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On Brake Pad Shim Characterization:

a Homogenization Approach and Finite Element

Analysis
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Abstract Brake squeal is a typical problem of “Noise, Vibration, Harshness” (NVH)
phenomena in the automotive world leading to potential customer complaints. This
high frequency noise in the audible frequency range of approximately 1 kHz to
15 kHz is induced by self excitation resulting from the frictional contact between
brake pad and disk. A typical industrial countermeasure to address this problem is
the mounting of thin composite structures consisting of elastomer and steel layers,
so called shims, on the pad backplates. They are applied to increase the damping
and to influence the vibration shapes.
The computational modeling of shims using Finite Elements is still a complex task
and shows significant potential for improvement. To avoid problems resulting from
element sizes of the partially very thin layers a classical homogenization theory from
literature is considered. This homogenization approach maps shim properties in an
improved manner which contributes to substantially smaller model sizes as well
as less simulation effort and time. Therefore, analytical approaches for constrained
layer damping structures are introduced and corresponding theoretical results are
presented. To validate these theoretical results, experimental investigations are car-
ried out on shims bonded to structures, especially steel plates and brake pads.
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30.1 Introduction

Numerous technical applications especially in lightweight structures nowadays re-
quire high stiffness characteristics with simultaneously high damping ratios in order
to avoid undesired vibrations. A typical example for fulfilling such requirements is
the application of composites. These structures meet the requirements by exhibit-
ing good damping behavior without loosing stiffness (Marcelin et al, 1995). The
application of such composites called shims on brake pad backplates is a typical
countermeasure against undesired vibration phenomena like brake squeal. Brake
squeal is a high frequency noise in the audible frequency range of approximately
1 kHz to 15 kHz based on self-excited vibrations caused by friction forces between
pad and disk (Kinkaid et al, 2003; Cantoni et al, 2009). Shims are thin layer bonded
structures consisting of viscoelastic elastomer layers and steel plates with high stiff-
ness. Figure 30.1 shows the general set-up of a brake pad with shim consisting of
the friction material being in contact with the disk during the braking process, the
backplate and the shim, which is coupled to the backplate by an adhesive layer.
Designing and selecting appropriate shims is still a major task to solve. There are
plenty of experimental investigations required to find the right shim matching the
individual noise problems of the respective brake. This includes the experimental
investigation of the components as well as dynamometer tests of the entire brake
and tests in the vehicle.

A standard industrial tool in the investigation of brake squeal is the so-called
complex eigenvalue analysis (CEA). The CEA is based on large Finite Element
models of the entire brake with disk, pads, caliper, carrier and the suspension. Equi-
librium positions resulting from the applied brake torque are calculated by a static
analysis and the equations of motion are linearized with respect to them (Gräbner
et al, 2016). Gyroscopic terms and, due to the friction forces between disk and pads
circulatoric terms, i.e. self excitation, is present. This may result in positive real
parts of the eigenvalues, i.e. instability of the aforementioned equilibrium solution.
Therefore the overall goal of CEA is to characterize the stability behavior of equi-
librium solutions of brake systems as an indicator for possible onset of squeal. The
accurate calculation of the eigenvalues anyway is a challenging problem (Gräbner
et al, 2016) for that large gyroscopic-circulatory systems. The squealing itself is a
limit cycle oscillation requiring to consider nonlinearities (Gräbner et al, 2014) and
corresponding bifurcation behavior.

