
Advanced Structured Materials

Bilen Emek Abali
Holm Altenbach
Francesco dell’Isola
Victor A. Eremeyev
Andreas Öchsner    Editors 

New Achievements 
in Continuum 
Mechanics and 
Thermodynamics
A Tribute to Wolfgang H. Müller



Advanced Structured Materials

Volume 108

Series editors

Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of
Applied Sciences, Esslingen, Germany
Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of
Engineering, University of Porto, Porto, Portugal
Holm Altenbach, Faculty of Mechanical Engineering,
Otto-von-Guericke-Universität Magdeburg, Magdeburg, Sachsen-Anhalt, Germany



Common engineering materials reach in many applications their limits and new
developments are required to fulfil increasing demands on engineering materials.
The performance of materials can be increased by combining different materials to
achieve better properties than a single constituent or by shaping the material or
constituents in a specific structure. The interaction between material and structure
may arise on different length scales, such as micro-, meso- or macroscale, and offers
possible applications in quite diverse fields.

This book series addresses the fundamental relationship between materials and their
structure on the overall properties (e.g. mechanical, thermal, chemical or magnetic
etc) and applications.

The topics of Advanced Structured Materials include but are not limited to

• classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforced
plastics)

• metal matrix composites (MMCs)
• micro porous composites
• micro channel materials
• multilayered materials
• cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere

structures)
• porous materials
• truss structures
• nanocomposite materials
• biomaterials
• nanoporous metals
• concrete
• coated materials
• smart materials

Advanced Structured Materials is indexed in Google Scholar and Scopus.

More information about this series at http://www.springer.com/series/8611

http://www.springer.com/series/8611


Bilen Emek Abali • Holm Altenbach •

Francesco dell’Isola • Victor A. Eremeyev •

Andreas Öchsner
Editors

New Achievements
in Continuum Mechanics
and Thermodynamics
A Tribute to Wolfgang H. Müller

123



Editors
Bilen Emek Abali
Institute of Mechanics
Technische Universität Berlin
Berlin, Germany

Holm Altenbach
Institut für Mechanik
Otto-von-Guericke-University Magdeburg
Magdeburg, Germany

Francesco dell’Isola
Dipartimento di Ingegneria Strutturale e
Geotecnica
Università degli Studi di Roma “La
Sapienza”
Roma, Italy

Victor A. Eremeyev
Faculty of Civil and Environmental
Engineering
Gdańsk University of Technology
Gdańsk, Poland

Andreas Öchsner
Fakultät Maschinenbau
Esslingen University of Applied Sciences
Esslingen, Germany

ISSN 1869-8433 ISSN 1869-8441 (electronic)
Advanced Structured Materials
ISBN 978-3-030-13306-1 ISBN 978-3-030-13307-8 (eBook)

Library of Congress Control Number: 2019934534

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13307-8

https://doi.org/10.1007/978-3-030-13307-8


Laudatio

A tale about Wolfgang Müller, the man and the scientist.

Wolfgang Müller came to our thermody-
namics group at the Technical University
Berlin with the very best possible qualifica-
tions. He arrived with an excellent diploma
in theoretical physics and he was also an
expert in scientific Donaldism, the study of
Donald Duck and his fictional family, and
associates. In the latter field he is so erudite
that he can distinguish the comic figures by
who drew them, all the way down from the
Good Duck Artist Carl Barks in the 1930s
to the present times. Thus Wolfgang Müller
discovered that the second law of thermo-
dynamics does not apply to Ducksburg,
Entenhausen. Indeed when uncle Donald
once shredded a treasure map and threw
the shreds into a river, they reassembled
miraculously downstream before the eyes
of Donald’s antagonist Gladstone Gander—
in clear violation of the entropy principle.

Recommended by that type of background Wolfgang Müller became a welcome
research assistant in our group of thermodynamicists. His assigned task was the
quantitative description of transformation toughening in ceramics, a phenomenon
that occurs in zirconia with alumina inclusions. A crack could conceivably be
stopped—or its advance slowed down—when the stress field around the crack tip
induced a phase transition in the alumina inclusions. Wolfgang Müller solved that
problem most competently, and his work may have contributed to the recognition
that the development of a tough, ductile—not brittle—ceramic material is impossi-
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vi Laudatio

ble on that basis, although at the time the toughening effect was advertised by the
pundits for just that purpose.

It is usually thought—at least professors like to think this—that research assis-
tants are called assistants, because their advisors assist them. Whatever truth there
is in this prejudice generally, it was not true in Wolfgang Müller’s case. In fact the
opposite was true: He assisted us and expanded our horizon. Thus he introduced the
group to the study of the voluminous memoir of Muskhelishvili and the complex
algebra of linear elasticity in plane strain and plane stress, which he used to advan-
tage in completing his doctoral work. The successful solution of the problem gained
Wolfgang Müller not only a doctorate “summa cum laude” but also the prestigious
Tiburtius award of the Senate of Berlin for the best dissertation of the year. Also he
was invited to present his work at the international conference ZIRCONIA in Paris,
where his presentation received the Jean Mandel award.

Wolfgang Müller’s work ethos was exceptional, nearly autistic. He spent his time
working in the institute from early morning to late at night, occasionally interrupted
only by a visit to the opera or the cinema, his great passions apart from work. And
although his hard work was rewarded by successful research—albeit theoretical and
mathematical research—he was not satisfied. He thought that industry was the right
place for him to do “real work,” and so he moved to Munich to work for Siemens.
That was a mistake: In Munich he was put into a dark room to work on CHILL, a
telephone exchange program in which Siemens was interested at the time. That was
not intellectually very challenging work for a gifted young scientist. Moreover, he
got into trouble with the union representatives at Siemens. Because, indeed, after
a few months’ working at his accustomed rate he had accumulated a vast amount
of overtime, and he was asked to slow down. So, in order to keep busy during the
enforced “extra-Siemens-activities,” he turned his attention to the tax laws. Actually
he learned them by heart, as it were.

In that situation we were able to entice him back—for a while—into academia,
again as a research assistant. At lunch hour he instructed us on deductible expense
items on the annual tax return. For instance, if you paid for postage stamps for
career-relevant correspondence, you should make sure to obtain a receipt. We saw
him diligently collecting receipts from the post office stamp machines. And rumour
has it that he also gathered surplus receipts which the machine spat out when previ-
ous users had neglected to procure their receipts. That rumour is not true, of course,
it was however easy to believe by some because of Wolfgang Müller’s background
in Donaldism.

Anyway his second stint in our group lasted two years, or so, and he chose to
work on thermally induced internal stresses. He built a device to make the stresses
visible under polarized light in transparent polymer plates by stress optics, and he
interpreted his findings on cracks and crack propagation successfully. Also at that
time he was introduced to non-linear continuum mechanics, assisting in building
up a course on the subject. That period ended when Wolfgang Müller received a
post-doctoral stipend by the Max Kade Foundation to go to the United States for a
year.
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He chose Santa Barbara where he joined the group of Professor Evans, an em-
inent scientist in the field of ceramics. We do not know much about that stay, but
it seems that, perhaps, Evans was a mite too eminent; he was mostly travelling so
that he could rarely be found in his office. Therefore there was not much assistance
either way. Wolfgang Müller proceeded north by a few hundred miles and attached
himself to George Hermann’s group at Stanford. But at that time his quest for “real
work” had not yet left him and—after the stipend expired—he joined a private firm
called Failure Analysis. In their employ he had to crawl under the monstrous Amer-
ican trucks in order to inspect their transmission shafts for signs of fatigue. This
involved bribing truck drivers at service stations so that they would tolerate the in-
spection; he used chewing gum and chocolate bars for the purpose.

Once again discouraged by “real work” he returned to Germany to a position in
Paderborn which gave him the opportunity for habilitation and to become a Privat-
dozent in the Institute of Mechanics. What qualified him for the position was his
earlier work on thermal stresses, and his habilitation thesis was in that field too:
Thermal stresses in composites.

After that he became a lecturer at the Heriot-Watt University in Edinburgh and
he quickly advanced there from lecturer to reader to professor. That was quite a
feat, because in Britain not every lecturer becomes a reader and not every reader
becomes a full professor; and certainly not as quickly as Wolfgang Müller did. He
taught non-linear continuum mechanics at Heriot-Watt and we flatter ourselves that,
perhaps, he learned about the subject thoroughly in Berlin.

Now, success in the academic field very often creates some mild idiosyncrasies
in a person; and Wolfgang Müller was not immune to this phenomenon. He brought
two cars to Edinburgh, both identical BMWs except that one was red and the other
one black. One had a Paderborn licence plate and one—from his time in the US—
had a California licence plate. And he used those cars on alternate days to drive from
his home to the university. That drew some attention. Also in the hat-less decades of
the 20th century he affected a hat; not just any old hat to keep his head dry from the
Scottish rain, but a veritable black Borsalino, the broad-rimmed variety. We are told
that among the students he was known as the Professor in a Borsalino who changed
BMWs on a daily basis.

However, still Wolfgang Müller’s wanderlust was not yet satisfied, not quite. He
closed the cycle of his travels when he came back to the TU Berlin to accept a chair
of continuum mechanics which he now holds. It is true, the cycle was now closed,
geographically, on the surface as it were. Below the surface there were internal per-
manent deformations. Indeed, up to his move back to the TUB one could consider
Wolfgang Müller a comet who orbited around our group of thermodynamicists and
made his appearance every few years. That constellation underwent a subtle meta-
morphosis after his latest return to Berlin: In a manner totally inexplicable by New-
tonian mechanics the comet morphed into the central star and we—the authors of
this laudatio—became the comets. As such both of us were co-authors of two of
Wolfgang Müller’s books since his return to Berlin.

That situation must have pleased Wolfgang Müller, at least to some extent. To be
sure, he put out feeble feelers toward a position on the southern hemisphere, but his
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heart was not in them and so they came to nothing. What may have contributed to his
growing sense of contentment was the fact that the internal dichotomy of Wolfgang
Müller’s soul was now finally resolved. His quest for a reconciliation of “real work”
and intellectual work, which had plagued him throughout his professional life was
finally given the proper satisfactory interpretation: The “real work” is now done in
the basement of his institute by the nano-indenters, the atomic force microscopes,
the computers, and his co-workers who operate these machines. And the thinking is
done on the first floor by the boss in a luxurious office behind a door adorned with
pages from Tim and Struppi and Donald Duck.

Successful professors travel a lot and so does Wolfgang Müller. More often than
not when we try to reach him, we are told that he is away. Favourite destinations
are St. Petersburg and Istanbul, with Kiew and Singapoor vying for second place.
He assists people there in their research work and is assisted by them in his work.
That is ok. No! More than ok, it is essential, because homebound research tends to
become sterile rather quickly; and after all, science is a global movement.

Once again, successful professors travel a lot, and sometimes, occasionally, a
tiny little bit like members of the IOC, the International Olympic Committee. Thus
Wolfgang Müller is a member of a committee for the evaluation of equivalent cur-
ricula between universities abroad. This organisation regularly provides outings of
mutual recognition and world-wide sightseeing to its members. Thus he travels the
world: from the deepest pit of a South African diamond mine all the way up to the
highest Andean height of Peru in Machu Pichu.

His life-long ambition, however, is a trip to the moon. Will that be forthcoming?
Wolfgang Müller is sixty now. He can look back to half a lifetime as a period of
successful learning, teaching and research. And we wish him continued success in
these activities—and in his quest for the moon.

Berlin, April 2019 Ingo Müller & Wolf Weiss



Preface

Professor Wolfgang H. Müller is one of the leading German scientist in continuum
mechanics and constitutive theory contributing to research in several areas including

• Solid body mechanics: in nonlinear buckling in microsystem technologies,
• Experimental mechanics: including nanoindentation, atomic force microscope
(AFM), and Raman spectroscopy,
• Generalized mechanics: theory and computation of higher order models incor-
porating inner substructure,
• Fatigue related damage mechanics: thermomechanical modeling and computa-
tion in microelectronics,
• Geomechanics: deformation in self-gravitating planets,
• Polar medium: theory and analytic solution in polar fluids like liquid crystals,
• Diffusion phenomena: modeling of drug delivery in nanopharmaceuticals.

This volume of the Advanced Structured Materials Series is dedicated to his sixtieth
birthday; it contains a selection of manuscripts prepared by his friends and col-
leagues from several countries in many continents such as China, Germany, Japan,
Italy, Poland, Russia, Scotland UK, and the USA.

Professor Müller was born on April 13, 1959. After studying physics in Tech-
nische Universität Berlin, he finalized his Diploma (equivalent to M.Sc.) in March
1984, his PhD in September 1986, his Habilitation in January 1997. He worked in
different countries for example in Siemens (Munich) and in Failure Analysis As-
sociates (San Francisco). He has been working in various research institutions for
example at the Paderborn University (Germany), University of California Santa Bar-
bara (USA), Heriot-Watt-University (Edinburgh UK), where he was appointed (full)
professor of mechanical engineering in 1999. Since 2001, he has been appointed
(full) professor of Continuum Mechanics and Constitutive Theory at the TU Berlin.

W. H. Müller has been honored by several awards like Jean-Mandel Award in
CNRS Paris (1985), Joachim Tiburtius Prize (1987), Max-Kade Foundation Post-
doctoral Award (1989), Best Paper Awards (1997 Surface Mount International, 2010
EPTC Singapore), and Distinguished Visiting Fellowship of the Royal Academy of
Engineering London (2008).

ix



x Preface

W. H. Müller has been working as the managing editor of the highly-ranked
journal in Springer: Continuum Mechanics and Thermodynamics. With an impres-
sive scientific activity,1 W. H. Müller has contributed to more than 200 manuscripts
leading to an h-index greater than 20. Moreover, he has published the following
monographs and textbooks:

• Müller, W. H., & Weiss, W. (2016). The State of Deformation in Earthlike Self-
Gravitating Objects. SpringerBriefs in Continuum Mechanics. Springer Inter-
national Publishing.
• Grigorenko, A. Y., Müller, W. H., Grigorenko, Y. M., & Vlaikov, G. G. (2016).
Recent Developments in Anisotropic Heterogeneous Shell Theory: General
Theory and Applications of Classical Theory (Vol. 1). SpringerBriefs in Con-
tinuum Mechanics. Springer International Publishing.
• Grigorenko, A. Y., Müller, W. H., Grigorenko, Y. M., & Vlaikov, G. G. (2016).
Recent Developments in Anisotropic Heterogeneous Shell Theory: Applica-
tions of Refined and Three-dimensional Theory (Vol. 2). SpringerBriefs in Con-
tinuum Mechanics. Springer International Publishing.
• Müller, W. H., & Ferber, F. (2015). Übungsaufgaben zur technischen Mechanik.
Carl Hanser Verlag, Munich, Vienna
• Müller, W. H. (2014). An expedition to continuum theory. Solid Mechanics and
Its Applications book series vol. 210, Springer, Dordrecht
• Müller, W. H. (2011). Streifzüge durch die Kontinuumstheorie, Springer, Berlin,
Heidelberg
• Müller, I., &Müller, W. H. (2009). Fundamentals of thermodynamics and appli-
cations: with historical annotations and many citations from Avogadro to Zer-
melo. Springer, Berlin, Heidelberg
• Müller, W. H., & Ferber, F. (2008). Technische Mechanik für Ingenieure. Carl
Hanser Verlag, Munich

Wolfgang Müller dazzles us with his never ending passion about exploring and
teaching more and more. We like to learn from him and enjoy advancing in knowl-
edge with him.

Since 2001, he has been advisor or examiner in more than 35 doctoral thesis.2
Thousands of bachelor and master students around the globe have been experiencing
his wonderful lectures in diverse topics. Many universities are inviting him as an
instructor for short and long terms; here is a probably incomplete list of cities, where
W. H. Müller has been lecturing: Auckland (New Zealand), Edinburgh (Scotland
UK), Gdansk (Poland), Kyoto (Japan), Istanbul (Turkey), Melbourne and Sydney
(Australia), Paderborn and Berlin (Germany), Singapore, Sydney (Australia), St.
Petersburg (Russia), Tbilisi and Kutaisi (Georgia).

In Berlin, since 2001 he has been sponsoring several courses in statics and me-
chanics of materials, kinematics and dynamics, continuum mechanics, energy meth-
ods, finite element method, tensor calculus, continuum physics—always well pre-

1 According to https://scholar.google.com/citations?user=rGyO6boAAAAJ
2 www.lkm.tu-berlin.de/menue/dissertationen/
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pared, structured, didactic, and simply crystal clear lectures—in front of 1200 fresh-
men and then within the next hour for 10 master students. His enthusiasm as an in-
structor is beyond one’s imagination, just to give a better feeling, we share one of his
lectures continuing on the garden as the lecturing room was occupied in students’
strike in July 2006.

As editors, we intend to thank all authors for their crucial contributions as well
as all reviewers for their invaluable time and effort. We delightedly acknowledge Dr.
Christoph Baumann (Springer Publisher) for support of the book project.

Berlin, Magdeburg, Rome, Gdansk, Esslingen, Bilen Emek Abali
April 2019 Holm Altenbach

Francesco dell’Isola
Victor Eremeyev

Andreas Öchsner
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Chapter 1

Magnetorheological Elastomer’s Material

Modeling and Parameter Determination by

Using the Energy-based Method

Bilen Emek Abali & Hua Yang

Abstract Functionalized materials provide tailored properties to design smart struc-
tures. For example, by adding polarized particles in a polymer, a composite material
is generated, which couples deformation with electromagnetism. This magnetorhe-
ological elastomer (MRE) is a particle reinforced polymer matrix. Such a composite
material deforms under an externally applied magnetic field so materials response
is steered without contact. In order to achieve a simulation of an engineering design
with MRE, we need an appropriate constitutive (material) equation modeling the
deformation behavior accurately under different magnetic fields. We aim at deter-
mining the parameters in such a material equation out of experiments by using an
inverse analysis. Although the material equation is nonlinear in deformation, its ma-
terial parameters are mostly in such a way that we acquire a linear regression prob-
lem by using the energy-based method. Hence, the obtained parameters are unique
and the method is fast allowing us to try out various material models. We present the
method for determining the material parameters out of experimental data obtained
by a standard rotational rheometer. The proposed material equation with its deter-
mined parameters can be used in a computation, for example by the finite element
method.

Keywords: Magnetorheological elastomer · Material modeling · Inverse analysis ·
Rheometer

1.1 Introduction

Magnetorheological elastomers (MRE) are functionalized materials showing a vary-
ing stiffness as a consequence of the externally applied magnetic flux. MRE is a
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composite material of magnetic particles such as carbonyl iron particles suspended
in a (non-polarized) matrix like polyurethane (PU), rubber, or elastomer, see Gong
et al (2005), Park et al (2009), Li and Nakano (2013), Yu et al (2015) and An et al
(2017). The externally applied magnetic flux generates a magnetic field within the
material causing a motion of particles leading to eigenstress and stiffening of the
composite material. We search for a homogenized material model performing this
stiffening effect without modeling the iron particles and surface effects between par-
ticles and matrix. Effected by the nonlinear materials response of the matrix mate-
rial, we consider a nonlinear homogenized model with material parameters, where
their numerical values depend on the applied magnetic flux.

There are different approaches for defining material equations. We need to con-
sider that the amount of particles in the polymer may change the microstructure
completely. In the case of a relatively low amount of iron particles, we can as-
sume that they fail to interact with each other such that the mechanical properties
are affected mainly by the matrix. Increased number of particles may lead to ag-
glomerating and even touching particles, thus, the characteristics of the composite
material starts changing — we refer to Zohdi and Wriggers (2008) and Zohdi (2012)
for a microstructural interpretation and a homogenization procedure in such a case.
Herein, we consider a relatively low amount of iron particles embedded in a nonlin-
ear matrix. As a consequence of a magnetic flux, the iron particles are magnetized
and change the structural response of the composite material. We use a phenomeno-
logical model and ignore the details of the microstructure and its evolution. Hence,
because of the dominating matrix material, we expect to obtain a nonlinear mate-
rial model with parameters varying under different magnetic flux magnitudes. In
an experiment, the magnitude of the magnetic flux is controlled and held constant
throughout one set of experiments for determining the structural response. The ex-
perimental results are indeed very difficult to obtain because of self magnetization
as well as due to the soft matter used as the matrix. We refer to Jolly et al (1996)
and An et al (2012) for a discussion and results in MREs. In this paper, we use mea-
surement data obtained from Yu et al (2017) and try to find an appropriate material
model in the lengthscale of the matrix material. This model is a homogenized model
ignoring agglomeration.

This work aims at modeling MRE by a material equation. This material equation
can be used in a computation of a structure by using a computational method such as
the finite element method (FEM). Elastomer is a soft material performing large elas-
tic deformations. We model this behavior by using a so-called stored energy density,
w, depending on the deformation, u. The stored energy density is equivalent to the
free energy,ψ, for an isothermal deformation, which is a realistic assumption in elas-
ticity. The energy is of particular interest since it is a directly measurable quantity —
see Treloar (1975) for stretching measurements of rubber type materials. Energy is
expected to depend on the deformation. Thus, we use the deformation gradient, F ,
or the right Cauchy–Green strain tensor, C = FTF , as arguments (inputs) in the
scalar function energy. However, the form of this function is a challenging question
and is being discussed heavily in the literature. As a consequence of the objectivity,
in the case of an isotropic material, the free energy does not depend on the material
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frame. Therefore, the dependency is usually described by invariants, which are also
scalar functions. It is straight-forward to represent a scalar function by other scalar
functions and admissible to use any expansion from the thermodynamics point of
view. As we want to use this model in FEM computations, there might occur numer-
ical problems when some restrictions are not met. These are called ellipticity and for
an isotropic material invertibility. They assure a smooth deformation gradient, F ,
i.e., the deformation gradient is continuous within the domain (Rosakis, 1990). Ac-
cording to the Hamilton–Cayley theorem, tensor of rank 2 (in three dimensional
space) generates a characteristic equation leading to 3 invariants. Thus, the free en-
ergy depends on 3 arguments and ellipticity holds in every single argument of the
free energy, which is called quasiconvexity. The choice of the functional form and
the material constants shall not violate the quasiconvexity in order to prevent any
numerical problems in a possible FEM computation. Depending on the used model,
the analysis of the quasiconvexity might be very challenging.

Hyperelastic behavior is modeled by the free energy depending on the invariants.
There are several procedures for obtaining an appropriate energy function, among
others see Weber and Anand (1990), Arruda and Boyce (1993), Holzapfel (2000),
Attard and Hunt (2004), Itskov and Aksel (2004), Lurie (1990), and Soe et al (2014).
There are also prominent material models (satisfying quasiconvexity) in the litera-
ture. We can subsume them in three groups:

• motivated by using representation theorems, as in Mooney–Rivlin (Mooney,
1940; Rivlin, 1948), Biderman (Biderman, 1958), Ogden (Ogden, 1972), Haine–
Wilson (James et al, 1975), and Yeoh (Yeoh, 1993) models,
• obtained as the best fitting function to experimental data, for example Rivlin–

Saunders (Rivlin and Saunders, 1951), Hart–Smith (Hart-Smith, 1966), and
Gent (Gent, 1996) models,
• acquired by statistical averaging of a microstructure model, for example neo-

Hooke (Flory and Rehner Jr, 1943), Isihara (Isihara et al, 1951), and Arruda–
Boyce (Boyce and Arruda, 2000) models.

As material modeling is challenging for hyperelastic materials, additionally, it is
even more difficult to find the material model that fits existing experiments, for
some rigor discussions we refer to Triantafyllidis and Aifantis (1986), Brigadnov
and Dorfmann (2003), Kankanala and Triantafyllidis (2004), Marckmann and Ver-
ron (2006), Saxena et al (2014), Spieler et al (2014), Metsch et al (2016), Schubert
and Harrison (2016), and Mehnert et al (2017).

Especially for soft polymer materials, it is beneficial to use a rotational rheometer
and its oscillatory measurement capabilities. A harmonic shear deformation is ap-
plied periodically under different frequencies such that an interval of time scales are
covered in one set of experiments. The output of a rheometer is called storage and
loss moduli, they depend on the frequencies. Out of this data we aim at determining
the parameters in one of the aforementioned nonlinear hyperelastic material models.
In order to construct a nonlinear model in rheology, considerable amount of work
has been done in Wilhelm (2002), Klein et al (2007), Ewoldt et al (2008), Ewoldt
et al (2010), Hyun et al (2011), and Kádár et al (2017). For finding an appropriate
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material equation in relation to the rheometer measurement, different expansions
are suggested and a nonlinear regression problem is formulated by manipulating the
rheometer output. These different expansions have mathematical similarities (Ar-
gatov et al, 2017). If we want to use one of these models, it is unlikely that the
aforementioned polyconvexity is met. Therefore, we want to have a methodology
allowing us to use already existing and theoretically sound models based on tensor
algebra and determine their material parameters by exploiting oscillatory rheometer
experiments.

The energy of a hyperelastic material is a nonlinear function in the invariants of
the deformation. However, the energy is mostly linear in the material parameters.
This property allows us to advance an approach for determining the material param-
eters by using a linear regression. This energy-based method is proposed in Abali
(2014, Sect. 9) and utilized in Abali et al (2016) and Abali (2018) for an oscillatory
rheometer measurement as well as in Yang et al (2018) for a uniaxial tensile test. By
using the energy-based method, we generate a linear regression problem such that
the solution is unique and computationally fast. Otherwise, we need to implement
a nonlinear optimization problem such as in Abramowitch and Woo (2004), Paw-
likowski (2014), and Tang et al (2011). Linear regression problem allows us quickly
apply various material models and find out the best one. We present exactly this
point by using experimental data from Yu et al (2017) and determine the simplest
model yet capable of representing experimental values.

1.2 The Energy-based Method for the Inverse Analysis

We use standard continuum mechanics notation and understand a summation over
repeated indices. As the temperature and magnetic flux are held constant in one set
of oscillatory rheometer measurements, rate of free energy is equal to the rate of
stored energy. For the specimen, Ω, in a period of time, τ , the energy reads

E =

∫
τ

∫
Ω

ψ• dv dt . (1.1)

This amount of energy is supplied to the specimen resulting a (rotational) shear
deformation. Normally, a standard rheometer fails to output the energy supplied to
the system, but it gives out storage and loss moduli, G′ and G′′, respectively. We
refer to Abali (2014, Sect. 9) for the detailed discussion and utilize the following
general relations:

e1 =

T∫
0

ψ• dt = 2πG′′ε20 ,

e2 =

T/4∫
0

ψ• dt− 1

4
e1 = G′ε20

(1.2)
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for an oscillatory experiment at the frequency ν with a period T = 1/ν. The exper-
iment is steered by the given periodic strain,

ε = ε0 sin
(
2πνt

)
, (1.3)

applied as a shear deformation in the so-called deformation gradient, say, on xy-
plane,

Fij =

⎛⎝1 ε 0
0 1 0
0 0 1

⎞⎠ . (1.4)

We can assume that this shear deformation is constant in the specimen, since the
thickness is at least one order smaller than the perimeter of the cylindrical specimen.
Hence, the right Cauchy–Green strain tensor, C = FTF , reads

Cij =

⎛⎝1 0 0
ε 1 0
0 0 1

⎞⎠⎛⎝1 ε 0
0 1 0
0 0 1

⎞⎠ =

⎛⎝1 ε 0
ε 1 + ε2 0
0 0 1

⎞⎠ . (1.5)

The rheometer measures the energy and calculates the stored and loss moduli by
using the above relations based on the linear rheology. Since we want to go beyond
the linear equations, we need to recalculate the energy as in Eq. (1.2) and then use
this data for determining the material parameters occurring in ψ. As we calculate
the energy within the whole period, G′′ quantifies the dissipated energy from the
system. For a quarter period, apart the dissipated energy, the rest is stored and seen in
connection withG′. Herein we emphasize that we only useG′ andG′′ for acquiring
e1 and e2 for the inverse analysis. We intend to handle these energy densities, e1
and e2, as the real measurables.

In order to present the energy-based method, we start with the usual assertion
and aim at defining the energy density,

ψ = ψ(I1, I2, I3) , (1.6)

depending on invariants:

Ĩ1 = tr(C) = Cii ,

Ĩ2 =
1

2

(
Ĩ21 (C)− Ĩ1(C2)

)
=

1

2

(
CiiCjj − CijCji

)
,

Ĩ3 =
1

3

(
Ĩ1(C

3) + 3Ĩ1(C)Ĩ2(C)− Ĩ31 (C)
)
= det(C) ,

(1.7)

of the strain tensor C. The definition of invariants follows from the characteristic
equation, we refer to (Zyczkowski, 1981, Sect. 5.3), (Betten, 2013, Sect. 12.1), (Al-
tenbach, 2018, Sect. 2.2.5). It is beneficial to construct another set of invariants as
follows:

I1 = tr(C) = Cii , I2 = I1(C
2) = CijCji , I3 = det(C) , (1.8)
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The invariants of the right Cauchy–Green strain tensor, C = FTF , are identical
to the invariants of the left Cauchy–Green strain tensor, B = FFT, by using the
deformation gradient Fij = ∂(ui + Xi)/∂Xj . With the same functional form, the
invariants of B read

I1 = tr(B) , I2 = I1(B
2) , I3 = det(B) . (1.9)

The invariants I1, I2, I3 are linear, quadratic, cubic in the strain tensor, respectively.
By using the conventional notation, J = det(F ), we rewrite the third invariant,
I3 = J2. Since the third invariant is cubic in the strain tensor, J2/3 is linear and
J4/3 is quadratic. Hence, we can construct another set of invariants:

Ī1 =
I1
J2/3

, Ī2 =
I2
J4/3

. (1.10)

As we understand F as a transformation from the current frame onto the reference
frame, by decomposing volumetric and deviatoric deformation and using J as the
volumetric contraction, we understand that Ī1 and Ī2 remain constant subject to a
volumetric change. Therefore, it is convenient to express

ψ(I1, I2, I3) = ψ̂(J) + ψ̄(Ī1, Ī2) , (1.11)

where the volumetric part of the deformation is given by ψ̂ and the deviatoric part
is dictated by ψ̄. In the rheometer experiment, pure deviatoric type of deformation
leads to J = 1 such that we can determine ψ̄ but not ψ̂. For obtaining the func-
tional form and the corresponding parameters, a volume expansion test of the same
material is necessary. We continue modeling and determining parameters of ψ̄. The
energy density is constructed in such a way that it vanishes for the case without de-
formation. This “stress-free” or natural configuration is called the reference frame,
usually chosen as the initial frame. The invariants read Ī1 = Ī2 = 3 in the ref-
erence frame. If we consider the shear measurement in the oscillatory rheometer
experiment, after using Eq. (1.5) and

CijCjk =

⎛⎝ 1 + ε2 2ε+ ε3 0
2ε+ ε3 1 + 3ε2 + ε4 0

0 0 1

⎞⎠ , (1.12)

the invariants become

Ī1 = 3 + ε2 , Ī2 = 3 + 4ε2 + ε4 . (1.13)

All experiments are realized by steering the strain, ε, as given in Eq. (1.3). For a
specific frequency, a set of experiments are realized by varying the amplitude, ε0 in
Eq. (1.3). Thus, we can calculate the numerical values of invariants in each set of
experiments by using the above definitions in Eq. (1.13).

In order to model ψ̄(Ī1, Ī2), as an example, we use a Mooney–Rivlin type of
expansion
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ψ̄ = c1(Ī1 − 3) + c2(Ī2 − 3) . (1.14)

Rate of this energy density is

ψ̄• = c1Ī
•

1 + c2Ī
•

2 , (1.15)

with
Ī •1 = 2εε• , Ī •2 = 8εε• + 4ε3ε• . (1.16)

Rate of invariants can be calculated directly by using Eq. (1.3). Since c1 and c2 are
constants in time - we remark that the magnetic flux is held constant throughout one
set of experiments - we rewrite the energy density,

ψ =

∫
ψ• dt = c1

∫
Ī •1 dt+ c2

∫
Ī •2 dt , (1.17)

since the material parameters c1 and c2 are constants. For a specific frequency ν and
amplitude ε0 we obtain from the latter, the dissipated energy as in Eq. (1.2) for the
whole period, T ,

e1 = A11c1 +A12c2 ,

A11 =

T∫
0

Ī •1 dt , A12 =

T∫
0

Ī •2 dt ,
(1.18)

as well as for the quarter period,

e2 = A21c1 +A22c2 ,

A21 =

T/4∫
0

Ī •1 dt−
1

4
A11 , A22 =

T/4∫
0

Ī •2 dt−
1

4
A12 .

(1.19)

We emphasize that the components of A possess strain as given in Eq. (1.3) such
that for specific values of the frequency and amplitude, the numerical values of
components of A are obtained by a simple integration. By using the measurement
data from Eq. (1.2), we obtain the following form:(

A11 A12

A21 A22

)(
c1
c2

)
=

(
2πG′′ε20
G′ε20

)
. (1.20)

Suppose we have n measurements with different amplitudes, ε10, ε20, . . . , εn0 , at a
specific frequency. Then the matrix A will be 2n× 3 as follows
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A11|ε10 A12|ε10
A21|ε10 A22|ε10
A11|ε20 A12|ε20
A21|ε20 A22|ε20

...
...

A11|εn0 A12|εn0
A21|εn0 A22|εn0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
c1
c2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2πG′′|ε10(ε10)2
G′|ε10(ε10)2

2πG′′|ε20(ε20)2
G′|ε20(ε20)2

...
2πG′′|εn0 (εn0 )2
G′|εn0 (εn0 )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.21)

which is tantamount to
Au = b , (1.22)

where the unknowns, u, are the material parameters to be determined; we know or
calculate the experimental results, b, as well as the components in the coefficient
matrix, A. The unknowns form a linear relation such that we can solve it. However,
there are more measurements than unknowns, in other words, A is not quadratic,
thus the solution is not unique. In order to find the best material parameters in the
sense of minimizing the squared error, we use the so-called normal equation in
statistics:

u = (ATA)−1ATb , (1.23)

we refer to Abali et al (2016, Sect. 6.1.1) for its straight-forward derivation, which is
well-known in optimization. By reinterpreting rheometer data, we achieved a linear
regression problem with a unique solution for the best material parameters fitting
the output. We will utilize this method for determining materials parameters.

1.3 Method of Solution and Results

The measurements conducted in Yu et al (2017) are used as the data for constructing
b in Eq. (1.23). Concretely, from G′ and G′′ data, we obtain e1 and e2 with the aid
of Eq. (1.2) as visualized in Fig. 1.1. Every dot in Fig. 1.1 represents one measure-
ment. Such an amplitude sweep measurement is automatized in modern rheometer
softwares. We expect to find a material model capturing the energies for different
amplitudes by means of the same material parameters. We construct b as well as
the coefficient matrix, A, for every strain amplitude ε0 in the periodic strain as
in Eq. (1.3). The coefficient matrix, A, is acquired by computing the integrals nu-
merically with Simpson’s rule. We use open-source packages in Python language
by exploiting NumPy (Oliphant, 2007) for computation and MatPlotLIB (Hunter,
2007) for visualization. Building the matrices and solving Eq. (1.23) lasts less than
a minute1.

We start off by trying the Mooney–Rivlin type hyperelastic model as in Eq. (1.14)
and find out that e1 cannot be represented as in the experiment. The reason is the

1 Python 2.7 running in an Ubuntu 16.04 working on a single Intel Core i7-4650U at 1700 MHz
processor.
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Fig. 1.1 Experimental data for various amplitudes of shear strain, ε0. Left: storage and loss muduli
(no magnetic flux) obtained from Yu et al (2017). Right: data is converted into energies by using
Eq. (1.2).

material behavior being viscoelastic. We need a material model incorporating not
only the strain tensor, C, but also its rate, C •, in the energy definition. Analogous to
Eq. (1.8), we introduce invariants depending on the rate of strain tensor,

I1 = tr(C) = Cii , I2 = tr(C ·C) = CijCji , I3 = det(C) ,

I4 = tr(C •) = C •

ii , I5 = tr(C • ·C •) = C •

ijC
•

ji , I6 = det(C •) ,

I7 = tr(C ·C •) = CijC
•

ji ,

(1.24)

for every different possibility ofCij ,C •

ij , andCijC
•

jk. By using an abusive notation,

J =
√
I3 , J

• =
√
I6 ,

Ī1 =
I1
J2/3

, Ī2 =
I2
J4/3

, Ī4 =
I4
J2/3

, Ī5 =
I5
J4/3

, Ī7 =
I7
J4/3

,
(1.25)

we obtain

ψ(I1, I2, I3, I4, I5, I6) = ψ̂(J, J
•) + ψ̄(Ī1, Ī2, Ī4, Ī5, Ī7) . (1.26)

Again, only for the deviatoric part, ψ̄, we obtain the invariants in the case of shear
experiments, J = 1, by using Eqs. (1.5), (1.12), as well as

C •

ij =

⎛⎝0 ε• 0
ε• 2εε• 0
0 0 0

⎞⎠ , C •

ijC
•

jk =

⎛⎝ (ε•)2 2ε(ε•)2 0
2ε(ε•)2 (ε•)2 + 4ε2(ε•)2 0

0 0 0

⎞⎠ ,

CijC
•

jk =

⎛⎝ εε• ε• + 2ε2ε• 0
(1 + ε2)ε• 3εε• + 2ε3ε• 0

0 0 0

⎞⎠ ,

(1.27)

as follows
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Ī1 = 3 + ε2 , Ī2 = 3 + 4ε2 + ε4 , Ī4 = 2εε• ,

Ī5 = 2(ε•)2 + 4ε2(ε•)2 , Ī7 = 4εε• + 2ε3ε• .
(1.28)

Therefore, we acquire the following model

ψ = c1(Ī1 − 3) + c2(Ī2 − 3) + c3Ī4 + c4Ī5 + c5Ī7 , (1.29)

by assuring ψ = 0 in the reference frame. Rate of energy reads

ψ• = c1Ī
•

1 + c2Ī
•

2 + c3Ī
•

4 + c4Ī
•

5 + c5Ī
•

7 , (1.30)

with the following rate of invariants

Ī •1 = 2εε• , Ī •2 = 8εε• + 4ε3ε• , Ī •4 = 2(ε•)2 + 2εε•• ,

Ī •5 = 4ε•ε•• + 8ε(ε•)3 + 8ε2ε•ε•• , Ī •7 = 4(ε•)2 + 4εε•• + 6ε2(ε•)2 + 2ε3ε•• .
(1.31)

Since we have experimental values for e1 and e2, we need to express them by using
the latter material equation. By utilizing Eq. (1.2), we obtain

e1 = A11c1 +A12c2 +A13c3 +A14c4 +A15c5 ,

A11 =

T∫
0

Ī •1 dt , A12 =

T∫
0

Ī •2 dt , A13 =

T∫
0

Ī •4 dt , A14 =

T∫
0

Ī •5 dt , A15 =

T∫
0

Ī •7 dt ,

(1.32)
for the whole period and analogously, for the quarter period,

e2 = A21c1 +A22c2 +A23c3 +A24c4 +A25c5 ,

A21 =

T/4∫
0

Ī •1 dt−
1

4
A11 , A22 =

T/4∫
0

Ī •2 dt−
1

4
A12 , A23 =

T/4∫
0

Ī •4 dt−
1

4
A13 ,

A24 =

T/4∫
0

Ī •5 dt−
1

4
A14 , A25 =

T/4∫
0

Ī •7 dt−
1

4
A15 .

(1.33)
This model in Eq. (1.29) is capable to represent the data adequately, see Fig. 1.2
(left). By using the method herein, we can easily construct different models and test
them as well. Since the model in Eq. (1.29) has five parameters, we try to eliminate
each of them and simplify the energy equation still representing the experiments
fairly well. Analogous to linear Yeoh model or incompressible neo-Hookean rela-
tion, we constructed the following model:

ψ = c1(Ī1 − 3) + c3Ī4 (1.34)

that provides a very good agreement to experiments, see Fig. 1.2 (right). Thus, we
utilize this Yeoh type of model and try to fit all experiments conducted under dif-
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Fig. 1.2 Fit to experimental data. Dots denote experiments, continuous lines express the fit. Left:
fit by using Eq. (1.29). Right: fit by using Eq. (1.34).

Table 1.1 Material parameters in the model, ψ = c1(Ī1 − 3) + c3Ī4

B in T c1 in Pa c3 in Pa s

0.0 147.5×103 -34.7×109

0.1 198.7×103 -47.5×109

0.2 300.8×103 -71.2×109

0.3 422.6×103 -98.5×109

0.4 538.8×103 -121.7×109

0.5 642.8×103 -141.5×109

0.6 726.4×103 -155.0×109

0.7 778.6×103 -161.2×109

0.8 797.4×103 -160.3×109

ferent magnetic flux values from 0 T up to 0.8T. The accuracy of the result can be
depicted in Fig. 1.3. Especially for a magnetic flux up to 0.6T the model is describ-
ing the material response accurately. Within the regime up to 0.6T, we encourage
using this Yeoh type of model in a possible computation. Hence, we compile the
results in Table 1.1, between the values a linear interpolation is adequate to imple-
ment. Beyond the rough estimate of 0.6T, the accuracy of the material model de-
creases. This fact can be comprehended in a better way, when we plot the material
parameters in the magnetic flux as presented in Fig. 1.4. Interestingly, the material
starts to converge to a state where the increase of the magnetic flux is not affecting
the material response. This case might be explained as a consequence of the satu-
ration in polarization. Hence, the characteristics of the homogenized material tends
to change as well such that the proposed model fails to represent the behavior ac-
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Fig. 1.3 Fit to experimental data under different magnetic fluxes. Dots denote experiments,
continuous lines express the fit by using Eq. (1.34).

curately. We suggest to use the model with the parameters as given in Table 1.1 for
large deformations up to 100% under magnetic flux up to 0.6T.

1.4 Conclusion

We have presented a relatively simple approach in order to determine the material
parameters of a nonlinear material model out of a rheometer measurement. Magne-
torheological elastomer is a composite material of a soft matrix material filled with
magnetizable iron particles, thus, the material response changes with respect to the
magnetic flux. An oscillatory measurement with a rotational rheometer generates an
outcome that is recalculated in order to obtain a linear regression problem. Hence,
the inverse analysis let us acquire unique parameters of the hyperelastic material
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Fig. 1.4 Material parameter change subject to magnetic flux: left: c1 in Pa, right: c3 in Pa s taken
from Table 1.1.

model. After using different models obtained by the rules of tensor calculus, we
have found a simple yet powerful material model, a linear Yeoh type of model, ca-
pable of accurately representing the material behavior up to 0.6T. The results are
compiled in Table 1.1 for exploiting in a computation, for example by using the
finite element model.
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Chapter 2

On the Size Effects in Indentation Testing of

Elastic Functionally-graded Materials

Ivan Argatov

Abstract The size effect in the small-scale indentation testing is studied for a
functionally-graded material (FGM) whose shear elastic modulus varies according
to the exponential law. Under the simplifying assumption of zero Poisson’s ratio,
the asymptotic model of the indentation stiffness for an axisymmetric frictionless
indenter is developed in the case when the contact radius is small compared to the
inhomogeneity characteristic size. The so-called sample size effect is considered on
the example of a simply supported FGM plate indented at the center of its top sur-
face. A certain range of applicability of the first-order asymptotic models has been
established by comparison with the approximate analytical solution available in the
literature.

Keywords: Indentation stiffness · Functionally graded material · Size effect ·
Asymptotic model

2.1 Introduction

Indentation techniques represent a simple practical method of nondestructive char-
acterizing mechanical properties of materials, e.g., hardness (Oliver and Pharr,
1992), elastic modulus (Bulychev et al, 1975), plasticity (Müller et al, 2009), frac-
ture toughness (Anstis et al, 1981), adhesion strength (Borodich and Galanov,
2008). For instance, when the thermo-mechanical properties of micromechanical
components (e.g., of solder joints, are to be determined realistically from small test
volumes) a microindentation technique can be utilized (Villain et al, 2008), as it
allows to measure the mechanical properties locally in the material.
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An indentation test can be performed with a rigid indenter whose displacement,
δ, can be monitored under an externally applied contact load, F , and an appropriate
mathematical material model is needed to extract the material parameters from the
indentation data. Generally speaking, a complete stress-strain curve should be deter-
mined for a full characterization of the elastic-plastic deformation behavior (Müller
et al, 2009).

With the development of the Oliver–Pharr method (Oliver and Pharr, 1992),
nanoindentation, known as an instrumented indentation test, where the direct in-
spection of the indent imprint is replaced by an indirect assessment from the force-
displacement curve, has emerged as an indispensable technique for evaluation of
mechanical properties at micro- and nano-scales (Borodich and Keer, 2004; Arga-
tov, 2010). However, practical application of the nanoindentation method can be
accompanied with numerous technological difficulties, especially, if a tested ma-
terial exhibits a fine microstructure (Albrecht et al, 2005; Gibson, 2014; Argatov
and Sabina, 2017) and/or a complicated deformation behavior (Cheng et al, 2000;
Koumi et al, 2014). In response to the continuous miniaturization of microelec-
tronic components in modern electronic industry, a number of practically important
issues in indentation testing have been resolved by the research group headed by
Prof. W.H. Müller (TU Berlin).

In particular, essential for the correct determination of the contact area in the
depth-sensing indentation is the precise measurement of the actual indentation depth
of the indenter. This practical issue has been addressed by Müller et al (2011). The
evaluation of the material properties at elevated temperature reveals the influence
of the surface oxidation on the indentation data. To avoid this problem, Müller et al
(2009) developed an effective measurement procedure, which is of particular signif-
icance for characterizing the solder materials. The effect of crystal grain orientation
is another parameter, which influences the accuracy of detailed indentation analy-
sis of local material properties, was studied by Müller et al (2009). For describing
the time-dependence of material response shown by low melting solder materials,
which under indentation load are susceptible to creep behavior, Müller and Worrack
(2012) have developed an enhanced analysis of nanoindentation data based on rheo-
logical models. To obtain information on the material’s work hardening from exper-
imentally measured load-displacement curves obtained with a blunt probe, the in-
verse analysis based determination methodology was established by Weinberg et al
(2005). A practically important problem arises in application of nanoindentation for
determining the mechanical properties of individual phases in heterogeneous ma-
terials and, especially, of intermetallic phases in microelectronic structures. It has
been shown (Albrecht et al, 2005) that nanoindentation can be effectively used to
quantify the growth of intermetallic phases, in particular at the interface of a solder
connection.

What interests us in nanoindentation is that in many cases the effect of plastic de-
formations on the elastic deformation response can be get rid of by considering the
indentation unloading (Bulychev et al, 1975), so that by evaluating the incremental
indentation stiffness

S =
dF

dδ
, (2.1)
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one can assess the stiffness property of solid materials, which for an isotropic ho-
mogeneous linearly elastic material, is fully characterized by its shear modulus, G,
and Poisson’s ratio, ν.

In the case of an axisymmetric indenter (e.g., cylinder, sphere, or cone), the
evaluation of elastic indentation test is based on the BASh (Bulychev–Alekhin–
Shorshorov) relation (Bulychev et al, 1975)

S(a) =
4aG

1− ν , (2.2)

which reveals the fact that the indentation stiffness is proportional to the radius of
contact area, a.

Equations (2.1) and (2.2) show that the ratio S(a)/
√
A, where A is the con-

tact area, should be insensitive to the size of the indenter imprint. However, for a
functionally-graded material, when, in addition to its elastic moduli, the material’s
response to indentation depends on some characteristic size of material inhomo-
geneity, the ratio S(a)/a (in the axisymmetric setting) will vary with the contact
radius a, thereby exhibiting the size effect. This issue was considered using either
experimental, analytical or numerical methods (e.g., Suresh et al, 1997; Gouldstone
et al, 2007).

Recall (Markworth et al, 1995) that the concept of functionally graded mate-
rial (FGM) refers to composite materials with spatially variable properties, which is
usually achieved by gradual compositional variation of the constituents. The devel-
opment of indentation methods for a FGM sample requires the solution of contact
problems for a semi-infinite elastic medium with a continuous variation of elastic
properties (e.g., Giannakopoulos and Suresh, 1997b; Aizikovich et al, 2002; Heß,
2016; Argatov et al, 2018). Moreover, in order to assess the sample size effect, the
corresponding contact problem should be formulated for a finite body, and such
problems still remain to be solved by analytical methods.

Recently, the three-dimensional elastic deformation of an isotropic functionally
graded plate subjected to point loading was solved by Abali et al (2014) in the
special case of exponentially graded inhomogeneity using the analytical approach
based on the displacement functions method (Plevako, 1971; Kashtalyan, 2004).
In the present paper, we make use of the obtained singular solution and employ
asymptotic modeling approach (Argatov, 2010) for evaluating the local indentation
stiffness of a simply supported FGM plate in the range of small-scale indentation.

2.2 Small-scale Indentation

To fix our ideas, we consider indentation of a FGM sample, which is supposed to be
isotropic with a constant Poisson’s ratio, ν. To be more precise, we assume that the
shear elastic modulus, G(x3), varies according to an exponential law of the type
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G(x3) = G0 exp
(x3
l

)
, (2.3)

where G0 is the value of the shear modulus at the surface, x3 is a Cartesian coordi-
nate measured along the inner normal to the indented surface x3 = 0, and l is the
characteristic size of inhomogeneity.

In the general case of in-depth functionally graded material, the inhomogeneity
characteristic size can be introduced as follows:

l =

∣∣∣∣ G(0)G′(0)

∣∣∣∣. (2.4)

Here, G′(0) is the right-hand derivative of the function G(x3) at x3 = 0.
Let a be a characteristic size of the contact area, e.g., the contact radius in the

case of axisymmetric indenter and a circular contact area. Then, the range of small-
scale indentation can be characterized by assuming that a/l � 1. An approximate
solution of the contact problem for a frictionless cylindrical indenter (Fig. 2.1) and
an exponentially graded elastic medium (2.3) in the special case ν = 0 was obtained
by Giannakopoulos and Suresh (1997b). Based on their results, the indentation stiff-
ness can be evaluated as follows:

S(a) ≈ 4aG0

{
1− 2

π

a

l

(
C0 − C1

3

(a
l

)3

+
2C2

1

45π

(a
l

)5
)}−1

. (2.5)

Here, C0 = 3.7 and C1 = 403.5.
Observe that the factor 4aG0, which stands just before the curly braces in (2.5),

corresponds to the isotropic homogeneous case with the surface shear modulus G0.
It is interesting that the relative difference between S(a), as it is given by (2.5),
and 4aG0 is less than 5% only in a relatively small interval [0, 0.02). At the same
time, the 5 percent interval for the first order approximation S(a) ≈ 4aG0

{
1 −

(2/π)C0(a/l)
}

is longer and equal to [0, 0.16). This example shows that due to the
size effect, the classical BASh formula (2.2) and the Oliver–Pharr method can be
applied only in a limited contact size range.

Fig. 2.1 Schematic of the
cylindrical flat-ended indenta-
tion
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2.3 First-order Asymptotic Model for the Indentation Stiffness

Let G3(x1, x2) denote the surface influence function in the Boussinesq problem of
acting a unit point force on the surface of an elastic half-space along the normal to
the surface and directed inside the half-space. In the case of exponentially graded
material (2.3) with zero Poisson’s ratio, the following solution holds (Giannakopou-
los and Suresh, 1997a):

G3(r) =
1

2πG0l

∞∫
0

L(u)J0

(r
l
u
)
du. (2.6)

Here, r =
√
x21 + x

2
2 is a polar radius, J0(t) is the zeroth order Bessel function of

the first kind, and

L(u) =
2u

√
(2u)2 + 1(

1 +
√

(2u)2 + 1
)2 . (2.7)

First of all we observe that

L(u) = 1 +D1u
−1 +O(u−2), u→∞, (2.8)

with D1 = −1 and, therefore, the integral in (2.6) diverges as r → 0.
To proceed, we recall the known formulas (e.g., Gradshteyn and Ryzhik, 1994,

formulas (6.511.1) and (6.532.4))

∞∫
0

J0(ut) du =
1

t
,

∞∫
0

uJ0(ut)

u2 + 1
du = K0(t), (2.9)

whereK0(t) is the Macdonald function, which admits the asymptotic expansion

K0(t) = − ln
t

2
+ γ +O(t2), t→ 0, (2.10)

with γ = 0.557 . . . being Euler’s constant.
Now, by accounting for (2.9) and (2.10), it can be shown that the integral in

Eq. (2.6) possesses the asymptotic expansion

∞∫
0

L(u)J0

(r
l
u
)
du =

l

r
+D1 ln

l

r
− a0 +O

(r
l

)
, r → 0, (2.11)

where D1 = −1 is the asymptotic constant in (2.8) and a0 is given by

a0 = −D1(ln 2− γ) +
∞∫
0

(
1− L(u) +

D1u

u2 + 1

)
du. (2.12)
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Thus, in light of (2.11), we obtain

G3(r) =
1

2πG0

(
1

r
+
D1

l
ln
l

r
− a0
l
+O

(r
l

))
, r → 0. (2.13)

In order to determine the indentation stiffness, we consider the frictionless in-
dentation problem for a flat-ended cylindrical indenter of radius a, which can be
formulated in the form of the following integral equation (Vorovich et al, 1974):

a∫
0

p(r̄)K
( r̄
l
,
r

l

)
r̄ dr̄ = θ0lδ0. (2.14)

Here, p(r) is the contact pressure, θ0 = G0/(1− ν) is an elastic constant, δ0 is the
indenter displacement, and the kernelK(s, t) is given by the integral

K(s, t) =

∞∫
0

L(u)J0(us)J0(ut) du.

It can be shown (e.g., Vorovich et al, 1974) that the solution of Eq. (2.14) is
related to the solution q(r) of the integral equation

a∫
0

q(x̄) dx̄

∞∫
0

L(u) cos
x̄

l
u cos

x

l
u du =

π

2
θ0lδ0 (2.15)

via the formula

p(r) =
2

π

(
q(a)√
a2 − r2 −

a∫
r

q′(r̄) dr̄√
r̄2 − r2

)
. (2.16)

In turn, by introducing the dimensionless variables

ϕ(ξ) =
q(ξa)

θ0a
, ξ =

x

a
, λ =

l

a
, f0 =

δ0
a
, (2.17)

the integral equation (2.15) can be transformed to the following form (Vorovich
et al, 1974):

ϕ(ξ)− 1

πλ

1∫
−1

ϕ(ξ̄)k
(ξ − ξ̄
λ

)
dξ̄ = f0. (2.18)

Here we have introduced the notation

k(t) =

∞∫
0

[
1− L(u)

]
cosut du. (2.19)
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Further, for the function L(u) given by Eq. (2.7) and satisfying the asymptotic
expansion (2.8), it can be verified that the following expansion holds (Ajzikovich
and Aleksandrov, 1986):

k(t) = D1 ln |t| − a30 +O(t), t→ 0. (2.20)

The asymptotic constant a30 is given by (cf. Eq. (2.12))

a30 =

∞∫
0

(
L(u)− 1− D1(1− e−u)

u

)
du. (2.21)

Using the properties of the digamma function, we find

a30 = −a0 −D1 ln 2, (2.22)

where a0 is the asymptotic constant (2.12).
Finally, substituting the asymptotic approximation (2.20) into Eq. (2.18) and as-

suming that λ � 1, we readily find the first-order asymptotic approximation of its
solution in the form

ϕ(ξ) � f0
{
1 +

1

πλ

1∫
−1

(
D1 ln

|ξ − ξ̄|
λ

− a30
)
dξ̄

}
. (2.23)

Fig. 2.2 Predictions for the relative indentation stiffness according to the approximate formula
(2.5) (dashed line) and the asymptotic formula (2.25) (solid line)
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By direct integration, it can be shown that

1∫
−1

ln
1

|ξ − ξ̄| dξ̄ = − ln(1− ξ2) + 2 + ξ ln
(1− ξ
1 + ξ

)
.

Thus, the substitution of (2.23) into Eqs. (2.16) and (2.17) yields

p(r) � 2

π

θ0δ0
a

{
1√

1− ρ2
(
1− 1

πλ

[
2D1

(
1 + ln

λ

2

)
− 2a30

])

+
D1

πλ

1∫
ρ

ln

(
1− ξ
1 + ξ

)
dξ√
ξ2 − ρ2

}
, (2.24)

where ρ = r/a is the dimensionless polar radius.
In turn, the substitution of (2.24) into the formula

S(a) =
2π

δ0

a∫
0

p(r)r dr

leads to the following first-order asymptotic model for the indentation stiffness (cf.
Ajzikovich and Aleksandrov, 1986)

S(a) � 4aθ0

{
1 +

1

πλ

(
D1

(
3 + 2 ln

λ

2

)
+ 2a30

)}−1

. (2.25)

Here, λ is the large dimensionless parameter given by (2.17).
Note that the relative difference between the asymptotic solution (2.25) and the

approximate solution (2.5) does not exceed 5% in the interval [0, 0.09). It should be
emphasized that the expression on the right-hand side of (2.5) has a singularity for a
certain value of the ratio a/l. Hence, the accuracy of the approximate solution (2.5)
is doubtful for small values of λ, where the asymptotic solution (2.25) fails as well.

2.4 Sample Size Effect in Indentation of a FGM Plate

It is clear that formulas (2.5) and (2.25) can be applied when, in addition, the contact
radius a is much smaller than the sample’s characteristic size, h. Moreover, in the
case of a tested sample of finite size, the clamping conditions should be accounted
for as well. To illustrate this issue, we consider the problem of indentation of a
square FGM plate, which is assumed to be simply supported at its perimeter. In
order to construct an asymptotic model for the indentation stiffness, we need the
singular solution of the boundary-value problem of point loading of the plate (see
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Fig. 2.3), which was investigated by a combination of analytical and numerical tools
by Abali et al (2014).

Let the plate be referred to a Cartesian coordinate system (x1, x2, x3), so that
−b/2 ≤ x1 ≤ b/2, −b/2 ≤ x2 ≤ b/2, 0 ≤ x3 ≤ h. Let us also introduce the new
vertical variable

z = h− x3, (2.26)

which has been used in the analysis of Abali et al (2014) and Kashtalyan (2004).
According to Plevako’s general solution (Plevako, 1971), the vertical component
of the displacement vector can be represented in the following form (Kashtalyan,
2004)

G3(x) =
1

G

∞∑
m=1

∞∑
n=1

{
−(1− ν)

(
1

l

∂2Lmn

∂z2
(x) +

∂3Lmn

∂z3
(x)

)

+ α2mn

(
(2− ν)∂Lmn

∂z
(x)− ν

l
Lmn(x)

)}
. (2.27)

Here we have introduced the notation

Lmn(x) = φmn(z) sin
πm

b

( b
2
+ x1

)
sin

πm

b

( b
2
+ x2

)
, (2.28)

φmn(z) = h
4
[
A1mnf1mn(z)+A2mnf2mn(z)+A3mnf3mn(z)+A4mnf4mn(z)

]
,

f1mn(z) = e
−z/l cosh

λmnz

h
cos
μmnz

h
, f2mn(z) = e

−z/l sinh
λmnz

h
cos
μmnz

h
,

f3mn(z) = e
−z/l cosh

λmnz

h
sin
μmnz

h
, f4mn(z) = e

−z/l sinh
λmnz

h
sin
μmnz

h
.

The constants A1mn, A2mn, A3mn, and A4mn can be found from the boundary
conditions on the top and bottom surfaces of the plate, λmn and μmn are the roots
of the characteristic equations (see Abali et al, 2014; Kashtalyan, 2004, for details),
and αmn = π

√
m2 + n2/b. In the case of unit point loading, we have

σ33
∣∣
x3=0

= − 4

b2

∑
m

∑
n

cos
πm

b
x1 cos

πm

b
x2, (2.29)

Fig. 2.3 Schematic of the
point loading of a square
simply supported FGM plate
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wherem,n = 1, 3, 5, . . . .
Thus, in view of Eqs. (2.27)–(2.29), the surface normal displacement of the FGM

plate can be represented in the form

G3(x1, x2, 0) =
1

2πG0l

∑
m

∑
n

Amn cos
πm

b
x1 cos

πm

b
x2, (2.30)

where the dimensionless coefficients Amn are linear combinations of A1mn, A2mn,
A3mn, and A4mn (m,n = 1, 3, 5, . . .).

For a FGM plate of the type (2.6), it can be shown that the singular function
(2.30) satisfies the asymptotic expansion of the type (2.13). In light of this fact, we
introduce the notation

B(1)
mn =

16l

b2

b/2∫
0

b/2∫
0

1√
x21 + x

2
2

cos
πm

b
x1 cos

πm

b
x2 dx1dx2, (2.31)

B(2)
mn =

16

b2

b/2∫
0

b/2∫
0

ln
l√

x21 + x
2
2

cos
πm

b
x1 cos

πm

b
x2 dx1dx2, (2.32)

and put

A0 = −
(
2πG0lG3(x1, x2, 0)− l

r
+D1 ln

l

r

)∣∣∣∣
r=0

, (2.33)

whereD1 = −1 is the asymptotic constant from the asymptotic expansion (2.13) for
the fundamental solution G3(r) of the Boussinesq problem for a FGM half-space.

Then, according to (2.30)–(2.33), we find

A0 = −
∑
m

∑
n

(
Amn −B(1)

mn −D1B
(2)
mn

)
. (2.34)

Finally, by applying the asymptotic modeling approach (Argatov, 2010) it can be
shown that the first order model for the indentation stiffness is given by

S(a) ≈ 4aθ0

{
1 +

1

πλ

(
D1

(
3 + 2 ln

λ

2

)
+ 2A30

)}−1

, (2.35)

where, in view of (2.22), we have

A30 = −A0 −D1 ln 2

with A0 being given by (2.34), and λ = l/a is the dimensionless parameter intro-
duced by (2.17), which is expected to take large values.

Observe that the asymptotic model (2.35) requires that the characteristic inho-
mogeneity length l should be smaller than the sample thickness h, so that a� h, as
well as a� b, where a is the contact radius and b is the plate width.
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2.5 Discussion and Conclusion

It should be emphasized that asymptotic models, which are usually derived under
certain simplifying assumptions, should not be exploited outside the range of their
applicability. With regard to the asymptotic models developed above, we observe
that the singular solution (2.6), (2.5) was obtained in the special case where ν = 0.
For the more realistic case of non-zero Poisson’s ratio, the factor (2πG0)

−1 in (2.6)
should be replaced with (1 − ν)/(2πG0), and, apparently, the asymptotic constant
D1 in (2.8) will be a function of ν.

In the general case of a functionally graded material with constant Poisson’s ratio,
the first-order asymptotic model (2.25) still can be used, provided the inhomogene-
ity characteristic size l is defined by formula (2.4).

It should be noted that the 5 percent interval, determined for the asymptotic
model (2.25) based on the approximate solution (2.5) is rather small (see Fig. 2.2).
This, in particular, implies that further research is needed to understand the strength
of the size effect.
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Chapter 3

The Effect of Mechanical Load-induced

Intraosseous Pressure Gradients on Bone

Remodeling

Emilio Barchiesi, Ivan Giorgio, Faris Alzahrani & Tasawar Hayat

Abstract It is well established that changes in bone blood and interstitial fluid flows
are associated with changes in the bone remodeling process. These flows in bone
are a result not only of trans-cortical pressure gradients produced by vascular and
hydro-static pressure, but also of mechanical loadings. Mechanical load-induced in-
traosseous pressure gradients may result in some fluid stimuli effects which, in turn,
may enable bone cells to detect external mechanical signals. In this paper, the ex-
ploitation of a 2D continuum model based on classical poroelasticity is presented
within a variational framework. The investigation is aimed at describing how me-
chanical actions can affect the remodeling process of a bone tissue. The focus is on
the introduction of a physically motivated strain energy contribution aimed to take
into account the presence of saturating fluid in the interconnected pores of bone tis-
sue. The interaction with a bio-resorbable organic ceramic material like those used
in bone graft implants is also considered in presented model. Numerical results are
provided in a relevant exemplary case.
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3.1 Introduction

In bone tissue, it is possible to distinguish mainly two kinds of fluids: blood and
interstitial fluids like, e.g., bone marrow. Blood carries through the arterial system
oxygen and other nutrients, and the blood components depart from this arterial sys-
tem via smaller channels, i.e. the venous system, to zones containing less oxygen
and reduced nutrition (see, e.g., George et al, 2018a; Spingarn et al, 2018). Within
the bone, as within other tissues, substances pass from the blood flowing through
the arterial walls into the interstitial fluid. The interstitial fluid subsequently car-
ries these substances to the cells within the bone and, at the same time, carries
away the waste materials from the cells. Bone tissue would not remain alive with-
out these fluid movements. It is thus clear the reason why it is commonly accepted
that vascularization is required for effective bone healing and maintenance. These
statements are supported by the fact that changes in bone blood and interstitial fluid
flows are associated with changes in bone remodeling and formation (see, e.g., Hill-
sley and Frangos, 1994). These flows in bone are a result not only of trans-cortical
pressure gradients produced by vascular and hydro-static pressure, but are also re-
lated to externally applied mechanical loadings. It is observed that flow rates are
affected by many factors, like the increase in venous pressure due to hypertension,
the fluid shifts occurring in bedrest or microgravity, the increase in vasculariza-
tion during the injury-healing response, and the mechanical compression/tension
and bending/torsion of bone during exercise. Thus, mechanical load-induced in-
traosseous pressure gradients, like those induced by mechanical loading of bone
during exercise, affect the fluid flow rate and, eventually, bone remodeling. The pur-
pose of this article is to present a mathematical model able to describe the role of
mechanical actions in the bone osteogenesis process. In this paper we will make
use of the classical poroelasticity theory, as formulated by Biot in its 1941’s foun-
dational paper (Biot, 1941), suitably complemented with a novel non-local energy
contribution purposely introduced to account for fluid compression. In poroelastic-
ity, a field accounting for porosity is usually introduced in addition to the placement
function of the solid phase. Poroelasticity is, thus, a so-called micromorphic the-
ory, belonging to the wider class of generalized continua with internal variables
or with extra kinematical descriptors. The importance of these continua has been
questioned, but, in our opinion, has been proven useful in presence of long range
interactions at micro-level, when a macro continuous model is more suitable (see,
e.g., Alibert et al, 2003; Eremeyev et al, 2018a; Abali et al, 2017; Pietraszkiewicz
and Eremeyev, 2009). The macroscopic theories formulated in the framework of the
mechanics of generalized continua is being formulated for 3D and 2D bodies and is
increasingly attracting the attention of those researchers interested in non-standard
mechanical effects (see, e.g., Altenbach and Eremeyev, 2009; Bertram and Glüge,
2016; Gusev and Lurie, 2017; Camar-Eddine and Seppecher, 2001). The recent lit-
erature stresses two aspects of the considered multi-scale mechanical systems: their
potentially exotic macroscopic behavior and the corresponding microscopic struc-
ture, in which there are eventually active long range interactions. The need for gen-
eralized continua, including in this class also higher gradient theories (dell’Isola and
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Seppecher, 1997; dell’Isola et al, 2012; dell’Isola and Steigmann, 2015; dell’Isola
et al, 2016, 2015b), is unavoidable when one has to describe those mechanical phe-
nomena which involves the activation of deformation modes at microlevel determin-
ing the interaction of parts of the micro-structure having high stiffness contrast and
bridging distant homogenization cells. These complex deformation patterns cannot
be accounted for in standard Cauchy theories: for a series of examples of this cir-
cumstance, see e.g., Cuomo et al (2016); dell’Isola et al (2016); Placidi et al (2016)
while for theoretical arguments dealing with micro-macro convergence motivating
higher gradient theories, see e.g., Abdoul-Anziz and Seppecher (2018); Seppecher
et al (2011); Pideri and Seppecher (1997). In the present paper, we deal with a re-
constructed bone during its remodeling process. This is surely a multi scale complex
system, which involves mechanical, chemical and biological aspects and, therefore
the previous modeling concerns are surely appropriate. This approach is present in
the literature of biomechanics of bones (see, e.g., Lekszycki and dell’Isola, 2012;
Giorgio et al, 2017; Ganghoffer, 2016; Goda et al, 2014, 2012; Ganghoffer, 2012)
but has attracted the attention also in view of different possible applications. Gen-
eralized continua are indeed considered also for modeling electromechanical sys-
tems in biological applications (see, e.g., Steigmann and Agrawal, 2016) memory
shape alloys (Shirani et al, 2017) and piezo/flexo-electric materials (see, e.g., Abd-
alladan et al, 2017; Abd-alla et al, 2017; Pagnini and Piccardo, 2016; Enakoutsa
et al, 2017). These studies may have a relevance in the process of bone remodeling,
if one of the mechanisms regulating considered bone growth process are regulated
by electromagnetically induced biological activity, as it seems to happen when elec-
trical currents are used to favor bone growth. Growing bones are resisting to external
load, also in elastic regime: therefore, generalized elastic continua can be of use in
the class of biomechanics phenomena which we consider here. In this context, the
works (Andreaus et al, 2010; Rosi et al, 2018; Abali et al, 2015; Altenbach and Ere-
meyev, 2015; Franciosi et al, 2018; Spagnuolo and Andreaus, 2018; Andreaus et al,
2018), which try to capture some aspects of the elastic deformation of reconstructed
bones, are relevant. As we hope to have explained already in an exhaustive way, the
complexity of behavior of a reconstructed bone does not allow for too drastic sim-
plifications. Surely in the small and larger channels in which interstitial fluids are
flowing may activate capillary phenomena: therefore, the analysis of capillary fluids
(Auffray et al, 2015; Seppecher, 1993, 2000) and their influence at macro-level may
be of relevance. In this context, the results presented in Madeo et al (2013); Scia-
rra et al (2007) may be of use, as well as the analysis of damage phenomena (see,
e.g., Placidi et al, 2018; Rinaldi and Placidi, 2014; Placidi, 2015; Misra and Singh,
2013; Spagnuolo et al, 2017; Goda and Ganghoffer, 2015; Di Nino et al, 2017; Bat-
tista et al, 2017b) based on generalized continuum models. Remark that in the last
paper a purely discrete model for mechanical phenomena is introduced, based on
the postulation involving a generalization of cellular automata. Indeed, among the
other feed-back mechanisms which regulate bone remodeling, it has been proven
that it is particularly effective that which activates the action of osteoblasts and os-
teoclast when the microstructure of the bone exhibits some growing damage and
micro fracture. One should not, however, believe that the only feed-back control
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mechanism of growth involves a measure of micro-fracture of bone. It seems that
also the dissipation occurring in the interstitial fluids at the level of micro-canalicula
and micro-trabecular structure may be effective. As a consequence dissipation phe-
nomena has to be included in the modeling process (e.g. using the ideas presented
in Lekszycki et al (2017); Cuomo (2017); Luongo and D’Annibale (2017). If the
considered phenomena involve lower scales then the granular structure of the bone
and the reconstructing material must be accounted for: in this case the modeling is-
sues addressed in Misra and Poorsolhjouy (2015a); Misra and Singh (2015); Misra
and Poorsolhjouy (2015b); Altenbach et al (2010); Eremeyev (2018), may become
relevant. Finally, it has to be remarked that the peculiar features exhibited by recon-
structed bones and by physiological bones imply some specific corresponding non-
standard characteristics in wave propagation. These peculiarities may be exploited
to get informations, using noninvasive methods, about the health and mechanical
performance of (possibly reconstructed) bone tissue. In this case wave propagation
analysis proposed in Placidi et al (2008); Engelbrecht and Berezovski (2015); Bere-
zovski et al (2018); Abbas et al (2016); Eremeyev et al (2018b) while dynamic
analyses performed in Battista et al (2015, 2017a); Ferretti et al (2017) may be of
use.

