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Abstract To determine global behaviour of a dynamical system, one must find
invariant sets (attractors) and their respective basins of attraction. Since this can-
not be made extensively with analytical methods, the numerical global analysis is
currently the subject of intensive research, especially for strongly nonlinear, multi-
dimensional dynamical systems. Numerical analysis in dimensions higher than four
present a challenge, since it requires significant computing resources. Numerical
methods used in global analysis that can benefit from high-power computing are
those that can parallelize either data or task elaboration on a large scale. Mass par-
allelization comes with large number of difficulties, restrictions and programming
hazards. When not implemented in compliance with hardware organization, data and
instruction management can lead to severe loss of parallel algorithm performance.
Systematic and methodical approach to design parallel programs is, therefore, critical
to get the most from expensive high-power computing systems and to avoid unreal-
istic speed-up expectation. Considering these difficulties, the goal of this chapter is
to introduce readers to the world of high-power computing systems for science and
global analysis of strongly nonlinear, multidimensional dynamical systems. Topic
covered are classification and performance of hardware and software, classes of
computing problems and methodical design of programs. Two major hardware plat-
forms used for scientific computing, clusters and systems with computational GPU
are considered. Functionality of widely utilized software solutions (OpenMP, MPI,
CUDA and OpenCL) for high-power computing systems is described. Performance
of individual computer components are addressed so that the reader can understand
advantages, disadvantages, efficiency and limits of each hardware platform. With
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this knowledge users can judge if their computation problem is suitable for mass
parallelization. If this is the case, which hardware and software platforms to use. To
avoid many traps of parallel programming, one of the methodical design approaches
is covered. Topic is closed with example applications in science and global analysis.

1.1 Introduction

Well explored analytical methods for linear phenomena is not viable to fully deter-
mine dynamics of systems that model real life application. Lack of analytical methods
have led to development of various numerical methods for global analysis of nonlin-
ear dynamical systems. Numerical methods offer possibility to solve problems that
do not have analytical solution in closed form, sacrificing generality of solution—
any change in system parameters require new computations. To determine global
behaviour of nonlinear systems, the amount of computations increases dramatically
and require large computing resources, especially in higher dimensions [1, 2].

Historical roots of numerical computations are found in rudimentary mechanical
calculating devices that over long number of years have evolved to contemporary
electrical supercomputers. Major point of calculating machines remains the same—to
aid people in solving various, mostly mathematical, problems. Precursors of electrical
computers are mechanical tools like simple adding devices, abacus, mechanisms
for drawing integrals of graphical functions or mechanical machines that integrate
differential equations [3].

Transition from various mechanical computers to electrical ones were made
with implementation of concept machine capable to compute anything that is com-
putable (Turing machine). First electrical, vacuum tube computer, EINIAC (Elec-
tronic Numerical Integrator and Calculator), marks beginning of new era that will
lead to computational capacity that surpasses anything ever imagined. Technology
evolved to such scale that functionality of mechanical calculating machines are repro-
duced with integrated circuits, approx. 10 nm in size each [3-5].

High complexity of massively parallel computing systems used in science and
engineering often cause difficulties during program design, particularly for those not
educated in information technologies. In this chapter we aim to introduce readers
to the capabilities of modern day computer systems and systematically explain all
concepts needed to start making efficient program for large-scale numerical comput-
ing of global behaviour for high-dimensional nonlinear dynamical systems. Before
tackling problems of high-power computing, it is necessary to analyse performance
of basic computer components from which supercomputers are made of. Organiza-
tion of components are described through architectures that act as logical concepts
capable to deal with various computational problems. Families of problems that
benefit from mass parallelization are explained along with architectures and com-
puter implementations able to efficiently compute related tasks. Systematic design
method is crucial to avoid dangers of parallel execution that do not exist in sequential
approach. First step is to decide which hardware platform is most efficient for com-
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puting of the problem to be addressed. Following steps of design methodology focus
on how to make program that exploits optimally or almost optimally the computer
resources. Brief introduction is offered also for most common software platforms
used in scientific applications.

Topic is closed with examples massively parallel computations in global analysis
and science. For in-depth understanding and functionality of software and hardware
platforms or global analysis methods, readers are referred to abundant resources
provided by scientific literature, manufacturers and user community.

For clarity and brevity, number of definitions and formulas are omitted and prin-
ciples are explained as concisely as possible. Readers that find certain topic useful
for their analysis should refer quoted literature for more details and further hints on
practical implementations.

1.2 Analysis of Dynamical Systems

Mathematical description of dynamics is not limited to a mechanical systems. Bio-
logical, economics, psychological and many other non-mechanical systems evolve
dynamically, and their evolution is governed by systems of various equations [1].
Continuous-time systems are represented through ordinary differential equations and
discrete with difference equations. Other representations such as cellular automata,
lattice maps and other are also often used, especially partial differential equations
where system evolution is dependent from both spatial organization and time [6].
The mathematical notion of dynamical systems express fact that the motions are
determined by some rules or laws. Thus, this deterministic approach allows to form
space of states (phase space) and to acquire system state at any time given the initial
(and boundary when required) condition [6].

1.2.1 Linear Analysis

Traditionally, the analysis starts from linear approximation of nonlinear systems.
Having a general solution in closed form gives a formal way to explore linear systems
[6]. Family of linear systems gives qualitatively same response for all values of system
parameters, making parameter analysis straightforward. With analytical methods it
is fairly easy (from computational point of view) to determine stable and unstable
behaviour of the solution. For these systems the attractor, if present, is unique, and
thus the long term solution is “easy”. No multi-stability occurs, and thus basins of
attraction are meaningless.
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1.2.2 Nonlinear Analysis

Majority of natural systems are in fact nonlinear [6], but an initial clue of over-
all dynamics can be obtained by analyzing corresponding linear system. Similari-
ties between linear and nonlinear system depend on the magnitude of nonlineari-
ties, where higher nonlinearity produce more diverse collection of behaviours, such
as multi-stability, quasi-periodicity, deterministic chaos, solitons, fractals, riddled
basins or pattern formation. In order to determine which of those diverse behaviors
are present in the system, analysis combines analytical approximation, numerical
calculations and experimental data. An important part of analysis is observation of
system behavior during the change of some system parameters, since in many cases
it can lead to change in topology of the system (qualitative change), especially when
the system is nonlinear.

Two classes of nonlinear systems that are in most cases subjected to analysis are
those that can be represented through systems of partial differential equations or with
the systems of ordinary differential equations. For global analysis most interesting
are dynamical systems which can be reduced to a system of ordinary differential
equations of first order [7]. Most important family are systems of second order
differential equations, modelled from Second Newton’s Law of motion, that can
easily be reduced to the first order systems. Dimension of resulting system (not to be
confused with degrees of freedom) is equal to the number of first order differential
equations. Each dimension in this case corresponds either to the coordinate or velocity
that appears in the system. This representation gives possibility to use well developed
numerical techniques [8]. Solutions then can be analysed as trajectories in multi-
dimensional state space.

1.2.3 Global Analysis

Nonlinear systems may have arbitrary number of steady motions, some stable some
not. If trajectories converge towards certain steady state, it is called attractor and
repellor if trajectories are diverging away from it. Basin of an attractor consists
of the all initial conditions that converge to associated attractor in forward time.
Goal of global analysis is to get a global behaviour of system, expressed in terms
of attractors and their respective basins. It is usually conducted together with time
series, frequency response and parameter variation (bifurcations) [1].

Resulting behaviour can be very colorful. Beside geometrically regular shapes as
points or limit cycles and torus, attractors that may occur in nonlinear dynamics can
be of a fractal structure (strange attractors) [6]. Fractal curves [9] are not smooth,
but geometrically irregular or an uneven shape of non-integer dimension, repeated
over all magnifications (from large to infinitesimally small). Attractors with fractal
structure are usually associated with chaotic motion, but also strange nonchaotic
attractors exist. In cases where multiple attractors coexist basins can be separated
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by smooth or fractal curves. Numerically, fractal boundaries can only be assumed
up to the computer precision. Another possibility is that basins may be riddled [9].
It means that border between basins is not a curve (neither smooth nor fractal) and
points in infinitesimally small hyper-sphere around certain initial condition do not
necessarily converge to same attractor.

Although behaviour may be complex, the numerical procedures used at global
analysis are able to compute fairly accurate results [10]. Difficulty comes with
increase in system dimension, as number of required computations increases expo-
nentially. Therefore, to numerically analyse dynamical systems with large dimension
it is necessary to resort on powerful computational computer systems, which heavily
really on mass parallelization of computation. Currently, multidimensional global
analysis is focused at building basins in more than four dimensions. Six-dimensional
systems are being examined contemporary while eight-dimensional present a chal-
lenge for both computation and visualization.

