
Chapter 18

Delamination Buckling in Composite Plates: an

Analytical Approach to Predict Delamination

Growth

Anton Köllner, Fabian Forsbach & Christina Völlmecke

Abstract An analytical modelling approach is presented which is capable of de-
termining the post-buckling responses as well as the onset of delamination growth
of multi-layered composite plates with an embedded circular delamination. In or-
der to overcome current drawbacks of analytical models regarding embedded de-
laminations, the model employs a problem description in cylindrical coordinates
and a novel geometric representation of delamination growth in conjunction with a
Rayleigh-Ritz formulation and the so-called crack-tip element analysis. The mod-
elling approach is applied to study the compressive response of composite plates
with thin-film delaminations loaded under radial compressive strain. Post-buckling
responses and the onset of delamination growth are determined for several layups.
The results are in very good agreement with finite element simulations while requir-
ing low computational cost.

Keywords: Delamination buckling · Energy release rate · Composites · Plates ·
Delamination

18.1 Introduction

Delamination buckling is a well-known failure mode in layered slender struc-
tures which has attracted a lot of interest since the pioneering work of Kachanov
(Kachanov, 1976) and Chai et al. (Chai and Babcock, 1985; Chai et al, 1981). Ow-
ing to its relevance, particularly for the aircraft industry (Baker and Murray, 2016;
Butler et al, 2012), the problem of delaminated composite structures loaded un-
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der in-plane compression represents an area of ongoing research (Chen et al, 2018;
Köllner and Völlmecke, 2018; Ouyang et al, 2018). Significant progress has recently
been made regarding analytical modelling approaches (Köllner et al, 2018; Köllner
and Völlmecke, 2017a,b, 2018) providing insight into the interaction of stability
and material failure by determining the post-buckling behaviour during delamina-
tion growth and investigating the effect of damage types, dimensions and locations.
The effect of delamination location (Ipek et al, 2018; Nilsson et al, 2001), layups
(i.e. anisotropy of the sublaminates Butler et al, 2012), local-global buckling (Rhead
et al, 2017) and stiffeners (Ouyang et al, 2018) has also been investigated in experi-
mental studies. On the other hand, current numerical studies (Abir et al, 2017; Sun
and Hallet, 2018; Tan et al, 2016) mainly investigate the compressive response of
certain configurations of damaged composite panels, where damage originated from
out-of-plane impact scenarios.

Regarding the evaluation of the compressive strength of delaminated composite
panels, the accurate prediction of the onset of delamination growth is important.
Analytical models considering embedded delaminations are hitherto not capable of
determining the energy release rate along the boundary, which is required to deter-
mine the onset of delamination growth precisely. Therefore, the current work aims
at improving the capabilities of analytical modelling approaches further by resolv-
ing one of the major drawbacks regarding the application of analytical descriptions
to embedded delaminations: the prediction of delamination growth by an increase
in the initial radius (circular delaminations) (Bottega and Maewal, 1983) or in the
major and minor axis (elliptical delaminations), which is commonly referred to as
global approach.

However, except for certain configurations of the initial delamination (cf. Köll-
ner and Völlmecke, 2018), the global description does not allow for an accurate
prediction of the onset of delamination growth (applied load, displacement field,
shape of growth) or requires simple model reductions such that only the load causing
growth can be approximated (Butler et al, 2012). The current modelling approach
considers delamination growth along the boundary of the delamination, thus delam-
ination growth is not associated with a complete disbond of the boundary, which
is referred to as local approach. This is enabled by using cylindrical coordinates
(r, ϕ, z) as well as a geometric representation of the newly generated delamina-
tion area. Despite the resulting dependence of the stiffness tensor on the angle ϕ,
the total potential energy, the equilibrium equations and the energy release rate can
be determined analytically yielding an efficient engineering tool to adequately pre-
dict post-buckling responses and the onset of delamination growth in multi-layered
composite panels with embedded delaminations.

18.2 Model Description

The geometric model and the geometric representation of delamination growth are
shown in Fig. 18.1. The circular plate has a radius R∗ and a thickness t. The depth of
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Fig. 18.1 Geometric model of the delaminated plate (top), visualization of the geometric
representation of local growth (bottom).

the delamination is defined by the parameter a. Since, in the current work, thin-film
delaminations are studied, delaminations complying with a < 0.1 are considered.
The initial radius of the circular delamination is denoted by R. The plate is subjected
to an compressive in-plane radial strain ε0.

