
Chapter 28

Cavity Flow of a Micropolar Fluid - a Parameter

Study

Wilhelm Rickert & Sebastian Glane

Abstract This paper presents a parameter study of the flow of a micropolar fluid.
The underlying equations and the choice of boundary conditions are discussed. Two
flow situations are considered: Couette flow as a reference problem and the lid-
driven cavity problem. The governing equations are specialized for the case of two-
dimensional flow and discussed in dimensionless form. Several dimensionless pa-
rameters common in the theory of micropolar fluids are identified and their impact
on the solutions is analyzed using the finite element method.
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problem · Forced convection

28.1 Introduction

Generalized continuum theories have gained high interest in continuum mechanics
and material modeling. Among Cosserat elasticity and gradient theories for solids
and the Ericksen-Leslie theory for liquid crystals, Eringen’s micropolar theory is one
of the representatives of this field, see Ariman et al (1973) for an extensive review
and Maugin (2011) for a historical discussion. Since its introduction by Eringen
(1964), the theory of micropolar fluids has been widely applied, for example in the
modeling of blood, Ariman et al (1973), particle suspensions, liquid crystals, lubri-
cation, Prakash and Sinha (1975), and colloidal suspensions, Eringen (1991). In a
series of papers, Müller and Vilchevskaya extended micropolar theory and investi-
gated the production of microinertia, see Müller and Vilchevskaya (2017); Müller
et al (2017); Müller and Vilchevskaya (2018); Vilchevskaya and Müller (2018). This
extension may be applied to problems with microstructural changes.
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In this study the effect of micropolar material parameters is investigated through
parameter variations using a numerical model. The flow problem considered in
the parameter study is the lid-driven cavity problem. This is a (benchmark) prob-
lem in fluid mechanics. Many authors report numerical solutions for the flow of
a Navier–Stokes fluid in a two or three dimensional cavity using different numer-
ical techniques, see Botella and Peyret (1998); Bruneau and Saad (2006); Cortes
and Miller (1994); Erturk and Gökccöl (2008); Freitas et al (1985); Nallasamy and
Prasad (1977). Furthermore, this problem was studied for a thermally-driven flow of
a buoyant fluid using the Boussinesq approximation, Iwatsu and Hyun (1995); Ka-
reem et al (2016); Le Quere et al (1981), for nanofluids, Tiwari and Das (2007), and
also for multiphase flow, Anders and Weinberg (2011); Chakravarthy and Ottino
(1996). In context of micropolar fluids, thermally-driven convection was studied
for cavities with different geometrical shapes, Aydin and Pop (2007); Bourantas and
Loukopoulos (2014); Gibanov et al (2016a,b); Hsu and Chen (1996); Jena and Bhat-
acharyya (1986); Sheremet et al (2017), and including electromagnetic fields, Türk
and Tezer-Sezgin (2017). Most of the papers on the micropolar cavity problem are
concerned with the influence of micropolar parameters on the onset of convection
(critical Rayleigh number), on the heat transfer and effects of the “vortex viscosity”
on the heat generation. However, a parameter study neglecting thermal effects and
only focusing on the mechanical behavior has not yet been conducted to the best of
the authors’ knowledge.

Following a presentation of the theory of micropolar fluids in Sect. 28.2, two flow
situations are considered: Couette flow as a reference problem and the lid-driven
cavity flow. The governing equations are specialized for these two-dimensional
problems in Sect. 28.3 and subsequently solved numerically using the finite ele-
ment method. The numerical procedure is described in Sect. 28.4 and a convergence
analysis is performed based on the analytical solution for the Couette flow. The pa-
rameter study is presented and discussed in Sect. 28.5 before a conclusion is given
in Sect. 28.6.

28.2 Theory of Micropolar Fluids

In context of a generalized continuum theory, the balance equations of mass, mo-
mentum and energy are supplemented by additional balances for the fields of angu-
lar velocity and moment of inertia. This introduces additional flux terms as well as
production terms in the balance equations and the constitutive equations are mod-
ified in order to account for effects associated to the additional fields. Moreover,
additional constitutive equations for the coupled stress and the production terms are
required. In this paper, the theory of micropolar fluids is employed, in which an
additional independent rotational degree of freedom, namely the angular velocity
field1, ω(x, t), is introduced. In this framework, the microinertia tensor, J(x, t), is

1 The angular velocity field is sometimes also referred to as the microgyration vector, cf. Eringen
(2001).
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an additional field accounting for the inertia of the material against microrotation.
Below, we present the equations governing micropolar fluids and neglect microin-
ertia effects later on.