1.2.4 Numerical Computing Integration

Numerical integration schemes [8], used to overcome the limits of analytical methods
are broadly classified as either explicit or implicit. In explicit schemes the governing
equation is written at time for which all the solution variables are already known, and
the difference equation is then solved for the solution at the next time step. Explicit
methods are generally preferred for solution of problems where the interesting part
of the solution is changing rapidly in time like in wave propagation problems or
crash analyses. In implicit schemes, the governing equation is written at time # + Af,
while the solution is known for time t. Implicit methods are better suited for problems
where the solution variation over time is less rapid, and relatively larger time steps
can adequately resolve the problem.

Commonly used numerical methods (i.e. adaptive step Runge-Kutta of 4th order)
can be already found within libraries and freely used for scientific computing without
need to implement the whole numerical procedures in programming language.

1.3 Computer Architectures

Functionality of a computer or sub-system, without concern of actual implementa-
tion, is defined by the architecture [5, 11, 12]. Architectures are classified according
certain properties of hardware (parallelism type, memory organization, etc.) and
every computer system is synthesis of various architectures.
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Fig. 1.1 Von Neumann concept of computer

1.3.1 Von Neumann Architecture

Basic logical concept of computers is presented through Von Neumann model [5,
11, 12] on Fig. 1.1. It consists of a processing unit (processor), memory and data
pathways (buses). Processor interprets and executes programs which are combination
of instructions and data. Processor fetches instructions and data and execute them
sequentially one after another. Every instruction refers to memory address where
next instruction and data are stored, meaning that flow of program is driven by
instructions.

Complexity of real computer system is significantly higher than in Von Neumann
model, as consequence of adding various complements to compensate restrictions
of low-performing components. Concepts of high-power computing are based on
combining multiple logical units in various ways [12, 13] resulting in numerous
computer systems dealing with problems in science, engineering, economy, etc.

1.3.2 Parallel Architectures Parallelization Classification

As current manufacturing technology reached peak where fabrication process is
getting increasingly difficult to improve, performance increase is achieved by par-
allelizing the computations. Performance is enhanced by parallelizing processing
elements (i.e. multiprocessors, neural networks) or instructions inside processing
element (pipeline, vector processing) [5, 11-13].

Pipelining and vector processing are already implemented inside modern proces-
sors and are not widely used as stand-alone parallelization concepts. For scientific
computing most relevant are multiprocessor architectures, as being most performant
parallelization concept. Other existing parallel architectures are rarely used because
they are efficient only for problem-specific applications. It is notable to mention
data flow computing, systolic processing and neural networks as concepts utilized
in science, that are not instruction driven as majority of architectures based on von
Neumann model.
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1.3.2.1 Pipeline, Superscalar and Very Long Instruction Word (VLIW)
Processors

Processor have multiple stages of executing one instruction. Main segments are
instruction fetching, decoding, execution and result store. All segments can be further
fragmented, resulting that processor have to do multiple steps in order to fully execute
one instruction. Pipeline parallelization is achieved by simultaneously executing
different segments of successive instructions. Pipeline technique is also exploited in
architectures where instructions are pipelined with multiple processors.

VLIW are instructions combined from several shorter, that allow processors to
have a deeper pipeline. Superscalar processors exploit pipelining concept by adding
more hardware circuits, so processor can do arithmetic, logic or floating-point oper-
ations of several separate instructions parallelly.

1.3.2.2 Vector Processors

As pipelined computers execute multiple instructions simultaneously, vector com-
puters can process entire vector of data in one instruction [5]. Fetching of data is
done for whole vector not for just one piece of data. Multiple arithmetic circuits then
can manipulate entire vector during one instruction period instead of processing each
vector element as successive instruction. Each vector element is manipulated with
same instruction.

1.3.2.3 Systolic Architecture

In systolic array [5], processing units are organized in a network, so that at each cycle
part of data is calculated and forwarded to the subsequent processing elements in
grid. After initial latency (number of cycles until all computing elements receive first
block of data) system can efficiently compute repetitive task (matrix transformation,
sorting, Fourier transform, etc.). Implementations of this architecture is effective for
specialized computations, making it efficient, compact and economically convenient
but inflexible.

1.3.2.4 Data Flow Architecture

In dataflow computing [5], the order of execution is managed by data availability,
not by order of instructions. An instruction executes when required data arrives, as
result of program flow being driven by data dependencies. Each instruction reference
to next instruction, contrary to instruction ruled architectures where instructions
reference to memory location of next instruction. This architecture found successful
implementation only in several areas (telemetry, digital signal processing, etc.).
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1.3.2.5 Neural Networks

An attempt to mimic structure and function of biological neural networks [5] is
implemented by parallelly interconnecting large number of simple processing ele-
ments. Artificial neural networks can derive solutions in dynamic situations from
incomplete or probabilistic data. To be able to adapt, the learning algorithm of neu-
ral network requires training multiple running of program with correct input data
and known solutions. Difficulties come from possibility that network is adapting its
behaviour from incorrect previous information. Great complexity of artificial neural
networks limits its usage at scientific computing, although the promising potential
uses.

1.3.2.6 Multiprocessors

Strict definition of multiprocessors [5, 12, 13] is not well established due to variety of
implementations. General idea is to connect multiple computing entities into network
that act as single system, which can run one or more programs that are divided into
numerous parallel tasks. Concepts and implementations of multiprocessor computers
often match the requirements necessary to compute most problems encountered
in scientific and engineering applications. Remainder of this chapter is therefore,
dedicated to multiprocessor architectures, implementations and design methodology.

1.3.3 Stream Concurrency Architecture Classification

Flynn’s taxonomy [5, 11-13] classifies computer architectures according to num-
ber of parallel streams. Instruction stream (program) is sequence of commands/
instructions executed by processors. The flow of data that is being manipulated by
commands from instruction stream is called data stream. Flow of instructions goes
from memory to processing unit, while data flow is bi-directional. Flynn’s taxon-
omy is most often used for classifying multiprocessors, since logical concepts of
taxonomy reflect multiprocessor organization.

1.3.3.1 Single Instruction Stream, Single Data Stream (SISD)

Conventional serial computers with one processor, built according to the von Neu-
mann model, work on SISD principle. Processor is able to sequentially process one
stream of instructions and operate over single data set. Flow scheme of SISD archi-
tecture is depicted in Fig. 1.2.
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Fig. 1.2 SISD execution
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1.3.3.2 Single Instruction Stream, Multiple Data Streams (SIMD)

Concept of multiprocessor computer that parallelly execute single instruction stream
on multiple data streams. This means that each processing unit will execute same
sequence of instructions, but with distinct data stream, as on Fig. 1.3. Execution
is lock-stepped, which means that processing units are synchronized and all tasks
will start and finish in same time. Examples are graphical coprocessors and array
computers where multiple processing units work under control of single control unit.

1.3.3.3 Multiple Instruction Streams, Single Data Stream (MISD)

In MISD architecture each processing unit handles own (distinctive) instruction
stream, operating over single data stream. This architecture, shown in Fig. 1.4, is

Fig. 1.4 MISD execution
model
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Fig. 1.5 MIMD execution

model Instr. Proc.
Instr. Proc.
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rarely used, mostly for fault tolerance, as system must agree on the result from all
instruction streams. Space shuttle flight control computer is an example.

1.3.3.4 Multiple Instruction Streams, Multiple Data Streams (MIMD)

Computer system where multiple autonomous processing units simultaneously exe-
cute distinct instruction streams over separate data streams is shown on Fig. 1.5.
Tasks in MIMD architecture are asynchronous and execution can start and finish
at any time independently on other processing unit tasks. Almost all modern sys-
tems are built according to MIMD architecture, from computers with one multi-core
processor to clusters and cloud super-computers.

1.3.4 Memory Access Level Classification

To achieve massive performance increase, multiple processors are connected into sin-
gle system (networking). Coupling between processors in network might be imple-
mented on various ways, resulting in computer systems spanned from single case to
geographically dispersed systems [11, 14, 15]. Programs that are run on high-power
computing systems are divided into numerous parallel tasks. Common name for
parallelly executing tasks in shared memory systems are threads and on distributed
memory systems—processes.

1.3.4.1 Shared Memory Architecture

Memory hierarchy of shared memory systems [11, 14, 15] allows all processors
to access central system memory. Memory that is shared between tightly coupled
processors is called local memory. High performance of shared memory systems
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comes from availability to access data directly. If synchronization of instructions
and data management are not handled carefully, it can lead to various errors.

1.3.4.2 Distributed Memory Architecture

Indistributed memory systems [11, 14, 15] every processor has its own local memory.
Systems architecturally organized like these are loosely coupled and processors can
operate independently. Local memory of one processor is inaccessible by remote
processors and data is exchanged through communication channels. Part of system
consisting of a processor and its local memory is named node. Theoretically there
is no limit in how many nodes can be connected to form distributed memory high
power computing system. Data coherency is automatically maintained since remote
memory is not directly accessible in any case. Drawback is that node interconnections
transfer data at much lower rates than bus connections on shared memory systems.

1.3.4.3 Hybrid Memory Access Architectures

Actual implementations are not restricted to strictly shared or distributed architec-
ture. Reality rather correspond to MIMD architectures [13, 15]. In fact, many of the
high-power systems are combination of multiple coupled sub-systems. Hybrid archi-
tectures have interconnected nodes where each node may be architecturally different
from others. For example, node might consist of several processors or can be GPU
accelerated.