The plan of the work present is the following: first, in Sect. 3.2, we address some
basic facts on bone physiology, and will extrapolate the main information needed
for the modeling. Then, in Sect. 3.3, we introduce the proposed continuum model.
The focus is on the introduction of a physically motivated dedicated strain energy
contribution due to the presence of saturating fluid in the interconnected pores of
bone tissue and the interaction with a bio-resorbable organic ceramic material like
those used in bone graft implants is considered. In Sect. 3.4, we provide numerical
results in a relevant exemplary case. Finally, in Sect. 3.5, we give conclusions and
perspectives.

3.2 Some Considerations on Bone Physiology

Bone is a ‘rigid’ living organ that constitutes the vertebrate skeleton; it protects the
organs of the body and enables mobility. It has a honeycomb-like matrix internally,
which helps to give the bone rigidity and that can be considered porous with respect
to the characteristic length that we are concerned with at the macroscopic level. The
pores of the solid matrix are filled with interstitial fluid. Inside bone tissue, different
types of bone cells act. Osteoblasts and Osteocytes are involved in the formation
and mineralization of bone; Osteoclasts are involved in the resorption of bone tis-
sue. Modified (flattened) Osteoblasts become the lining cells that form a protective
layer on the bone surface. The mineralized matrix of bone tissue has an organic
component of mainly collagen, called ossein, and an inorganic component of bone
mineral made up of various salts. Bone tissue is a mineralized tissue of two types,
cortical and cancellous bone. Other types of tissue found in bones include bone mar-
row, endosteum, periosteum, nerves, blood vessels and cartilage. Bone tissue is con-
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stantly reshaped by the biological activity which takes place therein. Biology tells
us that the basic (feedback) mechanism, relevant for the subsequent modeling, is
the one shown in Fig. 3.1. External mechanical actions are sensed by the Osteocytes
which, being actors of the mechano-transduction process, transduce the mechani-
cal stimulus into a biological, i.e. bio-chemical, signal, inducing the resorption of
bone tissue by the Osteoclasts or its synthesis by the Osteoblasts. Bio-resorbable
artificial materials can be roughly divided into polymeric and ceramic materials.
Polymers are mainly degraded in the process of hydrolysis, while organic ceram-
ics like, e.g., β-TCP (Tri-Calcium Phosphate) with 5% of HAP (Hydroxyapatite),
are instead mostly processed by the Osteoclasts. Both processes always coexist and,
depending on the constitution of the graft, one process or the other results to be
dominant. In this paper we consider resorption due to Osteoclasts only. Taking into
account the presence of a bone graft allows to better understand and predict how
mechanical actions can affect the remodeling process of a bone tissue possibly in-
teracting with a bio-resorbable material like those used in bone graft implants (e.g.
dental bone grafting), whether the implanted graft is suitable as mechanically sup-
porting element, the capability of the graft to integrate with the bone tissue, so that
it can be gradually resorbed and replaced by new natural bone tissue. This last prop-
erty is conferred by chemical composition, number and size of pores, because they
determine the extent to which living cells migration, their expected activities, the
development of vascularization for cell survival etc. can occur.

Mechanical
Stimulus

signal is transmitted by Osteocytes
(former Osteoblasts which become 
surrounded by unmineralized matrix 
during bone formation)

Osteoblasts
synthesize bone tissue 

Osteoclasts
break down (resorb) bone 

tissue and bio-material 

External
Actions stimulus depends 

upon mechanical 
properties of bone

Fig. 3.1 Basic feedback mechanism in a bone. A detailed description of the physiology of bone
remodeling would be out of reach.
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3.3 Modelling

3.3.1 Kinematics

In this paper we are aimed only at showing the main features of the model and,
thus, notwithstanding the fact that the subsequent modeling is suitable also for the
study of 3D bodies, it is here sufficient to consider a 2D body. Such a body is made
up of a mixture composed by three phases: the binary solid porous matrix of bone
(B) and bio-resorbable graft material (M) and the fluid phase (F) that fills the con-
nected pores of the solid matrix. The shape of the body in its undeformed reference
configuration is represented by the subset B0 ⊂ R

2. We will not make use of a
so-called mixture model in a strict sense, meaning that we are not going to con-
sider as independent kinematical descriptors of the model placement functions for
each component of the mixture. The only (sufficiently regular) displacement field
u : R

2 ⊇ B0 → R
2, with χ(X) = X + u(X) being the corresponding place-

ment function, which we consider as an independent Lagrangian kinematic variable
is such that u(X, t) is the displacement of the solid binary mixture in the represen-
tative three-phase volume element (see Fig. 3.2) whose barycenter is in X in the
reference configuration.

While the relative displacement of the components of the solid matrix can be
neglected, the same does not hold for the fluid phase, which in general can move
(only, as impermeability of the solid matrix is here assumed) inside the solid matrix.
The set B ≡ χ(B0) ⊂ R

2 is the current shape of the body. We shall denote the
Lagrangian representation e (χ(X)) of an Eulerian field e(x), where x ∈ B and it

X

Bone phase

Graft phase

Fluid phase

X

Fig. 3.2 A rectangular 2D body with a zoomed schematic of a representative volume element
(RVE).
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is such that x = χ(X), with eL(X). The (apparent) Lagrangian mass density in the
reference configuration ρR(X), with X ∈ B0, is given by

ρR(X) =
∑

i=B,M,F

ρi,R(X) =
∑

i=B,M,F

ρ̂i,R(X)ξi,R(X), (3.1)

where ρi,R is the partial Lagrangian mass of component i in the mixture in the
reference configuration, is the ρ̂i,R (true) Lagrangian mass density of component
i in a mono-phase mixture in the reference configuration, ξi,R is the Lagrangian
volume fraction of component i in the mixture in the reference configuration which,
since the porous solid matrix is saturated with fluid, is also referred to as the porosity
in the reference configuration. The (apparent) Eulerian mass density in the current
configuration ρC(x), x ∈ B, is given by

ρC(x) =
∑

i=B,M,F

ρi,C(x) =
∑

i=B,M,F

ρ̂i,C(x)ξi,C(x), (3.2)

with ρi,C the partial Eulerian mass of component i in the mixture in the current
configuration, ρ̂i,C the (true) Eulerian mass density of component i in a mono-
phase mixture in the current configuration, ξi,C the Eulerian volume fraction of
component i in the mixture in the current configuration which, since the porous
solid matrix is saturated with fluid, is also referred to as the porosity in the current
configuration (Wilmanski, 1998). As we mentioned above, in this paper we consider
undrained conditions, i.e. impermeability conditions at the boundary. Thus, the fol-
lowing global (as opposed to local) mass conservation constraint holds for the fluid
phase ∫

B0

ρLF,C(X) det∇χdX =

∫
B0

ρF,C (χ(X)) det∇χdX (3.3)∫
B

ρF,C(x) dx =MF =

∫
B0

ρF,R(X) dX, (3.4)

with MF being the total fluid mass in the body. Finally, in the spirit of continuum
poroelasticity, we introduce another independent Lagrangian micromorphic field ϑ :
R

2 ⊇ B0 → R, which is the change of porosity. Following Coussy (2004), we
assume that

ϑ(X) := ξF,C (χ(X))− ξF,R(X) = ξLF,C(X)− ξF,R(X). (3.5)

3.3.2 Elastic Mechanical Energy Stored Within the Body

For fixed ξB,R, ξM,R (remind that ξF,R = 1− ξB,R− ξM,R), the system is assumed
to behave elastically. We consider the quasi-static case, i.e. inertia and micro-inertia
forces/energies are negligible, and the total deformation energy of the system is
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assumed to be
ψ = ψSTRAIN − ψEXT (3.6)

with
ψSTRAIN = ψPOR + ψPERIDYN (3.7)

and

ψEXT =

∫
B0

bext · u dX +

∫
∂B0

fext · u dX, (3.8)

the quantities bext and fext in (3.8) being, respectively, bulk and surface loads
(see for more detail on variational formulation e.g. Abali et al, 2017; Eugster and
Glocker, 2017). Let us now examine the terms ψPOR in (3.7), which is the poro-
elasticity strain energy density contribution in Lagrangian form i.e. the energy stored
within the body due to the deformation of the solid matrix and to pores surface ten-
sion and related phenomena (Giorgio et al, 2016). In this paper we consider the
small strain assumption (i.e. ∇u � 0) and, in what follows, E = Sym∇u is the lin-
earized Green-Saint Venant strain tensor. The purely (no pre-stress) quadratic form
in the strain E and micro-strain ϑ is

ψPOR (E, ϑ) =

∫
B0

[
Q

2
(ϑ− α tr(E))2︸ ︷︷ ︸

Biot’s contribution

+

1

2

Y (ρB,R, ρM,R)ν

(1− 2ν)(1 + ν)
tr(E)2 +

1

2

Y (ρB,R, ρM,R)

(1 + ν)
tr(E2)︸ ︷︷ ︸

isotropic strain energy density of the solid bone+graft mixture

]
dX (3.9)

where
Y = YBξ

βB

B,R + YMξ
βM

M,R (3.10)

is the effective bone-graft Young modulus, YB is the bone Young modulus, YM is the
graft Young modulus, βB and βM are two constitutive exponents, ν is the effective
bone-graft Poisson’s ratio (set to be 0.3),Q > 0 is the 1st Biot parameter (resistance
to change of porosity), and α is the 2nd Biot parameter. Specifically, for the sake of
simplicity, we set

α =
Y

H1 3(1− 2ν)

1

Q
=

1

R
− α

H1
(3.11)

with H1 and R positive constants (Biot, 1941). We remark that Biot’s contribution
includes coupling between u and ϑ an we stress again that, contrarily to what is
customarily done in classical continuum poroelasticity, the Biot’s contribution does
not encode the energy part due to interstitial fluid compression. We now discuss the
peridynamic (in the sense given by Piola, see dell’Isola et al (2015a)) contribution
in Lagrangian form ψPERIDYN in (3.7). In Eulerian form, the energy stored within the
body due to fluid compression is assumed to be
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ψPERIDYN =
1

2
β

∫
B

ρ̂2F,C ξF,C dx, (3.12)

with β > 0 being the fluid resistance to compression and the differential dVF =
ξF,C dx indicates that integration is taken with respect to the fluid volume. Assum-
ing ρ̂F,C to be uniform over B, and this is reasonable in a quasi-static framework,
we have

ψPERIDYN =
1

2
βρ̂2F,C

∫
B

ξF,C dx. (3.13)

We now want to transform the integration over the (unknown) deformed shape
B in (3.13) into an integration over the reference shape B0, i.e. we want to derive
ψPERIDYN in Lagrangian form. To this goal, we perform the change of variable x =
χ(X). We have that dx = det(F ) dX+o(dX), with F = ∇χ = I+∇u. Reminding
that

det(I + εA) = 1 + ε tr(A) + o(ε) (3.14)
det(I +A) = 1 + tr(A) + o(A), (3.15)

we have det(F ) = 1 + tr(∇u) + o(∇u). Since we are working under the small
strain hypothesis, observing that tr(A) = tr(SymA), and neglecting higher order
contributions, we have det(F ) = 1+ tr(E). The volume occupied by the fluid phase
in the current configuration is

VF =

∫
B

ξF,C dx =

∫
B0

ξLF,C (1 + tr(E)) dX. (3.16)

The energy stored within the body due to fluid compression reads thus in La-
grangian form as

ψPERIDYN =
βM2

F

2

1∫
B0
ξLF,C (1 + tr(E)) dX

. (3.17)

Of course, we have that

ψPERIDYN =
βM2

F

2

1∫
B0
ξLF,C(1 + tr(E)) dX

∫
B
ξF,C dx
VF

=

1

VF

∫
B

βM2
F

2

1∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX
dx =

1∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX

∫
B0

βM2
F

2

ξLF,C(1 + tr(E))∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX
dX =∫

B0

βM2
F

2

(ξF,R + ϑ)(1 + tr(E))[∫
B0

(ξF,R + ϑ)(1 + tr(E)) dX
]2 dX (3.18)
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where ξLF,C = (ξF,R + ϑ) has been used. Therefore, the Lagrangian density associ-
ated to ψPERIDYN reads as

βM2
F

2

(ξF,R + ϑ) (1 + tr(E))[∫
B0

(ξF,R + ϑ) (1 + tr(E)) dX
]2 . (3.19)

We notice that no spatial derivatives of the additional kinematic parameter ϑ ap-
pear in the first gradient (with respect to displacement) poroelasticity strain energy
ψPOR; hence, the prescription of arbitrary boundary conditions for the porosity field
does not yield in general the minimization of the mechanical energy ψ a well-posed
problem. Furthermore, we remark that non-locality is given by the peridynamic con-
tribution ψPERIDYN and not by the dependence of the internal stored energy upon,
e.g., higher gradients of the displacement and/or of the change of porosity. Positive
definiteness of the isotropic strain energy density of the solid bone-graft mixture is
ensured if λ+ μ > 0 and λ− μ > 0, where λ is the effective bone-graft first Lamé
parameter and μ is the effective bone-graft shear modulus. Finally, we observe that,
following our assumptions, the strain energy is such that remodeling, i.e. a change
in the densities of bone tissue and bio-resorbable material in the reference configu-
ration, cannot induce any (local) mechanical anisotropy (for more details see Allena
and Cluzel, 2018; Cluzel and Allena, 2018).

3.3.3 Mechanical Stimulus, Bone Remodeling and Graft
Resorption

Let ρOC,R be the Lagrangian density of Osteocytes in the reference configuration.
It is assumed to be proportional to the bone density in the reference configuration.
Nevertheless, in the literature it is possible to find approaches assuming that the time
evolution of the Lagrangian density of Osteocytes in the reference configuration,
together with those of Osteoblasts and Osteoclasts, is governed by a distributed
cellular population evolution model (Lekszycki and dell’Isola, 2012; George et al,
2018b,c). The Lagrangian mechanical stimulus is defined as

S(X, t) =

∫
B0

[
ψ(Y, t)ρOC,R(Y, t) e

− (X−Y )2

2D2 dY
]
− S0 (3.20)

i.e. it is the 2D Gaussian convolution of the product ψ ρOC,R. We remark that the

2D Gaussian∼ e− (X−Y )2

2D2 has meanX and standard deviationD (varianceD2) and,
thus, D is a measure of the circular influence range, since the Gaussian is de facto
vanishing at a distance from the mean X greater than three times the standard de-
viation. We further remark that stimulus is the (spatially) shifted smoothed product
ψ ρOC,R, which is the Lagrangian strain energy density weighted by the Lagrangian
Osteocytes density in the reference configuration; this entails that a non-zero strain
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energy density in a sufficiently close neighborhood of a point does not necessarily
imply a non-zero stimulus in that point, as in that neighborhood there might be no
mechanosensors. Finally, it is worth to be noticed that in the literature (Beaupré
et al, 1990; Giorgio et al, 2016) it possible to find a slight variation of the definition
of stimulus employed herein, by taking into account a ‘dead-zone’

S(X, t) =

⎧⎪⎨⎪⎩
S̃(X, t)− Su if S̃(X, t) ≥ Su
S̃(X, t)− Sd if S̃(X, t) ≤ Sd
0 if Sd < S̃(X, t) < Su

(3.21)

with
S̃(X, t) =

∫
B0

ψ(Y, t)ρOC,R(Y, t) e
− (X−Y )2

2D2 dY. (3.22)

The evolution of graft density due to resorption and of bone density due to formation
and resorption is described, for eachX , by means of a system of ordinary differential
equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̇M,R(X, t) = AM (S) H(ξLF,C)

ρ̇B,R(X, t) = AB(S) H(ξLF,C)

ρM,R(X, 0) = ρM0(X)

ρB,R(X, 0) = ρB0(X)

(3.23)

with
H(y) = k y(1− y), with y ∈ [0, 1] (3.24)

AM (S) =

{
0 if S ≥ 0

rMS if S < 0,
(3.25)

AM (S) =

{
sBS if S ≥ 0

rBS if S < 0,
(3.26)

and k, rM , rB , sB ≥ 0. We remark that the function H(ξLF,R) = kξ
L
F,R(1− ξLF,R),

a concave symmetric parabola with maximum value k/4 attained in ξLF,R = 1/2 and
intersecting the abscissa H = 0 in ξLF,R = 0 and ξLF,R = 1, accounts for the fact
that if the porosity is too low, then living cells will not be able to efficiently resorb
the bio-material, neither to form new bone tissue, as the available space will not
allow for the activity of a sufficiently large number of actor cells. If the porosity,
on the other hand, is too large, then there is not enough solid-phase on which actor
cells may deposit, and remodeling will not occur quickly enough. For the sake of
simplicity, we set k = 4.
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3.4 Solution Algorithm and Qualitative Results for Tensile Test

Dimensionless parameters employed for numerical simulations are shown in Tab. 3.1.
Specifically, we consider a rectangular sample whose sides are in the ratio 1:3.

The notation 〈ψ′, δu〉 denotes the functional derivative of ψ in Eq. (3.6) in the
direction δu (displacement variation). For a fixed time instant and corresponding
(given) external bulk and surface forces bext, equation 〈ψ, δu〉 = 0 ∀δu— which
corresponds to the so-called weak form— is solved by means of standard finite ele-
ment techniques included within the weak form package of the commercial software
COMSOL MultiphysicsTM. From such a computation—ρB,R and ρM,R at previous
time step are used to retrieve the effective bone-graft Young’s modulus—we get the
displacement u and change of porosity at time t. Such displacement and ρOC,R—
obtained by assuming it to be proportional by a factorK to ρB,R at the previous time
step—are plugged within the Lagrangian mechanical stimulus defined in Eq. (3.20).
The so-found Lagrangian mechanical stimulus is inserted with the change of poros-
ity retrieved from the weak form solution in Eq. (3.23) in order to compute ρB,R and
ρM,R at the current time step. Such values are then used to compute the effective
Young modulus to be plugged in the weak form equation at the next time step.

In Fig. 3.3 a block diagram representation of the solution algorithm employed
is shown, while a graphical depiction of the test problem is presented in Fig. 3.4.
A rectangular slab formed by a rectangular central graft inclusion in bone tissue

matrix is subject to a tensile test. In Fig. 3.5, a zoomed detail for the test problem is
shown. At the interface between the two phases we consider a spring foundation for
both kinematics variables u and ϑ, and a contribution∫

∂G

[
Ku‖u+ − u−‖2 +Kϑ‖ϑ+ − ϑ−‖2

]
dX (3.27)

is added to the strain energy. In Fig. 3.6, the evolution in time of minimum graft den-
sity (blue), min ρM,R, and maximum bone tissue density (green), max ρB,R, over
the inclusion zone are shown. Clearly, as time progresses, the graft is resorbed (i.e.
the blue curve is monotonously non-increasing) and new bone is formed (i.e. the
green curve is monotonously non-decreasing). In Fig. 3.7 the evolution in time of
the stimulus S for some relevant time instants is reported. Time increases from left

Table 3.1 Material coefficients in non-dimensional form. Tilde denotes dimensionless quantities.

ỸB ỸM s̃B r̃B r̃M

1 1.2 5×108 5×108 5×108

ρ̃B0 = ρ̃M0 βB = βM D̃ Ku Kϑ

0.5 2 0.9 0.1 0.1

H̃1 R̃ ˜βMF
2

S̃d S̃u

0.8 0.4 1.0×10−4 1.30×10−6 1.30×10−6
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for all admissible variations
and 

Fig. 3.3 Feedback loop schematic for model solving.

Fig. 3.4 Graphical depic-
tion of the test problem. A
rectangular slab formed by a
rectangular central graft in-
clusion in bone tissue matrix
is subject to a tensile test.

Bone phase

Graft inclusion

∂G

Fig. 3.5 Zoomed detail for
the test problem. At the inter-
face between the two phases
there is a spring foundation
for the variables u and ϑ.

+ -

to right and from up to down. As time progresses, the stimulus peaks on the left and
on the right of the specimen shift toward the center, and eventually coalesce. The
evolution in time of density of Osteocytes ρOC,R for some relevant time instants
is shown in Fig. 3.8. Time increases from left to right and from up to down. Fol-
lowing the feedback behaviour of bone physiology, Osteocytes colonize the graft
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Fig. 3.6 Evolution in time of minimum graft density, min ρM,R (blue), and maximum bone tissue
density (green), max ρB,R, over the inclusion zone.

Fig. 3.7 Evolution in time of stimulus for some relevant time instants. Time increases from left to
right and from up to down.

gradually, until the inclusion is uniformly saturated by them. The evolution in time
of bone tissue density ρB,R for some relevant time instants is reported as well in
Figs. 3.9 and 3.10. Time increases from left to right and from up to down. Fi-
nally, evolution in time of the graft density ρM,R for some relevant time instants
is presented in Fig. 3.11. Time increases from left to right and from up to down.
Therefore, from Fig. 3.6 it is clear that, as time progresses, the graft is resorbed (i.e.
the blue curve is monotonously non-increasing) and new bone is formed (i.e. the
green curve is monotonously non-decreasing). Stationary state is reached as both
curves are asymptotically approaching limit values.
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Fig. 3.8 Evolution in time of density of Osteocytes for some relevant time instants. Time increases
from left to right and from up to down.

3.5 Conclusion and Outlooks

In this paper, in the framework of poroelasticity, we addressed the study of the inter-
play between bone remodeling and graft resorption under loading conditions. Aim-
ing at enhancing the modeling proposed in past literature, we considered a phys-
ically motivated dedicated strain energy contribution due to the presence of satu-
rating fluid in the interconnected pores, which has some compression resistance. In
past literature, the Biot’s contribution is not single targeted and includes also, but
not only, the effect due to the possible presence of saturating fluid. The classical
Biot’s strain energy contribution, which is quadratic in the porosity change, is not
physically motivated when dealing with the presence of interstitial fluid, and ac-
count for the presence of fluid exhibiting resistance to compression must be given
in this framework through the ‘effective’ resistance to the change of porosity. The
outlooks of the paper are the following. A parameter estimation from experiments
would be useful to allow quantitative (not just qualitative) predictions. Furthermore,
the model could be suitably adapted in order to take into account Turner’s rules for
bone adaptation: (1) remodeling it is driven by dynamic, rather than static, loading;
(2) only a short duration of mechanical loading is necessary to initiate an adap-
tive response; (3) bone cells accommodate to a customary mechanical loading en-
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Fig. 3.9 Evolution in time of bone tissue density for some relevant time instants. Time increases
from left to right and from up to down.

Fig. 3.10 Evolution in time of bone tissue density for some relevant time instants. Time increases
from left to right and from up to down.

vironment, making them less responsive to routine loading signals. For example,
Turner’s rule could be indirectly taken into account by including dissipation. Fur-
thermore, it has to be remarked that, while in this paper a macroscopic continuum
model has been formulated directly, a homogenization procedure starting from dis-
crete/continuum descriptions of the phenomena occurring at smaller length scales
could give a better insight into the results obtained at the macro-level. In this re-
gard, many procedures, like coarse-graining, hydrodynamical limits (De Masi et al,
2015; De Masi and Olla, 2015; Carinci et al, 2014b,a) for many-particle systems,
and computational homogenization (Chatzigeorgiou et al, 2014; Saeb et al, 2016;
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Fig. 3.11 Evolution in time of graft density for some relevant time instants. Time increases from
left to right and from up to down.

Javili et al, 2013), are being employed in literature, and they deserve to be better
understood.
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Chapter 4

Mechanical and Thermodynamic Materials

Properties Derived by Semi-empirical Atomic

Potentials with Special Focus on Ag, Cu, and the

Binary Alloy Ag-Cu

Thomas Böhme

Abstract The following contribution deals with the relationship between atomic in-
teraction potentials and macrospcopic materials properties typically required in en-
gineering disciplines such as mechanical engineering or thermodynamics. Special
focus is exemplarily turned to the so-called Nearest Neighbor Embedded-Atom-
Method, which has proved to reliably calculate various materials properties espe-
cially for FCC lattice configurations. An energy expression for binary alloys is de-
rived and linked to the elastic constants as well as to the phase diagram construction.
The obtained equations are applied to the binary brazing alloy Ag-Cu, and the re-
sults are compared to experimental data. Finally the theory is extended to lattice
dynamics/vibrations in order to calculate temperature-depend materials quantities
such as the heat capacity.

4.1 Motivation

Today Computational Materials Science represents a well-established discipline
within natural and engineering science. Simulation techniques such as Molecular
Dynamics (MD) (Hammerschmidt et al, 2005; Xu et al, 2001; Zhang and Ghosh,
2013; Wu et al, 2015) and Monte-Carlo (MC) (Bocchetti and Diep, 2013; Yang et al,
2001; Ramasubramaniam et al, 2008) simulations or Phase Field (PF) approaches
(Eastgate et al, 2002; Weinberg et al, 2016; Wang and Li, 2010; Anders et al, 2012;
Böhme et al, 2009; Dreyer and Müller, 2000) are widely used in order to predict
complex materials behavior such as grain boundary diffusion (Hammerschmidt et al,
2005), hydrogen diffusion (Ramasubramaniam et al, 2008) and embrittlement (Xu
et al, 2001), crack propagation (Zhang and Ghosh, 2013; Wu et al, 2015; Eastgate

Thomas Böhme
Trelleborg Antivibration Solutions Germany, Engineering Off-Highway and Industry, Berliner Str.
17, 16727 Velten (b) Berlin, Germany,
e-mail: thomas.boehme@trelleborg.com

51© Springer Nature Switzerland AG 2019
B. E. Abali et al. (eds.), New Achievements in Continuum Mechanics
and Thermodynamics, Advanced Structured Materials 108,
https://doi.org/10.1007/978-3-030-13307-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13307-8_4&domain=pdf


52 Thomas Böhme

et al, 2002; Weinberg et al, 2016), plasticity (Wu et al, 2015; Wang and Li, 2010),
melting phenomena (Bocchetti and Diep, 2013; Yang et al, 2001), or phase sepa-
ration and coarsening (Anders et al, 2012; Böhme et al, 2009; Dreyer and Müller,
2000).

Although these approaches are fundamentally different and partially performed
on different length scales, they all require materials specific “information” in order
to “adjust” the underlying equations for the considered material. Such materials data
can be found, on the one hand side, from so-called ab initio calculations, which ap-
ply quantum-mechanical theories to quantify various atomic interactions and which
- in turns - can be used to perform MD and MC simulations.

In contrast to investigations on the atomic scale PF theories are typically used to
describe materials behavior on the microscopic scale. Since the seminal works of J.
W. Cahn and J. E. Hilliard (Cahn and Hilliard, 1958; Cahn, 1968) PF approaches
are widely used to quantify temporal and spatial changes of microstructures in mate-
rials, e.g. phase separation and coarsening1 (Anders et al, 2012; Dreyer and Müller,
2000; Wang and Li, 2010; Böhme, 2008) or solid-liquid phase evolution (Wheeler
et al, 1992; Galenko et al, 2009), cf. Fig. 4.1. However the governing equations
also need material-specific quantities, e.g. Gibbs free energy g or mobilityM . Here
experimental data must be used to provide the required data.

In many cases measurements of materials data are very complex and cost or
time-consuming, respectively. Especially heterogeneous materials require large ef-
forts, e.g. combinations of simulation and experiment (Yang et al, 2018; Heripre
et al, 2007; Constantinides et al, 2006), to identify the macroscopic materials pa-
rameter. However, some quantities cannot or, at least, indirectly measured, such as
the so-called Higher Gradient Coefficients2 (HGC), see Dreyer and Müller (2000);
Böhme (2008). In order to overcome this shortcoming Böhme et al. (Böhme et al,
2007) has used so-called semi-empirical, atomic potentials in order to calculate the

Fig. 4.1 Phase separation
and coarsening in eutectic
Ag-Cu. The spherical phase
represents the Cu-rich (β)
phase embedded into the
Ag-rich (α) matrix. Left :
experiment, Right : numerical
simulation Böhme (2008).

1 An alternative, mostly equivalent, notation is Spinodal Decomposition and Ostwald ripening.
2 Original notation by Cahn and Hilliard: gradient energy coefficient.
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HGCs3. Here the Embedded Atom Method (EAM) represents a powerful extension
of classical pair potentials to describe the atomic interactions especially in metal
lattice configurations. It was developed by M. S. Daw and M. I. Baskes (Daw and
Baskes, 1983, 1984), and allows to reasonably reproduce the state of energy of an
atomic system without any ab initio calculations.

The current work explains, how atomic potentials in general and specifically
EAM potentials can be used to derive macroscopic materials properties. Here we
start with the considerations in Böhme et al (2007) an calculate stiffness data of Ag,
Cu and the corresponding alloy Ag-Cu. Furthermore we illustrate, how the solid
lines of the binary phase diagram of Ag-Cu can be obtained. Finally the theory in
Böhme et al (2007) is extended and temperature depending materials properties fol-
lowing from lattice vibrations are investigated. It is shown, how the heat capacity
can be calculated and the results are compared with experimental findings.

4.2 Lattice Kinematics and Energy

First, let us consider the bulk material (no surfaces) and assume a perfect, periodic
lattice4. The current positions Xα, Xβ , Xγ , . . . of all atoms α, β, γ, . . . can be written
by the reference positions Xα

0 , X
β
0 , X

γ
0 , . . . and the discrete displacements ξα, ξβ ,

ξγ , . . ., namely Xα = Xα
0 + ξα, Xβ = X

β
0 + ξβ , . . . (cf. Fig. 4.2). By means of the

distance vectors:

R
αβ
0 = X

β
0 − Xα

0 , Rαβ = Xβ − Xα = R
αβ
0 + ξβ − ξα (4.1)

between atom α and β the continuous displacement function u is defined with the
definition ξα ≡ u(Xα

0 ) ≡ u(X0) as follows:

ξβ = u(Xβ
0 ) = u(X0)+

∂u

∂X0

·Rαβ
0 + . . . , Rαβ = R

αβ
0 +

∂u

∂X0

·Rαβ
0 = F ·Rαβ

0 .

(4.2)
Here the symbol

F = I +
∂u

∂X0

denotes the deformation gradient well known from the macroscopic continuum
mechanics. In order to describe the temperature-independent energy of a lattice
the deformed configuration is expanded into a Taylor series around the unde-

3 The HGCs crucially determine the long-time phase evolution within PF simulations and can be
directly related to interfacial energy or surface tension and interfacial width of the phase boundary
(Ardell, 2012; Ubachs et al, 2004).
4 The following notation is applied: Vectors are denoted in bold letters with an underline. Matrices
and tensors of 2nd order are written in bold letters with double underline; tensors of higher order
are noted with blackboard bold letters (double-strike). This, admittedly, slightly redundant notation
has proofed for better readability in case of low-resolution copies.
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formed lattice state. By neglecting higher order terms the energy of an atom α,
Eα(Rα1, . . . ,RαN ), within a deformed lattice consisting of N atoms can be writ-
ten as:

Eα(Rα1, . . . ,RαN ) = Eα(Rα1
0 , . . . ,R

αN
0 ) +

∑
β

(α �=β)

∂Eα

∂Rαβ

∣∣∣
R

αβ
0

·
(

Rαβ − R
αβ
0

)

+
1

2

∑
β

(α �=β)

∂2Eα

∂Rαβ∂Rαβ

∣∣∣
R

αβ
0

· ·
(

Rαβ−R
αβ
0

)(
Rαβ−R

αβ
0

)
,

(4.3)
in which we introduced the double scalar product Y · ·Y = YijYij for tensors of
2nd order. By considering the scalar product of the atomic distance vector Rαβ , viz.

Rαβ 2 = Rαβ ·Rαβ = (F ·Rαβ
0 ) · (F ·Rαβ

0 ) = Rαβ 2
0 +R

αβ
0 · (C− I) ·Rαβ

0 , (4.4)

Here Green’s strain tensor
G =

1

2
(C− I)

with
C = FT · F

can be introduced to quantify the deformation. Please note, for small deformations
holds G ≈ E with the so-called linearized strains

∇u ≡ ∂u

∂X0

≈ 1

2
(∇u + (∇u)T) = E, .
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Fig. 4.2 Illustration of the kinematic quantities of the (un-)deformed lattice configuration.
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By substituting Rαβ − R
αβ
0 by the relation of Eq. (4.2) the energy of Eq. (4.3)

can be finally rewritten as follows:

Eα(Rα12, . . . , RαN 2
) = Eα(Rα1

0
2
, . . . , RαN

0

2
) + 2G · ·

∑
β

(α �=β)

Eα′
R

αβ
0 R

αβ
0

+
4

2
G · ·

( ∑
β

(α �=β)

Eα′′
R

αβ
0 R

αβ
0 R

αβ
0 R

αβ
0

)
· ·G . (4.5)

with Eα′ = ∂Eα/∂Rαβ 2|Rαβ 2=Rαβ 2
0

. First derivatives of the energy must vanish
for equilibrium (minimum of energy). This fact yields the equilibrium condition,
which - in turns - allows to calculate the lattice parameter a. The last term of Eq.
(4.5) can be linked to the stiffness matrix C = [Cijkl], which contains the elastic
constants of the solid. However, the atomic energy Eα in Eq. (4.5) must be for-
mulated in terms of the square of the scalar distances Rαβ between the atoms α,
β = 1, . . . , N .

4.3 The Embedded Atom Method (EAM)

4.3.1 General Idea of EAM

The Embedded Atom Method was firstly introduced by the works of M. S. Daw and
M. I. Baskes (Daw and Baskes, 1983, 1984). Both authors recommended, justified
by quantum mechanical arguments, to add a nonlinear function Fα to the pairwise
interaction term φαβ . In particular the nonlinear character of the so-called embed-
ding function remedies e.g. artifacts like the Cauchy paradox C1122 = C2323 or
C12 = C44 (Voigt notation). Thus the energy of atom α is written as follows:

Eα =
1

2

∑
β

(α �=β)

φαβ(Rαβ) + Fα(ρ̄α) with ρ̄α =
∑

β
(α �=β)

ρβ(R
αβ) . (4.6)

The factor 1
2 is used to avoid double-counting of bonds for Etot =

∑
Eα. Here the

embedding function Fα only depends on the electronic density ρ̄α at the position of
atom α, whereas φαβ only depends on the scalar distance Rαβ between atom α and
β. Furthermore ρ̄α can be interpreted as a constant background electronic density,
that “feels” atom α due to the superposition of the atomic charge densities ρβ of its
neighbors separated by the distance Rαβ . Moreover, Fα can be understood as the
energy to place an atom α into a homogeneous electron gas with the density ρ̄α.
Here the embedding function itself only depends on the type of the embedded atom
and the argument of Fα refers to the medium in which the atom is embedded. Typ-
ically the first term of Eq. (4.6) stands for the purely repulsive ion-ion interaction;
the second term characterizes the ion-electron interaction, cf. Fig. 4.3.
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Fig. 4.3 Illustration of the EAM approach; two contributions to the energy Eα.

Especially for metals such decomposition is reasonable because the valence elec-
trons can nearly free move within the metallic ionic lattice. The expression of the
atom-specific energy in Eq. (4.6) can be used in Eq. (4.5) for the substitution of Eα,
Eα′ and Eα′′. However, the different interaction terms, i.e. φαβ , Fα and ρβ , must
be specified and quantified.

4.3.2 Restriction to Nearest Neighbor Interactions

In the following section we want to restrict ourselves to the so-called analytical
EAM introduced by Johnson (1988, 1989). Here only nearest-neighbors-interactions,
i.e. the atoms only interact with their direct neighbors separated by the nearest neigh-
bor distanceR0 = a(e)/

√
2 orR = a

√
2, are considered. In this notation the symbol

a denotes the lattice parameter and the index (e) stands for “equilibrium”. By con-
sidering the pure substance "A" the following, monotone decreasing form for the
atomic electron density5 and the pairwise interaction term holds:

ρA(R
2) = ρ(e) exp

[
−β

(R2

R2
0

−1
)]
, φAA(R2) = φ(e) exp

[
−γ

(R2

R2
0

−1
)]
. (4.7)

Here the index “A” at the quantities ρ(e), β, φ(e), γ and R were omitted by con-
venience. Furthermore please note that Johnson used in his work the scalar distance
R within the above equations, but due to the explanations in Sect. 4.2 the present
formulation in terms of R2 is used by simple substitution, see also Böhme et al
(2007).

5 This form corresponds to spherical s-orbitals and is predestined for isotropic structures, such as
FCC lattice configurations.
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The embedding function is parametrized by means of the so-called universal
equation of state developed by Rose et al (1984), viz.

FA(ρA) = −Esub

[
1+α

(√
1− 1

β
ln
ρ̄A

ρ̄
(e)
A

− 1

)]
exp

[
α

(
1−

√
1− 1

β
ln
ρ̄A

ρ̄
(e)
A

)]

−6φ(e)
(
ρ̄A

ρ̄
(e)
A

) γ
β

(4.8)

with α =
√
κΩ(e)/Esub; (Ω(e): volume occupied by a single atom). Hence three

functions φAA, ρA, and FA must be specified for the pure substance "A". This can
be done by fitting the five parameters α, β, γ, φ(e), ρ(e) to experimental data such
as bulk modulus κ, shear modulus G, unrelaxed vacancy formation energy Eu

v , and
sublimation energy Esub (Böhme et al, 2007). In particular the fact, that experimen-
tal data are used to “adjust” the above equation for the material “A” yields to the
notation of semi-empirical potentials.

For a binary alloy "A-B" seven functions, namely φAA, φBB, φAB, ρA, ρB, FA, FB
must be determined. Here the symbol φAB represents the pairwise interaction be-
tween atoms of different type; it is defined by the following equation:

φAB =
1

2

(ρB
ρA
φAA +

ρA
ρB
φAA

)
. (4.9)

Thus all functions can be determined by considering pure substances. However, 10
parameters remain for fitting6. For the FFC metals Ag and Cu Table 4.1 shows the
data, used to fit the EAM parameters. The corresponding EAM energy Eα for Ag

Table 4.1 Experimental data and fit parameters of Ag and Cu (for FCC holds Ω(e) = a(e)
3
/4).

experimental quantity Ag Cu

a in Å 4.09 3.61
Esub in eV 2.85 3.54
Eu

v in eV 1.10 1.30
κ in eV/Å3 0.65 0.86
G in eV/Å3 0.21 0.34

fitting parameter

α 5.92 5.08
β 2.98 2.92
γ 4.13 4.00
φ(e) in eV/Å3 0.48 0.59
ρ(e) in eV/Å3 0.17 0.30

6 According to Böhme et al (2007) the following relations hold: φ(e) = Esub/6, ρ(e) =

Esub/Ω
(e), G = 8

5
φ(e)γ(γ−β)

Ω(e) , Eu
v = 6φ(e) γ−β

β
.
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Fig. 4.4 Atom-specific en-
ergy derived for Ag and Cu
from the EAM formalism.

and Cu are illustrated in Fig. 4.4. These functions depending on R2
αβ can be further

exploited to calculate various mechanical and thermodynamic materials data.

4.4 Exploitation of EAM energy expression

4.4.1 Equilibrium Condition and Elastic Constants

4.4.1.1 Pure Metals

The EAM formalism in Eq. (4.6) can be combined with Eq. (4.5). For this reason
we use the kinematic relation Rαβ 2 = Rαβ 2

0 + 2R
αβ
0 · G · R

αβ
0 derived in Sect.

4.2 and expand φαβ(Rαβ 2), ρβ(R
αβ 2) as well as Fα(

∑
ρβ(R

αβ 2)) aroundRαβ 2
0 .

Thus we obtain for the energy of atom α:

Eα =
1

2

∑
β

φαβ(Rαβ 2
0 ) + Fα(ρ̄

(e)
α ) +G · ·

[
Aα + 2F ′

α(ρ̄
(e)
α )Vα

]
+ G · ·

[
B
α + 2F ′

α(ρ̄
(e)
α )Wα + 2F ′′

α (ρ̄
(e)
α )VαVα

]
· ·G (4.10)

with

Aα =
∑
β

φ′αβ(Rαβ 2
0 )Rαβ

0 R
αβ
0 ,B

α =
∑
β

φ′′αβ(Rαβ 2
0 )Rαβ

0 R
αβ
0 R

αβ
0 R

αβ
0 ,

Vα =
∑
β

ρ′β(R
αβ 2
0 )Rαβ

0 R
αβ
0 ,W

α =
∑
β

ρ′′β(R
αβ 2
0 )Rαβ

0 R
αβ
0 R

αβ
0 R

αβ
0 . (4.11)

The first two terms represent the energy of atom α for an non-deformed lattice.
The term within the brackets [. . .] of the third summand denotes the slope of the
energy curves in Figure 4.4. If lattice dynamics is neglected, this expression is equal

R2

E
�

in
e
V

Ag

Cu
a

(fcc)
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to zero and represents the equilibrium condition, which in turns defines the nearest
neighbor distance in equilibrium. The expression within the brackets G · ·[. . .] · ·G
of the last term can be related to the macroscopic constitutive equation Eelast/V =
1
2E · ·C · ·E with G ≈ E (Hooke’s law). Here C stands for the stiffness matrix and
the coefficients [Cijkl] represent the elastic constants. Hence it can be summarized:

Aα + 2F ′
α(ρ̄

(e)
α )Vα = 0 (equilibrium condition),

C
α =

2

Ω(e)
[Bα+2F ′

α(ρ̄
(e)
α )Wα+2F ′′

α (ρ̄
(e)
α )VαVα] (stiffness matrix). (4.12)

For the metals Ag and Cu following values can be calculated by means of Eq.
(4.12). Here, for comparison reasons, the literature values (Kittel, 1973; Leibfried,
1955) are additionally noted within the parenthesis.

CAg
1111 = 132.6 (124) GPa , CCu

1111 = 183.7 (168) GPa,

CAg
1122 = 90.2 (94) GPa , CCu

1122 = 115.1 (121) GPa,

CAg
2323 = 42.4 (46) GPa , CCu

2323 = 68.7 (75) GPa.

Please note, for cubic crystals hold: C1111 = C2222 = C3333; C1122 = C1133 =
C2233; C2323 = C1313 = C1212 and Cijkl = Cklij . Consequently there are three
non-equivalent elastic constants (Leibfried, 1955).

4.4.1.2 Binary Alloys

Now we turn the attention to the question, how to exploit Eq. (4.10) for binary solid
mixtures. For this reason different “types” of atoms must be considered within the
above framework. In particular for a binary alloy A-B (with stochastic occupation
of lattice sites by A and B) three interactions have to be distinct, viz. A↔ A, B↔ B
and A ↔ B. Following de Fontaine (1975) the discrete concentration is introduced
by ŷα = δαB; α = {1, . . . , N}, where δij denotes the Kronecker symbol. Thus it
follows:

φαβ = φAA +
[
ŷα + (1− 2ŷα)ŷβ

]
φ+ (ŷα + ŷβ)φ̃ , (4.13)

ρ̄(e)
α =

∑
β

[
ŷβ(ρB − ρA) + ρA

]
(4.14)

with
φ = φAB − 1

2
(φAA + φBB), φ̃ =

1

2
(φBB − φAA) .

Here, for example, ŷα and ŷβ is zero, if A atoms are considered and the relations
φαβ = φAA and ρ̄(e)

α =
∑

β ρA follow. Now we introduce the continuous concentra-
tion y by:
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ŷα = y(Xα
0 ) ≡ y(X0) , ŷβ = y(X0)+

∂y

∂X0

·Rαβ
0 +

1

2

∂2y

∂X2
0

· ·Rαβ
0 R

αβ
0 . (4.15)

In case of homogeneous mixtures no concentration gradients occur, i.e. ∇y =
∂y/∂X0 and ∇2y = ∂y2/∂X2

0 can be neglected. Then we obtain:

φαβ = φAA + 2y(1− y)φ+ 2yφ̃+ ... , (4.16)

ρ̄(e)
α = ρ̄A + yρ̄Δ + ... with ρ̄Δ =

∑
β

(ρ̄B − ρ̄A) . (4.17)

For the embedding function Fα in Eq. (4.10) follows by the same procedure:

Fα(ρ̄
(e)
α ) = (1− y)FA + yFB . (4.18)

Furthermore all remaining quantities of Eq. (4.10), viz. Aα, Bα, F ′
αV

α, F ′′
αV

αVα,
and F ′

αW
α can also be treated analogously to Eqs. (4.16-4.18). Following the

straight forward calculations in Böhme et al (2007) one finds finally for the atom-
specific energy of an arbitrary atom in the binary alloy:

Eα(y) = Eα
undef(y) + G · ·Q(y) +

Ω(e)(y)

2
G · ·C(y) · ·G (4.19)

with the following abbreviations

Eα
undef(y) =

1

2
gAA + FA + ygφ̃ + y(FB − FA) + y(1− y)gφ,

Q(y) = AA + 2yAφ̃ + 2y(1− y)Aφ + 2
(
VA + yVΔ

)(
F ′

A + y(F ′
B − F ′

A)
)
,

C(y) =
1

Ω(e)(y)

[
2BA + 4yBφ̃ + 2y(1− y)Bφ

+4
(
W

A + yWΔ
)(
F ′

A + y(F ′
B − F ′

A)
)

+ 4
(
VA + yVΔ

)(
VA + yVΔ

)(
F ′′

A + y(F ′′
B − F ′′

A )
)]

(4.20)

and gAA =
∑

β φ
AA, gφ =

∑
β φ, gφ̃ =

∑
β φ̃. All remaining symbols, in particular

AA, Aφ, Aφ̃, Bφ, Bφ̃, VΔ, and W
Δ are defined analogous to Eq. (4.11). The indices

A, φ, φ̃, and Δ refer to the first argument within the sum, i.e. φAA′; φ′ or φ′′; φ̃′ or
φ̃′′, and (ρ′B − ρ′A) or (ρ′′B − ρ′′A). The first term of Eq. (4.19), namely Eα

undef(y),
denotes the energy of the undeformed lattice.

The second term contains first derivatives of the different energy contributions
and must vanish for equilibrium, i.e. Q(y) ≡ 0. This condition represents the defin-

ing equation for the equilibrium lattice parameter a(e)(y) as a function of particle
concentration y, cf. Fig. 4.5. Please note, it is important to clearly distinct between
the particle concentration and the mass concentration
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c(y) = yMCu/(yMCu + (1− y)MAg);

(M : atomic mass). Obviously a pure linear interpolation (Vegard’s law) between
the lattice parameters a(e)Ag and a(e)Cu does not hold for values 0 < y < 1. However,
in case of using c as argument the linear dependence follows, viz.

a(e)(c) = (1− c)aAg + caCu.

The third term represents the atom-specific elastic energyEelast = 1
2E··C(y)··E

with E ≈ G and with the (fourth order) stiffness matrix C(y). By means of Eq.
(4.20) the three independent elastic constants can be determined as functions of the
particle concentration. Figure 4.6 illustrates the results using a(e)(yi), with yi =
0, 0.1, . . . , 0.9, 1. For y = 0 (Ag) and y = 1 (Cu) the elastic constants of Ag and
Cu, illustrated on page 59, result. However, for 0 < y < 1 the elastic constants do
not follow the linear interpolation as indicated in Fig. 4.6.

Fig. 4.6 Elastic constants for Ag-Cu as functions of the particle concentration (dashed line
represents the linear interpolation).

Fig. 4.5 Equilibrium lattice
parameters for different par-
ticle or mass concentrations,
respectively.
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4.4.2 Excess Enthalpy and Phase Diagram

The excess enthalpy gexc characterizes the deviation of the (solid, binary) mixture
from the so-called ideal mixture, in which the enthalpy follows by the “weighted”
contributions of the pure substances, i.e. gαA−B = gexc+yAgAA+yBgBB. Following
the arguments in Böhme et al (2007) gexc can be identified with Eq. (4.20)1 as
follows:

gexc = Λ y(1− y) with y = yB , yA = 1− y , (4.21)
Λ = Λ(y) = gφ(y) +G(y) · ·Bφ · ·G . (4.22)

Note, gφ as well as B
φ directly follow from the interatomic potentials, especially

from the pairwise interaction terms, see Eqs. (4.13), (4.20) and the corresponding,
subsequent explanations. Any contributions from the nonlinear embedding function
are canceled. Moreover, for the determination of both quantities the concentration
dependent nearest neighbor distance R0(y) = a(e)(y)/

√
2 must be used, which is

defined by the equilibrium condition Q(y) ≡ 0, cf. Fig. 4.5.
Figure 4.7 illustrates the excess enthalpy of Ag-Cu calculated with EAM poten-

tials and compared with experimental findings.7 Obviously the theoretical method
leads to an overestimation of gexc. Here better results are expected with more pre-
cise interaction models such each the Modified Embedded Atom Method (MEAM)
(Feraoun et al, 2001). Furthermore it is worth-mentioned, that we only incorporate
nearest neighbor interactions; here the incorporation of more neighboring atoms
could also improve the results.

In macroscopic thermodynamics of mixtures the molare Gibbs free energy of an
undeformed binary alloy can be noted as follows (constant pressure p):

Fig. 4.7 Atomic excess
enthalpy for Ag-Cu calcu-
lated from the EAM and
obtained from experiments,
MTdataTM (MTData, 1998).

7 see also: http://resource.npl.co.uk/mtdata/mtdatasoftware.htm
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g̃(y, T ) = (1− yB)g̃A(T ) + yBg̃B(T ) +

+ NAkBT
[
yB ln yB + (1− yB) ln(1− yB)

]
+ g̃exc(y, T ) . (4.23)

This equation contains three characteristic parts: (a) the first and second term, which
stand for the linear contributions of the pure substances; (b) the third term, which
denotes the entropic part −T s̃(y) = −NAkBT

∑2
i=1 yi ln yi with NA = 6.022 ·

1023 mol−1 (Avogadro constant) and kB = 1.38 · 10−23 J/K (Boltzmann constant).
This function depends on y in a convex and symmetric manner, has a minimum at
y = 0.5 and vanishes for y = {0, 1}; (c) the last term, the excess enthalpy (see
above), which represents - in case of a miscibility gap - a positive, concave curve.
The upper right picture of Fig. 4.8 illustrates the resulting double-well function for
Ag-Cu at 1000 K. Here the concave range, y ≈ 0.19 . . . 0.79, denotes the so-called
unstable area, in which the solid mixture decompose into two different equilibrium
concentrations yα,β , cf. Fig. 4.1 and Böhme (2008).

In case of no deformations Eq. (4.23) can be related to Eα
undef in Eqs. (4.19),

(4.20). By means of g̃(y, T ) = NAg(y, T ) = NA[E
α − Ts(y)] we get:

g(y, T ) = (1− yB)(6φ
AA + FA) + y(6φ

BB + FB)

+ kBT
[
yB ln yB + (1− yB) ln(1− yB)

]
+ 12y(1− y)φ . (4.24)

From this expression we can calculate the above mentioned equilibrium concentra-
tions for the solid part of the binary phase diagram. Here we apply the so-called
common tangent rule well-known from macroscopic thermodynamics of mixtures
(Böhme et al, 2007). Here the mixture decomposes into two different phase such,
that the slope of the energy at equilibrium concentration y(α) is equal to the slope
at y(β) and is equal to the slope of the connecting line through these points, cf. Fig.
4.8 (upper right). From the mathematical point-of-view this rule reads:

∂g(y, T )

∂y

∣∣∣∣
y=y(α)

=
∂g(y, T )

∂y

∣∣∣∣
y=y(β)

=
g(y(β), T )− g(y(α), T )

y(β) − y(α) . (4.25)

Equations (4.24), (4.25) allow for the determination of equilibrium concentrations
at different temperatures; Fig. 4.8 displays the corresponding results. Here the solid
lines with spherical markings represent the calculated equilibrium concentrations
for different temperatures, whereas the the dashed lines denotes the experimental
data adopted from the database MTDataTM.

In summary we can say, that there is a good agreement between the experimental
and theoretical results. Deviations mainly occur for higher temperatures and - more
pronounced - for the (β)-phase. The most obvious reason for the deviations is the
discrepancy between the experimental and theoretical excess enthalpy, illustrated in
Fig. 4.7. Here the theoretical curve shows a larger asymmetry as well as overesti-
mated values. In particular the asymmetry allows to justify the discrepancy for y(β).
Better results are expected by using more accurate interaction models, e.g. MEAM
(Feraoun et al, 2001), and/or by incorporating more neighbors.
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Fig. 4.8 Phase diagram of Ag-Cu; theoretical approach vs. experimental data. Upper right panel :
Illustration of Maxwell construction for Ag-Cu at 1000 K.

4.4.3 Temperature-dependent Materials Properties

4.4.3.1 Consideration of Lattice Vibrations

The temperature of a system is related to the (mean) velocity of the atoms. There-
fore temperature-dependent materials properties can only be precisely determined
on the atomistic scale by incorporating the dynamics of atoms, which - in turns -
means lattice vibrations, i.e. phonons, in case of metals. In principle atomic vibra-
tions can be modeled by considering a 3D multi-body-system, which consists of
mass points (atoms) linked to each other by springs (interatomic forces). Then the
resulting equation of motion for atom α can be obtained by using the framework of
classical mechanics:

mαξ̈α = Fα = −∇Eα = −
∑
β

∂2Eα

∂Rαβ∂Rαβ

∣∣∣
Rαβ

0

· (Rαβ −Rαβ
0 ) . (4.26)
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Please note, Eq. (4.26) follows by neglecting higher order terms in Eq. (4.3). Fur-
thermore it holds the identity Rαβ −Rαβ

0 = ξβ − ξα. Therefore Eq. (4.26) repre-
sents a PDE for ξα, which can be solved by the ansatz ξα = e exp[ i(k ·Xα

0 −ωt)]
(Leibfried, 1955). Thus we obtain:

mαω
2 e =

∑
β

Dαβ(Rαβ
0 ) · e

(
1− eik·Rαβ

0

)
(4.27)

with

Dαβ(Rαβ
0 ) =

∂2Eα

∂Rαβ∂Rαβ

∣∣∣
Rαβ

0

Here Dαβ stands for the stiffness matrix and e represents the normalized vector
parallel to the corresponding displacement. Furthermore k defines the wave vector
with the wave length λ = 2π/|k| and ω = 2πν denotes the angular velocity with
the corresponding frequency ν.

It is worth-mentioning that the derived EAM potentials within this work depend
on Rαβ 2; consequently the chain rule must be applied for derivatives of Eα, viz.

∂2Eα/(∂Rαβ)2 = (∂2Eα/∂x2)(∂x/∂Rαβ)2 + (∂Eα/∂x)(∂2x/∂Rαβ 2)

Equation (4.4.3.1)1 defines an eigenvalue problem, which can be solved by

det[D̊
αβ −mαω

2I] = 0

with the following relation:

D̊
αβ

(k) =
∑
β

Dαβ(Rαβ
0 )

(
1− eik·Rαβ

0

)
. (4.28)

The three eigenvalues D̊I/II/III(k) = 4π2mανI/II/III(k) allows to determine
the eigenfrequencies νI/II/III(k) of the lattice. Here three orthonormal eigenvectors
eI/II/III exist, which characterize the oscillation direction of atoms (wave polariza-
tion). In particular we have one longitudinal wave (L with ek⊥k) and two transver-
sal waves (T1 and T2 with ek||k).

For finite temperature crystal vibrations show a wide range of wave vectors and
frequencies, as illustrated in Fig. 4.9 for Ag und Cu. Here the calculated so-called
lattice phonon dispersion is displayed for the three selected symmetry directions
of the FCC-structure, namely ξ[100], ξ[011], and ξ[111] with ξ ∈ [0, 2π/a(e)] or
ξ ∈ [0,π/a(e)]. Although we have only used nearest neighbor interactions during
the calculations the results are comparable to experimental results as presented e.g.
in Svensson et al (1967); Bian et al (2008).

Please note, Dαβ in Eqs. (4.4.3.1)2 and (4.28) can be calculated for the pure sub-
stances from Eq. (4.10) as well as for alloys by means of Eq. (4.19), cf. Fig. 4.10.
Here we exclusively considered the undeformed terms, i.e. G ≡ 0. Furthermore, in
case of alloys, Dαβ = Dαβ(Rαβ

0 , yβ) additionally depends on the particle concen-
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tration. Moreover, the atomic distance Rαβ
0 = Rαβ

0 (yβ) itself also depends on yβ
and must be determined in advance by the equilibrium condition Q(y) ≡ 0, cf. Eq.
(4.20)2.

4.4.3.2 Kinetic Energy and Heat Capacity

The calculated eigenfrequencies of the lattice system allow to quantify the resulting
kinetic energy Eα

kin. For this reason we follow the quantum mechanical and statisti-
cal arguments in Leibfried (1955) and note:

Eα
kin(T ) =

1

N

3N∑
i=1

∑
k

h νi(k)

2
+

1

N

3N∑
i=1

∑
k

h νi(k)

exp
[
h νi(k)
kBT

]
− 1

, (4.29)

with Planck’s constant h = 6.626 · 10−34 Js. The most sensible point for a realistic
reproduction of the kinetic energy denotes the summation of the eigenfrequencies
ν1, . . . , ν3N of the N atoms within the lattice system and the wave vectors k. The
question of which and how many frequencies νi and wave vectors k are used to
quantifyEtot

kin may strongly determine the accuracy of all subsequently derived quan-
tities. For instances, Bian et al (2008) used a weighted sum of 256 different wave
vectors, which requires considerable computational capacities since the eigenvalue-

Fig. 4.9 EAM-calculation of the phonon dispersion of Cu and Ag for the three FCC symmetry
directions [001], [011] and [111].
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Fig. 4.10 EAM-calculation of the phonon dispersion of the eutectic binary alloy Ag-Cu for [001],
[011] and [111] directions.

problem of Eq. (4.28) must be solved for each choice of k. Here we exclusively
investigated a weighted sum of the eigenfrequencies of the three elemental symme-
try directions [001], [011], and [111].

Equation (4.29) results from considering the 6N -dimensional phase space, well-
known in statistical mechanics, and by adding the energy-contribution of each oscil-
lator to the partition function Z. The total energy of atom α as well as the particle-
specific heat capacity (at constant volume, i.e. a = a(e)) can now be written as:

Eα
tot(T, y) = E

α
(EAM)(y) + E

α
kin(T ), cv(T, y) =

∂Eα
tot(T, y)

∂T
. (4.30)

By means of the results of Fig. 4.9 and 4.10 cv(T, y) can be calculated for different
temperatures and - in case of alloys - for different concentrations. Figure 4.11 illus-
trates the results for the pure metals as well as for the eutectic mixture. Here, for
compsarison reasons, we also displayed the heat capacity according to the Einstein
model, viz.

cv,E = 3NAkB

(
TE
T

)2
exp(TE/T )

[exp(TE/T )− 1]2
with νE =

TEkB
h

. (4.31)

Obviously the EAM values corresponds to theoretical curves in a very good man-
ner. Here experimental data were used for TE and νE in order to fit the curves for Ag
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Fig. 4.11 Temperature dependent heat capacity for Ag, Cu, and eutectic Ag-Cu including Einstein
temperature and frequency (values with � represent experimental data used as input).

and Cu (Fornasini et al, 2004; Dubiel et al, 2009). For the mixture no experimental
data were found in the literature; here we adjust the curve by varying TE.

4.5 Summary and Conclusions

In the preceding sections it was demonstrated, how atomic interactions can be linked
to macroscopic materials behavior. Starting with various basic considerations of lat-
tice kinematics the general idea of EAM was illustrated and an energy expression
for an atom in pure metals (i.e. one atom type within the lattice) and in binary al-
loys (i.e. two atom types stochastically distributed within the lattice) was developed.
Furthermore Johnson’s analytical nearest neighbor approach was considered and ap-
plied to the FCC metals Cu and Ag as well as to the binary alloy Ag-Cu. Moreover,
lattice vibrations were analyzed in order to additionally incorporate temperature-
dependent, kinetic energy contributions.

Without any doubt, the crucial element denotes the energy expressions for the
single atom α. The equations for Eα are continuously used for any further exploita-
tions and allow to derive the macroscopic materials properties, e.g. the elastic con-
stants, equilibrium lattice parameter, excess enthalpy or specific heat capacity. This
procedure, namely using calculations on the atomic scale and ending up with macro-
scopic materials properties, represents a multiscale approach - a widely used slogan
with the scientific environment in the recent time.

However, various improvements and open tasks remain. The world of metals
does not only consists of FCC lattices. Consequently the presented theory should
be extended to further lattice configurations, such as BCC (Fe, Li, Cr, ...), HCP
(Zn, Mg, Ti, ...) or BCT (β-Sn). Here the so-called Modified Embedded-Atom-
Method (MEAM), e.g. Feraoun et al (2001), were developed, which allow to con-
sider directional-specific bonding. Finally, leaving the restriction to nearest neighbor
interactions as well as the incorporation of more eigenfrequencies to the kinetic en-



4 Materials Properties derived by Atomic Potentials 69

ergy could (further) improve the calculated quantities, such as excess enthalpy or
specific heat capacity.
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Chapter 5

Mechanical Response Change in Fine Grain

Concrete Under High Strain and Stress Rates

Francesco dell’Isola, Anatoly M. Bragov, Leonid A. Igumnov, Bilen Emek Abali,
Andrey K. Lomunov, Dmitry A. Lamzin & Alexander Yu. Konstantinov

Abstract Experimental results on assessing the effects of strain and stress rates on
the behavior of fine-grain concretes are presented. Specimens of fine-grain and fiber-
reinforced concretes were dynamically tested using the Kolsky method and its mod-
ification, the “Brazilian test”. As a result of the experiments, values of the Dynamic
Increase Factor (DIF) were determined for both the materials studied. Their curves
as a function of strain and stress rates were constructed. The experimental data is
compared with the theoretically obtained values of DIF as a function of strain rate
available in the literature

Keywords: Experiments · Fine grain concrete · Reinforced concrete · Kolsky
method · Dynamic increase factor (DIF)

5.1 Introduction

Buildings and structures are constantly under various mechanical loadings. Hope-
fully, all of these loading conditions were foreseen at the stage of construction. Es-
pecially impact loading is more critical in the case of safety. Some extreme exam-
ples are earthquakes, explosions, collisions of vehicles with parts of structures, etc.
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loading requires knowledge of mechanical properties of structural materials under
strain rates. An experimental approach leads to material models and parameters;
they are necessary for simulations of applications by utilizing computations with
the aid of the finite element method as in Abali (2017). Determining the properties
of materials under impact loading is challenging such that procedures and outcome
are reported heavily in the literature (Bischoff and Perry, 1991; Malvar and Craw-
ford, 1998; Wang et al, 2011; Thomas and Sorensen, 2017; Scerrato et al, 2016).
Modeling concrete by an appropriate constitutive relation is challenging as well.
For example in Scerrato et al (2014), Mazars et al (2015) and Giorgio and Scerrato
(2017), different constitutive equations are presented in order to represent materials
behavior of concrete. Subject to impact loading, the response changes such that the
strain rate dependency plays an important role in the material modeling as studied
in Chiaia et al (2015), Xiao et al (2015) and Kezmane et al (2017). There are differ-
ent techniques to define a model, see Contrafatto et al (2016) and Contrafatto et al
(2017). Even in the case of multiphysics as in Altenbach et al (2011) and Misra
and Poorsolhjouy (2015) there are suggested material models for brittle materials.
In order to define the parameters in any of the introduced material models, we need
experimental studies.

This work presents the results of studies on evaluating the effect of strain and
stress increase rates on the mechanical behavior of fine-grain concrete. Specimens
out of fine-grain concrete and fiber-reinforced concrete were dynamically tested by
using the so-called Kolsky method and its modified version known as “Brazilian
test.” Experimental outcome is deformation diagrams for different stress and strain
rates. This data is used to obtain the strength of the underlying material subject to
various stress and strain rates. Strength increases with an increasing rate, for the
brittle materials this increase is characterized by the so-called dynamic increase
Factor (DIF). Diagrams of DIF as a function of strain or stress increase rates were
constructed. The experimentally obtained data was compared with the theoretical
diagrams of DIF as described in Wang et al (2011).

5.2 Specimen Preparation

Specimens of blended fine-grain concrete with class B25 axial compression strength
were tested. The composition of the concrete mixture corresponded to Russian stan-
dard GOST 27006-86. The concrete mixture included grade 400 cement, sand with
fineness modulus 2, as well as Muraplast FK-63 plasticizer and Reostab stabilizer.
The component ratio used was C:W:F=1:0.6:3, where C denotes cement, W is water,
and F stands for fine filling. Cylindrical specimen with 20 mm diameter and 10 mm
axial height were prepared for dynamic compression tests, and additionally, diam-
eter of 20 mm and height of 20 mm were constructed for quasi-static tests (up to a
strain rate of 0.001 s−1). The mass density is measured as 2000 kg/m3. The quasi-
static strength in compression was equal to 12.1 MPa, and in tension was 1.31 MPa.
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The above values of the quasi-static strength were used as reference values for the
further computations.

Apart from the tests on the aforementioned concrete B25, we conducted exper-
iments with fine-grain fiber-reinforced concrete CARDIFRC developed and pro-
duced in the University of Cardiff (Great Britain) as studied in Benson and Kari-
haloo (2005a), Benson et al (2005), Benson and Karihaloo (2005b) and Nicolaides
et al (2010). In this composite material, as fibers, zinc-coated steel wires were em-
ployed. For quasi-static tests—again with the constant strain rate of 0.001 s−1—we
used cylindrical specimens of 20 mm diameter and 20 mm height. The quasi-static
strength in compression read 94.4 MPa and 23.11 MPa in tension. In the case of
dynamic tests, we chose cylinder specimens of 15 mm diameter with 10 mm height
on RSG-20 stand (with 20 mm diameter of measuring bars); cylinder specimens of
60 mm diameter with 30 mm height on RSG-60 stand (with 60 mm diameter of mea-
suring bars). The experiments using the two stands with measuring bars of different
diameters allowed us to cover a wide range of stress increase rates. Effected by high
stresses (locally exceeding the tensile strength), spallation is observed in several
tests.

5.3 Method of Impact Loading

One of the most widely used approaches of dynamic testing is the so-called Kolsky
method using a Split Hopkinson Bar as introduced in Kolsky (1949). Various mod-
ifications of this approach have been discussed in the literature, among others in
Bragov and Lomunov (1995), Bragov et al (1994), Bragov et al (1996), Bragov et al
(2001), Bragov et al (2008), Bragov et al (2017) and Rodriguez et al (1994). These
amendments allow one to determine mechanical properties of various solid materi-
als subjected to high strain rates. In the tests on fine-grain concretes, the classical
Kolsky methodology for determining strength under uniaxial compression was used,
as well as its modification, the “Brazilian” or spallation test as in Rodriguez et al
(1994), which is tantamount to the tensile test configuration as shown in Fig. 5.1.

In compression tests via the Kolsky approach, the loading pulse is assumed to
be much longer than the traveling time of the pressure along the specimen. This
assumption is indeed accurate since the specimen height is in mm length scale and
the speed of sound in solid materials is in the order of km/s. Hence, multiple reflec-
tions of the waves from both ends of the specimen result in uniform stress and strain
states during the experiment. Therefore, even in the case of high strain rates, we can
handle the experimental results in the same way as in quasi-static tests. Propaga-
tion of waves along measuring bars is assumed dispersion-free. Otherwise, special
corrections must be used as in Bragov et al (2011).

We briefly sum up the expressions used for computing stresses, strains, and strain
rates in the specimen as follows:
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σs(t) =
EA

A0
εT(t) ,

ε•s(t) = −2C

L0
εR(t) ,

εs(t) = −2C

L0

t∫
0

εR(t̄) dt̄ ,

(5.1)

where E, A, c denote elastic modulus, cross-sectional area, speed of sound in the
Hopkinson bars, respectively; A0 is the initial cross-sectional area of the specimen
as well as L0 is the initial length of the specimen. The measured quantities, reflected
strain, εR, and transmitted strain, εT, are recorded at the cross-sections of the Hop-
kinson bars. Concretely, the reflected strain is measured at the loading bar and the
transmitted strain is received at the supporting bar. Thus, the material response de-
pends on the amplitude and form of the reflected and transmitted strain pulses.

