
Chapter 22

Theory and Computation of Nonlinear Damage

Accumulation for Lifetime Prediction

Anton Matzenmiller & Ulrich Kroll

Abstract Nonlinear damage accumulation is modelled for the lifetime prediction in
order to capture the loading sequence effect, which is the influence of the chrono-
logical order of the loading values on the lifetime. The prediction results from the
solution of the damage evolution equation, which is defined according to the theory
of continuum damage mechanics and applied together with a cohesive zone model
for structural adhesive joints. The damage model consists of a creep and fatigue
damage part, both taking into account the influence of the mean stress and the load
multiaxiality on the predicted time to rupture. The analytical investigation of the
model shows the meaning of the model parameters and propose their identification
by means of tests with static and constant amplitude loading. In order to capture
the loading sequence effect by nonlinear damage accumulation, the fatigue dam-
age part is enhanced with a factor, which influences the predicted lifetime due to
variable amplitude loading in the case of pure fatigue damage, while the prediction
for constant amplitude loading is unaffected. The influences of the enhancement on
the predicted lifetime and the damage evolution are discussed. The comparison of
lifetimes with numerical predictions proves the validity of the proposed approach.

Keywords: Damage mechanics · Lifetime prediction · Adhesive joints

22.1 Introduction

Components in engineering applications suffer sustained mechanical service load-
ing. In the particular case, where two constant values exist for each the local max-
ima and minima, which e. g. is the case for the harmonic, sawtooth wave or triangle
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wave function, service loading is called constant amplitude (CA) loading, otherwise
variable amplitude (VA) loading. Fatigue damage is contributed due to each loading
cycle, which may be defined by the load reversals of two neighbouring local maxima
or minima of the service loading and the corresponding values in between. In high
cycle fatigue (HCF), fatigue damage is accumulated over a large number of loading
cycles – usually more than several tens of thousands up to millions – and causes the
gradual degradation of the integrity (load bearing capacity) at a material point. After
a certain time, the material lifetime, the complete integrity of the material point is
lost and a local crack initiates. The loading continues and the crack grows, while
other cracks may initiate and grow at different material points. As a consequence of
this process of degradation, after some time, the structural lifetime, there remains no
load bearing capacity of the structure, which leads to fatal failure of the component.
Therefore, the operation time of the component must not exceed its lifetime, which
has to be ensured by lifetime prediction.

The lifetime prediction for components and structures is generally performed by
use of technical codes and guidelines, e. g. Normenausschuss Bauwesen (NABau)
im DIN (2010, 2011); Rennert et al (2012) for steel and aluminium components.
These guidelines propose empirical methods, which are highly adapted to particular
applications and make use of a variety of simplifying assumptions for the process
of fatigue. Most of the assumptions apply superposition, which leads to linearity.
Therefore, nonlinear phenomena are not captured, although they may have a great
influence on the material and the structural lifetime. One of these nonlinear phe-
nomena is the loading sequence effect, which is the influence of the chronological
order of the loading values on the lifetime. The sequence effect is modelled with so
called nonlinear damage accumulation, for which the damage increments cannot be
easily superimposed, which is usually the case in common procedures for lifetime
prediction. Nevertheless, several lifetime prediction methods introduce influencing
factors for the consideration of nonlinear phenomena for the particular component,
material and application, e. g. influencing factors for temperature, surface condition,
loading sequence, mean stress, frequency, multiaxiality etc. Such methods cannot be
easily transferred to different materials and structures and are not able to be applied
in general. As a consequence, different lifetime prediction methods have been pro-
posed for various materials, components and applications. Furthermore, because of
this lack of generality, there exist no commonly accepted lifetime prediction meth-
ods for a number of joining techniques such as adhesive bonding.

Continuum damage mechanics (CDM) strives to overcome this shortcoming. In
contrast to conventional methods, the lifetime prediction for the structure is an out-
come of the lifetime prediction for each material point and the consideration of the
whole loading process. The representation of all material phenomena results from
the definition of the constitutive equations for the stress and the internal variables
in the framework of continuum mechanics. Thereby, one internal variable repre-
sents material damage, which evolution equation is adapted to the description of the
fatigue process in order to predict the material lifetime.

The lifetime prediction with CDM started with the approach in Kachanov (1958)
for the prediction of the creep rupture time of brittle materials in the uniaxial case



22 Theory and Computation of Nonlinear Damage Accumulation . . . 311

by means of the definition of the so called continuity, which stands for structural
integrity. In Lemaitre and Chaboche (1975), first, damage is defined as the con-
trary variable to the continuity. Second, the approach in Kachanov (1958) is ex-
tended for nonlinear creep damage accumulation and, third, a creep-fatigue dam-
age model is proposed, for which the formalism of the creep damage approach in
Kachanov (1958) is transferred to fatigue damage. The creep-fatigue damage model
in Lemaitre and Chaboche (1975) is a differential equation in terms of differential
damage, time and loading cycles. The model extension for multiaxial loading and
plastic damage is proposed in Lemaitre (1979), where the inclusion of the dam-
age theory into thermodynamics of irreversible processes is also addressed. The
predicted creep-fatigue damage interaction of the proposed theory is presented in
Lemaitre and Plumtree (1979); Cailletaud and Levaillant (1984) and Cailletaud et al
(1984), where two-level loadings with pure creep and pure fatigue levels are con-
sidered. In Chaboche (1981), the theory of CDM and its application for lifetime
prediction are reviewed, accompanied by further studies of creep-fatigue damage in-
teraction and one of the first approaches for the application of CDM for anisotropic
damage, which has been also initially investigated in Murakami and Ohno (1981). In
Chaboche (1978); Lemaitre (1984), an enhancement of the model in Lemaitre and
Chaboche (1975) for the consideration of nonproportional loading is presented. The
developed methods and approaches of CDM for lifetime prediction are reviewed
again in Lemaitre (1984); Chaboche (1987); Krajcinovic and Lemaitre (1987);
Chaboche (1988a,b). In Chaboche and Lesne (1988), the main features of the ap-
proach in Lemaitre and Chaboche (1975) are reviewed and discussed. The lifetime
prediction with CDM has been further developed in Paas et al (1993) and applied in
Lemaitre and Doghri (1994). All the results mentioned before are part of the mono-
graphs Lemaitre and Chaboche (1990); Lemaitre (1996); Lemaitre and Desmorat
(2005). In Lemaitre and Desmorat (2005), the extension of the proposed approaches
with criterions suitable for fatigue damage evolution due to nonproportional loading
is mentioned. A short review of the theory and a discussion of improvements for fu-
ture investigations are presented in Chaboche (2003). In Chaboche (2011), several
models for nonlinear damage accumulation are discussed, including the model in
Lemaitre and Chaboche (1975) and Chaboche and Lesne (1988).