28.2.1 Governing Local Balance Equations

In spatial description, the governing local equations are the balances of mass, linear
momentum, moment of inertia and spin (Müller and Vilchevskaya, 2018)

dρ

dt
= −ρ(∇ · v) , ρ

dv

dt
= ∇ · σ + ρf ,

dJ

dt
= ω × J − J × ω + χ ,

ρ
d

dt

(
J · ω)

= ∇ · μ+ σ ·· 〈3〉ε + ρm+ ρχ · ω ,

(28.1)
where ρ is the density, v the velocity, σ the Cauchy stress tensor, f the specific
body force, J the inertia tensor, μ the couple stress tensor, m the specific vol-
ume couple, χ the symmetric production of moment of inertia, and

〈3〉
ε the complete

anti-symmetric tensor (density) of rank three. The standard scalar product of two
tensors of second rank can be evaluated via A ··B = AijBij , where Einstein’s
summation convention applies and an orthonormal coordinate system is used. Fur-
thermore, cross products of a second-rank tensor A and a vector b are given by
A× b = (A⊗ b) ·· 〈3〉ε and b×A =

〈3〉
ε ·· (b⊗A).2

This set of equations accounts for microstructural changes, because a produc-
tion term, χ, is present in balance of the moment of inertia tensor. While such a
production is not present in early works on micropolar fluids, see Eringen (1964,
1966), it was later introduced by Eringen (1985) to model a sticking of fluid to
suspended rigid particles, see Eringen (1991, 1985); Zhilin (2006). Other examples
for microstructural changes such as the crushing of particles, Glane et al (2017);
Vilchevskaya and Müller (2018), the expansion of pressurized spherical particles,
Müller and Vilchevskaya (2018), or the orientation and elongation of charged parti-
cles in an electric field, Müller and Vilchevskaya (2018), were proposed in a series
of papers. Therein, different types of constitutive equations for the production term
were studied. According to Zhilin (2006), the production term can be neglected, if
the particles are considered rigid on the microscale. In summary, the question of
whether or not the production term shall be included is a question of modeling of a
specific fluid.

2 In an orthonormal coordinate system, the components of this product may also be expressed as:

(A× b)ij = Aikblεklj .
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28.2.2 Constitutive Laws and Field Equations

The local balances stated in Eq. (28.1) need to be supplemented by suitable consti-
tutive equations. In this study, the quantities χ, g, and m are neglected later and
linear constitutive relations for the flux terms σ and μ are employed. For isotropic
micropolar fluids the following constitutive relations were derived in, e.g., Cowin
(1974); Eringen (2001); Zhilin (2006) and are applied subsequently:

• The Cauchy stress tensor is given by

σ = (−p+ λ∇ · v)1+ 2μD − 2τ(W +
〈3〉
ε · ω) , (28.2)

where D is the symmetric and W is the skew-symmetric part of the velocity
gradient v ⊗ ∇. In Eq. (28.2), p denotes the thermodynamic pressure, λ and
μ the volume and shear viscosity, respectively, and τ is an additional viscosity
associated to rotational shear, which also has the unit kg m−1 s−1. The vorticity,
w = ∇× v/2, may be referred to as regional angular velocity, Cowin (1974),
and is the axial vector of the skew-symmetric part of the velocity gradient with
W = −〈3〉

ε ·w. Thus, the last term in Eq. (28.2) is a difference between the local
angular velocity and the vorticity. Therefore, we may refer to τ as rotational
shear viscosity. Note that, in the limiting case τ → 0, the constitutive relation
of an ordinary Navier–Stokes fluid is recovered.
• The couple stress tensor can be written as:

μ = α(∇ · ω)1+ 2βQ− 2γR , (28.3)

where Q is the symmetric and R the skew-symmetric part of the angular veloc-
ity gradient ω ⊗ ∇. Here, α, β and γ are generalized viscosities that have the
unit kg m s−1. The constitutive relations for the Cauchy stress and couple stress
tensor is similar. However, it should be noted that the couple stress tensor, μ,
does not have a direct functional dependency on the velocity field, which is not
the case for the Cauchy stress tensor, σ.

In the following, we restrict the analysis to constant material coefficients. Inser-
tion of the constitutive equations specified above gives rise to the following field
equations:

0 =
dρ

dt
+ ρ(∇ · v) , dJ

dt
= ω × J − J × ω + χ ,

ρ
dv

dt
= −∇p+ (λ+ μ− τ)∇[∇ · v] + (μ+ τ)Δv + 2τ∇× ω + ρf ,

ρ
d

dt
(J · ω) = (α+ β − γ)∇[∇ · ω] + (β + γ)Δω − 4τω + (28.4)

+ 2τ∇× v + ρm+ ρχ · ω ,

where Δ is the Laplace operator.



28 Cavity Flow of a Micropolar Fluid - a Parameter Study 415

According to Müller and Vilchevskaya (2018), the production of moment of in-
ertia, χ, must be interpreted as an additional constitutive quantity. However, we
restrict our investigations to rigid spherical particles (on the mesoscale). As a con-
sequence, the moment of inertia tensor is a constant spherical tensor, i.e., J = J01,
the production of moment of inertia vanishes and Eq. (28.4)2 is fulfilled trivially
because ω×J −J ×ω vanishes. Additionally we assume that the micropolar fluid
is incompressible, i.e., the mass density is a constant, ρ0. Moreover, we assume that
the specific body force, f , and the specific volume couple, m, are negligible. Under
these assumptions, Eqs. (28.4) reduce to:

∇ · v = 0 , ρ0
dv

dt
= −∇p+ (μ+ τ)Δv + 2τ∇× ω ,

ρ0J0
dω

dt
= (α+ β − γ)∇[∇ · ω] + (β + γ)Δω + 2τ∇× v − 4τω .