1.3.5 Other Architecture Classifications

To avoid over encumbering reader with unnecessary information for scientific com-
puting other classifications of parallel designs are not considered. For curiosity reader
may refer to literature [ 1 1-14] for classifications based on instruction set architecture,
network organization, degree of parallelization, pipelining level, etc.

1.4 Hardware Components

Basic computer components are building blocks for personal computers and super-
computers as well. In this section readers are introduced to functionality and perfor-
mance of relevant components, required to efficiently design parallel software for
scientific purposes. High level of attention must be paid to the performance of all
components to avoid bottlenecks—limited capacity of computer caused by single
low-performing component [11, 16].
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Actual physical parts of computer are various combinations of electrical circuits
[11, 12, 16]. Electrical elements (transistors, capacitors, resistors, diodes, inductors,
etc.) are integrated in chipsets that perform designated operations. Chipsets can be
digital that operate only on binary data (0 and 1 values) or analogue which can
manipulate variable continuous signals.

Personal computers are relatively small sets, while high-power computing systems
are created from considerably larger number of components, combined to operate
as coordinated system. To grasp how complex systems behave it is necessary to
understand functionality and performance of each of the individual components. To
interact with user, computers need input/output devices (keyboard, mouse, moni-
tor, printer, etc.). Modern computers also cannot be imagined without a Graphical
Processing Unit (GPU) that enhance visual output of computers. Other numerous
components and devices such as TV cards, sound reproduction systems or gaming
controllers do not play role in scientific applications and although are regular parts
of modern computers, are not considered.

1.4.1 Central Processing Unit (CPU)

The set of electronic components that operate and manage data is integrated on one
chip called central processing unit or processor [11, 12, 16]. It fetches instructions
from main memory, decodes them and perform indicated operations over correct data
set. Datapath is part of processor that execute instructions and manipulate data. It is
a network of arithmetic and logic units connected to internal memory. Logical cir-
cuits can perform i.e. bitwise logical operations, while arithmetic circuitry can add,
subtract, increment, etc. Modern processors have also floating-point units, the cir-
cuitry specialized to perform arithmetic operations over floating-point numbers faster
than arithmetical can. The control unit is part of processor that manages scheduling
of instructions, data transfer from/to memory and coordinates other components.
Multi-core processor is one integrated chip consisting of two or more independent
processors named cores in this case.

System clock [5, 11, 12] is part of processor that regulate update time of internal
components. At every cycle (tick of clock) states of components are changed. Cycle
length must be long enough to allow the propagation of state change through all
processor components. To execute one instruction, processor in most cases requires
multiple cycles.

With combination of large number of integrated circuits processor can perform
diverse range of operations at extremely high rate. Current high-end technology
enables billions of transistors to be integrated on a single chip. For example, Qual-
comm Centriq 2400® processor (one processor with 8 cores) have about 18 000 000
000 integrated circuits on chip with 398 mm? area [4].
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1.4.2 Main Memory

Instructions and data of currently running programs are stored in main memory [11,
12, 16]. Every time processor is ready to execute some part of the program, it has to
make an access to main memory to retrieve required information. Fetching process
is slow in comparison to execution time of processor, creating frequent bottlenecks.
Memory Wall is the name for performance restriction imposed by low performance
of main memory.

Main memory can be either read-only (ROM) or read and write (random access
memory—RAM). Data residing on ROM is permanently stored and mostly used to
keep hardware management programs hidden from users. On the other side, RAM
is volatile type of memory where all user applications are loaded on runtime. When
speaking about memory in following sections, it will be referred to main memory
(RAM). When mentioned, other memories will be addressed by their type—registers,
cache or storage.

1.4.3 Internal Memory

Major mechanism to overcome restrictions of main memory is to use small amounts
of high-speed memory integrated on processor chip. Two types of internal memories,
that considerably reduce data access time, are registers and cache [5, 11, 12].

Registers, that are located directly near processing circuits, are very low latency
memory with access time from one to few clock cycles. Other memory types that
are located far away, require additional access control and pathways that consider-
ably increase fetching time. Despite the high performance, processors are fabricated
with low amount of register memory due to high manufacturing costs (per storage
capacity) and large spatial occupancy on processor chip.

Cache memory serves as a buffer between registers and main memory. When some
piece of data is processed, it is highly probable that nearby data will also be needed
in near future. Therefore, processor transfers entire block from main memory to
cache, instead of only data needed at the exact moment of access. Cache is organized
into levels, where lower levels, closer to processor cores are faster but with lesser
capacity. Levels 1 and 2 are commonly dedicated to each core and are not shared,
while higher levels of cache are accessible to all processor cores. Highest level of
cache sometimes can be allocated as part of main memory, while lower levels are
always integrated on processor chip.
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1.4.4 Mass Storage Memory

Storage (or secondary) memory [5, 12] is a component or external device where data
and programs are permanently kept when computer is not powered. Examples are
Hard Disk Drive, DVD disks, Flash memory or online cloud storages. It has high
capacity and low manufacturing cost per storage unit. Access time is considerably
slower compared to execution time of processor operations. Storage memory does
not actively participate in computations, but for task with large data sets, writing
and reading of information can create performance drops due to low speed of mass
storage devices.

1.4.5 Data Transfer

Internal transfer of information between processor and other components is done
by bus [11, 12, 16], a combination of wires acting as data highway. It can be a
point-to-point pathway, connecting two specific components or shared (multi-point)
connection between several components. Speed of the bus is affected by its length
as well as by the number of devices sharing it. Bus clock manages the time interval
of its state update. Bus cycle is longer than processors which makes it inefficient to
supply information directly from main memory.

Computer systems created by joining multiple computing entities can exchange
information over Local Area Network (LAN) or Wide Area Network (WAN) [16].
Various protocols manage how data is sent and received in network. Internet and
Ethernet are protocols with low and medium data transfer performances used in
loosely coupled systems. Tightly coupled systems use high-performance network
protocols (i.e. InfiniBand®) to communicate information on higher rates.

Actual links that represent communication channels can be wired (collection of
digital or analogue wires, coaxial cables, Ethernet cables or optical wires) or wireless
(radio signals or optical communications). Connections other than bus have consid-
erably lower transfer capacity, causing low utilization of resources on systems that
have to communicate large quantities of information.

1.4.6 Graphical Processing Unit

Graphical image processing is data intensive operation and accelerator graphic
coprocessors are intensively developed to aid processor to visualize graphic content
[13, 17]. When processor encounters graphically intensive part of program it forwards
data and instructions to Graphical Processing Unit (GPU, coprocessor or accelerator
for short) that have electronic circuits optimized for efficient image processing. Price
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for being specialized for certain tasks is that GPU is highly inflexible and unable to
function on its own.

Special branch is computational GPUs (or General-Purpose GPUs) that utilize
high number of simple cores (stream processors, shaders) which are able to conduct
general computations, while retaining high performance in data intensive applica-
tions [13, 18]. Graphical coprocessors are fabricated on separate (graphic) card con-
nected to processor by bus. High-performance RAM is located on the coprocessor
card due to high demand for data.

In this chapter, when mentioning GPU, we will refer to the general purpose graph-
ical coprocessors only, since computations are major concern, not the image process-
ing acceleration.

1.4.7 ASIC and FPGA

Application-Specific Integrated Circuit (ASIC) is an integrated chip intended for
specific use, while field-programmable gate arrays (FPGAs) are designed to be con-
figured by user after manufacturing [11, 17]. Either design offers excellent efficiency
when is developed for specific use. To formulate functionality of both designs ele-
vated expertise in information technologies is required, thus not covered in this
chapter.

1.4.8 Performance of Computer Components

Principal matter for high-power computing systems is how well extensive tasks can
be accomplished. Performances of individual components reflect the overall ability of
computer system to complete required tasks. Knowing the performance of data oper-
ations and transfer helps in understanding why various components exists and why
are implemented in certain ways. From efficiency perspective, performance issues
of particular components must be considered during design of parallel algorithms.

Depending from context, performance can be measured as amount of jobs done
per unit of time (throughput) or amount of time required for some task to complete
(execution time, latency, response time, access time or delay) [11, 17].

1.4.8.1 CPU Performance

When comparing performance of processors, usually their speed is a relevant factor.
Unfortunately, term speed of processor does not have a determinate meaning. It may
refer to several measures that quantify some of the processor characteristics. Reason
for this is rich complexity of micro-architectures that differ even between processors



16 N. Andonovski et al.

of same manufacturer and family. Current technologies of manufacturing processors
with multiple cores, additionally complicates comparison of different processors.

Number of instructions per second (/PS) [11, 17] is one of the measures used,
but for processors with complex instruction set it is not an accurate measurement.
Instructions have unequal size, resulting in variable execution time for each instruc-
tion. More common and precise speed measure is number of system state updates
per second, namely clock speed or frequency (GHz) [11, 17]. Clock speed also does
not give definite comparison quantities, since some processors may finish certain
actions in fewer clock cycles than others. Thus, even equal clock speeds of different
processors do not guaranty that they will do equal amount of work.