The Brazilian or spallation test is a modified version of the Kolsky method and
it is used for determining tensile strength of brittle materials, see Rodriguez et al
(1994). In a conventional compression test of a cylindrical specimen, loading is
applied along the longitudinal axis of the specimen. In spallation experiments, a
cylindrical specimen is rotated by 90◦ relative to the transversal axis, and a load is
applied along the diametric plane of the specimen, i.e., along the generatrix of the
cylinder, see Fig. 5.1. In this case, tensile stresses are induced normal to the loading
direction, and the tensile stress, σt, is calculated by

σt(t) =
2EA

πL0D0
εT(t) , (5.2)

where D0 is the diameter of the specimen such that πD0L0 denotes the curved
surface area of the cylindrical specimen.

Two different stands are employed in the experiments:

• RSG-20 composed of 20 mm diameter measuring bars,

Fig. 5.1 Drawings of the
specimen positioning in a
conventional Kolsky method
(upper) and a spallation test
(lower).
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• RSG-60 with bars of 60 mm diameter.

The stands were equipped with a pneumatic loading unit (a gas gun with a con-
trolling system), sensors for recording the strains, εR, εT, at the two measuring
(cylindrical) bars named after Hopkinson. The initial condition is determined by
using strain gauges cemented to the curved surface of the measuring bars. Strain
gauge signals were transmitted to a digital oscilloscope, the data is post-processed
in oscilloscope’s own software package.

5.4 Results and Discussion

Results of dynamical tests of the brittle material has been thoroughly analyzed in
order to examine the main assumption in Kolsky’s method: homogeneous stress
within the specimen. Otherwise, the dynamic strength of the material fails to be
calculated accurately. In Li and Meng (2003), Zhang et al (2009) and Li et al (2009),
the effect of lateral inertia confinement is described in a Split Hopkinson Bar test,
especially, in the case of brittle materials. According to the given recommendations,
the ratio of the length and the diameter of specimens must be within the range of
0.3-1.0, and the contact surfaces of the measuring bars and the specimen should
be lubricated to decrease the effect of friction forces when the specimen expands.
These recommendations were followed that provided the equilibrium deformation
state in the specimens. This is corroborated by the synchronized strain pulses in the
measuring bars, as shown in Fig. 5.2.

Dynamic deformation diagrams showing stress versus strain are obtained out of
the latter measurements of transmitted and reflected strains with the aid of Eq. (5.1).
The material response for various loading rates is depicted on Fig. 5.3. The defor-
mation diagrams of the concrete and the fiber-reinforced concrete are similar; they
indicate a nonlinear stress-strain relation. For each experiment, one deformation di-

Fig. 5.2 Measured strain pulses at the measuring bars during the compression tests: on fine-grain
concrete (left) and fiber-reinforced concrete (right).
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Fig. 5.3 Stress-strain plots obtained from the compression tests: on fine-grain concrete (left) and
fiber-reinforced concrete (right).

agram was used to determine strength of the material. The strength of the material
let us evaluate DIF. Then a diagram of DIF as a function of strain rate was gener-
ated with the following approach. As also noted in Wang et al (2011), the formulas
for DIF recommended by Comité Euro-International du Béton adequately describe
the experimental results for the high-strength concrete; but they overestimate the
strength for the fiber-reinforced concrete. The transition strain rate—where the in-
accuracy starts growing—is approximately 30 s−1. In order to obtain DIF from the
experimental results, we use a modified version of the formula for DIF of concretes,
with a parameter i = 0 for the plain concrete and i = 1 for the fiber-reinforced
concrete, as follows:

DIF =
σd
σs

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
ε•d
ε•s

)1.026αs

for ε• ≤ (30 + 23i) ,(
η
ε•d
ε•s

)k

for ε• > (30 + 23i) ,

(5.3)

where the fit parameters read

αs =
1

5 + 9 σs

σc0

, σc0 = 10MPa , η = γs(1− 0.3392i) ,

ln γs = 6.156αs − 2 , k =
1 + 0.05i

3
, ε•s = 30× 10−6 s−1 .

(5.4)

The diagrams comparing the experimental data with the theoretically obtained
curves of DIF are presented in Fig. 5.4. Obviously, the experimental results fail to
be represented accurately by the relation as in Eq. (5.3). We can set the following as-
sumptions in question. As also indicated in Rodriguez et al (1994), the applicability
of the Brazilian test needs to be analyzed for determining tensile strength of brittle
materials. The authors indicate that the Brazilian test can be used for determining
tensile strength of brittle materials under the conditions:
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Fig. 5.4 Experimental results for DIF as a function of strain rate: for fine-grain concrete with green
diamond markers (left) and for fiber-reinforced concrete with blue triangles (right). The dashed
line corresponds to the relation as given in Eq. (5.3).

• Material deforms elastically.
• Deformation occurs in equilibrium.
• Compression creates a deformation solely on the diametral plane of the cylinder.

The measured strain pulses of the measuring bars are presented in Fig. 5.5. Since
they are synchronized, the deformation is in equilibrium during the process of spal-
lation. Cracks as well as total disintegration of specimens occurred on the diametral
plane. Therefore, we use a slightly different approach to compare relations from
Eq. (5.3) experimental results. In each of the spallation experiment, time histories of
tensile stress were constructed. Then this relation was used for determining strength
of the material, the value of DIF and stress rate. To determine stress rate, the fol-
lowing algorithm was used. A nearly linear part of the time history of tensile stress
was chosen, and the experimental curve was approximated by a linear function. The

Fig. 5.5 Experimental results for DIF as a function of strain rate: for fine-grain concrete with green
diamond markers (left) and for fiber-reinforced concrete with blue triangles (right). The dashed
line corresponds to the relation as given in Eq. (5.3).
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Fig. 5.6 DIF as a function of stress rate: for fine-grain concrete with green diamond markers (left)
and for fiber-reinforced concrete with blue diamonds from Hopkinson bar RSG-20 experiment as
well as green circles from RSG-60 experiment (right).

slope ratio of the approximating straight line was taken to be the average stress rate.
In this way, we have generated the diagrams of DIF as a function of stress rate
obtained from spallation test data as shown in Fig. 5.6.

5.5 Conclusion

The Kolsky method and its modification—the Brazilian test—have been used in
uniaxial compression and tension spallation tests with specimens of fine-grain and
fiber-reinforced concretes. The obtained experimental results demonstrate the effect
of strain and stress rates on the strength of the tested materials. The increase of
strength observed both in compression and tension has been characterized by DIF.
It is noted that the theoretical relations between DIF and strain rate available in the
literature do not describe the experimental data adequately.
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Abstract Processes of plastic deformation and damage accumulation in poly-
crystalline structural alloys are investigated under block-type, nonstationary, non-
symmetric cyclic loading. In the framework of damage mechanics, a mathematical
model is proposed that effectively describes elastoplastic deformation and fatigue
related damage accumulation processes under low-cycle loading. This model can
be subsumed under three main parts: the relations defining elastoplastic behavior of
the material; the equations describing damage accumulation kinetics; the strength
criterion of the damaged material. For validating the model, we perform a numeri-
cal analysis and a comparison with the data from full-scale experiments. We demon-
strate that the proposed model qualitatively and quantitatively describes the main ef-
fects of plastic deformation and damage accumulation processes in structural alloys
under complex loading scenarios. Moreover, fatigue related lifetime of the structure
is accurately captured by this model as well.
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6.1 Introduction

Materials response under cyclic loading is an important parameter for estimating the
reliability and service life of a structure. In n experiment, service life is measured
as the number of cycles until failure under repeated loading cycles. This measure
is used to compare various designs. In order to estimate the number of cycles un-
til failure, we aim to develop an accurate numerical analysis, for example by using
the finite element method (FEM) as demonstrated in Abali (2017b). For a success-
ful computation, the characteristics of the inelastic deformation in hazardous zones
requires the formulation of governing equations of thermal plasticity accounting
realistic properties of materials as proposed in Mitenkov et al (2007).

Currently, special attention is given to experimental study of cyclic deformation
processes since an experiment is of utmost importance to validate any model de-
scribing this complex phenomenon. A repetitive loading pattern causes a stationary
cyclic deformation meaning that the same amount of energy dissipates in each cy-
cle. Interestingly, it has been detected that preceded by a transition stage the energy
dissipation in each cycle starts deviating from the mean value. We may say that
there occurs a cyclic hardening, softening or relaxation in the response. We need
parameters defining a plastic hysteresis loop.

In the process of non-symmetric cyclic deformation of the material, unilateral
accumulation of plastic deformation may be observed. Under cyclic loading with
initial anisotropy of the stress amplitude at half-cycles of tension and compres-
sion, relaxation is observed in average stresses up to zero in a finite number of
loading cycles. Under a combined effect of mechanical and thermal loading, the
process of cyclic variation generates a multiaxial and non-proportional response
leading to additional effects in materials response. The results of an experimental
investigation of such processes show that the behavior of structural materials under
cyclic proportional loading substantially differ in the case of monotonous deforma-
tion processes—modeling a cyclic hardening has to be reconsidered. Analogously,
multiaxial non-proportional cyclic processes substantially deviate from proportional
cyclic processes as in Lemba (1978); Makdauel (1985); Ohasi et al (1985); Tanaka
et al (1985a,b); Hassan et al (2008); Huang et al (2014); Jiang and Zhang (2008);
Taleb et al (2014).

Governing equations are often developed on the basis of monotonous loading
processes. They fail to model the specific features of cyclic deformation under both
proportional and non-proportional loading phenomena. Hence, it is challenging to
expect a good estimation of fatigue related damage by using these equations. We
suggest to model materials response by evaluating service life characteristics of
materials with the aid of experimental studies under proportional as well as non-
proportional loading, see Bodner and Lindholm (1976); Lemaitre (1985); Chaboche
(1989); Bondar and Danshin (2008); Volkov and Korotkikh (2008); Mitenkov et al
(2015). Classical methods for predicting fatigue life of materials utilize semi-
empirical formulas based on the assumption that the energy dissipation remains
constant through the service life. These methods not only require large bulks of
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experimental information, they also hold only for a small class of loading regimes
within the limits of available basic experimental data as in Collins (1984).

A novel scientific approach is proposed to overcome the aforementioned difficul-
ties, see Murakami (1983); Volkov and Igumnov (2017). This so-called mechanics
of damaged materials (MDM) studies the processes of growth of microdefects, me-
chanical behavior of damaged materials by describing the effect of distributed mi-
crodefects, using certain mechanical parameters, and the formation of macroscopic
cracks (processes of damage accumulation), trying to combine the viewpoints of
materials science and continuum mechanics. The current practice of using this ap-
proach for various mechanisms of exhausting the service life allows us to state that
such an approach is effective enough for the practical purposes of evaluating service
life characteristics of materials and can accurately evaluate the process of exhaust-
ing the service life of structural elements and parts of load-carrying structures.

Ample studies consider novel developments in plasticity. Governing equations in
coupled examples has been studied in several works, for example see Papadopoulos
and Lu (1998); Miehe et al (2009); Soyarslan and Tekkaya (2010); Altenbach and
Eremeyev (2014b); Abali (2017a). Especially models involving porosity as well as
viscoelasticity is challenging, among others, see Altenbach and Eremeyev (2014a);
Misra and Poorsolhjouy (2015); Placidi (2016). Complex phenomena and their nu-
merical implementation in 3D depends on the success of the accurate modeling
of the material behavior as presented in Papadopoulos and Lu (2001); Schröder
et al (2002); Montáns and Bathe (2005); Mazière and Forest (2015); Eremeyev et al
(2016); Giorgio et al (2016).

The present paper proposes a mathematical model of MDM describing pro-
cesses of complex plastic deformation and damage accumulation in structural ma-
terials (metals and their alloys) under monotonous and cyclic proportional and
non-proportional thermal-mechanical loading regimes. To assess the reliability and
the scope of applicability of the developed defining relations of MDM, the pro-
cesses of plastic deformation and fatigue damage accumulation in stainless steels
(X10CrNiTi18-10, X10CrNiTi18-9) under block-type, nonstationary, non-symmetric,
low-cycle loading were numerically analyzed. The obtained numerical results are
compared with the data from full-scale experiments.

6.2 Defining Relations of Mechanics of Damaged Media

A model as in Volkov and Korotkikh (2008); Volkov and Igumnov (2017) describing
the damage in a body consists of the following:

• relations defining the elastoplastic behavior of the material, accounting for its
dependence on the failure process;
• evolutionary equations describing damage accumulation kinetics;
• a strength criterion of the damaged material.
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6.2.1 Defining Relations in Plasticity

The definition of relations modeling plasticity is based on the following assump-
tions:

• Components of strain tensors eij and strain rates e•ij include elastic, eeij , ee•ij ,
and plastic strains, peij , pe•ij , in other words, the reversible and irreversible
components.
• For various temperatures, the initial yield surface is described by a Mises type

surface. The evolution of the yield surface is described by the variation of its
radius pC and the motion of its center, so-called back stress, ρij .
• The volume change is reversible, in other words, plastic deformation is devia-

toric.
• Continuum body is isotropic at the reference frame; but anisotropy may be

caused by plasticity.

For the elastic regime, the spherical and deviatoric parts of the stress and elastic
strain tensors,

σij = σδij + σ|ij| , eeij = eδij + e|ij| , (6.1)

are modeled by Hooke’s law with the Duhamel–Neumann extension as follows:

σ = 3K
(

ee− α(T − Tref.)
)
, σ|ij| = 2G ee|ij| , (6.2)

with the material parameters, K, α, G, depending on the temperature. Usually, the
initial temperature of the simulation is assumed to be the reference temperature,
Tref., in order to achieve the natural state initially. As a consequence, their rates read

σ• = 3K
(

ee• − α•T − αT •

)
+
K •

K
σ , σ•|ij| = 2G ee•|ij| +

G•

G
σ|ij| . (6.3)

In classical or so-called Prandtl–Reuss plasticity, a yield surface is introduced,

FS = SijSij − pC , Sij = σ|ij| − ρij , (6.4)

by using an isotropic hardening with the center, pC, and a kinematic hardening with
its motion, ρij . For modeling complex cyclic deformation modes in the stress space,
we introduce the following yield surface:

Fρ = ρijρij − ρ2max , (6.5)

providing a “memory” with the aid of the maximal modulus, ρmax. We consider
such a temperature range, where annealing effects fail to be significant. Then the
isotropic hardening, modeling the evolution of pC, consists of three parts: effected
by monotonous, cyclic, and temperature related phenomena. We follow Volkov and
Korotkikh (2008); Mitenkov et al (2015) and implement the following evolution
law:
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pC • =
(
qχH(Fρ) + a(QS − pC)Γ (Fρ)

)
χ• + q3T

• ,

pC = pC0+

∫ t

0

pC • dt , χ• =

√
2

3
pe•ij

pe•ij , χm=

∫ t

0

χ•H(Fρ) dt , χ=

∫ t

0

χ• dt ,

qχ =
q2Aψ1 + (1−A)q1
Aψ1 + (1−A) , QS =

Q2Aψ2 + (1−A)Q1

Aψ2 + (1−A) , 0 ≤ ψ ≤ 1 , i = 1, 2 ,

A = 1− cos2 θ , cos θ = neijn
s
ij , n

e
ij =

e•|ij|√
e•|ij|e

•

|ij|
, nsij =

Sij√
SijSij

,

Γ (Fρ) = 1−H(Fρ) , H(Fρ) =

{
1 , Fρ = 0 ∧ ρijρ•ij ≥ 0

0 , Fρ < 0 ∨ ρijρ•ij < 0
,

(6.6)
where q1, q2, q3 denote moduli of monotonous isotropic hardening;Q1,Q2 indicate
moduli of cyclic isotropic hardening; a is a constant defining evolution of the hys-
teresis loop of cyclic deformation; QS is the corresponding yield surface radius for
the known ρmax and T ; pC0 is the initial value of the yield surface radius. Evolution
of the back-stress is obtained by introducing it as an internal variable and postulated
to have the following form:

ρ•ij = f(χm)
(
g1

pe•ij − g2ρijχ•
)
+ gT ρij

〈
T •

〉
+ ρ̃•ij , ρij =

∫ t

0

ρ•ij dt , (6.7)

with
f(χm) = 1 + k1

(
1− exp(−k2χm)

)
,

ρ̃•ij = g3
pe•ijH(Fρ)− g4ρ̃ijχ•Γ (Fρ)〈cos(γ)〉 ,

〈cos(γ)〉 = ρ•ij ρ̃ij√
ρ•klρ

•

kl

√
ρ̃mnρ̃mn

,

(6.8)

where g1, g2, g3, g4, gT , as well as k1, k2 are material parameters to be determined
experimentally.

Equations (6.7)1,2 describe the anisotropic part of deformation hardening. Equa-
tion (6.7)3 models the evolution of ρij by including the effect of the temperature
rate as well. Equation (6.7)4 indicates an anisotropic hardening due to the unilat-
erally accumulated plastic deformation. Weighting factor f(χm) allows to describe
the evolution of ρij under cyclic deformation regimes (Korotkikh, 1985). For a non-
symmetric cyclic loading, ρ̃•ij models the cyclic plastic hysteresis loop differently
for various loading strengths. In the case of vanishing gT = g3 = g4 = k1 = 0,
Eqs. (6.7) reduce to the special case of Armstrong–Frederik–Kadashevich equa-
tions as follows:

ρ•ij = g1
pe•ij − g2ρijχ• . (6.9)

In order to include a memory effect for the yield surface, it is necessary to generate
an evolution equation for ρmax as well,

ρ•max =
ρijρ

•

ijH(Fρ)√
ρmnρmn

− g2ρmaxχ
• − gT ρmax

〈
T •

〉
. (6.10)
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The plastic strain rate tensor components fulfill the orthogonality restriction at the
yield surface

pe•ij = λSij , (6.11)

where λ is proportionality coefficient determined from the condition that a new yield
surface passes through the end of the stress deviator vector at the end of the loading
stage.

As damage is modeled by a field function, ω, we can easily introduce the effect
of damage on the material properties by introducing effective stresses as in Volkov
and Igumnov (2017),

σ̃|ij| = F1(ω)σ|ij| =
G

G̃
σ|ij| =

σ|ij|

(1− ω)
(
1− 6K+12G

9K+8G

) ,
σ̃ = F2(ω)σ =

K

K̃
σ =

σ

(1− ω) 4G
4G+3Kω

,

(6.12)

where G̃, K̃ are effective elastic moduli determined by the Mackenzie formulas
(Mackenzie, 1950). Analogously, we propose to obtain

ρ̃ij = F1(ω)ρij . (6.13)

6.2.2 Evolutionary equations of fatigue damage accumulation

Rate of damage is modeled by an evolution equation, for low-cycle fatigue (LCF),
we define this relation by the following model as in Bodner and Lindholm (1976);
Lemaitre (1985); Volkov and Korotkikh (2008); Volkov and Igumnov (2017):

ω• = f1(β)f2(ω)f3(W )f4(W
•) , (6.14)

where the function f1(β) denotes the effects of volume change with β = σ/σu,
the function f2(ω) incorporates the degree of the present damage accumulated over
the time, the function f3(W ) models the effect of the dissipated work (energy) on
damage for creating a fracture, the function f4(W •) embodies the effects of the rate
of damage energy. We model these functions in the following way:

f1(β) = exp(β) , f2(ω) =

⎧⎪⎨⎪⎩
0 , W ≤Wa

ω1/3(1− ω)2/3 W > Wa ∧ ω ≤ 1
3

161/3

9 ω−1/3(1− ω)−2/3 W > Wa ∧ ω > 1
3

f3(W ) =
W −Wa

Wf
, f4(W

•) =
W •

Wf
,

(6.15)
where β = σ/σu gives the voluminosity of stressed state, Wa is the corresponding
energy used for damage at the end of the stage of nucleation of microcracks under



6 Estimating Low-Cycle Fatigue in Alloys 87

low cycle fatigue, and Wf is the energy used for macroscopic crack formation pro-
cess. The duration of the microcracks nucleation phase will be related with the value
of parameterWa. When microcracks reach the dimensions in the length scale of the
mean distance between microcracks, the process of merging (agglomeration) starts.
We circumvent introducing a detailed micromechanical model of this agglomera-
tion and model this phenomenon via kinetic equation by introducing term f2(ω) in
such a way that relation ω• = f1(ω) considers for the avalanche-like increase of the
damage when damage reaches the value of ω = 1/3.

6.2.3 Strength Criterion of the Damaged Material

We implement a simple approach and terminate accumulation of microcracks in the
case of damage approaching its critical value

ω = ωf , (6.16)

where this critical value has to be smaller than 1, otherwise numerical instabilities
occur. For engineering alloys ωf = 0.3 and for pure materials ωf = 0.7 (Lemaitre,
1985).

6.3 Numerical Results

Specimens of stainless steel 12X18H10T were experimentally studied under a uni-
axial tension-compression test at the ambient temperature in the Laboratory for Test-
ing Physical-Mechanical Properties of Structural Materials, Research Institute for
Mechanics, Nizhniy Novgorod Lobachevski State University. The testing procedure
consisted of five subsequent tests including monotonous and cyclic loading as in
Korotkikh (1985):

I. 20 cycles of symmetric cyclic loading with a deformation amplitude of
e11 = 0.08%

II. Monotonous tension up to the deformation of e11 = 5%
III. 200 cycles of non-symmetric cyclic loading with the deformation amplitude

of Δe11 = 1.2% and the mean deformation of e(m)
11 = 4.4% (during this

test, plastic hysteresis loop occurs)
IV. Monotonous tension up to deformation e11 = 1%
V. Non-symmetric cyclic loading with the deformation amplitude of Δe11 =

1.2% and the mean deformation of e(m)
11 = 9.4% up to failure (the number

of cycles to failure is Nf = 2800, again, plastic hysteresis loop takes place)

We compile in Tables 6.1-6.3 the properties of the presented MDM model for
steel X10CrNiTi18-10 determined from the results of experiments in Volkov and
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Table 6.1 Obtained parameters of the MDM model for X10CrNiTi18-10

K G pC0 in MPa g1 in MPa g2 g3 in MPa g4 k1 k2 a

165 277 76 282 203 20 850 297 660 3 0.48 0.2 5

Table 6.2 Modulus of cyclic hardening QS(ρmax) in MPa for X10CrNiTi18-10

QS in MPa 203 210 232 232 232 232 232

ρmax in MPa 0 30 60 90 100 110 120

Table 6.3 Modulus of monotonous hardening qχ in MPa for X10CrNiTi18-10

qχ in MPa -17 000 -4 634 -811 371 737 849 897 900 900 900 900 900 900

χ 0 0.002 0.004 0.006 0.008 0.01 0.015 0.02 0.03 0.04 0.05 0.09 0.15

Korotkikh (2008); Mitenkov et al (2015); Volkov and Igumnov (2017) and used for
the following computations.

In order to present the results, we use dots for experiments and a continuous line
for the computation in the following figures for the aforementioned 5 subsequent
loading scenarios I-V demonstrated in Figs. 6.1-6.3

We emphasize the quantitative and qualitative agreement between the experimen-
tal data and its computation. Moreover, another set of experiments were conducted
for stainless steel X10CrBiTi18-9 under non-stationary, non-symmetric cyclic load-
ing as follows:

VI. The specimen is compressed up to e11 = 0.01 and then in pulled in tensile
up to e11 = 0.05

VII. Non-symmetric cyclic loading is applied with a strain interval of 1% up to
the failure, Nf = 850. Plastic hysteresis loop occurs and after 500th loading
cycle, the loop becomes nearly symmetric.

Fig. 6.1 Comparison of the
numerical results with the
proposed model (continuous
line) with the experimental
data (dots). One single sym-
metric loading cycle as in
I.
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Fig. 6.2 Comparison of the numerical results with the proposed model (continuous line) with the
experimental data (dots). Left: 20th cycle of symmetric loading in II followed by a monotonous
tensile test until e11 = 0.05 and a subsequent non-symmetric cyclic loading. Right: 200th cycle of
III is followed by one cycle of V.

Fig. 6.3 Comparison of the numerical results with the proposed model (continuous line) with the
experimental data (dots). The dissipated energy density given as the maximum stress amplitude by
III (left) and V (right) loading scenarios.

Table 6.4 Obtained parameters of the MDM model for X10CrNiTi18-10

K G pC0 in MPa g1 in MPa g2 g3 in MPa g4 k1 k2 a Wa Wf

165 277 76 282 190 24 090 286 800 2 0.415 0.2 5 0 800

Table 6.5 Modulus of cyclic hardening QS(ρmax) in MPa for X10CrNiTi18-9

QS in MPa 190 205 210 215 220 225 225

ρmax in MPa 0 20 40 60 80 100 120

For calculations, we used the parameters as compiled in Tables 6.4-6.6 for the steel
X10CrNiTi18-9 obtained from the results of experiment in Volkov and Korotkikh
(2008); Mitenkov et al (2015). Analogously, the experiments VI-VII are utilized to
validate the accuracy of the proposed model as demonstrated in Fig. 6.4. Two dif-
ferent models for the evolution equation show significant discrepancies in Fig. 6.4
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Table 6.6 Modulus of monotonous hardening qχ in MPa for X10CrNiTi18-9

qχ in MPa -5 000 -4 471 -4 188 -3 859 -2 460 -182 888 1 531 1 274 913 913 913

χ 0 0.002 0.004 0.006 0.008 0.01 0.015 0.02 0.03 0.04 0.05 0.06

Fig. 6.4 Comparison of the numerical results with the proposed model (continuous line) with the
experimental data (dots) for X10CrNiTi18-9. Left: at the 500th cycle during the experiment VII.
Right: mean stress for various cycles during the experiment VII, model in Eq. (6.7)1 as the
continuous line and model in Eq. (6.9) as the dash line.

Fig. 6.5 Comparison of the
fatigue curves obtained by
the two proposed models
(dots and squares) with the
experimental data (continu-
ous line). Circles denote the
thermal plasticity model with
th evolution equation as in
Eq. (6.7)1 and squares indi-
cate the model with Eq. (6.9).

(right). By using the model in Eq. (6.9), we observe that cyclic hysteresis loop
is immediately stated in the first loading cycle such that the physically-important
relations of plasticity fail to be described accurately. By employing the model in
Eq. (6.7), material behavior during the process is perfectly modeled. In Fig. 6.5, a
fatigue curve is shown for the same material, X10CrNiTi18-9, experimented as in
VII. The experimental data is quantitatively well represented by the numerical re-
sults acquired by the models in Eqs. (6.7), (6.9). In general, the comparison of the
numerical and experimental results demonstrate the strength of the proposed MDM
model. It describes the processes of fatigue life of polycrystalline structural alloys
under non-symmetric low-cycle loading.
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6.4 Conclusion

A novel model has been proposed for modeling fatigue life of polycrystalline struc-
tural alloys under non-symmetric cyclic loading. The model is verified by utiliz-
ing experiments of block-type, transient, non-symmetric, low-cycle loading for two
stainless steels (X10CrNiTi18-10, X10CrNiTi18-9). We have demonstrated that
even different conditions are perfectly captured by this model, all material parame-
ters are compiled in Tables 6.1-6.6. Two different versions have been implemented
and their differences have been discussed. Fatigue life estimation is equally accurate
in both versions for the case of non-symmetric low-cycle loading. We recommend
to use the simpler version given in Eq. (6.9).
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Chapter 7

On Non-holonomic Boundary Conditions within

the Nonlinear Cosserat Continuum

Victor A. Eremeyev

Abstract Within the framework of the nonlinear micropolar elastic continuum we
discuss non-holonomic kinematic boundary conditions. By non-holonomic bound-
ary conditions we mean linear relations between virtual displacements and virtual
rotations given on the boundary. Such boundary conditions can be used for mod-
elling of complex material interactions in the vicinity of the boundaries and inter-
faces.

7.1 Introduction

The model of micropolar medium known also as Cosserat continuum was proposed
by Cosserat brothers, see Cosserat and Cosserat (1909) and the contributions by
Nowacki (1986) for infinitesimal deformations and by Eringen and Kafadar (1976);
Eringen (1999); Eremeyev et al (2013); Altenbach and Eremeyev (2013); Eremeyev
and Altenbach (2017) for finite deformations, where the further references can be
found. The Cosserat model found various applications to description of such mi-
crostructured media as foams, granular media, composites, magnetic fluids, and
thin-walled structures. Within the micropolar continuum the fields of translations
and rotations are used as kinematical descriptors. In addition to stress tensor the
couple stress tensor is also introduced in the theory which describes the rotational
(moment-type) interactions in the medium.

Considering initial boundary-value problems of the micropolar mechanics one
usually assumes kinematic or/and static boundary conditions expressed through
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translations and rotations or/and stress and couple stress vectors, respectively. These
conditions play a role of principal and natural boundary conditions which follow
from the stationarity of the corresponding functionals or from the principle of vir-
tual work, see, e.g., Nowacki (1986); Eringen (1999); Pietraszkiewicz and Eremeyev
(2009). Here we consider more general case of boundary conditions (BCs) when the
latter cannot be derived from any functional, in general. For example, such type of
boundary conditions one has in the case of nonconservative loading (Bolotin, 1963)
or when some relations between linear and angular velocities are prescribed on a
micropolar fluid surface (Migoun and Prokhorenko, 1984; Łukaszewicz, 1999).

The paper is organized as follows. First, in Section 7.2 we briefly recall basic
equations of the micropolar continuum undergoing finite deformations. Considering
the principle of virtual work in Section 7.3 we discuss the weak formulations of
boundary conditions. In Section 7.4 we introduce non-holonomic boundary relations
expressed as linear relations between virtual displacements and virtual rotations.
Finally, we present few examples of non-holonomic boundary conditions.

7.2 Constitutive Relations

The deformation of a micropolar medium is described through kinematically in-
dependent fields of translations and rotations. So the kinematics of a micropolar
continuum is described through the following vectorial fields:

x =x(X), (7.1)
dk =dk(X), k = 1 . . . 3, (7.2)

where x and X are positions vectors defined in current and reference placements,
whereas dk are unit orthogonal vectors called directors, see (Eringen and Kafadar,
1976; Eringen, 1999; Eremeyev et al, 2013) for details. Instead of (7.2) one can use
the microrotation tensor defined as follows

Q = Dk ⊗ dk, (7.3)

where Dk are directors in a reference placement, ⊗ stands for the tensor (diadic)
product, and Einstein’s summation rule is utilized. Note that without loss of gen-
erality Q can be defined as a proper orthogonal tensor. To this end one have to
chose the same orientation of triples Dk and dk. In what follows we use the di-
rect (coordinate-free) tensor calculus presented in Lurie (1990); Simmonds (1994);
Eremeyev et al (2018).

For an hyperelastic material there exists a strain energy density W. We assume
that W depends on x, Q and their gradients

W = W(x,F,Q,∇Q), (7.4)
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where F = ∇x is the deformation gradient, ∇ is the gradient operator defined in
the reference placement. For example, in the Cartesian coordinates Xk we have

∇ = ik
∂

∂Xk
,

where ik are the Cartesian base vectors, ik · im = δkm, so X = Xkik, “·” denotes
scalar product, and δmn is the Kronecker symbol.

The principle of the material frame-indifference (Truesdell and Noll, 2004) says
that W is invariant under changes

x→ O · x+ a, dk → O · dk (7.5)

for any constant proper orthogonal tensor O and any constant vector a. From (7.3)
and (7.5) it follows that Q and ∇Q change as follows

Q→ Dk ⊗ (O · dk) = Dk ⊗ dk ·OT = Q ·OT , ∇Q→ ∇Q ·OT . (7.6)

As a result of the invariance we get

W =W(F,Q,∇Q)

=W(F ·OT ,Q ·OT ,∇Q ·OT ), (7.7)

where the superscript T stands for the transpose tensors. Choosing O = Q we have

W = W(F ·QT , I,∇Q ·QT ). (7.8)

Hereinafter I is the unit tensor. This choice is possible as O can be any proper
orthogonal tensor, so it can also coincide with Q given in any point. On the other
hand Eq. (7.8) verifies the principle of material frame-indifference.

Note that ∂Q
∂Xk

·QT is a skew tensor. So it can be represented as

∂Q

∂Xk
·QT = −kk × I (7.9)

through an axial vector kk. Here × stands for the cross product. Thus, the third-
order tensor ∇Q ·OT has the form

∇Q ·OT = −K× I, K = ik ⊗ kk. (7.10)

Note that in (7.10) we introduce the cross-product between two second-order ten-
sors. For diads it was introduced by Gibbs, see (Wilson, 1901, p. 281), as follows

(a⊗ b)× (c⊗ d) = a⊗ (b× c)⊗ d

and can be easily extended for tensors of any order, see Eremeyev et al (2018).
Using Gibbsian cross operation (. . .)× introduced again by Gibbs (Wilson, 1901,

p. 275), we get the formula



96 Victor A. Eremeyev

K =
1

2
ik ⊗

(
∂Q

∂Xk
·QT

)
×
. (7.11)

Hereinafter for any second-order tensor T = Tmnim ⊗ in the notation T× denotes
the vectorial invariant of T defined as follows T× = Tmnim × in.

As a result, the strain energy density depends on two natural strain measures
E = F ·QT and K, see, e.g., Pietraszkiewicz and Eremeyev (2009),

W = W(E,K). (7.12)

Various examples of the micropolar constitutive equations can be found in the
literature, see, e.g., Eringen (1999); Eremeyev and Pietraszkiewicz (2012, 2016).

7.3 Principle of Virtual Work

In order to formulate the virtual work principle we consider the first variation of the
energy functional

E =

∫
V

WdV,

where V is the micropolar body volume. Calculating δE we can find the consistent
form of the work δA of external loads. We introduce first the variations of transla-
tions

u = δx. (7.13)

In order to introduce the variation of rotations we consider δdk. As dk are unit
vectors, that is dm · dn = δmn, we have that δdm · dn + dm · δdn = 0, and

δd1 · d1 = 0, δd2 · d2 = 0, δd3 · d3 = 0.

As a result, δdk, k = 1, 2, 3, can be represented through the same vector ψψψ

δdk = ψψψ × dk. (7.14)

From (7.14) it follows that
δQ = −Q×ψψψ.

Note that unlike u, vector ψψψ does not coincide with a variation of any vector, in
general.

Calculating δW we get

δW =
∂W

∂E
: δE+

∂W

∂K
: δK,

where “:” stands for the scalar product in the space of second-order tensors, for
example, T : E = tr (T ·ET ), tr is the trace operator, and
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δE =δ(F ·QT ) = δF ·QT + F · δQT

=∇u ·QT + F · (ψψψ × I) ·QT , (7.15)

δK =∇ψψψ ·QT . (7.16)

For the derivation here we used the relations

δQ = Dk ⊗ δdk = Dk ⊗ dk ×ψψψ = −Q×ψψψ, (Q×ψψψ)T = −ψψψ ×QT ,

see Eremeyev and Zubov (1994); Eremeyev et al (2013) for details. So we have

δW =

(
∂W

∂E
·Q

)
: ∇u+

(
∂W

∂K
·Q

)
: ∇ψψψ +

(
∂W

∂E
·Q

)
: (F×ψψψ). (7.17)

Introducing the first Piola–Kirchhoff stress T and couple stress M tensors by the
formulae

T =
∂W

∂E
·Q, M =

∂W

∂K
·Q, (7.18)

we transform δW into the compact form

δW = T : ∇u+M : ∇ψψψ +T : (F×ψψψ).

Calculating the first variation of the energy functional with the use of the inte-
gration by parts we get

δE =

∫
V

δW dV

=−
∫
V

[
(∇ ·T) · u+

(∇ ·M+ (FT ·T)×
) ·ψψψ] dV

+

∫
∂V

(n ·T · u+ n ·M ·ψψψ) dS. (7.19)

Here n is the vector of outer unit normal to the boundary ∂V . The form of δE
dictates the possible consistent expression of the external loadings work

A =

∫
V

(f · u+m ·ψψψ) dV +

∫
∂V

(φφφ · u+μμμ ·ψψψ) dS. (7.20)

In (7.20) f andφφφ are external forces given in the volume and on its boundary, respec-
tively, whereas m and μμμ are external volumetric and surface couples (moments).

Finally, the virtual work principle takes the following form

δE− δA =

∫
V

[− (∇ ·T− f) · u− (∇ ·M+ (FT ·T)× −m
) ·ψψψ] dV

+

∫
∂V

[(n ·T− φφφ) · u+ (n ·M−μμμ) ·ψψψ] dS = 0. (7.21)
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Another method of derivation of (7.21) is presented in Pietraszkiewicz and Ere-
meyev (2009). Considering admissible variations, from (7.21) it follows the equi-
librium equations and the corresponding natural boundary conditions.

For example, when the translations and rotations are both fixed on ∂V we have
that

u = 0, ψψψ = 0 X ∈ ∂V (7.22)

and the surface integral in (7.21) vanishes. So (7.22) play a role of incremental
kinematic boundary conditions in the micropolar elasticity. Obviously, there is a
straightforward correspondence between (7.22) and standard kinematic relations

x = x0, Q = Q0 X ∈ ∂V,

where x0 and Q0 are given vector and tensor-valued functions, QT
0 = Q−1

0 .
If u and ψψψ do not vanish on ∂V from (7.21) we have∫

∂V

[(n ·T− φφφ) · u+ (n ·M−μμμ) ·ψψψ] dS = 0. (7.23)

Equation (7.23) constitutes a weak form of a natural boundary conditions. In par-
ticular, if u and ψψψ are arbitrary, Eq. (7.23) results in the natural static boundary
conditions

n ·T = φφφ, n ·M = μμμ. (7.24)

In what follows we consider a case intermediate between (7.22) and (7.24). In
other word we will consider kinematic constraints that are relations between u and
ψψψ given on ∂V or its part.

7.4 Non-holonomic Kinematic Boundary Conditions

In the analytical mechanics are known various incremental constraints on gener-
alized variables. These constraints can be holonomic or non-holonomic, see, e.g.,
Lurie (2001). First, we formulate an incremental boundary condition as a linear re-
lations between u and ψψψ

L1 · u+ L2 ·ψψψ = 0, (7.25)

where second-order tensors L1 and L2 depend on x, Q, and their spatial gradients,
in general. Let us note that (7.25) does not correspond to any constrain written in
terms of x and Q, in general. So we call (7.25) non-holonomic boundary condi-
tions. Such incremental constraints are known in the analytical mechanics, see, e.g.,
Lurie (2001). Such constraints can be applied using Lagrange multiplier technique
or through the direct solving of (7.25) with respect to one on the variables. The
conservatives conditions for micropolar solids and rigid bodies including action of
external moments were discussed by Eremeyev and Zubov (1994); Zelenina and
Zubov (2000).
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For example, assuming that L2 is invertible from (7.25) we get that

ψψψ = −L−1
2 · L1 · u.

Substituting this into (7.23) we have

n ·T− (n ·M−μμμ) · L−1
2 · L1 = φφφ. (7.26)

Obviously, the using of the Lagrange multipliers technique gives the same result.
Indeed, introducing a Lagrange multiplier λλλ we add to (7.23) the expression∫

∂V

λλλ · (L1 · u+ L2 ·ψψψ) dS = 0.

So we get∫
∂V

[(n ·T−φφφ) · u+ (n ·M−μμμ) ·ψψψ + λλλ · (L1 · u+ L2 ·ψψψ)] dS = 0. (7.27)

From (7.27) it follows that

n ·T− φφφ+ λλλ · L1 =0, (7.28)
n ·M−μμμ+ λλλ · L2 =0. (7.29)

Assuming again that L2 is invertible we exclude λλλ from (7.29)

λλλ = −(n ·M−μμμ) · L−1
2 . (7.30)

Finally, substituting λλλ into (7.28) we get (7.26).
Let us consider particular cases of (7.25). Obviously, Eqs. (7.22) present the

trivial case of (7.25). Indeed, (7.22) follows from (7.25) with L1 = L2 = 0. Another
case is sliding with free rotations at the boundary, n · u = 0, ψψψ has arbitrary values.
This case corresponds to L1 = n ⊗ n, L2 = 0. Eq. (7.23) results in the following
static boundary conditions

(n ·T−ϕϕϕ) ·A = 0, n ·M = μμμ,

where A = I− n⊗ n.
Another assumption leading to (7.25) can be motivated as follows. Let us as-

sume that the material particles behave as rolling stones in the vicinity of the body
boundary. Assuming the same relation between u and ψψψ as for linear and angular
velocities of a rigid body rolling on a surface we get

u = rn×ψψψ. (7.31)

Here r plays a role of a characteristic length of a micropolar medium. For example,
it is the distance between the mass center of a material particle and its boundary.
Eq. (7.31) means that L1 = I and L2 = rn×I.Note that here L2 is a singular tensor
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whereas L1 is invertible. This constraint results in the following natural boundary
condition

n ·M− rn ·T× n = μ− rφφφ× n. (7.32)

Let us consider more general case of non-holonomic surface constraints. We use
the following linear relation

L1 · u+ L2 ·ψψψ + L3 : ∇u+ L4 : ∇ψψψ = 0, X ∈ ∂V. (7.33)

Here L3 and L4 are third-order tensors depending on x, Q and their gradients.
Eq. (7.33) is a system of first-order partial differential equations which first integral
can be found through the characteristic technique, see, e.g., Arnold (2004). Instead
we again use the Lagrange multiplier approach. Now instead of (7.23) we have∫

∂V

[(n ·T− φφφ) · u+ (n ·M−μμμ) ·ψψψ
+λλλ · (L1 · u+ L2 ·ψψψ + L3 : ∇u+ L4 : ∇ψψψ)] dS = 0. (7.34)

In order to transform (7.34) using the integration by parts we represent ∇ as a sum
of the surface gradient and normal derivative

∇ = ∇s + n
∂

∂n
,

where ∂
∂n is the derivative with respect to the coordinate normal to ∂V . Using the

surface divergence theorem (Eremeyev et al, 2018) we apply the following integra-
tion by parts formula∫

A

Y : ∇sy dS =

∫
∂A

ννν ·Y · y ds−
∫
A

[(∇s ·Y) · y + 2Hn ·Y · y] dS (7.35)

for any fields Y and y. Here 2H = −∇s · n is the mean curvature of a surface A
with the contour ∂A, and ννν is the normal to ∂A such that ννν · n = 0, see Fig 7.1.

With (7.35) we have

Fig. 7.1 For the surface
divergence theorem: surface
A with contour ∂A. The unit
vectors n, ννν, and τττ are defined
along ∂A. Here n is the unit
vector normal to A, τττ is the
unit vector tangent to ∂A,
whereas ννν is the unit vector
lying in the tangent plane to
A and normal to ∂A.

n

n

ννν

A

s
τττ

∂A
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∂V

λλλ · L3 : ∇u dS =

∫
∂V

λλλ · L3 :

(
n
∂u

∂n

)
dS

−
∫
∂V

[∇ · (λλλs · L3) + 2Hn · (λλλ · L3)] · u dS, (7.36)∫
∂V

λλλ · L4 : ∇ψψψ dS =

∫
∂V

λλλ · L4 :

(
n
∂ψψψ

∂n

)
dS

−
∫
∂V

[∇s · (λλλ · L4) + 2Hn · (λλλ · L4)] ·ψψψ dS. (7.37)

Here we assumed that ∂∂V = ∅.
With (7.36) and (7.37) Eq. (7.34) results in

(λλλ⊗ n) : L3 =0, (7.38)
(λλλ⊗ n) : L4 =0, (7.39)

n ·T− φφφ+ λλλ · L1 =∇s · (λλλ · L3) + 2Hn · (λλλ · L3) , (7.40)
n ·M−μμμ+ λλλ · L2 =∇s · (λλλ · L4) + 2Hn · (λλλ · L4) . (7.41)

From (7.38) and (7.39) it follows that the curvature dependent terms in (7.40) and
(7.41) are vanishing. So we get

n ·T− φφφ+ λλλ · L1 =∇s · (λλλ · L3) , (7.42)
n ·M−μμμ+ λλλ · L2 =∇s · (λλλ · L4) . (7.43)

For simplicity let us restrict ourselves by the case of L3 and L4 which have the
following property

(a⊗ n) : L3 = 0, (a⊗ n) : L4 = 0 ∀a. (7.44)

Then (7.38) and (7.39) vanish identically. The properties (7.44) means that the non-
holonomic kinematic boundary constraint (7.34) takes the form

L1 · u+ L2 ·ψψψ + L3 : ∇su+ L4 : ∇sψψψ = 0, X ∈ ∂V. (7.45)

As an example of (7.33) or (7.45) let us recall the boundary conditions used in
the micropolar hydrodynamics, see Migoun and Prokhorenko (1984); Łukaszewicz
(1999), where the following relations between angular ωωω and linear v velocity was
discussed

ωωω =
α

2
∇× v.

Here α is a material parameter, 0 ≤ α ≤ 1. Note that the constraint ωωω = 1
2∇× v is

used in the theory of couple stresses (Cosserat continuum with constrained rotations
or Cosserat pseudocontinuum), see Nowacki (1986).

Assuming similar relation between virtual rotations and translations we get

ψψψ =
α

2
∇× u, (7.46)
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which is a particular case of (7.33). Indeed, (7.46) follows from (7.33) with

L1 = 0, L2 = I, L3 = 1
2αI× I, L4 = 0.

Here we used the following identity:

(I× I) : ∇u = −∇× u.

From the physical point of view (7.46) means that the micro-rotations depends on
macro-rotations on the boundary. In other words with (7.46) we model interactions
between the medium and its boundary.

Thus, (7.38) and (7.39) result in one constraint

(λλλ⊗ n) : L3 =n · (λλλ · L3) =
α

2
n · (λλλ · I× I) =

α

2
n · (λλλ× I) =

α

2
n · (I× λλλ)

=
α

2
n× λλλ = 0,

which means that λλλ is normal to ∂V : λλλ = Λn.
Eq. (7.41) transforms into

n ·M−μμμ+ λλλ =0,

so one easily finds λλλ from it

λλλ = Λn, Λ = −(n ·M−μμμ) · n. (7.47)

With (7.47) and identities

∇s · (λλλ · L3) =
α

2
∇s · (λλλ · I× I) =

α

2
∇s × λλλ,

∇s × (Λn) = ∇sΛ× n,

we exclude λλλ from Eq. (7.40), which takes the following form

n ·T+
α

2
∇s [(n ·M−μμμ) · n]× n =φφφ, (7.48)

which plays a role of the natural boundary condition complementary to (7.46).
Let us note that (7.48) can be also derived without using of Lagrange multiplier

technique. To this end one have to transform the variational equation∫
∂V

[
(n ·T− φφφ) · u+

α

2
(n ·M−μμμ) · (∇× u)

]
dS = 0.

with integration by parts.
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7.5 Conclusions

Within the nonlinear micropolar elasticity we introduced the non-holonomic kine-
matic boundary conditions. These conditions are formulated as linear relations be-
tween virtual translations and rotations. In other words we presented new incre-
mental kinematic boundary conditions. The corresponding natural static boundary
conditions are also derived. As for the derivation we used the principle of virtual
work, the discussed results extend the class of possible boundary conditions also
for inelastic micropolar materials such as considered by Altenbach and Eremeyev
(2014). Let us note that, though the boundary condition for the translation field and
its natural static counterpart is physically clear, for microrotation there is no general
agreement on the vorticity of complex materials on the boundary and on the type of
the corresponding boundary condition for the field of microrotation.

It is worth to underline that after Sedov (1965) and Germain (1973a,b) this varia-
tional approach became a powerful tool for modelling of media with microstructure,
see also discussion by dell’Isola et al (2017); Eugster and dell’Isola (2017, 2018a,b).
So in a similar way non-holonomic boundary conditions can be introduced for other
generalized media, such as strain gradient elasticity. For the virtual work and the
least action principles in strain gradient solids and fluids we refer to Auffray et al
(2015); Abali et al (2015, 2017); Eremeyev and Altenbach (2014); Eremeyev (2016)
and the reference therein. In particular, such boundary equations could be useful for
modelling of the behaviour of complex fluids in the vicinity of a free surface and/or
interface.
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Chapter 8

Nonlinear Localized Waves of Deformation in

the Class of Metamaterials as Set as the

Mass-in-mass Chain

Vladimir I. Erofeev, Daniil A. Kolesov & Alexey O. Malkhanov

Abstract A well-known mathematical model representing a chain of oscillators con-
sisting of elastic elements and masses, each containing an internal oscillator and de-
scribing the class of acoustic metamaterials "mass-in-mass", is generalized by tak-
ing into account the nonlinearity of the external and (or) internal elastic elements.
As a result of analysis of the long-wavelength approximation of the obtained sys-
tem, it is shown that spatially localized nonlinear deformation waves (solitons) can
be formed in a metamaterial, under dynamic influence on it. The dependencies con-
necting the parameters of a localized wave are determined: amplitude, velocity and
width with inertial and elastic characteristics of the metamaterial.

Keywords: Mathematical modeling · Nonlinear waves · Metamaterial · Mass-in-
mass chain · One-dimensional system

8.1 Introduction

The development of modern technologies is impossible without the creation of new
promising materials with unusual properties. For example, defect-free carbon nan-
otubes are two orders of magnitude stronger and four times lighter than steel. Cur-
rently, a new class of substances with a complexly organized internal structure (mi-
crostructure) and possessing unique physicomechanical properties is called meta-
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materials. They first appeared in the field of optics and photonics (Cummer et al,
2016; Zhu and Zhang, 2018), but now they are increasingly found in other areas.
For example, acoustic metamaterials (Zhang et al, 2009; Burov et al, 2011; Nor-
ris and Haberman, 2012; Deymier, 2013; Craster and Guenneau, 2013; di Cosmo
and Laudato, 2018; Abali et al, 2017; Giorgio et al, 2017; Ming-Hui et al, 2009;
Madeo et al, 2016; dell’Isola et al, 2015, 2016; El Sherbiny and Placidi, 2018)
are widely used, in particular as sound and vibration absorbers as in Bobrovnit-
skii (2014, 2015); Bobrovnitskii et al (2016); Fedotovskii (2015, 2018); Bobrovnit-
skii and Tomilina (2018). Another example of materials with unusual properties are
fullerites—solid structures formed based on fullerenes (Sidorov et al, 2005). Super-
and ultra-hard fullerites are characterized by uniquely high velocities of longitudinal
elastic waves and a wide diapason of these values ranging from 11 km/s to 26 km/s,
depending on their structure, determined by the conditions of synthesis (Blank et al,
1998). The value of 26 km/s measured in one of the fullerite phases is a record—it
is almost 20% more than the speed of longitudinal waves in graphite along atomic
layers equal to 21.6 km/s (until recently this value was the highest for all known sub-
stances) and 40% more than the corresponding speed in diamond (18.6 km/s). The
speeds of transverse waves in solid fullerite phases are also high (their values range
from 7 km/s to 9.7 km/s), but they are still smaller than in diamond (11.6–12.8 km/s)
which remain the highest among currently known substances.

Acoustic (or mechanical) metamaterials, being, in fact, not materials, but cellular
periodic structures, in the long-wavelength range behave like continuous materials.
The study of the features of dispersion, dissipation, and the appearance of nonlin-
earity of acoustic waves in metamaterials is of high interest (Altenbach et al, 2010;
Dreyer et al, 2005; Agranovich et al, 2004; Berezovski et al, 2016; Engelbrecht et al,
2007; Madeo et al, 2015).

Guided by a mathematical analogy between acoustic and electromagnetic waves,
many researchers have tried to construct continuous models of mechanical metama-
terials. However, great success on this path was not achieved, since the mechani-
cal analogs of actually existing materials with negative dielectric constant are de-
formable solids with negative mass, density or negative modulus of elasticity (Li
and Chan, 2004; Fang et al, 2006; Ding et al, 2007; Cheng et al, 2008; Chan et al,
2006). And such materials do not exist in the reality.

It is obvious that an adequate description of the physicomechanical properties
of metamaterials within the framework of the classical theory of elasticity is im-
possible. Recently, generalized micropolar theories of the Cosserat continuum type
(Huang et al, 2009) have become widespread for modeling structurally inhomo-
geneous materials. However, these theories include a large number of material
constants that require experimental determination and whose relationship with the
structure of the material is not clear. This disadvantage is devoid of an alternative
direction—structural modeling as in Altenbach et al (2011); Pavlov and Potapov
(2008). In Pavlov (2010), a one-dimensional chain was considered containing iden-
tical masses m1 connected by elastic elements (springs), having the same rigidity
k1, at the same time each mass inside itself contains another massm2 and one more
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elastic element—a spring with rigidity k2 (see Fig. 8.1). Such a model, called the
mass-in-mass chain, does not give the mentioned absurd results.

8.2 Mathematical Model

We generalize the model in Pavlov (2010) by taking into account the quadratic non-
linearity of the external and internal elastic elements. The potential energy of the
unit cell of the mass-in-mass chain is written as:

W (j) =
1

2

[
k1

(
u
(j+1)
1 − u(j)1

)2

+ k2

(
u
(j)
2 − u(j)1

)2

+h1

(
u
(j+1)
1 − u(j)1

)3

+ h2

(
u
(j)
2 − u(j)1

)2
]
,

(8.1)

and its kinetic energy in the form:

T (j) =
1

2

[
m1

(
ü
(j)
1

)2

+m2

(
ü
(j)
2

)2
]
. (8.2)

Let us suppose that u1 (x) and u2 (x) are continuous functions, which describe
the displacements of all masses m1 and m2, respectively. Taking into account the
expansion of displacements in a Taylor series up to the second term, we obtain

u
(j+1)
1 = u1 (x+ L) = u1 (x) +

∂u1
∂x
L = u

(j)
1 +

∂u1
∂x
L. (8.3)

The technique of expansion displacements in (8.3) was effectively applied by Kunin
(1982) in the transformation of multimass discrete systems into a quasicontinuum.

The densities of the potential and kinetic energies for the equivalent continuum,
obtained from (8.1) and (8.2), can be written in the form:

Fig. 8.1 Infinite mass-in-
mass lattice structure
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W =
1

2L

[
k1

(
∂u1
∂x
L

)2

+ k2(u2 − u1)2+ h1
(
∂u1
∂x
L

)3

+ h2(u2 − u1)2
]
, (8.4)

T =
1

2

[
m1(ü1)

2
+m2(ü2)

2
]
. (8.5)

Let us construct from (8.4) and (8.5) the Lagrange function

L = T −W = L(u̇1, u̇2, u1x, u1, u2)

and take into account equations well known from analytical mechanics⎧⎪⎪⎨⎪⎪⎩
∂

∂t

(
dL

du̇1

)
+
∂

∂x

(
∂L

∂u1x

)
− ∂L

∂u1
= 0

∂

∂t

(
dL

du̇2

)
− ∂L

∂u2
= 0

(8.6)

to get the system of equations in in displacements:

m1

L
ü1 − k1L∂

2u1
∂x2

− 3h1L
3 ∂u1
∂x

∂2u1
∂x2

− k2
L

(u2 − u1)− 3h2
2L

(u2 − u1)2 = 0,

m1

L
ü2 − k2

L
(u2 − u1)− 3h2

2L
(u2 − u1)2 = 0.

(8.7)
Further consider a particular case of system (8.6), where h1 �= 0, h2 = 0, i.e.:

m1

L
ü1 − k1L∂

2u1
∂x2

− 3h1L
3 ∂u1
∂x

∂2u1
∂x2

− k2
L

(u2 − u1) = 0,

m2

L
ü2 +

k2
L

(u2 − u1) = 0

(8.8)

The system (8.8) can be rewritten in the form of single equation:

∂2u2
∂t2

− k1L
2

m1 +m2

∂2u2
∂x2

+
m1m2

k2 (m1 +m2)

∂4u2
∂t4

− k1L
2m2

k2 (m1 +m2)

∂4u2
∂x2∂t2

− 3h1L
4

m1 +m2

(
∂u2
∂x

∂2u2
∂x2

+
m2

k2

∂2u2
∂x2

∂3u2
∂t2∂x

+
m2

k2

∂u2
∂x

∂4u2
∂t2∂x2

+

(
m2

k2

)2
∂3u2
∂t2∂x

∂4u2
∂t2∂x2

)
= 0.

(8.9)

Let us introduce dimensionless variables—time, coordinate, and displacement:

τ=
t

T
, y=

x

X
, u2=u0u. (8.10)

The transformed equation (8.8) with the new variables (8.10) takes the form:
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∂2u

∂τ2
− k1L

2

m1 +m2

T 2

X2

∂2u

∂y2
+

m1m2

k2 (m1 +m2)

1

T 2

∂4u

∂τ4

− k1L
2m2

k2 (m1 +m2)

1

X2

∂4u

∂y2∂τ2
− 3h1L

4

m1 +m2

T 2u0
X3

(
∂u

∂y

∂2u

∂y2
+
m2

k2

1

T 2

∂2u

∂y2
∂3u

∂τ2∂y

+
m2

k2

1

T 2

∂u

∂y

∂4u

∂τ2∂y2
++

(
m2

k2

1

T 2

)2
∂3u

∂τ2∂y

∂4u

∂τ2∂y2

)
= 0.

(8.11)
We require that all the coefficients (8.11) are finite or small. We choose them so that
among the nonlinear terms we can distinguish only one, the main item.

All the subsequent arguments are valid if two conditions are satisfied:

k1L
2

m1 +m2

T 2

X2
= 1 and

m1m2

k2 (m1 +m2)

1

T 2
= ε, ε� 1. (8.12)

When these conditions are fulfilled, in equation (8.11) some of the terms can be
discarded, since they have a larger order of smallness and do not have a significant
effect on dynamic processes. Thus, equation (8.11) takes the form:

∂2u

∂τ2
− ∂

2u

∂y2
+ ε

∂2

∂τ2

[
∂2u

∂τ2
− α∂

2u

∂y2

]
= δ
∂u

∂y

∂2u

∂y2
, (8.13)

where
m1m2

k2 (m1+m2)

1

T 2
=ε�1,

3h1Lu0
√
εα

k1

√
k1

k2

m2

m1

=δ�1, α=m1+m2

m1
> 1.

(8.14)

Returning to the original dimensional variables in equation (8.13), we obtain the
simplified equation (8.8) in the form:

∂2u2
∂t2

− k1L
2

m1 +m2

∂2u2
∂x2

+
m1m2

k2 (m1 +m2)

∂4u2
∂t4

− k1L
2m2

k2 (m1 +m2)

∂4u2
∂x2∂t2

− 3h1L
4

m1 +m2

∂u2
∂x

∂2u2
∂x2

= 0.

(8.15)

8.3 Nonlinear Stationary Waves

We will seek the solution to this equation in the class of traveling stationary waves:
u2 = u2 (ξ) , ξ = x − V t, V – velocity of the stationary wave (unknown be-
forehand). With respect to deformation du2

dξ = U the nonlinear partial differential
equation (8.15) reduces to the anharmonic oscillator equation:
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d2U

dξ2
+ aU + bU2 = 0,

a =
k2 (m1 +m2)

(
V 2 − c21

)
m1m2 (V 2 − c22)

, b =
3h1L

4k2
2V 2m1m2 (V 2 − c22)

,

c21 =
k1L

2

m1 +m2
, c22 =

k1L
2

m1
.

(8.16)

Let us note that c2 > c1. Depending on the value of the velocity V , there are
qualitatively different wave patterns, since equation (8.16) has different solutions
in Erofeev et al (2002). Only the solutions which at infinity do not give a constant
component for the strain wave U have physical meaning.

If the velocity of the stationary wave satisfies inequality: c2 > c1 > V , then
equation (8.16) has a periodic solution expressed in terms of an elliptic sine:

U (ξ) =
A

3s2

(
1 + s2 −

√
1− s2 + s4

)
−A · sn2 (Qξ, s) , (8.17)

where A = − 3a
2b

s2√
1−s2+s4

– amplitude of the stationary wave, s– elliptic function

module, Q =
√

k1

4V 2m2

√
1−s2+s4

– nonlinear analog of the wave number.

It can be seen that Q ∼ √
k1, Q ∼ 1√

m1
, Q ∼ 1

V when the other variables are
fixed.

In the Fig. 8.2 the dependence Q ∼ √
k1 is depicted: curve 1—the qualitative

form of this dependence at a fixed velocity and internal mass of the element; curve
2—the trend of the behavior of the graph of the dependence with increasing mass
and fixed value of velocity; curve 3—increase in velocity by the same order that
the mass was increased in the previous case; curve 4—increase of both parameters.
From the analysis of curves 2 and 3 and from the assumption that the mass, in
comparison with the velocity, is a much more static parameter, we can conclude that
the most significant effect on this dependence is exerted by speed.

In the Fig. 8.3 the dependence Q ∼ 1√
m1

is shown: curve 1—a qualitative repre-
sentation of this relationship at a fixed velocity and stiffness of the external spring of

Fig. 8.2 The dependence
of the wave number on the
rigidity of the external elastic
element of the system
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Fig. 8.3 The dependence
of the wave number on the
internal mass of the system
element

the system element; curve 2—the trend of behavior of the graph of the dependence
with increasing velocity and constant rigidity; curve 3—increase in rigidity by the
same order, which was increased velocity in the previous case; line 4—increase of
both parameters. From the analysis of the form of the curves 2 and 3 it can be seen
that an increase in the parameters leads to a shift in the dependence curve in differ-
ent directions. From the analysis of the curve 4 it follows that shows that the change
in speed is “stronger.”

In the Fig. 8.4 the dependence Q ∼ 1/V is depicted: curve 1—qualitative form
of the relationship with fixed internal mass and stiffness of the external spring of
the system element; curve 2—trend of behavior of the graph of the dependence with
increasing mass and constant rigidity; curve 3—increase in rigidity by the same
order that the mass was increased in the previous case. When both parameters are
increased by the same order, the function graph coincides with curve 1. From the
analysis of the curves it can be concluded that these parameters have the same in-
fluence on the indicated dependence.

The qualitative form of the periodic wave is shown in Fig. 8.5, where, through
K (s) the elliptic integral of the first kind is denoted.

If the velocity of the stationary wave satisfies the inequality c2 > V > c1,
then equation (8.16) has an aperiodic solution, expressed in terms of the hyperbolic
cosine:

U (ξ) = Ac cosh
−2

(
ξ

Δ

)
. (8.18)

This relation describes a solitary stationary wave (soliton) of deformation. Here
Ac = − 3a

2b – the amplitude of soliton,Δ = 2√−a
– the width of soliton. The analysis

of the latter shows that Δ ∼ V, Δ ∼ 1√
k2
, Δ ∼ √

m2.
In the Fig. 8.6 the dependenceΔ ∼ V is shown: curve 1 is a qualitative represen-
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Fig. 8.4 The dependence
of the wave number of a
stationary wave on its speed

Fig. 8.5 Qualitative represen-
tation of the periodic wave

Fig. 8.6 The dependence of
the soliton width on its speed

tation of this relationship for fixed internal spring stiffness and internal mass of the
system element; curve 2—the trend of behavior of the graph of the dependence with
increasing of the mass and constant rigidity; curve 3—increase in rigidity by the
same order that the mass was increased in the previous case. When both parameters
are increased by the same order, the function graph coincides with curve 1. From
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the analysis of the curves it can be concluded that these parameters have the same
effect on the indicated dependence.

In the Fig. 8.7 the dependence Δ ∼ 1/
√
k2 is depicted: curve 1—the qualita-

tive form of this dependence at a fixed velocity and internal mass of the element
of the system; curve 2—the trend of the behavior of the graph of the dependence
with increasing velocity and constant mass; curve 3—increase in mass by the same
order, which was increased velocity in the previous case; line 4—increase of both
parameters. From the analysis of the curves 2 and 3 it can be seen that an increase in
speed leads to a stronger shift up of the graph. Consequently, the change in velocity
“stronger” affects the width of the soliton.

In the Fig. 8.8 the dependence Δ ∼ √
m2 is shown: curve 1—a qualitative rep-

resentation of this relationship at a fixed velocity and stiffness of the internal spring
of the element; curve 2—the trend of behavior of the graph of the dependence with
increasing velocity and constant rigidity; curve 3—increase in rigidity by the same
order, which was increased velocity in the previous case; curve 4—increase of both

Fig. 8.7 The dependence
of the soliton width on the
rigidity of the internal elastic
element of the system

Fig. 8.8 The dependence
of the soliton width on the
internal mass of a system
element
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Fig. 8.9 The qualitative rep-
resentation of a soliton

parameters. From the analysis of the form of curves 2 and 3 and from the assumption
that the rigidity is a much more static parameter in comparison with the velocity, it
can be concluded that the most significant effect on this dependence is exerted by
speed.

The qualitative form of the soliton of deformations is shown in Fig. 8.9.
If the velocity of the stationary wave satisfies the inequality: V > c2 > c1, then

the equation (8.16) has a periodic solution expressed in terms of an elliptic sine:

U (ξ) =
A

3s2

(√
1− s2 + s4 − 1− s2

)
+A · sn2 (Qξ, s) , (8.19)

where

A = −3a

2b

s2√
1− s2 + s4 , Q2 = a

4
√
1−s2+s4

. (8.20)

The dependencies shown in Figs. 8.2, 8.3, 8.4 remain valid for this case.

8.4 Conclusions

As a result of analysis of the long-wavelength approximation of the obtained sys-
tem, it is shown that spatially localized nonlinear deformation waves (solitons) can
be formed in a metamaterial, under dynamic influence on it. The dependencies con-
necting the parameters of a localized wave are determined: amplitude, velocity and
width with inertial and elastic characteristics of the metamaterial.
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Chapter 9

Modelling of a Hydrogen Saturated Layer

Within the Micropolar Approach

Ksenia Frolova, Elena Vilchevskaya, Vladimir Polyanskiy & Ekaterina Alekseeva

Abstract This paper is concerned with modeling the strongly inhomogeneous hy-
drogen distribution over a sample by means of the micropolar continuum approach.
The presence of micro-cracks covering the lateral surface of the sample is modeled
by means of a distributed couple stress prescribed as a boundary condition. The ap-
plied couple stress produces a longitudinal displacement in return, which quickly
fades away from the surface. The tensile displacement increases the intergranular
space in the vicinity of the sample boundary and initiates hydrogen absorption from
the environment. A comparison between widths of the surface layer that were exper-
imentally determined and the ones that were analytically obtained allows estimating
a value of one of the non-classical elastic parameters.

9.1 Introduction

Modern materials operate under extreme loads and in corrosive environments. The
combined effect leads to stress corrosion cracking in metals (Jones, 2017), as well
as to hydrogen-induced embrittlement (Koyama et al, 2012; Kyoung et al, 2009;
Zhang et al, 2015). Experiments based on mass spectrometry and electron mi-
croscopy show that water vapor in the air is a source of hydrogen and that, in turn,
the hydrogen leads to a decrease of strength, crack resistance and endurance lim-
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Fig. 9.1 Fractography of the sample after hydrogenation and fatigue test

its (Khrustalev et al, 1989). These effects are observed in samples saturated with
hydrogen made from different types of materials, namely nickel, titanium, copper,
aluminum alloys, and steel.

A number of articles were devoted to the investigation of hydrogen accumula-
tion inside metals placed in an aggressive environment (Hadam and Zakroczym-
ski, 2009; Martinsson and Sandström, 2012; Omura et al, 2016; Wu et al, 2015;
Yagodzinskyy et al, 2011). Direct measurements of hydrogen concentrations, as
well as mathematical modeling of hydrogen accumulation, show that the hydro-
gen is unevenly distributed and that there is a significant excess of its concentration
within a thin boundary layer of the metal (Martinsson and Sandström, 2012; Wu
et al, 2015). A highly heterogeneous distribution of hydrogen within the samples is
also observed when fatigue test are performed with non-hydrogen-charged samples
placed in air environment (Belyaev et al, 2017a,b). In Fig. 9.1 the fractography of
a sample made of alloy 718 after hydrogen charging and fatigue test is shown. In
this case, the hydrogen concentration in a thin boundary layer with an approximate
thickness of about 100 μm exceeds 10–100 times the volumetric concentration.

It is known that the lateral surfaces of samples are covered with fractal oriented
dislocations that, in turn, lead to micro-crack formation as in Betekhtin et al (2009);
Kramer et al (2005); Steffens et al (1987). Detailed examinations of the surface layer
in Steffens et al (1987) show that its grains or parts of a uniform mono-crystal rotate
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and create empty spaces near the boundary. These additional empty spaces initiate
the seepage of hydrogen from the external environment into the material. Thus, the
non-homogeneous distribution of hydrogen over the sample can be explained by
the existence of a lengthwise displacement appearing due to grain rotations in the
vicinity of the lateral surface.

In other words, the theoretical interpretation of this phenomena should be con-
nected with the material inner structure, in particular, with introduction of the intrin-
sic length scale parameter characterizing the width of the surface layer with a high
hydrogen concentration. The dependence of mechanical response on the structure
size could not be explained by the classical continuum mechanics since no length
scale enters the constitutive equations. However, different generalized continuum
theories have been successful in addressing a size effect problem. Examples for
generalized continuum theories are the strain-gradient-theory as in Aifantis (1984);
dell’Isola and Seppecher (1997); dell’Isola et al (2012), the micropolar theory as in
Eringen and Kafadar (1976); Eremeyev et al (2012), and the surface-theory as in
Altenbach et al (2010); Eremeyev and Pietraszkiewicz (2014), just to mention the
most popular ones. A modern comparison of the different modelling options, which
must be driven by phenomenology, can be found in dell’Isola et al (2017). In the
present paper we are going to use a micropolar medium theory. As the first attempt
to start the description and see how that approach works we will restrict ourself
to isotropic linear continuum. A detailed discussion about other possible constitu-
tive choices can be found in Eremeyev and Pietraszkiewicz (2016, 2012). Also it
should be noted that although direct consideration of the cracking process is beyond
the scope of the paper, the initial presence of the surface dislocations and microc-
racks is modeled by means of a distributed couple stress on the lateral surface of the
sample. As a result, it will be shown that the prescription of couple stresses on the
boundary leads to the appearance of additional tensile displacements increasing the
intergranular space within the thin surface layer and therefore initiating the highly
heterogeneous distribution of hydrogen.