(28.5)

28.3 Problem Statement

In the following, two different problems of a stationary and two-dimensional flow
of a micropolar fluid are considered. Figure 28.1 shows the two different problems.
First, the Couette flow is considered as a reference problem, see Fig. 28.1a. For this
problem, an analytical closed-form solution can be obtained for micropolar fluids,
cf. Cowin (1974), which is subsequently used for a verification of the finite element
method.
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(b) Lid-driven cavity problem.

Fig. 28.1 Example problems.

The second problem is the lid-driven cavity problem, see Fig. 28.1b. At the top
of the cavity, a “conveyor” modeled through purely tangential velocity forces a fluid
motion in the underlying domain.
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28.3.1 Dimensionless Equations

The parameters present in the equations for micropolar fluids are the generalized
viscosities α, μ, τ , α, β, γ and the generalized inertias ρ0, J0. In order to determine
the governing combinations of these material parameters, the problem is written in
dimensionless form. The normalized quantities are introduced as:

x = �ref x̃ , v = vref ṽ , t = tref t̃ , p = pref p̃ , ω = ωrefω̃ , (28.6)

where symbols with a tilde are dimensionless. As usual in fluid mechanics, the time
scale is chosen as the time scale of convective transport, i.e., tref = �ref/vref , and the
pressure is normalized by pref = ρ0v

2
ref . Because of the fact that we will impose

zero spin boundary conditions at walls, the angular velocity field, ω, is solely trig-
gered by the velocity. It seems therefore reasonable to choose the reference angular
velocity accordingly. Here, ωref = vref/�ref is applied to emphasize the influence of
the velocity. As a consequence, the following dimensionless system of equations
arises:

∇̃ · ṽ = 0 ,
dṽ

dt̃
= −∇̃p̃+

1

(1−N2)Re

(
Δ̃ṽ + 2N2∇̃ × ω̃

)
,

dω̃

dt̃
=

1

ΘRe

(
1

M2
∇̃[∇̃ · ω̃] +

1

L2
Δ̃ω̃ +

2N2

(1−N2)

[∇̃ × ṽ − 2ω̃
])

,

(28.7)

with the characteristic numbers

Re =
ρ0vref�ref

μ
, L =

�ref
l

, M =
�ref
m

, N =

√
τ

μ+ τ
,

Θ =
J0
�2ref

, l =

√
β + γ

μ
, m =

√
α+ β − γ

μ
.

(28.8)

Therein, Re is the Reynolds number, N is the coupling number, L, M and Θ are
characteristic length scale parameters. While all of the aforementioned parameters
are dimensionless, the parameters l and m have the dimension of a length. Thus L
and M are referred to as length scale parameters. Note that the parameters N and
L are usually employed in context of Eringen’s micropolar theory, see, e.g., Cowin
(1974); Rueger and Lakes (2016); Singh (1982), because they are characteristic for
solutions of common flow problem such as Hagen-Poiseuille flow, cf. Cowin (1974),
or Couette flow, see Eq. (28.14).

The coupling parameter N may vary between zero and one, where the former
corresponds to a vanishing influence of the mesoscopic scale and the latter rep-
resents a negligible macroscopic scale. Obviously, the limit value N = 0 can be
achieved by considering an ordinary fluid. The case of N = 1, however, is a rather
theoretical limit and only values smaller than one should be considered. The other
length scale parameters such as L and M are positive numbers that may become in-
finite in the limit of a vanishing influence of the mesoscopic scale. In the other limit
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of a strong influence they tend to zero but are always greater than zero, because the
shear viscosity, μ, does not vanish.

We proceed by employing the following two dimensional ansatz for the velocity
and angular velocity to both problems:

ṽ = ṽx(x̃, ỹ)ex + ṽy(x̃, ỹ)ey , ω̃ = ω̃(x̃, ỹ)ez . (28.9)

Note that the angular velocity field is solenoidal in the two-dimensional case and
therefore the parameter M is not present in the equations specialized for two-
dimensional flows. The simplified dimensionless system reads:

∇̃ · ṽ = 0 , ṽ · (∇̃ ⊗ ṽ) = −∇̃p̃+
1

(1−N2)Re

(
Δ̃ṽ + 2N2∇̃ × ω̃

)
,

ṽ · (∇̃ω̃) =
1

ΘRe

(
1

L2
Δ̃ω̃ +

2N2

(1−N2)

[
(∇̃ × ṽ) · ez − 2ω̃

])
. (28.10)

In contrast to a Navier–Stokes fluid with the Reynolds number as a single character-
istic parameter, there are four characteristic parameters for a micropolar fluid. For
a discussion of the rough orders of magnitude of the dimensionless parameters in
context with blood flow the reader is referred to Sect. 28.5.

