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Abstract It is well established that changes in bone blood and interstitial fluid flows
are associated with changes in the bone remodeling process. These flows in bone
are a result not only of trans-cortical pressure gradients produced by vascular and
hydro-static pressure, but also of mechanical loadings. Mechanical load-induced in-
traosseous pressure gradients may result in some fluid stimuli effects which, in turn,
may enable bone cells to detect external mechanical signals. In this paper, the ex-
ploitation of a 2D continuum model based on classical poroelasticity is presented
within a variational framework. The investigation is aimed at describing how me-
chanical actions can affect the remodeling process of a bone tissue. The focus is on
the introduction of a physically motivated strain energy contribution aimed to take
into account the presence of saturating fluid in the interconnected pores of bone tis-
sue. The interaction with a bio-resorbable organic ceramic material like those used
in bone graft implants is also considered in presented model. Numerical results are
provided in a relevant exemplary case.
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3.1 Introduction

In bone tissue, it is possible to distinguish mainly two kinds of fluids: blood and
interstitial fluids like, e.g., bone marrow. Blood carries through the arterial system
oxygen and other nutrients, and the blood components depart from this arterial sys-
tem via smaller channels, i.e. the venous system, to zones containing less oxygen
and reduced nutrition (see, e.g., George et al, 2018a; Spingarn et al, 2018). Within
the bone, as within other tissues, substances pass from the blood flowing through
the arterial walls into the interstitial fluid. The interstitial fluid subsequently car-
ries these substances to the cells within the bone and, at the same time, carries
away the waste materials from the cells. Bone tissue would not remain alive with-
out these fluid movements. It is thus clear the reason why it is commonly accepted
that vascularization is required for effective bone healing and maintenance. These
statements are supported by the fact that changes in bone blood and interstitial fluid
flows are associated with changes in bone remodeling and formation (see, e.g., Hill-
sley and Frangos, 1994). These flows in bone are a result not only of trans-cortical
pressure gradients produced by vascular and hydro-static pressure, but are also re-
lated to externally applied mechanical loadings. It is observed that flow rates are
affected by many factors, like the increase in venous pressure due to hypertension,
the fluid shifts occurring in bedrest or microgravity, the increase in vasculariza-
tion during the injury-healing response, and the mechanical compression/tension
and bending/torsion of bone during exercise. Thus, mechanical load-induced in-
traosseous pressure gradients, like those induced by mechanical loading of bone
during exercise, affect the fluid flow rate and, eventually, bone remodeling. The pur-
pose of this article is to present a mathematical model able to describe the role of
mechanical actions in the bone osteogenesis process. In this paper we will make
use of the classical poroelasticity theory, as formulated by Biot in its 1941’s foun-
dational paper (Biot, 1941), suitably complemented with a novel non-local energy
contribution purposely introduced to account for fluid compression. In poroelastic-
ity, a field accounting for porosity is usually introduced in addition to the placement
function of the solid phase. Poroelasticity is, thus, a so-called micromorphic the-
ory, belonging to the wider class of generalized continua with internal variables
or with extra kinematical descriptors. The importance of these continua has been
questioned, but, in our opinion, has been proven useful in presence of long range
interactions at micro-level, when a macro continuous model is more suitable (see,
e.g., Alibert et al, 2003; Eremeyev et al, 2018a; Abali et al, 2017; Pietraszkiewicz
and Eremeyev, 2009). The macroscopic theories formulated in the framework of the
mechanics of generalized continua is being formulated for 3D and 2D bodies and is
increasingly attracting the attention of those researchers interested in non-standard
mechanical effects (see, e.g., Altenbach and Eremeyev, 2009; Bertram and Glüge,
2016; Gusev and Lurie, 2017; Camar-Eddine and Seppecher, 2001). The recent lit-
erature stresses two aspects of the considered multi-scale mechanical systems: their
potentially exotic macroscopic behavior and the corresponding microscopic struc-
ture, in which there are eventually active long range interactions. The need for gen-
eralized continua, including in this class also higher gradient theories (dell’Isola and
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Seppecher, 1997; dell’Isola et al, 2012; dell’Isola and Steigmann, 2015; dell’Isola
et al, 2016, 2015b), is unavoidable when one has to describe those mechanical phe-
