
Chapter 20

Numerical Solution of the Tri-harmonic

Kirchhoff Plate Equation Resulting from a

Strain Gradient Theory

Christian Liebold & Belal M. Dawwas

Abstract A second gradient continuum theory is formulated based on second gra-
dients of displacements. For a reduction of additional material parameters, the mod-
ified strain gradient model is used and a partial differential equation of rank six
is developed using the Kirchhoff plate assumptions. The solutions of the governing
tri-harmonic plate bending equation incoorperate size-effects. Balance equations are
presented and higher-order stress-strain relations are derived. In order to account for
second gradients of displacements, which manifest themselves in the higher-order
terms of a strain energy density, a C1–continuous displacement field is preferable.
So-called Hermite finite element formulations allow for merging gradients between
elements and are used to achieve global C1–continuity of the solution. Element stiff-
ness matrices as well as the global stiffness matrix are developed for a lexicograph-
ical order of nodes and for equidistantly distributed elements. The convergence, the
C1–continuity, and the size effect are demonstrated.

Keywords: Second gradient elasticity · Size-effect · Hermite finite elements · Con-
tinuum mechanics · Computational mechanics · Tri-harmonic equation

20.1 Introduction

Materials with intrinsic micro or nano-structure may show size-dependent mate-
rial behavior, which is reflected, e. g., in a stiffer elastic response to external forces,
when the size of the material body is reduced. A quantitative understanding of a size
effect is of great importance when modeling Micro- and Nano-Electro-Mechanical
Systems (MEMS/NEMS). Driven by the miniaturization as an improvement of the
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performance of MEMS, the requirement of reliability in simulation techniques in-
creases. Experimental validation for size effects is given in, e. g., Cuenot et al (2004);
Lam et al (2003); Li et al (2010); McFarland and Colton (2005). Materials which are
modeled this way are referred to as "non-simple materials of the gradient type". This
is accurate, for example, for polymers at a small scale, or even fibre-reinforced ma-
terials (Giorgio et al, 2018). In Sect. 20.2 the present work deals with the Kirchhoff
plate assumptions as well as the Modified Strain Gradient theory (MSG) developed
by, e. g., Mindlin and Tiersten (1962); Toupin (1962), since conventional continuum
theories based on the Cauchy continuum are not able to predict size effects. As a re-
sult, a tri-harmonic partial differential equation for plates is derived. Their solution
for a boundary value problem of a rectangular plate under a uniform load is nu-
merically investigated in Sect. 20.3. The application of conventional Finite Element
(FE) strategies may lead to inaccurate results, if finite element formulations are used,
which only fulfill global C0–continuity. The scope of this work is, to develop a FE
formulation based on Hermite polynomials in order to account for C1–continuity of
the solution for the tri-harmonic plate equation.

20.2 The Tri-harmonic Plate Equation

20.2.1 Modified Strain Gradient Theory

The present work is based on one of the three reduced forms of the strain gradi-
ent energy density for small deformations, as postulated by Mindlin and Tiersten
(1962). Because of the later on modification of this theory by an introduction of a
rotational degree of freedom, the resulting theory is addressed as modified strain
gradient theory here, different to the common name modified (indeterminate) cou-
ple stress theory frequently to be found in the litarature (Eremeyev and dell’Isola,
2018). The fact, that the rotational degree of freedom in the kinematical descrip-
tion of the continuum is replaced by a second gradient of displacement (valid for
solids under small translational and rotational deformation only), supports the nam-
ing here. In what follows, the Einstein summation convention is used on repeated
indices. Spatial partial derivatives in the Cartesian coordinate system are denoted by
comma-separated indices. Mindlin’s second form of a linear isotropic strain energy
density originally reads:

uSG = α1εijεij + α2εkkεmm

+ β1ηijkηijk + β2ηiikηjjk + β3ηiikηkjj + β4ηijjηikk + β5ηijkηkji,
(20.1)