Benchmark programs are used to get somewhat accurate comparison of perfor-
mances for various systems or components. They may test performance of overall
systems or a single component in various workload situations. In this way processors
can be compared on how well they perform at certain task. For scientific computing
where data is mainly floating-point numbers, measure how well system (or single
component) perform is represented through floating-point operations per second
(FLOPS) [11, 14, 17].

1.4.8.2 GPU Performance

Graphical coprocessors are highly specialized hardware and their high performance
limits the flexibility. Metrics for GPU performance are same as for processors, but
direct comparison of processors versus general-purpose GPUs is vague because each
is designed to be efficient at different type of tasks [17, 18]. However, certain appli-
cations are not focused on computation, such as the matrix transpose. In those cases,
metric relevant to indicate throughput of GPU tasks is MBPS (megabytes per second).

GPU use extensive amounts of electrical energy for computations, that often
causes necessity to measure also the power consumption [19]. Energy is a measure
of how much electrical energy the system consumes in total, power is energy con-
sumption per time unit and power efficiency quantifies arbitrary performance measure
per power consumption.

1.4.8.3 Data Transfer Performance

Performance of data transfer is governed by two factors, latency and channel width
[11, 16]. Latency is time in seconds that takes to access the data. Width is the
amount of information that can be transferred at once. Combined, is a measure
called bandwidth that quantifies transfer capacity by the amount of data that can be
transferred per unit of time. Drops of overall computer performance is often caused by
data transfer bottlenecks, where data is not supplied fast enough or in low quantities
required for high percent of utilization of computing resources.
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Table 1.1 Memory hierarchy

Mem. type Approx. cap. Latency
Registers 200 ps 4kB

Cache L1 64 kB 1 ns

Cache L2 256 kB 3-10 ns
Cache L3 16-64 MB 10-20 ns
RAM up to 256 GB 50-100 ns
HDD up to 64 TB 5-10 ms
Flash upto 16 TB 100-200 ms

1.4.8.4 Memory Hierarchy and Performance

Memory can be hierarchically classified based on capacity and response time
[5, 12]. Table 1.1 shows performance and capacities of various memories that can
be effectively manufactured with current technologies [20]. At top levels of hierar-
chy are internal memories with fast access speed and low capacity. Main memory is
in middle, with average access time and significantly higher capacity than internal
memory. Low levels of hierarchy are occupied by massive storage devices with slow
response time.

1.4.8.5 Overall System Performance

Overall system performance depends on combination of components and type of task
being computed. Systems with fast and numerous processors cannot work efficiently
if memory and data interconnections cannot keep up with performance of processors.
Drops of performance is even more evident with GPUs where efficiency is highly
influenced on both hardware factors and how tasks are scheduled. Optimization of
hardware according to one component is bad practice and each platform should
be designed to efficiently utilize all resources. Also, to maximize performance of
hardware platform it is equally important to use an appropriate programming model
[11, 13-15].

Supercomputers that exist today are often combination of multiple processors and
GPUs. List of current (scientific) supercomputers compared to their floating-point
operation power can be found at The Top500 web-site [21]. Lately, for ecological
and economic purposes another measure is often used in scientific computing—
FLOPS/Watt, which measures the amount of work done per energy consumption.
Supercomputers sorted by their energy efficiency are found at The Green500 List
[22].
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1.5 Massively Parallel Designs

Systems with large number of processing units are named massively parallel designs
for high-power computing [17]. Those systems use numerous processors, connected
computers or GPUs to achieve coordinated execution of program in parallel [11-13].
Depending the interconnection implementation and centralization level, computers
might be developed as mainframes or connected in clusters, grids or clouds. Other
types of computer designs are available, such as fog or peer-to-peer computing. Some
of the nodes in network might have computational GPU, which does not change type
of computer system, only the performance of the node.

Topic of massively parallel computers is too large to be covered in one chapter,
also unnecessary because two designs mostly used in scientific and engineering
computing are clusters and computers with computational GPU. Functionality of
cluster and GPU accelerated computers (nodes) will, therefore, be explained in detail
while other implementations are only listed according to [11, 13, 17].

1.5.1 Classification of High-Power Computing Platforms

Workstation is historically broad term, firstly used for hubs where the operating
person would interact with large sized computers. Nowadays it is referred to personal
computers or computers from which bigger systems are managed. Importance of PC
workstation is that whole design process is done on it and finished programs are
executed on more expensive platforms. But, if supplied with computational GPU,
regular workstation becomes a high-power computing platform.

1.5.1.1 Mainframe

Mainframe computers contain multiple processors connected at the bus level. Mostly
used in business applications for transaction processing. Since the metrics used to
measure performance of mainframes is set of certain tasks (update of database, disk
I/O, etc.), it is not useful for science and engineering applications where large number
of floating point operations are required.

1.5.1.2 Clusters

Clusters are formed by connecting nodes into network that act as a single unit, com-
puting single task (program/application). Cluster nodes are often closely centralized
and connected with local high-speed interconnections.
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1.5.1.3 Grid Computers

Resemble clusters, usually larger, more geographically dispersed and are not dedi-
cated to run only one task.

1.5.1.4 Clouds

Cloud computers are systems whose organization is hidden from end user. Primarily
developed to provide application services to commercial purposes without need from
user to know organization of nodes or to have expertise in information technologies.
Recently cloud services are as well available to scientific computing, usually as
virtual machines representing clusters.

1.5.1.5 GPU Computing

Contrary to mass parallelization done by adding more processors or nodes to the sys-
tem, any computer can become high-power computing platform by adding a general-
purpose graphic card. When installed, GPU cards significantly increase capabilities
in data intensive tasks of any computer (or node).

1.5.2 Clusters and General-Purpose Graphic Cards

Programming models mostly used in science are based on SIMD and MIMD archi-
tectures [13, 14, 17] for HPC computing. To have efficient computations, the pro-
gramming models must be efficiently mapped to hardware. SIMD type problems
efficiently exploit the inherit (hardware level) parallelism of GPUs, while clusters
reflect MIMD architectures.

1.5.2.1 Clusters

Clusters computers are networks of computing entities (nodes) [13, 17, 18]. Nodes
are commonly stand-alone computers, typically connected in LAN, with one of the
high-speed protocols. Property of clusters, that distinguish them from other net-
worked computers is that clusters operate as single system performing single task
(program).

Considering that nodes are separate computers, memory of each node is not shared,
making clusters a distributed memory system. Nodes communicate data by passing
messages to each other. Transferring time of messages between nodes that are not
directly connected can be considerably longer than between directly connected nodes.
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To avoid communication overheads, it is advisable to know network topology of the
cluster (line, ring, tree, mesh, hypercube, fully connected, star or bus).

Clusters are often implemented on master/slave dogma. Master process manages
existence and work of numerous slave processes that carry out actual computations.
MIMD problems that are instruction intensive and do not require large amount of
data communication are highly suitable for cluster computations.

1.5.2.2 GPU Computing

Development of processors through history was focused on increase in number of
successive instructions it can perform per unit of time. Graphical processing as SIMD
operation had low benefit from increased clock speed. It required large number of
equal operations to be carried out simultaneously. Graphical coprocessors evolved
from being capable only to perform graphical computations to devices that can
achieve remarkable speed-up in data intensive applications [13, 17, 18].

A GPU consists of several stream processors, each one having dozens of simple
computing cores (CUDA cores). For example, GPU card based on NVIDIA Fermi®
architecture can have up to 16 stream processors with 32 cores each [23].

1.5.2.3 GPU Cluster Combination

To expand capabilities of clusters, GPUs are added to some of the nodes. This mixed
implementation is not surprising and it is good practice since it combines computa-
tional power of both MIMD and SIMD environments [24].

1.5.3 Classification of High-Power Computing Problems

Parallelization aim to speed-up the serial execution by either dividing instructions
or data between concurrent processing units. To efficiently carry out parallelization
process, it is necessary to determine what type of parallelization can be achieved.

1.5.3.1 Task Parallelism

Task parallelism [14, 17] occurs in cases where sequence of instructions can be
divided into multiple, parallel and independent tasks. Task may run same or different
code over same or different data, communicate information during execution and
start and stop at arbitrary time unless explicitly specified otherwise.
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1.5.3.2 Data Parallelism

Data intensive computations are those where large number of data elements have to
be processed in the same way [14, 17]. One sequence of instruction is executed over
multiple parallel data elements as in SIMD architecture. In comparison with task
parallelism where instruction set is split over multiple tasks, in data parallelism data
set is distributed between parallel processing elements.

1.5.3.3 Combining of Data and Task Parallelism

At various degrees, majority of actual programs and computation problems are not
strictly data or task parallel. Problems described with MIMD architecture often com-
bine parallelization on both data and instruction levels [25]. Certain problems, such
as Fast Fourier transform or some sorting procedures, also benefit from possibility
that algorithm can switch between data and task parallel execution models during
computations.

