
Chapter 11

Eigenstresses in a Nonlinearly Elastic Sphere

with Distributed Dislocations

Evgeniya V. Goloveshkina & Leonid M. Zubov

Abstract The problem of the eigenstresses due to distributed edge and screw dislo-
cations in a hollow nonlinearly elastic sphere is considered. The dislocation density
is given by an arbitrary spherically symmetric tensor field. For a general isotropic
elastic material, the problem is reduced to a one-dimensional nonlinear boundary
value problem. By replacing the unknown functions, the boundary value problem
with nonlinear boundary conditions is transformed to a problem with linear ones.
Numerical solutions are constructed for specific models of compressible and incom-
pressible materials. The analysis of the influence of dislocations on a stress state of
an elastic sphere at large deformations is carried out.

Keywords: Nonlinear elasticity · Dislocation density · Eigenstresses · Large defor-
mations · Spherical symmetry · Rotation tensor

11.1 Introduction

A microstructure of a solid body largely determines the deformation, strength and
other properties. Therefore, a study of the microstructure and its defects is neces-
sary for analyzing the mechanical behavior of many crystalline bodies. There are
many studies on this subject which emphasize such defects as dislocations (Bilby
et al, 1955; Kondo, 1952; Kröner, 1960; Zubov, 1997; Derezin and Zubov, 2011,
1999). Dislocation models are applicable to the description of such phenomena as
crystal growth, fatigue, failure, plastic flow, inelasticity, and also other defects of
crystalline and nanostructured materials (Clayton, 2011; Clayton et al, 2006; Gutkin
and Ovid’ko, 2004; Maugin, 2012; Zhbanova and Zubov, 2016). When there is a lot
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of dislocations in a bounded volume, it makes sense to go to their continuous distri-
bution. In this case, the continuum dislocation theory is used. In the present paper, in
the context of the continuum dislocation theory, the nonlinear eigenstress problem
for a hollow elastic sphere is solved.

The general formulation of the nonlinear equilibrium problem for an elastic
isotropic sphere with an arbitrary spherically symmetric dislocation distribution was
given in Zubov (2014). In a number of special cases, exact spherically symmetric
solutions of the nonlinear dislocation theory were found (Zubov, 2014; Zhbanova
and Zubov, 2016; Goloveshkina and Zubov, 2018). In Zhbanova and Zubov (2016)
within the framework of the harmonic (semi-linear) material model, the exact so-
lution was found for any function characterizing the density of edge dislocations.
In particular, the case of dislocations concentrated on a spherical surface inside a
body was investigated. It was established that this surface was a surface of discon-
tinuity of strains and stresses. In addition to the eigenstress problem, the problem
for a hollow sphere under loading by external or internal hydrostatic pressure was
solved in Zhbanova and Zubov (2016). In Zubov (2014) an analytical solution of
nonlinear elasticity for a hollow sphere made of incompressible material with dis-
tributed screw dislocations of radial direction was obtained. In Goloveshkina and
Zubov (2018), for a special distribution of screw and edge dislocations, a solution
universal in the class of isotropic incompressible elastic bodies was found. With the
help of the solution obtained, the eigenstresses in a solid elastic sphere and in an in-
finite space with a spherical cavity were determined. The interaction of dislocations
with an external hydrostatic loading was also investigated. The dislocation distri-
bution determining the spherically symmetric quasi-solid state of an elastic body
characterized by zero stresses and a nonuniform elementary volumes rotation field
was found.

In this paper, we investigate the general case of a spherically symmetric dis-
location distribution. In this case, the exact solution can not be obtained analyti-
cally. Therefore, the nonlinear boundary value problem is solved numerically. In the
eigenstress problem for an elastic sphere, we use a special technique that allows
one to transform a boundary value problem with nonlinear boundary conditions into
a problem with linear ones. This makes the numerical solving the boundary value
problem for a nonlinear differential equation remarkably easy to perform. A numer-
ical analysis is carried out for the semi-linear material model and the incompressible
Bartenev–Khazanovich material model also known as the Varga model. The solu-
tion obtained describes the effect of distributed screw and edge dislocations on large
spherically symmetric deformations of an elastic sphere.

