
Chapter 10

Types of Physical Nonlinearity

in the Theory of Constitutive Relations and

the Generalized Poynting Effect

Dimitri V. Georgievskii

Abstract The certain class of constitutive relations are considered that connect the
symmetric stress tensor and the symmetric strain tensor by means of isotropic poten-
tial tensor nonlinear functions in three-dimensional space. The various definitions
of tensor nonlinearity are given as well as their equivalence is shown. From the per-
spective of mathematical theory about the tensor nonlinear functions, an interpreta-
tion of the Poynting effect is given, which is well known in experimental mechanics.
It is demonstrated that such an effect is not necessarily the consequence of tensor
nonlinearity in constitutive relations; instead, it is effected by the quadratic depen-
dence on invariants in certain material functions. Therefore, in the physically linear
case for a small strain, this dependence is absent. Concerning this “order of small-
ness,” the Poynting effect is investigated and a possibility is discussed for simulating
such an effect by means of the tensor linear constitutive relations.

Keywords: stress, strain, constitutive relation, material function, invariant, scalar
potential, establishing experiment, the Poynting effect, tensor nonlinearity

10.1 Various Definitions of Tensor Nonlinearity and Their

Equivalence

In the theory of constitutive relations for isotropic media, the considerable place
belongs to the scleronomous models for which a connection of the strain tensor,
ε̃, and the stress tensor, σ̃, are given in three-dimensional space by means of the
isotropic tensor nonlinear function,

ε̃ = B0Ĩ +B1σ̃ +B2σ̃
2 , (10.1)
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where Ĩ is the identity tensor of the second rank, B0, B1 and B2 are the material
functions of three independence invariants:

Iσ1 = trσ̃, Iσ2 =
√

tr(σ̃2), Iσ3 = 3
√
tr(σ̃3) , (10.2)

of the tensor σ̃. An extensive literature (see, for example, both the classic and recent
works Rivlin, 1953; Rivlin and Ericksen, 1955; Il’yushin, 1963; Altenbach et al,
1995; Abali et al, 2013; Devendiran et al, 2017; Kulvait et al, 2017) is devoted to
the problems of generality in continuum mechanics of the representation (10.1) and
the inverse one

σ̃ = A0Ĩ +A1ε̃+A2ε̃
2 , (10.3)

where A0, A1 and A2 are the material functions of the invariants:

Iε1 = trε̃, Iε2 =
√

tr(ε̃2), Iε3 = 2
√
tr(ε̃3) , (10.4)

where they can be expressed in B0, B1 and B2.
If the medium has the scalar potential w(Iσ1, Iσ2, Iσ3) such that ε̃ = ∂w/∂σ̃

then the following three potentiality conditions are fulfilled,

∂B0

∂Iσ2
= Iσ2

∂B1

∂Iσ1
,

∂B0

∂Iσ3
= I2σ3

∂B2

∂Iσ1
, Iσ2

∂B1

∂Iσ3
= I2σ3

∂B2

∂Iσ2
, (10.5)

that relate the material functions B0, B1 and B2. The set of conditions (10.5) may
be considered as the system of differential equations with respect to B0, B1 and B2,
which has the first integrals in the certain cases (Georgievskii, 2016b).

Tensor nonlinearity of the function (10.1) is stipulated by presence of the last
term in the right part. If B2 ≡ 0 then this function—just as the corresponding class
of materials—is called quasilinear, i. e. linear in the tensorial sense; but possibly
nonlinear in scalar sense. Among the latter the case of physical linearity corresponds
that B0 linearly depends on Iσ1 and does not depend on Iσ2 and Iσ3, as B1 is
constant.

In this way, a difference from identical zero of the material function B2 in (10.1)
represents the natural definition of tensor nonlinearity. This definition is equivalent
to the fact that the angle between deviators s̃ = σ̃ − Iσ1Ĩ/3 and ẽ = ε̃ − Iε1Ĩ/3 is
not equal to zero identically. Let us prove this.