In CDM, the solution of the damage differential equation results in the predicted
number of cycles until rupture for a given stress level. This result is called stress-
number (S-N) model, which e. g. takes the form of the Basquin equation (Basquin,
1910) and represents the influence of the amplitude of mechanical CA loading on
the lifetime. Other influences of CA loading are related to mean stress, frequency,
difference of tension and compression as well as multiaxiality. As in the case of
the influence of the amplitude, all these influences are considered by the solution
of the damage differential equation. Even the influence of nonproportional (out of
phase) loading can be taken into account, which may result from different phases
of the stress components. For VA loading, it is well known that also the load-level
sequence has an effect on the lifetime (Lemaitre and Chaboche, 1990). The mod-
elling of this effect by nonlinear damage accumulation is of great importance for the
warranty of fatigue durability due to lifetime prediction, since linear damage accu-
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mulation generally leads to a significant overestimation of the lifetime for complex
VA loading cases, based on load spectra and standardised loadings from measure-
ments during service (Chaboche, 2011, p. 50). This observation is also made for
adhesives, see Erpolat et al (2004). Hence, the loading sequence effect must be con-
sidered in order to prevent the overestimation of the lifetime of adhesively bonded
components and possible disastrous consequences.

In this contribution, a creep-fatigue damage model is presented and its consider-
ation of the loading sequence effect by nonlinear damage accumulation is explained
in detail. Although the model at hand is applied through a cohesive zone model
for the lifetime prediction of adhesively bonded joints, the general characteristics
for the consideration of the loading sequence effect can be directly transferred and
applied for the lifetime prediction of various materials.

22.2 Modelling of Damage Growth

The theory of CDM is transferred to the cohesive zone model, relating the sepa-
ration ΔΔΔ via the constitutive equation to traction t =

[
tt tb tn

]T
, which consists

of the tangential tt, binormal tb and normal stress component tn and is calculated
according to effective stress concept (Rabotnov, 1963, 1969) for the multiaxial case
(Murakami and Ohno, 1981; Lemaitre and Chaboche, 1990):

t = (1−D)t̃ , D ∈ [0, 1] . (22.1)

The effective traction t̃ = t̃(ΔΔΔ) represents the material behaviour without consider-
ation of damage D. Every damage free model can be used for the effective traction
t̃, e. g. constitutive equations for a (visco-)elastic-(visco-)plastic cohesive model.
The damage free state is characterised by D = 0. Mechanical loading causes initia-
tion and growth of voids and, thus, increase of damage, which results in D > 0. If
mechanical loading is further applied, then this process continues until local rupture
at D = 1. For this damage evolution, a differential equation must be defined, which
has to be suitable for the particular case of application. The additive split of the
damage increment dD is proposed in Lemaitre and Chaboche (1975) for lifetime
prediction: damage consists of the creep dDc and fatigue damage part dDf , both
caused by sustained loading:

dD = dDc + dDf . (22.2)

Based on this idea, Eq. (22.2) is reformulated in Matzenmiller and Kurnatowski
(2012); Kroll and Matzenmiller (2017) in order to define a differential equation
in time according to the general framework of continuum mechanics with internal
variables (Truesdell and Toupin, 1960; Coleman and Gurtin, 1967):

Ḋ = Ḋc + Ḋf . (22.3)
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For the lifetime prediction in the case of long-term sustained static and cyclic load-
ing, the creep Ḋc and fatigue damage evolution Ḋf must be specified. In view of
the additive split of creep and fatigue damage in Eq. (22.3), creep damage should
primarily evolve due to creep loading while fatigue damage should mainly evolve
due to loading cycles.

22.2.1 Creep Damage Evolution

For the creep damage evolution Ḋc in Eq. (22.3), the following model is pro-
posed in Matzenmiller and Kurnatowski (2012) and based on the uniaxial version in
Kachanov (1958):

Ḋc =
1

c0

( 〈σeqc − σdc〉
σref(1−D)

)n

, c0 = 1 s . (22.4)

Creep damage evolves due to the following equivalent stress, which depends on the
tractions in Eq. (22.1) and reads

σeqc =
√
〈b1ct2n + b2ctn + t2t + t2b〉 , (22.5)

where positive tractions ti > 0, i = t, b, n are assumed for simplicity. Hence, alter-
nating stress and pressure are not considered in this contribution but are addressed
in Kroll and Matzenmiller (2017); Kroll (2018). The parameters b1c and b2c in Eq.
(22.5) take into account the multiaxiality of the loading (Kroll and Matzenmiller,
2017; Kroll, 2018). The constant c0 in Eq. (22.4) is introduced for consistent units.
The Macaulay operator 〈x〉 = (x + |x|)/2 in Eq. (22.4) results in no creep dam-
age evolution, if the loading is below the creep limit σdc. The meaning of the two
remaining creep damage model parameters n and σref is demonstrated by means
of creep loading, for which the tractions in Eq. (22.1) are constant: ti = const.,
i = t, b, n. If creep loading results in pure creep damage in Eq. (22.3), i. e. Ḋf = 0,
D = Dc, then Eq. (22.4) yields

Ḋc =
1

c0

( 〈σeqc − σdc〉
σref(1−Dc)

)n

. (22.6)

If separation and integration are applicable, then the characteristics of the damage
differential equation for lifetime prediction arise from three solutions, which are
obtained by use of different limits.

For the first solution of Eq. (22.6), separation and integration of the damage equa-
tion (22.6) from zero damage D = 0 at time t = 0 until total failure D = 1 at
rupture time tR for creep loading σeqc = const. > σdc results in the following
expression, cf. Kachanov (1958):
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1∫
0

(1−Dc)
ndDc =

tR∫
0

1

c0

(
σeqc − σdc

σref

)n

dt ⇒ tR =
c0

n+ 1

(
σref

σeqc − σdc

)n

.

(22.7)
Application of the logarithm and rearrangement of terms yields the double logarith-
mic straight line

ln (σeqc − σdc) = − 1

n
ln

tR
c0

+ ln
σref

(n+ 1)
1
n

. (22.8)

The meaning of the creep damage parameters n and σref becomes apparent in Eq.
(22.8), which is illustrated in Fig. 22.1(a): Parameter n determines the slope of the
double logarithmic straight line and σref stands for the ordinate value for fixed n.