Considering more complicated models usually involves introducing new parame-
ters. There are four additional isotropic elastic constants in micropolar theory. Three
of them provide a sensitivity to the rotation gradient and the remaining one quan-
tifies the degree of coupling between macro and micro-rotation. Both theoretical
and experimental investigations have been undertaken in order to determine these
material coefficients (Adomeit, 1968; Askar, 1972; Askar and Cakmak, 1968; El-
lis and Smith, 1967; Gauthier and Jahsman, 1975; Lake, 1983, 1995; Liebold and
Müller, 2015, 2016; Perkins and Thompson, 1973; Schijve, 1966; Yang and Lakes,
1981). However, the accomplished work is still far from being complete and these
coefficients are obtained only for a few different materials, namely, graphite, hu-
man bone, and foams. A comparison between the thickness of the high hydrogen
concentration layer observed in experiments and the width of the layer with the an-
alytically obtained tensile displacements allows for an estimate of the value of one
of the non-classical elastic constants. This will be demonstrated in the last section
for the aluminum alloy D16.



120 Ksenia Frolova, Elena Vilchevskaya, Vladimir Polyanskiy & Ekaterina Alekseeva

9.2 Basic Equations of Micropolar Media

Let us consider a geometrically linear micropolar continuum. Its deformations are
described by the standard displacement field, uuu, and an independent microrotation
vector, θ. Then the stretch tensor eee and wryness tensor κ can be introduced in the
following way1 (Eremeyev et al, 2012):

eee = ∇⊗ uuu+ III × θ, (9.1)

κ = ∇⊗ θ, (9.2)

where ∇ is the gradient operator, and III is the unit tensor.
Note that the microrotation vector θθθ is kinematically distinct from the “macroro-

tation,”www, determined by the antisymmetric part of the displacement gradient:

www =
1

2
∇× uuu. (9.3)

The vector θθθ refers to the rotation of body particles, whereas www refers to the
rotation associated with translational motion of nearby body particles. Thus, the
decomposition of the stretch tensor into symmetric and antisymmetric parts yields

eee = ε+ III × (θ −www), (9.4)

where ε = 1/2(∇⊗ uuu+ uuu⊗∇) is the strain tensor of classical linear elasticity.
The constitutive equations for the stress tensor TTT and the couple stress tensorMMM

for linear isotropic Cosserat elasticity are as follows (Eringen and Kafadar, 1976):

TTT = λ (∇ · uuu) III + 2με+ γIII × (θθθ −www), (9.5)

MMM = β1 (∇ · θ) III + β2κ� + β3κ, (9.6)

where λ, μ, γ and βi (i = 1, 2, 3) are independent elastic moduli. λ and μ are
the classical elastic moduli, and γ is a modulus quantifying the degree of cou-
pling between macro and micro rotation fields. The elastic moduli β2 and β3 al-
low to introduce material lengths reflecting effects of the couple stress, for example,
lt =

√
(β2 + β3)/2μ for torsion, or lb =

√
β3/4μ for bending (see, for example,

Gauthier and Jahsman (1975)). When these length parameters vanish, the solutions
obtained from couple stress theory reduce to those of classical elasticity theory. In
perfect crystals and amorphous materials lb and lt are probably submicroscopic; but
might be of the order of the averaged radius of roots of surface cracks (Mindlin,
1964).

The displacement and microrotation vectors can be found from the equilibrium
equations, that in case of absence of body forces and body couples are

1 A cross product between a second-rank tensor AAA = aaakbbbk and vector ccc is realized in the following
way: AAA × ccc = ababab × ccc = aaa (bbb× ccc), i.e. the second vector in the tensor dyad is attached with the
vector ccc.
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∇ · TTT = 0. (9.7)

∇ ·MMM + TTT× = 0, (9.8)

where (aaa⊗ bbb)× = aaa× bbb.
Within the framework of this paper we shall consider a case in which γ → ∞.

This corresponds to a case in which the antisymmetric part of the stretch tensor goes
to zero or, in other words, to an assumption that the macrorotation and microrotation
vectors are equal. It follows that it is the medium with constrained rotation, and the
microrotation is determined by the displacement:

θ =
1

2
∇× uuu. (9.9)

This means that ∇ · θθθ = 0 and therefore parameter β1 does not play any role in
this model. Then Eqn.(9.6) simplifies to

MMM =
1

2
(β3∇⊗ (∇× uuu) + β2 (∇× uuu)⊗∇) . (9.10)

According to Eqn. (9.8) together with Eqns. (9.5), (9.10), (9.4), and (9.3) we can
obtain the following equality:

TTT× = −2γ(θ −www) = −β3�www, (9.11)

where � = ∇ · ∇ is the Laplace operator.
Consequently, the antisymmetric part of the stress tensor can be rewritten as fol-

lows:
TTTA =

β3
4
� (uuu⊗∇−∇⊗ uuu) . (9.12)

As a result we obtain the following equation for the displacement field:

(λ+ μ)∇ (∇ · uuu) + μ�uuu+ β3
4
∇ · � (uuu⊗∇−∇⊗ uuu) = 0. (9.13)

9.3 Axially-symmetrical Problem

In this paper we model the behavior of a cylindrical sample made of metal in an
aggressive environment. In this context let us consider a boundary-value problem
in cylindrical coordinates (r, ϕ, z) dealing with a solid cylinder of radius r0 and
length L subjected to a distributed couple stress, −M0eeeϕ, on its lateral surface.
Whereas a zero displacement field satisfies the equilibrium conditions and guaran-
tees a traction-free lateral surface, the applied couple stress on the lateral surface
produces an additional displacement which is fading away quickly from the surface.

We assume that the problem is axially symmetric and look for a solution with the
following ansatz:
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uuu = uuu (r, z) = ur (r, z)eeer + uz (r, z)eeez, (9.14)

where eeer is the radial unit vector, and eeez is the unit vector along the cylinder axis.
From Eqns. (9.9) and (9.14) it follows that the microrotation vector has only one

component, namely

θ = θϕeeeϕ =
1

2

(
∂ur
∂z

− ∂uz
∂r

)
eeeϕ. (9.15)

In order to obtain the solution for the boundary layer in closed form, we have to
take the following inequalities into account:

∂2ur
∂z2

� ∂2ur
∂r2

,

∂2uz
∂z2

� ∂2uz
∂r2

, (9.16)

∂uz
∂z

� ∂2uz
∂r2

.

Consequently, Eqn. (9.13) reduces to[
λ

(
∂2ur
∂r2

+
∂2uz
∂r∂z

)
+ 2μ

(
∂2ur
∂r2

+
1

2

∂2uz
∂z∂r

)
− β3

2

∂3θϕ
∂z∂r2

]
eeer + (9.17)[

λ
∂2ur
∂z∂r

+ μ

(
∂2uz
∂r2

+
∂2ur
∂r∂z

)
+
β3
2

∂3θϕ
∂r3

]
eeez = 0.

Here the terms of higher order of smallness are discarded.
By introducing non-dimensional parameters

x = 1− r

r0
, z̃ =

z

L
, ξ =

r0
L
, ux =

ur
r0
, uz̃ =

uz
L
, (9.18)

λ̃ =
λ

μ
, δ =

√
β3

4μr20
=
lb
r0
.

we can rewrite Eqn. (9.17) by the following system of equations:(
λ̃+ 2

) ∂2ux
∂x2

−
(
λ̃+ 1

) ∂2uz̃
∂x∂z̃

− δ2 ∂
4uz̃

∂x3∂z̃
= 0, (9.19)

−
(
λ̃+ 1

) ∂2ux
∂x∂z̃

+
1

ξ2
∂2uz̃
∂x2

− δ2
(

1

ξ2
∂4uz̃
∂x4

+
∂4ux
∂x3∂z̃

)
= 0.

By integrating the first equation, we obtain

∂ux
∂x

=
λ̃+ 1

λ̃+ 2

∂uz̃
∂z̃

+
δ2

λ̃+ 2

∂3uz̃
∂x2∂z̃

. (9.20)
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Then the second equation in (9.19) yields

uz̃ − δ2 ∂
2uz̃
∂x2

= 0. (9.21)

Since δ is of small value and the displacement has a finite value, we arrive at the
following solution for uz̃:

uz̃ = A (z̃) exp
(
− x
δ

)
. (9.22)

The solution for the dimensionless radial displacement reads

ux = −A′ (z̃) δ exp
(
− x
δ

)
. (9.23)

By applying non-dimensional parameters, Eqn. (9.15) for the microrotations can be
finally rewritten in the following way:

θϕ =
1

2ξδ
A(z̃) exp

(
− x
δ

)
. (9.24)

As a result the stress tensor has the form

T̃̃T̃T =
1

μ
TTT = 2 exp

(
− x
δ

)(
A′ (z̃) (eeez ⊗ eeez − eeer ⊗ eeer) + 1

ξδ
A (z̃)eeez ⊗ eeer

)
.

(9.25)
Obviously, the smallness of the first two terms is of higher order than the last one

and formally they can be disregarded. However, in order to be sure that the lateral
surface is traction free we will treat A(z) as a constant. Thus the couple stress is
given by

M̃̃M̃M =
1

μL
MMM = 2A exp

(
− x
δ

)(
β2
β3
eeeϕ ⊗ eeer − eeer ⊗ eeeϕ

)
. (9.26)

From (9.26) we obtain the equation for the unknown constant:

eeer ·MMM |x=0 = −M0eeeϕ, → A =
M0

2μL
. (9.27)

So far we have considered a problem without external loads on the faces at the
end. However, either axial tension

FFF = Feeez =

∫
S

Tzzeeez dS

or torsion
MMM t =Mteeez =

∫
S

(rrr × (eeez · TTT ) +Mzzeeez) dS
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can be added. Here S is the cross-sectional area of the cylinder. The particular so-
lutions of these Saint-Venant’s problems are given by Gauthier and Jahsman (1975)
and the total solutions for the medium with constrained rotation are

uuu = −νFr
ES

eeer +

(
Fz

ES
+
M0

2μ
exp

(
− r0 − r

lb

))
eeez, (9.28)

TTT =
F

S
eeezeeez +

M0

lb
exp

(
− r0 − r

lb

)
eeezeeer

for tension and

uuu = C1rzeeeϕ +
M0

2μ
exp

(
− r0 − r

lb

)
eeez,

TTT = C1μr (eeez ⊗ eeeϕ + eeeϕ ⊗ eeez) + M0

lb
exp

(
− r0 − r

lb

)
eeez ⊗ eeer,

MMM = C1(β2 + β3)

(
eeez ⊗ eeez − 1

2
(eeer ⊗ eeer + eeeϕ ⊗ eeeϕ)

)
+ (9.29)

+M0 exp
(
− r0 − r

lb

)(
β2
β3
eeeϕ ⊗ eeer − eeer ⊗ eeeϕ

)
,

C1 =
Mt

S

(
β2 + β3 + μ

r20
2

)−1

for torsion. Here ν = λ/(2(λ + μ)) and E = μ(3λ + 2μ)/(λ + μ) are Poisson’s
ratio and Young’s modulus, respectively.

In both cases, the additional exponential terms play a role only within a thin
surface layer and serves as a correction terms in order to satisfy the boundary con-
dition on the lateral surface. Note that the torsion solution provided in Gauthier and
Jahsman (1975) is traction-free on the lateral surface. However, in the case of the
medium with constrained rotation it has a couple stress on the boundary:

Mrr = −C1

2
(β2 + β3) . (9.30)

9.4 Results

As one can see from the previous section, considering a micropolar media allows
us to obtain an additional displacement along the cylinder axis in the vicinity of
the lateral surface. This tensile displacement increases the intergranular space and
can initiate hydrogen absorption from the environment. In order to estimate the pa-
rameters of the model let us consider a cylindrical sample made of the aluminum
alloy D16, because this material is frequently used in experiments in Andronov
et al (2017). The following values will be used: r0 = 0.0045 m, L = 0.035 m,
μ = 27000 MPa.
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In order to estimate the small parameter δ we correlate the width of the layer with
the additional displacements within the thickness of the boundary layer containing
a higher concentration of hydrogen, x∗. Since uz is exponentially decreasing from
of the surface we define its limit value by χuz̃ |x=0 , where χ is a small parameter.
Thus, the equation for δ can be written in the following way:

δ = − x∗
Ln(χ)

. (9.31)

When taking x∗ = 100 μm/r0 ≈ 0.02 and χ = 0.01 we obtain δ ≈ 0.005.
Recall that δ is related to the non-classic elastic modulus β3 through Eqn. (9.18) as
follows:

β3 = 4μr20δ
2. (9.32)

Therefore, the elastic modulus can be estimated as: β3 ≈ 5 · 10−5 MPa m2.
The dependence of the displacement along the cylinder axis for this value of β3

is shown in Fig. 9.2. The curve is plotted for M0 = −189 kPa corresponding to
A = 0.0001.

Fig. 9.2 Dependence of the tensile displacement on the relative distance from the lateral surface

9.5 Conclusions and Outlook

In this paper two main tasks were accomplished:

• First, an attempt was made to model the strongly inhomogeneous distribution
of hydrogen observed in experiments within a micropolar continuum approach.
The stress-strain state in the sample can be obtained within the theory of classi-
cal elasticity while the situation near the body surface could be depicted more
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accurately by a solution, which is quickly fading away from the border. This so-
lution gives additional tensile displacements in the vicinity of the lateral surface
by means of which the absorption of hydrogen from the environment can be
initiated. Note that we did not consider the hydrogen diffusion but concentrated
on possible reasons of the hydrogen seepage.
• Second, a new method for estimating the additional elastic constants of a

Cosserat medium was proposed. It is based on the comparison between the ex-
perimentally measured width of the surface layer containing the high hydrogen
concentration and the analytically obtained characteristic length from the fading
solution.

More research in this field is planned for the future in order to study the bound-
ary layer emergence within Cosserat elasticity without restriction. At this stage
a medium with constrained rotation was considered. The adopted simplification
allowed us to obtain the analytical solution and to demonstrate feasibility of the
suggested approach. However, the strong coupling between the macro and micro-
rotations does not describe the rotation of grains in a proper manner and should be
softened.

Moreover, it the displacement was supposed to be axially symmetric. This is a
“classical” assumption for a cylindrical sample, but it limits the types of boundary
condition to be prescribed at the lateral surface, namely, the distributed couple stress
caused by microcracks. The microcracks distribution might be non-homogeneously
over the sample surface and therefore leads to a dependence of the couple stress on
the azimuth angle ϕ. Evidently a numerical approach will be required in that case.

In order to estimate the value of the non-classical elastic parameters, further ef-
forts should be devoted to providing experiments with different materials and spec-
imens sizes.
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Chapter 10

Types of Physical Nonlinearity

in the Theory of Constitutive Relations and

the Generalized Poynting Effect

Dimitri V. Georgievskii

Abstract The certain class of constitutive relations are considered that connect the
symmetric stress tensor and the symmetric strain tensor by means of isotropic poten-
tial tensor nonlinear functions in three-dimensional space. The various definitions
of tensor nonlinearity are given as well as their equivalence is shown. From the per-
spective of mathematical theory about the tensor nonlinear functions, an interpreta-
tion of the Poynting effect is given, which is well known in experimental mechanics.
It is demonstrated that such an effect is not necessarily the consequence of tensor
nonlinearity in constitutive relations; instead, it is effected by the quadratic depen-
dence on invariants in certain material functions. Therefore, in the physically linear
case for a small strain, this dependence is absent. Concerning this “order of small-
ness,” the Poynting effect is investigated and a possibility is discussed for simulating
such an effect by means of the tensor linear constitutive relations.

Keywords: stress, strain, constitutive relation, material function, invariant, scalar
potential, establishing experiment, the Poynting effect, tensor nonlinearity

10.1 Various Definitions of Tensor Nonlinearity and Their

Equivalence

In the theory of constitutive relations for isotropic media, the considerable place
belongs to the scleronomous models for which a connection of the strain tensor,
ε̃, and the stress tensor, σ̃, are given in three-dimensional space by means of the
isotropic tensor nonlinear function,

ε̃ = B0Ĩ +B1σ̃ +B2σ̃
2 , (10.1)
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where Ĩ is the identity tensor of the second rank, B0, B1 and B2 are the material
functions of three independence invariants:

Iσ1 = trσ̃, Iσ2 =
√

tr(σ̃2), Iσ3 = 3
√
tr(σ̃3) , (10.2)

of the tensor σ̃. An extensive literature (see, for example, both the classic and recent
works Rivlin, 1953; Rivlin and Ericksen, 1955; Il’yushin, 1963; Altenbach et al,
1995; Abali et al, 2013; Devendiran et al, 2017; Kulvait et al, 2017) is devoted to
the problems of generality in continuum mechanics of the representation (10.1) and
the inverse one

σ̃ = A0Ĩ +A1ε̃+A2ε̃
2 , (10.3)

where A0, A1 and A2 are the material functions of the invariants:

Iε1 = trε̃, Iε2 =
√

tr(ε̃2), Iε3 = 2
√
tr(ε̃3) , (10.4)

where they can be expressed in B0, B1 and B2.
If the medium has the scalar potential w(Iσ1, Iσ2, Iσ3) such that ε̃ = ∂w/∂σ̃

then the following three potentiality conditions are fulfilled,

∂B0

∂Iσ2
= Iσ2

∂B1

∂Iσ1
,
∂B0

∂Iσ3
= I2σ3

∂B2

∂Iσ1
, Iσ2

∂B1

∂Iσ3
= I2σ3

∂B2

∂Iσ2
, (10.5)

that relate the material functions B0, B1 and B2. The set of conditions (10.5) may
be considered as the system of differential equations with respect to B0, B1 and B2,
which has the first integrals in the certain cases (Georgievskii, 2016b).

Tensor nonlinearity of the function (10.1) is stipulated by presence of the last
term in the right part. If B2 ≡ 0 then this function—just as the corresponding class
of materials—is called quasilinear, i. e. linear in the tensorial sense; but possibly
nonlinear in scalar sense. Among the latter the case of physical linearity corresponds
that B0 linearly depends on Iσ1 and does not depend on Iσ2 and Iσ3, as B1 is
constant.

In this way, a difference from identical zero of the material function B2 in (10.1)
represents the natural definition of tensor nonlinearity. This definition is equivalent
to the fact that the angle between deviators s̃ = σ̃ − Iσ1Ĩ/3 and ẽ = ε̃ − Iε1Ĩ/3 is
not equal to zero identically. Let us prove this.

We assume that σ̃ and ε̃ are not spherical tensors (according to (10.1) and (10.3)
they are either spherical or nonspherical, simultaneously) such that s̃ and ẽ are not
identically zero tensors of the second rank and the angle α = (s̃; ẽ) is defined. We
calculate cosα:

cosα =
s̃ : ẽ√

s̃ : s̃
√
ẽ : ẽ

≡ s̃ : ẽ

Is2Ie2
(10.6)

s̃ : s̃ = J, s̃ : ẽ = JB1 +KB2, ẽ : ẽ = JB2
1 + 2KB1B2 + LB

2
2 (10.7)

where J , K and L are the invariants of stress state depending on Iσ1, Iσ2 and Iσ3
(10.2):
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J = I2σ2−
1

3
I2σ1, K = I3σ3−

1

3
Iσ1I

2
σ2, L =

4

3
Iσ1I

3
σ3− I2σ1I2σ2+

1

6
(I4σ1+ I

4
σ2)

(10.8)
Since s̃ : s̃ > 0 and ẽ : ẽ > 0 then

J > 0, JL−K2 > 0 (10.9)

Using the Hamilton – Cayley theorem, after calculations we write

cosα =

(
1 +

(JL−K2)B2
2

(JB1 +KB2)2

)−1/2

(10.10)

It should be noted that the material function B0 is not present in the expression for
α.

As is obvious from (10.10) that if B2 = 0 and B1 > 0 then s̃ and ẽ are co-
directed, i. e. the unit directing tensors s̃ 0 = s̃/Is2 and ẽ 0 = ẽ/Ie2 are the same.
The statement is also truly in reverse (here it is necessary to use both the inequalities
(10.9). An equivalence of two definitions has been established.

A relative smallness of the tensor nonlinearity effect usually observable in ex-
periments with deformable solids may be treated as a smallness of the angle α. The
relation (10.10) results in the connection in linear approximation of the low values
α and the dimensionless material function B2:

α =
√
JL−K2

B2

JB1
+O(B2

2) (10.11)

If α � 1 then tensor nonlinear effects of material behavior are said to have
the second order of smallness. It is implied that the first order is inherent in the
parameters of stress-strain state caused by presence in (10.1) of the material function
B1.

10.2 Establishing experiments to find the material functions B0,

B1 and B2

Let us pay attention to the establishing experiments to find the function B0, B1

and B2 at any point (Iσ1, Iσ2
, Iσ3

) in the domain of their definition (Georgievskii
(2016a)). For this purpose it is proposed to use long hollow cylindrical specimens
suitable to implement any combination of the following realizable stress states (the
cylindrical coordinates r, θ and z associated with the specimen under consideration
are used)

• uniaxial tension, σzz = a = const;
• torsion, σrθ = b = const;
• longitudinal shear, σrz = c = const;
• uniform compression, σrr = σθθ = σzz = −d = const.
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In the above four cases, the other components of the stress tensor are assumed to be
equal to zero. It is also assumed that in a certain range of the loads a, b, c and d the
stress-strain relation is described by (10.1) and (10.3) with a sufficient accuracy.

Similar establishing experiments are proposed in Georgievskii et al (2012) for
the case when σ̃ and ε̃ are deviators (Iε1 = 0, Iσ1 = 0). For the material func-
tions {A0, A1, A2} and {B0, B1, B2} the following additional relations are valid:
A0 = −A2I

2
ε2/3 and B0 = −B2I

2
σ2/3. In the establishing experiments, hence, it

is required to find two functions B1 and B2 dependent on Iσ2 and Iσ3. By virtue of
incompressibility, in Georgievskii et al (2012) the tensor ε̃ is considered as a strain-
rate tensor in a tensor nonlinear non-Newtonian viscous fluid. It is necessary to men-
tion here the work Placidi et al (2015) devoted to the Gedanken experiments for the
determination of two-dimensional linear second gradient elasticity coefficients as
well as the work Placidi et al (2017) dealing with identification of two-dimensional
pantographic structures.

For our original problem, we have

σrr = σθθ = −d, σzz = a− d, σrθ = b, σrz = c, σθz = 0,
(σ2)rr = b2 + c2 + d2, (σ2)θθ = b2 + d2, (σ2)zz = c2 + (a− d)2,
(σ2)rθ = −2bd, (σ2)rz = c(a− 2d), (σ2)θz = bc,
Iσ1 = a− 3d,
I2σ2 = a2 + 2b2 + 2c2 + 3d2 − 2ad,
I3σ3 = a(a2 + 3c2 + 3d2)− 3d(a2 + 2b2 + 2c2 + d2)

(10.12)
Considering d as some parameter, from (10.12) we express a, b and c in terms of the
invariants (10.2)

a = Iσ1 + 3d,

b2 =
1

2
(I2σ2 − I2σ1 − 4Iσ1d− 6d2)− c2,

c2 =
1

3(Iσ1 + 3d)
(I3σ3 − I3σ1 − 9I2σ1d− 24Iσ1d

2 − 24d3 + 3I2σ2d)

(10.13)

Using (10.1) and (10.3) we determine the strain components εzz , εrθ and εrz:

εzz = B0 +B1(a− d) +B2[c
2 + (a− d)2],

εrθ = B1b− 2B2bd,
εrz = B1c+B2c(a− 2d)

(10.14)

The relations expressed by (10.14) can be considered as the system of equations
to obtain B0, B1 and B2 using the strain components εzz , εrθ and εrz measured
experimentally. This system has the solution

B0 = εzz + (d2 − a2 − c2)εrz
ac

+ (c2 − d2 + ad)εrθ
ab
,

B1 = 2d
εrz
ac

+ (a− 2d)
εrθ
ab
,

B2 =
εrz
ac

− εrθ
ab

(10.15)
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which is unique if
a �= 0, b �= 0, c �= 0 (10.16)

Thus, in order to specify the material functions, B0, B1 and B2, the experiments
should follow the following steps:

1. The choice of the invariants Iσ1, Iσ2 and Iσ3 as the arguments of the functions
B0, B1 and B2.

2. The calculation of a, b and c on the basis of (10.13) with a fixed value of d as a
parameter.

3. The perfomance of experiments using a hollow cylindrical specimen with the
stresses a, b, c, d and the measurements of the components εzz , εrθ and εrz .

4. The calculation of B0, B1 and B2 on the basis of (10.15) at the chosen at step
1 point (Iσ1, Iσ2

, Iσ3
) of three-dimensional space of arguments.

Although the parameter d is not mentioned in (10.16) and the formulas expressed
by (10.13) and (10.15) are also valid for d = 0 the above discussion shows its
importance. Changing this parameter, in the space (Iσ1, Iσ2

, Iσ3
) we can enlarge the

domain where the quantities a, b and c exist and where the denominator of (10.13)
is not equal to zero.

10.3 The Generalized Poynting Effect

Returning to the notion “an order of smallness of tensor nonlinearity effects” dis-
cussed in Sect. 10.1, we should set the question which order of smallness is inherent
in the Poynting effect. During the last century it attracted an attention in experimen-
tal mechanics of solids (Green, 1954; Lurie, 2005; Chen and Chen, 1991; dell’Isola
et al, 1998; Akinola, 1999; Gavrilyachenko and Karyakin, 2000; Goldstein et al,
2015; Misra et al, 2018). Let us at once talk about the so-called generalized Poynt-
ing effect defined in the following way.

The stress tensor is supposed to have in some orthogonal coordinate system the
only identically nonzero component σαβ = σ0(x), α �= β. The stress state of this
type is characterized by the following invariants (10.2), (10.8)

Iσ1 = Iσ3 = 0, Iσ2 =
√
2 |σ0|, J = 2σ20 , K = 0, L = 2σ40/3 . (10.17)

The domain of definition of the material functions B0, B1 and B2 represents the
positive real axis in three-dimensional invariant space. According to Eq. (10.1) the
tensor ε̃ has the following nonzero components:

εαα = εββ = B0(0, Iσ2, 0) + σ
2
0B2(0, Iσ2, 0),

εγγ = B0(0, Iσ2, 0),
εαβ = σ0B1(0, Iσ2, 0) .

(10.18)

Difference from zero of the components εαα and εββ just makes up the essence
of the generalized Poynting effect. We should not dwell here on the equations of
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equilibrium as well as on the compatibility equations which the stresses (10.17) and
the strains (10.18) must comply with. These equations define more exactly a choice
of the material functions B0, B1, B2 and determine the stress σ0(x).

The particular case of the cylindrical coordinate system (α→ θ, β → z, γ → r)
corresponds to the classical Poynting effect observable in experiments with twisted
specimens and thoroughly described in the literature. To simulate this, in Goldstein
et al (2015) they use initial or deformation anisotropy, in other works they choose
various physical nonlinear models of isotropic solids. The formulae (10.18) show
that one can attach the constitutive relations (10.1) to the second group.

The material function B2 being the indication of tensor nonlinearity (as follows
from Sect. 10.1 is contained only in the components εαα and εββ in (10.18). This
fact means that

a) the effect of tensor nonlinearity in the stress-strain state (10.17), (10.18) appears
only in difference of the component εγγ from two remaining diagonal compo-
nents εαα and εββ which are equal to each other;

b) difference of εββ (or εαα) from zero can be a consequence both tensor nonlin-
earity and dependence of the function B0 on the quadratic invariant Iσ2; this
dependence may be realized among them in tensor linear materials when

B0 = B0(Iσ1, Iσ2), B1 = B1(Iσ1, Iσ2), B2 ≡ 0 (10.19)

c) the order of smallness of the component εββ (or εαα), i. e. the generalized
Poynting effect, determines by simultaneous smallness of the angle α which
by virtue of (10.11) equal to

α =
|σ0|√
3

B2

B1
+O(B2

2) (10.20)

and smallness of values of the dimensionless function B0(0, Iσ2, 0) along the
axis Iσ2 > 0.

Below we describe briefly a possibility of simulation of the generalized Poynting
effect using the tensor linear constitutive relations (10.1) with the material functions
(10.19). The second and the third potentiality conditions (10.5) are fulfilled identi-
cally while the first condition (10.5) connects the functions B0 and B1 as follows:

B0 = − ν
E
Iσ1 +

b0
E2
I2σ2, B1 =

1 + ν

E
+

2b0
E2
Iσ1 (10.21)

ε̃ =
1

E

[(
−νIσ1 + b0

E
I2σ2

)
Ĩ +

(
1 + ν +

2b0
E
Iσ1

)
σ̃
]

(10.22)

w(Iσ1, Iσ2) = − ν

2E
I2σ1 +

1 + ν

2E
I2σ2 +

b0
E2
Iσ1I

2
σ2 (10.23)

Here E and ν are the material constants known as Young’s modulus and Poisson’s
ratio, respectively; b0 is the dimensionless material constant which characterizes a
scalar nonlinearity of the constitutive relations (10.22). The potential (10.23) in-
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cludes three constant and when b0 = 0 it turns into the ordinary in linear elasticity
potential of stress with respect to strains. Some other variants of a choice of the po-
tential in conformity to the Poynting effect estimate, contain in Gavrilyachenko and
Karyakin (2000).

By substituting (10.21) to (10.18) we receive

εαα = εββ = εγγ =
2b0
E2
σ20 , εαβ =

1 + ν

E
σ0 (10.24)

The value εββ possesses more high order of smallness in comparison with εαβ if
εββ/εαβ � 1, i. e. b0σ0 � E. It is just the condition that the generalized Poynt-
ing effect within tensor linear connection of stresses and strains represents a phe-
nomenon of the second order. In case of the classical Poynting effect (α → θ,
β → z, γ → r) the formulae (10.24) show that the relative extension εzz is in pro-
portion to square of the strain εθz , which is conversely in proportion to the angle of
twisting. This feature of the Poynting effect is often exploited in the literature.

It is necessary to mention here a so-called inverse Poynting effect as in Gold-
stein et al (2015) consisting in twisting of a specimen by action of one-dimensional
stretching loading. Some off-diagonal components of the strain tensor are not equal
to zero. It is obvious that this phenomenon can not be described by the relations
(10.1) even by arbitrary form of tensor nonlinearity. However, one can simulate it
using anisotropic models of continuum.
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Chapter 11

Eigenstresses in a Nonlinearly Elastic Sphere

with Distributed Dislocations

Evgeniya V. Goloveshkina & Leonid M. Zubov

Abstract The problem of the eigenstresses due to distributed edge and screw dislo-
cations in a hollow nonlinearly elastic sphere is considered. The dislocation density
is given by an arbitrary spherically symmetric tensor field. For a general isotropic
elastic material, the problem is reduced to a one-dimensional nonlinear boundary
value problem. By replacing the unknown functions, the boundary value problem
with nonlinear boundary conditions is transformed to a problem with linear ones.
Numerical solutions are constructed for specific models of compressible and incom-
pressible materials. The analysis of the influence of dislocations on a stress state of
an elastic sphere at large deformations is carried out.

Keywords: Nonlinear elasticity · Dislocation density · Eigenstresses · Large defor-
mations · Spherical symmetry · Rotation tensor

11.1 Introduction

A microstructure of a solid body largely determines the deformation, strength and
other properties. Therefore, a study of the microstructure and its defects is neces-
sary for analyzing the mechanical behavior of many crystalline bodies. There are
many studies on this subject which emphasize such defects as dislocations (Bilby
et al, 1955; Kondo, 1952; Kröner, 1960; Zubov, 1997; Derezin and Zubov, 2011,
1999). Dislocation models are applicable to the description of such phenomena as
crystal growth, fatigue, failure, plastic flow, inelasticity, and also other defects of
crystalline and nanostructured materials (Clayton, 2011; Clayton et al, 2006; Gutkin
and Ovid’ko, 2004; Maugin, 2012; Zhbanova and Zubov, 2016). When there is a lot
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of dislocations in a bounded volume, it makes sense to go to their continuous distri-
bution. In this case, the continuum dislocation theory is used. In the present paper, in
the context of the continuum dislocation theory, the nonlinear eigenstress problem
for a hollow elastic sphere is solved.

The general formulation of the nonlinear equilibrium problem for an elastic
isotropic sphere with an arbitrary spherically symmetric dislocation distribution was
given in Zubov (2014). In a number of special cases, exact spherically symmetric
solutions of the nonlinear dislocation theory were found (Zubov, 2014; Zhbanova
and Zubov, 2016; Goloveshkina and Zubov, 2018). In Zhbanova and Zubov (2016)
within the framework of the harmonic (semi-linear) material model, the exact so-
lution was found for any function characterizing the density of edge dislocations.
In particular, the case of dislocations concentrated on a spherical surface inside a
body was investigated. It was established that this surface was a surface of discon-
tinuity of strains and stresses. In addition to the eigenstress problem, the problem
for a hollow sphere under loading by external or internal hydrostatic pressure was
solved in Zhbanova and Zubov (2016). In Zubov (2014) an analytical solution of
nonlinear elasticity for a hollow sphere made of incompressible material with dis-
tributed screw dislocations of radial direction was obtained. In Goloveshkina and
Zubov (2018), for a special distribution of screw and edge dislocations, a solution
universal in the class of isotropic incompressible elastic bodies was found. With the
help of the solution obtained, the eigenstresses in a solid elastic sphere and in an in-
finite space with a spherical cavity were determined. The interaction of dislocations
with an external hydrostatic loading was also investigated. The dislocation distri-
bution determining the spherically symmetric quasi-solid state of an elastic body
characterized by zero stresses and a nonuniform elementary volumes rotation field
was found.

In this paper, we investigate the general case of a spherically symmetric dis-
location distribution. In this case, the exact solution can not be obtained analyti-
cally. Therefore, the nonlinear boundary value problem is solved numerically. In the
eigenstress problem for an elastic sphere, we use a special technique that allows
one to transform a boundary value problem with nonlinear boundary conditions into
a problem with linear ones. This makes the numerical solving the boundary value
problem for a nonlinear differential equation remarkably easy to perform. A numer-
ical analysis is carried out for the semi-linear material model and the incompressible
Bartenev–Khazanovich material model also known as the Varga model. The solu-
tion obtained describes the effect of distributed screw and edge dislocations on large
spherically symmetric deformations of an elastic sphere.

11.2 Input Relations

We define the dislocation density as a second-rank tensor field α such that the total
Burgers vector of dislocations crossing an arbitrary surface coincides with the flux
of the tensor α through this surface (Nye, 1953; Vakulenko, 1991). The dislocation
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density tensor field must satisfy the solenoidality condition

divα = 0 . (11.1)

Hereinafter, the divergence, rotor, and gradient operators (Lurie, 1990; Lebedev
et al, 2010) are written in coordinates of the reference configuration. We introduce
the deformation gradient (Lurie, 1990; Lebedev et al, 2010)

F = gradR, (11.2)

where R = Xkik is the radius vector of a point of the elastic medium in the de-
formed configuration, Xk (k = 1, 2, 3) are Cartesian coordinates of the body in the
final state, ik are the fixed coordinate base vectors.

In the presence of dislocations in the body, the vector field R does not exist and
the geometric relations (11.2) are replaced by the tensor incompatibility equation
with respect to F:

rotF = α, (11.3)

and the tensor F is called the distortion tensor.
In the absence of mass forces, the equilibrium equations for an elastic medium

(Lurie, 1990; Ogden, 1997) have the form

divD = 0, (11.4)

where D is the asymmetric Piola stress tensor associated with the distortion tensor
F by the constitutive equations of an elastic material (Lurie, 1990; Truesdell, 1977;
Ogden, 1997)

D(F) = dW (G)/dF , G = F · FT . (11.5)

Here,W is the specific energy, G is the metric tensor (the Cauchy strain measure).
In the finite strain theory, along with the Piola stress tensor D we use the sym-

metric Cauchy tensor (Lurie, 1990; Ogden, 1997; Truesdell, 1977)

T = (detF)−1FT ·D (11.6)

and the symmetric Kirchhoff stress tensor also called the second Piola–Kirchhoff
stress tensor

P = D · F−1 . (11.7)

11.3 Spherically Symmetric State

We introduce the spherical coordinates r, ϕ, θ:

x1 = r cosϕ cos θ, x2 = r sinϕ cos θ, x3 = r sin θ,
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where xs (s = 1, 2, 3) are the Cartesian coordinates of a sphere in the reference state.
Then er, eϕ, and eθ are the unit vectors tangent to the coordinate lines, forming the
basis.

The spherically symmetric dislocation distribution (Zubov, 2014) is represented
by the dislocation density tensor

α = α1(r)g + α2(r)d+ α3(r)er ⊗ er , (11.8)
g = eϕ ⊗ eϕ + eθ ⊗ eθ , d = eϕ ⊗ eθ − eθ ⊗ eϕ .

The first and last terms describe the distribution of screw dislocations, while the
second one describes the distribution of edge dislocations. Note that the spherical
symmetry of the tensor field (11.8) means that at all points of the sphere on a spher-
ical surface r = const, the components of the tensor field in the considered basis
are equal. At the same time, the tensor itself is invariant under rotations about the
vector er, that is, for an arbitrary function χ(r), the following equality holds

Q · α ·QT = α, Q = cosχ(r)g + sinχ(r)d+ er ⊗ er .

By virtue of (11.8), the solenoidality condition (11.1) implies the equation deter-
mining the relation between the components α1 and α3 of the dislocation density
tensor:

α1 = α3 +
1

2
rα′3, (11.9)

where ′ denotes the derivative with respect to the radial coordinate. In the following,
the scalar dislocation densities α2 and α3 are assumed to be the given functions of
the radial coordinate r.

According to (Zubov, 2014), for an isotropic material the distortion tensor as
well as the stress tensor are found in the form analogous to the dislocation density
tensor:

F = F1(r)g + F2(r)d+ F3(r)er ⊗ er, (11.10)
D = D1(r)g +D2(r)d+D3(r)er ⊗ er . (11.11)

Taking into account (11.8) and (11.10), the incompatibility equation (11.3) is
reduced to three scalar equations

(rF2)
′ = rα1, F2 =

rα3
2
, F3 = (rF1)

′
+ rα2, (11.12)

and the equilibrium equations (11.4) due to (11.11) reduce to a single equation

dD3

dr
+

2(D3 −D1)

r
= 0 . (11.13)

If the prescribed hydrostatic pressure q0 acts on the outer surface of the sphere
r = r0, and the pressure q1 acts on the inner surface r = r1, then the boundary
conditions for the equation (11.13) will be
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D3(ri) = −qi
[
F 2
1 (ri) +

1

4
α23r

2
i

]
, i = 0, 1 .

In the eigenstress problem, i. e. in the absence of external loads, the boundary con-
ditions become

D3(r1) = 0, D3(r0) = 0 . (11.14)

We compute the determinant of the distortion tensor:

detF = F3

(
F 2
1 +

1

4
r2α23

)
. (11.15)

For physically realizable deformation, it is necessary that detF > 0. Therefore,
from (11.15) it follows that F3 > 0.

The polar decomposition of the distortion tensor has the form F = U ·A, where
the positive definite stretch tensor U and the proper orthogonal rotation tensor A in
compliance with (11.10) are determined by the formulas

U = G1/2 =

√
F 2
1 +

1

4
r2α23g + F3er ⊗ er, (11.16)

A = U−1 · F = cosψ(r)g + sinψ(r)d+ er ⊗ er . (11.17)

Here,

cosψ =
F1√

F 2
1 + 1

4r
2α23

, sinψ =
rα3

2
√
F 2
1 + 1

4r
2α23

. (11.18)

From the representation (11.17) one can see that the orthogonal tensor A describes
a rotation through an angle ψ around the vector er.

Given (11.10), we find the inverse distortion tensor F−1 and the metric tensor G:

F−1 =

(
F 2
1 +

1

4
r2α23

)−1 (
F1g − 1

2
rα3F2d

)
+ F−1

3 er ⊗ er, (11.19)

G = F · FT =

(
F 2
1 +

r2α23
4

)
g + F 2

3 er ⊗ er . (11.20)

The invariants of the tensor G for spherically symmetric deformation are ex-
pressed as follows:

I1 = trG = 2

(
F 2
1 +

1

4
r2α23

)
+ F 2

3 ,

I2 =
1

2

(
tr2G− trG2

)
=

(
F 2
1 +

1

4
r2α23

)2

+ 2F 2
3

(
F 2
1 +

1

4
r2α23

)
, (11.21)

I3 = detG = F 2
3

(
F 2
1 +

1

4
r2α23

)2

.
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For an arbitrary isotropic elastic material, the constitutive equations are repre-
sentable in the form (Lurie, 1990; Truesdell, 1977; Ogden, 1997)

D = (τ1 + I1τ2)F− τ2G ·F+ I3τ3F
−T, τk = 2

∂W (I1, I2, I3)

∂Ik
, k = 1, 2, 3 .

(11.22)
Here, τk are the material response functions dependent on the strain measure invari-
ants.

Substituting (11.10) with account of (11.12) as well as (11.19) and (11.20) into
the constitutive equations (11.22), we obtain the following representations of the
Piola stress tensor components:

D1 = (τ1 + I1τ2)F1 − τ2F1
(
F 2
1 +

1

4
r2α23

)
+ I3τ3F1

(
F 2
1 +

1

4
r2α23

)−1

,

D2 = (τ1 + I1τ2)
rα3
2

− 1

2
rα3τ2

(
F 2
1 +

1

4
r2α23

)
+

1

2
rα3I3τ3

(
F 2
1 +

1

4
r2α23

)−1

,

(11.23)

D3 = (τ1 + I1τ2)F3 − τ2F 3
3 + I3τ3F

−1
3 .

Since the stresses (11.23) are defined through the invariants (11.21) dependent
on F1 and F3, then taking into account the relationship between the tensor F com-
ponents (11.12), the stresses are expressed in terms of one distortion component F1.
Thus, for any isotropic material, the boundary value problem consists of the equi-
librium equation (11.13), which is a second-order nonlinear ordinary differential
equation with respect to the function F1(r), and the nonlinear boundary conditions
(11.14).

As an example, we write this equation explicitly for a semi-linear (harmonic)
material having the following constitutive equations (Lurie, 1990; Ogden, 1997;
John, 1960):

D =
2μ

1− 2ν
(νtrU− 1− ν)A+ 2μF, (11.24)

where μ and ν are the material constants. In the small strain region, the semi-linear
material follows Hooke’s law with the shear modulus μ and the Poisson’s ratio ν.
The differential equation with respect to the distortion F1(r) for the material is
written as follows:

F ′′
1 =

2(2− 3ν)

(ν − 1)r
F ′
1 +

(α2 + rα
′
2) (1− ν) + 2α2(1− 2ν)

(ν − 1)r

+
2ν

(ν − 1)r

(
F 2
1 +

r2α23
4

)−1/2 (
F1F

′
1 +

rα3 (α3 + rα
′
3)

4

)
+

2

(ν − 1)r2

[
2ν

√
F 2
1 +

r2α23
4

+ ν (F1 + rF
′
1 + rα2)− 1− ν

]
×

[
1− F1

(
F 2
1 +

r2α2
3

4

)−1/2
]
.

(11.25)
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The constitutive equations in terms of the Kirchhoff stress tensor for any, includ-
ing an anisotropic, elastic body have the form:

P = 2dW (G)/dG . (11.26)

The semi-linear material belongs to models of an elastic medium, the specific
energy of which is given as a function of the stretch tensor U and not the metric
tensor G. In this case, the symmetric Biot stress tensor is convenient to use:

S = dW/dU . (11.27)

From (11.26) and (11.27), we obtain the formulas connecting the Biot stress tensor
with the Kirchhoff and Piola stress tensors

S =
1

2
(P ·U+U ·P) =

1

2

(
D ·AT +A ·DT

)
. (11.28)

If the material is isotropic, then the specific energy depends on three invari-
ants of the stretch tensor, i. e. W = W (J1, J2, J3), where J1 = trU, J2 =
1
2

(
tr2U− trU2

)
, J3 = detU. Consequently, the tensor S can be rewritten as

S =

(
∂W

∂J1
+ J1

∂W

∂J2

)
I− ∂W

∂J2
U+ J3

∂W

∂J3
U−1 , (11.29)

where I is the unit tensor.
In an isotropic body, the tensors P and U are coaxial and therefore commute:

P ·U = U ·P. Then, S = P ·U = U ·P and S = D ·AT.
Constitutive equations in terms of the Piola tensor for the material with the spe-

cific energyW =W (J1, J2, J3) due to (11.29) will be

D = (η1 + J1η2)A− η2F+ J3η3F
−T, ηk =

∂W

∂Jk
. (11.30)

In the spherically symmetric problem, the invariants J1, J2, J3 are expressed in
F1, F2, F3 using formulas

J1 = 2

√
F 2
1 +

1

4
r2α23 + F3,

J2 = F 2
1 +

r2α23
4

+ 2F3

√
F 2
1 +

1

4
r2α23,

J3 = F3

(
F 2
1 +

1

4
r2α23

)
.

Taking into account (11.10), (11.19), and (11.17), the components of the Piola tensor
are written in the form
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D1 = (η1 + J1η2)

(
F 2
1 +

1

4
r2α23

)−1/2

F1 − η2F1 + J3η3
(
F 2
1 +

1

4
r2α23

)−1

F1,

D2 =
1

2
(η1 + J1η2)

(
F 2
1 +

1

4
r2α23

)−1/2

rα3−η2F2+ J3η3rα3
2

(
F 2
1 +

1

4
r2α23

)−1

,

(11.31)

D3 = η1 + J1η2 − η2F3 + J3η3F−1
3 .

In the case of an incompressible material, the condition detF = I3 = J3 = 1 is
satisfied. Therefore, for the material, the constitutive equations (11.22) are modified
as follows:

D = (τ1 + I1τ2)F− τ2G · F− pF−T, (11.32)

where p is a pressure in an incompressible body not expressed in terms of strain.
Given the incompressibility property, the constitutive equations (11.29) and (11.30)
are reduced to

S = (η1 + J1η2) I− η2U− pU−1,

D = (η1 + J1η2)A− η2F− pF−T .

11.4 Transformation of the Boundary Value Problem

Since the boundary conditions (11.14) of the eigenstress problem are represented
by the stress constraints, then, taking into account their expressions (11.31) in terms
of the distortion, we finally obtain boundary conditions on the distortion. They rep-
resent a nonlinear relation with respect to the function F1 and its derivative F ′

1. To
obtain a boundary value problem with linear boundary conditions, it is necessary
to replace the unknown function. Instead of the equation with respect to F1(r), we
derive a system of equations with respect to D2(r) and D3(r). For this, we need to
solve the problem of inversion of the Piola stress tensor as a function of the distor-
tion tensor: D = h(F), that is, find the tensor functionH , inverse to the function h:
F = H(D). The way to solve the problem for an isotropic material is indicated in
Zubov (1976) and consists of the following. First, a more simple problem of inver-
sion of the dependence S = l(U) between the symmetric tensors is solved, i. e. the
function L such that U = L(S) is founded. Further we have

F = U ·A = L(S) ·A = L
(
D ·AT

) ·A.
The problem of constructing the function F = H(D) will be solved if we express

the rotation tensor A in terms of the Piola stress tensor D. This can be done by
solving the equation with respect to A, expressing the symmetry property of the
Biot stress tensor

D ·AT = A ·DT . (11.33)
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In the spherically symmetric problem considered here, the last equation in view
of (11.11) and (11.17) is equivalent to one scalar relation

D1 sinψ = D2 cosψ . (11.34)

This equation has two solutions:

cosψ =

√
D2

1

D2
1 +D

2
2

, sinψ =
D2

D1

√
D2

1

D2
1 +D

2
2

(11.35)

and

cosψ = −
√

D2
1

D2
1 +D

2
2

, sinψ = −D2

D1

√
D2

1

D2
1 +D

2
2

. (11.36)

If we assume that −π ≤ ψ ≤ π, then the first solution is described by the inequali-
ties

−π

2
≤ ψ ≤ π

2
,

and the second by the inequalities

−π ≤ ψ ≤ −π

2
,

π

2
≤ ψ ≤ π .

From the formula (11.18), it is clear that the first solution corresponds to the
positive F1, and the second to the negative. As shown in Zhbanova and Zubov
(2016), F1 is negative when the eversion deformation of a sphere occurs (Zubov
and Moiseyenko, 1983), and positive in case of spherically symmetric deformation
of a sphere without eversion. Consequently, the second solution corresponds to the
eigenstress problem for the everted sphere with distributed dislocations. We note
that in the absence of dislocations, in a sphere without eversion the stresses are
identically equal to zero, while in an everted sphere the stresses are not zero due to
eversion.

11.5 Problem for Semi-linear Material

Given the constitutive equations of the semi-linear material (11.24), the tensor S is
written as

S =
2μν

1− 2ν
Itr(U− I) + 2μ(U− I). (11.37)

We invert the expression (11.37):

U = I+
1

2μ

(
S− ν

1 + ν
ItrS

)
. (11.38)

Let us find the distortion tensor F by the formula
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F = U ·A . (11.39)

Taking into account (11.38) we have

F = A+
1

2μ

[
D− ν

1 + ν
Atr

(
D ·AT

)]
. (11.40)

Based on (11.11), (11.17), and (11.40), we finally obtain the tensor F, expressed
in terms of the Piola stresses:

F =
1

2μ
[(D1 +K cosψ)g + (D2 +K sinψ)d+ (D3 +K)er ⊗ er] , (11.41)

K =
2μ(1 + ν)− ν [2 (D1 cosψ +D2 sinψ) +D3]

1 + ν
,

where cosψ and sinψ are computed from the formulas (11.35) or (11.36).
The tensor D components are calculated numerically from the system of equa-

tions (11.9), (11.12), (11.13), and (11.41) with the boundary conditions (11.14).
Knowing the Piola stresses, we find the distortion by the formulas (11.41).

11.6 Problem for Incompressible Material

We consider the problem for incompressible material using the Bartenev–Khazanovich
model (Lurie, 1990) as an example. The equations of state of the material have the
form:

D = 2μA− pF−T,

where p is the internal pressure in an incompressible body. Then the tensor S by
virtue of (11.39) is written as

S = 2μI− pU−1 . (11.42)

Then, from the incompressibility condition detU = 1 we find

p = 3
√
det (2μI− S) . (11.43)

Let us invert (11.42) by expressing U and substituting (11.43):

U = 3
√
det (2μI− S) (2μI− S)

−1
. (11.44)

According to (11.17) and (11.44) we derive the tensor (11.39) in the form
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F =
3
√
2μ−D3(B cosψ − C sinψ)

A2/3
g

+
3
√
2μ−D3(B sinψ + C cosψ)

A2/3
d+

3
√
A

(2μ−D3)2/3
er ⊗ er, (11.45)

A = 4μ2 +D2
1 +D

2
2 − 4μ(D1 cosψ +D2 sinψ),

B = 2μ−D1 cosψ −D2 sinψ, C = D2 cosψ −D1 sinψ,

with cosψ and sinψ computed from (11.35) or (11.36).
From the system of equations (11.9), (11.12), (11.13), and (11.45) with the

boundary conditions (11.14), we find the numerical solution of the problem by cal-
culating the stresses and strains.

11.7 Numerical Results

For numerical calculations within the framework of the semi-linear material, we
choose the dislocation distribution

α1 =
γ0
r
, α2 =

β0
r
, α3 =

2γ0
r
,

and for the incompressible material

α3 =
2γ0
r2
, α1 = α2 = 0,

where β0 and γ0 are some constants. The outer radius of the sphere is considered
to be equal to one (r0 = 1), which is equivalent to introducing a dimensionless
radial coordinate. The following numerical results correspond to the value r1 =
0.5. Similarly, assuming μ = 1, we deal with the dimensionless stresses. For the
dimensionless constant ν we take the value ν = 0.3.

According to (11.34), the problem has two solutions since cosψ can be positive
(11.35) or negative (11.36). For the incompressible material, the numerical results
are displayed in the case cosψ > 0 (Figs. 11.11–11.16), and for the semi-linear
material, in the case cosψ > 0 (Figs. 11.1–11.5) as well as cosψ < 0 (Figs. 11.6–
11.10).

It is established that for both material models, the stressesD1 andD2 in absolute
value are maximal on the inner surface of the sphere, and D3 on the surface close
to the inner surface. For the incompressible material, for cosψ > 0 the maximum
stress D1 is an order of magnitude higher than the maximum stresses D2 and D3.

Different curves in each figure illustrate the influence of the dislocation intensity
on a stress-strain state. Thus, for the semi-linear material, the stresses D1 and D3

decrease and become more uniformly distributed over the thickness of the sphere
(Figs. 11.1, 11.3, 11.6, and 11.8), and the stress D2 increases and its distribution
becomes less uniform (Figs. 11.2 and 11.7). In addition, there are spherical sur-
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Fig. 11.1 Semi-linear material, cosψ > 0, β0 = 0.2, stress D1
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Fig. 11.2 Semi-linear material, cosψ > 0, β0 = 0.2, stress D2
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Fig. 11.3 Semi-linear material, cosψ > 0, β0 = 0.2, stress D3
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Fig. 11.4 Semi-linear material, cosψ > 0, β0 = 0.2, distortion F1
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Fig. 11.5 Semi-linear material, cosψ > 0, β0 = 0.2, distortion F3

��� ��� ��� ��� ���
r

��

��

��

�

��

Fig. 11.6 Semi-linear material, cosψ < 0, β0 = 0.2, stress D1
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Fig. 11.7 Semi-linear material, cosψ < 0, β0 = 0.2, stress D2
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Fig. 11.8 Semi-linear material, cosψ < 0, β0 = 0.2, stress D3
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Fig. 11.9 Semi-linear material, cosψ < 0, β0 = 0.2, distortion F1
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Fig. 11.10 Semi-linear material, cosψ < 0, β0 = 0.2, distortion F3
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Fig. 11.11 Incompressible material, γ0 = 0.1, stress D1
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Fig. 11.12 Incompressible material, γ0 = 0.1, stress D2

������

�������

������



152 Evgeniya V. Goloveshkina & Leonid M. Zubov

��� ��� ��� ��� ���
r

���	

����

����

����

����
��

������

�����	�

������

Fig. 11.13 Incompressible material, cosψ > 0, stress D3
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Fig. 11.14 Incompressible material, cosψ > 0, distortion F1
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Fig. 11.15 Incompressible material, cosψ > 0, distortion F2
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Fig. 11.16 Incompressible material, cosψ > 0, distortion F3

faces on which the stress D1 or D2 does not depend on the dislocation density.
For cosψ < 0, this kind of surface is located in the middle between the inner and
outer surfaces of the sphere for D2 (Fig. 11.7) and near the outer surface for D1

(Fig. 11.6). In the case cosψ > 0, for D1 and D2 these surfaces coincide and are
located in the middle (Figs. 11.1 and 11.2). Moreover, on said surfaces these stresses
are zero. For the distortion F3 there also exists a surface r = r∗ on which F3(r∗)
does not depend on the dislocation density, with F3 increasing before the surface
r = r∗ and decreasing after it as moving from the inner surface of the sphere to the
outer one (Figs. 11.5 and 11.10). In the sphere without eversion, the surface consid-
ered is near the inner surface, and in the everted sphere near the outside one. In both
cases, the distortion F2 due to (11.12) and (11.7) is a constant value. The distortion
F1 decreases in absolute value with increasing dislocation density (Figs. 11.4 and
11.9).

For the incompressible material, the stresses D1 and D2, which are approxi-
mately equal, also do not depend on the dislocation density on a certain spherical
surface. Moreover, on this surface they vanish (Figs. 11.11 and 11.12). At different
dislocation densities, on another spherical surface closer to the inner surface of the
sphere, the distortion F3 is about the same. With increasing the dislocations, when
moving away from the inner surface of the sphere, F3 decreases before the consid-
ered surface and increases after it (Fig. 11.16). The higher the dislocation density
the higher the Piola stresses and the less uniformly the distribution of latter. With
that the distortion F1 decreases (Fig. 11.14), and F2 increases (Fig. 11.15).

11.8 Conclusion

In the present paper, we have considered the problem of the nonlinear continuum
dislocation theory for an elastic hollow sphere for an arbitrary spherically symmetric



154 Evgeniya V. Goloveshkina & Leonid M. Zubov

distribution of screw and edge dislocations. The system of solving equations con-
sists of the equilibrium equations, the incompatibility equations, and the constitutive
equations of the elastic medium. Using the properties of spherically symmetric ten-
sor fields, for a general isotropic material we have reduced the original problem to
a nonlinear boundary value problem for an ordinary second-order differential equa-
tion with respect to one component of the distortion tensor. This equation is obtained
in two cases: the specific energy of the material is a function of the metric tensor
invariants and a function of the stretch tensor invariants. The boundary conditions
for a one-dimensional boundary value problem with respect to the distortion are
nonlinear. To simplify the numerical solution of this problem, we have transformed
it to a boundary value problem with the linear boundary conditions. The unknown
functions of the radial coordinate in the transformed problem are the components of
the Piola stress tensor.

We have established that the eigenstress problem for a hollow sphere always has
two spherically symmetric solutions, one of which describes the equilibrium of an
everted hollow sphere with dislocations.

For two specific models of an elastic medium: the compressible semi-linear ma-
terial and the incompressible Bartenev–Khazanovich material, we have constructed
a numerical solution of a one-dimensional boundary value problem, describing the
eigenstresses due to given densities of screw and edge dislocations. Based on the
obtained numerical results, we have analyzed the effect of the intensity of the dislo-
cation distribution and its behavior on a stress state of the sphere at large deforma-
tions.

Acknowledgements The authors acknowledge support by the Russian Science Foundation (18-
11-00069).

References

Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: a new application
of the methods of non-Riemannian geometry. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences A231:263–273

Clayton JD (2011) Nonlinear Mechanics of Crystals. Springer, Dordrecht
Clayton JD, McDowell DL, Bammann DJ (2006) Modeling dislocations and disclinations with

finite micropolar elastoplasticity. Int J Plast 22(2):210–256
Derezin SV, Zubov LM (1999) Equations of a nonlinear elastic medium with continuously dis-

tributed dislocations and disclinations. Doklady Physics 44(6):391–394
Derezin SV, Zubov LM (2011) Disclinations in nonlinear elasticity. Ztsch Angew Math und Mech

91:433–442
Goloveshkina E, Zubov LM (2018) Universal spherically symmetric solution of nonlinear dis-

location theory for incompressible isotropic elastic medium. Archive of Applied Mechanics
Https://doi.org/10.1007/s00419-018-1403-9

Gutkin MY, Ovid’ko IA (2004) Plastic Deformation in Nanocrystalline Materials. Springer, Berlin
John F (1960) Plane strain problems for a perfectly elastic material of harmonic type. Commun

Pure Appl Math XIII:239–296



11 Eigenstresses in a Nonlinearly Elastic Sphere with Distributed Dislocations 155

Kondo K (1952) On the geometrical and physical foundations in the theory of yielding. In: Proc.
2nd Jap. Nat. Congress of Appl. Mechanics, Tokyo, pp 41–47

Kröner E (1960) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch
Ration Mech Anal 4:273–334

Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor Analysis with Applications in Mechanics.
World Scientific, New Jersey

Lurie AI (1990) Nonlinear Theory of Elasticity. North-Holland, Amsterdam
Maugin GA (2012) Defects, dislocations and the general theory of material inhomogeneity. In:

Sansour C, Skatulla S (eds) Generalized continua and dislocation theory. CISM courses and
lectures, vol 537, Springer, Vienna, pp 1–83

Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1(2):153–162
Ogden RW (1997) Non-linear Elastic Deformations. Dover, New York
Truesdell C (1977) A First Course in Rational Continuum Mechanics. Academic Press, New York
Vakulenko AA (1991) The relationship of micro- and macroproperties in elastic-plastic media (in

Russian). Itogi Nauki Tekh, Ser: Mekh Deform Tverd Tela 22(3):3–54
Zhbanova EV, Zubov LM (2016) The influence of distributed dislocations on large deformations of

an elastic sphere. In: Naumenko K, Aßmus M (eds) Advanced Methods of Continuum Mechan-
ics for Materials and Structures, Advanced Structured Materials, vol 60, Springer, Singapore,
pp 61–76

Zubov LM (1976) On the representation of the displacement gradient of an isotropic elastic body
through the Piola stress tensor. PMM 40(6):1070–1077

Zubov LM (1997) Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer,
Berlin

Zubov LM (2014) Spherically symmetric solutions in the nonlinear theory of dislocations. Doklady
Physics 59(9):419–422

Zubov LM, Moiseyenko SI (1983) Stability of equilibrium of an elastic sphere turned inside out.
Izv Akad Nauk SSSR Mekh Tverd Tela 5:148–155



Chapter 12

Fundamental Solution for the Generalized Plane

Stress of a Nanoplate

Mikhail A. Grekov

Abstract The fundamental solution for the generalized plane-stress problem of an
infinite, isotropic elastic plate subjected to a point force is presented taking into ac-
count surface stresses in the plate faces. Constitutive equations is derived using the
stress-strain relations for the bulk material and Gurtin–Murdoch’s linearized surface
elasticity equations for the surfaces of the plate supposing that the residual surface
stress is negligibly small compared with the surface elasticity parameters. The com-
plex relations (Green functions) for the stresses and displacements in the explicit
form are evaluated using Goursat–Kolosov complex potentials and Muskhelishvili
representations. It is shown that in the case of the generalized plane stress, the funda-
mental solution depends on the thickness of the plate that is the size effect intrinsic
to the nanoobjects.

Keywords: Generalized plane stress · Surface stress · Green functions

12.1 Introduction

Fundamental solutions of linear partial differential equations are a basis for the the-
ory of boundary integral equations (e.g. Crouch and Starfield, 1983; Grekov, 2001;
Linkov, 2002)). In the case of the linear theory of elasticity, the simplest solution is
the Kelvin–Somigliana one for the point force in an infinite elastic medium (Love,
2013; Lurie, 2015). Other fundamental solutions of elasticity problems are more
complicated and depend on the shape of boundary as in the case of deformation of
functionally graded isotropic plates under point loading (Abali et al, 2014). Only
a few fundamental solutions for a bounded solid have been obtained in an explicit
form, as, for example, the solutions for an external (Boussinesq, Cerruti) or internal
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(Mindlin) point force in a half-space with a planar boundary, the similar solutions
(Michell, Flaman) for a half-plane (see references in Lurie, 2015) and the solutions
for a point force in an elastic plane with circular inhomogeneity (Grekov, 2010). The
value of such analytical solutions for point forces is that they are used directly for
constructing the boundary integral equations (Grekov, 2001; Savelyeva and Pron-
ina, 2015) and analysis of different problems with the boundary element method
(Crouch and Starfield, 1983).

It is another matter if the properties and behavior of nanomaterials and nanoob-
jects having at least one dimension in the range of 1–100 nm, such as nano-
sized beams, plates and shells, wires and films (e.g. Cammarata, 1994; Miller and
Shenoy, 2000; Digrevile et al, 2005; Eremeyev et al, 2009; Eremeyev and Morozov,
2010), and nanostructures with nanosized inhomogeneities, as inclusions, voids,
cracks, etc. (e.g. Gutkin et al, 2013; Jammes et al, 2009; Mogilevskaya et al, 2008;
Povstenko, 1993; Shodja et al, 2012; Tian and Rajapakse, 2007; Fu et al, 2010) are
studied. Classical approaches developed for solving different problems of solids at
the macrolevel can not be directly applied to the nanostructured materials because
of surface stress effects. In particular, the surface stresses are responsible for the
size-effect, that means the properties of a nanosstructure depend highly on its size
(e.g. Altenbach et al, 2010; Duan et al, 2009; Eremeyev et al, 2009; Eremeyev and
Morozov, 2010; Goldstein et al, 2010; Grekov and Kostyrko, 2016; Grekov and
Yazovskaya, 2014; Miller and Shenoy, 2000; Shenoy, 2005; Shodja et al, 2012;
Tian and Rajapakse, 2007). At the same time, the classical elasticity has been suc-
cessfully extended to the nanoscale by implementation of the theory of elasticity
allowing for the surface stresses the notation of which for the solids was introduced
by Gibbs (1906). The most popular and extensively used model of surface elasticity
for elastic solids was proposed by Gurtin and Murdoch (1975, 1978). The Gurtin–
Murdoch model has been recently applied to many problems of nanomechanics.
(see, for example, Duan et al, 2009; Eremeyev, 2016; Wang et al, 2011). In this
model, the surface of the material is represented as a two-dimensional membrane
type layer of negligible thickness, which does not resist a flexure. For the prob-
lems that comprise wrinkling, bending deformation or large curvature change, the
total surface elasticity energy should be used allowing for both stretch and flex-
ure stiffness of a surface or interface (Chhapadia et al, 2011; Gao et al, 2017). The
corresponding surface elasticity models have been developed by various ways (e.g.
related to coating (or reinforcement) or surface-substrate interactions, see Šilhavý,
2013; Steigmann and Ogden, 1997, among others).

In order to study the effect of surface stresses, numerous boundary value prob-
lems have been solved for elastic solids with nano-inhomogeneities, based on the
Gurtin–Murdoch theory, particularly in the case of the plane problem (e.g. Bauer
et al, 2014; Bochkarev and Grekov, 2014, 2015, 2017; Grekov and Yazovskaya,
2014; Gutkin et al, 2013; Jammes et al, 2009; Mogilevskaya et al, 2008; Shodja
et al, 2012; Tian and Rajapakse, 2007). Only a few that works consider the plane
stress (more exactly, the generalized plane stress) which relates to a thin plate. The
stress field in an infinite plane with the nanometer sized circular hole was derived
in Grekov and Yazovskaya (2014) for the case of plane stress, taking into account
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surface stresses only in the surface of the hole. So, this solution can be only applied
to a thick macro-plate with nanohole when surface stresses existing in the faces of
the plate can be disregarded. The same conclusion is valid also with regard to the
results of investigations of the local instability of a plate with a circular nanohole un-
der uniaxial tension, addressed in Bauer et al (2014); Bochkarev and Grekov (2014,
2015), because the authors of these works use the solution presented in Grekov and
Yazovskaya (2014). Unlike the solutions obtained in Bauer et al (2014); Bochkarev
and Grekov (2014, 2015), the same problem of instability has been correctly solved
for the plate of a nanometer thickness in Bochkarev and Grekov (2017) by tak-
ing into account surface stresses in plate faces. Within the framework of approach
(Bochkarev and Grekov, 2017), the modified Kirsch problem for the case of the gen-
eralized plane stress of a nanoplate was constructed in terms of the effective Young
module and Poisson ratio similar to those introduced by Altenbach and Eremeyev
(2011, 2017); Altenbach et al (2009, 2010) in the theory of plates and shells with
surface stresses.

One can find a few papers where fundamental solutions (Green functions) are de-
rived allowing for surface stresses. Based on different versions of Gurtin–Murdoch
model, these solutions were obtained either under conditions of the plane strain (e.g.
Intarit et al, 2010; Grekov et al, 2017; Grekov and Sergeeva, 2018; Gutkin et al,
2013; Mogilevskaya et al, 2011; Shodja et al, 2012) or for the half-space (He and
Lim, 2006; Koguchi, 2008). All these solutions are expressed in terms of very bulky
series; they are unsuitable for applications in the methods of the boundary integral
equations.

In the present paper, the fundamental solution of the problem for an elastic infi-
nite plate being under the generalized plane stress is constructed incorporating sur-
face stresses in the faces of the plate. First, the constitutive relations are derived in
terms of elastic parameters of bulk materials and surface materials and the thickness
of the plate, based on the Hooke’s law and simplified Gurtin–Murdoch’s surface
elasticity equations. Then, the explicit complex formulas for the stresses and dis-
placements (Green functions) arising due to the action of a point force in the plate
are evaluated using Goursat–Kolosov complex potentials and Muskhelishvili repre-
sentations.

12.2 Problem formulation

We consider the infinite elastic plate D = {(x1, x2, x3) : (x1, x2) ∈ R2, |x3| ≤
h/2}. The plate is subjected to the action of the forces P uniformly distributed at the
section [−h/2,+h/2] of the x3-axis, P = (P1, P2, 0) in the Cartesian coordinates
xj (j = 1, 2, 3). The strains and stresses arising in the bulk material and in the
plate faces due to the applied forces satisfy the following constitutive equations,
respectively:

Σ = 2μE + λI trE, |x3| < h/2, (12.1)
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Σs
± = 2μsEs

± + λsA trEs
±, x3 = ±h/2. (12.2)

Equation (12.1) is the Hooke’s law and Eq. (12.2) is the simplified Gurtin–Murdoch
surface elasticity model as in Gurtin and Murdoch (1975, 1978) in which the resid-
ual surface stress (surface tension) is neglected. In Eqs. (12.1), (12.2), Σ and E are
the three-dimensional stress and strain tensors, I and A = I − e3 ⊗ e3 (e3 is the
unit vector of the x3-axis) are the three- and two-dimensional unit tensors, respec-
tively, λ and μ are Lamé’s coefficients of the bulk material whereas λs and μs are the
similar elastic characteristics of the surface, Σs

± and Es
± are the two-dimensional

surface stress and strain tensors at the plate faces (Es
+ = Es

−). Following Gurtin
and Murdoch (1975); Povstenko (1993), one can express the inseparability condi-
tion in terms of the strains

A ·E|x3=±h/2 = Es
±. (12.3)

Supposing that normal component σ33 of the stress tensor
∑∑∑

equals zero any-
where in the plate and passing to the averages of all quantities (displacements,
strains and stresses) over the thickness of the plate by mean of the standard pro-
cedure (Love, 2013; Muskhelishvilli, 1977), the constitutive equation for the gener-
alized plane stress is brought to the following relation:

Σ̃ = 2μẼ +
2λμ

λ+ 2μ
A tr Ẽ +

2

h

(
2μsẼ + λsA trẼ

)
. (12.4)

Here Σ̃ and Ẽ are the two-dimensional tensors of average stresses σ̃ij and strains
ε̃ij (i, j = 1, 2), respectively. Equation (12.4) can be rewritten in terms of compo-
nents of these tensors as follows

σ̃11 = (λ∗ + 2μ∗)ε̃11 + λ∗ε̃22,

σ̃22 = λ∗ε̃11 + (λ∗ + 2μ∗)ε̃22,

σ̃12 = 2μ∗ε̃12,

(12.5)

where effective elastic modules λ∗, μ∗ equal

λ∗ =
2λμ

λ+ 2μ
+

2λs

h
, μ∗ = μ+

2μs

h
. (12.6)

Constitutive equations (12.5) coincide with those addressed in Grekov and Ya-
zovskaya (2014) if surface stresses in the plate faces are not taken into account.