We assume that σ̃ and ε̃ are not spherical tensors (according to (10.1) and (10.3)
they are either spherical or nonspherical, simultaneously) such that s̃ and ẽ are not
identically zero tensors of the second rank and the angle α = (s̃; ẽ) is defined. We
calculate cosα:

cosα =
s̃ : ẽ√

s̃ : s̃
√
ẽ : ẽ

≡ s̃ : ẽ

Is2Ie2
(10.6)

s̃ : s̃ = J, s̃ : ẽ = JB1 +KB2, ẽ : ẽ = JB2
1 + 2KB1B2 + LB2

2 (10.7)

where J , K and L are the invariants of stress state depending on Iσ1, Iσ2 and Iσ3
(10.2):
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J = I2σ2−
1

3
I2σ1, K = I3σ3−

1

3
Iσ1I

2
σ2, L =

4

3
Iσ1I

3
σ3− I2σ1I

2
σ2+

1

6
(I4σ1+ I4σ2)

(10.8)
Since s̃ : s̃ > 0 and ẽ : ẽ > 0 then

J > 0, JL−K2 > 0 (10.9)

Using the Hamilton – Cayley theorem, after calculations we write

cosα =

(
1 +

(JL−K2)B2
2

(JB1 +KB2)2

)−1/2

(10.10)

It should be noted that the material function B0 is not present in the expression for
α.

As is obvious from (10.10) that if B2 = 0 and B1 > 0 then s̃ and ẽ are co-
directed, i. e. the unit directing tensors s̃ 0 = s̃/Is2 and ẽ 0 = ẽ/Ie2 are the same.
The statement is also truly in reverse (here it is necessary to use both the inequalities
(10.9). An equivalence of two definitions has been established.

A relative smallness of the tensor nonlinearity effect usually observable in ex-
periments with deformable solids may be treated as a smallness of the angle α. The
relation (10.10) results in the connection in linear approximation of the low values
α and the dimensionless material function B2:

α =
√

JL−K2
B2

JB1
+O(B2

2) (10.11)

If α � 1 then tensor nonlinear effects of material behavior are said to have
the second order of smallness. It is implied that the first order is inherent in the
parameters of stress-strain state caused by presence in (10.1) of the material function
B1.

10.2 Establishing experiments to find the material functions B0,

B1 and B2

Let us pay attention to the establishing experiments to find the function B0, B1

and B2 at any point (Iσ1, Iσ2
, Iσ3

) in the domain of their definition (Georgievskii
(2016a)). For this purpose it is proposed to use long hollow cylindrical specimens
suitable to implement any combination of the following realizable stress states (the
cylindrical coordinates r, θ and z associated with the specimen under consideration
are used)

• uniaxial tension, σzz = a = const;
• torsion, σrθ = b = const;
• longitudinal shear, σrz = c = const;
• uniform compression, σrr = σθθ = σzz = −d = const.
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In the above four cases, the other components of the stress tensor are assumed to be
equal to zero. It is also assumed that in a certain range of the loads a, b, c and d the
stress-strain relation is described by (10.1) and (10.3) with a sufficient accuracy.

Similar establishing experiments are proposed in Georgievskii et al (2012) for
the case when σ̃ and ε̃ are deviators (Iε1 = 0, Iσ1 = 0). For the material func-
tions {A0, A1, A2} and {B0, B1, B2} the following additional relations are valid:
A0 = −A2I

2
ε2/3 and B0 = −B2I

2
σ2/3. In the establishing experiments, hence, it

is required to find two functions B1 and B2 dependent on Iσ2 and Iσ3. By virtue of
incompressibility, in Georgievskii et al (2012) the tensor ε̃ is considered as a strain-
rate tensor in a tensor nonlinear non-Newtonian viscous fluid. It is necessary to men-
tion here the work Placidi et al (2015) devoted to the Gedanken experiments for the
determination of two-dimensional linear second gradient elasticity coefficients as
well as the work Placidi et al (2017) dealing with identification of two-dimensional
pantographic structures.