11.2 Input Relations

We define the dislocation density as a second-rank tensor field α such that the total
Burgers vector of dislocations crossing an arbitrary surface coincides with the flux
of the tensor α through this surface (Nye, 1953; Vakulenko, 1991). The dislocation
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density tensor field must satisfy the solenoidality condition

divα = 0 . (11.1)

Hereinafter, the divergence, rotor, and gradient operators (Lurie, 1990; Lebedev
et al, 2010) are written in coordinates of the reference configuration. We introduce
the deformation gradient (Lurie, 1990; Lebedev et al, 2010)

F = gradR, (11.2)

where R = Xkik is the radius vector of a point of the elastic medium in the de-
formed configuration, Xk (k = 1, 2, 3) are Cartesian coordinates of the body in the
final state, ik are the fixed coordinate base vectors.

In the presence of dislocations in the body, the vector field R does not exist and
the geometric relations (11.2) are replaced by the tensor incompatibility equation
with respect to F:

rotF = α, (11.3)

and the tensor F is called the distortion tensor.
In the absence of mass forces, the equilibrium equations for an elastic medium

(Lurie, 1990; Ogden, 1997) have the form

divD = 0, (11.4)

where D is the asymmetric Piola stress tensor associated with the distortion tensor
F by the constitutive equations of an elastic material (Lurie, 1990; Truesdell, 1977;
Ogden, 1997)

D(F) = dW (G)/dF , G = F · FT . (11.5)

Here, W is the specific energy, G is the metric tensor (the Cauchy strain measure).
In the finite strain theory, along with the Piola stress tensor D we use the sym-

metric Cauchy tensor (Lurie, 1990; Ogden, 1997; Truesdell, 1977)

T = (detF)−1FT ·D (11.6)

and the symmetric Kirchhoff stress tensor also called the second Piola–Kirchhoff
stress tensor

P = D · F−1 . (11.7)

11.3 Spherically Symmetric State

We introduce the spherical coordinates r, ϕ, θ:

x1 = r cosϕ cos θ, x2 = r sinϕ cos θ, x3 = r sin θ,
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where xs (s = 1, 2, 3) are the Cartesian coordinates of a sphere in the reference state.
Then er, eϕ, and eθ are the unit vectors tangent to the coordinate lines, forming the
basis.

The spherically symmetric dislocation distribution (Zubov, 2014) is represented
by the dislocation density tensor

α = α1(r)g + α2(r)d+ α3(r)er ⊗ er , (11.8)
g = eϕ ⊗ eϕ + eθ ⊗ eθ , d = eϕ ⊗ eθ − eθ ⊗ eϕ .

The first and last terms describe the distribution of screw dislocations, while the
second one describes the distribution of edge dislocations. Note that the spherical
symmetry of the tensor field (11.8) means that at all points of the sphere on a spher-
ical surface r = const, the components of the tensor field in the considered basis
are equal. At the same time, the tensor itself is invariant under rotations about the
vector er, that is, for an arbitrary function χ(r), the following equality holds

Q · α ·QT = α, Q = cosχ(r)g + sinχ(r)d+ er ⊗ er .

By virtue of (11.8), the solenoidality condition (11.1) implies the equation deter-
mining the relation between the components α1 and α3 of the dislocation density
tensor:

α1 = α3 +
1

2
rα′

3, (11.9)

where ′ denotes the derivative with respect to the radial coordinate. In the following,
the scalar dislocation densities α2 and α3 are assumed to be the given functions of
the radial coordinate r.