1.5.4 Classification of High-Power Computing Paradigms

1.54.1 High-Performance Computing (HPC)

Tasks that require large amount of computational power during short time periods
(one day or less) are characterized as high-performance computing [26]. Measure
of computational power in HPC jobs is FLOPS. HPC systems tend to focus on
tightly coupled parallel tasks, and as such they must execute within a particular
site with low-latency interconnects, mainly clusters or mainframes. Presuming that
majority of scientific computing is done over floating-point data, HPC is in most
cases appropriate computing paradigm for scientific applications.

1.5.4.2 High-Throughput Computing (HTC)

When task at hand is far larger that require months or years to compute it is not
important how fast, but how many jobs can be finished per unit of time (in HTC
terms—jobs per month or year) [26]. HTC systems deal with sequential jobs that
can be individually scheduled (loosely-coupled tasks) on many different computing
resources, such as grids or clouds.
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1.54.3 Many-Task Computing (MTC)

Many applications are not computing extremes as HPC and HTC [26]. Paradigm that
offer middle ground is MTC, where both tightly coupled and independent task can
be executed, no matter if tasks are instruction or data intensive, large or small.

1.6 Performance of Parallel Designs

For high performance of computing systems, it is not enough to have parallelization
on massive scale [11, 13-15, 18, 20, 27-29]. Utilization of resources depends on
both hardware and software factors and each computing problem should be computed
on appropriate platform. Algorithm type, programming issues and hardware or com-
munication restrictions downgrade performance when are not addressed properly.

As many factors are involved in science and engineering, it is substantial to decide
what performance metric is relevant. Performance models serve to compare how effi-
ciently different algorithms perform specific requirements. Analysis of performance
models can discover many inefficiency causes. Often when not planned in advance,
program hits performance wall, in which case code re-factoring must be done. To
achieve optimal performance of parallel designs it is necessary to balance software
and hardware factors and in many cases, programming effort and costs also must
be considered. To evaluate performance of parallel programs, number of models are
proposed [15, 20, 28] to address different performance issues.

Performance measures and issues of parallel designs are addressed in advance, so
that during design methodology section reader can comprehend importance of each
step.

1.6.1 Scalability

Property of computer system or computing problem that describe how well it cope
with resource improvement is called scalability [11, 14, 15, 17, 28]. Overheads are
the segments of program code that do not benefit from improved resources since
must be executed serially on one processor. Problem or computer that can manage
well the increase of resources is called scalable. Effect of overheads is that for fixed
size problems efficiency drops by increasing the number of parallel processing units.
To maintain efficiency at decent levels, solution is to proportionally increase also the
problem size. Basically, scalability is a measure or a property of code and system
sensitivity to resource improvement. Code and computer system that are scalable will
not lose efficiency with increased number of processors. Term strong scaling defines
how solution time varies for fixed total size problem during increase of resource
power. Weak scaling measures variation of problem solution time with resource
improvement for fixed size problem per processor. Highly scalable problems, that do
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not have overhead are being called embarrassingly parallel [14]. This is in practice
often rare.

Beside overheads, other hardware and programming factors reduce parallelization
benefits. Actual speed-up during parallelization is less than theoretical, since the per-
formance values are calculated only by processor utilization time, ignoring constrains
of hardware components, interconnections effects, technology cost and performance
or algorithm structure. Factors that affect scalability are number of processing units,
variable clock speeds of components, problem size, execution time, data input/output
demand, memory capacity, communication overheads, programming and hardware
costs. To achieve computational objectives, some parameters may be fixed while
optimizing other factors. Scalability analysis is engineering procedure that helps to
systematically identify critical factors of any algorithm performance [15, 28].

1.6.2 Parallelization Degree

The degree of parallelism [15] reflects how much software parallelism matches hard-
ware parallelism. During execution, parallel program can use variable number of
processing units over different time periods. Number of processors utilized at each
time period is defined as the degree of parallelization. Parallelism profile is the plot
of parallelism degree versus time.

1.6.2.1 Average Parallelism

In systems with multiple processors (of equal computing capacity) that during com-
putation use various degrees of parallelism it is possible to calculate total amount of
work done over some time period. Average parallelism [15] is total amount of work
done expressed as single constant degree of parallelism (during this time period).

1.6.2.2 Available Parallelism

Parallelism degree is directly tied to type of problem. Available parallelism [15]
characterize what degree is possible to achieve with certain problem. It is reported
that data-intensive applications may have degree of parallelism from 500 to 3500, in
an idealized environment, while at the instruction-level parallelism is rarely higher
7. However, the degree of parallelism may be extended to thousands in some sci-
entific algorithms where it is possible to parallelize instructions inside basic blocks
(sequence of instructions with has a single entry and exit).
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1.6.3 Parallelization Speed-Up

Main goal of parallelization is to speed-up the computing process by dividing com-
putational load over multiple processors [11, 15, 17, 28, 30]. Ideally, speed-up is
equal to the number of processors that share workload. In reality, this does not happen
because of negative hardware and algorithmic effects of parallelization and often,
some of the program code that must remain sequential. As performance depends on
multiple factors, itis not easy to formulate unified speed-up measure for all problems.
To evaluate speed-up number of techniques are proposed, neither fully standardized
nor agreed upon, but all serve purpose to quantitatively demonstrate efficiency of
parallel designs under certain conditions.

1.6.3.1 Amdahl’s Law and Gustafson’s Law

Amdahl and Gustafson gave formulas to calculate theoretical speed-up of parallel
program versus to sequential one. Speed-up according to Amdahl is quantified as
percentage of sequential processing time for one processor, versus overall parallel
execution time for fixed size of computing problem, while Gustafson’s law describes
theoretical speed-up in cases with increased workload. As described in [30] those two
laws are related and in fact are equivalent. Often it is hard or impossible to determine
required serial percentage and those laws do not reflect real speed-up achieved by
parallelization. Furthermore, those laws can give misleading speed-up for algorithms
that change structure when parallelized.

1.6.3.2 Memory-Bounded Speed-Up

Many scientific and engineering computations are often bound by memory capacity
rather than performance of processing units. Memory-bounded speed-up model [31]
generalizes Amdahl’s law and Gustafson’s law by maximizing the use of both pro-
cessing and memory capacities. The idea behind this model is to solve the largest
possible problem, limited only by the capacity of available memory. To achieve
scalable performance, this model may result in an increased execution time.

1.6.4 Efficiency, Utilization and Quality of Parallelism

To enlarge scope of measuring performance, efficiency, utilization and quality of
parallelism is measured by overall execution times instead of using the time percent.
Balance between following several parameters are often good practice to achieve
efficient parallel computations.
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1.6.4.1 Efficiency

The speed-up factor of parallel computer system that does fixed amount of work, is
expressed as execution time ratio between single-processor system and multiproces-
sor system. Efficiency [15] is for this case speed-up divided by number of processors
running on parallel computer. Calculated this way, efficiency gives the degree of
speed-up in comparison to theoretical (maximum) values.

1.6.4.2 Utilization and Redundancy

Redundancy [15] of system expresses the matching degree between hardware and
software parallelism. Value is calculated by dividing amount of operations done by
multiprocessors system with the value for single-processor system. When efficiency
is multiplied by redundancy, result is overall utilization [15] of resources used during
execution of program.

1.64.3 Quality

Parallelism quality [15] is single value used to validate speed-up of increased
resources. Expression combines previous factors and is directly proportional to the
speed-up and efficiency and inversely related to the redundancy.

1.6.4.4 Mean Performance

Arithmetic and harmonic mean performance measures [ 15] are used for parallel com-
puters that execute multiple programs and in various parallelization modes (multi-
processing, vector processing, pipelining, etc.). Scientific computations are mostly
organized as multiprocessor system running single programs, rendering those mea-
sures rarely significant.

1.6.5 Performance Summary

As it can be seen from previous parts of this section, models and measures that try
to generalize performance of parallel computations often do not give an accurate
image. To adjust performance representation to certain problems, many different
approaches have been proposed. Extensive quantitative approach to performance
analysis of various problems is treated in [20, 32].

Atcertain point scientific programmer have to make a trade-off between evaluating
performance and working on actual computations. Performance models that are less
accurate, but easy to examine, can often give an enough clear picture if parallelized
problem computes with acceptable performance.
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1.7 Efficiency Issues of Massively Parallel Designs

Parallelization consequences, hardware restrictions and programming approaches
influence performance and correctness of results and program propagation. Certain
issues manifest only on shared memory systems, other on distributed and some are
system independent. Typical issues are overheads, dependencies and bottlenecks,
caused by either hardware or algorithm.

This section classifies at what conditions common issues may occur. To achieve
scalable performance, attention must be paid to avoid or resolve those problems.

1.7.1 General Issues

1.7.1.1 Overheads

Overhead [13, 17, 28] is common name for conditions that avert processor from
actual computations. Algorithmic overheads or excess computations are parts of
program that are difficult to or cannot be parallelized at all. In those cases, paral-
lel algorithm can be either much more complex than sequential or it must be run
sequentially on only one processor. Communication overhead (interprocess inter-
action) is time that processors spend on data transfer instead of computations. It
includes reading, writing and waiting for data.