where α1 and α2 denote the conventional elastic constants for isotropic materials,
β1,...,5 are the additional material constants accompanied with the five irreducible
parts of the strain gradient tensor ηijk = εkj,i (Lazar, 2016). The formulation of
the modified strain gradient energy density is derived from Mindlin’s second form
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by using the macroscopic vector of rotation ϕi=
1
2εijkuk,j , applicable to solids un-

der small deformations. εijk denotes the Levi-Civita symbol. Taking into account
the balance of spin (Abali et al, 2015, 2017), the irreducible parts of ηijk reduce
to three. Based on Fleck and Hutchinson (1997), the independent expressions of
ηijk are introduced and the second order displacement gradient is decomposed into
a symmetric part ηS

ijk and a remaining part ηR
ijk. The remaining part is not neces-

sarily anti-symmetric, like the work of Fleck and Hutchinson (1997) supposed, c.f.
Eq. (20.2). Figure 20.1 shows the scheme of decomposition, where:

ηijk = ηS
ijk + ηR

ijk ,

ηS
ijk =

1

3
(uk,ij + ui,jk + uj,ki) ,

ηR
ijk =

2

3
(εiklη̄lj + εjklη̄li) + εkjlη̄li .

(20.2)

η̄ij=ϕj,i is the gradient of rotation, which is decomposed into its symmetric and
anti-symmetric part, χS

ij and χA
ij , respectively:

χA
ij =

1

2
(ϕi,j − ϕj,i) , χS

ij =
1

2
(ϕi,j + ϕj,i) . (20.3)

The tensor ηS
ijk is further decomposed into its spherical and deviatoric part, η(0)

ijk and
η(1)
ijk, c. f., Fig. 20.1 . The quantity η(0)

ijk is related to χA
ij and the dilatation gradient

εmm,i in the following manner:

η(0)
ijk =

1

5

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)
,

ηS
mmi = εmm,i +

2

3
εilnχ

A
ln ,

η(1)
ijk = ηS

ijk − η(0)
ijk .

(20.4)

χA
ij is a power conjugated measure for an antisymmetric couple stress tensor. For

static problems it can be assumed, that the couple stress tensor μij will be symmetric
only. Because of that, χA

ij does not influence the strain energy, as it is motivated in
Liebold and Müller (2013); Yang et al (2002) and further examined in Münch et al
(2015).

Based on Fleck and Hutchinson (1997); Liebold and Müller (2017), the formu-
lation of the modified strain gradient energy density reads:

Fig. 20.1 Scheme of decom-
position
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uMSG = Gεijεij +
λ

2
εkkεii +G�

2
0εmm,iεkk,i +G�

2
1η

(1)
ijkη

(1)
ijk +G�22χ

S
ijχ

S
ij .

(20.5)
G and λ are Lamé’s constants, whereas �0, �1 and �2 denote the three additional ma-
terial length scale parameters given in the dimension of a length. The multiplication
of the higher-order terms by G is arbitrary. The classical strain-energy Eugster and
C. (2017) is extended here. Without further reasoning �0, �1 and �2 are set to be
equal to �:

uMSG = Gεijεij +
λ

2
εkkεii +G�

2
(
εmm,iεkk,i + η

(1)
ijkη

(1)
ijk + χS

ijχ
S
ij

)
. (20.6)

The strain and the higher-order strain tensors are:

εij =
1

2
(ui,j + uj,i) ,

χS
ij =

1

4
(εilkuk,lj + εjlkuk,li) ,

η(1)
ijk=

1

3
(uk,ij+ui,jk+uj,ki)− 1

15

[
δij(uk,mm+2um,mk)

+δjk(ui,mm+2um,mi)+δki(uj,mm+2um,mj)
]
,

(20.7)

given in terms of the displacement field ui(x).