The plate is subdivided into three parts. Parts 1 and 2 describe the upper and
lower sublaminate respectively; part 3 represents the intact region of the plate. It
is further assumed that R∗ � R, such that, owing to the thin-film assumption, only
the upper delaminated region 1 undergoes buckling (out-of-plane deflections).

Delamination growth is modelled with the aid of a trigonometric function added
to the given initial radius R in the region where delamination growth is present.
Therefore, three parameters ϕG, k and ϕ0 are introduced representing the direction
of delamination growth, the amplitude of the newly generated delamination and
the span of growth respectively. Thus, the boundary of the delamination Γ can be
defined as

Γ =

{
R+ k cos2

(
ϕ−ϕG

ϕ0

π
2

)
forϕG − ϕ0 ≤ ϕ ≤ ϕG + ϕ0

R, elsewhere
, (18.1)

where, owing to the symmetry of the problem, half of the plate can be considered,
i.e. 0 ≤ ϕ ≤ π. The trigonometric description used is in good agreement with exper-
imental observations made regarding embedded circular delaminations (cf. Nilsson
et al (2001)).
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The Classical Laminate Theory (Reddy, 2004) is employed since out-of-plane
shear effects are deemed small for the laminates considered (the thin-film assump-
tion). The post-buckling behaviour is modelled with the aid of a Rayleigh–Ritz
formulation where the displacement field is approximated using a set of general-
ized coordinates qi. However, as aforementioned, parts 2 and 3 experience no

out-of-plane displacement, such that their displacement field u i can be defined as

u i (r, ϕ) = ε0r,

v i (r, ϕ) = 0, (18.2)

w i (r, ϕ) = 0,

where u, v and w are the radial, circumferential and out-of-plane displacements
respectively, ε0 is the loading parameter and i = 2, 3. The displacement field of
the upper sublaminate is approximated by employing a series of axisymmetric and
non-axisymmetric continuous shape functions, thus

u 1 (r, ϕ) = ε0r +

Mu∑
m=1

Nu∑
n=0

sin
(
mπ

r

Γ

) (
aumn sin (2nϕ) + bumn cos (2nϕ)

)
,

v 1 (r, ϕ) =
Mv∑
m=1

Nv∑
n=1

sin(mπ
r

Γ
) (avmn sin (2nϕ) + bvmn cos (2nϕ)) ,

w 1 (r, ϕ) =

Mw
1∑

m=1

cwm

(
cos

(
mπ

r

Γ

)
+ (−1)m+1

)
(18.3)

+

Mw
2∑

m=1

Nw∑
n=1

Ow∑
o=1

sin
(
mπ

r

Γ

)
sin

(
nπ

r

Γ

) (
awmno sin (2oϕ)

+ bwmno cos (2oϕ)
)
,

where aumn, bumn, avmn, bvmn, cwm, awmno and bwmno are sets of generalized coordinates
which will subsequently be summarized in the set qi. Eqs. (18.2) and (18.3) comply
with the geometric boundary conditions:

u i (r = Γ, ϕ) = u 1 (r = Γ, ϕ) = ε0Γ,

v i (r = Γ, ϕ) = v 1 (r = Γ, ϕ) = 0,

w i (r = Γ, ϕ) = w 1 (r = Γ, ϕ) = 0, (18.4)
∇jw

i (r = Γ, ϕ) = ∇jw
1 (r = Γ, ϕ) = 0,

with ∇j = { ∂
∂r ,

1
r

∂
∂ϕ} and i = 2, 3.

The amount of generalized coordinates required to adequately model the post-
buckling responses varies strongly with the layup of the upper sublaminate as well
as the delamination depth. Therefore, with the aid of a parametric study, 84 gener-
alized coordinates corresponding to Mu = 8, Nu = 3, Mv = Nv = 3, Mw

1 = 4,
Mw

2 = Nw = 2, Ow = 1 (cf. Eq. (18.3)) have been determined to provide satisfac-
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tory results, where certain configurations such as unidirectional layups and deeper
delaminations (within the thin-film range) may only require 10 generalized coordi-
nates.

