
Chapter 37

A Simple Qualitative Model for the

Pressure-induced Expansion and Wall-stress

Response of Fluid-filled Biological Channels

Tarek I. Zohdi

Abstract This work investigates the effects of a pressure increase in deformable
fluid-filled biochannels, such as arteries and veins. Simple qualitative expressions
are developed relating pressure-induced changes to the biochannel expansion, volu-
metric flow rate, and biochannel wall stress. Such relations are necessary for a rapid
analysis in potential applications such as post-traumatic stress, hemorrhagic strokes,
atherosclerotic plaque buildup, etc. The relations are based on the development of
functions that correct classical pressurized thin-tube expressions for hoop stress for
finite deformations.
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37.1 Introduction

This work studies the pressure-induced expansion and stress increase in deformable
fluid-filled biochannels, such as arteries, vein, etc. This is motivated by interest in
hypertension, hemorrhagic strokes and recently wide-spread interest in the effects
of body-blows to pressure-induced biochannel rupture, arising from contact sports,
such as boxing, football, ice-hockey, etc. Simple expressions are developed relating
the pressure-induced changes to the biochannel expansion, volumetric flow rate and
biochannel wall stress. Intended applications include post-traumatic stress, hemor-
rhagic strokes, atherosclerotic plaque buildup. The expressions developed allow for
rapid analysis of such systems, circumventing the use of computationally-intensive
numerical methods for detailed studies. The long-term objective is to couple such
models to kinematic systems developed in Zohdi (2017) to simulate a wide range
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of induced forces involving fist-to-head and fist-to-chest force calculations in order
to determine the connections to possible channel expansion and wall-stress, lead-
ing to arterial rupture 1. However, in certain circumstances, the fluid-induced shear
stress may decrease, which increases the tendency of atherosclerotic plaque buildup
(Zohdi, 2005, 2004, 2014). These scenarios are discussed further in the paper.

37.2 Classical Pressure-flow Relations

We consider a relatively simple model problem comprised of a biochannel which is
filled with a fluid (such as blood, Fig. 37.1). By following Coleman et al (2012, Sect.
13.i), we consider a steady helical flow; by taking an annular element and summing
the pressure and shear forces in the axial x-direction, we obtain
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where P is the pressure and τ is the shear stress (in physical coordinates). Under the
assumption that the pressure gradient is constant along the radius, integrating yields
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, (37.2)

where v denotes the velocity along the axial direction and μ is the (shear) viscosity
of the filling fluid. Integrating again yields

Fig. 37.1 Nomenclature for a simplified flow and stress analysis.

1 This approach employs a combined kinematic and energy analysis, by drawing on methods used
in the robotics literature (for example, see Hunt, 1978; Hartenberg and Denavit, 1964; Howell,
2001; McCarthy and Soh, 2010; McCarthy, 1990; Reuleaux, 1876; Sandor and Erdman, 1984;
Slocum, 1992; Suh and Radcliffe, 1978; Uicker Jr et al, 2003).
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v(r = 0) must be finite, thus C1 = 0, and v(r = R) = 0 yields
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The stress becomes

τ(r) = μ
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The stress at the wall becomes

τw = −τ(r = R) = −R

2
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∂x
. (37.6)

An important observation is that if the radius of the channel grows, and the pressure
gradient remains constant or grows, then the shear induced wall stress decreases.
However, the flow rate can also be computed to reveal

Q =

∫
A

v dA = −
∫
A

R2

4μ

(
∂P

∂x

)(
1−

( r

R

)2
)

rdrdθ =

= −2πR2

4μ

(
∂P

∂x

)(
r2

2
− r4

4R2

) ∣∣∣r=R

r=0
= − 1

μ

(
∂P

∂x

)
πR4

8
,

(37.7)

thus indicating that decreasing R decreases the flow rate, if the pressure gradient
does not increase appropriately. The implications of this are discussed further in the
paper.

37.3 Simple Approximations of Radial Deformation

We now consider the radial deformation of the biochannel as a function of the
pressure in the fluid (Fig. 37.1). We make the simplifying assumption that it is a
thin-walled circular tube which expands self-similarly (uniformly) to a larger cir-
cular tube. At any point along the tube, the radial expansion is simplified by pos-
tulating it to be a linear function of the length-averaged mean pressure differential,
ΔPm = Pm − Pm

o with the nominal pressure Pm
o , of the form:

R

Ro
= 1 +Kw(P

m − Pm
o ) = 1 +KwΔPm, (37.8)

where R is the deformed radius, Ro is the nominal (at ΔPm = 0) radius and Kw is
a constant that represents the compliance of radial expansion. In order to determine
the constant, consider a thin-walled cylindrical tube of mean radius Ro and thick-
ness to is pressurized internally with ΔPm. We also make the classical assumption
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that the tube is (eventually) closed at both ends. To calibrate/approximate the wall
compliance constant, we can resort to its infinitesimal deformation response and we
modify the classical thin-walled tube approximations, as explained next.

