d, θ |= ϕ and
θ[i ← d] |= γ′, there is d′ ∈ Q satisfying d′, θ |= ϕ and θ′[i ← d′] |= γ′ and the
simulation property holds.

Similarly, for deciding O(γ, ϕ) = tt, it suffices to represent the condition

d, θ |= ϕ ∧ θ |= γ

as a set of inequations on d, θ(1), . . . , θ(k) as above and solve it.
We can show the simulation property with data type and the existence of

the data type oracle in a similar way.

Example 15. Consider a 2-GRCFG(<)= (V,R, S) and a rule (A,ϕ, 1) → B ∈ R
where ϕ = x<

1 ∧¬x<
2 . We see that d, θ |= ϕ ⇔ θ(1) < d ≤ θ(2). Because k = 2 and

< is a total order on Q, there are three possible register types γ1 = (θ(1) < θ(2)),
γ2 = (θ(2) < θ(1)) and γ3 = (θ(1) = θ(2)). As easily known, (i) there is d ∈ Q
such that d, θ |= ϕ and θ |= γ if and only if γ = γ1, and (ii) if γ = γ1 then
such d ∈ Q satisfies either (ii-a) d < θ(2), θ[1 ← d] |= γ1 or (ii-b) d = θ(2),
θ[1 ← d] |= γ3.

Corollary 16. For a given GRCFG(<Q), we can construct an equivalent
GRCFG(<Q) having no ε-rule. The emptiness and membership problems are
both EXPTIME-complete for GRCFG(<Q).

Proof. By Lemma 14 and Theorems 10, 12 and 13.

6 Conclusion

We have introduced register type to RCFG and shown an equivalence transfor-
mation to RCFG that never blocks a rule application by associating a register
type with each nonterminal symbol. Then we have defined generalized RCFG

270 R. Senda et al.

(GRCFG) that can use an arbitrary relation in the guard expression. Using the
technique of register type and making two reasonable assumptions, the simula-
tion property and the existence of type oracle, the decidability of emptiness and
membership for GRCFG and a transformation to an ε-free GRCFG have been
provided.

Nominal CFG [4] with equality symmetry, total order symmetry and integer
symmetry correspond to GRCFG(=), GRCFG(<Q) (Sect. 5.3) and GRCFG(<Z)
(Example 6), respectively. Investigating the relation between nominal CFG and
GRCFG in depth is future work.

References

1. Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data
words. In: 4th Alberto Mendelzon International Workshop on Foundations of Data
Management (2010)

2. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3), 13:1–13:48 (2009). https://doi.org/
10.1145/1516512.1516515

3. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27:1–27:26 (2011). https://
doi.org/10.1145/1970398.1970403

4. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Meth-
ods Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:4)2014

5. Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2),
75–85 (2002). https://doi.org/10.1016/S0020-0190(02)00229-6

6. Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Inf. 35(3), 245–267 (1998). https://doi.org/10.1007/s002360050120

7. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1–16:30 (2009). https://doi.org/10.1145/1507244.
1507246

8. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decid-
ability and complexity. Inf. Comput. 205(1), 2–24 (2007). https://doi.org/10.1016/
j.ic.2006.08.003

9. Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata.
Math. Struct. Comput. Sci. 26(6), 993–1021 (2016). https://doi.org/10.1017/
S0960129514000322

10. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

11. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2),
14:1–14:53 (2016). https://doi.org/10.1145/2850413

12. Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput.
Syst. Sci. 81(7), 1278–1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005

13. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th Interna-
tional Conference on Database Theory (ICDT 2012), pp. 74–85 (2012). https://
doi.org/10.1145/2274576.2274585

14. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: 19th ACM
Symposium on Principles of Database Systems (PODS 2000), pp. 11–22 (2000).
https://doi.org/10.1145/335168.335171

https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1016/S0020-0190(02)00229-6
https://doi.org/10.1007/s002360050120
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1016/j.ic.2006.08.003
https://doi.org/10.1016/j.ic.2006.08.003
https://doi.org/10.1017/S0960129514000322
https://doi.org/10.1017/S0960129514000322
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1145/2850413
https://doi.org/10.1016/j.jcss.2015.03.005
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1145/335168.335171

Generalized Register Context-Free Grammars 271

15. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.
1145/1013560.1013562

16. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/
S0304-3975(99)00105-X

17. Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free gram-
mars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018.
LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02508-3 22

https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1016/S0304-3975(99)00105-X
https://doi.org/10.1016/S0304-3975(99)00105-X
https://doi.org/10.1007/978-3-030-02508-3_22
https://doi.org/10.1007/978-3-030-02508-3_22

Languages

Logic and Rational Languages
of Scattered and Countable

Series-Parallel Posets

Amazigh Amrane and Nicolas Bedon(B)

LITIS (EA 4108), Université de Rouen, Rouen, France
Amazigh.Amrane@etu.univ-rouen.fr, Nicolas.Bedon@univ-rouen.fr

Abstract. We show that an extension of MSO with Presburger arith-
metic, named P-MSO, is as expressive as branching automata over scat-
tered and countable N-free posets. As a consequence of the effectiveness
of the constructions from one formalism to the other, the P-MSO theory
of the scattered and countable N-free posets is decidable.

Keywords: Automata and logic · Transfinite N-free posets ·
Series-parallel posets · Series-parallel rational languages ·
Branching automata · Monadic second-order logic ·
Presburger arithmetic

1 Introduction

Since their introduction in computer science by Kleene [12], finite automata on
words have been extended in many directions, because of the variety of their
uses. One of the early extensions of automata are from Büchi [6]. First, Büchi,
and independently Elgot [10] and Trakhtenbrot [21], showed that finite automata
and monadic second-order logic (MSO) are expressively equivalent for languages
of finite words, with effective constructions from one formalism to the other.
A decision procedure for the MSO theory of finite words immediately follows.
This early connection between automata on words and logic has been quickly
developed in many ways. Büchi extended automata over finite words to infinite
words and continued to study their connections with MSO. With automata over
ω-words [7] he gave in particular a decision procedure for the first-order logic
theory of (N,+), retrieving a result of Presburger. With automata over ordinals,
he proved that the MSO theory of all countable ordinals is decidable [8]. All
those decision procedures are relative to the theory of one successor, and Büchi
asked if automata over words could be extended to obtain decision procedures
for logics of many successors. This question has been answered positively by
Rabin [18] with automata on infinite trees. Encoding linear orderings into trees,
Rabin deduced the decidability of MSO over countable linearly ordered sets.
Automata over linear orderings were introduced more recently [5] and used to

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 275–287, 2019.
https://doi.org/10.1007/978-3-030-13435-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_20

276 A. Amrane and N. Bedon

give another proof of the decidability of MSO over countable and scattered linear
orderings [3].

Finite automata on words are natural models for finite sequential processes.
Many extensions have been proposed in order to model concurrency. Rabin
automata on trees are one of them. We focus in this work on branching automata
introduced by Lodaya and Weil [14–17]. They recognize languages of finite
series-parallel partially ordered sets (posets), or equivalently [19,22] finite N-free
posets. Lodaya and Weil developed rational expressions equivalent to branching
automata, and their algebraic approach. Branching automata have been shown
effectively equivalent [1] to an extension of MSO with Presburger arithmetic
named P-MSO, providing a decision procedure for the P-MSO theory of finite
N-free posets. Branching automata have been extended to ω-N-free posets by
Kuske [13], with a connection with MSO in the particular case of languages of
N-free posets with bounded-size antichains.

In this paper we focus on the class SP �(A) of N-free labeled posets with
finite antichains and countable and scattered chains. By extension of branching
automata of Lodaya and Weil, a model of branching automata for languages
of posets of SP �(A) have been introduced in [4] as well as equivalent rational
expressions. The main result presented in this paper is that L ⊆ SP �(A) is
rational if and only if L is definable in P-MSO, with effective constructions from
one formalism to the other. As a consequence, the P-MSO theory of SP �(A)
is decidable. Well-known techniques can be easily adapted for the construction
of a rational expression from a P-MSO formula. Since this is not true for the
converse, we particularly focus on this part.

2 Notation and Basic Definitions

We let |E| denote the cardinality of a set E, 2E its powerset, [n] the set {1, . . . , n}
(for any non-negative integer n ∈ N), and πi(c) the ith component of a tuple c.

We start by some basic definitions on linear orderings (see [20] for a detailed
presentation). Let J be a set equipped with an order <. The ordering J is
linear if either j < k or k < j for any distinct j, k ∈ J . We denote by −J
the backward linear ordering obtained from the set J with the reverse ordering.
A linear ordering J is dense if for any j, k ∈ J such that j < k, there exists
an element i of J such that j < i < k. It is scattered if it contains no dense
sub-ordering. The ordering ω of natural integers is scattered. Ordinals are also
scattered orderings. We let O and S denote respectively the class of countable
ordinals and the class of countable scattered linear orderings. We also let 0 denote
the empty linear ordering. Let J ∈ S. An interval K of J is a subset K ⊆ J such
that for all k1, k2 ∈ K and j ∈ J , if k1 < j < k2 then j ∈ K. A cut (K,L) of J
consists of a pair of two disjoint intervals K and L of J such that K ∪L = J and
k < l for all (k, l) ∈ K × L. The set Ĵ of all cuts of J is naturally equipped with
the ordering (K1, L1) < (K2, L2) if and only if K1 � K2. This linear ordering
can be extended to J ∪ Ĵ by keeping the orderings on the elements of J and of Ĵ ,
and, for any j ∈ J and c = (K,L) ∈ Ĵ , by setting j < c (resp. c < j) whenever
j ∈ K (resp. j ∈ L). We let Ĵ∗ denote Ĵ \ {(∅, J), (J, ∅)}.

Logic and Rational Languages of Transfinite Series-Parallel Posets 277

A poset (P,<) is a set P partially ordered by <. For short we often denote the
poset (P,<) by P . The width of P is wd(P) = sup{|E| : E is an antichain ofP}
where sup denotes the least upper bound of the set. In this paper, we restrict
to posets with finite antichains and countable and scattered chains. We let ε
denote the empty poset. Let (P,<P) and (Q,<Q) be two disjoint posets. The
union (or parallel composition) P ∪ Q of (P,<P) and (Q,<Q) is the poset
(P ∪ Q,<P ∪ <Q). The sum (or sequential composition) P + Q of P and Q
is the poset (P ∪ Q,<P ∪ <Q ∪P × Q). The sum of two posets can be gener-
alized to any linearly ordered sequence ((Pj , <j))j∈J of pairwise disjoint posets
by

∑
j∈J Pj = (

⋃
j∈J Pj , (

⋃
j∈J <j) ∪ (

⋃
j,j′∈J, j<j′ Pj × Pj′)). The sequence

((Pj , <j))j∈J is called a J-factorization, or (sequential) factorization for short,
of the poset

∑
j∈J Pj . A poset P is sequential if it admits a J-factorization where

J contains at least two elements j �= j′ with Pj , Pj′ �= ε, or P is a singleton. It
is parallel when P = P1 ‖ P2 for some P1, P2 �= ε. A sequential factorization is
irreducible when all the Pj are either singletons or parallel posets. The notion
of irreducible parallel factorization is defined similarly. The class SP � of series-
parallel scattered and countable posets is the smallest class of posets containing ε,
the singleton and being closed under finite parallel composition and sum indexed
by countable scattered linear orderings. It has a nice characterization in terms of
graph properties: SP � coincides with the class of scattered and countable N-free
posets without infinite antichains [4]. Recall that (P,<) is N-free if there is no
X = {x1, x2, x3, x4} ⊆ P such that < ∩X2 = {(x1, x2), (x3, x2), (x3, x4)}. We
let SP �+ denote SP � \ {ε}. When P ∈ SP � and P = R + P ′ + S or P = P ′ ∪ R
for some R,S, P ′ ∈ SP � then P ′ is a factor of P ; the factors of P ′, R and S are
also factors of P .

An alphabet A is a non-empty finite set whose elements are called letters. A
poset P is labeled by A when it is equipped with a labeling total map l : P → A.
The notion of a labeled poset corresponds to pomset in the literature. Also, the
finite labeled posets of width at most 1 correspond to the usual notion of words.
For short, the singleton poset labeled by {a} is denoted by a, and we often
make no distinction between a poset and a labeled poset, except for operations.
The sequential product (or concatenation, denoted by P · P ′ or PP ′ for short)
and the parallel product P ‖ P ′ of labeled posets are respectively obtained by
the sequential and parallel compositions of the corresponding (unlabeled) posets.
The sequential product of a linearly ordered sequence of labeled posets is denoted
by

∏
. The class of posets of SP � labeled by A (or over A) is denoted by SP �(A),

and SP �(A)\{ε} by SP �+(A). Observe that the elements of A� = {P ∈ SP �(A) :
wd(P) ≤ 1} are the words on scattered and countable linear orderings, as defined
in [5]. A language of a set S is a subset of S. The sequential product is extended
from posets to languages of posets by L · L′ = {P · P ′ : P ∈ L,P ′ ∈ L′}. A
similar extension holds for the parallel product. Let A and B be two alphabets
and P ∈ SP �(A), L ⊆ SP �(B) and ξ ∈ A. The language consisting of the
labeled poset P in which each element labeled by the letter ξ is non-uniformly
replaced by a labeled poset of L is denoted by L◦ξ P . By non-uniformly we mean
that the elements labeled by ξ may be replaced by different elements of L. This

278 A. Amrane and N. Bedon

substitution L◦ξ is the homomorphism from (SP �(A), ‖,
∏

) into the powerset
algebra (2SP �(A∪B), ‖,

∏
) with a �→ a and ξ �→ L.

3 Rational Languages

Let A be an alphabet, ξ ∈ A, L and L′ be languages of SP �(A). Set

L ◦ξ L′ =
⋃

P∈L′
L ◦ξ P L∗ = {

∏

j∈[n]

Pj : n ∈ N, Pj ∈ L}

L∗ξ =
⋃

i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = (
⋃

j≤i

Ljξ) ◦ξ L

Lω = {
∏

j∈ω

Pj : Pj ∈ L} L−ω = {
∏

j∈−ω

Pj : Pj ∈ L}

L� = {
∏

j∈α

Pj : α ∈ O, Pj ∈ L} L−� = {
∏

j∈−α

Pj : α ∈ O, Pj ∈ L}

L L′ = {
∏

j∈J∪Ĵ∗

Pj : J ∈ S \ {0} and Pj ∈ L if j ∈ J and Pj ∈ L′ if j ∈ Ĵ∗}

Set op = {‖, ◦ξ,
∗ξ ,∪, ·, ∗, , ω,−ω, �,−�}. The class of rational languages [4]

of SP �(A) is the smallest class containing ∅, {ε}, {a} for all a ∈ A, and being
closed under the operations of op, provided ε /∈ L in L◦ξ L′, and with conditions
on ∗ξ: L∗ξ is rational if L is rational, ε �∈ L and for every P ∈ L, if ξ is the label
of some element x of P , there exists y ∈ P such that x and y are distinct and
incomparable. This latter condition excludes from the rational languages those
of the form (aξb)∗ξ = {anξbn : n ∈ N}, for example, which are known to be not
Kleene rational. Observe that the usual Kleene rational languages [12] of A∗ are
a particular case of the rational languages defined above, in which the operators
‖, ◦ξ, ∗ξ, ω, −ω, �, −� and are not allowed. Note also that the rational languages
of SP �(A) are precisely those of Bruyère and Carton [5] of A� when ‖, ◦ξ and ∗ξ

are not allowed, and are also precisely those of Lodaya and Weil [14–17] of finite
N-free posets when ω, −ω, �, −� and are not allowed. A rational expression e
is a term of the free algebra over {∅}∪A using the operations of op as functions,
where the union is denoted as usual by + instead of ∪. Its language L(e) is
defined inductively using the definitions of the operations of op.

Example 1. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ. Then L is the smallest
language containing c and such that if x ∈ L, then a ‖ (bx) ∈ L. Thus L =
{c, a ‖ (bc), a ‖ (b(a ‖ (bc))), . . . }.

Let L be a language where the letter ξ is not used. Define L� = {ε} ◦ξ (L ‖
ξ)∗ξ = {‖i<n Pi : n ∈ N, Pi ∈ L}. When A is an alphabet, A� is the class of all
finite antichains over A, or equivalently, the class of all finite commutative words
over A. Recall that a language of a commutative monoid is rational (as defined
by Kleene for finite words) if and only if it is semi-linear (see e.g. [9]). In order
to avoid confusion between rational languages of a commutative monoid and

Logic and Rational Languages of Transfinite Series-Parallel Posets 279

rational languages of transfinite words or posets we call semi-linear a rational
language of a commutative monoid.

4 P-MSO

Presburger arithmetic and MSO are two classical logics in computer science.
Recall that Presburger arithmetic is the first-order logic of (N,+). The Pres-

burger set L(ρ) of a Presburger formula ρ(x1, . . . , xn) whose free variables are
x1, . . . , xn consists of all interpretations of (x1, . . . , xn) satisfying ρ. A language
L ⊆ Nn is a Presburger set of Nn if it is the Presburger set of some Presburger for-
mula. We let Pn denote the class of all Presburger formulæ with n free variables
and we set P =

⋃
i∈N

Pi. Presburger logic provides tools to manipulate semi-
linear sets of commutative monoids with formulæ. Indeed, let A = {a1, . . . , an}
be an alphabet totally ordered by the indexes of the ais. As u ∈ A� can be
thought of as a n-tuple (|u|a1

, . . . , |u|an
) ∈ Nn, where |u|a denotes the number

of occurrences of letter a in u, then A� is isomorphic to (Nn,+). It is known
from [11] that a language L of A� is semi-linear if and only if it is the Presburger
set L(ρ) of some Presburger formula ρ(x1, . . . , xn), i.e. (|u|a1

, . . . , |u|an
) ∈ L(ρ)

if and only if u ∈ L. Observe that the ordering of the free variables x1, . . . , xn

of ρ is related to the ordering of A. Note that {ε} is the Presburger set of any
closed tautology.

Let ρ(x1, . . . , xk) and ρ′(x′
1, . . . , x

′
k′) be Presburger formulæ and let A =

{a1, . . . , ak} and B = {b1, . . . , bk′} be two totally ordered alphabets such that
A ∩ B = ∅ or A = B. Consider the Presburger sets of ρ and ρ′ as semi-linear
languages L and L′ of respectively A� and B�. For all i ∈ [k′], L ◦bi

L′ (resp.
L′∗bi) is a semi-linear language of X� where X is the totally ordered alphabet
A ◦bi

B when A ∩ B = ∅ or A when A = B (resp. B). It is also the Presburger
set of some formula that we denote by ρ ◦x′

i
ρ′ (resp. ρ′∗x′

i).
From the point of view of syntax, formulæ of P-MSO obey the following

grammar:

ψ ::= a(x) | x ∈ X | x < y | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ

| ∃xψ | ∃Xψ | ∀xψ | ∀Xψ | Q(Z,ψ1, . . . , ψn, ρ(x1, . . . , xn))

The 10 first items of the grammar syntactically define MSO. The last one
extends MSO to P-MSO. We interpret P-MSO over posets of SP �(A). Here low-
ercase variables x, y are first-order variables interpreted over elements of posets,
x1, . . . , xn first-order variables interpreted over non-negative integers, and upper-
case variables X,Y,Z are second-order variables interpreted over sets of elements
of posets. Atomic formulæ x < y and x ∈ X are self-explanatory. For each letter
a ∈ A, the atomic formula a(x) tells if the element x is labeled by a. In the last
item of the grammar, Z is the name of a free second-order variable, each ψi a
P-MSO formula and ρ a Presburger formula with n free variables x1, . . . , xn.

Semantics of P-MSO formulæ is defined by extension of semantics of Pres-
burger and MSO logics. The notions of a language and definability natu-
rally extend from MSO to P-MSO. Let us turn to the semantics of φ(Z) ≡

280 A. Amrane and N. Bedon

Q(Z,ψ1, . . . , ψn, ρ(x1, . . . , xn)). Let P ∈ SP �+(A) and Z ⊆ P . Then Z sat-
isfies φ if it is a non-empty factor of P , and there exist (v1, . . . , vn) ∈ L(ρ)
and sequential posets Z1,1, . . . , Z1,v1 , . . . , Zn,1, . . . , Zn,vn

∈ SP �+(A) such that
Z = ‖i∈[n]‖j∈[vi] Zi,j and Zi,j satisfies ψi for all i ∈ [n] and j ∈ [vi].

Example 2. Let A = {a1, a2}, and let ψi ≡ ∃x ai(x), i ∈ [2]. Let ρ(x1, x2) ≡
∃k1, k2 x1 = 2k1 ∧ x2 = 2k2 + 1 ∈ P. Let P1 = a1(a1 ‖ a1)a1, P2 = a2a2 and
P3 = (a1 ‖ a2)a1. Then P = P1 ‖ P2 ‖ P3 satisfies Q(P,ψ1, ψ2, ρ(x1, x2)) since
{1, 2, 3} can be partitioned into (K1,K2) = ({1, 3}, {2}) with (|K1|, |K2|) ∈ L(ρ),
and for all i ∈ Kj , j ∈ [2], Pi satisfying ψj .

The main result of this paper is the following:

Theorem 3. Let A be an alphabet. A language L of SP �(A) is rational if and
only if it is P-MSO definable. Furthermore the constructions from one formalism
to the other are effective.

5 From Rational Expressions to P-MSO

Let A be an alphabet. In this section we build by induction on a rational expres-
sion e a P-MSO formula that checks if a poset P ∈ SP �(A) has the structure
induced by e. In this construction, we need a slightly modified (but equivalent)
notion of a rational expression, that we named >1-expression. The construc-
tion is divided in two steps. First, we build by induction on the >1-expression
e an intermediary structure called the D-graph De of e. Then, we inductively
parse De in order to construct a P-MSO formula equivalent to e.

>1-expressions are built using sequential operations that compose at least
two non-empty posets. They use new sequential operators op>1 when op ∈
{·, ∗, , ω,−ω, �,−�} instead of op. When L,L′ ⊆ SP �(A) let

L·>1L′ = (L \ {ε}) · (L′ \ {ε}) L∗>1
= {

∏

i∈[n]

Pi : n > 1, Pi ∈ L \ {ε}}

Lω>1
= {

∏

i∈ω

Pi : Pi ∈ L for all i ∈ ω and Pi, Pj �= ε for some i, j with i �= j}

L>1L′ = {
∏

j∈J∪Ĵ∗

Pj : J ∈ S \ {0}, Pj ∈ L if j ∈ J, Pj ∈ L′ if j ∈ Ĵ∗

and Pi, Pj �= ε for some i, j ∈ J ∪ Ĵ∗, i �= j}

We let L +c L′ denote L + L′ when condition c is verified, L otherwise. Then
L · L′ = L·>1L′ +ε∈L L′ +ε∈L′ L, L∗ = L∗>1

+ L + ε, Lω = Lω>1
+ε∈L L∗ and

L L′ = L>1L′ + L +ε∈L L′. Similar definitions and equalities hold for −ω,
� and −�. Every rational expression can be transformed into an >1-expression.
Considering the equalities above as rewriting rules this transformation is unique.

A D-graph D is a rooted, directed and ordered finite graph whose vertices are
labeled and edges are of two disjoint kinds: normal and special. Here, ordered

Logic and Rational Languages of Transfinite Series-Parallel Posets 281

graph means that the edges outgoing from a node n are totally ordered. The
root r(D) of D is unique. The set of all normal and special edges of D are
respectively denoted by EN (D) and ES(D). We call leaf a node without nor-
mal outgoing edges. We say that a node n is edged by out(n) = e1 . . . ek to
express that the ordered sequence of edges that outgoes from n is e1 . . . ek.
The label of a leaf n of D is either a letter of the alphabet, and in this case
out(n) is empty, or from the class P of Presburger formulæ, and in this case
out(n) is composed exclusively of special edges. Labels of other nodes are from
P∪{·>1, ∗>1, >1, ω>1,−ω>1, �>1,−�>1}. The length of out(n) is consistent with
the label γ(n) of a node n: 0 for letters, 2 for ·>1 and >1, k for a label in Pk,
1 otherwise. We let n → m denote an edge from n to m; n is a direct ascendant
of m, and m a direct descendant of n. We often see sequences as words. For
example, we let e ◦e′ s denote the sequence of edges obtained by replacing in the
sequence of edges s each occurrence of the edge e′ by the edge e. We let n′ ◦srcn s
denote the sequence of edges obtained from s by replacing every occurrence of n
in sources of edges by n′.

The existence of a path labeled by P ∈ SP �(A) from a node n is defined by
induction on P as follows. When γ(n) = a ∈ A there is a path from n labeled
by a. When γ(n) is some sequential operation op>1 then the existence of a path
from n and its label are defined consistently with the definition of op>1 and the
existing paths from the direct descendants of n. When γ(n) is some Presburger
formula ρ and the sequence of its direct descendants is some n1, . . . , nk then
there is a path α from n and labeled by P when P =‖i∈[k]‖j∈[xi] Pi,j for some
(x1, . . . , xk) ∈ L(ρ) and Pi,j label of some path αi,j from ni, i ∈ [k], j ∈ [xi].
When n → ni ∈ ES(D) we say that the factors Pi,j , j ∈ [xi], of P are marked by
n → ni in α. The αi,js are sub-paths of α. Sub-paths and marking are hereditary
notions of paths: sub-paths of sub-paths of α are sub-paths of α, and every factor
of P marked by a special edge e in a sub-path of α is also considered marked
by e in α. The language L(n) of n consists of all labels of paths from n, and the
language L(D) of D is L(D) = L(r(D)).

We build De from e such that L(De) = L(e) and De fulfills the properties:

PP: there is no edge n → m such that both n and m are labeled in P;
SS: there is no special edge n → m such that m is labeled in P;
DAG: De without its special edges has a structure of rooted directed acyclic

graph.

Property PP is used in particular in order to compute, during the construction of
De from e, the Presburger formulæ that will appear later in the P-MSO formula
built from De. Property SS ensures that L(n) do not contain parallel posets
when n is the destination of a special edge. In a D-graph with those properties,
the above definition of the existence of a path is well-founded.

5.1 From >1-expressions to D-graphs

The D-graph De is built by induction on the >1-expression e. Except when the
contrary is specified, new edges added during the constructions of this section

282 A. Amrane and N. Bedon

are normal. Before starting the construction we need to introduce a new notion.
A D-graph D is ξ-normalized if any node n labeled by some Presburger formula
has at most one direct descendant m such that ξ ∈ L(m). As every D-graph
D with Property PP can easily be transformed into a ξ-normalized D-graph D′

with L(D′) = L(D), we assume further that D-graphs are ξ-normalized.
Let us start the construction of De. When e = ε (resp. e = a ∈ A), De is just

a node labeled by any closed tautology (resp. labeled by a), without edges.
Assume e has the form e = e1 op e2 (resp. e = e′op) with op ∈ {·>1, >1}

(resp. op ∈ {∗>1, ω>1,−ω>1, �>1,−�>1}). Then De is built from the union of
De1 and De2 (resp. from De′), with one more node n as a root, labeled by op,
and edged by n → r(De1), n → r(De2) (resp. n → r(De′)).

Let us turn now to the more tricky case e = e1 ◦ξ e2. When e2 = ξ then
De is identical to De1 . Otherwise, De is built from the union of De1 and De2 as
follows. For any node n of De2 with label γ(n) = ξ, we change γ(n) by γ(r(De1))
and set out(n) to be n ◦srcr(De1)

out(r(De1)). We now need to ensure Property PP.
If γ(r(De1)) �∈ P this is done. Otherwise, it is some ρ(x1, . . . , xk) ∈ P. For each
direct ascendant p of n that is labeled by some ρ′(x′

1, . . . , x
′
k′) and edged by some

out(p) = f1 . . . fk′ with n the destination of some fi, i ∈ [k′], change γ(p) by
ρ◦x′

i
ρ′ and out(p) by (p◦srcn out(n))◦fi

out(p). If the inner degree of n becomes 0
after this modification of its direct ascendants, then remove n from the D-graph.
Remove also r(De1). The root of the new D-graph is r(De2).

The construction of De∗ξ from De relies on the same principle: each node
of De labeled by ξ should be replaced by a copy of the root. Again, this may
be not so simple in some cases because of Property PP. The construction is
as follows, starting from De. We proceed in two steps. The first step consists
in transforming the root. If γ(r(De)) is some ρ(x1, . . . , xn) there are two cases.
Assume that out(r(De)) = e1 . . . en for some e1 . . . en. The first case is when there
exists ei : r(De) → ni, i ∈ [n] such that γ(ni) = ξ. Since De is ξ-normalized i is
unique. Replace γ(r(De)) by ρ∗xi . Otherwise, add a new node x labeled by ξ,
transform γ(r(De)) into (ρ(x1, . . . , xn) ∧ xn+1 = 0) ∨ (∧i∈[n]xi = 0 ∧ xn+1 = 1)
and out(r(De)) into out(r(De))(r(De) → x) where r(De) → x is a new normal
edge. If γ(r(De)) �∈ P then consider De+ξ instead of De for the remainder of
the construction. This ends the first step of the construction. After this first
step, the root r of the D-graph is labeled by some ρ(x1, . . . , xk). Let X be the
set of nodes labeled by ξ which are not direct descendants of r. The second
step consists in replacing, for each node n ∈ X, its label by γ(r) and its edging
by n ◦srcr out(r), considering that those new edges are special. Some additional
transformations are necessary in order to ensure Property PP. For each n ∈ X,
and for each of its direct ascendants p that is labeled by some ρ′(x′

1, . . . , x
′
k′)

and edged by some out(p) = f1 . . . fk′ with fi : p → n for some i ∈ [k′], change
γ(p) by ρ ◦x′

i
ρ′ and the edging of p by (p ◦srcn out(n)) ◦fi

out(p). The new edges
introduced here are special. Then remove n from the D-graph if its inner degree
is 0. This is the only case where special edges are added. Note that after the first
step, γ(r) ∈ P and the D-graph fulfills Property PP. In particular, none of the
direct descendants n1, . . . , nk of r has its label in P. Since the new special edges

Logic and Rational Languages of Transfinite Series-Parallel Posets 283

have their destinations in n1, . . . , nk then the construction preserves Property
SS.

Now assume e has the form e = e1 + e2 (resp. e = e1 ‖ e2). If γ(r(De1))
and γ(r(De2)) are not in P, then De is built from the union of De1 and De2 ,
with a new node n labeled by ρ(x1, x2) ≡ ∑

i∈[2] xi = 1 (resp. x1 = x2 = 1),
edged by n → r(De1), n → r(De2), which is the root of De. If γ(r(Dei

)) is some
ρi(xi,1, . . . , xi,ni

) for all i ∈ [2], then De is built from the union of De1 and
De2 , with a new node n as a root labeled by ρ1 ◦x1 ρ2 ◦x2 ρ(x1, x2) and edged
by (n ◦srcr(De1)

out(r(De1)))(n ◦srcr(De2)
out(r(De2))), and with r(De1) and r(De2)

deleted. The construction is similar in the other cases.
In a D-graph, two edges s1 → d1 and s2 → d2 are consecutive if d1 = s2.

Roughly speaking, the following proposition is a consequence of the fact that by
definition of L∗ξ in rational languages, in any poset of L, any element labeled by ξ
must be in parallel with some other element. In the remainder of the paper we let
De denote the D-graph of e when e is a >1-expression, or of the >1-expression
of e when e is a rational expression.

Proposition 4. Let Df be the D-graph of some rational expression f . For any
sequence α = e1 . . . el of consecutive edges of Df with e1, el ∈ ES(Df), l > 1,
there exists a node n source of some ei, i ∈ [l], such that n is labeled by some
Presburger formula ρ(x1, . . . , xm), out(n) is some g1, . . . , gm, ei = gr for some
r ∈ [m] and for all (y1, . . . , ym) ∈ L(ρ), if yr > 0 then

∑
i∈[m] yi > 1.

As a consequence, when there is a path from r(Df) labeled by some P , if it
contains two sub-paths labeled by F1 and F2 both marked by some e ∈ ES(Df),
then F1 and F2 are necessarily sequential posets (Property SS), and either

1. F1 ∩ F2 = ∅. Possibly, F1F2 is a sequential factor of P ;
2. one is strictly included into the other, wlog. F1 � F2. In this case, there is

some x ∈ F2 \ F1 such that x is incomparable to all the elements of F1.

5.2 From D-graphs to P-MSO

Let De be the D-graph of (the >1-expression of) some rational expression e. We
are now going to recursively parse De in order to compute a P-MSO sentence φDe

such that P ∈ SP �(A) is a model for φDe
if and only if P ∈ L(De). For each node

n of De, we define a P-MSO formula φn(X) which depends on a second-order
parameter X. We want a factor X of P to satisfy φn if and only if X ∈ L(n).
When γ(n) = ·>1, n has two direct descendants n1 and n2, and φn(X) expresses
that there exists a partition of X into X1,X2 such that X1 < X2 and Xi, i ∈ [2],
satisfies φni

. Here we let X1 < X2 denote that x1 < x2 for all x1 ∈ X1, x2 ∈ X2.
This construction for ·>1 is P-MSO definable. The cases of other labels are mere
adaptations of the case of linear orderings [3], except for Presburger formulæ.
Indeed, nodes labeled in P may be sources of special edges, which may cause
circular dependencies between the φns. We use a technique named s-coloring in
order to avoid such circular dependencies.

284 A. Amrane and N. Bedon

Let C be a finite set whose elements are named colors and P ∈ SP �. Let us
denote by Fs(P) the class of all sequential factors of P , and set B = {false, true}.
A s-coloring c of P is a partial map c : Fs(P) → C. While in general maps cannot
be expressed with MSO, Proposition 5 states that s-colorings can be encoded by
means of MSO, under assumptions on the sequential factors F of P on which c(F)
is defined. This encoding sX

C , that we do not give here, uses a bunch of second-
order variables that we also denote by sX

C for convenience. We let sX
C (F) = c

denote that it associates the color c to F ∈ Fs(P). We use s-coloring in order to
associate a special edge to some F ∈ Fs(P) as follows.

Proposition 5. Let De be the D-graph of a rational expression e, C = B ×
ES(De), n a node of De. Assume there is a path γ from n labeled by some P .
There exist a s-coloring of P with C and its encoding sX

C with MSO such that
π2(sX

C (F)) = c ∈ ES(De) if and only if F is marked by c in γ, for any F ∈ Fs(P).

The encoding for s-colorings does not allow sX
C (F) = sX

C (F ′) when F, F ′, FF ′ ∈
Fs(P). Alternation of the booleans in C is used when we need a s-coloring to
associate the same special edge to F and F ′.

Set C as in Proposition 5. When the label of a node n is some ρ(x1, . . . , xk)
and out(n) = n → n1, . . . , n → nk, set

φn(X) ≡ Q(X,χ1, . . . , χk, ρ(x1, . . . , xk))

where χi ≡ ∀Y (∀y y ∈ Y) → φni
(Y) when n → ni ∈ EN (De), χi ≡ ∀Y (∀y y ∈

Y) → ∨b∈B sX
C (Y) = (b, n → ni) when n → ni ∈ ES(De). The sentence φDe

consists in claiming that there exists an encoding of a s-coloring of P ∈ SP �(A)
on which it is interpreted, such that

– for all n → m ∈ ES(De) and any F ∈ Fs(P), if π2(sX
C (F)) = n → m then F

satisfies φm;
– P satisfies φr(De).

6 From P-MSO to Rational Expressions

Provided a P-MSO formula, the first step is to construct an equivalent branching
automaton (see [4]) over scattered and countable N-free posets. This is done
merely by melting several techniques; those of the translation of a MSO formula
to an automaton over countable and scattered linear orderings [3], and those of
the translation of a P-MSO formula to a branching automaton over finite N-free
posets [1]. The crucial argument here is the effective closure of rational languages
of SP �(A) under boolean operations [2]. The final step is the construction of
a rational expression from a branching automaton over SP �(A) [4]. As those
constructions are effective, and because the emptiness of rational languages is
decidable, we conclude:

Theorem 6. Let A be an alphabet. The P-MSO theory of SP �(A) is decidable.

Logic and Rational Languages of Transfinite Series-Parallel Posets 285

7 An Example

When L ⊆ SP �(A) set L+ = L∗>1
+L. In this section we detail the construction

of a P-MSO formula from the extended rational expression (a ‖ b)◦ξ ((ξ ‖ ξ)+)∗ξ.
The corresponding >1-expression is e = (a ‖ b) ◦ξ ((ξ ‖ ξ)∗>1

+ (ξ ‖ ξ))∗ξ. The
different steps of the construction of De are shown in Fig. 1. We have ES(De) =
{n3 → n2}, C = {(false, n3 → n2), (true, n3 → n2)}.

ξ‖ξ
==⇒

x1 = x2 = 1

ξ ξ
ξ−normalisation
===========⇒1 2 (ξ‖ξ)+

====⇒

x1 = 2

ξ
((ξ‖ξ)+)∗ξ

=======⇒
1

(x1 = 1 ∧ x2 = 0)
∨ (x1 = 0 ∧ x2 = 2)

∗>1 ξ

x1 = 2

ξ

1 2

1

1

x1 + x2 ≥ 1

∗>1 ξ

x1 = 2

x1 + x2 ≥ 1

1 2

1

1
1

2

x1 + x2 ≥ 1

∗>1 ξEnsuring PP
========⇒

x1 + x2 ≥ 2

1 2

1
1

2

x1 + x2 ≥ 1

∗>1 x1 = x2 = 1

ba

(a‖b)◦ξ((ξ‖ξ)+)∗ξ

===========⇒

x1 + x2 ≥ 2

1 2

2111
2

x1 + x2 ≥ 1 ∧ x2 = x3

∗>1 a bEnsuring PP
========⇒

x1 + x2 ≥ 2 ∧ x2 = x3

1
32

1
1 3

2

n1

n2

n3 n4 n5

Fig. 1. The step-by-step construction of the D-graph of (a ‖ b)◦ξ((ξ ‖ ξ)∗>1
+ (ξ ‖ ξ))∗ξ

Let us turn to the construction of φDe
. The notion of an interval of a linear

ordering naturally extends to partial orderings. We use MSO-definable short-
cuts [3] X ⊆max Y , Finite(X), Partition(X,X1,X2) and Trace(Y, T) that
are satisfied respectively when X is an interval of Y maximal with respect to
inclusion, when X is a finite linear ordering, when X1 and X2 form a partition
of X and when T consists of exactly one element of each Z ⊆max Y . Then

φn1(X) ≡ Q(X, φn2(Y), φn4(Y), φn5(Y), x1 + x2 ≥ 1 ∧ x2 = x3)

φn2(X) ≡ ∃X1, X2, T1, T2 Partition(X, X1, X2) ∧ Trace(X1, T1) ∧ Trace(X2, T2)

∧ Finite(T1 ∪ T2) ∧ ∀Z ((Z ⊆max X1) ∨ (Z ⊆max X2)) → φn3(Z)

φn3(X) ≡ Q(X, ∨
b∈B

sX
C (Y) = (b, n3 → n2), φn4(Y), φn5(Y), x1 + x2 ≥ 2 ∧ x2 = x3)

φn4(X) ≡ |X| = 1 ∧ ∀x (x ∈ X → a(x)) φn5(X) ≡ |X| = 1 ∧ ∀x (x ∈ X → b(x))

φDe ≡ ∃R∃sX
C (∀x x ∈ R) ∧ s-Coloring(R, sX

C) ∧ φn1(R)

∧ (∀F (Fs(F, R) ∧ ∨
b∈B

sX
C (F) = (b, n3 → n2)) → φn2(F))

where ψ(Y) ≡ ∀Y (∀y y ∈ Y) → ψ(Y), s-Coloring(R, sX
C) checks if sX

C encodes
a s-coloring of R and Fs(F,R) checks if F belongs to Fs(R).

Let F ′
1 = F ′

2 = (ξ ‖ ξ) · (ξ ‖ ξ), F ′
3 = (F ′

2 ‖ ξ) · (ξ ‖ ξ). Let Fi = {(a ‖ b)} ◦ξ F ′
i

for all i ∈ [3]. Let P1 = (F1 ‖ F3) · ((a ‖ b) ‖ (a ‖ b)), P2 = a and P3 = b.
Note that P = P1 ‖ P2 ‖ P3 ∈ L(e). Regarding De, F1, F2, F3, P1 ∈ L(n2),

286 A. Amrane and N. Bedon

F1 ‖ F3 ∈ L(n3), P2 ∈ L(n4) and P3 ∈ L(n5). Thus P ∈ L(n1). There is
a path α from n1 labeled by P such that F ∈ {F1, F2, F3} if and only if F
is marked by n3 → n2 in α. Hence, each Fi, i ∈ [3], must be s-colored by
(bi, n3 → n2) for some bi ∈ B. Under this s-coloring observe that F1, F2 and F3

satisfy ∨b∈B sX
C (Y) = (b, n3 → n2) as well as φn2 , F1 ‖ F3, P1, P2 and P3 satisfy

respectively φn3 , φn2 , φn4 and φn5 . Thus P satisfies φn1 and is a model for φDe
.

Acknowledgments. The authors would like to thank all the referees for their helpful
comments.

References

1. Bedon, N.: Logic and branching automata. Log. Meth. Comput. Sci. 11(4:2), 1–38
(2015)

2. Bedon, N.: Complementation of branching automata for scattered and countable
N-free posets. Int. J. Found. Comput. Sci. 19(25), 769–799 (2018)

3. Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words
indexed by linear orderings. Theory Comput. Syst. 46(4), 737–760 (2010)

4. Bedon, N., Rispal, C.: Series-parallel languages on scattered and countable posets.
Theor. Comput. Sci. 412(22), 2356–2369 (2011)

5. Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. Syst. Sci. 73(1),
1–24 (2007)

6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik.
Grund. Math. 6, 66–92 (1960)

7. Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In:
1960 Proceedings of the International Congress on Logic, Methodology and Phi-
losophy of Science, Berkeley, pp. 1–11. Stanford University Press (1962)

8. Büchi, J.R.: Transfinite automata recursions and weak second order theory of ordi-
nals. In: 1964 Proceedings of the International Congress Logic, Methodology, and
Philosophy of Science, pp. 2–23. North Holland Publishing Company (1965)

9. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J.
Algebra 13(2), 173–191 (1969)

10. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98, 21–51 (1961)

11. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966)

12. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41. Princeton University Press (1956)

13. Kuske, D.: Towards a language theory for infinite N-free pomsets. Theor. Comput.
Sci. 299, 347–386 (2003)

14. Lodaya, K., Weil, P.: A Kleene iteration for parallelism. In: Arvind, V., Ramanu-
jam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 355–366. Springer, Heidelberg
(1998). https://doi.org/10.1007/978-3-540-49382-2 33

15. Lodaya, K., Weil, P.: Series-parallel posets: algebra, automata and languages. In:
Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–
565. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028590

16. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theor. Comput. Sci. 237(1–2), 347–380 (2000)

https://doi.org/10.1007/978-3-540-49382-2_33
https://doi.org/10.1007/BFb0028590

Logic and Rational Languages of Transfinite Series-Parallel Posets 287

17. Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Inf. Comput.
171, 269–293 (2001)

18. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–5 (1969)

19. Rival, I.: Optimal linear extension by interchanging chains. Proc. AMS 89(3), 387–
394 (1983)

20. Rosenstein, J.G.: Linear Orderings. Academic Press, Cambridge (1982)
21. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Siberian

Math. 3, 101–131 (1962). (Russian). Translation AMS Transl. 59 23–55 (1966)
22. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.

SIAM J. Comput. 11, 298–313 (1982)

Toroidal Codes and Conjugate Pictures

Marcella Anselmo1, Maria Madonia2(B), and Carla Selmi3

1 Dipartimento di Informatica, Università di Salerno,
Via Giovanni Paolo II, 132, 84084 Fisciano, (SA), Italy

manselmo@unisa.it
2 Dipartimento di Matematica e Informatica, Università di Catania,

Viale Andrea Doria 6/a, 95125 Catania, Italy
madonia@dmi.unict.it

3 LITIS, Université de Rouen Normandie,
76830 Saint Etienne du Rouvray, Rouen, France

carla.selmi@univ-rouen.fr

Abstract. Toroidal codes of pictures are introduced as the generaliza-
tion of circular codes of strings in two dimensions. They are characterized
by a property of very pureness on a generated language. The class of such
codes is compared with other close classes of codes of pictures. In anal-
ogy to the string case, toroidal codes are investigated in relation to the
conjugate pictures. Conjugacy between pictures is here defined and many
properties and characterizations are shown.

Keywords: Two-dimensional languages · Circular codes · Conjugacy

1 Introduction

Circular strings are different from linear strings in that the last symbol is con-
sidered to precede the first symbol. A circular string is sometimes referred to
as a necklace. Circular strings have played, and still play, an important role in
many areas of computer science and related fields, notably bioinformatics. As an
example, the properties of circular strings are of interest in the circular string
matching problem, in the alignment of circular strings problem [10,18] and in
the investigation of circular splicing systems which are inspired by a recombinant
behaviour of circular DNA [13,14].

Coding with circular strings is a classical topic in the theory of (variable-
length) codes (see [11,19,22]). A circular code is a set of strings such that any
circular string has at most one decomposition with strings in the set. The inves-
tigation on circular codes of strings relies on the notion of conjugacy of strings.
Two strings (of same length) are conjugate if one can be obtained from the other
one by a cyclic permutation. In other words, two conjugate strings can be read
on the same necklace.

Partially supported by INdAM-GNCS Project 2018, FARB Project ORSA175982 of
University of Salerno and CREAMS Project of University of Catania.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 288–301, 2019.
https://doi.org/10.1007/978-3-030-13435-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_21

Toroidal Codes and Conjugate Pictures 289

The aim of this paper is to extend this theory to the two-dimensional world.
The generalization of the classical notion of string to the two dimensions

leads to the definition of polyomino, in its different declinations - labeled poly-
ominoes, directed polyominoes, as well as rectangular labeled polyominoes, that
we will refer to as pictures. In the literature, one can find different attempts to
generalize the notion of code to 2D objects [1,12,21]. In this paper, we consider
the definition of code of pictures introduced in [3,4]. A set X is a code if any
picture is tileable, without holes or overlapping, in at most one way with pictures
in X. In this framework, one can find the definition of prefix and strong prefix
code of pictures, as well as that of code of pictures with finite deciphering delay
and comma-free code of pictures [2,4,7,8]. Moreover, recently, a generalization
of the circular codes of strings has been proposed in [9], where the cylindric
codes of pictures are defined. A language X is a cylindric code if the pictures of
X cannot tile the lateral surface of any cylinder (for any height and radius) in
two different ways. In this paper, we take a further step forward and consider a
torus instead of a cylinder; we define the toroidal codes of pictures.

In order to study the torus, in an easier and handier way, we cut it along a
vertical line and then along a horizontal line, in such a way to obtain a picture
(to come back to the torus, just let the top and the bottom sides of the picture
coincide, as well as the left and the right ones). Subsequently, instead of investi-
gating the tiling of a torus with pictures in a given language X, we will consider
the toroidal decomposition over X of the associated picture. Observe that when
cutting a labeled torus in all the possible ways, we obtain several pictures of
the same size which are characterized by a nice relation; they are conjugate. We
introduce the conjugacy relation on pictures and show several properties and
characterizations of conjugate pictures. Note that a (partial) notion of horizon-
tal/vertical conjugacy was already introduced in [20] in order to capture the
2D horizontal/vertical periodicity of a picture, and to yield a succinct and effi-
cient algorithm for 2D dictionary matching. Similar periodicity properties are
obtained, in a wider framework, considering the overlapping of a picture with
itself [5,6].

A particular attention is devoted to the self-conjugate pictures, i.e., pictures
that are proper conjugate of themselves. Non-self-conjugate pictures play in 2D
the role of primitive strings in 1D. Observe that the notion of non-self-conjugacy
in 1D coincides with that of primitiveness; this does not hold in 2D. The count-
ing of the number of conjugacy classes of strings is classically based on the
counting of primitive classes [11,19]. We give an upper bound on the number
of non-self-conjugate conjugacy classes of pictures which yields an upper bound
on the cardinality of a toroidal code. As a main result, the toroidal codes are
characterized by a property of very pureness on a generated language. At the
end, we compare all the families of codes of pictures considered in this paper
and show examples of languages that separate them.

290 M. Anselmo et al.

2 Preliminaries

We recall some definitions about two-dimensional languages (see [16]). A picture
over a finite alphabet Σ is a two-dimensional rectangular array of elements of
Σ. Given a picture p, |p|row and |p|col denote the number of rows and columns,
respectively, while size(p) = (|p|row, |p|col) denotes the picture size. We also
consider all the empty pictures, referred to as λm,0 and λ0,n, for all m,n ≥ 0;
they correspond to the pictures of size (m, 0) or (0, n), respectively. The set
of all pictures over Σ of fixed size (m,n) is denoted by Σm,n, while Σm∗ and
Σ∗n denote the set of all pictures over Σ with a fixed number m of rows and
n of columns, respectively. The set of all pictures over Σ is denoted by Σ∗∗,
while Σ++ refers to the set of all non-empty pictures on Σ. A two-dimensional
language (or picture language) over Σ is a subset of Σ∗∗.

In order to locate a position in a non-empty picture, it is necessary to put the
picture in a reference system. The set of coordinates dom(p) = {1, 2, . . . , |p|row}×
{1, 2, . . . , |p|col} is referred to as the domain of a picture p. We let p(i, j) denote
the symbol in p at coordinates (i, j). Moreover, to easily detect the border posi-
tions of pictures, we use the initials of the words “top”, “bottom”, “left” and
“right”; for example the tl-corner of p refers to position (1, 1) the tl-corner of p.

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col, also specified by
[(i, j), (i′, j′)]. The portion of p corresponding to the subdomain [(i, j), (i′, j′)]
is denoted p[(i, j), (i′, j′)]. Then, a non-empty picture x is subpicture of p if
x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; it will be referred
to as the subpicture associated with [(i, j), (i′, j′)] and we will say that x occurs
at position (i, j) (its tl-corner).

Dealing with pictures, two “classical” concatenation products are defined.
Let p, q ∈ Σ∗∗ be pictures of size (m,n) and (m′, n′), respectively. The column
concatenation of p and q (denoted by p � q) and the row concatenation of p and
q (denoted by p�q) are partial operations, defined only if m = m′ and if n = n′,
respectively, as:

p � q = p q p � q =
p
q

.

These definitions can be extended to define row- and column- concatenations,
and row- and column- stars of two-dimensional languages. We also consider
another star operation for picture languages, the tiling star. The idea is to com-
pose pictures in a way to cover a rectangular area as, for example, in the figure
below.

Let X ⊆ Σ∗∗. The set X++ is the set of all the non-empty pictures p over Σ
whose domain can be partitioned into disjoint subdomains {d1, d2, . . . , dk} such
that any subpicture ph of p associated with the subdomain dh belongs to X, for

Toroidal Codes and Conjugate Pictures 291

all h = 1, ..., k. Then, the tiling star of X, denoted by X∗∗, is the union of the set
X++ with all the empty pictures. Language X∗∗ is called the set of all tilings by
X in [23]. In the sequel, if p ∈ X++, the corresponding partition {d1, d2, . . . , dk}
of dom(p), is called a tiling decomposition of p over X.

3 Two-Dimensional Codes and Cylindric Decompositions

In this section, we recall the definitions of code of pictures, given in [4], comma-
free code and cylindric code of pictures, given in [9], together with some exam-
ples. They are strictly related to the toroidal codes which are a central topic of
this paper.

Let Σ be a finite alphabet. A language X ⊆ Σ++ is a code if any p ∈ Σ++

has at most one tiling decomposition over X. For example, let Σ = {a, b}. It

is easy to see that X1 =
{

a b ,
a
b
,

a a
a a

}
is a code. On the other hand, the

language X2 =
{

a b , b a ,
a
a

}
is not a code. Indeed, picture

a b a
a b a

has two

different tiling decompositions over X2, t1 =
a b a
a b a

and t2 =
a b a
a b a

.

The comma-free codes of pictures are a generalization of the comma-free, or
self-synchronizing, codes of strings. It is worthy to mention that their definition
does not need a privileged decoding direction, as it will be for the toroidal codes.
A language X ⊆ Σ++ is comma-free if no picture p ∈ X is covered by pictures
in X. Informally, a picture p is covered by pictures in a set X, if p can be tiled
(without holes and overlapping) with pictures in X which possibly exceed the
borders (cf. [3,8]). It is immediate to observe that any comma-free set is a code,
that we will call a comma-free code.

Comma-free codes of strings are studied inside the class of circular codes.
In the literature, the circular codes are usually defined as follows. A language
X ⊆ Σ+ is a circular code of strings if for all m,n ≥ 1 and x1, x2, . . . , xn ∈ X,
y1, y2, . . . , ym ∈ X, t ∈ Σ∗ and s ∈ Σ+, the equalities sx2 . . . xnt = y1y2 . . . ym,
x1 = ts imply that t is the empty string, m = n and xi = yi for 1 ≤ i ≤ n. In view
of the generalization of such definition to two dimensions, let us introduce the
following definition. A circular decomposition of a string w ∈ Σ∗ is a sequence s,
x2, . . . , xn, t such that w = sx2 . . . xnt and ts, x2, . . . , xn ∈ X. When s = 1 then
w ∈ X∗.

The translation of the definition of circular code of strings into the world of
pictures leads to some new situations. Following [9], the role of a circle in the
plane can be played, in the space, by a cylinder, either horizontally or vertically
placed. Then, a set X of pictures is a (horizontal or vertical) cylindric code if the
pictures of X cannot tile the lateral surface of any cylinder (for any height and
radius) in two different ways. In order to avoid the difficulty of handling objects
in the space, we are going to cut the surface of the cylinder and investigate the
rectangular picture we obtain. Let us introduce the following notations.

292 M. Anselmo et al.

Given a picture p of size (m,n) a horizontal across subdomain of dom(p) is
a set d of the form {i, i + 1, . . . , i′} × {j, j + 1, . . . , n, 1, 2, . . . , j′}, where 1 ≤ i ≤
i′ ≤ m, 1 ≤ j′ < j ≤ n; d will be denoted by the pair [(i, j), (i′, j′)].

In an analogous way, a vertical across subdomain of dom(p) is a set d of the
form {i, i + 1, . . . , m, 1, 2, . . . , i′} × {j, j + 1, . . . , j′}, where 1 ≤ i′ < i ≤ m, 1 ≤
j ≤ j′ ≤ n; d will be denoted by the pair [(i, j), (i′, j′)].

In order to stress the difference between a horizontal or vertical across subdo-
main and a subdomain, as defined in Sect. 2, the latter will be sometimes called
an internal subdomain. The portion of p corresponding to the positions in an
across subdomain [(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. It is a union of two
(internal) subdomains.

A horizontal (vertical, resp.) cylindric tiling decomposition of a picture
p ∈ Σ++ over X is a partition of dom(p) into disjoint internal and/or horizontal
(vertical, resp.) across subdomains {d1, d2, . . . , dk} such that, for all h = 1, ..., k,
the subpicture ph of p associated with the subdomain dh belongs to X. A horizon-
tal cylindric tiling decomposition is simply called a cylindric tiling decomposition
in [9].

Finally, a language X ⊆ Σ++ is a horizontal (vertical, resp.) cylin-
dric code if any picture in Σ++ has at most one horizontal (vertical, resp.)
cylindric tiling decomposition over X. A horizontal cylindric code is sim-
ply called a cylindric code in [9]. As an example, the language X ={

a b , a a b a ,
a a a
b a b

,
a a a
b b a

,
a a a b
b a b a

}
is not a horizontal cylindric

code. One can easily show that the picture p =
a a a a a a b
b b a b a b a

has two different

horizontal cylindric tiling decompositions over X.

4 Primitive Pictures and Conjugacy

In this section, we are going to introduce the notion of conjugacy in pictures and
to explore some combinatorial properties of primitive and conjugate pictures.
They are involved in the investigation on the toroidal codes introduced in the
next section.

In 1D, two strings x, y are called conjugate if there exist strings u, v such
that x = uv and y = vu. We frequently say that y is a conjugate of x. The
conjugacy is an equivalence relation and a class of conjugacy is often called a
necklace. The necklaces are classically investigated in connection with circular
codes (see [11,22]). Let us introduce the following definitions and notations for
the pictures.

Given p ∈ Σ++ and m,n > 0, pm� denotes the picture pm� = p� p�· · ·� p
obtained by row concatenation of m copies of p, while pn� denotes the picture
pn� = p � p � · · · � p obtained by column concatenation of n copies of p.
Furthermore, pm,n is defined as pm,n = (pm�)n� = (pn�)m�.

Given p1, p2, p3, p4 ∈ Σ∗∗, with p1 ∈ Σh,k, p2 ∈ Σh,j , p3 ∈ Σi,k, p4 ∈ Σi,j ,
let us denote by ⊕(p1, p2, p3, p4) the picture p = (p1 � p2) � (p3 � p4).

Toroidal Codes and Conjugate Pictures 293

A picture p ∈ Σ++ is called primitive if it is not a power of another picture.
Thus, p is primitive iff p = qm,n with m,n > 0 implies p = q. Each non-empty
picture p is a power of a unique primitive picture (see [15]). The unique primitive
picture r such that p = rm,n, for some integer m > 0 or n > 0, is called the
primitive root of p; the pair (m,n) is the exponent of p (see [15,17]).

Definition 1. Let p, p′ ∈ Σm,n. The pictures p and p′ are conjugate, and we
write p ∼ p′, if there exist p1, p2, p3, p4 ∈ Σ∗∗, where p1 is not empty, such that
p = ⊕(p1, p2, p3, p4) and p′ = ⊕(p4, p3, p2, p1).

We will also say that p′ is a conjugate of p. In the case that h = m and k = n
then p = p1 and we have that p is trivially conjugate of itself. If h < m and
k < n then we will say that p′ is the conjugate of p in position (h + 1, k + 1).
Note that (h + 1, k + 1) is the position of the tl-corner of p4 inside p. If h = m
and k < n, we will say that p′ is the conjugate of p in position (1, k + 1) (the
position of the tl-corner of p2). If h < m and k = n, we will say that p′ is the
conjugate of p in position (h + 1, 1) (the position of the tl-corner of p3).

The following results characterize the conjugates of a picture. The first one
generalizes the result stating that two conjugate strings are obtained from each
other by a cyclic permutation. The second one can be obtained as a corollary.
Let us introduce the following notations (see [20]). Two pictures p, q ∈ Σm,n are
horizontal conjugate, denoted p ∼h q, if p = pL � pR and q = pR � pL, for some
pL, pR ∈ Σm,∗. Similarly, p, q ∈ Σm,n are vertical conjugate, denoted p ∼v q, if
p = pU � pD and q = pD � pU , for some pU , pD ∈ Σ∗,n. It can be proved that
the relations ∼h and ∼v are equivalence relations.

Proposition 2. Two pictures p, q ∈ Σm,n are conjugate if and only if there
exists r ∈ Σm,n such that q ∼v r and r ∼h p.

Proof. Let p, q ∈ Σm,n be two conjugate pictures. By definition, we have that
p = ⊕(p1, p2, p3, p4) and q = ⊕(p4, p3, p2, p1), for some pictures p1, p2, p3, p4.
Let r = ⊕(p2, p1, p4, p3). Then q ∼v r and r ∼h p.

Vice versa, let r ∈ Σm,n be a picture such that q ∼v r and r ∼h p. By defini-
tion, we have q = qU �qD, r = qD�qU and r = rL�rR, p = rR�rL. Then, there
exist r1, r2, r3, r4 ∈ Σ∗∗, as in Definition 1, such that r = ⊕(r1, r2, r3, r4), with
qD = r1 � r2, qU = r3 � r4, rL = r1 � r3 and rR = r2 � r4. Then p = rR � rL =
(r2 � r4) � (r1 � r3) = ⊕(r2, r1, r4, r3) and q = qU � qD = ⊕(r3, r4, r1, r2). We
obtain that p and q are conjugate. 	

Corollary 3. Two pictures p, q ∈ Σm,n are conjugate if and only if q is a
subpicture of p2,2.

Proof. Let p, q ∈ Σm,n. Applying Proposition 2, p and q are conjugate pictures iff
there exists r ∈ Σm,n such that q ∼v r and r ∼h p. Let p, q, r be decomposed as in
the proof of Proposition 2. Then, p2,2 = (rR�rR)�(qD�qU�qD�qU)�(rL�rL).
Hence, p and q are conjugate iff q is a subpicture of p2,2. 	

Proposition 4. The conjugacy relation is an equivalence relation.

294 M. Anselmo et al.

Proof. It follows by definition that conjugacy is a reflexive and symmetric rela-
tion. We prove that it is a transitive relation. Let p, q, r ∈ Σn,m be such that
p ∼ q and q ∼ r. We will show that p ∼ r. By Corollary 3, we have that q is a
subpicture of p2,2. From the fact that p and q have the same size follows that q2,2

is a subpicture of p3,3. Applying Corollary 3, we obtain that r is a subpicture
of q2,2 and then r is a subpicture of p3,3. Since p, q, r have the same size, r is
also a subpicture of p2,2. So, again by Corollary 3, we obtain that r and p are
conjugate pictures. 	

A conjugacy class is a class of this equivalence relation. The class of all the
conjugates of p is denoted p∼. Among all the conjugacy classes, it is possible to
point out some special ones that will be important in the counting of conjugacy
classes.

We observed that any picture is trivially a conjugate of itself. On the other
hand, we distinguish the case when a picture is a “strict” conjugate of itself,
as stated in the following definition. Corollary 7 and Proposition 8 justify the
definition of primitive and of non-self-conjugate conjugacy classes.

Definition 5. Let p ∈ Σ++. The picture p is self-conjugate if there exist p1, p2,
p3, p4 ∈ Σ∗∗, p1 �= p, such that p = ⊕(p1, p2, p3, p4) and p = ⊕(p4, p3, p2, p1).

Proposition 6. Two conjugate pictures have the same exponent and their prim-
itive roots are conjugate.

Proof. Let p, q ∈ Σm,n be two conjugate pictures. By definition, we have that
p = ⊕(p1, p2, p3, p4) and q = ⊕(p4, p3, p2, p1), with p1, p2, p3, p4 as in Definition 1.
Suppose that p = rm,n, for r ∈ Σ++. It can be proved that there exist ri ∈ Σ∗∗,
1 ≤ i ≤ 4, such that r = ⊕(r1, r2, r3, r4) and q = rm,n with r = ⊕(r4, r3, r2, r1)
(ri’s are obtained cutting r along the vertical and horizontal lines giving q from
p). 	

As a consequence of Proposition 6, we obtain the following corollary.

Corollary 7. Let p ∈ Σ++. If p is primitive then all the conjugates of p are
primitive.

Proposition 8. Let p ∈ Σm,n. If p is self-conjugate then all the conjugates of
p are self-conjugate.

Proof. Let p be a self-conjugate picture and let q be a conjugate of p. By Corol-
lary 3, p and q are subpictures of p2,2. Let (i, j) be the position of the topmost
and leftmost non-trivial occurrence of p inside p2,2 and let (s, t) be the position
of the topmost and leftmost occurrence of q inside p2,2. One can prove that
1 ≤ i, s ≤ m and 1 ≤ j, t ≤ n. Since p2,2 is a subpicture of p3,3, then q2,2 is the
subpicture of p3,3 with tl-corner in (s, t). Now, suppose s = i + h and t = j + k,
for some h, k ≥ 0 (the other cases can be proved similarly). Then (m+h, n+k) is
the position of a non-trivial occurrence of q inside p3,3. Hence, q is a subpicture
of q2,2. 	