Equations (12.5), corresponding equilibrium equation for the stresses σ̃ij and
continuity equation for the strains ε̃ij (Bochkarev and Grekov, 2017) lead to
the 2-D problem of elasticity for an infinite isotropic plane with the point force
P = (P1, P2) acting in the origin of coordinates x1, x2. The solution of this prob-
lem at the macrolevel, called by fundamental solution, both for the plane strain and
plane stress is described, for example, in Love (2013); Muskhelishvilli (1977). It is
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worth noting that the statement of the generalized plane stress problem presented
here differs from the classical one (Love, 2013; Muskhelishvilli, 1977) only in the
coefficients (12.6) of Eqs. (12.5). So, it allows using Goursat–Kolosov complex po-
tentials and Muskhelishvili technique to derive the fundamental solution of the plane
stress problem incorporating surface stresses in the plate faces.

12.3 Green Functions

Complex potentials which correspond to the point force P acting in the point (0,0)
of an infinite elastic plane are defined as (Muskhelishvilli, 1977)

Φ(z) = −H
z
, Ψ(z) =

æ∗H
z
, (12.7)

where

z = x1 + ix2, i =
√−1, H =

P

2π(æ∗ + 1)
, P = P1 + iP2, æ∗ =

5λ∗ + 6μ∗

3λ∗ + 2μ∗
.

According to Muskhelishvilli (1977), the stresses and displacements in the elastic
plane are related to the complex potentials Φ, Ψ by the equalities

σ̃nn + iσ̃nt = Φ(z) + Φ(z) +
(
zΦ′(z) + Ψ(z)

)
e−2iα,

2μ∗
dũ

dz
= æ∗Φ(z)− Φ(z)−

(
zΦ′(z) + Ψ(z)

)
e−2iα.

(12.8)

In Eq. (12.8), ũ = ũ1 + iũ2, ũ1, ũ2 are the displacements along corresponding
axes of coordinates x1, x2; σ̃nn, σ̃nt are the stress tensor components in the local
Cartesian coordinates n, t with the angle α between the t and x1 axes. A bar over
a symbol denotes complex conjugation, and a prime denotes the derivative with
respect to the argument.

Substituting Eq. (12.7) in Eq. (12.8) yields the following complex relations for
stresses and displacements that are the Green functions or fundamental (singular)
solution

σ̃11 − iσ̃12 = −2ReH
z

+
1

z 2

(
Hz + æ∗Hz

)
,

σ̃11 + σ̃22 = −4ReH
z
,

(12.9)

2μ∗ũ(z) = −æ∗H ln
z

z
+H

z

z
. (12.10)

Equations (12.9) are obtained from Eq. (12.8) taking α = 0 and α = π/2, and
Eq. (12.10) is evaluated by integrating the second equation (12.8) under α = 0. It
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should be noted that complex displacement u is defined in Eq. (12.10) with accuracy
of translation and rotation of a plane as a rigid one.

As it is seen from Eq. (12.6), the effective elastic constants λ∗, μ∗ and, as a
consequence, displacements and stresses depend on the thickness h of the plate that
is the size effect. The less h, the more significant this effect related with the existing
surface stresses in the plate faces. If the surface effect is neglected, Eqs. (12.9) and
(12.10) are reduced to the classical solution given, for example, by Love (2013)
in terms of the real functions for the case when a concentrated force acts in the
x1-direction.

12.4 Summary and Conclusions

The problem on infinite elastic plate subjected to the point forces uniformly dis-
tributed along the line perpendicular to the plate faces has been reduced to the
generalized plane stress problem, incorporating surface stresses in the faces. The
constitutive equations of the generalized plane stress of the plate have been derived
in terms of effective elastic modules which depend on the elastic properties of the
plate material, surface elastic properties and the plate thickness. The complex re-
lations (Green functions) for the stresses and displacements have been evaluated
using Goursat–Kolosov complex potentials and Muskhelishvili representations. It
has been shown that in the case of the generalized plane stress, the fundamental
solution depends on the thickness of the plate that is the size effect intrinsic to the
nanoobjects. The explicit formulae of the complex fundamental solution derived in
the paper can be directly used (similarly as in the classical case) for constructing
the boundary integral equations and analysis of different problems with the bound-
ary element method in order to study the elastic fields in the nanoplates containing
voids, cracks, inclusions etc.
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Chapter 13

Isotropic Linear Viscoelastic Reduced Cosserat

Medium: an Acoustic Metamaterial and a First

Step to Model Geomedium

Elena F. Grekova & Rafael Abreu

Abstract The reduced Cosserat medium is a continuum whose body points possess
rotational degrees of freedom, and there is a reaction to the rotation of a body point
relatively to the background of centres of mass, but no stresses are caused by the
gradient of micro-rotation. This theory is useful for modelling rocks and soils con-
taining heterogeneities, a geomedium with blocky structure, certain composites with
inclusions as well as seismic metamaterials. In this work we consider the influence
of viscosity in the linear isotropic reduced Cosserat medium on the propagation
of shear waves. We find that viscosity may change drastically the wave propaga-
tion. In some cases, the material behaves as a double negative acoustic metamaterial
for shear waves, i.e. there is a decreasing part of the dispersion curve for a certain
band of frequencies. We also observe that the attenuation in such a continuum does
not necessarily increases with frequency, as it happens in the classical viscoelas-
tic medium. It may have one maximum at a certain frequency, or have maximum
and minimum. Similar phenomena are observed in the range of seismic frequen-
cies for a geomedium (Sato et al, 2012). The theory considered in this work is only
the first step to model the geomedium since it does not take into account previous
stress state and existing couplings between pressure and shear-rotational waves due
to rock anisotropy caused by gravity.
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13.1 Introduction

Many works are devoted to the mechanics of media with enriched kinematics, in
particular, to the theory of Cosserat media (polar, or micropolar continua). The pi-
oneering work by Cosserat and Cosserat (1909) introduced the theory for an elastic
3D medium with rotational degrees of freedom. Later on, Cosserats’ theory was
developed by Kafadar and Eringen (1971). Altenbach and Zhilin (1988) suggested
a method to obtain constitutive equations of the 2D elastic polar medium that can
be applied also for the 3D case. Among books on elastic Cosserat continua one
can mention Eremeyev et al (2013); Eringen and Maugin (2012); Erofeyev (2003).
Various works developing Cosserats’ ideas can be found in Maugin and Metrikine
(2010). The role of microinertia in enriched continuum mechanics is discussed
in Madeo et al (2017). Waves in 1D nonlinear Cosserat continuum are investigated
in Porubov et al (2009), and in 2D hexagonal lattice in Erofeev et al (2018). De-
pending on the different type of Cosserat continua and restrictions on the strain en-
ergy, we have to use different strain measures to obtain specific type of constitutive
equations in Eremeyev and Pietraszkiewicz (2012, 2016); Pietraszkiewicz and Ere-
meyev (2009). Some typical features of granular materials and suspensions can be
described in terms of micromorphic media which are not sensible to certain types of
deformations (Eremeyev, 2018). In order to describe the deformation phenomena in
an elastic medium possessing a microstructure, we need micropolar models (Müller
and Vilchevskaya, 2017).

The reduced Cosserat medium is a medium whose particles have independent
translational and rotational degrees of freedom, but the medium does not react to
the gradient of rotation of point bodies, no internal moments work on the gradi-
ent of angular velocity. Let us discuss a possible motivation for such a model. In
granular materials rotations of particles and agglomerates can be important in many
processes, in particular, in restructurisation of the medium and onset of instabil-
ity (Gilabert et al, 2007; Merkel et al, 2010, 2011; Misra and Poorsolhjouy, 2015;
Turco, 2018; Vardoulakis, 1989). However, we do not see there an interaction that
reduces the gradient of rotation of grains or aggregates. Indeed, neighbouring par-
ticles often tend to rotate in the opposite directions rather than reduce their relative
rotation. In these media there is no ordered structure of rotations, contrary to the
case of magnetic materials, where the exchange interaction reduces the gradient of
spin directions. However, there is an average resistance to the rotation of a body
point relatively to the whole background (continuum of centres of mass). As an ap-
proximation, we can consider a model where stresses depend on this kind of strain,
as well as on the purely translational deformations (i.e. on the gradient of transla-
tional displacement ∇u and rotation tensor P ), but do not depend on the gradient
of micro-rotation ∇P (Fig. 13.1). In the elastic case, we have instead of the strain
energyU(∇u,P ,∇P ) for the full Cosserat medium a function of the two first argu-
ments U(∇u,P ). Schwartz et al (1984) have suggested to consider such a medium
in its isotropic linear variant to describe granular materials. This is a special case of
Cosserat medium with a specific constraint.
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Fig. 13.1 Reduced Cosserat
continuum: P is the micro-
rotation tensor (turn-tensor),
u is the body point displace-
ment. The strain energy U is
not positively defined with
respect to ∇P , and we ne-
glect on average dependence
U on ∇P due to the non-
ordered structure of particles’
rotations. P U = U (           )U = U (                   )    u, P   u, P,

u, P u, P

Waves in the elastic reduced Cosserat continuum were investigated in Grekova
et al (2009); Kulesh et al (2009). In the isotropic case, the pressure wave (P-wave)
is the same as in the classical medium, but the shear-rotational wave (S-wave) has
a band gap limited by the boundary and cut-off frequencies. Thus, the reduced
Cosserat medium is a single negative acoustic metamaterial, and a strong dispersion
is observed in the vicinity of these frequencies (Fig. 13.2). In Misra and Poorsol-
hjouy (2016) we can find a more sophisticated model describing granular materials.
Based on microstructural considerations, the authors introduce a micromorphic the-
ory, where each point is characterised by macro-deformation (describing the strain
of the continuum of centroids of the grains) and micro-deformation (related to the
strain of each grain). Contrary to the reduced Cosserat continuum, in Misra and
Poorsolhjouy (2016) the authors suppose that the rotation tensor of each grain can
be expanded into Taylor series in material space, and there is an interaction reduc-
ing the relative rotation of grains, which leads to non-zero couple stresses. However,
since the model is richer than the full Cosserat continuum, it also allows the exis-
tence of band gaps. Curiously, qualitatively the dispersion curves of this continuum
are similar to those for transverse waves in the elastic reduced Cosserat continuum
with an axisymmetric tensor of inertia (Grekova, 2018b).

Some cases of anisotropy of different nature (a coupling between pressure and
shear-rotational waves, non-spherical tensor of inertia, particular cases of the pre-
stressed state) were considered in Grekova (2016, 2017, 2018b). If there is a cou-
pling between volumetric and shear–rotational strain in the strain energy (which

Fig. 13.2 Dispersion curves
for the shear-rotational waves
in the isotropic reduced
Cosserat continuum (ω is
the frequency, k is the wave
number). Velocities at low and
high frequencies cs =

√
μ/ρ,

csα =
√

(μ+ α)/ρ, respec-
tively.

Sα
c   k

Sc k

k

ω

ω

ω

0

1
band gap for the S−wave
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only may exist for anisotropic materials), then it results in existence of band gaps
for almost all plane waves in the bulk, with exception for some specific direction of
wave propagation and parameter domains. However, if such a coupling is not present
in the strain energy, but the inertia tensor is anisotropic, for instance, axisymmetric,
then the pressure wave looks as the classical one, but the shear waves are dispersive
and have more band gaps than in the case of spherical tensor of inertia. In classical
anisotropic elastic media plane waves are non-dispersive. However, in architectured
anisotropic materials, where rotational degrees of microstructure are important, they
are dispersive (see, for instance, dell’Isola et al, 2015, 2018).

The frequency band with high attenuation draws our attention to the so called
single negative acoustic metamaterials (media having a band gap due to existence
of internal degrees of freedom). Some heterogeneous media behave as metamateri-
als due to the local resonances caused by the existence of their inner structure (see,
for instance, Chesnais et al, 2012; Hans et al, 2014). Indeed, such an effect cannot be
described only in terms of dissipation since the attenuation would then increase with
frequency. There may exist various explanations of this phenomenon, for example,
relaxation mechanisms in rocks Liu et al (1976). The idea that a time-dispersive
material can be interpreted in terms of an “extended” material with hidden inter-
nal degrees of freedom is suggested, for instance, in Figotin and Schenker (2007).
Complex reduced elastic media (“bearing continuum” enhanced by a distributed
non-interconnected “dynamic absorber”), in particular, those with rotational degrees
of freedom, are acoustic metamaterials with respect to certain types of waves in
Grekova (2019). In this work we will consider the influence of viscosity for a par-
ticular kind of continuum, reduced Cosserat medium.

It is widely known that the geomedium consists of blocks and has heterogeneities
of various sizes. Depending on the frequencies of dynamic processes, these hetero-
geneities or blocks may perform rotations that, even being small, may change the
character of the wave propagation (Sadovskii and Sadovskaya, 2015), especially in
the domain near the partial frequency of a block or heterogeneity in the continuum.
The new branch of science, rotational seismology (http://rotational-seismology.org)
deals with rotations in the geomedium. These rotations can be taken into account
in terms of Cosserat media, where a heterogeneity with surrounding medium or a
block play role of a “particle” (Twiss, 2009; Twiss and Marrett, 2010; Twiss et al,
1991, 1993; Twiss and Unruh, 2007; Unruh et al, 2003, 1996).

In this work we consider the simplest variant of the reduced Cosserat medium
with dissipation: linear isotropic reduced Cosserat medium with spherical tensor of
inertia of particles and dissipation in the rotational and/or translational term and
investigate how the attenuation of the shear wave depends on the frequency. It is
a first step towards to the modelling of a real geomedium using enriched theories
of continua, where the loss of elastic energy is due to a clear physical mechanism
included in the theory.



13 Viscoelastic Reduced Cosserat Medium 169

13.2 Reduced Linear Isotropic Cosserat Viscoelastic Model

13.2.1 General Equations

Let τττ be the Cauchy stress tensor, u the vector of translational displacement of the
particle, θθθ the infinitesimal vector of its rotation (vector of turn, or vector of micro-
rotation), P = E + θθθ × E the tensor of infinitesimal micro-rotation (tensor of
infinitesimal turn), ρ the mass density, IE the density of the tensor of inertia (we
consider it spherical for sake of simplicity), E the identity tensor. We denote by (·)˙
the time derivative. For infinitesimal rotations the angular velocity equals θ̇θθ.

For any second rank tensor Λ = λmnemen we denote Λ� = λnmemen, sym-
metric part of Λ as ΛS = (Λ+Λ�)/2, its antisymmetric part as ΛA = (Λ−Λ�)/2,
and its vectorial invariant (accompanying vector of ΛA) as Λ× = λmnem × en.
Note that ΛA = − 1

2Λ× ×E.
The balance of force in the linear reduced Cosserat medium in the absence of

external loads takes form (Grekova et al, 2009)

∇ · τττ = ρü, (13.1)

and the balance of torque is
τττ× = Iθ̈θθ. (13.2)

For the full Cosserat continuum, the balance of torque includes also the term ∇ ·μμμ,
where μμμ is the couple stress. However, we limit ourselves to the consideration of
the reduced Cosserat medium, in which no work is performed on the gradient of
the angular velocity, therefore μμμ ≡ 0. Indeed, for isothermic processes the law of
balance of energy for the full linear Cosserat medium is

ρU̇ = τττ� · · ∇u̇−τττ× · θ̇θθ+μμμ� · · ∇θ̇θθ = τττS · · ∇u̇S−τττ× · (θ̇θθ−∇×u/2)+μμμ� · · ∇θ̇θθ,
(13.3)

where U is the strain energy. Therefore, if we consider a particular case (reduced
Cosserat medium), where internal moments do not work on ∇θ̇θθ, we obtain μμμ = 0.

In the linear elastic isotropic case, the constitutive equations satisfying the law
of balance of energy and principle of material objectivity (Noll, 1958) are (Grekova
et al, 2009)

τττe = λ∇ · uE + 2μ(∇u)S + 2α(∇u+ θθθ ×E)A, (13.4)

where λ and μ are the conventional Lamé parameters and α is the Cosserat couple
modulus. In order to introduce viscosity in the model, we have to satisfy the same
fundamental balance laws, as well as material objectivity and the second principle
of thermodynamics. The latter for the linear theory in the adiabatic or isothermic
case is equivalent to the requirement

τττ� · · (∇u+ θθθ ×E)˙� 0. (13.5)
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This is a particular case of linear micropolar viscoelastic model suggested by Erin-
gen (1967).

We can write τττ = τττe + τττd, where τττe refers to the pure elastic part of the stress,
and the dissipative part of the stress τττd can be expressed in the form

τττd = λκ∇ · u̇E + μν(∇u̇s) + αβ(∇uA + θθθ ×E) ,̇ (13.6)

where coefficients κ, ν, β characterize the dissipation in the medium.
The equations of motion in displacements take the form

(λ+ 2μ)∇∇ · u− μ∇× (∇× u) + 2α∇× (θθθ −∇× u/2)

+(λκ+ 2μν)∇∇ · u̇− μν∇× (∇× u̇) + 2αβ∇× (θθθ −∇× u/2)˙ = ρü,

−4α(θθθ −∇× u/2)− 4αβ(θθθ −∇× u/2)˙ = Iθ̈θθ.

(13.7)

There exist different ways to estimate material constants using the information on
the microstructure of the material. One of them is to use Piola’s Ansatz, as it is done
for the second gradient continuum model in dell’Isola et al (2016), and to obtain the
moduli solving several model problems. Note that a modification of such a method
for the reduced Cosserat continuum would require always dynamical test problems
in the absence of body torque, for instance, interaction of waves with discontinuities,
considered in dell’Isola et al (2012) to determine elastic moduli for second gradient
theories. Indeed, for zero body torque in statics τττ× = 0 due to the absence of couple
stresses. In this work we do not consider any homogeneisation procedure.

13.2.2 Constrained Reduced Cosserat Medium

Note that if the micro-rotation θθθ is identically equal to the macro-rotation ∇ ×
u/2 (constrained medium), we cannot write the constitutive equations for τττ× in the
reduced Cosserat medium, since it works on θθθ −∇× u/2 (see (13.3)). In this case
the antisymmetric part of τττ will be determined from the dynamic equations. Indeed,
for the constrained medium the balance of torque (13.2) results in

τττ× = Iθ̈θθ = I∇× ü/2, (13.8)

and the balance of force looks as

ρü = ∇ · τττS +∇ · τττA = ∇ · τττS +∇ · (−τττ× ×E/2)

= ∇ · τττS −∇× (I∇× ü)/4. (13.9)

If I does not depend on the point of space, we obtain

∇ · τττS = ρü+ I(∇∇ · ü−�ü)/4 (13.10)
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Here τττS is the same as in the classical theory. Note that due to the absence of couple
stresses we have a non-classical inertial term, but the theory is not the second gra-
dient theory as it would be in the case of the full constrained Cosserat continuum in
Bleustein (1967).

13.3 Dispersional Relations and Attenuation Factor

13.3.1 General Equations

Equation (13.7) in the frequency domain can be obtained by substituting the elastic
constants for linear functions: λ for λ(1 + iκω), μ for μ(1 + iνω) and α for α(1 +
iβω). This approach was suggested for the description of frequency independent
dissipation in viscoelastic materials by Sorokin (1960).

Therefore, in the reduced Cosserat medium, instead of the dispersion relation for
the longitudinal wave

ω2 =
λ+ 2μ

ρ
k2 (P-wave in the elastic medium) (13.11)

we will have

ω2 =
λ+ 2μ+ i(λκ+ 2μν)ω

ρ
k2 (P-wave in the viscoelastic medium),

(13.12)
and instead of the dispersion relation for the shear wave

k2 =
ω2

(μ+ α)/ρ

ω2 − 4α/I

ω2 − 4μα/((μ+ α)I)
(S-wave in the elastic medium)

(13.13)
we will have the dispersion relation for the S-wave in the viscoelastic linear reduced
Cosserat medium

k2 =
ρω2

μ(1 + iνω) + α(1 + iβω)

ω2 − 4α(1 + iβω)/I

ω2 − 4μ(1 + iνω)α(1 + iβω)

(μ(1 + iνω) + α(1 + iβω))I

. (13.14)

The dissipation for various plane waves with the wave number k is characterized
by the inverse quality factor (or attenuation factor) (Liu et al, 1976)

Q−1 def
=
| Im k|
|Re k| . (13.15)

In the frame of this theory, we observe that the P-wave has the same dispersion
and attenuation as in the classical viscoelastic medium, namely,
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k =
ω

cp4
√
1 +B2ω2

exp(− i
2
arctan(Bω)), (13.16)

B =
λκ+ 2μν

λ+ 2μ
, c2p =

λ+ 2μ

ρ
, (13.17)

Q−1
P =

| Im k|
|Re k| =

Bω

1 +
√
1 +B2ω2

. (13.18)

We can observe in equation (13.18), that like in the classical theory, Q−1
P increases

with ω. Therefore this variant of the reduced Cosserat viscoelastic medium cannot
explain experimental fact that for seismic waves Q−1

P (ω) has a decreasing part.

13.3.2 Detailed Analysis of Shear Waves Dispersion and
Dissipation

On one hand, wave dispersion and dissipation predicted by the micropolar model
have been useful for explaining physical experiments in metamaterials where the
classical linear theory of elasticity fails to give realistic predictions (Frenzel et al,
2017). On the other hand, existence of internal rotational degrees of freedom has
been observed in experiments describing materials present in the earth lower most
mantle (geomedium) (Kawai and Tsuchiya, 2015). It thus becomes important to
investigate in detail the viscoelastic behaviour of the micropolar model for applica-
tions in the earth sciences. The frequency dependence attenuation Q−1 in the Earth
is often approximated by a power law

q̃ ∝ q̃0ωα with q̃ ≡ 1

Q
, (13.19)

where α is a model dependent, usually smaller than 0.5 (Anderson and Hart, 1978).
This, however, does not fit quantitatively experimental data (Sato et al, 2012). The
character of Q−1(ω), according to Sato et al (2012), varies depending on the Earth
region, and often it has a maximum. We can suppose that different types of depen-
dencies can be met in geophysical experiments in different regions.

To explain (13.19) in terms of the micropolar model, we shall investigate in detail
its dispersion relation (13.14). After some algebra we obtain

k2 =
ω2

c2sαd((ω
2 − ω2

1d)
2 + T 2ω2(ω2 − ω2

i )
2)[

(ω2 − ω2
0)(ω

2 − ω2
1d)− Tβω2

0ω
2(ω2 − ω2

i )

− iω(βω2
0(ω

2 − ω2
1d) + T (ω

2 − ω2
i )(ω

2 − ω2
0))

]
(13.20)

where we have introduced the following notation



13 Viscoelastic Reduced Cosserat Medium 173

c2s =
μ

ρ
, c2sα =

μ+ α

ρ
, c2sαd = c2sα + c2sω

2
0νβ, (13.21)

ω2
0 =

4α

I
, ω2

1d =
c2s
c2sαd

ω2
0 , ω2

i =
c2s(ν + β)ρ

μν + αβ
ω2
0 , T =

μν + αβ

ρ c2sαd
. (13.22)

Note that

q
def
=

Im k2

Re k2
= −ω(βω

2
0(ω

2 − ω2
1d) + T (ω

2 − ω2
i )(ω

2 − ω2
0))

(ω2 − ω2
0)(ω

2 − ω2
1d)− Tβω2

0ω
2(ω2 − ω2

i )
. (13.23)

The seismic attenuation factor Q−1 equals

Q−1 def
=
| Im k|
|Re k| =

|q|
1 + (1 + q2)−1/2

. (13.24)

Let us introduce parameters and quantities

b = ω0β, n = ω0ν, Ω = ω/ω0, (13.25)

Ω2
i =

ω2
i

ω2
0

=
ν + β

ν + βα/μ
=

n+ b

n+ bα/μ
, Ω2

1d =
ω2
1d

ω2
0

=
1

1 + α/μ+ nb
,

(13.26)

τ = ω0T =
ω0(ν + βα/μ)

1 + α
μ + νβω2

0

=
Ω2

1d

Ω2
i

(n+ b). (13.27)

Then the dispersion relation (13.20) can be written as

k2 =
ω2
0Ω

2

c2sαd((Ω
2 −Ω2

1d)
2 + τ2Ω2(Ω2 −Ω2

i )
2)(

(Ω2 − 1)(Ω2 −Ω2
1d)− τbΩ2(Ω2 −Ω2

i )

− iΩ(b(Ω2 −Ω2
1d) + τ(Ω

2 −Ω2
i )(Ω

2 − 1))
)
. (13.28)

In the following we consider csαd = 1 in all the numerical examples since it only
scales the dispersion relation.

13.3.2.1 Low Frequencies

At small Ω relation (13.28) takes the form (up to the higher order terms)

k2 =
ω0

2

c2sαd

Ω2

Ω2
1d

(1− inΩ) = ω2

c2s
(1− in ω

ω0
), (13.29)
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k =
ω

cs
(1− iνω/2), Q−1 → −0 as Ω → 0. (13.30)

13.3.2.2 High Frequencies

As Ω →∞, if τ �= 0 (i.e. viscosity is present), relation (13.28) takes the form up to
the higher order terms

k2 =
ω0

2

c2sαd

(1− τb
τ2

− iΩ
τ

)
, (13.31)

so we have

k ≈
√
ω

csαd
√
T
e−iπ/4, Q−1 → 1. (13.32)

At large Ω attenuation decreases if τb > 1 and increases vice versa (see Figs. 13.3
and 13.4).

13.3.2.3 Attenuation Factor

Relation (13.23) can be rewritten as
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Fig. 13.3 Dispersional characteristics for the shear–rotational wave, τb < 1
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Fig. 13.4 Dispersional characteristics for the shear–rotational wave, τb > 1

tan(2 arctanQ−1) =
Im k2

Re k2
= −Ω(b(Ω

2 −Ω2
1d) + τ(Ω

2 −Ω2
i )(Ω

2 − 1))

(Ω2 − 1)(Ω2 −Ω2
1d)− τbΩ2(Ω2 −Ω2

i )
(13.33)

We observe thatQ−1 is determined by three parameters: α/μ, b, n. Equation (13.23)
does not determine it completely since the sign of Re k2 is important. For instance,
if the ratio described by (13.23) has a small absolute value, two cases are possible:
small attenuation Q−1 in the case Re k2 > 0 and large attenuation if Re k2 < 0
(| Im k| >> |Re k|, phase close to π/2).

Behaviour of Q−1 may change its character depending on the medium parame-
ters. In the numerical examples we tried to represent various types of dependence
Q−1(ω). For the example presented in Fig. 13.3 with α/μ = 0.1, n = 1, b = 1
dependence Q−1(ω) can be more or less approximated by the power law (13.19),
suggested in Anderson and Hart (1978), as follows (see Fig. 13.5):

Q−1 = 0.51(ω/ω0)
0.33. (13.34)

Power laws can relatively well approximate micropolar Q−1(ω) for some domains
of parameters and frequencies, but we do not present here similar examples. In the
power law model function Q−1(ω) has no maximum, which is observed in some
geophysical experiments Sato et al (2012) and is present in other numerical exam-
ples for the viscoelastic reduced Cosserat model (see further).

At Ω = 1 we obtain
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Fig. 13.5 Attenuation factor and its fit to the power law for the shear–rotational wave, τb < 1

tan(2 arctanQ−1) =
Im k2

Re k2
=

1−Ω2
1d

τ(1−Ω2
i )

(13.35)

Equation (13.28) yields in

sgnRe k2 = sgn((1− τb)Ω4 −Ω2(1 +Ω2
1d − τbΩ2

i ) +Ω
2
1d). (13.36)

13.3.2.4 Translational Viscosity (b = 0)

Consider particular case b = 0, i.e. when there exist only the classical viscosity
determined by ν. In this caseΩi = 1, csαd = csα and the dispersion relation (13.28)
looks as follows

k2 =
ω2
0Ω

2(Ω2 − 1)

c2sα((Ω
2 −Ω2

1d)
2 + τ2Ω2(Ω2 − 1)2)

(Ω2 − Ω2
1d − iΩτ(Ω2 − 1))

(13.37)

We observe that at Ω = Ω1d we have Re k2 = 0, Im k2 < 0. As Ω → 1 k → 0,
and Im k2 → 0, sgnRe k2 = sgn(Ω − 1). Therefore, as ω → ω0 − 0 (Ω → 1− 0)
we have Re k/ Im k → 0 and as ω → ω0 + 0 we obtain Im k/Re k → 0. This
is in accordance to the fact that at zero viscosity we have a band gap below ω0,
and the “optical” branch starts at the cut-off frequency ω0 as a parabola in the first
approximation in the vicinity of ω0.

Note that eq. (13.37) can also be written in the following form

k2 = −ω0
2

c2sα

ΩF

1 + τ2F 2
(1 + iτF ), (13.38)
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where

F (Ω) = −Ω Ω2 − 1

Ω2 −Ω2
1d

. (13.39)

It is straightforward to see that in the domain Ω > 0, the function F (Ω) is positive
if and only if Ω ∈ (Ω1d; 1), and it decreases in this domain. As Ω → 1 we have
F → 0, and as Ω → Ω1d ± 0 we have F → ±∞.

Using the form of the dispersion relation (13.38), it is straightforward to check
that Ω(Re k) decreases at least as Ω → 1 − 0 and as Ω → Ω1d + 0, which cor-
responds to the double negative acoustic metamaterial behaviour, Q−1 → ∞ as
Ω → 1 − 0, Q−1 → 0 as Ω → 1 + 0, Q−1 → 1 as Ω → Ω1d. We skip technical
details.

Numerical examples show a zone below ω0 (including ω1d), where ω(Re k)
decreases, and simulations confirm that the attenuation in this zone is very high
(Figs. 13.6, 13.7). The part of the wave which passes has a group velocity which is
opposite to the phase velocity: in this zone the medium is a double negative acoustic
metamaterial with respect to the shear wave.

When the ratio between the Cosserat couple and shear moduli α/μ is small, the
zone with high attenuation, where ω(Re k) decreases, is very narrow (see Fig. 13.7).
Then, if we miss in our measurements this zone of frequencies, where the medium
behaves as a double negative acoustic metamaterial, we could see that Q−1 passes
through the maximum, decreases, and then starts to increase again slowly, but not
notice the narrow zone of very high attenuation.
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Fig. 13.6 Dispersional characteristics for the case of viscosity with respect to the translational
strains



178 Elena F. Grekova & Rafael Abreu

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Solid: Re k, dotted: Im k, dashed: Q−1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ω
/ω

0
 

α/μ= 0.3, n= 0.3, b= 0

Fig. 13.7 Dispersional characteristics for the case of viscosity with respect to the translational
strains, α/μ is small.

Summarising results of this subsection, we can claim that for the case of viscosity
with respect to translational strains (n �= 0, b = 0)

1. There is a cut-off frequency ω0 both for the upper branch of Re k, Im k. This
is the same frequency as in the purely elastic case. It does not depend on the
dissipation coefficient.

2. Attenuation is very low above ω0 and infinite just below it.
3. There is a frequency band (or frequency bands) starting just below ω0 and in-

cluding ω1d, where ω(Re k) decreases. This means that the medium behaves
there as a double negative acoustic metamaterial with respect to the shear wave.

4. In numerical examples we observe that this zone is unique. It is situated just
below ω0 and continues somewhat below ω1d, the attenuation factor Q−1 there
is very high, and has monotonely increasing with ω parts below and above this
zone, starting from 0 in both intervals. It becomes narrow if α/μ is small.

13.3.2.5 Rotational viscosity (n = 0)

In this case, parameters can be simplified as follows:

Ω2
i =

μ

α
, Ω2

1d =
μ

μ+ α
, τ = b

α

μ+ α
= b(1−Ω2

1d) =
b

1 +Ω2
i

. (13.40)
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If α << μ, we have Ωi → ∞, Ω1d → 1. If α >> μ, we have Ωi → 0, Ω1d → 0.
In general case we may somewhat simplify the dispersion relation; since

b(Ω2 −Ω2
1d) + τ(Ω

2 −Ω2
i )(Ω

2 − 1) = Ω4b
α

μ+ α
= τΩ4, (13.41)

equation (13.28) takes form

k2 =
ω2
0Ω

2

c2sαd((Ω
2 −Ω2

1d)
2 + τ2Ω2(Ω2 − Ω2

1d

1−Ω2
1d
)2)

·

(
(Ω2 − 1)(Ω2 −Ω2

1d)−
τ2

1−Ω2
1d

Ω2(Ω2 − Ω2
1d

1−Ω2
1d

)− iτΩ5
)
. (13.42)

Thus in this case

q =
Im k2

Re k2
= − τΩ5

(Ω2 − 1)(Ω2 −Ω2
1d)− τ2

1−Ω2
1d
Ω2(Ω2 − Ω2

1d

1−Ω2
1d
)

(13.43)

Denote α/μ = ε. Then we can rewrite this expression as follows

q = − εbΩ5

(Ω2 − 1)(Ω2(1 + ε)− 1) + b2Ω2(1− εΩ2)
(13.44)

As Ω → 0, we obtain

q ≈ − εbΩ5

1 + (b2 − 2− ε)Ω2
≈ −εbΩ5(1 + (2 + ε− b2)Ω2). (13.45)

We have
q|Ω→0 → −0, (13.46)

q|Ω=Ω1d=1/
√
1+ε = − ε

b
√
1 + ε

. (13.47)

At these values of Ω for any medium parameters Re k2 > 0, Im k2 < 0, therefore
Re k > 0, Im k < 0.

For the following values of Ω we have Re k2 > 0, Im k2 < 0, when μ > α, but
if μ < α, then Re k2 < 0:

q|Ω=1 = − ε

b(1− ε) , (13.48)

q|Ω=Ωi=1/
√
ε = − b

√
ε

1− ε . (13.49)

Consider separately the case when α << μ, i.e. ε = o(1). Then (13.44)
can be simplified. Far from 0 and from 1 up to the higher order terms it is

q ≈ − εbΩ5

(Ω2 − 1)2 + b2Ω2
, Q−1 ≈ |q|/2. (13.50)
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As Ω → 0 we have

q ≈ −εbΩ5(1 + (2− b2)Ω2), Q−1 ≈ |q|/2→ 0 as Ω → 0. (13.51)

As Ω → 1, we obtain for finite b

q ≈ −ε
b
, Q−1 ≈ ε

2b
. (13.52)

An example of dispersion curves and the graph of Q−1(Ω) is given in Fig. 13.8.
We observe that if b is small,Q−1 has a maximum close to ω = ω0, then it decreases
and then starts to increase again (slowly in the considered numerical example). This
is similar to the behaviour that is observed in a geomedium Sato et al (2012) for
shear waves (see equation (13.19)). However, we are still far from trying to fit ex-
actly the experimental data, since our model is very simplified and does not take
into account the prestressed state in geomedium, as well as the coupling between
shear–rotational and pressure waves.

In Figure 13.8 we observe only the beginning of the dispersion curve. In a larger
scale it looks as in Fig. 13.9: at large ω, as it was shown in the beginning of the
section, k ∝ ω2.

For α > μ dispersional behaviour is shown in Fig. 13.10. We observe there a
zone where the medium is a double negative acoustic metamaterial, close to this
zone the attenuation is high.
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Fig. 13.8 Dispersional characteristics for the case of viscosity with respect to the rotational strains
for small α/μ (low frequencies).
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Fig. 13.9 Dispersional characteristics for the case of viscosity with respect to the rotational strains
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Fig. 13.10 Dispersional characteristics (viscosity with respect to the rotational strains, α > μ).
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13.4 Conclusion

We have considered linear isotropic viscoelastic reduced Cosserat medium in the
absence of external loads and considered plane waves in this continuum. We observe
that the introduction of the viscosity in the model leads to interesting phenomena:
band gap present in the reduced elastic Cosserat medium, disappears, but for a big
domain of parameters there exist a decreasing part of the dispersion curve ω(k).
In this zone of frequencies the medium is a double negative acoustic metamaterial,
energy flux is opposed to the phase velocity. In all numerical examples this zone
is situated near a peak of attenuation. We observe these frequency zones also for
certain shear–rotational waves in the gyrocontinuum under the action of the negative
follower torque (for some domains of parameters) (Grekova, 2018a). We considered
asymptotics for the dispersion curves at low (relation (13.30)) and high frequencies
(relation (13.32)).

We also investigated two particular cases, when the viscosity is only related to
translational strains (b = 0) and when it is related to the rotational strains only
(n = 0). In the first case, the attenuation factor is zero at zero frequency, then it
increases rapidly, tends to infinity and decreases abruptly to zero, starting to in-
crease again with frequency. The band gap, present for the medium with the same
parameters, but zero viscosity, disappears. In the considered numerical examples
the viscosity corresponding only to the translational strains transforms the single
negative acoustic metamaterial (elastic reduced Cosserat medium) into the double
negative acoustic metamaterial, i.e. the former band gap becomes a zone of high
attenuation where ω(k) decreases.

For rotational viscosity we have a rich variety of behaviour depending on the
parameters (especially on α/μ and τb). For instance, at small α/μ in some cases
we can observe a rapid change of the effective elastic moduli near the characteristic
frequency ω0, and at α > μ there exist a decreasing part of the dispersion curve
close to the frequency corresponding to the attenuation peak.

In several considered examples Q−1 has a maximum at a certain frequency. It
is qualitatively similar to the behaviour of attenuation factor in the Earth. Further
studies are required to compare it quantitatively with the experimental data. We plan
to take into account the axisymmetric prestressed state and/or the coupling between
pressure and shear–rotational waves in our future research.
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Chapter 14

Numerical Analysis of Free Vibrations of

Piezoelectric Cylinders

Alexander Ya. Grigorenko, Igor A. Loza & Sergiy N. Yaremchenko

Abstract Various approaches to solving the linear electroelasticity problems of
finite-length cylinders with the discrete-continuous (spline-collocation) and discrete
(finite-element) methods are considered. An axisymmetric problem on free vibra-
tions of hollow finite-length cylinders made of piezoelectric materials is solved
within the framework of the 3D electroelasticity theory. The lateral surfaces of the
cylinders are free of external actions and covered by short-circuited electrodes. The
cylinder material is radially polarized. The cylinders with a clamped end are ana-
lyzed numerically using two approaches. Practical agreement of the results obtained
testifies that the solution is accurate.

Keywords: 3D electroelasticity · Piezoceramic material · Finite element and spline
collocation methods · Cylinder of finite length

14.1 Introduction

The wide application of cylindrical elements as functional members of modern
acoustoelectronics has motivated significant interest to defining their dynamic char-
acteristics. Piezoelectric solids can be used as actuators in structural control and as
sub-elements of more complex smart materials (Giorgio et al, 2015). The dynamic
characteristics of the object in a low-frequency range, where the wave length is con-
siderably greater then the size of a structure member (either its thickness or radius),
can be sufficiently accurately determined using the applied shell theories (Adelman
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et al, 1975; Drumheller and Kalnins, 1970; Hughes, 2012; Piefort, 2001; Shul’ga
and Grigorieva, 2009b; Ulitko, 1979). However, in the case of thick-walled mem-
bers that operate in a high-frequency range, the employment of the applied theories
is under a question. For this reason, the problem stated should be considered in
three-dimensional formulation.

There are only single studies devoted to investigation of vibrations of cylinders
within the framework of the three-dimensional electroelasticity theory. The signifi-
cant anisotropy of piezoceramic materials in combination with the necessity to allow
for a coupled electric field complicates the problem solving in mathematical sense.
It should be noted that the problem can be solved analytically only in the case when
the physical-mechanical properties of the material manifest certain symmetry, while
loading means, type of boundary conditions, and other features are known. It is the
case either of the axial polarization of piezoceramic, when the loading function on
the lateral surfaces can be expanded into series with respect to cylindrical functions,
while the cylinder ends are hinged or the torsional vibrations of a piezoceramic
cylinder with circular polarization. These problems can be solved by the means of
special functions (Ishihara et al, 2017; Maurini et al, 2006; Paul, 1966; Paul and Nel-
son, 1996; Paul and Natarajan, 1994b,a; Paul and Venkatesan, 1986). In the case of
a more general problem, the method of homogeneous solutions and eigensolution
method must be employed as in Grinchenko (1978); Haskins and Walsh (1957).
However, in order for these methods to be implemented, it is necessary to have
overall information about all roots (real, imaginary, and complex) and the disper-
sion equation of the problem on propagation of electroelastic waves in an infinite-
length cylinder. Defining of these roots meets considerable difficulties. Besides, they
should be combined with each other. This process is not simple and what is more im-
portant, it can be hardly implemented in the form of a ready algorithm of construct-
ing a computer-aided program. Because of this, numerical methods such ones as
finite-element, finite-difference, variational-difference, spline-collocation, and oth-
ers (Allik and Hughes, 1970; Grigorenko et al, 2012, 2014; Grigorenko and Loza,
2012; Kagawa and Yamabuchi, 1976; Karnaukhov et al, 2001; Ishihara et al, 2018;
Reddy, 1981; Shul’ga and Grigorieva, 2009b,a; Tiersten, 1967; Tzou and Zhong,
1994) are basic ones in solving similar problems. Note that the last method demon-
strates such advantage as possibility to study dynamic processes in structural mem-
bers made of functionally gradient materials, whose properties vary continuously
along one coordinate or several ones. Moreover, this method makes it possible to
satisfy exactly boundary conditions and those on interfaces. As is known, solving
of this problem with the finite-element method is either impossible or fraught with
large computer losses. Further discussion on inclusion of piezoelectric effect in 3D
mechanical theories can be found in Abali and Reich (2017); Maurini et al (2006);
Nasedkin and Eremeyev (2013).
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14.2 Basic Relations

Vibrations of piezoelectric bodies, as a mechanical process, are described by the
continuum equations of linearly elastic deformable solids and, from the viewpoint of
electric processes in a piezoelectric continuum, by the equations of electrodynamics.
Both groups are interrelated, solved simultaneously and, taken together, form the
equations of electroelasticity, which are also called acoustoelectric equations. In
particular this includes

• the mechanical equations of motion

divσ = ρ
∂2u

∂t2
, (14.1)

where σ is the Cauchy stress tensor, ρ is the density of the material, and u is
the vector of displacements, and
• Maxwell’s equations

rotE = −1

c

∂B

∂t
, rotH = −1

c

∂D

∂t
, divB = 0, divD = 0, (14.2)

where B is the magnetic flux vector, E is the electric field vector, D is the
electric displacement field vector, H is the magnetic field intensity vector, and
c is the velocity of light.

Actually, only the first two Maxwell equations are equations of electrodynamics
in the sense that they show an explicit time-dependent relation between the electric
and magnetic fields: From the first equation it follows that the rate of change of

the magnetic field must be rather large. Otherwise the multiplier
1

c
will decrease it

practically to zero. An analogous feature is observed in the second equation for the
electric field. In that follows, we consider acoustoelectric vibrations, i.e., Maxwell’s
equations can be simplified in context with the fact that the acoustic vibrations are
much slower than the electromagnetic ones. In reality the acoustic waves propagate
at the velocity of sound, and the electromagnetic waves propagate at the velocity
of light. If the vibrations are slow, an electromagnetic field splits into an electric
field and a magnetic field, which are mutually uncoupled. We are only interested
in the electric field because, as will be shown below, it is precisely this field than
enters into the constitutive relations for a piezoelectric medium. Thus, in our case,
Maxwell’s equations take the form:

rotE = 0, divD = 0, (14.3)

From the first equation it follows that the electric field has a potential and, hence,
the following expression holds:

E = −gradϕ, (14.4)
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where ϕ is the electrostatic potential. These equations are also known as quasistatic
approximations of Maxwell’s equations or equations of forced electrostatics of di-
electrics. Thus, finally, the system of equations that describes vibrations of the
piezoelectric continuum has the form:

divσ = ρ
∂2u

∂t2
, divD = 0, E = −gradϕ. (14.5)

The relations describing axisymmetric vibrations of a cylinder

∂σrr

∂r
+

σrr + σθθ

r
+

∂σrz

∂z
+ ρω2ur = 0,

∂σrz

∂r
+

σrz

r
+

∂σzz

∂z
+ ρω2uz = 0. (14.6)

can be obtained from the motion equations. In (14.6) r, θ, z are cylindrical coordi-
nates σrr, σθθ, σzz , σrz are the components of the stress tensor, ur and uz are the
components of a displacement vector, ω is frequency.

The expressions for the strain tensor expressed in the terms of displacements
(Cauchy relations) are

εrr =
∂ur

∂r
, εθθ =

ur

r
, εzz =

∂uz

∂z
, 2εrz =

∂ur

∂z
+

∂uz

∂r
. (14.7)

Electrostatic equations take the form

∂Dr

∂r
+

Dr

r
+

∂Dz

∂z
= 0, Er = −∂ϕ

∂r
;Ez = −∂ϕ

∂z
, (14.8)

where Dr and Dz are the components of the vector of electric-flux density, Er, Ez

are the components of the vector of electric-field strength.
Constitutive relations for a radially polarized piezoceramic material are as fol-

lows:

σrr = c33εrr + c13(εθθ + εzz)− e33Er,

σθθ = c13εrr + c11εθθ + c12εzz − e13Er,

σzz = c13εrr + c12εθθ + c11εzz − e13Er, σrz = 2c55εrz − e15Ez,

Dr = e33εrr + e13(εθθ + εzz) + ε33Er, Dz = 2e15εrz + ε11Ez. (14.9)

where cij are the components of the tensor of elastic modules, eij are the compo-
nents of the tensor of piezomodules, εij are the components of the tensor of the
material dielectric permittivity.

In solving the axisymmetric electroelasticity problem by the finite-element method,
we will use the Hamilton variational principle. In this case, the original functional
is expressed by
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J = π

L∫
0

r1∫
r0

(
σrrεrr + σθθεθθ + σzzεzz + 2σrzεrz

−ErDr − EzDz − ρω2(u2
r + u2

z)
)
rdrdz. (14.10)

where L is the cylinder length, r0 and r1 are internal and external radiuses.
Suppose that the cylinder ends z = 0 and z = L are clamped, i.e. ur = uz = 0,

and are covered by thin shortened electrodes, ϕ = 0. The lateral surfaces are free of
external forces, so that σrr = σrz = 0, and potential difference ϕ = V0z is applied
to them. In order to avoid passing of the frequencies corresponding to asymmetric
over z modes, function ϕ is given as variable over z.

14.3 Spline-collocation Method

Adopting the displacements ur, uz and electrostatic potential ϕ appearing in (14.6)–
(14.9) as unknowns, we arrive at the governing system of equations

∂2ϕ

∂r2
= −c33 ε11 + e15e33

Δ

∂2ϕ

∂z2
+

e13e33 −Δ

rΔ

∂ϕ

∂r
+

e33
(
c11 − ρω2r2

)
ur

r2Δ

+
c33e15 − c55e33

Δ

∂2ur

∂z2
+

c33e13
rΔ

∂ur

∂r
+

e33(c12 − c13) + c33e13
rΔ

∂uz

∂z

+
c33(e13 + e15)− e33(c13 + c55)

Δ

∂2uz

∂z∂r
,

∂2ur

∂r2
=

e33 ε11 − e15ε33
Δ

∂2ϕ

∂z2
+

ε33 e13
rΔ

∂ϕ

∂r
+

ε33
(
c11 − ρω2r2

)
ur

r2Δ

−ε33 c55 + e15 e33
Δ

∂2ur

∂z2
− e13 e33 +Δ

rΔ

∂ur

∂r
+

ε33(c12 − c13)− e13 e33
rΔ

∂uz

∂z

−ε33(c13 + c55) + e33(e13 + e15)

Δ

∂2uz

∂z∂r
,

∂2uz

∂r2
= − e15

c55 r

∂ϕ

∂z
− e15 + e13

c55

∂2ϕ

∂z∂r
−
(
1 +

c12
c55

)
1

r

∂ur

∂z

−
(
1 +

c13
c55

)
∂2ur

∂z∂r
− ρω2uz

c55
− c11

c55

∂2uz

∂z2
− 1

r

∂uz

∂r
,

where Δ = c33ε33 + e233. The boundary conditions should be expressed through
governing functions as well.

Let the solution of the boundary-value problem be

ϕ =

N∑
i=0

ϕi(r)φ1i(z);ur =

N∑
i=0

uri(r)φ2i(z);uz =

N∑
i=0

uzi(r)φ3i(z), (14.11)
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where ϕi, uri, uzi are unknown functions, while φji are linear combinations of
B-splines of the third-degree that satisfy boundary conditions at the ends. Let us
substitute expressions (14.11) into (14.11) and boundary conditions and require for
the equations obtained atN +1 collocation points to be satisfied. As a result, we ar-
rive at one-dimensional boundary-value problem for the frequency ω, to solve which
we will use the discrete-orthogonalization method. Next, applying the step-by-step
search method, i.e., by varying ω with some step, we define eigenfrequencies.

14.4 Finite-element Method

Considering (14.7) – (14.9) equality (14.10) becomes

J = π

L∫
0

r1∫
r0

{
c33

(
∂ur

∂r

)2

+ c11

(
∂uz

∂z

)2

+ c55

(
∂ur

∂z

)2

+ c55

(
∂uz

∂r

)2

− ε33

(
∂ϕ

∂r

)2

− ε11

(
∂ϕ

∂z

)2

+ c11

(ur

r

)2
+ 2c13

ur

r

∂ur

∂r
+ 2c12

ur

r

∂uz

∂z

+ 2e13
ur

r

∂ϕ

∂r
+ 2c13

∂ur

∂r

∂uz

∂z
+ 2e33

∂ur

∂r

∂ϕ

∂r
+ 2e13

∂uz

∂z

∂ϕ

∂r

+ 2e15
∂ur

∂z

∂ϕ

∂z
+ 2e15

∂uz

∂r

∂ϕ

∂z
+ 2c55

∂ur

∂z

∂uz

∂r
− ρω2

(
u2
r + u2

z

)}
rdrdz

(14.12)
To solve the problem, we will employ the fourth-node rectangular finite elements
[12]. Let the solution be

ϕ =
4∑

i=1

ϕiNi;ur =

4∑
i=1

uriNi;uz =

4∑
i=1

uziNi, (14.13)

where ϕi, ur, and uz are the values of the unknown functions at the nodes of the
finite element, Ni are the shape functions.

Substituting (14.13) into (14.12) with the condition δJ = 0 we get the following
system of equations for the unit area Sk

2π

∫∫
Sk

{
c33r (uriNri)Nrj + c55r (uriNzi)Nzj +

(c11
r

− rρω2
)
(uriNi)Nj

+c13((uriNri)Nj + (uriNi)Nrj) + c12(uziNzi)Nj + c55r(uziNri)Nzj

+c13r(uziNzi)Nrj + e33r(ϕiNri)Nrj + e15r(ϕiNzi)Nzj

+e13(ϕiNri)Nj

}
drdz = 0,
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2π

∫∫
Sk

{
c12(uriNi)Nzj + c13r(uriNri)Nzj + c55r(uriNzi)Nrj

+c11r (uziNzi)Nzj + c55r (uziNri)Nrj − rρω2(uziNi)Nj

+e13r(ϕiNri)Nzj + e15r(ϕiNzi)Nrj

}
drdz = 0,

2π

∫∫
Sk

{
2e13(uriNi)Nrj + e33r(uriNri)Nrj + e15r(uriNzi)Nzj

+e13r(uziNzi)Nrj + e15r(uziNri)Nzj − ε33r (ϕiNri)Nrj

−ε11r (ϕiNzi)Nzj

}
drdz = 0.

(14.14)

In (14.14) it is assumed that the summation is carried out over the paired indexes,
i.e.,

uiNi =
4∑

i=1

uiNi,

for example. Here the following notion is used:

Nri =
∂Ni

∂r
, Nzi =

∂Ni

∂z
.

To perform integration in (14.14) we have involved the Gauss quadrature method.
The global system obtained by assembling, with the boundary conditions on the lat-
eral surfaces of the cylinder, is inhomogeneous. The linear systems of algebraic
equations obtained have been solved with the Gauss method. Thus, as in the case of
the spline-collocation method, we will determine the eigenfrequencies of the cylin-
der vibration using the step-by-step solving of the system of linear algebraic equa-
tions for the certain value of ω.

14.5 The Results Obtained

Let us compare the results obtained for the cylinder of PZT-4 piezceramic with
different methods. The cylinder has the following input parameters: r0 = 3 cm, r1 =
5 cm,L = 10 cm, ρ = 7.5·103kg/m3, c11 = 13.9·1010N/m2, c12 = 7.43·1010N/m2,
c13 = 7.78 · 1010N/m2, c33 = 11.5 · 1010N/m2, c55 = 2.56 · 1010N/m2, e13 = −5.2
C/m2, e15 = 12.7 C/m2, e33 = 15.1 C/m2, ε11 = 730ε0; ε33 = 635ε0, V0 = 1V. ε0
is vacuum permittivity. Such dimensionless quantities were used in the calculations:
r̃ = r/h, z̃ = z/h, ũr = ur/h, ũz = uz/h, ϕ̃ = ϕ

√
ε0/(h

√
λ), Ω = ωh

√
ρ/λ,

c̃ij = cij/λ, ẽij = eij/
√
ε0λ, ε̃ij = εij/ε0, where λ = 1010N/m2, h = (r1−r0)/2.

Fig. 14.1 shows how the first four frequencies are determined using as an ex-
ample finding of the resonance of displacements u. The displacement distributions
obtained with the finite-element method are shown by solid line, while those ob-
tained with the spline-collocation method are shown by dotted line. In this case,
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Fig. 14.1 Frequency-dependent distributions of the displacement ũr (continuous line: FEM,
dashed line: SCM)

in employing the spline-collocation method, we have chosen 20 collocation points
(N = 19) and 2000 of 0.1× 0.1 square elements.

Six frequencies at different levels of approximation, i.e., for 16, 20, and 24 col-
location points in the spline-collocation method and K being equal to 500, 2000,
and 8000 in the case of the finite-element method, are collected in Table 1. The lin-
ear dimensions of the element at K = 500 are doubled, while at K = 8000 they
decrease in comparison with K = 2000.

As is seen from the plots and Table 14.1, the results obtained with both methods
agree with high accuracy. Values of the frequencies obtained with spline-collocation
method at N = 19 and 23 differ insignificantly as in the case of the finite-element
method at K = 2000 and 8000. The difference in the results obtained by these
methods does not exceed 0.8%.

14.6 Conclusions

Using the spline-collocation method with discrete orthogonalization in combina-
tion with the finite-element method, we have studied vibrations of a radially polar-
ized piezoceramic cylinder. The values of the frequencies determined with different
methods are compared. As it is shown, they are agreed with high accuracy.
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Table 14.1 Values of the frequencies obtained with different methods

Ω
SCM FEM

N = 15 N = 19 N = 23 K = 500 K = 2000 K = 8000

Ω1 0.8 0.802 0.803 0.807 0.806 0.806
Ω2 0.875 0.879 0.881 0.891 0.889 0.888
Ω3 1.062 1.065 1.066 1.076 1.074 1.073
Ω4 1.431 1.428 1.428 1.441 1.436 1.434
Ω5 1.841 1.846 1.849 1.866 1.862 1.861
Ω6 1.999 1.99 1.988 2.002 1.992 1.989
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Chapter 15

Qualitative Investigations of Experiments

Performed on 3D-FDM-printed Pantographic

Structures Made out of PLA

Arion Juritza, Hua Yang & Gregor Ganzosch

Abstract Additive manufacturing methods, commonly known as 3D printing, en-
able the design and manufacturing of complex and sophisticated material fabrics
with a special substructure resulting in extraordinary macroscopic deformation be-
havior. Such a man-made structure is also referred to as a metamaterial. So called
pantographic structures, which can be described as metamaterials with a substruc-
ture that is composed of two orthogonal arrays of beams connected by internal cylin-
ders, were manufactured using fused deposition modeling technique. In order to fur-
ther understand the peculiarity of its deformation behaviors, a plane sheet was also
printed to be used as a comparison. Different types of experiments were performed
and evaluated qualitatively by the means of digital image correlation being able to
localize the initial area of out-of-plane movements in shearing tests for both speci-
men. Results of quasi-static standard tension and shearing tests indicate a resilient
material behavior during high elastic deformations resulting in a high resistance
against total failure of the structure. Furthermore, cyclic long-term tests show a vis-
coelastic deformation behavior of the thermoplastic material. PSs show linear as
well as non-linear elastic deformation response in all experiments except the cyclic
tension test.

Keywords: Experiment ·Metamaterial · Pantographic structure ·Digital image cor-
relation · Elasticity
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15.1 Introduction

The development of 3D-printing technology enables the fabrication of structures
with high degrees of complexity. Such complex structures are known as metama-
terials whose effective properties are carefully designed by tailoring the so-called
microscopic constituents (Gibson, 2005; Gibson and Ashby, 1999; Barchiesi et al,
2018b). Due to extraordinary properties like light weight and high stiffness, meta-
materials have gained considerable attention in the recent past. One of the com-
mon methods to construct metamaterials is to repeat its substructures engineered to
achieve special desired properties. For example, structures with negative Poisson’s
ratio, large non-linear elastic deformations because of temperature gradients, insta-
bilities, or buckling of metamaterials are exploited to trigger those desired behav-
iors. It should be noted that the mechanical performance of metamaterials depends
not only on the global structure, but also on the morphology of its substructure.

In order to design and manufacture metamaterials for specific engineering ap-
plications, a possibility to predict their performance can be achieved with the aid
of finite element method involving detailed mesh of substructure (Yang et al, 2018;
Tekoğlu and Onck, 2008; Chen and Fleck, 2002). This is a cumbersome process
and computationally very expensive due to the large numbers of unknowns. Because
of these reasons homogenization of such discrete structures towards an equivalent
Cauchy continuum has been an active research field for many years (Ghosh et al,
1996; Bensoussan et al, 2011; Noor, 1988). The effective properties of the homog-
enized cellular structure can be predicted with a good agreement with experimental
data (Sun and Vaidya, 1996).

Nevertheless, the classical homogenization encounters limitations in many situ-
ations (Li, 2011; Askes and Aifantis, 2011). For example, if the variation of macro-
scopic stress or strain fields is rapid over the length scale of the whole domain, or if
the size of the domain is in a comparable order of scale with respect to the consid-
ered specimen. In these cases, the macroscopic stress or strain fields can no longer
be regarded as uniform in the scale of the domain, and their gradients cannot be
neglected in homogenization procedure. In other words, notably size effect can not
be captured by standard homogenization with classical elasticity theory; thus clas-
sical first gradient Cauchy theories need to be improved by introducing either addi-
tional degrees of freedom like the Cosserat medium (Cosserat and Cosserat, 1896,
1909), micropolar parameters (Eringen and Suhubi, 1964; Eringen, 1968; Müller
and Vilchevskaya, 2017, 2018) or additional higher order gradients (Mindlin and
Eshel, 1968; Toupin, 1962; Abali et al, 2017, 2015; dell’Isola et al, 2009; Placidi
et al, 2018b,a). The micropolar continuum presents several limitations to the study
of localization of deformations when the gradients of stresses and strains are not
excessive; a second order gradient continuum is more suitable for this purposes
(Kumar and McDowell, 2004; Rahali et al, 2015; Barchiesi et al, 2018a). A pan-
tographic structure (PS) is a metamaterial which is composed of two orthogonal
arrays of beams connected by internal cylinders called pivots (Placidi et al, 2016c),
see Fig. 15.1. Interestingly, PSs are reported to investigate the higher gradient the-
ory and thus it is regarded as a kind of second gradient continuum. A large supply



15 3D-FDM-printed Pantographic Structures 199

Fig. 15.1 In-house manufac-
tured specimen made out of
polylactic acid (PLA): Meta-
material with pantographic
substructure (Sample A ).

of papers (Placidi et al, 2016b) has been published with regarding to the necessities
and ways on modeling the PS as a second order gradient continuum (Boutin et al,
2017). However, new material parameters are introduced into the constitutive laws
and experiments have to be designed to calibrate and determine these parameters
(Placidi et al, 2016a). In this paper results of different types of experiments applied
to in-house manufactured metamaterials with pantographic substructure (sample A,
Fig. 15.1) will be discussed qualitatively. In order to interpret the peculiar deforma-
tion behaviors of PSs, those experimental results will be compared to a plane sheet
structure without a visible macroscopic substructure (sample B, Fig. 15.3b). The
metamaterial shows a high resilient and linear as well as non-linear elastic material
behavior.

15.2 Materials and Methods

Experiments performed at Technische Universität Berlin, Institute of Continuum
Mechanics and Material Theories, are divided into quasi-static and cyclic standard
extension tests as well as shearing tests respectively. Experimental setups are pre-
sented in Fig. 15.2).

PSs, consisting of rectangular beams (with a quadratic cross-section of A =
a × a = 1mm × 1mm) and cylindrical joints (with a diameter of dp = 1mm and
a pivot height of hp = 1mm), were 3D-printed using Fused Deposition Model-
ing (FDM) procedure at Technische Universität Berlin, Institute of Continuum Me-
chanics and Material Theories. 3D-CAD-models were converted into gCode, which
was used as input for the in-house located FDM-printer (Ultimaker 3 Extended, Ul-
timaker B.V., Geldermalsen, Netherlands) controlled by the device own software
Cura. Polylactic acid (PLA - Ultimaker B.V., Geldermalsen, Netherlands) was used
as raw material for all investigated structures. To increase the printing quality of the
specimen, water-soluble polyvinyl acetate (PVA - Ultimaker B.V., Geldermalsen,
Netherlands) was used additionally as support-structure during the manufacturing
process and solved in water for 24 hours afterwards.
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Fig. 15.2 Schematic setups of different experiments performed on sample A: setup of tension test
on the left and setup of shearing test on the right.

Since the microscopic substructures influence the macroscopic deformation be-
haviors significantly (Rahali et al, 2015; Barchiesi et al, 2018a), two variations of
specimens with different geometries but equal material densities were investigated.
Figures 15.3a and 15.3b show both types of specimens: rectangular metamaterial
consisting of pantographic substructure (sample A) and rectangular plane structure
(sample )B). Details of the dimensions can be found in Tab. 15.1.

Table 15.1 Outer dimensions (L = width, l = height, t = depth) of sample A and sample B as well
as inner dimensions of the substructure of sample A corresponding to the schematic in Fig. 15.2
(a = quadratic width and height of beam, dp = diameter of pivot, hp = height of pivot).

Sample L [mm] l [mm] t [mm] a [mm] dp [mm] hp [mm]
A 140 70 3 1 1 1
B 140 70 1 – – –

(a) Speckled sample A. (b) Speckled sample B.

Fig. 15.3 Investigated specimens after speckling procedure was applied (undeformed state).
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With the help of the non-invasive measurement method digital image correlation
(DIC) it is possible to measure and calculate displacements and strains on a surface.
Therefore, a camera records the surface during deformation with the help of so-
called facets. Each facet consists of a rectangle in which pixels of different contrasts
are recorded during the deformation. This pixel-data is binarized and displacement
vectors of each pixel are calculated in real time during the deformation-process.
To achieve better results, a speckled surface is needed. Because of lack of contrast
all specimen had to be speckled. With the help of an airbrush-compressor-system
a speckle pattern of black ink was sprayed on top of the prime. A homogeneous
pattern was achieved by exploiting the ink-inertia. Figure 15.3a and Fig. 15.3b show
the full speckled specimen before the experiments were performed. DIC evaluation
was performed by means GOM Correlate software (GOM GmbH, Braunschweig,
Germany).

Figure 15.4 shows the deformation of sample A during a tension test. A MTS
Tytron 250 testing-device (MTS Systems Corporation, Eden Prairie, USA) con-
trolled by the software Stationsmanager V 3.14 was used for all experiments.
Reaction-force was measured by a device-own load cell, which is able to record
axial forces in a range of N = ±250 N with an accuracy of 0.2 percent. The dis-
placement was imposed horizontally in case of tension load on the right side of the
specimen with a loading rate of v = 15 mm/min (displacement-controlled). In shear
experiments displacement was imposed on the upper side of the specimen horizon-
tally. Displacement was measured and monitored by a device-own encoder unit.
Almost frictionless movement was achieved by using an air-film-bearing. External
vibration was avoided by arranging the system horizontally on a massive concrete-
substructure. Pictures of the surface during deformation were taken (1 picture/2 sec-
onds) by means of a commercial Canon EOS 600D camera with a resolution of
about 4272×2848 pixels by arranging the camera orthogonal to the plane surface of
the specimen. Each picture was synchronized with the recorded force-displacement
data in real time.

Figure 15.4 shows the failure of the structure during plastic deformation of sam-
ple A in a tension test and Fig. 15.5 shows the deformation of sample A leading
to total failure in a shearing test. Both cases will be described and discussed in
Sect. 15.3.1 for quasi-static tests and in Sect. 15.3.2 for cyclic tests.

15.3 Results and Discussion

Quasi-static tensile and shearing tests as well as cyclic tensile and shearing tests
were performed on sample A as well as on sample B respectively. Reaction-force
and its applied displacement were recorded and translated into stress-strain diagrams
to enable a qualitative comparison of both specimen.
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15.3.1 Quasi-static experiments

Deformation of sample A in an extension test is shown in Fig. 15.4. Correspond-
ing stress-strain diagram of same experiment is plotted in Fig. 15.6a. Almost linear
elastic material behavior can be recognized up to about 4 percent of elongation
(Fig. 15.4a). Then non-linear behavior and plastic deformation occurs leading to
permanent necking of the global structure, which is in good agreement with the
DIC evaluation (Fig. 15.4b). First rupture of a pivot occurs in the lower right region
of Fig. 15.4c next to the mounting reinforcement at an elongation of about 6.2 per-
cent. Notice, that at this point the structure resists total failure and is able to absorb
even higher loads after the first failure (Fig. 15.4c). Because of the complex geom-

(a) Before deformation: mounting on the left is
fixed while axial-displacement is induced by
the mounting on right hand side.

(b) Before first failure: major
constriction/necking of the structure can be
recognized with the help of DIC (about
uyy = ±5 mm).

(c) After first failure: local broken pivots on the
lower right corner of the sample do not lead to
total failure of the whole structure (rupture not
visible).

(d) After maximal deformation: structure still
resists total failure and shows high resilient
material behavior. Local rupture of a beam is
visible in the lower right corner.

Fig. 15.4 Axial deformation of sample A during quasi-static tensile test.
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(a) Before deformation: mounting on
the bottom is fixed while
shear-displacement is induced by the
upper mounting.

(b) Before first failure: symetric
out-of-plane movement of the structure
can be recognized.

(c) After first failure: local broken
beams on the lower left corner of the
sample lead to failure of the whole
structure (rupture not visible).

(d) Before total failure: structure still
resists total failure and shows high
resilient material behavior. Local
rupture can be recognized on the left
bottom next to the mounting.

(e) After total failure: structure divided
into two broken pieces.

(f) After maximal deformation: broken
pieces touching each other explain the
measured forces.

Fig. 15.5 Shear deformation of sample A during quasi-static shearing test.
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(a) Stress-strain diagram of extension test. (b) Stress-strain diagram of shearing test.

Fig. 15.6 Stress-strain diagrams of sample A during quasi-static experiments.

etry, beams and pivots reorganize themselves indicating a smart resilient material
behavior (Cennamo et al, 2014; Ganzosch et al, 2017) of the whole structure.

The same resistance deformation behavior to outer loads was observed in the
shear-test of sample A. Deformation of sample A is shown in Fig. 15.5. Corre-
sponding stress-strain diagram of same experiment is plotted in Fig. 15.6b. Almost
linear elastic material behavior can be recognized up to about 5.6 percent of elon-
gation (Fig. 15.5a). Symmetric out-of-plane movement starts to show up inside the
elastic range (Fig. 15.5b). Because of plastic deformation a first rupture of a beam in
the lower left region of Fig. 15.5c next to the mounting reinforcement appears at an
elongation of about 12.08 percent and corresponding load of 251 kPa. This sample
is capable to resist considerable external shear loads without leading to complete
failure of the whole structure. Because of the complex geometry, beams and pivots
reorganize themselves resulting in an higher resistance to outer load, so that even
higher loads can be carried after failure (at 13.25 percent of elongation at a maximal
load of 252 kPa). At 15.72 percent of elongation the local rupture results in a global
failure of the whole structure (Fig. 15.5d) still resisting total failure of the whole
structure. After 36.25 percent of elongation the whole structure fails (Fig. 15.5e).
Friction of broken beams among each other are the reason for the small increase of
the stress-strain regime above 36.25 percent of elongation (Fig. 15.5f).

(a) Stress-strain diagram of shearing test of
sample A.

(b) Stress-strain diagram of shearing test of
sample B.

Fig. 15.7 Stress-strain diagrams of sample A and sample B during quasi-static experiments.
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Results of quasi-static shear experiments performed on both samples are plotted
in Fig. 15.7. Sample A shows an almost linear elastic material behavior. Small dif-
ferences between increasing slope and decreasing slope can be neglected because
of small friction effects in the mounting device. In contrast sample B shows a much
more complex material behavior. After transition of linear to non-linear elasticity,
small plasticity effects need also to be taken into account for explaining the dis-
sipative deformation behavior. Discrepancy between the start value at zero-stress
and the end value of the shear-strain indicates plastic deformation. In both exper-
iments the specimens experience an out-of-plane movement, which was measured
for small values of about ±0.2 percent of buckling in Fig. 15.8 with the help of a

(a) Symetric out-of-plane
movement of sample A:
positive buckling in red area
and negative buckling in
blue area (about ±0.2
percent).