For our original problem, we have

σrr = σθθ = −d, σzz = a− d, σrθ = b, σrz = c, σθz = 0,
(σ2)rr = b2 + c2 + d2, (σ2)θθ = b2 + d2, (σ2)zz = c2 + (a− d)2,
(σ2)rθ = −2bd, (σ2)rz = c(a− 2d), (σ2)θz = bc,
Iσ1 = a− 3d,
I2σ2 = a2 + 2b2 + 2c2 + 3d2 − 2ad,
I3σ3 = a(a2 + 3c2 + 3d2)− 3d(a2 + 2b2 + 2c2 + d2)

(10.12)
Considering d as some parameter, from (10.12) we express a, b and c in terms of the
invariants (10.2)

a = Iσ1 + 3d,

b2 =
1

2
(I2σ2 − I2σ1 − 4Iσ1d− 6d2)− c2,

c2 =
1

3(Iσ1 + 3d)
(I3σ3 − I3σ1 − 9I2σ1d− 24Iσ1d

2 − 24d3 + 3I2σ2d)

(10.13)

Using (10.1) and (10.3) we determine the strain components εzz , εrθ and εrz:

εzz = B0 +B1(a− d) +B2[c
2 + (a− d)2],

εrθ = B1b− 2B2bd,
εrz = B1c+B2c(a− 2d)

(10.14)

The relations expressed by (10.14) can be considered as the system of equations
to obtain B0, B1 and B2 using the strain components εzz , εrθ and εrz measured
experimentally. This system has the solution

B0 = εzz + (d2 − a2 − c2)
εrz
ac

+ (c2 − d2 + ad)
εrθ
ab

,

B1 = 2d
εrz
ac

+ (a− 2d)
εrθ
ab

,

B2 =
εrz
ac

− εrθ
ab

(10.15)
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which is unique if
a �= 0, b �= 0, c �= 0 (10.16)

Thus, in order to specify the material functions, B0, B1 and B2, the experiments
should follow the following steps:

1. The choice of the invariants Iσ1, Iσ2 and Iσ3 as the arguments of the functions
B0, B1 and B2.

2. The calculation of a, b and c on the basis of (10.13) with a fixed value of d as a
parameter.

3. The perfomance of experiments using a hollow cylindrical specimen with the
stresses a, b, c, d and the measurements of the components εzz , εrθ and εrz .

4. The calculation of B0, B1 and B2 on the basis of (10.15) at the chosen at step
1 point (Iσ1, Iσ2

, Iσ3
) of three-dimensional space of arguments.

Although the parameter d is not mentioned in (10.16) and the formulas expressed
by (10.13) and (10.15) are also valid for d = 0 the above discussion shows its
importance. Changing this parameter, in the space (Iσ1, Iσ2

, Iσ3
) we can enlarge the

domain where the quantities a, b and c exist and where the denominator of (10.13)
is not equal to zero.

10.3 The Generalized Poynting Effect

Returning to the notion “an order of smallness of tensor nonlinearity effects” dis-
cussed in Sect. 10.1, we should set the question which order of smallness is inherent
in the Poynting effect. During the last century it attracted an attention in experimen-
tal mechanics of solids (Green, 1954; Lurie, 2005; Chen and Chen, 1991; dell’Isola
et al, 1998; Akinola, 1999; Gavrilyachenko and Karyakin, 2000; Goldstein et al,
2015; Misra et al, 2018). Let us at once talk about the so-called generalized Poynt-
ing effect defined in the following way.

The stress tensor is supposed to have in some orthogonal coordinate system the
only identically nonzero component σαβ = σ0(x), α �= β. The stress state of this
type is characterized by the following invariants (10.2), (10.8)

Iσ1 = Iσ3 = 0, Iσ2 =
√
2 |σ0|, J = 2σ2

0 , K = 0, L = 2σ4
0/3 . (10.17)

The domain of definition of the material functions B0, B1 and B2 represents the
positive real axis in three-dimensional invariant space. According to Eq. (10.1) the
tensor ε̃ has the following nonzero components:

εαα = εββ = B0(0, Iσ2, 0) + σ2
0B2(0, Iσ2, 0),

εγγ = B0(0, Iσ2, 0),
εαβ = σ0B1(0, Iσ2, 0) .