Toroidal Codes and Conjugate Pictures 295

In 1D, the counting of the conjugacy classes is based on the counting of the prim-
itive conjugacy classes (see for example [11,22]). Note that a string is primitive
if and only if it is non-self-conjugate. On the other hand, one can easily show by
contradiction that the following result holds in 2D.

Proposition 9. Let p ∈ Σ++. If p is non-self-conjugate then p is a primitive
picture.

The converse of Proposition 9 does not hold. Indeed, there exist primitive

and self-conjugate pictures, as, for example,
a b
b a

. In 2D, the counting of the

conjugacy classes of pictures will focus on non-self-conjugate conjugacy classes.

Proposition 10. Let p ∈ Σm,n. If p is non-self-conjugate then the cardinality
of its conjugacy class is |p∼| = mn.

Proof. Let p be a non-self-conjugate picture. We claim that the conjugates of p
in each of its positions are all different. By the contrary, let p′ and p′′ be the
conjugates of p in two different positions, and suppose p′ = p′′. By the transitive
property of the conjugacy, p′ and p′′ are conjugate, and they are conjugate in a
non-trivial way, that is p′ is self-conjugate against Proposition 8. 	

Let Σ be an alphabet with |Σ| = k, ψk(m,n) (νk(m,n), resp.) be the number
of primitive (non-self-conjugate, resp.) pictures in Σm,n and φk(m,n) be the
number of non-self-conjugate conjugacy classes in Σm,n. In the sequel, μ is the
Möbius function.

Proposition 11. Let Σ be an alphabet with |Σ| = k. Then,
φk(m,n) ≤ (∑

d1|m
∑

d2|n μ(d1)μ(d2)kmn/(d1d2)
)
/mn.

Proof. It follows by Proposition 10 that φk(m,n) ≤ νk(m,n)/mn. From Propo-
sition 9, νk(m,n) ≤ ψk(m,n). Hence, φk(m,n) ≤ νk(m,n)/mn ≤ ψk(m,n)/mn.
Finally, in [15] it is proved that ψk(m,n) equals the sum in the formula. 	

5 Toroidal Codes

The translation of the definition of circular code of strings into the picture world
leads to some new situations. The role of a circle on the plane can be played in
the 3D space, not only by a cylinder, either horizontally or vertically placed (as
discussed in Sect. 3), but also by a torus. This more general approach has the
advantage to be independent from a decoding direction or border constraint.

A set X of pictures is a toroidal code if the pictures of X cannot tile any
torus (of any dimension) in two different ways. In order to avoid the difficulty
of handling objects in a 3D space, we are going to cut the surface of the labeled
torus and consider the rectangular picture p we obtain. The picture p will be
tiled by some pictures in X which may exceed a border and, consequently, let

296 M. Anselmo et al.

uncovered the corresponding positions of p in the opposite side. This special kind
of tiling of p will be called a toroidal tiling decomposition of p.

In order to formalize this notion, let us introduce another type of subdomain
of the domain of a picture, besides the internal, the horizontal and the vertical
across subdomains introduced in Sect. 3. A corner across subdomain of dom(p)
is a set d of the form

{i, i + 1, . . . , m, 1, 2, . . . , i′} × {j, j + 1, . . . , n, 1, 2, . . . , j′}

where 1 ≤ i′ < i ≤ |p|row, 1 ≤ j′ < j ≤ |p|col; d will be denoted by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to the positions in a corner
across subdomain [(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. It is a union of four
(internal) subdomains, each one containing a different corner of p.

Let us introduce the definition of toroidal tiling decomposition of a picture as
the generalization of the notion of circular decomposition of a string (see Sect. 3).

Definition 12. A toroidal tiling decomposition of a picture p ∈ Σ++ over
X is a partition of dom(p) into disjoint internal and/or across subdomains
{d1, d2, . . . , dk} such that, for all h = 1, ..., k, the subpicture ph of p associated
with the subdomain dh belongs to X.

Remark 13. Observe that a toroidal tiling decomposition of a picture p provides
a tiling of a torus; it suffices to let the top border of p coincide with its bottom
border, and the left border with its right one. The converse is true, too. Note
that a toroidal tiling decomposition of p induces a toroidal tiling decomposition
for any conjugate of p. In fact, each conjugate p′ of p can be obtained by cut-
ting the surface of the torus, corresponding to p, along some vertical and some
horizontal lines. So, we will talk about the toroidal tiling decomposition of a
class of conjugacy, i.e., a labeled torus (just as in 1D for necklaces). Indeed, the
toroidal tiling decompositions of a conjugacy class have to be considered just as
one single decomposition (and not many different ones).

Example 14. Let X = {x1, x2, x3} where x1 =
b a b
a b a

, x2 = b a b , x3 =

a
a
a

and let p =
a a a a b
b a a b a
b a a b a

. A toroidal tiling decomposition of p over X is

{d1, d2, d3, d4}, where d1 = [(3, 4), (1, 1)] is a corner across subdomain, d2 =
[(1, 2), (3, 2)] is an internal subdomain, d3 = [(2, 3), (1, 3)] is a vertical across sub-
domain and d4 = [(2, 4), (2, 1)] is a horizontal across subdomain (see also Fig. 1).
The subpictures associated to the subdomains d1, d2, d3 and d4 are p1 = x1,
p2 = p3 = x3 and p4 = x2.

We are now ready to introduce the definition of toroidal code.

Definition 15. A language X ⊆ Σ++ is a toroidal code if any picture in Σ++

has at most one toroidal tiling decomposition over X.

Toroidal Codes and Conjugate Pictures 297

a a a a b

b a a b a

b a a b a

Fig. 1. The toroidal tiling decompositions of p given in Example 14.

Remark 16. Let us sketch a method to construct toroidal codes. Choose two
disjoint languages P and Q such that ∀p ∈ P , p cannot be covered by pictures
in X and ∀q ∈ Q, q can be covered by pictures in X, but each covering of q
makes use of at least one picture of P . Then, X is a toroidal code. Suppose by
contradiction that there exists a picture t ∈ Σ++ which admits two different
toroidal tiling decompositions c and d over X. Note that any subpicture of t
associated with a subdomain in c is covered by pictures of X associated with
some subdomains of d. It follows by definition of P that, if a subpicture th ∈ P
of t is associated with a subdomain belonging to c then th can be covered only by
itself in d. But, since the two toroidal decompositions of t over X are different,
it must exist at least a subpicture tk ∈ Q of t, associated with a subdomain of
c and, for what has been said before, tk must be covered only by pictures of
Q, associated with some subdomains of d. This contradicts the definition of Q.
Moreover, X is not a comma-free code since the pictures of Q are covered by
pictures in X.

Example 17. Let X = {x1, x2, x3, x4, x5, x6, x7} where x1 =
a b
b b

, x2 =
a a
b c

,

x3 = c b a c d d , x4 =
a d d
b d d

, x5 =
a d b
c c b
b a c

, x6 =
a c
c c
b d

, x7 = d b b b d . The

language X is a toroidal code. In fact, X = P ∪Q, with P = {x1, x2, x3, x4} and
Q = {x5, x6, x7}, which satisfy the requirements in Remark 16.

Proposition 18. Let X ⊆ Σ++ be a toroidal code. Then, the following proper-
ties hold.

(1) X cannot contain two different conjugate pictures.
(2) X cannot contain a self-conjugate picture.

Proof. (1) Suppose by contradiction that there exist p, q ∈ X with p ∼ q
i.e. there exist p1, p2, p3, p4 ∈ Σ∗∗, such that p = ⊕(p1, p2, p3, p4) and
q = ⊕(p1, p2, p3, p4). Consider the case with pi not empty, for i = 1, 2, 3, 4
(the other cases can be similarly handled) and suppose that q is the con-
jugate of p in position (i, j). The picture p has two different toroidal tiling
decompositions over X, say t and t′, with t = {d} = {[(1, 1), (|p|row, |p|col)]}
and t′ = {d′} = {[(i, j), (i − 1, j − 1)]}. This is a contradiction to X toroidal
code.

(2) The proof is the analogous of the one for item 1).
	

298 M. Anselmo et al.

The inverse of Proposition 18 is not verified, as shown in the following exam-
ple.

Example 19. Consider the language X = {p, q} with p =
a a
a b

and q =
b b
b a

.

The pictures p and q are non-self-conjugate and they are not conjugate each

other, but X is not a toroidal code. Actually, the picture r =

a a b b
a b b a
b b a a
b a a b

has

two different toroidal decompositions. The first one has only internal across
subdomains. It is {d1, d2, d3, d4}, with d1 = [(1, 1), (2, 2)], d2 = [(1, 3), (2, 4)],
d3 = [(3, 1), (4, 2)], d4 = [(3, 3), (4, 4)], where the pictures of X associated with
are p, q, q, p, respectively. The second decomposition is {s1, s2, s3, s4}, with s1 =
[(2, 2), (3, 3)], s2 = [(2, 4), (3, 1)], s3 = [(4, 2), (1, 3)], s4 = [(4, 4), (1, 1)], where
the pictures of X associated with are q, p, p, q, respectively.

Applying Propositions 11 and 18, we obtain an upper bound on the cardinal-
ity of a toroidal code in the uniform case. In the general case of X ⊆ Σ++, the
bound applies to each X ∩ Σm,n.

Proposition 20. Let X ⊆ Σm,n be a toroidal code and |Σ| = k. Then,
|X| ≤ (∑

d1|m
∑

d2|n μ(d1)μ(d2)kmn/(d1d2)
)
/mn.

In 1D, the definition of circular code is related to the notion of pureness of
the monoid X∗ generated by X. In 2D, the situation is more involved. There
is no proper definition of a generated monoid. We are going to associate to X
the language Xtor, which will play in 2D the role of X∗, and then introduce a
proper definition of pureness.

Definition 21. The toroidal tiling star of a language X ⊆ Σ++, denoted by
Xtor, is the set of pictures p whose domain can be partitioned into disjoint inter-
nal and/or across subdomains {d1, d2, . . . , dk} such that any subpicture ph of p
associated with the subdomain dh belongs to X, for all h = 1, ..., k, and the
subdomain containing (1, 1) is an internal domain.

Definition 22. Let X ⊆ Σ++. The language Xtor is very pure if for any
p, p′ ∈ Xtor, p ∼ p′, with p1, p2, p3, p4 as in Definition 1, and any toroidal
decomposition d of p and d′ of p′ over X, we have that, for any i = 1, 2, 3, 4, the
restriction of d to dom(pi) is equal to the restriction of d′ to dom(pi).

Let us state the main result of this section.

Proposition 23. The language X is a toroidal code if and only if Xtor is very
pure.

Proof. Let X be a toroidal code and suppose, by contradiction, that Xtor is
not very pure. Then, there exist p, p′ ∈ Xtor, p ∼ p′, with p = ⊕(p1, p2, p3, p4)
and p′ = ⊕(p4, p3, p2, p1), a toroidal decomposition d of p over X and a toroidal

Toroidal Codes and Conjugate Pictures 299

decomposition d′ of p′ over X such that, for some i ∈ {1, 2, 3, 4}, the restriction
of d to dom(pi) is different from the restriction of d′ to dom(pi). Note that the
toroidal decomposition d′ of p′ over X, induces a toroidal decomposition d” of p
over X, different from d and this is a contradiction to X toroidal code.

Now, let X ⊆ Σ++ such that Xtor is very pure and suppose, by contra-
diction, that X is not a toroidal code. Then, there exists q ∈ Σ++ with two
different toroidal tiling decompositions over X, say t = {d1, d2, . . . , ds} and t =
{d1, d2, . . . , dr}. Note that there exist two different positions (i, j), (ı, j) ∈ dom(q)
such that, the position (i, j) is covered in t by the tl-corner of a picture of X
and the position (ı, j) is covered in t by the tl-corner of a picture of X.

Then, set p1 = q[(1, 1), (i − 1, j − 1)], p2 = q[(1, j), (i − 1, n)], p3 =
q[(i, 1), (m, j − 1)], p4 = q[(i, j), (m,n)] and p = ⊕(p4, p3, p2, p1). Clearly, p
is the conjugate of q in position (i, j) and p ∈ Xtor. In an analogous way, set
p′
1 = q[(1, 1), (ı − 1, j − 1)], p′

2 = q[(1, j), (ı − 1, n)], p′
3 = q[(ı, 1), (m, j − 1)],

p′
4 = q[(ı, j), (m,n)] and p′ = ⊕(p′

4, p
′
3, p

′
2, p

′
1). Clearly, p′ is the conjugate of q in

position (ı, j) and p′ ∈ Xtor.
Note that, since conjugacy is a transitive relation, we have that p and p′ are

conjugate. Moreover, the toroidal tiling decomposition t of q induces a toroidal
tiling decomposition d of p over X and the toroidal tiling decomposition t of q
induces a toroidal tiling decomposition d′ of p′ over X. Since t and t are different,
this implies that, for some i ∈ {1, 2, 3, 4}, the restriction of t to dom(pi) is
different from the restriction of t to dom(pi). This, in turn, implies that, for some
i ∈ {1, 2, 3, 4}, the restriction of d to dom(pi) is different from the restriction of
d′ to dom(pi). This contradicts our assumption Xtor very pure. 	

We now compare all the classes of two-dimensional codes considered. We
denote them as follows. Let C be the class of (two-dimensional) codes, CY LV
be the class of vertical cylindric codes, CY LH be the class of horizontal cylindric
codes, TOR be the class of toroidal codes, CF be the class of comma-free codes.

Using the definitions, one can prove the following result. The strictness of
the inclusions is shown in Example 25.

Proposition 24. CF � TOR � CY LV ∩ CY LH.
Moreover, CY LV ∩CY LH � CY LH � C and CY LV ∩CY LH � CY LV �

C.

Example 25. The language X1 =
{

a a
a a

}
is a code, but it is neither vertical nor

horizontal cylindric code. The language X2 =
{

a b
a b

}
is a horizontal cylindric

code which is not a vertical cylindric one. The language X3 =
{

a b
b a

}
is both a

horizontal and a vertical cylindric code, but it is not a toroidal code. Actually,
a b
b a

has two different toroidal tiling decompositions, {d1} and {d2}, where d1 =

[(1, 1), (2, 2)] and d2 = [(1, 2), (1, 1)].

300 M. Anselmo et al.

An example of toroidal code that is not a comma-free code is given in Exam-
ple 17.

References

1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity.
Theor. Comput. Sci. 147, 165–180 (1995)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In:
Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp.
47–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40663-8 6

3. Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of
pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5 6

4. Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class
of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)

5. Anselmo, M., Giammarresi, D., Madonia, M.: Unbordered pictures: properties and
construction. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 45–57. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23021-4 5

6. Anselmo, M., Giammarresi, D., Madonia, M.: Avoiding overlaps in pictures. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 16–32.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 2

7. Anselmo, M., Giammarresi, D., Madonia, M.: Picture codes and deciphering delay.
Inf. Comput. 253, 358–370 (2017)

8. Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong
prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017)

9. Anselmo, M., Madonia, M.: Two-dimensional comma-free and cylindric codes.
Theor. Comput. Sci. 658, 4–17 (2017)

10. Barton, C., Iliopoulos, C.S., Pissis, S.P.: Fast algorithms for approximate circular
string matching. Algorithms Mol. Biol. 9, 9 (2014)

11. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

12. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)
13. De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and regularity of lan-

guages generated by (1, 3)-circular splicing systems. In: Dediu, A.-H., Lozano, M.,
Mart́ın-Vide, C. (eds.) TPNC 2014. LNCS, vol. 8890, pp. 169–180. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13749-0 15

14. De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and circular splicing
languages. Theor. Comput. Sci. 658, 148–158 (2017)

15. Gamard, G., Richomme, G., Shallit, J., Smith, T.J.: Periodicity in rectangular
arrays. Inf. Process. Lett. 118, 58–63 (2017)

16. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6 4

17. Kulkarni, M.S., Mahalingam, K.: Two-dimensional palindromes and their proper-
ties. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol.
10168, pp. 155–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53733-7 11

18. Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding consensus and optimal
alignment of circular strings. Theor. Comput. Sci. 468, 92–101 (2013)

https://doi.org/10.1007/978-3-642-40663-8_6
https://doi.org/10.1007/978-3-642-38771-5_6
https://doi.org/10.1007/978-3-319-23021-4_5
https://doi.org/10.1007/978-3-319-60252-3_2
https://doi.org/10.1007/978-3-319-13749-0_15
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-319-53733-7_11
https://doi.org/10.1007/978-3-319-53733-7_11

Toroidal Codes and Conjugate Pictures 301

19. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

20. Marcus, S., Sokol, D.: 2D Lyndon words and applications. Algorithmica 77(1),
116–133 (2017)

21. Moczurad, M., Moczurad, W.: Some open problems in decidability of brick
(labelled polyomino) codes. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004.
LNCS, vol. 3106, pp. 72–81. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27798-9 10

22. Perrin, D., Restivo, A.: Enumerative combinatorics on words. In: Bona, M. (ed.)
Handbook of Enumerative Combinatorics. CRC Press (2015)

23. Simplot, D.: A characterization of recognizable picture languages by tilings by
finite sets. Theor. Comput. Sci. 218(2), 297–323 (1991)

https://doi.org/10.1007/978-3-540-27798-9_10
https://doi.org/10.1007/978-3-540-27798-9_10

Geometrical Closure of Binary
V3/2 Languages

Jean-Philippe Dubernard1, Giovanna Guaiana1, and Ludovic Mignot2(B)

1 LITIS EA 4108, Université de Rouen Normandie, Avenue de l’Université,
76801 Saint-Étienne-du-Rouvray, France

{jean-philippe.dubernard,giovanna.guaiana}@univ-rouen.fr
2 GR2IF, Université de Rouen Normandie, Avenue de l’Université,

76801 Saint-Étienne-du-Rouvray, France
ludovic.mignot@univ-rouen.fr

Abstract. We define the geometrical closure of a language over a j-
ary alphabet, and we prove that in the case of dimension 2 the family
V3/2 in the Straubing-Thérien hierarchy of languages is closed under
this operation. In other words, the geometrical closure of a V3/2 binary
language is still a V3/2 language. This is achieved by carrying out some
transformations over a regular expression representing the V3/2 language,
which leads to a V3/2 regular expression for the geometrical closure.

Keywords: Regular language · Geometrical language ·
Regular expression · Straubing-Thérien hierarchy

1 Introduction

A connex figure in a j-dimensional space is a set of points of Nj such that, for
any point in the figure, there exists a path from the origin to this point. A path
is intended to proceed by an incremental step in one of the j dimensions at a
time. For a language L over a j-ary alphabet, the figure of L is the set of the
points in N

j corresponding to the Parikh vectors of the prefixes of its words.
Conversely, the language of a connex figure is the set of words covering all the
possible paths from the origin in the figure. A language L is geometrical if the
set of its prefixes is equal to the language of the figure of L.

Geometrical languages have been introduced in [4]. Initially, their study was
motivated by their application to the modeling of real-time task systems [2], via
regular languages [7] or discrete geometry [7,9]. This led to the study of their
behaviour in language theory. While geometrical languages occur in any level of
the Chomsky hierarchy, it is the geometrical regular languages that have been
mainly studied. There exist two polynomial algorithms [3,6] to check if a binary
regular language is geometrical, and an exponential one [3] for regular languages.

In this paper we investigate the following property: a family of languages is
geometrically closed if, for any of its languages L, the geometrical closure of L,

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 302–314, 2019.
https://doi.org/10.1007/978-3-030-13435-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_22

Geometrical Closure of Binary V3/2 Languages 303

which we define as the language of its figure, belongs to the family. We remark
that the class of regular languages is not geometrically closed. Indeed let L be
the language (aa∗b)∗. The figure is composed of all the points below and on
the diagonal {(n, n) | n ≥ 0}. Then the language of the figure of L is the set of
words whose prefixes contain a number of b less than or equal to the number of a.
We take into account the Straubing-Thérien hierarchy of regular languages over
an alphabet A, first considered implicitly in [16] and explicitly in [15], and we
focus on the family of languages corresponding to the level 3/2. This hierarchy
is defined starting by the empty set and the free monoid A∗, and alternating
polynomial closures and Boolean closures. For recent references on the Straubing-
Thérien hierarchy, the reader is referred to [11,13,14]. The level V3/2 has been
proved to be decidable [1,12]. Moreover, it is shown in [1] that the languages of
V3/2 are finite unions of languages of the form A∗

0a1A
∗
1a2 · · · akA

∗
k, with ai ∈ A

and Ai ⊆ A. We rely on this combinatorial characterization to yield our main
result. We also recall that V3/2 is one of the few interesting families of regular
languages which are known to be closed under partial commutations [5,8].

The main result of this paper is that the family V3/2 over a two-letters alpha-
bet is also geometrically closed, and we effectively provide a V3/2 expression for
the language of the figure of a V3/2 language. We first show that any binary
V3/2 expression can be converted, preserving the figure, into a particular kind of
regular expression, a sum of components, made of planes, wires and strips, which
have at most one starred sub-alphabet each. Then we explain how to normal-
ize and reduce these sums in order to get independent parts whose geometrical
closure can be easily computed.

The paper is organized as follows. In the second section we recall the defini-
tions concerning geometrical languages. In Sect. 3 we show the first transforma-
tion of a regular expression denoting a V3/2 language (in sum of components).
In Sect. 4 we present the next transformations, normalization and reduction.
Finally, in Sect. 5 we show how to compute a regular expression denoting the
geometrical closure of the starting V3/2 language. In Sect. 6 we present a web
application allowing to display in the 2-dimensional space the transformations
we operate, together with the corresponding regular expressions.

2 Preliminaries

In the following, we consider the alphabets Aj = {a1, . . . , aj} for any integer
j > 0. The vector Vector(w) of a word w in A∗

j is its Parikh vector, i.e. the
j-tuple (|w|a1 , . . . , |w|aj

), where |w|ak
is the number of occurrences of ak in w,

for any integer 1 ≤ k ≤ j. The set of the prefixes of a language L is denoted by
Pref(L). The figure of a language L ⊆ A∗

j is the set F(L) of j-tuples {Vector(w) |
w ∈ Pref(L)}. More generally, a figure of dimension j is a subset of Nj . Two
j-tuples c = (c1, . . . , cj) and c′ = (c′

1, . . . , c
′
j) are consecutive if there exists an

integer i ≤ j such that |ci−c′
i| = 1 and ck = c′

k for any integer k ≤ j distinct from
i. In this case, the integer i is said to be the shift of (c, c′), denoted by Shift(c, c′).
Moreover, we say that c precedes c′ if c′

i − ci = 1. A figure F is connex if for any

304 J.-P. Dubernard et al.

tuple c in F \ {0j}, F contains a tuple c′ preceding c. A path is a non-empty
finite sequence of consecutive j-tuples [p1, . . . , pn] such that pk precedes pk+1 for
any integer 1 ≤ k ≤ n − 1. The set Paths(F) is the set of the paths of a connex
figure F that start from the origin. The word Word(p) associated with a path
p = [p1, p2, . . .] is inductively defined by Word([p1]) = ε, Word([p1, . . . , pk]) =
Word([p1, . . . , pk−1])·aShift(pk−1,pk). The language of a connex figure F is L(F) =
{Word(p) | p ∈ Paths(F)}. A language L is geometrical if Pref(L) = L(F(L)).

Example 1. Let us consider the two figures F1 and F2 over A2

F1 = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 4)}, F2 = F1 ∪ {(0, 1), (3, 2)}

respectively represented in Figs. 1 and 2. By definition, F1 is not connex, whereas
F2 is. Moreover, if we consider the language L defined by

L = {a2a1a1, a2a1a2a1a1a2a2a1},

it can be checked that F2 = F(L). However, L is not geometrical, since the word
a2a1a1a2 is in L(F2) \ Pref(L).

Fig. 1. A non connex figure. Fig. 2. A connex figure.

In the sequel, we only consider connex figures.
A regular expression E over Aj is inductively defined by

E = ai, E = ε, E = ∅,

E = E1 + E2, E = E1 · E2, E = E∗
1 ,

where 1 ≤ i ≤ j, and E1 and E2 are any two regular expressions over Aj . The
language denoted by a regular expression E over Aj is the language inductively
defined by:

L(ai) = {ai}, L(ε) = {ε}, L(∅) = ∅,

L(E1 + E2) = L(E1) ∪ L(E2), L(E1 · E2) = L(E1) · L(E2), L(E∗
1) = (L(E1))

∗,

where 1 ≤ i ≤ j and E1 and E2 are any two regular expressions over Aj .
By extension the figure F(E) of a regular expression E is the set of j-tuples
F(L(E)). A regular expression E is:

Geometrical Closure of Binary V3/2 Languages 305

– a block if it equals u(ai1 + · · · + aik)∗, with u in A∗
j and {ai1 , . . . , aik} ⊆ Aj ,

– elementary if it is a concatenation of blocks.

An expression is V3/2 if it is a finite sum of elementary regular expressions. A
language is V3/2 if it is denoted by a V3/2 expression. The family of V3/2 languages
corresponds to the level 3/2 of the Straubing-Thérien hierarchy [1].

3 Geometrical Equivalence and Sums of Components

There are several different languages, geometrical or not, that have the same
figure. This leads to the definition of an equivalence of languages.

Definition 2. Two languages L and L′ over Aj are geometrically equivalent,
denoted by L ∼ L′, if F(L) = F(L′). Two regular expressions E and E′ are
geometrically equivalent if F(E) = F(E′).

Example 3. The languages L = {a2a1a1, a2a1a2a1a1a2a2a1} of Example 1 and
the language L′ = {a2a1a2, a2a1a1a2a1a2a2a1} are geometrically equivalent.

Definition 4. The geometrical closure L of a language L over Aj is the lan-
guage L(F(L)).

If a language is geometrical, then its geometrical closure is just its prefix-closure.
Remark that two geometrically equivalent languages have the same geometrical
closure.

In the sequel we apply these definitions to the family of V3/2 languages. A
V3/2 language is not necessarily geometrical. Take for example L = L(a∗

1a2). The
words in L(a2a

+
1) belong to L(F(L)), but they are not prefixes of L. Besides, a

V3/2 language is not in general closed by prefixes, but its closure by prefixes is
still a V3/2 language. Our aim is to prove that the geometrical closure of a V3/2

language is still a V3/2 language, and we achieve our purpose here in the case of
a 2-ary alphabet.

N.B. From now on, we implicitly consider binary languages. Moreover, in
order to simplify the notations, we set a = a1 and b = a2.

Example 5. The geometrical closure L(F(L)) of L in Example 1 is

{ε, b, ba, baa, bab, baab, baba, baaba, babaa, baabab, babaab,

baababb, babaabb, baababba, babaabba}.

This example also shows that the geometrical closure of a V3/2 expression is
not necessarily equal to the sum of the closures of its elementary expressions.
Hence, we make several transformations on a V3/2 expression, in order to get
an expression which is geometrically equivalent to the starting expression, and
that we are able to close easily. In this section we make a first transformation,
preserving the figure: a V3/2 expression will be converted into a sum of special
expressions, called components, like wires, strips and planes. Throughout the
paper a sum of components will always be intended as finite.

306 J.-P. Dubernard et al.

A regular expression E is:

– a plane if it equals u(a + b)∗,
– a vertical (resp. horizontal) strip of width n if it equals ub∗an−1 (resp.

ua∗bn−1),
– a wire if it equals u,

for some word u in A∗
2. In all these cases, E is said to be a component. If E is

a strip or a plane, then u is said to be the affix of E. In the case of a vertical
(resp. horizontal) strip, the word uan−1 (resp. ubn−1) is the end of the strip.

Example 6. Let us consider the expression E defined by

E = baa + aa + bb∗a + bbaa(a + b)∗ + ba + a∗.

It is the sum of three wires (baa, aa and ba), a plane (bbaa(a + b)∗), a vertical
strip of width two (bb∗a) and a horizontal strip of width one (a∗). The figure of
E is represented in Fig. 3.

To improve readability, we will use in the sequel the graphic representation
defined as follows: the planes and the strips are represented by colored areas
(red for the planes, green for the horizontal strips, blue for the vertical strips),
whereas the wires, the affixes and the ends are represented as black lines. As an
example, the figure of the previous example is represented in Fig. 4. Notice that
the wire aa is covered by the green strip a∗.

Fig. 3. The figure of E. Fig. 4. The geometrical representation
of F(E). (Color figure online)

We immediately get the following result.

Proposition 7. A sum of components denotes a V3/2 language.

Moreover, let us show that any V3/2 language is geometrically equivalent to a
language denoted by a sum of components. For this purpose, we focus on some
geometrical equivalences.

Geometrical Closure of Binary V3/2 Languages 307

Lemma 8. Let L be a language over A2, u and v be two words in A∗
2, and

Vector(v) = (x, y). Then:

{u} · A∗
2 · L ∼ {u} · A∗

2, (1)

{u} · {a}∗ · {v} ∼ {uax} · {a}∗ · {by} ∪ {uaiv | 0 ≤ i ≤ x}, (2)

{u} · {b}∗ · {v} ∼ {uby} · {b}∗ · {ax} ∪ {ubiv | 0 ≤ i ≤ y}, (3)
{u} · {α}∗ · {v} · {α}∗ · L ∼ {u} · {α}∗ · {v} · L, α ∈ A2, (4)

{u} · {a}∗ · {v} · {b}∗ · L ∼ {uax} · A∗
2 ∪ {uaiv | 0 ≤ i ≤ x}, (5)

{u} · {b}∗ · {v} · {a}∗ · L ∼ {uby} · A∗
2 ∪ {ubiv | 0 ≤ i ≤ y}, (6)

{u} · {a}∗ · {v} · A2
∗ · L ∼ {uax} · A∗

2 ∪ {uaiv | 0 ≤ i ≤ x}, (7)

{u} · {b}∗ · {v} · A2
∗ · L ∼ {uby} · A∗

2 ∪ {ubiv | 0 ≤ i ≤ y}. (8)

Hence,

– according to Eq. (1), if the first starred expression is a plane, then all the
following blocks can be dropped,

– according to Eqs. (2) and (3), a V3/2 expression with a unique starred symbol
can be replaced by a strip and a sum of wires,

– according to Eq. (4), if the two first starred expressions are two identical
starred symbols separated by a word, then the second one can be dropped,

– according to Eqs. (5), (6), (7) and (8), if the two first starred expressions
are two distinct starred nonempty alphabets separated by a word, then the
expression can be transformed into a plane and a sum of wires.

Consequently,

Proposition 9. Any V3/2 language is geometrically equivalent to a language
denoted by a sum of components.

4 Reduction of a Sum of Components

Let us now show how to transform a sum of components, preserving the figure,
in order to obtain an easy-to-close expression. We proceed in two steps. The
normalization is an operation where some wires are added and some planes and
strips are shifted, w.r.t. to the frontiers. The next step, the reduction, deals
with planes and strips by getting rid of unnecessary components, and merging
together some others.

4.1 Normalization

We show how to normalize a sum of components, that allows us to determine
what is the part of the language we need to close. This process will allow (1) to
highlight a rectangle in the figure, containing only wires and all the wires, and
determined by the frontiers, and (2) to shift the strips and the planes beyond
this rectangle by adding some wires. More formally, the frontiers are two integers
l and h such that

308 J.-P. Dubernard et al.

– any point (x, y) of the figure satisfying x < l and y < h belongs to at least
one wire and only to wires;

– any point (x, y) of the figure satisfying x = l or y = h belongs to at least one
wire, and can appear in a strip or in a plane;

– any point (x, y) of the figure satisfying x > l or y > h only belongs to planes
or strips.

From now on, we use the notation Vector(u) = (xu, yu) for any u ∈ A∗
2.

Definition 10. A regular expression E is normalized if it is a sum of planes,
strips and wires such that there exist two integers l and h, satisfying:

1. for any of its wires u,

xu ≤ l, yu ≤ h, (9)

2. for any of its vertical (resp. horizontal) strips of affix u, of width n and of
end e, the following conditions hold:

(ye = h) ∧ (xe ≤ l) (resp. (xe = l) ∧ (ye ≤ h)), (10)

E contains the wire uan−1 (resp. ubn−1), (11)

3. for any of its planes of affix u, the following conditions hold:

(yu = h) ∧ (xu ≤ l) ∨ (xu = l) ∧ (yu ≤ h), (12)

E contains the wires ual−xu , ubh−yu . (13)

The two integers l and h are the frontiers of E.

Let us then show how to normalize a sum of components. Let E be a non-empty
sum of components. We denote by X the set

X = {u ∈ A∗
2 | u is a wire or an affix or an end of a component in E},

and we consider the two integers l and h defined by

l = max{xw | w ∈ X}, h = max{yw | w ∈ X}.

Notice that E satisfies Eq. (9). Let us show how to transform E into a geo-
metrically equivalent normalized expression.

Consider a plane p of affix u. Then xu ≤ l and yu ≤ h. We set l′ =
l − xu and h′ = h − yu. The figure of p is equal to the figure of the sum
of the planes p′ = ual′(a + b)∗ and p′′ = ubh

′
(a + b)∗ and the expression

E′ = ual
′
+ ubh

′
+ u(al

′
bh

′
) , where is the classical shuffle product. We

recall that for any two words u and v over an alphabet A, u v is the sum
of the words u1v1 · · · unvn with u1 · · · un = u, v1 · · · vn = v and ui, vi ∈ A∗ for

Geometrical Closure of Binary V3/2 Languages 309

1 ≤ i ≤ n. Since E′ denotes a finite language, it is equivalent to a sum E′′ of
wires, which satisfies Eq. (9). Moreover, the wires ual′ and ual′bh

′
needed by

p′ to satisfy Eq. (13), and the wires ubh
′

and ubh
′
al′ needed by p′′ to satisfy

Eq. (13), are all included in E′′. Finally, p′ and p′′ satisfy Eq. (12), and therefore
E′′ + p′ + p′′ is a normalized sum of components geometrically equivalent to p.

Consider now a vertical strip s of affix u and of width n. If yu < h, let
h′ = h − yu. The figure of s is equal to the figure of the sum of the vertical strip

s′ = ubh
′
b∗an−1 and the expression E′ = u(an−1 bh

′
). Since E′ denotes a finite

language, it is equivalent to a sum E′′ of wires, which satisfies Eq. (9). Finally s′

satisfies Eq. (10), and the wire ubh
′
an−1 needed for Eq. (11) is included in E′′.

Therefore E′′+s′ is a normalized sum of components geometrically equivalent to
s. If a horizontal strip is not normalized, then the normalization can be performed
similarly.

As a direct consequence of the previous conclusions, since each plane and
each strip can be treated independently, we get the following results.

Proposition 11. Any sum of components can be normalized into a geometri-
cally equivalent sum of components.

Example 12. Let us consider the expression E of Example 6. The normalization
of E produces the expression E′ defined by

E′ = baa + aa + bbb∗a + bba + bab + bbaa(a + b)∗ + bbaa + ba + aaa∗.

Indeed,

– the frontiers are l = 2 and h = 2,
– the strip bb∗a is removed and produces

the strip bbb∗a and the wires bba and bab
(according to the normalization),

– the plane bbaa(a + b)∗ produces the wire
bbaa (Eq. (13)),

– the strip a∗ is transformed into the strip
aaa∗ (Eq. (10)), satisfying Eq. (11) since
aa is already in E.

Fig. 5. The figure of E′.

The associated figure is represented in Fig. 5. The frontiers l and h are marked
by a yellow point.

4.2 Reduction of a Normalized Expression

Let us now explain how to reduce a normalized expression preserving the figure.
As an example, if a component is included in a plane, then it can be removed.
As another example, if two vertical strips overlap, or if the end of a strip and the
affix of the other have the same vector or correspond to two consecutive points,
then they can be merged.

310 J.-P. Dubernard et al.

Definition 13. A regular expression E with frontiers l and h is reduced if it is
normalized and satisfies the following three conditions:

1. E contains at most two planes of affix u and u′ with xu = l and yu′ = h,
such that either xu′ < l and yu < h, or u = u′,

2. for any plane of affix u and for any vertical (resp. horizontal) strip of end e,
xe < xu − 1 (resp. ye < yu − 1),

3. for any two vertical (resp. horizontal) strips of affixes u and u′ and of ends e
and e′, xe < xu′ − 1 or xe′ < xu − 1 (resp. ye < yu′ − 1 or ye′ < yu − 1).

Let us show how to reduce a normalized expression E with frontiers l and h.
Suppose that E contains two planes p and p′ of affixes u and u′, with xu ≤ xu′

and yu = yu′ . Then removing p′ from E produces a geometrically equivalent
expression. Notice that the case when yu ≤ yu′ and xu = xu′ can be treated
similarly. Consequently, by recurrence on the number of planes, it can be shown
that E is geometrically equivalent to a normalized expression with

– at most two planes,
– at most one plane u(a + b)∗ such that xu ≤ l,
– at most one plane u(a + b)∗ such that yu ≤ h.

Consider now two components of E, a vertical strip s of affix u and of end e,
and a plane p of affix u′ (resp. a vertical strip s′ of affix u′ and of end e′), such that
xe ≥ xu′ −1 (resp. xe ≥ xu′ −1 and xe′ ≥ xe). If xu ≥ xu′ (and necessarily yu =
yu′), then removing s from E produces a geometrically equivalent expression.
Otherwise, s can be replaced by the plane p′ = u(a + b)∗ and by the wire w = u
(resp. s and s′ can be merged into an equivalent vertical strip p′ = ub∗axe′ −xu and
they are equivalent to p′ +w, where w is the wire uaxe′−xu). Therefore, replacing
s (resp. s and s′) by p′ +w in E produces a geometrically equivalent expression.
In the case of a new plane creation, the reduction step can be performed one
more time if needed to get rid of an unnecessary plane (see Example 14). Notice
that this creation is needed when p is a plane with xu′ = l = xe and yu′ �= h.
The case of horizontal strips can be performed similarly.

The expression obtained by the reduction step is still normalized, with the
same frontiers l and h of the starting expression.

Example 14. Let us consider the normalized expressions E1 and E2 defined by

E1 = b(a + b)∗ + b + aa + aaa∗ + baa, E2 = baa(a + b)∗ + baa + aa + aaa∗.

In both of these cases, the strip aaa∗ is replaced by aa(a + b)∗ during the reduc-
tion step. However, in E2, the other plane baa(a + b)∗ has to be removed to
obtain a reduced expression, while b(a + b)∗ is not removed in E1.

From the previous construction, we directly get the following result.

Proposition 15. Any normalized expression E can be reduced to a geometri-
cally equivalent expression, which is normalized with the same frontiers as E.

Geometrical Closure of Binary V3/2 Languages 311

As a direct consequence of Propositions 9, 11 and 15,

Proposition 16. Any V3/2 language is geometrically equivalent to a language
denoted by a reduced sum of components.

Example 17. Let us consider the normalized ex-
pression E′ of Example 12. The reduction of E′ pro-
duces the expression E′′ defined by

E′′ = baa + aa + bba + bab + bb(a + b)∗

+ bb + bbaa + ba + aaa∗.

Indeed, the strip bbb∗a and the plane bbaa(a + b)∗

are merged into the plane bb(a + b)∗. The wire bb
is added in order to satisfy Eq. (13). The associated
figure is represented in Fig. 6.

Fig. 6. The figure of L(E′′).

5 Geometrical Closure of a Reduced Expression

In this section we show how to compute a regular expression denoting the geo-
metrical closure of a reduced expression.

For a reduced expression E of frontiers l and h, the points (x, y) of F(E)
satisfying x = l ∧ y ≤ h or y = h ∧ x ≤ l will also be called frontiers.

In order to compute the closure, notice that since E is reduced, the closure
of a plane or a strip can be performed independently of every other compo-
nent. Indeed, the closure of a language L will add some words when there exist
two consecutive points p1 and p2 in F(L) and a word w in Pref(L) such that
Vector(w) = p1 and waShift(p1,p2) /∈ Pref(L). Now, two consecutive points cannot
belong to two distinct strips, or to a plane and a strip (if two consecutive points
belong to two distinct planes, then they both belong to the same plane too).
Moreover, if p is a point included in the part of the figure beyond the frontiers,
then a path in the figure, from the origin to p, necessarily goes through a point
in the frontiers, and this point is included in a wire. Therefore, it is sufficient
to compute (1) the geometrical closure of the set of wires (by enumerating the
finite set of paths of its associated finite figure) and (2) all the paths from the
frontiers to any point in a component (plane or strip), and (3) to combine these
two parts appropriately.

First, in a plane, the set of paths from the frontier to any point of the plane
is denoted by (a + b)∗.

Let s be a vertical strip of affix u and of width n, and consider a point
(xu+k, yu) on the frontier of s (with k ≤ n−1). Then the set of the paths inside
the strip, starting from (xu + k, yu), is denoted by

∑

0≤j≤n−1−k

b∗(ab∗)j .

312 J.-P. Dubernard et al.

Likewise, the set of the paths from a point (xu, yu + k) on the frontier of a
horizontal strip of affix u and of width n inside the strip is denoted by

∑

0≤j≤n−1−k

a∗(ba∗)j .

Let us now show how to compute the geometrical closure of a reduced expres-
sion. Let E be a reduced expression and X be the set of the wires of E.

First, the geometrical closure X of X is a finite language that can be com-
puted directly from the figure. Moreover, for any couple (x, y) of integers, we
denote by X(x,y) the set defined by {w ∈ X | Vector(w) = (x, y)}. An expression
F is a geometrical representation of a component c of E if

L(F) = {u ∈ L(E) | Vector(u) ∈ F(c)}.

Denoting by C the set of strips and planes of E and by Fc a geometrical repre-
sentation of c, we get

L(E) = X ∪ L(
∑

c∈C

Fc).

Let us now compute geometrical representations of strips and planes. If c =
ub∗an−1 is a vertical strip of E, then we set

ĉ =
∑

0≤k≤n−1,

w∈XVector(uak),

0≤j≤n−1−k

wb∗(ab∗)j .

Remark that ĉ geometrically represents c and that L(ĉ) is a V3/2 language. If
c = ua∗bn−1 is a horizontal strip of E, then we set

ĉ =
∑

0≤k≤n−1,

w∈XVector(ubk),

0≤j≤n−1−k

wa∗(ba∗)j .

Similarly to the previous case, ĉ geometrically represents c and L(ĉ) is a V3/2

language. Finally, if c = u(a + b)∗ is a plane of E, and l and h are the frontiers
of E, then

– if xu = l,

ĉ =
∑

0≤i≤h−yu,

w∈XVector(ubi)

w(a + b)∗;

– if yu = h,

ĉ =
∑

0≤i≤l−xu,

w∈XVector(uai)

w(a + b)∗
.

Geometrical Closure of Binary V3/2 Languages 313

Similarly to the previous cases, ĉ geometrically represents c and L(ĉ) is a V3/2

language. As a conclusion,

Theorem 18. The family of V3/2 languages is geometrically closed.

Example 19. Let us consider the reduced expression E′′ of Example 17. Hence,

X = {baa, aa, bba, bab, bb, bbaa, ba}, X =
⋃

0≤i,j≤2

(ai bj),

X((x,y)|x≤2,y≤2) = (ax by), Faaa∗ = aaa∗,

Fbb(a+b)∗ = bb(a+ b)∗ + abb(a+ b)∗ + bab(a+ b)∗ + bba(a+ b)∗

+ aabb(a+ b)∗ + abab(a+ b)∗ + abba(a+ b)∗ + baab(a+ b)∗

+ baba(a+ b)∗ + bbaa(a+ b)∗.

6 Web Application

The computation of a component sum, its normalization, its reduction and its
closure have been implemented in Haskell (made in Haskell, compiled in Java-
script using the reflex platform) in order to help the reader to manipulate
the notions. This web application can be found here [10]. As an example, the
expression baa + aa + bb∗a + bbaa(a + b)∗ + ba + a∗ of Example 6 can be defined
from the literal input b.a.a+a.a+b.b*.a+b.b.a.a.(a+b)*+b.a+a*.

7 Perspectives

We plan to investigate our constructions in higher dimensional spaces to deter-
mine whether the whole V3/2 family is geometrically closed. The adjunction of a
third dimension implies the consideration of more complex objects, but we hope
that our two steps (normalization and reduction) can still be applied.

References

1. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theoret. Com-
put. Sci. 91(1), 71–84 (1991)

2. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Syst. 2(4), 301–324 (1990)

3. Béal, M.-P., Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H., Lombardy, S.:
Decidability of geometricity of regular languages. In: Yen, H.-C., Ibarra, O.H. (eds.)
DLT 2012. LNCS, vol. 7410, pp. 62–72. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31653-1 7

4. Blanpain, B., Champarnaud, J.M., Dubernard, J.P.: Geometrical languages. In:
LATA, Report 35/07, pp. 127–138. Research Group on Mathematical Linguistics,
Universitat Rovira i Virgili, Tarragona (2007)

https://github.com/reflex-frp/reflex-platform
http://ludovicmignot.free.fr/programmes/geomClosure/index.html
https://doi.org/10.1007/978-3-642-31653-1_7
https://doi.org/10.1007/978-3-642-31653-1_7

314 J.-P. Dubernard et al.

5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic
verification. Inf. Comput. 205(2), 199–224 (2007)

6. Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H.: Geometricity of binary regular
languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 178–189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13089-2 15

7. Geniet, D., Largeteau, G.: WCET free time analysis of hard real-time systems on
multiprocessors: a regular language-based model. Theoret. Comput. Sci. 388(1–3),
26–52 (2007)

8. Guaiana, G., Restivo, A., Salemi, S.: On the trace product and some families of
languages closed under partial commutations. J. Automata Lang. Comb. 9(1), 61–
79 (2004)

9. Largeteau, G., Geniet, D., Andrès, É.: Discrete geometry applied in hard real-time
systems validation. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005.
LNCS, vol. 3429, pp. 23–33. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31965-8 3

10. Mignot, L.: Application: geometrical closure of V3/2 binary expressions.
http://ludovicmignot.free.fr/programmes/geomClosure/index.html. Accessed 27
Oct 2018

11. Pin, J.É.: The dot-depth hierarchy, 45 years later. In: The Role of Theory in
Computer Science, pp. 177–202. World Scientific (2017)

12. Pin, J.É., Weil, P.: Ponynominal closure and unambiguous product. Theory Com-
put. Syst. 30(4), 383–422 (1997)

13. Place, T., Zeitoun, M.: Concatenation hierarchies: new bottle, old wine. In: Weil,
P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 25–37. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58747-9 5

14. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theory Com-
put. Syst. 1–53 (2017). https://doi.org/10.1007/s00224-018-9867-0

15. Straubing, H.: Finite semigroup varieties of the form v ∗ d. J. Pure Appl. Algebra
36, 53–94 (1985)

16. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Com-
put. Sci. 14, 195–208 (1981)

https://doi.org/10.1007/978-3-642-13089-2_15
https://doi.org/10.1007/978-3-642-13089-2_15
https://doi.org/10.1007/978-3-540-31965-8_3
https://doi.org/10.1007/978-3-540-31965-8_3
http://ludovicmignot.free.fr/programmes/geomClosure/index.html
https://doi.org/10.1007/978-3-319-58747-9_5
https://doi.org/10.1007/978-3-319-58747-9_5
https://doi.org/10.1007/s00224-018-9867-0

Deterministic Biautomata and Subclasses
of Deterministic Linear Languages

Galina Jirásková1 and Ondřej Kĺıma2(B)

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
2 Department of Mathematics and Statistics, Masaryk University,

Kotlářská 2, 611 37 Brno, Czech Republic
klima@math.muni.cz

Abstract. We propose the notion of a deterministic biautomaton, a
machine reading an input word from both ends. We focus on various
subclasses of deterministic linear languages and give their characteri-
zations by certain subclasses of deterministic biautomata. We use these
characterizations to establish closure properties of the studied subclasses
of languages and to get basic decidability results concerning them.

1 Introduction

Formal languages can be generated by grammars or, alternatively, they can be
recognized by various devices. The second approach is useful when we want
to decide whether a given word belongs to a given language. The devices may
be nondeterministic or deterministic, and the latter ones are usually more effi-
cient in the task. Nevertheless, this advantage is often compensated by a weaker
expressive power of that machines.

The machines considered in this paper are based on the notion of nonde-
terministic biautomata introduced by Holzer and Jacobi [5]. A nondeterministic
biautomaton is a device consisting of a finite control which reads symbols from
a read-only input tape using a pair of input heads. The left head reads the sym-
bols from left to right, and the right one from right to left. In one step of a
computation, the finite control nondeterministically chooses one of the heads,
reads the next symbol by it, and moves into a new state. The choice of the new
state is again made nondeterministically. A computation ends when the heads
finish the reading of the input word and meet somewhere inside the tape. And
as usually, the input word is accepted if there is a computation which ends in a
final state.

G. Jirásková—Research supported by VEGA grant 2/0132/19 and grant APVV-15-
0091.
O. Kĺıma—Research supported by Institute for Theoretical Computer Science (ITI),
project No. P202/12/G061 of the Grant Agency of the Czech Republic.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 315–327, 2019.
https://doi.org/10.1007/978-3-030-13435-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_23

316 G. Jirásková and O. Kĺıma

Nondeterministic biautomata recognize the class of linear context-free lan-
guages that are generated by context-free grammars in which every production
has at most one nonterminal in its right hand side. The conversion from a biau-
tomaton to a linear grammar, or vice versa, is straightforward [5].

In this paper we consider deterministic biautomata for which at most one
computation is possible for every input word. Our motivation comes from
the papers by Nasu, Honda [15], Ibarra, Jiang, Ravikumar [9], de la Higuera,
Oncina [4], and Holzer, Lange [6] that studied subclasses of linear languages
obtained by applying a kind of determinism to linear grammars. Our aim is
to provide characterizations of the above mentioned subclasses by deterministic
biautomata.

We propose the notion of a deterministic biautomaton in the next section.
In Sect. 3, we describe certain subclasses of deterministic biautomata that rec-
ognize exactly the classes of languages generated by DL, LinLL(1), and NH-DL
grammars considered in [4]. We use these characterizations in Sect. 4, to study
closure properties of the considered subclasses. Using these properties we are
able to answer basic decidability question in Sect. 5.

To conclude this introduction, let us mention that several other devices recog-
nizing linear languages have been introduced in the literature. Nondeterministic
linear automata have been studied by Loukanova [14] and their deterministic
counterparts have been considered by Bedregal in [3], where some partial obser-
vations concerning deterministic linear languages were also given. Another exam-
ple of devices recognizing linear languages has been provided by Rosenberg [16]
who used some kind of 2-tape automata.

2 Linear Languages and Nondeterministic Biautomata

For a finite non-empty alphabet Σ, let Σ∗ denote the set of all words over Σ
including the empty word λ. Let P(X) denote the set of all subsets of a set X.

A linear grammar is a tuple (N,Σ,P, S) where N and Σ are disjoint sets of
nonterminals and terminals, respectively, P is a set of production rules of the
form A → w where A ∈ N and w ∈ Σ∗NΣ∗ ∪ Σ∗, and S is the initial non-
terminal. We use the standard notation for grammars like ⇒ for one derivation
step and ∗⇒ for the transitive-reflexive closure of the relation ⇒. The language
generated by a grammar (N,Σ,P, S) is the set {w ∈ Σ∗ | S

∗⇒ w}. A language
is linear if it is generated by a linear grammar.

A nondeterministic biautomaton (NB) is a sextuple B = (Q,Σ, ·, ◦, I, F)
where Q is a finite set of states, Σ is an input alphabet, · : Q × Σ → P(Q) is a
left action, ◦ : Q × Σ → P(Q) is a right action, I ⊆ Q is the set of initial states
and F ⊆ Q is the set of final states.

A configuration is a pair (q, w), where q is a state and w is a word which
remains to be read. The relation � on the set of all configurations is defined as
follows: For q, q′ ∈ Q, w ∈ Σ∗ and a ∈ Σ, we have (q, aw) � (q′, w) if q′ ∈ q · a
and (q, wa) � (q′, w) if q′ ∈ q◦a. Furthermore, the reflexive and transitive closure
of � is denoted by �∗. Let LB(q) = {w ∈ Σ∗ | (q, w) �∗ (f, λ) for some f ∈ F} be

Deterministic Biautomata and Subclasses of Deterministic Linear Languages 317

the set of words accepted from the state q. Then the language recognized by B
is LB =

⋃
i∈I LB(i). The class of all languages recognized by NBs is denoted

by NB. It is known that it coincides with the class of linear languages [5].

Remark 1. For each NB, one can use the power-set construction [10] and obtain
a biautomaton in which both · and ◦ are mappings from Q × Σ into Q. The
resulting biautomaton is deterministic in the terminology used in [10]. However,
it is far from being a deterministic biautomaton in our sense since either the left
or the right reading head can still be nondeterministically chosen.

3 Determinism for Biautomata and Linear Languages

In this section we introduce a formal definition of a deterministic biautomaton.
Furthermore, we define certain subclasses of deterministic biautomata which cor-
respond to the classes of deterministic linear languages studied in the literature.

We are interested in biautomata which admit at most one computation for
every input word. In particular, they have just one initial state. Furthermore,
each state must determine which head will be used in the next step of the
computation. And of course, the actions · and ◦ must be deterministic.

Definition 2. A biautomaton B = (Q,Σ, ·, ◦, I, F) is deterministic (DB) if

(1) |I| = 1;
(2) for each q ∈ Q and a ∈ Σ, we have |q · a| ≤ 1 and |q ◦ a| ≤ 1,
(3) if q · a
= ∅ for some a ∈ Σ, then q ◦ b = ∅ for each b ∈ Σ,
(4) if q ◦ a
= ∅ for some a ∈ Σ, then q · b = ∅ for each b ∈ Σ.

The class of all languages which are recognized by DBs is denoted by DB.

It follows from the definition that there are states of two different kinds. The
first ones, called left states, have the property that q ◦ a = ∅ for each a ∈ Σ,
and the second ones, called right states, have the property that q ◦ a
= ∅ for
some a ∈ Σ and consequently q · b = ∅ for every b ∈ Σ. We denote the set
of all left states by QL and the set of all right states by QR. Therefore Q is a
disjoint union of QL and QR. Now a deterministic biautomaton can be written
as B = (QL, QR, Σ, ·, ◦, i, F) where i ∈ QL ∪ QR is the initial state, · is a partial
function from QL to QL ∪ QR and ◦ is a partial function from QR to QL ∪ QR.
Note that every state q satisfying q · a = q ◦ a = ∅ for each a ∈ Σ belongs
to QL. This definition is almost identical with the definition of deterministic
linear automaton from [3]; the main difference is that we have a unique initial
state while in [3] more initial states are allowed.

Notice that every DB can be modified, by adding an additional state, to an
equivalent complete DB which satisfies |q · a| = 1 for each a ∈ Σ and q ∈ QL,
and |q ◦ a| = 1 for each a ∈ Σ and q ∈ QR.

Remark 3. Consider a complete DB B = (QL, QR, Σ, ·, ◦, i, F) recognizing a lan-
guage L. Then, for every w ∈ Σ∗, there is a uniquely determined state q ∈ Q such
that (i, w) �∗ (q, λ). Therefore, DB Bc = (QL, QR, Σ, ·, ◦, i, Q\F) recognizes the

318 G. Jirásková and O. Kĺıma

complement of L. Consequently, the class DB is closed under complementation.
On the other hand, the class NB is not closed under complementation since it is
closed under union, but it is not closed under intersection as shown by a folklore
example of two linear languages the intersection of which is not context-free:
{anbmcm | m,n ≥ 0} ∩ {anbncm | m,n ≥ 0}. Thus DB � NB.

3.1 Characterization of Deterministic Linear Languages

The following definition of deterministic linear grammars is taken from [4]. The
first property of these grammars is that they do not contain production rules
with the right hand side starting with a non-terminal. Moreover, for a fixed
nonterminal A, the first terminal on the right hand side of a rule having A on the
left hand side uniquely determines the rule and it is followed by a nonterminal.

Definition 4 [4]. A deterministic linear (DL) grammar G = (N,Σ, S, P) is a
grammar where all productions are of the form A → aBu or A → λ and which
satisfies the following condition: for each A,B,C ∈ N, a ∈ Σ, u, v ∈ Σ∗, if the
rules A → aBu and A → aCv are in P, then B = C and u = v .

Theorem 6 in [3] shows a construction of a DB recognizing a language given
by a deterministic linear grammar. Our goal is to specify the corresponding class
of DBs more precisely. Since left states of the constructed DB are obtained from
nonterminals, the following definition assumes that the initial state and all final
states are left states, and every right state has exactly one out-going transition.

Definition 5. A DB B = (QL, QR, Σ, ·, ◦, i, F) is weak from the right (DBW)
if {i} ∪ F ⊆ QL and for each q ∈ QR, there is a unique a ∈ Σ such that q ◦ a is
defined. The class of all languages recognized by DBWs is denoted by DBW.

Theorem 6. A language is generated by a deterministic linear grammar if and
only if it is recognized by a deterministic biautomaton weak from the right.

Proof (Sketch). Let G = (N,Σ, S, P) be a DL grammar generating a language L.
We construct a DB B = (N,QR, Σ, ·, ◦, S, F) in which for each production in P
of the form A → aBb1 · · · bk, where k ≥ 1 and a, b1, . . . , bk ∈ Σ, we put the state
(B, b1 · · · b�) into QR for each � with 1 ≤ � ≤ k, and we set A · a = (B, b1 · · · bk).
Furthermore, for each � with 2 ≤ � ≤ k, we set (B, b1 · · · b�)◦b� = (B, b1 · · · b�−1),
and finally, we set (B, b1) ◦ b1 = B. For each production of the form A → aB,
we set A · a = B. For each production of the form A → λ, we just put A into F .
The resulting biautomaton is a DBW and it recognizes the language L.

Let B = (QL, QR, Σ, ·, ◦, i, F) be a DBW for L. We may assume that B is
trim, that is, each its state is reachable, and some final state can be reached
from each of its states. We construct the grammar (QL, Σ, i, P) where rules are
of the form A → aBu, where B is the uniquely determined first possible left
state accessible from A · a and u is the word which is read by the right head
during the move from A · a into B. Finally, we add rules A → λ for A ∈ F . ��

Deterministic Biautomata and Subclasses of Deterministic Linear Languages 319

3.2 Characterization of Linear LL(1) Languages

Inside context-free languages, the hierarchy of LL languages is defined; see [1].
Since we are interested only in linear languages and since we deal with determin-
istic grammars, we concentrate on linear LL(1) grammars. The next definition
is from [6] and it uses the following technical notation. Let G = (N,Σ, S, P)
be a grammar and α ∈ (N ∪ Σ)∗. Then FIRSTG(α) is defined as the set
{a ∈ Σ | α

∗⇒ aβ for some β ∈ (N ∪ Σ)∗} extended by λ whenever α
∗⇒ λ.

Definition 7 [6]. A linear grammar G = (N,Σ, S, P) is a linear LL(1) gram-
mar if the following condition is satisfied for every A ∈ N : for every sentential
form S

∗⇒ uAv, with u, v ∈ Σ∗, and every pair of distinct productions A → α1

and A → α2 in P , the sets FIRSTG(α1v) and FIRSTG(α2v) are disjoint.

Although linear LL(1) grammar need not be deterministic, it is known that
we can construct an equivalent linear LL(1) grammar which is deterministic:
First, each linear LL(1) grammar has an equivalent linear LL(1) grammar with
productions of the forms A → aα or A → λ [13, Theorem 4]. Then, every
production of the form A → aα can be replaced by a sequence of productions
which satisfy the conditions in Definition 4; cf. [4, Theorem 2].

Our aim is to define a subclass of DBWs which recognize exactly linear
LL(1) languages. The problematic situation occurs with pairs of rules A → λ

and A → aα with S
∗⇒ wAaw′. In the proof of Theorem 6, the rule A → λ

implies that A ∈ F . Therefore, we cannot have a final state A in which the
transition on a symbol a is defined, and at the same time a right state p and
symbols a1, a2 . . . , a� with (p ◦ a) · a1 · a2 · · · a� = A. Therefore, the pattern in
Fig. 1 is forbidden. In all our figures, left states are in circles and right states
are in squares. Triangles mean that we do not know whether the state is left or
right. Moreover, we use solid lines for the action · and dashed lines for ◦. This
combines notations from both [3] and [12].

A. . .p a a1 a2 a a

Fig. 1. A forbidden pattern in a DBWR.

Definition 8. We say that a DBW B = (QL, QR, Σ, ·, ◦, i, F) has restricted
final states (DBWR) if for every final state f , such that there is a state p in QR,
and letters a, a1, . . . , a� satisfying (p ◦ a) · a1 · · · a� = f , the transition f · a is
undefined. The class of languages recognized by DBWRs is denoted by DBWR.

Theorem 9. A language is generated by a linear LL(1) grammar if and only if
it is recognized by a DBWR.

320 G. Jirásková and O. Kĺıma

Proof (Sketch). Let L be generated by a linear LL(1) grammar G = (N,Σ, S, P).
Then L is generated by a deterministic linear grammar [13, Theorem 4]. There-
fore L is recognized by a DBW B = (QL, QR, Σ, ·, ◦, i, F) by Theorem 6. We can
show that B is a DBWR if and only if G is a linear LL(1) grammar. ��

Since DBWR ⊆ DBW, there is a natural question whether the inclusion
is strict. The following example of a language L in DBW\DBWR is taken
from [4]. However, there is no formal proof of this fact in [4], because there is
a fault in the argument – it is overlooked that all regular languages are linear
LL(1) languages. The next proof can be seen as a first application of Theorem9.

Lemma 10. Let L = {akb� | 0 ≤ k ≤ �}. Then L ∈ DBW\DBWR.

Proof (Sketch). The language L is recognized by the DBW shown in Fig. 2.

a

b

b

Fig. 2. A DBW recognizing the language {akb� | 0 ≤ k ≤ �}.

Suppose, to get a contradiction, that the language L is recognized by a trim
DBWR B = (QL, QR, Σ, ·, ◦, i, F). Let n = |QL| + |QR|. Now the idea is that B
must enter a cycle while reading the word w = anbn, and it may leave this cycle
only in a left state by reading b. Then depending on the number of a’s and b’s
read while working in the cycle, we can either find a word in L which is not
accepted by B, or a word which is accepted by B but is not in L. ��

3.3 Another Variant of Deterministic Linear Grammars

Nasu and Honda [15] introduced another class of deterministic linear languages
called NH-deterministic languages by Higuera and Oncina [4] who also proved
that these languages form a subclass of LinLL(1). We present a modification of
DBWs to get a characterization of NH-deterministic languages.

Definition 11 (Definition 3 in [4]). A NH-DL grammar G = (N,Σ, S, P) is
a linear grammar where all productions are of the form A → aBu or A → a and
which satisfies the following condition: for all A ∈ N, a ∈ Σ,α, β ∈ NΣ∗ ∪ {λ},
if A → aα,A → aβ ∈ P , then α = β .

Definition 12. A DBW B = (QL, QR, Σ, ·, ◦, i, {f}) is called weak from the
right with a passive final state (DBWP) if i
= f and f · a = ∅ for every a ∈ Σ.
The class of all languages recognized by DBWPs is denoted by DBWP.