18.3 Energy Formalism

18.3.1 Total potential energy principle

Owing to the description of the given problem in cylindrical coordinates, the well-
known in-plane (AIJ ), coupling (BIJ ) and bending (DIJ ) stiffness matrices com-
prised within the Classical Laminate Theory ({I, J} = {1, 2, 6}) are rewritten em-
ploying the coordinate transformation illustrated in Fig. 18.2 (from the local fibre
coordinate system (e1, e2, e3) to the cylindrical coordinate system (er, eϕ, ez)).

With the assumption of plane stress, the reduced transformed stiffness matrix
[Q̄] can be expressed in terms of the reduced stiffness matrix [Q] of the respective
unidirectional layers (assumed to be transversally isotropic) of the laminate, the fibre
orientation angle θ and the angle ϕ, thus

[Q̄](ϕ) = [K][Q][K]−T, with (18.5)

[K] =

⎡⎣ cos2 ω sin2 ω 2 sinω cosω
sin2 ω cos2 ω −2 sinω cosω

− sinω cosω sinω cosω cos2 ω − sin2 ω

⎤⎦ , (18.6)

[Q] =

⎡⎣Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤⎦ , and (18.7)

ω = ϕ− θ. (18.8)

Fig. 18.2 Coordinate trans-
formation from the local
fibre coordinate system
(e1, e2, e3) to the cylin-
drical coordinate system
(er , eϕ, ez).
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In order to model the post-buckling response, non-linear strains associated with the
out-of-plane displacement (i.e. von Kármán strains, see Reddy, 2004) are consid-
ered in the modelling approach, thus⎛⎝ εrr

εϕϕ

2εrϕ

⎞⎠ =

⎛⎝ε1
ε2
ε6

⎞⎠ =
{
ε0
}
+ z

{
κ
}

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂u

∂r
+

1

2

(
∂w

∂r

)2

1

r

∂v

∂ϕ
+

u

r
+

1

2

(
1

r

∂w

∂ϕ

)2

1

r

∂u

∂ϕ
+

∂v

∂r
− v

r
+

1

r

∂w

∂ϕ

∂w

∂r

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝
−∂2w

∂r2

− 1

r2
∂2w

∂ϕ2
− 1

r

∂w

∂r

−2

r

∂2w

∂r∂ϕ
+

2

r2
∂w

∂ϕ

⎞⎟⎟⎟⎟⎟⎟⎠,
(18.9)

where {ε0} and {κ} are the membrane strains and the curvatures, respectively.
The strain energy Ws is determined by integrating the strain energy density,

ws =
1

2
Q̄IJεIεJ , (18.10)

over the volume, yielding

Ws =
1

2

∫
ϕ

∫
r

(
ε0IAIJε

0
J + 2ε0IBIJκJ + κIDIJκJ

)
rdr dϕ, (18.11)

where the displacement field defined in Eqs. (18.2) and (18.3) as well as Eq. (18.9)

are employed, with Ws = W
1

s + W
2

s + W
3

s . It should be noted that, in
Eq. (18.11), the in-plane (AIJ ), coupling (BIJ ) and bending stiffness (DIJ ) matri-
ces depend on the angle ϕ. Owing to the displacement controlled problem descrip-
tion, the strain energy is the governing functional. Thus, the post-buckling response
can be determined by the well-known variational principle

δWs(qi) =
∂Ws

∂qi
δqi = 0 yielding

∂W

∂qi
= 0, (18.12)

where the set of non-linear algebraic equations is solved using the Newton–Raphson
method. Owing to the presence of the delamination, an initial imperfection in the
form of a small out-of-plane displacement of the upper sublaminate (amplitude of
t/1000) is commonly assumed modelling delamination buckling (Sheinman et al,
1998). The energy contributions associated with the imperfection are deducted from
Eq. (18.11) (cf. Köllner, 2017). The strain energy (Eq. (18.11)) as well as the equi-
librium equations (18.12) are determined analytically.
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18.3.2 Energy Release Rate

With the aid of the equilibrium solution qi(ε0) obtained from Eq. (18.12), the energy
release rate G for delamination growth can be calculated as (cf. Fig. 18.1):

G = − ∂Ws

∂Adel
with Adel = 2

ϕG−ϕ0+π∫
ϕG−ϕ0

Γ∫
0

rdr dϕ = Rπ+
1

4
kϕ0 (8R+ 3k) .

