
Chapter 36

Nonclassical Bending Behavior of Thin Strips of

Photochromic Liquid Crystal Elastomers Under

Light Illuminations

Yang Zhang & Yongzhong Huo

Abstract Photochromic liquid crystal elastomers (LCEs) bend when irradiated by
light of suitable wavelength. However, due to the rotation of the liquid crystal direc-
tor, rather large shear strains are inevitably produced and some basic assumptions of
the classical simple beam theory of Euler-Bernoulli fail to be satisfied. In this work,
we use the first-order shear deformation beam theory of Timoshenko to model the
unusual quasi-soft bending behavior of soft LCEs under light illuminations. The
results show that in addition to the large shear strain, the effect of initial effective
length ratio makes a great difference to the deflections due to the rotation of di-
rector. This represents the first direct verification that Euler-Bernoulli beam theory
fails to deal with such nonclassical bending of soft LCEs, while Timoshenko beam
model can work sufficiently well, which also gives a possible method to measure
the effective opto bending moment experimentally.
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36.1 Introduction

Photochromic LCEs doped with rod-like groups, such as azobenzenes, which un-
dergo trans-cis isomerization on absorption of UV photons, are found to contract
when irradiated at suitable wavelengths since the local order is disrupted by the
kinked dopant groups (Warner and Terentjev, 2007; Finkelmann et al, 2001). Since
light is absorbed by the material (Corbett and Warner, 2006, 2008), the reduction in
intensity through the thickness of a cantilever gives a gradient of response and then
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non-uniform strains lead to the bending of a cantilever of the active material as in
Ikeda et al (2003); Camacholopez et al (2004); Yu et al (2003); Jin et al (2006).

The light induced bending behavior of LCEs with a beam model based on simple
bending assumptions has been studied by several authors (Jin et al, 2006; Warner
and Mahadevan, 2004; van Oosten et al, 2007; Jin et al, 2010a,b, 2011; Dunn, 2007;
Dunn and Maute, 2009; He, 2007; Modes et al, 2011; Warner et al, 2010; Warner
and Corbett, 2010; Zeng et al, 2010). Besides, due to the unusual soft or semi-soft
behavior of LCEs, the rotation of the LC director can have a strong effect on the
mechanical response of the materials as shown in Warner and Terentjev (2007); Jin
et al (2010b, 2011). Lin et al (2012) proposed the constitutive equation including
the effect of the photo isomerization, and found that the opto-mechanical behaviors
are also affected by the soft behavior . Large shear strains occur in the quasi-soft
bending due to the anisotropy and its very special mechanical properties (soft elas-
ticity) of LCEs. However, on this occasion, straight lines normal to the mid-plane of
LCE beams before deformation won’t remain normal to the mid-plane after defor-
mation, which finally leads the classical Euler-Bernoulli beam assumption to fail as
discussed in Lin et al (2012).

The first-order shear deformation beam theory of Timoshenko allows for the ef-
fect of transverse shear deformation which is neglected in the Euler-Bernoulli beam
theory. In the first-order shear deformation theory, the transverse shear strain is as-
sumed to be constant with respect to the thickness coordinate, so shear correction
factors are introduced to correct for the discrepancy between the actual transverse
shear force distributions and those computed using the relations of the TBT in Tim-
oshenko (1921); Reddy et al (1997).

In this paper, the Timoshenko beam model for quasi-soft bending of pho-
tochromic LCEs under light illuminations is presented. Based on the assumption
of the form of the displacement and the stress field, the governing equations and
the general solutions of rotations and deflections of beams are obtained. The finite
element results are compare with the theoretical results of TBT model for various
external loads. A numerical method is used to evaluate shear correction factor intro-
duced in TBT.

36.2 TBT Model for Optical-mechanical Bending of Beam

Shaped Specimens

36.2.1 Optical-mechanical Constitutive Relations

As shown in Fig. 36.1, we consider a uniform LCE beam with length L, thick-
ness h and width w. The director of the sample is parallel with x direction, i.e.
n0 = (1, 0, 0)

T and it is illuminated upward by unpolarized light along the y di-
rection from the bottom. Here a linearized opto-mechanical constitutive relation of
soft LCEs for infinitesimal deformations obtained by one of the authors, see Lin
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et al (2012), is applied to study the light induced bending behavior of photochromic
LCEs. As n0 = (1, 0, 0)

T, the components of Cauchy stress take the form

σxx =
E

1 + ν
(εxx − εrxx)− p,
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E′

1 + ν′

[(
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)
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(36.1)

where εij are the Cauchy strains, ωij are the antisymmetric parts of the displace-
ment gradient, εrij are the light-induced strains and p is the lagrangian multiplier
introduced due to the incompressibility. The elastic constants and the light-induced
strains are given by
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(36.2)

where μ is the effective shear moduli, r and r0 denote the anisotropy of the shape
distribution of nematic network in the current configuration and in the reference
configuration, respectively. Under light illuminations, the anisotropy denoted by r