Deterministic Biautomata and Subclasses of Deterministic Linear Languages 321

Theorem 13. A language L is generated by an NH-DL grammar if and only
if L ∈ DBWP. ��

Note that Higuera and Oncina [4] considered also the class of languages
generated by IJR-DL grammars [9]. However, the difference between IJR-DL
grammars and NH-DL grammars is very subtle: there is exactly one language
which is generated by a IJR-DL grammar but it is not generated by any NH-DL
grammar, namely the language {λ} as mentioned in [6, Theorem 3]. Thus we
could obtain a characterization of languages generated by IJR-DL grammars if
we remove the condition i
= f in the definition of DBWPs. In the case of i = f ,
the considered modification of DBWP recognizes exactly the language {λ}.

4 Closure Properties of Deterministic Linear Languages

First of all, we state that DBWP � DBWR � DBW � DB � NB. The first
two strict inclusions were stated in [4] via corresponding grammars; however,
with some incompleteness of arguments as mentioned before Lemma 10. Since
DB is closed under complementation by Remark 3 and, as we show later, DBW
is not, we obtain DBW � DB. Finally, DB � NB was discussed in Remark 3.

Another interesting question is the relation with the class of all regular lan-
guages Reg. Since every finite deterministic automaton can be viewed as a DBW
with the empty set of right states, we have Reg ⊆ DBWR. On the other hand,
the class DBWP is incomparable with Reg since over a unary alphabet, the
languages in DBWP are exactly languages consisting of a single word. On the
other hand, the DBWP in Fig. 3 recognizes a non-regular language.

a

b
b

Fig. 3. A DBWP recognizing the language {anbn+1 | n ≥ 1}.

The main aim of this section is a better understanding of closure properties
of the considered subclasses of linear languages. We use these properties in the
next section, to answer some decidability questions related to the class of linear
languages. Table 1 summarizes the results of this section.

The class NB forms a full trio, that is, it is closed under homomorphisms,
inverse homomorphisms and intersection with regular languages [8, Exercise
11.1]. Every full trio is closed under quotient with a regular language [8, Theorem
11.3] and under regular substitutions [8, Theorem 11.4]. It is an easy exercise
to show that NB is closed under concatenation with regular languages. On the
other hand, as mentioned in Remark 3, the class NB is not closed under inter-
section and complementation. It is also not closed under concatenation since the

322 G. Jirásková and O. Kĺıma

Table 1. Closure properties of the studied subclasses of linear languages.

class of languages NB DB DBW DBWR DBWP

grammars linear DL LinLL(1) NH-DL

intersection No No

intersection with regular Yes Yes

concatenation No No

concatenation with regular Yes No

complementation No Yes No

union Yes No

reversal No Yes No

right quotient by a letter Yes Yes No

homomorphic images Yes No

language {anbn | n ≥ 0}{anbn | n ≥ 0} is not linear (see e.g. [1, Section 6.1]).
This gives the second column in Table 1. The following example shows that all
the remaining subclasses are not closed under intersection.

Example 14. We slightly modify the example from Remark 3 to get a pair of
languages in class DBWP. Consider K = {anbmcn+1 | m ≥ 1, n ≥ 0} and L =
{ambncn+1 | m ≥ 0, n ≥ 1}. The DBWPs recognizing K and L are shown in
Fig. 4, while K ∩ L = {anbncn+1 | n ≥ 1} is not a context-free language.

a

c

b

b

c

bca

b

c

Fig. 4. DBWPs for {anbmcn+1 | m ≥ 1, n ≥ 0} and {ambncn+1 | m ≥ 0, n ≥ 1}.

Remark 15. Since all the classes in Table 1 are not closed under intersection,
they cannot be closed under union and complementation at the same time.

In the rest of this section we demonstrate the techniques that use determin-
istic biautomata to get the results in Table 1.

Theorem 16. The classes of languages DB, DBW, DBWR, DBWP are
closed under intersection with regular languages.

Deterministic Biautomata and Subclasses of Deterministic Linear Languages 323

Proof. For a given regular language L, the syntactic relation ≡L of the lan-
guage L is an equivalence relation on Σ∗ and it is defined in the following way.
For u, v ∈ Σ∗ we have u ≡L v if and only if (∀s, t ∈ Σ∗)(sut ∈ L ⇐⇒ svt ∈ L).
It is known that the relation ≡L is a congruence on the monoid Σ∗ and it has a
finite index. Then the finite quotient Σ∗/≡L

is called the syntactic monoid of L
and we denote it as M . The syntactic morphism is the mapping η : Σ∗ → M
given by η(u) = [u], where [u] is ≡L-class containing u. The neutral element of M
is [λ] and it is denoted by 1. If we denote N = η(L), then L = {u ∈ Σ∗ | [u] ∈ N}.

Assume that (QL, QR, Σ, ·, ◦, i, F) is a DB for K. We construct the following
DB (Q′

L, Q′
R, Σ, ·′, ◦′, i′, F ′), where Q′

L = QL ×M ×M , Q′
R = QR ×M ×M , i′ =

(i, 1, 1), F ′ = {(q,m, n) | q ∈ F,m · n ∈ N}, and (q,m, n) ·′ a = (q · a,m · [a], n)
if (q,m, n) ∈ Q′

L, and (q,m, n) ◦′ a = (q ◦ a,m, [a] · n) if (q,m, n) ∈ Q′
R. The

resulting deterministic biautomaton recognizes exactly the language K ∩ L.
In the proof above, if the original DB is a DBW, DBWR, or DBWP, then

the resulting DB is a DBW, DBWR, or DBWP, respectively, as well. ��
Theorem 17. The classes DB, DBW, DBWR, and DBWP are not closed
under concatenation with regular languages.

Proof (Sketch). Let L = {anban | n ≥ 0} be the language recognized by the
DBWP ({i, f}, {q}, {a, b}, ·, ◦, i, {f}) with i · a = q, i · b = f , q ◦ a = i. Let us
show that the languages Σ∗L and LΣ∗ are not in DB.

Assume that Σ∗L is recognized by a DB B = (QL, QR, Σ, ·, ◦, i, F). Assume
that B has n states and consider a word u = anban in Σ∗L. In the first n steps
of the computation, the heads read only symbols a from the beginning or from
the end of the input word u, and moreover, the computation must visit some
state twice. Thus, there is a state q and two distinct pairs (k1, �1) and (k2, �2)
of numbers in the set {0, 1, . . . , n} such that, for both i ∈ {1, 2}, after ki + �i

steps when ki copies of a are read by the left head and �i copies of a are read
by the right head, the computation finishes in the state q. Now depending on
whether �1
= �2 or k1
= k2 we can describe a word w such that exactly one
of ak1wa�1 and ak2wa�2 is in Σ∗L, which gives a contradiction.

Now, consider the language LΣ∗. If it would be in DB, then its reversal Σ∗LR

would be in DB since it is enough to exchange the role of left and right states.
However, since L = LR, we have Σ∗LR = Σ∗L, and as shown above, the lan-
guage Σ∗L is not recognized by any DB. ��
Theorem 18. The classes DB, DBW, and DBWR are closed under right
quotient by a letter.

Proof. Let L be recognized by a DB B = (QL, QR, Σ, ·, ◦, i, F) and a ∈ Σ. First,
assume that i ∈ QR. If i◦a is not defined, then La−1 = ∅, so La−1 ∈ DB. If i◦a
is defined, then the DB B′ = (QL, QR, Σ, ·, ◦, i ◦ a, F) recognizes La−1. So, in
the rest of the proof we can assume that i ∈ QL.

Consider a disjoint copy of QL denoted by QL = {q | q ∈ QL}, and define a
new DB B′ = (QL ∪QL, QR, Σ, ·′, ◦, i, F ′) where F ′ = {q | q ∈ QL, q ·a ∈ F}∪F .
Then, for each q ∈ QL and b ∈ Σ, we set q ·′ b = q · b. Next, we set q ·′ b = q · b

324 G. Jirásková and O. Kĺıma

if q · b ∈ QL and q ·′ b = (q · b) ◦ a if q · b ∈ QR; thus, in the first case we
have q ·′ b ∈ QL, and in the second case we have q ·′ b ∈ QL ∪ QR under the
assumption that the state (q · b) ◦ a exists. Let us show that B′ recognizes La−1.
The part QL of B′ reads the input word w from left to right and accepts w if and
only if wa is accepted by B without using the right head. Now, if w is accepted
by B′ in a final state in F , then we need to use some move from QL to QL ∪QR,
which exists if and only if the corresponding computation for wa exists in B. If
the original DB is a DBW or a DBWR, then F ⊆ QL, so F ′ ⊆ QL ∪ QL. Since
the right action in B′ is the same as in B, there is nothing else to check. ��
Example 19. Consider the language L = b∗a which is recognized by the DBWP
({i, f}, ∅, {a, b}, ·, ◦, i, {f}) with i · b = i and i · a = f . We have La−1 = b∗. The
language b∗ is not in DBWP since every unary language in DBWP consists of
a single word.

5 Basic Decidability Questions

To get some undecidability results, the following Greibach’s theorem can be used.
The theorem requires some closure properties and it is stated as follows.

Theorem 20 (Greibach’s Theorem, [8, Theorem 8.14]). If C is a class of
languages that is effectively closed under concatenation with regular sets and
union, and for which “=Σ∗” is undecidable for some sufficiently large Σ, then
for every nontrivial subset P of C that contains all regular sets and is closed
under right quotient by a letter, it is undecidable whether a language in C is
in P .

Both CF and NB are effectively closed under concatenation with regular sets
and union, and in both of them the universality is undecidable [2]. Therefore, we
can set C = CF and P = NB in Greibach’s theorem, and get that it is undecid-
able whether a language in CF is in NB [7]. By setting C = NB and P = Reg,
we get that is undecidable whether a language in NB is regular [5, Theorem 9].
As shown in the previous section, the classes DB, DBW, and DBWR contain
regular languages and are closed under right quotient by a letter, so we get the
next result.

Theorem 21. Let P ∈ {DB,DBW,DBWR}. It is undecidable whether a lan-
guage in NB is in P .

As shown in Sect. 4, the class DBWP is incomparable to Reg and it is not
closed under right quotient by a letter. Thus Greibach’s theorem cannot be used
in this case, and decidability of DBWP in NB remains open.

We next modify the proof from [2] which shows that K∩L = ∅ is undecidable
in NB to get undecidability of this problem for the class DBWP.

Theorem 22. The emptiness of intersection is undecidable in DBWP.

Deterministic Biautomata and Subclasses of Deterministic Linear Languages 325

Proof. The proof is a reduction from PCP. Let (ui, vi) for i = 1, 2 . . . , k, where ui

and vi are words over Σ, be an instance of PCP. Our aim is to construct two
DBWPs A and B such that LA ∩ LB = ∅ if and only if PCP does not have a
solution for this instance.

Let the input alphabet of A and B be {1, 2, . . . , k} ∪ Σ ∪ {#}. Let the initial
state of A be a left state p0 which has the transitions on 1, 2, . . . , k to pairwise
distinct right states p1, p2, . . . , pk. In each pi, automaton reads the symbols of
the word uR

i by its right head, and after reading its last symbol it reaches the
initial state p0. In p0 it reads # and reaches the unique left final state in which no
transitions are defined. The automaton B is constructed in a similar way using
words vi. Notice that A and B accept words in a form i1i2 . . . i�#(ui1ui2 . . . ui�

)R

and j1j2 . . . jt#(vj1vj2 . . . vjt
)R, respectively. Therefore, LA ∩LB
= ∅ if and only

if PCP has a solution for the instance {(ui, vi) | i = 1, 2 . . . , k}. ��
To test the emptiness of a language in DB, it is enough to test the reachability

of a final state. This can be done in NL, and it is NL-hard for DFAs, and even for
partial DFAs with a unique final state which has no out-going transitions [11].
Next, DB is closed under complementation, and therefore universality is in NL,
it is NL-hard for DFAs, while no language in DBWP is universal. Moreover, DB
is closed under intersection with regular sets. Thus testing the equality L = R
for L ∈ DB and a given regular set R is equivalent to testing the emptiness of
languages L ∩ R and L ∩ R which can be done in NL, while L = ∅ is NL-hard
for DBWP. The next theorem summarizes these observations. Table 2 displays
all our decidability results and compares them to the known results for NB.

Theorem 23. The emptiness, universality, and equality to a given regular set
are decidable in DB, and they are NL-complete for DB, DBW, and DBWR.

Table 2. Decidability properties in the subclasses of linear languages.

class of languages NB DB DBW DBWR DBWP

grammars linear DL LinLL(1) NH-DL

Does L in NB belong to: - undecidable ?
emptiness of intersection undecidable undecidable

emptiness NL-complete NL-complete

equality to a given regular set undecidable NL-complete

universality undecidable NL-complete trivial

6 Conclusions

We proposed a notion of deterministic biautomata and considered their certain
subclasses to get characterizations of subclasses of linear context-free languages

326 G. Jirásková and O. Kĺıma

resulting from applying a kind of determinism to linear grammars. In particular,
we were able to characterize the classes of languages generated by DL, LinLL(1)
and NH-DL grammars by deterministic biautomata weak from the right, weak
from the right with restricted final states, and weak from the right with a passive
final state. Using these characterizations, we studied closure properties in the
considered classes. We proved, for example, that all these classes are closed under
intersection with regular languages, and all, except for the last one, are closed
under right quotient by a letter.

We used the closure properties to answer basic decidability questions. We
showed that the question whether a given linear language is in a considered
subclass is undecidable, except for the smallest class. We also proved that the
emptiness of intersection is undecidable in all considered subclasses, while empti-
ness and equality to a given regular set are NL-complete in all of them.

Some questions remain open. For example, we do not know whether the
considered classes are closed under left quotient under a letter. We do not know
either whether the problem of language equality is decidable in the considered
subclasses; here we cannot use the equality to Σ∗ since, contrarily to linear
languages, universality is decidable in all considered subclasses. The full version
of this paper can be found at: http://im.saske.sk/∼jiraskov/DB.pdf.

Acknowledgments. We would like to thank Professor Erkki Mäkkinen who proposed
the topic of deterministic linear languages to us. We are also grateful to Libor Polák
for useful discussions in the beginning of this research.

References

1. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages,
vol. 1, pp. 111–174. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
642-59136-5 3

2. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput.
Syst. Sci. 8(3), 315–332 (1974)

3. Bedregal, B.R.C.: Some subclasses of linear languages based on nondeterministic
linear automata. Preprint (2016). http://arxiv.org/abs/1611.10276

4. de la Higuera, C., Oncina, J.: Inferring deterministic linear languages. In: Kivinen,
J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45435-7 13

5. Holzer, M., Jakobi, S.: Minimization and characterizations for biautomata. Fun-
dam. Informaticae 136(1–2), 113–137 (2015)

6. Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars.
In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57163-9 25

7. Hoogeboom, H.J.: Undecidable problems for context-free grammars. Unpublished
(2015). https://liacs.leidenuniv.nl/∼hoogeboomhj/second/codingcomputations.
pdf

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Languages and
Computation. Addison-Wesley, Boston (1979)

http://im.saske.sk/~jiraskov/DB.pdf
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
http://arxiv.org/abs/1611.10276
https://doi.org/10.1007/3-540-45435-7_13
https://doi.org/10.1007/3-540-57163-9_25
https://liacs.leidenuniv.nl/~hoogeboomhj/second/codingcomputations.pdf
https://liacs.leidenuniv.nl/~hoogeboomhj/second/codingcomputations.pdf

Deterministic Biautomata and Subclasses of Deterministic Linear Languages 327

9. Ibarra, O.H., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages
in NC1. Inf. Process. Lett. 29(3), 111–117 (1988)

10. Jakobi, S.: Modern Aspects of Classical Automata Theory: Finite Automata, Biau-
tomata, and Lossy Compression. Logos Verlag, Berlin (2015)

11. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Com-
put. Syst. Sci. 11(1), 68–85 (1975)

12. Kĺıma, O., Polák, L.: On biautomata. RAIRO - Theor. Inf. Appl. 46(4), 573–592
(2012)

13. Kurki-Suonio, R.: On top-to-bottom recognition and left recursion. Commun. ACM
9(7), 527–528 (1966)

14. Loukanova, R.: Linear context free languages. In: Jones, C.B., Liu, Z., Woodcock,
J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 351–365. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75292-9 24

15. Nasu, M., Honda, N.: Mappings induced by pgsm-mappings and some recursively
unsolvable problems of finite probabilistic automata. Inf. Control 15(3), 250–273
(1969)

16. Rosenberg, A.L.: A machine realization of the linear context-free languages. Inf.
Control 10(2), 175–188 (1967)

https://doi.org/10.1007/978-3-540-75292-9_24

Learning Unions of k-Testable Languages

Alexis Linard1(B), Colin de la Higuera2, and Frits Vaandrager1

1 Institute for Computing and Information Science, Radboud University,
Nijmegen, The Netherlands

{a.linard,f.vaandrager}@cs.ru.nl
2 Laboratoire des Sciences du Numérique de Nantes, Université de Nantes,

Nantes, France
cdlh@univ-nantes.fr

Abstract. A classical problem in grammatical inference is to identify a
language from a set of examples. In this paper, we address the problem
of identifying a union of languages from examples that belong to sev-
eral different unknown languages. Indeed, decomposing a language into
smaller pieces that are easier to represent should make learning easier
than aiming for a too generalized language. In particular, we consider
k-testable languages in the strict sense (k-TSS). These are defined by
a set of allowed prefixes, infixes (sub-strings) and suffixes that words in
the language may contain. We establish a Galois connection between the
lattice of all languages over alphabet Σ, and the lattice of k-TSS lan-
guages over Σ. We also define a simple metric on k-TSS languages. The
Galois connection and the metric allow us to derive an efficient algorithm
to learn the union of k-TSS languages. We evaluate our algorithm on an
industrial dataset and thus demonstrate the relevance of our approach.

Keywords: Grammatical inference · k-Testable languages ·
Union of languages · Galois connection

1 Introduction

A common problem in grammatical inference is to find, i.e. learn, a regular lan-
guage from a set of examples of that language. When this set is divided into posi-
tive examples (belonging to the language) and negative examples (not belonging
to the language), the problem is typically solved by searching for the smallest
deterministic finite automaton (DFA) that accepts the positive examples, and
rejects the negative ones. Moreover there exist algorithms which identify in the
limit a DFA, that is, they eventually learn correctly any language/automaton
from such examples [6].

We consider in this work a setting where one can observe positive examples
from multiple different languages, but they are given together and it is not clear

This research is supported by the Dutch Technology Foundation (STW) under the
Robust CPS program (project 12693).

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 328–339, 2019.
https://doi.org/10.1007/978-3-030-13435-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_24

Learning Unions of k-Testable Languages 329

to which language each example belongs to. For example, given the following
set of strings S = {aa, aaa, aaaa, abab, ababab, abba, abbba, abbbba}, learning a
single automaton will be less informative than learning several DFAs encoding
respectively the languages a∗, (ab)∗ and ab∗a. There is a trade-off between the
number of languages and how specific each language should be. That is, covering
all words through a single language may not be the desired result, but having a
language for each word may also not be desired. The problem at hand is therefore
double: to cluster the examples and learn the corresponding languages.

In this paper, we focus on k-testable languages in the strict sense (k-TSS)
[10]. A k-TSS language is determined by a finite set of substrings of length at
most k that are allowed to appear in the strings of the language. It has been
proved that, unlike for regular languages, algorithms can learn k-TSS languages
in the limit from text [16]. Practically, this learning guarantee has been used in
a wide range of applications [2,3,12,13]. However, all these applications consider
learning of a sole k-TSS language [2], or the training of several k-TSS languages
in a context of supervised learning [13]. Learning unions of k-TSS languages has
been suggested in [14].

A first contribution of this paper is a Galois connection between the lattice
of all languages over alphabet Σ and the lattice of k-TSS languages over Σ. This
result provides a unifying and abstract perspective on known properties of k-TSS
languages, but also leads to several new insights. The Galois connection allows
to give an alternative proof of the learnability in the limit of k-TSS languages,
and suggests an algorithm for learning unions of k-TSS languages. A second
contribution is the definition of a simple metric on k-TSS languages. Based on
this metric, we define a clustering algorithm that allows us to efficiently learn
unions of k-TSS languages.

Our research was initially motivated by a case study of print jobs that are
submitted to large industrial printers. These print jobs can be represented by
strings of symbols, where each symbol denotes a different media type, such as
a book cover or a newspaper page. Together, this set of print jobs makes for
a fairly complicated ‘language’. Nevertheless, we observed that each print job
can be classified as belonging to one of a fixed set of categories, such as ‘book’
or ‘newspaper’. Two print jobs that belong to the same category are typically
similar, to the extent that they only differ in terms of prefixes, infixes and suffixes.
Therefore, the languages stand for the different families of print jobs. Our goal
is to uncover these k-TSS languages.

This paper is organized as follows. In Sect. 2 we recall preliminary definitions
on k-TSS languages and define a Galois connection that characterizes these
languages. We then present in Sect. 3 our algorithm for learning unions of k-TSS
languages. Finally, we report on the results we achieved for the industrial case
study in Sect. 4. We refer to the full version of our paper for all the proofs.1

1 For missing proofs, see http://arxiv.org/abs/1812.08269.

http://arxiv.org/abs/1812.08269

330 A. Linard et al.

2 k-Testable Languages

The class of k-testable languages in the strict sense (k-TSS) has been introduced
by McNaughton and Papert [10]. Informally, a k-TSS language is determined by
a finite set of substrings of length at most k that are allowed to appear in
the strings of the language. This makes it possible to use as a parser a sliding
window of size k, which rejects the strings that at some point do not comply
with the conditions. Concepts related to k-TSS languages have been widely used
e.g. in information theory, pattern recognition and DNA sequence analysis [4,16].
Several definitions of k-TSS languages occur in the literature, but the differences
are technical. In this section, we present a slight variation of the definition of
k-TSS languages from [7], which in turn is a variation of the definition occurring
in [4,5]. We establish a Galois connection that characterizes k-TSS languages,
and show how this Galois connection may be used to infer a learning algorithm.

We write N to denote the set of natural numbers, and let i, j, k, m, and n
range over N.

2.1 Strings

Throughout this paper, we fix a finite set Σ of symbols. A string x = a1 . . . an is
a finite sequence of symbols. The length of a string x, denoted | x | is the number
of symbols occurring in it. The empty string is denoted λ. We denote by Σ∗ the
set of all strings over Σ, and by Σ+ the set of all nonempty strings over Σ (i.e.
Σ∗ = Σ+ ∪ {λ}). Similarly, we denote by Σ<i, Σi and Σ>i the sets of strings
over Σ of length less than i, equal to i, and greater than i, respectively.

Given two strings u and v, we will denote by u · v the concatenation of u and
v. When the context allows it, u · v shall be simply written uv. We say that u is
a prefix of v iff there exists a string w such that uw = v. Similarly, u is a suffix
of v iff there exists a string w such that wu = v. We denote by x[: k] the prefix
of length k of x and x[−k :] the suffix of length k of x.

A language is any set of strings, so therefore a subset of Σ∗. Concatenation
is lifted to languages by defining L · L′ = {u · v | u ∈ L and v ∈ L′}. Again, we
will write LL′ instead of L · L′ when the context allows it.

2.2 k-Testable Languages

A k-TSS language is determined by finite sets of strings of length k−1 or k that
are allowed as prefixes, suffixes and substrings, respectively, together with all the
short strings (with length at most k − 1) contained in the language. The finite
sets of allowed strings are listed in what McNaughton and Papert [10] called
a k-test vector. The following definition is taken from [7], except that we have
omitted the fixed alphabet Σ as an element in the tuple, and added a technical
condition (I ∩ F = C ∩ Σk−1) that we need to prove Theorem 7.

Definition 1. Let k > 0. A k-test vector is a 4-tuple Z = 〈I, F, T, C〉 where

– I ⊆ Σk−1 is a set of allowed prefixes,

Learning Unions of k-Testable Languages 331

– F ⊆ Σk−1 is a set of allowed suffixes,
– T ⊆ Σk is a set of allowed segments, and
– C ⊆ Σ<k is a set of allowed short strings satisfying I ∩ F = C ∩ Σk−1.

We write Tk for the set of k-test vectors.

Note that the set Tk of k-test vectors is finite. We equip set Tk with a partial
order structure as follows.

Definition 2. Let k > 0. The relation � on Tk is given by

〈I, F, T, C〉 � 〈I ′, F ′, T ′, C ′〉 ⇔ I ⊆ I ′ and F ⊆ F ′ and T ⊆ T ′ and C ⊆ C ′.

With respect to this ordering, Tk has a least element ⊥ = 〈∅, ∅, ∅, ∅〉 and a greatest
element � = 〈Σk−1, Σk−1, Σk, Σ<k〉. The union, intersection and symmetric
difference of two k-test vectors Z = 〈I, F, T, C〉 and Z ′ = 〈I ′, F ′, T ′, C ′〉 are
given by, respectively,

Z Z ′ = 〈I ∪ I ′, F ∪ F ′, T ∪ T ′, C ∪ C ′ ∪ (I ∩ F ′) ∪ (I ′ ∩ F)〉,
Z � Z ′ = 〈I ∩ I ′, F ∩ F ′, T ∩ T ′, C ∩ C ′〉,
Z � Z ′ = 〈I � I ′, F � F ′, T � T ′, C � C ′ � (I ′ ∩ F) � (I ∩ F ′)〉.

The reader may check that Z Z ′, Z � Z ′ and Z � Z ′ are k-test vectors
indeed, preserving the property I ∩ F = C ∩ Σk−1. The reader may also check
that (Tk,�) is a lattice with Z Z ′ the least upper bound of Z and Z ′, and
Z�Z ′ the greatest lower bound of Z and Z ′. The symmetric difference operation
� will be used further on to define a metric on k-test vectors.

We can associate a k-test vector αk(L) to each language L by taking all
prefixes of length k − 1 of the strings in L, all suffixes of length k − 1 of the
strings in L, and all substrings of length k of the strings in L. Any string which
is both an allowed prefix and an allowed suffix is also a short string, as well as
any string in L with length less than k − 1.

Definition 3. Let L ⊆ Σ∗ be a language and k ∈ N. Then αk(L) is the k-test
vector 〈Ik(L), Fk(L), Tk(L), Ck(L)〉 where

– Ik(L) = {u ∈ Σk−1 | ∃v ∈ Σ∗ : uv ∈ L},
– Fk(L) = {w ∈ Σk−1 | ∃v ∈ Σ∗ : vw ∈ L},
– Tk(L) = {v ∈ Σk | ∃u,w ∈ Σ∗ : uvw ∈ L}, and
– Ck(L) = (L ∩ Σ<k−1) ∪ (Ik(L) ∩ Fk(L)).

It is easy to see that operation αk : 2Σ∗ → Tk is monotone.

Proposition 4. For all languages L,L′ and for all k > 0,

L ⊆ L′ ⇒ αk(L) � αk(L′).

Conversely, we associate a language γk(Z) to each k-test vector Z =
〈I, F, T, C〉, consisting of all the short strings from C together with all strings of
length at least k − 1 whose prefix of length k − 1 is in I, whose suffix of length
k − 1 is in F , and where all substrings of length k belong to T .

332 A. Linard et al.

Definition 5. Let Z = 〈I, F, T, C〉 be a k-test vector, for some k > 0. Then

γk(Z) = C ∪ ((IΣ∗ ∩ Σ∗F) \ (Σ∗(Σk \ T)Σ∗)).

We say that a language L is k-testable in the strict sense (k-TSS) if there exists
a k-test vector Z such that L = γk(Z). Note that all k-TSS languages are regular.

Again, it is easy to see that operation γk : Tk → 2Σ∗
is monotone.

Proposition 6. For all k > 0 and for all k-test vectors Z and Z ′,

Z � Z ′ ⇒ γk(Z) ⊆ γk(Z ′).

The next theorem, which is our main result about k-testable languages,
asserts that αk and γk form a (monotone) Galois connection [11] between lattices
(Tk,�) and (2Σ∗

,⊆).

Theorem 7 (Galois connection). Let k > 0, let L ⊆ Σ∗ be a language, and
let Z be a k-test vector. Then αk(L) � Z ⇔ L ⊆ γk(Z).

The above theorem generalizes results on strictly k-testable languages from
[4,16]. Composition γk ◦ αk is commonly called the associated closure operator,
and composition αk ◦ γk is known as the associated kernel operator. The fact
that we have a Galois connection has some well-known consequences for these
associated operators.

Corollary 8. For all k > 0, γk ◦ αk and αk ◦ γk are monotone and idempotent.

Monotony of γk ◦ αk was established previously as Theorem 3.2 in [4] and as
Lemma 3.3 in [16].

Corollary 9. For all k > 0, L ⊆ Σ∗ and Z ∈ Tk,

αk ◦ γk(Z) � Z (1)
L ⊆ γk ◦ αk(L) (2)

Inequality (1) asserts that the associated kernel operator αk ◦ γk is deflationary,
while inequality (2) says that the associated closure operator γk ◦ αk is infla-
tionary (or extensive). Inequality (2) was established previously as Lemma 3.1
in [4] and (also) as Lemma 3.1 in [16].

Another immediate corollary of the Galois connection is that in fact γk ◦
αk(L) is the smallest k-TSS language that contains L. This has been established
previously as Theorem 3.1 in [4].

Corollary 10. For all k > 0, L ⊆ Σ∗, and Z ∈ Tk,

L ⊆ γk(Z) ⇒ γk ◦ αk(L) ⊆ γk(Z).

As a final corollary, we mention that αk ◦ γk(Z) is the smallest k-test vector
that denotes the same language as Z. This is essentially Lemma 1 of [16].

Learning Unions of k-Testable Languages 333

Corollary 11. For all k > 0 and Z ∈ Tk, γk ◦ αk ◦ γk(Z) = γk(Z). Moreover,
for any Z ′ ∈ Tk,

γk(Z) = γk(Z ′) ⇒ αk ◦ γk(Z) � Z ′.

We can provide a simple characterization of αk◦γk(Z) as the canonical k-test
vector obtained by removing all the allowed prefixes, suffixes and segments that
do not occur in the k-testable language generated by Z.

Definition 12. Let Z = 〈I, F, T, C〉 be a k-test vector, for some k > 0. We say
that u ∈ I is a junk prefix of Z if u does not occur as a prefix of any string in
γk(Z). Similarly, we say that u ∈ F is a junk suffix of Z if u does not occur as
a suffix of any string in γk(Z), and we say that u ∈ T is a junk segment of Z if
u does not occur as a substring of any string in γk(Z). We call Z canonical if it
does not contain any junk prefixes, junk suffixes, or junk segments.

Proposition 13. Let Z be a k-test vector, for some k > 0, and let Z ′ be the
canonical k-test vector obtained from Z by deleting all junk prefixes, junk suffixes,
and junk segments. Then αk ◦ γk(Z) = Z ′.

Proposition 13 implies that if we restrict the lattice (Tk,�) to the canonical
k-test vectors, our Galois connection becomes a Galois insertion.

2.3 Learning k-TSS Languages

It is well-known that any k-TSS language can be identified in the limit from
positive examples [4,5]. Below we recall the basic argument; we refer to [4,5,16]
for efficient algorithms.

Theorem 14. Any k-TSS language can be identified in the limit from positive
examples.

Proof. Let L be a k-TSS language and let w1, w2, w3, . . . be an enumeration of
L. Let L0 = ∅ and Li = Li−1 ∪ {wi}, for i > 0. We then have

L1 ⊆ L2 ⊆ L3 ⊆ · · ·

By monotonicity of αk (Proposition 4) we obtain

αk(L1) � αk(L2) � αk(L3) � · · · (3)

and by monotonicity of γk (Proposition 6)

γk ◦ αk(L1) ⊆ γk ◦ αk(L2) ⊆ γk ◦ αk(L3) ⊆ · · · (4)

Since γk ◦ αk is inflationary (Corollary 9), L is a k-TSS language and, for each
i, γk ◦αk(Li) is the smallest k-TSS language that contains Li (Corollary 10), we
have

Li ⊆ γk ◦ αk(Li) ⊆ L (5)

334 A. Linard et al.

Because (Tk,�) is a finite partial order it does not have an infinite ascend-
ing chain. This means that sequence (3) converges. But then sequence (4) also
converges, that is, there exists an n such that, for all m ≥ n, γk ◦ αk(Lm) =
γk ◦ αk(Ln). By Eqs. (4) and (5) we obtain, for all i,

Li ⊆ γk ◦ αk(Li) ⊆ γk ◦ αk(Ln) ⊆ L

This implies L = γk ◦αk(Ln), meaning that the sequence (4) of k-TSS languages
converges to L.

3 Learning Unions of k-TSS Languages

In this section, we present guarantees concerning learnability in the limit of
unions of k-TSS languages. Then, we present an algorithm merging closest and
compatible k-TSS languages.

3.1 Generalities

It is well-known that the class of k-testable languages in the strict sense is not
closed under union. Take for instance the two 3-testable languages, represented
by their DFA’s in Fig. 1a, that are generated by the following 3-test vectors:

Z = 〈{aa}, {aa}, {aaa}, {aa}〉
Z ′ = 〈{ba, bb}, {ab, bb}, {baa, bab, aaa, aab}, {bb}〉

with Σ = {a, b}. The union γ3(Z) ∪ γ3(Z ′) of these languages, represented by
its DFA in Fig. 1a, is not a 3-testable language. Indeed, it is not a k-testable
language for any value of k > 0. For k = 1, the only k-testable language that
extends γ3(Z) ∪ γ3(Z ′) is Σ∗. For k ≥ 2, the problem is that since ak−1 is an
allowed prefix, ak−1b is an allowed segment, and ak−2b is an allowed suffix, ak−1b
has to be in the language, even though it is not an element of γ3(Z) ∪ γ3(Z ′).

It turns out that we can generalize Theorem 14 to unions of k-TSS languages.

Theorem 15. Any language that is a union of k-TSS languages can be identified
in the limit from positive examples.

Proof. Let L = L1 ∪ · · · ∪ Ll, where all the Lp are k-TSS languages, and let
w1, w2, w3, . . . be an enumeration of L. Define, for i > 0,

Ki =
i⋃

j=1

γk ◦ αk({wj}).

Since each wj is included in a k-TSS language contained in L, and γk ◦αk({wj})
is the smallest k-TSS language that contains wj , we conclude that, for all j,
γk ◦ αk({wj}) ⊆ L, which in turn implies Ki ⊆ L. Since there are only finitely
many k-test vectors and finitely many k-TSS languages, the sequence

K1 ⊆ K2 ⊆ K3 ⊆ · · · (6)

Learning Unions of k-Testable Languages 335

start

start

a a

a

b

a

b

(a) γ3(Z) and γ3(Z′).

start

a

a

a

b b

a

(b) γ3(Z) ∪ γ3(Z′).

Fig. 1. k-testable languages are not closed under union.

converges, that is there exists an n such that, for all m ≥ n, Km = Kn. This
implies that all wj are included in Kn, that is L ⊆ Kn. In combination with the
above observation that all Ki are contained in L, this proves that sequence (6)
converges to L.

The proof of Theorem15 provides us with a simple first algorithm to learn
unions of k-TSS languages: for each example word that we see, we compute the
k-test vector and then we take the union of the languages denoted by all those
k-test vectors. The problem with this algorithm is that potentially we end up
with a huge number of different k-test vectors. Thus we would like to cluster
as many k-test vectors in the union as we can, without changing the overall
language. Before we can introduce our clustering algorithm, we first need to
define a metric on k-test vectors.

Definition 16. The cardinality of a k-test vector Z = 〈I, F, T, C〉 is defined by:

|Z| = |I| + |F | + |T | + |C ∩ Σ<k−1|.

Intuitively, the distance between two k-test vectors is the number of prefixes,
suffixes, substrings and short words that must be added/removed to transform
one k-test vector into the other. For examples, see Fig. 2b.

Definition 17. The function d : Tk × Tk �→ IR+, which defines the distance
between a pair of k-test vectors, is given by: d(Z,Z ′) = |Z � Z ′|.

The next proposition provides a necessary and sufficient condition for when
the γk operator preserves least upper bounds, that is, when the union of the
languages of two k-test vectors equals the language of the union of these vectors.
The basic idea is that, for each k-test vector, we may construct a directed graph
in which the segments are the nodes. The graph contains an edge from segment
u to segment v if, when the content of the sliding window is u at some point,
it may become v when the sliding window advances one step. There exists a
1-to-1 correspondence between paths in this graph from an initial segment to a

336 A. Linard et al.

final segment, and strings in the associated language with length at least k − 1.
Given two test vectors Z and Z ′, we consider the graph for the union Z Z ′.
The union of the languages of Z and Z ′ equals the language of Z Z ′ iff in this
graph there exists no path from a node in Z \ Z ′ to a node in Z ′ \ Z, or vice
versa. Such a path would allow us to construct a word in the language of Z Z ′

that is neither in the language of Z nor in the language of Z ′.

Proposition 18. Suppose Z = 〈I, F, T, C〉 and Z ′ = 〈I ′, F ′, T ′, C ′〉 are canon-
ical k-test vectors, for some k. Let • �∈ Σ be a fresh symbol, and let G = (V,E)
be the directed graph with

V = {•u | u ∈ I ∪ I ′} ∪ T ∪ T ′ ∪ {u• | u ∈ F ∪ F ′},

E = {(au, ub) ∈ V × V | a, b ∈ Σ ∪ {•}, u ∈ Σk−1}.

Suppose each vertex in V is colored either red, blue or white. Vertices in T \ T ′

are red, vertices in T ′ \ T are blue, and vertices in T ∩ T ′ are white. A vertex
•u is red if u ∈ I \ I ′, blue if u ∈ I ′ \ I, and white if u ∈ I ∩ I ′. A vertex
u• is red if u ∈ F \ F ′, blue if u ∈ F ′ \ F , and white if u ∈ F ∩ F ′. Then
γk(Z Z ′) = γk(Z) ∪ γk(Z ′) iff there exists no path in G from a red vertex to a
blue vertex, nor from a blue vertex to a red vertex.

Suppose alphabet Σ contains n elements. Then the size of graph G from
Proposition 18 is in O(n · |Z ∪ Z ′|), and we can construct G from Z and Z ′ in
time O((n+k)·|Z∪Z ′|). Since the reachability property in Proposition 18 can be
decided in a time that is linear in the size of G, we obtain an O((n+k) · |Z ∪Z ′|)-
time algorithm for deciding γk(Z Z ′) = γk(Z) ∪ γk(Z ′).

3.2 Efficient Algorithm

Our algorithm to learn unions of k-testable languages is based on hierarchical
clustering. Given a set S of n words, we compute its related set of k-test vectors
S = {αk({x}) | x ∈ S}. Note that the k-test vectors are canonical. Then, an
n×n distance matrix is computed. To that end, the distance used is the pairwise
distance between k-test vectors defined in Definition 17. Next, the algorithm finds
the closest pair of compatible k-test vectors Z and Z ′, such that γk(Z Z ′) =
γk(Z) ∪ γk(Z ′) and computes their union. An efficient implementation for finding
closest k-test vectors is the nearest-neighbor chain algorithm [1], which finds
pairs of k-test vectors such that these two closest k-test vectors are the nearest
neighbors of each other. The distance between the merged k-test vectors and the
remaining k-test vectors in S is updated. These two operations are repeated until
all initial k-test vectors have been merged into one, or that no allowed union of
two k-test vectors such that γk(Z Z ′) = γk(Z) ∪ γk(Z ′) is possible. We gather
at the end of the process a linkage between k-test vectors, which can lead to
the computation of a dendrogram. When the number of k-test vectors to learn
is known, one can use this expected number of languages to find the threshold
that would, given the hierarchical clustering, return the desired unions of k-test
vectors.

Learning Unions of k-Testable Languages 337

Example 19. Let k = 3. Given the sample of strings S in Fig. 2a, compute the
associate sample of 3-test vectors S = {Z1, Z2, . . . , Z8}. Then, compute its dis-
tance matrix (Fig. 2b) using the metric defined in Definition 17. Using classical
linkage algorithms (for instance nearest-neighbor chain algorithm), compute the
related linkage matrix depicted in Fig. 2c. We gather the dendrogram shown
in Fig. 2d, where the 3 remaining 3-test vectors Z1 Z8, Z2 Z5 Z7 and
Z3 Z4 Z6 cannot be merged. Indeed:
– γk(Z1 Z8 Z2 Z5 Z7) �= γk(Z1 Z8) ∪ γk(Z2 Z5 Z7).
– γk(Z1 Z8 Z3 Z4 Z6) �= γk(Z1 Z8) ∪ γk(Z3 Z4 Z6).
– γk(Z2 Z5 Z7 Z3 Z4 Z6) �= γk(Z2 Z5 Z7) ∪ γk(Z3 Z4 Z6).

With a desired number of 3-TSS languages to learn of 3, the returned languages
are γk(Z1 Z8) and γk(Z2 Z5 Z7) and γk(Z3Z4Z6). With a desired number
of 3-TSS languages to learn of 4, the returned languages would be γk(Z1 Z8)
and γk(Z2 Z5 Z7) and γk(Z3) and γk(Z4 Z6) instead.

S S

baba Z1 = 〈{ba}, {ba}, {bab, aba}, {}〉
abba Z2 = 〈{ab}, {ba}, {abb, bba}, {}〉
abcabc Z3 = 〈{ab}, {bc}, {abc, bca, cab}, {}〉
cbacba Z4 = 〈{cb}, {ba}, {cba, bac, acb}, {}〉
abbbba Z5 = 〈{ab}, {ab}, {abb, bbb, bba}, {}〉
cbacbacba Z6 = 〈{cb}, {ba}, {cba, bac, acb}, {}〉
abbba Z7 = 〈{ab}, {ba}, {abb, bbb, bba}, {}〉
babababc Z8 = 〈{ba}, {bc}, {bab, aba, abc}, {}〉
(a) Dataset and corresponding 3-test vectors.

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Z1 0 6 9 7 7 7 7 3
Z2 6 0 7 7 1 7 1 9
Z3 9 7 0 10 8 10 8 6
Z4 7 7 10 0 8 0 8 10
Z5 7 1 8 8 0 8 0 10
Z6 7 7 10 0 8 0 8 10
Z7 7 1 8 8 0 8 0 10
Z8 3 9 6 10 10 10 10 0

(b) Distance matrix.

Z5 Z7 0
Z4 Z6 0
Z2 Z5 � Z7 1
Z1 Z8 3
Z3 Z4 � Z6 10

(c) Linkage matrix.

Z1 Z8 Z2 Z5 Z7 Z3 Z4 Z6
0

2

4

6

8

10

(d) Corresponding dendrogram.

Fig. 2. Learning unions of k-test vectors.

We can see here that the lower bound on the number of returned languages
is the number of unions of k-test vectors satisfying the compatibility constraint
γk(Z Z ′) = γk(Z) ∪ γk(Z ′). However, in case this constraint is relaxed, it is
possible to obtain a clustering into less parts, up to a single cluster standing for
γk(

⊔
Z∈S).

338 A. Linard et al.

4 Case Study

Job Dataset. Our case study has been inspired by an industrial problem related
to the domain of cyber-physical systems. Recent work [15] focused on the impact
of design parameters of a flexible manufacturing system on its productivity. It
appeared in the aforementioned study that the productivity depends on the jobs
being rendered. To that end, the prior identification of the different job patterns
is crucial to enabling engineers to optimize parameters related to the flexible
manufacturing system.

Table 1. Sample of identified job patterns.

Job Pattern 3-test vector Type of job

aaaaa a+ Z = 〈{aa}, {aa}, {aaa}, {aa}〉 Homogeneous

aaaaaaaaaa

aaaaa . . . aaa

abababab (ab)+ Z = 〈{ab}, {ab}, {aba, bab}, {ab}〉 Heterogeneous

abababababab

abcabcabc (abc)+ Z = 〈{ab}, {bc}, {abc, bca, cab}, ∅〉
abcabcabcabcabc

abcbcbcbca a(bc)+a Z = 〈{ab}, {ca}, {abc, bcb, cbc, cba}, ∅〉 Miscellaneous

We consider a dataset containing strings, each representing a job. Our job
patterns are also represented by 3-testable languages, the 3-test vectors of which
are shown in Table 1. Our dataset, implementations and complete results are
available2.

5 Conclusion

In this paper, we defined a Galois connection characterizing k-testable languages.
We also described an efficient algorithm to learn unions of k-testable languages
that results from this Galois connection. From a practical perspective, we see
that obtaining more than one representation is meaningful since a too general-
ized solution is not necessarily the best. To avoid unnecessary generalizations,
the union of two k-testable languages that would not be a k-testable language is
not allowed. Note also that depending on the applications, expert knowledge can
provide an indication on the number of languages the returned union should con-
tain. In further work, we would like to extend the learning of unions of languages
to regular languages. An attempt to learn pairwise disjoint regular languages has
been made in [8,9]. However, no learnability guarantee has been provided so far.

2 See https://gitlab.science.ru.nl/alinard/learning-union-ktss.

https://gitlab.science.ru.nl/alinard/learning-union-ktss

Learning Unions of k-Testable Languages 339

References

1. Benzécri, J.P.: Construction d’une classification ascendante hiérarchique par la
recherche en châıne des voisins réciproques. Les cahiers de l’analyse des données
7(2), 209–218 (1982)

2. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: Proceedings of the 32nd International Conference on Very Large
Data Bases, pp. 115–126 (2006)

3. Coste, F.: Learning the language of biological sequences. In: Heinz, J., Sempere,
J.M. (eds.) Topics in Grammatical Inference, pp. 215–247. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-48395-4 8

4. Garćıa, P., Vidal, E.: Inference of k-testable languages in the strict sense and
application to syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 12(9), 920–925 (1990)

5. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict
sense. In: First International Workshop Algorithmic Learning Theory (ALT), pp.
325–338 (1990)

6. Gold, M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
7. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.

Cambridge University Press, Cambridge (2010)
8. Linard, A.: Learning several languages from labeled strings: state merging and

evolutionary approaches. arXiv preprint arXiv:1806.01630 (2018)
9. Linard, A., Smetsers, R., Vaandrager, F., Waqas, U., van Pinxten, J., Verwer, S.:

Learning pairwise disjoint simple languages from positive examples. arXiv preprint
arXiv:1706.01663 (2017)

10. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. Research Mono-
graph No. 65). The MIT Press (1971)

11. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

12. Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subreg-
ular hierarchy. J. Log. Lang. Inf. 20(3), 329–342 (2011)

13. Tantini, F., Terlutte, A., Torre, F.: Sequences classification by least general gener-
alisations. In: Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol.
6339, pp. 189–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15488-1 16

14. Torres, I., Varona, A.: k-TSS language models in speech recognition systems. Com-
put. Speech Lang. 15(2), 127–148 (2001)

15. Umar, W., et al.: A fast estimator of performance with respect to the design param-
eters of self re-entrant flowshops. In: Euromicro Conference on Digital System
Design, pp. 215–221 (2016)

16. Yokomori, T., Kobayashi, S.: Learning local languages and their application to
dna sequence analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1067–1079
(1998)

https://doi.org/10.1007/978-3-662-48395-4_8
http://arxiv.org/abs/1806.01630
http://arxiv.org/abs/1706.01663
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-642-15488-1_16
https://doi.org/10.1007/978-3-642-15488-1_16

Graphs, Trees and Rewriting

Regular Matching and Inclusion
on Compressed Tree Patterns

with Context Variables

Iovka Boneva1, Joachim Niehren2, and Momar Sakho2(B)

1 Université de Lille, Lille, France
2 Inria, Lille, France

momar.sakho@inria.fr

Abstract. We study the complexity of regular matching and inclusion
for compressed tree patterns extended by context variables. The addi-
tion of context variables to tree patterns permits us to properly capture
compressed string patterns but also compressed patterns for unranked
trees with tree and hedge variables. Regular inclusion for the latter is
relevant to certain query answering on Xml streams with references.

Keywords: Computational complexity · Patterns · Trees ·
Tree languages and tree automata

1 Introduction

A pattern is a term with variables describing a string, a tree, or some other
algebraic value. The following generic problems for patterns were widely studied:

Pattern matching: Is a given algebraic value an instance of a given pattern?
Pattern unification: Do two given patterns have some common instance?
Regular pattern matching: Does some instance of a given pattern belong to

a given regular language?
Regular pattern inclusion: Do all instances of a given pattern belong to a

given regular language?

As inputs, these problems receive descriptors of patterns, values, and regular
languages. Most typically, a string pattern may be described in a compressed
manner by using a singleton context-free grammar (also called straight-line pro-
gram), and a regular string language may be represented by a nondeterministic
finite automaton (Nfa) or by a deterministic finite automaton (Dfa). The prob-
lem of string pattern matching is well-known to be NP-complete for Nfas [1]
but in P for Dfas, with and without compression [4]. The more general problem
of string unification is known to be Pspace-complete [8].

Compressed patterns were called hyperstreams in [6]. Regular inclusion on
compressed patterns is the problem of certain query answering on hyperstreams
for queries defined by automata. This application motivated the study of regular
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 343–355, 2019.
https://doi.org/10.1007/978-3-030-13435-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_25

344 I. Boneva et al.

Dfas Nfas
Regular Matching Pspace-c Pspace-c
Regular Inclusion Pspace-c Pspace-c

Fig. 1. (Compressed) string patterns.

Dfas Nfas
Regular Matching P P
Regular Inclusion P Pspace-c

Fig. 2. Linear restriction.

Dtas Ntas
Regular Matching NP-c Exp-c
Regular Inclusion coNP-c Exp-c

Fig. 3. (Compressed) tree patterns.

Dtas Ntas
Regular Matching P P
Regular Inclusion P Exp-c

Fig. 4. Linear restriction.

Dtas Ntas
Regular Matching Exp-c Exp-c
Regular Inclusion Exp-c Exp-c

Fig. 5. Adding context variables.

Dtas Ntas
Regular Matching P P
Regular Inclusion P Exp-c

Fig. 6. Linear restriction.

inclusion and matching in [2]. For string patterns, both problems were shown
to be Pspace-complete, for Dfas and Nfas, with and without compression. See
Fig. 1 for an overview. When restricted to linear string patterns, the complexity
goes down to polynomial time in 3 of the 4 cases, as summarized in Fig. 2. The
problem which remains Pspace-complete is regular inclusion on linear string
patterns for Nfas.

The complexity landscapes of regular matching and inclusion for tree patterns
look quite different to the case of string patterns, see Figs. 3 and 4. Here, regular
languages are defined by tree automata, which may either be nondeterministic
(Ntas) or (bottom-up) deterministic (Dtas), while compressed descriptions of
tree patterns can be obtained by singleton tree grammars. Regular matching for
tree patterns against Ntas is Exp-complete with and without compression. For
Dtas, however, regular matching is NP-complete and regular inclusion coNP-
complete. For linear tree patterns, three of the four problems are in P except
for the case of regular inclusion against Ntas. In [3], regular matching for tree
patterns with neither compression nor context variables is studied as the ground
instance intersection problem. Recently [9] studied the problem of matching com-
pressed terms represented as singleton tree grammars, which is incomparable
with regular matching that we study here.

The prime reason for the asymmetry of the complexity landscapes in the
case of strings and trees is that string patterns cannot be encoded as tree pat-
terns with a monadic signature without adding context variables. For instance,
the string pattern aZZbY corresponds to the tree pattern a(Z(Z(b(Y)))) with
context variable Z and tree variable Y . The interest of adding context variables
to tree patterns was already noticed when generalizing string pattern matching
to context pattern matching [4], which are both NP-complete, with or without
compression. The same was noticed when generalizing string unification to con-

Regular Matching and Inclusion 345

text unification, that are both in Pspace [5]. Since we are interested in a proper
generalization of regular matching and inclusion from string to tree patterns, we
propose to study these problems for tree patterns with context variables.

The main contributions of the present paper are the complexity classes of
regular matching and inclusion for compressed tree patterns with context vari-
ables, which are summarized in Figs. 5 and 6. The results are fully symmetric
to those for compressed string patterns, except that Pspace-completeness is
replaced by Exp-completeness. The main reason for this change is that the cen-
tral problem of context inhabitation is Exp-complete for tree automata, while
the inhabitation problem is Pspace-complete for word automata.

Finally, we show that regular pattern matching and inclusion have the same
complexity for (compressed) patterns on unranked trees with tree and hedge
variables, mainly since such patterns can be encoded into (compressed ranked)
tree patterns with context variables. Compressed patterns for unranked trees
capture Xml streams with references [7]. They permit to generalize the notion
of hyperstreams in [2] from strings to unranked trees.

Outline. We introduce tree patterns with context variables in Sect. 2. The inhab-
itation problem for Σ-algebras is defined in Sect. 3. The complexity of context
inhabitation for tree automata is discussed in Sect. 4. Compressed tree patterns
with context variables are introduced in Sect. 5 and then studied for regular
matching and inclusion in Sect. 6. Due to space limitation, the discussion of the
special cases of linear patterns and patterns with context variables, as well as
the missing proofs, are not included in this extended abstract.

2 Tree Patterns with Context Variables

We consider the set of types T = {e, c} with the type e for trees and the type
c = e � e for contexts. The latter linear type is inspired by linear logic and is
different from the usual (nonlinear) function type e → e. We assume sets Ve of
tree variables and Vc of context variables. The tree variables are ranged over by
x, y, z and the context variables by X,Y . The set of all variables is V = Ve ∪Vc .

We fix a finite ranked signature Σ = �n≥0Σ
(n) of function symbols f ∈ Σ(n)

of arity n. We assume that Σ contains at least one constant and one symbol of
arity at least 2. The set of trees TΣ is the least set that contains all elements
f(t1, . . . , tn) where f ∈ Σ(n) for some n ≥ 0 and t1, . . . , tn ∈ TΣ . Atomic trees
a() ∈ TΣ are deliberately identified with a ∈ Σ(0). The set of contexts C ∈ CΣ is
the set of all terms λx.p such that p ∈ TΣ�{x} for some tree variable x ∈ Ve that
occurs exactly once in p. The set of all values of both types is ValΣ = TΣ ∪ CΣ .

The sets of all tree patterns Pe
Σ and of all context patterns Pc

Σ are defined in
Fig. 7. Note that both types of patterns may contain context variables. The set
of all patterns is PΣ = Pe

Σ ∪Pc
Σ . For a (tree or context) pattern π, its sets of free

variables fv(π) and of bound variables bv(π) can be defined as usual. The set Gτ
Σ

of ground patterns of type τ ∈ T is the subset of patterns in Pτ
Σ without free

variables. The set of all ground patterns is denoted by GΣ = Ge
Σ ∪ Gc

Σ . Clearly,
any tree t ∈ TΣ is a ground pattern of type e and any context C ∈ CΣ is a

346 I. Boneva et al.

ground pattern of type c. A pattern is called linear if each of its free variables
has at most one free occurrence.

Tree patterns p, p1, . . . , pn ∈ Pe
Σ ::= x | f(p1, . . . , pn) | P@p

Context patterns P ∈ Pc
Σ ::= X | λx.p where x occurs exactly once in p

Fig. 7. Tree patterns and context patterns, with x∈Ve , X ∈Vc , n ≥ 0, f ∈ Σ(n).

We can apply β-reduction to both kinds of patterns. Each β-reduction step
replaces some redex of the form (λx.p)@p′ in a bigger pattern by p[x/p′] if
x �∈ bv(p) and otherwise renames x apart before. Any ground tree pattern p ∈ Ge

Σ

can be β-reduced in a linear number of steps to some tree in polynomial time,
since all λ-binders are assumed to be linear. The semantics �p� of a ground
pattern p is the tree obtained from p by exhaustive β-reduction. Similarly, any
ground context pattern P ∈ Gc

Σ can be β-reduced in a linear number of steps to
a unique context λx.p ∈ CΣ . The semantics �P � is the function �P � : TΣ → TΣ

such that �P �(t) = p[x/t] for any tree t. Note that �Ge
Σ� = �TΣ� is equal to TΣ

while �Gc
Σ� = �CΣ� is a proper subset of the set of functions of type TΣ → TΣ .

A substitution σ : V → GΣ where V ⊆ V is called well-typed if it maps
tree variables to Ge

Σ and context variables to Gc
Σ . For any pattern p ∈ Pe

Σ , the
grounding σ(p) ∈ Ge

Σ is obtained by applying σ to the free variables in p. The
set of all instances of p is obtained by β-normalizing all groundings:

Inst(p) = {�σ(p)� | σ : fv(p) → GΣ well-typed}.

Clearly, Inst(p) ⊆ TΣ . For example, consider the tree pattern p = X@(X@a)
and the substitution σ where σ(X) = λx.f(b, x) and σ(x) = a. Then the β-
normalization of the grounding σ(p) = σ(X)@(σ(X)@σ(x)) is the tree t =
f(b, f(b, a)), i.e. t ∈ Inst(p). Similarly, for any P ∈ Pc

Σ , we can define the
grounding σ(P) ∈ Gc

Σ . The set of instances Inst(P) contains the semantics of all
groundings of P . Clearly Inst(P) ⊆ �CΣ�.

3 Inhabitation for Σ-Algebras

We recall the notion of inhabitation by trees and contexts in ValΣ for Σ-algebras,
and then relate it to the notion of pattern evaluation in Σ-algebras.

A Σ-algebra Δ = (domΔ, .Δ) consists of a set D = domΔ called the
domain, and a mapping .Δ that interprets symbols f ∈ Σ(n) as functions
fΔ : Dn → D. In particular, the set of trees TΣ yields a Σ-algebra, known
as the term algebra, whose domain is TΣ and whose interpretation satisfies
fTΣ (t1, . . . , tn) = f(t1, . . . , tn). Depending on their type, we can interpret values
in ValΣ as elements of domΔ or as functions on domΔ. The interpretation of a
tree t = f(t1, . . . , tn) ∈ TΣ is the domain element �t�Δ = fΔ(�t1�Δ, . . . , �tn�Δ),
while the interpretation of a context C = λx.p ∈ CΣ is the function �C�Δ : D →
D with �C�Δ(d) = �p[x/d]�Δ for all d ∈ D.

Regular Matching and Inclusion 347

Definition 1. Let Δ be a Σ-algebra. An element d ∈ domΔ is called Δ-
inhabited, if there exists a tree t ∈ TΣ such that d = �t�Δ. A function
S : domΔ → domΔ is called Δ-inhabited if there exists a context C ∈ CΣ such
that S = �C�Δ.

The subset of all Δ-inhabited elements and functions is �ValΣ�Δ = �TΣ�Δ ∪
�CΣ�Δ. We next lift algebra interpretation on values to algebra evaluation on
patterns. We call a variable assignment σ : V → �ValΣ�Δ with V ⊆ V well-
typed, if σ maps tree variables to �TΣ�Δ and context variables to �CΣ�Δ. In
Fig. 8, we define for any tree pattern p and any well-typed variable assignment
σ : V → �ValΣ�Δ with fv(p) ⊆ V the evaluation �p�Δ,σ ∈ �TΣ�Δ, and similarly
�P �Δ,σ ∈ �CΣ�Δ for all context patterns P with fv(P) ⊆ V . The evaluation
of a ground pattern π ∈ GΣ in Δ does not depend on the variable assignment
σ. Therefore we can write �π�Δ instead of �π�Δ,σ. Clearly, algebra evaluation
restricted to values is equal to algebra interpretation. Furthermore, note that
�ValΣ�Δ = �GΣ�Δ since any ground pattern in GΣ can be β-reduced to some
value in ValΣ which has the same interpretation. Note also that the notion of
Δ-inhabitation does not change when based on ground patterns instead of values.

Fig. 8. Algebra evaluation of patterns.

Consider a well-typed variable assignment σ : V → GΣ . Then �.�Δ ◦ σ is
a well-typed variable assignment into �GΣ�Δ = �ValΣ�Δ, such that �σ(p)�Δ =
�p�Δ,�.�Δ◦σ for all tree patterns p with fv(p) ⊆ V . As a consequence for the term
algebra, the set of instances Inst(p) of a tree pattern p is equal to {�p�TΣ ,�.�TΣ ◦σ |
σ : fv(p) → GΣ well-typed}, and similarly for context patterns P .

4 Inhabitation for Tree Automata

We recall the notion of tree automata for recognizing regular languages of trees
and discuss tree and context inhabitation problems for tree automata. As we
will see in the following section, these inhabitation problems are closely related
to regular matching and inclusion for patterns with tree and context variables.

Definition 2. A (nondeterministic) tree automaton (Nta) over Σ is a tuple
A = (Q,Σ,F,Δ) where Q is a finite set of states, F ⊆ Q is the set of final
states, and Δ ⊆ ∪n≥0Σ

(n) × Qn+1 is the transition relation.

A rule (f, q1, . . . , qn, q) ∈ Δ is written as f(q1, . . . , qn) → q. The transition
Σ-algebra of the Nta A – that we equally denote by Δ – has as its domain 2Q

348 I. Boneva et al.

and interprets the function symbols f ∈ Σ(n) where n ≥ 0 as the n-ary functions
fΔ such that for all subsets of states Q1 . . . , Qn ⊆ Q:

fΔ(Q1, . . . , Qn) = {q | ∃q1 ∈ Q1 . . . ∃qn ∈ Qn. f(q1, . . . , qn) → q in Δ}.

The regular language L(A) recognized by A is defined as the set of all trees in
TΣ whose evaluation in the Σ-algebra Δ yields some final state in F :

L(A) = {t ∈ TΣ | �t�Δ ∩ F �= ∅}.

An Nta is (bottom-up) deterministic or equivalently a Dta if no two distinct
rules of Δ have the same left-hand side, i.e., if Δ is a partial function from
∪n≥0Σ

(n) × Qn to Q. The determinization of an Nta A is the tree automaton
det(A) = (2Q, Σ, det(Δ), det(F)) where det(Δ) = {(f,Q1, . . . , Qn, fΔ(Q1, . . . ,
Qn)) | f ∈ Σ(n), Q1, . . . , Qn ⊆ Q}, and det(F) = {Q′ ⊆ Q | Q′ ∩ F �= ∅}. It is
well-known that det(A) is a Dta with L(A) = L(det(A)). Furthermore, for any
tree t ∈ TΣ it holds that �t�det(Δ) = {�t�Δ}.

Tree Inhabitation. Let NtaΣ be the set of all Ntas with signature Σ, and
similarly DtaΣ . We call Nta and Dta automata classes. For any automaton
class A and any signature Σ, tree inhabitation is the following problem:

Inhabe
Σ(A). Input: A tree automaton A = (Q,Σ,F,Δ) ∈ AΣ , Q′ ⊆ Q.

Output: The truth value of whether Q′ is Δ-inhabited.

Theorem 1 (Folklore). Tree inhabitation Inhabe
Σ(Nta) is Exp-complete,

while its restriction Inhabe
Σ(Dta) to deterministic tree automata is in P.