According to (Zubov, 2014), for an isotropic material the distortion tensor as
well as the stress tensor are found in the form analogous to the dislocation density
tensor:

F = F1(r)g + F2(r)d+ F3(r)er ⊗ er, (11.10)
D = D1(r)g +D2(r)d+D3(r)er ⊗ er . (11.11)

Taking into account (11.8) and (11.10), the incompatibility equation (11.3) is
reduced to three scalar equations

(rF2)
′ = rα1, F2 =

rα3

2
, F3 = (rF1)

′
+ rα2, (11.12)

and the equilibrium equations (11.4) due to (11.11) reduce to a single equation

dD3

dr
+

2(D3 −D1)

r
= 0 . (11.13)

If the prescribed hydrostatic pressure q0 acts on the outer surface of the sphere
r = r0, and the pressure q1 acts on the inner surface r = r1, then the boundary
conditions for the equation (11.13) will be
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D3(ri) = −qi

[
F 2
1 (ri) +

1

4
α2
3r

2
i

]
, i = 0, 1 .

In the eigenstress problem, i. e. in the absence of external loads, the boundary con-
ditions become

D3(r1) = 0, D3(r0) = 0 . (11.14)

We compute the determinant of the distortion tensor:

detF = F3

(
F 2
1 +

1

4
r2α2

3

)
. (11.15)

For physically realizable deformation, it is necessary that detF > 0. Therefore,
from (11.15) it follows that F3 > 0.

The polar decomposition of the distortion tensor has the form F = U ·A, where
the positive definite stretch tensor U and the proper orthogonal rotation tensor A in
compliance with (11.10) are determined by the formulas

U = G1/2 =

√
F 2
1 +

1

4
r2α2

3g + F3er ⊗ er, (11.16)

A = U−1 · F = cosψ(r)g + sinψ(r)d+ er ⊗ er . (11.17)

Here,

cosψ =
F1√

F 2
1 + 1

4r
2α2

3

, sinψ =
rα3

2
√
F 2
1 + 1

4r
2α2

3

. (11.18)

From the representation (11.17) one can see that the orthogonal tensor A describes
a rotation through an angle ψ around the vector er.

Given (11.10), we find the inverse distortion tensor F−1 and the metric tensor G:

F−1 =

(
F 2
1 +

1

4
r2α2

3

)−1 (
F1g − 1

2
rα3F2d

)
+ F−1

3 er ⊗ er, (11.19)

G = F · FT =

(
F 2
1 +

r2α2
3

4

)
g + F 2

3 er ⊗ er . (11.20)

The invariants of the tensor G for spherically symmetric deformation are ex-
pressed as follows:

I1 = trG = 2

(
F 2
1 +

1

4
r2α2

3

)
+ F 2

3 ,

I2 =
1

2

(
tr2G− trG2

)
=

(
F 2
1 +

1

4
r2α2

3

)2

+ 2F 2
3

(
F 2
1 +

1

4
r2α2

3

)
, (11.21)

I3 = detG = F 2
3

(
F 2
1 +

1

4
r2α2

3

)2

.
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For an arbitrary isotropic elastic material, the constitutive equations are repre-
sentable in the form (Lurie, 1990; Truesdell, 1977; Ogden, 1997)

D = (τ1 + I1τ2)F− τ2G ·F+ I3τ3F
−T, τk = 2

∂W (I1, I2, I3)

∂Ik
, k = 1, 2, 3 .

(11.22)
Here, τk are the material response functions dependent on the strain measure invari-
ants.

Substituting (11.10) with account of (11.12) as well as (11.19) and (11.20) into
the constitutive equations (11.22), we obtain the following representations of the
Piola stress tensor components:

D1 = (τ1 + I1τ2)F1 − τ2F1

(
F 2
1 +

1

4
r2α2

3

)
+ I3τ3F1

(
F 2
1 +

1

4
r2α2

3

)−1

,

D2 = (τ1 + I1τ2)
rα3

2
− 1

2
rα3τ2

(
F 2
1 +

1

4
r2α2

3

)
+

1

2
rα3I3τ3

(
F 2
1 +

1

4
r2α2

3

)−1

,

(11.23)

D3 = (τ1 + I1τ2)F3 − τ2F
3
3 + I3τ3F

−1
3 .

Since the stresses (11.23) are defined through the invariants (11.21) dependent
on F1 and F3, then taking into account the relationship between the tensor F com-
ponents (11.12), the stresses are expressed in terms of one distortion component F1.
Thus, for any isotropic material, the boundary value problem consists of the equi-
librium equation (11.13), which is a second-order nonlinear ordinary differential
equation with respect to the function F1(r), and the nonlinear boundary conditions
(11.14).