Fig. 36.1 The schematic of the beam shaped specimen under upward unpolarized light.
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decreases due to the photo isomerization and decays with the penetration depth of
light. Here we assume that the change is very small, that is, (r0 − r)/r0 � 1. Thus
β is less than but approximately equal to 1. The parameters used for calculations
in the following part are the same as those in Lin et al (2012). Note that for this
unusual constitutive relation in Eq. (36.1), the first terms of three normal stresses
represent the deviatoric part of stress tensor and p is the spherical part, which can be
determined by using the incompressibility constraint. More details on the derivation
of Eq. (36.1) has been given in Lin et al (2012).

If there is no light illumination, which means r = r0, the light induced strain εrxx
is zero and the soft material behaves as an isotropic and incompressible Hookean
material, except for its vanished in-plane shear moduli G′, which is often referred
as the soft behavior as predicted by the neo-classical elastic energy. However, the
material behavior is rather different under light illumination. Due to β �= 1, two
elastic moduli and two Poisson’s ratio arise in constitutive relation of Eq. (36.1),
and single domain LCEs become transverse isotropy in the plane perpendicular to
the director. In addition, the light induced change of the effective length ratio r0 − r
will produce nonzero shear moduli G′ and light induced strain εr.

Besides, the Young’s moduli and light induced strain depend on the effective
length ratio , which are affected by the light illumination conditions (incident light
intensity i0 and light decay distance d). Since light is absorbed by the material, the
reduction in light intensity through the thickness of a cantilever gives a gradient of
response and non-uniform strains lead to the bending of a cantilever of the active
material. Therefore, the LCE material under light illumination becomes a functional
gradient material. Moreover, the light induced decrease of the effective length ratio
r implies the light induced anisotropy.

As observed in experiments and discussed in several theoretical works, the elastic
moduli of single domain LCEs are anisotropic and depend strongly on the temper-
ature. However, it is necessary to take into consideration that the stress induces a
biaxiality of the liquid crystal molecules in order to obtain this anisotropy. In the
present paper, the biaxiality is neglected for simplicity. Thus, the elastic moduli are
taken as isotropic under mechanical loading and the anisotropy is induced by the
light illumination.

36.2.2 Timoshenko Beam Model

Beam theories are developed by assuming the form of the displacement or stress
field as a linear combination of unknown functions and the thickness coordinate. In
Timoshenko beam theory (TBT), for stress components, we have basic assumption

σyy = σzz = 0. (36.3)

Combining (36.3) and the incompressibility tr(ε) = 0, we get
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p =
E′

2 (1 + ν′)
εyy =
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2 (1 + ν′)
εzz = − E′

(1 + ν′)
εxx. (36.4)

Hence, we can obtain the following constitutive equations for the bending of LCE
beams

σxx = E (εxx − εrxx) , σxy = 2G′
(
εxy − r0 − 1

r0 + 1
ωxy

)
. (36.5)

The Timoshenko beam theory (TBT) is based on the in-plane displacement field
at z = 0

u (x, y) = u0 (x) + (y − ȳ)φ (x) , v (x, y) = v0 (x) + ṽ (y) , (36.6)

where u0 (x) and v0 (x) is the displacements of the point (x, ȳ) on plane z = 0,
φ (x) denotes the rotation of straight lines normal to the mid-plane about z axes
and ṽ (y) denotes the difference of displacements between the two points (x, y) and
(x, ȳ). In view of the displacement field given in Eq. (36.6), the in-plane strains and
rotation components are given by
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+ φ′ (x) (y − ȳ) = ε0xx + φ′ (x) (y − ȳ) ,
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(36.7)

Insert expressions of Eq. (36.7) into constitutive equations Eq. (36.5) and we can
express the bending moment Mxx and shear force Qx in terms of v0 (x) and φ (x)
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and Ks is the shear correction factor that has been introduced to compensate for
the error caused by assuming a constant shear stress distribution through the beam
depth. The shear correction factor depends not only on the material and geometric
parameters but also on the loading and boundary conditions. Here,

ȳ =

∫∫
A
EydA∫∫

A
EdA

≈ h

2
. (36.10)

From Eq. (36.8), we can write the relations of generalized displacement field and
externally applied loads as

φ′ (x) =
Mxx −Meff

D
, v′0 (x) = − 1

r0
φ (x) +

Qx

r0KsAxy
. (36.11)

Then institute Eq. (36.11) into the balance equations of moments and forces

dMxx

dx
= Qx, −dQx

dx
= q, (36.12)

we can get the governing equation of deflections

v′′0 (x) =
Meff −Mxx

r0D
+

q

KsAxyr0
. (36.13)

Note that without considering the last term in Eq. (36.13), the solutions of Eq. (36.13)
are reduced to Euler-Bernoulli beam theory when r0 = 1. In other words, there exist
large discrepancies between the two theories EBT and TBT in the bending of soft
LCE beams.