Proof. Let A = (Q,Σ,F,Δ) be an Nta and Q′ ⊆ Q. By definition, Q′ is Δ-
inhabited iff there exists a tree p ∈ TΣ such that �p�Δ = Q′, which is equivalent
to that �p�det(Δ) = {Q′}. Thus Q′ is Δ-inhabited iff Q′ is accessible in the tree
automaton det(A). This can be tested in polynomial time from det(A) which is
computed in exponential time. Thus Inhabe

Σ(Nta) is in Exp. If A is a Dta,
then there is no need to determinize it and Q′ is a singleton. It is thus sufficient
to test whether Q′ is accessible in A. Hence Inhabe

Σ(Dta) is in polynomial time.
We now have to show that Inhabe

Σ(Nta) is Exp-hard. This is achieved by
reduction from the problem of non-emptiness of the intersection of a sequence
of Dtas, which is well known to be Exp-complete [10]. Let A1, . . . , An be a
sequence of Dtas with alphabet Σ. Suppose that Ai = (Qi, Σ,Δi, F i). Without
loss of generality, we can assume that each of them has a single final state
F i = {qi

f}. Let A be the disjoint union of all Ai, that is A = (Q,Σ,F,Δ) where
Q = �n

i=1Q
i, Δ = �n

i=1Δ
i and F = {q1f , . . . , qn

f }. Since all Ai are deterministic,
we can then show that t ∈ ∩n

i=1L(Ai) iff F is Δ-inhabited by t. �

Context Inhabitation. Contexts evaluate to very particular functions in tran-
sition algebras of tree automata, since they use their bound variable once.

Definition 3. A union homomorphism on 2Q is a function S : 2Q → 2Q such
that S(∅) = ∅ and for all Q′, Q′′ ⊆ Q, S(Q′ ∪ Q′′) = S(Q′) ∪ S(Q′′).

Regular Matching and Inclusion 349

Lemma 1 (Folklore). For any context C ∈ CΣ and Nta A = (Q,Σ,F,Δ) the
semantics �C�Δ is a union homomorphism on 2Q.

The main reason to restrict ourselves to contexts is that Lemma 1 would fail
for nonlinear λ-terms such as N = λx.f(x, x). In order to see this, consider
the signature Σ = {a, f} where a is a constant and f a symbol of arity 2, and
the Nta A = (Q,Σ,F,Δ) with Q = {q1, q2, qok}, F = {qok} and Δ = {a →
q1, a → q2, f(q1, q2) → qok}. We have �N�Δ({q1}) = �N�Δ({q2}) = ∅, while
�N�Δ({q1, q2}) = {qok}. Hence, �N�Δ({q1, q2}) �= �N�Δ({q1}) ∪ �N�Δ({q2}),
so that �N�Δ is not a union homomorphism and cannot be represented by a
function s : Q :→ 2Q as stated in Lemma 2. Since union homomorphisms are
determined by their images on singletons, they can be represented by functions
s : Q → 2Q. Conversely, every such function defines the union homomorphism
ŝ : 2Q → 2Q such that for any Q′ ⊆ Q: ŝ(Q′) = ∪q∈Q′s(q).

Lemma 2. If S : 2Q → 2Q is a union homomorphism then S = ŝ where s :
Q → 2Q is the function with s(q) = S({q}) for all q ∈ Q.

We next consider the problem of context-inhabitation for tree automata.
Here, the input is a succinct descriptor of a union homomorphism:

Inhabc
Σ(A). Input: An automaton A = (Q,Σ,F,Δ) ∈ AΣ , s : Q → 2Q.

Output: The truth value of whether ŝ is Δ-inhabited.

Context inhabitation is a restriction of the more general λ-definability prob-
lem, which is undecidable [11,12]. However, λ-definability for orders up to 3
is decidable [13], and context-inhabitation is a special case of second-order λ-
definability. Its precise complexity, however, has not been studied so far to the
best of our knowledge.

Proposition 1. Let A = (Q,Σ,F,Δ) be an Nta and s : Q → 2Q. Then ŝ is
Δ-inhabited iff there exists C ∈ CΣ such that for all q ∈ Q, s(q) = �C�Δ({q}).

Proof. The forward implication is straightforward. For the backwards direction,
let C ∈ CΣ be a context with s(q) = �C�Δ({q}) for all q ∈ Q. Since ŝ is
a union homomorphism, we have for all Q′ ⊆ Q that ŝ(Q′) = ∪q∈Q′s(q) =
∪q∈Q′�C�Δ({q}) = �C�Δ(Q′) since �C�Δ is a union-homomorphism by Lemma 1.
Thus ŝ is Δ-inhabited. �

Theorem 2. For both classes of tree automata A ∈ {Nta,Dta} the context-
inhabitation problem Inhabc

Σ(A) is Exp-complete.

Proof. Since Inhabc
Σ(Dta) is Exp-complete, a naive exponential time reduction

from Inhabc
Σ(Nta) to Inhabc

Σ(Dta) would lead to a doubly exponential time
algorithm. Nevertheless, we will present a single exponential time algorithm for
Inhabc

Σ(Nta) based on determinization. Let A = (Q,Σ,F,Δ) be an Nta where
Q = {q1, . . . , qn} and s : Q → 2Q. We fix a variable x ∈ Ve arbitrarily. For each
i ∈ {1, . . . , n}, let Ai = (Q,Σ�{x},Δ∪{x → qi}, F). For any context C = λx.p,

350 I. Boneva et al.

�p�Ai is the set of states to which C can be evaluated when starting at the hole
marker x with state qi. Let Ã be the product Dta Ã = det(A1) × . . . × det(An).
Note that the number of states of Ã is at most (2n)n = 2n2

, which is exponential.
Furthermore, the tuple (s(q1), . . . , s(qn)) is an accessible state of Ã if and only if
there is a context λx.p ∈ CΣ such that for all 1 ≤ i ≤ n, �λx.p�Δ({qi}) = s(qi).
By Proposition 1 this is equivalent to that ŝ is Δ-inhabited. Testing whether
(s(q1), . . . , s(qn)) is accessible in Ã is in polynomial time in the size of Ã and
thus in exponential time too. The Exp-hardness of Inhabc

Σ(Dta) can be shown
by reduction from the intersection problem of Dtas. The idea of the proof is
similar to that of the Pspace-hardness proof of Dfa-inhabitation (see [2]), so
we omit the details. �

5 Compressed Tree Patterns

We now recall compressed tree patterns with context variables that are defined
by singleton tree grammars.

Definition 4. A compressed pattern (with context variables) of type τ ∈ T
is an acyclic context-free tree grammar G = (N,Σ,R, S) where N ⊆ V is a
finite set of nonterminals, S ∈ N ∩ Vτ is the start symbol, R is a partial well-
typed function from N to patterns in PΣ with free variables in N . The set of all
compressed tree patterns of type τ is denoted by cPτ

Σ.

For instance, consider the compressed tree pattern G ∈ cPe
Σ with the

nonterminals N = {x,X, Y, Z, y}, with S = x and with two rules R(x) =
X@a(X@b, Y @c), and R(X) = λx.Z@a(x, y). This grammar is acyclic, in
that no variable on the left hand side of some rule can appear in any
subsequent rule. It should be noticed that the tree language of the gram-
mar G is ∅. What interests us instead is the tree pattern pat(G) =
(λx.Z@a(x, y))@a((λx.Z@a(x, y))@b, Y @c) that G represents in a compressed
manner. By exhaustive β-reduction of pat(G) we obtain the tree pattern with
context variables �pat(G)� = Z@a(a(Z@a(b, y), Y @c), y).

We define the free variables of a compressed tree pattern G as the free vari-
ables of pat(G), and the bound variables of G as the nonterminals in dom(R)
and the bound variables on the right-hand sides of these rules.

In what follows we will identify any tree pattern p ∈ Pe
Σ with the compressed

tree pattern in cPe
Σ that has a single rule mapping a new start symbol to p.

This compressed tree pattern has no compression. In this sense, Pe
Σ ⊆ cPe

Σ . A
compressed tree pattern G is called linear if its tree pattern pat(G) is linear.

Let A = (Q,Σ,F,Δ) be an Nta, V ⊆ V a finite subset of variables, and σ a
function with domain V that maps any tree variable x ∈ V to σ(x) ⊆ Q and any
context variable X ∈ V to a function σ(X) : Q → 2Q. Note that σ(X) represents
the union homomorphism ̂σ(X) : 2Q → 2Q. Let σ̂ be such that σ̂(x) = σ(x) for
all x ∈ V and σ̂(X) = ̂σ(X) for all X ∈ V .

Regular Matching and Inclusion 351

Lemma 3. For any G = (N,Σ,R, S) ∈ cPe
Σ with fv(G) ⊆ V we can compute

�pat(G)�Δ,σ̂ in polynomial time from A, G, and σ.

Proof. The algorithm evaluates the pattern inductively along the partial order
on the nonterminals of G; the latter exists because G is acyclic. For any v ∈ V ,
let Gv be the compressed tree pattern equal to G except that the start symbol
is changed to v. Then we can show for all v ∈ V that �pat(Gv)�Δ,σ̂ can be
computed in polynomial time from A, G, and σ. In particular this holds for
�pat(G)�Δ,σ̂ = �pat(GS)�Δ,σ̂. �

6 Regular Matching and Inclusion

We now study the complexity of regular matching and inclusion for classes H of
compressed tree patterns with context variables such as Pe and cPe .

Definition 5. For any class H of compressed tree patterns, any class A of
Ntas, and for any ranked alphabet Σ we define two decision problems:

Regular pattern inclusion InclΣ(H,A). Input: A compressed tree pattern
G ∈ HΣ and a tree automaton A ∈ AΣ.
Output: The truth value of whether Inst(pat(G)) ⊆ L(A).

Regular pattern matching MatchΣ(H,A). Input: A compressed tree pat-
tern G ∈ HΣ and a tree automaton A ∈ AΣ.
Output: The truth value of whether Inst(pat(G)) ∩ L(A) �= ∅.

The following characterization of regular matching induces a decision proce-
dure by reduction to context inhabitation, and is useful in the hardness proof.

Lemma 4. Let A = (Q,Σ,F,Δ) be an Nta, p ∈ Pe
Σ be a tree pattern. Then

Inst(p) ∩ L(A) �= ∅ if and only if there exists a well-typed assignment into Δ-
inhabited subset of states and union-homomorphisms σ : fv(p) → �ValΣ�Δ such
that �p�Δ,σ ∩ F �= ∅.

Proposition 2 (Lower Bound Matching). MatchΣ(Pe ,Dta) is Exp-
hard.

Proof. We reduce Inhabc
Σ(Dta) to MatchΣ(Pe ,Dta) in polynomial time,

then the result follows from Theorem 2. Let A = (Q,Σ,F,Δ) be a Dta and
s : Q → 2Q be a function. We set Q = {q1, . . . , qn} and consider a new sym-
bol # �∈ Σ of arity n and a new state q#. From this we build a new Dta

Ã = (Q̃, Σ̃, F̃ , Δ̃) where Q̃ = Q ∪ {q#} ∪ {s(qi) | 1 ≤ i ≤ n}, Σ̃ = Σ ∪ {#} ∪ Q,
F̃ = {q#} and Δ̃ = Δ ∪ {#(s(q1), . . . , s(qn)) → q#}. Let X ∈ Vc and
p = #(X@q1, . . . , X@qn) ∈ Pe

Σ̃
. The reduction is induced by the following claim,

whose technical proof is based on Lemma 4 without any special tricks.

Claim. The function ŝ is Δ-inhabited if and only if Inst(p) ∩ L(Ã) �= ∅. �

352 I. Boneva et al.

Lemma 5 (Complementation). Regular inclusion and matching are comple-
mentary problems for deterministic automata: For any class of compressed tree
patterns H, InclΣ(H,Dta) and coMatchΣ(H,Dta) are equivalent modulo P.

Proof. For a compressed tree pattern G and an Nta A, Inst(p) ⊆ L(A) iff
Inst(p)∩L(A) = ∅ iff = Inst(p)∩L(A) = ∅, and the complementation operation is
polynomial for Dtas and exponential for Ntas– since it requires determinization.

Proposition 3 (Lower Bound Inclusion). InclΣ(Pe ,Dta) is Exp-hard.

Proof. Lemma 5 states that InclΣ(Pe ,Dta) = coMatchΣ(Pe ,Dta) modulo
P. By Proposition 2, MatchΣ(Pe ,Dta) is Exp-hard and since Exp is closed
by complement, coMatchΣ(Pe ,Dta) is Exp-hard too. It then holds that
InclΣ(Pe ,Dta) is Exp-hard. �

We next reduce the problems of regular matching and inclusion to context
inhabitation for tree automata in order to obtain upper complexity bounds.

Proposition 4 (Upper Bounds). MatchΣ(cPe ,Nta) and InclΣ(cPe ,Nta)
are in Exp.

Proof. Let G ∈ cPe
Σ be a compressed tree pattern with start symbol S ∈ Ve

and set of nonterminals N , and A = (Q,Σ,F,Δ) be an Nta. According to
Lemma 4, to decide whether pat(G) matches L(A) it is sufficient to find a well-
typed assignment σ with domain fv(G) such that σ(x) ⊆ Q for all x ∈ fv(G)
and σ(X) : Q → 2Q for all X ∈ fv(G). Furthermore, σ̂ : fv(G) → �ValΣ� must
map to Δ-inhabited subsets of Q and Δ-inhabited union-homomorphisms of type
2Q → 2Q such that σ̂(pat(G))∩F �= ∅. Thus the algorithm iterates over all such
σ, tests the inhabitation of σ̂(v) for all v ∈ N , and checks that σ̂(pat(G))∩F �= ∅.
It is successful if the test succeeds for some σ. The number of iterations is at most
2|Q|2.|fv(G)|. Moreover inhabitation can be tested in time O(2|Q|2) by Theorems 2
and 1 while σ̂(pat(G)) is computed in polynomial time from A, G, and σ by
Lemma 3. Thus the algorithm is in Exp. For InclΣ(cPe ,Nta), the algorithm is
similar except that the condition σ̂(pat(G))∩F �= ∅ must hold for all σ̂ mapping
fv(G) to Δ-inhabited sets of states and functions. �

7 Encoding Patterns for Unranked Trees

The original motivation of the present work was to understand the problems of
regular matching and inclusion for hedge patterns. We next show that these prob-
lems can be solved using reductions to the corresponding problems of (ranked)
tree patterns with context variables.

Unlike ranked trees, unranked trees are constructed from symbols without
fixed arities. We fix a finite set Γ of such symbols. The set of hedges HΓ is the
least set that contains all words of hedges in HΓ

∗ and all pairs a(H) where a ∈ Γ
and H ∈ HΓ is a hedge. The set of unranked trees UΓ is the subset of hedges of
the form a(H).

Regular Matching and Inclusion 353

We assume a set of variables for unranked trees Y ∈ Vu and a set of hedge
variables Z ∈ Vh. The set of hedge patterns H ∈ Ph

Γ with these two types
of variables is then defined by the abstract syntax in Fig. 9. The set Pu

Γ of
patterns for unranked trees is the subset of hedge patterns of the forms a(H) or
Y ∈ Vu. The set of free variables fv(H) is defined as usual. A well-typed variable
assignment σ : V → HΓ where V ⊆ Vu � Vh is a function that maps variables
from Vu to unranked trees in UΓ and variables from Vh to hedges in HΓ . The
application σ(H) is the hedge obtained from H by replacing all variables Y by
the unranked tree σ(Y) and all variables Z by the hedge σ(Z). The instance
set of H is denoted Inst(H) = {σ(H) | σ : fv(H) → HΓ well-typed}. Note that
Inst(H) ⊆ UΓ for any unranked tree pattern H ∈ Pu

Γ .

Hedge patterns H, H ′ ∈ Ph
Γ ::= Y | a(H) | ε | Z | HH ′

Encoding
〈Y 〉c = Y, 〈a(H)〉c = λy.a(〈H〉c@#, y), 〈ε〉c = λy.y,
〈Z〉c = Z, 〈HH ′〉c = λy.(〈H〉c@(〈H ′〉c@y)), 〈H〉e = 〈H〉c@#.

Fig. 9. Encoding of a hedge pattern H ∈ Ph
Γ into a context pattern 〈H〉c ∈ Pc

Σ , where
Y ∈ Vu, Z ∈ Vh, a ∈ Γ , and ε is the empty word.

We next show in Fig. 9 how to encode hedge patterns into (ranked) context
patterns over the signature Σ = Σ(2) �Σ(0) where Σ(2) = Γ and Σ(0) = {#} for
is a fresh symbol not in Γ . For instance, the hedge pattern H0 = a(ZbcY) is
encoded into the context pattern 〈H0〉c = λy.a(Z@(b(#, c(#, Y @#))), y). The
concatenation operation on hedges is simulated by the application operation of
contexts. The set of context variables used in the encoding is Vc = Vu�Vh, while
the set Ve of tree variables is left arbitrary. Finally, we define for any unranked
tree H ∈ Pu

Γ its encoding as a tree pattern 〈H〉e ∈ Pe
Σ by 〈H〉e = 〈H〉c@#.

In order to show the soundness of this encoding (Lemma 6 below), we need
to restrict the instantiation operation. Intuitively, we cannot allow arbitrary
substitutions to be applied to 〈H〉e because then the resulting tree pattern might
not be a correct encoding of an unranked tree. A variable assignment σ : V →
ValΣ is called unranked if it maps unranked tree variables to 〈UΓ 〉c and hedge
variables to 〈HΓ 〉c . The unranked-restricted instance set of a tree pattern p is
defined by Instunr(p) = {�σ(p)� | σ : fv(p) → ValΣ well-typed and unranked}
and similarly for Instunr(P).

Lemma 6. �〈Inst(H)〉e� = Instunr(〈H〉e) for any H ∈ Pu
Γ .

Proof idea. We can prove for any H ∈ Pu
Γ that �〈Inst(H)〉c� = Instunr(〈H〉c) by

induction of the structure of H. This claim implies the lemma.

Let cPu
Γ be the set of compressed unranked trees over Γ , defined in an analo-

gous way as compressed tree patterns. For a class of automata A ∈ {Dta,Nta},
the problem MatchΓ (cPu,A) of regular matching of compressed unranked tree
patterns takes as input an unranked tree pattern H ∈ cPu and an automaton

354 I. Boneva et al.

A in class A, and outputs the truth value of whether Instunr(〈H〉e) ∩ L(A) �= ∅.
The problem InclΓ (cPu, A) of regular inclusion for compressed patterns of
unranked trees is defined in an analogous way. Note that using tree automata
in the above definitions is not a restriction, as it is well known [3] that for any
unranked tree language L recognizable by a hedge automaton, there exists an
Nta that recognizes the encodings as ranked trees of the elements of L.

Proposition 5. For any A ∈ {Dta,Nta} there exist polynomial time reduc-
tions from MatchΓ (cPu,A) to MatchΣ′(cPe ,A) and from InclΓ (cPu,A) to
InclΣ′(cPe ,A) for some signature Σ′ derived from Σ.

Proof idea. The basic idea is to use Lemma 6, but we also need to constrain
the variable assignments for the encoded patterns to be unranked. We illustrate
how this works on an example for the case of regular matching. Consider the
unranked tree pattern H = a(Z) ∈ Pu

Γ , a language L ⊆ UΓ and an Nta A over
Σ with L(A) = 〈L〉e . From 〈H〉e = a(Z@#,#), we build the tree pattern pH =
a(rootZ(Z@holeZ(#)),#), where rootZ and holeZ are new unary symbols. We
also construct a Nta A′ from A so that Instunr(〈H〉e) ∩ L(A) �= ∅ iff Inst(pH) ∩
L(A′) �= ∅. Basically in pH any variable Z is “enclosed” between the rootZ and
holeZ symbols, and A′ tests that any context between rootZ and holeZ is a
correct encoding of an unranked hedge.

Theorem 3. For any class of tree automata A ∈ {Dta,Nta} the problems
MatchΓ (cPu,A) and InclΓ (cPu,A) are Exp-complete.

Proof. The upper bounds for MatchΣ(cPu,Nta) and InclΣ(cPu,Nta) follow
via the polynomial time reduction from Proposition 5 from the upper bounds for
MatchΣ(cPe ,Nta) and InclΣ(cPe ,Nta) in Proposition 4. The Exp-hardness
of MatchΓ (cPu,Dta) and thus of the other 3 problems can be shown in analogy
to the proof of Proposition 2. �

8 Conclusion

We have shown that regular matching and inclusion for ranked tree patterns with
context variables is Exp-complete with and without compression. The complex-
ity goes down to P for linear compressed tree patterns in 3 of 4 cases. The
same result holds for unranked tree patterns with hedge variables, which is rel-
evant to certain query answering on hyperstreams. Previous approaches were
limited to hyperstreams containing words (compressed string patterns), while
the present approach can deal with hyperstreams containing unranked data trees
(compressed unranked tree patterns).

Acknowledgments. We are grateful to Sylvain Salvati for pointing out and helping
to solve difficulties. This work was partially supported by a grant from CPER Nord-Pas
de Calais/FEDER DATA Advanced data science and technologies 2015–2020.

Regular Matching and Inclusion 355

References

1. Angluin, D.: Finding patterns common to a set of strings. JCSS 21, 46–62 (1980)
2. Boneva, I., Niehren, J., Sakho, M.: Certain query answering on compressed string

patterns: from streams to hyperstreams. In: Potapov, I., Reynier, P.-A. (eds.) RP
2018. LNCS, vol. 11123, pp. 117–132. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00250-3 9

3. Comon, H., et al.: TATA, October 2007. http://tata.gforge.inria.fr
4. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Context matching for compressed

terms. In: LICS 2008, USA, pp. 93–102. IEEE CS (2008)
5. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt,

T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 21

6. Labath, P., Niehren, J.: A functional language for hyperstreaming XSLT. Technical
report, INRIA Lille (2013)

7. Maneth, S., Ordóñez, A., Seidl, H.: Transforming XML streams with references.
In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
33–45. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 4

8. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004)

9. Schmidt-Schauß, M.: Linear pattern matching of compressed terms and polynomial
rewriting. Math. Struct. Comput. Sci. 28(8), 1415–1450 (2018)

10. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3),
424–437 (1990)

11. Loader, R.: The undecidability of λ-definability. In: Anderson, C.A., Zelëny, M.
(eds.) Logic, Meaning and Computation. SYLI, vol. 305, pp. 331–342. Springer,
Dordrecht (2001). https://doi.org/10.1007/978-94-010-0526-5 15

12. Joly, T.: Encoding of the halting problem into the monster type and applications.
In: Hofmann, M. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 153–166. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-44904-3 11

13. Zaionc, M.: Probabilistic approach to the lambda definability for fourth order
types. Electr. Notes Theoret. Comput. Sci. 140, 41–54 (2005)

https://doi.org/10.1007/978-3-030-00250-3_9
https://doi.org/10.1007/978-3-030-00250-3_9
http://tata.gforge.inria.fr
https://doi.org/10.1007/978-3-662-43951-7_21
https://doi.org/10.1007/978-3-319-23826-5_4
https://doi.org/10.1007/978-94-010-0526-5_15
https://doi.org/10.1007/3-540-44904-3_11

Rule-Based Unification in Combined
Theories and the Finite Variant Property

Ajay K. Eeralla1, Serdar Erbatur2, Andrew M. Marshall3,
and Christophe Ringeissen4(B)

1 University of Missouri, Columbia, USA
2 Ludwig-Maximilians-Universität, München, Germany
3 University of Mary Washington, Fredericksburg, USA

4 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
Christophe.Ringeissen@loria.fr

Abstract. We investigate the unification problem in theories defined
by rewrite systems which are both convergent and forward-closed. These
theories are also known in the context of protocol analysis as theories
with the finite variant property and admit a variant-based unification
algorithm. In this paper, we present a new rule-based unification algo-
rithm which can be seen as an alternative to the variant-based approach.
In addition, we define forward-closed combination to capture the union of
a forward-closed convergent rewrite system with another theory, such as
the Associativity-Commutativity, whose function symbols may occur in
right-hand sides of the rewrite system. Finally, we present a combination
algorithm for this particular class of non-disjoint unions of theories.

Keywords: Term rewriting · Unification · Combination ·
Forward-closure

1 Introduction

Unification plays a central role in logic systems based on the resolution principle,
to perform the computation in declarative programming, and to deduce new facts
in automated reasoning. Syntactic unification is particularly well-known for its
use in logic programming. Being decidable and unitary are remarkable properties
of syntactic unification. More generally, we may consider equational unification,
where the problem is defined modulo an equational theory E, like for instance
the Associativity-Commutativity. Equational unification, say E-unification, is
undecidable in general. However, specialized techniques have been developed to
solve the problem for particular classes of equational theories, many of high
practical interest. It is not uncommon to have such equational theories include

C. Ringeissen—This work has received funding from the European Research Council
(ERC) under the H2020 research and innovation program (grant agreement No. 645865-
SPOOC).

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 356–367, 2019.
https://doi.org/10.1007/978-3-030-13435-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_26

Unification in Combined Theories and the Finite Variant Property 357

Associativity-Commutativity, which is useful to represent arithmetic operators.
Nowadays, security protocols are successfully analyzed using dedicated reasoning
tools [4,5,13,18] in which protocols are usually represented by clauses in first-
order logic with equality. In these protocol analyzers, equational theories are
used to specify the capabilities of an intruder [1]. To support the reasoning in
these equational theories E, one needs to use E-unification procedures. When
the equational theory E has the Finite Variant Property (FVP) [8], there exists
a reduction from E-unification to syntactic unification via the computation of
finitely many variants of the unification problem. When this reduction is used,
we talk about variant-based unification. The class of equational theories with
the FVP has attracted a considerable interest since it contains theories that are
crucial in protocol analysis [6,7,9,14,19]. The concept of narrowing is another
possible unification technique when E is given by a convergent term rewrite
system (TRS). Narrowing is a generalization of rewriting which is widely used
in declarative programming. It is complete for E-unification, but it terminates
only in some very particular cases. A particular narrowing strategy, called folding
variant narrowing, has been shown complete and terminating for any equational
theory with the FVP [14]. When E has the property of being syntactic [16,20],
it is possible to apply a rule-based unification procedure in the same vein as the
one known for syntactic unification, which is called a mutation-based unification
procedure. Unfortunately, being syntactic is not a sufficient condition to insure
the termination of this unification procedure. Finally, another important scenario
is given by an equational theory E defined as a union of component theories. To
solve this case, it is quite natural to proceed in a modular way by reusing the
unification algorithms available in the component theories. There are terminating
and complete combination procedures for signature-disjoint unions of theories [3,
21], but the non-disjoint case remains a challenging problem [12].

In this paper, we investigate the impact of considering an equational theory
with the FVP in order to get a terminating mutation-based unification pro-
cedure and a terminating combination procedure for some non-disjoint unions
of theories. Instead of directly talking about the FVP, we study the equiva-
lent class of theories defined by forward-closed convergent TRSs [6]. Actually,
a forward-closed convergent TRS is a syntactic theory admitting a terminating
mutation-based unification procedure. Here, we consider the unification problem
in the class of forward-closed combinations defined as unions of a forward-closed
convergent TRS plus an equational theory over function symbols that may only
occur in the right-hand sides of the TRS. To solve this problem we need a muta-
tion procedure for the forward-closed component of the combination. Rather
than reusing the mutation procedure given in [17] we develop a new mutation
procedure which is more conducive to combination. By adding some standard
combination rules, we show how to extend this new mutation procedure in order
to solve the unification problem in forward-closed combinations.

The rest of the paper is organized as follows. Section 2 recalls the standard
notions and Sect. 3 introduces the class of forward-closed theories. In Sect. 4, we
present a terminating mutation-based unification procedure for forward-closed

358 A. K. Eeralla et al.

theories. In Sect. 5, we introduce forward-closed combinations. The related com-
bination method is given in Sect. 6, by proving its termination and correctness.
Finally, Sect. 8 discusses some limitations and possible extensions of this work.
Omitted proofs and additional unification procedures can be found in [10].

2 Preliminaries

We use the standard notation of equational unification and term rewriting sys-
tems [2]. Given a first-order signature Σ and a (countable) set of variables V , the
set of Σ-terms over variables V is denoted by T (Σ,V). The set of variables in a
term t is denoted by Var(t). A term t is ground if Var(t) = ∅. A term is linear if
all its variables occur only once. For any position p in a term t (including the root
position ε), t(p) is the symbol at position p, t|p is the subterm of t at position p,
and t[u]p is the term t in which t|p is replaced by u. A substitution is an endomor-
phism of T (Σ,V) with only finitely many variables not mapped to themselves.
A substitution is denoted by σ = {x1 �→ t1, . . . , xm �→ tm}, where the domain of
σ is Dom(σ) = {x1, . . . , xm}. Application of a substitution σ to t is written tσ.
Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equa-
tional theory =E is the congruence closure of E under the law of substitutivity
(by a slight abuse of terminology, E is often called an equational theory). Equiv-
alently, =E can be defined as the reflexive transitive closure ↔∗

E of an equational
step ↔E defined as follows: s ↔E t if there exist a position p of s, l = r (or r = l)
in E, and substitution σ such that s|p = lσ and t = s[rσ]p. An axiom l = r is
regular if Var(l) = Var(r). An axiom l = r is linear (resp., collapse-free) if l and
r are linear (resp. non-variable terms). An equational theory is regular (resp.,
linear/collapse-free) if all its axioms are regular (resp., linear/collapse-free). A
theory E is syntactic if it has finite resolvent presentation S, defined as a finite
set of axioms S such that each equality t =E u has an equational proof t ↔∗

S u
with at most one equational step ↔S applied at the root position. A Σ-equation
is a pair of Σ-terms denoted by s =? t or simply s = t when it is clear from
the context that we do not refer to an axiom. An E-unification problem is a set
of Σ-equations, G = {s1 =? t1, . . . , sn =? tn}, or equivalently a conjunction of
Σ-equations. The set of variables in G is denoted by Var(G). A solution to G,
called an E-unifier , is a substitution σ such that siσ =E tiσ for all 1 ≤ i ≤ n,
written E |= Gσ. A substitution σ is more general modulo E than θ on a set of
variables V , denoted as σ ≤V

E θ, if there is a substitution τ such that xστ =E xθ
for all x ∈ V . An E-unification algorithm computes a (finite) Complete Set of
E-Unifiers of G, denoted by CSUE (G), which is a set of substitutions such that
each σ ∈ CSUE (G) is an E-unifier of G, and for each E-unifier θ of G, there
exists σ ∈ CSUE (G) such that σ ≤Var(G)

E θ. Given a unifiable equation s =? t, a
syntactic unification algorithm computes a unique most general unifier denoted
by mgu(s, t). A set of equations G = {x1 =? t1, . . . , xn =? tn} is said to be in
tree solved form if each xi is a variable occurring once in G. Given an idempotent
substitution σ = {x1 �→ t1, . . . , xn �→ tn} (such that σσ = σ), σ̂ denotes the
corresponding tree solved form. A set of equations is said to be in dag solved

Unification in Combined Theories and the Finite Variant Property 359

form if they can be arranged as a list x1 =? t1, . . . , xn =? tn where (a) each
left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not
occur in tj . A set of equations {x1 =? t1, . . . , xn =? tn} is a cycle if for any
i ∈ [1, n−1], xi+1 ∈ Var(ti), x1 ∈ Var(tn), and there exists j ∈ [1, n] such that tj
is not a variable. Given two variables x and y, x = y is said to be solved in a set of
equations G if x does not occur in G\{x = y}. Then, x is said to be solved in G.
Given two disjoint signatures Σ1 and Σ2 and any i = 1, 2, Σi-terms (including
the variables) and Σi-equations (including the equations between variables) are
called i-pure. For any Σ1 ∪Σ2-theory E, an E-unification problem is in separate
form if it is a conjunction G1 ∧ G2, where Gi is a conjunction of Σi-equations
for i = 1, 2. A term t is called a Σi-rooted term if its root symbol is in Σi. An
alien subterm of a Σi-rooted term t is a Σj-rooted subterm s (i �= j) such that
all superterms of s are Σi-rooted. A term rewrite system (TRS) is a pair (Σ,R),
where Σ is a signature and R is a finite set of rewrite rules of the form l → r
such that l, r are Σ-terms, l is not a variable and Var(r) ⊆ Var(l). A term s
rewrites to a term t w.r.t R, denoted by s →R t (or simply s → t), if there exist a
position p of s, l → r ∈ R, and substitution σ such that s|p = lσ and t = s[rσ]p.
A TRS R is terminating if there are no infinite reduction sequences with respect
to →R. A TRS R is confluent if, whenever t →∗

R s1 and t →∗
R s2, there exists

a term w such that s1 →∗
R w and s2 →∗

R w. A confluent and terminating TRS
is called convergent. In a convergent TRS R, we have the existence and the
uniqueness of R-normal forms, denoted by t↓R for any term t. A substitution σ
is normalized if, for every variable x in the domain of σ, xσ is a normal form.
A convergent TRS R is said to be subterm convergent if for any l → r ∈ R, r
is either a strict subterm of l or a constant. To simplify the notation, we often
use tuples of terms, say ū = (u1, . . . , un), v̄ = (v1, . . . , vn). Applying a substi-
tution σ to ū is the tuple ūσ = (u1σ, . . . , unσ). The tuples ū and v̄ are said
E-equal, denoted by ū =E v̄, if u1 =E v1, . . . , un =E vn. Similarly, ū →∗

R v̄ if
u1 →∗

R v1, . . . , un →∗
R vn, ū is R-normalized if u1, . . . , un are R-normalized, and

ū =? v̄ is u1 =? v1 ∧ · · · ∧ un =? vn.

3 Forward Closure

In this section, we define the central notion of finite forward closure. To define
the forward closure as in [6], let us first introduce the notion of redundancy.
For a given convergent TRS R, assume a reduction ordering < such that r < l
for any l → r ∈ R and < is total on ground terms. Since (rewrite) rules are
multisets of two terms, the multiset extension of < leads to an ordering on rules,
also denoted by <, which is total on ground instances of rules. A rule ρ is strictly
redundant in R if any ground instance ρσ of ρ is a logical consequence of ground
instances of R that are strictly smaller w.r.t < than ρσ. A rule ρ is redundant
in R if ρ is strictly redundant in R or ρ is an instance of some rule in R. Given
two rules ρ1 = (g → d), ρ2 = (l → r) and a non-variable position p of d such
that d|p and l are unifiable, Fwd(ρ1, ρ2, p) denotes the rule (g → d[r]p)σ where
σ = mgu(d|p, l). Forward closure steps are inductively defined as follows:

360 A. K. Eeralla et al.

– FC0(R) = NR0(R) = R,
– FCk+1(R) = FCk(R) ∪ NRk+1(R) where NRk+1(R) is the set of rules ρ3 =

Fwd(ρ1, ρ2, p) such that ρ1 ∈ NRk(R), ρ2 ∈ R, p is a non-variable position
of the right-hand side of ρ1, and ρ3 is not redundant in FCk(R).

The forward closure of R is FC(R) =
⋃

k≥0 FCk(R). A TRS R is forward-closed
if FC(R) = R. A TRS is forward-closed convergent if it is both forward-closed
and convergent.

Example 1. Any subterm convergent TRS has a finite forward closure. Subterm
convergent TRSs are often used in the verification of security protocols [1], e.g.,
{dec(enc(x, y), y) → x} and {fst(pair(x, y)) → x, snd(pair(x, y)) → y}.

Example 2. The following TRSs are forward-closed convergent:
{f(x) + f(y) → f(x ∗ y)} {g(h(x, y), z) → h(x, y ∗ z)}
{f(x) + y → f(x ∗ y)} {d(e(x, a), a) → x ∗ a}
{exp(exp(a, x), y) → exp(a, x ∗ y)} {pdt(pair(x, y)) → x ∗ y}
We will study the unification problem in a combination of any of these TRSs
with an equational theory over ∗, such as C = {x ∗ y = y ∗ x} (Commutativity)
or AC = {x ∗ (y ∗ z) = (x ∗ y) ∗ z, x ∗ y = y ∗ x} (Associativity-Commutativity).

It has been shown in [6] that for any convergent TRS R, R has a finite forward
closure if and only if R has the finite variant property (FVP, for short). When
a TRS has the FVP, any R-unification problem G admits a computable finite
complete set of R-variants of G, say VR(G), such that solving G reduces to solve
the syntactic unification problems in VR(G). In many cases, the computation of
VR(G) can be prohibitive even with an efficient implementation of folding variant
narrowing [9,14]. For these cases, it is interesting to have an alternative to this
brute force method, possibly via a rule-based R-unification procedure that does
not impose a full reduction to syntactic unification.

4 Rule-Based Unification in Forward-Closed Theories

To design a rule-based unification procedure for forward-closed theories, we basi-
cally reuse the BSM unification procedure initially developed for the class of
theories saturated by paramodulation [17], where BSM stands for Basic Syn-
tactic Mutation. The BSM procedure extends syntactic unification with some
additional mutation rules applied in a don’t know non-deterministic way. These
mutation rules are parameterized by a finite set of axioms corresponding to a
resolvent presentation (cf. Sect. 2). The resulting BSM unification procedure is
similar to the mutation-based unification procedures designed for syntactic the-
ories [16,20] but with the additional property of being terminating. To get ter-
mination, it makes use of boxed terms. Variables can be considered as implicitly
boxed, and terms are boxed according to the following rules:

– Subterms of boxed terms are also boxed.

Unification in Combined Theories and the Finite Variant Property 361

– Terms boxed in the premises of an inference rule remain boxed in the conclu-
sion.

– When the “box” status of a term is not explicitly given in an inference rule,
it can be either boxed or unboxed. For instance, each occurrence of f in the
premise of Imit rule (cf. Fig. 1) can be either boxed or unboxed.

Boxed terms allow us to focus on particular R-normalized solutions of a uni-
fication problem. Hence, we are interested in R-normalized solutions σ such that
tσ is R-normalized for each boxed term t occurring in the unification problem.

Definition 3. Let G be a unification problem and σ be a substitution. We say
that (G, σ) is R-normalized if σ is R-normalized, and for any term t in G, tσ is
R-normalized whenever t is boxed.

Assuming a forward-closed convergent TRS R is sufficient to replay the cor-
rectness proofs of BSM originally stated for theories saturated by paramodula-
tion. Thus, BSM can be rephrased by using directly a forward-closed convergent
TRS R as input. In this setting, the equational theory of any forward-closed con-
vergent TRS R is syntactic and a resolvent presentation is used as the parameter
of BSM mutation rules. This leads to a BSM procedure providing a unification
algorithm for forward-closed theories, detailed in [10].

In this paper, we are also interested in solving the unification problem in the
union of a forward-closed theory R1 and a non-disjoint theory E2. For this more
general problem we develop a new and simplified mutation-based unification
algorithm called BSM ′. The new algorithm simplifies conflicts and therefore we
need only a single mutation rule and thus a simpler mutation algorithm overall.
These changes in turn allow for simpler correctness proofs as there are fewer
cases to check. The single mutation rule, called MutConflict in Fig. 1, aims at
applying rewrite rules in R instead of equalities in the resolvent presentation.
This restriction to R is sufficient if there is no equation between two non-variable
terms. This form of equations can be easily avoided by splitting such equation
s = t into two equations x = s and x = t involving a common fresh variable
x. Thanks to this additional transformation called Split in Fig. 1, the classical
decomposition rule of syntactic unification is superfluous.

All the BSM ′ rules are given in Fig. 1. Let B′ be the subset of BSM ′ that
consists of rules with boxed terms, i.e., Imit, MutConflict and ImitCycle.
BSM ′ rules are applied according to the following order of priority (from higher
to lower): Coalesce, Split and B′, where all B′ rules are applied in a non-
deterministic way (using a “don’t know” non-determinism). The BSM ′ unifi-
cation procedure consists in applying repeatedly the BSM ′ rules until reaching
normal forms. The procedure then only returns those sets of equations which are
in dag solved form. The BSM ′ unification can be used as an equivalent alter-
native to BSM . Compared to BSM , the BSM ′ alternative has the advantage of
being easily combinable as shown in Sect. 6.

Theorem 4. If R is a forward-closed convergent TRS, then the BSM ′ unifica-
tion procedure provides an R-unification algorithm.

Theorem 4 is subsumed by Theorem 11 that will be presented in Sect. 6.

362 A. K. Eeralla et al.

Coalesce {x = y} ∪ G � {x = y} ∪ (G{x �→ y})
where x and y are distinct variables occurring both in G.

Split {f(v̄) = t} ∪ G � {x = f(v̄), x = t} ∪ G
where t is a non-variable term and x is a fresh variable.

Imit
⋃

i{x = f(v̄i)} ∪ G � {x = f(ȳ) } ∪ ⋃
i{ȳ = v̄i} ∪ G

where i > 1, ȳ are fresh variables and there are no more equations x = f(. . .) in G.

MutConflict {x = f(v̄)} ∪ G � {x = t , s̄ = v̄} ∪ G
where a fresh instance f(s̄) → t ∈ R, f(v̄) is unboxed, and (there is another equation
x = u in G with a non-variable term u or x = f(v̄) occurs in a cycle).

ImitCycle {x = f(v̄)} ∪ G � {x = f(ȳ) , ȳ = v̄} ∪ G

where f(v̄) is unboxed, ȳ are fresh variables and x = f(v̄) occurs in a cycle.

Fig. 1. BSM ′ rules

5 Forward-Closed Combination

Along the lines of hierarchical combination [12], we study a form of non-disjoint
combination defined as a convergent TRS R1 combined with a base theory E2.
The TRS R1 must satisfy some properties to ensure that E = R1 ∪ E2 is a
conservative extension of E2. We focus here on cases where it is possible to reduce
the E-equality between two terms into the E2-equality of their R1-normal forms.
In addition, we assume that R1 is forward-closed. The following definition clearly
introduces the forward-closed combinations studied in the rest of the paper.

Definition 5. Let Σ1 and Σ2 be two disjoint signatures. A forward-closed com-
bination (FC-combination, for short) is a pair (E1, E2) such that

– E1 is an equational Σ1 ∪Σ2-theory given by a forward-closed convergent TRS
R1 whose left-hand sides are Σ1-terms;

– E2 is a regular and collapse-free equational Σ2-theory;
– for any terms s, t, we have (i) s =E1∪E2 t iff s ↓R1=E2 t ↓R1 , and (ii) if

s =E2 t then s is R1-reducible iff t is R1-reducible.

Let us discuss the ingredients of the above definition. First of all, it is impor-
tant to note that Σ1 and Σ2 are disjoint signatures. Thus, the TRS is a standard
rewrite system defined on the signature Σ1 ∪ Σ2 where Σ2-symbols can occur
only in right-hand sides. For this TRS, we do not have to rely on the notions of
E2-confluence and E2-coherence introduced for class rewrite systems [15].

Proposition 6. Assume Σ1, Σ2 and E2 are given as in Definition 5. If E1 is
an equational Σ1 ∪ Σ2-theory given by a forward-closed convergent TRS whose
left-hand sides are linear Σ1-terms, then (E1, E2) is an FC-combination.

Example 7. Consider R1 as any TRS mentioned in Example 2 and Σ2 = {∗}.
An FC-combination is defined by R1 together with any regular and collapse-free
Σ2-theory E2, such as C or AC.

Unification in Combined Theories and the Finite Variant Property 363

From now on, we assume E = E1 ∪ E2 and (E1, E2) is an FC-combination
given by a forward-closed convergent TRS R1.

6 Unification in Forward-Closed Combinations

We now study how the BSM ′ unification procedure can be combined with an
E2-unification algorithm to solve the unification problem in E = E1 ∪ E2.

VA {s = t[u]} ∪ G � {s = t[x], x = u} ∪ G
where u is an alien subterm of t, x is a fresh variable, and u is boxed iff t[u] is boxed.

Solve G1 ∧ G2 � ∨
σ2∈CSUE2

(G2)
G1 ∧ σ̂2

if G1 ∧ G2 is a separate form, G2 is E2-unifiable and not in tree solved form, where
w.l.o.g ∀σ2 ∈ CSUE2 (G2) ∀x ∈ Dom(σ2), (xσ2 is a variable) ⇒ xσ2 ∈ Var(G2).

Fig. 2. Additional rules for the combination with E2

Consider the inference system for Basic Syntactic Combination, say BSC ,
given by Coalesce, Split and B′ rules defining BSM ′ in Sect. 4, where f is
now supposed to be a function symbol in Σ1; plus the two additional rules
given in Fig. 2, namely VA and Solve. The rule VA applies the classical
Variable Abstraction transformation [3,11,21] to purify terms and so to get
a separate form, while Solve calls an E2-unification algorithm to solve the
set of Σ2-equations in a separate form. The repeated application of rules in
{Coalesce,Split,VA,Solve} computes particular separate forms defined as
follows.

Definition 8. A separate form G1 ∧ G2 is mutable if Coalesce does not apply
on G1 ∧ G2, G1 is a set of Σ1-equations x = t (where x is a variable), and G2

is a set of Σ2-equations in solved form. A compound solved form is a mutable
separate form in dag solved form.

BSC rules are applied according to the following order of priority (from
higher to lower): Coalesce, Split, VA, Solve, and B′ where Solve computes
each solution of the subproblem G2 in a separate form G1 ∧ G2 and B′ rules
are applied on a separate form G1 ∧ G2 in a non-deterministic way as in Sect. 4.
Due to the order of priority, Solve applies only if Coalesce, Split, VA are not
applicable and B′ rules apply only if G1 ∧G2 is a mutable separate form. Notice
that any compound solved form is in normal form w.r.t BSC .

Lemma 9. Given an E-unification problem G as input, the repeated application
of BSC rules always terminates.

Proof. To prove termination we use a complexity measure, similar to the one
in [17], which decreases, according to the lexicographic ordering, with each appli-
cation of a rule. This reduction is illustrated in the following table.

364 A. K. Eeralla et al.

Rule m n i1 i2 p q

Imit ≥ >

MutConflict >

ImitCycle >

Coalesce ≥ ≥ ≥ ≥ >

VA ≥ ≥ >

Split ≥ ≥ ≥ >

Solve ≥ ≥ ≥ ≥ ≥ >

Where m is the number of unboxed Σ1-symbols; n is the number of Σ1-
symbols; i1 is the sum of sizes of impure terms; i2 is the number of equations
f(v̄) = t such that f ∈ Σ1 and t is a non-variable term; p is the number
of variables in G that are unsolved and not generated by E2-unification; and
q ∈ {0, 1} such that q = 0 iff G is a separate form G1 ∧ G2 and G2 is in solved
form. ��

Given an E-unification problem G, BSC(G) denotes the normal forms of G
w.r.t BSC , which correspond to the compound solved forms of G. Following
Lemma 9, the BSC unification procedure works as follows: apply the BSC rules
on a given E-unification problem G until reaching normal forms, and return all
the dag solved forms in BSC(G). Below, we show that BSC rules are applied
without loss of completeness. We denote by G −−−→

BSC
G′ an application of a BSC

rule to a unification problem G producing a modified problem G′.

Lemma 10. If (G, σ) is R1-normalized, E |= Gσ and G is not a compound
solved form, then there exist some G′ and a substitution σ′ such that G −−−→

BSC
G′,

(G′, σ′) is R1-normalized, E |= G′σ′ and σ′ ≤Var(G)
E σ.

Hence BSC leads to a terminating and complete E-unification procedure.

Theorem 11. Given any FC-combination (E1, E2) and an E2-unification algo-
rithm, BSC provides an E1 ∪ E2-unification algorithm.

According to Definition 5, an FC-combination can be obtained by considering
an arbitrary forward-closed convergent TRS R1 and the empty theory E2 over
the empty signature Σ2. In that particular case, BSC reduces to BSM ′ and so the
fact that BSC is both terminating and correct provides a proof for Theorem4.

Example 12. Assume f, g, a are in Σ1 and E2 is the C theory for ∗. Consider
the separate form G = {x = f(y), x = z ∗ y} and the following possible cases:

– If R1 = {f(v) → a}, then MutConflict can be applied on G and we get
{x = a , x = z ∗y}, which is in normal form w.r.t BSC but not in dag solved
form. So, it has no solution.

Unification in Combined Theories and the Finite Variant Property 365

– If R1 = {f(v) → v∗a}, then MutConflict can be applied on G and we obtain
{x = y ∗ a , x = z∗y}. Then Solve leads to the solved form {x = y∗a, z = a}.

– If R1 = {g(v) → v ∗ a}, then G is in normal form w.r.t BSC but not in dag
solved form. So, it has no solution.

Example 13. Let R1 = {exp(exp(a, x), y) → exp(a, x∗ y)} and let E2 be the AC
theory for ∗. Consider the problem G = {exp(x1, x2) = exp(a, x2 ∗ x3)} and a
run of BSC on G. Applying VA and Split leads to the mutable separate form
{z2 = exp(x1, x2), z2 = exp(a, z1), z1 = x2 ∗ x3}. At this point one possibility
is to apply MutConflict (introducing z3, z4) followed by Coalesce (replacing
z4 by x2), leading to {z2 = exp(a, z3 ∗ x2) , x1 = exp(a, z3) , x2 = z4, z2 =

exp(a, z1), z1 = x2 ∗ x3} Then VA applies, leading to {z2 = exp(a, z5) , x1 =

exp(a, z3) , x2 = z4, z2 = exp(a, z1), z1 = x2 ∗ x3, z5 = z3 ∗ x2 }, By apply-
ing Imit (introducing z6, z7) followed by Coalesce (replacing z5, z7 by z1), we
obtain {z2 = exp(z6, z1) , z6 = a, z7 = z5, z7 = z1, x1 = exp(a, z3) , x2 =
z4, z1 = x2 ∗ x3, z1 = z3 ∗ x2 } At this point an AC-unification algorithm can
be used to solve {z1 = x2 ∗ x3, z1 = z3 ∗ x2}. The AC-unifier {z3 �→ x3} leads
to an expected solution of G, which is {x1 �→ exp(a, x3)}.

To complete the family picture on unification in FC-combinations, it is also
possible to develop brute force methods relying on a reduction to general E2-
unification. Unsurprisingly, a possible method is based on the computation of
variants. Another variant-free method consists in the non-deterministic applica-
tion of some mutation/imitation rules. These two methods are described in [10].

7 Implementation

When choosing to implement the algorithms developed in this paper, we have
selected the Maude programming language1. Maude provides a nice environ-
ment for a number of reasons. First, it provides a more natural environment for
expressing the rules of algorithms such as BSM ′. Second, it has both variant
generation and several unification algorithms, such as AC, built-in. Indeed, hav-
ing both the variant-based unification and the rule-based unification developed
here implemented in Maude is the best way to compare them in practice. In addi-
tion, having both approaches implemented offers alternatives for selecting the
most suitable method for an application (for example, in cases when the number
of variants is high). One can now easily switch between the most appropriate
approach for their situation.

Implementation of the above procedures is ongoing2. Currently, the focus
of the implementation is on the BSM ′ algorithm which in itself provides a new
alternative method for solving the unification problem in forward closed theories.

1 http://maude.cs.illinois.edu/w/index.php/The Maude System.
2 https://github.com/ajayeeralla/BSM.

http://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://github.com/ajayeeralla/BSM

366 A. K. Eeralla et al.

Significantly, once the forward closure of a system is computed, the implementa-
tion of BSM ′ provides a unification procedure for any problem in the theory. In
other words, the computation of a forward closure can be reused for any unifi-
cation problem for that theory. The implementation also takes advantage of the
flexibility of Maude, allowing the rules of the BSM ′ procedure to be instantiated
by a theory input to the algorithm via a Maude-module. This will also make the
program easier to incorporate into a larger tools.

After the BSM ′ implementation the focus will be on the combination and
experimentation. Due to the importance of AC in practical applications, we plan
to focus on the case of forward-closed combinations with AC-symbols, for which
it is possible to reuse the AC-unification algorithm implemented in Maude in a
way similar to [11].

8 Conclusion

In this paper we develop a rule-based unification algorithm which can be easily
combined, even for some non-disjoint unions of theories, and does not require
the computation of variants. By applying this rule-based unification algorithm,
we present, in addition, a new non-disjoint, terminating combination procedure
for a base theory extended with a non-disjoint forward-closed TRS. The new
combination allows for the addition of such often used theories as AC and C.

Until now, we assume that the TRS is defined in a simple way, by using
syntactic matching for the rule application. A possible extension would be to
consider an equational TRS defined modulo the base theory, where equational
matching is required for the rule application. Considering an equational TRS
instead of a classical one, two natural problems arise. First, the possible equiva-
lence between the finite forward closure and the FVP is an open problem when
the TRS is equational. Second, another problem is to highlight a combination
algorithm for solving unification problems modulo an equational TRS having
the FVP.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

3. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories:
combining decision procedures. J. Symb. Comput. 21(2), 211–243 (1996)

4. Basin, D., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 253–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39650-5 15

5. Blanchet, B.: Modeling and verifying security protocols with the applied Pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1007/978-3-540-39650-5_15

Unification in Combined Theories and the Finite Variant Property 367

6. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the
finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Fro-
CoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40885-4 23

7. Ciobâcă, S., Delaune, S., Kremer, S.: Computing knowledge in security protocols
under convergent equational theories. J. Autom. Reasoning 48(2), 219–262 (2012)

8. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

9. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Built-
in variant generation and unification, and their applications in Maude 2.7. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 183–192.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 13

10. Eeralla, A.K., Erbatur, S., Marshall, A.M., Ringeissen, C.: Unification in non-
disjoint combinations with forward-closed theories. http://hal.inria.fr

11. Eeralla, A.K., Lynch, C.: Bounded ACh Unification. CoRR abs/1811.05602 (2018).
http://arxiv.org/abs/1811.05602

12. Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C.: Hierarchical
combination. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
249–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-
2 17

13. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

14. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

15. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations.
SIAM J. Comput. 15(4), 1155–1194 (1986). https://doi.org/10.1137/0215084

16. Kirchner, C., Klay, F.: Syntactic theories and unification. In: Logic in Computer
Science 1990 Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, LICS 1990, pp. 270–277, June 1990. https://doi.org/10.1109/LICS.
1990.113753

17. Lynch, C., Morawska, B.: Basic syntactic mutation. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, pp. 471–485. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45620-1 37

18. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

19. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

20. Nipkow, T.: Proof transformations for equational theories. In: Logic in Computer
Science 1990 Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, LICS 1990, pp. 278–288 June 1990

21. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational
theories. J. Symb. Comput. 8, 51–99 (1989)

https://doi.org/10.1007/978-3-642-40885-4_23
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-319-40229-1_13
http://hal.inria.fr
http://arxiv.org/abs/1811.05602
https://doi.org/10.1007/978-3-642-38574-2_17
https://doi.org/10.1007/978-3-642-38574-2_17
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1137/0215084
https://doi.org/10.1109/LICS.1990.113753
https://doi.org/10.1109/LICS.1990.113753
https://doi.org/10.1007/3-540-45620-1_37
https://doi.org/10.1007/3-540-45620-1_37
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Extensions of the Caucal Hierarchy?

Pawe�l Parys(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
parys@mimuw.edu.pl

Abstract. The Caucal hierarchy contains graphs that can be obtained
from finite graphs by alternately applying the unfolding operation and
inverse rational mappings. The goal of this work is to check whether the
hierarchy is closed under interpretations in logics extending the monadic
second-order logic by the unbounding quantifier U. We prove that by
applying interpretations described in the MSO+Ufin logic (hence also in
its fragment WMSO+U) to graphs of the Caucal hierarchy we can only
obtain graphs on the same level of the hierarchy. Conversely, interpreta-
tions described in the more powerful MSO+U logic can give us graphs
with undecidable MSO theory, hence outside of the Caucal hierarchy.

Keywords: Caucal hierarchy · Boundedness · WMSO+U logic

1 Introduction

This paper concerns the class of finitely describable infinite graphs introduced
in Caucal [9], called a Caucal hierarchy. Graphs on consecutive levels of this
hierarchy are obtained from finite graphs by alternately applying the unfolding
operation [14] and inverse rational mappings [8]. Since both these operations
preserve decidability of the monadic second-order (MSO) theory, graphs in the
Caucal hierarchy have decidable MSO theory. It turns out that this class of
graphs has also other definitions. It was shown [5,7] that the Caucal hierarchy
contains exactly ε-closures of configuration graphs of all higher-order pushdown
automata [15]; while generating trees, these automata are in turn equivalent
to a subclass of higher-order recursion schemes called safe schemes [19]. More-
over, Carayol and Wöhrle [7] prove that the defined classes of graphs do not
change if we replace the unfolding operation by the treegraph operation [26],
and similarly, if we replace inverse rational mappings by the stronger operation
of MSO-transductions [13]. One can also replace inverse rational mappings by
the operation of FO-interpretations, assuming that the FO formulae have access
to the descendant relation [10].

In this paper we try to replace inverse rational mappings or MSO-
interpretations in the definition of the Caucal hierarchy by interpretations in

Work supported by the National Science Centre, Poland (grant no. 2016/22/E/
ST6/00041).

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 368–380, 2019.
https://doi.org/10.1007/978-3-030-13435-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_27&domain=pdf
http://orcid.org/0000-0001-7247-1408
https://doi.org/10.1007/978-3-030-13435-8_27

Extensions of the Caucal Hierarchy? 369

some extensions of the MSO logic. Namely, we investigate logics obtained from
MSO by adding the unbounding quantifier U introduced by Bojańczyk [1].
The meaning of a formula UX.ϕ is that ϕ holds for arbitrarily large finite
sets X. In the MSO+Ufin logic we can write UX.ϕ only for formulae ϕ whose
free variables cannot represent infinite sets (this fragment subsumes the more
known WMSO+U logic in which all monadic variables can only represent
finite sets [2,4]). We prove that the Caucal hierarchy does not change if we
use MSO+Ufin-interpretations in its definition. In other words, by applying
MSO+Ufin-interpretations to graphs in the Caucal hierarchy, we only obtain
graphs on the same level of the hierarchy.

This result shows robustness of the Caucal hierarchy, but is a bit disappoint-
ing (but rather not surprising): it would be nice to find a class of graphs with
decidable properties, larger than the Caucal hierarchy. We remark that the class
of trees generated by all (i.e., not necessarily safe) higher-order recursion schemes
(equivalently, by collapsible pushdown automata [17]) is such a class: these trees
have decidable MSO theory [20], and some of them are not contained in the Cau-
cal hierarchy [24]. This class lacks a nice machine-independent definition (using
logics, like for the Caucal hierarchy), though. For some other classes of graphs
we only have decidability of first-order logics [12,25].

Going further, we also check the full MSO+U logic, where the use of the U
quantifier is unrestricted. For this logic we obtain graphs outside of the Caucal
hierarchy; among them there are graphs with undecidable MSO theory. This is
very expected, since the MSO+U logic is undecidable itself [3].

2 Preliminaries

2.1 Logics

A signature Ξ (of a relational structure) is a list of relation names, R1, . . . , Rn,
together with an arity assigned to each of the names. A (relational) structure
S = (US , RS

1 , . . . , RS
n) over such a signature Ξ is a set US , called the universe,

together with relations RS
i over S, for all relation names in the signature; the

arity of the relations is as specified in the signature. Following the literature
on the Caucal hierarchy [5–9] we forbid the universe to have isolated elements:
every element of US has to appear in at least one of the relations RS

1 , . . . , RS
n .

We assume three countable sets of variables: VFO of first-order variables,
Vfin of monadic variables representing finite sets, and V inf of monadic variables
representing arbitrary sets. First-order variables are denoted using lowercase
letters x, y, . . . , and monadic variables (of both kinds) are denoted using capital
letters X,Y, The atomic formulae are

– R(x1, . . . , xn), where R is a relation name of arity n (coming from a fixed
signature Ξ), and x1, . . . , xn are first-order variables;

– x = y, where x, y are first-order variables;
– x ∈ X, where x is a first-order variable, and X a monadic variable.

370 P. Parys

Formulae of the monadic second-order logic with the unbounding quantifier,
MSO+U, are built out of atomic formulae using the boolean connectives ∨,∧,¬,
the first-order quantifiers ∃x and ∀x, the monadic quantifiers UX, ∃finX, and
∀finX for X ∈ Vfin, and the monadic quantifiers ∃X and ∀X for X ∈ V inf.

We use the standard notion of free variables. In this paper, we also consider
three syntactic fragments of MSO+U. Namely, in the monadic second-order logic,
MSO, we are not allowed to use variables from Vfin, and thus the quantifiers using
them: UX (most importantly), ∃finX, and ∀finX. In the MSO+Ufin logic, the use
of the unbounding quantifier is syntactically restricted: we can write UX.ϕ only
when all free variables are from VFO ∪ Vfin (i.e., ϕ has no free variables ranging
over infinite sets). In the weak fragment, WMSO+U, we cannot use variables
from V inf, together with the quantifiers ∃X and ∀X.

In order to evaluate an MSO+U formula ϕ over a signature Ξ in a relational
structure S over the same signature, we also need a valuation ν, which is a
partial function that maps

– variables x ∈ VFO to elements of the universe of S;
– variables X ∈ Vfin to finite subsets of the universe of S;
– variables X ∈ V inf to arbitrary subsets of the universe of S.

The valuation should be defined at least for all free variables of ϕ. We write
S, ν |= ϕ when ϕ is satisfied in S with respect to the valuation ν; this is
defined by induction on the structure of ϕ. For most constructs the definition
is as expected, thus we made it explicit only for ϕ of the form UX.ψ: we have
S, ν |= UX.ψ if for every n ∈ N there exists a finite subset XS of the universe of
S having cardinality at least n, such that S, ν[X �→ XS] |= ψ (in other words:
UX.ψ says that ψ is satisfied for arbitrarily large finite sets X).

We write ϕ(x1, . . . , xn) to denote that the free variables of ϕ are among
x1, . . . , xn. Then given elements u1, . . . , un in the universe of a structure S, we
say that ϕ(u1, . . . , un) is satisfied in S if ϕ is satisfied in S under the valuation
mapping xi to ui for all i ∈ {1, . . . , n}.

For a logic L, an L-interpretation from Ξ1 to Ξ2 is a family I of L-formulas
ϕR(x1, . . . , xn) over Ξ1, for every relation name R of Ξ2, where n is the arity of
R. Having such an L-interpretation, we can apply it to a structure S over Ξ1;
we obtain a structure I(S) over Ξ2, where every relation RI(S) is given by the
tuples (v1, . . . , vn) of elements of the universe of S for which ϕR(v1, . . . , vn) is
satisfied in S. The universe of I(S) is given implicitly as the set of all elements
occurring in the relations RI(S) (because isolated elements are disallowed by the
definition of a structure, there is no need to have a separate formula defining the
universe).

2.2 Graphs and the Caucal Hierarchy

We consider directed, edge-labeled graphs. Thus, for a finite set Σ, a Σ-labeled
graph G is a relational structure over the signature ΞΣ containing binary relation
names Ea for all a ∈ Σ. In other words, G = (V G, (EG

a)a∈Σ), where V G is a

Extensions of the Caucal Hierarchy? 371

set of vertices, and EG
a ⊆ V G × V G is a set of a-labeled edges, for every a ∈ Σ

(and where we assume that there are no isolated vertices, i.e., for every v ∈ V G

there is an edge (v, w) or (w, v) in EG
a for some w ∈ V G and a ∈ Σ). A graph is

deterministic if for every v ∈ V G and a ∈ Σ there is at most one vertex w ∈ V G

such that (v, w) ∈ EG
a .