nomena which involves the activation of deformation modes at microlevel determin-
ing the interaction of parts of the micro-structure having high stiffness contrast and
bridging distant homogenization cells. These complex deformation patterns cannot
be accounted for in standard Cauchy theories: for a series of examples of this cir-
cumstance, see e.g., Cuomo et al (2016); dell’Isola et al (2016); Placidi et al (2016)
while for theoretical arguments dealing with micro-macro convergence motivating
higher gradient theories, see e.g., Abdoul-Anziz and Seppecher (2018); Seppecher
et al (2011); Pideri and Seppecher (1997). In the present paper, we deal with a re-
constructed bone during its remodeling process. This is surely a multi scale complex
system, which involves mechanical, chemical and biological aspects and, therefore
the previous modeling concerns are surely appropriate. This approach is present in
the literature of biomechanics of bones (see, e.g., Lekszycki and dell’Isola, 2012;
Giorgio et al, 2017; Ganghoffer, 2016; Goda et al, 2014, 2012; Ganghoffer, 2012)
but has attracted the attention also in view of different possible applications. Gen-
eralized continua are indeed considered also for modeling electromechanical sys-
tems in biological applications (see, e.g., Steigmann and Agrawal, 2016) memory
shape alloys (Shirani et al, 2017) and piezo/flexo-electric materials (see, e.g., Abd-
alladan et al, 2017; Abd-alla et al, 2017; Pagnini and Piccardo, 2016; Enakoutsa
et al, 2017). These studies may have a relevance in the process of bone remodeling,
if one of the mechanisms regulating considered bone growth process are regulated
by electromagnetically induced biological activity, as it seems to happen when elec-
trical currents are used to favor bone growth. Growing bones are resisting to external
load, also in elastic regime: therefore, generalized elastic continua can be of use in
the class of biomechanics phenomena which we consider here. In this context, the
works (Andreaus et al, 2010; Rosi et al, 2018; Abali et al, 2015; Altenbach and Ere-
meyev, 2015; Franciosi et al, 2018; Spagnuolo and Andreaus, 2018; Andreaus et al,
2018), which try to capture some aspects of the elastic deformation of reconstructed
bones, are relevant. As we hope to have explained already in an exhaustive way, the
complexity of behavior of a reconstructed bone does not allow for too drastic sim-
plifications. Surely in the small and larger channels in which interstitial fluids are
flowing may activate capillary phenomena: therefore, the analysis of capillary fluids
(Auffray et al, 2015; Seppecher, 1993, 2000) and their influence at macro-level may
be of relevance. In this context, the results presented in Madeo et al (2013); Scia-
rra et al (2007) may be of use, as well as the analysis of damage phenomena (see,
e.g., Placidi et al, 2018; Rinaldi and Placidi, 2014; Placidi, 2015; Misra and Singh,
2013; Spagnuolo et al, 2017; Goda and Ganghoffer, 2015; Di Nino et al, 2017; Bat-
tista et al, 2017b) based on generalized continuum models. Remark that in the last
paper a purely discrete model for mechanical phenomena is introduced, based on
the postulation involving a generalization of cellular automata. Indeed, among the
other feed-back mechanisms which regulate bone remodeling, it has been proven
that it is particularly effective that which activates the action of osteoblasts and os-
teoclast when the microstructure of the bone exhibits some growing damage and
micro fracture. One should not, however, believe that the only feed-back control
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mechanism of growth involves a measure of micro-fracture of bone. It seems that
also the dissipation occurring in the interstitial fluids at the level of micro-canalicula
and micro-trabecular structure may be effective. As a consequence dissipation phe-
nomena has to be included in the modeling process (e.g. using the ideas presented
in Lekszycki et al (2017); Cuomo (2017); Luongo and D’Annibale (2017). If the
considered phenomena involve lower scales then the granular structure of the bone
and the reconstructing material must be accounted for: in this case the modeling is-
sues addressed in Misra and Poorsolhjouy (2015a); Misra and Singh (2015); Misra
and Poorsolhjouy (2015b); Altenbach et al (2010); Eremeyev (2018), may become
relevant. Finally, it has to be remarked that the peculiar features exhibited by recon-
structed bones and by physiological bones imply some specific corresponding non-
standard characteristics in wave propagation. These peculiarities may be exploited
to get informations, using noninvasive methods, about the health and mechanical
performance of (possibly reconstructed) bone tissue. In this case wave propagation
analysis proposed in Placidi et al (2008); Engelbrecht and Berezovski (2015); Bere-
zovski et al (2018); Abbas et al (2016); Eremeyev et al (2018b) while dynamic
analyses performed in Battista et al (2015, 2017a); Ferretti et al (2017) may be of
use.