Idling is state of processing elements at which no useful computations are done.
Reasons for idle time of processors might be synchronization requirements, over-
heads or load imbalance.

1.7.1.2 Bottlenecks

As seen from previous sections, data transfer often downgrades processor perfor-
mance. In multiprocessor environments, memory bandwidth is aggregated with
adding more nodes, but for multi-core it is harder to achieve desired level of scalabil-
ity. Situation where processor speed gets limited as result of insufficient increase of
memory bandwidth is called memory wall [17]. Computations where performance
is constrained by transfer rates of memory are referred as memory bound [28].

Techniques to overcome memory performance problems are named latency hid-
ing, tolerating or reducing mechanisms. Those techniques and mechanisms [15]
(memory consistency, cache coherence, prefetching, cache and coherence misses
and other) are actually very important, but are concern only to engineers who build
multiprocessor systems. In general, (scientific) programmer should properly balance
computations with data transfer and not be occupied with low-level implementation
and issues.

In multiprocessor systems bottlenecks [11, 14] can also be caused by poor load
balance, where whole system waits idle for one processor to finish computations.
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1.7.1.3 Dependencies

Often for certain computations to advance, data from previous iterations is required.
Such cases are called data dependent [14, 15]. Parallelization is interrupted by task
that must wait for data to continue. Other types of dependencies exist, but are not
significant from scientific programmer perspective.

1.7.2 Issues on Shared Memory Systems

1.7.2.1 Result Preservation

In parallel program, order of execution is changed in comparison to sequential one
[29]. Some operations that are sequentially executed one after another, now may
be executed parallelly. Order of execution can cause change of accuracy on some
systems due to number truncation or rounding off on different places in program. To
avoid such errors, it is required to check if results are consistent during change in
order of execution.

1.7.2.2 Synchronization Errors

Very common errors manifest on shared memory systems when threads are not time
synchronized [29]. Program executes correctly, since there is no actual bug, but
results may be incorrect. Timing of threads impacts if those errors happen or not,
even in cases when synchronization is not explicitly imposed.

First type of incorrect results may occur when one thread starts to work on data
from another thread that have not yet finished with computations. A barrier can be
instructed to ensure that the thread will wait for another one to finish.

Result inconsistency can also happen when a thread is scheduled to work on part
of data already processed by another thread. To avoid this issue, programmer can
explicitly protect access to data of another thread.

Race condition is a conflicting state when multiple threads try to simultaneously
update same variable. Without access synchronization variable update may not be
as it is intended. To resolve race conditions, reading and writing to a shared variable
should be enclosed in critical section that permit only one thread at time to manipulate
data. Critical sections are implemented as atomic instructions. One atomic instruction
is sequence of instructions that manipulate shared variable. At any given time, only
one atomic instruction is allowed to be executed by whole computer system and it
must be executed entirely before any other instruction.
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1.7.2.3 Variable Scope Issues

Certain variables may be declared to be shared between all threads or private to each
thread. If declared incorrectly shared variable may not be updated when necessary
and private may be updated by wrong thread [29].

1.7.3 Issues on Distributed Memory Systems

1.7.3.1 Deadlocks

Situation when two or more processes keep waiting for resource from each other
and none of them can make any progress [13, 14, 18]. Resource in those cases can
be message send/receive operation, synchronization instructions or access to remote
device or memory. Conditions under which deadlocks happen are when resource is
mutually exclusive (only one process may use it), when process that use a resource
requests another resource (hold and wait condition), in cases when resource cannot
be released without process action (no pre-emption condition) and when multiple
processes in circular chain wait a message from another one.

Deadlock detection [33] is analysis conducted to reveal if deadlock conditions
apply to set of resources and processes. Prevention and avoidance ensure that dead-
lock conditions do not hold and will not occur upon resource utilization. To prevent
mutual exclusion, resource should be available to multiple processes. Hold and wait
condition may be eliminated by forcing the process to release all resources upon
request for another or to acquire all resources with single operation. No pre-emption
is eliminated by allowing a resource to be released from process. Circular chain
waiting is prevented by imposing an order of resource employment.

1.7.3.2 Livelocks

Similar situation to deadlock, where two or more processes fail to progress because
all keep responding to each other request indefinitely [17, 33]. Itis resolved by giving
respond priority to one of the process.

1.7.3.3 Busy Waiting

Occurrence when one process sends a message to another process that continuously
denies it or when process constantly tests if a condition is satisfied [33]. The first
process keeps resending the message or checking the condition state and cannot
continue with useful work.
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1.7.3.4 Starvation

In cases where processes are scheduled by another entity, starved process [17, 33] is
one that is ready to continue, but scheduler ignores it.

1.8 Parallel Program Design

In multi-core environments there is no certainty that some parallel operations will
be executed at exactly same time or in exactly specified order without losing par-
allelization or introducing idle waiting time. For example, in parallel program one
core might supply certain data to another core too late or too early. The program
code does not report any error (since there is none), yet it produces incorrect output
due to loss of data coherency or processors stay unnecessary idle. De-bug difficulty
presents that on certain runtime program will work and on another runtime, it will
go into a dead-lock even with same data, depending how threads are scheduled by
operating system [13, 14, 17, 18, 27]. Step-by-step debugging and data tracing is
therefore not feasible solution for checking errors and flow of a parallel program.
Much more attention must be invested in methodical design to prevent dead-locks,
incoherent data operations and other dangers of parallelization. Design methodology
will be described in order to minimize parallel program flaws and bugs due to com-
mon bad practice during programming while maintaining decent level of simplicity
and efficiency [18, 27]. More detailed approach to design of parallel algorithms may
be found in [13, 14, 20]

1.8.1 Parallel Program/Algorithm Properties

1.8.1.1 Concurrency Versus Parallelism

Often confused for same, but fundamentally different procedures of instructing com-
mands [17, 18, 27]. Concurrency enables several different threads to be open for
execution by single processor. This means that while one thread is executed (sequen-
tially), other threads stay idle and processor can arbitrary switch between execution
of threads.

In parallelism, every thread is executed on dedicated processor in the same time,
resulting that (ideally) there is no idle time for any thread.
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1.8.1.2 Locality

Ratio of local memory accesses to remote memory accesses is defined by locality of
program [27]. It is one of the major properties of parallel programs which can lead
to efficiency loss due to communication constraints.

1.8.1.3 Modularity

Property of program (and in some cases hardware) to be composed of number of
smaller, independent units (modules) is in general good practice in software engi-
neering, both sequential and parallel [11, 27].

1.8.2 Design Methodology

To get from problem specification to effective parallel algorithm it is crucially impor-
tant to rely on design methodology than on pure creativity of programmer. Anyway,
creativity is of great importance even when following methodical approach. It allows
to increase range of considered options, distinguish bad from good alternatives and to
minimize backtracking from bad choices. Design flaws easily compromise parallel
program performance. As most of problems have multiple parallelization possibili-
ties, methodical design helps to characterize most favourable solution [13, 14, 18,
27, 28].

1.8.2.1 Partitioning (Problem Decomposition)

First step before starting to design a parallel program, is to determine if problem is
inherently parallel by its nature or it may or may not be parallelized [14, 27, 28].
To be parallelizable an algorithm must satisfy certain conditions. Detecting methods
serve to discover if some algorithm is parallel when it might not be obvious.

Partitioning serve to recognize parallelization opportunities in the problem. Data
and operations are decomposed into smaller (independent when possible) tasks. If
decomposed tasks are not independent, they have to communicate data according
to dependencies. Domain decomposition is technique where data set of problem is
divided into independent pieces. Next step is to associate tasks to partitioned data
set. Complementary technique, the functional decomposition, focuses on dividing the
computations into smaller disjoint tasks. In case when decomposed tasks correspond
to partitioned data, decomposition is complete. By nature of many problems this is
not possible. In those cases, replication of data or task set must be considered. Even
when it is not necessary, it might be worth to replicate data or instructions to reduce
communication. Several guidelines should be considered before proceeding to next
steps of parallelization, to ensure that there are no obvious design flaws:
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1. toincrease flexibility in following design stages, there should be at least one order
of magnitude more tasks than processors in the system and

2. consider both decomposition techniques and identify alternative options,

3. scalability can be compromised with larger problems if there are redundant com-
putations or data input/output after partitioning,

4. it is hard to allocate equal amount of load to each processor if tasks are not
comparable in size,

5. to properly scale, with increase in problem size, number of task should grow,
rather than size of individual task.

1.8.2.2 Communication Design

Flow of data is specified in communication stage [27] of design. In general, tasks
can execute parallelly, but it is rare that they are independent. Proper communi-
cation structures are required to efficiently exchange data between parallel tasks.
Goal of communication design process is to allow efficient parallel execution, by
acknowledging what communication channels and operations are required and elim-
inating those which are not necessary. Communication channels for parallel algo-
rithms obtained by functional decomposition correspond to the data flow between
tasks. For domain decomposed algorithms, data flow is not always straightforward,
since some operations might require data from several tasks.