(b) Overlay of symetric out-of-plane
movement of sample B and plane
structure: positive buckling in red area
and negative buckling in blue area
(about ±0.2 percent).

(c) Sideview of
out-of-plane movement
of sample B during
shear test.

Fig. 15.8 Out-of-plane movement of sample A and sample B in a quasi-static shear experiment.

so called constriction-function in the evaluation process of 2D-DIC software GOM
Correlate. With this technique it is possible to measure buckling effects in the very
early state qualitatively, but not quantitatively, because of lack of information in
the out-of-plane direction. Results generated with this technique should be threaten
very carefully because of the bad standard error deviation. This is also the reason for
the negative buckling marked as blue are in the upper left corner of Fig. 15.8a and
Fig. 15.8b. Nevertheless, results concerning out-of-plane movements of the initial
area of PS are also in good agreement with Barchiesi et al (2018a); Ganzosch et al
(2018).
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Furthermore, quasi-static extension tests of sample B were performed and evalu-
ated also, but because of limitations due to the loading-device only ordinary defor-
mation behavior in the elastic range up to a maximum load of 250 Newton could be
observed without providing any new results.

15.3.2 Cyclic Long-term Experiments

In Fig. 15.9 stress-strain diagrams of both samples under shear-load are plotted for
the case of twenty repeated load cycles up to about 2.5 percent of elongation, re-
spectively. A linear elastic deformation hysteresis of sample A is shown Fig. 15.9a
and a non-linear but mainly elastic deformation hysteresis of sample B is shown in
Fig. 15.9a. In Fig. 15.9a a small decrease of the displacement-controlled maximal
load value in each loop can be neglected due to friction effects of the mounting de-
vice in order to describe a linear elastic material behavior. Furthermore, material
damage as well as viscoelastic effects can be excluded even though out-of-plane
movements are involved for sample A. In contrast, sample B in Fig. 15.9b shows
a higher discrepancy of start and end value of the shear-stress, which was also ob-
served in the quasi-static shear test in Fig. 15.7b. This indicates a viscoelastic or
even plastic deformation behavior and should be investigated further in long-term
relaxation tests for example. Based on the fact that all specimens had to stay 24
hours in water to get rid of the support structure which was manufactured in the
prototyping process (see Sect. 15.2), increases the possibility that water was ab-
sorbed into the bulk of the structure resulting in the probability that viscoelasticity
is involved. As well known, thermoplastics like polyamide used for selective laser
sintering (Yang et al, 2018) or FDM show similar viscoelastic material behavior.

Figure 15.10 shows the stress-strain diagram of sample A of an extension test in
which twenty displacement-controlled load circles up to about 3.3 percent of elon-
gation have been applied. Obviously, a significant decrease of maximal load during

(a) Stress-strain diagram of shearing test of
sample A with 20 iterations of load protocol.

(b) Stress-strain diagram of shearing test of
sample B with 20 iterations of load protocol.

Fig. 15.9 Stress-strain diagrams of sample A and sample B during cyclic shear-load.
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Fig. 15.10 Stress-strain dia-
gram of tension test of sample
A with 20 iterations of load in
a cyclic experiment.

the hysteresis can be recognized. A constant slope would indicate an almost linear
viscoelastic deformation behavior, but viscoelasticity is not the only reason for the
irreversible dissipation. Negative stress values of the decreasing regimes indicate
a plastic deformation. On the other hand, these negative stress-values could also
be based on the preload which is induced into the structure because of insufficient
mounting conditions such as slipping of the specimen.

15.4 Conclusion

In this paper two types of specimens with different substructures were designed and
manufactured using FDM technique. Different types of experiments (quasi-static
and cyclic extension as well as shearing tests, respectively) have been applied to
those specimens and investigated qualitatively with the means of 2D-DIC. We were
able to localize the initial area of out-of-plane movements in shearing tests for both
specimen with the help of 2D-DIC.

Furthermore, PSs show linear as well as non-linear elastic deformation response
in all experiments except the cyclic tension test, in which viscoelasticity was ob-
served. PSs (sample A) enable a high elastic deformation range up to about 4 per-
cent. In contrast elastic deformation range of the plane sheet structures (sample B)
is only at about 0.5 percent. Furthermore, PS are able to take even higher loads after
a rupture occurs resisting total failure of the structure resulting in a high resilient
deformation behavior. This behavior makes PS very attractive for applications in
which very large deformations are inescapable like in the aircraft or maritime in-
dustries.
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Chapter 16

Calculation of Stress Intensity Factors for an

Arbitrary Oriented Penny-shaped Crack Under

Inner Pressure in an Orthotropic Electroelastic

Material

Vitaly S. Kirilyuk, Olga I. Levchuk & Holm Altenbach

Abstract The electroelasticity problem for an arbitrarily oriented disc-like crack un-
der internal pressure in an orthotropic electroelastic material was considered. Gener-
alizing of the Willis approach for an elastic material, using the Fourier transform of
the Green’s function for an infinite anisotropic electroelastic space, the problem of
electroelasticity is reduced to finding unknowns of the jumps of displacements and
electric potential through the surface of a circular crack. Quadrature Gauss formulas
were used to calculate one-dimensional integrals. Testing the approach in the par-
ticular case of the problem for which an exact solution is known confirms the effec-
tiveness of the used approach. The distribution of stress intensity factors (SIF) along
the boundary of a disc-shaped crack (under internal pressure) in a piezoelectric or-
thotropic material under various orientations of a crack was studied. A significant
effect of the crack orientation on the SIF distributions was established.

Keywords: Electroelasticity problem · Orthotropic piezoelectric material · Penny-
shape crack · Arbitrary orientation · Inner pressure · Stress intensity factors

16.1 Introduction

The wide use of piezoelectric materials, which have considerable brittleness, when
creating energy converters and various sensors for measuring instruments, stimu-
lates the interest in studying and analyzing the stress state and concentration of

Vitaly S. Kirilyuk and Olga I. Levchuk
S.P. Timoshenko Institute of Mechanics of NASU, Nesterova 3, 03057 Kyiv, Ukraine,
e-mail: kirilyuk_v@ukr.net, 2013levchuk@gmail.com

Holm Altenbach
Institut für Mechanik, Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany,
e-mail: holm.altenbach@ovgu.de

211© Springer Nature Switzerland AG 2019
B. E. Abali et al. (eds.), New Achievements in Continuum Mechanics
and Thermodynamics, Advanced Structured Materials 108,
https://doi.org/10.1007/978-3-030-13307-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13307-8_16&domain=pdf


212 Vitaly S. Kirilyuk, Olga I. Levchuk & Holm Altenbach

force and electric fields in electroelastic bodies near defects such as cavities, inclu-
sions, cracks. However, the solution of three-dimensional problems of electroelas-
ticity is a rather complex problem, since the system of equations of electroelasticity
is related to force and electric fields (Grinchenko et al, 1989; Shulga and Karlash,
2008). Therefore, up to now, two-dimensional problems of electroelasicity for a
piezoelectric material with stress concentrators had been studied with greater com-
pleteness (Dai et al, 2006; Kaloerov, 2007; Wang et al, 2015; Xu et al, 2015; Zhang
et al, 2017; Zhang and Gao, 2004; Zhao et al, 2016). In Podil’chuk (1998b); Wang
and Zheng (1995) two similar approaches to the construction of general solutions
of the three-dimensional coupled system of equations of static electroelasticity for
transversely isotropic electroelastic bodies were proposed. With the help of these
approaches, it was possible to obtain solutions of a number of electroelastic prob-
lems with stress concentrators in the form of cavities, inclusions, cracks with special
orientation (Chen and Lim, 2005; Chiang and Weng, 2005; Kirilyuk, 2005, 2006;
Lin et al, 2003; Podil’chuk, 1998a; Shang et al, 2003; Wang et al, 2015). When
applying the approaches (Podil’chuk, 1998b; Wang and Zheng, 1995) it was as-
sumed that the axis of symmetry of the transversely isotropic electroelastic material
coincides with the axis of rotation of the stress concentrator, and for plane cracks
it was believed that they are located in a plane that is perpendicular to the axis of
symmetry of the material. For other orientations of stress concentrators in the ma-
terial, these approaches are not effective. Some space problems of electroelasticity
for transversely isotropic piezoelectric bodies (with special orientation of the stress
concentrator in the material) by means of other methods (FEM and BEM) were con-
sidered in Sladek et al (2018); Ricoeur and Kuna (2009); Wippler and Kuna (2007);
Wippler et al (2004); Zhao et al (2018).

Note that, for circular cracks in elastic bodies, several important results of inves-
tigations of the stress state and stress intensity factors are contained in Lekhnitskii
(1981); Willis (1968), and for electroelastic transversely isotropic bodies (with spe-
cial restrictions on the orientation of the circular crack), interesting studies are per-
formed in Chiang and Weng (2005); Dunn and Taya (1994); Kirilyuk (2005, 2006);
Lin et al (2003); Podil’chuk (1998a); Sladek et al (2018); Zhao et al (2018). The
influence of the orientation of a circular crack in a transversely isotropic electroelas-
tic material on the distribution of stress intensity factors was considered (Kirilyuk,
2008), and the stress state in an orthotropic electroelastic material with an elliptical
crack located in one of the principal planes of symmetry under homogeneous load-
ing was investigated in Kirilyuk and Levchuk (2017), respectively. The solutions of
two problems of electroelasticity for orthotropic piezoelectric laminates with inter-
facial imperfections were obtained in Chen et al (2004); Zhou et al (2010).

In this paper, the distribution of stress intensity factors for an arbitrarily oriented
circular crack in an orthotropic electroelastic material is studied for the first time.
The investigations are based on the generalization of the approach (Willis, 1968, for
an anisotropic elastic medium with an elliptical crack) to the case of an electroelas-
tic orthotropic material. The problem is reduced to the search for unknown jumps
of displacements and electric potential through the surface of a circular crack. In
solving the problem, we also used the Fourier transform of the Green’s function for
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an anisotropic electroelastic space and Gauss quadrature formulas for calculating
of contour integrals. For a particular case of the considered problem when it has
an exact solution, an approbation of the used approach has been carried out and its
effectiveness has been confirmed. Investigations of stress intensity factors along the
boundary of a circular crack (for different orientations in the material) were per-
formed, and the influence of the crack orientation on their distribution was revealed.

16.2 Basic Equations and Statement of the Problem

Let the orthotropic electroelastic space contains a plane circular crack. Let us as-
sume that one of the axes of material symmetry coincides with the axis z, the angle
between which and the normal to the plane of the crack is equal α. We assume that
the electroelastic space is under the action of homogeneous force and electric loads.
The presence of a crack in the material, as a concentrator, leads to the appearance
of perturbations of electric and stressed states.

The complete system of static equations of electroelasticity has the following
form:

• Equilibrium equations in the absence of volume forces

σij,j = 0; (16.1)

• Equations of electrostatics

Di,j = 0, Ei = −Ψ,i; (16.2)

• Cauchy relations

εij =
1

2
(ui,j + uj,i);

• Equations of state

σij = Cijmnεmn + enijΨ,n, Di = eimnεmn − kinΨ,n; (16.3)

where σij , εij , ui, Di, Ei, Ψ - components of stresses, deformations, displace-
ments, electrical displacements (electric induction), electric field intensity and
electric potential, respectively. In addition, let us introduce the notations of fol-
lowing tensors: Cijmn, eimn, kij - tensor of elastic modules, tensor of piezo-
electric modules, dielectric permittivity tensor. For piezoelectrical bodies that
are orthotropic in their properties, the elastic characteristics of the material are
described by nine independent constants c11, c22, c33, c12, c13, c23, c44, c55, c66,
the piezomodules – by five constants e15, e24, e31, e32, e33, the dielectric per-
mittivity – by three independent constants k11, k22, k33. The components of the
indicated tensors are related to the corresponding independent constants as fol-
lows
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C1111 = c11, C2222 = c22, C3333 = c33,
C1122 = C2211 = c12, C1133 = C3311 = c13, C2233 = C3322 = c23,

C2323 = C2332 = C3232 = C3223 = c44,
C3131 = C3113 = C1331 = C1313 = c55,
C1212 = C1221 = C2121 = C2112 = c66,
e113 = e131 = e15, e223 = e232 = e24,
e311 = e31, e322 = e32, e333 = e33

(16.4)
The other components of mentioned two tensors are equal to zero. Also, three
components of the dielectric permittivity are nonzero.

When solving the problem, it is convenient to introduce a new coordinate system
in which the direction of one of the axes coincides with the direction of the normal
to the plane of the crack. Suppose that the original coordinate system 0x1x2x3 is
associated with a new (local) system in such a way that it is obtained from the initial
coordinate system by rotating about an axis 0x by an angle α. Then tensors of elastic
moduli, piezomodulaes and dielectric constants C(α)

ijkl, e
(α)
ijk , k(α)ij , in the new coor-

dinate system, we obtain according to transformations of tensors of corresponding
orders, where αij is the transformation matrix of the next form

αij =

⎡⎣ 1 0 0
0 cosα − sinα
0 sinα cosα

⎤⎦ (16.5)

An arbitrary orientation of the crack in the material can be obtained by sequential
rotations at angles α, β, γ around the axes of the old coordinate system 0x, 0y, 0z,
respectively. Then the transformation matrix Tij has the form

Tij=

⎡⎣ cosβ cos γ − cosβ sin γ sinβ
sinα sinβ cos γ + cosα sin γ − sinα sinβ sin γ + cosα cos γ − sinα cosβ
− cosα sinβ cos γ + sinα sin γ cosα sinβ sin γ + sinα cos γ cosα cosβ

⎤⎦
Matrix Tij is the result of the multiplication of three matrices, like (16.5), reflect-
ing the right of rotation around each of the coordinate axes. New tensors of elastic
moduli, piezomodules and dielectric constants C(α,β,γ)

ijkl , e(α,β,γ)ijk , k(α,β,γ)ij we obtain
using the rules for transforming of tensors of corresponding orders

C
(α,β,γ)
ijkl = CmnpqTimTjnTkpTlq, e

(α,β,γ)
ijk = emnpTimTjnTkp, k

(α,β,γ)
ij = kmnTimTjn,

where summation is carried out over repeated indexes.
We note that further in the text of the paper we used the usual tensor notation of

expressions, that is, by summation over the indexes repeated in the expressions. To
describe the electroelastic state, we use more universal notations (Dunn and Taya,
1994), based on which we write the elastic displacements and the electric potential

UM =

{
um, M = 1, 2, 3,
Ψ, M = 4,

(16.6)
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elastic deformations or electric potential

ZMn =

{
εmn, M = 1, 2, 3,
Ψ,n, M = 4,

(16.7)

stress or electrical displacements

ΣiJ =

{
σij , J = 1, 2, 3,
Di, M = 4,

(16.8)

electroelastic modules

E
(α,β,γ)
iJMn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C
(α,β,γ)
ijmn , J,M = 1, 2, 3,

e
(α,β,γ)
nij , J = 1, 2, 3,M = 4,

e
(α,β,γ)
imn , J = 4,M = 1, 2, 3,

−k(α,β,γ)in , J,M = 4

(16.9)

Using the notation (16.6)-(16.9), the equation of state (16.3) can be written in the
form

ΣiJ = E
(α,β,γ)
iJMn ZMn

Under uniform force and electrical loads, we obtain the following boundary condi-
tions

τ±13

∣∣∣∣
S

= f
(α,β,γ)
1 , τ±23

∣∣∣∣
S

= f
(α,β,γ)
2 , σ±33

∣∣∣∣
S

= −P (α,β,γ)
0 , D±

3

∣∣∣∣
S

= −D(α,β,γ)
0 ,

UM (xxx)→ 0 when |xxx| → ∞
(16.10)

where S - the double-sided surface of the crack, is referred to a new coordinate
system (it is obtained by rotation at angles α, β, γ around the axes of the old system),
and the load is also written in the new coordinate system.

16.3 Solution Method

We consider the Green’s functionGIJ(xxx−xxx′) for an infinite electroelastic anisotropic
space. It satisfies the following equations

E
(α,β,γ)
kJMn GJM,kn + δJMδ(xxx− xxx′) = 0, (16.11)

where δ(xxx − xxx′) - is the Dirac delta function; δJM - the symbol of Kronecker.
A comma after an index means differentiation with respect to the corresponding
variable. We use the integral expression of the fundamental solution
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GJM (xxx− xxx′) = 1

(2π)3

∞∫∫∫
−∞

AJM (ξξξ)D−1eıξξξ(xxx−xxx′)dξ1dξ2dξ3, (16.12)

where ı =
√−1 and AJM (ξξξ) - are the corresponding algebraic complements of the

elements of the matrix

{KJM (ξξξ)} = {E(α,β,γ)
iJMn ξiξn} (16.13)

D(ξξξ) - is its determinant, which is a polynomial of the eighth order.
Using the further transformations of expressions (16.10)-(16.13), we represent

the perturbed electric and stress states, generalizing the purely elastic case, by means
of unknown jumps of displacements and electric potential through a two-sided crack
surface

UI(xxx) =
1

4π2

4∑
N=1

∞∫∫
−∞

E
(α,β,γ)
lJM3 ξ

N
l AIJ(ξξξ

N )

∂D(ξξξN )

∂ξ3

∫∫
S

bM (xxx′)eıξξξξξξξξξ
N (xxx−xxx′)dξ1dξ2dx

′
1dx

′
2,

(16.14)
where for a circular crack an unknown vector bbb(xxx) has the form

bbb(xxx) = bbb(0)
√
1− x

2
1

a2
− x

2
2

a2
(16.15)

a - radius of a circular crack; bbb(0) is a constant fourth-order vector whose com-
ponents are complex numbers in the general case. We note that the summation
in Eq. (16.14) using expression (16.15) is carried out for the ξM3 - roots of the
equation D(ξ) = 0 with negative imaginary part, and the vector ξξξM has the form
ξξξM = (ξ1, ξ2, ξ

M
3 (ξ1, ξ2)). Components of stresses and electrical induction are de-

termined by the following expressions

ΣiJ(xxx) = E
(α,β,γ)
iJKl UK,l

=
−ı
4π2

4∑
N=1

∞∫∫
−∞

∫∫
S

E
(α,β,γ)
iJKl E

(α,β,γ)
pQM3 ξ

N
p ξ

N
l AKQ(ξξξ

N )

∂D(ξξξξξξξξξN )

∂ξ3

bM (xxx′)eıξξξξξξξξξ
M (xxx−xxx′)dξ1dξ2dx1dx2

Using transformations analogous to the elastic case (Willis, 1968) we obtain

ΣiJ(xxx) =
−ı
4

2π∫
0

4∑
N=1

F
(α,β,γ)
iJM

(η1
a
,
η2
a
, ξN3

(η1
a
,
η2
a

))
b
(0,0)
M dϕ, (16.16)

where the function F (α,β,γ)
iJM (ξ1, ξ2, ξ3) is determined by the formula
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F
(α,β,γ)
iJM (ξ1, ξ2, ξ3) =

E
(α,β,γ)
iJKl E

(α,β,γ)
pQM3 ξ

N
p ξ

N
l AKQ(ξξξ

N )

∂D(ξξξξξξξξξN )

∂ξ3

(16.17)

Further, the calculation of the one-dimensional integral in Eq. (16.16) (using the
notation (16.17)) is carried out by means of the Gauss quadrature formula.

After further analysis of the asymptotic expressions for stresses and electric in-
duction in the crack plane and, using the definition of the stress intensity coefficients
KI ,KII ,KIII and electric inductionKD, we obtain

kiJ = ı
√
πa

a
4
√
x21 + x

2
2

4∑
N=1

F
(α,β,γ)
iJM

[x1
a2
,
x2
a2
, ξN3

(x1
a2
,
x2
a2

)]
b
(0,0)
M ,

KI = k33, KII = k31n1 + k32n2, KIII = k31(−n2) + k32n1, KIV = KD = k34
(16.18)

For a circular crack, the components of the normal vector have the form

n1 =
x1√
x21 + x

2
2

, n2 =
x2√
x21 + x

2
2

Using the method of Gauss quadratures to calculate one-dimensional integrals and
satisfying the boundary conditions on the crack surface, we find unknown values
of displacement jumps and electric induction, and then calculate the stress intensity
and electric induction coefficients from Eqs. (16.18).

To approbate the approach used, we first consider the problem of a circular crack
in an electroelastic transversely isotropic material located in the plane of its isotropy,
at a constant pressure P0 on the surface of the crack, as well as in shear forces
σ013 �= 0. The normal component of the electric induction was considered zero when
considering the problem. In this case, for an impenetrable crack, the stress intensity
factors KI according to the results of Kirilyuk (2005) are independent of the prop-
erties of the material and coincide with their expression for a purely elastic isotropic
material (for the same shape of the crack and the same symmetrical load), and the
value KD = 0. At the same time, the stress intensity factors, under shear, depends
on the elastic and electrical properties of the material (Kirilyuk, 2006). According
to the studies of Kirilyuk (2006), in order to find the SIF KII ,KIII , in an elec-
troelastic transversally isotropic material with a flat crack in the isotropy plane of
the material, it is sufficient to take their expressions for an isotropic elastic material
under the same shear loads, and instead of the Poisson ratio ν in the corresponding
SIF expressions it is necessary to substitute the value νPIEZO, which depends on
the properties of the electro-elastic material (Kirilyuk, 2006). Since the formula for
finding this value is rather complex and the procedure for obtaining it is described in
detail in Kirilyuk (2006), we give the value νPIEZO for some piezoelectrical materi-
als in Table 16.1 according to Kirilyuk (2006). The output data regarding electrical
and elastic properties correspond to the characteristics given in Grinchenko et al
(1989); Kirilyuk (2005, 2006). The second row of the table contains values founded
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only for the elastic properties of a transversely isotropic material (without consider-
ing its electrical properties).

According to the results of Kirilyuk (2005, 2006), for an electroelastic space
containing a penny-shaped crack, with internal pressure P0 at the crack surface and
shear σ013 in the piezoelectric material, we obtain the following SIF expressions
along the crack front

KI =
2√
π
(P0

√
a),KII =

4

(2− νPIEZO)
√
π
(σ013

√
a) cosφ,KIII =

−4(1− νPIEZO)

(2− νPIEZO)
√
π
(σ013

√
a) sinφ

(16.19)
To validate the approach used, SIF calculations were performed, and for the case of
the location of a circular crack in the isotropy plane of an electroelastic transversely
isotropic material by means of analytical expressions (16.19) and Eqs. (16.18). For
piezoelectric materials from Table 16.1, the results of the investigations by means of
two approaches coincide up to 7 significant digits. In calculating one-dimensional
integrals, the Gauss quadrature formula with 24 nodes was used in expressions
(16.16). Further testing of the approach and the developed on this base computer
program for the electroelastic orthotropic material with a circular crack in particular
cases (an arbitrarily oriented penny - shaped crack in elastic orthotropic and elec-
troelastic transversal-isotropic materials, a circular crack in the orthotropic plane of
the electroelastic orthotropic material) confirmed the coincidence of the obtained
results and data in (Kirilyuk, 2008; Kirilyuk and Levchuk, 2017).

16.4 Analysis of the Results of Numerical Investigations

Consider the following materials:

1. piezoelectric orthotropic material Ba2NaNb5O15, whose electroelastic proper-
ties (total 17 independent parameters) are given in Shulga and Karlash (2008,
pp. 37 and 39);

2. electroelastic piezoceramic material PZT-4 (10 independent electroelastic pa-
rameters, the values of which are given in Grinchenko et al, 1989);

3. elastic orthotropic material whose elastic properties (9 independent parameters)
correspond to the values of orthogonally reinforced 2:1 fiberglass and are given
in Lekhnitskii (1981, p. 66).

We assume that the circular crack can be arbitrarily located in the electro elastic
material and is under internal pressure, and its orientation is determined by the

Table 16.1 Special values for expressions of SIF

Values PZT-4 PXE-5 PZT-5 PZT-7A BaTiO3 PZT-5H
νPIEZO 0,48513 0,48815 0,51190 0,47324 0,34369 0,37867
νELAST 0,35034 0,34591 0,36965 0,35239 0,29768 0,30074
νCONTROL 0,35034 0,34591 0,36965 0,35239 0,29768 0,30074
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rotation angle α around the axis 0x and, respectively, by the coordinate transfor-
mation matrix (16.5). In Figs. 16.1-16.3 reflects the change in the SIF KI along
the front of a circular cracks in piezoelectric orthotropic material Ba2NaNb5O15,
electroelastic piezoceramic material PZT-4 and orthogonally reinforced with 2:1
fiberglass (elastic orthotropic material), respectively, for different cases of orienta-
tion of the circular crack. Curves 1, 2, 3 and 4 in these figures correspond to values
α = 0, α = π/6, α = π/3 and α = π/2 for uniform pressure P0 on a two-sided
crack surface. It can be seen that the orientation of the crack in the material signif-
icantly affects the value and character of the distribution of stress intensity factors
along the crack boundary. In some cases, the effect of orientation on the SIF KI

value exceeded 23 %.
Figures 16.4 and 16.5 show the appearance of nonzero values of the stress inten-

sity factorsKII, andKIII for a symmetrical load, which is the internal pressure, due
to the orientation of the crack in orthotropic material (2:1 orthogonally reinforced
fiberglass), when the crack is located not in the plane of symmetry of the material.
Curves 1 and 2 in Figs. 16.4 and 16.5 correspond to the values of the angles α = π/6
and α = π/3. Note that for materials Ba2NaNb5O15 and PZT-4, when the crack is
located not in the plane of symmetry of the material and under the pressure of its
surface, nonzero values of SIF KII and KIII appear also, but they are some smaller
in value than for orthogonally reinforced 2:1 fiberglass.

Fig. 16.1 Distribution of
SIF KI in the electroelastic
orthotropic material

KI√
aP0
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Fig. 16.2 Changes of SIF KI

in the transversely isotropic
piezoelectric material

KI√
aP0

Fig. 16.3 Distribution of SIF
KI in the elastic orthotropic
material

KI√
aP0

16.5 Conclusion

Thus, in this paper, using the solution of the electroelasticity problem for coupled
forces and electric fields in an orthotropic electroelastic material, stress intensity fac-
tors in an orthotropic piezoelectric space with an arbitrarily oriented circular crack
under internal pressure were investigated. The distribution of stress intensity fac-
tors along the boundary of a circular crack under internal pressure is studied for
different cases of its orientation in the material. A significant influence of the orien-
tation of the circular crack (under internal pressure) in the orthotropic material on
the character of the distribution of stress intensity factors along the crack boundary
was established.
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Fig. 16.4 The appearance of
nonzero values of SIF KII

for the crack under pressure
due to its orientation in the
material

KII√
aP0

Fig. 16.5 Non-zero distri-
bution of SIF KIII for the
crack under pressure due to
its orientation in the material

KIII√
aP0
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Chapter 17

On the Quasi-Static Approximation to the Initial

Traction Boundary Problem of Linear

Elastodynamics

Robin J. Knops

Abstract Conditions are investigated that are sufficient for the quasi-static approxi-
mation to be valid in the initial traction boundary value problem of linear elastody-
namics on a bounded three-dimensional spatial region. The approach consists of two
main steps both of which involve trace inequalities to derive explicit estimates. The
first establishes continuous dependence of the solution upon the inertia. The second
treats continuous dependence of the inertia upon surface traction and body-force.
Circumstances when the approximation is not valid are briefly discussed.

Keywords: Quasi-static approximation · Linear elasticity

17.1 Introduction

The main objective of this note is to establish conditions on selected data that justify
the quasi-static approximation for classical linear elastodynamics. The quasi-static
approximation to any dynamical system assumes that the inertia, or accleration, is
negligible compared to the displacement, displacement gradient (strains) and veloc-
ity. Yet precise conditions under which inertia can be neglected are seldom stated
in the literature. Conditions that produce asymptotic vanishing of inertia are im-
practical. Of interest are conditions that ensure the inertia is suitably small for all
time or after a short interval once motion has commenced. Dissipative systems are
of obvious significance and include theories of linear thermoelastodynamics (Boley
and Weiner, 1960; Carlson, 1972) and linear viscous elasticity (Eringen, 1967). The
formation of shock waves in the solution to the nonlinear wave equation or in that of
elastodynamics are further examples of dissipative behaviour for which the inertia
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can be expected to become negligible in finite or infinite time. Vanishing of inertia
in systems without intrinsic dissipation must rely upon suitable initial conditions,
source terms and boundary data.

Initial boundary value problems for the linear wave equation in two and three spa-
tial dimensions (see, for example, Egorov and Shubin, 1998) demonstrate that rapid
oscillatory initial conditions violate the quasi-static approximation. Similar exam-
ples in linear elastodynamics include those discussed in Shield and Green (1963);
Shield (1965) and emphasise the relation with Liapunov stability. For the initial
boundary value problem subject to arbitrary initial data the solution to the nonlin-
ear wave equation can be unstable, as illustrated among others by Glassey (1973);
Knops et al (1974)) and Levine (1974a,b) and quoted references. Counterexamples
are provided also by metastable systems and in particular the Schaffer-Shnirelmann
phenomenon (Schaffer, 1993; Shnirelmann, 1997) in which a fluid, after a period
during which it is stationary, exhibits motion without input of energy. More gener-
ally, the quasi-static approximation may be valid for some geometries but not others.
Furthermore, weak solutions may behave differently to strong or classical solutions.
These and other examples reinforce the need for a precise statement of conditions
under which the quasi-static approximation is valid.

The literature on this question is not vast and is mainly confined to discussion
of particular problems. Notable contributions include those by Day (1981, 1982,
1985) mainly for the one dimensional initial boundary value problem of linear ho-
mogeneous isotropic uncoupled thermoelastodynamics subject to square integra-
bility conditions. Elements of his method occur in the present development. Other
techniques include scaling arguments that examine the relative magnitude of the
nondimensionalised inertia, displacement, and velocity, as illustrated in the famil-
iar derivation of Stokes flow in fluid mechanics (see for example Childress, 2009).
Singular perturbations applied to first order are used in linear three dimensional
isotropic thermoelastodynamics by Esham and Weinacht (1994, 1999) to obtain
pointwise estimates that establish the uniform exponential decay of the inertia.
Dafermos (1968, 1976) considers linear anisotropic thermoelasticity in three di-
mensions and apart from discussing existence and uniqueness, proves that the tem-
perature gradient and specific entropy decay asymptotically to zero, while the dis-
placement tends to zero except for certain regions and boundary conditions where
convergence is to an undamped oscillation. Additional detailed results are due to
Lebeau and Zuazua (1999). A unified account may be found in the book by Jiang
and Racke (2000). Shearing motions in certain viscous materials are explored by
Saccomandi and co-authors (Gilchrist et al, 2013; Pucci and Saccomandi, 2010,
2011; Saccomandi and Vergori, 2016). It is shown that a boundary layer exists in
which the inertia does not initially decay although it does eventually tend to zero.

The present study adopts a different method to those just described. The approach
is motivated by proofs of continuous data dependence in the theory of partial differ-
ential equations. Pointwise behaviour is not considered. Instead, integral measures
are introduced to establish various mean square estimates required in the validation
of the quasi-static approximation. The argument has two components both of which
employ trace and other standard inequalities. The first supposes that a solution ex-
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ists to the quasi-static approxmimation, and examines conditions sufficient for the
difference between the exact and quasi-static approximate solution to depend con-
tinuously in mean square measure upon the inertia. Initial and traction boundary data
are assumed to be the same for both the exact and approximate systems, although it
is comparatively straightforward to include initial conditions that differ. The second
component argument identifies conditions sufficient for continuous dependence of
the inertia upon surface traction and body-force together with their time derivatives
up to fourth order. The combination of both components determines conditions un-
der which the inertia becomes vanishingly small, and just as importantly, shows how
the error due to the quasi-static approximation vanishes with the magnitude of the
inertia.

Notation and the trace inequalities are introduced in Sect. 17.2, while the exact
initial traction boundary value problem of linear elastodynamics is stated in Sub-
sect. 17.3.1. Subsection 17.3.2 derives a conservation law for the exact system and
discusses why the resulting inequality, although of intrinsic interest, is unsatisfac-
tory for the present study. The quasi-static approximation is formulated in Subsect.
17.4.1 and a corresponding conservation law derived in Subsect. 17.4.2. The first
component argument for validation of the quasi-static approximation is considered
in Sect. 17.5 where continuous dependence of the displacement upon the inertia is
established. Section 17.6, which completes the analysis, deals with the second com-
ponent of the argument and concerns the proof that the inertia depends continuously
upon the surface traction, body-force and their time derivatives to fourth order. The
treatment, similar to a corresponding development by Knops and Quintanilla (2018),
appeals to the quasi-static approximate solution together with another conservation
law to construct an effective bound which, under suitably prescribed surface traction
and body-force, implies that the inertia is small for all time. Consequently, condi-
tions are obtained that justify the quasi-static approximation. Sect. 17.7 contains
brief concluding remarks.

A classical solution is assumed to exist on the finite time interval [0, T ), although
it is often convenient to suppose that T is unbounded. The conventions are adopted
of summation over repeated suffixes and of the comma notation to indicate partial
differentiation. Suffixes range over 1, 2, 3 except for the indices t and η which are
reserved for the time variable. Scalar, vector, and tensor quantities are not typo-
graphically distinguished.

17.2 Preliminaries

17.2.1 Notation

We consider a bounded region Ω ⊂ IRn, where n = 2, 3, with Lipschitz boundary
∂Ω on which the unit outward normal is the vector fieldN . A spatial point in either
Ω or ∂Ω is specified by the vector position x, while the time variable is given by
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t ≥ 0. A common Cartesian orthogonal set of coordinates is used throughout unless
otherwise stated

The region Ω is occupied by an anisotropic nonhomogeneous compressible lin-
ear elastic material whose elastic modulus tensor has components cijkl that satisfy
the symmetries

cijkl = cklij = cjikl, (17.1)

and is positive-definite in the sense that there exists a positive constant c0 such that

c0ψijψij ≤ cijklψijψkl, ∀ψij = ψji, (17.2)

for all symmetric second order tensors ψ. Relaxation of assumption (17.2) is re-
quired when similar problems to those discussed here are considered in the theory
of small elastic deformaations superposed upon large elastic deformations; see for
example, Green et al (1952).

17.2.2 Inequalities

The standard Schwarz and Young’s (arithmetic–geometric mean) inequalities are
repeatedly used in what follows. Also employed are trace and Rellich-Korn inequal-
ities proved by Bramble and Payne (1962) but stated here for reference.

Theorem 17.1 (Bramble and Payne (1962)). Let the coordinate origin be in Ω
and let B(0, a) ⊂ Ω be the ball of radius a and centre at the origin. Let u be
a continuously differentiable vector field defined on Ω where an overbar denotes
closure of the region. Then subject to the normalisation∮

∂B(0,a)

ui dS =

∮
∂B(0,a)

(xiuj − xjui) dS = 0, i, j = 1, 2, 3, (17.3)

where dS denotes the element of surface integration, it follows from (Bramble and
Payne, 1962, Sect. 2) that∮

∂Ω

uiui dS ≤ C1

∫
Ω

cijkleijekl dx = C1

∫
Ω

cijklui,juk,l dx (17.4)

and ∫
Ω

uiui dx ≤ C2

∫
Ω

cijkleijekl dx = C2

∫
Ω

cijklui,juk,l dx, (17.5)

where
eij =

1

2
(ui,j + uj,i) , (17.6)

and C1, C2 are computable positive constants.
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The proof of both inequalities depends upon Rellich identities and additional vector
functions selected to satisfy certain bounds. Several such functions are constructed
by Bramble and Payne (1962).

17.3 Exact Initial Boundary Value Problem

17.3.1 Statement of Problem

The linear elastic body is in motion subject to prescribed time dependent body- force
f(x, t) per unit mass, time dependent surface traction T (x, t), x ∈ ∂Ω, and Cauchy
initial data. Let w(x, t), (x, t) ∈ Ω × [0, T ) be the corresponding displacement
vector field. The initial boundary value problem governing the motion is then given
by the system

(cijkl(x)wk,l(x, t)),j + ρfi(x, t) = ρẅi(x, t), (x, t) ∈ Ω × [0, T ),

(cijkl(x)wk,l(x, t))Nj = Ti(x, t), (x, t) ∈ ∂Ω × [0, T ),

wi(x, 0) = w
(0)
i (x), x ∈ Ω

ẇi(x, 0) = w
(1)
i (x), x ∈ Ω,

(17.7)

where a superposed dot indicates differentiation with respect to time, and the mass
density ρ(x) is assumed to satisfy the bounds

0 < ρ ≤ ρ(x) ≤ ρ̄, x ∈ Ω, (17.8)

for specified positive constants ρ, ρ̄.
It is supposed that the traction and initial data are compatible at t = 0 so that

cijkl(x)w
(0)
k,l (x)Nj = Ti(x, 0), x ∈ Ω,

cijkl(x)w
(1)
k,l (x)Nj = Ṫi(x, 0), x ∈ Ω.

(17.9)

Remark 17.1 (Reduction to initial homogeneous traction boundary value problem).
The initial traction boundary value problem (17.7) can be reduced to an initial homo-
geneous traction boundary value problem using the following standard procedure.
Let w∗

i ∈ C2(Ω × [0, T )) be any twice continuously differentiable functions that
satisfy

(cijklw
∗
k,l)Nj = Ti, (x, t) ∈ ∂Ω × [0, T ).

Set
w∗∗

i (x, t) = wi(x, t)− w∗
i (x, t), (x, t) ∈ Ω̄ × [0, T ],

to obtain the system
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cijklw

∗∗
k,l

)
,j
+ ρf∗i = ρẅ∗∗

i , (x, t) ∈ Ω × [0, T ),

cijklw
∗∗
k,lNj = 0, (x, t) ∈ ∂Ω × [0, T ),

w∗∗
i (x, 0) = w

(0)
i (x)− w∗

i (x, 0), ẇ∗∗
i (x, 0) = w

(1)
i (x)− ẇ∗

i (x, 0), x ∈ Ω,
where

ρf∗i (x, t) = ρfi(x, t) +
(
cijklw

∗
k,l(x, t)

)
,j
− ρẅ∗

i (x, t), (x, t) ∈ Ω × [0, T ).

A non-zero surface traction, however, is retained in order to emphasise the explicit
effect of surface traction upon the inertia and more generally upon the quasi-static
approximation.

17.3.2 Conservation Law for Exact Problem

We derive a conservation law that establishes a weak form of continuous depen-
dence of the inertia upon the initial and boundary data and body-force in appropriate
function spaces.

Multiplication of (17.7) by the velocitiy ẇi and integration by parts gives∫
Ω(t)

(cijklwi,jẇk,l + ρẇiẅi) dx =

∮
∂Ω(t)

Tiẇi dS +

∫
Ω(t)

ρfiẇi dx

=
d

dt

∮
∂Ω(t)

Tiwi dS −
∮
∂Ω(t)

Ṫiwi dS

+

∫
Ω(t)

ρfiẇi dx,

(17.10)
where the subscript Ω(t) indicates that terms in the corresponding integrand are
evaluated at time t.

Let E(t) be defined by (17.12)2 below. Integration of (17.10)1 with respect to
time gives the well known conservation law

E(t) = E(0) +

∫ t

0

∮
∂Ω(η)

Tiwi,η dSdη +

∫ t

0

∫
Ω(η)

ρfiwi,η dxdη. (17.11)

Before discussing implications of the second identity (17.10)2, we introduce further
notation and derive an embedding inequality.

We set
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K(t) =
1

2

∫
Ω(t)

ρẇiẇi dx, V (t) =
1

2

∫
Ω(t)

cijklwi,jwk,l dx, E(t) = V (t) +K(t),

A = E(0)−
∮
∂Ω(0)

Tiw
(0)
i dS, H(t) =

∫
Ω(t)

ρfifi dx, I(t) =

∫ t

0

H(η) dη,

J(t) =

∮
∂Ω(t)

TiTi dS, L(t) =

∫ t

0

∮
∂Ω(η)

Ti,ηTi,η dSdη.

(17.12)
The initial surface traction Ti(x, 0) appearing in (17.12)3 is given in terms of
w

(0)
i (x) by the compatibility relation (17.9).
A Sobolev embedding theorem next provides an upper bound for the quantity

J(t) in terms of L(t). The estimate is derived directly by defining

T̂i(x, t) = Ti(x, t)− Ti(x, 0) (17.13)

and noting that
T̂i(x, 0) = 0,

d

dt
T̂i(x, t) =

d

dt
Ti(x, t).

(17.14)

In consequence, we have

J(t) =

∮
∂Ω(t)

TiTi dS ≤ 2

[∮
∂Ω(t)

T̂iT̂i dS +

∮
∂Ω(0)

TiTi dS

]
, (17.15)

and∮
∂Ω(t)

T̂iT̂i dS = 2

∫ t

0

∮
∂Ω(η)

T̂iT̂i,η dSdη

≤ 2

(∫ t

0

∮
∂Ω(η)

T̂iT̂i dSdη

∫ t

0

∮
∂Ω(η)

Ti,ηTi,η dSdη

)1/2

,

(17.16)
which on integration gives(∫ t

0

∮
∂Ω(η)

T̂iT̂i dSdη

)1/2

≤
∫ t

0

(∫ η

0

∮
∂Ω(τ)

Ti,τTi,τ dSdτ

)1/2

dη

≤
[∫ t

0

h(η) dη

∫ t

0

h−1(η)

(∫ η

0

∮
∂Ω(τ)

Ti,τTi,τ dSdτ

)
dη

]1/2

,

(17.17)

where h(t) is an arbitrary integrable function together with its inverse on [0, T ). On
substitution of (17.17)2 in (17.16) we obtain∮

∂Ω(t)

T̂iT̂i dS ≤ 2

[
L(t)

∫ t

0

h(η) dη

∫ t

0

h−1(η)L(η)dη

]1/2
, (17.18)
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and the notation (17.12)5 is used. Insertion of (17.18) into (17.15) gives the required
Sobolev embedding inequality.

Now consider (17.10)2. Integration with respect to time followed by application
of Schwarz’s inequality and inequality (17.4) subject to (17.3), yields

E(t) = A+

∮
∂Ω(t)

Tiwi dS −
∫ t

0

∮
∂Ω(η)

Ti,ηwi dSdη +

∫ t

0

∫
Ω(η)

ρfiwi,η dxdη

≤ A+

(
J(t)

∮
∂Ω(t)

wiwi dS

)1/2

+

(
L(t)

∫ t

0

∮
∂Ω(η)

wiwi dxdη

)1/2

+

(
I(t)

∫ t

0

∫
Ω(η)

ρwi,ηwi,η dxdη

)1/2

≤ A+ (2C1J(t)V (t))
1/2

+

(
2C1L(t)

∫ t

0

V (η) dη

)1/2

+

(
2I(t)

∫ t

0

K(η) dη

)1/2

≤ A+ γ−1
1 C1J(t) + γ1V (t) +

(
2C1L(t)

∫ t

0

V (η) dη

)1/2

+

(
2I(t)

∫ t

0

K(η) dη

)1/2

,

(17.19)
where γ1 is a positive constant to be chosen and Young’s inequality is applied to
obtain the last line.

Select γ1 to satisfy
(1− γ1) ≡ γ−1

2 < 1, (17.20)

and set

B(t) = γ−1
1 C1J(t) + C1L(t) + I(t) ≥ 0, G(t) =

∫ t

0

E(η) dη. (17.21)

so that after further application of Young’s inequality, we obtain from (17.19) the
differential inequality

Ġ(t) ≤ γ2 (A+B(t) +G(t)) . (17.22)

which upon integration, or by Gronwell’s inequality, gives the bounds

G(t) ≤ γ2
∫ t

0

exp {γ2(t− η)} (A+B(η)) dη

E(t) ≤ γ2 (A+B(t)) + γ22

∫ t

0

exp {γ2(t− η)} (A+B(η)) dη.
(17.23)

The estimates (17.23) are effective only when the surface traction Ti(x, t) and
body-force fi(x, t) are such that the right sides are bounded for all time. Sufficient
conditions are that A ≤ 0 and not only that the surface traction, its time derivative,
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and body-force are square integrable on their respective domains of definition but
as t→∞, there also holds

B(t) = O(exp−(nt)), 2n > γ2,∫ t

0

B(η) dη = O(exp−(nt)), 2n > γ2.
(17.24)

The right sides become asymptotically unbounded when initial conditions imply
A > 0.

It follows from (17.2),(17.5), and (17.12)1,2 that∫
Ω(t)

wiwi dx ≤ 2C2V (t) ≤ 2C2E(t), (17.25)

which in conjunction with estimates (17.23) indicates how the displacement and
velocity depend upon the surface traction and body-force. It is of interest also to
employ these estimates to derive similar information regarding dependence on the
inertia. For this purpose, the displacement is assumed to be three times continuously
differentiable with respect to space and time. The previous argument can then be
applied to the system (17.7) after appropriate differentiation with respect to time.
The process yields, for example, a bound for

E1(t) =
1

2

∫
Ω(t)

(ρẅiẅi + cijklẇi,jẇk,l) dx,

and consequently the inertia on appeal to (17.5). However, as just remarked, these
bounds are of limited practical interest. In later sections, improved estimates are
obtained which require the relevant functions to be only square integrable and not
necessarily to satisfy asymptotic behaviour corresponding to (17.24).

17.4 Quasi-static Approximation

17.4.1 Formulation

The quasi-static approximation to the exact problem specified by (17.7) assumes
that the inertia decays faster than either the strain or velocity and consequently may
be omitted. The displacement vector field v(x, t), however, remains dependent upon
the time variable now regarded as a parameter. Accordingly, the quasi-static approx-
imaation corresponding to (17.7) is given by the system

(cijklvk,l),j + ρfi = 0, x ∈ Ω,
cijklvk,lNj = Ti(x, t), (x, t) ∈ ∂Ω × [0, T ),

vi(x.0) = w
(0)
i (x), v̇i(x, 0) = w

(1)
i (x), x ∈ Ω.,

(17.26)
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where the body-force, surface traction, and initial conditions of the exact problem
are retained for convenience. Extension of the present arguments to the general
quasi-static initial boundary problem is comparatively easy.

17.4.2 Conservation Laws

Certain properties are established including a conservation law for the quasi-static
approximation system as just specified.

Multiplication of (17.26) by the field vi normalised by (17.3), followed by an in-
tegration by parts, appeal to Schwarz’s inequality, and inequalities (17.4) and (17.5)
successively yields∫

Ω

cijklvi,jvk,l dx =

∮
∂Ω

Tivi dS +

∫
Ω

ρfivi dx

≤
(∮

∂Ω

TiTi dS

∮
∂Ω

vivi dS

)1/2

+

(∫
Ω

ρfifi dx

∫
Ω

ρvivi dx

)1/2

≤
[(
C1

∮
∂Ω

TiTi dS

)1/2

+

(
ρ̄C2

∫
Ω

ρfifi dx

)1/2
]2

.

(17.27)
The bound (17.5) then leads to

∫
Ω(t)

vivi dx ≤ C2

⎡⎣(C1

∮
∂Ω(t)

TiTi dS

)1/2

+

(
ρ̄C2

∫
Ω(t)

ρfifi dx

)1/2
⎤⎦2

.

(17.28)

We remark that initial data are absent from both estimates (17.27) and (17.28).
After a time integration of (17.27), the same calculation gives

∫ t

0

∫
Ω(η)

vivi dxdη ≤ C2

⎡⎣(C1

∫ t

0

∮
∂Ω(η)

TiTi dSη

)1/2

+

(
ρ̄C2

∫ t

0

∫
Ω(η)

ρfifi dxdη

)1/2
⎤⎦2

.

(17.29)

which is required in Sect. 17.6.



17 On the Quasi-Static Approximation to the Initial Traction Boundary Problem . . . 233

17.5 Continuous Dependence on Inertia

This Section examines the accuracy of the quasi-static approximation for the prob-
lem under consideration by demonstrating that subject to the normalisation (17.3),
the difference displacement depends continuously upon the inertia in mean-square
norm. For this purpose, set

ui(x, t) = wi(x, t)− vi(x, t), (x, t) ∈ Ω × [0, T ), (17.30)

and by subtraction of (17.26) respectively from (17.7) obtain the system

(cijkluk.l),j = ρẅi, (x, t) ∈ Ω × [0, T ),

cijkluk,lNj = 0, (x, t) ∈ ∂Ω × [0, T ),

ui(x, 0) = u̇i(x, 0) = 0, x ∈ Ω.
(17.31)

Multiplication of (17.31)1 by ui, a spatial integration by parts, followed by Schwarz’s
inequality and inequality (17.5) gives∫

Ω(t)

cijklui,juk,l dx = −
∫
Ω(t)

ρẅiui dx

≤ ρ̄C2

∫
Ω(t)

ρẅiẅi dx.

(17.32)

A second application of (17.5) then leads to the desired continuous dependence
estimate: ∫

Ω(t)

uiui dx ≤ ρ̄C2
2

∫
Ω(t)

ρẅiẅi dx. (17.33)

Remark 17.2. Inequalities (17.32) and (17.33) are explicitly independent of data in-
cluding initial data.

It is therefore demonstrated that in the L2(Ω) norm the difference displacement
u depends continuously upon the inertia ẅ. In order, however, to confirm the validity
of the quasi-static approximation, conditions must be determined under which the
inertia becomes, or is, small.

In the next section, we discuss such conditions and examine continuous depen-
dence of the inertia upon the body-force and surface traction in appropriate function
spaces.

17.6 Continuous Dependence of Inertia on Prescribed Surface

Tractions and Body-force

The influence of data upon inertia can be determined entirely within the con-
text of the exact problem. Indeed, for sufficiently smooth solutions the result is
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easily derived from inequalities (17.23) provided the expressions (17.12)4,5 for
H(t), J(t), L(t) are replaced by

H1(t) =

∫
Ω(t)

ρfi,ηηfi,ηη dx,

J1(t) =

∮
∂Ω(t)

Ti,ηηTi,ηη dx,

L1(t) =

∫ t

0

∮
∂Ω(η)

Ti,ηηηTi,ηηη dSdη.

(17.34)

Nevertherless, introduction of the quasi-static approximate displacement v en-
ables improved bounds to be obtained. An analogous derivation is developed by
Knops and Quintanilla (2018).

On using the previous notation, we have

ẅi = üi + v̈i

which leads to the inequality∫
Ω(t)

ρẅiẅi dx ≤ 2

(∫
Ω(t)

ρüiüi dx+

∫
Ω(t)

ρv̈iv̈i dx.

)
. (17.35)

Upper bounds are now sought for each integral on the right of (17.35) in terms of
the time dependent surface traction and body-force. For this purpose, we note that
under sufficient differentiability, a bound for the second integral is easily obtained
from the inequality corresponding to (17.28). A similar calculation yields∫

Ω(t)

ρv̈iv̈i dx ≤ ρ̄
∫
Ω(t)

v̈iv̈i dx

≤ ρ̄C2

[
(C1J1(t))

1/2
+ (ρ̄C2H1(t))

1/2
]2
.

(17.36)

Treatment of the first integral on the right of (17.35) consists in deriving a pre-
liminary bound for the integral

K1(t) =
1

2

∫
Ω(t)

ρu̇iu̇i dx. (17.37)

The desired estimate is then obtained on replacing first time derivatives of u and
other terms in the bound forK1(t) by their second time derivatives.

The system (17.31) can be rewritten as

(cijkluk,l),j = ρüi + ρv̈i, (x, t) ∈ Ω × [0, T ),

cijkluk,lNj = 0, (x, t) ∈ ∂Ω × [0, T ),

ui(x, 0) = u̇i(x, 0) = 0, x ∈ Ω.
(17.38)



17 On the Quasi-Static Approximation to the Initial Traction Boundary Problem . . . 235

Note that (17.38)1 is assumed to hold at t = 0.
Let

V1(x) =
1

2

∫
Ω(t)

cijklui,juk,l dx ≥ 0,

E1(t) = K1(t) + V1(t),

(17.39)

so that E1(0) = 0 by (17.38)3. Multiplication of (17.38)1 by u̇ and integration both
by parts and with respect to time gives

E1(t) = −
∫ t

0

∫
Ω(η)

ρvi,ηηui,η dxdη

≤
[
2

∫ t

0

∫
Ω(η)

ρvi,ηηvi,ηη dxdη

∫ t

0

K1(η) dη

]1/2

,

(17.40)

where Schwarz’s inequality is used. But by (17.39) and (17.2) we have

K1(t) ≤ E1(t),

and insertion into (17.40) succeeded by a time integration gives∫ t

0

K1(η) dη ≤ 1

2

[∫ t

0

||v(η)|| dη
]2
, (17.41)

where

||v(t)||2 =

∫ t

0

∫
Ω(η)

ρvi,ηηvi,ηη dxdη. (17.42)

The norm (17.42) is bounded by means of inequality (17.29) suitably adapted to
second time derivatives. We have

||v(t)||2 ≤ ρ̄
∫ t

0

∫
Ω(η)

vi,ηηvi,ηη dxdη

≤ ρ̄C2

[
(C1J2(t))

1/2
+ (ρ̄C2H2(t))

1/2
]2
.

(17.43)

where

J2(t) =

∫ t

0

J1(η) dη,

H2(t) =

∫ t

0

H1(η) dη.

(17.44)

In consequence, by virtue of (17.40) and (17.41) the required preliminary esti-
mate forK1(t) is obtained from that for E1(t) and is given by
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K1(t) ≤ E1(t) ≤ ||v(t)|
∫ t

9

||v(η)|| dη

≤ (ρ̄C2)
[
(C1J2(t))

1/2
+ (ρ̄C2H2(t))

1/2
]
×

×
[∫ t

0

(C1J2(η))
1/2
dη +

∫ t

0

(ρ̄C2H2(η))
1/2
dη

]
.

(17.45)

The estimate (17.45)1 is meaningful only when the acceleration v̈i belonging
to the quasi-static approximation is mean-square integrable over space-time, and
moreover the mean-square norm ||v(t)|| is integrable over time. These assumptions
are satisfied on imposing appropriate restrictions on the norms J2(t) andH2(t) and
therefore on the surface traction and body-force.

It is now possible to bound the mean-square integral of üi appearing in (17.35)
subject to sufficient smoothness and conditions for higher time derivatives of u to
vanish at t = 0. Thus, in an obvious notation, we assume

fi,tt(x, 0) = fi,ttt(x, 0) = 0. x ∈ Ω,
Ti,tt(x, 0) = Ti,ttt(x, 0) = 0, x ∈ ∂Ω. (17.46)

Moreover, assume that the differentiated forms of the quasi-static approximation
equation (17.26) hold at t = 0. Then vi,tt(x, 0) and vi,ttt(x, 0) satisfy homogeneous
boundary value problems and from the Kirchhoff uniqueness theorem of linear elas-
tostatics we conclude that

vi,tt(x, 0) = vi,ttt(x, 0) = 0, x ∈ Ω̄. (17.47)

Furthermore, on differentiation of (17.31)1 and use of (17.31)3, we have

wi,tt(x, 0) = wi,ttt(x, 0) = 0, x ∈ Ω, (17.48)

and therefore it follows that

ui,tt(x, 0) = ui,ttt(x, 0) = 0, x ∈ Ω. (17.49)

Differentiation of the system (17.26) gives

(cijklük,l),j = ρui,tttt + ρvi,tttt, (x, t) ∈ Ω × [0, T ),

cijklük,lNj = 0, (x, t) ∈ ∂Ω × [0, T ),
(17.50)

to which are adjoined the initial conditions (17.49). This system is analogous to
(17.38) and consequently similar operations may be applied.

We have from (17.5) that∫
Ω(t)

üiüi dx ≤ 2C2V2(t)

where
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V2(t) =
1

2

∫
Ω(t)

cijklüi,j ük,l dx. (17.51)

Let us also put

K2(t) =

∫
Ω(t)

ρüiüi dx, E2(t) = K2(t) + V2(t), t ∈ [0, T ). (17.52)

The argument leading to (17.45)1,2 suitably modified and applied to the system
(17.49) and (17.50) yields∫

Ω(t)

ρüiüi ≤ 2ρ̄C2V2(t) ≤ 2ρ̄C2E2(t)

≤ 2ρ̄C2||v,tt(t)||
∫ t

0

||v,ηη(η)|| dη.
(17.53)

But corresponding to (17.29) we have

||v,tt(t)|| ≤ (ρ̄C2)
1/2

[
(C1J3(t))

1/2
+ (ρ̄C2H3(t))

1/2
]
, (17.54)

where

J3(t) =

∫ t

0

∮
∂Ω(η)

Ti,ηηηηTi,ηηηη dSdη,

H3(t) =

∫ t

0

∫
Ω(η)

ρfi,ηηηηfi,ηηηη dxdη.

(17.55)

Consequently, we have constructed a mean-square bound for the difference ac-
celeration üi in terms of the surface traction and body-force similar to the estimate
(17.45)2, provided the time derivatives occurring in (17.55) are restricted to ensure
that J3 and H3 exist and are integrable for all time.

Finally, the required continuous data dependence of the inertia is proved on in-
sertion of (17.53) and (17.36) into (17.35) and use of (17.54). We obtain∫

Ω(t)

ρẅiẅi dx ≤ 2

[
2ρ̄C2||v,tt||

∫ t

0

||v,ηη|| dη +
∫
Ω(t)

ρv̈iv̈i dx

]
≤ (2ρ̄C2)

2
{[

(C1J3(t))
1/2

+ (ρ̄C2H3(t))
1/2

]
×

[∫ t

0

(C1J3(η))
1/2

+

∫ t

0

(ρ̄C2H3(η))
1/2
dη

]}
+ (2ρ̄C2)

[
(C1J1(t))

1/2
+ (ρ̄C2H1(t))

1/2
]2

(17.56)

Simplified continuous data estimates, which, however, to be meaningful require
prescription of certain asymptotic behaviour, may be derived from (17.56). Consider
the second term on the right of (17.53)2. Schwarz’s inequality gives
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0

||v,ηη(η)|| dη ≤
[
t

∫ t

0

||v,ηη(η)||2 dη
]1/2

=

[
t

∫ t

0

∫
Ω(η)

(t− η)ρvi,ηηvi,ηη dxdη
]1/2

≤ t||v,tt(t)||.

Substitution in (17.53) gives∫
Ω(t)

ρüiüi dx ≤ 2ρ̄C2E2(t)

≤ 2tρ̄C2||v,tt(t)||2

≤ tρ̄C2

[
(C1J3(t))

1/2
+ (ρ̄C2H3(t))

1/2
]2

≤ 2tρ̄C2 [C1J3(t) + ρ̄C2H3(t)] , t ≥ 0.

(17.57)

The continuous data dependence estimate (17.56) becomes∫
Ω(t)

ρẅiẅi dx ≤ 2

[
2tρ̄C2||v,tt||2 +

∫
Ω(t)

ρv̈iv̈i dx

]

≤ 2ρ̄C2

[
2tρ̄C2

(
(C1J3(t))

1/2
+ (ρ̄H3(t))

1/2
)2

+
(
(C1J1(t))

1/2
+ (ρ̄C2H1(t))

1/2
)2

]
≤ 4ρ̄C2 [2tρ̄C2 (C1J3(t)+ρ̄C2H3(t))+(C1J1(t)+ρ̄C2H1(t))] .

(17.58)
To be of practical interest, the data terms in (17.58) must be such that J1, J3, H1,

and H3 are integrable and moreover as t → ∞ satisfy the asymptotic behaviour
specified by

J1(t) = O(1), H1(t) = O(1),

J3(t) = O(t
−(1+ε)), H3(t) = O(t

−(1+ε)),
(17.59)

for ε > 0
We have constructed a bound for the inertia in terms of the surface traction and

body-force provided these functions are of sufficient smoothness and consistent with
(17.59). Initial data do not explicitly appear. These results improve upon the bounds
corresponding to (17.23) since they require only that the relevant time derivatives of
the traction and body-force are square integrable over space time.

These remarks may be illustrated by supposing that

Ti(x, t) = Xi(x)Z(t), (x, t) ∈ ∂Ω × [0, T ), (17.60)

so that
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0

∫
∂Ω(η)

Ti,ηηTi,ηη dSdη =

∫
∂Ω

Xi(x)Xi(x) dx

∫ t

0

Z,ηη(η)Zηη(η) dη.

Let the second derivative of Z be square integrable and suppose that∫
∂Ω

Xi(x)Xi(x) dS ≤ ε1 (17.61)

for small ε1. Similar treatment of other terms in the estimates then leads to the
conclusion that the inertia is small for all time.

17.7 Concluding Remarks

The discussion presented in the preceding Sections is comparatively straightforward
and is intended to clarify conditions under which the quasi-static approximation is
valid both for the particular initial traction boundary value problem under consider-
ation and more generally. In this respect, it is important to identify data that ensure
the inertia in suitable measure is sufficiently small, if not for all time, then at least
after an interval sufficiently short to be of practical use. The second crucial element
in the argument establishes continuous dependence of the difference solution on
the inertia in an appropriate function space. The calculations are based on standard
inequalities, but as previously stated other methods of validating the quasi-static ap-
proximation, especially in linear thermoelastodynamics, employ scaling arguments
and singular perturbation techniques. See, for esample, Esham and Weinacht (1994,
1999); pointwise behaviour is also investigated by Lebeau and Zuazua (1999).

The quasi-static estimates require various orders of the time derivative of the
surface traction and body-force to be bounded but not these quantities themselves.
They are, however, subject to restrictions imposed by the embedding inequality.

Explicit examples of surface tractions that lead to meaningful bounds are not pre-
sented here, partly because emphasis is directed to producing conditions that justify
the quasi-static approximation. Nevertheless, surface tractions for which the present
bounds are not effective may still be compatible with the quasi-static approximation.

It is obvious that there is scope for further exploration of the topic for both special
problems and fundamental principles.
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Chapter 18

Delamination Buckling in Composite Plates: an

Analytical Approach to Predict Delamination

Growth

Anton Köllner, Fabian Forsbach & Christina Völlmecke

Abstract An analytical modelling approach is presented which is capable of de-
termining the post-buckling responses as well as the onset of delamination growth
of multi-layered composite plates with an embedded circular delamination. In or-
der to overcome current drawbacks of analytical models regarding embedded de-
laminations, the model employs a problem description in cylindrical coordinates
and a novel geometric representation of delamination growth in conjunction with a
Rayleigh-Ritz formulation and the so-called crack-tip element analysis. The mod-
elling approach is applied to study the compressive response of composite plates
with thin-film delaminations loaded under radial compressive strain. Post-buckling
responses and the onset of delamination growth are determined for several layups.
The results are in very good agreement with finite element simulations while requir-
ing low computational cost.

Keywords: Delamination buckling · Energy release rate · Composites · Plates ·
Delamination

18.1 Introduction

Delamination buckling is a well-known failure mode in layered slender struc-
tures which has attracted a lot of interest since the pioneering work of Kachanov
(Kachanov, 1976) and Chai et al. (Chai and Babcock, 1985; Chai et al, 1981). Ow-
ing to its relevance, particularly for the aircraft industry (Baker and Murray, 2016;
Butler et al, 2012), the problem of delaminated composite structures loaded un-
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der in-plane compression represents an area of ongoing research (Chen et al, 2018;
Köllner and Völlmecke, 2018; Ouyang et al, 2018). Significant progress has recently
been made regarding analytical modelling approaches (Köllner et al, 2018; Köllner
and Völlmecke, 2017a,b, 2018) providing insight into the interaction of stability
and material failure by determining the post-buckling behaviour during delamina-
tion growth and investigating the effect of damage types, dimensions and locations.
The effect of delamination location (Ipek et al, 2018; Nilsson et al, 2001), layups
(i.e. anisotropy of the sublaminates Butler et al, 2012), local-global buckling (Rhead
et al, 2017) and stiffeners (Ouyang et al, 2018) has also been investigated in experi-
mental studies. On the other hand, current numerical studies (Abir et al, 2017; Sun
and Hallet, 2018; Tan et al, 2016) mainly investigate the compressive response of
certain configurations of damaged composite panels, where damage originated from
out-of-plane impact scenarios.

Regarding the evaluation of the compressive strength of delaminated composite
panels, the accurate prediction of the onset of delamination growth is important.
Analytical models considering embedded delaminations are hitherto not capable of
determining the energy release rate along the boundary, which is required to deter-
mine the onset of delamination growth precisely. Therefore, the current work aims
at improving the capabilities of analytical modelling approaches further by resolv-
ing one of the major drawbacks regarding the application of analytical descriptions
to embedded delaminations: the prediction of delamination growth by an increase
in the initial radius (circular delaminations) (Bottega and Maewal, 1983) or in the
major and minor axis (elliptical delaminations), which is commonly referred to as
global approach.

However, except for certain configurations of the initial delamination (cf. Köll-
ner and Völlmecke, 2018), the global description does not allow for an accurate
prediction of the onset of delamination growth (applied load, displacement field,
shape of growth) or requires simple model reductions such that only the load causing
growth can be approximated (Butler et al, 2012). The current modelling approach
considers delamination growth along the boundary of the delamination, thus delam-
ination growth is not associated with a complete disbond of the boundary, which
is referred to as local approach. This is enabled by using cylindrical coordinates
(r, ϕ, z) as well as a geometric representation of the newly generated delamina-
tion area. Despite the resulting dependence of the stiffness tensor on the angle ϕ,
the total potential energy, the equilibrium equations and the energy release rate can
be determined analytically yielding an efficient engineering tool to adequately pre-
dict post-buckling responses and the onset of delamination growth in multi-layered
composite panels with embedded delaminations.

18.2 Model Description

The geometric model and the geometric representation of delamination growth are
shown in Fig. 18.1. The circular plate has a radiusR∗ and a thickness t. The depth of
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r ϕ

R

ϕG

ϕ0k
ϕ0

Γ

Fig. 18.1 Geometric model of the delaminated plate (top), visualization of the geometric
representation of local growth (bottom).

the delamination is defined by the parameter a. Since, in the current work, thin-film
delaminations are studied, delaminations complying with a < 0.1 are considered.
The initial radius of the circular delamination is denoted byR. The plate is subjected
to an compressive in-plane radial strain ε0.

The plate is subdivided into three parts. Parts 1 and 2 describe the upper and
lower sublaminate respectively; part 3 represents the intact region of the plate. It
is further assumed that R∗ � R, such that, owing to the thin-film assumption, only
the upper delaminated region 1 undergoes buckling (out-of-plane deflections).

Delamination growth is modelled with the aid of a trigonometric function added
to the given initial radius R in the region where delamination growth is present.
Therefore, three parameters ϕG, k and ϕ0 are introduced representing the direction
of delamination growth, the amplitude of the newly generated delamination and
the span of growth respectively. Thus, the boundary of the delamination Γ can be
defined as

Γ =

{
R+ k cos2

(
ϕ−ϕG

ϕ0

π
2

)
forϕG − ϕ0 ≤ ϕ ≤ ϕG + ϕ0

R, elsewhere
, (18.1)

where, owing to the symmetry of the problem, half of the plate can be considered,
i.e. 0 ≤ ϕ ≤ π. The trigonometric description used is in good agreement with exper-
imental observations made regarding embedded circular delaminations (cf. Nilsson
et al (2001)).
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The Classical Laminate Theory (Reddy, 2004) is employed since out-of-plane
shear effects are deemed small for the laminates considered (the thin-film assump-
tion). The post-buckling behaviour is modelled with the aid of a Rayleigh–Ritz
formulation where the displacement field is approximated using a set of general-
ized coordinates qi. However, as aforementioned, parts 2 and 3 experience no

out-of-plane displacement, such that their displacement field u i can be defined as

u i (r, ϕ) = ε0r,

v i (r, ϕ) = 0, (18.2)

w i (r, ϕ) = 0,

where u, v and w are the radial, circumferential and out-of-plane displacements
respectively, ε0 is the loading parameter and i = 2, 3. The displacement field of
the upper sublaminate is approximated by employing a series of axisymmetric and
non-axisymmetric continuous shape functions, thus

u 1 (r, ϕ) = ε0r +

Mu∑
m=1

Nu∑
n=0

sin
(
mπ

r

Γ

) (
aumn sin (2nϕ) + b

u
mn cos (2nϕ)

)
,

v 1 (r, ϕ) =
Mv∑
m=1

Nv∑
n=1

sin(mπ
r

Γ
) (avmn sin (2nϕ) + b

v
mn cos (2nϕ)) ,

w 1 (r, ϕ) =

Mw
1∑

m=1

cwm

(
cos

(
mπ

r

Γ

)
+ (−1)m+1

)
(18.3)

+

Mw
2∑

m=1

Nw∑
n=1

Ow∑
o=1

sin
(
mπ

r

Γ

)
sin

(
nπ
r

Γ

) (
awmno sin (2oϕ)

+ bwmno cos (2oϕ)
)
,

where aumn, bumn, avmn, bvmn, cwm, awmno and bwmno are sets of generalized coordinates
which will subsequently be summarized in the set qi. Eqs. (18.2) and (18.3) comply
with the geometric boundary conditions:

u i (r = Γ, ϕ) = u 1 (r = Γ, ϕ) = ε0Γ,

v i (r = Γ, ϕ) = v 1 (r = Γ, ϕ) = 0,

w i (r = Γ, ϕ) = w 1 (r = Γ, ϕ) = 0, (18.4)
∇jw

i (r = Γ, ϕ) = ∇jw
1 (r = Γ, ϕ) = 0,

with ∇j = { ∂
∂r ,

1
r

∂
∂ϕ} and i = 2, 3.

The amount of generalized coordinates required to adequately model the post-
buckling responses varies strongly with the layup of the upper sublaminate as well
as the delamination depth. Therefore, with the aid of a parametric study, 84 gener-
alized coordinates corresponding to Mu = 8, Nu = 3, Mv = Nv = 3, Mw

1 = 4,
Mw

2 = Nw = 2, Ow = 1 (cf. Eq. (18.3)) have been determined to provide satisfac-
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tory results, where certain configurations such as unidirectional layups and deeper
delaminations (within the thin-film range) may only require 10 generalized coordi-
nates.