A path from a vertex u to a vertex v labeled by w = a1 . . . an is a sequence
v0a1v1 . . . anvn ∈ V G(ΣV G)∗, where v0 = u, and vn = v, and (vi−1, vi) ∈ EG

ai

for all i ∈ {1, . . . , n}. A graph is called an (edge-labeled) tree when it contains a
vertex r, called the root, such that for every vertex v ∈ V G there exists a unique
path from r to v. The unfolding Unf (G, r) of a graph G = (V G, (EG

a)a∈Σ) from
a vertex r ∈ V G is the tree T = (V T , (ET

a)a∈Σ), where V T is the set of all paths
in G starting from r, and ET

a (for every a ∈ Σ) contains pairs (w,w′) such that
w′ = w · a · v for some v ∈ V G.

The Caucal hierarchy is a sequence of classes of graphs and trees; we use
here the characterization from Carayol and Wöhrle [7] as a definition. We define
Graph(0) to be the class containing all finite Σ-labeled graphs, for all finite sets
of labels Σ. For all n ≥ 0, we let

Tree(n + 1) = {Unf (G, r) | G ∈ Graph(n), r ∈ V G}, and
Graph(n + 1) = {I(T) | T ∈ Tree(n + 1), I an MSO-interpretation}.

We do not distinguish between isomorphic graphs.

2.3 Higher-Order Recursion Schemes

The set of sorts (aka. simple types) is constructed from a unique ground sort o
using a binary operation →; namely o is a sort, and if α and β are sorts, so is
α→β. By convention, → associates to the right, that is, α→β→γ is understood
as α → (β → γ). The order of a sort α, denoted ord(α) is defined by induction:
ord(o) = 0 and ord(α1 → . . . → αk → o) = maxi(ord(αi)) + 1 for k ≥ 1.

Having a finite set of symbols Σ (an alphabet), a finite set of sorted nontermi-
nals N , and a finite set of sorted variables V , (applicative) terms over (Σ,N , V)
are defined by induction:

– every nonterminal N ∈ N of sort α is a term of sort α;
– every variable x ∈ V of sort α is a term of sort α;
– if K1, . . . ,Kk are terms of sort o, and a ∈ Σ is a symbol, then a〈K1, . . . ,Kk〉

is a term of sort o;
– if K is a term of sort α → β, and L is a term of sort α, then K L is a term of

sort β.

The order of a term K, written ord(K), is defined as the order of its sort.
A (higher-order) recursion scheme is a tuple G = (Σ,N ,R, S), where Σ is

a finite set of symbols, N a finite set of sorted nonterminals, and R a function
assigning to every nonterminal N ∈ N of sort α1 → . . . → αk → o a rule of the
form N x1 . . . xk → K, where the sorts of variables x1, . . . , xk are α1, . . . , αk,
respectively, and K is a term of sort o over (Σ,N , {x1, . . . , xk}); finally, S ∈ N

372 P. Parys

is a starting nonterminal of sort o. The order of a recursion scheme is defined as
the maximum of orders of its nonterminals.

Unlike trees in the Caucal hierarchy, trees generated by recursion schemes are
node-labeled; actually, these are infinite terms. They are defined by coinduction:
for a finite set Σ and for r ∈ N, a Σ-node-labeled tree of maximal arity r is
of the form a〈T1, . . . , Tk〉, where a ∈ Σ, and k ≤ r, and T1, . . . , Tk are again
Σ-node-labeled trees of maximal arity r. For a tree T = a〈T1, . . . , Tk〉, its set of
vertices is defined as the smallest set such that

– ε is a vertex of T , labeled by a, and
– if u is a vertex of Ti for some i ∈ {1, . . . , k}, labeled by b, then iu is a vertex

of T , also labeled by b.

Such a tree can be seen as a relational structure over signature Ξnlt
Σ,r contain-

ing unary relation names La for all a ∈ Σ, and binary relation names Chi for all
i ∈ {1, . . . , r}. Its universe is the set of vertices of T ; for a ∈ Σ the relation LT

a

contains all vertices labeled by a; for i ∈ {1, . . . , r} the i-th child relation Chi

contains pairs (u, ui) such that both u and ui are vertices of T .
Having a recursion scheme G, we define a rewriting relation →G among terms

of sort o over (Σ,N , ∅): we have N L1 . . . Lk →G K[L1/x1, . . . , Lk/xk], where
N is a nonterminal such that the rule R(N) is N x1 . . . xk → K (and where
K[L1/x1, . . . , Lk/xk] is the term obtained from K by substituting L1 for x1, L2

for x2, and so on). We then define a tree generated by G from a term K of sort
o over (Σ,N , ∅), by coinduction:

– if there is a reduction sequence from K to a term of the form a〈L1, . . . , Lk〉,
then the tree equals a〈T1, . . . , Tk〉, where T1, . . . , Tk are the trees generated
by G from L1, . . . , Lk, respectively;

– otherwise, the tree equals ω〈〉 (where ω is a distinguished symbol).

A tree generated by G (without a term specified) is the tree generated by G from
the starting nonterminal S.

We define when a term is safe, by induction on its structure:

– all nonterminals and variables are safe,
– a term a〈K1, . . . ,Kk〉 is safe if the subterms K1, . . . ,Kk are safe,
– a term M = K L1 . . . Lk is safe if K and L1, . . . , Lk are safe, and if ord(x) ≥

ord(M) for all variables x appearing in M .

Notice that not all subterms of a safe term need to be safe. A recursion scheme
is safe if right sides of all its rules are safe.

2.4 Higher-Order Pushdown Automata

We actually need to consider two models of higher-order pushdown automata:
nondeterministic (non-branching) automata of Carayol and Wöhrle [7], where
letters are read by transitions, and deterministic tree-generating automata of
Knapik, Niwiński, and Urzyczyn [19], where there are special commands for

Extensions of the Caucal Hierarchy? 373

creating labeled tree vertices. We use the name edge-labeled pushdown automata
for the former model, and node-labeled pushdown automata for the latter model.
We only recall those fragments of definitions of these automata that are relevant
for us.

For every n ∈ N, and every finite set Γ containing a distinguished initial
symbol ⊥ ∈ Γ , there are defined

– a set PDn(Γ) of pushdowns of order n over the stack alphabet Γ ,
– an initial pushdown ⊥n ∈ PDn(Γ),
– a finite set Opn(Γ) of operations on these pushdowns, where every op ∈

Opn(Γ) is a partial function from PDn(Γ) to PDn(Γ), and
– a function top : PDn(Γ) → Γ (returning the topmost symbol of a pushdown).

We assume that Opn(Γ) contains the identity operation id , mapping every ele-
ment of PDn(Γ) to itself.

Having the above, we define an edge-labeled pushdown automaton of order
n as a tuple A = (Q,Σ, Γ, qI ,Δ), where Q is a finite set of states, Σ is a
finite input alphabet, Γ is a finite stack alphabet, qI ∈ Q is an initial state, and
Δ ⊆ Q×Γ ×(Σ�{ε})×Q×Opn(Γ) is a transition relation. It is assumed that for
every pair (q, γ) either all tuples (q, γ, a, q′, op) ∈ Δ have a = ε, or all have a ∈ Σ.
The automaton is deterministic if for every pair (q, γ) there is either exactly one
transition (q, γ, a, q′, op), where a = ε, or there are |Σ| such transitions, one for
every a ∈ Σ. A configuration of A is a pair (q, s) ∈ Q × PDn(Γ), and (qI ,⊥n)
is the initial configuration. For a ∈ Σ ∪ {ε}, there is an a-labeled transition
from a configuration (p, s) to a configuration (q, t), written (p, s) a−→A (q, t), if
in Δ there is a tuple (p, top(s), a, q, op) such that op(s) = t. The configuration
graph of A is the edge-labeled graph of all configurations of A reachable from
the initial configuration, with an edge labeled by a ∈ Σ ∪{ε} from c to d if there
is a transition c

a−→A d. The ε-closure of such a graph G is the Σ-labeled graph
obtained from G by removing all vertices with only outgoing ε-labeled edges
and adding an a-labeled edge between v and w if in G there is a path from v
to w labeled by a word in aε∗. The graph generated by A is the ε-closure of the
configuration graph of A.

Next, we define a node-labeled pushdown automaton of order n as a tuple
A = (Q,Σ, Γ, qI , δ), where Q,Σ, Γ, qI (and configurations) are as previously, and
δ : Q×Γ → (Q×Opn(Γ))�(Σ×Q∗) is a transition function. This time transitions
are not labeled by anything; we have (p, s) →A (q, t) when δ(p, top(s)) = (q, op)
and op(s) = t. We define when a node-labeled tree over alphabet Σ ∪ {ω} is
generated by A from (p, s), by coinduction:

– if (p, s) →∗
A (q, t), and δ(q, top(t)) = (a, q1, . . . , qk) ∈ Σ × Q∗, and trees

T1, . . . , Tk are generated by A from (q1, t), . . . , (qk, t), respectively, then the
tree a〈T1, . . . , Tk〉 is generated by A from (p, s),

– if there is no (q, t) such that (p, s) →∗
A (q, t) and δ(q, top(t)) ∈ Σ × Q∗, then

ω〈〉 is generated by A from (p, s).

While talking about the tree generated by A, without referring to a configuration,
we mean generating from the initial configuration (qI ,⊥n).

374 P. Parys

3 Between Caucal Hierarchy and Safe Recursion Schemes

The Caucal hierarchy is closely related to safe recursion schemes. Indeed, we
have the following two results, from Carayol and Wöhrle [7, Theorem 3] and
Knapik et al. [19, Theorems 5.1 and 5.3].

Fact 1. For every n ∈ N, a graph G is generated by some edge-labeled pushdown
automaton of order n if and only if G ∈ Graph(n).

Fact 2. For every n ∈ N, a tree T is generated by some node-labeled pushdown
automaton of order n if and only if it is generated by some safe recursion scheme
of order n.

It looks like the connection between the Caucal hierarchy and safe recursion
schemes is already established by these two facts, but the settings of edge-labeled
and node-labeled pushdown automata are not immediately compatible. Indeed,
beside of the superficial syntactical difference between edge-labeled graphs from
Fact 1 (and trees being their unfoldings) and node-labeled trees from Fact 2 we
have two problems. First, node-labeled trees are only finitely branching (and
moreover deterministic), while edge-labeled trees may have infinite branching.
To deal with this, we use a fact from Carayol and Wöhrle [7, Theorem 2].

Fact 3. For every G ∈ Graph(n), where n ≥ 1, there exists a tree T that is
an unfolding of a deterministic graph Gn−1 ∈ Graph(n − 1), and an MSO-
interpretation1 I such that G = I(T).

A second problem is that an edge-labeled pushdown automaton of order
n generating a deterministic graph need not to be deterministic itself (and
only deterministic edge-labeled automata can be easily turned into node-labeled
automata). We thus need a fact from Parys [21, Theorem 1.1] (proved also in the
Carayol’s Ph.D. thesis [6, Corollary 3.5.3]).

Fact 4. If a deterministic graph is generated by some edge-labeled pushdown
automaton of order n, then it is also generated by some deterministic edge-labeled
pushdown automaton of order n.

Having all the recalled facts, it is now easy to prove the following lemma.

Lemma 5. For every n ≥ 1, a graph G is in Graph(n) if and only if it can
be obtained by applying an MSO-interpretation to a tree generated by a safe
recursion scheme of order n − 1.

Proof (sketch). Suppose first that G = I(T) for some MSO-interpretation I and
for some safe recursion scheme G of order n − 1 generating a tree T . By Fact 2,
T is generated by a node-labeled pushdown automaton A of order n − 1. It is a
routine to switch to the formalism of edge-labeled pushdown automata, that is,
1 Carayol and Wöhrle say about an inverse rational mapping, which is a special case

of an MSO-interpretation.

Extensions of the Caucal Hierarchy? 375

– change the node-labeled tree T (which is a structure over the signature Ξnlt
Σ,r)

to a “similar” edge-labeled tree T ′ (which is a structure over the signature
ΞΣ∪{1,...,r}), where every edge of T from a vertex to its i-th child becomes
an i-labeled edge, and where below every a-labeled vertex u we create a fresh
vertex vu with an a-labeled edge from u to vu;

– change the node-labeled pushdown automaton A to an edge-labeled push-
down automaton A′ of the same order n − 1 such that T ′ is the unfolding of
the graph generated by A′;

– change the MSO-interpretation I evaluated in T to an MSO-interpretation I ′

evaluated in T ′, such that I ′(T ′) = I(T).

Finally, we use Fact 1 to say that the graph generated by A′ belongs to Graph(n−
1). In effect its unfolding T ′ belongs to Tree(n), and hence G = I ′(T ′) belongs
to Graph(n).

For the opposite direction, consider some graph G ∈ Graph(n). We first
use Fact 3 to say that there exists a tree T that is an unfolding of a deter-
ministic graph Gn−1 ∈ Graph(n − 1), and an MSO-interpretation I such that
G = I(T). By Fact 1 we obtain that Gn−1 is generated by some edge-labeled
pushdown automaton A of order n − 1. Because of Fact 4 we can assume that A
is deterministic. By definition, the vertex r such that T = Unf (Gn−1, r) can be
arbitrary; let A′ be a modification of A that first reaches configuration r using
ε-transitions, and then operates as A from r.

We now change A′ into a node-labeled pushdown automaton A′′. To this
end, we fix some order on the letters in Σ: let Σ = {a1, . . . , ak}. Moreover,
without loss of generality we assume that for all transitions (q, γ, a, q′, op) of A
with a �= ε, the operation op is id . Then, if from a pair (q, γ) we have transitions
(q, γ, a1, q1, id), . . . , (q, γ, ak, qk, id), we define δ(q, γ) = (�, q1, . . . , qk), and for
pairs (q, γ) being a source of ε-transitions (q, γ, ε, q′, op) we define δ(q, γ) =
(q′, op). The {�, ω}-node-labeled tree T ′ generated by A′, after removing all
ω-labeled vertices, and while treating an edge leading to the i-th child as ai-
labeled, equals T . It is easy to modify the interpretation I into I ′ such that
I ′(T ′) = I(T) = G. Finally, we use Fact 2 to say that T ′ is generated by a safe
recursion scheme of order n − 1. ��

4 Closure Under MSO+Ufin-Interpretations

We now present the main theorem of this paper.

Theorem 6. For every n ∈ N, if G ∈ Graph(n) and if I is an MSO+Ufin-
interpretation, then I(G) ∈ Graph(n).

This theorem can be deduced from our previous result, which we recall now.
We say that a Σ × Γ -node-labeled tree T ′ enriches a Σ-node-labeled tree T , if
it has the same vertices, and every vertex u labeled in T by some a is labeled in
T ′ by a pair in {a} × Γ .

376 P. Parys

Lemma 7. Let n ∈ N. For every MSO+Ufin formula ϕ and every safe recursion
scheme G of order n generating a tree T there exists a safe recursion scheme
G+ of order n that generates a tree T ′ enriching T , and an MSO formula ϕMSO

such that for every valuation ν in T (defined at least for all free variables of ϕ)
it holds that T ′, ν |= ϕMSO if and only if T, ν |= ϕ.

Proof. This result was shown in Parys [22, Lemma 5.4], without observing that
the resulting recursion scheme G+ is of the same order as G, and that it is safe
when G is safe. We thus need to inspect the proof, to see this. Although the
proof is not so simple, it applies only two basic kinds of modifications to the
recursion scheme G, in order to obtain G+.

First, it uses a construction of Haddad [16, Sect. 4.2] (described also in
Parys [23, Sect. B.1]) to compose a recursion scheme with a morphism into a
finitary applicative structure. It is already observed in Parys [23, Lemma 10.2]
that this construction preserves the order. It is not difficult to see that it pre-
serves safety as well: when a subterm K is transformed into a subterm M , then
their order is the same, and their sets of free variables are essentially also the
same, up to the fact that every single free variable of K corresponds to multiple
free variables of M , all being of the same order as the free variable of K.

The second basic kind of modifications applied to the recursion scheme is the
composition with finite tree transducers. This is realized by converting the recur-
sion scheme to a collapsible pushdown automaton generating the same tree [17],
composing the automaton with the transducer, and then converting it back to a
recursion scheme. When the original recursion scheme is safe, we can convert it
to a higher-order pushdown automaton, which can be converted back to a safe
recursion scheme; as stated in Fact 2, this preserves the order. Moreover com-
posing a higher-order pushdown automaton with a finite tree transducer is as
easy as for collapsible pushdown automata, and clearly preserves the order. ��
Corollary 8. Let n ∈ N. For every safe recursion scheme G of order n gen-
erating a tree T , and every MSO+Ufin-interpretation I evaluated in T , there
exists a safe recursion scheme G+ of order n generating a tree T+, and an MSO-
interpretation IMSO such that IMSO(T+) = I(T).

Proof. Suppose that I = (ϕi)i∈{1,...,k}. Basically, we apply Lemma 7 consec-
utively for all the formulae of I. More precisely, after i − 1 steps (where
i ∈ {1, . . . , k}) we have a recursion scheme Gi−1 (assuming G0 = G) that gener-
ates a tree Ti−1 enriching T . We modify ϕi to ϕ′

i that evaluated in Ti−1 behaves
like ϕi evaluated in T , that is, ignores the part of labels of Ti−1 that was not
present in T . Using Lemma 7 for the recursion scheme Gi−1 and for the for-
mula ϕ′

i we obtain a recursion scheme Gi that generates a tree Ti enriching Ti−1

(hence enriching T), and an MSO formula ϕ′
MSO,i such that for every valuation

ν in T (defined at least for free variables of ϕi) it holds that Ti, ν |= ϕ′
MSO,i

if and only if Ti−1, ν |= ϕ′
i, that is, if and only if T, ν |= ϕi. At the very

end, for every i ∈ {1, . . . , k} we modify ϕ′
MSO,i into ϕMSO,i that ignores the

part of Tk appended after step i; we then have Tk, ν |= ϕMSO,i if and only if
Ti, ν |= ϕ′

MSO,i, that is, if and only if T, ν |= ϕi. Taking G+ = Gk, T+ = Tk,

Extensions of the Caucal Hierarchy? 377

and IMSO = (ϕMSO,i)i∈{1,...,k} we have IMSO(T+) = I(T), as required. All the
created recursion schemes are safe and of order n. ��
Proof (Thorem 6). The class Graph(0) contains exactly all finite graphs, and
while interpreting in a finite graph we can only obtain a finite graph; this estab-
lishes the theorem for n = 0. We thus assume below that n ≥ 1. In this case
Lemma 5 gives us a safe recursion scheme G of order n − 1 generating a tree T ,
and an MSO-interpretation I2 such that I2(T) = G.

Suppose that I2 = (ϕa(x1, x2))a∈Λ and I = (ψα(x1, x2))α∈Σ We create an
MSO-interpretation I3 such that I3(T) = I(I2(T)) = I(G). To this end, in every
formula ψα of I we replace every atomic formula a(y, z) by the corresponding
formula ϕa(y, z) of I2. Moreover, quantification in ψα should be restricted to
those vertices of T that are actually taken to G, that is, to vertices y satisfying
ϕa(y, z) or ϕa(z, y) for some a ∈ Λ and some vertex z of T .

Corollary 8 gives us then a safe recursion scheme G+ of order n−1 generating a
tree T+, and an MSO-interpretation IMSO such that IMSO(T+) = I3(T) = I(G).
We conclude that I(G) ∈ Graph(n) by Lemma 5. ��

5 MSO+U-Interpretations Lead to Difficult Graphs

In this section we consider the full MSO+U logic, for which we prove the following
theorem.

Theorem 9. There is a tree T ∈ Tree(2) and an MSO+U-interpretation I such
that I(T) is a graph with undecidable MSO theory; in effect, I(G) �∈ Graph(n)
for any n ∈ N.

One can expect such a result, since the MSO+U logic is undecidable over
infinite words [3]. We remark, though, that undecidability of a logic does not
automatically imply that the logic can define some complicated (“undecidable”)
sets. For example, over rational numbers the MSO logic with quantification over
cuts (real numbers) defines the same sets as the standard MSO logic quantifying
only over rational numbers, but the latter logic is decidable while the former is
not [11]. However, using arguments from topological complexity one can easily
see that MSO+U is more expressible than MSO+Ufin: it is known that MSO+U
can define sets located arbitrarily high in the projective hierarchy [18], while the
topological complexity of MSO+Ufin can be bounded using the automaton model
given in Parys [22]. Nevertheless, expressivity of the logic itself does not imply
anything in the matter of interpretations: as we have seen in previous sections,
MSO+Ufin is more expressive than MSO, and MSO is more expressive than FO,
but interpretations in these logics define the same hierarchy of graphs.

Proof (Theorem 9, sketch). Because of Lemma 5, as the source of the inter-
pretation I we can take a node-labeled tree T generated by a safe recur-
sion scheme of order 2. We define the depth-k comb as the tree Ck such that
Ck = a〈Ck−1, Ck〉, where C0 = a〈〉. We also consider a depth-2 comb with first

378 P. Parys

i vertices marked by b: C2,0 = C2 and C2,i = b〈C1, C2,i−1〉 for i ≥ 1; and a
depth-k comb (where k ≥ 3) with first i vertices of every depth-2 comb marked
by b: Ck,i = a〈Ck−1,i, Ck,i〉.

We base on the undecidability proof from Bojańczyk, Parys, and
Toruńczyk [3]. This proof, given a Minsky machine M constructs an MSO+U
sentence ϕM that is true in an infinite forest of finite trees of height 3 if and
only if the forest encodes a (finite) accepting run of M . Such a forest is then
encoded in an infinite word, but is even easier to encode it in the depth-4 comb:
we just need a set (a monadic variable) X saying which vertices of the comb
appear in the considered forest (where roots of depth-k combs attached below a
depth-(k + 1) comb represent children of the root of the latter comb).

Moreover, the recalled encoding of a run of M in the forest (checked by ϕM)
requires that the arity of the first child of all (except finitely many) trees in the
forest contains the initial value of the first counter, that is zero. We remove the
part of ϕM saying that the initial value of the first counter is zero, and instead
we add a part saying that from the first depth-2 comb in every depth-3 comb
we take to X exactly left children of all b-labeled vertices. This way we obtain a
sentence ϕ′

M (of the form ∃X.ϕ′′
M) which, for every i ∈ N, is true in C4,i if and

only if M has an accepting run from the configuration ci with value i in the first
counter, value 0 in the second counter, and initial state.

We now consider the tree T0 consisting of an infinite branch, where below
the (i + 1)-th node of this branch we attach C4,i; formally, we define T0 by
coinduction: Ti = a〈C4,i, Ti+1〉 for i ∈ N. We also consider the interpretation IM

consisting of two formulae: ψa(x1, x2) that is true if x1 and x2 are consecutive
vertices on the main branch, and ψb(x1, x2) that is true if x2 is a root of a comb
C4,i in which ϕ′

M is true, and x1 is its parent. The effect is that IM (T0) consists
of an infinite path with a-labeled edges, where for i ∈ N such that M accepts
from ci, we additionally have a b-labeled edge starting in the (i+1)-th vertex of
that path.

Take a Minsky machine M such that the problem “given i, does M accept
from ci?” is undecidable. For such a machine, the graph IM (T0) has undecidable
MSO theory. And such a machine clearly exists: one can take a Minsky machine
simulating a universal Turing machine, where the input to the latter is encoded
in the value of the first counter.

It remains to observe that T0 is generated by the safe recursion scheme of
order 2 with the following rules:

S → T C2 C4 x → a〈C3 x,C4 x〉 C2 → a〈C1, C2〉
T x → a〈C4 x, T b〈C1, x〉〉 C3 x → a〈x,C3 x〉 C1 → a〈a〈〉, C1〉 ��

Acknowledgements. We thank Miko�laj Bojańczyk, Szymon Toruńczyk, and Arnaud
Carayol for discussions preceding the process of creating this paper.

Extensions of the Caucal Hierarchy? 379

References

1. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.)
CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30124-0 7

2. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst.
48(3), 554–576 (2011). https://doi.org/10.1007/s00224-010-9279-2

3. Bojańczyk, M., Parys, P., Toruńczyk, S.: The MSO+U theory of (N, <) is unde-
cidable. In: STACS, pp. 21:1–21:8 (2016). https://doi.org/10.4230/LIPIcs.STACS.
2016.21

4. Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: STACS, pp.
648–660 (2012). https://doi.org/10.4230/LIPIcs.STACS.2012.648

5. Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs and
parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-45061-0 45

6. Carayol, A.: Automates infinis, logiques et langages. Ph.D. thesis. Université de
Rennes 1 (2006)

7. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.)
FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-24597-1 10

8. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 128

9. Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45687-2 13

10. Colcombet, T.: A combinatorial theorem for trees. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 901–912.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8 77

11. Colcombet, T.: Composition with algebra at the background - on a question by
Gurevich and Rabinovich on the monadic theory of linear orderings. In: Bulatov,
A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 391–404. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-38536-0 34

12. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Log.
Methods Comput. Sci. 3(2) (2007). https://doi.org/10.2168/LMCS-3(2:4)2007

13. Courcelle, B.: Monadic second-order definable graph transductions: a sur-
vey. Theoret. Comput. Sci. 126(1), 53–75 (1994). https://doi.org/10.1016/0304-
3975(94)90268-2

14. Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graph coverings and
unfoldings of transition systems. Ann. Pure Appl. Logic 92(1), 35–62 (1998).
https://doi.org/10.1016/S0168-0072(97)00048-1

15. Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comput. 95(1),
21–75 (1991). https://doi.org/10.1016/0890-5401(91)90015-T

16. Haddad, A.: IO vs OI in higher-order recursion schemes. In: FICS, pp. 23–30 (2012).
https://doi.org/10.4204/EPTCS.77.4

17. Hague, M., Murawski, A.S., Ong, C.L., Serre, O.: Collapsible pushdown automata
and recursion schemes. In: LICS, pp. 452–461 (2008). https://doi.org/10.1109/
LICS.2008.34

https://doi.org/10.1007/978-3-540-30124-0_7
https://doi.org/10.1007/978-3-540-30124-0_7
https://doi.org/10.1007/s00224-010-9279-2
https://doi.org/10.4230/LIPIcs.STACS.2016.21
https://doi.org/10.4230/LIPIcs.STACS.2016.21
https://doi.org/10.4230/LIPIcs.STACS.2012.648
https://doi.org/10.1007/3-540-45061-0_45
https://doi.org/10.1007/3-540-45061-0_45
https://doi.org/10.1007/978-3-540-24597-1_10
https://doi.org/10.1007/978-3-540-24597-1_10
https://doi.org/10.1007/3-540-61440-0_128
https://doi.org/10.1007/3-540-45687-2_13
https://doi.org/10.1007/978-3-540-73420-8_77
https://doi.org/10.1007/978-3-642-38536-0_34
https://doi.org/10.2168/LMCS-3(2:4)2007
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/S0168-0072(97)00048-1
https://doi.org/10.1016/0890-5401(91)90015-T
https://doi.org/10.4204/EPTCS.77.4
https://doi.org/10.1109/LICS.2008.34
https://doi.org/10.1109/LICS.2008.34

380 P. Parys

18. Hummel, S., Skrzypczak, M.: The topological complexity of MSO+U and related
automata models. Fundam. Inform. 119(1), 87–111 (2012). https://doi.org/10.
3233/FI-2012-728

19. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 15

20. Ong, C.L.: On model-checking trees generated by higher-order recursion schemes.
In: LICS, pp. 81–90 (2006). https://doi.org/10.1109/LICS.2006.38

21. Parys, P.: Variants of collapsible pushdown systems. In: CSL, pp. 500–515 (2012).
https://doi.org/10.4230/LIPIcs.CSL.2012.500

22. Parys, P.: Recursion schemes, the MSO logic, and the U quantifier (submitted).
https://arxiv.org/abs/1810.04763

23. Parys, P.: A type system describing unboundedness (submitted). https://hal.
archives-ouvertes.fr/hal-01850934

24. Parys, P.: On the significance of the collapse operation. In: LICS, pp. 521–530
(2012). https://doi.org/10.1109/LICS.2012.62

25. Penelle, V.: Rewriting higher-order stack trees. Theory Comput. Syst. 61(2), 536–
580 (2017). https://doi.org/10.1007/s00224-017-9769-6

26. Walukiewicz, I.:Monadicsecond-order logicontree-likestructures.Theoret.Comput.
Sci. 275(1–2), 311–346 (2002). https://doi.org/10.1016/S0304-3975(01)00185-2

https://doi.org/10.3233/FI-2012-728
https://doi.org/10.3233/FI-2012-728
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.4230/LIPIcs.CSL.2012.500
https://arxiv.org/abs/1810.04763
https://hal.archives-ouvertes.fr/hal-01850934
https://hal.archives-ouvertes.fr/hal-01850934
https://doi.org/10.1109/LICS.2012.62
https://doi.org/10.1007/s00224-017-9769-6
https://doi.org/10.1016/S0304-3975(01)00185-2

Tight Bounds on the Minimum Size
of a Dynamic Monopoly

Ahad N. Zehmakan(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland
abdolahad.noori@inf.ethz.ch

Abstract. Assume that you are given a graph G = (V, E) with an initial
coloring, where each node is black or white. Then, in discrete-time rounds
all nodes simultaneously update their color following a predefined deter-
ministic rule. This process is called two-way r-bootstrap percolation, for
some integer r, if a node with at least r black neighbors gets black and
white otherwise. Similarly, in two-way α-bootstrap percolation, for some
0 < α < 1, a node gets black if at least α fraction of its neighbors are
black, and white otherwise. The two aforementioned processes are called
respectively r-bootstrap and α-bootstrap percolation if we require that
a black node stays black forever.

For each of these processes, we say a node set D is a dynamic monopoly
whenever the following holds: If all nodes in D are black then the graph
gets fully black eventually. We provide tight upper and lower bounds on
the minimum size of a dynamic monopoly.

Keywords: Dynamic monopoly · Bootstrap percolation ·
Threshold model · Percolating set · Target set selection

1 Introduction

Suppose for a graph G by starting from an initial configuration (coloring), where
each node is either black or white, in each round all nodes simultaneously update
their color based on a predefined rule. This basic abstract model, which is com-
monly known as cellular automaton, has been studied extensively in different
areas, like biology, statistical physics, and computer science to comprehend the
behavior of various real-world phenomena.

In two-way r-bootstrap percolation (or shortly r-BP), for some positive inte-
ger r, in each round a node gets black if it has at least r black neighbors, and
white otherwise. Furthermore, in two-way α-bootstrap percolation (α-BP), for
some 0 < α < 1, a node gets black if at least α fraction of its neighbors are black,
and white otherwise. (Notice that there should not be any confusion between
two-way α-BP and two-way r-BP since r is an integer value larger than equal
to 1 and 0 < α < 1.) These two processes are supposed to model social phenom-
ena like opinion forming in a community, where black and white could represent
respectively positive and negative opinion concerning a reform proposal or a new
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 381–393, 2019.
https://doi.org/10.1007/978-3-030-13435-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_28

382 A. N. Zehmakan

product. For instance in a social network, if a certain number/fraction of some-
one’s connections have a positive opinion regarding a particular topic, s/he will
adapt the same opinion, and negative otherwise.

r-BP and α-BP are defined analogously, except we require that a black node
stays unchanged. The main idea behind these two variants is to model mono-
tone processes like rumor spreading in a society, fire propagation in a forest,
and infection spreading among cells. For example, an individual gets informed
of a rumor if a certain number/fraction of his/her friends are aware of it and
stays informed forever, or a tree starts burning if a fixed number/fraction of the
adjacent tress are on fire.

If we can try to convince a group of individuals to adopt a new product or
innovation, for instance by providing them with free samples, and the goal is to
trigger a large cascade of further adoptions, which set of individuals should we
target and how large this set should be? This natural question brings up the
well-studied concept of a dynamic monopoly. For each of the above four models,
we say a node set is a dynamic monopoly, or shortly dynamo, whenever the
following holds: If all nodes in the set are black initially then all nodes become
black eventually.

Although the concept of a dynamo was studied earlier, e.g. by Balogh and
Pete [3], it was formally defined and studied in the seminal work by Kempe,
Kleinberg, and Tardos [14] and independently by Peleg [15], respectively moti-
vated from viral marketing and fault-local mending in distributed systems. There
is a massive body of work concerning the minimum size of a dynamo in different
classes of graphs, for instance hypercube [2], the binomial random graph [5,7,17],
random regular graphs [4,11], and many others. Motivated from the literature
of statistical physics, a substantial amount of attention has been devoted to the
d-dimensional lattice, for instance see [1,3,8,10,13].

In the present paper, we do not limit ourselves to a particular class of graphs
and aim to establish sharp lower and upper bounds on the minimum size of
a dynamo in general case, in terms of the number of nodes and the maxi-
mum/minimum degree of the underlying graph. See Table 1 for a summary.

Some of the bounds are quite trivial. For example in (two-way) r-BP, r is an
obvious lower bound on the minimum size of a dynamo and it is tight since the
complete graph Kn has a dynamo of size r (see Lemma 1 for the proof). However,
some of the bounds are much more involved. For instance, an interesting open
problem in this literature is whether the minimum size of a dynamo in two-way
α-BP for α > 1/2 is bounded by Ω(

√
n) or not. We prove that this is true for

α > 3
4 . The case of 1

2 < α ≤ 3
4 is left for the future research.

The proof techniques utilized are fairly standard and straightforward (some
new and some inspired from prior work), however they turn out to be very
effective. The upper bounds are built on the probabilistic method. We introduce
a simple greedy algorithm which always returns a dynamo. Then, we discuss
if this algorithm visits the nodes in a random order, the expected size of the
output dynamo matches our desired bound. For the lower bounds, we define
a suitable potential function, like the number of edges whose endpoints have

Tight Bounds on the Minimum Size of a Dynamic Monopoly 383

different colors in a configuration. Then, careful analysis of the behavior of such
a potential function during the process allows us to establish lower bounds on the
size of a dynamo. To prove the tightness of our results, we provide explicit graph
constructions for which the minimum size of a dynamo matches our bounds.

A simple observation is that by adding an edge to a graph the minimum size
of a dynamo in (two-way) r-BP does not increase (for a formal argument, please
see Sect. 2.1). Thus, if one keeps adding edges to a graph, eventually it will have
a dynamo of minimum possible size, i.e. r. Thus, it would be interesting to ask
for the degree-based density conditions that ensure that a graph G has a dynamo
of size r. This was studied for r-BP, in the terms of the minimum degree, by
Freund, Poloczek, and Reichman [9]. They proved that if the minimum degree
δ(G) is at least � r−1

r n�, then there is a dynamo of size r in G. Gunderson [12]
showed that the statement holds even for δ(G) ≥ n

2 +r, and this is tight up to an
additive constant. We study the same question concerning the two-way variant
and prove that if δ(G) ≥ n

2 +r then the graph includes Ω(nr) dynamos of size r.
Note that this statement is stronger than Gunderson’s result. Firstly, we prove
that there is a dynamo of size r in two-way r-BP, which implies there is a dynamo
of size r in r-BP. Moreover, we show that there is not only one but also Ω(nr)
of such dynamos. It is worth to stress that our proof is substantially shorter and
simpler.

We say a dynamo is monotone if it makes all nodes black monotonically,
that is no black node ever becomes white during the process. In r-BP and α-
BP, any dynamo is monotone by definition, but in the two-way variants this
is not necessarily true. Monotone dynamos also have been studied in different
classes of graphs, see e.g. [1,8,15]. We provide tight bounds on the minimum size
of a monotone dynamo in general graphs and also the special case of trees. In
particular in two-way α-BP for α > 1

2 , we prove the tight lower bound of
√

α
1−αn

on the minimum size of a monotone dynamo in general case. Interestingly, this
bound drastically increases if we limit the underlying graph to be a tree. A
question which arises, is whether there is a relation among the minimum size
of a monotone dynamo and the girth of the underlying graph or not? This is
partially answered in [6] for r-BP.

If all nodes in a dynamo are black, then black color will occupy the whole
graph eventually. What if we only require the black color to survive in all upcom-
ing rounds, but not necessarily occupy the whole graph? To address this ques-
tion, we introduce two concepts of a stable set and immortal set. A non-empty
node set S is stable (analogously immortal) whenever the following hold: If ini-
tially S is fully black, it stays black forever (respectively, black color survives
forever). (See Sect. 1.1 for formal definitions) Trivially, a stable set is also immor-
tal, but not necessarily the other way around. Similar to dynamo, we provide
tight bounds on the minimum size of a stable and an immortal set; see Table 2.
In r-BP and α-BP, a black node stays unchanged; thus, the minimum size of a
stable/immortal set is equal to one. However, the situation is a bit more involved
in two-way variants. Surprisingly, it turns out that in two-way 2-BP the parity
of n, the number of nodes in the underlying graph, plays a key role.

384 A. N. Zehmakan

The layout of the paper is as follows. First, we set some basic defini-
tions in Sect. 1.1. Then, the bounds for dynamos, monotone dynamos, and sta-
ble/immortal sets are presented respectively in Sects. 2.1, 2.2, and 2.3.

1.1 Preliminaries

Let G = (V,E) be a graph that we keep fixed throughout. We always assume
that G is connected. For a node v ∈ V , Γ (v) := {u ∈ V : {u, v} ∈ E} is the
neighborhood of v. For a set S ⊂ V , we define Γ (S) :=

⋃
v∈S Γ (v) and ΓS(v) :=

Γ (v)∩S. Furthermore, d(v) := |Γ (v)| is the degree of v and dS(v) := |ΓS(v)|. We
also define Δ(G) and δ(G) to be respectively the maximum and the minimum
degree in graph G. (To lighten the notation, we sometimes shortly write Δ and δ
where G is clear form the context). In addition, for a node set A ⊂ V , we define
the edge boundary of A to be ∂(A) := {{u, v} : v ∈ A ∧ u ∈ V \ A}.

A configuration is a function C : V → {b, w}, where b and w stand for black
and white. For a node v ∈ V , the set Γ C

a (v) := {u ∈ Γ (v) : C(u) = a} includes
the neighbors of v which have color a ∈ {b, w} in configuration C. We write
C|S = a for a set S ⊆ V and color a ∈ {b, w} if C(u) = a for every u ∈ S.

Assume that for a given initial configuration C0 and some integer r ≥ 1, Ct(v),
which is the color of node v ∈ V in round t ≥ 1, is equal to b if |Γ Ct−1

b (v)| ≥ r,
and Ct(v) = w otherwise. This process is called two-way r-bootstrap percolation.
If we require that a black node to stay black forever, i.e., Ct(v) = w if and
only if |Γ Ct−1

b (v)| < r and Ct−1(v) = w, then the process is called r-bootstrap
percolation.

Assumptions. We assume that r is fixed while we let n, the number of nodes
in the underlying graph, tend to infinity. Note that if d(v) < r for a node v, it
never gets black in (two-way) r-BP, except it is initially black; thus, we always
assume that r ≤ δ(G).

Furthermore, suppose that for a given initial configuration C0 and some fixed
value 0 < α < 1, Ct(v) = b for v ∈ V and t ≥ 1 if |Γ Ct−1

b (v)| ≥ α|Γ (v)| and
Ct(v) = w otherwise. This process is called two-way α-bootstrap percolation. If
again we require a black node to stay unchanged, i.e., Ct(v) = w if and only
if |Γ Ct−1

b (v)| < α|Γ (v)| and Ct−1(v) = w, then the process is called α-bootstrap
percolation.

For any of the above processes on a connected graph G = (V,E), we define a
node set D to be a dynamic monopoly, or shortly dynamo, whenever the following
holds: If Ct|D = b for some t ≥ 0, then Ct′ |V = b for some t′ ≥ t. Furthermore,
assume that for a non-empty node set S, if Ct|S = b for some t ≥ 0, then Ct′ |S = b
for any t′ ≥ t; then, we say S is a stable set. Finally, a node set I is an immortal
set when the following is true: If Ct|I = b for some t ≥ 0, then for any t′ ≥ t
there exists a node v ∈ V so that Ct′(v) = b.

For a graph G we define the following notations:

• MDr(G) := The minimum size of a dynamo in r-BP.
• ←−−

MDr(G) := The minimum size of a dynamo in two-way r-BP.

Tight Bounds on the Minimum Size of a Dynamic Monopoly 385

• MSr(G) := The minimum size of a stable set in r-BP.
• ←−−

MSr(G) := The minimum size of a stable set in two-way r-BP.
• MIr(G) := The minimum size of an immortal set in r-BP.
• ←−−

MIr(G) := The minimum size of an immortal set in two-way r-BP.

We analogously define MDα(G), MSα(G), MIα(G) for α-BP and
←−−
MDα(G),←−−

MSα(G), and
←−−
MIα(G) for two-way α-BP.

As a warm-up, let us compute some of these parameters for some specific
class of graphs in Lemma 1, which actually come in handy several times later for
arguing the tightness of our bounds.

Lemma 1. For complete graph Kn, MDr(Kn) =
←−−−
MDr(Kn) = r and

MDα(Kn) ≥ �αn� − 1. Furthermore, for an r-regular graph G = (V,E) and
r ≥ 2,

←−−−
MDr(G) = n.

Proof. Firstly, r ≤ MDr(Kn) because by starting from a configuration with less
than r black nodes in r-BP, clearly in the next round all nodes will be white.
Secondly,

←−−−
MDr(Kn) ≤ r because from a configuration with r black nodes in

two-way r-BP, in the next round all the n − r white nodes turn black and after
one more round all nodes will be black because n− r is at least r +1 (recall that
we assume that r is fixed while n tends to infinity). By these two statements
and the fact that MDr(Kn) ≤ ←−−−

MDr(Kn) (this is true since a dynamo in two-
way r-BP is also a dynamo in r-BP), we have MDr(Kn) =

←−−−
MDr(Kn) = r. In

two-way α-BP on Kn, by starting with less than �α(n − 1)� black nodes, the
process gets fully white in one round, which implies that MDα(Kn) ≥ �αn�−1.
(The interested reader might try to find the exact value of MDα(Kn) as a small
exercise).

For two-way r-BP on an r-regular graph G, consider an arbitrary config-
uration with at least one white node, say v. Trivially, in the next round all
nodes in Γ (v) will be white. Thus, by starting from any configuration except the
fully black configuration, the process never gets fully black. This implies that←−−
MDr(G) = n. (We exclude r = 1 because a 1-regular graph is disconnected for
large n.) ��

2 Lower and Upper Bounds

2.1 Dynamos

In this section, we provide lower and upper bounds on the minimum size of a
dynamo in α-BP (Theorem 1), two-way α-BP (Theorem 2), r-BP (Theorem 3),
and two-way r-BP (Theorem 4). See Table 1 for a summary. Furthermore in
Theorem 5, we present sufficient minimum degree condition for a graph to have
a dynamo of size r in two-way r-BP.

In Theorem 1, the lower bound is trivial and the upper bound is proven by
applying an idea similar to the one from Theorem 2.1 in [16].

386 A. N. Zehmakan

Table 1. The minimum size of a dynamo. All bounds are tight up to an additive
constant, except some of the bounds for two-way α-BP.

Model Lower bound Upper bound

α-BP 1 (
δ+ 1

α
δ+1) αn

Two-way α-BP α > 3
4 2α

√
n − 1 n

Two-way α-BP α ≤ 3
4 1 n

r-BP r (r
1+δ

) n

Two-way r-BP r ≥ 2 r n

Two-way r-BP r = 1 1 2

Theorem 1. For a graph G = (V,E), 1 ≤ MDα(G) ≤ (δ+ 1
α

δ+1) αn.

Proof. We apply an probabilistic method argument. Consider an arbitrary label-
ing L : V → [n], which assigns a unique label from 1 to n to each node. Define
the set DL := {v ∈ V : |{u ∈ Γ (v) : L(u) < L(v)}| < αd(v)}. We claim that
DL is a dynamo in α-BP, irrespective of L. More precisely, we show that by
starting from a configuration where DL is fully black, in the t-th round for t ≥ 1
all nodes with label t or smaller are black. This immediately implies that DL is
a dynamo since in at most n rounds the graph gets fully black. The node with
label 1 is in DL by definition; thus, it is black in the first round. As the induction
hypothesis, assume that all nodes with label t or smaller are black in the t-th
round for some t ≥ 1. If node v with label t+1 is in DL then it is already black;
otherwise, it has at least αd(v) neighbors with smaller labels, which are black
by the induction hypothesis. Thus, v will be black in the (t + 1)-th round and
all nodes with smaller labels also will stay black.

Assume that we choose a labeling L uniformly at random among all n! pos-
sible labellings. Let us compute the expected size of DL.

E[|DL|] =
∑
v∈V

Pr[node v is in DL] =
∑
v∈V

�αd(v)�
d(v) + 1

≤
∑
v∈V

αd(v) + 1
d(v) + 1

≤
∑
v∈V

αδ + 1
δ + 1

= (
δ + 1

α

δ + 1
)αn.

Therefore, there exists a labeling L with |DL| ≤ (δ+ 1
α

δ+1)αn, which implies that
there exists a dynamo of this size. ��
Tightness. The lower bound is tight since in the star Sn, a tree with one internal
node and n leaves, the internal node is a dynamo, irrespective of 0 < α < 1.
Furthermore for the complete graph Kn, MDα(Kn) ≥ �αn� − 1 (see Lemma 1)
and our upper bound is equal to αn+1−α (by plugging in the value δ = n−1).
Thus, the upper bound is tight up to an additive constant.

Theorem 2. For a graph G = (V,E),

Tight Bounds on the Minimum Size of a Dynamic Monopoly 387

(i) 2α
√

n − 1 ≤ ←−−
MDα(G) ≤ n for α > 3

4

(ii) 1 ≤ ←−−
MDα(G) ≤ n for α ≤ 3

4 .

Proof. We prove the lower bound of 2α
√

n − 1; all other bounds are trivial. Let
D be an arbitrary dynamo in two-way α-BP for α > 3

4 . Consider the initial
configuration C0 where C0|D = b and C0|V \D = w. Furthermore, we define for
t ≥ 1 Bt := {v ∈ V : Ct′−1(v) = Ct′(v) = b for some t′ ≤ t} to be the set of nodes
which are black in two consecutive rounds up to the t-th round.

Now, we define the potential function Φt := |Bt| + |∂(Bt)| to be the number
of nodes in Bt plus the number of edges with exactly one endpoint in Bt. Since
D is a dynamo, there exists some T ≥ 1 such that CT |V = b, which implies
that CT+1|V = b. Thus, we have ΦT+1 = |BT+1| + |∂(BT+1)| = n + 0 = n. We
prove that Φ1 ≤ 1

4α2 (|D| + (2α − 1))2 and Φt+1 ≤ Φt for any t ≥ 1. Therefore,
n = ΦT+1 ≤ Φ1 ≤ 1

4α2 (|D| + (2α − 1))2, which results in

4α2n ≤ (|D| + (2α − 1))2 ⇒ 2α
√

n − 2α + 1 ≤ |D| 2α<2===⇒ 2α
√

n − 1 ≤ |D|.
Firstly, we prove that Φt+1 ≤ Φt for any t ≥ 1. Define the set B := Bt+1 \ Bt.
If B = ∅, then Bt = Bt+1, because by definition Bt ⊆ Bt+1, which implies that
Φt+1 = Φt. Thus, assume that B �= ∅. A node v ∈ B is black in both rounds
t and t + 1, which means it has at least αd(v) black neighbors in the (t − 1)-
th round and αd(v) black neighbors in the t-th round. Thus by the pigeonhole
principle, at least 2α − 1 fraction of its neighbors are black in both rounds t − 1
and t. In other words, at least 2α − 1 fraction of its neighbors are in Bt. Note
that 2α − 1 > 1

2 for α > 3
4 . Therefore, for each node v ∈ B more than half of its

neighbors are in Bt. This implies that |∂(Bt+1)| ≤ |∂(Bt)| − |B|. Thus,

Φt+1 = |Bt+1| + |∂(Bt+1)| ≤ |Bt| + |B| + |∂(Bt)| − |B| = |Bt| + |∂(Bt)| = Φt.

It remains to show that Φ1 ≤ 1
4α2 (|D| + (2α − 1))2. Recall that for a node

v ∈ B1, dV \D(v) and dD\B1(v) are the number of edges that v shares with nodes
in V \D and D\B1, respectively. In addition, note that C0(v) = C1(v) = b by the
definition of B1. Since all nodes in V \D are white in C0 and v must be black in C1,
dV \D(v)

d(v) ≤ (1−α). Furthermore, since v has at most |D|−1 neighbors in D (this
is true because C0(v) = b, that is v ∈ D), we have that |D|−1+dV \D(v) ≥ d(v).

Thus, dV \D(v)

|D|−1+dV \D(v) ≤ (1 − α), which implies that dV \D(v) ≤ 1−α
α (|D| − 1).

Moreover, since B1 ⊆ D, dD\B1(v) ≤ |D|− |B1|. Putting the last two statements
together outputs dV \B1(v) ≤ |D| − |B1| + 1−α

α (|D| − 1) = 1
α |D| − |B1| + α−1

α .
Therefore

Φ1 = |B1| + |∂(B1)| ≤ |B1| + |B1| · (
1
α

|D| − |B1| +
α − 1

α
) =

(
1
α

|D| +
2α − 1

α
)|B1| − |B1|2 =

|D| + (2α − 1)
α

|B1| − |B1|2.

The upper bound is maximized for |B1| = 1
2 (|D|+(2α−1)

α). Thus, Φ1 ≤ 1
4α2 (|D| +

(2α − 1))2. ��

388 A. N. Zehmakan

Tightness. Let us first consider part (i). We show that there exist n-node graphs
with dynamos of size k =

√
α

1−αn for α > 3
4 (actually our construction works

also for α ≥ 1/2), which demonstrates that our bound is asymptotically tight.
Consider a clique of size k and attach n

k − 1 distinct leaves to each of its nodes.
The resulting graph has k+k(n

k −1) = n nodes. Consider the initial configuration
C0 in which the clique is fully black and all other nodes are white. In C1, all the
leaves turn black because their neighborhood is fully black in C0. Furthermore,
each node v in the clique stays black since it has k − 1 black neighbors and
k − 1 ≥ αd(v), which we prove below. Thus, it has a dynamo of size k.

αd(v) = α(k − 1 +
n

k
− 1) = α(

√
α

1 − α
n +

√
1 − α

α
n − 2) =

√
α

1 − α
(α

√
n + (1 − α)

√
n) − 2α

α≥1/2

≤
√

α

1 − α
n − 1 = k − 1.

For α > 1
2 and the cycle Cn, a dynamo must include all nodes. Let C be a

configuration on Cn with at least one white node, in two-way α-BP for α > 1
2 in

the next round both its neighbors will be white. Thus, a configuration with one
or more white nodes never reaches the fully black configuration. This implies
that our trivial upper bound of n is tight.

Now, we provide the following observation for the cycle Cn, which implies
that the lower bound in part (ii) is tight for α ≤ 1

2 . However, for 1
2 < α ≤ 3

4 we
do not know whether this bound is tight or not.

Observation 1.
←−−
MDα(Cn) = 1 for α ≤ 1

2 and odd n.

Proof. Consider an odd cycle v1, v2, · · · , v2k+1, v1 for n = 2k + 1. Assume that
in the initial configuration C0 there is at least one black node, say v1. In con-
figuration C1, nodes v2 and v2k+1 are both black because α ≤ 1

2 . With a simple
inductive argument, after k rounds two adjacent nodes vk+1 and vk+2 will be
black. In the next round, they both stay black and nodes vk and vk+3 get black
as well. Again with an inductive argument, after at most k more rounds all nodes
will be black. ��
Theorem 3. [16] For a graph G, r ≤ MDr(G) ≤ (r

1+δ)n.

The upper bound is known by prior work [16]. The lower bound is trivial since if
a configuration includes less than r black nodes in r-BP, no white node will turn
black in the next round. Furthermore, MDr(Kn) = r (see Lemma 1), which
implies that the lower bound and upper bound are both tight (note for Kn,
(r
1+δ)n = r).

Theorem 4. In a graph G,

(i) if r ≥ 2, r ≤ ←−−
MDr(G) ≤ n

(ii) if r = 1,
←−−
MDr(G) = 2 if G is bipartite and

←−−
MDr(G) = 1 otherwise.

Tight Bounds on the Minimum Size of a Dynamic Monopoly 389

The bounds in part (i) are trivial. Regarding part (ii), if G is not bipartite, it has
an odd cycle. We show that any node on such a cycle is a dynamo for two-way
1-BP. For a bipartite graph, there is no dynamo of size one, but any two adjacent
nodes are a dynamo. The formal proof will be provided in the extended version
of the paper.

Tightness. The bounds in part (i) are tight because
←−−
MDr(Kn) = r and←−−

MDr(G) = n for any r-regular graph G and r ≥ 2 (see Lemma 1).
For graphs G = (V,E) and G′ = (V,E′), if E ⊂ E′ then MDr(G′) ≤

MDr(G) and
←−−
MDr(G′) ≤ ←−−

MDr(G). This is true because by a simple inductive
argument any dynamo in G is also a dynamo in G′. Thus, if we keep adding
edges to any graph, eventually it will have a dynamo of minimum possible size,
namely r, in both r-BP and two-way r-BP. Thus, it would be interesting to ask
for the degree-based density conditions that ensure that a graph has a dynamo
of size r. Gunderson [12] proved that if δ ≥ n

2 + r for a graph G (r can be
replaced by r − 3 for r ≥ 4), then MDr(G) = r. We provide similar results for
the two-way variant.

Theorem 5. If δ ≥ n
2 + r for a graph G = (V,E), then it has Ω(nr) dynamos

of size r in two-way r-BP.

Note that this statement is stronger than Gunderson’s result. Firstly, we prove
that there is a dynamo of size r in two-way r-BP, which immediately implies
that there is a dynamo of such size in r-BP. In addition, we prove that actually
there exist Ω(nr) of such dynamos (this is asymptotically the best possible since
there are

(
n
r

)
= O(nr) sets of size r). It is worth to mention that our proof is

substantially shorter. (The proof of Theorem5 is given in the extended version
of the paper.)

2.2 Monotone Dynamos

Let us first define a monotone dynamo formally. For a graph G = (V,E), we say
a node set D is a monotone dynamo whenever the following holds: If C0|D = b
and C0|V \D = w, then for some t ≥ 1 we have Ct|V = b and Ct′−1 ≤ Ct′ for any
t′ ≤ t, which means any black node in Ct′−1 is also black in Ct′ . Now, we provide
bounds on the minimum size of a monotone dynamo. Since a dynamo in r-BP
and α-BP is monotone by definition, our bounds from Sect. 2.1 apply.

For a graph G = (V,E), the minimum size of a monotone dynamo in two-way
r-BP is lower-bounded by r + 1. Assume that there is a monotone dynamo D
of size r or smaller. If C0|D = b and C0|V \D = w, then C1|D = w; this is in
contradiction with the monotonicity of D. This lower bound is tight because in
Kn, a set of size r + 1 is a monotone dynamo. Furthermore, the trivial upper
bound of n is tight for r-regular graphs with r ≥ 2 (see Lemma 1). For r = 1,
any two adjacent nodes are a monotone dynamo; thus, the minimum size of a
monotone dynamo is two.

In two-way α-BP, for α ≤ 1
2 , on the cycle Cn any two adjacent nodes are a

monotone dynamo, which provides the tight lower bound of 2. However, we are

390 A. N. Zehmakan

not aware of any non-trivial upper bound. For α > 1
2 , the trivial upper bound of n

is tight for Cn. We provide the lower bound of
√

α
1−αn − 1 in Theorem 6, which

is tight since the construction given for the tightness of Theorem2 provides
a monotone dynamo whose size matches our lower bound, up to an additive
constant. Furthermore, we show that if we restrict the underlying graph to be a
tree, we get the stronger bound of α

2−αn.

Theorem 6. For a graph G = (V,E) and two-way α-BP with α > 1
2 , the min-

imum size of a monotone dynamo is at least
√

α
1−αn − 1, and at least α

2−αn if
G is a tree.

Proof. Let set D ⊆ V be a monotone dynamo in G. Suppose the process starts
from the configuration where only all nodes in D are black. Let Dt denote the set
of black nodes in round t. Then, D0 = D and Dt ⊆ Dt+1 by the monotonicity
of D. Furthermore, define the potential function Φt := ∂(Dt). We claim that
Φt+1 ≤ Φt − |Dt \ Dt−1| because for any newly added black node, i.e. any node
in Dt \ Dt−1, the number of neighbors in Dt is strictly larger than V \ Dt (note
that α > 1

2). In addition, since D is a dynamo, CT |V = b for some T ≥ 0, which
implies ΦT = 0. Thus,

ΦT = 0 ≤ Φ0 − (n − |D|) ⇒ n ≤ Φ0 + |D|. (1)

For v ∈ D, dV \D(v) ≤ 1−α
α dD(v) because D is a monotone dynamo and at least

α fraction of v’s neighbors must be in D. Furthermore, dD(v) ≤ |D| − 1, which
implies that dV \D(v) ≤ 1−α

α (|D| − 1). Now, we have

Φ0 = ∂(D) =
∑
v∈D

dV \D(v) ≤ 1 − α

α

∑
v∈D

(|D| − 1) =
1 − α

α
|D|2 − 1 − α

α
|D|. (2)

Putting Eqs. 1 and 2 in parallel, plus some small calculations, imply that

n ≤ 1 − α

α
|D|2 + (1 − 1 − α

α
)|D| ⇒

√
α

1 − α
n − 1 ≤ |D|.

When G is a tree, we have

Φ0 = ∂(D) =
∑
v∈D

dV \D(v) ≤ 1 − α

α

∑
v∈D

dD(v) ≤ 1 − α

α
2(|D| − 1)

because the induced subgraph by D is a forest with |D| nodes, which thus has
at most |D| − 1 edges. Combining this inequality and Eq. 1 yields

n ≤ 2(1 − α)
α

|D| − 2 + |D| ⇒ n ≤ 2 − α

α
|D| ⇒ α

2 − α
n ≤ |D|.

��

Tight Bounds on the Minimum Size of a Dynamic Monopoly 391

2.3 Stable and Immortal Sets

In this section, we provide tight bounds on the minimum size of a sta-
ble/immortal set. In α-BP and r-BP a black node stays unchanged, which sim-
ply implies that MSα(G) = MIα(G) = MSr(G) = MIr(G) = 1 for a graph G.
Thus, we focus on the two-way variants in the rest of the section. The bounds
are given in Table 2.

Table 2. The minimum size of a stable/immortal set. All our bounds are tight up to
an additive constant. x = 0 and x = 1 respectively for odd and even n.

Model Stable set Immortal set

Lower bound Upper bound Lower bound Upper bound

Two-way α-BP α ≤ 1
2 � 1

1−α
� αn 1 αn

Two-way α-BP α > 1
2 � 1

1−α
� n 1 n

Two-way r-BP r = 1 2 2 1 1

Two-way r-BP r = 2 r + 1 n 2 n
1+x

Two-way r-BP r ≥ 3 r + 1 n r n

Stable Sets in Two-Way α-BP. We present tight bounds on
←−−
MSα(G) in

Theorem 7, whose proof is given in the extended version of the paper. The proof
of the lower bound is built on the simple observation that a set S is stable in
two-way α-BP if for each node v ∈ S, dS(v) ≥ αd(v). Furthermore, the main
idea to prove the upper bound of αn + O(1) is to consider a partitioning of the
node set into subsets of certain sizes such that the number of edges among them
is minimized and then show that one of the subsets is stable and has our desired
size.

Theorem 7. For a graph G = (V,E),

(i) � 1
1−α� ≤ ←−−

MSα(G) ≤ n for α > 1
2

(ii) 2 = � 1
1−α� ≤ ←−−

MSα(G) ≤ αn + O(1) for α ≤ 1
2 .

Furthermore, these bounds are tight up to an additive constant.

Stable Sets in Two-Way r-BP. For a graph G,
←−−
MSr(G) = 2 for r = 1

because two adjacent nodes create a stable set. For r ≥ 2, we have tight bounds
of r + 1 ≤ ←−−

MSr(G) ≤ n. Notice if in a configuration less than r + 1 nodes
are black, in the next round all black nodes turn white. Furthermore, the lower
bound of r +1 is tight for Kn and the upper bound is tight for r-regular graphs.

Immortal Sets in Two-Way α-BP. For a graph G, 1 ≤ ←−−
MIα(G) ≤ n for α >

1
2 and 1 ≤ ←−−

MIα(G) ≤ αn + O(1) for α ≤ 1
2 . All bounds are trivial except αn +

O(1), which is a corollary of Theorem7 (note that stability implies immortality).

392 A. N. Zehmakan

The lower bound of 1 is tight since the internal node of the star graph Sn is an
immortal set of size 1. Regarding the tightness of the upper bounds, we have←−−
MIα(Kn) ≥ α(n − 1) for α ≤ 1/2 and

←−−
MIα(Cn) = n for α > 1/2 and odd n

(this basically follows from the proof of Observation 1 by replacing black with
white and α ≤ 1

2 with α > 1
2).

Immortal Sets in Two-Way r-BP. We provide tight bounds on
←−−
MIr(G) in

Theorem 8, which is proven in the extended version of the paper. Interestingly,
the parity of n plays a key role concerning the minimum size of an immortal set
for r = 2.

Theorem 8. For a graph G = (V,E),

(i) if r = 1,
←−−
MIr(G) = 1

(ii) if r = 2, 2 ≤ ←−−
MIr(G) ≤ n

1+x (x = 0 for odd n and x = 1 for even n).

(iii) if r ≥ 3, r ≤ ←−−
MIr(G) ≤ n. Furthermore, these bounds are tight.