20.2.2 KIRCHHOFF Plate assumptions

The present work investigates the following restrictions to the displacement field
ui(x) in order to derive the Partial Differential Equation (PDE) of the system and
their weak form by the help of variational calculus. The so-called Kirchhoff-Love
model of plates is a two-dimensional mathematical model for thin plates subjected
to forces and moments, c. f. Fig. 20.2. The assumptions are, that:

• the smallest diameter d is much larger then the thickness t,

• the mid-surface plane is the only deformation plane,

• forces are prependicular to the deformation plane,

• straight lines normal to the mid-surface remain straight and normal after defor-
mation,

• the thickness of the plate does not change during the deformation

• the deformations are small.
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Fig. 20.2 Outline of a
Kirchhoff-Love plate

The displacement field of a Kirchhoff-Love plate reads:

ux = −z ∂w(x, y)
∂x

, uy = −z ∂w(x, y)
∂y

, uz = w(x, y) (20.8)

where w(x, y) is the bending plane, p(x, y) the load distribution, Q the boundary
force andM the boundary moment.

20.2.3 Variation of the Modified Strain Energy of a Kirchhoff
Plate

The strain energy density of the problem is derived by evaluating the prescribed dis-
placement field Eq. (20.8) in combination with uMSG, Eq. (20.6). Partial derivatives
are denoted by subscripts in the following manner:

∂(·)
∂x

= (·)x , ∂(·)
∂y

= (·)y , ∂2(·)
∂x∂y

= (·)xy . (20.9)

The first term in Eq. (20.6) becomes

εijεij = (zwxx)
2
+ 2 (zwxy)

2
+ (zwyy)

2
, (20.10)

the second one

εkkεii = (zwxx)
2
+ 2z2wxxwyy + (zwyy)

2
, (20.11)

the third one

εmm,iεkk,i = (zwxxx)
2
+ (zwyyy)

2
+ (zwyyx)

2
+ (zwxxy)

2
+

+ 2 (zwxxx) (zwyyx) + 2 (zwxxy) (zwyyy) + 2wxxwyy+

+ w2
xx + w2

yy ,

(20.12)

the fourth one
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η
(1)
ijkη

(1)
ijk =

2

5
(zwxxx)

2
+

2

5
(zwyyy)

2
+

12

5
(zwyyx)

2
+

12

5
(zwxxy)

2

− 6

5
zwxxx zwyyx − 6

5
zwyyy zwxxy +

4

15
w2

xx+

+
4

15
w2

yy −
2

15
wxxwyy +

2

3
w2

yy ,

(20.13)
and the last one

χSijχ
S
ij =

1

2
(wxx + wyy)

2
. (20.14)

In summary, the modified strain energy density is:

uMSG =
7

5
G�2z2

[
w2

xxx + w2
yyy

]
+

17

5
G�2z2

[
w2

yyx + w2
xxy

]
+

4

5
G�2z2 [wxxx wyyx + wxxy wyyy]

+

(
Gz2 +

λ

2
z2 +

53

30
G�2

)[
w2

xx + w2
yy

]
+

(
z2λ+

13

5
G�2

)
wxx wyy +

(
2Gz2 +

2

3
G�2

)
w2

yx .

(20.15)

For a proof of concept, this work restricts to a square plate of the length L and of
thickness t. Then, the variation of the strain energy is derived as follows:

δWMSG =

∫
V

δuMSG dV

=

+ t
2∫

− t
2

L∫
0

L∫
0

(
14

5
G�2z2 [wxxxδwxxx + wyyyδwyyy]

+
34

5
G�2z2 [wyyxδwyyx + wxxyδwxxy]

+
4

5
G�2z2 [δwxxx wyyx + wxxx δwyyx + δwxxy wyyy + wxxy δwyyy]

+

(
2Gz2 + λz2 +

53

15
G�2

)
[wxxδwxx + wyyδwyy]

+

(
z2λ+

13

5
G�2

)
[δwxx wyy + wxx δwyy]

+

(
4Gz2 +

4

3
G�2

)
wyxδwyx

)
dxdydz .