As an example, we write this equation explicitly for a semi-linear (harmonic)
material having the following constitutive equations (Lurie, 1990; Ogden, 1997;
John, 1960):

D =
2μ

1− 2ν
(νtrU− 1− ν)A+ 2μF, (11.24)

where μ and ν are the material constants. In the small strain region, the semi-linear
material follows Hooke’s law with the shear modulus μ and the Poisson’s ratio ν.
The differential equation with respect to the distortion F1(r) for the material is
written as follows:

F ′′
1 =

2(2− 3ν)

(ν − 1)r
F ′
1 +

(α2 + rα′
2) (1− ν) + 2α2(1− 2ν)

(ν − 1)r

+
2ν

(ν − 1)r

(
F 2
1 +

r2α2
3

4

)−1/2 (
F1F

′
1 +

rα3 (α3 + rα′
3)

4

)
+

2

(ν − 1)r2

[
2ν

√
F 2
1 +

r2α2
3

4
+ ν (F1 + rF ′

1 + rα2)− 1− ν

]
×

[
1− F1

(
F 2
1 +

r2α2
3

4

)−1/2
]
.

(11.25)
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The constitutive equations in terms of the Kirchhoff stress tensor for any, includ-
ing an anisotropic, elastic body have the form:

P = 2dW (G)/dG . (11.26)

The semi-linear material belongs to models of an elastic medium, the specific
energy of which is given as a function of the stretch tensor U and not the metric
tensor G. In this case, the symmetric Biot stress tensor is convenient to use:

S = dW/dU . (11.27)

From (11.26) and (11.27), we obtain the formulas connecting the Biot stress tensor
with the Kirchhoff and Piola stress tensors

S =
1

2
(P ·U+U ·P) =

1

2

(
D ·AT +A ·DT

)
. (11.28)

If the material is isotropic, then the specific energy depends on three invari-
ants of the stretch tensor, i. e. W = W (J1, J2, J3), where J1 = trU, J2 =
1
2

(
tr2U− trU2

)
, J3 = detU. Consequently, the tensor S can be rewritten as

S =

(
∂W

∂J1
+ J1

∂W

∂J2

)
I− ∂W

∂J2
U+ J3

∂W

∂J3
U−1 , (11.29)

where I is the unit tensor.
In an isotropic body, the tensors P and U are coaxial and therefore commute:

P ·U = U ·P. Then, S = P ·U = U ·P and S = D ·AT.
Constitutive equations in terms of the Piola tensor for the material with the spe-

cific energy W = W (J1, J2, J3) due to (11.29) will be

D = (η1 + J1η2)A− η2F+ J3η3F
−T, ηk =

∂W

∂Jk
. (11.30)

In the spherically symmetric problem, the invariants J1, J2, J3 are expressed in
F1, F2, F3 using formulas

J1 = 2

√
F 2
1 +

1

4
r2α2

3 + F3,

J2 = F 2
1 +

r2α2
3

4
+ 2F3

√
F 2
1 +

1

4
r2α2

3,

J3 = F3

(
F 2
1 +

1

4
r2α2

3

)
.

Taking into account (11.10), (11.19), and (11.17), the components of the Piola tensor
are written in the form
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D1 = (η1 + J1η2)

(
F 2
1 +

1

4
r2α2

3

)−1/2

F1 − η2F1 + J3η3

(
F 2
1 +

1

4
r2α2

3

)−1

F1,

D2 =
1

2
(η1 + J1η2)

(
F 2
1 +

1

4
r2α2

3

)−1/2

rα3−η2F2+
J3η3rα3

2

(
F 2
1 +

1

4
r2α2

3

)−1

,

(11.31)

D3 = η1 + J1η2 − η2F3 + J3η3F
−1
3 .