The second solution of Eq. (22.6) is performed for a virgin material with D = 0
at t = 0 until damage D at time t for creep loading σeqc = const., σeqc > σdc, see
Lemaitre and Chaboche (1975):

1

1

− 1
k+1

σeqf = σdf

log
σu(1−R)

2 k+1
√
1−Rk+1

logNR

log σeqfa

− 1
n

σeqc = σdc

log
σref

(n+ 1)
1
n

log(tR/c0)
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Fig. 22.1 Influence of parameters: (a) influence of creep damage parameters on predicted time to
rupture; (b) influence of fatigue damage parameters on predicted number of cycles to rupture; (c)
influence of parameter n on damage evolution over normalised time according to Eq. (22.9)
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D∫
0

(1−Dc)
n
dDc =

t∫
0

1

c0

(
σeqc − σdc

σref

)n

dt̃ ⇒ D = 1−
(
1− t

tR

) 1
n+1

.

(22.9)
Equation (22.7) has been used for the substitution of rupture time tR in Eq. (22.9),
which is illustrated in Fig. 22.1(c): The parameter n influences the evolution of
damage D over normalised time t/tR between the fixed start and end point at D = 0
and D = 1. In contrast, the parameters σdc and σref do not influence the curve at
all.

The third solution of Eq. (22.6) is obtained by separation and integration from
damage Di−1 at time ti−1 to new damage state Di due to loading σeqc,i = const.,
acting over time Δti (Lemaitre and Plumtree, 1979):

Di∫
Di−1

(1−Dc)
n
dDc =

ti−1+Δti∫
ti−1

1

c0

(
σeqc,i − σdc

σref

)n

dt , (22.10)

Di = 1−
(
(1−Di−1)

n+1 − Δti
tRi

) 1
n+1

. (22.11)

In Eq. (22.11), tRi denotes the time to rupture, if creep loading with σeqc,i is applied
from the undamaged state until total failure, i. e. Eq. (22.7) with tRi instead of tR
and σeqc,i instead of σeqc. Eq. (22.11) represents the actual damage value Di after
the so called load level or load block i = 1, ...,K of a K-level or K-block creep
loading sequence in form of a recurrence relation.

22.2.2 Fatigue Damage Evolution

The following model for fatigue damage evolution Ḋf is based on the approach
in terms of loading cycles in Lemaitre (1979) and proposed in Matzenmiller and
Kurnatowski (2012) for the approach in Eq. (22.3):

Ḋf =

( 〈σeqf − σdf〉
(σu − σdf)(1−D)

)k 〈σ̇eqf〉
σu − σdf

. (22.12)

The equivalent stress depends on the tractions in Eq. (22.1) and is defined as

σeqf =
√
〈b1ft2n + b2ftn + t2t + t2b〉 , (22.13)

whereby positive tractions ti > 0, i = t, b, n are considered for simplicity. As
mentioned before in Sect. 22.2.1, alternating stress and pressure are not considered
here but are addressed in Kroll and Matzenmiller (2017); Kroll (2018). Note that
Ḋf = 0, if σ̇eqf ≤ 0, which includes creep loading ti = const., i = t, b, n, yielding
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pure creep damage evolution, which has been assumed for Eq. (22.6). The parame-
ters b1f and b2f in Eq. (22.13) take the multiaxiality of the loading into consideration
(Kroll and Matzenmiller, 2017; Kroll, 2018). Obviously, the parameter σdf in Eq.
(22.12) represents the fatigue limit. The meaning of the two remaining fatigue dam-
age parameters k and σu becomes apparent, if pure fatigue damage is assumed, i. e.
Ḋc = 0, D = Df . Then, Eqs. (22.3) and (22.12) are represented by

(1−Df)
kdDf =

1

(σu − σdf)k+1
〈σeqf − σdf〉k 〈dσeqf〉 , (22.14)

where separation of variables has been applied. As in the previous Sect. 22.2.1, the
characteristics of the damage equation (22.14) result from three solutions in form of
integrations with different limits.

The first solution results from the integration of damage free material with D = 0
until rupture at D = 1 due to the periodic loading σeqf(t) = σeqf(t + T ) with
smallest period T as well as local and global minimum σeqfmin = minσeqf and
maximum σeqfmax = maxσeqf . An example of such a loading is the harmonic
function

σeqf = σeqfm + σeqfa sin(2πft) (22.15)

with mean stress σeqfm, stress amplitude σeqfa and frequency f = 1/T . Conse-
quently, Eq. (22.14) can be integrated over period T , which corresponds to the inte-
gration over a stress cycle, consisting of the stress values within the periodic time.
The stress cycle results in a damage increment ΔD, thus, Eq. (22.14) becomes

D+ΔD∫
D

(1−Df)
kdDf =

1

(σu − σdf)k+1

∮
σeqf

〈σeqf − σdf〉k 〈dσeqf〉 . (22.16)

The Macaulay operator in Eq. (22.16) results in 〈dσeqf〉 = 0, if σeqf decreases,
which is the case for the integration from σeqfmax to σeqfmin. Additionally, the sim-
plifying assumption σeqf > σdf is applied in the following. Furthermore, the num-
ber of periodic load repetitions N is introduced, which is called cycle number and
described as dimensionless time (Paas et al, 1993). Hence, Eq. (22.16) becomes

D+ΔD∫
D

(1−Df)
kdDf =

1

(σu − σdf)k+1

N+1∫
N

σeqfmax∫
σeqfmin

(σeqf − σdf)
k
dσeqfdÑ .