(20.16)
Employing the rules of variational calculus and multiple application of two-dimensional
partial integration, δWMSG becomes:
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δWMSG = − t
3

12

L∫
0

L∫
0

δw

[
14

5
G�2 (wxxxxxx + wyyyyyy)

+
42

5
G�2 (wxxxxyy + wyyyyxx)

−
(
2G+ λ+

212

5
G
�2

t2

)
(wxxxx + wyyyy + 2wxxyy)

]
dxdy

+
Gt3

12

L∫
0

Λ1(x, y)
∣∣∣y=L

y=0
dx+

Gt3

12

L∫
0

Λ2(x, y)
∣∣∣x=L

x=0
dy ,

(20.17)
with Λ1 and Λ2 being the boundary relations:

Λ1(x, y) =

(
7

5
�2wyyy +

2

5
�2wxxy

)
δwyy +

(
17

5
�2wxxy +

2

5
�2wyyy

)
δwxx

+

[(
λ

G
+

78

5

�2

t2

)
wxx +

(
1 +

λ

2G
+

106

5

�2

t2

)
wyy − 7

5
�2wyyyy

− 17

5
�2wyyxx − 2

5
�2 (wxxxx + wxxyy)

]
δwy +

(
1 + 4

�2

t2

)
wxy δwx

+

[
7

5
�2wyyyyy +

17

5
�2wyyyxx +

2

5
�2 (wxxxxy + wxxyyy)

−
(
λ

G
+

78

5

�2

t2

)
wxxy

−
(
1 +

λ

2G
+

106

5

�2

t2

)
wyyy −

(
1 + 4

�2

t2

)
wyxx

]
δw ,

(20.18)
and

Λ2(x, y) =

(
7

5
�2wxxx +

2

5
�2wyyx

)
δwxx +

(
17

5
�2wyyx +

2

5
�2wxxx

)
δwyy

+

[(
λ

G
+

78

5

�2

t2

)
wyy +

(
1 +

λ

2G
+

106

5

�2

t2

)
wxx − 7

5
�2wxxxx

− 17

5
�2wyyxx − 2

5
�2 (wxxxx + wxxyy)

]
δwy +

(
1 + 4

�2

t2

)
wxy δwx

+

[
7

5
�2wxxxxx +

17

5
�2wxxxyy +

2

5
�2 (wyyyyx + wyyxxx)

−
(
λ

G
+

78

5

�2

t2

)
wyyx −

(
1 +

λ

2G
+

106

5

�2

t2

)
wxxx

−
(
1 + 4

�2

t2

)
wxyy

]
δw .

(20.19)
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In fact, the formulations Λ1 and Λ2 at the boundaries would allow to identify
boundary-forces and -moments, when considering the work done by the external
loads. In the present work, the external loads are limited to the application of a
pressure distribution p(x, y).

20.2.4 The Governing Tri-harmonic Plate Equation

To derive the respective partial differential equation for static problems, the differ-
ence of the virtual strain energy and the virtual work done by the external loads δA,
assumed as:

δA =

L∫
0

L∫
0

p(x, y)δw dx dy

+

L∫
0

[
Qδw −Myδwx −Mxδwy +M

Hyδwxx +MHxδwyy

]x=L

x=0
dx

+

L∫
0

[
Qδw −Myδwx −Mxδwy +M

Hyδwxx +MHxδwyy

]x=L

x=0
dy ,

(20.20)
has to be minimized, where Mx and My are classical moments, which affect the
deflection angle (first derivative) of w at the boundaries.MHx andMHy are higher
order moments, affecting the curvature (second derivative) in the respective direc-
tion at the boundaries. An energy minimization yields in:

δWMSG − δA = δΠ , δΠ → 0 ⇒ δWMSG = δA , (20.21)

and by comparison of Eq. (20.17) and (20.20) the tri-harmonic plate equation
arises:

DΔΔw(x, y)−HΔΔΔw(x, y) = p(x, y) , (20.22)

using the Laplacian Δ(·)=(·)xx + (·)yy . Similarities can be drawn to the result of
Kotchergenko (2015). In the present work, the plate stiffnesses are:

D =
t3

12

(
2G+ λ+

212

5
G
�2

t2

)
, H =

7

60
Gt3�2 . (20.23)

In the limit case to the conventional continuum theory, if �=0, Eq. (20.22) will turn
into the classical Kirchhoff plate equation.
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20.2.5 A Navier-Solution with Fourier-Series

Combining the continuous ansatz for simply supported rectangular plates after
Navier (Becker and Gross, 2002):

wSG
ana(x, y) =

∞∑
m=1

∞∑
n=1

wmn sin
(mπx

L

)
sin

(nπy
L

)
(20.24)

and rewriting the load-function as follows:

p(x, y) =

∞∑
m=1

∞∑
n=1

pmn sin
(mπx

L

)
sin

(nπy
L

)
, (20.25)

pmn =
4

L2

L∫
0

L∫
0

p(x, y) sin
(mπx

L

)
sin

(nπy
L

)
dxdy , (20.26)

a solution for the equation (20.22) is given in form of a series in Eq. (20.24), having
the coefficients:

wmn = pmn

{
D

[(mπ

L

)4

+
(nπ
L

)4

+ 2
(nπ
L

)2 (mπ

L

)2
]

(20.27)

+H

[(mπ

L

)6

+
(nπ
L

)6

+ 3
(mπ

L

)4 (nπ
L

)2

+ 3
(mπ

L

)2 (nπ
L

)4
]}−1

.

For a constant distribution of loads p(x, y), a sufficient convergence of this series is
achieved by taking about 50 terms into account form and n.

20.3 A C1– continuous Finite Element Approach

20.3.1 The Weak Form of the PDE

The weak form of the tri-harmonic plate equation, Eq. (20.22), is in a sense already
given with the variation of the strain gradient energy density in Eq. (20.16), only by
replacing the variational terms by the independent test-functions v(x, y):
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f(v)︷ ︸︸ ︷∫
V

p(x, y) v(x, y)dV

=

∫
V

14

5
G�2z2 [wxxxvxxx + wyyyvyyy] +

34

5
G�2z2 [wyyxvyyx + wxxyvxxy]

+
4

5
G�2z2 [vxxx wyyx + wxxx vyyx + vxxy wyyy + wxxy vyyy]

+

(
2Gz2 + λz2 +

53

15
G�2

)
[wxxvxx + wyyvyy]

+

(
z2λ+

13

5
G�2

)
[vxx wyy+wxx vyy]+

(
4Gz2+

4

3
G�2

)
wyxvyxdV

︸ ︷︷ ︸
a(v,w)

(20.28)
The left-hand side is the so-called bi-linear form a(v, w) of the PDE. The right-
hand side f(v) is formed, using the variation of the work done by external loads
(Eq. 20.20) with the same replacement. It can be seen, that the weak form is only a
third-order partial differential equation in both, the test- and trial-functions, v(x, y)
and w(x, y).

20.3.2 Two Dimensional HERMITE Finite Element Formulation

The requirements for a straight-forward finite element solution for the present weak
form are: (i), that the basis functions for the Galerkin discretization are at least
three times differentiable and (ii), that the global behavior of the solution fulfills
C1–continuity. The latter is needed due to the fact, that the strain energy used in
Eq. (20.6) evaluates second derivatives of displacements and in the end of the test-
and trial-functions, too. To guarantee, that the second derivatives in each element
will be well connected to the global behavior, the first derivatives need to be con-
tinuous inbetween the neighboring elements. Both requirements are fulfilled using
so-called Hermite finite element formulations, which consist of the Hermite poly-
nomials, as plotted in Fig. (20.3):