The plan of the work present is the following: first, in Sect. 3.2, we address some
basic facts on bone physiology, and will extrapolate the main information needed
for the modeling. Then, in Sect. 3.3, we introduce the proposed continuum model.
The focus is on the introduction of a physically motivated dedicated strain energy
contribution due to the presence of saturating fluid in the interconnected pores of
bone tissue and the interaction with a bio-resorbable organic ceramic material like
those used in bone graft implants is considered. In Sect. 3.4, we provide numerical
results in a relevant exemplary case. Finally, in Sect. 3.5, we give conclusions and
perspectives.

3.2 Some Considerations on Bone Physiology

Bone is a ‘rigid’ living organ that constitutes the vertebrate skeleton; it protects the
organs of the body and enables mobility. It has a honeycomb-like matrix internally,
which helps to give the bone rigidity and that can be considered porous with respect
to the characteristic length that we are concerned with at the macroscopic level. The
pores of the solid matrix are filled with interstitial fluid. Inside bone tissue, different
types of bone cells act. Osteoblasts and Osteocytes are involved in the formation
and mineralization of bone; Osteoclasts are involved in the resorption of bone tis-
sue. Modified (flattened) Osteoblasts become the lining cells that form a protective
layer on the bone surface. The mineralized matrix of bone tissue has an organic
component of mainly collagen, called ossein, and an inorganic component of bone
mineral made up of various salts. Bone tissue is a mineralized tissue of two types,
cortical and cancellous bone. Other types of tissue found in bones include bone mar-
row, endosteum, periosteum, nerves, blood vessels and cartilage. Bone tissue is con-
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stantly reshaped by the biological activity which takes place therein. Biology tells
us that the basic (feedback) mechanism, relevant for the subsequent modeling, is
the one shown in Fig. 3.1. External mechanical actions are sensed by the Osteocytes
which, being actors of the mechano-transduction process, transduce the mechani-
cal stimulus into a biological, i.e. bio-chemical, signal, inducing the resorption of
bone tissue by the Osteoclasts or its synthesis by the Osteoblasts. Bio-resorbable
artificial materials can be roughly divided into polymeric and ceramic materials.
Polymers are mainly degraded in the process of hydrolysis, while organic ceram-
ics like, e.g., β-TCP (Tri-Calcium Phosphate) with 5% of HAP (Hydroxyapatite),
are instead mostly processed by the Osteoclasts. Both processes always coexist and,
depending on the constitution of the graft, one process or the other results to be
dominant. In this paper we consider resorption due to Osteoclasts only. Taking into
account the presence of a bone graft allows to better understand and predict how
mechanical actions can affect the remodeling process of a bone tissue possibly in-
teracting with a bio-resorbable material like those used in bone graft implants (e.g.
dental bone grafting), whether the implanted graft is suitable as mechanically sup-
porting element, the capability of the graft to integrate with the bone tissue, so that
it can be gradually resorbed and replaced by new natural bone tissue. This last prop-
erty is conferred by chemical composition, number and size of pores, because they
determine the extent to which living cells migration, their expected activities, the
development of vascularization for cell survival etc. can occur.

Mechanical
Stimulus

signal is transmitted by Osteocytes
(former Osteoblasts which become 
surrounded by unmineralized matrix 
during bone formation)

Osteoblasts
synthesize bone tissue 

Osteoclasts
break down (resorb) bone 

tissue and bio-material 

External
Actions stimulus depends 

upon mechanical 
properties of bone

Fig. 3.1 Basic feedback mechanism in a bone. A detailed description of the physiology of bone
remodeling would be out of reach.