(22.17)
For simplicity and without loss of generality, it is assumed that rupture occurs im-
mediately after a certain cycle. Then, Eq. (22.17) results in the following expression
for the number of cycles to rupture NR:
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1∫
0

(1−Df)
kdDf =

1

(σu − σdf)k+1

NR∫
0

σeqfmax∫
σeqfmin

(σeqf − σdf)
k
dσeqfdÑ ,(22.18)

NR =
(σu − σdf)

k+1

(σeqfmax − σdf)
k+1 − (σeqfmin − σdf)

k+1
. (22.19)

In the case of cyclic loading given by Eq. (22.15), the load ratio R = σeqfmin/σeqfmax

may be introduced. If σdf = 0, Eq. (22.19) is equivalent to the most common S-N
model known as the Basquin equation (Basquin, 1910):

lnσeqfa = − 1

k + 1
lnNR + ln

σu(1−R)

2 k+1
√
1−Rk+1

. (22.20)

The influence of mean stress on the rupture time is considered by the creep damage
part in Eq. (22.4) and also by the fatigue damage part in Eq. (22.12), since the stress
amplitude for a given number of cycles to rupture depends on the load ratio R in Eq.
(22.20) for pure fatigue damage. The following solution for damage over normalised
loading cycles is almost similar to Eq. (22.9): The integration from the damage free
state D = 0 at cycle Ñ = 0 until damage D at cycle Ñ = N for constant amplitude
loading in Eq. (22.15) with σeqf > σdf results in

D∫
0

(1−Df)
kdDf =

N∫
0

σeqfmax∫
σeqfmin

(σeqf − σdf)
k

(σu − σdf)k+1
dσeqfdÑ ⇒ D = 1−

(
1− N

NR

) 1
k+1

.

(22.21)
Equation (22.19) has been used for the substitution of the number of loading cycles
until rupture NR. Damage in Eq. (22.21) is almost similar to the expression in Eq.
(22.9). Hence, parameter k has the same influence as parameter n, illustrated in Fig.
22.1(c).

The third solution is obtained by integration from damage Di−1 at cycle Ni−1

to new damage state Di due to constant amplitude loading with minimum σeqfmin,i

and maximum σeqfmax,i over ΔNi cycles (Lemaitre and Plumtree, 1979):

Di∫
Di−1

(1−Df)
kdDf =

1

(σu − σdf)k+1

Ni−1+ΔNi∫
Ni−1

σeqfmax,i∫
σeqfmin,i

(σeqf − σdf)
k
dσeqfdÑ ,

(22.22)

Di = 1−
(
(1−Di−1)

k+1 − ΔNi

NRi

) 1
k+1

. (22.23)

The number of cycles to rupture NRi in Eq. (22.23) denotes the lifetime, if con-
stant amplitude loading with minimum σeqfmin,i and maximum σeqfmax,i is applied
from the damage free state until rupture, i. e. Eq. (22.19) with NRi instead of NR,
σeqfmin,i instead of σeqfmin and σeqfmax,i instead of σeqfmax. Similar to Eq. (22.11),
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which results from pure creep damage, Eq. (22.23) is also a recurrence relation for
the calculation of pure fatigue damage for K-level constant amplitude loading.

22.3 Damage Accumulation

If a certain load level of a K-level loading is applied, then the time spent on that
load level results in a corresponding damage increment. Damage accumulation is
the model property, which defines, how a certain damage increment is contributed
to the actual amount of damage. If the damage accumulation contains the sum of
the damage increments, then the damage accumulation is called linear, otherwise
nonlinear. The property of linearity refers to the commutativity of the sum, which is
equal to the superposition of the damage increments regardless of their chronolog-
ical appearance. Thus, a model, which exhibits linear damage accumulation, does
not account for the loading sequence effect, while a model with nonlinear damage
accumulation does. This is illustrated by means of the two-level creep loading until
rupture in Fig. 22.2.

The loadings σ1 and σ2 in Fig. 22.2(a) lead to the rupture times tR1 and tR2.
In the top illustration of Fig. 22.2(b), σ1 is applied from t = 0 until t = Δt1 =
0.5tR1, followed by σ2 from t = Δt1 until rupture, which is observed after Δt2 =
0.5tR2, so tR12 = Δt1 + Δt2. This is a High-Low (HL) creep loading sequence,
since σ1 > σ2. In the case of linear damage accumulation, the same rupture time
is observed, if the chronological order of the loadings is interchanged, see the Low-
High (LH) creep loading scenario in the bottom illustration of Fig. 22.2(b). The
loading sequence effect is not captured, since the HL and LH loading result in the
same rupture time: tR12 = tR21. This fact is represented by the Robinson rule for
linear creep damage accumulation (Robinson, 1938) with K = 2 in the case of Fig.
22.2(b):

tR1

tR2

σ1

σ2

tR12

tR21 = tR12

σ

σ

(a) (b) (c)

σ

σ
tR12

tR21 < tR12

t

t

t t

tt

Fig. 22.2 Illustration of damage accumulation by means of two level loading until rupture (×): (a)
considered loadings σ1 and σ2 leading to rupture times tR1 and tR2; (b) example for linear
damage accumulation; (c) example for nonlinear damage accumulation
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K∑
i=1

Δti
tRi

= 1 . (22.24)

The time spent on load level i is denoted with Δti, while tRi is the rupture time in
the case, where the loading of load level i is applied as one-level loading from the
undamaged material at t = 0 until rupture. Fig. 22.2(c) shows nonlinear damage
accumulation, where the rupture times for both scenarios are not equal. A loading
sequence effect is observed and Eq. (22.24) is not fulfilled anymore: The sum of
creep life ratios is not always equal to one, see e.g. Pavlou (2001), where LH creep
loading test data are shown, which correspond to the bottom illustration in Fig.
22.2(c).

The theory of creep damage accumulation is directly transferred to fatigue load-
ing. Linear fatigue damage accumulation is represented by the Palmgren–Miner rule
(Palmgren, 1924; Miner, 1945), where ΔNi denotes the number of cycles spent on
load level i and NRi represents the number of cycles to rupture in the case, where
the loading of load level i is applied as one-level loading from t = 0 until rupture:

K∑
i=1

ΔNi

NRi
= 1 . (22.25)

As the Robinson rule in Eq. (22.24), the Palmgren–Miner rule in Eq. (22.25) also
does not take the loading sequence effect into consideration.

22.3.1 Creep and Fatigue Damage Accumulation

In the following, the accumulation of damage is presented due to the evolutions in
the cases of pure creep and fatigue given in Eqs. (22.6) and (22.14). Damage due to
creep loading over time Δt1 is according to Eq. (22.9) and Eq. (22.11) with i = 1
and D0 = 0

D1 = 1−
(
1− Δt1

tR1

) 1
n+1

. (22.26)

Equation (22.11) with i = 2 is applied for the case, where a second creep loading
follows and acts over time Δt2:

D2 = 1−
(
(1−D1)

n+1 − Δt2
tR2

) 1
n+1

. (22.27)

Inserting of Eq. (22.26) into (22.27) results in

D2 = 1−
(
1−

2∑
i=1

Δti
tRi

) 1
n+1

. (22.28)
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This process can be continued, which results in the amount of pure creep damage
Dj after load level j:

Dj = 1−
(
1−

j∑
i=1

Δti
tRi

) 1
n+1

. (22.29)

Occurrence of rupture after K load levels results the Robinson rule in Eq. (22.24):

DK = 1 = 1−
(
1−

K∑
i=1

Δti
tRi

) 1
n+1

⇔
K∑
i=1

Δti
tRi

= 1 . (22.30)

Thus, the damage evolution equation (22.6) represents linear damage accumulation
and cannot take the loading sequence effect into consideration.

