
Chapter 2

On the Size Effects in Indentation Testing of

Elastic Functionally-graded Materials

Ivan Argatov

Abstract The size effect in the small-scale indentation testing is studied for a
functionally-graded material (FGM) whose shear elastic modulus varies according
to the exponential law. Under the simplifying assumption of zero Poisson’s ratio,
the asymptotic model of the indentation stiffness for an axisymmetric frictionless
indenter is developed in the case when the contact radius is small compared to the
inhomogeneity characteristic size. The so-called sample size effect is considered on
the example of a simply supported FGM plate indented at the center of its top sur-
face. A certain range of applicability of the first-order asymptotic models has been
established by comparison with the approximate analytical solution available in the
literature.

Keywords: Indentation stiffness · Functionally graded material · Size effect ·
Asymptotic model

2.1 Introduction

Indentation techniques represent a simple practical method of nondestructive char-
acterizing mechanical properties of materials, e.g., hardness (Oliver and Pharr,
1992), elastic modulus (Bulychev et al, 1975), plasticity (Müller et al, 2009), frac-
ture toughness (Anstis et al, 1981), adhesion strength (Borodich and Galanov,
2008). For instance, when the thermo-mechanical properties of micromechanical
components (e.g., of solder joints, are to be determined realistically from small test
volumes) a microindentation technique can be utilized (Villain et al, 2008), as it
allows to measure the mechanical properties locally in the material.
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An indentation test can be performed with a rigid indenter whose displacement,
δ, can be monitored under an externally applied contact load, F , and an appropriate
mathematical material model is needed to extract the material parameters from the
indentation data. Generally speaking, a complete stress-strain curve should be deter-
mined for a full characterization of the elastic-plastic deformation behavior (Müller
et al, 2009).

With the development of the Oliver–Pharr method (Oliver and Pharr, 1992),
nanoindentation, known as an instrumented indentation test, where the direct in-
spection of the indent imprint is replaced by an indirect assessment from the force-
displacement curve, has emerged as an indispensable technique for evaluation of
mechanical properties at micro- and nano-scales (Borodich and Keer, 2004; Arga-
tov, 2010). However, practical application of the nanoindentation method can be
accompanied with numerous technological difficulties, especially, if a tested ma-
terial exhibits a fine microstructure (Albrecht et al, 2005; Gibson, 2014; Argatov
and Sabina, 2017) and/or a complicated deformation behavior (Cheng et al, 2000;
Koumi et al, 2014). In response to the continuous miniaturization of microelec-
tronic components in modern electronic industry, a number of practically important
issues in indentation testing have been resolved by the research group headed by
Prof. W.H. Müller (TU Berlin).

In particular, essential for the correct determination of the contact area in the
depth-sensing indentation is the precise measurement of the actual indentation depth
of the indenter. This practical issue has been addressed by Müller et al (2011). The
evaluation of the material properties at elevated temperature reveals the influence
of the surface oxidation on the indentation data. To avoid this problem, Müller et al
(2009) developed an effective measurement procedure, which is of particular signif-
icance for characterizing the solder materials. The effect of crystal grain orientation
is another parameter, which influences the accuracy of detailed indentation analy-
sis of local material properties, was studied by Müller et al (2009). For describing
the time-dependence of material response shown by low melting solder materials,
which under indentation load are susceptible to creep behavior, Müller and Worrack
(2012) have developed an enhanced analysis of nanoindentation data based on rheo-
logical models. To obtain information on the material’s work hardening from exper-
imentally measured load-displacement curves obtained with a blunt probe, the in-
verse analysis based determination methodology was established by Weinberg et al
(2005). A practically important problem arises in application of nanoindentation for
determining the mechanical properties of individual phases in heterogeneous ma-
terials and, especially, of intermetallic phases in microelectronic structures. It has
been shown (Albrecht et al, 2005) that nanoindentation can be effectively used to
quantify the growth of intermetallic phases, in particular at the interface of a solder
connection.

What interests us in nanoindentation is that in many cases the effect of plastic de-
formations on the elastic deformation response can be get rid of by considering the
indentation unloading (Bulychev et al, 1975), so that by evaluating the incremental
indentation stiffness

S =
dF

dδ
, (2.1)
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one can assess the stiffness property of solid materials, which for an isotropic ho-
mogeneous linearly elastic material, is fully characterized by its shear modulus, G,
and Poisson’s ratio, ν.

