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Chapter 7

On Non-holonomic Boundary Conditions within
the Nonlinear Cosserat Continuum

Victor A. Eremeyev

Abstract Within the framework of the nonlinear micropolar elastic continuum we
discuss non-holonomic kinematic boundary conditions. By non-holonomic bound-
ary conditions we mean linear relations between virtual displacements and virtual
rotations given on the boundary. Such boundary conditions can be used for mod-
elling of complex material interactions in the vicinity of the boundaries and inter-
faces.

7.1 Introduction

The model of micropolar medium known also as Cosserat continuum was proposed
by Cosserat brothers, see Cosserat and Cosserat (1909) and the contributions by
Nowacki (1986) for infinitesimal deformations and by Eringen and Kafadar (1976);
Eringen (1999); Eremeyev et al (2013); Altenbach and Eremeyev (2013); Eremeyev
and Altenbach (2017) for finite deformations, where the further references can be
found. The Cosserat model found various applications to description of such mi-
crostructured media as foams, granular media, composites, magnetic fluids, and
thin-walled structures. Within the micropolar continuum the fields of translations
and rotations are used as kinematical descriptors. In addition to stress tensor the
couple stress tensor is also introduced in the theory which describes the rotational
(moment-type) interactions in the medium.

Considering initial boundary-value problems of the micropolar mechanics one
usually assumes kinematic or/and static boundary conditions expressed through
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translations and rotations or/and stress and couple stress vectors, respectively. These
conditions play a role of principal and natural boundary conditions which follow
from the stationarity of the corresponding functionals or from the principle of vir-
tual work, see, e.g., Nowacki (1986); Eringen (1999); Pietraszkiewicz and Eremeyev
(2009). Here we consider more general case of boundary conditions (BCs) when the
latter cannot be derived from any functional, in general. For example, such type of
boundary conditions one has in the case of nonconservative loading (Bolotin, 1963)
or when some relations between linear and angular velocities are prescribed on a
micropolar fluid surface (Migoun and Prokhorenko, 1984; Lukaszewicz, 1999).

The paper is organized as follows. First, in Section 7.2 we briefly recall basic
equations of the micropolar continuum undergoing finite deformations. Considering
the principle of virtual work in Section 7.3 we discuss the weak formulations of
boundary conditions. In Section 7.4 we introduce non-holonomic boundary relations
expressed as linear relations between virtual displacements and virtual rotations.
Finally, we present few examples of non-holonomic boundary conditions.

7.2 Constitutive Relations

The deformation of a micropolar medium is described through kinematically in-
dependent fields of translations and rotations. So the kinematics of a micropolar
continuum is described through the following vectorial fields:

x =x(X), (7.1)
dp =di(X), k=1...3, (7.2)

where x and X are positions vectors defined in current and reference placements,
whereas dj, are unit orthogonal vectors called directors, see (Eringen and Kafadar,
1976; Eringen, 1999; Eremeyev et al, 2013) for details. Instead of (7.2) one can use
the microrotation tensor defined as follows

Q = Dy, ® dy, (1.3)

where Dy, are directors in a reference placement, ® stands for the tensor (diadic)
product, and Einstein’s summation rule is utilized. Note that without loss of gen-
erality QQ can be defined as a proper orthogonal tensor. To this end one have to
chose the same orientation of triples Dy, and dy. In what follows we use the di-
rect (coordinate-free) tensor calculus presented in Lurie (1990); Simmonds (1994);
Eremeyev et al (2018).

For an hyperelastic material there exists a strain energy density W. We assume
that W depends on x, Q and their gradients

W =W(x,F,Q,VQ), (7.4)
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where F = Vx is the deformation gradient, V is the gradient operator defined in
the reference placement. For example, in the Cartesian coordinates X we have

0
V =ip—
00Xy’
where ij, are the Cartesian base vectors, iy * 1,;, = Ogm, 50 X = Xi, “” denotes

scalar product, and d,,,,, is the Kronecker symbol.
The principle of the material frame-indifference (Truesdell and Noll, 2004) says
that W is invariant under changes

x—0-x+a, dy— O-dg (7.5)

for any constant proper orthogonal tensor O and any constant vector a. From (7.3)
and (7.5) it follows that Q and VQ change as follows

Q—-D,®(0-dy)=Dr®d,-0"=Q-07, vQ—-VvQ-0T. (7.6
As aresult of the invariance we get

W=W(F,Q,VQ)
=W(F-0",Q-0",vQ-07), (1.7)

where the superscript 7" stands for the transpose tensors. Choosing O = Q we have
W=wWF- -Q",I,vQ-QT). (7.8)

Hereinafter I is the unit tensor. This choice is possible as O can be any proper
orthogonal tensor, so it can also coincide with QQ given in any point. On the other
hand Eq. (7.8) verifies the principle of material frame-indifference.