Fig. 30.1 Brake pad compo-
sition (Schmid, 2018a)
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Damping is well known to influence and to be able to suppress self-excited vibra-
tions, see e.g. (Gräbner et al, 2015) both in the linear as well as in the nonlinear case.
On the other hand, damping is hard to identify and therefore in many applications
only estimated or even neglected. Neglected or underestimated damping in general
leads to overestimated eigenvalues with positive real parts and corresponding po-
tential squeal frequencies. Therefore, modeling of damping, at least for components
introduced by intention in order to damp vibrations like the shims, is a key issue for
improved modeling of the system’s behavior. Hereby, mapping the damping capac-
ity of the shim’s viscoelastic layer is an essential point. Compared to the overall high
amount of literature on brake squeal including several review papers like the already
mentioned in Kinkaid et al (2003) and Cantoni et al (2009) publications on model-
ing of shims are somewhat rare. Examples for FE investigations including shims
are in Festjens et al (2012) and Kang (2012). Esgandari and Olatunbosun (2016)
implemented Rayleigh damping in elastomer layers of shims, steel layers are still
undamped. Rayleigh parameter are used based on previous investigations from Flint
et al (2004). There are also some technical standards on shims like in SAE-J3001
(2011).

The problem in including the shims in FE-models are the thin layers in shims,
which in general may have thicknesses in the range of 0.1mm. Using element sizes
in the same range with, in the FE sense "healthy", ratios of element dimensions
would lead to element numbers which cannot be handled, if complete models of the
entire brake are considered.

Therefore, the basic idea of the work described in this paper is, to homogenize
the shim layered structure using classical theories and approaches. This is done in
order to enable larger element sizes allowing for acceptable numbers of degrees of
freedom, which can be handled in models of the entire brake. In this contribution
shims with two thin elastomer layers enclosed by a metal core are examined in
detail.

There is a large number of publications on the dynamics of composites com-
bining metal and elastomer layers. One of the first theories has been published in
the middle of the last century by Oberst describing unconstrained damping treat-
ments (Oberst and Frankenfeld, 1952; Oberst et al, 1954). The purpose was to ho-
mogenize structures consisting of layers with different characteristics. As a result a
single layer with equivalent mechanical properties describing stiffness and damping
ratios is obtained. Characterizing system properties analytically Kerwin extended
Oberst’s theory considering an additional stiff top layer Kerwin Jr (1959) which in
the following was called constrained layer. The energy dissipation for constrained
layer compounds is mainly induced by shearing of the viscoelastic core material and
exceeds the extensional damping of unconstrained damping treatments Ross et al
(1959). The developed theory for free vibrations was introduced for fully coverage
of the damping and constraining layer considering pinned-pinned boundary condi-
tions. DiTaranto also addressed this problem and developed a sixth order equation
for longitudinal displacement. He formulates the loss factor for coverage of the en-
tire beam for any boundary condition (DiTaranto, 1965). The transverse displace-
ment of beams with damping treatments has been published by Mead and Markuš
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for arbitrary boundary conditions and has been extended for forced vibrations (Mead
and Markuš, 1969) and (Mead and Markuš, 1970). Using an energy approach an
exact solution for the sixth order equation as well as numerical approaches were
described by Rao (Rao, 1978).

The publications listed so far require full coverage of all layers. In general brake
pads used in vehicles show only partial coverage of shims bonded to back plates. The
more general set-up of only partial coverage has been investigated by Nokes describ-
ing damping of beams for any symmetrical boundary conditions requiring a centered
constrained layer on the structure (Nokes and Nelson, 1968). Markuš (1974) dealed
with the damping mechanism of beams and developed a theory for partially covered
constrained layers predicting damping for any boundary conditions. Damping mate-
rial calculation formulas of sandwich beams with partially covering damping layers
have been presented by Sylwan achieving equal damping properties compared to
full coverage (Sylwan, 1978). Moreover two approximate solutions and one exact
method for the damping description of partially covered sandwich beams have been
published by Lall et al (1988). Flint presents essential publications in his PhD thesis
considering full coverage (Flint, 2002). An overview and classification of relevant
surface damping treatments can be found in the books from Nashif et al (1985) and
Sun and Lu (1995).

The aim of this contribution is to carry out Finite Element simulations of
homogenized shims with a view to less experimental effort and better prediction
quality. With this stiffness characteristics of shims and in particular loss factors of
shims bonded to rectangular steel plates are determined analytically and applied to
an Abaqus CAE model. The loss factors for full coverage are compared consider-
ing torsional and flexural mode shapes. The damping behavior of the viscoelastic
core is implemented in a Finite Element model. As a further step towards the im-
proved shim modeling, brake pads are examined numerically. Furthermore, concrete
recommendations on modeling and meshing shims are introduced. Finally experi-
mental investigations are carried out to validate damping and stiffness characteristics
using methods as described in SAE guideline J3001 (SAE-J3001, 2011).