H1(ζ) = 2ζ3 − 3ζ2 + 1 , H2(ζ) = ζ
3 − 2ζ2 + ζ ,

H3(ζ) = −2ζ3 + 3ζ2 , H4(ζ) = ζ
3 − ζ2, (20.29)

which are linearly superposed and multiplicatively connected to form either 1D
or 2D test- and trail-functions ve and we per element, e,
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Fig. 20.3 Plot of the Hermite
polynomials

ve(ζ, ξ)=

4∑
α=1

4∑
β=1

Hα(ζ)Hβ(ξ) , we(ζ, ξ)=

4∑
δ=1

4∑
γ=1

ce
δγHδ(ζ)Hγ(ξ) , (20.30)

where ce
δγ denote the coefficients (the unknowns) to be calculated to form the so-

lution. Such element formulations are called Bogner–Fox–Schmit elements Bogner
et al (1965). Two exemplary combinations Φ1=H1H1 and Φ2=H1H2 are given
in Fig. (20.4). Φ1 will directly influence the value of deflection at the node posi-
tion (0,0), whereas Φ2 will influence the first derivative in the ζ-direction. Equa-
tion (20.30) is used in the following condensed form:

ve(ζ, ξ)=

16∑
i=1

Φi(ζ, ξ) , we(ζ, ξ)=

16∑
i=1

ce
i Φi(ζ, ξ) , (20.31)

where the assignment of the combinations for Φi →HαHβ is: (i→ αβ ) 1 → 11,
2 → 12, 3 → 13, 4 → 14, 5 → 21, 6 → 22, 7 → 23, 8 → 24, 9 → 31,
10 → 32, 11 → 33, 12 → 34, 13 → 41, 14 → 42, 15 → 43 and 16 → 44. ce

i

represent the 16 coefficients per element, of which four of them directly represent
the value of deflections at the four nodes, eight of them represent the first derivatives

Φ1(ζ, ξ)

ξζ

Φ2(ζ, ξ)

ξζ

Fig. 20.4 Exemplary two-dimensional Hermite polynomials acting on the node (0,0)

H1

H2

H3

H4

0 ≤ ζ ≤ 1
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in each direction at the nodes and four of them carry the information of the so-called
internal- (or bubble-) modes.

20.3.3 The Element and Global Stiffness Matrix and Realization of
the Boundary Condition

The element stiffness matrix is established by inserting the test- and trial-functions
into the integral weak form. Doing so, Eq. (20.28) is rewritten:

Kece = fe , ce = [ce
1, c

e
2, . . . , c

e
16 ]

T
, (20.32)

such that the left-hand side is represented by Kece, with Ke being the element stiff-
ness matrix and ce the vector of coefficients, and the right-hand side is expressed by
thev vector fe. Using the element stiffness components:

Ke
i|j = a

e(Φi, Φj) , (20.33)

in which ae denotes the bilinearform in the integration domain of a single element,
the weak form Eq. (20.28) per element can be expressed as:⎡⎢⎢⎢⎢⎢⎣

Ke
1|1 Ke

1|2 · · · Ke
1|16

Ke
2|1 Ke

2|2 · · · Ke
2|16

...
...

. . .
...

Ke
16|1 K

e
16|2 · · · Ke

16|16

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
ce
1

ce
2

...

ce
16

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣

∫
V e p(ζ, ξ)Φ1 dV

e∫
V e p(ζ, ξ)Φ2 dV

e

...∫
V e p(ζ, ξ)Φ16 dV

e

⎤⎥⎥⎥⎥⎥⎦ . (20.34)

In a next step the global stiffness matrix is developed. To achieve a sparse band
matrix, which will have advantages in dissolving large systems, the lexicographical
distribution of nodes is used here, c. f. Fig. (20.5). Here, the nodes at the physi-