The same result is obtained for the case of pure fatigue damage by consideration
of Eq. (22.14). Damage after load level j is

Dj = 1−
(
1−

j∑
i=1

ΔNi

NRi

) 1
k+1

, (22.31)

where Eqs. (22.21) and (22.23) have been taken into account and a similar procedure
to Eqs. (22.26) to (22.29) is applied. Equation (22.31) has the same form as Eq.
(22.29). Consequently, if rupture occurs after the application of K load levels, then

DK = 1 = 1−
(
1−

K∑
i=1

ΔNi

NRi

) 1
k+1

⇔
K∑
i=1

ΔNi

NRi
= 1 , (22.32)

which is the Palmgren–Miner rule, given by Eq. (22.25).
According to the results in Eqs. (22.30) and (22.32), the damage evolution equa-

tions for pure creep and pure fatigue damage exhibit linear damage accumulation.
This is a result of the separability of the differential equations: All damage differen-
tial equations, which are separable, lead to linear damage accumulation (Ostergren
and Krempl, 1979; Todinov, 2001). A model with nonlinear damage evolution as in
Eqs. (22.9) or (22.21) does not automatically represent nonlinear damage accumu-
lation (Chaboche and Lesne, 1988; Lemaitre and Chaboche, 1990).

22.3.2 Modelling of Nonlinear Damage Accumulation

Since separability of the damage equation leads to linear damage accumulation, a
model must not be separable in order to represent nonlinear damage accumulation
and to account for the loading sequence effect. In the previous section, only pure
creep and pure fatigue damage evolution given by Eqs. (22.6) and (22.14) have



22 Theory and Computation of Nonlinear Damage Accumulation . . . 321

been considered. But, the differential equation (22.3) with the approaches in Eqs.
(22.4) and (22.12) is not separable for n 	= k and, in this case, represents nonlinear
damage accumulation through nonlinear damage interaction.

However, in practice, two circumstances lead to linear or almost linear damage
accumulation of the model given by Eqs. (22.3), (22.4) and (22.12). First, the result
of the parameter identification and numerical optimisation for the prediction in the
case of creep and CA loading may be n = k, see Kroll and Matzenmiller (2017)
or Cavdar et al (2018), which leads to separability and linear damage accumulation.
Second, even if the identification and optimisation for other test data results in n 	=
k, the nonlinearity of damage interaction and of the resulting damage accumulation
may only weakly pronounced, see Kroll and Matzenmiller (2016). This is explained
by negligible creep damage: The magnitude of the factor in (22.12) with the time
derivative of the equivalent fatigue stress is of second order for usual HCF loading,
e. g. Eq. (22.15) with σeqfm = σeqfa = f = 10 and pure shear tn = 0, σeqc =
σeqf . In addition, if the terms with the exponent n and k in Eqs. (22.4) and (22.12)
have the same orders of magnitude as a result of the identification, see Kroll and
Matzenmiller (2015, 2016, 2017) and Kroll (2018), then creep damage evolution
appears to be negligible compared to fatigue damage evolution: Ḋc ≈ 0. But Ḋc =
0 is the condition to match Eqs. (22.3), (22.4), (22.12) with Eq. (22.14), which
is separable and represents linear damage accumulation according to Eq. (22.32).
Thus, if creep damage is negligible compared to fatigue damage for usual HCF
loading, then the model Eqs. (22.3), (22.4) and (22.12) represent linear damage
accumulation.

As a consequence, it appears reasonable to set the focus on the modelling of
nonlinear fatigue damage accumulation, which is related to the fatigue damage evo-
lution in Eq. (22.12). The following approach is proposed in Kroll and Matzenmiller
(2017):

Ḋf =

(
1− (1−D)k+1

)α
1− α

( 〈σeqf − σdf〉
(σu − σdf)(1−D)

)k 〈σ̇eqf〉
σu − σdf

. (22.33)

By contrast with Eq. (22.12), the fatigue damage evolution in Eq. (22.33) has an
additional factor, which contains the variable α for nonlinear fatigue damage accu-
mulation. In the following, α is assumed to be a function, which is constant for any
integration over a stress cycle, resulting in a damage increment according to Eqs.
(22.16), (22.17):

α = α(σeqfmin, σeqfmax) . (22.34)

The following approach for α in Kroll and Matzenmiller (2017) is based on the
proposals in Chaboche and Lesne (1988) and Do et al (2015):

α = αp2

(〈
1− αp1

〈
σeqfa − σdf

τu − σeqfmax

〉
− αp3

〉
+ αp3

)
. (22.35)

In Eq. (22.35), αp1, αp2 and αp3 are parameters. The first parameter αp1 controls
the damage interaction (Chaboche and Lesne, 1988), which is not addressed in this
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contribution. The switching variable αp2 is used in order to set αp2 = 0 → α =
0, which results in linear fatigue damage accumulation, see Subsect. 22.3.3. The
third parameter αp3 represents a lower boundary for α for the stabilisation of the
numerical treatment (Kroll and Matzenmiller, 2017).

As in Subsect. 22.2.2, three integrations of the damage equation (22.33) will be
presented for pure fatigue damage D = Df . Thus, Eq. (22.33) becomes

dDf =

(
1− (1−Df)

k+1
)α

1− α

( 〈σeqf − σdf〉
(σu − σdf)(1−Df)

)k 〈dσeqf〉
σu − σdf

. (22.36)

The first solution is obtained by separation and integration until rupture according
to Eqs. (22.15) to (22.18) for CA fatigue loading, for which α is constant due to Eq.
(22.34):

1∫
0

(1− α)(1−Df)
k

(1− (1−Df)k+1)
α dDf =

NR∫
0

σeqfmax∫
σeqfmin

(
σeqf − σdf

σu − σdf

)k
dσeqf

σu − σdf
dN, (22.37)

1

k + 1

1∫
0

1− α

D̃α
dD̃ =

NR∫
0

σeqfmax∫
σeqfmin

(
σeqf − σdf

σu − σdf

)k
dσeqf

σu − σdf
dN,(22.38)

⇒ NR =
(σu − σdf)

k+1

(σeqfmax − σdf)
k+1 − (σeqfmin − σdf)

k+1
, (22.39)

where the following substitution has been used:

D̃ = 1− (1−Df)
k+1 , dD̃ = (k + 1)(1−Df)

kdDf . (22.40)

Since the numbers of cycles to rupture in Eqs. (22.19) and (22.39) are equal, the
term with α has no influence on the lifetime for CA loading.