28.3.2 Boundary Conditions and Boundary Value Problems

For the statement of a complete problem, the equations presented above need to be
supplemented by boundary conditions. For ordinary fluids physically correct bound-
ary conditions seem to be “intuitively” clear, so that it is customary to impose (say)
no-slip boundary conditions for the velocity at solid walls, because fluids usually
stick to walls. It turns out, that this is neither intuitively clear nor always true. Al-
though the historical review in Day (1990) strongly suggests, that the no-slip bound-
ary condition is applicable in many flow situations, there are papers, e.g., Brenner
(2011); Lauga et al (2007), stating, that there are several mechanisms, which can
lead to slip effects. Lauga et al (2007) state, that although there are different mech-
anisms for slip at fluid-solid interfaces, a distinction is of no practical importance.
Furthermore, the so-called apparent slip length ranges over several orders of magni-
tude up to hundreds of nanometers. However, because usual (macroscopic) experi-
ments are of much larger dimensions, the effect of slip is negligible such that no-slip
boundary conditions at solid walls are reasonably applicable in many flow situations
- at least as a first approximation.

Analogously the question of correct boundary conditions for the angular ve-
locity in the theory of micropolar fluids is still under debate, see Alizadeh et al
(2011); Hogan and Henriksen (1989); Kirwan (1986); Kolpashchikov et al (1983);
Łukaszewicz (1999); Silber et al (2007). There are several suggestions of boundary
conditions for the angular velocity at solid walls, but there is no convincing argu-
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ment for one of them to be always preferable. Most of the suggested conditions can
be categorized in three groups and may be referred to as follows:

• stick (or slip) controlled, where the angular velocity is prescribed due to the
state of the wall (and the fluid) but independently of the velocity,
• vorticity controlled, where the angular velocity is proportional to the vorticity

of the fluid near the wall, or
• force controlled, where the term force also refers to generalized forces and the

angular velocity is influenced through forces and moments acting on the surface
of the fluid.

While the first condition is analogous to the (say) no-slip condition of the velocity,
the same comments as above apply for the angular velocity. Łukaszewicz (1999)
refers to this boundary condition as “physically clear (the viscous fluid sticks to the
solid boundary).” However, another study considers slip conditions and confirms
them by molecular dynamic simulations, Chakraborty and Chakraborty (2008).

Another boundary condition commonly used is to assume that the angular ve-
locity is proportional to the vorticity, Kirwan (1986); Kolpashchikov et al (1983);
Hogan and Henriksen (1989). The reasoning behind this is, that the microstructure
near solid walls needs to become irrelevant such that the angular velocity is solely
given through the vorticity.

A third type of boundary conditions considers the coupling of angular ve-
locity, vorticity and possible moment tractions at interfaces, Aero et al (1965);
Łukaszewicz (1999). However, the correct choice of boundary conditions involv-
ing tractions is still under debate even for ordinary fluids, Sani and Gresho (1994).
The same applies for micropolar fluids. Insights of how to impose angular velocity
boundary conditions experimentally is given in none of the references mentioned
above, see also Rickert et al (2018) for a discussion.

In this paper, only geometric boundary conditions directly applied on the velocity
or angular velocity field are considered. Furthermore, we will impose only no-slip
boundary conditions, because they are experimentally confirmed, Day (1990), at
least for ordinary fluids.

In the Couette flow problem, two parallel plates of infinite extent are moving rel-
atively to each other. The upper plate moves at a prescribed velocity v = v0ex while
the bottom plate is at rest. The angular velocity is assumed to vanish at both plates,
because they are manufactured in such a way not to induce any microrotation. In or-
der to mimic Couette flow, periodic boundary conditions are employed. Hence, the
boundary value problem is to solve Eqs. (28.10) subjected to the following boundary
conditions: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω̃(x̃) = 0 , ṽ(x̃) = 0 , x̃ ∈ Γ1 ,

ω̃(x̃) = 0 , ṽ(x̃) = ex , x̃ ∈ Γ3 ,

ṽ(x̃ = 0, ỹ) = ṽ(x̃ = �/h, ỹ) ,

ω̃(x̃ = 0, ỹ) = ω̃(x̃ = �/h, ỹ) ,
0 < ỹ < 1 .