18.3 Energy Formalism

18.3.1 Total potential energy principle

Owing to the description of the given problem in cylindrical coordinates, the well-
known in-plane (AIJ ), coupling (BIJ ) and bending (DIJ ) stiffness matrices com-
prised within the Classical Laminate Theory ({I, J} = {1, 2, 6}) are rewritten em-
ploying the coordinate transformation illustrated in Fig. 18.2 (from the local fibre
coordinate system (e1, e2, e3) to the cylindrical coordinate system (er, eϕ, ez)).

With the assumption of plane stress, the reduced transformed stiffness matrix
[Q̄] can be expressed in terms of the reduced stiffness matrix [Q] of the respective
unidirectional layers (assumed to be transversally isotropic) of the laminate, the fibre
orientation angle θ and the angle ϕ, thus

[Q̄](ϕ) = [K][Q][K]−T, with (18.5)

[K] =

⎡⎣ cos2 ω sin2 ω 2 sinω cosω
sin2 ω cos2 ω −2 sinω cosω

− sinω cosω sinω cosω cos2 ω − sin2 ω

⎤⎦ , (18.6)

[Q] =

⎡⎣Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤⎦ , and (18.7)

ω = ϕ− θ. (18.8)

Fig. 18.2 Coordinate trans-
formation from the local
fibre coordinate system
(e1, e2, e3) to the cylin-
drical coordinate system
(er , eϕ, ez).
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In order to model the post-buckling response, non-linear strains associated with the
out-of-plane displacement (i.e. von Kármán strains, see Reddy, 2004) are consid-
ered in the modelling approach, thus⎛⎝ εrr

εϕϕ

2εrϕ

⎞⎠ =

⎛⎝ε1ε2
ε6

⎞⎠ =
{
ε0

}
+ z

{
κ
}

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂u

∂r
+

1

2

(
∂w

∂r

)2

1

r

∂v

∂ϕ
+
u

r
+

1

2

(
1

r

∂w

∂ϕ

)2

1

r

∂u

∂ϕ
+
∂v

∂r
− v
r
+

1

r

∂w

∂ϕ

∂w

∂r

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝
−∂

2w

∂r2

− 1

r2
∂2w

∂ϕ2
− 1

r

∂w

∂r

−2

r

∂2w

∂r∂ϕ
+

2

r2
∂w

∂ϕ

⎞⎟⎟⎟⎟⎟⎟⎠,
(18.9)

where {ε0} and {κ} are the membrane strains and the curvatures, respectively.
The strain energyWs is determined by integrating the strain energy density,

ws =
1

2
Q̄IJεIεJ , (18.10)

over the volume, yielding

Ws =
1

2

∫
ϕ

∫
r

(
ε0IAIJε

0
J + 2ε0IBIJκJ + κIDIJκJ

)
rdr dϕ, (18.11)

where the displacement field defined in Eqs. (18.2) and (18.3) as well as Eq. (18.9)

are employed, with Ws = W
1

s + W
2

s + W
3

s . It should be noted that, in
Eq. (18.11), the in-plane (AIJ ), coupling (BIJ ) and bending stiffness (DIJ ) matri-
ces depend on the angle ϕ. Owing to the displacement controlled problem descrip-
tion, the strain energy is the governing functional. Thus, the post-buckling response
can be determined by the well-known variational principle

δWs(qi) =
∂Ws

∂qi
δqi = 0 yielding

∂W

∂qi
= 0, (18.12)

where the set of non-linear algebraic equations is solved using the Newton–Raphson
method. Owing to the presence of the delamination, an initial imperfection in the
form of a small out-of-plane displacement of the upper sublaminate (amplitude of
t/1000) is commonly assumed modelling delamination buckling (Sheinman et al,
1998). The energy contributions associated with the imperfection are deducted from
Eq. (18.11) (cf. Köllner, 2017). The strain energy (Eq. (18.11)) as well as the equi-
librium equations (18.12) are determined analytically.
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18.3.2 Energy Release Rate

With the aid of the equilibrium solution qi(ε0) obtained from Eq. (18.12), the energy
release rate G for delamination growth can be calculated as (cf. Fig. 18.1):

G = − ∂Ws

∂Adel
with Adel = 2

ϕG−ϕ0+π∫
ϕG−ϕ0

Γ∫
0

rdr dϕ = Rπ+
1

4
kϕ0 (8R+ 3k) .

(18.13)
Eq. (18.13) can be rewritten, since the onset of delamination growth is determined
by a change of the amplitude k of the newly generated delamination area for a
certain span ϕ0, thus

G(ϕG, ϕ0) = − 1
∂Adel

∂k

∂Ws

∂k

∣∣∣∣∣
k=0

. (18.14)

Equation (18.14) has to be evaluated for all possible ϕ0 (span of delamination
growth), i.e. 0 ≤ ϕ0 ≤ π/2. Maximizing Eq. (18.14) with respect to ϕ0 yields
the energy release rate along the boundary of the delamination (ϕG):

G(ϕG) = max
ϕ0∈(0,π2 )

(
− 1

∂Adel

∂k

∂Ws

∂k

∣∣∣∣∣
k=0

)
. (18.15)

Even though the calculation of the energy release rate along the boundary of em-
bedded delaminations constitutes a significant advancement in analytical modelling
approaches, it should be noted that Eq. (18.15) provides the total amount of the
energy release rate. Particularly for embedded delaminations, delamination growth
is governed by mode mixture, which is not considered in Eq. (18.15). Therefore,
mode mixture is determined by evaluating the force and moment resultants along
the boundary of the delamination in conjunction with employing the crack-tip el-
ement analysis as described in Schapery and Davidson (1990). Such a crack-tip
element, adjusted for the given problem of thin-film delaminations, is illustrated in
Fig. 18.3.

In Fig. 18.3, a one-dimensional representation of the crack-tip element is shown.
The thin-film assumption is enforced by the supports added to the bottom of the
plate. Following Davidson et al (2000, 1995), the lengths d and e as well as the
width of the element (annulus) are small enough such that geometric nonlinearities
are negligible as well as force and moment resultants remain uniform within the
element. As done in Davidson et al (1995), the force and moment resultants nϕϕ

andmϕϕ are omitted assuming that they do not affect the crack-tip element (state of
plane strain in the width direction of the element). Moreover, it has been shown (e.g.
Nilsson et al, 2001) that Mode III remains negligible for the delaminations studied,
thus the shear components nrϕ andmrϕ are subsequently also omitted.
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Fig. 18.3 Crack-tip element for the circular composite plate with a thin-film delamination.

With the aid of a free body diagram of the upper sublaminate illustrated in
Fig. 18.4, the crack-tip force nc and momentmc can be determined:

nc = −n 1
rr + ñ

3
rr , (18.16)

mc = −m 1
rr + nc

(
at

2

)
, (18.17)

with ñ 3
rr = ε0

(
A

1
11 +A

1
12

)
.

The energy release rate G employing the crack-tip forces and resultants as well
as the concept of virtual crack closure (Krueger, 2004) can be calculated as

G =
1

2d
(ncΔu+mcΔβ) , (18.18)

where Δu = u 1 − u 2 and Δβ = β 1 are the differences in the displacement
of the crack surfaces in the radial direction and in the rotation around the ϕ-axis
respectively, i.e.

Fig. 18.4 Free-body diagram of the upper sublaminate.
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u 1 = d
(
ε0rr − κrr at

2

) 1
,

u 2 = d ε
0 2
rr , (18.19)

β 1 = d κ
1
rr .

The parameters Δu and Δβ can also be expressed by the inverted constitutive re-
lation using the crack tip force nc and moment mc in conjunction with the compli-
ances (Schapery and Davidson, 1990),

[
a11 b11
b11 d11

] i
=

⎛⎝[
A11 B11

B11 D11

] i ⎞⎠−1

, (18.20)

yielding

Δu/d =

(
a

1
11 + a

2
11 − b 1

11 at+ d
1
11

(
at
2

)2)
nc +

(
b

1
11 − d 1

11
at
2

)
mc

= c11 nc + c12mc, (18.21)

Δβ/d =

(
b

1
11 − d 1

11
at
2

)
nc + d

1
11 mc

= c12 nc + c22mc .

With the parameters c11, c12 and c22 given by Eq. (18.21), the mode mixture
between mode I and mode II can be calculated by determining the phase angle
Ψ = tan−1

√
GII/GI, i.e.

Ψ = tan−1

( √
c11nc cos(Ω) +

√
c22mc sin(Ω + Γ )

−√c11nc sin(Ω) +√
c22mc cos(Ω + Γ )

)
, (18.22)

as given in Davidson et al (2000), where Γ = sin−1(c12(c11c22)
−1/2) and Ω is

the mode-mix parameter. Note that employing the Classical Laminate Theory, the
parameter Ω cannot be determined analytically for thin-film delaminated multi-
layered plates; experimental (Davidson et al, 2000) or numerical studies (Schapery
and Davidson, 1990) are required. In the current work, Ω is determined with the
aid of a finite element simulation (cf. Table 18.1) and remains constant for thin-film
delaminations (cf. Davidson et al, 2000).

In order to determine the critical energy release rate Gc, Eq. (18.22) is used in a
crack growth criterion provided by Hutchinson and Suo (1992), i.e.

Gc = GI

(
1 + tan2 ((1− λ)Ψ)) , (18.23)

with

λ = 1− 2

π
tan−1

(
GII

c −GI1
c

GI
c

)
,
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whereGI
c andGII

c are the critical energy release rates for mode I and II respectively.

18.4 Results

The capabilities of the modelling approach are presented in two ways. First, the post-
buckling behaviour of a unidirectional laminate with varying delamination depth is
studied (Fig. 18.5). Second, the effect of the layup (i.e. angle orientation) on the
behaviour of the energy release rate and thus the onset of delamination growth is
analysed (Fig. 18.6). A multi-layered composite plate made of 40 CFRP plies is
investigated. The material parameters and the dimensions of the plate are provided
in Table 18.1. The results obtained are compared with FE simulations performed in
Abaqus using SR4 elements.

Table 18.1 Dimensions and material parameters of the circular plate.

E11 137.90 GPa GI
c 0.19 N/mm

E22 8.98 GPa GII
c 0.63 N/mm

G12 7.20 GPa R 5 mm
ν12 0.3 t 3.556 mm
a ν23 0.5 tply 0.0889 mm
a R∗ 50 mm Ω 58◦
a parameters used for FEM only.

In Fig. 18.5, the post-buckling response of a circular plate with a unidirectional
([0◦40]) layup and a circular delamination (R = 5mm) for three different delami-
nation depths (a = {1/40, 2/40, 3/40}) is shown. The post-buckling behaviour is
analysed in terms of applied compressive strain against midpoint deflection (top in
Fig. 18.5) and compressive force acting on the upper sublaminate against the end-
shortening of the plate (bottom in Fig.18.5). Normalization is performed against the
buckling load and strain of a respective intact plate with the radius R∗. The mid-
point deflection is normalized against the total thickness of the plate t. As expected,
Fig. 18.5 shows that with larger delamination depths (a) the buckling load increases
and the midpoint deflection during the post-buckling response decreases. This be-
haviour is verified by the FEM showing very good agreement with the analytical
modelling approach. The onset of delamination growth is visualized in Fig. 18.5 by
diamond symbols; filled diamonds for the current model and non-filled diamonds
the for the FEM. Analysing the force against end-shortening behaviour, it can be
seen that delamination growth occurs earlier during the post-buckling response with
increasing delamination depth. The prediction of the onset of delamination growth
is also in very good agreement with the FEM.

The reason for the accurate prediction of delamination growth in Fig. 18.5 is
presented in Fig. 18.6 illustrating the out-of-plane displacements of the delaminated
region (top row in Fig. 18.6), the behaviour of the energy release rate along the
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Fig. 18.5 Top: normalized applied compressive strain εnorm vs. normalized midpoint deflection
wnorm; bottom: normalized compressive force Pnorm vs. normalized end-shortening unorm.

boundary of the delamination (middle row in Fig. 18.6) and the span of delamination
growth as well as the phase angle along the boundary (bottom row in Fig. 18.6). A
delamination depth of a = 3/40 is chosen and three different layups of the upper
sublaminate are analysed: a) unidirectional [0◦3], b) cross-ply [90◦/0◦/90◦] and c)

an arbitrary angle layup [45◦/0◦/45◦].
Owing to the local geometric representation presented in Sect. 18.2, the be-

haviour of the energy release rate along the boundary can be analysed (cf. second
row of Fig. 18.6). The energy release rate is normalized against the respective criti-
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Fig. 18.6 Normalized out-of-plane displacements of the delaminated region wnorm (top),
normalized energy release rate Gnorm along the boundary (middle), span of delamination growth
ϕ0 and phase angle Ψ along the boundary (bottom); at the onset of growth, εdelnorm; layups studied:
a) [0◦3], b) [90◦/0◦/90◦], c) [45◦/0◦/45◦].

cal energy release rate that depends on the phase angle illustrated in the bottom row
of Fig. 18.6. Thus, where Gnorm = 1 is reached along the boundary, delamination
growth occurs. As can be seen in Fig. 18.6, the direction of growth is strongly de-
pendent on the layup of the laminate, where growth for the [0◦3] layup is initiated in
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the 0◦ direction, for [90◦/0◦/90◦] in the 90◦ direction and for [45◦/0◦/45◦] growth
is shifted to approximately 51◦.

The normalized applied strain causing delamination growth (εdelnorm) is provided
at the bottom of Fig. 18.6. The unidirectional layup (a) requires the highest applied
strain to cause delamination growth. This is related with the phase angle Ψ at the
location of the boundary experiencing growth. In growth direction, the unidirec-
tional layup shows the highest value of the phase angle (20◦), whereas the layups
[90◦/0◦/90◦] and [45◦/0◦/45◦] indicate angles of approximately 7◦ and 9◦, respec-
tively. Larger phase angles, representing larger mode II contributions, increase the
critical energy release rate and therefore larger levels of load input are required to
reach the respective critical value. The FEM shows qualitatively the same behaviour
with small quantitative deviations in the phase angle.

In the bottom row of Fig. 18.6, besides the phase angle, the span of initial de-
lamination growth ϕ0 determined by maximizing Eq. (18.14) is plotted along the
boundary. As expected, for all cases investigated the initial span of delamination
growth tends to zero indicating a localized delamination growth pattern that corre-
sponds well with the FEM where initial delamination growth is given by disbonding
of a single node.

18.5 Conclusions

An analytical modelling approach for predicting post-buckling responses and the
onset of delamination growth of multi-layered composite plates with a circular de-
lamination has been presented. For the first time, local delamination growth has
adequately been modelled by means of a (semi-)analytical approach. This has been
enabled by a geometric representation of the newly generated delamination area
and a problem description using cylindrical coordinates. Studies employing (semi-
)analytical models have hitherto considered delamination growth in a global manner,
i.e. growing major and/or minor axis of a circular(elliptical) delamination, which
either only applies to certain configurations or yields significant overestimations of
the applied load required to cause delamination growth. Thus, with the aid of the
modelling approach presented in this work, the capabilities of (semi-)analytical ap-
proaches towards a structural stability analysis of delaminated composite structures
have been improved significantly.

Despite using cylindrical coordinates as well as the geometric representation of
the boundary of the delamination, the total potential energy, the equilibrium equa-
tions and the energy release rate have been determined analytically. Post-buckling
responses have been determined by only solving once a set of non-linear algebraic
equations. As a consequence, efficient parametric studies are enabled which has
been demonstrated, in the current work, by studying the effect of varying delami-
nation depths (cf. Fig. 18.5). The adequate prediction of the onset of delamination
growth has been enabled by the analysis of the energy release rate along the entire
boundary of the delamination, which hitherto could not be done by semi-analytical
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modelling approaches. Mode mixture has been considered by employing the crack-
tip element analysis, in which the mode mix parameter Ω has been determined with
the aid of a finite element simulation. Since Ω mainly depends on the geometry
(cf. Davidson et al, 2000), the parameter remains constant for all cases investigated,
i.e. for thin-film delaminations, which has been validated by experimental studies in
Davidson et al (2000) investigating beam-like structures.

In summary, with the modelling approach developed, a major drawback in semi-
analytical models for delamination buckling of embedded delaminations has been
overcome, viz. delamination growth can be modelled along the entire boundary.
Thus, post-buckling responses of delaminated composite plates considering delam-
ination growth can be determined adequately.
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Chapter 19

Dynamical Vector Fields on Pantographic Sheet:

Experimental Observations

Marco Laudato, Fabio Di Cosmo, Rafał Drobnicki & Peter Göransson

Abstract In this work, we will present and discuss some experimental observations
of the dynamical displacement vector field on a pantographic sheet. We will sketch
the experimental setup and we will qualitatively describe the observed behavior for
a set of relevant frequencies.
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19.1 Introduction

Mechanical metamaterials are usually defined as mechanical systems that exhibit an
unconventional deformation behavior (Del Vescovo and Giorgio, 2014; Barchiesi
et al, 2018c; dell’Isola et al, 2016a). In particular, for these systems, such exotic
behavior is usually the result of a complex interaction between the elements of their
microstructure (dell’Isola et al, 2016d; Laudato and Di Cosmo, 2018; Golaszewski
et al, 2018). From the mathematical point of view, a metamaterial is described in
terms of two (or more) length scales of description measuring the ratio of macro-
scopic length to microscopic lengths. The behavior observed at the larger scale is
the result of the collective behavior of the smaller one. In a more formal way, the
macroscopic (continuum) model of a mechanical metamaterial is obtained by means
of homogenization of the (usually discrete) microscopic system for, both, statistical
distributed microstructures (De Masi and Olla, 2015; De Masi et al, 2015; Carinci
et al, 2014b,a; Chatzigeorgiou et al, 2014; Saeb et al, 2016; Caprino et al, 1993; Es-
posito and Pulvirenti, 2004; Pulvirenti, 1996) and ordered microstructures (Pideri
and Seppecher, 1997; Cecchi and Rizzi, 2001; Javili et al, 2013a,b, 2012).

An interesting example of mechanical metamaterial is the so-called pantographic
material (Alibert et al, 2003; dell’Isola et al, 2016c; Barchiesi and Placidi, 2017; Al-
ibert and Della Corte, 2015; Eremeyev et al, 2017; Boutin et al, 2017). This system is
characterized by a microstructure made of arrays of (usually straight) fibers. These
arrays lie on different planes which are connected by a set of pivots in the points
where the fibers intersect. In this paper, however, we will focus on a particular kind
of pantographic material: the so-called pantographic sheet. Its microstructure is a
rectangular lattice of two arrays of fibers oriented, with respect to the longest side,
with an angle of π/4 (see Fig. 19.1). Moreover, the cylindrical pivots connecting the
two arrays are perfect i.e., in principle, frictionless.

Fig. 19.1 A SolidWork CAD model of pantographic sheet.
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Pantographic materials have been, and they still are, the object of investigation
for their interesting features (for a general review, see dell’Isola et al (2018)) that can
be, in a simplistic way, summarized in two main aspects. The first is related to the
mathematical modeling of these structures. Indeed, to properly model the behavior
of this kind of materials, one has to postulate an analytical form of the deformation
energy which depends on the second gradient of the displacement field (Abali et al,
2017; Ganzosch et al, 2018; Yang et al, 2018; Rinaldi and Placidi, 2013; Cuomo
et al, 2017; Andreaus et al, 2016; Giorgio, 2016; Placidi et al, 2015; Ferretti et al,
2014; Seppecher, 2002; Eremeyev and Altenbach, 2014; Auffray et al, 2015; Madeo
et al, 2012; Battista et al, 2016; Placidi, 2014; Yang and Misra, 2012). In a wider
perspective, pantographic materials can be classified as generalized continua (Trinh
et al, 2012; dell’Isola et al, 2015b; Balobanov and Niiranen, 2018; Carcaterra et al,
2015; Misra and Poorsolhjouy, 2015; Yang et al, 2011), i.e. mechanical systems that
cannot be fully described by the usual approach in which deformation measures de-
pend only on the first gradient of the displacement field. This is a whole research
field which is traced back to the Italian mathematician Gabrio Piola (dell’Isola et al,
2014a; Rahali et al, 2015; dell’Isola et al, 2014b, 2019), and represents a formidable
challenge for both mathematicians and engineers. The second interesting aspect is
related to possible technological applications. Indeed, although pantographic sys-
tems are usually made of linear elastic materials with elongation at break of 20% of
relative elongation (in the case of polyamide, for instance), the particular arrange-
ment of their microstructure is able to widen the relative elongation for the first
rupture up to 30% and they are able to store an amount of energy until the final
rupture which is of the same order of magnitude of the energy required for the first
one (Barchiesi et al, 2018a; Placidi et al, 2018a,b; Turco et al, 2016a, 2017a; Misra
et al, 2018; Placidi and Barchiesi, 2018; Turco et al, 2016d; dell’Isola et al, 2016b;
Andreaus et al, 2018; Ganzosch et al, 2016; Scerrato et al, 2016b,a; Giorgio et al,
2016; Barchiesi et al, 2018b; Turco et al, 2016c).

In general, mechanical metamaterials exhibit “exotic” behaviors when observed
in their dynamical regime (Deymier, 2013)]. Classical examples of such behaviors
are the so-called cloak-effects, as well as the presence of a band-gap in the dis-
persion relations, which can be potentially exploited to control and guide waves
propagation in such materials. This effects are typical of microstructured continua
since they can be usually traced back to resonance phenomena in their microstruc-
ture (di Cosmo et al, 2018; Madeo et al, 2013; Berezovski et al, 2015). Pantographic
materials are not an exception, and several numerical studies on their dynamical be-
havior have been performed in the last years (Giorgio et al, 2017b; dell’Isola et al,
2015a; Placidi et al, 2014; Madeo et al, 2014; Giorgio et al, 2017a). However, in
their microstructure, resonance phenomena are not expected. The “exotic” behav-
ior, in this case, will be due to the complexity of the microstructure which results,
from the viewpoint of the model, in the occurrence of the second gradient of the
displacement field. This is the main difference which makes the dynamical behavior
of these materials worthy of interest.

To the best of the authors’ knowledge, experimental observations of the dynamic
behavior of pantographic materials, aimed at confirming the results of these huge
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numerical and mathematical efforts, have not been published in the open literature.
In this paper, we will present a new set of observations relative to the experiment
described in Laudato et al (2018). In particular, after having sketched the description
of the experimental setup in Sec. 19.2, we will qualitatively describe the dynamical
displacement vector field of the pantographic sheet in Sec. 19.3. Finally, in Sec. 19.4
we will discuss some future perspectives.

19.2 Setup of the experiment

In order to observe the displacement field of the pantographic sample in time, an
experiment has been set up using an electrodynamic shaker to put the sample in mo-
tion and a pair of high-speed cameras to record the moving sample. The specimens
under analysis are made of polyamide and have been 3D printed at Warsaw Univer-
sity of Technology. The measurements have been performed at Marcus Wallenberg
Laboratory for Sound and Vibration at KTH Royal Institute of Technology.

In this experiment, one of the two short ends of the sample is clamped to the
ground (assumed infinitely stiff) while its other end is solidly connected to the
shaker by means of a clamping device manufactured specifically for this purpose.
The shaker is suspended in soft rubber springs, and mounted collinear to the sample
in its longitudinal direction.

The driving excitation signal is sinusoidal and the shaker moves along sample’s
axis. To avoid the occurrence of buckling instabilities, the sample is mounted in a
pre-stretched configuration. With respect to this configuration, the sample oscillates
by imposing a time-varying displacement at one of its ends, while its other end is
fixed.

The displacement of the sample is recorded for different excitation frequencies
(spanned both in ascending and descending fashion), different amplitudes, and two
sample orientations. A delay is imposed between the start of the mechanical exci-
tation and the triggering of the cameras to record only the steady-state condition,
skipping the hysteresis behavior. Observing the behavior of the sample at different
excitation amplitudes allows determining whether the sample behaves as a linear
elastic system, and spanning the excitation frequencies in different order is done in
order to examine any viscous behavior. Testing the sample in two different orienta-
tions yield the same results, due to the symmetries of the samples tested.

The actual determination of the displacement field is by means of three dimen-
sional (3D) digital image correlation (DIC) (Hild and Roux, 2006). The nature of
the method requires the sample to have a random speckle pattern on it, such that the
algorithm may uniquely identify and track the different subsets of such dense ran-
dom pattern to ultimately resolve the displacement field. In light of this, matte black
and white aerosol paint has been deposited on one of the sample faces, effectively
realizing a random pattern usable by the DIC algorithm. The quality of the analysis
depends strongly on lighting conditions: while the matte paint helps in avoiding re-
flections (which may affect only one of the two camera images, effectively making
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it harder for the DIC algorithm to match features), effectively having stereo images
means that the dynamic range of the intensity values is reduced by a normalization
process necessary to compare the two video streams. For such purpose, four halo-
gen spotlights are used to illuminate the sample from for distinct directions – top,
bottom, left and right. This also minimizes the shades that struts closer to the fore-
ground cast on neighbouring struts, and allows for the use of short exposure times
that practically eliminate motion blur (see Fig. 19.2).

Fig. 19.2 3D reconstruction of the camera setup operated by the DIC software, overlaid to a
picture of the real setup.

19.3 Qualitative analysis of the results

In this section we present and discuss qualitatively the measurements’ results. In
particular, we describe the dynamical displacement vector fields of a pantographic
sheet under uniaxial sinusoidal oscillation of its top end. We focus on the configu-
rations relative to maximum displacement at 4 relevant frequencies: 30 Hz, 100 Hz,
140 Hz, and 200 Hz. The amplitudes of the imposed displacement relative to this
set of frequencies range from 7.23 × 10−2 mm for 200 Hz to 2.76 mm for 30 Hz.
The behavior of the specimen appears to be linear elastic for all the investigated fre-
quencies since all the points of the specimen that we have analyzed oscillate at the
same frequency of the shaker with a constant phase delay in time. However, a care-
ful analysis of the observed elastic behavior, in terms of phase delay and transfer
functions, will be the object of future investigations.

The resulting displacement vector fields are displayed in Figs. 19.3-19.6. The
arrows represent the in-plane displacement whereas their color represents the am-
plitude of the out-of-plane displacement, both computed with respect to the pre-
stretched configuration. For each vector field, the length of the arrows is normalized
with respect to the maximum observed length. Analogously, for the out-of-plane
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displacements the values relative to the color palette are normalized with respect to
the maximum observed amplitude in this direction. Since we are interested in a qual-
itative description of the topology of such vector fields, however, we have not added
any reference length on the figures in order to avoid any misleading unnecessary
detail.

From this figure it is possible to remark two interesting features, relative to in-
plane and out-of-plane displacements, respectively:

1. The in-plane displacement vector field is curved. The position and the number
of curvature centers appear to be dependent on the frequency. In particular, at
higher frequencies (see for instance Fig. 19.6, right panel) we can spot three
centers of curvature and the curvature itself appears to be proportional to the
frequency. Moreover, for higher frequencies, it is possible to observe the pres-
ence of vortexes (see Fig. 19.5, right panel).

2. The specimen tends to rotate around its vertical middle axis giving rise to out-
of-plane displacements. The amplitude of this perturbation depends inversely
on the frequency. Indeed, for lower frequencies (see Fig. 19.3), the peak to peak
amplitude of out-of-plane oscillations is around 2 mm (to be compared with
the specimen’s thickness which is 6 mm), whereas for higher frequencies they
can be considered negligible since the corresponding peak to peak amplitude is
≈ 60μm.

Fig. 19.3 Displacement vector field of a pantographic sheet at maximum and minimum peak
amplitudes of the periodic oscillation, at 30 Hz, respectively. The arrows represent in-plane
displacement while the color represents the amplitude of the out-of-plane oscillation. The scales
are expressed in millimeter.
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Fig. 19.4 Displacement vector field of the same pantographic sheet, at 100 Hz.

Fig. 19.5 Displacement vector field of the same pantographic sheet, at 140 Hz.

19.4 Conclusions and perspectives

In this paper, experimental observations of the dynamical displacement vector field
of a pantographic sheet under uniaxial periodic oscillation is presented. The mea-
surement procedure and the following data analysis have been described in details.
The results have been represented in terms of vector fields relative to maximum
displacement and they have been qualitatively described.
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Fig. 19.6 Displacement vector field of the same pantographic sheet, at 200 Hz.

Despite the qualitative nature of the presented results, they can be considered as
the starting point for a complete characterization of the dynamical behavior of pan-
tographic material. Indeed, and this will be the aim of a forthcoming paper, the first
step will be the comparison of the results from numerical simulations of a 2D model
with the presented results, in the higher frequencies case. Indeed, in this regime, we
have observed that the out-of-plane amplitude displacement is small with respect to
the thickness of the pantographic sheet which may allow for a description in terms of
a two-dimensional model. Moreover, the study of phase delay and amplitude of each
point of the pantographic sheet with respect to the imposed boundary displacement
will be the topic of a forthcoming investigation.

Another possible interesting path is the comparison of the presented results with
the numerical simulations obtained by Hencky-type discrete model (Turco et al,
2016b, 2017b; Turco, 2018). In this approach, the material is described neither at
the microscopic nor at the macroscopic scale, but in terms of a mesoscopic finite-
dimensional discrete system which is able to capture the main features of the mi-
crostructure despite its discrete nature. The main advantage of such approach is
that the computational costs are highly reduced (Turco et al, 2018). Of course, al-
though the discrete model is directly inspired by the microstructure, it represents
an arbitrary choice and the presented measurements can be a possible significant
benchmark for the validity of such assumption.

Finally, from the experimental point of view, the next step will be the investiga-
tion of higher amplitudes, in which non-linear effects due to the complexity of the
microstructure (modeled in terms of the second gradient) will become more rele-
vant.
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Chapter 20

Numerical Solution of the Tri-harmonic

Kirchhoff Plate Equation Resulting from a

Strain Gradient Theory

Christian Liebold & Belal M. Dawwas

Abstract A second gradient continuum theory is formulated based on second gra-
dients of displacements. For a reduction of additional material parameters, the mod-
ified strain gradient model is used and a partial differential equation of rank six
is developed using the Kirchhoff plate assumptions. The solutions of the governing
tri-harmonic plate bending equation incoorperate size-effects. Balance equations are
presented and higher-order stress-strain relations are derived. In order to account for
second gradients of displacements, which manifest themselves in the higher-order
terms of a strain energy density, a C1–continuous displacement field is preferable.
So-called Hermite finite element formulations allow for merging gradients between
elements and are used to achieve global C1–continuity of the solution. Element stiff-
ness matrices as well as the global stiffness matrix are developed for a lexicograph-
ical order of nodes and for equidistantly distributed elements. The convergence, the
C1–continuity, and the size effect are demonstrated.

Keywords: Second gradient elasticity · Size-effect · Hermite finite elements · Con-
tinuum mechanics · Computational mechanics · Tri-harmonic equation

20.1 Introduction

Materials with intrinsic micro or nano-structure may show size-dependent mate-
rial behavior, which is reflected, e. g., in a stiffer elastic response to external forces,
when the size of the material body is reduced. A quantitative understanding of a size
effect is of great importance when modeling Micro- and Nano-Electro-Mechanical
Systems (MEMS/NEMS). Driven by the miniaturization as an improvement of the
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performance of MEMS, the requirement of reliability in simulation techniques in-
creases. Experimental validation for size effects is given in, e. g., Cuenot et al (2004);
Lam et al (2003); Li et al (2010); McFarland and Colton (2005). Materials which are
modeled this way are referred to as "non-simple materials of the gradient type". This
is accurate, for example, for polymers at a small scale, or even fibre-reinforced ma-
terials (Giorgio et al, 2018). In Sect. 20.2 the present work deals with the Kirchhoff
plate assumptions as well as the Modified Strain Gradient theory (MSG) developed
by, e. g., Mindlin and Tiersten (1962); Toupin (1962), since conventional continuum
theories based on the Cauchy continuum are not able to predict size effects. As a re-
sult, a tri-harmonic partial differential equation for plates is derived. Their solution
for a boundary value problem of a rectangular plate under a uniform load is nu-
merically investigated in Sect. 20.3. The application of conventional Finite Element
(FE) strategies may lead to inaccurate results, if finite element formulations are used,
which only fulfill global C0–continuity. The scope of this work is, to develop a FE
formulation based on Hermite polynomials in order to account for C1–continuity of
the solution for the tri-harmonic plate equation.

20.2 The Tri-harmonic Plate Equation

20.2.1 Modified Strain Gradient Theory

The present work is based on one of the three reduced forms of the strain gradi-
ent energy density for small deformations, as postulated by Mindlin and Tiersten
(1962). Because of the later on modification of this theory by an introduction of a
rotational degree of freedom, the resulting theory is addressed as modified strain
gradient theory here, different to the common name modified (indeterminate) cou-
ple stress theory frequently to be found in the litarature (Eremeyev and dell’Isola,
2018). The fact, that the rotational degree of freedom in the kinematical descrip-
tion of the continuum is replaced by a second gradient of displacement (valid for
solids under small translational and rotational deformation only), supports the nam-
ing here. In what follows, the Einstein summation convention is used on repeated
indices. Spatial partial derivatives in the Cartesian coordinate system are denoted by
comma-separated indices. Mindlin’s second form of a linear isotropic strain energy
density originally reads:

uSG = α1εijεij + α2εkkεmm

+ β1ηijkηijk + β2ηiikηjjk + β3ηiikηkjj + β4ηijjηikk + β5ηijkηkji,
(20.1)

where α1 and α2 denote the conventional elastic constants for isotropic materials,
β1,...,5 are the additional material constants accompanied with the five irreducible
parts of the strain gradient tensor ηijk = εkj,i (Lazar, 2016). The formulation of
the modified strain gradient energy density is derived from Mindlin’s second form
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by using the macroscopic vector of rotation ϕi=
1
2εijkuk,j , applicable to solids un-

der small deformations. εijk denotes the Levi-Civita symbol. Taking into account
the balance of spin (Abali et al, 2015, 2017), the irreducible parts of ηijk reduce
to three. Based on Fleck and Hutchinson (1997), the independent expressions of
ηijk are introduced and the second order displacement gradient is decomposed into
a symmetric part ηS

ijk and a remaining part ηR
ijk. The remaining part is not neces-

sarily anti-symmetric, like the work of Fleck and Hutchinson (1997) supposed, c.f.
Eq. (20.2). Figure 20.1 shows the scheme of decomposition, where:

ηijk = ηS
ijk + ηR

ijk ,

ηS
ijk =

1

3
(uk,ij + ui,jk + uj,ki) ,

ηR
ijk =

2

3
(εiklη̄lj + εjklη̄li) + εkjlη̄li .

(20.2)

η̄ij=ϕj,i is the gradient of rotation, which is decomposed into its symmetric and
anti-symmetric part, χS

ij and χA
ij , respectively:

χA
ij =

1

2
(ϕi,j − ϕj,i) , χS

ij =
1

2
(ϕi,j + ϕj,i) . (20.3)

The tensor ηS
ijk is further decomposed into its spherical and deviatoric part, η(0)

ijk and
η(1)
ijk, c. f., Fig. 20.1 . The quantity η(0)

ijk is related to χA
ij and the dilatation gradient

εmm,i in the following manner:

η(0)
ijk =

1

5

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)
,

ηS
mmi = εmm,i +

2

3
εilnχ

A
ln ,

η(1)
ijk = ηS

ijk − η(0)
ijk .

(20.4)

χA
ij is a power conjugated measure for an antisymmetric couple stress tensor. For

static problems it can be assumed, that the couple stress tensor μij will be symmetric
only. Because of that, χA

ij does not influence the strain energy, as it is motivated in
Liebold and Müller (2013); Yang et al (2002) and further examined in Münch et al
(2015).

Based on Fleck and Hutchinson (1997); Liebold and Müller (2017), the formu-
lation of the modified strain gradient energy density reads:

Fig. 20.1 Scheme of decom-
position

��
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��
����

��
��

�� ��

ηijk

ηS
ijk ηR

ijk

η̄ij
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ijχA
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ijk
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ijkχA

ijεmm,i
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uMSG = Gεijεij +
λ

2
εkkεii +G�

2
0εmm,iεkk,i +G�

2
1η

(1)
ijkη

(1)
ijk +G�22χ

S
ijχ

S
ij .

(20.5)
G and λ are Lamé’s constants, whereas �0, �1 and �2 denote the three additional ma-
terial length scale parameters given in the dimension of a length. The multiplication
of the higher-order terms by G is arbitrary. The classical strain-energy Eugster and
C. (2017) is extended here. Without further reasoning �0, �1 and �2 are set to be
equal to �:

uMSG = Gεijεij +
λ

2
εkkεii +G�

2
(
εmm,iεkk,i + η

(1)
ijkη

(1)
ijk + χS

ijχ
S
ij

)
. (20.6)

The strain and the higher-order strain tensors are:

εij =
1

2
(ui,j + uj,i) ,

χS
ij =

1

4
(εilkuk,lj + εjlkuk,li) ,

η(1)
ijk=

1

3
(uk,ij+ui,jk+uj,ki)− 1

15

[
δij(uk,mm+2um,mk)

+δjk(ui,mm+2um,mi)+δki(uj,mm+2um,mj)
]
,

(20.7)

given in terms of the displacement field ui(x).

20.2.2 KIRCHHOFF Plate assumptions

The present work investigates the following restrictions to the displacement field
ui(x) in order to derive the Partial Differential Equation (PDE) of the system and
their weak form by the help of variational calculus. The so-called Kirchhoff-Love
model of plates is a two-dimensional mathematical model for thin plates subjected
to forces and moments, c. f. Fig. 20.2. The assumptions are, that:

• the smallest diameter d is much larger then the thickness t,

• the mid-surface plane is the only deformation plane,

• forces are prependicular to the deformation plane,

• straight lines normal to the mid-surface remain straight and normal after defor-
mation,

• the thickness of the plate does not change during the deformation

• the deformations are small.
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Fig. 20.2 Outline of a
Kirchhoff-Love plate

The displacement field of a Kirchhoff-Love plate reads:

ux = −z ∂w(x, y)
∂x

, uy = −z ∂w(x, y)
∂y

, uz = w(x, y) (20.8)

where w(x, y) is the bending plane, p(x, y) the load distribution, Q the boundary
force andM the boundary moment.

20.2.3 Variation of the Modified Strain Energy of a Kirchhoff
Plate

The strain energy density of the problem is derived by evaluating the prescribed dis-
placement field Eq. (20.8) in combination with uMSG, Eq. (20.6). Partial derivatives
are denoted by subscripts in the following manner:

∂(·)
∂x

= (·)x , ∂(·)
∂y

= (·)y , ∂2(·)
∂x∂y

= (·)xy . (20.9)

The first term in Eq. (20.6) becomes

εijεij = (zwxx)
2
+ 2 (zwxy)

2
+ (zwyy)

2
, (20.10)

the second one

εkkεii = (zwxx)
2
+ 2z2wxxwyy + (zwyy)

2
, (20.11)

the third one

εmm,iεkk,i = (zwxxx)
2
+ (zwyyy)

2
+ (zwyyx)

2
+ (zwxxy)

2
+

+ 2 (zwxxx) (zwyyx) + 2 (zwxxy) (zwyyy) + 2wxxwyy+

+ w2
xx + w2

yy ,

(20.12)

the fourth one
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η
(1)
ijkη

(1)
ijk =

2

5
(zwxxx)

2
+

2

5
(zwyyy)

2
+

12

5
(zwyyx)

2
+

12

5
(zwxxy)

2

− 6

5
zwxxx zwyyx − 6

5
zwyyy zwxxy +

4

15
w2

xx+

+
4

15
w2

yy −
2

15
wxxwyy +

2

3
w2

yy ,

(20.13)
and the last one

χSijχ
S
ij =

1

2
(wxx + wyy)

2
. (20.14)

In summary, the modified strain energy density is:

uMSG =
7

5
G�2z2

[
w2

xxx + w2
yyy

]
+

17

5
G�2z2

[
w2

yyx + w2
xxy

]
+

4

5
G�2z2 [wxxx wyyx + wxxy wyyy]

+

(
Gz2 +

λ

2
z2 +

53

30
G�2

)[
w2

xx + w2
yy

]
+

(
z2λ+

13

5
G�2

)
wxx wyy +

(
2Gz2 +

2

3
G�2

)
w2

yx .

(20.15)

For a proof of concept, this work restricts to a square plate of the length L and of
thickness t. Then, the variation of the strain energy is derived as follows:

δWMSG =

∫
V

δuMSG dV

=

+ t
2∫

− t
2

L∫
0

L∫
0

(
14

5
G�2z2 [wxxxδwxxx + wyyyδwyyy]

+
34

5
G�2z2 [wyyxδwyyx + wxxyδwxxy]

+
4

5
G�2z2 [δwxxx wyyx + wxxx δwyyx + δwxxy wyyy + wxxy δwyyy]

+

(
2Gz2 + λz2 +

53

15
G�2

)
[wxxδwxx + wyyδwyy]

+

(
z2λ+

13

5
G�2

)
[δwxx wyy + wxx δwyy]

+

(
4Gz2 +

4

3
G�2

)
wyxδwyx

)
dxdydz .

(20.16)
Employing the rules of variational calculus and multiple application of two-dimensional
partial integration, δWMSG becomes:
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δWMSG = − t
3

12

L∫
0

L∫
0

δw

[
14

5
G�2 (wxxxxxx + wyyyyyy)

+
42

5
G�2 (wxxxxyy + wyyyyxx)

−
(
2G+ λ+

212

5
G
�2

t2

)
(wxxxx + wyyyy + 2wxxyy)

]
dxdy

+
Gt3

12

L∫
0

Λ1(x, y)
∣∣∣y=L

y=0
dx+

Gt3

12

L∫
0

Λ2(x, y)
∣∣∣x=L

x=0
dy ,

(20.17)
with Λ1 and Λ2 being the boundary relations:

Λ1(x, y) =

(
7

5
�2wyyy +

2

5
�2wxxy

)
δwyy +

(
17

5
�2wxxy +

2

5
�2wyyy

)
δwxx

+

[(
λ

G
+

78

5

�2

t2

)
wxx +

(
1 +

λ

2G
+

106

5

�2

t2

)
wyy − 7

5
�2wyyyy

− 17

5
�2wyyxx − 2

5
�2 (wxxxx + wxxyy)

]
δwy +

(
1 + 4

�2

t2

)
wxy δwx

+

[
7

5
�2wyyyyy +

17

5
�2wyyyxx +

2

5
�2 (wxxxxy + wxxyyy)

−
(
λ

G
+

78

5

�2

t2

)
wxxy

−
(
1 +

λ

2G
+

106

5

�2

t2

)
wyyy −

(
1 + 4

�2

t2

)
wyxx

]
δw ,

(20.18)
and

Λ2(x, y) =

(
7

5
�2wxxx +

2

5
�2wyyx

)
δwxx +

(
17

5
�2wyyx +

2

5
�2wxxx

)
δwyy

+

[(
λ

G
+

78

5

�2

t2

)
wyy +

(
1 +

λ

2G
+

106

5

�2

t2

)
wxx − 7

5
�2wxxxx

− 17

5
�2wyyxx − 2

5
�2 (wxxxx + wxxyy)

]
δwy +

(
1 + 4

�2

t2

)
wxy δwx

+

[
7

5
�2wxxxxx +

17

5
�2wxxxyy +

2

5
�2 (wyyyyx + wyyxxx)

−
(
λ

G
+

78

5

�2

t2

)
wyyx −

(
1 +

λ

2G
+

106

5

�2

t2

)
wxxx

−
(
1 + 4

�2

t2

)
wxyy

]
δw .

(20.19)
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In fact, the formulations Λ1 and Λ2 at the boundaries would allow to identify
boundary-forces and -moments, when considering the work done by the external
loads. In the present work, the external loads are limited to the application of a
pressure distribution p(x, y).

20.2.4 The Governing Tri-harmonic Plate Equation

To derive the respective partial differential equation for static problems, the differ-
ence of the virtual strain energy and the virtual work done by the external loads δA,
assumed as:

δA =

L∫
0

L∫
0

p(x, y)δw dx dy

+

L∫
0

[
Qδw −Myδwx −Mxδwy +M

Hyδwxx +MHxδwyy

]x=L

x=0
dx

+

L∫
0

[
Qδw −Myδwx −Mxδwy +M

Hyδwxx +MHxδwyy

]x=L

x=0
dy ,

(20.20)
has to be minimized, where Mx and My are classical moments, which affect the
deflection angle (first derivative) of w at the boundaries.MHx andMHy are higher
order moments, affecting the curvature (second derivative) in the respective direc-
tion at the boundaries. An energy minimization yields in:

δWMSG − δA = δΠ , δΠ → 0 ⇒ δWMSG = δA , (20.21)

and by comparison of Eq. (20.17) and (20.20) the tri-harmonic plate equation
arises:

DΔΔw(x, y)−HΔΔΔw(x, y) = p(x, y) , (20.22)

using the Laplacian Δ(·)=(·)xx + (·)yy . Similarities can be drawn to the result of
Kotchergenko (2015). In the present work, the plate stiffnesses are:

D =
t3

12

(
2G+ λ+

212

5
G
�2

t2

)
, H =

7

60
Gt3�2 . (20.23)

In the limit case to the conventional continuum theory, if �=0, Eq. (20.22) will turn
into the classical Kirchhoff plate equation.
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20.2.5 A Navier-Solution with Fourier-Series

Combining the continuous ansatz for simply supported rectangular plates after
Navier (Becker and Gross, 2002):

wSG
ana(x, y) =

∞∑
m=1

∞∑
n=1

wmn sin
(mπx

L

)
sin

(nπy
L

)
(20.24)

and rewriting the load-function as follows:

p(x, y) =

∞∑
m=1

∞∑
n=1

pmn sin
(mπx

L

)
sin

(nπy
L

)
, (20.25)

pmn =
4

L2

L∫
0

L∫
0

p(x, y) sin
(mπx

L

)
sin

(nπy
L

)
dxdy , (20.26)

a solution for the equation (20.22) is given in form of a series in Eq. (20.24), having
the coefficients:

wmn = pmn

{
D

[(mπ

L

)4

+
(nπ
L

)4

+ 2
(nπ
L

)2 (mπ

L

)2
]

(20.27)

+H

[(mπ

L

)6

+
(nπ
L

)6

+ 3
(mπ

L

)4 (nπ
L

)2

+ 3
(mπ

L

)2 (nπ
L

)4
]}−1

.

For a constant distribution of loads p(x, y), a sufficient convergence of this series is
achieved by taking about 50 terms into account form and n.

20.3 A C1– continuous Finite Element Approach

20.3.1 The Weak Form of the PDE

The weak form of the tri-harmonic plate equation, Eq. (20.22), is in a sense already
given with the variation of the strain gradient energy density in Eq. (20.16), only by
replacing the variational terms by the independent test-functions v(x, y):
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f(v)︷ ︸︸ ︷∫
V

p(x, y) v(x, y)dV

=

∫
V

14

5
G�2z2 [wxxxvxxx + wyyyvyyy] +

34

5
G�2z2 [wyyxvyyx + wxxyvxxy]

+
4

5
G�2z2 [vxxx wyyx + wxxx vyyx + vxxy wyyy + wxxy vyyy]

+

(
2Gz2 + λz2 +

53

15
G�2

)
[wxxvxx + wyyvyy]

+

(
z2λ+

13

5
G�2

)
[vxx wyy+wxx vyy]+

(
4Gz2+

4

3
G�2

)
wyxvyxdV

︸ ︷︷ ︸
a(v,w)

(20.28)
The left-hand side is the so-called bi-linear form a(v, w) of the PDE. The right-
hand side f(v) is formed, using the variation of the work done by external loads
(Eq. 20.20) with the same replacement. It can be seen, that the weak form is only a
third-order partial differential equation in both, the test- and trial-functions, v(x, y)
and w(x, y).

20.3.2 Two Dimensional HERMITE Finite Element Formulation

The requirements for a straight-forward finite element solution for the present weak
form are: (i), that the basis functions for the Galerkin discretization are at least
three times differentiable and (ii), that the global behavior of the solution fulfills
C1–continuity. The latter is needed due to the fact, that the strain energy used in
Eq. (20.6) evaluates second derivatives of displacements and in the end of the test-
and trial-functions, too. To guarantee, that the second derivatives in each element
will be well connected to the global behavior, the first derivatives need to be con-
tinuous inbetween the neighboring elements. Both requirements are fulfilled using
so-called Hermite finite element formulations, which consist of the Hermite poly-
nomials, as plotted in Fig. (20.3):

H1(ζ) = 2ζ3 − 3ζ2 + 1 , H2(ζ) = ζ
3 − 2ζ2 + ζ ,

H3(ζ) = −2ζ3 + 3ζ2 , H4(ζ) = ζ
3 − ζ2, (20.29)

which are linearly superposed and multiplicatively connected to form either 1D
or 2D test- and trail-functions ve and we per element, e,
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Fig. 20.3 Plot of the Hermite
polynomials

ve(ζ, ξ)=

4∑
α=1

4∑
β=1

Hα(ζ)Hβ(ξ) , we(ζ, ξ)=

4∑
δ=1

4∑
γ=1

ce
δγHδ(ζ)Hγ(ξ) , (20.30)

where ce
δγ denote the coefficients (the unknowns) to be calculated to form the so-

lution. Such element formulations are called Bogner–Fox–Schmit elements Bogner
et al (1965). Two exemplary combinations Φ1=H1H1 and Φ2=H1H2 are given
in Fig. (20.4). Φ1 will directly influence the value of deflection at the node posi-
tion (0,0), whereas Φ2 will influence the first derivative in the ζ-direction. Equa-
tion (20.30) is used in the following condensed form:

ve(ζ, ξ)=

16∑
i=1

Φi(ζ, ξ) , we(ζ, ξ)=

16∑
i=1

ce
i Φi(ζ, ξ) , (20.31)

where the assignment of the combinations for Φi →HαHβ is: (i→ αβ ) 1 → 11,
2 → 12, 3 → 13, 4 → 14, 5 → 21, 6 → 22, 7 → 23, 8 → 24, 9 → 31,
10 → 32, 11 → 33, 12 → 34, 13 → 41, 14 → 42, 15 → 43 and 16 → 44. ce

i

represent the 16 coefficients per element, of which four of them directly represent
the value of deflections at the four nodes, eight of them represent the first derivatives

Φ1(ζ, ξ)

ξζ

Φ2(ζ, ξ)

ξζ

Fig. 20.4 Exemplary two-dimensional Hermite polynomials acting on the node (0,0)

H1

H2

H3

H4

0 ≤ ζ ≤ 1
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in each direction at the nodes and four of them carry the information of the so-called
internal- (or bubble-) modes.

20.3.3 The Element and Global Stiffness Matrix and Realization of
the Boundary Condition

The element stiffness matrix is established by inserting the test- and trial-functions
into the integral weak form. Doing so, Eq. (20.28) is rewritten:

Kece = fe , ce = [ce
1, c

e
2, . . . , c

e
16 ]

T
, (20.32)

such that the left-hand side is represented by Kece, with Ke being the element stiff-
ness matrix and ce the vector of coefficients, and the right-hand side is expressed by
thev vector fe. Using the element stiffness components:

Ke
i|j = a

e(Φi, Φj) , (20.33)

in which ae denotes the bilinearform in the integration domain of a single element,
the weak form Eq. (20.28) per element can be expressed as:⎡⎢⎢⎢⎢⎢⎣

Ke
1|1 Ke

1|2 · · · Ke
1|16

Ke
2|1 Ke

2|2 · · · Ke
2|16

...
...

. . .
...

Ke
16|1 K

e
16|2 · · · Ke

16|16

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
ce
1

ce
2

...

ce
16

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣

∫
V e p(ζ, ξ)Φ1 dV

e∫
V e p(ζ, ξ)Φ2 dV

e

...∫
V e p(ζ, ξ)Φ16 dV

e

⎤⎥⎥⎥⎥⎥⎦ . (20.34)

In a next step the global stiffness matrix is developed. To achieve a sparse band
matrix, which will have advantages in dissolving large systems, the lexicographical
distribution of nodes is used here, c. f. Fig. (20.5). Here, the nodes at the physi-

Fig. 20.5 Left: the lexi-
cographical distribution of
nodes; right: the numbering
of nodes per element eN for
a minimal discretization of a
plate

↔

cal boundary of the plate are highlighted to be remembered for the assignement of
Dirichlet boundary conditions, whereas node number "5" is used to demonstrate,
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Fig. 20.6 Scheme of the
composition of the global
matrix equation

that its value of deflection as well as the derivatives belong to all four neighboring
elements at the same time. This is achieved by assembling the global stiffness ma-
trix by overlapping the element matrices in this way, such that the respective values
of deflection as well as the derivatives are multiplied with the same coefficients c,
respectively. Therefor, the element’s matrices are split into 4× 4 submatrices, in
which the components will represent the deflection, the derivatives and the internal
mode for a single node of an element. Figure (20.6) demontrates the scheme of com-
position of the global system of equations. This scheme represents the global linear
algebraic equation:

KGcG = fG , (20.35)

where the dashed lines in Fig. (20.6) declare an assignment to single elements and
squares to the 4× 4 submatrices. The Dirichlet boundary condition for a simply
supported plate is realized by a direct manipulation of the coefficients of the respec-
tive boundary nodes. For the reason that the deflection at the boundary nodes are
set equal to zero, the respective columns are removed in the global stiffness matrix.
The reduced system of equations, denoted by the superscript S, is solved with the
backslash operator of Matlab (MathWorks, Inc.):

cS = KS\fS , (20.36)

using a banded solver. The procedure described here is numerically rather fast and
in general applicable to different situations or geometries.

20.4 Results

For the numerical simulations and tests for convergence and size effect, a squared
micro-plate of the length L and thickness t is used. Figure (20.7) represents the
deflection of the plate, which is simply supported at all edges and loaded by the
constant distribution of force p(x, y). Table 20.1 gives the material and geometry
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Fig. 20.7 Deflection of the
midplane of a square plate,
t = 30μm, L = 20t, � =
10μm, NumOfEl=6400
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parameters, which are quite realistic when modeling a small polymer plate (Chong,
2002; Kong et al, 2009; Lam et al, 2003; Nikolov et al, 2007). wSG

num(x, y) denotes
the numerical result of the deflection of the plate at the coordinate x and y w.r.t.
the Second Gradient (SG) continuum approach, whereas wSG

ana denotes the "‘ana-
lytical result"’ from the truncated Fourier-series, c. f. Eq. (20.24). wclass(x, y) will
represent the solution of plate-bending for the classical Cauchy-continuum theory.
Figure (20.8) shows the behavior of the numerical solution of the midpoint of the
plate while refining the mesh of elements.

20.4.1 Concerning the Convergence

To demonstrate the convergence behavior of the present numerical approach, solu-
tions with different sizes of equidistantly distrubuted elements were conducted. The
global number of degrees of freedoms (DOF) is used to compare different solutions.

Table 20.1 Thickness t, lengths L, elastic modulus E, material length scale parameter � and the
distributed load p(x, y) used for the plate simulations

t L E � p(x, y)

30μm 20 t 3.8GPa 10μm 10 MPa
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Fig. 20.8 Convergence of the deflections of the center point compared to the analytical value for
t = 30μm

For the beginning, Fig. (20.8) gives the absolute deflection of the center point (L2 ,
L
2 )

of the plate for different mesh sizes, in comparison to the constant analytical value.
It has to be remarked, that with the same set of parameters used in Fig. (20.8), the

classical value (where � is equal to zero) is more than twice as large as the second
gradient (SG) solution. In a next investigation, in Fig. (20.9), the error in percent
between the numerical and the Fourier solution is charted for different degrees of
freedom. The error between the numerical and the analytical values for the deflec-
tion of the center point is calculated by:

error =
∣∣∣∣wSG

num

wSG
ana

− 1

∣∣∣∣× 100 . (20.37)

In the logarithmic plot of the error we clearly observe a quite constant rate of
convergence. From a certain number of degrees of freedom on, the convergence rate
seems to increase. In the authors opinion, this fact is due to the truncation of the
Fourier solution atm=50, which is taken as the reference value. It can be assumed,
that the numerical solution passes the truncated Fourier solution at a further point of
DOFs. Beside this assumption, it has to be taken into account, that the computational
errors, which go along with these very large numbers of calculation steps, will add
up and will shift the solution for very large DOFs. In summary, however, from a
numerical point of view, the approach shown is extremely robust and well-built,
reaching an error of 0.1% quite easily.
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Fig. 20.9 Convergence of the error between numerical and analytical deflections of the midpoint
for t = 30μm in a logarithmic plot

20.4.2 Results for the Size Effect

For the analysis of the size dependent behavior of the solutions, the ratio of both –
the numerical as well as the Fourier solution – to the result of the classical contin-
uum theory (without any length scale influence) is calculated for different sizes of
the plate, c. f. Fig. (20.10). The ratio of the length to the thickness is constant. The
numerical values in Fig. (20.10) are calculated for a more or less coarse mesh using
16 elements, which includes a constant error of about 21%.

20.4.3 Analysis of the C1–continuity

To demonstrate the intended C1–continuity of the present solution, a cascade
of results along a center line (x, L2 ) is established: (i) for the z-deflections, see
Fig. (20.11), (ii) the first derivatives in the x-direction, see Fig. (20.12) an (iii) the
second derivatives in the x-direction, see Fig. (20.13).

The plots in Figs. (20.11–20.13) are based on the post-prozessed data for the ele-
ment’s solutions. In each interval, the slope of the weighted Hermite element func-
tion, Eq. (20.30)2, is plotted independently. The element’s solutions for the 0th and
1st derivatives are continuously connected between the elements. The first deriva-
tive at a node of one element equals the first derivative of the neighbouring element,
and so on. A different picture is drawn, when looking at the second derivatives.
Fig. (20.13) demonstrates by the jumps between the element solutions, that the sec-
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Fig. 20.11 Deflection of the center line of a square plate, t=30μm, L=20t, �=10μm,
NumOfEl= 80×80

ond derivative at a node of one element does not equal the second derivative of the
neighbouring element. This behavior of the numerical solution suggests, that the
intended C1–continuity is fulfilled.
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Fig. 20.12 First derivative of the deflection of the center line, t=30μm, L=20t, �=10μm,
NumOfEl= 80×80
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Fig. 20.13 Second derivative of the deflection of the center line, t=30μm, L=20t, �=10μm,
NumOfEl= 80×80

20.5 Conclusions

A modified second gradient continuum theory of elasticity was elaborated. The re-
striction on the displacement field of a Kirchhoff-Love plate was carried out in order
to derive the corresponding partial differential equation (the tri-harmonic equation)
and its weak form, respectively. In order to keep the first derivative of the solu-
tion continuous, the problem was discretized using Hermite polynomials, of which
the so-called Bogner–Fox–Schmit elements consist of. So far, the present resluts
are restricted to equidistantly distributed quad element meshes. It is further accom-
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panied by a large number of element coefficients in comparison to a conventional
FEM. The elaborated FE approximations show a size effect, as expected from the
higher-order theory, as well as convergence in terms of increasing degrees of free-
doms in the mesh discretization. This will allow to simulate the elastostatic problem
of Kirchhoff-Love plates in arbitrary geometries for micromechanical applications,
when considering a higher-order material behavior.
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Chapter 21

Implications of the Lagrange Identity in

Thermoelasticity of Dipolar Bodies

Marin Marin, Andreas Öchsner & Sorin Vlase

Abstract This paper is concerned with the mixed initial-boundary value problem in
the context of the theory of thermoelasticity of dipolar bodies. We prove a unique-
ness theorem and some continuous dependence theorems without recourse to any
energy conservation law, or to any boundedness assumptions on the thermoelastic
coefficients. This was possible due to the use of Lagrange’s identity. Because of the
flexibility of this identity, we also avoid the use of positive definiteness assumptions
on the thermoelastic coefficients.

Keywords: Dipolar bodies · Lagrange identity · Uniqueness · Continuous depen-
dence results

21.1 Introduction

One of the first initiators of generalized theories of thermoelasticity was Eringen.
For instance, the studies of Eringen (1972, 1990, 1999) were dedicated to the theory
of microstretch elastic bodies, this theory being a generalization of the micropolar
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theory and a special case of the micromorphic theory. We must outline that a body
is a microstretch continuum if the directors are constrained to have only breathing-
type microdeformations. Also, specific for this theory is that each material point
is endowed with three deformable directors. The material points of a microstretch
solid can stretch and contract independently of their translations and rotations. The
purpose of all non-classic theories is to eliminate discrepancies between classical
elasticity and experiments, since the classical elasticity failed to predict acceptable
results when the effects of material microstructure were known to contribute signif-
icantly to the body’s overall deformations. This occurs, for example, in the case of
granular bodies with large molecules (e.g. polymers), graphite or human bones.

Lately, the number of studies dedicated to bodies with microstructure has in-
creased steadily. Different problems of these environments have been addressed in
Abbas (2014b,a); Othman (2003); Sharma and Othman (2007); Marin (1997, 1998);
Marin and Öchsner (2017).

The theory of dipolar structure occupies a privileged place between the theories
that are dedicated to the microstructure. In this theory any material point has the
degrees of freedom of a solid. To see the importance of the dipolar structure of ma-
terials, it is enough to analyze the importance given to this structure by some of the
outstanding researchers. For example, the studies of Mindlin (1964) and Green and
Rivlin (1964) are very significant from this point of view. It is important to note that
these researchers have approached multipolar structures in many of their studies,
and the dipolar structure appears as a particular case. For instance, Gurtin published
a few articles in which he systematized the multipolar structures. The work of Fried
and Gurtin (2007) is significant in this respect, where Fried and Gurtin formulated
integral statements of the force balance and energy balance for an interface between
a body and its environment. It is known that this theory proposes twelve degrees of
freedom for a material point: nine micro-deformations and three (classical) transla-
tions. Another restriction imposed by this structure is that all material points of the
body have only homogeneous deformations. Taking into account the fact that there
are many published articles dedicated to the dipolar structure, it can be inferred that
the theory of this type of structure is quite adequate for many applications of con-
tinuum mechanics. These cases are becoming increasingly important in the design
and manufacture of modern day advanced materials, as small-scale effects become
paramount in the prediction of the overall mechanical behavior of these materials.
Other intended applications of this theory are composite materials reinforced with
chopped fibers and various porous materials (Altenbach and Öchsner, 2010). In the
following we will use Lagrange’s known identity that will facilitate both the ob-
taining of uniqueness results and those of the continuous dependence on solutions.
It is worth noting that previous papers on uniqueness and continuous dependence
in elasticity or the thermoelasticity have been based almost exclusivelly on the as-
sumptions that the elasticity tensor or thermoelastic coefficients are positive definite
(see for instance, Wilkes, 1980). Also, in other papers, the authors recourse to an en-
ergy conservation law, in order to derive the uniqueness or continuous dependence
of solutions. For instance, an uniqueness result was indicated in Green and Laws
(1972) by supplementing the restrictions arising from thermodynamics with certain
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definiteness assumptions. In a more general context, some results of existence and
uniqueness can be found in the book Marin and Öchsner (2018).

We will examine by a new approach the mixed initial-boundary value problem
in the context of thermoelasticity of microstretch solids. We establish the unique-
ness and continuous dependence of solutions with respect to body forces, dipolar
body force and heat supply. We also deduce the continuous dependence of solutions
of our problem with respect to initial data and, at last, with respect to thermoe-
lastic coefficients. The results are obtained for bounded regions of the Euclidian
three-dimensional space. We point out, again, that the results are obtained without
recourse to an energy conservation law or to any boundedness assumptions on the
thermoelastic coefficients. Also, we avoid the use of definiteness assumptions on the
thermoelastic coefficients. It can be concluded that our results on continuous depen-
dence of solutions are natural generalizations of the results of Wilkes from classical
linear thermoelasticity, see Wilkes (1980) and Marin (2010).

21.2 Basic Equations

In what follows, a bounded regionB of the three-dimensional Euclidian spaceR3 is
occupied by a microstretch elastic body, referred to the reference configuration and
a fixed system of rectangular Cartesian axes. Let B̄ denote the closure of B and call
∂B the boundary of the domain B. The border ∂B is a piecewise smooth surface
and we designated by ni the components of the outward unit normal to the surface
∂B. Letters in boldface stand for vector fields. We use the notation vi to designate
the components of the vector v in the underlying rectangular Cartesian coordinates
frame. Superposed dots stand for the material time derivative. We shall employ the
usual summation and differentiation conventions: the subscripts are understood to
range over integers (1, 2, 3). Summation over repeated subscripts is implied and
subscripts preceded by a comma denote the partial differentiation with respect to
the corresponding Cartesian coordinate.

The spatial argument and the time argument of a function will be omitted when
there is no likelihood of confusion. We refer the motion of the body to a fixed system
of rectangular Cartesian axes Oxi, i = 1, 2, 3.
The behavior of this kind of body is characterized by means of the variables

ui(x, t), ϕij(x, t), θ(x, t), (x, t) ∈ B × [0,∞), (21.1)

where ui are the components of the displacement vector, ϕij are the components of
the dipolar displacement tensor and θ is the difference from the reference tempera-
ture, where we choose the absolute temperature T0 as the reference temperature.

We will use three strain tensors εij , γij and χijk which are defined by means of
the geometric equations:

εij =
1

2
(ui,j + uj,i) , γij = uj,i − ϕij , χijk = ϕjk,i. (21.2)
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The equations of motion from thermoelasticity of dipolar bodies are (see Marin and
Öchsner, 2017):

(τij + σij),j + "fi = "üi,

μijk,i + σjk + "gjk = Ikrϕ̈jr. (21.3)

The equation of energy is given by (see Eringen, 1999):

"T0η̇ = qi,i + "r. (21.4)

Being in the context of a linear theory, this requires a quadratic form for the
Helmholtz’s free energy per mass with regards to its independent constitutive vari-
ables. We denote by Ψ the Helmholtz’s free energy per mass and according to the
principle of conservation of energy we can expand in series the Helmholtz’s free
energy per mass about the reference configuration so that it can be written in the
following form

Ψ =
1

2
Cijmnεijεmn +Gijmnεijγmn + Fijmnrεijχmnr

+
1

2
Bijmnγijγmn +Dijmnrγijχmnr

+
1

2
Aijkmnrχijkχmnr − aijεijθ − bijγijθ − cijkχijkθ − 1

2
cθ2. (21.5)

As a consequence, this form of Ψ is used in the inequality of entropy in order to
obtain the above equations of motion. Also, in the same manner we deduce the
constitutive equations that give the expressions for the stress measures in terms of
the strain measures. The components of the stress tensor are denoted by τij , σij
and μijk. There is a correlation between the strain tensors and stress tensors. From
(21.5) we obtain

τij =
∂Ψ

∂εij
= Cijmnεmn +Gmnijγmn + Fmnrijχmnr − aijθ,

σij =
∂Ψ

∂γij
= Gijmnεmn +Bijmnγmn +Dijmnrχmnr − bijθ,

μijk =
∂Ψ

∂χijk
=Fijkmnεmn+Dmnijkγmn+Aijkmnrχmnr−cijkθ,

η = −∂Ψ
∂θ

= aijεij + bijγij + cijkχijk + cθ, (21.6)

where η is the entropy per unit mass.
The following symmetry relations are assumed to hold true in the domain Ω

Cijmn = Cmnij , Bijmn = Bmnij , Aijkmnr = Amnrijk, aij = aji. (21.7)

In the above equations we have used the following notations:
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• fi the components of the body force;
• gij the components of the dipolar body force;
• " is the reference constant mass density;
• Iij = Iji are the coefficients of microinertia;
• r is the heat supply per unit mass;
• qi are the components of the heat flux vector.

For an anisotropic and homogeneous dipolar thermoelastic material, the components
of the heat flux qi can be expressed in the form

qi = kijθ,j , (21.8)

where kij is the thermal conductivity tensor. One can assume that a positive constant
λ0 exists such that

Iijξiξj ≥ λ0ξiξi, ∀ξi.
Also, the Second Law of Thermodynamics implies that:

kijξiξj ≥ 0, ∀ξi.

We denote by ti the components of surface traction, mjk the components of the
surface couple, p the microsurface traction and q the heat flux. These quantities are
defined by

ti = (τji + σji)nj , mjk = μijkni, q = qini,

at regular points of the surface ∂B.
Here, ni are the components of the outward unit normal of the surface ∂B.
We now complete the initial boundary value problem by considering the following
initial conditions:

ui(x, 0) = u0i(x), u̇i(x, 0) = u1i(x),

ϕij(x, 0) = ϕ0ij(x), ϕ̇ij(x, 0) = ϕ1ij(x), x ∈ B̄ (21.9)
θ(x, 0) = θ0(x),

and the following given boundary conditions

ui = ūi on ∂B1 × [0, t0), ti = t̄i on ∂B
c
1 × [0, t0),

ϕij = ϕ̄ij on ∂B2 × [0, t0), mjk = m̄jk on ∂Bc
2 × [0, t0), (21.10)

θ = θ̄ on ∂B3 × [0, t0), q = q̄ on ∂Bc
3 × [0, t0),

where t0 is some instant that may be infinite. Also, the surfaces ∂B1, ∂B2 and ∂B3

with respective complements ∂Bc
1, ∂B

c
2 and ∂Bc

c are subsets of the surface ∂B
such that

∂B1 ∩ ∂Bc
1 = ∂B2 ∩ ∂Bc

2 = ∂B3 ∩ ∂Bc
3 = ∅,

∂B1 ∪ ∂Bc
1 = ∂B2 ∪ ∂Bc

2 = ∂B3 ∪ ∂Bc
3 = ∂B.
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The quantities u0i, u1i, ϕ0i, ϕ1i, ω0, ω1, θ0, ūi, t̄i, ϕ̄i, m̄i, ω̄, p̄, θ̄ and q̄ from
(21.9) and (21.10) are prescribed and regular functions in their domains.
We will assume the following regularity assumptions:

• all constitutive coefficients are continuously differentiable functions on B̄;
• ", Ijk are continuous functions on B̄;
• fi, gjk and r are continuous on B̄ × [0, t1);
• u0i, u1i, ϕ0ij , ϕ1ij and θ0 are continuous functions on B̄;
• the functions ūi, ϕ̄ij and θ̄ are continuous on ∂B1 × [0, t1), ∂B2 × [0, t1) and
∂B3 × [0, t1), respectively;
• the functions t̄i, m̄jk and q̄ are piecewise regular on ∂Bc

1×[0, t1), ∂Bc
2×[0, t1)

and ∂Bc
3 × [0, t1), respectively and continuous in time.