According to the limits for integration in Eq. (22.21), the integration of Eq.
(22.36) from the virgin state until a certain amount of damage D for CA loading
together with the substitution in Eq. (22.40) and constant α due to Eq. (22.34) yields

D∫
0

(1− α)(1−Df)
k

(1− (1−Df)k+1)
α dDf =

N∫
0

σeqfmax∫
σeqfmin

( 〈σeqf − σdf〉
σu − σdf

)k
dσeqf

σu − σdf
dÑ ,

(22.41)

D = 1−
(
1−

(
N

NR

) 1
1−α

) 1
k+1

. (22.42)

As can be seen from the comparison of Eq. (22.42) with Eq. (22.21), in addition to
the parameter k, the variable α has also an influence on the course of damage over
the cycle ratio.
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The last integration is performed for a damage increment according to the limits
in Eq. (22.22) and by use of the substitution in Eq. (22.40), which results in the
following expression for actual damage Di, where αi = αi(σeqfmin,i, σeqfmax,i) is
constant for every load level i, cf. Eq. (22.34):

1

k + 1

D̃i∫
D̃i−1

1− αi

D̃αi
dD̃ =

Ni−1+ΔNi∫
Ni−1

σeqfmax,i∫
σeqfmin,i

(
σeqf − σdf

σu − σdf

)k
dσeqf

σu − σdf
dN ,

(22.43)

Di = 1−
(
1−

[(
1− [1−Di−1]

k+1
)1−αi

+
ΔNi

NRi

] 1
1−αi

) 1
k+1

. (22.44)

The variable αi in Eq. (22.44) has an additional influence on the actual amount of
damage compared to Eq. (22.23), as observed by comparing of Eqs. (22.42) and
(22.21).

22.3.3 Discussion of Modelling Approach

In the following, the damage accumulation behaviour of Eq. (22.36) will be analysed
as already performed for Eq. (22.14) in Subsect. 22.3.1. According to Eqs. (22.44)
and (22.42), damage due to CA fatigue loading over ΔN1 loading cycles from the
undamaged state to damage Di with i = 1 and D0 = 0 is

D1 = 1−
(
1−

(
ΔN1

NR1

) 1
1−α1

) 1
k+1

. (22.45)

If further loading with a second load level is applied, according to Eq. (22.44),
damage after this second load level then is

D2 = 1−
(
1−

[(
1− [1−D1]

k+1
)1−α2

+
ΔN2

NR2

] 1
1−α2

) 1
k+1

. (22.46)

Insertion of Eq. (22.45) into Eq. (22.46) results in

D2 = 1−

⎛⎜⎝1−
[(

ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1
1−α2

⎞⎟⎠
1

k+1

. (22.47)

If the second load level is applied until rupture, then D2 = 1 in Eq. (22.47), becom-
ing
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ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2
= 1. (22.48)

If the second and third level do not result in rupture, then insertion of Eq. (22.47)
into Eq. (22.44) for i = 3 yields the following amount of damage:

D3 = 1−

⎛⎜⎜⎝1−

⎡⎢⎣[(ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3

⎤⎥⎦
1

1−α3

⎞⎟⎟⎠
1

k+1

. (22.49)

If rupture occurs after load level K = 3, then D3 = 1 and Eq. (22.49) becomes[(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3
= 1. (22.50)

The preceding steps can be performed for a block loading with arbitrary number of
load levels.´Damage after load level j is

Dj = 1−
(
1−

[[
. . .

[[(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3

] 1−α4
1−α3

. . .

+
ΔNj−1

NRj−1

] 1−αj
1−αj−1

+
ΔNj

NRj

] 1
1−αj

) 1
k+1

. (22.51)

If rupture occurs after load level K, then Dj = DK = 1 in Eq. (22.51), which
becomes [

. . .

[[(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3

] 1−α4
1−α3

. . .

+
ΔNK−1

NRK−1

] 1−αK
1−αK−1

+
ΔNK

NRK
= 1. (22.52)

The difference of Eq. (22.52) compared to the Palmgren–Miner rule in Eq. (22.25)
is, that the cycle ratios are not commutatively superimposed, which is nonlinearity of
damage accumulation in the sense of noncommutativity of the chronological order
of the load levels.

This property becomes apparent, if the Palmgren–Miner rule in Eq. (22.25) is
interpreted as a chain formed by the cycle ratios as summands, then the chain links
can be arbitrarily interchanged without any change of the result. In the simplest
case of two load levels until rupture, this means commutativity of ΔN1/NR1 +
ΔN2/NR2 = ΔN2/NR2 + ΔN1/NR1 = 1. In the case of Eq. (22.52), the chain
links cannot be interchanged without any change of the result. Consider for example
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the particular case of K = 2 load levels in Eq. (22.48), which is equivalent to

ΔN1

NR1
=

(
1− ΔN2

NR2

) 1−α1
1−α2

, (22.53)

where the loading σeqf,1 with σeqfmin,1 and σeqfmax,1 of level one is applied first,
followed by the loading σeqf,2 with σeqfmin,2 and σeqfmax,2 of level two until rup-
ture. If the chronological order of the load levels is interchanged, then the result is
different from Eq. (22.53):(

ΔN2

NR2

) 1−α1
1−α2

+
ΔN1

NR1
= 1 ⇔ ΔN1

NR1
= 1−

(
ΔN2

NR2

) 1−α1
1−α2

. (22.54)

The same observation holds for the general case with K-level loading in Eq. (22.52),
which, therefore, considers the loading sequence effect. Linear damage accumula-
tion results from the case αi = αj for all i, j or particularly α = 0, then Eq. (22.52)
becomes the Palmgren–Miner rule in Eq. (22.25).