30.2 Modeling of Shims

The dynamical characterization of shims includes modal parameters like natural
frequencies, mode shapes and damping ratios. The focus is to map torsional and
bending modes analytically. Therefore, mechanical models focusing on stiffness and
damping behavior of shims are examined. Following most set-ups in literature and
in order to prevent influence resulting from the support, which may affect natural
frequencies and damping characteristics, a free-free support is utilized for model-
ing and experimental investigations (Ewins, 1984) in the following. These boundary
conditions will of course change, if the resulting pad and shim model will be inte-
grated into the model of the entire brake.
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30.2.1 Continuous Mechanical Systems

For introduction classical models for torsional vibrations of bars as well as Euler-
Bernoulli beams with a rectangular cross section are reconsidered in the following,
where the corresponding formulas can be taken from textbooks, e.g. Hagedorn and
DasGupta (2007). A free-free torsional bar is shown in Fig. 30.2, where G is the
shear modulus, " the mass density as well as IP and IT are the polar and torsional
moments of inertia respectively. Describing the geometrical dimensions of the bar,
the length l, the width b and height h are introduced. The following partial differen-
tial equation describes the torsional free vibrations ϑ(x, t) of the bar with uniform
cross section by

∂2 ϑ

∂ t2
− c2

∂2 ϑ

∂ x2
= 0, (30.1)

where c is the wave propagation speed for the torsional vibrations with

c2 =
GIT

" IP
. (30.2)

Taking the boundary conditions of the system ϑ
′
(0, t) = 0 and ϑ

′
(l, t) = 0 into

account, the natural frequencies ftn can be determined as

ftn =
n c

2 l
∀n ∈ N. (30.3)

In general for isotropic materials, G can be expressed by the respective Young’s
modulus E and the Poisson’s ratio ν

G =
E

2 (1 + ν)
. (30.4)

A rectangular Euler-Bernoulli beam executing lateral vibrations is sketched in
Fig. 30.3. The corresponding partial differential equation describing lateral free vi-
brations w(x, t) of an Euler-Bernoulli beam with uniform cross section is given by

∂2 w

∂ t2
+

EIy

"A

∂4 w

∂ x4
= 0. (30.5)

The equation includes the flexural rigidity with the geometrical moment of inertia Iy

and the area A. With the free-free boundary conditions w
′′
(0, t) = 0, w

′′
(l, t) = 0,

w
′′′
(0, t) = 0 and w

′′′
(l, t) = 0 the natural frequencies can be determined in the

Fig. 30.2 Rectangular free-
free bar
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Fig. 30.3 Free-free Euler-
Bernoulli beam
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following form considering correction terms en Hagedorn and DasGupta (2007)

fbn =
1

2π

(
2n+ 1

2
π+ en

)2
1

l2

√
E Iy

"A
∀n ∈ N (30.6)

with e1 = 0.01766 and e2 = −0.00078. Results determined using this approach are
denoted as “analytical homogenized” (analytical hom) in Sect. 30.5.

30.2.2 Constrained Layer Damping Theory

In contrast to free layer damping, where the extension of the composite caused by
length change due to bending is responsible for the damping behavior, constrained
layer damping treatments, in the following denoted as CLD approach, are more
complicated to describe. Shearing of the viscoelastic layer, which is the main mecha-
nism of energy dissipation, is induced due to the deflection of both elastic layers.
The investigated assembly is illustrated in Fig. 30.4. The following theory is based
on the formulations of Rao Rao (1978). The damping mechanism of the elastomer
layer is characterized by the complex dynamic shear modulus in Eq. (30.7), where
η2 is the core loss factor and G2 the elastic shear modulus Leaderman (1949). Here
and in the following all parameters marked with ∗ denote complex numbers:

G∗
2 = G2(1 + i η2). (30.7)

Classifying and comparing the computed results with data from literature, loss fac-
tors of metals lie between 10−4 and 10−3 approximately, whereas polymers can be
expected to possess loss factors in the range of 10−1 to 2 · 100, see Oberst (1956)
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Beam structure (steel)

Fig. 30.4 Constrained layer damping with full coverage, according to Rao (1978)
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and Beranek and Vér (1992); in some sources polymer loss factors are specified
even up to 101 Ottl (1981). For describing flexural modes the main assumptions for
the isotropic and homogeneous layers are according to Rao (1978):

• small beam deflections are considered which are determined using Euler-
Bernoulli hypothesis
• the elastomer core layer is sheared which is the main energy dissipation mech-

anism
• longitudinal displacements of layers are continuous
• longitudinal and rotatory inertia effects are neglected

Ross, Kerwin and Ungar as well as other authors like Nokes and Nelson assumed,
that mode shapes of the beam are unaffected by the damping treatment Kerwin Jr
(1959) and Nokes and Nelson (1968). This fact was also confirmed experimentally
in this contribution. Constrained layer damping theories consider the longitudinal
displacements of the elastic layers u1 and u3 as well as the vertical displacement of
the beam structure w. Characteristic sandwich equations can be formulated in terms
of the transverse deflection w(x, t) only

−∂6w

∂x6 + g∗(1 + Y )
∂4w

∂x4 − ∂4w

∂t
2
∂x2

+ g∗
∂2w

∂t
2 = 0. (30.8)

where x and t constitute normalized space and time coordinates as well as Y and g∗

constitute geometric and shear parameters as

Y =
(h1 + h3 + 2h2)

2

E1 I1 + E3 I3

E1 A1 E3 A3

E1 A1 + E3 A3
, (30.9)

g∗ =
G∗

2 A2 l
2

4h2
2

E1 A1 + E3 A3

E1 A1 E3 A3
. (30.10)

Solving the sixth order partial differential equation the ansatz (30.11) can be used.
A complex exponential ansatz for wm(x, t) is assumed, where k∗n are characteristic
values, Am the coefficients and Ω∗

m the complex frequency factors

wm(x, t) =

6∑
n=1

Am ek
∗
nx eΩ

∗
mt. (30.11)

Substituting (30.11) in (30.8) yields the characteristic equation

−k∗ 6
n + g∗(1 + Y )k∗ 4

n +Ω∗ 2
m (k∗ 2

n − g∗) = 0. (30.12)

Solving the polynomial (30.12) for k∗n, three square-roots are obtained depending
on the frequency factor Ω∗

m. This parameter includes the angular frequency Ωm of
the sandwich compound and the loss factor ηstruc,m of the entire structure.

Ω∗
m = Ωm

√
1 + i ηstruc,m (30.13)
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The sixth order differential Eq. (30.8) for full coverage requires six boundary con-
ditions, three for each end of the beam to determine the unknown coefficients A1

to A6. For a structure with unrestrained free ends there is no bending moment and
shear force at the left end (x = 0) and right end (x = 1) of the beam. Additionally,
the normal force is zero. The free-free unrestrained boundary conditions are given
by

wIV
m(x)− g∗(1 + Y )wII

m(x)−Ω∗2
m wm(x) = 0, (30.14)

wV
m(x)− g∗(1 + Y )wIII

m(x)−Ω∗2
m wI

m(x) = 0, (30.15)
wIV

m(x)− g∗ Y wII
m − Ω∗2

m wm(x) = 0. (30.16)

These six equations can be transferred in a linear, homogeneous system of equations,
where MA defines a square matrix and a is the vector of unknown coefficients A1

to A6

MA a = 0. (30.17)

To obtain non-trivial solutions a the determinant of MA has to be zero. Analytical
determined frequencies and loss factors are compared with experimental investiga-
tions to verify the prediction quality of this approach.