34 Emilio Barchiesi, Ivan Giorgio, Faris Alzahrani & Tasawar Hayat

3.3 Modelling

3.3.1 Kinematics

In this paper we are aimed only at showing the main features of the model and,
thus, notwithstanding the fact that the subsequent modeling is suitable also for the
study of 3D bodies, it is here sufficient to consider a 2D body. Such a body is made
up of a mixture composed by three phases: the binary solid porous matrix of bone
(B) and bio-resorbable graft material (M) and the fluid phase (F) that fills the con-
nected pores of the solid matrix. The shape of the body in its undeformed reference
configuration is represented by the subset B0 ⊂ R

2. We will not make use of a
so-called mixture model in a strict sense, meaning that we are not going to con-
sider as independent kinematical descriptors of the model placement functions for
each component of the mixture. The only (sufficiently regular) displacement field
u : R

2 ⊇ B0 → R
2, with χ(X) = X + u(X) being the corresponding place-

ment function, which we consider as an independent Lagrangian kinematic variable
is such that u(X, t) is the displacement of the solid binary mixture in the represen-
tative three-phase volume element (see Fig. 3.2) whose barycenter is in X in the
reference configuration.

While the relative displacement of the components of the solid matrix can be
neglected, the same does not hold for the fluid phase, which in general can move
(only, as impermeability of the solid matrix is here assumed) inside the solid matrix.
The set B ≡ χ(B0) ⊂ R

2 is the current shape of the body. We shall denote the
Lagrangian representation e (χ(X)) of an Eulerian field e(x), where x ∈ B and it

X

Bone phase

Graft phase

Fluid phase

X

Fig. 3.2 A rectangular 2D body with a zoomed schematic of a representative volume element
(RVE).
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is such that x = χ(X), with eL(X). The (apparent) Lagrangian mass density in the
reference configuration ρR(X), with X ∈ B0, is given by

ρR(X) =
∑

i=B,M,F

ρi,R(X) =
∑

i=B,M,F

ρ̂i,R(X)ξi,R(X), (3.1)

where ρi,R is the partial Lagrangian mass of component i in the mixture in the
reference configuration, is the ρ̂i,R (true) Lagrangian mass density of component
i in a mono-phase mixture in the reference configuration, ξi,R is the Lagrangian
volume fraction of component i in the mixture in the reference configuration which,
since the porous solid matrix is saturated with fluid, is also referred to as the porosity
in the reference configuration. The (apparent) Eulerian mass density in the current
configuration ρC(x), x ∈ B, is given by

ρC(x) =
∑

i=B,M,F

ρi,C(x) =
∑

i=B,M,F

ρ̂i,C(x)ξi,C(x), (3.2)

with ρi,C the partial Eulerian mass of component i in the mixture in the current
configuration, ρ̂i,C the (true) Eulerian mass density of component i in a mono-
phase mixture in the current configuration, ξi,C the Eulerian volume fraction of
component i in the mixture in the current configuration which, since the porous
solid matrix is saturated with fluid, is also referred to as the porosity in the current
configuration (Wilmanski, 1998). As we mentioned above, in this paper we consider
undrained conditions, i.e. impermeability conditions at the boundary. Thus, the fol-
lowing global (as opposed to local) mass conservation constraint holds for the fluid
phase ∫

B0

ρLF,C(X) det∇χdX =

∫
B0

ρF,C (χ(X)) det∇χdX (3.3)∫
B

ρF,C(x) dx = MF =

∫
B0

ρF,R(X) dX, (3.4)

with MF being the total fluid mass in the body. Finally, in the spirit of continuum
poroelasticity, we introduce another independent Lagrangian micromorphic field ϑ :
R

2 ⊇ B0 → R, which is the change of porosity. Following Coussy (2004), we
assume that

ϑ(X) := ξF,C (χ(X))− ξF,R(X) = ξLF,C(X)− ξF,R(X). (3.5)