(18.13)
Eq. (18.13) can be rewritten, since the onset of delamination growth is determined
by a change of the amplitude k of the newly generated delamination area for a
certain span ϕ0, thus

G(ϕG, ϕ0) = − 1
∂Adel

∂k

∂Ws

∂k

∣∣∣∣∣
k=0

. (18.14)

Equation (18.14) has to be evaluated for all possible ϕ0 (span of delamination
growth), i.e. 0 ≤ ϕ0 ≤ π/2. Maximizing Eq. (18.14) with respect to ϕ0 yields
the energy release rate along the boundary of the delamination (ϕG):

G(ϕG) = max
ϕ0∈(0,π2 )

(
− 1

∂Adel

∂k

∂Ws

∂k

∣∣∣∣∣
k=0

)
. (18.15)

Even though the calculation of the energy release rate along the boundary of em-
bedded delaminations constitutes a significant advancement in analytical modelling
approaches, it should be noted that Eq. (18.15) provides the total amount of the
energy release rate. Particularly for embedded delaminations, delamination growth
is governed by mode mixture, which is not considered in Eq. (18.15). Therefore,
mode mixture is determined by evaluating the force and moment resultants along
the boundary of the delamination in conjunction with employing the crack-tip el-
ement analysis as described in Schapery and Davidson (1990). Such a crack-tip
element, adjusted for the given problem of thin-film delaminations, is illustrated in
Fig. 18.3.

In Fig. 18.3, a one-dimensional representation of the crack-tip element is shown.
The thin-film assumption is enforced by the supports added to the bottom of the
plate. Following Davidson et al (2000, 1995), the lengths d and e as well as the
width of the element (annulus) are small enough such that geometric nonlinearities
are negligible as well as force and moment resultants remain uniform within the
element. As done in Davidson et al (1995), the force and moment resultants nϕϕ

and mϕϕ are omitted assuming that they do not affect the crack-tip element (state of
plane strain in the width direction of the element). Moreover, it has been shown (e.g.
Nilsson et al, 2001) that Mode III remains negligible for the delaminations studied,
thus the shear components nrϕ and mrϕ are subsequently also omitted.
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Fig. 18.3 Crack-tip element for the circular composite plate with a thin-film delamination.

With the aid of a free body diagram of the upper sublaminate illustrated in
Fig. 18.4, the crack-tip force nc and moment mc can be determined:

nc = −n
1
rr + ñ

3
rr , (18.16)

mc = −m
1
rr + nc

(
at

2

)
, (18.17)

with ñ
3
rr = ε0

(
A

1
11 +A

1
12

)
.

The energy release rate G employing the crack-tip forces and resultants as well
as the concept of virtual crack closure (Krueger, 2004) can be calculated as

G =
1

2d
(ncΔu+mcΔβ) , (18.18)

where Δu = u 1 − u 2 and Δβ = β 1 are the differences in the displacement
of the crack surfaces in the radial direction and in the rotation around the ϕ-axis
respectively, i.e.

Fig. 18.4 Free-body diagram of the upper sublaminate.
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u 1 = d
(
ε0rr − κrr

at
2

) 1
,

u 2 = d ε
0 2
rr , (18.19)

β 1 = d κ
1
rr .

The parameters Δu and Δβ can also be expressed by the inverted constitutive re-
lation using the crack tip force nc and moment mc in conjunction with the compli-
ances (Schapery and Davidson, 1990),

[
a11 b11
b11 d11

] i
=

⎛⎝[
A11 B11

B11 D11

] i
⎞⎠−1

, (18.20)

yielding

Δu/d =

(
a

1
11 + a

2
11 − b

1
11 at+ d

1
11

(
at
2

)2)
nc +

(
b

1
11 − d

1
11

at
2

)
mc

= c11 nc + c12 mc, (18.21)

Δβ/d =

(
b

1
11 − d

1
11

at
2

)
nc + d

1
11 mc

= c12 nc + c22 mc .

With the parameters c11, c12 and c22 given by Eq. (18.21), the mode mixture
between mode I and mode II can be calculated by determining the phase angle
Ψ = tan−1

√
GII/GI, i.e.