(28.11)

For the lid-driven cavity problem, it is also assumed that the angular velocity
vanishes at the top. Furthermore, at all other boundaries the velocity and the angu-
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lar velocity vanish. The complete boundary value problem consists of Eqs. (28.10)
subjected to the following boundary conditions:{

ω̃(x̃) = 0 , ṽ(x̃) = ex , x̃ ∈ Γ3 ,

ω̃(x̃) = 0 , ṽ(x̃) = 0 , x̃ ∈ (Γ1 ∪ Γ2 ∪ Γ4) .
(28.12)

28.3.3 Reference Solution

For the Couette flow, an analytical solution is given in Cowin (1974) and derived
in Rickert et al (2018). Cowin (1974) uses a semi-inverse ansatz for the stationary
solution:

v = v(y)ex , ω = ω(y)ez , p = p(y) , (28.13)

for which the convective terms drop out. Hence, the resulting problem is linear and
the following solution can be derived:

v(ỹ)

v0
=

1

2(1− P )

[
2ỹ − P

(
1 +

sinh(NL[2ỹ − 1])

sinh(NL)

)]
,

ω(ỹ)
v0/h

=
1

2(1− P )

[
cosh(NL[2ỹ − 1])

cosh(NL)
− 1

]
, P =

N

L
tanh(NL) ,

(28.14)

where ỹ = y/h is the dimensionless vertical coordinate and for the dimensionless
numbers �ref = h is applied. The solution does not depend on the parameter Θ,
which describes the influence of the microinertia.

28.4 Numerical Treatment

We solve the resulting set of dimensionless partial differential equations (28.10)
using the finite element method. A spatial discretization based on the stable P2-
P1 Taylor-Hood element for velocity and pressure is employed, Taylor and Hood
(1973). The scalar angular velocity is discretized using a P1 element. We describe
the derivation of the weak form for both of the proposed problems in the Appendix.

The FEniCS library, Alnæs et al (2015); Logg et al (2012), as applied for many
problems in continuum mechanics (Abali, 2017), allows to solve the finite element
problem once the weak form is implemented. The discrete weak form represents
a set of nonlinear algebraic equations, which is commonly solved using Newton’s
method. However, for our stationary problem, there is no appropriate initial guess
available. Due to this fact, the solution procedure is altered and based on a hybrid
approach possessing a larger convergence radius (Elman et al, 2006). This hybrid
approach first performs a Picard iteration and as a second step applies Newton’s
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method. The main difference between the two steps lies in the linearization of the
convective term, see Elman et al (2006).

The parameter study requires a series of subsequent simulations and while one
parameter is varied, we use the previous solution as the initial guess. This reduces
the number of iterations required. In this sense, our method can also be regarded
as a continuation method. Nevertheless, we tested the hybrid approach without pa-
rameter continuation and the simulations converged over the entire range of tested
parameters.

28.4.1 Convergence Analysis

In order to verify the implemented finite element code, we perform a convergence
analysis based on the analytical solution of the Couette flow problem. The set of
nominal values for the dimensionless parameters given in Sec. 28.5 is used. The
error of the numerical solution obtained from the finite element program w.r.t. the
analytical solution is computed using the following error measures:

eabs(ψ) =

∫
V
‖ψana − ψnum‖ dV∫

V
dV

, erel(ψ) =

∫
V
‖ψana − ψnum‖ dV∫

V
‖ψana‖ dV

,

(28.15)
where the ‖·‖ is the absolute value if ψ is a scalar and the Eulidean norm if ψ is
a vector. Here, eabs and erel refer to the absolute and relative error respectively.
Furthermore, ψana and ψnum denote the analytical and the numerical solution, re-
spectively. A series of simulations on globally refined meshes is performed and the
fineness of the mesh is characterized by the number of nodes, n, in the vertical di-
rection of the channel (ey direction). Although the mesh is not successively refined,
the aspect ratio of the elements remains constant in the refinement process, which
ensures that the quality of the elements is not deteriorated.

Figure 28.2 shows the results of the convergence analysis. The errors for the ve-
locity (Fig. 28.2a) as well as for the angular velocity (Fig. 28.2b) decrease monotoni-
cally for the relative and the absolute error as the number of nodes is increased. Both
regression lines have a slope of −2 in the double logarithmic chart, which indicates
that the method is of second order. In conclusion, our finite element implementation
to simulate the stationary flow of a micropolar fluid is convergent and therefore it
is considered as a reliable tool to assess the influence of the model parameters in
more complex flow situations. The largest number of nodes in the vertical direction
applied in the convergence analysis is 800, which corresponds to 645 284 degrees
of freedom in total.
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•absolute error �relative error regression line

102 103

10−5

10−6

10−7

10−8

1
−2.01

n

e(
ṽ
)

(a) Errors w.r.t. the velocity field.
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(b) Errors w.r.t. the angular velocity field.

Fig. 28.2 Convergence results for the Couette flow problem. The legend above applies for both
diagrams.

28.5 Results and Discussion

In this section, the results of the parameter study for the lid-driven cavity problem
shown in Fig. 28.1b are presented. The computations are performed on an equidis-
tant grid using 100 points in horizontal and vertical direction. For the parameter
analysis a set of nominal values is selected and only one parameter at a time is var-
ied in a given range. The following nominal values are chosen: Re = 200, L = 0.4,
N = 0.25, and Θ = 10−9. This choice as well as the parameter ranges will be
motivated by the following considerations.