Although nonlinear damage accumulation can be further investigated by means
of the general case in Eq. (22.52), the particular case K = 2 is much simpler,
represented by Eqs. (22.53) and (22.54). If αp2 = 1 and

1− αp1 〈(σeqfa − σdf)/(τu − σeqfmax)〉 > αp3,

then the insertion of the approach for α given by Eq. (22.35) into Eqs. (22.53) and
(22.54) results in the following expressions, which are independent of the parameter
αp1 due to the division in the exponent:

ΔN1

NR1
=

(
1− ΔN2

NR2

) 〈(σeqfa,1−σdf )/(τu−σeqfmax,1)〉
〈(σeqfa,2−σdf )/(τu−σeqfmax,2)〉

, (22.55)

ΔN1

NR1
= 1−

(
ΔN2

NR2

) 〈(σeqfa,1−σdf )/(τu−σeqfmax,1)〉
〈(σeqfa,2−σdf )/(τu−σeqfmax,2)〉

. (22.56)

The same observation is made for the damage accumulation by Eq. (22.52). Hence,
in the case of pure fatigue, the parameter αp1 in Eq. (22.35) does not influence the
damage accumulation behaviour, but only influences the course of damage over the
cycle ratio for one-level loading until rupture, which becomes apparent by insertion
of Eq. (22.35) into Eq. (22.42).

22.4 Parameter Identification

Creep loading is the special case of CA loading, where the global extrema co-
incide. Thus, the parameter identification starts with the direct determination of
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the creep damage parameters σdc, σref and n by means of creep tests until rup-
ture as illustrated in Fig. 22.1(a), where pure shear is considered: tn = tb = 0,
σeqc = σeqf = tt. Afterwards, the fatigue damage parameters σdf , σu and k are
identified directly by means of tests with CA pure shear fatigue loading as shown
in Fig. 22.1(b). Since the illustration in Fig. 22.1(b) is only true for negligible creep
damage, the fatigue damage parameters σu and k need to be numerically optimised.
However, as mentioned in Subsect. 22.3.2, creep damage is expected to be negligi-
ble for usual HCF loading and the values of the identified parameters are expected
to be marginally changed by the optimisation. After the determination of the dam-
age model parameters by means of creep and CA fatigue tests with pure shear, the
shear-tension interaction parameters b1c, b2c, b1f and b2f are directly identified and
numerically optimised by means of multiaxial creep and CA fatigue tests. The valid-
ity of the parameter identification has been shown in Kroll and Matzenmiller (2015,
2016, 2017) and Kroll (2018).

As pointed out in Subsect. 22.3.2, the modelling approach for nonlinear fatigue
damage accumulation has no influence on the lifetime prediction for CA loading
in the case of pure fatigue, see Eq. (22.39). Thus, material dependent parameters
in the approach for the function α = α(σeqfmin, σeqfmax) in Eq. (22.34) may be
determined by means of one of the following two sets of test data: The first set con-
tains the results of two-level loading tests, for which the parameters in the function
α have to be determined in order to fit Eqs. (22.53) and (22.54) with the test data.
Thereby, the parameters to be identified must have an influence on the rupture time,
contrary to parameter α1 in the approach for α in Eq. (22.35), see Eqs. (22.55) and
(22.56). An alternative way for the identification procedure is the evaluation of the
damage values over the cycle ratio as the second set of test data. In this case, the
parameters in α have to be identified in order to fit Eq. (22.42) with the data points.
Unfortunately, damage is an internal variable and cannot be measured directly, but
only indirectly by means of several methods, see Lemaitre and Dufailly (1987). The
main difficulties are the reasonable choice and the reliable detection of the quantity,
which is supposed to represent damage best for the particular case of application.

For the previous explained direct identification of the parameters in α, creep
damage must be negligible compared to fatigue damage, which is the necessary
condition for the application of the Eqs. (22.36) to (22.54). If this is not the case,
then the fatigue damage parameters σu, σdf and k as well as the parameters in the
function α have to be numerically and simultaneously optimised in a last step by
means of S-N curves and rupture times from two-level loadings or indirect damage
measurements.

The tests for the parameter identification must provide an almost homogeneous
state of stress in the bonding layer. Therefore, the adhesive layer thickness must be
very thin in order to describe its constitutive behaviour by a cohesive zone model,
see e.g. Su et al (2004). This applies to structural adhesives, which usually have
a bonding layer thickness between 0.1 and 1 mm. Second, the geometries of the
adherends as well as the load application in the test setup must be appropriate such
that peeling and inhomogeneous shear loading is minimised. Examples are the spec-
imens with single lap and butt joints and the corresponding test setups in Schlim-
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mer et al (2012); Schneider et al (2012) and Cavdar and Meschut (2017) providing
almost homogeneous shear-, tension- and combined shear and tension in the thin
structural adhesive bonding layer.

22.5 Application to Lifetime Prediction for Adhesive Joints

In the following, the application in Kroll and Matzenmiller (2017) and Kroll (2018)
of the proposed damage model is presented for the lifetime prediction of butt-
bonded thin steel tubes under two-level torsional loading with force control until
rupture. The bonding layer consists of the thermosetting, one-component, ductile
modified epoxy structural adhesive BETAMATE™1496V and has a thickness of
0.3 mm only. Therefore, it is modelled as a cohesive zone, which suffers pure shear
stress tt due to the torsional loading of the specimen. The preparation of the ad-
herends, the bonding procedure and the test setup are detailly described in Cavdar
and Meschut (2017).

The test results in Fig. 22.3 show nonlinear damage accumulation due to LH
loading, while the data points for HL loading almost coincide with the dashed line,
representing linear damage accumulation. The location of some data points outside
the unit square may be explained by the scatter of the data, because this phenomenon
exists for both the LH and HL sequence. Another explanation refers to an effect
of the firstly applied load level, which in some situations, mostly for LH loading,
increases the fatigue life for the subsequently applied load level. For an amount of
loading cycles below ΔN2 = 0.5NR2, this effect may even increase the original CA
fatigue life.