Local communication structures are used when task communicate only with small
number of neighbouring tasks. Global communication protocols are more efficient
when many tasks communicate with each other. Communication networks can be
structured, where tasks form a regular composition and unstructured where task
are arbitrarily arranged. If identity of communication pairs varies during program
execution, communication is dynamic and for unchangeable identities, it is static.
In synchronous communication information exchange is coordinated, but for asyn-
chronous communication structures, data is transferred with no mutual cooperation.

The following check-list is proposed to avoid overheads and scalability issues
arising from inefficient communication layout:

1. for scalable algorithm, all tasks should perform similar number of communication
operations,

2. when possible, arrange task so that global communication can be encapsulated in

local communication structure,

evaluate if communication operations are able to proceed parallelly,

4. evaluate if tasks can execute parallely and does communication prevents any of
the tasks to proceed.

[O8]
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1.8.2.3 Agglomeration

One of the principal requisites for efficient execution is level of matching between
hardware and software. In agglomeration stage [27] algorithm from previous phases
is adapted to be homologous to the computer system used for computation. It is
known that it is useful to combine (agglomerate) large number of small tasks into
fewer task larger in size or to replicate either data or computation. Reduced number
of tasks or replication can substantially reduce communication overheads.

Revision of parallel algorithm attained by decomposition and communication
design phase can be optimized by following agglomeration procedure:

1. reduce communication cost by increasing task locality,

2. verify that benefits outweigh the costs of replication or limit scalability,

3. task created by agglomeration should have similar communication costs as single
smaller task,

4. evaluate if agglomerated algorithm with less parallel opportunities execute more
efficiently than highly parallel algorithm with large communication costs,

5. check if granularity (size of tasks) can be increased even further, since fewer large
task are often simpler and less costly,

6. evaluate modification costs of parallelization and strive to increase possibilities
of code reuse.

1.8.2.4 Mapping

Final stage of design is to decide how to map task execution on processors [27]. Since
there is no universal mechanism to assign set of tasks and required communications to
certain processors, two strategies are used to minimize execution time. First option
is to map tasks to different processors in order to increase parallelization level.
Other option that increase locality, is to map tasks that communicate often to the
same processor. Those strategies are conflicting and a trade-off must be made to
achieve optimal performance. Favoured strategy is problem specific and use of task-
scheduling or load balancing algorithms can be used to dynamically manage task
execution.

1.8.3 Design Evaluation

Before starting to write actual code, parallel design should be evaluated according to
few criterion. Some simple performance analysis should be conducted to verify that
parallel algorithm meets performance requirements and that is the best choice among
available alternatives. Also, to be considered are the economic costs of implementing
and possibilities for future code reuse or integration into larger system [27, 28].



1 Introduction to Scientific Computing Technologies ... 33

1.9 Software Solutions

Software solutions are the connection between hardware platforms and computing
problems. Various libraries, frameworks and APIs (application programming inter-
faces) are added to backbone programming languages like C/C++ or Fortran. Func-
tionality of parallelization software is developed to be independent from backbone
languages. To exploit parallel resources, programmer only need to call (paralleliza-
tion) sub-routines from one of the supported programming language [13, 18].

This section explains principal functionality (concepts) of major software solu-
tions for science applications. Logic behind those software platforms is clarified
and for actual coding tutorials readers are invited to use specialized programming
literature.

1.9.1 OpenMP

OpenMP (Open Multi-Processing) [13, 18, 34] is an API that supports programming
on shared memory computers in C, C++ and Fortran languages. It offers intuitive,
multi-threading method of parallelization, where one main thread (master) forks
when parallelizable part of code is encountered. Work is then divided among number
of secondary (slave) threads. There can also be multiple levels of forking. Threads
of same level execute same code over designated portion of total data. It is usually
used in combination with other parallel software when is possible to parallelize work
inside nodes.

1.9.2 Message Passing Interface (MPI)

MPI [13, 18, 35] is a standard that defines syntax and semantics of library routines
used for writing message-passing programs in C, C++ and Fortran. It operates on
variety of parallel architectures, but is major standard for programming of distributed
memory systems, such as clusters. Message passing with MPI is not so intuitive
approach to parallel programming and requires more attention than multi-threading
approach with OpenMP.

Parallelization is achieved by creating one master and numerous slave tasks
(ranks) at program runtime. Each rank runs own instance of MPI program. Within
code it is specified what parts are executed or skipped by certain ranks. In this way,
each rank has own instance of data structures that are not shared with other ranks
(although the structures are declared under the same name). To access some remote
data, rank have to explicitly request it.

Core of MPI is based on communication by passing messages between ranks. The
simplest form of information exchange is by send/receive operations. One rank would
request some data, other rank has to acknowledge this request and send required
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data back. First rank then has to appropriately receive the message containing the
requested information.

Beside point-to-point communications as send/receive, there are collective class
of communication operations. When large number of ranks have to exchange data it
is much more efficient to use collective message passing.

Synchronization of execution can be explicitly imposed by instructing barriers or
implicitly by using blocking communication. Neither rank is allowed to proceed until
all ranks execute the explicit barrier instruction. Blocking communication prevents
receiving rank to continue until message is received. Asynchronous communica-
tion can be achieved by using non-blocking message passing or by using probe
instructions. With probe instructions, ranks check if there is pending message. When
message is there, probing rank receives it, when not, rank continues with execution.

Communicator is a structure that defines communication privileges. It is used to
specify what ranks will participate in certain communication operations.

Functionality of message passing makes it appropriate for programming of MIMD
problems in HPC. Technique often used is hybrid programming, where MPI and
OpenMP are used together.

1.9.3 CUDA and OpenCL

Compute Unified Device Architecture (CUDA) [13, 18, 23] is programming environ-
ment developed to efficiently map data parallel task to GPU structure. GPU program
is separated in parts run by CPU (host) and data intensive functions (kernels) that
are executed on GPU (device).

Beside memory allocation that hold transfer of data between CPU and GPU mem-
ories, programmer has to specify how threads are organized inside kernel. Kernel
grid is organized in two levels. Top level is organization of thread blocks within the
grid. On second level threads are arranged inside block. Each block of same grid
has same number and structure of threads. Latest GPUs support three-dimensional
organization of threads within block.

Execution configuration of kernel is further divided into smaller units wraps, that
are collection of threads which executes at once. Mechanism called thread scheduler
decided which wrap will be executed. This execution model efficiently exploits mem-
ory and core organization of GPU even in cases when programmer poorly organize
kernel grid and memory allocation.

Kernel execution requires large amounts of data and access to it is very time-
expensive. Memory coalescing is a technique that combines neighbouring data and
copies it together from slow global to fast shared register memory. To exploit memory
coalescing, programmer should organize data so that neighbouring threads in wrap
use equally organized data in memory (consecutive threads should use consecutive
memory locations). Technique that help to methodically arrange data according to
thread execution schedule is called tiling. It enables also to efficiently reuse data or
pre-load piece of data for faster access.
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Open Computing Language (OpenCL) [13, 18, 36] is cross-platform program-
ming environment that provide standardized support for computers with multiple pro-
cessors, GPUs and other computing units. It provides methods to efficiently assign
tasks and exploit all resources of heterogeneous computing platforms. Execution
model of OpenCL programs are slightly more complex, but very similar to CUDA.

1.9.4 Other HPC and Scientific Software

The above mentioned software are not only solutions available on market, but are
widely used and supported by user community. Other software such as job schedulers,
node installation and management, integrated stacks and monitoring programs are
more concern of system administrators than to programmers. For larger jobs it might
be useful also to get familiar with load balancing, task scheduling and management
[32].

Most HPC platforms are never dedicated to only one computing job. Resources
(HPC time) are shared/distributed between large number of scientific and industry
projects. It is worth to mention that large amount of HPC time is dedicated to Com-
putational Fluid Dynamics. Although it is a nonlinear phenomena, it is not focused
on global analysis but on modeling the motion of specific problems, such as interac-
tion of fluids with a solid surface. Reference [37] presents an example of scientific
applications available at one of the supercomputers from Top500 list.

1.10 HPC in Global Analysis

It is assumed that reader is familiar with the basic of nonlinear dynamics and is
looking to parallelize his/her own computations. This section is thus, dedicated to
introduction to some of main methods of global analysis, to present possible paral-
lelization options and to provide examples of how it may be accomplished.

1.10.1 Numerical Global Analysis Methods

As computers are able to manipulate and store numbers with limited number of
digits, numerical methods operate with somehow discretized continuous state space.
There are two types of methods, classified according to discretization methodology.
First class are methods that treat state space as collection of points. Second class of
methods divide state space into number of hyper-cubes (cells).
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1.10.1.1 Point Integration

Straightforward method to get a basin of attraction is to take a cross-section of
continuous state space and approximate it with set of points. To determine basin, every
point is evolved by integrating forward in time. It is assumed that orbit converges if,
after certain amount of time, distance from it to one of the one of the attractors is
within some small predefined tolerance [10]. This method often requires integration
of trajectories for extensive amount of time, that depends on the length of the transient
motion [38].