Note that % - Q7 is a skew tensor. So it can be represented as

2Q

- T e
oy @ k, x I (7.9)

through an axial vector kj. Here x stands for the cross product. Thus, the third-
order tensor VQ - O has the form

VQ 0T = -KxI, K=i,®ky. (7.10)

Note that in (7.10) we introduce the cross-product between two second-order ten-
sors. For diads it was introduced by Gibbs, see (Wilson, 1901, p. 281), as follows

(a®@b)x(c®d)=a®(bxc)®d

and can be easily extended for tensors of any order, see Eremeyev et al (2018).
Using Gibbsian cross operation (. . .)y introduced again by Gibbs (Wilson, 1901,
p- 275), we get the formula
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1, 0Q 7

Hereinafter for any second-order tensor T = T;,,,,i,, ® i,, the notation T« denotes
the vectorial invariant of T defined as follows Ty = T},pim X 1p,.

As a result, the strain energy density depends on two natural strain measures
E=F. QT and K, see, e.g., Pietraszkiewicz and Eremeyev (2009),

W =WE,K). (7.12)

Various examples of the micropolar constitutive equations can be found in the
literature, see, e.g., Eringen (1999); Eremeyev and Pietraszkiewicz (2012, 2016).

7.3 Principle of Virtual Work

In order to formulate the virtual work principle we consider the first variation of the

energy functional
&= / WdV,
v

where V' is the micropolar body volume. Calculating §€ we can find the consistent
form of the work A of external loads. We introduce first the variations of transla-
tions

u=0x. (7.13)

In order to introduce the variation of rotations we consider ddj. As dj are unit
vectors, that is d,,, - d,, = 0,,,, we have that 6d,,, - d,, +d,, - éd,, = 0, and

6d;-d; =0, 6dy-dy=0, dds-ds=0.

As aresult, ddg, k = 1,2, 3, can be represented through the same vector

odg =¥ x dg. (7.14)
From (7.14) it follows that
0Q=-Q x1.
Note that unlike u, vector 7 does not coincide with a variation of any vector, in
general.
Calculating YW we get
oW oW
W=— :0E+ — : 0K
oE P TR O
where “:” stands for the scalar product in the space of second-order tensors, for

example, T : E = tr (T - ET), tr is the trace operator, and
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SE =0(F-QT)=6F- QT +F-6Q7T
=Vu-Q" +F (v xI)-QT, (7.15)
K =Vy - QL. (7.16)

For the derivation here we used the relations
Q=Dy®dd, =Dy @dy x9p=-Qx19, (Qx9)" =-9pxQ,

see Eremeyev and Zubov (1994); Eremeyev et al (2013) for details. So we have

oW oW oW
W = (aE'Q) :Vu+(8K-Q) :v¢+(aE~Q) ((Fx9). (7.17)

Introducing the first Piola—Kirchhoff stress T and couple stress M tensors by the
formulae

oW oW
T=—" M=_—- 7.1
5 Q o Q (7.18)
we transform W into the compact form

W=T:Vu+M:Vep+T:(F x).

Calculating the first variation of the energy functional with the use of the inte-
gration by parts we get

58:/(5WdV
14
:—/ (V-T)-u+t (V-M+(ET-T),) 9] dV
\4
+/ (n-T-u+n-M-) ds. (7.19)
ov

Here n is the vector of outer unit normal to the boundary 0V. The form of §&
dictates the possible consistent expression of the external loadings work

A:/(f-u+m-1/))dv+/ (p-u+p-4)dsS. (7.20)
% v

In (7.20) f and ¢ are external forces given in the volume and on its boundary, respec-
tively, whereas m and p are external volumetric and surface couples (moments).
Finally, the virtual work principle takes the following form

68—5A:/ [—(V-T—f)~u—(V-M+(FT.T)X_m).¢] dv
1%
Jr

/ (m-T—¢) u+@n -M—p) ¢ dS=0. (7.21)
oV
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Another method of derivation of (7.21) is presented in Pietraszkiewicz and Ere-
meyev (2009). Considering admissible variations, from (7.21) it follows the equi-
librium equations and the corresponding natural boundary conditions.
For example, when the translations and rotations are both fixed on 9V we have
that
u=0, =0 XegV (7.22)

and the surface integral in (7.21) vanishes. So (7.22) play a role of incremental
kinematic boundary conditions in the micropolar elasticity. Obviously, there is a
straightforward correspondence between (7.22) and standard kinematic relations

x=X9, Q=Qy X €V,

where x( and Q are given vector and tensor-valued functions, Ql = Qy L
If u and % do not vanish on 9V from (7.21) we have

/ (m-T—¢)-u+n-M—p)- -9 dS=0. (7.23)
ov

Equation (7.23) constitutes a weak form of a natural boundary conditions. In par-
ticular, if u and 9 are arbitrary, Eq. (7.23) results in the natural static boundary
conditions

n-T=¢, n-M=ypu. (7.24)

In what follows we consider a case intermediate between (7.22) and (7.24). In
other word we will consider kinematic constraints that are relations between u and
9 given on OV or its part.

