
Chapter 8

Nonlinear Localized Waves of Deformation in

the Class of Metamaterials as Set as the

Mass-in-mass Chain

Vladimir I. Erofeev, Daniil A. Kolesov & Alexey O. Malkhanov

Abstract A well-known mathematical model representing a chain of oscillators con-
sisting of elastic elements and masses, each containing an internal oscillator and de-
scribing the class of acoustic metamaterials "mass-in-mass", is generalized by tak-
ing into account the nonlinearity of the external and (or) internal elastic elements.
As a result of analysis of the long-wavelength approximation of the obtained sys-
tem, it is shown that spatially localized nonlinear deformation waves (solitons) can
be formed in a metamaterial, under dynamic influence on it. The dependencies con-
necting the parameters of a localized wave are determined: amplitude, velocity and
width with inertial and elastic characteristics of the metamaterial.

Keywords: Mathematical modeling · Nonlinear waves · Metamaterial · Mass-in-
mass chain · One-dimensional system

8.1 Introduction

The development of modern technologies is impossible without the creation of new
promising materials with unusual properties. For example, defect-free carbon nan-
otubes are two orders of magnitude stronger and four times lighter than steel. Cur-
rently, a new class of substances with a complexly organized internal structure (mi-
crostructure) and possessing unique physicomechanical properties is called meta-
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materials. They first appeared in the field of optics and photonics (Cummer et al,
2016; Zhu and Zhang, 2018), but now they are increasingly found in other areas.
For example, acoustic metamaterials (Zhang et al, 2009; Burov et al, 2011; Nor-
ris and Haberman, 2012; Deymier, 2013; Craster and Guenneau, 2013; di Cosmo
and Laudato, 2018; Abali et al, 2017; Giorgio et al, 2017; Ming-Hui et al, 2009;
Madeo et al, 2016; dell’Isola et al, 2015, 2016; El Sherbiny and Placidi, 2018)
are widely used, in particular as sound and vibration absorbers as in Bobrovnit-
skii (2014, 2015); Bobrovnitskii et al (2016); Fedotovskii (2015, 2018); Bobrovnit-
skii and Tomilina (2018). Another example of materials with unusual properties are
fullerites—solid structures formed based on fullerenes (Sidorov et al, 2005). Super-
and ultra-hard fullerites are characterized by uniquely high velocities of longitudinal
elastic waves and a wide diapason of these values ranging from 11 km/s to 26 km/s,
depending on their structure, determined by the conditions of synthesis (Blank et al,
1998). The value of 26 km/s measured in one of the fullerite phases is a record—it
is almost 20% more than the speed of longitudinal waves in graphite along atomic
layers equal to 21.6 km/s (until recently this value was the highest for all known sub-
stances) and 40% more than the corresponding speed in diamond (18.6 km/s). The
speeds of transverse waves in solid fullerite phases are also high (their values range
from 7 km/s to 9.7 km/s), but they are still smaller than in diamond (11.6–12.8 km/s)
which remain the highest among currently known substances.

Acoustic (or mechanical) metamaterials, being, in fact, not materials, but cellular
periodic structures, in the long-wavelength range behave like continuous materials.
The study of the features of dispersion, dissipation, and the appearance of nonlin-
earity of acoustic waves in metamaterials is of high interest (Altenbach et al, 2010;
Dreyer et al, 2005; Agranovich et al, 2004; Berezovski et al, 2016; Engelbrecht et al,
2007; Madeo et al, 2015).

Guided by a mathematical analogy between acoustic and electromagnetic waves,
many researchers have tried to construct continuous models of mechanical metama-
terials. However, great success on this path was not achieved, since the mechani-
cal analogs of actually existing materials with negative dielectric constant are de-
formable solids with negative mass, density or negative modulus of elasticity (Li
and Chan, 2004; Fang et al, 2006; Ding et al, 2007; Cheng et al, 2008; Chan et al,
2006). And such materials do not exist in the reality.

It is obvious that an adequate description of the physicomechanical properties
of metamaterials within the framework of the classical theory of elasticity is im-
possible. Recently, generalized micropolar theories of the Cosserat continuum type
(Huang et al, 2009) have become widespread for modeling structurally inhomo-
geneous materials. However, these theories include a large number of material
constants that require experimental determination and whose relationship with the
structure of the material is not clear. This disadvantage is devoid of an alternative
direction—structural modeling as in Altenbach et al (2011); Pavlov and Potapov
(2008). In Pavlov (2010), a one-dimensional chain was considered containing iden-
tical masses m1 connected by elastic elements (springs), having the same rigidity
k1, at the same time each mass inside itself contains another mass m2 and one more
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elastic element—a spring with rigidity k2 (see Fig. 8.1). Such a model, called the
mass-in-mass chain, does not give the mentioned absurd results.