In the case of an axisymmetric indenter (e.g., cylinder, sphere, or cone), the
evaluation of elastic indentation test is based on the BASh (Bulychev–Alekhin–
Shorshorov) relation (Bulychev et al, 1975)

S(a) =
4aG

1− ν
, (2.2)

which reveals the fact that the indentation stiffness is proportional to the radius of
contact area, a.

Equations (2.1) and (2.2) show that the ratio S(a)/
√
A, where A is the con-

tact area, should be insensitive to the size of the indenter imprint. However, for a
functionally-graded material, when, in addition to its elastic moduli, the material’s
response to indentation depends on some characteristic size of material inhomo-
geneity, the ratio S(a)/a (in the axisymmetric setting) will vary with the contact
radius a, thereby exhibiting the size effect. This issue was considered using either
experimental, analytical or numerical methods (e.g., Suresh et al, 1997; Gouldstone
et al, 2007).

Recall (Markworth et al, 1995) that the concept of functionally graded mate-
rial (FGM) refers to composite materials with spatially variable properties, which is
usually achieved by gradual compositional variation of the constituents. The devel-
opment of indentation methods for a FGM sample requires the solution of contact
problems for a semi-infinite elastic medium with a continuous variation of elastic
properties (e.g., Giannakopoulos and Suresh, 1997b; Aizikovich et al, 2002; Heß,
2016; Argatov et al, 2018). Moreover, in order to assess the sample size effect, the
corresponding contact problem should be formulated for a finite body, and such
problems still remain to be solved by analytical methods.

Recently, the three-dimensional elastic deformation of an isotropic functionally
graded plate subjected to point loading was solved by Abali et al (2014) in the
special case of exponentially graded inhomogeneity using the analytical approach
based on the displacement functions method (Plevako, 1971; Kashtalyan, 2004).
In the present paper, we make use of the obtained singular solution and employ
asymptotic modeling approach (Argatov, 2010) for evaluating the local indentation
stiffness of a simply supported FGM plate in the range of small-scale indentation.

2.2 Small-scale Indentation

To fix our ideas, we consider indentation of a FGM sample, which is supposed to be
isotropic with a constant Poisson’s ratio, ν. To be more precise, we assume that the
shear elastic modulus, G(x3), varies according to an exponential law of the type
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G(x3) = G0 exp
(x3

l

)
, (2.3)

where G0 is the value of the shear modulus at the surface, x3 is a Cartesian coordi-
nate measured along the inner normal to the indented surface x3 = 0, and l is the
characteristic size of inhomogeneity.

In the general case of in-depth functionally graded material, the inhomogeneity
characteristic size can be introduced as follows:

l =

∣∣∣∣ G(0)

G′(0)

∣∣∣∣. (2.4)

Here, G′(0) is the right-hand derivative of the function G(x3) at x3 = 0.
Let a be a characteristic size of the contact area, e.g., the contact radius in the

case of axisymmetric indenter and a circular contact area. Then, the range of small-
scale indentation can be characterized by assuming that a/l � 1. An approximate
solution of the contact problem for a frictionless cylindrical indenter (Fig. 2.1) and
an exponentially graded elastic medium (2.3) in the special case ν = 0 was obtained
by Giannakopoulos and Suresh (1997b). Based on their results, the indentation stiff-
ness can be evaluated as follows:

S(a) ≈ 4aG0

{
1− 2

π

a

l

(
C0 − C1

3

(a
l

)3

+
2C2

1

45π

(a
l

)5
)}−1

. (2.5)

Here, C0 = 3.7 and C1 = 403.5.
Observe that the factor 4aG0, which stands just before the curly braces in (2.5),

corresponds to the isotropic homogeneous case with the surface shear modulus G0.
It is interesting that the relative difference between S(a), as it is given by (2.5),
and 4aG0 is less than 5% only in a relatively small interval [0, 0.02). At the same
time, the 5 percent interval for the first order approximation S(a) ≈ 4aG0

{
1 −

(2/π)C0(a/l)
}

is longer and equal to [0, 0.16). This example shows that due to the
size effect, the classical BASh formula (2.2) and the Oliver–Pharr method can be
applied only in a limited contact size range.