Furthermore, the solutions for the Timoshenko beam under the light actuations
and external distributing loads q may be readily obtained by integrating the fourth-
order differential equation and using two boundary conditions from at each end
of the beam to evaluate the integration constants. By integrating Eqs. (36.12) and
(36.11) with respect to x field, we can express general solutions of the bending
moments, shear forces, rotations and deflections of beams as
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(36.14)
where v00 , φ0, ML

xx, QL
x are constants of integration. These constants are to be

determined by using the boundary conditions of the particular beam.
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For free (F), simply supported (S) and clamped (C) ends, boundary conditions
are given by

F : Qx = Mxx = 0, S : v0 = Mxx = 0, C : φ = v0 = 0. (36.15)

36.3 Examples of Cantilever Beams and Numerical Results

The most important class of problems involves cantilever beams, which are usually
tested experimentally in mechanics. Here, we take cantilever beams for examples
and use three simple cases to demonstrate our theoretical model. The first case with
q = 0 shows only the effect of light illuminations, and the other two with a point
load q = fδ (x− L) and uniformly distributed loads q = q0 represent the coupled
effect of optical and mechanical loads.

In all the three cases, the cantilever beams is clamped at x = 0 and is free at x =
L. Thus according to Eqs. (36.15), the boundary conditions are set by v00 = φ0 = 0
and ML

xx = QL
x = 0. Substitue the conditions into Eqs. (36.14) and we obtain the

solutions to cantilever beams as
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(36.16)

For brevity, we assume that beams have the uniform anisotropy at the initial state,
i.e. r0 is a constant, and we only consider uniform cantilever beams under uniform
light illuminations, so D and Meff are independent of x coordinate with the form
D = D0 and Meff = M0

eff . Besides, notice that the shear correction factor should
be taken into account if nonzero shear forces are present.

Besides, the finite element method proposed by Lin et al (2012) is used to model
the deformation of the specimen under light illuminations and finite element re-
sults are used to compare with the theoretical results of TBT model. To investigate
whether straight lines normal to the mid-plane of LCE beams will remain straight
after deformation or not, the displacements in the axial direction vs. y coordinates
are plotted in Fig. 36.2. It shows the displacement u changes linearly with the y
coordinate and the plane cross-section assumption is still valid.

36.3.1 First Case: no Load

In this case, beams are only driven by optical loads, i.e. q = Qx = Mxx = 0 and
thus solutions read

φ (x) = −M0
eff

D0
x, v0 =

M0
eff

2r0D0
x2. (36.17)
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Fig. 36.2 Displacements uof cross section along y axis for three cases. (r0 = 3, i0 = 2, d/h = 1)

Obviously, the maximum deflection occurs at x = L

vmax
0 =

M0
eff

2r0D0
L2. (36.18)

In an experiment, we can obtain the effective optical bending moment through mea-
suring the maximum deflection of cantilever beams.

The following expression can well describe the relation of the solution of EBT
and the solution of TBT in this case

vL0 =
1

r0
vE0 , (36.19)

where the superscript “T” and the superscript “E” respectively denotes the quantity
in TBT and the quantity in EBT. It’s obvious that the solutions of TBT is reduced
to Euler-Bernoulli beam solutions if r0 = 1. For anisotropy LCEs, it holds r0 > 1,
which implies that the effect of r0 finally leads the classical EBT to fail. Figures
36.3 and 36.4 indicate that theoretical results of TBT model agree well with the
finite element results for different initial anisotropy r0 and different dimensionless
incident light intensites i0.
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Fig. 36.3 (a) Rotation curves and (b) deflection curves for different r0. (i0 = 2, d/h = 1)
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Fig. 36.4 Rotation curves and deflection curves for different i0. (i0 = 3, d/h = 1)
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36.3.2 Second Case: a Point Load

In this case, we consider a cantilever beam with a concentrated load f applied at the
free end. The solutions are given by

φ (x) = −M0
eff

D0
x− f

D0
x
(
L− x

2

)
,

v0 (x) =
M0

eff

2r0D0
x2 +

f

2r0D0
x2

(
L− x

3

)
+

f

r0KsAxy
x.

(36.20)

Notice that shear correction factor Ks is introduced in the expression of deflections
due to nonzero shear forces, which however, does not arise in the expression of
rotations. Figure 36.5 indicates that the solutions of rotations in TBT model agree
well with the finite element results in this case.