In context of blood flow with a viscosity of μ = 3× 10−3 kg m−1 s−1 to 4× 10−3

kg m−1 s−1 (Popel and Pittman, 2000), the nominal Reynolds number corresponds
to a mean velocity of 5.6× 10−2 m s−1 to 7.6× 10−2 m s−1 for a reference length
of 1 cm. If the reference length is 1mm, the mean velocity ranges from 5.6× 10−1

m s−1 to 7.6× 10−1 m s−1. Comparing these values with the ones given in Lieber
(2000) suggests that the Reynolds number is slightly too high when considering
arterioles. However, blood flow is not stationary and the Reynolds number, which
depends on the type of the blood vessel and ranges from approx. 0.005 to 7000, ex-
ceeds six orders of magnitude (Caro et al, 2012). Therefore, the Reynolds number
is varied over a large range in this study.

Based on the viscosities for human blood specified in Kang and Eringen (1976)
and Papautsky et al (1999), N = 0.25 and L = 0.4 is obtained as a rough estimate
for a reference length of 1 cm. The length scale parameter L decreases linearly, if
the reference length decreases, but it strongly depends upon the viscosities and may
therefore vary over a larger range. In order to obtain an estimate for Θ, erythrocytes
are considered as a principle of component of blood. Applying �ref = 0.1mm to 1
mm for the diameter of small arteries or terminal branches (Schneck, 2000), and
d ≈ 7.5 μm for the diameter of erythrocytes, Schneck (2000), gives J0 ≈ 10−12 m2



422 Wilhelm Rickert & Sebastian Glane

and Θ = 10−6 to 10−5. This number would of course increase to 10−2 for arterioles
(d < 100 μm) or even to 1 for capillaries (d < 10 μm), see Schneck (2000).

In view of the facts outlined above, the Reynolds number is varied from the 0.01
to 5000. The coupling parameter N is varied from 0 to 0.95. The length scale L is
varied from 10−3 to 102, where the latter represents a rather extreme case. Finally,
the parameter Θ characterizing microinertia is varied from 10−9 to 1.

28.5.1 Vertical and Horizontal Profiles

The results are presented by using line plots of the velocity and angular velocity
along the vertical and horizontal middle lines of the cavity, see dashed lines in
Figs. 28.3. In Fig. 28.3a an example of the streamline of the flow of an ordinary
Navier–Stokes fluid is given. There is a main eddy located close to the center and
two so-called Moffatt eddies are present at the two bottom corners, Moffatt (1964).
The eddy structure of this problem was explored in detail for Navier–Stokes fluids.
It was shown that another eddy occurs close to the top-left corner and secondary cor-
ner eddies are present for higher Reynolds numbers (Shankar, 1993; Shen, 1991).

Figures 28.4 and 28.5 show the profiles for varying values of N . Considering the
horizontal and vertical profiles of the angular velocity, it is evident that the larger the
value of N the larger the amplitudes of the angular velocity. The angular velocity
is mainly negative along the horizontal and vertical profile for small to moderate
values of N . There are small domains at the boundaries, where the angular velocity
is positive.3 These domains grow for large values of N . This suggests that the
parameter N gradually changes the spatial structure of the angular velocity field,
whereas the qualitative behavior is not altered. The influence of the parameter N on
the velocity profiles is not so strong when compared to the angular velocity. Slight
changes are visible, which are more prominent in the vertical profile.

Figures 28.6 and 28.7 show the profiles for varying values of L. In the profiles
of the angular velocity the formation of a very thin boundary layer is visible—the
larger L the thiner the boundary layer. The boundary layer is most prominent at
the top of the cavity, whereas there is no layer at the bottom. At the left and right
walls, boundary layers are also present. Although the amplitudes differ only by an
order of magnitude compared to those obtained for large values of N , the qualitative
structure of the profiles for the angular velocity is very different when L is varied.
Comparing the angular velocity profiles for varying L among each other shows,
that apart from a scaling a marginal shift in the spatial structure is visible. The zero
crossings move gradually, if L varies. For the influence of the parameter L on the
velocity profiles, the same applies as for the parameter N—a significant change was
not observed.

Figures 28.8 and 28.9 show the profiles for varying values of Re. Increasing
the Reynolds number above approximately 100 results in changes of the velocity

3 These domains are not really visible due to the scaling.
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Fig. 28.3 Streamlines (a) and profiles of the velocity (b, c) for the lid-driven cavity problem of a
Navier–Stokes fluid with Re = 200. Color indicates the magnitude of the velocity.

profiles. If the Reynolds number is below approximately 10, the profiles of the
velocity are identical for the horizontal and vertical direction regardless of the value
of Re. The same holds true for the angular velocity. At higher Reynolds numbers,
a boundary layer develops and the center of the main vortex (zero crossing of the
velocity in the vertical profile) moves downwards. Regarding the vertical profiles,
there is a correlation of the angular velocity with the velocity—the minimum of the
angular velocity is roughly located where the velocity is zero. This effect is also
visible in the right inset of Fig. 28.8 in terms of a decrease of the angular velocity
at x̃ ≈ 0.5 for Re ≥ 200. We stress that this decrease is not due to a change of
the underlying solution because the angular velocity is linked to the velocity field



424 Wilhelm Rickert & Sebastian Glane

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

x̃

ṽ
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Fig. 28.4 Horizontal profiles of the velocity and angular velocity for different values of N . The
other parameters Re, L, and Θ have nominal values.