References

1. Balister, P., Bollobás, B., Johnson, J.R., Walters, M.: Random majority percola-
tion. Random Struct. Algorithms 36(3), 315–340 (2010)

2. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions.
Comb. Probab. Comput. 19(5–6), 643–692 (2010)

3. Balogh, J., Pete, G.: Random disease on the square grid. Random Struct. Algo-
rithms 13(3–4), 409–422 (1998)

4. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Ran-
dom Struct. Algorithms 30(1–2), 257–286 (2007)

5. Chang, C.L., Lyuu, Y.D.: Triggering cascades on strongly connected directed
graphs. In: 2012 Fifth International Symposium on Parallel Architectures, Algo-
rithms and Programming (PAAP), pp. 95–99. IEEE (2012)

6. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in
expanders. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1953–1987. Society for Industrial and Applied Math-
ematics (2015)

7. Feige, U., Krivelevich, M., Reichman, D., et al.: Contagious sets in random graphs.
Ann. Appl. Probab. 27(5), 2675–2697 (2017)

8. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in
tori. Discret. Appl. Math. 137(2), 197–212 (2004)

9. Freund, D., Poloczek, M., Reichman, D.: Contagious sets in dense graphs. Eur. J.
Comb. 68, 66–78 (2018)

10. Gärtner, B., N. Zehmakan, A.: Color War: cellular automata with majority-rule. In:
Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp.
393–404. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7 29

11. Gärtner, B., Zehmakan, A.N.: Majority model on random regular graphs. In: Ben-
der, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol.
10807, pp. 572–583. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77404-6 42

https://doi.org/10.1007/978-3-319-53733-7_29
https://doi.org/10.1007/978-3-319-77404-6_42
https://doi.org/10.1007/978-3-319-77404-6_42

Tight Bounds on the Minimum Size of a Dynamic Monopoly 393

12. Gunderson, K.: Minimum degree conditions for small percolating sets in bootstrap
percolation. arXiv preprint arXiv:1703.10741 (2017)

13. Jeger, C., Zehmakan, A.N.: Dynamic monopolies in reversible bootstrap percola-
tion. arXiv preprint arXiv:1805.07392 (2018)

14. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

15. Peleg, D.: Size bounds for dynamic monopolies. Discret. Appl. Math. 86(2–3),
263–273 (1998)

16. Reichman, D.: New bounds for contagious sets. Discret. Math. 312(10), 1812–1814
(2012)

17. Zehmakan, A.N.: Opinion forming in binomial random graph and expanders. arXiv
preprint arXiv:1805.12172 (2018)

http://arxiv.org/abs/1703.10741
http://arxiv.org/abs/1805.07392
http://arxiv.org/abs/1805.12172

Words and Codes

Recurrence in Multidimensional Words

Émilie Charlier1, Svetlana Puzynina2,3(B), and Élise Vandomme4

1 University of Liege, Liège, Belgium
echarlier@uliege.be

2 Saint Petersburg State University, Saint Petersburg, Russia
s.puzynina@gmail.com

3 Sobolev Institute of Mathematics, Novosibirsk, Russia
4 Czech Technical University in Prague, Prague, Czech Republic

elise.vandomme@fjfi.cvut.cz

Abstract. In this paper we study various modifications of the notion of
uniform recurrence in multidimensional infinite words. A d-dimensional
infinite word is said to be uniformly recurrent if for each (n1, . . . , nd) ∈ N

d

there exists N ∈ N such that each block of size (N, . . . , N) contains
the prefix of size (n1, . . . , nd). We introduce and study a new notion of
uniform recurrence of multidimensional infinite words: for each rational
slope (q1, . . . , qd), each rectangular prefix must occur along this slope,
that is in positions �(q1, . . . , qd), with bounded gaps. Such words are
called uniformly recurrent along all directions. We provide several con-
structions of multidimensional infinite words satisfying this condition,
and more generally, a series of three conditions on recurrence. We study
general properties of these new notions and in particular we study the
strong uniform recurrence of fixed points of square morphisms.

Keywords: Uniform recurrence · Multidimensional words ·
Multidimensional morphisms

Combinatorics on words in one dimension is a well-studied field of theoretical
computer science with its origins in the early 20th century. The study of two-
dimensional words is less developed, even though many concepts and results are
naturally extendable from the unidimensional case (see, e.g., [1,2,4,7]). However,
some words problems become much more difficult in dimensions higher than one.
One of such questions is the connection between local complexity and periodicity.
In dimension one, the classical theorem of Morse and Hedlund states that if
for some n the number of distinct length-n blocks of an infinite word is less
than or equal to n, then the word is periodic. In the two-dimensional case a
similar assertion is known as Nivat’s conjecture, and many efforts are made by

The second author is partially supported by Russian Foundation of Basic Research
(grant 18-31-00118). The last author acknowledges financial support by the
Ministry of Education, Youth and Sports of the Czech Republic (project no.
CZ.02.1.01/0.0/0.0/16 019/0000778).

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 397–408, 2019.
https://doi.org/10.1007/978-3-030-13435-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_29

398 É. Charlier et al.

scientists for checking this hypothesis [3,5,6]. In this paper, we are interested in
two-dimensional uniform recurrence.

A first and natural attempt to generalize the notion of recurrence to the
multidimensional setting turns out to be rather unsatisfying. Recall that an
infinite word w : N → A (where A is a finite alphabet) is said to be recurrent if
every prefix occurs as least twice. A straightforward extension of this definition
is to say that a bidimensional infinite word is recurrent if each rectangular prefix
occurs at least twice. However, with such a definition of bidimensional recurrence,
a binary bidimensional infinite word containing one row filled with 1 and the rest
filled with 0 is considered as recurrent, even though any column is not recurrent
in the unidimensional sense of recurrence.

In order to avoid this kind of undesirable phenomenon, a natural strength-
ening is to ask that every prefix occurs uniformly. In this paper, we investigate
several notions of recurrence of multidimensional infinite words w : Nd → A,
generalizing the usual notion of uniform recurrence of infinite words.

This paper is organized as follows. In Sect. 1, we define two new notions of
uniform recurrence of multidimensional infinite words: the URD words and the
SURD words. We also make some first observations in the bidimensional setting.
We then show that these two new notions of recurrence along directions do not
depend on the choice of the origin. In Sect. 2, we study fixed points of multidi-
mensional square morphisms. In particular, we provide some infinite families of
SURD multidimensional infinite words. We give a complete characterization of
SURD bidimensional infinite words that are fixed points of square morphisms
of size 2. Finally, in Sect. 3, we show how to build uncountably many SURD
bidimensional infinite words. In particular, the family of bidimensional infinite
words so-obtained contains uncountably many non-morphic SURD elements.

1 Uniform Recurrence Along Directions

Here and throughout the text, A designates an arbitrary finite alphabet and
d is a positive integer. For m,n ∈ N, the notation [[m,n]] designates the inter-
val of integers {m, . . . , n} (which is considered empty for n < m). We write
(s1, . . . , sd) ≤ (t1, . . . , td) if si ≤ ti for each i ∈ [[1, d]].

A d-dimensional infinite word over A is a map w : Nd → A. A d-dimensional
finite word over A is a map w : [[0, s1 − 1]] × · · · × [[0, sd − 1]] → A, where
(s1, . . . , sd) ∈ N

d is the size of w. A factor of a d-dimensional infinite word
w is a finite word f of some size (s1, . . . , sd) such that there exists p ∈ N

d

with f(i) = w(p + i) for each i ∈ [[0, s1 − 1]] × · · · × [[0, sd − 1]]. A factor of a
d-dimensional finite word is defined similarly. In both cases (infinite and finite),
if p = 0 then the factor f is said to be a prefix of w. Sometimes we will write wi

instead of w(i) for brevity.
Note that d-dimensional words can be considered over Z

d, i.e., w : Zd → A.
Although in our considerations it is more natural to consider one-way infinite
words, since for example, we make use of fixed points of morphisms, most of our
results and notions can be straightforwardly extended to words over Z

d.

Recurrence in Multidimensional Words 399

Definition 1 (UR). A d-dimensional infinite word w is uniformly recurrent if
for every prefix p of w, there exists a positive integer b such that every factor of
w of size (b, . . . , b) contains p as a factor.

Whenever d = 1, the previous definition corresponds to the usual notion of
uniform recurrence of infinite words. Let us now introduce two new notions of
uniform recurrence of multidimensional infinite words.

Throughout this text, when we talk about a direction q = (q1, . . . , qd), we
assume that q1, . . . , qd are coprime nonnegative integers. For the sake of concise-
ness, if s = (s1, . . . , sd), we write [[0, s−1]] in order to designate the d-dimensional
interval [[0, s1 − 1]] × · · · × [[0, sd − 1]].

Let w : Nd → A be a d-dimensional infinite word, s ∈ N
d and q ∈ N

d be a
direction. The word along the direction q with respect to the size s in w is the
infinite unidimensional word wq,s : N → A[[0,s−1]], where elements of A[[0,s−1]] are
considered as letters, defined by

∀� ∈ N,∀i ∈ [[0, s − 1]], (wq,s(�))(i) = w(i + �q).

See Fig. 1 for an illustration in the bidimensional case.

y0

y1

y2

y3

y0 = p

�q

s1

s2

y1

y2

y3

y4

y5

y0 = p

�q

s1

s2

Fig. 1. The unidimensional word wq,s is built from the blocks of size s occurring at
positions �q in w. Those blocks in A[[0,s−1]] may or may not overlap.

Definition 2 (URD). A d-dimensional infinite word w : Nd → A is uniformly
recurrent along all directions (URD for short) if for all s ∈ N

d and all directions
q ∈ N

d, there exists b ∈ N such that, in wq,s, two consecutive occurrences of the
first letter wq,s(0) are situated at distance at most b.

Definition 3 (SURD). A d-dimensional infinite word w : Nd → A is strongly
uniformly recurrent along all directions (SURD for short) if for all s ∈ N

d,
there exists b ∈ N such that, for each direction q ∈ N

d, in wq,s, two consecutive
occurrences of the first letter wq,s(0) are situated at distance at most b.

400 É. Charlier et al.

We make some preliminary observations in the bidimensional setting. We
choose the convention of representing a bidimensional infinite word w : N2 → A
by placing the rows from bottom to top, and the columns from left to right (as
for Cartesian coordinates):

...
...

...
...

w(0, 3) w(1, 3) w(2, 3) w(3, 3) · · ·
w(0, 2) w(1, 2) w(2, 2) w(3, 2) · · ·
w(0, 1) w(1, 1) w(2, 1) w(3, 1) · · ·
w(0, 0) w(1, 0) w(2, 0) w(3, 0) · · ·

The fact that all rows and columns of a bidimensional infinite word w : N2 →
A are uniformly recurrent (in the unidimensional sense) does not imply that w
is UR. Indeed, consider the word obtained by alternating two kind of rows as
depicted in Fig. 2(a): 01F and 10F where F = 01001010 · · · is the Fibonacci
word, that is, the fixed point of the morphism 0 �→ 01, 1 �→ 0. Then the square
prefix [1 0

0 1] only occurs within the first two columns.

...
...
...
...
...
...
...
...
...
...

1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·
1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·
1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·
1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·
1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·
1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·
1 0 0 1 0 0 1 0 1 0 · · ·
0 1 0 1 0 0 1 0 1 0 · · ·

...
...
...
...
...
...
...
...
...
...
...
...
...

0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
2 1 0 0 0 1 0 0 0 1 0 0 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 0 1 0 1 0 1 0 1 0 1 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
3 1 0 0 0 0 0 0 0 1 0 0 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 0 1 0 1 0 1 0 1 0 1 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
2 1 0 0 0 1 0 0 0 1 0 0 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 0 1 0 1 0 1 0 1 0 1 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
k

)b()a(

Fig. 2. (a) A non UR bidimensional infinite word having uniformly recurrent rows and
columns. (b) A UR bidimensional infinite word with uniformly recurrent rows having
different recurrence bounds.

Conversely, the fact that a bidimensional infinite word is uniformly recur-
rent does not imply that each of its row/column is uniformly recurrent with
a shared uniform bound either. In a Toeplitz fashion, fill the rows indexed by
k with the periodic word uk = (102

k−1)ω as in Fig. 2(b). More precisely, the
n-th row (with n ∈ N) is indexed by k if n ≡ 2k − 1 (mod 2k+1). Such a bidi-
mensional infinite word is UR. Indeed, consider a prefix p of size (m,n). Let
N = max(�log2(m)	, �log2(n)). The prefix p′ of size (2N , 2N) appears period-
ically according to the periods (2N+1, 0) and (0, 2N+1). Therefore each factor
of size (2N+1 + 2N − 1, 2N+1 + 2N − 1) contains p′. So it contains p as well.

Recurrence in Multidimensional Words 401

However, the distance between consecutive occurrences of 1 in a row can be
arbitrarily large, even though the bidimensional infinite word is UR.

In the end of this section, we will discuss a variation the definition above – uni-
form recurrence along all directions from any origin. As a natural generalization
of d-dimensional URD and SURD infinite words, we could ask that the recur-
rence property should not just be taken into account on the lines {�q : � ∈ N} for
all directions q but on all lines {�q + p : � ∈ N} for all origins p and directions
q. In fact, this would not be a real generalization; we will soon prove it.

Definition 4 (URDO). A d-dimensional infinite word w : Nd → A is uni-
formly recurrent along all directions from any origin (URDO for short) if for each
p ∈ N

d, the translated d-dimensional infinite word w(p) : Nd → A, i �→ w(i + p)
is URD.

Definition 5 (SURDO). A d-dimensional infinite word w : N
d → A is

strongly uniformly recurrent along all directions from any origin (SURDO for
short) if for each p ∈ N

d, the translated d-dimensional infinite word w(p) : Nd →
A, i �→ w(i + p) is SURD.

Proposition 1. A d-dimensional infinite word is URD (SURD, respectively) if
and only if it is URDO (SURDO, respectively).

Proof. Both conditions are clearly sufficient. Now we prove that they are nec-
essary. Let w : Nd → A be URD (SURD, respectively), let p, s ∈ N

d and let
f : [[0, s− 1]] → A be the factor of w of size s at position p: for all i ∈ [[0, s− 1]],
f(i) = w(i + p). We need to prove that for all directions q, there exists b ∈ N

such that (that there exists b ∈ N such that for all directions q, respectively)
consecutive occurrences of f at positions of the form �q+ p are situated at dis-
tance at most b. The situation is illustrated in Fig. 3. Consider the prefix p of
size p + s of w. Since the word is URD (SURD, respectively), for all directions
q, there exists b′ such that (there exists b′ such that for all directions q, respec-
tively) consecutive occurrences of p in positions �q are situated at distance at
most b′. Since f occurs at position p in p, this implies the condition we need
with b = b′.

f

p

s1

s2

�q

�q+ p

Fig. 3. Illustration of the proof of Proposition 1 in the bidimensional case.

402 É. Charlier et al.

2 Fixed Points of Multidimensional Square Morphisms

Similarly to unidimensional words, we can define morphisms and their fixed
points in any dimension. For simplicity, we only consider constant length mor-
phisms:

Definition 6. A d-dimensional morphism of constant size s = (s1, . . . , sd) ∈ N
d

is a map ϕ : A → A[[0,s−1]]. For each a ∈ A and for each integer n ≥ 2, ϕn(a) is
recursively defined as

ϕn(a) : [[0, sn − 1]] → A, i �→
(
ϕ
(
(ϕn−1(a))(q)

))
(r),

where i = qs + r is the componentwise Euclidean division of i by s. With these
notation, the preimage of the letter

(
ϕn(a)

)
(i) is the letter

(
ϕn−1(a)

)
(q). In the

case s = (s, . . . , s), we say that ϕ is a d-dimensional square morphism of size s.
If there exists a ∈ A with ϕ(a)0,0 = a, then the d-dimensional morphism ϕ

is prolongable from a and, in that case, the limit limn→∞ ϕn(a) is well defined.
The limit d-dimensional infinite word obtained in this way is called the fixed
point of ϕ beginning with a and it is denoted by ϕω(a).

Example 1. Figure 4 depicts the first five iterations of a bidimensional square
morphism with the convention that a black (resp. white) cell represents the
letter 1 (resp. 0).

Fig. 4. The first five iterations of the 2D morphism. 0 �→
[

0 0
0 0

]
, 1 �→

[
1 0
1 1

]

starting from 1.

We first observe that in order to study the uniform recurrence along all
directions (URD) of d-dimensional infinite words of the form ϕω(a) for a square
morphism ϕ, we only have to consider the distances between two consecutive
occurrences of the letter a.

Proposition 2. Let w be a fixed point of a d-dimensional square morphism of
size s and let q be a direction. If there exists b ∈ N such that the distance between
consecutive occurrences of w(0) along q is at most b, then, for all m ∈ N

d, the
distance between consecutive occurrences of the prefix of size m of w along q is
at most s�logs(maxm)�b.

Recurrence in Multidimensional Words 403

Proof. Let m ∈ N
d and let p be the prefix of size m of w. Let r be the integer

defined by sr−1 < maxm ≤ sr. In the d-dimensional infinite word w, the letter
w(0) occurs at position i if and only if the image ϕr(w(0)) occurs at position
sri. Therefore, if the distance between consecutive occurrences of w(0) along q
is at most b, then the distance between consecutive occurrences of p along q is
at most srb.

In order to provide a family of SURD d-dimensional infinite words, we intro-
duce the following definition.

Definition 7. For an integer s ≥ 2 and i = (i1, . . . , id) ∈ (Z/sZ)d such that
i1, . . . , id are coprime, we define 〈i〉 to be the additive subgroup of (Z/sZ)d that
is generated by i:

〈i〉 = {ki : k ∈ Z/sZ}.

Then, we let C(s) be the family of all cyclic subgroups of (Z/sZ)d:

C(s) = {〈i〉 : i ∈ (Z/sZ)d, gcd(i) = 1}.

If the alphabet A is binary (in which case we assume without loss of generality
that A = {0, 1}), then we talk about binary morphism.

Proposition 3. If ϕ is a d-dimensional square binary morphism of size s such
that ϕ(1)0 = 1 and if, for every C ∈ C(s), there exists i ∈ C such that ϕ(0)i =
ϕ(1)i = 1, then its fixed point ϕω(1) is SURD. More precisely, for all m ∈ N

d,
the distance between consecutive occurrences of the prefix of size m of ϕω(1)
along any direction is at most s�logs(maxm)�+1.

Proof. Let q ∈ N
d be a given direction. Let r = q mod s (componentwise) and

d = gcd(r). By hypothesis, there exists i ∈ 〈 1dr〉 such that (ϕ(0))i = (ϕ(1))i = 1.
Let k ∈ [[0, s − 1]] such that i = k

dr mod s. Then kq ≡ kr ≡ di mod s. Observe
that gcd(d, s) divides r and s, hence also divides q. This implies that gcd(d, s) =
1. Let � = d−1k mod s. Then �q ≡ i mod s. We obtain that for all n ∈ N,
(� + ns)q ≡ i mod s, hence (ϕω(1))(�+ns)q = 1. This proves that the distance
between consecutive occurrences of the letter 1 in ϕω(1) along the direction q is
at most s.

Now let m ∈ N
d and consider the prefix p of size m of ϕω(1). From the first

part of the proof and by Proposition 2, we obtain that the distance between
consecutive occurrences of p along any direction is at most s�logs(maxm)�+1.

Since each subgroup of (Z/sZ)d contains 0, the following result is immediate.

Corollary 1. Let ϕ be a d-dimensional square binary morphism of size s such
that (ϕ(1))0 = (ϕ(0))0 = 1. Then the fixed point ϕω(1) is SURD. More precisely,
for all m ∈ N

d, the distance between consecutive occurrences of the prefix of size
m of ϕω(1) along any direction is at most s�logs(maxm)�+1.

404 É. Charlier et al.

Remark 1. For s prime, orbits of any two elements either coincide, or have only
the element 0 in common. Therefore, for s prime, we have exactly sd−1

s−1 distinct
orbits. In particular, for d = 2, this gives s + 1 distinct orbits. Hence we can
consider a partition of (Z/sZ)2 into s+2 sets: s+1 orbits without 0 and 0 itself.
When s is not prime, the structure is a more complicated and we do not have
such a nice partition. Examples below illustrate the two situations.

⎡
⎢⎢⎢⎢⎣

b f e d c
b d f c e
b e c f d
b c d e f
0 a a a a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

b j h f d c

b, f, k i d, j, e k c, h, i e

b, d, h, � g � c, f, j, g � g

b, f, k e c, h, i k d, e, j i

b c d f h j

0 a a, g, � a, k, i, e a, g, � a

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
1 ∗ 1 ∗ ∗ ∗
∗ ∗ ∗ 1 ∗ ∗
∗ ∗ 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) s = 5 (b) s = 6 (c) s = 6

Fig. 5. Partitions with d = 2 and an example on how to fill them.

Example 2. Partition for s = 5 and d = 2 is illustrated in Fig. 5(a) where each
letter in {a, . . . , f} represents an orbit. Due to Proposition 3, in order to obtain
a SURD fixed point of a bidimensional square morphism, it is enough to have a
1 in the images of 0 and 1 in one of the coordinates marked by each letter. And
by Corollary 1, having a 1 in the coordinate (0, 0) in both the images of 0 and
1 is enough.

Example 3. For s = 6 and d = 2, one has 12 orbits (which can be checked by
considering the 36 possible cases of pairs of remainders of the Euclidean division
by 6, out of which there are only 21 coprime pairs to consider). They are depicted
using letters in {a, . . . , �} in Fig. 5(b). We remark that here the orbits intersect.
Due to Proposition 3, in order to obtain a SURD word, it suffices to have a
1 in both images of 0 and 1 in at least one of the elements of each orbit. For
example, it is the case of the fixed point of any morphism with ones in the
marked positions in the images of both 0 and 1 as in Fig. 5(c).

Since a power of a morphism ϕ has the same fixed points as ϕ, the following
result is immediate.

Corollary 2. If ψ is a d-dimensional square binary morphism of size s such that
for some integer i, its power ϕ = ψi satisfies the conditions of Proposition 3, then
the fixed point ψω(1) is SURD. More precisely, for each m ∈ N

d, the distance
between consecutive occurrences of the prefix p of size m of ψω(1) is at most
si�log(maxm)�+i.

Recurrence in Multidimensional Words 405

Example 4. The morphism

ψ : 0 �→
⎡
⎣

0 0 0
1 1 1
0 1 0

⎤
⎦ , 1 �→

⎡
⎣

0 1 0
1 0 1
1 1 0

⎤
⎦

satisfies the hypotheses of Corollary 2 for s = 3, i = 2. Indeed, it can be checked
that for each C ∈ C9, we can find a 1 in both images ψ2(0) and ψ2(1).

Now we give a family of examples of SURD d-dimensional words which do not
satisfy the hypotheses of Corollary 2, showing that it does not give a necessary
condition. We first need the following observation on unidimensional fixed points
of morphisms.

Lemma 1. Let s be a prime and let ϕ be a unidimensional binary morphism of
constant length s such that ϕ(1)0 = 1, ϕ(0)0 = 0 and there exists i ∈ [[1, s − 1]]
such that ϕ(0)i = ϕ(1)i = 1. For all positive integers m, the maximal distance
between consecutive occurrences of 1 in the arithmetic subsequence k �→ ϕω(1)mk

of ϕω(1) is at most s.

Proof. Let w = ϕω(1) and let m be a positive integer. Denote by dm the maximal
distance between consecutive occurrences of 1 in k �→ wmk. We have to show
that dm ≤ s. The integer m can be decomposed in a unique way as m = se�
with e, � ∈ N and � ≡ 0 mod s. We prove the result by induction on e ∈ N.
If e = 0 then m ≡ 0 mod s. Since there is a 1 in the i-th place of both the
images of 0 and 1 and since i = 0, we obtain that dm ≤ s in this case. Now
suppose that e > 0 and that the result is correct for e − 1. Observe that, for
every k ∈ N, the preimage of the letter wmk = wse�k is the letter wm

s k = wse−1�k.
By definition of the morphism and since m ≡ 0 mod s, for each k ∈ N, the letter
wmk is equal to 0 if its preimage is 0 and is equal to 1 if its preimage is 1. But
by induction hypothesis, for all k ∈ N, at least one of the s preimages wm

s k,
wm

s (k+1), . . . , wm
s (k+s−1) is equal to 1. Therefore, we obtain that for all k ∈ N,

at least one of the s letters wmk, wm(k+1), . . . , wm(k+s−1) is equal to 1 as well,
which shows that dm ≤ s.

Proposition 4. If ϕ is a d-dimensional square binary morphism of a prime size
s such that

1. ∀i2, . . . , id ∈ [[0, s − 1]], ϕ(1)0,i2,...,id
= 1 and ϕ(0)0,i2,...,id

= 0
2. ∃i1 ∈ [[0, s − 1]], ∀i2, . . . , id ∈ [[0, s − 1]], ϕ(0)i1,...,id

= ϕ(1)i1,...,id
= 1

then ϕω(1) is SURD.

Proof. By Proposition 2, we only have to show that there exists a uniform bound
b such that the distance between consecutive occurrences of 1 along any direction
of ϕω(1) is at most b. It is sufficient to prove the result for the fixed point
beginning with 1 of the morphism ϕ satisfying the hypotheses (1) and (2) and
having 0 at any other coordinates in the images of both 0 and 1, since all other

406 É. Charlier et al.

fixed points satisfying the hypotheses of the proposition differ from this one only
by replacing some occurrences of 0 by 1. For example, for d = 2, the morphism
ϕ is

ϕ : 0 �→

⎡
⎢⎢⎢⎣

0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 1 0 · · · 0
...

...
...

0 0 · · · 0 1 0 · · · 0

⎤
⎥⎥⎥⎦ , 1 �→

⎡
⎢⎢⎢⎣

1 0 · · · 0 1 0 · · · 0
1 0 · · · 0 1 0 · · · 0
...

...
...

1 0 · · · 0 1 0 · · · 0

⎤
⎥⎥⎥⎦

(where the common columns of 1’s are placed at position i1 in both images).
Each of the hyperplanes

Hk = {ϕω(1)k,i2...,id
: i2, . . . , id ∈ N}, for k ∈ N

of ϕω(1) contains either only 0’s or only 1’s. Therefore, for any direction q =
(q1, . . . , qd), we have ϕω(1)�q = ϕω(1)�q1,0,...,0, hence the unidimensional infinite
word N → A, � �→ ϕω(1)�q is the fixed point of the unidimensional morphism

σ : 0 �→ [
0 0 · · · 0 1 0 · · · 0

]
, 1 �→ [

1 0 · · · 0 1 0 · · · 0
]

(where, again, the common 1’s are placed at position i1 in both images). By
Lemma 1, we obtain that ϕω(1) is SURD with the uniform bound b = s.

Now we give a sufficient condition for a d-dimensional word to be non URD.

Proposition 5. Let ϕ be a d-dimensional square binary morphism of a prime
size s. Let q be a direction and let C = 〈q mod s〉. If ϕ(1)0 = 1, ϕ(0)0 = 0 and,
for all i ∈ C \ {0}, ϕ(1)i = ϕ(0)i = 0, then (ϕω(1)�q)i∈N = 10ω. In particular,
ϕω(1) is not recurrent along the direction q.

Proof. Suppose that the first occurrence of 1 after that in position 0 along the
direction q occurs in position �q. Since ϕ(0) and ϕ(1) have 0 on all places defined
by C \{0}, the letter ϕω(1)�q must be placed at the coordinate 0 of the image of
1. In particular, the preimage of ϕω(1)�q must be 1. Because s is prime, � must
be divisible by s and the preimage of ϕω(1)�q is ϕω(1) �

sq
. But by the choice of

� and since 0 < �
s < �, we must also have ϕω(1) �

sq
= 0, a contradiction.

However, the next result shows that the condition of Proposition 5 is not
necessary.

Proposition 6. The fixed point ϕω(1) of the morphism

ϕ : 0 �→
⎡
⎣

1 1 0
0 0 0
0 0 1

⎤
⎦ 1 �→

⎡
⎣

1 1 1
0 1 0
1 1 0

⎤
⎦

is not recurrent in the direction (1, 3).

Recurrence in Multidimensional Words 407

The next theorem gives a characterization of SURD fixed points of square
binary morphisms of size 2.

Theorem 1. If a bidimensional binary square morphism ϕ of size 2 has a
fixed point beginning with 1, then this fixed point is SURD if and only if either
ϕ(0)0,0 = 1 or ϕ(1) = [1 1

1 1].

The “if” part follows from Corollary 1. The “only if” part is proved with
a rather technical argument involving a case study analysis and using certain
properties of arithmetic progressions in the Thue-Morse word.

The previous theorem gives a characterization of strong uniform recurrence
along all directions for fixed points of bidimensional square binary morphisms of
size 2. For larger sizes of morphisms, we gave several conditions that are either
necessary (given by the contraposition of Proposition 5) or sufficient (Propo-
sitions 3 and 4). An open problem is to find a condition that would be both
necessary and sufficient in general.

Question 1. Find a characterization of strong uniform recurrence along all direc-
tions for bidimensional square binary morphisms of size bigger than 2.

3 Non-morphic Bidimensional SURD Words

In this section we provide a construction of non-morphic SURD words. To con-
struct such a word w : N2 → {0, 1}, we proceed recursively:

Step 0. For each (i, j) ∈ N
2, put w(2i, 2j) = 1.

Step 1. Fill anything you want in positions (0,1), (1,0) and (1,1). For each (i, j) ∈
N

2, put w(4i, 4j+1) = w(0, 1), w(4i+1, 4j) = w(1, 0), w(4i+1, 4j+1) = w(1, 1).
Note that the filled positions are doubly periodic with period 4.

Step n. At step n, we have filled all the positions (i, j) for i, j < 2n, and the
positions with filled values are doubly periodic with period 2n+1. Let S be a set
of pairs (k, �) with k, � < 2n+1 which have not been yet filled in. Fill anything
you want in the positions from S. Now for each (k, �) and each (k′, �′) ∈ S, define
w(2n+2k + k′, 2n+2� + �′) = w(k′, �′). Note that the filled positions are doubly
periodic with period 2n+2 (Fig. 6).

Proposition 7. Any bidimensional infinite word w defined by the construction
above is SURD. More precisely, for all s ∈ N

2, the distance between consecutive
occurrences of the prefix of size s of w along any direction is at most 2�log2(max s)�.

Proof. Let p be the prefix of w of size s and let q be a direction. We show
that the square prefix p′ of size (2k, 2k) with k = �log2(max s)	 appears within
any consecutive 2k+1 positions along q, hence this is also true for p itself. By
construction, at step k we have filled all the positions i for i < (2k, 2k), and
the positions with filled values are doubly periodic with periods (2k+1, 0) and
(0, 2k+1). Therefore the factor of size (2k, 2k) occurring at position 2k+1q in w
is equal to p′. The claim follows.

408 É. Charlier et al.

...
...
...
...
...
...
...

1 · 1 · 1 · 1 · · ·
a b · · a b · · · ·
1 c 1 · 1 c 1 · · ·· · · · · · · · · ·
1 · 1 · 1 · 1 · · ·
a b · · a b · · · ·
1 c 1 · 1 c 1 · · ·

Fig. 6. Construction of a non-morphic SURD bidimensional word.

Observe that the morphic words satisfying Corollary 1 for s = 2 can be
obtained by this construction.

Proposition 8. Among the bidimensional infinite words obtained by the con-
struction above, there are words which are not morphic.

Proof. The construction above provides uncountably many bidimensional infi-
nite words. However, there exist only countably many morphic words.

Remark 2. This construction can be generalized for any s ∈ N instead of 2 and
for an arbitrary alphabet. Moreover, on each step we can choose as a period any
multiple of a previous period.

Acknowledgements. We are grateful to Mathieu Sablik for inspiring discussions.

References

1. Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional gen-
eralization of Sturmian sequences. Discrete Math. 223, 27–53 (2000)

2. Cassaigne, J.: Double sequences with complexity mn+1. J. Autom. Lang. Combin.
4, 153–170 (1999)

3. Cyr, V., Kra, B.: Nonexpansive Z
2-subdynamics and Nivat’s conjecture. Trans. Am.

Math. Soc. 367(9), 6487–6537 (2015)
4. Durand, F., Rigo, M.: Multidimensional extension of the Morse-Hedlund theorem.

Eur. J. Combin. 34, 391–409 (2013)
5. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. In:

Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47666-6 22

6. Nivat, M.: Invited talk at ICALP, Bologna (1997)
7. Vuillon, L.: Combinatoire des motifs d’une suite sturmienne bidimensionnelle.

Theor. Comput. Sci 209, 261–285 (1998)

https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1007/978-3-662-47666-6_22

A Note with Computer Exploration
on the Triangle Conjecture

Christophe Cordero(B)

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
77454 Marne-la-Vallée, France
christophe.cordero@u-pem.fr

Abstract. The triangle conjecture states that codes formed by words
of the form aibaj are either commutatively equivalent to a prefix code or
not included in a finite maximal code. Thanks to computer exploration,
we exhibit new examples of such non-commutatively prefix codes. In
particular, we improve a lower bound in a bounding due to Shor and
Hansel. We discuss in the rest of the article the possibility of those codes
to be included in a finite maximal code.

Keywords: Codes · Triangle conjecture ·
Commutative equivalence conjecture

General Notation: Let A be the alphabet {a, b}. For n ≥ 0, let A≤n be the
set of words of A∗ of length at most n. For any word w ∈ A∗, let |w|x be the
number of occurrences of the letter x ∈ A in w. For any integer n, let [n] be the
set {k ∈ N : 1 ≤ k ≤ n} and [[n]] be the set {k ∈ N : 0 ≤ k ≤ n − 1}. For a real
number x ∈ R, let �x� be the least integer greater than or equal to x.

1 Introduction

Our introduction to the theory of codes follows the book [1]. We call a subset
X ⊂ A∗ a code if for all n,m ≥ 0 and x1, . . . , xn, y1, . . . , ym ∈ X the condition

x1x2 · · · xn = y1y2 · · · ym

implies
n = m and xi = yi for all i ∈ [n].

For example, the set {aabb, abaaa, b, ba} is not a code since

(b)(abaaa)(b)(b) = (ba)(ba)(aabb).

A code is maximal if it is not contained in any other code. A subset X ⊂ A∗ is
prefix if no element of X is a proper prefix of another element in X. A prefix

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 409–420, 2019.
https://doi.org/10.1007/978-3-030-13435-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_30

410 C. Cordero

subset not containing the empty word is a code. A code X is commutatively
prefix if there exists a prefix code P such that the multisets

{(|x|a, |x|b) : x ∈ X} and {(|p|a, |p|b) : p ∈ P}

are equal. In other words, it states that one can build a prefix code from X by
allowing commutation between the letters. The commutative equivalence conjec-
ture is one of the main open problem in the theory of codes. It states that all
finite maximal code are commutatively prefix.

In this work, we study this conjecture for a particular case of codes called
bayonet code. A code X is a bayonet code if X ⊂ a∗ba∗. This particular case
of the conjecture is also called the triangle conjecture. It states that a non-
commutatively prefix bayonet code is not included in a finite maximal code
(see [9] for recent result). It is known that a bayonet code X is commutatively
prefix if and only if

∣
∣X ∩ A≤n

∣
∣ ≤ n, for all n ≥ 0. (1)

In 1984, Shor [8] found the bayonet code

{b, ba, ba7, ba13, ba14, a3b, a3ba2, a3ba4, a3ba6, a8b, a8ba2, a8ba4, a8ba6,

a11b, a11ba, a11ba2} (2)

with 16 elements and included in A≤15, thus it is a non-commutatively prefix
code. It is the only known example of finite non-commutatively prefix code. It
is still unknown if Shor’s code (2) is included in a finite maximal code. If it is
the case, then the commutative equivalence conjecture and a stronger conjecture
called factorisation conjecture (see [2] for a recent note/summary) would be false.

It is known that for all finite maximal code X and for any letter x ∈ A, there
exists k such that xk ∈ X. We call the order of a letter x the smallest integer k
such that xk belongs to X. It has been showed that if Shor’s code (2) is included
in a finite maximal code then the order of the letter a is a multiple of 330.

In the first section, we mainly do some computer explorations of non-
commutatively prefix bayonet codes. We exhibit new examples of such codes.
In particular, we exhibit the smallest ones and deduce from these a better lower
bound in a bounding due to by Shor [8] and Hansel [3]. We discuss in the rest of
the article the possibility of those codes to be included in a finite maximal code.
In the second section, we use factorisation of cyclic group theory to prove some
lower bounds for the orders of the letter a. Finally, in the last section, we find
the smallest known codes that are non-commutatively prefix and not included
in a finite maximal code.

2 Non-commutatively Prefix Bayonet Codes

Given a bayonet code X, we call its dual the bayonet code

δ(X) :=
{

aibaj | ajbai ∈ X
}

.

A Note with Computer Exploration on the Triangle Conjecture 411

Of course, a bayonet code is commutatively prefix or included in a finite maximal
code if and only if its dual is. Thus we consider in this work a bayonet code and its
dual to be the same. Even if they cannot be equal in the case we are interested in.

Proposition 1. If a bayonet code X is non-commutatively prefix then X 	=
δ(X).

Proof. Let X be an auto-dual bayonet code (i.e. X = δ(X)) and n be an integer.
Let En

i be the set
(

aiba∗ ∪ a∗bai
) ∩ A≤n,

for i ≥ 0. Thus

X ∩ A≤n =
⊔

0≤ i ≤ �n
2 �

(X ∩ En
i) and |X ∩ A≤n| =

∑

0≤ i ≤ �n
2 �

|X ∩ En
i | .

It is enough to show that |X ∩ En
i | ≤ 2, for i ≥ 0. Assume that |X ∩ En

i | > 2.
Then there exists j1 ≥ i and j1 < j2 < n − i such that

aibaj1 , aibaj2 , aj1bai, aj2bai ∈ X.

Thus
(

aibaj1
) (

aj2bai
)

=
(

aibaj2
) (

aj1bai
)

which contradicts the fact that X is a code. Thus
∣
∣X ∩ A≤n

∣
∣ ≤ n and thanks

to (1), we conclude that X is commutatively equivalent to a prefix code. This
concludes the proof by contraposition. ��
Remark 1. Notice that the auto-dual bayonet code {aiban−1−i : 0 ≤ i < n}
reaches the bound (1).

2.1 Computer Exploration

We run an exhaustive search issuing the following algorithm directly deduced
from the definition of a code. Given a set X ⊂ a∗ba∗∩A≤n, we build the oriented
graph Gabs(X) defined by the set of vertices [[n]] and by the edges

|i − k| −→ |j − �| ,

for all aibaj , akba� ∈ X with aibaj 	= akba�.

Example 1. Let X be the set
{

a4ba3, a2ba5, aba5, b, ba2
}

, the graph Gabs(X) is

4102

3

5

.

Thus X is a code (see Proposition 2).

412 C. Cordero

Then we use the following proposition.

Proposition 2. X is a code if and only if Gabs(X) does not contains a non-
empty path from 0 to 0.

Proof. Given X ⊂ a∗ba∗ ∩A≤n, there is an edge from i to j in the graph Gabs(X)
if and only if there exist U, V ∈ X such that

aiU = V aj or aiUaj = V.

By concatenation, there is a path from i to j in the graph if and only if there
exist U, V ∈ X∗ such that

aiU = V aj or aiUaj = V. (3)

Assume that there is a non-empty path from 0 to 0 going through k 	= 0. Then
by (3) there exist U1, U2, V1, V2 ∈ X∗ such that

U1 = V1a
k and U2 = akV2.

Hence U1V2 = V1U2 with U1 = V1a
k, and thus X is not a code.

Conversely, if X is not a code then there exist ai1baj1 , . . . , ainbajn ,
ak1ba�1 , . . . , aknba�n ∈ X such that

(

ai1baj1
) (

ai2baj2
) · · · (ainbajn

)

=
(

ak1ba�1
) (

ak2ba�2
) · · · (aknba�n

)

.

Thus, the graph Gabs(X) contains the path

0 = |i1 − k1| → |j1 − �1| = |i2 − k2| → · · · → |jn − �n| = 0 .

��
Remark 2. There already exist some algorithm to test in general if a given set is a
code [7]. However, we noticed that for an exhaustive search of non-commutatively
prefix bayonet code, our backtracking implementation of our algorithm (using
mostly bitwise operation) runs faster.

We ran an exhaustive search of codes violating the condition (1), for n ≤ 15.
There is no such code for n ≤ 11, n = 13, and n = 14. There are 4 codes for
n = 12. We exhibit them below by representing the bayonet word aibaj by the
two digits xixj , where xi is the i-th digit in base 17 (0, . . . , 9,A, . . . ,G).

ID Non-commutatively prefix bayonet code

X1 00 02 08 0A 18 1A 40 42 50 53 56 90 92

X2 01 03 09 0B 18 1A 40 42 50 53 56 90 92

X3 02 08 0A 10 18 1A 42 50 53 56 60 92 A0

X4 02 08 0A 18 1A 20 42 53 56 60 70 92 B0

A Note with Computer Exploration on the Triangle Conjecture 413

Up to the knowledge of the author, these are the smallest (in cardinality
and maximal word length) known non-commutatively prefix codes. In [8], Shor
asked what is the maximal value of the ratio of the cardinality of a bayonet code
divided by the length of its longest word. Hansel [3] proved an upper bound
and Shor computed the lower bound 16

15 . Thanks to codes (X1–X4), we improve
Shor’s lower bound to 13

12 .
There are 38 such codes for n = 15. They have in common the words

01 07 0D 0E 82 84 86 B1 B2 (4)

Here follow the 38 codes, where for each code we only write the additional
bayonets words.

ID Code

Y1 00 30 32 34 36 80 B0
Y2 00 30 32 34 36 80 B3
Y3 00 30 34 36 3A 80 B0
Y4 00 30 34 36 3A 80 B3
Y5 00 31 33 35 37 80 B0
Y6 00 31 33 35 37 80 B3
Y7 00 31 35 37 3B 80 B0
Y8 00 31 35 37 3B 80 B3
Y9 00 32 34 36 38 80 B0
Y10 00 32 34 36 38 80 B3
Y11 00 33 35 37 39 80 B0
Y12 00 33 35 37 39 80 B3
Y13 00 34 36 38 3A 80 B0
Y14 00 34 36 38 3A 80 B3
Y15 00 35 37 39 3B 80 B0
Y16 00 35 37 39 3B 80 B3
Y17 10 32 34 36 40 90 C0
Y18 10 34 36 3A 40 90 C0
Y19 20 32 34 36 50 A0 D0

ID Code

Y20 20 32 34 36 58 A0 D0
Y21 20 34 36 3A 50 A0 D0
Y22 20 34 36 3A 58 A0 D0
Y23 30 32 34 36 60 B0 E0
Y24 30 32 34 36 60 B3 E0
Y25 30 34 36 3A 60 B0 E0
Y26 30 34 36 3A 60 B3 E0
Y27 31 33 35 37 60 B0 E0
Y28 31 33 35 37 60 B3 E0
Y29 31 35 37 3B 60 B0 E0
Y30 31 35 37 3B 60 B3 E0
Y31 32 34 36 38 60 B0 E0
Y32 32 34 36 38 60 B3 E0
Y33 33 35 37 39 60 B0 E0
Y34 33 35 37 39 60 B3 E0
Y35 34 36 38 3A 60 B0 E0
Y36 34 36 38 3A 60 B3 E0
Y37 35 37 39 3B 60 B0 E0
Y38 35 37 39 3B 60 B3 E0

Notice that code (Y1) is Shor’s code. We also ran a partial search for n = 16.

414 C. Cordero

ID Non-commutatively prefix bayonet code

Z1 00 01 02 0B 0C 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z2 00 01 02 0B 0C 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z3 00 01 02 0B 0C 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z4 00 01 02 0B 0C 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z5 00 01 0A 0B 0C 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z6 00 01 0A 0B 0C 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z7 00 01 0A 0B 0C 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z8 00 01 0A 0B 0C 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z9 00 02 0B 0C 11 3B 3C 50 52 61 83 85 87 91 D0 D2 E1

Z10 00 02 0B 0C 11 3B 3C 50 5A 61 83 85 87 91 D0 D2 E1

Z11 01 02 03 0C 0D 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z12 01 02 03 0C 0D 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z13 01 02 03 0C 0D 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z14 01 02 03 0C 0D 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z15 01 02 0B 0C 0D 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z16 01 02 0B 0C 0D 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z17 01 02 0B 0C 0D 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z18 01 02 0B 0C 0D 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z19 01 02 0B 0C 10 3B 3C 51 52 60 82 84 86 90 D1 D2 E0

Z20 01 02 0B 0C 10 3B 3C 51 5A 60 82 84 86 90 D1 D2 E0

Z21 01 02 0B 0C 1D 3B 3C 51 52 60 82 84 86 90 D1 D2 E0

Z22 01 02 0B 0C 20 3B 3C 51 52 70 82 84 86 A0 D1 D2 F0

Z23 01 02 0B 0C 20 3B 3C 51 5A 70 82 84 86 A0 D1 D2 F0

Z24 01 02 0B 0C 2D 3B 3C 51 52 70 82 84 86 A0 D1 D2 F0

Z25 01 02 0B 0C 2D 3B 3C 51 5A 70 82 84 86 A0 D1 D2 F0

There is no such code for n = 17 containing b. However, we found the fol-
lowing codes showing that there exist codes violating (1) even when n is prime.

01 02 03 0C 0D 3C 3D 51 52 5B 80 82 84 86 D1 D2 D3 G0 (5a)
01 02 03 0C 0D 3C 3D 51 52 5B 81 83 85 87 D1 D2 D3 G0 (5b)
01 02 03 0C 0D 3C 3D 51 52 5B 82 84 86 88 D1 D2 D3 G0 (5c)

Let us recall that if one of these codes is included in a finite maximal code
then the triangle conjecture is false. In the next sections, we try to complete
each of these codes into a finite maximal one.

3 Factorisations of Cyclic Groups

In this section, we assume that the codes found in the previous section are
included in some finite maximal code. Then we use factorisation of cyclic group

A Note with Computer Exploration on the Triangle Conjecture 415

theory to prove some lower bounds for the orders of the letter a in those finites
codes.

Given n ≥ 1, the ordered pair (L,R) ⊂ [[n]]2 is a factorisation of Z/nZ if for
all k ∈ [[n]] there exists a unique pair (�, r) ∈ L × R such that k = � + r mod n.

Example 2. The ordered pair ({1, 3, 5} , {1, 2, 7, 8}) is a factorisation of Z/12Z.

In [5], Restivo, Salemi, and Sportelli showed the following link between fac-
torisation and the theory of codes.

Theorem 1. If X is a finite maximal code such that b, an ∈ X then (L,R) is a
factorisation of Z/nZ, where

L =
{

k mod n : akb+ ∈ X
}

and R =
{

k mod n : b+ak ∈ X
}

.

Such a factorisation is called a factorisation associated to X.

In [6], Sands proved the following useful theorem.

Theorem 2. If (L,R) is a factorisation of Z/nZ and p is an integer relatively
prime to |L| then (pL,R) is a factorisation of Z/nZ.

We call a Sands factorisation a factorisation (L,R) such that p, q ∈ L and
1 ∈ R where p and q are relatively prime. We still do not know if there exists a
factorisation associated to Shor’s code, i.e. if there exists an integer n such that
(L ⊇ {0, 3, 8, 11}, R ⊇ {0, 1, 7, 13, 14}) is a (Sands) factorisation of Z/nZ. We
now study the factorisations associated to the other codes found in the previous
section.

3.1 Known Factorisations

The reader can check that for n ≥ 2,
⎛

⎝{0, 4, 5, 9},
⊔

i∈[[n]]

{8i, 8i + 2}
⎞

⎠ (6)

is a factorisation of Z/8nZ associated to the code (X1). In general, the integer n
such that there exists a factorisation of Z/nZ associated to the code (X1) must be
a multiple of 4. Indeed, ({0, 4, 5, 9}, 2{0, 2, 8, 10}) and (2{0, 4, 5, 9}, {0, 2, 8, 10})
are not factorisations because 0 + 2 × 2 = 4 + 0 and 2 × 4 + 0 = 0 + 8. Thus
by Theorem 2 we have that |L| and |R| are multiples of 2, hence n is a multiple
of 4. We did not find any factorisation associated to the code (X1) where n is a
multiple of 4 and not a multiple of 8.

The reader can check that for n ≥ 2,

({0, 8, · · · , 8(n − 1)}, {0, 1, 2, 3, 4, 7, 13, 14}) (7)

is a factorisation of Z/8nZ associated to the codes (Y6, Y8, Y10, Y12, Y14, Y16).
By a similar argument, we can show that in general a factorisation of Z/nZ
associated to those codes satisfies the fact that 4 divides n.

The others factorisations associated to codes found in the previous section
are of Sands type or equivalent to a Sands factorisation.

416 C. Cordero

3.2 Sands Factorisations

We did not find Sands factorisation but we can compute some constraints about
their existence.

Assume that the code (Y2) is included in a finite maximal code. Let (L,R) be
a factorisation associated to this code, thus L ⊇ {0, 3, 8} and R ⊇ {0, 1, 7, 13, 14}.
Notice that (L, 8R), (L, 3R), and (L, 5R) are not factorisations since 8+8×0 =
0 + 8 × 1, 8 + 3 × 0 = 0 + 3 × 1, and 8 + 5 × 0 = 3 + 5 × 1, so that by Theorem2,
we have that |R| is a multiple of 2 × 3 × 5. Thus the order of the letter a is of
the form 30 × k, where k ≥ 3.

Following a similar argument we compute the following table.

Codes Order of the letter a

Y2, Y4 2 × 3 × 5 × k = 30k, with k ≥ 3

Y5, Y7, Y9, Y11, Y13, Y15 2 × 3 × 11 × k = 66k, with k ≥ 3

Y1, Y3 2 × 3 × 5 × 11 × k = 330k, with k ≥ 4

Z1, Z3, Z5, Z7 2 × 3 × 5 × 13 × k = 390k, with k ≥ 4

Z2, Z4, Z6, Z8 2 × 3 × 5 × 13 × k = 390k, with k ≥ 3

Z9, Z10 2 × 5 × 13 × k = 130k, with k ≥ 3

Remark 3. It is known [6] that (L,R) is a factorisation if and only if (L,R − r)
is a factorisation, where r ∈ R. Thus if (L ⊇ {0, 5, 13}, R ⊇ {0, 2, 11, 12}) is
a factorisation associated to the codes (Z9, Z10) then (L,R − 11) is a Sands
factorisation.

The factorisations just take into account the words belonging to ba∗ ∪ a∗b.
In the next section, we look for a more powerful tool.

4 Complete Modular Bayonet Code

In this section, we use a theorem by Perrin and Schützenberger to find the
smallest known codes that are non-commutatively prefix and not included in a
finite maximal code. Then, we propose a new approach of the triangle conjecture
thanks to this theorem.

In [4], Perrin and Schützenberger proved the following theorem.

Theorem 3. Let X be a finite maximal code. Let x ∈ A be a letter and let n be
the order of x. For all ω ∈ A∗, the set

Cx(ω) :=
{

(i mod n, j mod n) : xiωxj ∈ X∗}

has cardinal n.

A Note with Computer Exploration on the Triangle Conjecture 417

We call a n-modular bayonet code a bayonet code X such that {an} ∪ X is a
code and we said that it is complete if |X| = n. Thanks to Theorem 3, we know
that to be included in a finite maximal code, a bayonet code must be included
in a complete n-modular bayonet code.

Example 3. We call an n-permutation code a set of bayonet words X ⊆ a<nba<n

such that the square binary matrix M of size n defined by

Mi,j = 1 if and only if aibaj ∈ X

is a permutation matrix. An n-permutation code is a complete n-modular bay-
onet code.

We now try to find a complete n-modular bayonet code containing one of
our codes that is non-commutatively equivalent to a prefix code.

4.1 Computer Exploration

We slightly modify the algorithm given in Sect. 2 to test whether or not a given
set is an n-modular bayonet code. Given a set X ∈ a<nba<n, we call Gmod(X)
the oriented graph defined by the set of vertices [[n]] and by the edges

i − k mod n −→ � − j mod n ,

for all aibaj , akba� ∈ X, with aibaj 	= akba�. The set X is an n-modular bayonet
code if and only if the graph Gmod(X) does not contain a non-empty path from
0 to 0.

In the previous section, we show that the codes (X1, Y6, Y8, Y10, Y12, Y14,
Y16) might be included in a finite maximal code where the order of the letter a is
of the form 4 × k with k ≥ 4. By an exhaustive computer search, we found that
none of these codes is included in a complete n-modular bayonet code, where
n ≤ 32. Thus if (X1) is included in a finite maximal code then the order of the
letter a is of the form 4 × k, where k ≥ 10 (there is no factorisation of Z/nZ
associated to this code, where 32 < n < 40). If one of the codes (Y6, Y8, Y10,
Y12, Y14, Y16) is included in a finite maximal code then the order of the letter a
is of the form 4×k, where k ≥ 9 (there is no factorisation of Z/nZ associated to
those codes with 32 < n < 36). In particular, the computer exploration implies
the following proposition.

Proposition 3. If X is one of the codes (X1–X4), then X ∪ {a16} is a code
that is non-commutatively equivalent to a prefix code and not included in a finite
maximal code.

Proof. Let X be one of the codes (X1–X4). Then X ∪{a16} is a code. Moreover,
we checked by an exhaustive search that X is not included in a complete 16-
modular bayonet code. We conclude the proof thanks to Theorem3. ��

Up to the knowledge of the author, the four codes given in Proposition 3 are
the smallest (in cardinality and maximal length word) known codes that are not
commutatively equivalent to a prefix code and not included in a finite maximal
code.

418 C. Cordero

4.2 Transformations

In order to have a better understanding of the complete n-modular bayonet code,
we look at some transformations.

Lemma 1. If X is an n-modular code then for any r ∈ [[n]], the set

sr(X) :=
{

aibaj : aibap, aqbaj ∈ X and p + q = r mod n
}

is an n-modular code.

Proof. Given an integer r ∈ [[n]], if sr(X) is not an n-modular bayonet code then
there exists ai1baj1 , . . . , aimbajm , ak1ba�1 , . . . , akmba�m ∈ sr(X), with j1 	= �1
such that ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i1 = k1
j1 + i2 = �1 + k2 mod n

...
jm−1 + im = �m−1 + km mod n

jm = �m

By definition of sr(X), there exists ai1bap1 , aq1baj1 , . . . , aimbapm , aqmbajm ∈ X
and ak1bap′

1 , aq′
1ba�1 , . . . , akmbap′

m , aq′
mba�m ∈ X such that pt + qt = p′

t + q′
t = r

mod n, for all t ∈ [m]. Thus
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = k1
p1 + q1 = p′

1 + q′
1 mod n

j1 + i2 = �1 + k2 mod n
...

jm−1 + im = �m−1 + km mod n
pm + qm = p′

m + q′
m mod n

jm = �m

Thus X is not an n-modular code, since it has a double factorisation. We conclude
the proof by contraposition. ��

We use this lemma to prove the following theorem.

Theorem 4. If X is an n-modular code then |X| ≤ n.

Proof. Assume that X is an n-modular code such that |X| > n. Thanks to
Lemma 1, we know that for any r ∈ [[n]], sr(X) is a code thus

∑

r ∈ [[n]]

|sr(X)| = |X|2

Thus there exists r1 ∈ [[n]] such that |sr1(X)| ≥
⌈

|X|2
n

⌉

≥ n + 1. By iteration,

there exists r2, . . . , rn2 ∈ [[n]] such that
∣
∣srn2 (· · · sr2 (sr1(X)) · · ·)∣∣ > n2 which

contradicts the fact that X belongs to a<nba<n. ��

A Note with Computer Exploration on the Triangle Conjecture 419

Thanks to this theorem, we now exhibit five transformations of an n-modular
code that preserve the completeness.

Theorem 5. If X is an n-modular code (respectively complete) then

1. For all α and β, the set

τα,β(X) :=
{

ai+α mod nbaj+β mod n : aibaj ∈ X
}

is an n-modular code (respectively complete).
2. For all q prime to n, the set

ρq(X) :=
{

aqi mod nbaqj mod n : aibaj ∈ X
}

is an n-modular code (respectively complete).
3. The set

ι(X) :=
{

an−1−ibaj : aibaj ∈ X
}

is an n-modular code (respectively complete).
4. The dual code δ(X) is an n-modular code (respectively complete).
5. For any r ∈ [[n]], the set sr(X) is an n-modular code (respectively complete).

Proof

1. For any α, β ∈ [[n]], the graph Gmod(τα,β(X)) is equal to the graph Gmod(X).
Thus X is an n-modular code if and only if τα,β(X) is an n-modular code.

2. For any q prime to n, the function that associates to i ∈ [[n]] the integer qi
mod n is a graph isomorphism from Gmod(X) to Gmod(ρq(X)). Thus X is a
code if and only if ρq(X) is a code.

3. If ι(X) is not an n-modular bayonet code then the graph Gmod(ι(X)) contains
the paths

0 −→ i1 −→ i2 −→ · · · im −→ 0

and

0 −→ −i1 mod n −→ −i2 mod n −→ · · · −im mod n −→ 0 ,

for i1, . . . , im ∈ [[n]]. Thus, the graph Gmod(X) contains the path

0 −→ i1 −→ −i2 mod n −→ i3 −→ −i4 mod n −→ · · · −→ 0

which contradicts the fact that X is an n-modular code. We conclude the
proof by contraposition.

4. The graph Gmod(δ(X)) is the graph Gmod(X) with inverted arrows.
5. If X is an n-modular code then, by Lemma 1, sr(X) is an n-modular code.

Let us prove that if |X| = n then for any r ∈ [[n]], |sr(X)| = n. Assume that
|sr(X)| 	= n for r ∈ [[n]] then there exists an r′ ∈ [[n]] such that |sr′(X)| > n
which contradicts Theorem 4.

��

420 C. Cordero

The author wonders if the following Sands-like statement (a strong version
of Theorem 5.2) is true.

Conjecture 1. If X is a complete n-modular bayonet code then

ϕq(X) :=
{

aqi mod nbaj : aibaj ∈ X
}

is a complete n-modular bayonet code, for all q prime to n.

If this conjecture is true, then one can compute some lower bound for the order
of the letter a, using all the bayonet words. Notice that we already proved the
case q = n − 1 of Conjecture 1 in Theorem 5, indeed ϕq(X) = τ1,0 (ι(X)).

5 Conclusion and Perspectives

We propose three main perspectives. Firstly, we would like to enumerate the
bayonet codes that are non-commutatively equivalent to a prefix code. As we
saw in the Sect. 2, the codes we found look closely related to each other. Secondly,
we wonder if there exists a code non-commutatively equivalent to a prefix code
smaller then the codes (X1–X4). Such a code would necessarily be a non-bayonet
code. Finally, our main perspective is continuing our effort to find whether or
not there exists a bayonet non-commutatively prefix code that is included in a
complete modular bayonet code.

Acknowledgements. The author wants to thank Dominique Perrin for introducing
him to the commutatively prefix conjecture, also his Ph.D. supervisors Samuele Giraudo
and Jean-Christophe Novelli.

References

1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, vol. 129. Cambridge
University Press, Cambridge (2010)

2. De Felice, C.: A note on the factorization conjecture. Acta Informatica 50(7–8),
381–402 (2013)

3. Hansel, G.: Baionnettes et cardinaux. Discrete Math. 39(3), 331–335 (1982)
4. Perrin, D., Schützenberger, M.-P.: Codes et sous-monöıdes possédant des mots neu-

tres. In: Theoretical Computer Science. LNCS, vol. 48, pp. 270–281. Springer, Hei-
delberg (1977). https://doi.org/10.1007/3-540-08138-0 23

5. Restivo, A., Salemi, S., Sportelli, T.: Completing codes. RAIRO-Theoret. Inf. Appl.
23(2), 135–147 (1989)

6. Sands, A.D.: Replacement of factors by subgroups in the factorization of abelian
groups. Bull. Lond. Math. Soc. 32(3), 297–304 (2000)

7. Sardinas, A.A., Patterson, G.W.: A necessary and sufficient condition for unique
decomposition of coded messages. In: Proceedings of the Institute of Radio Engi-
neers, vol. 41, no. 3, pp. 425–425 (1953)

8. Shor, P.W.: A counterexample to the triangle conjecture. J. Comb. Theory Ser. A
38(1), 110–112 (1985)

9. Zhang, L., Shum, K.P.: Finite maximal codes and triangle conjecture. Discrete Math.
340(3), 541–549 (2017)

https://doi.org/10.1007/3-540-08138-0_23

Efficient Representation and Counting
of Antipower Factors in Words

Tomasz Kociumaka , Jakub Radoszewski , Wojciech Rytter ,
Juliusz Straszyński , Tomasz Waleń , and Wiktor Zuba(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
{kociumaka,jrad,rytter,jks,walen,w.zuba}@mimuw.edu.pl

Abstract. A k-antipower (for k ≥ 2) is a concatenation of k pairwise
distinct words of the same length. The study of antipower factors of a
word was initiated by Fici et al. (ICALP 2016) and first algorithms for
computing antipower factors were presented by Badkobeh et al. (Inf.
Process. Lett., 2018). We address two open problems posed by Bad-
kobeh et al. Our main results are algorithms for counting and report-
ing factors of a word which are k-antipowers. They work in O(nk log k)
time and O(nk log k + C) time, respectively, where C is the number of
reported factors. For k = o(

√
n/ log n), this improves the time complex-

ity of O(n2/k) of the solution by Badkobeh et al. Our main algorithmic
tools are runs and gapped repeats. We also present an improved data
structure that checks, for a given factor of a word and an integer k, if
the factor is a k-antipower.

Keywords: Antipower · α-gapped repeat · Run (maximal repetition)

1 Introduction

Antipowers are a new type of regularity of words, based on diversity rather than
on equality, that has been recently introduced by Fici et al. in [7,8]. Typical
types of regular words are powers. If equality is replaced by inequality, other
versions of powers are obtained.

Let us assume that x = y1 · · · yk, where k ≥ 2 and yi are words of the same
length d. We then say that:

– x is a k-power if all yi’s are the same;
– x is a k-antipower (or a (k, d)-antipower) if all yi’s are pairwise distinct;

T. Kociumaka and W. Rytter—Supported by the Polish National Science Center, grant
no 214/13/B/ST6/00770.
J. Radoszewski and J. Straszyński—Supported by the “Algorithms for text processing
with errors and uncertainties” project carried out within the HOMING program of the
Foundation for Polish Science co-financed by the European Union under the European
Regional Development Fund.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 421–433, 2019.
https://doi.org/10.1007/978-3-030-13435-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_31&domain=pdf
http://orcid.org/0000-0002-2477-1702
http://orcid.org/0000-0002-0067-6401
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0003-2207-0053
http://orcid.org/0000-0002-7369-3309
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-030-13435-8_31

422 T. Kociumaka et al.

– x is a weak k-power (or a weak (k, d)-power) if it is not a k-antipower, that
is, if yi = yj for some i �= j;

– x is a gapped (q, d)-square if y1 = yk and q = k − 2.

In the first three cases, the length d is called the base of the power or antipower x.
If w is a word, then by w[i . . j] we denote a word composed of letters

w[i], . . . , w[j] called a factor of w. A factor can be represented in O(1) space
by the indices i and j. Badkobeh et al. [1] considered factors of a word that are
antipowers and obtained the following result.

Fact 1 ([1]). The maximum number of k-antipower factors in a word of length
n is Θ(n2/k), and they can all be reported in O(n2/k) time. In particular, all
k-antipower factors of a specified base d can be reported in O(n) time.

Badkobeh et al. [1] asked for an output-sensitive algorithm that reports all
k-antipower factors in a given word. We present such an algorithm. En route
to enumerating k-antipowers, we (complementarily) find weak k-powers. Also
gapped (q, d)-squares play an important role in our algorithm.

For a given word w, an antipower query (i, j, k) asks to check if a factor
w[i . . j] is a k-antipower. Badkobeh et al. [1] proposed the following solutions:

Fact 2 ([1]). Antipower queries can be answered (a) in O(k) time with a data
structure of size O(n); (b) in O(1) time with a data structure of size O(n2).

In either case, answering n antipower queries using Fact 2 requires Ω(n2)
time in the worst case. We show a trade-off between the data structure space
and query time that allows answering any n antipower queries more efficiently.

Our Results. Our first main result is an algorithm that computes the number
C of factors of a word of length n that are k-antipowers in O(nk log k) time and
reports all of them in O(nk log k + C) time. We assume an integer alphabet
{1, . . . , nO(1)}.

Our second main result is a construction in O(n2/r) time of a data structure
of size O(n2/r), for any r ∈ {1, . . . , n}, which answers antipower queries in O(r)
time. Thus, any n antipower queries can be answered in O(n

√
n) time and space.

Structure of the Paper. Our algorithms are based on a relation between
weak powers and two notions of periodicity of words: gapped repeats and runs.
In Sect. 2, we recall important properties of these notions. Section 3 shows a
simple algorithm that counts k-antipowers in a word of length n in O(nk3)
time. In Sect. 4, it is improved in three steps to an O(nk log k)-time algorithm.
Finally, algorithms for reporting k-antipowers and answering antipower queries
are presented in Sect. 5. Omitted proofs can be found in the full version [10].