37.3.1 Estimate of Wall Stresses

We consider a tube with deformed radius R, thickness t and length L and initial
radius Ro, thickness to and length Lo. For the thin-walled tube approximations, the
stress components at point A in the wall (Fig. 37.1, far from the edges) of the tube,
as a function of the applied pressure arise from the hoop (circumferential) stresses
and the longitudinal stresses, leading to

[σ] =

⎡⎣σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦ =

⎡⎣ΔPmR/2t 0 0
0 ΔPmR/t 0
0 0 0

⎤⎦ . (37.9)

37.3.2 Determination of the Compliance Constant

In order to calibrate the constant Kw, we first assume a self-similar infinitesimal
deformation, ignoring end-effects, with stresses given by

[σ] =
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⎤⎦ =
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⎤⎦ , (37.10)

and linear elasticity, isotropic and homogeneous with Young’s modulus E and Pois-
son ratio ν. The strains in the tube at point A can be computed to be, using Hooke’s
law:
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The change in the tube radius

ΔR/Ro =
R−Ro

Ro
≈ εyy,
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by relating the perimeters:

2πR− 2πRo ≈ 2πRoεyy ⇒ R−Ro

Ro
≈ εyy. (37.12)

Thus, one may immediately write
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Thus, an estimate of the compliance to radial expansion is

Kw =
Ro

toE
(1− ν

2
) (37.14)

We assume that the wall compliance remains constant over the ΔPm regimes of
interest. At point A (the problem is radially symmetric), as a function of ΔPm, the
change in thickness is Δt/to ≈ εzz , which leads to

t− to
to

= −ΔPm

E

3νRo

2to
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E
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2to
). (37.15)

37.3.3 Stress Correction Factors

For the finite deformation case, we approximate the stresses by
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and

σyy =
ΔPmR

t
≈ ΔPmRo

to

⎡⎢⎢⎣ (1 +
ΔPm

E

Ro

to
(1− ν

2
))

(1− ΔPm

E

3νRo

2to
)

⎤⎥⎥⎦ =
ΔPmRo

to
φ. (37.17)



558 Tarek I. Zohdi

37.3.4 Corrected Material Failure Criteria

There are obviously many possible models for material failure. The most appropri-
ate for a tubelike failure (longitudinal rupture) would likely be a hoop-stress failure
criteria based on

σyy =
ΔPmR

t
≤ σ∗

H (37.18)

so that
ΔPmRo

to
≤ σ∗

H

φ
, (37.19)

where the correction factor φ by Eq. (37.16) is a function of ΔPm. In order to isolate
ΔPm, we write inequality (37.19) by setting

A(ΔPm)2 +BΔPm + C = 0, (37.20)

where

• A = 1,

• B =
to

Roc2

(Ro

to
+ c1σ
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Consequently, we have
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(37.21)

which on taking the positive root leads to
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(37.22)

where γ is given by
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(37.23)

We may then write
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which is a “corrected” failure criteria. We have a number of observations:

• Observation #1: In special cases, such as ν = 0 (no transverse contraction),

γ = −1 +

√(
1 +

4σ∗
H

E

)
, (37.25)

thus
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One can linearize γ around σ∗
H = 0, yielding

γ = −1 +

√(
1 +

4σ∗
H

E

)
≈ 2

E
σ∗
H , (37.27)

thus recovering
ΔPmRo

to
≤ σ∗

H , (37.28)

for small values of σ∗
H .

• Observation #2: The change in the domain length given by ΔL/Lo ≈ εxx
tends to zero as the material becomes volume preserving, ν → 1/2, thus L =
L0. In this isochoric or incompressible case2 of ν = 1

2 (incompressible)
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• Observation #3: Although for soft tissue, a criterion based on von Mises
equivalent stress would not be most appropriate, an estimate for the maximum
allowable pressure, based on the von Mises (distortion energy) criterion is

3||σ′||2 = (σxx−σyy)
2 + (σxx−σzz)

2 + (σyy−σzz)
2 + 6(σ2

xy+σ2
xz+σ2

yz)

= (ΔPmR/2t)2 + (ΔPmR/2t)2 + (ΔPmR/t)2 + 6τ2w

≤ 2σ2
o , (37.30)

2 Of course, an incompressible soft matter would be modeled by a hyperelastic material model
stemming from energy description, herein we explain the physical significance by observing a
volume preserving deformation.
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where, σo is a material constant (failure stress) determined from a standard
uniaxial failure tension test. There are, of course, numerous other criteria for
failure.