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
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Fig. 28.5 Vertical profiles of the velocity and angular velocity for different values of N . The other
parameters Re, L, and Θ have nominal values.
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Fig. 28.6 Horizontal profiles of the velocity and angular velocity for different values of L. The
other parameters Re, N , and Θ have nominal values.
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Fig. 28.7 Vertical profiles of the velocity and angular velocity for different values of L. The other
parameters Re, N , and Θ have nominal values.
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ṽ
y
(x̃

,ỹ
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Fig. 28.8 Horizontal profiles of the velocity and angular velocity for different values of Re. The
other parameters L, N , and Θ have nominal values.

for chosen set of parameters. Finally, note that the angular velocity in Figs. 28.8 and
28.9 is three orders of magnitudes smaller than for example in Figs. 28.6 and 28.7.

The last parameter, which was varied, is the microinertia parameter Θ. An influ-
ence of the microinertia parameter was not observed in the velocity field for the set
of nominal values chosen in this study. This is expected because Θ is not present in
the balance of linear momentum. The angular velocity field is also not significantly
altered for small and moderate values of Θ.

In summary, the approach of varying one parameter while the others parameter
keep their nominal values has shown that the microinertia has the smallest effect
on the structure of the solution. However, this is only true for the considered case
and parameter set. The velocity field changes the most, if the Reynolds number is
increased. But smaller alterations are also observable in the velocity field, if the
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Fig. 28.9 Vertical profiles of the linear and angular velocity for different values of Re. The other
parameters L, N , and Θ have nominal values.

micropolar viscosity parameters L and N are changed. The micropolar viscosity
parameters L and N both yield to the changes in the angular velocity field. The
largest amplitudes associated with these parameters are approximately 0.3 and 3 re-
spectively. In a broad sense, the parameter N scales the solution, whereas increasing
values of the parameter L result in a stronger boundary layer.

28.5.2 Analysis of the Angular Velocity Field

Figure 28.10 shows the angular velocity for a representative selection of parameters
combinations. In Figs. 28.10a and 28.10b, the microrotation is confined to the top
layer of the cavity and the spatial structure is strongly connected to the velocity field,
see Fig. 28.3a. Comparing Figs. 28.10a to 28.10b suggests that the region at the top
gets wider and thiner if N is increased. In Figs. 28.10c and 28.10d, boundary layers
become apparent. They are strongest close to the top-right corner of the cavity and
the angular velocity penetrates deeper regions of the cavity.

An explanation might be that for the considered parameter set the convective
term in Eq. (28.10)3 can be dropped because the product ΘRe is small. This gives
the following spin balance:

1

L2
Δ̃ω̃ +

2N2

(1−N2)

[
(∇̃ × ṽ) · ez − 2ω̃

]
= 0 , (28.16)

which is interpreted as a Helmholtz equation for ω̃ with the source term ∇̃ × ṽ. If
the parameter L is large, the diffusive term is negligible because the factor N2/(1−
N2) is of order 1 for N < 0.9. In the limit, we can make the approximation ω̃ ≈
(∇̃ × ṽ)/2 · ez , which means that the angular velocity ω̃ is directly coupled to the
vorticity. This approximation was roughly confirmed for L = 50 by comparing the
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Fig. 28.10 Angular velocity field ω̃ for different values of N and L. The other parameters have
nominal values.

spatial structure of the angular velocity field with the one of the vorticity using our
numerical results. However, for moderate values of L, the terms governed by the
coupling parameter N are balanced with the diffusion term. This seems to weaken
the coupling mechanism because strong gradients close to the walls and corners are
smoothed by diffusion. In conclusion, the findings suggest the dominant parameter
for the lid-driven cavity problem is the micropolar viscosity parameter L.
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ỹ

−5.75 −4 −3 −2 −1 0

×10−2

(b) N = 0.8, L = 0.4.

0 0.5 1
0

0.5

1

x̃

ỹ
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28.6 Conclusion

This paper presents a parameter study of a micropolar fluid in a lid-driven cavity
using the nominal values: Re = 200, L = 0.4, N = 0.25, and Θ = 10−9, which
were discussed in context with the example of blood flow. Based on our results, we
find that for the lid-driven cavity flow problem:

• The Reynolds number has the strongest effect on the velocity field and only in-
fluences the angular velocity by enhanced convective transport to lower regions.
The observed effects are analogous to the results for a Navier–Stokes fluid.
• The microviscosity parameters L and N govern the coupling mechanism be-

tween velocity and angular velocity. Their influence on the velocity is rather
weak but strong regarding the angular velocity. For the both parameters, the
angular velocity is confined in the top half of the cavity. Especially, the param-
eter L was identified as the one responsible for the formation of thin boundary
layers close to the top-right corner.
• By scaling arguments, we explained the role of the parameter L in the spin

balance for the considered case. We showed that low values of L smooth the
solution for the angular velocity, whose source is located at regions of large
velocity gradients, e.g., at boundary layers. The larger L the less the diffusivity
and the more is the angular velocity confined to these boundary layers.
• The microinertia parameter Θ has almost no influence on the results. Only very

large values of Θ lead to visible alterations in the angular velocity field.