2 Preliminaries

The length of a word w is denoted by |w| and the letters of w are numbered
0 through |w| − 1, with w[i] representing the ith letter. Let [i . . j] denote the

Efficient Representation and Counting of Antipower Factors in Words 423

integer interval {i, i+1, . . . , j} and [i . . j) denote [i . . j−1]. By w[i . . j] we denote
the factor w[i] · · · w[j]; if i > j, it denotes the empty word. Let us further denote
w[i . . j) = w[i . . j − 1]. We say that p is a period of the word w if w[i] = w[i + p]
holds for all i ∈ [0 . . |w| − p).

An α-gapped repeat γ (for α ≥ 1) in a word w is a factor uvu of w such that
|uv| ≤ α|u|. The two occurrences of u are called arms of the α-gapped repeat
and |uv|, denoted per(γ), is called the period of the α-gapped repeat. Note that
an α-gapped repeat is also an α′-gapped repeat for every α′ > α. An α-gapped
repeat is called maximal if its arms can be extended simultaneously with the
same character neither to the right nor to the left. In short, we call maximal α-
gapped repeats α-MGRs and the set of α-MGRs in a word w is further denoted
by MGRepsα(w). The first algorithm for computing α-MGRs was proposed by
Kolpakov et al. [12]. It was improved by Crochemore et al. [6], Tanimura et
al. [14], and finally Gawrychowski et al. [9], who showed the following result.

Fact 3 ([9]). For a word w of length n and a parameter α, the set MGRepsα(w)
satisfies |MGRepsα(w)| ≤ 18αn, and it can be computed in O(nα) time.

A run (a maximal repetition) in a word w is a triple (i, j, p) such that w[i . . j]
is a factor with the smallest period p, 2p ≤ j−i+1, that can be extended neither
to the left nor to the right preserving the period p. Its exponent e is defined as
e = (j − i + 1)/p. Kolpakov and Kucherov [11] showed that a word of length n
has O(n) runs, with sum of exponents O(n), and that they can be computed in
O(n) time. Bannai et al. [2] recently refined these combinatorial results.

Fact 4 ([2]). A word of length n has at most n runs, and the sum of their
exponents does not exceed 3n. All these runs can be computed in O(n) time.

A generalized run in a word w is a triple γ = (i, j, p) such that w[i . . j] is a
factor with a period p, not necessarily the shortest one, 2p ≤ j − i + 1, that can
be extended neither to the left nor to the right preserving the period p. By per(γ)
we denote p, called the period of the generalized run γ. The set of generalized
runs in a word w is denoted by GRuns(w).

A run (i, j, p) with exponent e corresponds to
⌊

e
2

⌋
generalized runs (i, j, p),

(i, j, 2p), (i, j, 3p), . . . , (i, j,
⌊

e
2

⌋
p). By Fact 4, we obtain the following

Corollary 5. For a word w of length n, the set GRuns(w) can be computed in
O(n) time and it satisfies |GRuns(w)| ≤ 1.5n.

Our algorithm uses a relation between weak powers, α-MGRs, and general-
ized runs; see Fig. 1 for an example presenting the interplay of these notions.

An interval representation of a set X of integers is

X = [i1 . . j1] ∪ [i2 . . j2] ∪ · · · ∪ [it . . jt],

where i1 ≤ j1, j1 +1 < i2, i2 ≤ j2, . . . , jt−1 +1 < it, it ≤ jt; the value t is called
the size of the representation. The following simple lemma allows implementing
unions on interval representations. Its proof can be found in the full version.

424 T. Kociumaka et al.

c c c a b a b a c b a b b a c b

* * * * b a b a
* * a b a b * *
* * b a b a * *
a b a b * * * *
b a b a * * * *

a b a c b a b bantipower

b a * * * * b a
a c * * * * a c
c b * * * * c b

c c c a b a b a c b a b b a c b

* * * b a c * * * b a c
* * * a c b * * * a c b

Fig. 1. To the left: all weak (4, 2)-powers and one (4, 2)-antipower in a word of length
16. An asterisk denotes any character. The first five weak (4, 2)-powers are generated
by the run ababa with period 2, and the last three are generated by the 1.5-MGR
bacb ab bacb, whose period (6) is divisible by 2. To the right: all weak (4, 3)-powers in
the same word are generated by the same MGR because its period is a multiple of 3.

Lemma 6. Assume that X1, . . . ,Xr are non-empty families of subintervals of
[0 . . n). The interval representations of

⋃ X1,
⋃ X2, . . . ,

⋃ Xr can be computed in
O(n + m) time, where m is the total size of the families Xi.

Let J be a family of subintervals of [0 . . m), initially empty. Let us consider
the following operations on J , where I is an interval: insert(I): J := J ∪ {I};
delete(I): J := J \ {I} for I ∈ J ; and count, which returns |⋃ J |. It is
folklore knowledge that all these operations can be performed efficiently using a
static range tree (sometimes called a segment tree; see [13]). In the full version,
we prove the following lemma for completeness.

Lemma 7. There exists a data structure of size O(m) that, after O(m)-time
initialization, handles insert and delete in O(log m) time and count in
O(1) time.

Let us introduce another operation report that returns all elements of the set
A = [0 . . m) \ ⋃ J . We also show in the full version that a static range tree can
support this operation efficiently.

Lemma 8. There exists a data structure of size O(m) that, after O(m)-time ini-
tialization, handles insert and delete in O(log m) time and report in O(|A|)
time.

3 Compact Representation of Weak k-powers

Let us denote by Squares(q, d) the set of starting positions of occurrences of
gapped (q, d)-squares in the input word w.

We say that an occurrence at position i of a gapped (q, d)-square is generated
by a gapped repeat uvu if the gapped repeat has period p = (q + 1)d and
w[i . . i + d), w[i + p . . i + p + d) are contained in the first arm and in the
second arm of the gapped repeat, respectively; cf. Fig. 2. In other words, u =

Efficient Representation and Counting of Antipower Factors in Words 425

u

d

v
u

dq · d

Fig. 2. An occurrence of a gapped (q, d)-square generated by a gapped repeat with
period (q + 1)d. Gray rectangles represent equal words.

u1u2u3, |u2| = d, |u3vu1| = qd, and uvu starts in the input word at position
i − |u1|.

An occurrence in w of a (q, d)-square is generated by a generalized run with
period p = (q + 1)d if it is fully contained in this generalized run. See Fig. 3 for
a concrete example. The proof of the following lemma is in the full version.

b a b b a c a a b b a c a a b b a c a a b b a c a a b b a c c

Fig. 3. An occurrence of a gapped (2, 4)-square acaa bbac aabb acaa generated by a
generalized run with period 12. Note that the generalized run has its origin in a run
with period 6 (depicted below) that itself does not generate this gapped square.

Lemma 9.

(a) Every gapped (q, d)-square is generated by a (q+1)-MGR with period (q+1)d
or by a generalized run with period (q + 1)d.

(b) Each gapped repeat and each run γ with period (q + 1)d generates a single
interval of positions where gapped (q, d)-squares occur, denoted Squares
(q, d, γ) (see Fig. 4). Moreover, this interval can be computed in constant
time.

d

u
v

u

d

Fig. 4. An interval, represented as a sequence of four consecutive positions (black dots),
of starting positions of occurrences of gapped (q, d)-squares generated by a gapped
repeat with period (q + 1)d.

426 T. Kociumaka et al.

Let us denote Chaink(q, d, i) = { i, i−d, i− 2d, . . . , i− (k − q − 2)d }. This defi-
nition can be extended to intervals I. To this end, let us introduce the operation
I � r = { i − r : i ∈ I } and define

Chaink(q, d, I) = I ∪ (I � d) ∪ (I � 2d) ∪ · · · ∪ (I � (k − q − 2)d).

This set is further referred to as an interval chain; it can be stored in O(1) space.
We denote by WeakPowk(d) the set of starting positions in w of weak (k, d)-

powers. A chain representation of a set of integers is its representation as a union
of interval chains. The size of the chain representation is the number of chains.
The following lemma shows how to compute small chain representations of the
sets WeakPowk(d).

Lemma 10.

(a) WeakPowk(d) =
⋃k−2

q=0

⋃
i∈Squares(q,d) Chaink(q, d, i) ∩ [0 . . n − kd].

(b) WeakPowk(d) =
⋃k−2

q=0

⋃{Chaink(q, d, I) : γ ∈ MGRepsq+1(w)∪GRuns(w),
where per(γ) = (q + 1)d and I = Squares(q, d, γ) } ∩ [0 . . n − kd].

(c) For d = 1, . . . ,
n/k�, the sets WeakPowk(d) have chain representations of
total size O(nk2) which can be computed in O(nk2) time.

Proof. As for point (a), x = y1 · · · yk for |y1| = · · · = |yk| = d is a weak
(k, d)-power if and only if yi · · · yj is a gapped (j − i − 1, d)-square for some
1 ≤ i < j ≤ k. Conversely, a gapped (q, d)-square occurring at position i implies
occurrences of weak (k, d)-powers at positions in the set Chaink(q, d, i), limited
to the interval [0 . . n − kd] due to the length constraint; see Fig. 5.

The formula in (b) follows from point (a) by Lemma 9. Indeed, Lemma 9(a)
shows that every gapped (q, d)-square is generated by a (q+1)-MGR with period
(q +1)d or a generalized run with period (q +1)d. By Lemma 9(b), the starting
positions of all such gapped squares that are generated by an MGR or a gen-
eralized run γ form an interval I = Squares(q, d, γ). Hence, it yields an interval
chain Chaink(q, d, I) of starting positions of weak (k, d)-powers by point (a).

Finally, we obtain point (c) by applying the formula from point (b) to com-
pute the chain representations of sets WeakPowk(d) for all d = 1, . . . ,
n/k�.
This is also shown in the first part of the SimpleCount algorithm, where the
resulting chain representations are denoted as Cd. The total number of interval

d d
q · d

ii− di− 2di− (k − q − 2)d

k · d

. . .

Fig. 5. The fact that i ∈ Squares(q, d) is a witness of inclusion (Chaink(q, d, i) ∩ [0 . . n−
kd]) ⊆ WeakPowk(d).

Efficient Representation and Counting of Antipower Factors in Words 427

Algorithm 1. SimpleCount(w, n, k)

(Cd)
�n/k�
d=1 := (∅, . . . , ∅)

for q := 0 to k − 2 do
foreach (q + 1)-MGR or generalized run γ in w do

p := per(γ)
if (q + 1) | p then

d := p
q+1

I := Squares(q, d, γ)
Cd := Cd ∪ {Chaink(q, d, I) }

antipowers := 0
for d := 1 to �n/k	 do

WeakPowk(d) := (
⋃ Cd) ∩ [0 . . n − kd]

antipowers := antipowers + (n − kd + 1) − |WeakPowk(d)|
return antipowers

chains in these representations is O(nk2) because, for each q ∈ [0 . . k − 2], the
number of (q + 1)-MGRs and generalized runs γ is bounded by O(nk) due to
Facts 3 and 4, respectively. �

Lemma 10 lets us count k-antipowers by computing the size of the comple-
mentary sets WeakPowk(d). Thus, we obtain the following preliminary result.

Proposition 11. The number of k-antipower factors in a word of length n can
be computed in O(nk3) time.

Proof. See Algorithm 1. We use Lemma 10, points (b) and (c), to express the
sets WeakPowk(d) for all d = 1, . . . ,
n/k� as a union of O(nk2) interval chains.
That is, the total size of the sets Cd is O(nk2). Each of the interval chains
consists of at most k intervals. Hence, Lemma 6 can be applied to compute
interval representations of the sets WeakPowk(d) in O(nk3) total time. Finally,
the size of the complement of the set WeakPowk(d) (in [0 . . n − kd]) is the
number of (k, d)-antipowers. �

Next, we improve the time complexity of this algorithm to O(nk log k).

4 Counting k-antipowers in O(nk log k) Time

We improve the algorithm SimpleCount threefold. First, we show that the chain
representation of weak k-powers actually consists of only O(nk) chains. Then,
instead of processing the chains by their interval representations, we introduce a
geometric interpretation that reduces the problem to computing the area of the
union of O(nk) axis-aligned rectangles. This area could be computed directly in
O(nk log n) time, but we improve this complexity to O(nk log k) by exploiting
properties of the dimensions of the rectangles.

428 T. Kociumaka et al.

4.1 First Improvement of SimpleCount

First, we improve the O(nk2) bounds of Lemma 10(c). By inspecting the struc-
ture of MGRs, we actually show that the formula from Lemma 10(b) generates
only O(nk) interval chains. A careful implementation lets us compute such a
chain representation in O(nk) time.

We say that an α-MGR for integer α with period p is nice if α | p and
p ≥ 2α2. Let NMGRepsα(w) denote the set of nice α-MGRs in the word w. The
following lemma provides a combinatorial foundation of the improvement.

Lemma 12. For a word w of length n and an integer α > 1, |NMGRepsα(w)| ≤
54n.

Proof. Let us consider a partition of the word w into blocks of α letters (the final
n mod α letters are not assigned to any block). Let uvu be a nice α-MGR in w.
We know that 2α2 ≤ |uv| ≤ α|u|, so |u| ≥ 2α. Now, let us fit the considered
α-MGR into the structure of blocks. Since α | |uv|, the indices in w of the
occurrences of the left and the right arm are equal modulo α. We shrink both
arms to u′ such that u′ is the maximal inclusion-wise interval of blocks which is
encompassed by each arm u. Then, let us expand v to v′ so that it fills the space
between the two occurrences of u′.

Let us notice that |uv| = |u′v′|. Moreover, |u′| ≥ 1
3 |u| since u encompasses at

least one full block of w. Consequently, |u′v′| ≤ 3α|u′|.
Let t be a word whose letters correspond to whole blocks in w and u′′, v′′ be

factors of t that correspond to u′ and v′, respectively. We have |u′′| = |u′|/α and
|v′′| = |v′|/α, so u′′v′′u′′ is a 3α-gapped repeat in t. It is also a 3α-MGR because
it can be expanded by one block neither to the left nor to the right, as it would
contradict the maximality of the original nice α-MGR. This concludes that every
nice α-MGR in w has a corresponding 3α-MGR in t. Also, every 3α-MGR in t
corresponds to at most one nice α-MGR in w, as it can be translated into blocks
of w and expanded in a single way to a 3α-MGR (that can happen to be a nice
α-MGR).

We conclude that the number of nice α-MGRs in w is at most the number
of 3α-MGRs in t. As |t| ≤ n/α, due to Fact 3 the latter is at most 54n. �
Lemma 13. For d = 1, . . . ,
n/k�, the sets WeakPowk(d) have chain represen-
tations of total size O(nk) which can be computed in O(nk) time.

Proof. The chain representations of sets WeakPowk(d) are computed for d <
2k − 2 and for d ≥ 2k − 2 separately.

From Fact 1, we know that all (k, d)-antipowers can be found in O(n) time.
This lets us compute the set WeakPowk(d) (and its trivial chain representation)
in O(n) time. Across all d < 2k − 2, this gives O(nk) chains and O(nk) time.

Henceforth we consider the case that d ≥ 2k − 2. Let us note that if a
gapped (q, d)-square with d ≥ 2(q + 1) is generated by a (q + 1)-MGR, then this
(q + 1)-MGR is nice. Indeed, by Lemma 9(a) this (q + 1)-MGR has period p =
(q+1)d ≥ 2(q+1)2. This observation lets us express the formula of Lemma 10(b)
for d ≥ 2k − 2 equivalently using NMGRepsq+1(w) instead of MGRepsq+1(w).

Efficient Representation and Counting of Antipower Factors in Words 429

By Fact 4 and Lemma 12, for every q we have only |NMGRepsq+1(w) ∪
GRuns(w)| = O(n) MGRs and generalized runs to consider. Hence, the total
size of chain representations of sets WeakPowk(d) for d ≥ 2k − 2 is O(nk) as
well. The last piece of the puzzle is the following claim, proved in the full version.

Claim. The sets NMGRepsα(w) for α ∈ [1 . . k − 1] can be built in O(nk) time.

This concludes the proof. �

(a) I = [21 . . 23], q = 0 6 7 8 11 12 13 16 17 18 21 22 23

(b) I = [19 . . 21], q = 1 9 10 11 14 15 16 19 20 21

(c) I = [13 . . 20], q = 2 8 9 10 11 12 13 14 15 13 14 15 16 17 18 19 20

(d) I = [31 . . 33], q = 0 16 17 18 21 22 23 26 27 28 31 32 33

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

(a) (b) (c) (d)

Fig. 6. Examples of decompositions of various interval chains Chaink(q, d, I) into
orthogonal rectangles in the grid Gd for d = 5, k = 5, n = 52.

4.2 Second Improvement of SimpleCount

We reduce the problem to computing unions of sets of orthogonal rectangles
with bounded integer coordinates.

For a given value of d, let us fit the integers from [0 . . n − kd] into the cells
of a grid of width d so that the first row consists of numbers 0 through d − 1,
the second of numbers d to 2d − 1, etc. Let us call this grid Gd. A proof of the
following lemma can be found in the full version. The main idea is shown in
Fig. 6.

Lemma 14. The set Chaink(q, d, I) is a union of O(1) orthogonal rectangles in
Gd, each of height at most k or width exactly d. The coordinates of the rectangles
can be computed in O(1) time.

Thus, by Lemma 13, our problem reduces to computing the area of unions of
rectangles in subsequent grids Gd. In total, the number of rectangles is O(nk).

430 T. Kociumaka et al.

4.3 Third Improvement of SimpleCount

Assume that r axis-aligned rectangles in the plane are given. The area of their
union can be computed in O(r log r) time using a classic sweep line algorithm
(see Bentley [4]). This approach would yield an O(nk log n)-time algorithm for
counting k-antipowers. We refine this approach in the case that the rectangles
have bounded height or maximum width and their coordinates are bounded.

Lemma 15. Assume that r axis-aligned rectangles in [0 . . d]2 with integer coor-
dinates are given, each rectangle of height at most k or width exactly d. The area
of their union can be computed in O(r log k + d) time and O(r + d) space.

Proof. We assume first that all rectangles have height at most k.
Let us partition the plane into horizontal strips of height k. Thus, each of

the rectangles is divided into at most two. The algorithm performs a sweep line
in each of the strips. Let the sweep line move from left to right. The events in
the sweep correspond to the left and right sides of rectangles. The events can
be sorted left-to-right, across all strips simultaneously, in O(r + d) time using
bucket sort [5]. For each strip, the sweep line stores a data structure that allows
insertion and deletion of intervals with integer coordinates in [0 . . k] and querying
for the total length of the union of the intervals that are currently stored. This
corresponds to the operations of the data structure from Lemma 7 for m = k
(with elements corresponding to unit intervals), which supports insertions and
deletions in O(log k) time and queries in O(1) time after O(k)-time preprocessing
per strip. The total preprocessing time is O(d) and, since the total number of
events in all strips is at most 2r, the sweep works in O(r log k) time.

Finally, let us consider the width-d rectangles. Each of them induces a ver-
tical interval on the second component. First, in O(r + d) time the union S
of these intervals represented as a union of pairwise disjoint maximal intervals
can be computed by bucket sorting the endpoints of the intervals. Then, each
maximal interval in S is partitioned by the strips and the resulting subintervals
are inserted into the data structures of the respective strips before the sweep. In
total, at most 2r + d/k additional intervals are inserted so the time complexity
is still O((r + d/k) log k + d) = O(r log k + d). �

We arrive at the main result of this section.

Theorem 16. The number of k-antipower factors in a word of length n can be
computed in O(nk log k) time and O(nk) space.

Proof. We use Lemma 13 to express the sets WeakPowk(d) for d = 1, . . . ,
n/k�
as sums of O(nk) interval chains. This takes O(nk) time. Each chain is rep-
resented on the corresponding grid Gd as the union of a constant number of
rectangles using Lemma 14. This gives O(nk) rectangles in total on all the grids
Gd, each of height at most k or width exactly d, for the given d.

As the next step, we renumber the components in the grids by assigning
consecutive numbers to the components that correspond to rectangle vertices.
This can be done in O(nk) time, for all the grids simultaneously, using bucket

Efficient Representation and Counting of Antipower Factors in Words 431

sort [5]. The new components store the original values. After this transforma-
tion, rectangles with height at most k retain this property and rectangles with
width d have maximal width. Let the maximum component in the grid Gd after
renumbering be equal to Md and the number of rectangles in Gd be Rd; then∑

d Rd = O(nk) and
∑

d Md = O(nk).
As the final step, we apply the algorithm of Lemma 15 to each grid to compute

|WeakPowk(d)| as the area of the union of the rectangles in the grid. One can
readily verify that it can be adapted to compute the areas of the rectangles in
the original components. The algorithm works in O(

∑
d Rd log k +

∑
d Md) =

O(nk log k) time. In the end, the number of (k, d)-antipower factors equals n −
kd + 1 − |WeakPowk(d)|. �

5 Reporting Antipowers and Answering Queries

The same technique can be used to report all k-
antipower factors. In the grid representation, they cor-
respond to grid cells of Gd that are not covered by any
rectangle, as shown in the figure to the right. Hence,
in Lemma 15, instead of computing the area of the
rectangles with the aid of Lemma 7, we need to report
all grid cells excluded from rectangles using Lemma 8.
The computation takes O(r log k+d+Cd) time where
Cd is the number of reported cells. By plugging this
routine into the algorithm of Theorem16, we obtain

Theorem 17. All factors of a word of length n being k-antipowers can be com-
puted in O(nk log k + C) time and O(nk) space, where C is the output size.

Finally, we present our data structure for answering antipower queries that
introduces a smooth trade-off between the two data structures of Badkobeh et
al. [1] (see Fact 2). Let us recall that an antipower query (i, j, k) asks to check
if a factor w[i . . j] of the word w is a k-antipower.

Theorem 18. Assume that a word of length n is given. For every r ∈ [1 . . n],
there is a data structure of size O(n2/r) that can be constructed in O(n2/r) time
and answers antipower queries in O(r) time.

Proof. Let w be a word of length n and let r ∈ [1 . . n]. If an antipower query
(i, j, k) satisfies k ≤ r, we answer it in O(k) time using Fact 2(a). This is always
O(r) time, and the data structure requires O(n) space.

Otherwise, if w[i . . j] is a k-antipower, then its base is at most n/r. Our data
structure will let us answer antipower queries for every such base in O(1) time.

Let us consider a positive integer b ≤ n/r. We group the factors of w of
length b by the remainder modulo b of their starting position. For a remainder
g ∈ [0 . . b − 1] and index i ∈ [0 . .

⌊
n − g

b

⌋
), we store, as Ab

g[i], the smallest index
j > i such that w[jb+g . . j(b+1)+g) = w[ib+g . . i(b+1)+g) (j = ∞ if it does

432 T. Kociumaka et al.

not exist). We also store a data structure for range minimum queries over Ab
g

for each group; it uses linear space, takes linear time to construct, and answers
queries in constant time (see [3]). The tables take O(n) space for a given b, which
gives O(n2/r) in total. They can also be constructed in O(n2/r) total time, as
shown in the following claim (for a proof, see the full version).

Claim. The tables Ab
g for all b ∈ [1 . . m] and g ∈ [0 . . b − 1] can be constructed

in O(nm) time.

Given an antipower query (i, j, k) such that (j − i + 1)/k = b, we set

g = i mod b, i′ =
⌊

i
b

⌋
, j′ =

⌊
j +1

b

⌋ − 2,

and ask a range minimum query on Ab
g[i

′], . . . , Ab
g[j

′]. Then, w[i . . j] is a k-
antipower if and only if the query returns a value that is at least j′ + 2. �

References

1. Badkobeh, G., Fici, G., Puglisi, S.J.: Algorithms for anti-powers in strings. Inf.
Process. Lett. 137, 57–60 (2018). https://doi.org/10.1016/j.ipl.2018.05.003

2. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs”
theorem. SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/10.1137/
15M1011032

3. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94
(2005). https://doi.org/10.1016/j.jalgor.2005.08.001

4. Bentley, J.L.: Algorithms for Klee’s rectangle problems. Unpublished notes, Com-
puter Science Department, Carnegie Mellon University (1977)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

6. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing α-
gapped repeats. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 245–255. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 19

7. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in infinite words. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) Automata,
Languages and Programming, ICALP 2016. LIPIcs, vol. 55, pp. 124:1–124:9.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/
LIPIcs.ICALP.2016.124

8. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in infinite words. J.
Comb. Theory Ser. A 157, 109–119 (2018). https://doi.org/10.1016/j.jcta.2018.02.
009

9. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and
optimal algorithms for all maximal α-gapped repeats and palindromes: finding all
maximal α-gapped repeats and palindromes in optimal worst case time on integer
alphabets. Theory Comput. Syst. 62(1), 162–191 (2018). https://doi.org/10.1007/
s00224-017-9794-5

10. Kociumaka, T., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba, W.:
Efficient representation and counting of antipower factors in words. arXiv preprint
arXiv:1812.08101 (2018)

https://doi.org/10.1016/j.ipl.2018.05.003
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1007/978-3-319-30000-9_19
https://doi.org/10.1007/978-3-319-30000-9_19
https://doi.org/10.4230/LIPIcs.ICALP.2016.124
https://doi.org/10.4230/LIPIcs.ICALP.2016.124
https://doi.org/10.1016/j.jcta.2018.02.009
https://doi.org/10.1016/j.jcta.2018.02.009
https://doi.org/10.1007/s00224-017-9794-5
https://doi.org/10.1007/s00224-017-9794-5
http://arxiv.org/abs/1812.08101

Efficient Representation and Counting of Antipower Factors in Words 433

11. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pp.
596–604. IEEE Computer Society (1999). https://doi.org/10.1109/SFFCS.1999.
814634

12. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. J. Discrete Algorithms 46–47, 1–15 (2017).
https://doi.org/10.1016/j.jda.2017.10.004

13. Rubinchik, M., Shur, A.M.: Counting palindromes in substrings. In: Fici, G.,
Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 290–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 25

14. Tanimura, Y., Fujishige, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: A faster
algorithm for computing maximal α-gapped repeats in a string. In: Iliopoulos, C.,
Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 124–136. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 13

https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1016/j.jda.2017.10.004
https://doi.org/10.1007/978-3-319-67428-5_25
https://doi.org/10.1007/978-3-319-23826-5_13

On the Maximum Number of Distinct
Palindromic Sub-arrays

Kalpana Mahalingam(B) and Palak Pandoh

Department of Mathematics, Indian Institute of Technology Madras,
Guindy, Chennai 600036, India

kmahalingam@iitm.ac.in, palakpandohiitmadras@gmail.com

Abstract. We investigate the maximum number of distinct palindromic
sub-arrays in a two-dimensional finite word over a finite alphabet Σ. For
any finite array in Σm×n, we find an upper bound for the number of
distinct palindromic sub-arrays and improve it by giving a tight bound
on the maximum number of distinct palindromes in an array in Σ2×n

for |Σ| = 2. We then, propose a better upper bound for any finite array
in Σm×n.

Keywords: Combinatorics on words · Two-dimensional words ·
2D palindromes · Maximum palindromes

1 Introduction

Identification of palindromes in sequences plays a major role in various fields like
biology, modeling quasi-crystals, string matching, Diophantine approximation
etc. due to their symmetrical structure. The study of palindromes includes rich
words (containing the maximum number of distinct palindromes), palstars (prod-
uct of even length palindromes), anti-palindromes etc. [8,14,21]. Palindrome-
based languages were proved to be linear-time recognizable in [10,18].

Several authors have studied the total palindrome complexity (number of
distinct palindromic factors) of finite 1D words and have given lower and upper
bounds on the number of palindromes in finite and infinite (1D) words [4,8,9].
An upper bound for the palindrome complexity of a sequence in terms of its
factor complexity was given in [1]. The factor complexity function is the number
of distinct factors of a given length in a given sequence. The notion of complexity
was extended to two-dimensional (2D) words over a finite alphabet in [2]. The
complexity function pw(m,n) that counts the number of different rectangles in
Σm×n that are factors of the two-dimensional sequence w is a two-dimensional
analogue of the factor complexity.

In this paper, we give an upper bound on the number of distinct 2D palin-
dromes in any given array. Two-dimensional palindromes were introduced by
Berthé et al. [5] in order to characterize 2D Sturmian sequences in terms of 2D
palindromes. It has applications in data compression, face recognition, pattern

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 434–446, 2019.
https://doi.org/10.1007/978-3-030-13435-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_32&domain=pdf
http://orcid.org/0000-0003-2418-0512
http://orcid.org/0000-0001-5267-7820
https://doi.org/10.1007/978-3-030-13435-8_32

2D Palindromes 435

recognition to name a few [7,15,17]. A relation between 2D palindromes and
2D primitive words was studied in [19]. In [3], authors gave numerical values
concerning palindrome complexity of two-row binary arrays of smaller size. An
algorithm for finding the maximal 2D palindromes was given in [12].

In this paper, we investigate the maximum number of distinct 2D palindromic
sub-arrays in any finite word in Σm×n, m, n ≥ 2. In Sect. 3, we find an upper
bound for this number. In Sect. 4, we improve the bound by proving the fact
that for |Σ| = 2, the maximum number of distinct palindromes in a word in
Σ2×n, n ≥ 2, is equal to 2n + �n

2 � − 1. We later give an estimate of a better
upper bound for a word in Σm×n in Sect. 5.

2 Basic Definitions and Notations

An alphabet Σ is a finite non-empty set of symbols. A 1-dimensional (1D) finite
word w = [ai]1≤i≤n over the alphabet Σ is defined to be a finite string of letters
where w = a1a2a3 · · · an and ai ∈ Σ. The length of a word w is the number of
symbols in w and is denoted by |w|. Let Σ∗ denote the set of all words over Σ
including the empty word λ. Let Σ+ be the set of all non-empty words over Σ.
The reversal of w = a1a2 · · · an is defined to be the string wR = an · · · a2a1. We
denote by Alph(w), the set of all sub-strings of w of length 1. A word w is said
to be a palindrome (or a 1D palindrome) if w = wR. The palindrome complexity
P (w) is the number of distinct non-empty palindromic factors in the 1D word w
and PAL(w) is the set of all distinct non-empty palindromic factors of w. For
all other concepts in formal language theory and combinatorics on words, the
reader is referred to [16,20].

2.1 Two-Dimensional Arrays

We recall certain basic notions and some basic properties pertaining to two-
dimensional word concepts. For more information, we refer the reader to [5,11,
13]. We denote by Σm×n, the set of all m × n rectangular arrays of elements
chosen from the alphabet Σ. A factor of w is a sub-array (or sub-word or sub-
block) of w and if w is a finite 2D word, then factors of w are in Σs×t where
1 ≤ s ≤ m, 1 ≤ t ≤ n. In the case of 2D words, we use λ to denote the empty
word. The set of all 2D (rectangular) words including the empty word λ over Σ
is denoted by Σ∗∗ whereas, Σ++ is the set of all non-empty 2D words over Σ.
Note that, the words in Σm×0 and Σ0×n are not defined.

Definition 1. Let u = [ui,j]1≤i≤m1,1≤j≤n1 ∈ Σm1×n1 and [vi,j]1≤i≤m2,1≤j≤n2 ∈
Σm2×n2 .

1. The column concatenation of u and v (denoted by �) is a partial operation,
defined if m1 = m2 = m, and it is given by

u � v =

u1,1 · · · u1,n1 v1,1 · · · v1,n2

...
. . .

...
...

. . .
...

um,1 · · · um,n1 vm,1 · · · vm,n2

436 K. Mahalingam and P. Pandoh

2. The row concatenation of u and v (denoted by �) is a partial operation defined
if n1 = n2 = n, and it is given by

u � v =

u1,1 · · · u1,n

...
. . .

...
um1,1 · · · um1,n

v1,1 · · · v1,n
...

. . .
...

vm2,1 · · · vm2,n

It is clear that the operations of row and column concatenation are associative
but not commutative. Moreover, the column and row concatenation of u and the
empty word λ is always defined and λ is a neutral element for both the operations.

In [2], prefix of a 2D word w is defined to be a rectangular sub-array that
contains one corner of w, whereas suffix of w is defined to be a rectangular sub-
array that contains the diagonally opposite corner of w. However, in this paper,
we consider prefix of a 2D word w (defined in [19]) to be a rectangular sub-
array that contains the top left corner of w, and suffix of w to be a rectangular
sub-array that contains the bottom right corner of w. Formally,

Definition 2. Given u ∈ Σ∗∗, v ∈ Σ∗∗ is said to be a prefix of u (respectively,
suffix of u), denoted by v ≤p u (respectively v ≤s u) if u = (v � x) � y or
u = (v � x) � y (respectively, u = y � (x � v) or u = y � (x � v)) for x, y ∈ Σ∗∗.

Definition 3. Let w = [wij]1≤i≤m,1≤j≤n ∈ Σm×n.

1. The reverse image of w, denoted by wR = [wm−i+1,n−j+1]1≤i≤m,1≤j≤n.

wR =

wm,n wm,n−1 · · · wm,1

wm−1,n wm−1,n−1 · · · wm−1,1

...
...

. . .
...

w1,n w1,n−1 · · · w1,1

2. The transpose of w, denoted by wT = [uij]1≤i≤n,1≤j≤m such that uij = wji.

wT =

w1,1 w2,1 · · · wm,1

w1,2 w2,2 · · · wm,2

...
...

. . .
...

w1,n w2,n · · · wm,n

If w = wR, then w is said to be a two-dimensional palindrome [5,12]. We call
a palindrome in Σm×n to be an m × n palindrome. By P2d(w), we denote the
number of all non-empty distinct 2D palindromic sub-arrays in w and PAL2d(w)
is the set of all non-empty palindromic sub-arrays of the 2D word w. For example,

if Σ = {a, b, c}, then w =
a b c a
b c c b
a c b a

is a 3 × 4 palindrome over Σ.

We use the following notion of horizontal and vertical palindromes.

2D Palindromes 437

Definition 4. Let w ∈ Σm×n.

1. The horizontal palindromes of w are the 1 × i palindromic sub-arrays of w,
where 1 ≤ i ≤ n.

2. The vertical palindromes of w are the j × 1 palindromic sub-arrays of w,
where 2 ≤ j ≤ m.

Throughout the paper, by the number of palindromes, we simply refer to
the number of non-empty distinct palindromic sub-arrays counted without
repetition.

3 Maximum Number of Palindromes in 2D Words
over an Arbitrary Alphabet

In this section, we find an upper bound for the number of palindromes in a word
w ∈ Σm×n with the convention that m, n ≥ 2.

Let w ∈ Σm×n such that |Alph(w)| = 1. Note that w is of the form (am�)n�

and it has exactly mn palindromes. Therefore, we have the following observation.

Proposition 5. A unary word in Σm×n where m ≥ 1, n ≥ 1, has exactly mn
palindromes.

Now, consider the 2D word w =
a b b a
a b a b

. Then, P2d(w) = 9 as PAL2d(w) =

{a, b, bb, aba, bab, abba, a � a, b � b, ba � ab}. Hence, we infer that in the case of a
non-unary word, the number of palindromes in a word in Σm×n can be greater
than mn. We find a loose upper bound for this using the following Lemma.

Lemma 6. Let w ∈ Σm×n, m, n ≥ 2, and y = (a1 � a2 · · · � am), ai ∈ Σ.
Then, w � y and y � w create at most one extra distinct m × t palindrome for
t ≥ 1 .

Proof. Let w ∈ Σm×n, m, n ≥ 2 and y = (a1 � a2 · · · � am), ai ∈ Σ for each
i. Assume, for the sake of contradiction that, a m × r and a m × s palindrome
where r < s, r ≥ 1 are created on the concatenation of w = [wi,j] and y. Then,

w � y =

w1,1 · · · w1,n−s+1 am · · · w1,n−r+1 am · · · w1,n a1

w2,1 · · · w2,n−s+1 am−1 · · · w2,n−r+1 am−1 · · · w2,n a2

...
...

...
...

wm,1 · · · wm,n−s+1 a1 · · · wm,n−r+1 a1 · · · wm,n am

We only prove for the case when m is odd, as the case when m is even is similar.
If m is odd, then the m × r palindrome created is

u1 � u2 · · · � u�m
2 � � (ααR) � uR

�m
2 � · · · � uR

2 � uR
1

438 K. Mahalingam and P. Pandoh

where each ui, 1 ≤ i ≤ �m
2 �, and ααR are rows of the m × r palindromic suffix

of w � y. Now, let p1 be the newly created m × s palindrome. Then,

p1 = β1u1 � · · · � β�m
2 �u�m

2 � � (βααR) � βR
�m

2 �u
R
�m

2 � · · · � βR
1 uR

1

where each βiui, 1 ≤ i ≤ �m
2 �, and βααR are rows of the m × s palindromic

suffix of w � y. Now, consider

pR1 = u1β1 · · · � u�m
2 �β�m

2 � � (ααRβ) � uR
�m

2 �β
R
�m

2 � · · · � uR
1 βR

1 .

It has u1 � u2 · · · � u�m
2 � � (ααR) � uR

�m
2 � · · · � uR

2 � uR
1 as its m × r prefix.

Hence, we conclude that the m× r palindrome is present as a prefix of the m×s
palindrome. Hence, concatenation of w and (a1 � a2 · · · � am), ai ∈ Σ for all i
creates at most one extra distinct m × t palindrome for t ≥ 1. �	
We recall the following result from [4].

Proposition 7. The total palindrome complexity P (w) of any finite 1D word w
satisfies P (w) ≤ |w|.
Hence, one can conclude that concatenation of a letter to a 1D word can create
at most one extra palindrome. We have an immediate Corollary to Lemma 6
and Proposition 7.

Corollary 8. Let w ∈ Σ2×n, n ≥ 1. Then, the word w�(a1�a2) and
(a1�a2)�w where a1, a2 ∈ Σ create at most 3 extra palindromes i.e. at most 2
horizontal and at most one 2 × t palindrome for t ≥ 1.

Remark 9. Based on Corollary 8, one can observe that the number of palin-
dromes in a word in Σ2×n, n ≥ 2, is at most 3n.

We show (Lemma 10) the existence of a word wn ∈ Σ2×n such that P2d(wn) > 2n
for all n ≥ 4. We recall the definition [6] of the fractional power of a 1D word u

of length q denoted by u(p
q) which is the prefix of length p of up. For example,

for a word w = aba, w(5
3) = abaab.

Consider the word x = (ab)(
k
2) ∈ Σ+ and u = xxR, v = (ab)k. Let w2k =

u � v ∈ Σ2×2k. Let w2k−1 be the word in Σ2×(2k−1) obtained by the removal of
the last column from w2k.

Lemma 10. There exists a word wn, n ≥ 3 in Σ2×n, with P2d(wn) > 2n.

Examples of such words are w8 =
ababbaba
abababab

and w9 =
ababaabab
ababababa

.

Remark 11. It can be easily observed that the word wn, n ≥ 3, constructed in
Lemma 10, has exactly 2n + �n

2 � − 1 palindromes.

Consider a word u = u1 � u2 � · · · � un ∈ Σ2×n, n ≥ 4, such that P2d(u) ≥
P2d(w) for all words w ∈ Σ2×n. Then, by Lemma 10, P2d(u) > 2n. Now, u
can be considered as a 1D word over the alphabet of columns A such that

2D Palindromes 439

A = {u1, u2, · · · un}. For example, for the word u =
abbabb
babbaa

, A =
{

a
b
,
b
a
,
b
b

}
. Then

by Proposition 7, we have P (u) ≤ n over A. We show that P (u) ≤ n − 1 over
A. Note that all the 2 × t palindromes of u for t ≥ 1, are horizontal palindromes
of u over A. If u has n palindromes over A, it can be observed by Corollary 8
and Proposition 7 that every alphabet of u over A must create one extra distinct

palindrome. Hence, A =
{

a1

a1
: a1 ∈ Σ

}
. This implies that both the rows of u

considered as a 2D word over Σ are same. Hence, there are at most n horizontal
palindromes in u over Σ. Thus, over Σ,

P2d(u) =[# of horizontal palindromes of u over Σ]
+ [# of horizontal palindromes of u over A] ≤ 2n

which is a contradiction. Hence, the number of 2 × t palindromes for t ≥ 1 in u
is at most (n − 1). Now, consider the following Lemma.

Lemma 12. Let w = w1 � w2 ∈ Σ2×n, n ≥ 1. If |Alph(w1)| = 1 or
|Alph(w2)| = 1, then P2d(w) ≤ 2n.

Proof. We prove the result by induction on n. For n = 1, the word is of the
form a � a1, a1 ∈ Σ and the statement holds true. Let the result be true for
n = k − 1. Assume that w ∈ Σ2×k such that w = w1 � w2 and w1 = ak. By
induction hypothesis, there are at most 2(k − 1) palindromes in the 2 × (k − 1)
prefix of w. Now, the last column can be either a � b or a � a where a and b are
distinct. If it is a� b, then no extra 2× t palindrome for t ≥ 1 is created. Hence,
there are at most 2 extra horizontal palindromes. So, P2d(w) ≤ 2k. If the last
column is a�a and a 2× t palindrome for t ≥ 1 is created, then it is of the form
at � at. Suppose that, a horizontal palindrome is created in w2, then it is of the
form atw3a

t for some 1D word w3. But, this is a contradiction to the fact that
at � at is a newly created palindrome. Hence, at most 2 extra palindromes can
be created. So, P2d(w) ≤ 2k. Hence, by induction, the result holds for all n. �	
It can be observed by Lemmas 10 and 12 that in a word u ∈ Σ2×n such that
P2d(u) ≥ P2d(w) for all words w ∈ Σ2×n, there are at most 2n − 2 horizontal
palindromes and the number of 2 × t palindromes in u can be at most n − 1.
Thus, P2d(u) ≤ (2n − 2) + (n − 1) = 3n − 3. The result also holds for n = 3.
Hence, we conclude the following.

Theorem 13. Let w ∈ Σ2×n, n ≥ 3. Then, P2d(w) ≤ 3n − 3.

We now give an upper bound for the number of palindromes in a word in
Σm×n, m, n ≥ 3.

Lemma 14. For w ∈ Σm×n, m, n ≥ 3, we have,

P2d(w) ≤
{

mn(m+1)−3m
2 , if m is even

mn(m+1)−(3m−3)
2 , if m is odd.

440 K. Mahalingam and P. Pandoh

Proof. Let w ∈ Σm×n, m, n ≥ 3. We have the following.

1. If m is even, then w = A1 � A2 � · · · � Am
2

where each Ai ∈ Σ2×n. By
Theorem 13, P2d(Ai) ≤ (3n− 3). Note that, all the horizontal palindromes in
w are counted. The 2 × t palindromes for t ≥ 1 that are still not counted are
in the sub-arrays formed by taking the last row of Ai and first row of Ai+1

for 1 ≤ i ≤ (m2 −1). There are (m2 −1) such sub-arrays in total. By Lemma 6,
the number of 2 × t palindromes in each of them for t ≥ 1 is at most n. Also,
the number of (i+1)×n sub-words of w are (m− i) for 2 ≤ i ≤ m−1, so the
number of i × t palindromes for i ≥ 3 and t ≥ 1 is at most n

∑m−1
i=2 (m − i).

So, P2d(w) ≤ (3n − 3)(m2) + n(m2 − 1) + n
∑m−1

i=2 (m − i) = mn(m+1)−3m
2 .

2. If m is odd, then by a similar calculation, we have, P2d(w) ≤ (3n−3)(m−1
2)+

n + n(m−1
2) + n

∑m−1
i=2 (m − i) = mn(m+1)−(3m−3)

2 .

�	
We now obtain the maximum number of distinct non-empty palindromic sub-
arrays in a word in Σ2×n, where |Σ| = 2 along with the number of words that
attain it by a computer program.

Table 1. Maximum number of palindromes in a word in Σ2×n.

m × n Total words Max (P2d) # of words attaining maximum

2 × 2 16 4 14

2 × 3 64 6 56

2 × 4 256 9 12

2 × 5 1024 11 100

2 × 6 4096 14 24

2 × 7 16384 16 204

2 × 8 65536 19 8

2 × 9 262144 21 164

2 × 10 1048576 24 32

Clearly, the upper bound found in Lemma 14 is not a tight bound. So, in the
next section, we prove the tight bound for a word in Σ2×n, where |Σ| = 2 by a
case by case analysis.

4 Binary Words in Σ2×N

Throughout this section, we consider Σ to be a binary alphabet i.e. |Σ| = 2.
From Table 1, we can observe the following.

1. The maximum number of distinct palindromic factors in a word in Σ2×n, n ≥
2, is 2n + �n

2 � − 1.

2D Palindromes 441

2. The number of words in Σ2×n, n ≥ 2, with the maximum number of palin-
dromic factors is at least 8.

We denote 2n + �n
2 � − 1 by xn, in the rest of the paper. From Lemma 10, we

have the following result.

Proposition 15. There exists a word in Σ2×n, n ≥ 3 with xn palindromes.

We show that there are at least 8 words with exactly xn palindromes for n ≥
3. For any word w over a binary alphabet Σ = {a, b}, we define the complement
of w denoted by wc to be the word φ(w) where φ is a morphism such that
φ(a) = b and φ(b) = a. For example, if w = ababb, then wc = babaa.

Lemma 16. There are at least 8 words with xn palindromes in Σ2×n for n ≥ 3.

Proof. Let n be even, say n = 2k and x = (ab)(
k
2) ∈ Σ+. We have two cases:

1. For an even k, consider the sets

A2k = {(ab)
n
2 � xxR, (ab)

n
2 � xRx, (ba)

n
2 � xxR, (ba)

n
2 � xRx},

B2k = {wR : w ∈ A2k}
2. For an odd k, consider the sets

A2k = {(ab)
n
2 � xxR, (ba)

n
2 � xxR, xxR � (ab)

n
2 , xxR � (ba)

n
2 },

B2k = {wc : w ∈ A2k}
As x
= xR, then for all w1, w2 ∈ S2k, w1
= w2. The required 8 words in Σ2×2k

with x2k palindromes are in the set S2k, where S2k = {w : w ∈ A2k ∪ B2k}.
Similarly, for n odd, say n = 2k − 1, the required 8 words in Σ2×(2k−1) are in
the set S2k−1, where S2k−1 = {w : w is the 2 × (2k − 1) prefix of the words in
S2k}. �	
Remark 17. Let w ∈ Sn for n even, where Sn is the set mentioned in Lemma
16. Let w′ be a word obtained on removal of the 2 × t prefix and 2 × t suffix of
w where 2t < n. Then, w′ ∈ Sn−2t.

We observe that, if w = w1 �w2 ∈ Σ2×n is a palindrome, then w2 = wR
1 . Hence,

we conclude the following.

Lemma 18. If w ∈ Σ2×n, n ≥ 2, is a 2D palindrome, then P2d(w) ≤ 2n.

We use the following results to prove P2d(w) ≤ xn for w ∈ Σ2×n, n ≥ 2.

Proposition 19. Let Tn, n ≥ 6 and n even, be the set of all the words w ∈
Σ2×n that satisfies the following:

1. P2d(w) = xn.
2. There is a 1 × n palindromic sub-array in w.

442 K. Mahalingam and P. Pandoh

3. On the removal of the 2×k prefix and the 2×k suffix of w for all k such that
2k < n, we get a word in Σ2×(n−2k) that contains xn−2k palindromes.

Then, Tn = Sn where, Sn is the set mentioned in Lemma 16.

Proof. We prove Tn ⊆ Sn by strong induction on n. For n = 6, let w = w1�w2 ∈
T6. Suppose, w1 is a palindrome. Let w′ = w′

1 � w′
2 be the word obtained by

removing the 2 × 1 prefix and suffix of w. Then, P2d(w′) = x4 = 9 and by
Lemma 12, w′

1 is either abba or baab. By Theorem 13, the maximum number of
palindromes in a word in Σ2×3 is 6. Thus, 3 palindromes are removed by the
removal of the first column of w′. If w′ = abba, then by direct computation w′

is either abba � baba or abba � abab. By the structure of w, P2d(w) = 14 and w1

is a palindrome. So, w1 is either aabbaa or babbab.
If w1 = aabbaa, then w has 5 more palindromes than w′. By Corollary 8, as

there can be at most 4 new horizontal palindromes, a new 2 × t palindrome is
created for t ≥ 1. The only 2× t palindrome that can be created in w is aa�aa.
Hence, w is either aabbaa � xbabaa or aabbaa � aababx where, x ∈ {a, b}. None
of these have x6 palindromes. If w1 = babbab, then using a similar argument,
one can verify that w is either babbab � ababab or babbab � bababa.

Similarly, if w′
1 = baab, then w is either abaaba � bababa or abaaba � ababab.

(Note that remaining 4 words in S6 are obtained by considering w2 as a palin-
drome.) This implies, T6 ⊆ S6. Assume that the result holds true for words in
Σ2×n, where n is even. Consider a word w = w1�w2 ∈ Tn+2. Let w′ be the word
obtained by removing the 2×1 prefix and suffix of w, then w′ ∈ Tn ⊆ Sn. There
are 8 such words. We show the result for one of the words in Sn and the result
follows similarly for others. For n = 2k, let x = (ab)(

k
2) ∈ Σ∗ and w′ = u � v,

where u = xxR and v = (ab)k. As w ∈ Tn+2, w1 must be a palindrome. So, w1

is either axxRa or bxxRb.
Let w1 = axxRa. Since P2d(w) − P2d(w′) = 5, by Corollary 8, a 2 × t palin-

drome for t ≥ 1, must be created. The only such palindrome in w can be aa�aa
which can be present as a prefix of w. Two new horizontal palindromes are
created in the first row: aa, axxRa. Note that, at most one more distinct hori-
zontal palindrome can be created in w2 which is either (ab)

n
2 a or bb. Hence, no

such word exists. Let w1 = bxxRb. Using a similar argument, we get the word
bub � bva ∈ Sn+2. Hence, Tn+2 ⊆ Sn+2. Hence, by induction Tn ⊆ Sn, n ≥ 6,
and n even. The proof of Sn ⊆ Tn for all n ≥ 6, and n even follows from Remark
17 and the structure of words in Sn. Hence, Tn = Sn, n ≥ 6, and n even. �	
By a similar argument, we can conclude the following.

Proposition 20. Let Tn, n ≥ 7, and n odd, be the set of all the words w ∈ Σ2×n

that satisfies the following:

1. P2d(w) = xn.
2. There is a 1 × n. palindromic sub-array in w.
3. The recursive removal of the 2 × k suffix and the 2 × k prefix of w removes

3k and 2k palindromes respectively from w till we reach a word in Σ2×2 and
at each stage, the resultant word in Σ2×l has xl palindromes.

2D Palindromes 443

Then, Tn = φ, n ≥ 7, and n odd.

We now show that for a word w ∈ Σ2×n, n ≥ 2, the number of distinct
palindromic sub-arrays in w cannot exceed xn.

Theorem 21. Let w ∈ Σ2×n, n ≥ 2. Then, P2d(w) ≤ 2n + �n
2 � − 1.

Proof. We only give a sketch of the proof. The proof is by strong induction
on n. The base case can be verified from Table 1, for 2 ≤ n ≤ 10. Let w =
c1 � c2 · · · � cn+1 ∈ Σ2×n+1 and let ui→j = ci � ci+1 � · · · � cj . We only need
to prove for the Case when P2d(u1→n) = xn and n even as the other cases
are direct. Let yi,j and zi,j be the number of palindromes removed from the
word ui→j on removing ci and cj respectively. We prove by contradiction i.e.,
we assume that z1,n+1 = 3, so, P2d(w) = xn + 3 = xn+1 + 1. By Corollary 8,
P2d(u1→(n−1)) = xn−1 and P2d(u1→(n−2)) ≤ xn−2. Thus, z1,n−1 is either 2 or 3.
If z1,n−1 = 2, then y1,n−2 = 3 and z2,n−2 is either 2 (Case 1) or 3 (Case 2).

Case 1: If z2,n−2 = 2, then P2d(u2→(n−3)) = xn−4. Therefore y2,n−3 ≥ xn−4 −
xn−5 = 3 and hence, P2d(u3→(n−3)) = xn−5. If there is no 1×(n−2) or 2×(n−2)
palindrome in u1→(n−2), then P2d(u1→(n−3)) = xn−5 + 3 + 3 = xn−3 + 1, a
contradiction. Otherwise, u2→(n−3) and u1→(n−2) have similar structure. The
recursive removal of the first and the last column either results in Case 1 or in
Case 2. If it results in Case 1 always, we have a contradiction by Lemma 18 and
Proposition 19. If it results in Case 2 at some stage i, then we discuss further.

Case 2: If z2+i,n−2+i = 3 at same stage i, then P2d(u2+i→(n−3−i)) = xn−4−2i−1.
By the induction hypothesis, y2+i,(n−3−i) ≥ 2.

Case 2.1: If y2+i,(n−3−i) = 2, then we have P2d(u3+i→(n−3−i)) = xn−5−2i and
y3+i,n−3−i ≥ 2.

Case 2.1.1: If y3+i,n−3−i = 2, then P2d(u4+i→(n−3−i)) = xn−6−2i. If there is no
1×(n − 3 − 2i) or 2×(n − 3 − 2i) palindrome in u2+i→(n−2−i), then u3+i→(n−2−i)

is similar to the word in Case 1 and the proof follows, unless we end with a word
of size (2, 2) in Case 2.1.1, which is not possible. If there is such a palindrome,
consider u3+i→(n−3−i) which is similar to u2+i→(n−2−i) in the Case 2.1. The
recursive removal of the first and the last column either results in Case 2.1.1 or
in Case 2.1.2. If the recursive removal of the first and the last column results in
2.1.1 always, we have a contradiction by Lemma 18 and Proposition 20. If the
recursive removal of the first and the last column results in Case 2.1.2 at some
stage j.

Case 2.1.2: If y3+i+j,n−3−i−j = 2 at some stage j, then P2d(u4+i+j→(n−3−i−j))
= xn−6−2i−2j − 1. If there is no 1 × (n − 3 − 2i − 2j) or 2 × (n − 3 − 2i − 2j)
palindrome in u2+i+j→(n−2−i−j), then u3+i+j→(n−2−i−j) is similar to u1→(n−2)

in Case 2. By considering words in Σ2×6, we can verify that there are no words
that always results in Case 2.1.2. Hence, there exists such a palindrome. Note
that, P2d(u3+i+j→(n−2−i−j)) = xn−4−2i−2j . Similar words are already discussed
in Case 2.1.1 and one can verify that these words do not result back to this case
as such words in Σ2×2 have exactly 5 palindromes, which is a contradiction.

444 K. Mahalingam and P. Pandoh

Case 2.2: If y2+i,n−3−i = 3, then P2d(u3+i→(n−3−i)) = xn−5−2i−1. z3+i,n−3−i ≥
2. If z3+i,n−3−i = 3, then u2+i→(n−3−i) is similar to the word in Case 2 and
the proof follows. If z3+i,n−3−i = 2, then P2d(u3+i→(n−4−i)) = xn−6 and
u3+i→(n−4−i) is similar to u2→(n−3) in Case 2.1.1. We cannot end in this case
as we get a word in Σ2×3 with 7 palindromes which is a contradiction.

If z2,n−2 = 3, then u1→(n−1) is similar to u2→(n−2) in Case 2. �	
By direct computation on the words in Σ2×4 for arbitrary alphabet Σ, we observe
that the tight bound of x4 = 9 palindromes is never achieved over a non-binary
alphabet. So, we propose that for a given word in Σ2×n, n ≥ 4, the maximum
number of palindromes occur over a binary alphabet. By Lemma 14 and Theorem
21, we now have a better upper bound for the number of palindromes in a word
in Σm×n.

Corollary 22. Let w ∈ Σm×n, m, n ≥ 2, then

P2d(w) ≤
{

m(mn+�n
2 �−1)

2 , if m is even
m(mn+�n

2 �−1)

2 − n−1
2 , if m is odd.

5 2D Words of Size (m, n)

The following table depicts the maximum number of distinct non-empty palin-
dromic sub-arrays in any word in Σm×n for larger values of m and n obtained
by a computer program.

Table 2. Maximum number of palindromes in a word in Σm×n.

m × n Max (P2d) m × n Max (P2d)

3 × 3 10 4 × 3 15

3 × 4 15 4 × 4 20

3 × 5 19 4 × 5 25

3 × 6 23 5 × 2 11

3 × 7 27 5 × 3 19

4 × 2 9 5 × 4 25

From Table 2, we propose the following upper bound for the number of palin-
dromes in a word w ∈ Σm×n, m < n, and m, n ≥ 3.

P2d(w) ≤ mn + (m − 1)�n

2
�

One can observe that for any 2D word w, p is a palindromic sub-array of the
word w iff pT is a palindromic sub-array of the word wT i.e., P2d(w) = P2d(wT).
Hence, we conclude that the maximum number of palindromes in a word in
Σm×n is same as that of the maximum number of palindromes in a word in
Σn×m, m, n ≥ 2.

2D Palindromes 445

6 Conclusions

In this paper, we have investigated the upper bound on the number of palin-
dromes in a finite 2D word over an arbitrary alphabet. We give the exact number
for a binary word in Σ2×n, n ≥ 2. We then propose a better upper bound for the
words in Σm×n, m, n ≥ 3. It will be interesting to study the relation between
the number of distinct sub-arrays and the number of distinct palindromic sub-
arrays in a given 2D word.

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theor. Comput. Sci. 292(1), 9–31 (2003)

2. Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. SIAM J.
Comput. 27(1), 90–106 (1998)

3. Anisiua, M.C., Anisiu, V.: Two-dimensional total palindrome complexity. Ann.
Tiberiu Popoviciu Semin. Funct. Eqs. Approx. Convexity 6, 3–12 (2008). ISSN
1584-4536

4. Anisiua, M.C., Anisiu, V., Kása, Z.: Total palindromic complexity of finite words.
Discrete Math. 310, 109–114 (2010)

5. Berthé, V., Vuillon, L.: Palindromes and two-dimensional Sturmian sequences. J.
Autom. Lang. Combin. 6(2), 121–138 (2001)

6. Brandenburg, F.: Uniformly growing k-th powerfree homomorphisms. Theor. Com-
put. Sci. 23, 69–82 (1983)

7. De Natale, F., Giusto, D., Maccioni, F.: A symmetry-based approach to facial
features extraction. In: Proceedings of 13th International Conference on Digital
Signal Processing, vol. 2, pp. 521–525 (1997)

8. Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theor. Comput. Sci.
223(1–2), 73–85 (1999)

9. Fici, G., Zamboni, L.Q.: On the least number of palindromes contained in an
infinite word. Theor. Comput. Sci. 481, 1–8 (2013)

10. Galil, Z., Seiferas, J.: A linear-time on-line recognition algorithm for “palstar”. J.
Assoc. Comput. Mach. 25(1), 102–111 (1978)

11. Gamard, G., Richomme, G., Shallit, J., Smith, T.J.: Periodicity in rectangular
arrays. Inf. Process. Lett. 118, 58–63 (2017)

12. Geizhals, S., Sokol, D.: Finding maximal 2-dimensional palindromes. In: Grossi, R.,
Lewenstein, M. (eds.) 27th Annual Symposium on Combinatorial Pattern Matching
(CPM 2016), vol. 54, pp. 19:1–19:12 (2016)

13. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

14. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J.
Combin. 30(2), 510–531 (2009)

15. Hooda, A., Bronstein, M.M., Bronstein, A.M., Horaud, R.P.: Shape palindromes:
analysis of intrinsic symmetries in 2D articulated shapes. In: Bruckstein, A.M., ter
Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS,
vol. 6667, pp. 665–676. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-24785-9 56

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-642-24785-9_56
https://doi.org/10.1007/978-3-642-24785-9_56

446 K. Mahalingam and P. Pandoh

16. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata.
Addison-Wesley Longman Inc., Boston (1969)

17. Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images: the global opti-
mization approach. Int. J. Comput. Vis. 29(1), 29–45 (1998)

18. Knuth, D.E., Morris, Jr., J.H., Pratt, V.R.: Fast pattern matching in strings.
In: Computer Algorithms, pp. 8–35. IEEE Computer Society Press, Los Alami-
tos (1994)

19. Kulkarni, M.S., Mahalingam, K.: Two-dimensional palindromes and their proper-
ties. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol.
10168, pp. 155–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53733-7 11

20. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

21. Richmond, L.B., Shallit, J.: Counting the palstars. Electron. J. Combin. 21(3), 6
(2014). Paper 3.25

https://doi.org/10.1007/978-3-319-53733-7_11
https://doi.org/10.1007/978-3-319-53733-7_11

Syntactic View of Sigma-Tau Generation
of Permutations

Wojciech Rytter and Wiktor Zuba(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
{rytter,w.zuba}@mimuw.edu.pl

Abstract. We give a syntactic view of the Sawada-Williams (σ, τ)-
generation of permutations. The corresponding sequence of στ -
operations, of length n! − 1 is shown to be highly compressible: it has
O(n2 log n) bit description. Using this compact description we design fast
algorithms for ranking and unranking permutations.

1 Introduction

We consider permutations of the set {1, 2, ..., n}, called here n-permutations. For
an n-permutation π = (a1, ..., an) denote:

σ(π) = (a2, a3, ..., an, a1), τ(π) = (a2, a1, a3, ..., an).

In their classical book on combinatorial algorithms Nijenhuis and Wilf asked in
1975 if all n-permutations can be generated, each exactly once, using in each
iteration a single operation σ or τ . This difficult problem was open for more
than 40 years. Very recently Sawada and Williams presented an algorithmic
solution at the conference SODA’2018. In this paper we give new insights into
their algorithm by looking at the generation from syntactic point of view.

Usually in a generation of combinatorial objects of size n we have a starting
object and some set Σ of very local operations. Next object results by apply-
ing an operation from Σ, the generation is efficient iff each local operation uses
small memory and time. Usually the sequence of generated objects is exponential
w.r.t. n. From a syntactic point of view the generation globally can be seen as
a very large word in the alphabet Σ describing the sequence of operations. It is
called the syntactic sequence of the generation. Its textual properties can help
to understand better the generation and to design efficient ranking and unrank-
ing. Such syntactic approach was used for example by Ruskey and Williams in
generation of (n-1)-permutations of an n-set in [3].

Here we are interested whether the syntactic sequence is highly compressible.
We consider compression in terms of Straight-Line Programs (SLP, in short),
which represent large words by recurrences, see [4], using operations of concate-
nation. We construct SLP with O(n2) recurrences, which has O(n2 log n) bit
description.

The syntactic sequence for some generations is highly compressible and for
others is not. For example in case of reflected binary Gray code of rank n each
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 447–459, 2019.
https://doi.org/10.1007/978-3-030-13435-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_33&domain=pdf
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-030-13435-8_33

448 W. Rytter and W. Zuba

local operation is the position of the changed bit. Here Σ = {1, 2, ..., n} and
the syntactic sequence T (n) is described by the short SLP of only O(n) size:
T1 = 1; T (k) = T (k − 1), k, T (k − 1) for 2 ≤ k ≤ n.