In the case of an incompressible material, the condition detF = I3 = J3 = 1 is
satisfied. Therefore, for the material, the constitutive equations (11.22) are modified
as follows:

D = (τ1 + I1τ2)F− τ2G · F− pF−T, (11.32)

where p is a pressure in an incompressible body not expressed in terms of strain.
Given the incompressibility property, the constitutive equations (11.29) and (11.30)
are reduced to

S = (η1 + J1η2) I− η2U− pU−1,

D = (η1 + J1η2)A− η2F− pF−T .

11.4 Transformation of the Boundary Value Problem

Since the boundary conditions (11.14) of the eigenstress problem are represented
by the stress constraints, then, taking into account their expressions (11.31) in terms
of the distortion, we finally obtain boundary conditions on the distortion. They rep-
resent a nonlinear relation with respect to the function F1 and its derivative F ′

1. To
obtain a boundary value problem with linear boundary conditions, it is necessary
to replace the unknown function. Instead of the equation with respect to F1(r), we
derive a system of equations with respect to D2(r) and D3(r). For this, we need to
solve the problem of inversion of the Piola stress tensor as a function of the distor-
tion tensor: D = h(F), that is, find the tensor function H , inverse to the function h:
F = H(D). The way to solve the problem for an isotropic material is indicated in
Zubov (1976) and consists of the following. First, a more simple problem of inver-
sion of the dependence S = l(U) between the symmetric tensors is solved, i. e. the
function L such that U = L(S) is founded. Further we have

F = U ·A = L(S) ·A = L
(
D ·AT

) ·A.

The problem of constructing the function F = H(D) will be solved if we express
the rotation tensor A in terms of the Piola stress tensor D. This can be done by
solving the equation with respect to A, expressing the symmetry property of the
Biot stress tensor

D ·AT = A ·DT . (11.33)
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In the spherically symmetric problem considered here, the last equation in view
of (11.11) and (11.17) is equivalent to one scalar relation

D1 sinψ = D2 cosψ . (11.34)

This equation has two solutions:

cosψ =

√
D2

1

D2
1 +D2

2

, sinψ =
D2

D1

√
D2

1

D2
1 +D2

2

(11.35)

and

cosψ = −
√

D2
1

D2
1 +D2

2

, sinψ = −D2

D1

√
D2

1

D2
1 +D2

2

. (11.36)

If we assume that −π ≤ ψ ≤ π, then the first solution is described by the inequali-
ties

−π

2
≤ ψ ≤ π

2
,

and the second by the inequalities

−π ≤ ψ ≤ −π

2
,

π

2
≤ ψ ≤ π .

From the formula (11.18), it is clear that the first solution corresponds to the
positive F1, and the second to the negative. As shown in Zhbanova and Zubov
(2016), F1 is negative when the eversion deformation of a sphere occurs (Zubov
and Moiseyenko, 1983), and positive in case of spherically symmetric deformation
of a sphere without eversion. Consequently, the second solution corresponds to the
eigenstress problem for the everted sphere with distributed dislocations. We note
that in the absence of dislocations, in a sphere without eversion the stresses are
identically equal to zero, while in an everted sphere the stresses are not zero due to
eversion.

11.5 Problem for Semi-linear Material

Given the constitutive equations of the semi-linear material (11.24), the tensor S is
written as

S =
2μν

1− 2ν
Itr(U− I) + 2μ(U− I). (11.37)

We invert the expression (11.37):

U = I+
1

2μ

(
S− ν

1 + ν
ItrS

)
. (11.38)

Let us find the distortion tensor F by the formula
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F = U ·A . (11.39)

Taking into account (11.38) we have

F = A+
1

2μ

[
D− ν

1 + ν
Atr

(
D ·AT

)]
. (11.40)

Based on (11.11), (11.17), and (11.40), we finally obtain the tensor F, expressed
in terms of the Piola stresses:

F =
1

2μ
[(D1 +K cosψ)g + (D2 +K sinψ)d+ (D3 +K)er ⊗ er] , (11.41)

K =
2μ(1 + ν)− ν [2 (D1 cosψ +D2 sinψ) +D3]

1 + ν
,

where cosψ and sinψ are computed from the formulas (11.35) or (11.36).
The tensor D components are calculated numerically from the system of equa-

tions (11.9), (11.12), (11.13), and (11.41) with the boundary conditions (11.14).
Knowing the Piola stresses, we find the distortion by the formulas (11.41).