7.4 Non-holonomic Kinematic Boundary Conditions

In the analytical mechanics are known various incremental constraints on gener-
alized variables. These constraints can be holonomic or non-holonomic, see, e.g.,
Lurie (2001). First, we formulate an incremental boundary condition as a linear re-
lations between u and

Li-u+Ly-¢=0, (7.25)

where second-order tensors L; and L depend on x, Q, and their spatial gradients,
in general. Let us note that (7.25) does not correspond to any constrain written in
terms of x and Q, in general. So we call (7.25) non-holonomic boundary condi-
tions. Such incremental constraints are known in the analytical mechanics, see, e.g.,
Lurie (2001). Such constraints can be applied using Lagrange multiplier technique
or through the direct solving of (7.25) with respect to one on the variables. The
conservatives conditions for micropolar solids and rigid bodies including action of
external moments were discussed by Eremeyev and Zubov (1994); Zelenina and
Zubov (2000).
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For example, assuming that L is invertible from (7.25) we get that
Yp=-Ly' L -u
Substituting this into (7.23) we have
nT—-n-M-p) L' L =¢. (7.26)

Obviously, the using of the Lagrange multipliers technique gives the same result.
Indeed, introducing a Lagrange multiplier A we add to (7.23) the expression

oV

So we get
/ (m-T—¢)-u+(m-M—p)- v+ (Li-u+Ly-9)] dS=0. (7.27)
v

From (7.27) it follows that

n-T—¢+A L =0, (7.28)
n-M—p+X\- Ly =0. (7.29)

Assuming again that Lo is invertible we exclude A from (7.29)
A=—-(n-M-p) L (7.30)

Finally, substituting A into (7.28) we get (7.26).

Let us consider particular cases of (7.25). Obviously, Egs. (7.22) present the
trivial case of (7.25). Indeed, (7.22) follows from (7.25) with L; = Ly = 0. Another
case is sliding with free rotations at the boundary, n - u = 0, 9 has arbitrary values.
This case corresponds to Ly = n ® n, Ly = 0. Eq. (7.23) results in the following
static boundary conditions

m-T—¢)-A=0, n-M=up,

where A =1-n®n.

Another assumption leading to (7.25) can be motivated as follows. Let us as-
sume that the material particles behave as rolling stones in the vicinity of the body
boundary. Assuming the same relation between u and 9 as for linear and angular
velocities of a rigid body rolling on a surface we get

u=rnx7y. (7.31)

Here r plays a role of a characteristic length of a micropolar medium. For example,
it is the distance between the mass center of a material particle and its boundary.
Eq. (7.31) means that ; = I'and L, = rn x 1. Note that here Ly is a singular tensor
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whereas L; is invertible. This constraint results in the following natural boundary
condition
n-M—m-Txn=pu—r¢xn. (7.32)

Let us consider more general case of non-holonomic surface constraints. We use
the following linear relation

Li-u+Ly ¢+Ly:Vu+L,:Vop=0, XeaV. (7.33)

Here L3 and L, are third-order tensors depending on x, Q and their gradients.
Eq. (7.33) is a system of first-order partial differential equations which first integral
can be found through the characteristic technique, see, e.g., Arnold (2004). Instead
we again use the Lagrange multiplier approach. Now instead of (7.23) we have

/av[<n-T—¢>-u+<n-M—u>-¢
+)\(L1U+L2?/J+L3VU+L4V1/))} dS =0. (734)

In order to transform (7.34) using the integration by parts we represent V as a sum
of the surface gradient and normal derivative

7]
V—Vs-i-na—n,

where % is the derivative with respect to the coordinate normal to dV. Using the
surface divergence theorem (Eremeyev et al, 2018) we apply the following integra-
tion by parts formula

/Y:Vsde: u'Y-yds—/ [(Vs-Y) - y+2Hn-Y -y]dS (7.35)
A 9A A

for any fields Y and y. Here 2H = —V, - n is the mean curvature of a surface A
with the contour 0 A, and v is the normal to A such thatv - n = 0, see Fig 7.1.
With (7.35) we have