In case of de Bruijn words of length n each operation corresponds to a sin-
gle letter appended at the end. However in this case the syntactic sequence is
not highly compressible though the sequence can be iteratively computed in a
very simple way, see [7]. In this paper we consider the syntactic sequence SEQn

(over alphabet Σ = {σ, τ}) of Sawada-Williams στ -generation of permutations
presented in [5,6]. An SLP of size O(n2) describing SEQn is given in this paper.
The στ -generation of n-permutations by Sawada and Williams can be seen as a
Hamiltonian path SW(n) in the Cayley graph Gn. The nodes of this graph are
permutations and the edges correspond to operations σ and τ .

We assume that (simple) arithmetic operations used in the paper are com-
putable in constant time.

Our results. We show:

1. SEQn can be represented by the straight-line program of O(n2) size:

– W0 = σ, Wk = τ · ∏n−2
i=1 σi WΔ(k,i) γn−2−i

for 1 ≤ k < n − 3;
– Vn = γn−3 · ∏n−3

i=2 σi WΔ(n−3,i) γn−2−i · σn−1;

– SEQn = γn−2
1 σ2 (Vn τ)n−2 Vn.

where Δ(k, i) = min(k − 1, n − 2 − i) and γk = σkτ .

2. Ranking: using compact description of SEQn the number of steps (the rank
of the permutation) needed to obtain a given permutation from a starting one
can be computed in time O(n

√
log n) using inversion-vectors of permutations.

3. Unranking: again using SEQn the t-th permutation generated by SEQn can
be computed in O(n log n

log log n) time.

2 Preliminaries

Denote by cycle(π) all permutations cyclically equivalent to π. Sawada and
Williams introduced an ingenious concept of a seed: a shortened permutation
representing a group of (n − 1) cycles. Informally it represents a set of permuta-
tions which are cyclically equivalent modulo one fixed element, which can appear
in any place.

Let ⊕ denote a modified addition modulo n−1, where n−1⊕1 = 1. It gives
a cyclic order of elements {1, ..., n − 1}. We write a � 1 = b iff b ⊕ 1 = a.

Formally a seed is a (n − 1) tuple of distinct elements of {1, 2, ..., n} of the
form ψ = (a1, a2, ..., an−1), such that a1 = n and (a1, a2 ⊕ 1, a2, ..., an−1) is a
permutation. The element x = mis(ψ) = a2 ⊕ 1 is called a missing element.

Denote by perms(ψ) the set of all n-permutations resulting by making a
single insertion of x into any position in ψ, and making cyclic shifts. The
sets perms(ψ) are called packages, the seed ψ is the identifier of its package

Syntactic View of Permutation Generation 449

perms(ψ). One of the main tricks in the Sawada-Williams construction is the
requirement that the missing element equals a2 ⊕ 1. In particular this implies
the following:

Observation 1. A given n-permutation belongs to one or two packages. We can
find identifiers of these packages in linear time.

The algorithm of Sawada and Williams starts with a construction of a large
and a small cycle (covering together the whole graph). The graph consisting
of these two cycle is denote here by Rn. The small cycle is very simple. Once
Rn is constructed the Hamiltonian path is very easy: In each cycle one τ -edge
is removed (the cycles become simple paths), then the cycles are connected by
adding one edge to Rn. First we introduce seed-graphs. Define the seed-graph
of the seed ψ, denoted here by SeedGraph(ψ) (denoted by Ham(ψ) in [6]), as
the graph consisting of edges implied by the seed ψ. The set of nodes consists
of perms(ψ), the set of edges consists of almost all σ-edges between these nodes
(except the edges of the form (∗, x, ∗, ..., ∗) → (x, ∗, ..., ∗, ∗)), but the set of τ -
edges consists only of the edges of the form (∗, x, ∗, ..., ∗) → (x, ∗, ∗, ..., ∗), where
x is the missing element. see Fig. 1.

Fig. 1. Structure of SeedGraph(ψ), where ψ = (4, 1, 3), mis(ψ) = 2.

We say that an edge u → v conflicts with u′ → v′ iff u = u′, v �= v′. Non-
disjoint packages φ, ψ can be joined into a simple cycle by removing two σ-edges
conflicting with τ -edges.

By a union of graphs we mean set-theoretic union of nodes and set-theoretic
union of all edges in these graphs.

Denote by Rn the graph
⋃

ψ SeedGraph(ψ) in which we removed all σ-edges
conflicting with τ -edges. The τ -edges have priority here. A version of the con-
struction of a Hamiltonian path by Sawada-Williams, denoted by SW(n), can
be written informally as:

450 W. Rytter and W. Zuba

Algorithm Compute PATH(n);

P :=
⋃

ψ∈SEEDS(n) SeedGraph(ψ)
remove from P all σ-edges conflicting with τ -edges in P

π := (n, n − 1, ..., 1); add to P the edge π → σ(π)
remove edges π → τ(π), τ(σ(π)) → σ(π)

return P {P is now a Hamiltonian path τ(π) →∗ τ(σ(π)) }
Lemma 2. PATH(n) = SW(n).

Our aim is to give a syntactic version of PATH(n): the sequence SEQn of στ -
labels of PATH(n) represented compactly. We have to investigate more carefully
the structure of seed-graphs and their interconnections.

2.1 Structure of Seed Graphs

For a seed ψ = (a1, a2, ..., an−1) with mis(ψ) = x, let

ψ(n−1) = (x, a2, ..., an−1, a1), ψ̃ = (a1, x, a2, a3, ..., an−1).

For 1 ≤ i ≤ n−1 denote ψ(i) = γi
n−1(ψ

(n−1)). In other words ψ(i), for n > i > 0,
is the word ψ right-shifted by i − 1 and with x added at the beginning. Observe
that: γn−1(ψ(i)) = ψ(i+1) for 0 < i < n − 1.

Example 3. For ψ = (5, 3, 2, 1) we have ψ̃ = (5, 4, 3, 2, 1), ψ(1) = (4, 5, 3, 2, 1),
ψ(2) = (4, 1, 5, 3, 2), ψ(3) = (4, 2, 1, 5, 3), ψ(4) = (4, 3, 2, 1, 5).

Each perms(ψ) can be sequenced easily as a simple cycle in Gn. Two seeds
φ, ψ are called neighbors iff perms(φ)∩perms(ψ) �= ∅. The permutations of type
ψ(i) play crucial role as connecting points between packages of neighboring seeds.

Observation 4. Two distinct seeds φ, ψ are neighbors iff mis(φ) = mis(ψ) ⊕
1 or mis(ψ) = mis(φ) ⊕ 1, and after removing both mis(ψ), mis(φ) from φ and
ψ the sequences φ, ψ become identical.

2.2 The Pseudo-tree STn of Seeds

For a seed ψ = a1a2...an−1 denote by height(ψ) the maximal length k of a
prefix of a2, a3, ..., an−1 such that ai = ai+1 ⊕ 1 for i = 2, 3, ..., k. For example
height(94326781) = 3 (here the missing number is 5). For each two neighbors
we distinguish one of them as a parent of the second one and obtain a tree-like
structure called a pseudo-tree denoted by STn. If height(ψ) > 1 and mis(ψ) =
mis(β) ⊕ 1 we write parent(β) = ψ. Additionally if σi(ψ(i)) = β̃ we write
son(ψ, i) = β and we say that β is the i-th son of ψ.

The function parent gives the tree-like graph of the set of seeds, it is a cycle
with hanging subtrees rooted at nodes of this cycle. The set of seeds on this
cycle is denoted by Hubn. For example

Hub6 = {(6, 5, 4, 3, 2), (6, 4, 3, 2, 1), (6, 3, 2, 1, 5), (6, 2, 1, 5, 4), (6, 1, 5, 4, 3)}.

Due to Lemma 2 we have:

Syntactic View of Permutation Generation 451

Observation 5. If ψ /∈ Hubn then all τ -edges of SeedGraph(ψ) are in
PATH(n).

For ψ /∈ Hubn let Tree(ψ) be the subtree of STn rooted at ψ including ψ
and nodes from which ψ is reachable by parent-links. For ψ /∈ Hubn define
bunch(ψ) =

⋃
β∈Tree(ψ) perms(β) − cycle(ψ̃) ∪ {ψ̃, ψ(n−1)}.

In other words cycle(ψ̃) connects bunch(ψ) with the “outside world”, only
through ψ̃, ψ(n−1).

3 Compact Representation of Bunches

We start with properties of local interconnection between two packages.

Lemma 6. Two seeds φ �= ψ are neighbors iff one of them is the parent of
another one. If φ = parent(ψ) then perms(φ) ∩ perms(ψ) is the σ-cycle con-
taining both ψ̃ and φ(i), for some i, and has a structure as shown in Fig. 2(A),
where ψ is the i-th son of φ. If height(φ) = k < n − 3 then height(ψ) = Δ(k, i).
Furthermore son(φ, i) exists for all i ∈ {1, ..., n − 3}.

Fig. 2. (A) The anatomy of perms(φ) ∩ perms(ψ): the graph SeedGraph(ψ) ∩
SeedGraph(φ). (B) A part of the Hamiltonian path PATH(n) after removing two con-
flicting σ-edges, we have that ψ is the i-th son of φ.

For k < n−3 and a seed ψ of height k we define Wk as the sequence of labels
of a sub-path in PATH(n) starting in ψ̃ and ending in ψ(n−1). In other words it
is a στ -sequence generating all n-permutations (each exactly once) of bunch(ψ).

Observation 7. By Lemma 6 every seed ψ such that 1 < height(ψ) < n − 3
has exactly n − 3 sons whose heights depend only on height of ψ. Hence (by
induction on heights) all trees Tree(ψ) are isomorphic for seeds ψ of the same
height. Consequently the definition of Wk is justified as it depends only on the
height of ψ.

For a permutation π and a sequence α of operations σ, τ denote by GEN(π, α)
the set of all permutations generated from π by following α, including π.

452 W. Rytter and W. Zuba

Fig. 3. The structure of bunch(ψ) for the seed ψ = 95432781. We have parent(ψ) = φ,

where φ = 96543281. The connecting points of ψ with its parent are ˜ψ and ψ(n−1),
in other words bunch(ψ) ∩ perms(φ) = { ˜ψ, ψ(n−1)}. The sequence W4 starts in ˜ψ,
visits all permutations in bunch(ψ) and ends in ψ(n−1). We have: W4 = τ · σ1W3γ6 ·
σ2W3γ5 · σ3W3γ4 · σ4W3γ3 · σ5W2γ2 · σ6W1γ1 · γ8

The word Wk satisfies:

GEN(ψ̃, Wk) = bunch(ψ) and Wk(ψ̃) = ψ(n−1).

In this section we give compact representation of Wk.
For example if height(ψ) = 1 then W1 is a traversal of perms(ψ) except n−2

cyclically equivalent permutations, common to perms(ψ) and perms(φ), where
φ = parent(ψ).

Recall that we denote γk = σkτ

Theorem 8. For 1 ≤ k < n − 3 we have the following recurrences:

W0 = σ, Wk = τ ·
n−2∏

i=1

σi WΔ(k,i) γn−2−i

Proof. Assume ψ /∈ Hubn is of height k, then by Lemma 6 the first, from left to
right, n − k − 1 children of ψ in the subtree Tree(ψ) are of height k − 1 and the

Syntactic View of Permutation Generation 453

next k − 2 children are of heights k − 2, k − 3, ..., 1. The representative β̃i of the
i-th son βi of ψ equals σi(ψ(i)) (see Figs. 3 and 4). �

Fig. 4. Schematic view of structure from Fig. 3.

4 Compact Representation of the Whole Generation

We have the following fact:

Observation 9. Assume two seeds ψ, β satisfy: height(ψ) = k > 1 and
σi(ψ(i)) = β̃. Then if i = 1 and ψ ∈ Hubn then height(β) = height(ψ).

Theorem 10. The whole στ -sequence SEQn starting at τ(n, n − 1, ..., 1), end-
ing at στ(n, n − 1, ..., 1), and generating all n-permutations, has the following
compact representation of O(n2) size (together with recurrences for Wk):

SEQn = γn−2
1 σ2 (Vn τ)n−2 Vn, where

Vn = γn−3 ·
∏n−3

i=2
σi WΔ(n−3,i) γn−2−i · σn−1.

454 W. Rytter and W. Zuba

Fig. 5. The compacted structure of SEQ6 of length 720. It differs from the struc-
ture of R6 by adding one σ-edge from 654321 and removing two (dotted) τ -edges
to have Hamiltonian path. We have: SEQ6 = (στ)4σ2 (V6τ)4 V6, where V6 =
σ3τ σ2W2σ

2τ σW1σ
3τ σ5. The structure is the union of graphs of 5 seeds in Hub6 with

hanging bunches. The starting path consists of permutations from 564321 to 654321.

Proof. For every non-hub seed ψ we had that GEN(ψ̃, Wk) = bunch(ψ), where
k = height(ψ). The only difference for a hub seed φ is that son(φ, 1) cannot be
considered as part of a tree rooted at φ (with already defined parent-links),
since son(φ, 1) ∈ Hubn and this would lead to a cycle (son(φ, 1) is reachable
via parent-links from φ). Thus to prevent this problem we define Vn as Wn−3

with the part corresponding to the first son removed (leaving only the γn−2−1

part), and also delete the last symbol τ , as it does not appear at the end of
the path (it corresponds to one of the τ -edges removed when joining two cycles
into one path). Now Seqn consists of n − 1 such segments Vn (corresponding to
n − 1 hub seeds) joined by τ -edges (they are linked in the same way as if the
previous Vn part was a son of the next one). Additionally it starts with γn−1

1 -path
representing the small path with the last τ -edge replaced by a σ-edge. �

Syntactic View of Permutation Generation 455

5 Ranking

We need some preprocessing to access later some values in constant time.

Observation 11. All the values |Wk| and
k∑

i=0

(|Wi| + n − 1) for k ∈ {0..n − 4}
can be computed in O(n) total time and accessed in O(1) time afterwards.

The ranks of representatives of hub seeds are easy to compute. For exam-
ple for n = 6 we have (see Fig. 5): rank(643215) = 1, rank(632154) = 3,
rank(621543) = 5, rank(615432) = 7, rank(654321) = 9.

Lemma 12. For a given permutation π we can compute in time O(n)

(a) rank(π) − rank(ψ̃) if π ∈ perms(ψ),
(b) rank(π) if π ∈ perms(ψ) for some ψ ∈ Hubn.

Hence we concentrate on ranking permutations of type ψ̃ (representatives of
seeds). We slightly abuse notation and for a seed ψ define rank(ψ) = rank(ψ̃).

For a non-hub seed ψ denote by anchor(ψ) the highest non-hub ancestor
φ of ψ and let hub(ψ) = parent(anchor(ψ)). Observe that the anchor φ is
the first contacting seed with the hub, it is the first ancestor of ψ such that
perms(φ) ∩ perms(β) �= ∅ for some β ∈ Hubn, in fact for β = hub(ψ).

rank(ψ) − rank(anchor(ψ)) for a non-hub seed ψ, can be treated as its
distance from Hubn. It happens that computing the rank of the anchor is much
easier, since we have to deal only with the hub seeds. The bottleneck in ranking
is computation of the distance of a seed representative from Hubn. Define:

SUM(k, j) = |τ ·
∏j−1

i=1
σi WΔ(k,i) γn−2−i| + j.

Denote also by ord(ψ) the position of mis(ψ) + 1 in ψ counting from the end
of sequence ψ. For example for ψ = (10 6 5 9 8 4 3 1 2) we have ord(ψ) = 5, since
mis(ψ) = 7 and 8 is on the 5-th position from the right.

Observation 13. If φ = parent(ψ) /∈ Hubn and ψ is the i-th son of φ then
rank(ψ) − rank(φ) = SUM(height(φ), i).

Example 14. Let ψ = 94326781, then parent(ψ) = φ = 95432781. The path
from φ̃ = 965432781 to ψ̃ = 954326781 is

τ σ1W3σ
6τ σ2W3σ

5τ σ3W3σ
4τ σ4,

see Fig. 3. Its length equals SUM(4, 4), we have: height(φ) = 4, ord(ψ) = 4.

Observation 15. ord(ψ) = i iff ψ is the i-th son of parent(ψ).

For the parent-sequence ψ0 = ψ,ψ1, ..., ψm = anchor(ψi) denote

route(ψ) = (ord(ψ0), ord(ψ1), ..., ord(ψm)).

456 W. Rytter and W. Zuba

For a seed ψ = a1a2...an−1 define the decreasing sequence of ψ, denoted by
dec seq(ψ), as the maximal sequence ai0ai1 ...aim , where 2 = i0 < i1 < i2 < ... <
im such that ij−1 = ij ⊕ 1 for 0 < j ≤ m. Denote level(ψ) = n − m − 3. The
length of the parent-sequence ψ = ψ0, ψ1, ψ2, ..., ψr = anchor(ψ) from ψ to its
anchor is r = level(ψ) − 1.

Example 16. We have: dec seq(96154238) = (6, 5, 4, 3). Hence the path from
ψ = (96154238) to anchor(ψ) = (98765423) is of length (9−3−3)−1 = 2. This
path equals:

ψ0 → ψ1 → ψ2 = 96154238 → 97615423 → 98765423.

We have: ord(ψ0) = 1, ord(ψ1) = 5, ord(ψ2) = 2, route(96154238) = (1, 5, 2).

The key point is that we do not need to deal with the whole parent-sequence,
including explicitly seeds on the path, which is of quadratic size (in worst-case)
but it is sufficient to deal with the sequence of orders of sons, which is an implicit
representation of this path of only linear size.

Lemma 17. For a non-hub seed ψ we can compute route(ψ) and anchor(ψ) in
O(n

√
log n) time.

Proof. We know the length of the parent sequence from ψ to its anchor, since
we know level(ψ). Now we use the following auxiliary problem

Inversion-Vector problem:
for a seed ψ compute for each element x the number RightSm[x]
of elements smaller than x which are to the right of x in ψ.

Assume ψ = (a1, a2, ..., an−1). We introduce a new linear order

a2 ≺ a2 � 1 ≺ a2 � 2 ≺ ... ≺ a2 � (n − 2).

Then we compute together the numbers RightSm[z] w.r.t. linear order ≺ for
each element z in ψ.

Now ord(ψi) is computed separately for each i in the following way:

ord(ψi) := RightSm[xi + 1] + 1,where xi = mis(ψi)

The Inversion-Vector problem can be computed in O(n
√

log n) time, see [1].
Consequently the whole computation of numbers ord(ψi) is of the same asymp-
totic complexity. We know that hub(ψ) = (n, b, b � 1, ..., b � (n − 3)), where
b = a2 ⊕ level(ψ) and we know also which son of hub(ψ) is anchor(ψ). This
knowledge allows to compute anchor(ψ) within required complexity. This com-
pletes the proof. �
Corollary 18. For a non-hub seed ψ the value rank(ψ)−rank(anchor(ψ)) can
be computed in O(n

√
log n) time.

Syntactic View of Permutation Generation 457

Proof. Let the parent-sequence from ψ to its anchor be

ψ = ψ0, ψ1, ψ2, ..., ψr = anchor(ψ),where r = level(ψ) − 1.

Then rank(ψi) − rank(ψi+1) = SUM(height(ψi+1), ord(ψi)), and height(ψi) =
Δ(height(ψi+1), ord(ψi)), which allows us to compute in O(n) time:

rank(ψ) − rank(anchor(ψ)) =
∑0

i=m−1
(rank(ψi) − rank(ψi+1))

Now the thesis is a consequence of Observations 11, 13 and Lemma 17. This
completes the proof. �
Example 19. (Continuation of Example 16) For ψ from Example 16 we have:

rank(ψ) − rank(anchor(ψ)) = SUM(5, 5) + SUM(2, 1)

The following result follows directly from Corollary 18, Lemma 12 and Obser-
vation 11.

Theorem 20. [Ranking] For a given permutation π we can compute the rank
of π in SEQn in time O(n

√
log n).

6 Unranking

Denote by Perm(t) the t-th permutation in SEQn, and for t < |bunch(ψ)|
let Perm(ψ, t) = Perm(t + rank(ψ̃)) (it is the t-th permutation in bunch(ψ),
counting from the beginning of this bunch). The following case is an easy one.

Lemma 21. If we know a seed ψ together with its rank, such that Perm(t) ∈
perms(ψ), then we can recover Perm(t) in linear time.

We say that a permutation π is a hub-permutation if π ∈ perms(ψ) for some
ψ ∈ Hubn.

Lemma 22. We can test in O(n) time if Perm(t) is a hub-permutation.

(a) If “yes” then we can recover Perm(t) in O(n) time.
(b) Otherwise we can find in O(n) time an anchor-seed ψ together with
rank(ψ) such that Perm(t) ∈ bunch(ψ).

For a sequence b = (b1, b2, ..., bm) of positive integers denote

MaxFrac(b) = maxi
bi+1

bi
, MinFrac(b) = mini

bi+1

bi
.

The sequence b is called here D(m)–stably increasing iff

MinFrac(b) ≥ 2, and MaxFrac(b) ≤ D(m).

458 W. Rytter and W. Zuba

Lemma 23.

(a) Assume we have a D(m)–stably increasing sequence b of length O(m).
Then after linear preprocessing we can locate any integer t in the sequence b
in O(log log D(m)) time.
(b) The sequence b = (b0, b1, ..., bn−5), where bk =

∑k
i=0(|Wi| + n − 1) is

n–stably increasing.

Lemma 24. After linear preprocessing if we are given a height of a non-hub
seed ψ, and a number t ≤ |bunch(ψ)| we can find the number j and height(β)
of the seed-son β of ψ such that Perm(ψ, t) ∈ bunch(β) in O(log log n) time if
Perm(ψ, t) /∈ perms(ψ).

Proof. Let k = height(ψ). We need j such that SUM(k, j)−j ≤ t < SUM(k, j+
1) − (j + 1). For j ≤ n − k we have SUM(k, j) − j = (j − 1) · (|Wk−1| + n − 1),
hence if t < SUM(k, n−k)−n+k the simple division by |Wk−1|+n−1 suffices
to find the appropriate j. Otherwise we look for j such that

|Wk| − SUM(k, j + 1) + j + 1 < s ≤ |Wk| − SUM(k, j) + j, where s = |Wk| − t.

Let bi = |Wk| − SUM(k, n − 2 − i) + n − 2 − i = (
∑i

j=0 |Wj | + n − 1). By
Lemma 23(b) (b0, ..., bk−2) is n–stably increasing (it is a prefix of (b0, ..., bn−5)
for which we made the linear preprocessing). Hence by Lemma 23(a) we can find
the required j in O(log log n) time.

Moreover if SUM(k, j) < t < SUM(k, j) + |WΔ(k,j)|, then Perm(ψ, t) =
Perm(β, t − SUM(k, j)), where β = son(ψ, j) has height Δ(k, j). Otherwise
Perm(ψ, t) ∈ perms(ψ). �
Theorem 25. [Unranking] For a given number t we can compute the t-th
permutation in Sawada-Williams generation in O(n log n

log log n).

Proof. From Lemma 22 we either obtain the required permutation (if it is a hub-
permutation) or obtain its anchor-seed φ and rank(φ). In the second case we
know that Perm(t) ∈ bunch(φ) and it equals Perm(φ, t − rank(φ̃)). Now after
the linear preprocessing we apply Lemma 24 exhaustively to obtain route(ψ) for
a seed ψ such that Perm(t) ∈ perms(ψ). However we do not know ψ and have
to compute it.

Claim. If we know anchor(ψ) and route(ψ) then ψ can be computed in
O(n log n

log log n) time.

Proof. We can compute the second element a2 of ψ as a′
2 � m and dec seq(ψ)

as (a2, a2 � 1, ..., a2 � (n−m − 3)) where a′
2 is the second element of anchor(ψ),

and m = |route(ψ)| − 1. Then we use the order:

a2 ≺ a2 � 1 ≺ a2 � 2 ≺ ... ≺ a2 � (n − 2).

We produce a linked list initialized with dec seq(ψ). For i ∈ {0, ...,m − 1} we
want to insert a2 ⊕ (m + 1 − i) after ord(ψm−1) position from the end of the

Syntactic View of Permutation Generation 459

current list (all the smaller elements are already in the list and we know, that
after a2 ⊕ (m + 1 − i) there are ord(ψm−1) − 1 such elements). ψ is composed of
n and consecutive elements of the final list. The data structure from [2] allows
us to achieve that in O(n log n

log log n) time.

Finally we use this claim and Lemma 21 to obtain the required permutation
Perm(t). �

References

1. Chan, T.M., Patrascu, M.: Counting inversions, offline orthogonal range count-
ing, and related problems. In: Charikar, M. (ed.) Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, 17–19 January 2010, pp. 161–173. SIAM (2010). https://doi.org/10.
1137/1.9781611973075.15

2. Dietz, P.F.: Optimal algorithms for list indexing and subset rank. In: Dehne, F.,
Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 39–46. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9 5

3. Ruskey, F., Williams, A.: An explicit universal cycle for the (n−1)-permutations of
an n-set. ACM Trans. Algorithms 6(3), 45:1–45:12 (2010). https://doi.org/10.1145/
1798596.1798598

4. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with
implicit input. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27836-8 5

5. Sawada, J., Williams, A.: Solving the sigma-tau problem. http://socs.uoguelph.ca/
∼sawada/papers/sigmaTauCycle.pdf

6. Sawada, J., Williams, A.: A Hamilton path for the sigma-tau problem. In: Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 568–575 (2018).
https://doi.org/10.1137/1.9781611975031.37

7. Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence con-
struction. Discret. Math. 339(1), 127–131 (2016). https://doi.org/10.1016/j.disc.
2015.08.002

https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1007/3-540-51542-9_5
https://doi.org/10.1145/1798596.1798598
https://doi.org/10.1145/1798596.1798598
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-540-27836-8_5
http://socs.uoguelph.ca/~sawada/papers/sigmaTauCycle.pdf
http://socs.uoguelph.ca/~sawada/papers/sigmaTauCycle.pdf
https://doi.org/10.1137/1.9781611975031.37
https://doi.org/10.1016/j.disc.2015.08.002
https://doi.org/10.1016/j.disc.2015.08.002

Palindromic Subsequences
in Finite Words

Clemens Müllner1 and Andrew Ryzhikov2(B)

1 CNRS, Université Claude Bernard - Lyon 1, Villeurbanne, France
mullner@math.univ-lyon1.fr

2 LIGM, Université Paris-Est, Marne-la-Vallée, France
ryzhikov.andrew@gmail.com

Abstract. In 1999 Lyngsø and Pedersen proposed a conjecture stating
that every binary circular word of length n with equal number of zeros
and ones has an antipalindromic linear subsequence of length at least 2

3n.
No progress over a trivial 1

2n bound has been achieved since then. We
suggest a palindromic counterpart to this conjecture and provide a non-
trivial infinite series of circular words which prove the upper bound of 2

3n
for both conjectures at the same time. The construction also works for
words over an alphabet of size k and gives rise to a generalization of the
conjecture by Lyngsø and Pedersen. Moreover, we discuss some possible
strengthenings and weakenings of the named conjectures. We also pro-
pose two similar conjectures for linear words and provide some evidences
for them.

Keywords: Palindrome · Antipalindrome · Circular words ·
Subsequences

1 Introduction

Investigation of subsequences in words is an important part of string algorithms
and combinatorics, with applications to string processing, bioinformatics, error-
correcting codes. A lot of research has been done in algorithms and complex-
ity of finding longest common subsequences [1,4], their expected length in ran-
dom words [9], codes with bounded lengths of pairwise longest common subse-
quences [10], etc. An important type of subsequences is a longest palindromic
subsequence, which is in fact a longest common subsequence of a word and its
reversal. Despite a lot of research in algorithms and statistics of longest common
subsequences, the combinatorics of palindromic subsequences is not very well
understood. We mention [2,5–7] as some results in this direction. In this note we
recall some known conjectures on this topic and provide a number of new ones.

C. Müllner—This research was suported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under
the Grant Agreement No 648132.

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): LATA 2019, LNCS 11417, pp. 460–468, 2019.
https://doi.org/10.1007/978-3-030-13435-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13435-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-13435-8_34

Palindromic Subsequences in Finite Words 461

The main topic of this note are finite words. A linear word (or just a word) is
a finite sequence of symbols over some alphabet. A subsequence of a linear word
w = a1 . . . an is a word w′ = ai1 . . . aim with i1 < . . . < im. A circular word is
an equivalence class of linear words under rotations. Informally, a circular word
is a linear word written on a circle, without any marked beginning or ending.
A linear word is a subsequence of a circular word if it is a subsequence of some
linear word from the corresponding equivalence class (such linear word is called
a linear representation).

A word w = a1 . . . an is a palindrome if ai = an−i+1 for every 1 ≤ i ≤ n
2 . A

word is called binary if its alphabet is of size two (in this case we usually assume
that the alphabet is {0, 1}). A binary word w = a1 . . . an is an antipalindrome if
ai �= an−i+1 for every 1 ≤ i ≤ n

2 . The reversal wR of a word w = a1 . . . an is the
word an . . . a1.

In 1999 Lyngsø and Pedersen formulated the following conjecture motivated
by analysis of an approximation algorithm for a 2D protein folding problem [8].

Conjecture 1 (Lyngsø and Pedersen, 1999). Every binary circular word of
length n divisible by 6 with equal number of zeros and ones has an antipalindromic
subsequence of length at least 2

3n.

To the best of our knowledge, no progress has been achieved in proving this
conjecture, even though it has drawn substantial attention from the combina-
torics of words community. However, it is a source of other interesting conjec-
tures.

In the mentioned conjecture, the position of a longest antipalindromic subse-
quence on the circle is arbitrary. A strengthening is to require the two halves of
the subsequence to lie on different halves of the circle according to some parti-
tion of the circle into two parts of equal length. Surprisingly, experiments show
that this does not change the bound.

Conjecture 2 (Brevier, Preissmann and Sebő, [3]). Let w be a binary
circular word of length n divisible by 6 with equal number of zeros and ones. Then
w can be partitioned into two linear words w1, w2 of equal length, w = w1w2,
having subsequences s1, s2 such that s1s2 is an antipalindrome and |s1| = |s2| =
1
3 |w|.

We checked this conjecture up to n = 30 by computer. The worst known
case for the both conjectures is provided by the word w = 0i1i(01)i1i0i showing
the tightness of the conjectured bound (by tightness everywhere in this note we
understand the existence of a lower bound different from the conjectured bound
by at most a small additive constant). The bound 1

2n instead of 2
3n can be easily

proved, but no better bound is known.

Proposition 3 (Brevier, Preissmann and Sebő, [3]). Conjecture 2 is true
when replacing |s1| = |s2| = 1

3 |w| by |s1| = |s2| = 1
4 |w|.

Proof. Consider an arbitrary partition of w into two linear words w1, w2 of equal
length, w = w1w2. Assume that w1 has less ones than w2 zeros. By changing the

462 C. Müllner and A. Ryzhikov

partition by one letter each time (by adding a subsequent letter to the end of w1

and removing one from the beginning), we get an opposite situation in 1
2n steps.

That means that there exists a partition w = w′
1w

′
2, |w′

1| = |w′
2|, such that the

number of zeros in w′
1 is the same as the number of ones in w′

2 and vice versa.
Thus, we can pick an antipalindromic subsequence 0k1k or 1k0k with k = 1

4n
having the required properties. ��

2 Circular Words

A natural idea is to look at palindromic subsequences instead of antipalindromic
ones. This leads to a number of interesting conjectures which we describe in this
section. First, we formulate palindromic counterparts to Conjectures 1 and 2.

Conjecture 4. Every binary circular word of length n has a palindromic sub-
sequence of length at least 2

3n.

Conjecture 5. Let w be a binary circular word of length n divisible by 6. Then
w can be partitioned into 2 linear words w1, w2 of equal length, w = w1w2,
having subsequences s1, s2 such that s1 = sR

2 (that is, s1s2 is a palindrome) and
|s1s2| = 2

3 |w|.
We checked both conjectures up to n = 30 by computer. The worst known

case for Conjecture 5 is provided by the word 02i(10)i12i, showing the tightness
of the conjectured bound. The word 0i(10)i1i provides an upper bound of 3

4n
for Conjecture 4. A better bound is discussed in Sect. 3.

In Conjecture 4 it is enough to pick the subsequence consisting of all appear-
ances of the letter with the largest frequency to get the 1

2n lower bound. Using
the same idea as in the proof of Proposition 3, it is also easy to prove the 1

2n
bound for Conjecture 5. No better bounds are known to be proved.

Proposition 6. Conjecture 5 is true when replacing |s1s2| = 2
3 |w| by |s1s2| =

1
2 |w|.

Conjecture 5 is about a palindromic subsequence aligned with some cut of
the circular word into two equal halves. There are n

2 such cuts, so one attempt
to simplify the conjecture is to look at only two cuts which are “orthogonal”.
This way we attempt to switch from the circular case to something close to the
linear case, which is often easier to deal with.

Let w be a circular word of length n divisible by 4. Let w1w2w3w4 be some
partition of w into four linear words of equal length. Let p1p

′
1 and p2p

′
2, |p1| =

|p′
1|, |p2| = |p′

2|, be the longest palindromic subsequences of w such that p1, p′
1,

p2, p′
2 are subsequences of w1w2, w3w4, w2w3, w4w1 respectively. Informally,

these two palindromes are aligned to two orthogonal cuts of the word w into
two linear words of equal length. The partitions w1w2, w3w4 and w2w3, w4w1

are two particular partitions (made by two orthogonal cuts) considered among
all n

2 partitions in Conjecture 5.

Palindromic Subsequences in Finite Words 463

Conjecture 7. For every word w of length n divisible by 4 and its every linear
representation w = w1w2w3w4, the maximum of the lengths of p1p

′
1 and p2p

′
2

defined above is at least 1
2n.

We checked this conjecture up to n = 30 by computer. The worst known case
is provided by the already appeared word 0i(10)i1i showing the tightness of the
conjectured bound. The bound 1

3n can be proved as follows.

Proposition 8. For every word w of length n divisible by 4 and its every linear
representation w = w1w2w3w4, the maximum of the lengths of p1p

′
1 and p2p

′
2 is

at least 1
3n.

Proof. Suppose that |p1p′
1| < 1

3n. Then without loss of generality we can assume
that the number of zeros in w1w2 and the number of ones in w3w4 is less than 1

6n.
Then by the pigeonhole principle the number of ones in both w1 and w2, and
the number of zeros in both w3 and w4 is at least 1

12n. It means that we can pick
a subsequence of 1

12n zeros and then 1
12n ones from w4w1 and a symmetrical

subsequence from w2w3. Thus we get |p2p′
2| ≥ 1

3n. ��
In fact, a slightly stronger statement that the total length of p1p

′
1 and p2p

′
2

is 2
3n can be proved this way. We conjecture the optimal bound for this value to

be equal to n.
Even being proved, the bound of 1

2n in this conjecture would not improve
the known bound for Conjecture 5. However, Conjecture 7 deals with palindromic
subsequences of only two linear words, and thus seems to be easier to handle.
Considering four regular cuts instead of two should already improve the bound
for Conjecture 5.

3 Showing Asymptotic Tightness of Conjecture 4

In this section we present the main technical contribution of this paper, which
is an infinite family of words providing a better upper bound for Conjecture 4.
In fact, we show a stronger result for words over an arbitrary alphabet. Below
we consider words over the alphabet {0, . . . , k − 1}, i.e. w ∈ {0, . . . , k − 1}∗.

Definition 9. We say that w′ is a consecutive subword of a word w if there
exist words u, v with w = uw′v.

We call a word w ∈ {0, . . . , k −1}∗ of type n if it is a consecutive subword of
(0n1n . . . (k − 1)n)∗ or a consecutive subword of ((k − 1)n . . . 1n0n)∗. In the first
case we write w ∈ S′

n, in the second case we write w ∈ S′′
n.

Furthermore, we define Sn = S′
n ∪ S′′

n.

Thus w ∈ S′
n if it is a concatenation of blocks (0n1n . . . (k − 1)n), where the

first and the last blocks may be shorter, and analogously for w ∈ S′′
n.

We denote by w the word we get when exchanging every letter � by (k−1−�),
e.g. 01 . . . (k − 1) = (k − 1)(k − 2) . . . 0. We see directly that w ∈ Sn if and only
if w ∈ Sn. Furthermore, we have that w ∈ Sn if and only if wR ∈ Sn.

464 C. Müllner and A. Ryzhikov

Lemma 10. Let w1 ∈ Sn1 be a word of length �1 and w2 ∈ Sn2 be a word of
length �2, where n1 > n2. Then, the length of the longest common subsequence
of w1 and w2 is at most �1+�2

k+1 + �1
n2
n1

+ 2n2.

Proof. Let w be a common subsequence of w1 and w2 of length �. We see that w
is of the form ap1

1 ap2
2 . . . aps

s , where all aj ∈ {0, . . . , k − 1}, all pj are positive and
aj �= aj+1. We find directly that for i = 1, 2:

s ≤
⌈

�i − 1
ni

⌉
+ 1 ≤ �i − 1 + ni − 1

ni
+ 1 ≤ �i

ni
+ 2. (1)

We consider now the minimal length of a consecutive subword of wi that
contains a

pj

j , where pj > ni. Thus, a
pj

j cannot be contained in one block of the
form (0ni1ni . . . (k − 1)ni). This shows that the minimal length of a consecutive
subword of wi that contains a

pj

j is at least kni.
This generalizes for pj > nir and we find that each a

pj

j spans a subsequence of

length at least kni(
⌈

pj

ni

⌉
−1) ≥ k(pj −ni) in wi. Thus, we find �i ≥ ∑s

j=1 k(pj −
ni). This gives in total

� =
s∑

j=1

pj ≤ �i

k
+ sni. (2)

By combining (1) and (2) we find

� ≤ �2
k

+ (
�1
n1

+ 2)n2. (3)

Furthermore, we find directly that � ≤ �1. This gives in total

k

k + 1
� ≤ �2

k + 1
+ �1

kn2

(k + 1)n1
+

2k

k + 1
n2 ≤ �2

k + 1
+ �1

n2

n1
+ 2n2

1
k + 1

� ≤ �1
k + 1

,

and by adding these inequalities, we find

� ≤ �1 + �2
k + 1

+ �1
n2

n1
+ 2n2.

��
We think of �1+�2

k+1 in the bound above as the “main term”. Therefore, we
need that n2

n1
is small. The remaining term origins from boundary phenomena

due to incomplete blocks. We note that this “main term” is indeed sharp for
large �1, �2, when n1

n2
is integer and k�1 = �2 as the following example shows.

Example 11. We consider n1 = pn2, with p integer, and w1 = (0n11n1 . . . (k −
1)n1)�n2 , w2 = (0n21n2 . . . (k−1)n2)k�n1 = ((0n21n2 . . . (k−1)n2)kp)�n2 . One finds
that in1 is a subsequence of (0n21n2)p and thus, w1 is a subsequence of w2. This
gives directly |w1| = kn1�n2, |w2| = kn2k�n1 = k|w1| and |w| = |w1| = |w1|+|w2|

k+1 .

Palindromic Subsequences in Finite Words 465

For the following considerations we will need a generalization of the notion of
antipalindromes to the case of non-binary alphabet. One natural version would
be to say that w is an antipalindrome if w and wR differ at every position.
However, we work with a stronger notion, which still provides an interesting
bound.

Definition 12. We call a word w ∈ {0, . . . , k − 1}∗ a strong antipalindrome if
w = wR.

Theorem 13. For every ε > 0 there exists a circular word over the alphabet
{0, . . . , k − 1} with equal number of 0’s, 1’s, . . ., (k − 1)’s (n occurences of each
letter) such that any palindromic and any strongly antipalindromic subsequence
of it is of length at most (2

k+1 + ε)kn.

Proof. Let us consider a circular word with a linear representation w1w2 . . . wr =
w, where wj = (0pj

1pj

. . . (k − 1)pj

)pr−j

. We see directly that |wj | = kpr and,
thus, kn := |w| = krpr. Furthermore, we have wj ∈ Spj .

We only work in the palindromic case from now on, but the same reasoning
also holds in the case of strong antipalindromes.

Let vvR be a palindromic subsequence of even length. Thus, we find that v
is a subsequence of the linear word u′

1wi1wi2 . . . wiau2 and vR is a subsequence
of the linear word u′

2wj1wj2 . . . wjbu1, where u1u
′
1 = wi0 , u2u

′
2 = wj0 and ik �= j�

for all 0 ≤ i ≤ a, 0 ≤ � ≤ b.
This shows that v is a common subsequence of u′

1wi1wi2 . . . wiau2 and
uR
1 wR

jb
. . . wR

j1
u′R
2 . By removing the parts of v that belong to the boundary blocks

ui we get v that is a common subsequence of wi1wi2 . . . wia and wR
jb

. . . wR
j1

, where

|v| − |v′| ≤ |wi0 | + |wj0 | = 2kpr.

From now on, we only work with v′. We can rewrite v′ as a concatenation
of at most (a + b − 1) blocks vi, where each vi is a common subsequence of
some w

(i)
1 ∈ Spj1(i) and w

(i)
2 ∈ Spj2(i) where j1(i) �= j2(i). Furthermore, we have

a + b ≤ r and ∑
i

|w(i)
1 | = akpr

∑
i

|w(i)
2 | = bkpr.

By using Lemma 10 we find that

|v′| =
∑

i

|vi|

≤
∑

i

(|w(i)
1 | + |w(i)

2 |
k + 1

+
(|w(i)

1 | + |w(i)
2 |)

p
+ 2pr−1

)

≤ |w|
k + 1

+
|w|
p

+
2|w|
kp

.

466 C. Müllner and A. Ryzhikov

This gives in total (together with the bound on |v| − |v′|)

|vvR| ≤ 2|w|
k + 1

+ |w|
(

4
p

+
4
r

)
.

Thus, choosing p = r ≥ 8
ε finishes the proof. ��

The trivial lower bound is 1
k . For palindromes, this can be seen immediately.

For strong antipalindromes the case for k odd works very similarly: We see that
(k − 1)/2 = (k−1)/2 and the word ((k−1)/2)|w|/k is a strongly antipalindromic
subsequence of length |w|/k. The case k is even slightly more complicated but
can be dealt with in the same way as k = 2.

Theorem 13 deserves some remarks. First, it is interesting that the family of
words constructed in the theorem provides the same bound for both palindromic
and strongly antipalindromic subsequences. Second, it provides a generalization
of the palindromic and strongly antipalindromic conjectures to the case of an
alphabet of more than two letters. These conjectures also remain open.

Finally, for any ε > 0, we find that the bound 2n
k+1+ε holds almost surely for

large n in the case when we choose every letter independently and uniformly in
{0, . . . , k − 1}.

To see this, we fix a subsequence of length n
k+1+ε and call it w0. Then we try

to find w0, w0, w
R
0 or w0

R as a subsequence of the remaining word w1. However,
any letter in w1 is chosen independently and uniformly. Therefore, it takes on
average k letters until one finds one specific letter. By the law of large numbers,
the number of letters we have to read in a string of independent and uniformly
chosen letters to find a specific subsequence of length � is asymptotically normal
distributed with mean �k and variance α� for some α > 0. By the Chebyshev
inequality, we find that w0 (or any of the mentioned forms above) appears in w1

almost surely for large n as |w1| = (k + ε)|w0|.

4 Linear Words

The minimum length of the longest palindromic/antipalindromic subsequence
in the class of all linear binary words with n letters can be easily computed.
However, for some restricted classes of words their behavior is more complicated.
One of the simplest restrictions is to forbid some number of consecutive equal
letters. The following proposition is then not hard to prove. It suggests some
progress for Conjectures 1 and 4 for binary words without three consecutive
equal letters.

Proposition 14. Every binary word of length n without three consecutive equal
letters has a palindromic subsequence of length at least 2

3 (n − 2). The same is
true for an antipalindromic subsequence.

Proof. Let w be a binary word without three consecutive equal letters. Consider
the representation w = w1w2 . . . wm such that each wi is composed of only zeros

Palindromic Subsequences in Finite Words 467

or only ones, and two consecutive words wi and wi+1 consist of different letters.
Then the length of each wi is at most 2. Assume that m is even (otherwise
remove wm). Then one can pick at least one letter from each pair wi, wm−i+1

(or two letters if both wi, wm−i+1 are of the same length) and all the letters
from wm+1

2
in such a way that the resulting subsequence is a palindrome. This

way we get a palindromic subsequence of length at least 2
3 (n − 2). The same

proof can be done for antipalindromic subsequences. ��
For the antipalindromic part, one can take the word (001)i to see tightness

(we conjecture the bound 2
3n to be tight for words with equal number of zeros

and ones, but we could not find an example providing tightness). For palindromic
subsequences we conjecture a stronger bound.

Conjecture 15. Every binary word of length n without three consecutive equal
letters has a palindromic subsequence of length at least 3

4 (n − 2).

We checked this conjecture up to n = 30. The worst known cases are provided
by the word (001)i(011)i, showing the tightness of the conjectured bound.

Note that every binary word without two consecutive equal letters is a
sequence of alternating zeros and ones, and thus has a palindromic subsequence
of length n − 1, where n is the length of the word. For a three-letter alphabet it
is not hard to prove the following.

Proposition 16. Let w be a word of length n over a three-letter alphabet. If w
has no two consecutive equal letters, then it has a palindromic subsequence of
length at least 1

2 (n − 1).

Proof. Assume that the number of letters in w is even (otherwise, remove the
last letter). Let w = w1w2 . . . wm where wi is a word of length 2. Each such
word contains two different letters. Then for each pair wi, wm−i+1 there exists
a letter present in both words. By taking such a letter from every pair, we get a
palindrome of length m = 1

2 (n − 1). ��
Based on these observations and computer experiments, we formulate the

following conjecture.

Conjecture 17. Let w be a word of length n over an alphabet of size k, k ≥ 2.
If w has no two consecutive equal letters, then it has a palindromic subsequence
of length at least 1

k−1 (n − 1).

We checked this conjecture up to n = 21 for k = 4 and n = 18 for k = 5 by
computer. A critical example for this conjecture is provided by a word which is a
concatenation of the word (a1a2)i and words (a�+1a�)i−1a�+1 for 1 < � < k − 1.
This word shows that the conjectured bound is tight.

468 C. Müllner and A. Ryzhikov

5 Further Work

There are some questions besides the conjectures above that are worth mention-
ing. First, there is no known reduction between the palindromic and antipalin-
dromic conjectures. Thus, it is interesting to know whether a bound for one of
them implies some bound for the other one. Second, no non-trivial relation is
known for the bounds for the same conjecture but different size of alphabets.

Acknowledgements. We thank anonymous reviewers for their comments on the pre-
sentation of the paper. The second author is also grateful to András Sebő, Michel Rigo
and Dominique Perrin for many useful discussions during the course of the work.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: 2015 IEEE 56th Annual Symposium on Founda-
tions of Computer Science, pp. 59–78 (2015). https://doi.org/10.1109/FOCS.2015.
14

2. Axenovich, M., Person, Y., Puzynina, S.: A regularity lemma and twins in words.
J. Comb. Theory Ser. A 120(4), 733–743 (2013). https://doi.org/10.1016/j.jcta.
2013.01.001

3. Brevier, G., Preissmann, M., Sebő, A.: Private communication
4. Bringmann, K., Kunnemann, M.: Quadratic conditional lower bounds for string

problems and dynamic time warping. In: 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pp. 79–97 (2015). https://doi.org/10.1109/
FOCS.2015.15

5. Bukh, B., Ma, J.: Longest common subsequences in sets of words. SIAM J. Discret.
Math. 28(4), 2042–2049 (2014). https://doi.org/10.1137/140975000

6. Bukh, B., Zhou, L.: Twins in words and long common subsequences in permuta-
tions. Isr. J. Math. 213(1), 183–209 (2016). https://doi.org/10.1007/s11856-016-
1323-8

7. Holub, Š., Saari, K.: On highly palindromic words. Discret. Appl. Math. 157(5),
953–959 (2009). https://doi.org/10.1016/j.dam.2008.03.039

8. Lyngsø, R.B., Pedersen, C.N.: Protein folding in the 2D HP model. Technical
report, University of Aarhus (1999)

9. Paterson, M., Danč́ık, V.: Longest common subsequences. In: Pŕıvara, I., Rovan, B.,
Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 127–142. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58338-6 63

10. Sloane, N.: On single-deletion-correcting codes. In: Codes and Designs, vol. 10, pp.
273–291 (2000)

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1016/j.jcta.2013.01.001
https://doi.org/10.1016/j.jcta.2013.01.001
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/140975000
https://doi.org/10.1007/s11856-016-1323-8
https://doi.org/10.1007/s11856-016-1323-8
https://doi.org/10.1016/j.dam.2008.03.039
https://doi.org/10.1007/3-540-58338-6_63

Author Index

Abascal, Jackson 177
Amrane, Amazigh 275
Anabtawi, M. 57
Anselmo, Marcella 288

Becker, Tim 70
Bedon, Nicolas 275
Bishop, Alex 82
Boneva, Iovka 343

Charlier, Émilie 397
Cordero, Christophe 409

de la Higuera, Colin 328
Dennunzio, Alberto 95
Dubernard, Jean-Philippe 302

Eeralla, Ajay K. 356
Elder, Murray 82
Erbatur, Serdar 356

Fenner, Stephen 215
Fernau, Henning 3
Formenti, Enrico 95

Guaiana, Giovanna 302

Hassan, S. 57
Hemaspaandra, Lane A. 177
Hoffmann, Berthold 233
Holzer, Markus 190
Hospodár, Michal 190

Ignatiev, Alexey 159

Jirásková, Galina 315

Kapoutsis, C. 57
Kari, Lila 203
Klíma, Ondřej 108, 315
Kociumaka, Tomasz 421

Kreowski, Hans-Jörg 246
Kuske, Sabine 246

Lee, Edward A. 31
Linard, Alexis 328
Lozin, Vadim 43
Lye, Aaron 246

Madonia, Maria 288
Mahalingam, Kalpana 434
Maimon, Shir 177
Manzoni, Luca 95
Margara, Luciano 95
Marques-Silva, Joao 159
Marshall, Andrew M. 356
Meer, Klaus 121
Mignot, Ludovic 302
Minas, Mark 233
Morgado, Antonio 159
Müllner, Clemens 460

Naif, Ameen 121
Ng, Timothy 203
Niehren, Joachim 343

Padé, Daniel 215
Pandoh, Palak 434
Parys, Paweł 368
Polák, Libor 108
Porreca, Antonio E. 95
Puzynina, Svetlana 397

Radoszewski, Jakub 421
Ringeissen, Christophe 356
Rubery, Daniel 177
Rytter, Wojciech 421, 447
Ryzhikov, Andrew 460

Sakho, Momar 343
Seki, Hiroyuki 259
Selmi, Carla 288

Senda, Ryoma 259
Straszyński, Juliusz 421
Sutner, Klaus 70

Takata, Yoshiaki 259

Ulyantsev, Vladimir 159

Vaandrager, Frits 328
Vandomme, Élise 397

Waleń, Tomasz 421

Yamakami, Tomoyuki 134

Zakharov, Vladimir A. 146
Zakirzyanov, Ilya 159
Zakzok, M. 57
Zehmakan, Ahad N. 381
Zuba, Wiktor 421, 447

470 Author Index

	Preface
	Organization
	Abstracts of Invited Papers
	Searching and Indexing Compressed Text
	Pattern Discovery in Biological Sequences
	Contents
	Invited Papers
	Modern Aspects of Complexity Within Formal Languages
	1 Introduction
	2 Some Modern Concepts of Complexity Theory
	3 First Case Study: String-to-String Correction S2S
	4 Second Case Study: Grammar-Based Compression
	5 Third Case Study: Synchronizing Words
	6 Fourth Case Study: Consistency Problem for DFAs
	7 Fifth Case Study: Lower Bounds for Universality
	8 Sixth Case Study: Parsing Theory
	9 Conclusions
	References

	Observation and Interaction
	1 Interaction vs. Observation
	References

	From Words to Graphs, and Back
	1 Introduction
	2 Words, Graphs and Well-quasi-ordering
	2.1 An Introductory Example
	2.2 Geometric Grid Classes of Permutations and Letter Graphs
	2.3 Deciding WQO

	3 Representing Graphs by Words
	3.1 Entropy of Hereditary Properties
	3.2 Coding of Graphs in Classes of High Speed
	3.3 Representing Graphs in Hereditary Classes of Low Speed

	References

	Automata
	An Oracle Hierarchy for Small One-Way Finite Automata
	1 Introduction
	2 Preparation
	3 Oracle-1NFAs
	4 The One-Way Polynomial-Size Oracle Hierarchy
	5 A Characterization for the Alternating Hierarchy
	6 Conclusion
	References

	Orbits of Abelian Automaton Groups
	1 Introduction
	2 Background
	2.1 Automata and Automaton Groups
	2.2 Abelian Automata

	3 Affine Residuation Parametrization
	3.1 Residuation Pairs
	3.2 Number Field Embedding

	4 Orbit Rationality
	4.1 Background
	4.2 The Abelian Case
	4.3 Decision Procedure

	5 Discussion and Open Problems
	References

	Bounded Automata Groups are co-ET0L
	1 Introduction
	2 ET0L Languages and CSPD Automata
	2.1 CSPD Automata

	3 Bounded Automata Groups
	4 Main Theorem
	References

	Decidability of Sensitivity and Equicontinuity for Linear Higher-Order Cellular Automata
	1 Introduction
	2 Higher-Order CA and Linear CA
	3 Dynamical Properties
	4 Sensitivity of Frobenius LCA over Znpk
	5 Conclusions
	References

	On Varieties of Ordered Automata
	1 Introduction
	2 Ordered Automata
	3 Positive C-Varieties of Ordered Semiautomata
	4 Examples
	4.1 Counter-Free Automata
	4.2 Acyclic Automata
	4.3 Acyclic Confluent Automata
	4.4 Ordered Automata with Extensive Actions
	4.5 Autonomous Automata
	4.6 Synchronizing and Weakly Confluent Automata
	4.7 Automata for Languages Closed Under Inserting Segments
	4.8 Automata for Finite and Prefix-Testable Languages

	5 Membership Problem for C-Varieties of Semiautomata
	References

	Automata over Infinite Sequences of Reals
	1 Introduction
	2 The Automaton Model
	3 Periodic Muller R-automata
	4 A Logic for Periodic R-automata
	4.1 From Periodic R-automata to Formulas
	4.2 From MSOR Logic to Periodic Automata

	References

	Nonuniform Families of Polynomial-Size Quantum Finite Automata and Quantum Logarithmic-Space Computation with Polynomial-Size Advice
	1 Prelude: Quick Overview
	1.1 Nonuniform State Complexity of Finite Automata Families
	1.2 An Extension to Quantum Finite Automata
	1.3 Overview of Main Contributions

	2 Preparations: Notions and Notation
	2.1 Machine Models
	2.2 Parameterized Problems and Promise Problems
	2.3 Nonuniform State Complexity

	3 Advised QTMs and Quantum Finite Automata
	3.1 The Roles of Advice and the Honesty Condition
	3.2 Proof of Theorem5

	4 Quantum Advice and Quantum Transition Tables
	References

	Equivalence Checking of Prefix-Free Transducers and Deterministic Two-Tape Automata
	1 Preliminaries
	2 Prefix-Free Transducers
	3 Two-Tape Automata and Generalized Transducers
	4 Equivalence Checking of Generalized Prefix-Free Transducers
	5 Conclusion
	References

	Efficient Symmetry Breaking for SAT-Based Minimum DFA Inference
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Minimum Size DFA Inference
	2.3 SAT-Based MinDFA

	3 Efficient Symmetry Breaking
	3.1 Propositional Formulation for Breaking Symmetries
	3.2 A Tighter SAT Encoding
	3.3 Exploiting BFS-Based Breaking of Symmetries

	4 Experimental Results
	5 Conclusions
	References

	Complexity
	Closure and Nonclosure Properties of the Compressible and Rankable Sets
	1 Introduction
	2 Definitions
	3 Compression onto B: Robustness with Respect to Target Set
	4 Closures and Nonclosures Under Boolean Operations
	5 Additional Closure and Nonclosure Properties
	6 Conclusions
	References

	The Range of State Complexities of Languages Resulting from the Cut Operation
	1 Introduction
	2 Preliminaries
	3 The Descriptional Complexity of the Cut Operation
	3.1 The Cut Operation on Unary Regular Languages
	3.2 The Cut Operation on Binary Regular Languages

	4 Conclusions
	References

	State Complexity of Pseudocatenation
	1 Introduction
	2 Preliminaries
	3 State Complexity of -Catenation
	4 State Complexity of -Catenation Closure
	5 Conclusion
	References

	Complexity of Regex Crosswords
	1 Introduction
	1.1 Connections to Other Work

	2 Preliminaries
	2.1 3SAT
	2.2 TQBF

	3 (R, C)-Crosswords
	3.1 The Reduction
	3.2 An (R, C)-Crossword Solution Guarantees phi Is Satisfiable

	4 (R, C)-Crossword Games
	4.1 RCG PSPACE
	4.2 Hardness of RCG
	4.3 Constraining the Players
	4.4 Normal Play

	5 Open Problems
	References

	Grammars
	Generalized Predictive Shift-Reduce Parsing for Hyperedge Replacement Graph Grammars
	1 Introduction
	2 Graph Grammars Based on Hyperedge Replacement
	3 Predictive Shift-Reduce Parsing
	4 Generalized Predictive Shift-Reduce Parsing
	5 Parsing Experiments
	6 Conclusions
	References

	Transformation of Petri Nets into Context-Dependent Fusion Grammars
	1 Introduction
	2 Preliminaries
	3 Petri Nets
	4 Context-Dependent Fusion Grammars
	5 Transformation of Petri Nets into Context-Dependent Fusion Grammars
	6 Conclusion
	References

	Generalized Register Context-Free Grammars
	1 Introduction
	2 Register Context-Free Grammars
	3 Register Type, Normal Forms and -rule Removal
	3.1 Register Type
	3.2 Normal Forms for Guard Expressions
	3.3 -rule Removal

	4 Generalized RCFG
	4.1 Definitions
	4.2 Simulation Property and Type Oracle

	5 Properties of GRCFG
	5.1 -rule Removal
	5.2 Emptiness and Membership
	5.3 GRCFG with a Total Order on a Dense Set

	6 Conclusion
	References

	Languages
	Logic and Rational Languages of Scattered and Countable Series-Parallel Posets
	1 Introduction
	2 Notation and Basic Definitions
	3 Rational Languages
	4 P-MSO
	5 From Rational Expressions to P-MSO
	5.1 From >1-expressions to D-graphs
	5.2 From D-graphs to P-MSO

	6 From P-MSO to Rational Expressions
	7 An Example
	References

	Toroidal Codes and Conjugate Pictures
	1 Introduction
	2 Preliminaries
	3 Two-Dimensional Codes and Cylindric Decompositions
	4 Primitive Pictures and Conjugacy
	5 Toroidal Codes
	References

	Geometrical Closure of Binary V3/2 Languages
	1 Introduction
	2 Preliminaries
	3 Geometrical Equivalence and Sums of Components
	4 Reduction of a Sum of Components
	4.1 Normalization
	4.2 Reduction of a Normalized Expression

	5 Geometrical Closure of a Reduced Expression
	6 Web Application
	7 Perspectives
	References

	Deterministic Biautomata and Subclasses of Deterministic Linear Languages
	1 Introduction
	2 Linear Languages and Nondeterministic Biautomata
	3 Determinism for Biautomata and Linear Languages
	3.1 Characterization of Deterministic Linear Languages
	3.2 Characterization of Linear LL(1) Languages
	3.3 Another Variant of Deterministic Linear Grammars

	4 Closure Properties of Deterministic Linear Languages
	5 Basic Decidability Questions
	6 Conclusions
	References

	Learning Unions of k-Testable Languages
	1 Introduction
	2 k-Testable Languages
	2.1 Strings
	2.2 k-Testable Languages
	2.3 Learning k-TSS Languages

	3 Learning Unions of k-TSS Languages
	3.1 Generalities
	3.2 Efficient Algorithm

	4 Case Study
	5 Conclusion
	References

	Graphs, Trees and Rewriting
	Regular Matching and Inclusion on Compressed Tree Patterns with Context Variables
	1 Introduction
	2 Tree Patterns with Context Variables
	3 Inhabitation for -Algebras
	4 Inhabitation for Tree Automata
	5 Compressed Tree Patterns
	6 Regular Matching and Inclusion
	7 Encoding Patterns for Unranked Trees
	8 Conclusion
	References

	Rule-Based Unification in Combined Theories and the Finite Variant Property
	1 Introduction
	2 Preliminaries
	3 Forward Closure
	4 Rule-Based Unification in Forward-Closed Theories
	5 Forward-Closed Combination
	6 Unification in Forward-Closed Combinations
	7 Implementation
	8 Conclusion
	References

	Extensions of the Caucal Hierarchy?
	1 Introduction
	2 Preliminaries
	2.1 Logics
	2.2 Graphs and the Caucal Hierarchy
	2.3 Higher-Order Recursion Schemes
	2.4 Higher-Order Pushdown Automata

	3 Between Caucal Hierarchy and Safe Recursion Schemes
	4 Closure Under MSO+Ufin-Interpretations
	5 MSO+U-Interpretations Lead to Difficult Graphs
	References

	Tight Bounds on the Minimum Size of a Dynamic Monopoly
	1 Introduction
	1.1 Preliminaries

	2 Lower and Upper Bounds
	2.1 Dynamos
	2.2 Monotone Dynamos
	2.3 Stable and Immortal Sets

	References

	Words and Codes
	Recurrence in Multidimensional Words
	1 Uniform Recurrence Along Directions
	2 Fixed Points of Multidimensional Square Morphisms
	3 Non-morphic Bidimensional SURD Words
	References

	A Note with Computer Exploration on the Triangle Conjecture
	1 Introduction
	2 Non-commutatively Prefix Bayonet Codes
	2.1 Computer Exploration

	3 Factorisations of Cyclic Groups
	3.1 Known Factorisations
	3.2 Sands Factorisations

	4 Complete Modular Bayonet Code
	4.1 Computer Exploration
	4.2 Transformations

	5 Conclusion and Perspectives
	References

	Efficient Representation and Counting of Antipower Factors in Words
	1 Introduction
	2 Preliminaries
	3 Compact Representation of Weak k-powers
	4 Counting k-antipowers in O(nk logk) Time
	4.1 First Improvement of SimpleCount
	4.2 Second Improvement of SimpleCount
	4.3 Third Improvement of SimpleCount

	5 Reporting Antipowers and Answering Queries
	References

	On the Maximum Number of Distinct Palindromic Sub-arrays
	1 Introduction
	2 Basic Definitions and Notations
	2.1 Two-Dimensional Arrays

	3 Maximum Number of Palindromes in 2D Words over an Arbitrary Alphabet
	4 Binary Words in 2N
	5 2D Words of Size (m,n)
	6 Conclusions
	References

	Syntactic View of Sigma-Tau Generation of Permutations
	1 Introduction
	2 Preliminaries
	2.1 Structure of Seed Graphs
	2.2 The Pseudo-tree STn of Seeds

	3 Compact Representation of Bunches
	4 Compact Representation of the Whole Generation
	5 Ranking
	6 Unranking
	References

	Palindromic Subsequences in Finite Words
	1 Introduction
	2 Circular Words
	3 Showing Asymptotic Tightness of Conjecture4
	4 Linear Words
	5 Further Work
	References

	Author Index