3.3.2 Elastic Mechanical Energy Stored Within the Body

For fixed ξB,R, ξM,R (remind that ξF,R = 1− ξB,R− ξM,R), the system is assumed
to behave elastically. We consider the quasi-static case, i.e. inertia and micro-inertia
forces/energies are negligible, and the total deformation energy of the system is
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assumed to be
ψ = ψSTRAIN − ψEXT (3.6)

with
ψSTRAIN = ψPOR + ψPERIDYN (3.7)

and

ψEXT =

∫
B0

bext · u dX +

∫
∂B0

fext · u dX, (3.8)

the quantities bext and fext in (3.8) being, respectively, bulk and surface loads
(see for more detail on variational formulation e.g. Abali et al, 2017; Eugster and
Glocker, 2017). Let us now examine the terms ψPOR in (3.7), which is the poro-
elasticity strain energy density contribution in Lagrangian form i.e. the energy stored
within the body due to the deformation of the solid matrix and to pores surface ten-
sion and related phenomena (Giorgio et al, 2016). In this paper we consider the
small strain assumption (i.e. ∇u � 0) and, in what follows, E = Sym∇u is the lin-
earized Green-Saint Venant strain tensor. The purely (no pre-stress) quadratic form
in the strain E and micro-strain ϑ is

ψPOR (E, ϑ) =

∫
B0

[
Q

2
(ϑ− α tr(E))

2︸ ︷︷ ︸
Biot’s contribution

+

1

2

Y (ρB,R, ρM,R)ν

(1− 2ν)(1 + ν)
tr(E)2 +

1

2

Y (ρB,R, ρM,R)

(1 + ν)
tr(E2)︸ ︷︷ ︸

isotropic strain energy density of the solid bone+graft mixture

]
dX (3.9)

where
Y = YBξ

βB

B,R + YMξβM

M,R (3.10)

is the effective bone-graft Young modulus, YB is the bone Young modulus, YM is the
graft Young modulus, βB and βM are two constitutive exponents, ν is the effective
bone-graft Poisson’s ratio (set to be 0.3), Q > 0 is the 1st Biot parameter (resistance
to change of porosity), and α is the 2nd Biot parameter. Specifically, for the sake of
simplicity, we set

α =
Y

H1 3(1− 2ν)

1

Q
=

1

R
− α

H1
(3.11)

with H1 and R positive constants (Biot, 1941). We remark that Biot’s contribution
includes coupling between u and ϑ an we stress again that, contrarily to what is
customarily done in classical continuum poroelasticity, the Biot’s contribution does
not encode the energy part due to interstitial fluid compression. We now discuss the
peridynamic (in the sense given by Piola, see dell’Isola et al (2015a)) contribution
in Lagrangian form ψPERIDYN in (3.7). In Eulerian form, the energy stored within the
body due to fluid compression is assumed to be
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ψPERIDYN =
1

2
β

∫
B

ρ̂2F,C ξF,C dx, (3.12)

with β > 0 being the fluid resistance to compression and the differential dVF =
ξF,C dx indicates that integration is taken with respect to the fluid volume. Assum-
ing ρ̂F,C to be uniform over B, and this is reasonable in a quasi-static framework,
we have

ψPERIDYN =
1

2
βρ̂2F,C

∫
B

ξF,C dx. (3.13)

We now want to transform the integration over the (unknown) deformed shape
B in (3.13) into an integration over the reference shape B0, i.e. we want to derive
ψPERIDYN in Lagrangian form. To this goal, we perform the change of variable x =
χ(X). We have that dx = det(F ) dX+o(dX), with F = ∇χ = I+∇u. Reminding
that

det(I + εA) = 1 + ε tr(A) + o(ε) (3.14)
det(I +A) = 1 + tr(A) + o(A), (3.15)

we have det(F ) = 1 + tr(∇u) + o(∇u). Since we are working under the small
strain hypothesis, observing that tr(A) = tr(SymA), and neglecting higher order
contributions, we have det(F ) = 1+ tr(E). The volume occupied by the fluid phase
in the current configuration is

VF =

∫
B

ξF,C dx =

∫
B0

ξLF,C (1 + tr(E)) dX. (3.16)

The energy stored within the body due to fluid compression reads thus in La-
grangian form as