Fig. 20.5 Left: the lexi-
cographical distribution of
nodes; right: the numbering
of nodes per element eN for
a minimal discretization of a
plate

↔

cal boundary of the plate are highlighted to be remembered for the assignement of
Dirichlet boundary conditions, whereas node number "5" is used to demonstrate,
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Fig. 20.6 Scheme of the
composition of the global
matrix equation

that its value of deflection as well as the derivatives belong to all four neighboring
elements at the same time. This is achieved by assembling the global stiffness ma-
trix by overlapping the element matrices in this way, such that the respective values
of deflection as well as the derivatives are multiplied with the same coefficients c,
respectively. Therefor, the element’s matrices are split into 4× 4 submatrices, in
which the components will represent the deflection, the derivatives and the internal
mode for a single node of an element. Figure (20.6) demontrates the scheme of com-
position of the global system of equations. This scheme represents the global linear
algebraic equation:

KGcG = fG , (20.35)

where the dashed lines in Fig. (20.6) declare an assignment to single elements and
squares to the 4× 4 submatrices. The Dirichlet boundary condition for a simply
supported plate is realized by a direct manipulation of the coefficients of the respec-
tive boundary nodes. For the reason that the deflection at the boundary nodes are
set equal to zero, the respective columns are removed in the global stiffness matrix.
The reduced system of equations, denoted by the superscript S, is solved with the
backslash operator of Matlab (MathWorks, Inc.):

cS = KS\fS , (20.36)

using a banded solver. The procedure described here is numerically rather fast and
in general applicable to different situations or geometries.

20.4 Results

For the numerical simulations and tests for convergence and size effect, a squared
micro-plate of the length L and thickness t is used. Figure (20.7) represents the
deflection of the plate, which is simply supported at all edges and loaded by the
constant distribution of force p(x, y). Table 20.1 gives the material and geometry
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Fig. 20.7 Deflection of the
midplane of a square plate,
t = 30μm, L = 20t, � =
10μm, NumOfEl=6400
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parameters, which are quite realistic when modeling a small polymer plate (Chong,
2002; Kong et al, 2009; Lam et al, 2003; Nikolov et al, 2007). wSG

num(x, y) denotes
the numerical result of the deflection of the plate at the coordinate x and y w.r.t.
the Second Gradient (SG) continuum approach, whereas wSG

ana denotes the "‘ana-
lytical result"’ from the truncated Fourier-series, c. f. Eq. (20.24). wclass(x, y) will
represent the solution of plate-bending for the classical Cauchy-continuum theory.
Figure (20.8) shows the behavior of the numerical solution of the midpoint of the
plate while refining the mesh of elements.

20.4.1 Concerning the Convergence

To demonstrate the convergence behavior of the present numerical approach, solu-
tions with different sizes of equidistantly distrubuted elements were conducted. The
global number of degrees of freedoms (DOF) is used to compare different solutions.

Table 20.1 Thickness t, lengths L, elastic modulus E, material length scale parameter � and the
distributed load p(x, y) used for the plate simulations

t L E � p(x, y)

30μm 20 t 3.8GPa 10μm 10 MPa



20 Kirchhoff Plate Model in a Modified Strain Gradient Theory 285

0 2 4 6 8 10 12 x 103

0.18

0.17

0.16

0.15

0.14

degrees of freedom, DOF

m
ax

.d
efl

ec
tio

n
w

SG
[μ

m
]

wSG
num (NumOfEl=16–1932)

wSG
ana (NumOfmn=50)

Fig. 20.8 Convergence of the deflections of the center point compared to the analytical value for
t = 30μm