Fig. 2.1 Schematic of the
cylindrical flat-ended indenta-
tion
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2.3 First-order Asymptotic Model for the Indentation Stiffness

Let G3(x1, x2) denote the surface influence function in the Boussinesq problem of
acting a unit point force on the surface of an elastic half-space along the normal to
the surface and directed inside the half-space. In the case of exponentially graded
material (2.3) with zero Poisson’s ratio, the following solution holds (Giannakopou-
los and Suresh, 1997a):

G3(r) =
1

2πG0l

∞∫
0

L(u)J0

(r
l
u
)
du. (2.6)

Here, r =
√
x2
1 + x2

2 is a polar radius, J0(t) is the zeroth order Bessel function of
the first kind, and

L(u) =
2u

√
(2u)2 + 1(

1 +
√

(2u)2 + 1
)2 . (2.7)

First of all we observe that

L(u) = 1 +D1u
−1 +O(u−2), u → ∞, (2.8)

with D1 = −1 and, therefore, the integral in (2.6) diverges as r → 0.
To proceed, we recall the known formulas (e.g., Gradshteyn and Ryzhik, 1994,

formulas (6.511.1) and (6.532.4))

∞∫
0

J0(ut) du =
1

t
,

∞∫
0

uJ0(ut)

u2 + 1
du = K0(t), (2.9)

where K0(t) is the Macdonald function, which admits the asymptotic expansion

K0(t) = − ln
t

2
+ γ +O(t2), t → 0, (2.10)

with γ = 0.557 . . . being Euler’s constant.
Now, by accounting for (2.9) and (2.10), it can be shown that the integral in

Eq. (2.6) possesses the asymptotic expansion

∞∫
0

L(u)J0

(r
l
u
)
du =

l

r
+D1 ln

l

r
− a0 +O

(r
l

)
, r → 0, (2.11)

where D1 = −1 is the asymptotic constant in (2.8) and a0 is given by

a0 = −D1(ln 2− γ) +

∞∫
0

(
1− L(u) +

D1u

u2 + 1

)
du. (2.12)
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Thus, in light of (2.11), we obtain

G3(r) =
1

2πG0

(
1

r
+

D1

l
ln

l

r
− a0

l
+O

(r
l

))
, r → 0. (2.13)

In order to determine the indentation stiffness, we consider the frictionless in-
dentation problem for a flat-ended cylindrical indenter of radius a, which can be
formulated in the form of the following integral equation (Vorovich et al, 1974):

a∫
0

p(r̄)K
( r̄
l
,
r

l

)
r̄ dr̄ = θ0lδ0. (2.14)

Here, p(r) is the contact pressure, θ0 = G0/(1− ν) is an elastic constant, δ0 is the
indenter displacement, and the kernel K(s, t) is given by the integral

K(s, t) =

∞∫
0

L(u)J0(us)J0(ut) du.

It can be shown (e.g., Vorovich et al, 1974) that the solution of Eq. (2.14) is
related to the solution q(r) of the integral equation

a∫
0

q(x̄) dx̄

∞∫
0

L(u) cos
x̄

l
u cos

x

l
u du =

π

2
θ0lδ0 (2.15)

via the formula

p(r) =
2

π

(
q(a)√
a2 − r2

−
a∫

r

q′(r̄) dr̄√
r̄2 − r2

)
. (2.16)

In turn, by introducing the dimensionless variables

ϕ(ξ) =
q(ξa)

θ0a
, ξ =

x

a
, λ =

l

a
, f0 =

δ0
a
, (2.17)

the integral equation (2.15) can be transformed to the following form (Vorovich
et al, 1974):

ϕ(ξ)− 1

πλ

1∫
−1

ϕ(ξ̄)k
(ξ − ξ̄

λ

)
dξ̄ = f0. (2.18)

Here we have introduced the notation

k(t) =

∞∫
0

[
1− L(u)

]
cosut du. (2.19)
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Further, for the function L(u) given by Eq. (2.7) and satisfying the asymptotic
expansion (2.8), it can be verified that the following expansion holds (Ajzikovich
and Aleksandrov, 1986):

k(t) = D1 ln |t| − a30 +O(t), t → 0. (2.20)