ψPERIDYN =
βM2

F

2

1∫
B0

ξLF,C (1 + tr(E)) dX
. (3.17)

Of course, we have that

ψPERIDYN =
βM2

F

2

1∫
B0

ξLF,C(1 + tr(E)) dX

∫
B
ξF,C dx
VF

=

1

VF

∫
B

βM2
F

2

1∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX
dx =

1∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX

∫
B0

βM2
F

2

ξLF,C(1 + tr(E))∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX
dX =∫

B0

βM2
F

2

(ξF,R + ϑ)(1 + tr(E))[∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX
]2 dX (3.18)
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where ξLF,C = (ξF,R + ϑ) has been used. Therefore, the Lagrangian density associ-
ated to ψPERIDYN reads as

βM2
F

2

(ξF,R + ϑ) (1 + tr(E))[∫
B0

(ξF,R + ϑ) (1 + tr(E)) dX
]2 . (3.19)

We notice that no spatial derivatives of the additional kinematic parameter ϑ ap-
pear in the first gradient (with respect to displacement) poroelasticity strain energy
ψPOR; hence, the prescription of arbitrary boundary conditions for the porosity field
does not yield in general the minimization of the mechanical energy ψ a well-posed
problem. Furthermore, we remark that non-locality is given by the peridynamic con-
tribution ψPERIDYN and not by the dependence of the internal stored energy upon,
e.g., higher gradients of the displacement and/or of the change of porosity. Positive
definiteness of the isotropic strain energy density of the solid bone-graft mixture is
ensured if λ+ μ > 0 and λ− μ > 0, where λ is the effective bone-graft first Lamé
parameter and μ is the effective bone-graft shear modulus. Finally, we observe that,
following our assumptions, the strain energy is such that remodeling, i.e. a change
in the densities of bone tissue and bio-resorbable material in the reference configu-
ration, cannot induce any (local) mechanical anisotropy (for more details see Allena
and Cluzel, 2018; Cluzel and Allena, 2018).

3.3.3 Mechanical Stimulus, Bone Remodeling and Graft
Resorption

Let ρOC,R be the Lagrangian density of Osteocytes in the reference configuration.
It is assumed to be proportional to the bone density in the reference configuration.
Nevertheless, in the literature it is possible to find approaches assuming that the time
evolution of the Lagrangian density of Osteocytes in the reference configuration,
together with those of Osteoblasts and Osteoclasts, is governed by a distributed
cellular population evolution model (Lekszycki and dell’Isola, 2012; George et al,
2018b,c). The Lagrangian mechanical stimulus is defined as

S(X, t) =

∫
B0

[
ψ(Y, t)ρOC,R(Y, t) e

− (X−Y )2

2D2 dY
]
− S0 (3.20)

i.e. it is the 2D Gaussian convolution of the product ψ ρOC,R. We remark that the

2D Gaussian ∼ e−
(X−Y )2

2D2 has mean X and standard deviation D (variance D2) and,
thus, D is a measure of the circular influence range, since the Gaussian is de facto
vanishing at a distance from the mean X greater than three times the standard de-
viation. We further remark that stimulus is the (spatially) shifted smoothed product
ψ ρOC,R, which is the Lagrangian strain energy density weighted by the Lagrangian
Osteocytes density in the reference configuration; this entails that a non-zero strain
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energy density in a sufficiently close neighborhood of a point does not necessarily
imply a non-zero stimulus in that point, as in that neighborhood there might be no
mechanosensors. Finally, it is worth to be noticed that in the literature (Beaupré
et al, 1990; Giorgio et al, 2016) it possible to find a slight variation of the definition
of stimulus employed herein, by taking into account a ‘dead-zone’

S(X, t) =

⎧⎪⎨⎪⎩
S̃(X, t)− Su if S̃(X, t) ≥ Su

S̃(X, t)− Sd if S̃(X, t) ≤ Sd

0 if Sd < S̃(X, t) < Su

(3.21)

with
S̃(X, t) =

∫
B0

ψ(Y, t)ρOC,R(Y, t) e
− (X−Y )2

2D2 dY. (3.22)