For the beginning, Fig. (20.8) gives the absolute deflection of the center point (L2 ,
L
2 )

of the plate for different mesh sizes, in comparison to the constant analytical value.
It has to be remarked, that with the same set of parameters used in Fig. (20.8), the

classical value (where � is equal to zero) is more than twice as large as the second
gradient (SG) solution. In a next investigation, in Fig. (20.9), the error in percent
between the numerical and the Fourier solution is charted for different degrees of
freedom. The error between the numerical and the analytical values for the deflec-
tion of the center point is calculated by:

error =
∣∣∣∣wSG

num

wSG
ana

− 1

∣∣∣∣× 100 . (20.37)

In the logarithmic plot of the error we clearly observe a quite constant rate of
convergence. From a certain number of degrees of freedom on, the convergence rate
seems to increase. In the authors opinion, this fact is due to the truncation of the
Fourier solution atm=50, which is taken as the reference value. It can be assumed,
that the numerical solution passes the truncated Fourier solution at a further point of
DOFs. Beside this assumption, it has to be taken into account, that the computational
errors, which go along with these very large numbers of calculation steps, will add
up and will shift the solution for very large DOFs. In summary, however, from a
numerical point of view, the approach shown is extremely robust and well-built,
reaching an error of 0.1% quite easily.
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Fig. 20.9 Convergence of the error between numerical and analytical deflections of the midpoint
for t = 30μm in a logarithmic plot

20.4.2 Results for the Size Effect

For the analysis of the size dependent behavior of the solutions, the ratio of both –
the numerical as well as the Fourier solution – to the result of the classical contin-
uum theory (without any length scale influence) is calculated for different sizes of
the plate, c. f. Fig. (20.10). The ratio of the length to the thickness is constant. The
numerical values in Fig. (20.10) are calculated for a more or less coarse mesh using
16 elements, which includes a constant error of about 21%.

20.4.3 Analysis of the C1–continuity

To demonstrate the intended C1–continuity of the present solution, a cascade
of results along a center line (x, L2 ) is established: (i) for the z-deflections, see
Fig. (20.11), (ii) the first derivatives in the x-direction, see Fig. (20.12) an (iii) the
second derivatives in the x-direction, see Fig. (20.13).

The plots in Figs. (20.11–20.13) are based on the post-prozessed data for the ele-
ment’s solutions. In each interval, the slope of the weighted Hermite element func-
tion, Eq. (20.30)2, is plotted independently. The element’s solutions for the 0th and
1st derivatives are continuously connected between the elements. The first deriva-
tive at a node of one element equals the first derivative of the neighbouring element,
and so on. A different picture is drawn, when looking at the second derivatives.
Fig. (20.13) demonstrates by the jumps between the element solutions, that the sec-
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Fig. 20.11 Deflection of the center line of a square plate, t=30μm, L=20t, �=10μm,
NumOfEl= 80×80

ond derivative at a node of one element does not equal the second derivative of the
neighbouring element. This behavior of the numerical solution suggests, that the
intended C1–continuity is fulfilled.
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Fig. 20.12 First derivative of the deflection of the center line, t=30μm, L=20t, �=10μm,
NumOfEl= 80×80
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Fig. 20.13 Second derivative of the deflection of the center line, t=30μm, L=20t, �=10μm,
NumOfEl= 80×80

20.5 Conclusions

A modified second gradient continuum theory of elasticity was elaborated. The re-
striction on the displacement field of a Kirchhoff-Love plate was carried out in order
to derive the corresponding partial differential equation (the tri-harmonic equation)
and its weak form, respectively. In order to keep the first derivative of the solu-
tion continuous, the problem was discretized using Hermite polynomials, of which
the so-called Bogner–Fox–Schmit elements consist of. So far, the present resluts
are restricted to equidistantly distributed quad element meshes. It is further accom-
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panied by a large number of element coefficients in comparison to a conventional
FEM. The elaborated FE approximations show a size effect, as expected from the
higher-order theory, as well as convergence in terms of increasing degrees of free-
doms in the mesh discretization. This will allow to simulate the elastostatic problem
of Kirchhoff-Love plates in arbitrary geometries for micromechanical applications,
when considering a higher-order material behavior.
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