Fig. 7.1 For the surface
divergence theorem: surface
A with contour O A. The unit
vectors n, v, and 7 are defined
along OA. Here n is the unit
vector normal to A, 7 is the
unit vector tangent to 9A,
whereas v is the unit vector
lying in the tangent plane to
A and normal to O A.
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ALgVudS: /\Lg(l’lau> ds
ov

v on

ALy:VypdS= | X-Ly: ( >dS
ov ov
—/ [Vo-(A-Ly) +2Hn-(XA-Ly)] -4 dS. (7.37)

Here we assumed that 90V = .
With (7.36) and (7.37) Eq. (7.34) results in

(A®n) : Ly =0, (7.38)
(A®mn) : Ly =0, (7.39)
n-T—¢+A-L =V,-(A-L3)+2Hn- (A Ls), (7.40)
n-M-—p+X-Ly=V,-(A-Ly)+2Hn-(A-Ly). (7.41)

From (7.38) and (7.39) it follows that the curvature dependent terms in (7.40) and
(7.41) are vanishing. So we get

n-T—¢+A L =V, -(A-Ly), (7.42)
n-M-—p+A-Ly=V,-(A-Ly). (7.43)

For simplicity let us restrict ourselves by the case of L3 and L, which have the
following property

(a®n):Ly=0, (a®n):Ly=0 Va. (7.44)

Then (7.38) and (7.39) vanish identically. The properties (7.44) means that the non-
holonomic kinematic boundary constraint (7.34) takes the form

L u+Ly-¢+L3:Vsu+Ly:Vap =0, X e9V. (7.45)

As an example of (7.33) or (7.45) let us recall the boundary conditions used in
the micropolar hydrodynamics, see Migoun and Prokhorenko (1984); Lukaszewicz
(1999), where the following relations between angular w and linear v velocity was
discussed o

= EV X V.

Here « is a material parameter, 0 < o < 1. Note that the constraint w = %V X V1S
used in the theory of couple stresses (Cosserat continuum with constrained rotations
or Cosserat pseudocontinuum), see Nowacki (1986).

Assuming similar relation between virtual rotations and translations we get

= %v xu, (7.46)
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which is a particular case of (7.33). Indeed, (7.46) follows from (7.33) with
Li=0, L,=1, L3=%O[IXI, L,=0.
Here we used the following identity:
(IxI):Vu=-Vxu.

From the physical point of view (7.46) means that the micro-rotations depends on
macro-rotations on the boundary. In other words with (7.46) we model interactions
between the medium and its boundary.

Thus, (7.38) and (7.39) result in one constraint

()\®n):L3:n-()\~L3):%n~(/\-IxI):%n-(/\xI):%n-(Ix)\)
:%nx/\zo,

which means that A is normal to 9V: A = An.
Eq. (7.41) transforms into

n-M—pu+ =0,
so one easily finds A from it
A=An, A=—-(n-M-—p) n (7.47)
With (7.47) and identities
vs.(,\.Lg):%vs.(,\.xxl):gvs X A,
Vs X (An) = VA x n,

we exclude A from Eq. (7.40), which takes the following form

n-T—i—%Vs[(n-M—u)-n]xn:qb, (7.48)

which plays a role of the natural boundary condition complementary to (7.46).
Let us note that (7.48) can be also derived without using of Lagrange multiplier
technique. To this end one have to transform the variational equation

/ [(D'T—¢)'u+%(n~M—u)-(V><u) dsS =0.
v

with integration by parts.
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7.5 Conclusions

Within the nonlinear micropolar elasticity we introduced the non-holonomic kine-
matic boundary conditions. These conditions are formulated as linear relations be-
tween virtual translations and rotations. In other words we presented new incre-
mental kinematic boundary conditions. The corresponding natural static boundary
conditions are also derived. As for the derivation we used the principle of virtual
work, the discussed results extend the class of possible boundary conditions also
for inelastic micropolar materials such as considered by Altenbach and Eremeyev
(2014). Let us note that, though the boundary condition for the translation field and
its natural static counterpart is physically clear, for microrotation there is no general
agreement on the vorticity of complex materials on the boundary and on the type of
the corresponding boundary condition for the field of microrotation.

It is worth to underline that after Sedov (1965) and Germain (1973a,b) this varia-
tional approach became a powerful tool for modelling of media with microstructure,
see also discussion by dell’Isola et al (2017); Eugster and dell’Isola (2017, 2018a,b).
So in a similar way non-holonomic boundary conditions can be introduced for other
generalized media, such as strain gradient elasticity. For the virtual work and the
least action principles in strain gradient solids and fluids we refer to Auffray et al
(2015); Abali et al (2015, 2017); Eremeyev and Altenbach (2014); Eremeyev (2016)
and the reference therein. In particular, such boundary equations could be useful for
modelling of the behaviour of complex fluids in the vicinity of a free surface and/or
interface.
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