37.4 Subsequent Flow Changes

Due the change in the radius, the fluid flow changes according to

σxz = τw = −R

2

∂P

∂x
= −Ro

2

(
1 +

ΔPm

E

Ro

to

(
1− ν

2

)
︸ ︷︷ ︸

λ

)
∂P

∂x
, (37.31)

where λ can be interpreted as a fluid-flow correction factor.

37.5 Closing Remarks

This work developed simple expressions between pressure change and mechanical
response of the soft tissue filled with a fluid. The main results of the paper were,
under some simplifying assumptions (self-similar expansion) at finite deformations:

• An expression relating the change in pressure

– to the expansion of the biochannel radius,
– to the reduction of the biochannel wall thickness,
– to the wall stress of the biochannel,

• A flow correction relation for a biochannel with changing radius.

These relations are based on the development of functions that correct classical pres-
surized thin-tube expressions (φ) for hoop stress for finite deformations. Possible
applications are to stroke and post-traumatic stress and, in particular, hemorrhagic
strokes and alimentary rupture. The expressions developed allow for rapid analy-
sis of such systems, reserving the direct use of computationally-intensive numerical
methods for detailed studies as for example in Abali (2017). In closing, we make a
few more observations with respect to flow changes and fluid-induced shear stresses,
which were alluded to earlier in the paper. We note that v(r) is a maximum where

∂v

∂r
= 0 =

r

2μ

∂P

∂x
, (37.32)

which is at r = 0. Thus,

vmax = v(r = 0) = −R2

4μ

(
∂P
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)
⇒ v(r) = vmax

(
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( r

R

)2
)

(37.33)
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Relating this to the flow rate yields:

Q =

∫
A

v dA =
πvmaxR

2

2
⇒ vmax =

2Q

πR2
, (37.34)

and we obtain

v(r) =
2Q

πR2

(
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( r

R

)2
)

(37.35)

The stress becomes

τ(r) = μ
∂v(r)

∂r
= −4μQr

πR4
. (37.36)

The stress at the wall becomes

τw = −τ(r = R) =
2μvmax

R
=

4μQ

πR3
. (37.37)

Explicitly, the shear stress becomes:
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)3 .
(37.38)

Thus, unless Q increases appropriately, the fluid-induced shear stress at the wall
will decrease. For example, consider an increase in volumetric flow rate due to the
change in lumen (cavity of the artery) diameter of the following form

Q(ΔP ) = πR2vm, (37.39)

where R = R(ΔP ) and vm (the mean velocity) is constant, which implies from
Equation 37.7 that

vm = − 1

μ

∂P

∂x

R2

8
, (37.40)

which leads to

τw =
4μQ

πR3
=

4μπR2vm

πR3
=

4μvm

R
. (37.41)

Thus, the wall shear stress will decrease. Low wall shear stress is associated with
the growth of plaque buildup (Zohdi, 2005, 2004, 2014; Zohdi et al, 2004), due to
the accumulation of material in diseased arteries. This is often the initial stage of
arterial occlusive growth processes (Ambrosi et al, 2011; Göktepe et al, 2010; Men-
zel and Kuhl, 2012; Kuhl et al, 2007; Zöllner et al, 2012). For surveys of plaque-
related work, see Chyu and Shah (2001); Davies et al (1993); Corti et al (2002);
Kaazempur-Mofrad et al (2005, 2004, 2003); Libby (2001); Libby et al (2001,
2002); Libby and Aikawa (2002); Loree et al (1992); Richardson et al (1989); Shah
(1997); van der Wal and Becker (1999). Thus, in addition to coronary diseases,
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the accumulation of material subsequently reduces the cross-sectional area of the
biochannel, which can lead to dementia-like symptoms, potentially due to the build
up of calcium and fatty deposits on biochannel walls (Wenk et al, 2010; Klepach
et al, 2012; Lee et al, 2013; Weinberg et al, 2009). This is under current investiga-
tion by the author.
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