8.2 Mathematical Model

We generalize the model in Pavlov (2010) by taking into account the quadratic non-
linearity of the external and internal elastic elements. The potential energy of the
unit cell of the mass-in-mass chain is written as:
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and its kinetic energy in the form:
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Let us suppose that u1 (x) and u2 (x) are continuous functions, which describe
the displacements of all masses m1 and m2, respectively. Taking into account the
expansion of displacements in a Taylor series up to the second term, we obtain

u
(j+1)
1 = u1 (x+ L) = u1 (x) +

∂u1

∂x
L = u

(j)
1 +

∂u1

∂x
L. (8.3)

The technique of expansion displacements in (8.3) was effectively applied by Kunin
(1982) in the transformation of multimass discrete systems into a quasicontinuum.

The densities of the potential and kinetic energies for the equivalent continuum,
obtained from (8.1) and (8.2), can be written in the form:

Fig. 8.1 Infinite mass-in-
mass lattice structure
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Let us construct from (8.4) and (8.5) the Lagrange function

L = T −W = L(u̇1, u̇2, u1x, u1, u2)

and take into account equations well known from analytical mechanics⎧⎪⎪⎨⎪⎪⎩
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to get the system of equations in in displacements:
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Further consider a particular case of system (8.6), where h1 �= 0, h2 = 0, i.e.:
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The system (8.8) can be rewritten in the form of single equation:
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Let us introduce dimensionless variables—time, coordinate, and displacement:

τ=
t

T
, y=

x

X
, u2=u0u. (8.10)

The transformed equation (8.8) with the new variables (8.10) takes the form:
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We require that all the coefficients (8.11) are finite or small. We choose them so that
among the nonlinear terms we can distinguish only one, the main item.

All the subsequent arguments are valid if two conditions are satisfied:
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When these conditions are fulfilled, in equation (8.11) some of the terms can be
discarded, since they have a larger order of smallness and do not have a significant
effect on dynamic processes. Thus, equation (8.11) takes the form:
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Returning to the original dimensional variables in equation (8.13), we obtain the
simplified equation (8.8) in the form:
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8.3 Nonlinear Stationary Waves

We will seek the solution to this equation in the class of traveling stationary waves:
u2 = u2 (ξ) , ξ = x − V t, V – velocity of the stationary wave (unknown be-
forehand). With respect to deformation du2

dξ = U the nonlinear partial differential
equation (8.15) reduces to the anharmonic oscillator equation:
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Let us note that c2 > c1. Depending on the value of the velocity V , there are
qualitatively different wave patterns, since equation (8.16) has different solutions
in Erofeev et al (2002). Only the solutions which at infinity do not give a constant
component for the strain wave U have physical meaning.

If the velocity of the stationary wave satisfies inequality: c2 > c1 > V , then
equation (8.16) has a periodic solution expressed in terms of an elliptic sine:
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– nonlinear analog of the wave number.

It can be seen that Q ∼ √
k1, Q ∼ 1√

m1
, Q ∼ 1

V when the other variables are
fixed.

In the Fig. 8.2 the dependence Q ∼ √
k1 is depicted: curve 1—the qualitative

form of this dependence at a fixed velocity and internal mass of the element; curve
2—the trend of the behavior of the graph of the dependence with increasing mass
and fixed value of velocity; curve 3—increase in velocity by the same order that
the mass was increased in the previous case; curve 4—increase of both parameters.
From the analysis of curves 2 and 3 and from the assumption that the mass, in
comparison with the velocity, is a much more static parameter, we can conclude that
the most significant effect on this dependence is exerted by speed.

In the Fig. 8.3 the dependence Q ∼ 1√
m1

is shown: curve 1—a qualitative repre-
sentation of this relationship at a fixed velocity and stiffness of the external spring of

Fig. 8.2 The dependence
of the wave number on the
rigidity of the external elastic
element of the system
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Fig. 8.3 The dependence
of the wave number on the
internal mass of the system
element

the system element; curve 2—the trend of behavior of the graph of the dependence
with increasing velocity and constant rigidity; curve 3—increase in rigidity by the
same order, which was increased velocity in the previous case; line 4—increase of
both parameters. From the analysis of the form of the curves 2 and 3 it can be seen
that an increase in the parameters leads to a shift in the dependence curve in differ-
ent directions. From the analysis of the curve 4 it follows that shows that the change
in speed is “stronger.”