Ψ = tan−1

( √
c11nc cos(Ω) +

√
c22mc sin(Ω + Γ )

−√
c11nc sin(Ω) +

√
c22mc cos(Ω + Γ )

)
, (18.22)

as given in Davidson et al (2000), where Γ = sin−1(c12(c11c22)
−1/2) and Ω is

the mode-mix parameter. Note that employing the Classical Laminate Theory, the
parameter Ω cannot be determined analytically for thin-film delaminated multi-
layered plates; experimental (Davidson et al, 2000) or numerical studies (Schapery
and Davidson, 1990) are required. In the current work, Ω is determined with the
aid of a finite element simulation (cf. Table 18.1) and remains constant for thin-film
delaminations (cf. Davidson et al, 2000).

In order to determine the critical energy release rate Gc, Eq. (18.22) is used in a
crack growth criterion provided by Hutchinson and Suo (1992), i.e.

Gc = GI

(
1 + tan2 ((1− λ)Ψ)

)
, (18.23)

with

λ = 1− 2

π
tan−1

(
GII

c −GI1
c

GI
c

)
,
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where GI
c and GII

c are the critical energy release rates for mode I and II respectively.

18.4 Results

The capabilities of the modelling approach are presented in two ways. First, the post-
buckling behaviour of a unidirectional laminate with varying delamination depth is
studied (Fig. 18.5). Second, the effect of the layup (i.e. angle orientation) on the
behaviour of the energy release rate and thus the onset of delamination growth is
analysed (Fig. 18.6). A multi-layered composite plate made of 40 CFRP plies is
investigated. The material parameters and the dimensions of the plate are provided
in Table 18.1. The results obtained are compared with FE simulations performed in
Abaqus using SR4 elements.

Table 18.1 Dimensions and material parameters of the circular plate.

E11 137.90 GPa GI
c 0.19 N/mm

E22 8.98 GPa GII
c 0.63 N/mm

G12 7.20 GPa R 5 mm
ν12 0.3 t 3.556 mm
a ν23 0.5 tply 0.0889 mm
a R∗ 50 mm Ω 58◦
a parameters used for FEM only.

In Fig. 18.5, the post-buckling response of a circular plate with a unidirectional
([0◦40]) layup and a circular delamination (R = 5mm) for three different delami-
nation depths (a = {1/40, 2/40, 3/40}) is shown. The post-buckling behaviour is
analysed in terms of applied compressive strain against midpoint deflection (top in
Fig. 18.5) and compressive force acting on the upper sublaminate against the end-
shortening of the plate (bottom in Fig.18.5). Normalization is performed against the
buckling load and strain of a respective intact plate with the radius R∗. The mid-
point deflection is normalized against the total thickness of the plate t. As expected,
Fig. 18.5 shows that with larger delamination depths (a) the buckling load increases
and the midpoint deflection during the post-buckling response decreases. This be-
haviour is verified by the FEM showing very good agreement with the analytical
modelling approach. The onset of delamination growth is visualized in Fig. 18.5 by
diamond symbols; filled diamonds for the current model and non-filled diamonds
the for the FEM. Analysing the force against end-shortening behaviour, it can be
seen that delamination growth occurs earlier during the post-buckling response with
increasing delamination depth. The prediction of the onset of delamination growth
is also in very good agreement with the FEM.

The reason for the accurate prediction of delamination growth in Fig. 18.5 is
presented in Fig. 18.6 illustrating the out-of-plane displacements of the delaminated
region (top row in Fig. 18.6), the behaviour of the energy release rate along the
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Fig. 18.5 Top: normalized applied compressive strain εnorm vs. normalized midpoint deflection
wnorm; bottom: normalized compressive force Pnorm vs. normalized end-shortening unorm.