Since the model equations in this contribution do not account for scatter of data
and the previously mentioned effect of lifetime increase, only the unit square is il-

Fig. 22.3 Experimental test
data (Cavdar and Meschut,
2017) due to High-Low (HL)
and Low-High (LH) two-level
shear loading with f = 10 Hz;
number of cycles to rupture
for high loading (in MPa)
tt1=16.97+13.88 sin(2πft)
is NR1 = 5663 and for low
loading (in MPa)
tt2 = 13.2 + 10.8 sin(2πft)
is NR2 = 713246
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lustrated in Fig. 22.4, where lifetime predictions are compared with the test results.
The predictions denoted with ODE1, ODE2 and ODE3 result from the implicit nu-

Fig. 22.4 Experimental test data and prediction for two-level loading in Fig. 22.3 for (a) pure
fatigue (Ḋc = 0) and (b) creep-fatigue; ODE1: Eqs. (22.3), (22.4), (22.5), (22.12), (22.13); ODE2:
Eqs. (22.3), (22.4), (22.5), (22.13) (22.33), (22.35); ODE3: Eqs. (22.3), (22.4), (22.5), (22.13),
(22.35), (22.57), (22.58); analyt. HL: Eq. (22.55); analyt. LH: Eq. (22.56)

merical solution of the corresponding damage evolution equation, for which the two
step backward differentiation formula together with the second order finite differ-
ence approximation are applied, see Kroll and Matzenmiller (2015). Besides the
presented model equations in the previous sections, the following expressions are
additionally considered for ODE3:

Ḋf =

(
1− (1−D)k+1

)αmin

1− αmin

( 〈σeqf − σdf〉
(σu − σdf)(1−D)

)k 〈σ̇eqf〉
σu − σdf

, (22.57)

αmin(t) = min
0≤τ≤t

α(τ) . (22.58)

The damage model parameters in Tabelle 22.1 are identified and optimised accord-
ing to Kroll and Matzenmiller (2017); Kroll (2018) as explained in Sect. 22.4 by
means of data from tests of the steel tube specimen under torsional creep and CA
fatigue loading, see Cavdar and Meschut (2017). The parameters in the equivalent
stresses given by Eqs. (22.5) and (22.13) are irrelevant in the following due to pure
shear loading. The factor for nonlinear damage accumulation is active for all numer-

Table 22.1 Identified damage model parameters in Kroll and Matzenmiller (2017); Kroll (2018)
by means of test data in Cavdar and Meschut (2017)

σdc [MPa] σref [MPa] n [-] σdf [MPa] σu [MPa] k [-] αp1 [-] αp2 [-] αp3 [-] τu [MPa]

0 51 19 0 49 19 1 1 -10 39

exp. HL

exp. LH

ODE1 LH

ODE1 HL
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ical computations: αp2 = 1. Since no data for the course of damage over cycles or
time are considered, the identification of parameter αp1 is obsolete, thus: αp1 = 1.
The parameter αp3 = −10 in Eq. (22.35) is applied for numerical stability, see Kroll
and Matzenmiller (2017) and Kroll (2018) for details. The ultimate shear strength
τu = 39 MPa is identified by means of torsion tests of the steel tube specimen under
quasistatic loading Cavdar and Meschut (2017).

The amplitude and maximum of σeqf in Eq. (22.35) are computed from stress
values in the last half cycle, which consists of the most recently passed local mini-
mum and maximum stress as well as the values in between. A detailed description
and an alternative formulation are given in Kroll and Matzenmiller (2017); Kroll
(2018).

Due to the consideration of pure fatigue damage in Fig. 22.4(a), the numerical
predictions for ODE1, ODE2 and ODE3 match with the analytical expressions in
the previous sections. Since ODE1 becomes a separable differential equation for
pure fatigue damage, it represents linear damage accumulation and the predictions
match with the dashed black line, represented by Eq. (22.32) for K = 2. The predic-
tions with ODE2 match with Eqs. (22.55) and (22.56), which verifies the numerical
solution. The predictions with ODE2 are in better agreement with the test data com-
pared to ODE1 for the LH sequence. But they are worse for the HL sequence. As
ODE3 matches with the dotted red line and with the black dashed line, it provides
the best results for the representation of the damage accumulation of the structural
adhesive at hand. Thereby, Eq. (22.58) ensures α to be constant for the HL scenario
in order to match the prediction with the dashed black line for linear accumulation,
since α1 = −1.252 and α2 = 0.169, cf. Fig. 22.3.

In Fig. 22.4(b), ODE1 represents nonlinear damage accumulation again because
of n = k, which is a result of the identification for creep and CA fatigue loading, see
Table 22.1. The predictions with ODE2 differ from the curves represented by Eqs.
(22.55) and (22.56), which shows the influence of creep damage. The predictions
with ODE3 are still in best agreement with the test data.

22.6 Conclusion

In this contribution, nonlinear damage accumulation is modelled by a damage dif-
ferential equation with a creep and fatigue part for the consideration of the load-
ing sequence effect. Three integrations of the differential equation are presented for
one-level loading, where different integration limits are applied in order to get three
results: the time to rupture and the course of damage over time, both for the ini-
tially undamaged state, as well as the damage increment due to a load level. These
three results are used to demonstrate the damage accumulation behaviour for pure
creep and fatigue damage. They represent the Robinson and Palmgren–Miner rules
of linear damage accumulation, if the underlying damage differential equation is
separable and confirm that nonlinear damage evolution not automatically implies
nonlinear damage accumulation.
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The magnitude of creep damage is low compared to fatigue damage for usual
HCF loading, which justifies the consideration of pure fatigue damage for the mod-
elling of nonlinear damage accumulation. An adaption is proposed of the fatigue
damage part by a factor, which contains the approach for variable α and influences
the course of damage over time and the lifetime prediction due to VA loading, but
not the prediction due to CA loading. The definition of the variable α ensures separa-
bility of the damage equation for each load level in the case of pure fatigue damage,
but inseparability in general. Thus, nonlinear damage accumulation can be modelled
independently from the S-N approach for CA loading. This is shown by the three
integrations of the damage differential equation with different limits, providing a
procedure for the identification of the parameters in the function for α.

Two particular approaches for α are validated by means of the comparison of
numerical lifetime predictions with test data for an adhesive layer subjected to shear
loading. Since the predictions are in good agreement with the test data, it is con-
cluded that the loading sequence effect is well captured for pure shear loading.

Nonlinear creep damage accumulation is not considered, but it can be modelled
similarly to the fatigue damage accumulation (Kroll, 2018). Although the influences
of mean stress, pressure, multiaxiality and nonproportionality on the lifetime for CA
loading and the corresponding considerations by the damage model are addressed in
Kroll and Matzenmiller (2015, 2017) and Kroll (2018), they have to be experimen-
tally investigated for VA loading of structural adhesives in order to further validate
the proposed approach for the variable α according to the presented theory. There-
fore, multiaxial tests with two-level loading and different mean stresses as well as
indirect damage measurement for one-level loading have to be performed.
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