30.3 Experimental Investigations

Measuring modal parameters the test rig in Fig. 30.5 is used, considering standard
methods as e.g. described in the SAE test procedure J3001 SAE-J3001 (2011). To
prevent double hits during excitation, an automatic impulse hammer 1) is applied.
The system response has been measured in point 2) by using a single point laser vi-
brometer detecting the velocity of the measurement objects in out of plane direction.
To minimize the influence of the support, the test object is suspended (hung up) in
a frame by strings. The investigations included shims bonded to rectangular steel

Fig. 30.5 Experimental
set-up for shim investiga-
tions Schmid (2018b)

1
2
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Fig. 30.6 Mobility of shims
bonded to structure
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plates with dimensions 180x50x5mm3 as well as brake pads with identical shims.
Examining full coverage of the base structure shims are applied having equal length
and width dimensions. A transfer function for one shim type bonded to brake pad
backplates is illustrated in Fig. 30.6 in the range up to 10 kHz. These transfer func-
tions are the basis for determining modal damping values for flexural and torsional
mode shapes. The half-power bandwidth method has been applied for all damping
ratios ϑ, considering a 3 dB decay logarithmically seen in equation

2ϑ =
1

2

[(
Ωo

ωd
− ωd

Ωo

)
−
(
Ωu

ωd
− ωd

Ωu

)]
(30.18)

for nonsymmetrical transfer functions where ϑ is the modal damping ratio, ωd the
natural angular frequency and Ωo, u are angular frequencies determined from the
transfer functions Beards (1983). The first four eigenmodes of a rectangular plate
are presented in Fig. 30.7. Torsional and flexural mode shapes alternate for the
first eight eigenfrequencies. Odd numbered natural frequencies represent bending
modes, whereas even numbered modes correspond to torsion. Additional param-
eters playing an important role to obtain a more realistic mapping are the stress
history and temperature impact on elastomers (Lazan, 1968), which we intend to
address in future investigations. Also the rheological behavior of the viscoelastic
layer may play an important role (Jones, 2001).

Fig. 30.7 Experimentally
identified mode shapes of
shims bonded to steel plates

1st mode shape
bending

2nd mode shape
torsion

3rd mode shape
bending

4th mode shape
torsion
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30.4 Finite Element Approach

In the following multi- and single-layer shim structures are analyzed based on the-
ories from literature applied to our shim problem. Corresponding FE results are
denoted in Sect. 30.5 as “FE multilayer” and “FE hom” depending on the num-
ber of layers. The aim hereby is to map shims as homogenized entity to avoid
modeling problems resulting from the layer thickness. As a simulation tool for
modeling the shims and carrier structures, Abaqus CAE is used. All results have
been produced using frequency and complex frequency steps of the implicit solver
Abaqus/Standard. Specifically the Lanczos solver is used for this task Lanczos
(1950).

30.4.1 Damping

Several aspects and problems of modeling damping in FE-models of brakes have
been addressed in Gräbner et al (2015). Structural (30.19) as well as Rayleigh damp-
ing (30.20) are integrated for shim structures in Abaqus

Mq̈+K(1 + iβstruc.)q = f , (30.19)

Mq̈+ (αM+ βK)q̇+Kq = f . (30.20)

These are linear systems of differential equations, where q is the displacement vec-
tor as a function of time, M the mass matrix, K the stiffness matrix and f the exci-
tation vector. Instead of using a classical damping matrix for the energy dissipation,
a complex stiffness matrix for structural damping is considered with the damping
parameter βstruc. of the material. For Rayleigh damping α and β are introduced
to influence the damping behavior. This damping type is a mathematical construct
weighting the impact of mass and stiffness matrices. The influence of α and β on
the damping ratio ϑ can be calculated from Eq. (30.21) (Zienkiewicz, 1977), where
ω0 is the natural angular frequency of the system

ϑ =
α+ β ω2

0

2ω0
. (30.21)

Rayleigh damping is implemented for homogenized structures and the friction ma-
terial separately, whereas layer bonding structures are described using structural
damping for metal layers and viscoelastic layers. Figure 30.8 outlines a Rayleigh fit
for experimental results which are shown as round marks. Therefore, a least squares
fitting method (FindFit), which is implemented in Wolfram Mathematica is used.
Using experimental modal analysis, statistical evaluations have shown, that samples
of formal identical brake pads have a slight variance in natural frequencies and a se-
rious variance in damping ratios. Deviations of almost 20% are identified regardless
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Fig. 30.8 Approximation of
experimental modal damping
ratios
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of the mode shape. Hence, the implementation of the exact dissipation parameter is
not expedient and justifies the Rayleigh approach.