In the Fig. 8.4 the dependence Q ∼ 1/V is depicted: curve 1—qualitative form
of the relationship with fixed internal mass and stiffness of the external spring of
the system element; curve 2—trend of behavior of the graph of the dependence with
increasing mass and constant rigidity; curve 3—increase in rigidity by the same
order that the mass was increased in the previous case. When both parameters are
increased by the same order, the function graph coincides with curve 1. From the
analysis of the curves it can be concluded that these parameters have the same in-
fluence on the indicated dependence.

The qualitative form of the periodic wave is shown in Fig. 8.5, where, through
K (s) the elliptic integral of the first kind is denoted.

If the velocity of the stationary wave satisfies the inequality c2 > V > c1,
then equation (8.16) has an aperiodic solution, expressed in terms of the hyperbolic
cosine:

U (ξ) = Ac cosh
−2

(
ξ

Δ

)
. (8.18)

This relation describes a solitary stationary wave (soliton) of deformation. Here
Ac = − 3a

2b – the amplitude of soliton, Δ = 2√−a
– the width of soliton. The analysis

of the latter shows that Δ ∼ V, Δ ∼ 1√
k2
, Δ ∼ √

m2.
In the Fig. 8.6 the dependence Δ ∼ V is shown: curve 1 is a qualitative represen-
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Fig. 8.4 The dependence
of the wave number of a
stationary wave on its speed

Fig. 8.5 Qualitative represen-
tation of the periodic wave

Fig. 8.6 The dependence of
the soliton width on its speed

tation of this relationship for fixed internal spring stiffness and internal mass of the
system element; curve 2—the trend of behavior of the graph of the dependence with
increasing of the mass and constant rigidity; curve 3—increase in rigidity by the
same order that the mass was increased in the previous case. When both parameters
are increased by the same order, the function graph coincides with curve 1. From
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the analysis of the curves it can be concluded that these parameters have the same
effect on the indicated dependence.

In the Fig. 8.7 the dependence Δ ∼ 1/
√
k2 is depicted: curve 1—the qualita-

tive form of this dependence at a fixed velocity and internal mass of the element
of the system; curve 2—the trend of the behavior of the graph of the dependence
with increasing velocity and constant mass; curve 3—increase in mass by the same
order, which was increased velocity in the previous case; line 4—increase of both
parameters. From the analysis of the curves 2 and 3 it can be seen that an increase in
speed leads to a stronger shift up of the graph. Consequently, the change in velocity
“stronger” affects the width of the soliton.

In the Fig. 8.8 the dependence Δ ∼ √
m2 is shown: curve 1—a qualitative rep-

resentation of this relationship at a fixed velocity and stiffness of the internal spring
of the element; curve 2—the trend of behavior of the graph of the dependence with
increasing velocity and constant rigidity; curve 3—increase in rigidity by the same
order, which was increased velocity in the previous case; curve 4—increase of both

Fig. 8.7 The dependence
of the soliton width on the
rigidity of the internal elastic
element of the system

Fig. 8.8 The dependence
of the soliton width on the
internal mass of a system
element
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Fig. 8.9 The qualitative rep-
resentation of a soliton

parameters. From the analysis of the form of curves 2 and 3 and from the assumption
that the rigidity is a much more static parameter in comparison with the velocity, it
can be concluded that the most significant effect on this dependence is exerted by
speed.

The qualitative form of the soliton of deformations is shown in Fig. 8.9.
If the velocity of the stationary wave satisfies the inequality: V > c2 > c1, then

the equation (8.16) has a periodic solution expressed in terms of an elliptic sine:

U (ξ) =
A

3s2

(√
1− s2 + s4 − 1− s2

)
+A · sn2 (Qξ, s) , (8.19)

where

A = −3a

2b

s2√
1− s2 + s4

, Q2 = a
4
√
1−s2+s4

. (8.20)

The dependencies shown in Figs. 8.2, 8.3, 8.4 remain valid for this case.

8.4 Conclusions

As a result of analysis of the long-wavelength approximation of the obtained sys-
tem, it is shown that spatially localized nonlinear deformation waves (solitons) can
be formed in a metamaterial, under dynamic influence on it. The dependencies con-
necting the parameters of a localized wave are determined: amplitude, velocity and
width with inertial and elastic characteristics of the metamaterial.
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