11.6 Problem for Incompressible Material

We consider the problem for incompressible material using the Bartenev–Khazanovich
model (Lurie, 1990) as an example. The equations of state of the material have the
form:

D = 2μA− pF−T,

where p is the internal pressure in an incompressible body. Then the tensor S by
virtue of (11.39) is written as

S = 2μI− pU−1 . (11.42)

Then, from the incompressibility condition detU = 1 we find

p = 3
√
det (2μI− S) . (11.43)

Let us invert (11.42) by expressing U and substituting (11.43):

U = 3
√
det (2μI− S) (2μI− S)

−1
. (11.44)

According to (11.17) and (11.44) we derive the tensor (11.39) in the form
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F =
3
√
2μ−D3(B cosψ − C sinψ)

A2/3
g

+
3
√
2μ−D3(B sinψ + C cosψ)

A2/3
d+

3
√
A

(2μ−D3)2/3
er ⊗ er, (11.45)

A = 4μ2 +D2
1 +D2

2 − 4μ(D1 cosψ +D2 sinψ),

B = 2μ−D1 cosψ −D2 sinψ, C = D2 cosψ −D1 sinψ,

with cosψ and sinψ computed from (11.35) or (11.36).
From the system of equations (11.9), (11.12), (11.13), and (11.45) with the

boundary conditions (11.14), we find the numerical solution of the problem by cal-
culating the stresses and strains.

11.7 Numerical Results

For numerical calculations within the framework of the semi-linear material, we
choose the dislocation distribution

α1 =
γ0
r
, α2 =

β0

r
, α3 =

2γ0
r

,

and for the incompressible material

α3 =
2γ0
r2

, α1 = α2 = 0,

where β0 and γ0 are some constants. The outer radius of the sphere is considered
to be equal to one (r0 = 1), which is equivalent to introducing a dimensionless
radial coordinate. The following numerical results correspond to the value r1 =
0.5. Similarly, assuming μ = 1, we deal with the dimensionless stresses. For the
dimensionless constant ν we take the value ν = 0.3.

According to (11.34), the problem has two solutions since cosψ can be positive
(11.35) or negative (11.36). For the incompressible material, the numerical results
are displayed in the case cosψ > 0 (Figs. 11.11–11.16), and for the semi-linear
material, in the case cosψ > 0 (Figs. 11.1–11.5) as well as cosψ < 0 (Figs. 11.6–
11.10).

It is established that for both material models, the stresses D1 and D2 in absolute
value are maximal on the inner surface of the sphere, and D3 on the surface close
to the inner surface. For the incompressible material, for cosψ > 0 the maximum
stress D1 is an order of magnitude higher than the maximum stresses D2 and D3.

Different curves in each figure illustrate the influence of the dislocation intensity
on a stress-strain state. Thus, for the semi-linear material, the stresses D1 and D3

decrease and become more uniformly distributed over the thickness of the sphere
(Figs. 11.1, 11.3, 11.6, and 11.8), and the stress D2 increases and its distribution
becomes less uniform (Figs. 11.2 and 11.7). In addition, there are spherical sur-
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Fig. 11.1 Semi-linear material, cosψ > 0, β0 = 0.2, stress D1
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Fig. 11.2 Semi-linear material, cosψ > 0, β0 = 0.2, stress D2

��� ��� ��� ��� ���
r

���	

����

����

����

��

������

�����	�

������

Fig. 11.3 Semi-linear material, cosψ > 0, β0 = 0.2, stress D3
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Fig. 11.4 Semi-linear material, cosψ > 0, β0 = 0.2, distortion F1
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Fig. 11.5 Semi-linear material, cosψ > 0, β0 = 0.2, distortion F3
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Fig. 11.6 Semi-linear material, cosψ < 0, β0 = 0.2, stress D1
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Fig. 11.7 Semi-linear material, cosψ < 0, β0 = 0.2, stress D2
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Fig. 11.8 Semi-linear material, cosψ < 0, β0 = 0.2, stress D3
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Fig. 11.9 Semi-linear material, cosψ < 0, β0 = 0.2, distortion F1
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Fig. 11.10 Semi-linear material, cosψ < 0, β0 = 0.2, distortion F3
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Fig. 11.11 Incompressible material, γ0 = 0.1, stress D1