30.4.2 Stiffness - Homogenization Theory

In the following the theory from Ross et al (1959) is used for the improved model-
ing of shims. The technique is based on summarizing elastic and viscoelastic lay-
ers up to one single layer with equivalent properties. This homogenization requires
homogeneous single layers for creating a body with equal mechanical properties
including density, thickness, stiffness and damping features, as shown in Fig. 30.9
schematically. Stiffness characteristics mainly come from the metal layers, in par-
ticular the base beam, whereas the structure loss factor depends on the shearing
of the elastomer coating. This theory requires geometrical information about each
layer as well as rheological specifications like material properties. Isotropic mate-
rial behavior is required to all further computations. Therefore, the overall density
and the replacement of Young’s modulus of the compound is implemented for im-
proved computations. Poisson ratio effects coming from the homogenization are
neglectable for FE-simulations. The Poisson’s ratio ν of the homogenization struc-
ture is assumed to be 0.3 corresponding to the elastic layers. In general the Poisson’s
ratio of elastomers is specified by 0.5 in literature. Avoiding numerical issues in FE
calculations the Poisson’s ratio of each viscoelastic layer is defined here as 0.49.

Fig. 30.9 Homogenization of
a three layer compound

layer structure homogenized structure

beam structure

elastomer
constraining layer

h 1
h 3

h 2
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Shims, examined in more detail, consist of a stiff steel structure (constraining
layer) and elastomer layers. Note that the homogenization includes the beam struc-
ture, the elastomer layer and the constraining layer. Adhesive layers and further top
layers have to be modeled additionally. Equation (30.22) shows the flexural rigidity
ratioE I of the homogenized structure

E I = E1
h3
1

12
+ E2

h3
2

12
+ E3

h3
3

12
− E2

h2
2

12

(
h31 −D

1 + g

)
+ E1 h1 D

2

+ E2 h2 (h21 −D)
2
+ E3 h3 (h31 −D)

2 (30.22)

−
(
E2 h2

2
(h21 −D) + E3 h3(h31 −D)

)(
h31 −D

1 + g

)
.

The resulting composite with only one layer considers the thickness diversity of the
steel and viscoelastic layer, where E is the Young’s modulus, h the thickness of each
layer shown in Fig. 30.9, I the corresponding geometrical moment of inertia, p the
wave number (eigenvalue per length) and G2 the shear modulus of the viscoelastic
core as seen in Eq. (30.23) Nashif et al (1985).

D =
E2 h2

(
h21 − h31

2

)
+ g(E2 h2 h21 + E3 h3 h31)

E1 h1 +
1
2E2 h2 + g(E1 h1 + E2 h2 + E3 h3)

(30.23)

with the parameters:

h31 =
1

2
(h1 + h3) + h2 (30.24)

h21 =
1

2
(h1 + h2) (30.25)

g =
G2

E3 h3 h2 p2
. (30.26)

If there is no width difference between the single layers, the resulting Young’s modu-
lus only depends on thickness and elasticity ratios. The homogenization properties
received are used for analytical and numerical models.