boundary of the delamination (middle row in Fig. 18.6) and the span of delamination
growth as well as the phase angle along the boundary (bottom row in Fig. 18.6). A
delamination depth of a = 3/40 is chosen and three different layups of the upper
sublaminate are analysed: a) unidirectional [0◦3], b) cross-ply [90◦/0◦/90◦] and c)

an arbitrary angle layup [45◦/0◦/45◦].
Owing to the local geometric representation presented in Sect. 18.2, the be-

haviour of the energy release rate along the boundary can be analysed (cf. second
row of Fig. 18.6). The energy release rate is normalized against the respective criti-
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Fig. 18.6 Normalized out-of-plane displacements of the delaminated region wnorm (top),
normalized energy release rate Gnorm along the boundary (middle), span of delamination growth
ϕ0 and phase angle Ψ along the boundary (bottom); at the onset of growth, εdelnorm; layups studied:
a) [0◦3], b) [90◦/0◦/90◦], c) [45◦/0◦/45◦].

cal energy release rate that depends on the phase angle illustrated in the bottom row
of Fig. 18.6. Thus, where Gnorm = 1 is reached along the boundary, delamination
growth occurs. As can be seen in Fig. 18.6, the direction of growth is strongly de-
pendent on the layup of the laminate, where growth for the [0◦3] layup is initiated in
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the 0◦ direction, for [90◦/0◦/90◦] in the 90◦ direction and for [45◦/0◦/45◦] growth
is shifted to approximately 51◦.

The normalized applied strain causing delamination growth (εdelnorm) is provided
at the bottom of Fig. 18.6. The unidirectional layup (a) requires the highest applied
strain to cause delamination growth. This is related with the phase angle Ψ at the
location of the boundary experiencing growth. In growth direction, the unidirec-
tional layup shows the highest value of the phase angle (20◦), whereas the layups
[90◦/0◦/90◦] and [45◦/0◦/45◦] indicate angles of approximately 7◦ and 9◦, respec-
tively. Larger phase angles, representing larger mode II contributions, increase the
critical energy release rate and therefore larger levels of load input are required to
reach the respective critical value. The FEM shows qualitatively the same behaviour
with small quantitative deviations in the phase angle.

In the bottom row of Fig. 18.6, besides the phase angle, the span of initial de-
lamination growth ϕ0 determined by maximizing Eq. (18.14) is plotted along the
boundary. As expected, for all cases investigated the initial span of delamination
growth tends to zero indicating a localized delamination growth pattern that corre-
sponds well with the FEM where initial delamination growth is given by disbonding
of a single node.

18.5 Conclusions

An analytical modelling approach for predicting post-buckling responses and the
onset of delamination growth of multi-layered composite plates with a circular de-
lamination has been presented. For the first time, local delamination growth has
adequately been modelled by means of a (semi-)analytical approach. This has been
enabled by a geometric representation of the newly generated delamination area
and a problem description using cylindrical coordinates. Studies employing (semi-
)analytical models have hitherto considered delamination growth in a global manner,
i.e. growing major and/or minor axis of a circular(elliptical) delamination, which
either only applies to certain configurations or yields significant overestimations of
the applied load required to cause delamination growth. Thus, with the aid of the
modelling approach presented in this work, the capabilities of (semi-)analytical ap-
proaches towards a structural stability analysis of delaminated composite structures
have been improved significantly.

Despite using cylindrical coordinates as well as the geometric representation of
the boundary of the delamination, the total potential energy, the equilibrium equa-
tions and the energy release rate have been determined analytically. Post-buckling
responses have been determined by only solving once a set of non-linear algebraic
equations. As a consequence, efficient parametric studies are enabled which has
been demonstrated, in the current work, by studying the effect of varying delami-
nation depths (cf. Fig. 18.5). The adequate prediction of the onset of delamination
growth has been enabled by the analysis of the energy release rate along the entire
boundary of the delamination, which hitherto could not be done by semi-analytical



254 Anton Köllner, Fabian Forsbach & Christina Völlmecke

modelling approaches. Mode mixture has been considered by employing the crack-
tip element analysis, in which the mode mix parameter Ω has been determined with
the aid of a finite element simulation. Since Ω mainly depends on the geometry
(cf. Davidson et al, 2000), the parameter remains constant for all cases investigated,
i.e. for thin-film delaminations, which has been validated by experimental studies in
Davidson et al (2000) investigating beam-like structures.

In summary, with the modelling approach developed, a major drawback in semi-
analytical models for delamination buckling of embedded delaminations has been
overcome, viz. delamination growth can be modelled along the entire boundary.
Thus, post-buckling responses of delaminated composite plates considering delam-
ination growth can be determined adequately.
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