1.10.1.2 Point Mapping

Instead of looking for the continuous time history of a motion of the system, it is also
possible to track the system state at a sequence of discrete time instants. Methods
how to approximate continuous trajectories with point mapping depend on the type
of system and nature of analysis. Result of discretization is mapping function where
discrete trajectory is formed by iterating the map, starting from an initial state [1].

1.10.1.3 Basins of Attraction

Theory of point mapping allows to determine equilibrium points, periodic motions
and strange attractors, associated with continuous counterpart. To determine basins
for stable sets there are several methods. Direct approach investigates where each
initial condition maps after certain number of iterations. Time saving method consists
of starting from small known region around an attractor and then expand the boundary.
For certain two-dimensional maps it is possible to separate basins by using stable
manifolds of saddle points.

1.10.1.4 Grid of Starts

Integration of grid of points (or grid of starts) [39] is a method related to the point
integration. Basins are determined in the same manner, by integration from initial
condition to the attractor. The initial condition in this case is a cell, commonly its
center point. In other words, all states residing inside the cell are approximated as
single cell entity. Although this method give fairly accurate results, the drawback is
high computational requirements [40] because of the long integration time needed
to overcome transient.



1 Introduction to Scientific Computing Technologies ... 37
1.10.1.5 Cell Mappings

Closely related to the point mapping, cell mapping methods also approximate con-
tinuous trajectories by a discrete map. Starting from state space discretized as in Sect.
1.10.1.4, each cell is enumerated with an positive integer number. Initial conditions
are then integrated over small time period to obtain the mapping. An image (or image
cell) is a cell where the initial cell is mapped after one step of a map. It is possible to
use methods analogue to point mapping to determine attractors and corresponding
basins. As cell mapping is less computing intensive than fore-mentioned methods,
and over the years, various cell mapping methods were developed, each with its
advantages and drawbacks.

The Simple cell mapping (SCM) method [1] assumes that each cell can have only
one image cell. If a cell maps to itself, it is considered to be a periodic cell. When
certain cell maps to itself after multiple map steps, all cells in the sequence form a
periodic motion. Basin of attraction is then a collection of cells that after arbitrary
number of map steps get mapped to some periodic cell or motion. With SCM it is not
possible to accurately approximate chaotic attractors or fractal basin boundaries, but
it can give a hint if those are present in the dynamical system. E.g. a chaotic attractor
in SCM can be recognized as a several periodic motions with a very long period.
Advanced cell mapping methods can be used to overcome obstacles of SCM, but at
certain computational costs.

The Generalized cell mapping (GCM) method [1] improves SCM by incorporat-
ing more information on system dynamics inside the map. Function that governs the
map evolution is based on probability of each cell to map into one of the possible
image cells. Such formulation of GCM mapping leads to the finite Markov chains for
which well developed theory enables identifying the dynamics of the system. GCM
is effective for discovering occurrence of chaos in the system.

The Interpolated cell mapping (ICM) [39] is a method developed to combine good
characteristics of SCM and GCM. In SCM trajectory endpoint is rarely in the center of
image cell. ICM records beside image cell also the actual location of endpoint inside
image cell. Next iteration is calculated by taking the relative position of terminal
point in respect to four surrounding cells. The end point of this iteration is obtained
by interpolating between endpoints of the trajectories emerging from fore-mentioned
four surrounding cells. In comparison to SCM and GCM, this method gives more
accurate trajectories, but requires additional computational costs for computing new
terminal positions.

Cell mapping methods are particularly suitable for systems with a periodic exci-
tation. In this case the map is the stroboscopic one, sampled at the period of the
excitation.
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1.10.2 Multi-dimensional and Parallelized Numerical Global
Analysis Methods

Before-mentioned methods work well in lower dimensions, but do not scale so well
with increase in system dimension. To overcome dimensionality restrictions in [41]
the authors developed a multi-degree of freedom (MDOF) extension to cell mapping
methods. Beside dimensionality, another, difficult task is to overcome inner serial-
ity of those methods. Survey of successful attempts to parallelize global analysis
methods follows.

In [42] MDOF cell mapping algorithm is restructured to exploit most time con-
suming part of global analysis — the system integration. In a series of papers [43—45]
the authors examined parallelization of grid of starts method on cluster comput-
ers. Successfully computed basins of attraction in both previous cases are used to
determine integrity measures of dynamical systems.

To exploit massive parallelization capabilities of GPU, in [46] the authors refined
the SCM method with subdivision techniques, in order to solve problems in multi-
objective optimization. Another GPU parallelization approach on global analysis is
tackled in [47] that combined several cell mapping methods (SCM, GCM and ICM).
This combined method gives fast and resource efficient method to discover attractors,
but require additional computations to determine basins. Authors provide example
applications to impact model, plasma model and six-dimensional Lorenz system.

1.10.3 Example of Global Analysis

To illustrate computing of basins with SCM we used the four-dimensional system of
two coupled and driven Duffing-Van der Pol oscillators considered in [48], governed
by the equations:

Xo = X1,

X =v( — x02)x1 — w%xp — €xo> + Bx, + Fsin(t),

X = X3,

%3 = v(1 — x22)x3 — wr?xy — €x2® + Bxo + Fsin(t + 0.25), (1.1)

with w; = 0.000023216854686, w, = 0.022222854255, v = 0.25, B = 0.01, € =
l,and F = 1.4.

Calculations are carried out with two different resolutions to demonstrate accuracy
and performance of the method. For the low resolution the state space region x; =
(—4, 4) is divided into 110 intervals per dimension, totaling 146 410 000 cells and
size cell h; =~ 0.073. Significantly higher number of cells, 1 632 240 801 is achieved
by dividing each dimension into 201 intervals, here having size cell h; ~ 0.039801.
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Initially, the system (1.1) is integrated with a parallelization process on a small
cluster using MPI standard implemented in C programming language. Then, the four-
dimensional basins of attraction are determined with SCM post-processing algorithm.
Low resolution case is calculated on two different computers. On the one with lower
performance integration time was approximately 4 h and basin search lasted about
15 min. Then, the same calculations are carried out on computer with four times
more processors. Result was that integration stage scaled well reducing computing
time to around 1 h, but result of increased communication in post-processing stage
increased time to build basins to 30 min.

Bad scaling of post-processing is even more evident in the high resolution case,
where integration lasted 6 h and post-processing 12 h. From achieved performance
it is obvious that integration stage can be considered as parallelizable, since it scales
well. On the other hand, SCM post-processing is highly inadequate to be computed
on distributed memory systems where large amount of communication operations
drastically degrade performance.

In Figs. 1.6a and 1.7a we report the xo — x; and x, — x3 basins cross-sections
(other coordinates are fixed to 0) of low resolution and on Figs. 1.6b and 1.7b of
high resolution case. To synthetically present usefulness of full-dimensional basins
we report in Figs. 1.8 and 1.9 how the x(y — x; cross-section of basins changes as the
x3 coordinate is varied.

Although the fastest and least resource consuming method, the drawback of pure
SCM computations is that there is the possibility that some basins and attractors are
assimilated as a result of the low accuracy of approximated trajectories, especially
at low resolutions.

(b)
4

Fig. 1.6 x(o — x| basin cross-section of a low and b high resolution cases
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Fig. 1.7 x; — x3 basin cross-section of a low and b high resolution cases

Fig. 1.8 Various xo — x1 basin cross-sections of low resolution case
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Fig. 1.9 Various xo — x; basin cross-sections of high resolution case

1.11 Conclusion

Vast amount of scattered literature and examples is available and newcomers often get
lost. In this chapter we hope to have introduced scientists and engineers to topics of
high power-computing in step-by-step fashion to all concepts, implementations and
methods required to understand how to efficiently solve large computing problems.

Performance of individual components is explained in enough detail that is
required to understand overall system performance. With concepts of hardware orga-
nization (architectures) and different implementations readers were introduced to
world of massively parallel computing. From mentioned concepts of high-power
computing, high performance computing with clusters and GPU is most relevant for
science and engineering.

In design process, programmers now understand why should strive to make par-
allel software scalable, as local as possible and modular. It is possible to achieve
this task by methodical development of algorithm through partitioning the problem,
optimizing communication structures and agglomeration of communication inten-
sive parts.

Performance issues and parallelization speed-up are discussed to prevent unreal-
istic expectations from parallel computing. Readers were also introduced to func-
tionality of main software solutions in HPC, OpenMP for shared memory computers,
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MPI standard for distributed systems and OpenCL and CUDA for environments with
computational GPUs.

Topic is closed by presenting common methods and applications of global analy-

sis. After studying this paper, it is hoped that reader is able to identify type of com-
puting problem, to choose proper hardware/software platform, methodically plan
design process and evaluate parallel algorithm by referring to specific literature for
deepening on specific topics.
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