30.4.3 Modeling

Common problematic issues in modeling shims on brake pads, e. g. hourglass ef-
fects, may result from the selection of inappropriate element types as shown in
Fig. 30.10. Often, reduced elements or elements without using hourglass control
lead to zero energy modes which can be checked easily by inspecting the mode
shapes. Moreover, the meshing of composite shim structures has to be done with
high accuracy due to the layer thickness. A massive increase in degrees of freedom
entails inevitably. The investigated shim type consists of one steel and two elastomer
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Fig. 30.10 Hourglass effect
occuring at FE model with
non-homogenized shim

layers one on each side, which is bonded on rectangular steel plates and backplates
of brake pads. Figure 30.11 shows two test objects, the multilayer mesh compound
and the homogenized structure. For layer bonding structures the components are as-

rectangular plate brake pad

Fig. 30.11 FE modeling before and after having applied the homogenization theory to rectangular
plates and brake pads

original shim

homogenized structure

original shim

homogenized structure



460 Dominik Schmid, Nils Gräbner & Utz von Wagner

sembled using tie constraints. Solid as well as shell elements with eight nodes (S8R)
are used for modeling steel plates and modified shim parts. Brake pad backplates are
meshed exclusively with solid elements. When implementing the improved brake
pad in a FE brake model, solid elements are recommended to be used due to several
interactions of the brake pad in further steps. An examination on hexahedron ele-
ments with linear (C3D8) and quadratical (C3D20) approach has been carried out.
To analyze the mesh influence a convergence analysis has been carried out with the
original shim structure and after having applied the homogenization theory from
Ross-Kerwin-Ungar. Thus, the element length is varied that leads to an aspect ra-
tio of approximately 1:40 to 1:1 considering the thickness of the unmodified shim
compound. The same element length has been applied for each layer. Quadratical
elements show a very good convergence for computed natural frequencies even for
a coarse mesh. Whereas the elements with linear approach need to be meshed with
much smaller element length achieving the same results. This is due to the fact that
additional middle nodes for each element map the shearing of structures more de-
tailed. Note that higher mode shapes need to be computed with smaller aspect ratios
to achieve a convergence behavior. Consequently for thin structures the quadratical
approach is recommended to use.

30.5 Results and Validation

Results of the described methods for the investigated shim type in the range up
to 5 kHz for a fully covered rectangular steel plate and in the range up to 10 kHz
for a brake pad are shown in Table 30.1. An analytical constrained layer damping
approach (CLD approach) for bending shapes, classical analytical calculations for
homogenized structures (Sect. 30.2.1), Finite Element computations comparing the
homogenized and the layered shim structure are demonstrated. In Abaqus imple-
menting Rayleigh as well as structural damping in the investigated structures has
been focused. The extension on brake pads has been carried out considering a higher
degree of complexity including geometry and the influence of the lining.

To validate the approaches, results from experimental modal analyses are shown.
Thus, loss factors of elastomers often depend on frequency (temperature) and am-
plitude Crandall (1970), all experimental investigations are carried out at room tem-
perature (230). Natural frequencies and characteristic loss factors are listed in Ta-
ble 30.1. The experimental loss factors are determined having regard to the power-
bandwidth method from Eq. (30.18).

Overall, natural frequencies of Finite Element computations yield a very good
compliance with experimental investigations. In particular loss factors of the rect-
angular beam and shim modeled as several monolayers overestimate the damping
behavior from the second mode shape. Structural damping only showed good results
for the backplate. In both homogenized single layer test structures the implemented
Rayleigh-damping showed a very good agreement with experimental determined
loss factors. Solid as well as shell elements deliver excellent results and map the
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Table 30.1 Comparison of shim natural frequencies and loss factors for a free-free support

f1a η1 f2b η2 f3a η3 f4b η4 f5a η5
Object Method / Hz - / Hz - / Hz - / Hz - / Hz -

steel plate Experimental 819 0.008 1769 0.004 2244 0.004 3663 0.003 4381 0.001

steel plate Experimental 872 0.014 1809 0.018 2341 0.019 3722 0.016 4472 0.022
with shim FE multi layer∗ 878 0.014 1780 0.025 2353 0.025 3672 0.025 4494 0.027