��� ��� ��� ��� ���
r

���

��	

��


���
�	

������

�����	�

������

Fig. 11.12 Incompressible material, γ0 = 0.1, stress D2
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Fig. 11.13 Incompressible material, cosψ > 0, stress D3
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Fig. 11.14 Incompressible material, cosψ > 0, distortion F1
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Fig. 11.15 Incompressible material, cosψ > 0, distortion F2
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Fig. 11.16 Incompressible material, cosψ > 0, distortion F3

faces on which the stress D1 or D2 does not depend on the dislocation density.
For cosψ < 0, this kind of surface is located in the middle between the inner and
outer surfaces of the sphere for D2 (Fig. 11.7) and near the outer surface for D1

(Fig. 11.6). In the case cosψ > 0, for D1 and D2 these surfaces coincide and are
located in the middle (Figs. 11.1 and 11.2). Moreover, on said surfaces these stresses
are zero. For the distortion F3 there also exists a surface r = r∗ on which F3(r∗)
does not depend on the dislocation density, with F3 increasing before the surface
r = r∗ and decreasing after it as moving from the inner surface of the sphere to the
outer one (Figs. 11.5 and 11.10). In the sphere without eversion, the surface consid-
ered is near the inner surface, and in the everted sphere near the outside one. In both
cases, the distortion F2 due to (11.12) and (11.7) is a constant value. The distortion
F1 decreases in absolute value with increasing dislocation density (Figs. 11.4 and
11.9).

For the incompressible material, the stresses D1 and D2, which are approxi-
mately equal, also do not depend on the dislocation density on a certain spherical
surface. Moreover, on this surface they vanish (Figs. 11.11 and 11.12). At different
dislocation densities, on another spherical surface closer to the inner surface of the
sphere, the distortion F3 is about the same. With increasing the dislocations, when
moving away from the inner surface of the sphere, F3 decreases before the consid-
ered surface and increases after it (Fig. 11.16). The higher the dislocation density
the higher the Piola stresses and the less uniformly the distribution of latter. With
that the distortion F1 decreases (Fig. 11.14), and F2 increases (Fig. 11.15).

11.8 Conclusion

In the present paper, we have considered the problem of the nonlinear continuum
dislocation theory for an elastic hollow sphere for an arbitrary spherically symmetric
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distribution of screw and edge dislocations. The system of solving equations con-
sists of the equilibrium equations, the incompatibility equations, and the constitutive
equations of the elastic medium. Using the properties of spherically symmetric ten-
sor fields, for a general isotropic material we have reduced the original problem to
a nonlinear boundary value problem for an ordinary second-order differential equa-
tion with respect to one component of the distortion tensor. This equation is obtained
in two cases: the specific energy of the material is a function of the metric tensor
invariants and a function of the stretch tensor invariants. The boundary conditions
for a one-dimensional boundary value problem with respect to the distortion are
nonlinear. To simplify the numerical solution of this problem, we have transformed
it to a boundary value problem with the linear boundary conditions. The unknown
functions of the radial coordinate in the transformed problem are the components of
the Piola stress tensor.

We have established that the eigenstress problem for a hollow sphere always has
two spherically symmetric solutions, one of which describes the equilibrium of an
everted hollow sphere with dislocations.

For two specific models of an elastic medium: the compressible semi-linear ma-
terial and the incompressible Bartenev–Khazanovich material, we have constructed
a numerical solution of a one-dimensional boundary value problem, describing the
eigenstresses due to given densities of screw and edge dislocations. Based on the
obtained numerical results, we have analyzed the effect of the intensity of the dislo-
cation distribution and its behavior on a stress state of the sphere at large deforma-
tions.
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