Fig. 36.5 Rotation curves for different concentrated loads. (r0 = 3, i0 = 2, d/h = 1)

Here, a numerical method is used to evaluate the shear correction factor. For
beams with different length, we can obtain the forces f , which satisfy v0 (L) = 0.
From the expression of Eq. (36.20), we have the following expression if v0 (L) = 0
holds

−M0
eff

2fL︸ ︷︷ ︸
Y

=
1

3
+

1

Ks

(
D0

Axyh2

)(
h

L

)2

︸ ︷︷ ︸
X

. (36.21)

So in FEM, we can find out a unique force f that can make the free end satisfy
v0 (L) = 0 and the obtained points for different length of beams (X,Y ) are plotted
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in Figure 36.6. It shows that the shear correction factor is independent of length of

Fig. 36.6 Points of FE resutls are fitted by a line using the linear least square method.
(r0 = 3, i0 = 2, d/h = 1)

beams and loads. And the points are fitted with the line y = 0.328 + 1.177x by
linear least square method, which implies that Ks = 1.177−1 = 0.850. Figure 36.7
indicates that the theoretical results of deflections fit well with the finite element
results in this case when Ks = 0.850.

36.3.3 Third Case: Uniformly Distributed Load

The solutions of cantilever beams with uniformly distributed load q = q0 are given
by

φ (x) =− M0
eff

D0
x+

q0
2D0

(
−L2x+ Lx2 − x3

3

)
,

v0 (x) =
M0

eff

2r0D0
x2 +

q0
2r0D0

x2

(
1

2
L2 − 1

3
Lx+

1

12
x2

)
+

q0
r0KsAxy

x
(
L− x

2

)
.

(36.22)

Figure 36.8 shows that numerical comparisons of both rotations and deflections be-
tween the theory and finite element results show good agreement when the shear
correction factor Ks = 0.850 has been taken into consideration.
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Fig. 36.7 Deflection curves for different concentrated loads. (r0 = 3, i0 = 2, d/h = 1)

36.4 Discussion About Shear Correction Factor

One of the main difficulties in using Timoshenko beam theory is the proper selection
of the shear correction factor, since in TBT the shear correction factor is introduced
to allow for the fact that the shear stress is not uniform over the cross section. In
history, many authors have published definitions of the shear correction factor and
have proposed various methods to calculate it. Most of these approaches fall into one
of two categories. The first approach is to use the shear correction factor to match
the frequencies of vibration of various beam constructions with exact solutions to
the theory of elasticity. The second approach is to use the shear correction factor to
account for the difference between the average shear or shear strain and the actual
shear or shear strain using exact solutions to the theory of elasticity. At the present
stage of theories and experiments, Timoshenko’s expression in Timoshenko (1921)
and Cowper’s one in Cowper (1966) will be the most probable ones. Although not
explicitly written in Timoshenko (1921), the shear correction factor obtained in the
first manner for a rectangular beam is

Ks =
(5 + 5ν)

(6 + 5ν)
, (36.23)

where ν is the Poisson’s ratio.
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Fig. 36.8 (a) Rotation and (b) deflection curves for various uniformly distributed loads.
(r0 = 3, i0 = 2, d/h = 1)
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Cowper (1966) calculated the shear correction factor using an approach from the
second category described above. For a rectangular isotropic homogeneous beam,
Cowper found the following shear correction factor:

Ks =
10 (1 + ν)

12 + 11ν
. (36.24)

With regard to our incompressible materials of LCEs, the Poisson’s ratio is close
to 0.5, as indicated in Eq. (36.2). Hence, according to the Timoshenko’s expression
and Cowper’s, the shear correction factor for the rectangle is respectively 0.882 and
0.857. Our numerical results indicate that of the shear correction factor is about
0.850 very close to Cowper’s formula Eq. (36.24).

36.5 Conclusions

Photochromic LCE is a currently developed smart material, which can contract and
bend under suitable light illuminations. However, due to the unusual soft or semi-
soft behavior of LCEs, the rotation of the LC director can have strong effect on
the mechanical response of the materials. Large shear strains occur in the quasi-
soft bending due to its very special mechanical properties (soft elasticity) of LCEs,
which finally lead the classical Euler-Bernoulli beam assumption to a failure even
for slender strips.

In this paper, the first-order shear deformation beam theory model of Timoshenko
for quasi-soft bending of photochromic LCEs under light illuminations has been
presented, which allows for the effect of transverse shear deformation. General so-
lutions of the bending moments, shear forces, rotation and deflections of beams
subjected to optical and mechanical loads are given, and the solutions show much
difference between EBT and TBT. The effect of r0 arises due to the free rotation of
director of LCEs.

In TBT, the shear correction factor has to been taken into consideration due to
the assumption of a constant shear stress distribution through the beam depth. The
shear correction factor evaluated in the numerical method is 0.850, which shows
good agreement with the value predicted by Cowper’s formula. Numerical results
indicate that TBT model we presented fits very well with finite element results for
different geometric parameters and different loading and boundary conditions of
beams.
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