Our study points to several aspects, which could be addressed in future work.
First, we have only varied one parameter at a time, which limits us to lines in the
parameter space. A full coverage of the parameter space allows to fully explore the
mutual influence of the parameters. Secondly, stationary solutions were computed,
which may be not be stable at all. Because of this, a stability analysis should be per-
formed by either integrating the equations in time using the precomputed station-
ary solution as an initial condition or by performing a linear perturbation analysis.
Third, the example of buoyancy driven flow in the cavity should be studied to further
explore the impact of the parameters identified in this study. This could also incor-
porate microstructural changes due to temperature or pressure fluctuations, which
were proposed in Müller and Vilchevskaya (2017).

Appendix: Weak Forms

For the finite element formulation of Eqs. (28.10), weak forms of the differential
equations need to be derived. Subsequently, the following short hand notation for
inner products in the volume and on the boundary will be applied:

(
A,B

)
Ω
=

∫
Ω

A %B dV ,
〈
A,B

〉
Γ
=

∫
Γ

A %B dA ,
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where A % B represents the contraction of two tensors A and B of arbitrary rank
to a scalar. Here, Ω denotes the domain of integration with the boundary Γ = ∂Ω.
With the help of the operators

A(φ,ψ) =
(∇̃ ⊗ φ, ∇̃ ⊗ψ

)
Ω
, B(φ, ψ) =

(∇̃ · φ, ψ)
Ω
,

C(φ,ψ) =
(
ṽ · (∇̃ ⊗ φ),ψ

)
Ω
, DΓ(φ,ψ) =

〈
φ,ψ × ez

〉
Γ
,

D(φ,ψ) =
(
φ, ∇̃ · (ψ × ez)

)
Ω
=

(
φ,

∂ψy

∂x
− ∂ψx

∂y

)
Ω
,

a multiplication of Eqs. (28.10) with test functions δp, δv, δω, δJ and subsequent
integration over the (dimensionless) domain gives rise to the following weak forms:

B(ṽ, δp) = 0 ,

C(ṽ, δv) = B(δv, p̃)− 〈
p̃n, δv

〉
Γ
+

2N2

(1−N2)Re

{
D(ω̃, δv)−DΓ(ω̃n, δv)

}
+

+
1

(1−N2)Re

{〈
n · (∇̃ ⊗ ṽ), δv

〉
Γ
−A(ṽ, δv)

}
,

C(ω̃, δω) =
1

L2ΘRe

(〈
n · (∇̃ω̃), δω

〉
Γ
−A(ω̃, δω)

)
+

+
2N2

(1−N2)ΘRe

(
D(δω, ṽ)− 2

(
ω̃, δω

)
Ω

)
.

For the lid-driven cavity problem, pure Dirichlet boundary conditions are considered
in form of no-slip conditions for both the velocity and angular velocity. In this case,
the test functions δp, δv and δω vanish at the boundary and therefore all boundary
terms vanish. Hence, the simplified weak forms can be written as:

B(ṽ, δp) = 0 ,

C(ṽ, δv) = B(δv, p̃)− 1

(1−N2)Re

(
A(ṽ, δv)− 2N2D(ω̃, δv)

)
,

C(ω̃, δω) =
1

ΘRe

[
2N2

(1−N2)

(
D(δω, ṽ)− 2

(
ω̃, δω

)
Ω

)
− 1

L2
A(ω̃, δω)

]
.

The same holds for the Coutte flow except for the periodic boundaries Γ2 and Γ4.
The surface integral related to the pressure, p, vanishes due to periodicity. The pres-
sure gradient has the same values at Γ2 and Γ4, but the normal vectors have a dif-
ferent direction, i.e., nΓ2

= −nΓ4
. Therefore, the simplified weak forms for the

Couette flow can be expressed as:
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B(ṽ, δp) = 0 ,

C(ṽ, δv) = B(δv, p̃) +
2N2

(1−N2)Re
D(ω̃, δv) +

+
1

(1−N2)Re

{〈
n · (∇̃ ⊗ ṽ), δv

〉
Γ
−A(ṽ, δv)

}
,

C(ω̃, δω) =
1

L2ΘRe

(〈
n · (∇̃ω̃), δω

〉
Γ
−A(ω̃, δω)

)
+

+
2N2

(1−N2)ΘRe

(
D(δω, ṽ)− 2

(
ω̃, δω

)
Ω

)
.
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