(10.18)

Difference from zero of the components εαα and εββ just makes up the essence
of the generalized Poynting effect. We should not dwell here on the equations of
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equilibrium as well as on the compatibility equations which the stresses (10.17) and
the strains (10.18) must comply with. These equations define more exactly a choice
of the material functions B0, B1, B2 and determine the stress σ0(x).

The particular case of the cylindrical coordinate system (α → θ, β → z, γ → r)
corresponds to the classical Poynting effect observable in experiments with twisted
specimens and thoroughly described in the literature. To simulate this, in Goldstein
et al (2015) they use initial or deformation anisotropy, in other works they choose
various physical nonlinear models of isotropic solids. The formulae (10.18) show
that one can attach the constitutive relations (10.1) to the second group.

The material function B2 being the indication of tensor nonlinearity (as follows
from Sect. 10.1 is contained only in the components εαα and εββ in (10.18). This
fact means that

a) the effect of tensor nonlinearity in the stress-strain state (10.17), (10.18) appears
only in difference of the component εγγ from two remaining diagonal compo-
nents εαα and εββ which are equal to each other;

b) difference of εββ (or εαα) from zero can be a consequence both tensor nonlin-
earity and dependence of the function B0 on the quadratic invariant Iσ2; this
dependence may be realized among them in tensor linear materials when

B0 = B0(Iσ1, Iσ2), B1 = B1(Iσ1, Iσ2), B2 ≡ 0 (10.19)

c) the order of smallness of the component εββ (or εαα), i. e. the generalized
Poynting effect, determines by simultaneous smallness of the angle α which
by virtue of (10.11) equal to

α =
|σ0|√
3

B2

B1
+O(B2

2) (10.20)

and smallness of values of the dimensionless function B0(0, Iσ2, 0) along the
axis Iσ2 > 0.

Below we describe briefly a possibility of simulation of the generalized Poynting
effect using the tensor linear constitutive relations (10.1) with the material functions
(10.19). The second and the third potentiality conditions (10.5) are fulfilled identi-
cally while the first condition (10.5) connects the functions B0 and B1 as follows:

B0 = − ν

E
Iσ1 +

b0
E2

I2σ2, B1 =
1 + ν

E
+

2b0
E2

Iσ1 (10.21)

ε̃ =
1

E

[(
−νIσ1 +

b0
E

I2σ2

)
Ĩ +

(
1 + ν +

2b0
E

Iσ1

)
σ̃
]

(10.22)

w(Iσ1, Iσ2) = − ν

2E
I2σ1 +

1 + ν

2E
I2σ2 +

b0
E2

Iσ1I
2
σ2 (10.23)

Here E and ν are the material constants known as Young’s modulus and Poisson’s
ratio, respectively; b0 is the dimensionless material constant which characterizes a
scalar nonlinearity of the constitutive relations (10.22). The potential (10.23) in-
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cludes three constant and when b0 = 0 it turns into the ordinary in linear elasticity
potential of stress with respect to strains. Some other variants of a choice of the po-
tential in conformity to the Poynting effect estimate, contain in Gavrilyachenko and
Karyakin (2000).

By substituting (10.21) to (10.18) we receive

εαα = εββ = εγγ =
2b0
E2

σ2
0 , εαβ =

1 + ν

E
σ0 (10.24)

The value εββ possesses more high order of smallness in comparison with εαβ if
εββ/εαβ � 1, i. e. b0σ0 � E. It is just the condition that the generalized Poynt-
ing effect within tensor linear connection of stresses and strains represents a phe-
nomenon of the second order. In case of the classical Poynting effect (α → θ,
β → z, γ → r) the formulae (10.24) show that the relative extension εzz is in pro-
portion to square of the strain εθz , which is conversely in proportion to the angle of
twisting. This feature of the Poynting effect is often exploited in the literature.

It is necessary to mention here a so-called inverse Poynting effect as in Gold-
stein et al (2015) consisting in twisting of a specimen by action of one-dimensional
stretching loading. Some off-diagonal components of the strain tensor are not equal
to zero. It is obvious that this phenomenon can not be described by the relations
(10.1) even by arbitrary form of tensor nonlinearity. However, one can simulate it
using anisotropic models of continuum.
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