The evolution of graft density due to resorption and of bone density due to formation
and resorption is described, for each X , by means of a system of ordinary differential
equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇M,R(X, t) = AM (S) H(ξLF,C)

ρ̇B,R(X, t) = AB(S) H(ξLF,C)

ρM,R(X, 0) = ρM0(X)

ρB,R(X, 0) = ρB0(X)

(3.23)

with
H(y) = k y(1− y), with y ∈ [0, 1] (3.24)

AM (S) =

{
0 if S ≥ 0

rMS if S < 0,
(3.25)

AM (S) =

{
sBS if S ≥ 0

rBS if S < 0,
(3.26)

and k, rM , rB , sB ≥ 0. We remark that the function H(ξLF,R) = kξLF,R(1− ξLF,R),
a concave symmetric parabola with maximum value k/4 attained in ξLF,R = 1/2 and
intersecting the abscissa H = 0 in ξLF,R = 0 and ξLF,R = 1, accounts for the fact
that if the porosity is too low, then living cells will not be able to efficiently resorb
the bio-material, neither to form new bone tissue, as the available space will not
allow for the activity of a sufficiently large number of actor cells. If the porosity,
on the other hand, is too large, then there is not enough solid-phase on which actor
cells may deposit, and remodeling will not occur quickly enough. For the sake of
simplicity, we set k = 4.
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3.4 Solution Algorithm and Qualitative Results for Tensile Test

Dimensionless parameters employed for numerical simulations are shown in Tab. 3.1.
Specifically, we consider a rectangular sample whose sides are in the ratio 1:3.

The notation 〈ψ′, δu〉 denotes the functional derivative of ψ in Eq. (3.6) in the
direction δu (displacement variation). For a fixed time instant and corresponding
(given) external bulk and surface forces bext, equation 〈ψ, δu〉 = 0 ∀δu— which
corresponds to the so-called weak form— is solved by means of standard finite ele-
ment techniques included within the weak form package of the commercial software
COMSOL MultiphysicsTM. From such a computation—ρB,R and ρM,R at previous
time step are used to retrieve the effective bone-graft Young’s modulus—we get the
displacement u and change of porosity at time t. Such displacement and ρOC,R—
obtained by assuming it to be proportional by a factor K to ρB,R at the previous time
step—are plugged within the Lagrangian mechanical stimulus defined in Eq. (3.20).
The so-found Lagrangian mechanical stimulus is inserted with the change of poros-
ity retrieved from the weak form solution in Eq. (3.23) in order to compute ρB,R and
ρM,R at the current time step. Such values are then used to compute the effective
Young modulus to be plugged in the weak form equation at the next time step.

In Fig. 3.3 a block diagram representation of the solution algorithm employed
is shown, while a graphical depiction of the test problem is presented in Fig. 3.4.
A rectangular slab formed by a rectangular central graft inclusion in bone tissue

matrix is subject to a tensile test. In Fig. 3.5, a zoomed detail for the test problem is
shown. At the interface between the two phases we consider a spring foundation for
both kinematics variables u and ϑ, and a contribution∫

∂G

[
Ku‖u+ − u−‖2 +Kϑ‖ϑ+ − ϑ−‖2] dX (3.27)

is added to the strain energy. In Fig. 3.6, the evolution in time of minimum graft den-
sity (blue), min ρM,R, and maximum bone tissue density (green), max ρB,R, over
the inclusion zone are shown. Clearly, as time progresses, the graft is resorbed (i.e.
the blue curve is monotonously non-increasing) and new bone is formed (i.e. the
green curve is monotonously non-decreasing). In Fig. 3.7 the evolution in time of
the stimulus S for some relevant time instants is reported. Time increases from left

Table 3.1 Material coefficients in non-dimensional form. Tilde denotes dimensionless quantities.

ỸB ỸM s̃B r̃B r̃M

1 1.2 5×108 5×108 5×108

ρ̃B0 = ρ̃M0 βB = βM D̃ Ku Kϑ

0.5 2 0.9 0.1 0.1

H̃1 R̃ ˜βMF
2

S̃d S̃u

0.8 0.4 1.0×10−4 1.30×10−6 1.30×10−6
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for all admissible variations
and 

Fig. 3.3 Feedback loop schematic for model solving.