The asymptotic constant a30 is given by (cf. Eq. (2.12))

a30 =

∞∫
0

(
L(u)− 1− D1(1− e−u)

u

)
du. (2.21)

Using the properties of the digamma function, we find

a30 = −a0 −D1 ln 2, (2.22)

where a0 is the asymptotic constant (2.12).
Finally, substituting the asymptotic approximation (2.20) into Eq. (2.18) and as-

suming that λ � 1, we readily find the first-order asymptotic approximation of its
solution in the form

ϕ(ξ) � f0

{
1 +

1

πλ

1∫
−1

(
D1 ln

|ξ − ξ̄|
λ

− a30

)
dξ̄

}
. (2.23)

Fig. 2.2 Predictions for the relative indentation stiffness according to the approximate formula
(2.5) (dashed line) and the asymptotic formula (2.25) (solid line)
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By direct integration, it can be shown that

1∫
−1

ln
1

|ξ − ξ̄| dξ̄ = − ln(1− ξ2) + 2 + ξ ln
(1− ξ

1 + ξ

)
.

Thus, the substitution of (2.23) into Eqs. (2.16) and (2.17) yields

p(r) � 2

π

θ0δ0
a

{
1√

1− ρ2

(
1− 1

πλ

[
2D1

(
1 + ln

λ

2

)
− 2a30

])

+
D1

πλ

1∫
ρ

ln

(
1− ξ

1 + ξ

)
dξ√

ξ2 − ρ2

}
, (2.24)

where ρ = r/a is the dimensionless polar radius.
In turn, the substitution of (2.24) into the formula

S(a) =
2π

δ0

a∫
0

p(r)r dr

leads to the following first-order asymptotic model for the indentation stiffness (cf.
Ajzikovich and Aleksandrov, 1986)

S(a) � 4aθ0

{
1 +

1

πλ

(
D1

(
3 + 2 ln

λ

2

)
+ 2a30

)}−1

. (2.25)

Here, λ is the large dimensionless parameter given by (2.17).
Note that the relative difference between the asymptotic solution (2.25) and the

approximate solution (2.5) does not exceed 5% in the interval [0, 0.09). It should be
emphasized that the expression on the right-hand side of (2.5) has a singularity for a
certain value of the ratio a/l. Hence, the accuracy of the approximate solution (2.5)
is doubtful for small values of λ, where the asymptotic solution (2.25) fails as well.

2.4 Sample Size Effect in Indentation of a FGM Plate

It is clear that formulas (2.5) and (2.25) can be applied when, in addition, the contact
radius a is much smaller than the sample’s characteristic size, h. Moreover, in the
case of a tested sample of finite size, the clamping conditions should be accounted
for as well. To illustrate this issue, we consider the problem of indentation of a
square FGM plate, which is assumed to be simply supported at its perimeter. In
order to construct an asymptotic model for the indentation stiffness, we need the
singular solution of the boundary-value problem of point loading of the plate (see
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Fig. 2.3), which was investigated by a combination of analytical and numerical tools
by Abali et al (2014).

Let the plate be referred to a Cartesian coordinate system (x1, x2, x3), so that
−b/2 ≤ x1 ≤ b/2, −b/2 ≤ x2 ≤ b/2, 0 ≤ x3 ≤ h. Let us also introduce the new
vertical variable

z = h− x3, (2.26)

which has been used in the analysis of Abali et al (2014) and Kashtalyan (2004).
According to Plevako’s general solution (Plevako, 1971), the vertical component
of the displacement vector can be represented in the following form (Kashtalyan,
2004)

G3(x) =
1

G

∞∑
m=1

∞∑
n=1

{
−(1− ν)

(
1

l

∂2Lmn

∂z2
(x) +

∂3Lmn

∂z3
(x)

)

+ α2
mn

(
(2− ν)

∂Lmn

∂z
(x)− ν

l
Lmn(x)

)}
. (2.27)

Here we have introduced the notation

Lmn(x) = φmn(z) sin
πm

b

( b

2
+ x1

)
sin

πm

b

( b

2
+ x2

)
, (2.28)

φmn(z) = h4
[
A1mnf1mn(z)+A2mnf2mn(z)+A3mnf3mn(z)+A4mnf4mn(z)

]
,

f1mn(z) = e−z/l cosh
λmnz

h
cos

μmnz

h
, f2mn(z) = e−z/l sinh

λmnz

h
cos

μmnz

h
,

f3mn(z) = e−z/l cosh
λmnz

h
sin

μmnz

h
, f4mn(z) = e−z/l sinh

λmnz

h
sin

μmnz

h
.