FE hom∗ 847 0.017 1788 0.014 2333 0.015 3714 0.019 4551 0.023
FE hom∗∗ 847 0.017 1787 0.014 2332 0.015 3711 0.019 4548 0.022
CLD approach 881 0.009 - - 2367 0.019 - - 4525 0.021
Analytical hom 848 - 1763 - 2347 - 3526 - 4595 -

backplate Experimental 2348 0.003 3483 0.002 5766 0.001 7664 0.001 9820 0.001

backplate Experimental 2475 0.017 3548 0.015 5817 0.013 7622 0.011 9755 0.010
with shim FE multi layer∗ 2447 0.018 3508 0.017 5810 0.016 7638 0.013 9726 0.012

FE hom∗ 2416 0.019 3543 0.014 5838 0.011 7698 0.011 9780 0.011

brake pad Experimental 4045 0.024 5334 0.029 7373 0.027 9900 0.024
with shim FE hom∗ 4362 0.023 5731 0.025 7409 0.024 10061 0.031
a bending mode, b torsional mode, ∗ solid elements, ∗∗ shell elements

progression of the damping behavior correctly. Note that the first natural frequency
in both cases is below the experimental determined frequency.

Regarding a complete brake pad the friction material behaves like a typical trans-
versely isotropic material. Out-of-plane is the preferred direction of the lining char-
acterized by less stiffness. The stiffness of the lining increases with piston pressure
applied in normal direction. For Finite Element models engineering constants are
used in Abaqus for describing the behavior for a certain pressure stage. Therefore
experimental identified natural frequencies are lower than numerical computed ones
listed here. Detailed information on this topic can be found e. g. in Hornig (2015).
Beside this, the application of the homogenized shim structure enables to reduce
the number of degrees of freedom. Figure 30.12 depicts the modeling advantage,
whereby all components compared are meshed with the same element length. Two
test objects, a rectangular plate with dimensions of 180x50x5 mm3 fully covered
with a shim and a backplate with the same shim type are listed. In particular quadrat-
ical solid elements (C3D20) and shell elements (S8R) are used for the considered
structures. The number of elements needed for convergence is much less for ho-
mogenized models, which reduces the computation time drastically. The reduction
of degrees of freedom is intended for large FE brake models often built with several
million degrees of freedom. Achieving similar results using the homogenization the-
ory, shims are highly recommended to be modeled as one layer over the thickness.
Furthermore elements with full integration and second order approach are recom-
mended preventing hourglass effects and shear locking as described in Flanagan and
Belytschko (1981) and Bathe (1996). The analytical constrained layer damping ap-
proach provides a very good forecast quality for bending shapes. Solely the loss
factor of the first bending mode deviates from the actual damping. Simple contin-
uum mechanical approaches reflect only the stiffness characteristics of structures
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Fig. 30.12 Reduction of computation time due to improved single layer modeling

presented in Sect. 30.2.1. The results for torsional vibrations point out, that there
has been simplified modeling for this application at increasing frequencies.

To sum up it can be said, that the results of the applied analytical and modified
FE single layer approach conduct in very good compliance with the experimental
investigations.

30.6 Conclusion and Outlook

The analytical constrained layer damping approach allows the prediction of natural
frequencies and loss factors of bending mode shapes without considering relevant
damping ratios carried out in prior investigations. Experimental evaluations of for-
mal identical brake pads have shown, that there’s a not neglectable deviation in the
damping ability. Therefore the exact mapping of damping characteristics in Finite
Element models is not feasible and favours the Rayleigh approach clearly. By mod-
eling each layer separately the meshing becomes a challenging task due to the layer
thickness. Therefore, the homogenization approach is the preferred modeling tech-
nique. A significant reduction of computation time for homogenized shim structures
arose from a much lower number of degrees of freedom.

Primarily the advantage for future works is to reduce experimental investigations
in a greater scope, improve the prediction quality of potential squeal frequencies
and make the development of quiet brakes more efficient. The implementation of
these homogenized shim structures in a FE complete model of the brake will be
conducted in further steps. Furthemore the impact of varying temperature on shim
loss factors has been depicted in prior examinations and can now be implemented
in Finite Element calculations (Schmid et al, 2017).
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