Fig. 3.4 Graphical depic-
tion of the test problem. A
rectangular slab formed by a
rectangular central graft in-
clusion in bone tissue matrix
is subject to a tensile test.

Bone phase

Graft inclusion

∂G

Fig. 3.5 Zoomed detail for
the test problem. At the inter-
face between the two phases
there is a spring foundation
for the variables u and ϑ.

+ -

to right and from up to down. As time progresses, the stimulus peaks on the left and
on the right of the specimen shift toward the center, and eventually coalesce. The
evolution in time of density of Osteocytes ρOC,R for some relevant time instants
is shown in Fig. 3.8. Time increases from left to right and from up to down. Fol-
lowing the feedback behaviour of bone physiology, Osteocytes colonize the graft
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Fig. 3.6 Evolution in time of minimum graft density, min ρM,R (blue), and maximum bone tissue
density (green), max ρB,R, over the inclusion zone.

Fig. 3.7 Evolution in time of stimulus for some relevant time instants. Time increases from left to
right and from up to down.

gradually, until the inclusion is uniformly saturated by them. The evolution in time
of bone tissue density ρB,R for some relevant time instants is reported as well in
Figs. 3.9 and 3.10. Time increases from left to right and from up to down. Fi-
nally, evolution in time of the graft density ρM,R for some relevant time instants
is presented in Fig. 3.11. Time increases from left to right and from up to down.
Therefore, from Fig. 3.6 it is clear that, as time progresses, the graft is resorbed (i.e.
the blue curve is monotonously non-increasing) and new bone is formed (i.e. the
green curve is monotonously non-decreasing). Stationary state is reached as both
curves are asymptotically approaching limit values.
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Fig. 3.8 Evolution in time of density of Osteocytes for some relevant time instants. Time increases
from left to right and from up to down.

3.5 Conclusion and Outlooks

In this paper, in the framework of poroelasticity, we addressed the study of the inter-
play between bone remodeling and graft resorption under loading conditions. Aim-
ing at enhancing the modeling proposed in past literature, we considered a phys-
ically motivated dedicated strain energy contribution due to the presence of satu-
rating fluid in the interconnected pores, which has some compression resistance. In
past literature, the Biot’s contribution is not single targeted and includes also, but
not only, the effect due to the possible presence of saturating fluid. The classical
Biot’s strain energy contribution, which is quadratic in the porosity change, is not
physically motivated when dealing with the presence of interstitial fluid, and ac-
count for the presence of fluid exhibiting resistance to compression must be given
in this framework through the ‘effective’ resistance to the change of porosity. The
outlooks of the paper are the following. A parameter estimation from experiments
would be useful to allow quantitative (not just qualitative) predictions. Furthermore,
the model could be suitably adapted in order to take into account Turner’s rules for
bone adaptation: (1) remodeling it is driven by dynamic, rather than static, loading;
(2) only a short duration of mechanical loading is necessary to initiate an adap-
tive response; (3) bone cells accommodate to a customary mechanical loading en-
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Fig. 3.9 Evolution in time of bone tissue density for some relevant time instants. Time increases
from left to right and from up to down.

Fig. 3.10 Evolution in time of bone tissue density for some relevant time instants. Time increases
from left to right and from up to down.

vironment, making them less responsive to routine loading signals. For example,
Turner’s rule could be indirectly taken into account by including dissipation. Fur-
thermore, it has to be remarked that, while in this paper a macroscopic continuum
model has been formulated directly, a homogenization procedure starting from dis-
crete/continuum descriptions of the phenomena occurring at smaller length scales
could give a better insight into the results obtained at the macro-level. In this re-
gard, many procedures, like coarse-graining, hydrodynamical limits (De Masi et al,
2015; De Masi and Olla, 2015; Carinci et al, 2014b,a) for many-particle systems,
and computational homogenization (Chatzigeorgiou et al, 2014; Saeb et al, 2016;
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Fig. 3.11 Evolution in time of graft density for some relevant time instants. Time increases from
left to right and from up to down.

Javili et al, 2013), are being employed in literature, and they deserve to be better
understood.
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