The constants A1mn, A2mn, A3mn, and A4mn can be found from the boundary
conditions on the top and bottom surfaces of the plate, λmn and μmn are the roots
of the characteristic equations (see Abali et al, 2014; Kashtalyan, 2004, for details),
and αmn = π

√
m2 + n2/b. In the case of unit point loading, we have

σ33

∣∣
x3=0

= − 4

b2

∑
m

∑
n

cos
πm

b
x1 cos

πm

b
x2, (2.29)

Fig. 2.3 Schematic of the
point loading of a square
simply supported FGM plate
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where m,n = 1, 3, 5, . . . .
Thus, in view of Eqs. (2.27)–(2.29), the surface normal displacement of the FGM

plate can be represented in the form

G3(x1, x2, 0) =
1

2πG0l

∑
m

∑
n

Amn cos
πm

b
x1 cos

πm

b
x2, (2.30)

where the dimensionless coefficients Amn are linear combinations of A1mn, A2mn,
A3mn, and A4mn (m,n = 1, 3, 5, . . .).

For a FGM plate of the type (2.6), it can be shown that the singular function
(2.30) satisfies the asymptotic expansion of the type (2.13). In light of this fact, we
introduce the notation

B(1)
mn =

16l

b2

b/2∫
0

b/2∫
0

1√
x2
1 + x2

2

cos
πm

b
x1 cos

πm

b
x2 dx1dx2, (2.31)

B(2)
mn =

16

b2

b/2∫
0

b/2∫
0

ln
l√

x2
1 + x2

2

cos
πm

b
x1 cos

πm

b
x2 dx1dx2, (2.32)

and put

A0 = −
(
2πG0lG3(x1, x2, 0)− l

r
+D1 ln

l

r

)∣∣∣∣
r=0

, (2.33)

where D1 = −1 is the asymptotic constant from the asymptotic expansion (2.13) for
the fundamental solution G3(r) of the Boussinesq problem for a FGM half-space.

Then, according to (2.30)–(2.33), we find

A0 = −
∑
m

∑
n

(
Amn −B(1)

mn −D1B
(2)
mn

)
. (2.34)

Finally, by applying the asymptotic modeling approach (Argatov, 2010) it can be
shown that the first order model for the indentation stiffness is given by

S(a) ≈ 4aθ0

{
1 +

1

πλ

(
D1

(
3 + 2 ln

λ

2

)
+ 2A30

)}−1

, (2.35)

where, in view of (2.22), we have

A30 = −A0 −D1 ln 2

with A0 being given by (2.34), and λ = l/a is the dimensionless parameter intro-
duced by (2.17), which is expected to take large values.

Observe that the asymptotic model (2.35) requires that the characteristic inho-
mogeneity length l should be smaller than the sample thickness h, so that a � h, as
well as a � b, where a is the contact radius and b is the plate width.
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2.5 Discussion and Conclusion

It should be emphasized that asymptotic models, which are usually derived under
certain simplifying assumptions, should not be exploited outside the range of their
applicability. With regard to the asymptotic models developed above, we observe
that the singular solution (2.6), (2.5) was obtained in the special case where ν = 0.
For the more realistic case of non-zero Poisson’s ratio, the factor (2πG0)

−1 in (2.6)
should be replaced with (1 − ν)/(2πG0), and, apparently, the asymptotic constant
D1 in (2.8) will be a function of ν.

In the general case of a functionally graded material with constant Poisson’s ratio,
the first-order asymptotic model (2.25) still can be used, provided the inhomogene-
ity characteristic size l is defined by formula (2.4).

It should be noted that the 5 percent interval, determined for the asymptotic
model (2.25) based on the approximate solution (2.5) is rather small (see Fig. 2.2).
This, in particular, implies that further research is needed to understand the strength
of the size effect.
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