Taking into account the constitutive equations (21.6) and the geometric equations
(21.2), the system of equations (21.3) and (21.4) becomes

"üi = [(Cijmn +Gijmn)un,m + (Gmnij +Bijmn) (un,m − ϕmn)
+ (Fmnrij +Dijmnr)ϕnr,m − (aij + bij) θ],j + "fi,

Ikrϕ̈jr =[Fijkmnun,m+Dmnijk (un,m − ϕmn) +Aijkmnrϕnr,m − cijkθ],i
+ Gjkmnum,n+Bjkmn(un,m−ϕmn)+Djkmnrϕnr,m−bjkθ+"gjk,

"r + kijθ,ji = T0

[
cθ̇ + aij u̇i,j + bij (u̇j,i − ϕ̇ij) + cijkϕ̇ij,k

]
.

(21.11)
An ordered array (ui, ϕij , θ) is a solution of the mixed initial boundary value
problem of the theory of thermoelasticity of dipolar bodies in the cylinder Ω0 =
B × [0, t0) if it satisfies the system of equations (21.11) for all (x, t) ∈ Ω0, the
boundary conditions (21.10) and the initial conditions (21.9).

21.3 Main Result

Consider the functions α(t, x) and β(t, x) being twice continuously differentiable
with respect to the time variable t. Clearly, we have the following identity

d

dt

(
αβ̇ − α̇β

)
= α̇β̇ + αβ̈ − α̈β − α̇β̇ = αβ̈ − α̈β.

Because there is no likelihood of confusion, the spatial argument and the time argu-
ment of the functions α(t, x) and β(t, x) are omitted, for the sake of simplicity.
Instead of the functions α(t, x) and β(t, x) we will use, in the above identity, the
functions ui(x, t) and vi(x, t), which are, also, assumed to be twice continuously
differentiable with respect to the time variable. The identity thus obtained is inte-
grated over the domainB so that we are led to the following well known Lagrange’s
identity:
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B

"(x)[ui(x, t)v̇i(x, t) − u̇i(x, t)vi(x, t)dV (21.12)

=

∫ t

0

∫
B

"(x) [ui(x, s)v̈i(x, s)− üi(x, s)vi(x, s)] dV ds

+

∫
B

"(x) [ui(x, 0)v̇i(x, 0)− u̇i(x, 0)vi(x, 0)] dV.

Let us consider two solutions
(
u
(α)
i , ϕ

(α)
ij , θ

(α)
)
, (α = 1, 2) of the mixed initial

boundary value problem defined by the equations (11) and the conditions (21.9) and
(21.10) which correspond to the same boundary data and same initial data, but to
different body forces, dipolar couples and heat supplies,(

f
(α)
i , g

(α)
jk , r

(α)
)
, (α = 1, 2),

respectively.
For the difference of the above two solutions, we will use the following notations:

vi = u
(2)
i − u(1)i , ψij = ϕ

(2)
ij − ϕ(1)

ij , χ = θ(2) − θ(1). (21.13)

We are now in a position to prove our first result. This will be the basis for all
subsequent results.

Theorem 21.1. For the differences (vi, ψij , χ) of two solutions of our mixed initial
boundary value problem the Lagrange identity becomes:

2

∫
B

["vi(t)v̇i(t) + Ijkψjr(t)ψ̇kr(t)]dV

+

∫
B

1

T0
kij

(∫ t

0

χ,i(ξ)dξ

)(∫ t

0

χ,j(ξ)dξ

)
dV

=

∫ t

0

ds

∫
B

" [vi(2t−s)Fi(s)−vi(s)Fi(2t− s)] dV
(21.14)

+

∫ t

0

ds

∫
B

" [ψjk(2t− s)Gjk(s)−ψjk(s)Gjk(2t−s)] dV

+

∫ t

0

ds

∫
B

1

T0

[
χ(s)

∫ 2t−s

0

P(ξ)dξ − χ(2t− s)
∫ s

0

P(ξ)dξ

]
dV,

where we have used the notations

Fi = f
(2)
i − f (1)i , Gjk = g

(2)
jk − g(1)jk , P = r(2) − r(1). (21.15)

Proof. Of course, the mixed problem defined by (21.11), (21.9) and (21.10) is linear
such that we can deduce that the differences (vi, ψij , χ) from (21.13) represent the
solution of a mixed initial boundary value problem analogous to (21.11), (21.9) and
(21.10) in which the loads are (Fi, Gjk, P) from (21.15), but the corresponding
initial conditions and the corresponding boundary conditions become homogeneous.
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If we use the substitution

ui(x, s)→ vi(x, s), vi(x, s)→ vi(x, 2t− s), s ∈ [0, 2t], t ∈ [0,
t1
2
),

after some straightforward calculus, the identity (21.12) becomes

2

∫
B

"vi(t)vi(t)dV =

∫ t

0

ds

∫
B

" [vi(2t− s)v̈i(s)− v̈i(2t− s)vi(s)] dV. (21.16)

In deducting equality (21.16) we took into account that the initial and boundary data
are null.
The inertial terms on the right-hand side of the relation (21.16) can be eliminated
by means of the equations of motion for the differences (vi, ψij , χ).
First, in view of the equation (21.3)1, we have

" [vi(2t− s)v̈i(s)− v̈i(2t− s)vi(s)] =
= [vi(2t− s) (τji + σji) (s)− vi(s) (τji + σji) (2t− s)],j +

+ [(τji + σji) (2t− s)vj,i(s)− (τji + σji) (s)vj,i(2t− s)] +
+" [Fi(s)vi(2t− s)− Fi(2t− s)vi(s)] .

If we use the geometric equations (21.4), the above equation becomes

"[vi(2t− s)v̈i(s) −v̈i(2t− s)vi(s)]
= [vi(2t− s) (τji + σji) (s)− vi(s) (τji + σji) (2t− s)],j
+" [Fi(s)vi(2t− s)− Fi(2t− s)vi(s)]
=(Cijrs +Gijrs) [εrs(2t− s)εij(s)− εrs(s)εij(2t− s)]
+ (Gijrs +Bijrs) [γrs(2t− s)εij(s)− γrs(s)εij(2t− s)]
+ (Fijkrs+Dijkrs) [γrs(2t−s)χijk(s)−γrs(s)χij(2t−s)]
+ (aij + bij) [χ(2t− s)εij(s)
−χ(s)εij(2t− s)] . (21.17)

Based on the symmetry conditions of the coefficients Iij , it is easy to see that:

Ijk
d

dt

[
ωjr(t)ψ̇kr(t)− ω̇jr(t)ψkr(t)

]
= Ijk

[
ωjr(t)ψ̈kr(t)− ω̈jr(t)ψkr(t)

]
.

Now, we integrate this equality on cylinder B × [0, t] and, recalling that the differ-
ences satisfy null initial data, we are led to the following identity:∫

B

Ijk

[
ωjr(t)ψ̇kr(t)− ω̇jr(t)ψkr(t)

]
dV =

=

∫ t

0

{∫
B

Ijk

[
ωjr(s)ψ̈kr(s)− ω̈jr(s)ψkr(s)

]
dV

}
ds.
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By using the substitution:

ωij(s)→ ψij(2t− s), s ∈ [0, 2t], t ∈ [0,
t1
2
),

previous identity becomes:

2

∫
B

Ikjψjr(t)ψ̇kr(t)dV =

∫ t

0

{∫
B

Ijk

[
ψjr(2t−s)ψ̈kr(s)

−ψ̈jr(2t−s)ψkr(s)
]
dV

}
ds. (21.18)

The inertial terms on the right-hand side of the relation (21.18) can be eliminated
by means of the equations of motion for the differences (vi, ψij , χ).
So, in view of the equation (21.3)2, we have

Ijk

[
ψjr(2t−s)ψ̈kr(s)−ψ̈jr(2t−s)ψkr(s)

]
= ψjr(2t−s)[μjri,i(s)+"Gjr(s) + σjr(s)]

−ψjr(s)[μjri,i(2t−s)+"Gjr(2t−s) + σjr(2t−s)]
= [ψjk(2t−s)μjki(s)−ψjk(s)mjki(2t−s)],i
−ψjk,i(2t−s)μjki(s)+ψjk,i(s)μjki(2t−s)
+ψjk(2t−s)σjk(s)−ψjk(s)σjk(2t−s)
+" [ψjk(2t− s)Gjk(s)− ψjk(s)Gjk(2t− s)] .

With the help of the geometric equations (21.2), the above identity receives the form:

Ijk

[
ψjr(2t−s)ψ̈kr(s)−ψ̈jr(2t−s)ψkr(s)

]
= ψjr(2t−s)[μjri,i(s)+"Gjr(s) + σjr(s)]

−ψjr(s)[μjri,i(2t−s)+"Gjr(2t−s) + σjr(2t−s)]
= [ψjk(2t−s)μjki(s)−ψjk(s)μjki(2t−s)],i
−χijk(2t−s)μjki(s)+χijk(s)μjki(2t−s)
+ψjk(2t−s)σjk(s)−ψjk(s)σjk(2t−s)
+" [ψjk(2t− s)Gjk(s)− ψjk(s)Gjk(2t− s)] .

If we take into account the constitutive equations (21.6), from the above identity we
are led to:
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Ijk

[
ψjr(2t−s)ψ̈kr(s)−ψ̈jr(2t−s)ψkr(s)

]
= [ψjk(2t−s)μjki(s)−ψjk(s)μjki(2t−s)],i
+ψjk(2t− s)σjk(s)− ψjk(s)σjk(2t− s)
+" [ψjk(2t− s)Gjk(s)− ψjk(s)Gjk(2t− s)] (21.19)
= Fijkrs [εrs(2t− s)χijk(s)− εrs(s)χijk(2t− s)]
+Dijkrs [γrs(2t− s)χijk(s)− γrs(s)χijk(2t− s)]
+bij [χ(2t− s)γji(s)− χ(s)γji(2t−s)] .

Now we integrate the equalities (21.17) and (21.19) over B and add the resulting
relations, term by term. After that we use the divergence theorem and take into ac-
count that the differences (vi, ψij , χ) satisfy the null initial data and null boundary
data. In this way, we obtain the identity∫

B

[
"viv̇i + Ijkψjrψ̇kr

]
dV

=

∫ t

0

{∫
B

" [Fi(s)vi(2t− s) + Gjk(s)ψjk(2t− s)
− Fi(2t− s)vi(s)− Gjk(2t− s)ψjk(s)] dV } ds

=

∫ t

0

{∫
B

aij [εij(2t− s)χ(s)− εij(s)χ(2t− s)]
}
dsdV (21.20)

+

∫ t

0

{∫
B

bij [γij(2t− s)χ(s)− γij(s)χ(2t− s)] dV
}
ds

+

∫ t

0

{∫
B

cijk [χijk(2t− s)χ(s)− χijk(s)χ(2t− s)] dV
}
ds

+

∫ t

0

{∫
B

cχ(2t− s)χ(s)dV
}
ds.

Considering the constitutive equation (21.6)4, it is easy to deduce the equality

aij [εij(2t− s)χ(s)− εij(s)χ(2t− s)]
+bij [γij(2t− s)χ(s)− γij(s)χ(2t− s)]
+cijk [χijk(2t− s)χ(s)− χijk(s)χ(2t− s)] (21.21)
+cχ(2t− s)χ(s) = η(2t− s)χ(s)− η(s)χ(2t− s).

For the term from the right-hand side of the equality (21.21) we can get the following
evaluation:
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η(2t− s)χ(s) − η(s)χ(2t− s)

=
1

T0
kij

[
χ(s)

∫ 2t−s

0

χ,j(τ)dτ − χ(2t− s)
∫ s

0

χ,j(τ)dτ

]
,i

+
1

T0
kij

[
χ,i(2t− s)

∫ s

0

χ,j(τ)dτ − χ,i(s)
∫ 2t−s

0

χ,j(τ)dτ

]
(21.22)

+
"

T0

[
χ(s)

∫ 2t−s

0

P(τ)dτ − χ(2t− s)
∫ s

0

P(τ)dτ

]
Taking into account that kij is a symmetric tensor, we can write∫ t

0

ds

∫
B

1

T0
kij
d

ds

[(∫ s

0

χ,i(τ)dτ

)(∫ 2t−s

0

χ,j(τ)dτ

)]
dV

=

∫
B

1

T0
kij

∫ t

0

d

ds

[(∫ s

0

χ,i(τ)dτ

)(∫ 2t−s

0

χ,j(τ)dτ

)]
ds dV (21.23)

=

∫
B

1

T0
kij

(∫ t

0

χ,i(τ)dτ

)(∫ t

0

χ,j(τ)dτ

)
dV

If we integrate by parts, we get the next equality∫ t

0

ds

∫
B

1

T0
kij

[
χ,i(s)

∫ 2t−s

0

χ,j(τ)dτ − χ,j(2t− s)
∫ s

0

χ,i(τ)dτ

]
dV

=

∫ t

0

ds

∫
B

1

T0
kij
d

ds

[(∫ s

0

χ,i(τ)dτ

)(∫ 2t−s

0

χ,j(τ)dτ

)]
dV (21.24)

Considering the identities (21.22) and (21.23) we are led to the following equality:∫ t

0

ds

∫
B

1

T0
kij

[
χ,i(2t− s)

∫ s

0

χ,j(τ)dτ − χ,i(2t− s)
∫ 2t−s

0

χ,j(τ)dτ

]
dV

= −
∫
B

1

T0
kij

[(∫ s

0

χ,i(τ)dτ

)(∫ 2t−s

0

χ,j(τ)dτ

)]
dV. (21.25)

Finally, by taking into account the identities (21.16), (21.18), (21.20) and (21.25),
applying the divergence theorem and using the null initial data and null boundary
data, we obtain the identity (21.14) and the proof of Theorem 21.1 is concluded.

The identity (21.14) constitutes the basis on which we shall prove the uniqueness
and the continuous dependence results. We proceed first to obtain the uniqueness of
the solution of the mixed initial boundary value problem defined by the system of
equations (21.11), the initial conditions (21.9) and the boundary conditions (21.10).

Theorem 21.2. Let us suppose that the symmetry relations (21.7) are satisfied and
the conductivity tensor kij is positive definite, that is, there exists a positive constant
k0 such that

kijxixj ≥ k0xixi, ∀xi.
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If ∂B3 is not empty or c(x) �= 0 onB, then the mixed initial boundary value problem
in thermoelastodynamics of dipolar bodies admits only one solution.

Proof. Suppose by absurd that our mixed problem has two solutions(
u
(α)
i , ϕ

(α)
ij , θ

(α)
)
, α = 1, 2.

Also, we assume that these solutions correspond to the same boundary data, the
same initial data, the same body force, the same dipolar body force and the same
heat supply.

Consider the difference of these two solutions:

vi = u
(2)
i − u(1)i , ψij = ϕ

(2)
ij − ϕ(1)

ij , χ = θ
(2)
i − θ(1)i . (21.26)

Then we must prove that

vi(x, t) = 0, ψij(x, t) = 0, χ(x, t) = 0, ∀(x, t) ∈ B × [0, t1). (21.27)

Because of the linearity of our problem we deduce that the differences (vi, ψij , χ)
from (21.27) are also a solution of the problem, but in a particular case, namely,
with null body force, null dipolar body force and null heat supply. In this case the
identity (21.14) receives the following simple form:

2

∫
B

[
"vi(t)v̇i(t) + Ijkψjr(t)ψ̇kr(t)

]
dV +

+

∫
B

1

T0
kij

(∫ t

0

χ,i(τ)dτ

)(∫ t

0

χ,j(τ)dτ

)
dV = 0.

For a fixed s ∈ [0, t1/2), we integrate this equality on the interval [0, s] so that we
obtain∫

B

"vi(s)vi(s)dV +

∫
B

Iijψi(s)ψi(s)dV +

∫
B

Jδ2dV +

+

∫ s

0

∫
B

1

T0
kij

(∫ ξ

0

χ,i(τ)dτ

)(∫ ξ

0

χ,j(τ)dτ

)
dV dξ = 0.

Based on the properties of ", Iij and kij , from the above identity we are led to

vi(x, t) = 0, ψij(x, t) = 0, χ,i(x, t) = 0, ∀(x, t) ∈ B × [0, t1/2). (21.28)

In the case that ∂B3 is not empty, taking into account the null boundary conditions
(21.7), from (21.28) we deduce that (21.27) holds. In the case that c(x) �= 0, we
write the equation of energy for the differences and obtain χ̇ = 0. Taking into
account the null initial conditions, that is, χ vanishes initially, we obtain again that
(21.26) holds true. If we suppose that t1 is infinite, then the proof of Theorem 21.2
ends.

If t1 is finite, then we can do the substitution
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vi(x, t1/2)→ 0, v̇i(x, t1/2)→ 0, ψij(x, t1/2)→ 0, ψ̇ij(x, t1/2)→ 0,

χ(x, t1/2)→ 0,

and we can repeat the above procedure with new null initial conditions on the
interval [t1/2, t1/2 + t1/4]. In this way, the conclusion (21.27) is extended on B ×
[0, 3t1/4), and so on. As such, the conclusion (21.27) is obtained on B× [0, t1) and
the proof of Theorem 21.2 is concluded.

Now, we state the second main result, namely a continuous dependence theorem
with regard to the body forces, dipolar body forces and heat supplies for the solution
of the mixed initial boundary value problem defined by the system of equations
(21.11), the initial conditions (21.9) and the boundary conditions (21.10).

In this regard, let us consider
(
u
(α)
i , ϕ

(α)
ij , θ

(α)
)

, (α = 1, 2), two solutions
of our mixed problem which correspond to the same initial data and boundary
data, but to different body force, dipolar body force and to different heat supply,(
F
(α)
i , G

(α)
i , L(α), P(α)

)
, (α = 1, 2), where Fi = f2i − f1i , Gi = g2i − g1i ,

L = l2 − l1, P = r2 − r1. Also, we need to suppose that there exists t∗ ∈ (0, t1)
such that ∫ t∗

0

∫
B

"Fi(t)Fi(t)dV dt ≤M2
1 ,

∫ t∗

0

∫
B

"Gi(t)Gi(t)dV dt ≤M2
2 ,∫ t∗

0

∫
B

"

T0

(∫ t

0

P2(τ)dτ

)2

dV dt ≤M2
3 ,

∫ t∗

0

∫
B

"ui(t)ui(t)dV dt ≤ K2, (21.29)∫ t∗

0

∫
B

Iijϕi(t)ϕj(t)dV dt ≤M2,

∫ t∗

0

∫
B

"

T0
χ2(t)dV dt ≤ Q2.

The result is obtained on the compact subintervals of the interval [0, t1).

Theorem 21.3.. Suppose that the assumptions from Theorem 21.2 are satisfied and
the conditions (21.29) take places. Then there exists s ∈ [0, t1/2) so that we have
the following estimate:∫

B

["ui(s)ui(s) + Ijkϕjr(s)ϕkr(s)] dV

+

∫ s

0

∫
B

1

T0
kij

(∫ t

0

χ,i(τ)dτ

)(∫ t

0

χ,j(τ)dτ

)
dV dt

≤ t∗K
[∫ t∗

0

∫
B

"Fi(t)Fi(t)dV dt

]1/2
(21.30)

+t∗M
[∫ t∗

0

∫
B

"Gij(t)Gij(t)dV dt

]1/2

+t∗Q

[∫ t∗

0

∫
B

"

T0

(∫ t

0

P(τ)dτ

)2

dV dt

]1/2

.
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Proof. Our approach will be based on the identity (21.14). For each of the three in-
tegrals from the right-hand side of this identity we will use the Schwarz’s inequality.
For example, for the first integral we have∫ t

0

∫
B

"ui(2t− s)Fi(s)dV ds

≤
[∫ t

0

∫
B

"Fi(s)Fi(s)dV ds

]1/2 [∫ t∗

0

∫
B

"ui(2t− s)ui(2t− s)dV ds
]1/2

=

[∫ t

0

∫
B

"Fi(s)Fi(s)dV ds

]1/2 [∫ 2t

t

∫
B

"ui(s)ui(s)dV ds

]1/2
(21.31)

≤ K
[∫ t∗

0

∫
B

"Fi(s)Fi(s)dV ds

]1/2
To obtain the last inequality, we used the substitution 2t− s→ s.
Analogous inequalities are obtained for the other two integrals from the right-hand
side of this identity (21.14). If we integrate the inequality (21.31) and the other two
resulting inequalities over [0, s], s ∈ [0, t∗/2], we are led to the inequality (21.30),
which ends the proof of Theorem 21.3.

In the following theorem, we will prove also a continuous dependence result, but
with regards to the initial data. The demonstration will be facilitated by the use of
the estimate (21.30). For this purpose, let us consider(

u1i , ϕ
1
i , θ

1
)
,

(
u1i + vi, ϕ

1
i + ψi, θ

1 + χ
)
, (21.32)

i.e. two solutions of the mixed initial boundary value problem, which correspond to
two different initial data,(

u10i, u
1
1i, ϕ

1
0ij , ϕ

1
1ij , θ

1
)
,(

u10i + a
0
i , u

1
1i + a

1
i , ϕ

1
0ij + b

0
ij , ϕ

1
1ij + b

1
ij , θ

1 + c0
)
, (21.33)

but to the same body force, dipolar body force and heat supply and to the same
boundary data. The above perturbations

(
a0i , a

1
i , b

0
ij , b

1
ij , c

0
)

must be bounded,
that is, there exist the constantsM4,M5 andM6 such that∫

B

"
(
a0i a

0
i + a

1
i a

1
i

)
dV ≤M2

4 ,∫
B

"
(
b0ijb

0
ij + b

1
ijb

1
ij

)
dV ≤M2

5 ,∫
B

T0
"
η20dV ≤M2

6 ,

where η0 has the following meaning:
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η0(x) = aij(x)a
0
j,i(x) + bij(x)

[
a0j,i(x)− b0ij(x)

]
+cijk(x)b

0
ij,k(x) +

c

T0
c0(x).

With the help of the differences between the two solutions (vi, ψij , χ) we define
the functions Vi(x, t), Ψij(x, t) and Θ(x, t) by

Vi(x, t) =

∫ t

0

∫ s

0

vi(x, τ)dτds,

Ψij(x, t) =

∫ t

0

∫ s

0

ψij(x, τ)dτds, (21.34)

Θ(x, t) =

∫ t

0

∫ s

0

χ(x, τ)dτds.

Theorem 21.4. If the functions (Ui, Φi, Ψi, Θ) satisfy the conditions (21.29), then
we have the next estimate:∫

b

["Vi(t)Vi(t) + IjkΨjr(t)Ψkr(t)] dV

+

∫ t

0

∫
B

1

T0
kij

(∫ s

0

Θ,i(τ)dτ

)(∫ s

0

Θ,j(τ)dτ

)
dV ds

≤ t∗K
[
(t∗ + t∗/2)

∫
B

"a0i a
0
idV +

(
t2∗/2 + t

3
∗/3

) ∫
B

"a1i a
1
idV

]1/2
(21.35)

+t∗M
[
(t∗+t∗/2)

∫
B

Ijkb
0
jrb

0
krdV +

(
t2∗/2+t

3
∗/3

)∫
B

Ijkb
1
jrb

1
krdV

]1/2
+t

7/2
∗ Q

1√
20

(∫
B

T0
"
η20dV

)1/2

.

Proof. Clearly, from (21.30), by integrating by parts, it is easy to deduce

Vi(x, t) =

∫ t

0

(t− s)vi(x, s)ds,

Ψij(x, t) =

∫ t

0

(t− s)ψij(x, s)ds,

Θ(x, t) =

∫ t

0

(t− s)χ(x, s)ds.

We can observe that the difference functions (vi, ψi, χ) satisfy the equations of
motion (21.3) and the equation of energy (21.4), corresponding to null loads

fi = gij = r = 0.
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Also, it is easy to deduce that the difference functions satisfy the following initial
conditions:

vi(x, 0) = a
0
i (x), v̇i(x, 0) = a

1
i (x), ψij(x, 0) = b

0
ij(x),

ψ̇ij(x, 0) = b
1
ij(x), χ(x, 0) = d

0(x), ∀x ∈ B.

As a consequence, let us observe that the functions (Vi, Ψij , Θ) from (21.34) satisfy
the equations of motion (21.3), corresponding the following loads:

fi(x, t) = a
0
i (x) + ta

1
i (x), gij(x, t) = b

0
ij(x) + tb

1
ij(x),

and the equation of energy (21.4), corresponding the following heat flux:

r(x, t) = T0t
[
aij(x)a

0
j,i(x) + bij(x)

(
a0j,i(x)

− b0ij(x)
)
+ cijk(x)b

0
ij,k(x) +

c

T0
c0(x)

]
.

We take into account the above specifications in the inequality (21.30), so that we
are led to the estimate (21.35), so that the proof Theorem 21.4 is concluded.

Our last result is also a result of the continuous dependence of the solution to the
problem (21.11), (21.9) and (21.10) with respect to the thermoelastic coefficients.
The result is also based on the estimate (21.30) from Theorem 21.3.

For this purpose, as above, we will consider two solutions of the form (21.32),
which correspond to the same body force, dipolar body force and heat supply, to
the same boundary data and to the same initial data, but to different thermoelastic
coefficients:(
C

(1)
ijmn, G

(1)
ijmn, F

(1)
ijmnr, B

(1)
ijmn, D

(1)
ijmnr, A

(1)
ijkmnr, a

(1)
ij , b

(1)
ij , c

(1)
ijk, k

(1)
ij , c

(1)
)

(
C

(1)
ijmn+Cijmn, G

(1)
ijmn+Gijrs, F

(1)
ijmnr+Fijmnr,

B
(1)
ijmn+Bijrs, D

(1)
ijmnr+Dijmnr, A

(1)
ijkmnr+Aijkmnr,

a
(1)
ij +αij , b

(1)
ij +βij , c

(1)
ijk+δijk, k

(1)
ij +κij , c

(1)+ζ
)
.

Assume that the perturbations (vi, ψij , χ) satisfy the restrictions (21.29).

Theorem 21.5. Any solution (ui, ϕij , θ) of the initial boundary value problem de-
fined by (21.11), (21.9) and (21.10) that satisfies the condition∫ t∗

0

∫
B

(ui,jui,j + ui,jkui,jk + u̇i,j u̇i,j + ϕij,kϕij,k + ϕij,kmϕij,km

+ϕ̇ij,kϕ̇ij,k + θ,jθ,j + θ,jkθ,jk + θ̇2
)
dV ds ≤M2

7 ,

depends continuously on the thermoelastic coefficients with regards to the measure
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B

["vi(t)vi(t) + Ijkψjr(t)ψkr(t)] dV +

+

∫ t

0

∫
B

1

T0
kij

(∫ s

0

χ,i(τ)dτ

)(∫ s

0

χ,j(τ)dτ

)
dV ds,

on the interval [0, t∗/2].

Proof. A straightforward calculation proves that the perturbations (vi, ψij , χ) of
two solutions verify the equations of motion and the equation of energy with the
following body force, dipolar body force and heat supply:

fi =
[
(Cijmn + Cijmn) ε

(2)
mn + (Gijmn +Bijmn) γ

(2)
mn+

+(Fijmnr +Dijmnr)χ
(2)
mnr − (αij + βij) θ

(2)
]
,j
,

gjk =
[
Fijkmnε

(2)
mn +Dmnijkγ

(2)
mn +Aijkmnrχ

(2)
mnr − δijkθ(2)

]
,i

+Gjkmnε
(2)
mn +Bjkmnγmn +Djkmnrχ

(2)
mnr − βijθ(2)

r

T0
= αijε

(2)
ij + βijγ

(2)
ij + δijkχ

(2)
ijk +

ζ

T0
θ(2) − 1

T0

(
κijθ

(2)
,j

)
,i
.

In this way, we have transformed the problem into an analogous one to that from
Theorem 21.4. Therefore, we can use the estimates (21.35) and (21.30) to obtain the
continuous dependence result with regards to body force, dipolar body force and
heat supply.

21.4 Conclusion

As can be seen from our above-mentioned approaches, it was possible to demon-
strate both the theorem of uniqueness of the solution and three results of the con-
tinuous dependence of the solution in low hypotheses. Due to the use of Lagrange’s
identity, it was possible to obtain these results without recourse to any conservation
law or to any boundedness assumptions on the thermoelastic coefficients. In other
studies devoted to mixed initial boundary value problems, similar to that consisting
of (21.11), (21.9) and (21.10), the theorems regarding the uniqueness of the solution
or the continuous dependence of the solutions are proven in more restrictive condi-
tions. As an example, Iesan and Quintanilla (2005) have obtained the existence of
the solution by assuming that the Helmholtz’s free energy per mass is a positive
definite quadratic form. It can be concluded that our results on the continuous de-
pendence of solutions are natural generalizations of the results of Wilkes (1980) and
Marin (2010).
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Chapter 22

Theory and Computation of Nonlinear Damage

Accumulation for Lifetime Prediction

Anton Matzenmiller & Ulrich Kroll

Abstract Nonlinear damage accumulation is modelled for the lifetime prediction in
order to capture the loading sequence effect, which is the influence of the chrono-
logical order of the loading values on the lifetime. The prediction results from the
solution of the damage evolution equation, which is defined according to the theory
of continuum damage mechanics and applied together with a cohesive zone model
for structural adhesive joints. The damage model consists of a creep and fatigue
damage part, both taking into account the influence of the mean stress and the load
multiaxiality on the predicted time to rupture. The analytical investigation of the
model shows the meaning of the model parameters and propose their identification
by means of tests with static and constant amplitude loading. In order to capture
the loading sequence effect by nonlinear damage accumulation, the fatigue dam-
age part is enhanced with a factor, which influences the predicted lifetime due to
variable amplitude loading in the case of pure fatigue damage, while the prediction
for constant amplitude loading is unaffected. The influences of the enhancement on
the predicted lifetime and the damage evolution are discussed. The comparison of
lifetimes with numerical predictions proves the validity of the proposed approach.

Keywords: Damage mechanics · Lifetime prediction · Adhesive joints

22.1 Introduction

Components in engineering applications suffer sustained mechanical service load-
ing. In the particular case, where two constant values exist for each the local max-
ima and minima, which e. g. is the case for the harmonic, sawtooth wave or triangle
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wave function, service loading is called constant amplitude (CA) loading, otherwise
variable amplitude (VA) loading. Fatigue damage is contributed due to each loading
cycle, which may be defined by the load reversals of two neighbouring local maxima
or minima of the service loading and the corresponding values in between. In high
cycle fatigue (HCF), fatigue damage is accumulated over a large number of loading
cycles – usually more than several tens of thousands up to millions – and causes the
gradual degradation of the integrity (load bearing capacity) at a material point. After
a certain time, the material lifetime, the complete integrity of the material point is
lost and a local crack initiates. The loading continues and the crack grows, while
other cracks may initiate and grow at different material points. As a consequence of
this process of degradation, after some time, the structural lifetime, there remains no
load bearing capacity of the structure, which leads to fatal failure of the component.
Therefore, the operation time of the component must not exceed its lifetime, which
has to be ensured by lifetime prediction.

The lifetime prediction for components and structures is generally performed by
use of technical codes and guidelines, e. g. Normenausschuss Bauwesen (NABau)
im DIN (2010, 2011); Rennert et al (2012) for steel and aluminium components.
These guidelines propose empirical methods, which are highly adapted to particular
applications and make use of a variety of simplifying assumptions for the process
of fatigue. Most of the assumptions apply superposition, which leads to linearity.
Therefore, nonlinear phenomena are not captured, although they may have a great
influence on the material and the structural lifetime. One of these nonlinear phe-
nomena is the loading sequence effect, which is the influence of the chronological
order of the loading values on the lifetime. The sequence effect is modelled with so
called nonlinear damage accumulation, for which the damage increments cannot be
easily superimposed, which is usually the case in common procedures for lifetime
prediction. Nevertheless, several lifetime prediction methods introduce influencing
factors for the consideration of nonlinear phenomena for the particular component,
material and application, e. g. influencing factors for temperature, surface condition,
loading sequence, mean stress, frequency, multiaxiality etc. Such methods cannot be
easily transferred to different materials and structures and are not able to be applied
in general. As a consequence, different lifetime prediction methods have been pro-
posed for various materials, components and applications. Furthermore, because of
this lack of generality, there exist no commonly accepted lifetime prediction meth-
ods for a number of joining techniques such as adhesive bonding.

Continuum damage mechanics (CDM) strives to overcome this shortcoming. In
contrast to conventional methods, the lifetime prediction for the structure is an out-
come of the lifetime prediction for each material point and the consideration of the
whole loading process. The representation of all material phenomena results from
the definition of the constitutive equations for the stress and the internal variables
in the framework of continuum mechanics. Thereby, one internal variable repre-
sents material damage, which evolution equation is adapted to the description of the
fatigue process in order to predict the material lifetime.

The lifetime prediction with CDM started with the approach in Kachanov (1958)
for the prediction of the creep rupture time of brittle materials in the uniaxial case
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by means of the definition of the so called continuity, which stands for structural
integrity. In Lemaitre and Chaboche (1975), first, damage is defined as the con-
trary variable to the continuity. Second, the approach in Kachanov (1958) is ex-
tended for nonlinear creep damage accumulation and, third, a creep-fatigue dam-
age model is proposed, for which the formalism of the creep damage approach in
Kachanov (1958) is transferred to fatigue damage. The creep-fatigue damage model
in Lemaitre and Chaboche (1975) is a differential equation in terms of differential
damage, time and loading cycles. The model extension for multiaxial loading and
plastic damage is proposed in Lemaitre (1979), where the inclusion of the dam-
age theory into thermodynamics of irreversible processes is also addressed. The
predicted creep-fatigue damage interaction of the proposed theory is presented in
Lemaitre and Plumtree (1979); Cailletaud and Levaillant (1984) and Cailletaud et al
(1984), where two-level loadings with pure creep and pure fatigue levels are con-
sidered. In Chaboche (1981), the theory of CDM and its application for lifetime
prediction are reviewed, accompanied by further studies of creep-fatigue damage in-
teraction and one of the first approaches for the application of CDM for anisotropic
damage, which has been also initially investigated in Murakami and Ohno (1981). In
Chaboche (1978); Lemaitre (1984), an enhancement of the model in Lemaitre and
Chaboche (1975) for the consideration of nonproportional loading is presented. The
developed methods and approaches of CDM for lifetime prediction are reviewed
again in Lemaitre (1984); Chaboche (1987); Krajcinovic and Lemaitre (1987);
Chaboche (1988a,b). In Chaboche and Lesne (1988), the main features of the ap-
proach in Lemaitre and Chaboche (1975) are reviewed and discussed. The lifetime
prediction with CDM has been further developed in Paas et al (1993) and applied in
Lemaitre and Doghri (1994). All the results mentioned before are part of the mono-
graphs Lemaitre and Chaboche (1990); Lemaitre (1996); Lemaitre and Desmorat
(2005). In Lemaitre and Desmorat (2005), the extension of the proposed approaches
with criterions suitable for fatigue damage evolution due to nonproportional loading
is mentioned. A short review of the theory and a discussion of improvements for fu-
ture investigations are presented in Chaboche (2003). In Chaboche (2011), several
models for nonlinear damage accumulation are discussed, including the model in
Lemaitre and Chaboche (1975) and Chaboche and Lesne (1988).

In CDM, the solution of the damage differential equation results in the predicted
number of cycles until rupture for a given stress level. This result is called stress-
number (S-N) model, which e. g. takes the form of the Basquin equation (Basquin,
1910) and represents the influence of the amplitude of mechanical CA loading on
the lifetime. Other influences of CA loading are related to mean stress, frequency,
difference of tension and compression as well as multiaxiality. As in the case of
the influence of the amplitude, all these influences are considered by the solution
of the damage differential equation. Even the influence of nonproportional (out of
phase) loading can be taken into account, which may result from different phases
of the stress components. For VA loading, it is well known that also the load-level
sequence has an effect on the lifetime (Lemaitre and Chaboche, 1990). The mod-
elling of this effect by nonlinear damage accumulation is of great importance for the
warranty of fatigue durability due to lifetime prediction, since linear damage accu-
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mulation generally leads to a significant overestimation of the lifetime for complex
VA loading cases, based on load spectra and standardised loadings from measure-
ments during service (Chaboche, 2011, p. 50). This observation is also made for
adhesives, see Erpolat et al (2004). Hence, the loading sequence effect must be con-
sidered in order to prevent the overestimation of the lifetime of adhesively bonded
components and possible disastrous consequences.

In this contribution, a creep-fatigue damage model is presented and its consider-
ation of the loading sequence effect by nonlinear damage accumulation is explained
in detail. Although the model at hand is applied through a cohesive zone model
for the lifetime prediction of adhesively bonded joints, the general characteristics
for the consideration of the loading sequence effect can be directly transferred and
applied for the lifetime prediction of various materials.

22.2 Modelling of Damage Growth

The theory of CDM is transferred to the cohesive zone model, relating the sepa-
ration ΔΔΔ via the constitutive equation to traction t =

[
tt tb tn

]T
, which consists

of the tangential tt, binormal tb and normal stress component tn and is calculated
according to effective stress concept (Rabotnov, 1963, 1969) for the multiaxial case
(Murakami and Ohno, 1981; Lemaitre and Chaboche, 1990):

t = (1−D)t̃ , D ∈ [0, 1] . (22.1)

The effective traction t̃ = t̃(ΔΔΔ) represents the material behaviour without consider-
ation of damage D. Every damage free model can be used for the effective traction
t̃, e. g. constitutive equations for a (visco-)elastic-(visco-)plastic cohesive model.
The damage free state is characterised byD = 0. Mechanical loading causes initia-
tion and growth of voids and, thus, increase of damage, which results in D > 0. If
mechanical loading is further applied, then this process continues until local rupture
atD = 1. For this damage evolution, a differential equation must be defined, which
has to be suitable for the particular case of application. The additive split of the
damage increment dD is proposed in Lemaitre and Chaboche (1975) for lifetime
prediction: damage consists of the creep dDc and fatigue damage part dDf , both
caused by sustained loading:

dD = dDc + dDf . (22.2)

Based on this idea, Eq. (22.2) is reformulated in Matzenmiller and Kurnatowski
(2012); Kroll and Matzenmiller (2017) in order to define a differential equation
in time according to the general framework of continuum mechanics with internal
variables (Truesdell and Toupin, 1960; Coleman and Gurtin, 1967):

Ḋ = Ḋc + Ḋf . (22.3)
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For the lifetime prediction in the case of long-term sustained static and cyclic load-
ing, the creep Ḋc and fatigue damage evolution Ḋf must be specified. In view of
the additive split of creep and fatigue damage in Eq. (22.3), creep damage should
primarily evolve due to creep loading while fatigue damage should mainly evolve
due to loading cycles.

22.2.1 Creep Damage Evolution

For the creep damage evolution Ḋc in Eq. (22.3), the following model is pro-
posed in Matzenmiller and Kurnatowski (2012) and based on the uniaxial version in
Kachanov (1958):

Ḋc =
1

c0

( 〈σeqc − σdc〉
σref(1−D)

)n

, c0 = 1 s . (22.4)

Creep damage evolves due to the following equivalent stress, which depends on the
tractions in Eq. (22.1) and reads

σeqc =
√
〈b1ct2n + b2ctn + t2t + t2b〉 , (22.5)

where positive tractions ti > 0, i = t, b, n are assumed for simplicity. Hence, alter-
nating stress and pressure are not considered in this contribution but are addressed
in Kroll and Matzenmiller (2017); Kroll (2018). The parameters b1c and b2c in Eq.
(22.5) take into account the multiaxiality of the loading (Kroll and Matzenmiller,
2017; Kroll, 2018). The constant c0 in Eq. (22.4) is introduced for consistent units.
The Macaulay operator 〈x〉 = (x + |x|)/2 in Eq. (22.4) results in no creep dam-
age evolution, if the loading is below the creep limit σdc. The meaning of the two
remaining creep damage model parameters n and σref is demonstrated by means
of creep loading, for which the tractions in Eq. (22.1) are constant: ti = const.,
i = t, b, n. If creep loading results in pure creep damage in Eq. (22.3), i. e. Ḋf = 0,
D = Dc, then Eq. (22.4) yields

Ḋc =
1

c0

( 〈σeqc − σdc〉
σref(1−Dc)

)n

. (22.6)

If separation and integration are applicable, then the characteristics of the damage
differential equation for lifetime prediction arise from three solutions, which are
obtained by use of different limits.

For the first solution of Eq. (22.6), separation and integration of the damage equa-
tion (22.6) from zero damage D = 0 at time t = 0 until total failure D = 1 at
rupture time tR for creep loading σeqc = const. > σdc results in the following
expression, cf. Kachanov (1958):
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1∫
0

(1−Dc)
ndDc =

tR∫
0

1

c0

(
σeqc − σdc

σref

)n

dt ⇒ tR =
c0

n+ 1

(
σref

σeqc − σdc

)n

.

(22.7)
Application of the logarithm and rearrangement of terms yields the double logarith-
mic straight line

ln (σeqc − σdc) = − 1

n
ln

tR
c0

+ ln
σref

(n+ 1)
1
n

. (22.8)

The meaning of the creep damage parameters n and σref becomes apparent in Eq.
(22.8), which is illustrated in Fig. 22.1(a): Parameter n determines the slope of the
double logarithmic straight line and σref stands for the ordinate value for fixed n.

The second solution of Eq. (22.6) is performed for a virgin material with D = 0
at t = 0 until damage D at time t for creep loading σeqc = const., σeqc > σdc, see
Lemaitre and Chaboche (1975):

1

1

− 1
k+1

σeqf = σdf

log
σu(1−R)

2 k+1
√
1−Rk+1

logNR

log σeqfa

− 1
n

σeqc = σdc

log
σref

(n+ 1)
1
n

log(tR/c0)

log(σeqc − σdc)
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1

1

Fig. 22.1 Influence of parameters: (a) influence of creep damage parameters on predicted time to
rupture; (b) influence of fatigue damage parameters on predicted number of cycles to rupture; (c)
influence of parameter n on damage evolution over normalised time according to Eq. (22.9)
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D∫
0

(1−Dc)
n
dDc =

t∫
0

1

c0

(
σeqc − σdc

σref

)n

dt̃ ⇒ D = 1−
(
1− t

tR

) 1
n+1

.

(22.9)
Equation (22.7) has been used for the substitution of rupture time tR in Eq. (22.9),
which is illustrated in Fig. 22.1(c): The parameter n influences the evolution of
damageD over normalised time t/tR between the fixed start and end point atD = 0
and D = 1. In contrast, the parameters σdc and σref do not influence the curve at
all.

The third solution of Eq. (22.6) is obtained by separation and integration from
damage Di−1 at time ti−1 to new damage state Di due to loading σeqc,i = const.,
acting over time Δti (Lemaitre and Plumtree, 1979):

Di∫
Di−1

(1−Dc)
n
dDc =

ti−1+Δti∫
ti−1

1

c0

(
σeqc,i − σdc

σref

)n

dt , (22.10)

Di = 1−
(
(1−Di−1)

n+1 − Δti
tRi

) 1
n+1

. (22.11)

In Eq. (22.11), tRi denotes the time to rupture, if creep loading with σeqc,i is applied
from the undamaged state until total failure, i. e. Eq. (22.7) with tRi instead of tR
and σeqc,i instead of σeqc. Eq. (22.11) represents the actual damage value Di after
the so called load level or load block i = 1, ...,K of a K-level or K-block creep
loading sequence in form of a recurrence relation.

22.2.2 Fatigue Damage Evolution

The following model for fatigue damage evolution Ḋf is based on the approach
in terms of loading cycles in Lemaitre (1979) and proposed in Matzenmiller and
Kurnatowski (2012) for the approach in Eq. (22.3):

Ḋf =

( 〈σeqf − σdf〉
(σu − σdf)(1−D)

)k 〈σ̇eqf〉
σu − σdf

. (22.12)

The equivalent stress depends on the tractions in Eq. (22.1) and is defined as

σeqf =
√
〈b1ft2n + b2ftn + t2t + t2b〉 , (22.13)

whereby positive tractions ti > 0, i = t, b, n are considered for simplicity. As
mentioned before in Sect. 22.2.1, alternating stress and pressure are not considered
here but are addressed in Kroll and Matzenmiller (2017); Kroll (2018). Note that
Ḋf = 0, if σ̇eqf ≤ 0, which includes creep loading ti = const., i = t, b, n, yielding
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pure creep damage evolution, which has been assumed for Eq. (22.6). The parame-
ters b1f and b2f in Eq. (22.13) take the multiaxiality of the loading into consideration
(Kroll and Matzenmiller, 2017; Kroll, 2018). Obviously, the parameter σdf in Eq.
(22.12) represents the fatigue limit. The meaning of the two remaining fatigue dam-
age parameters k and σu becomes apparent, if pure fatigue damage is assumed, i. e.
Ḋc = 0, D = Df . Then, Eqs. (22.3) and (22.12) are represented by

(1−Df)
kdDf =

1

(σu − σdf)k+1
〈σeqf − σdf〉k 〈dσeqf〉 , (22.14)

where separation of variables has been applied. As in the previous Sect. 22.2.1, the
characteristics of the damage equation (22.14) result from three solutions in form of
integrations with different limits.

The first solution results from the integration of damage free material withD = 0
until rupture at D = 1 due to the periodic loading σeqf(t) = σeqf(t + T ) with
smallest period T as well as local and global minimum σeqfmin = minσeqf and
maximum σeqfmax = maxσeqf . An example of such a loading is the harmonic
function

σeqf = σeqfm + σeqfa sin(2πft) (22.15)

with mean stress σeqfm, stress amplitude σeqfa and frequency f = 1/T . Conse-
quently, Eq. (22.14) can be integrated over period T , which corresponds to the inte-
gration over a stress cycle, consisting of the stress values within the periodic time.
The stress cycle results in a damage increment ΔD, thus, Eq. (22.14) becomes

D+ΔD∫
D

(1−Df)
kdDf =

1

(σu − σdf)k+1

∮
σeqf

〈σeqf − σdf〉k 〈dσeqf〉 . (22.16)

The Macaulay operator in Eq. (22.16) results in 〈dσeqf〉 = 0, if σeqf decreases,
which is the case for the integration from σeqfmax to σeqfmin. Additionally, the sim-
plifying assumption σeqf > σdf is applied in the following. Furthermore, the num-
ber of periodic load repetitions N is introduced, which is called cycle number and
described as dimensionless time (Paas et al, 1993). Hence, Eq. (22.16) becomes

D+ΔD∫
D

(1−Df)
kdDf =

1

(σu − σdf)k+1

N+1∫
N

σeqfmax∫
σeqfmin

(σeqf − σdf)
k
dσeqfdÑ .

(22.17)
For simplicity and without loss of generality, it is assumed that rupture occurs im-
mediately after a certain cycle. Then, Eq. (22.17) results in the following expression
for the number of cycles to rupture NR:
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1∫
0

(1−Df)
kdDf =

1

(σu − σdf)k+1

NR∫
0

σeqfmax∫
σeqfmin

(σeqf − σdf)
k
dσeqfdÑ ,(22.18)

NR =
(σu − σdf)

k+1

(σeqfmax − σdf)
k+1 − (σeqfmin − σdf)

k+1
. (22.19)

In the case of cyclic loading given by Eq. (22.15), the load ratioR = σeqfmin/σeqfmax

may be introduced. If σdf = 0, Eq. (22.19) is equivalent to the most common S-N
model known as the Basquin equation (Basquin, 1910):

lnσeqfa = − 1

k + 1
lnNR + ln

σu(1−R)

2 k+1
√
1−Rk+1

. (22.20)

The influence of mean stress on the rupture time is considered by the creep damage
part in Eq. (22.4) and also by the fatigue damage part in Eq. (22.12), since the stress
amplitude for a given number of cycles to rupture depends on the load ratioR in Eq.
(22.20) for pure fatigue damage. The following solution for damage over normalised
loading cycles is almost similar to Eq. (22.9): The integration from the damage free
stateD = 0 at cycle Ñ = 0 until damageD at cycle Ñ = N for constant amplitude
loading in Eq. (22.15) with σeqf > σdf results in

D∫
0

(1−Df)
kdDf =

N∫
0

σeqfmax∫
σeqfmin

(σeqf − σdf)
k

(σu − σdf)k+1
dσeqfdÑ ⇒ D = 1−

(
1− N

NR

) 1
k+1

.

(22.21)
Equation (22.19) has been used for the substitution of the number of loading cycles
until rupture NR. Damage in Eq. (22.21) is almost similar to the expression in Eq.
(22.9). Hence, parameter k has the same influence as parameter n, illustrated in Fig.
22.1(c).

The third solution is obtained by integration from damage Di−1 at cycle Ni−1

to new damage state Di due to constant amplitude loading with minimum σeqfmin,i

and maximum σeqfmax,i over ΔNi cycles (Lemaitre and Plumtree, 1979):

Di∫
Di−1

(1−Df)
kdDf =

1

(σu − σdf)k+1

Ni−1+ΔNi∫
Ni−1

σeqfmax,i∫
σeqfmin,i

(σeqf − σdf)
k
dσeqfdÑ ,

(22.22)

Di = 1−
(
(1−Di−1)

k+1 − ΔNi

NRi

) 1
k+1

. (22.23)

The number of cycles to rupture NRi in Eq. (22.23) denotes the lifetime, if con-
stant amplitude loading with minimum σeqfmin,i and maximum σeqfmax,i is applied
from the damage free state until rupture, i. e. Eq. (22.19) with NRi instead of NR,
σeqfmin,i instead of σeqfmin and σeqfmax,i instead of σeqfmax. Similar to Eq. (22.11),



318 Anton Matzenmiller & Ulrich Kroll

which results from pure creep damage, Eq. (22.23) is also a recurrence relation for
the calculation of pure fatigue damage for K-level constant amplitude loading.

22.3 Damage Accumulation

If a certain load level of a K-level loading is applied, then the time spent on that
load level results in a corresponding damage increment. Damage accumulation is
the model property, which defines, how a certain damage increment is contributed
to the actual amount of damage. If the damage accumulation contains the sum of
the damage increments, then the damage accumulation is called linear, otherwise
nonlinear. The property of linearity refers to the commutativity of the sum, which is
equal to the superposition of the damage increments regardless of their chronolog-
ical appearance. Thus, a model, which exhibits linear damage accumulation, does
not account for the loading sequence effect, while a model with nonlinear damage
accumulation does. This is illustrated by means of the two-level creep loading until
rupture in Fig. 22.2.

The loadings σ1 and σ2 in Fig. 22.2(a) lead to the rupture times tR1 and tR2.
In the top illustration of Fig. 22.2(b), σ1 is applied from t = 0 until t = Δt1 =
0.5tR1, followed by σ2 from t = Δt1 until rupture, which is observed after Δt2 =
0.5tR2, so tR12 = Δt1 + Δt2. This is a High-Low (HL) creep loading sequence,
since σ1 > σ2. In the case of linear damage accumulation, the same rupture time
is observed, if the chronological order of the loadings is interchanged, see the Low-
High (LH) creep loading scenario in the bottom illustration of Fig. 22.2(b). The
loading sequence effect is not captured, since the HL and LH loading result in the
same rupture time: tR12 = tR21. This fact is represented by the Robinson rule for
linear creep damage accumulation (Robinson, 1938) withK = 2 in the case of Fig.
22.2(b):

tR1

tR2

σ1

σ2

tR12

tR21 = tR12

σ

σ

(a) (b) (c)

σ

σ
tR12

tR21 < tR12

t

t

t t

tt

Fig. 22.2 Illustration of damage accumulation by means of two level loading until rupture (×): (a)
considered loadings σ1 and σ2 leading to rupture times tR1 and tR2; (b) example for linear
damage accumulation; (c) example for nonlinear damage accumulation
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K∑
i=1

Δti
tRi

= 1 . (22.24)

The time spent on load level i is denoted with Δti, while tRi is the rupture time in
the case, where the loading of load level i is applied as one-level loading from the
undamaged material at t = 0 until rupture. Fig. 22.2(c) shows nonlinear damage
accumulation, where the rupture times for both scenarios are not equal. A loading
sequence effect is observed and Eq. (22.24) is not fulfilled anymore: The sum of
creep life ratios is not always equal to one, see e.g. Pavlou (2001), where LH creep
loading test data are shown, which correspond to the bottom illustration in Fig.
22.2(c).

The theory of creep damage accumulation is directly transferred to fatigue load-
ing. Linear fatigue damage accumulation is represented by the Palmgren–Miner rule
(Palmgren, 1924; Miner, 1945), where ΔNi denotes the number of cycles spent on
load level i and NRi represents the number of cycles to rupture in the case, where
the loading of load level i is applied as one-level loading from t = 0 until rupture:

K∑
i=1

ΔNi

NRi
= 1 . (22.25)

As the Robinson rule in Eq. (22.24), the Palmgren–Miner rule in Eq. (22.25) also
does not take the loading sequence effect into consideration.

22.3.1 Creep and Fatigue Damage Accumulation

In the following, the accumulation of damage is presented due to the evolutions in
the cases of pure creep and fatigue given in Eqs. (22.6) and (22.14). Damage due to
creep loading over time Δt1 is according to Eq. (22.9) and Eq. (22.11) with i = 1
and D0 = 0

D1 = 1−
(
1− Δt1

tR1

) 1
n+1

. (22.26)

Equation (22.11) with i = 2 is applied for the case, where a second creep loading
follows and acts over time Δt2:

D2 = 1−
(
(1−D1)

n+1 − Δt2
tR2

) 1
n+1

. (22.27)

Inserting of Eq. (22.26) into (22.27) results in

D2 = 1−
(
1−

2∑
i=1

Δti
tRi

) 1
n+1

. (22.28)
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This process can be continued, which results in the amount of pure creep damage
Dj after load level j:

Dj = 1−
(
1−

j∑
i=1

Δti
tRi

) 1
n+1

. (22.29)

Occurrence of rupture afterK load levels results the Robinson rule in Eq. (22.24):

DK = 1 = 1−
(
1−

K∑
i=1

Δti
tRi

) 1
n+1

⇔
K∑
i=1

Δti
tRi

= 1 . (22.30)

Thus, the damage evolution equation (22.6) represents linear damage accumulation
and cannot take the loading sequence effect into consideration.

The same result is obtained for the case of pure fatigue damage by consideration
of Eq. (22.14). Damage after load level j is

Dj = 1−
(
1−

j∑
i=1

ΔNi

NRi

) 1
k+1

, (22.31)

where Eqs. (22.21) and (22.23) have been taken into account and a similar procedure
to Eqs. (22.26) to (22.29) is applied. Equation (22.31) has the same form as Eq.
(22.29). Consequently, if rupture occurs after the application of K load levels, then

DK = 1 = 1−
(
1−

K∑
i=1

ΔNi

NRi

) 1
k+1

⇔
K∑
i=1

ΔNi

NRi
= 1 , (22.32)

which is the Palmgren–Miner rule, given by Eq. (22.25).
According to the results in Eqs. (22.30) and (22.32), the damage evolution equa-

tions for pure creep and pure fatigue damage exhibit linear damage accumulation.
This is a result of the separability of the differential equations: All damage differen-
tial equations, which are separable, lead to linear damage accumulation (Ostergren
and Krempl, 1979; Todinov, 2001). A model with nonlinear damage evolution as in
Eqs. (22.9) or (22.21) does not automatically represent nonlinear damage accumu-
lation (Chaboche and Lesne, 1988; Lemaitre and Chaboche, 1990).

22.3.2 Modelling of Nonlinear Damage Accumulation

Since separability of the damage equation leads to linear damage accumulation, a
model must not be separable in order to represent nonlinear damage accumulation
and to account for the loading sequence effect. In the previous section, only pure
creep and pure fatigue damage evolution given by Eqs. (22.6) and (22.14) have
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been considered. But, the differential equation (22.3) with the approaches in Eqs.
(22.4) and (22.12) is not separable for n 	= k and, in this case, represents nonlinear
damage accumulation through nonlinear damage interaction.

However, in practice, two circumstances lead to linear or almost linear damage
accumulation of the model given by Eqs. (22.3), (22.4) and (22.12). First, the result
of the parameter identification and numerical optimisation for the prediction in the
case of creep and CA loading may be n = k, see Kroll and Matzenmiller (2017)
or Cavdar et al (2018), which leads to separability and linear damage accumulation.
Second, even if the identification and optimisation for other test data results in n 	=
k, the nonlinearity of damage interaction and of the resulting damage accumulation
may only weakly pronounced, see Kroll and Matzenmiller (2016). This is explained
by negligible creep damage: The magnitude of the factor in (22.12) with the time
derivative of the equivalent fatigue stress is of second order for usual HCF loading,
e. g. Eq. (22.15) with σeqfm = σeqfa = f = 10 and pure shear tn = 0, σeqc =
σeqf . In addition, if the terms with the exponent n and k in Eqs. (22.4) and (22.12)
have the same orders of magnitude as a result of the identification, see Kroll and
Matzenmiller (2015, 2016, 2017) and Kroll (2018), then creep damage evolution
appears to be negligible compared to fatigue damage evolution: Ḋc ≈ 0. But Ḋc =
0 is the condition to match Eqs. (22.3), (22.4), (22.12) with Eq. (22.14), which
is separable and represents linear damage accumulation according to Eq. (22.32).
Thus, if creep damage is negligible compared to fatigue damage for usual HCF
loading, then the model Eqs. (22.3), (22.4) and (22.12) represent linear damage
accumulation.

As a consequence, it appears reasonable to set the focus on the modelling of
nonlinear fatigue damage accumulation, which is related to the fatigue damage evo-
lution in Eq. (22.12). The following approach is proposed in Kroll and Matzenmiller
(2017):

Ḋf =

(
1− (1−D)k+1

)α
1− α

( 〈σeqf − σdf〉
(σu − σdf)(1−D)

)k 〈σ̇eqf〉
σu − σdf

. (22.33)

By contrast with Eq. (22.12), the fatigue damage evolution in Eq. (22.33) has an
additional factor, which contains the variable α for nonlinear fatigue damage accu-
mulation. In the following, α is assumed to be a function, which is constant for any
integration over a stress cycle, resulting in a damage increment according to Eqs.
(22.16), (22.17):

α = α(σeqfmin, σeqfmax) . (22.34)

The following approach for α in Kroll and Matzenmiller (2017) is based on the
proposals in Chaboche and Lesne (1988) and Do et al (2015):

α = αp2

(〈
1− αp1

〈
σeqfa − σdf

τu − σeqfmax

〉
− αp3

〉
+ αp3

)
. (22.35)

In Eq. (22.35), αp1, αp2 and αp3 are parameters. The first parameter αp1 controls
the damage interaction (Chaboche and Lesne, 1988), which is not addressed in this
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contribution. The switching variable αp2 is used in order to set αp2 = 0 → α =
0, which results in linear fatigue damage accumulation, see Subsect. 22.3.3. The
third parameter αp3 represents a lower boundary for α for the stabilisation of the
numerical treatment (Kroll and Matzenmiller, 2017).

As in Subsect. 22.2.2, three integrations of the damage equation (22.33) will be
presented for pure fatigue damage D = Df . Thus, Eq. (22.33) becomes

dDf =

(
1− (1−Df)

k+1
)α

1− α

( 〈σeqf − σdf〉
(σu − σdf)(1−Df)

)k 〈dσeqf〉
σu − σdf

. (22.36)

The first solution is obtained by separation and integration until rupture according
to Eqs. (22.15) to (22.18) for CA fatigue loading, for which α is constant due to Eq.
(22.34):

1∫
0

(1− α)(1−Df)
k

(1− (1−Df)k+1)
α dDf =

NR∫
0

σeqfmax∫
σeqfmin

(
σeqf − σdf

σu − σdf

)k
dσeqf

σu − σdf
dN, (22.37)

1

k + 1

1∫
0

1− α

D̃α
dD̃ =

NR∫
0

σeqfmax∫
σeqfmin

(
σeqf − σdf

σu − σdf

)k
dσeqf

σu − σdf
dN,(22.38)

⇒ NR =
(σu − σdf)

k+1

(σeqfmax − σdf)
k+1 − (σeqfmin − σdf)

k+1
, (22.39)

where the following substitution has been used:

D̃ = 1− (1−Df)
k+1 , dD̃ = (k + 1)(1−Df)

kdDf . (22.40)

Since the numbers of cycles to rupture in Eqs. (22.19) and (22.39) are equal, the
term with α has no influence on the lifetime for CA loading.

According to the limits for integration in Eq. (22.21), the integration of Eq.
(22.36) from the virgin state until a certain amount of damage D for CA loading
together with the substitution in Eq. (22.40) and constant α due to Eq. (22.34) yields

D∫
0

(1− α)(1−Df)
k

(1− (1−Df)k+1)
α dDf =

N∫
0

σeqfmax∫
σeqfmin

( 〈σeqf − σdf〉
σu − σdf

)k
dσeqf

σu − σdf
dÑ ,

(22.41)

D = 1−
(
1−

(
N

NR

) 1
1−α

) 1
k+1

. (22.42)

As can be seen from the comparison of Eq. (22.42) with Eq. (22.21), in addition to
the parameter k, the variable α has also an influence on the course of damage over
the cycle ratio.



22 Theory and Computation of Nonlinear Damage Accumulation . . . 323

The last integration is performed for a damage increment according to the limits
in Eq. (22.22) and by use of the substitution in Eq. (22.40), which results in the
following expression for actual damage Di, where αi = αi(σeqfmin,i, σeqfmax,i) is
constant for every load level i, cf. Eq. (22.34):

1

k + 1

D̃i∫
D̃i−1

1− αi

D̃αi
dD̃ =

Ni−1+ΔNi∫
Ni−1

σeqfmax,i∫
σeqfmin,i

(
σeqf − σdf

σu − σdf

)k
dσeqf

σu − σdf
dN ,

(22.43)

Di = 1−
(
1−

[(
1− [1−Di−1]

k+1
)1−αi

+
ΔNi

NRi

] 1
1−αi

) 1
k+1

. (22.44)

The variable αi in Eq. (22.44) has an additional influence on the actual amount of
damage compared to Eq. (22.23), as observed by comparing of Eqs. (22.42) and
(22.21).

22.3.3 Discussion of Modelling Approach

In the following, the damage accumulation behaviour of Eq. (22.36) will be analysed
as already performed for Eq. (22.14) in Subsect. 22.3.1. According to Eqs. (22.44)
and (22.42), damage due to CA fatigue loading over ΔN1 loading cycles from the
undamaged state to damage Di with i = 1 and D0 = 0 is

D1 = 1−
(
1−

(
ΔN1

NR1

) 1
1−α1

) 1
k+1

. (22.45)

If further loading with a second load level is applied, according to Eq. (22.44),
damage after this second load level then is

D2 = 1−
(
1−

[(
1− [1−D1]

k+1
)1−α2

+
ΔN2

NR2

] 1
1−α2

) 1
k+1

. (22.46)

Insertion of Eq. (22.45) into Eq. (22.46) results in

D2 = 1−

⎛⎜⎝1−
[(

ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1
1−α2

⎞⎟⎠
1

k+1

. (22.47)

If the second load level is applied until rupture, thenD2 = 1 in Eq. (22.47), becom-
ing



324 Anton Matzenmiller & Ulrich Kroll(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2
= 1. (22.48)

If the second and third level do not result in rupture, then insertion of Eq. (22.47)
into Eq. (22.44) for i = 3 yields the following amount of damage:

D3 = 1−

⎛⎜⎜⎝1−

⎡⎢⎣[(ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3

⎤⎥⎦
1

1−α3

⎞⎟⎟⎠
1

k+1

. (22.49)

If rupture occurs after load level K = 3, then D3 = 1 and Eq. (22.49) becomes[(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3
= 1. (22.50)

The preceding steps can be performed for a block loading with arbitrary number of
load levels.´Damage after load level j is

Dj = 1−
(
1−

[[
. . .

[[(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3

] 1−α4
1−α3

. . .

+
ΔNj−1

NRj−1

] 1−αj
1−αj−1

+
ΔNj

NRj

] 1
1−αj

) 1
k+1

. (22.51)

If rupture occurs after load level K, then Dj = DK = 1 in Eq. (22.51), which
becomes [

. . .

[[(
ΔN1

NR1

) 1−α2
1−α1

+
ΔN2

NR2

] 1−α3
1−α2

+
ΔN3

NR3

] 1−α4
1−α3

. . .

+
ΔNK−1

NRK−1

] 1−αK
1−αK−1

+
ΔNK

NRK
= 1. (22.52)

The difference of Eq. (22.52) compared to the Palmgren–Miner rule in Eq. (22.25)
is, that the cycle ratios are not commutatively superimposed, which is nonlinearity of
damage accumulation in the sense of noncommutativity of the chronological order
of the load levels.

This property becomes apparent, if the Palmgren–Miner rule in Eq. (22.25) is
interpreted as a chain formed by the cycle ratios as summands, then the chain links
can be arbitrarily interchanged without any change of the result. In the simplest
case of two load levels until rupture, this means commutativity of ΔN1/NR1 +
ΔN2/NR2 = ΔN2/NR2 + ΔN1/NR1 = 1. In the case of Eq. (22.52), the chain
links cannot be interchanged without any change of the result. Consider for example
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the particular case of K = 2 load levels in Eq. (22.48), which is equivalent to

ΔN1

NR1
=

(
1− ΔN2

NR2

) 1−α1
1−α2

, (22.53)

where the loading σeqf,1 with σeqfmin,1 and σeqfmax,1 of level one is applied first,
followed by the loading σeqf,2 with σeqfmin,2 and σeqfmax,2 of level two until rup-
ture. If the chronological order of the load levels is interchanged, then the result is
different from Eq. (22.53):(

ΔN2

NR2

) 1−α1
1−α2

+
ΔN1

NR1
= 1 ⇔ ΔN1

NR1
= 1−

(
ΔN2

NR2

) 1−α1
1−α2

. (22.54)

The same observation holds for the general case withK-level loading in Eq. (22.52),
which, therefore, considers the loading sequence effect. Linear damage accumula-
tion results from the case αi = αj for all i, j or particularly α = 0, then Eq. (22.52)
becomes the Palmgren–Miner rule in Eq. (22.25).

Although nonlinear damage accumulation can be further investigated by means
of the general case in Eq. (22.52), the particular case K = 2 is much simpler,
represented by Eqs. (22.53) and (22.54). If αp2 = 1 and

1− αp1 〈(σeqfa − σdf)/(τu − σeqfmax)〉 > αp3,

then the insertion of the approach for α given by Eq. (22.35) into Eqs. (22.53) and
(22.54) results in the following expressions, which are independent of the parameter
αp1 due to the division in the exponent:

ΔN1

NR1
=

(
1− ΔN2

NR2

) 〈(σeqfa,1−σdf )/(τu−σeqfmax,1)〉
〈(σeqfa,2−σdf )/(τu−σeqfmax,2)〉

, (22.55)

ΔN1

NR1
= 1−

(
ΔN2

NR2

) 〈(σeqfa,1−σdf )/(τu−σeqfmax,1)〉
〈(σeqfa,2−σdf )/(τu−σeqfmax,2)〉

. (22.56)

The same observation is made for the damage accumulation by Eq. (22.52). Hence,
in the case of pure fatigue, the parameter αp1 in Eq. (22.35) does not influence the
damage accumulation behaviour, but only influences the course of damage over the
cycle ratio for one-level loading until rupture, which becomes apparent by insertion
of Eq. (22.35) into Eq. (22.42).

22.4 Parameter Identification

Creep loading is the special case of CA loading, where the global extrema co-
incide. Thus, the parameter identification starts with the direct determination of
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the creep damage parameters σdc, σref and n by means of creep tests until rup-
ture as illustrated in Fig. 22.1(a), where pure shear is considered: tn = tb = 0,
σeqc = σeqf = tt. Afterwards, the fatigue damage parameters σdf , σu and k are
identified directly by means of tests with CA pure shear fatigue loading as shown
in Fig. 22.1(b). Since the illustration in Fig. 22.1(b) is only true for negligible creep
damage, the fatigue damage parameters σu and k need to be numerically optimised.
However, as mentioned in Subsect. 22.3.2, creep damage is expected to be negligi-
ble for usual HCF loading and the values of the identified parameters are expected
to be marginally changed by the optimisation. After the determination of the dam-
age model parameters by means of creep and CA fatigue tests with pure shear, the
shear-tension interaction parameters b1c, b2c, b1f and b2f are directly identified and
numerically optimised by means of multiaxial creep and CA fatigue tests. The valid-
ity of the parameter identification has been shown in Kroll and Matzenmiller (2015,
2016, 2017) and Kroll (2018).

As pointed out in Subsect. 22.3.2, the modelling approach for nonlinear fatigue
damage accumulation has no influence on the lifetime prediction for CA loading
in the case of pure fatigue, see Eq. (22.39). Thus, material dependent parameters
in the approach for the function α = α(σeqfmin, σeqfmax) in Eq. (22.34) may be
determined by means of one of the following two sets of test data: The first set con-
tains the results of two-level loading tests, for which the parameters in the function
α have to be determined in order to fit Eqs. (22.53) and (22.54) with the test data.
Thereby, the parameters to be identified must have an influence on the rupture time,
contrary to parameter α1 in the approach for α in Eq. (22.35), see Eqs. (22.55) and
(22.56). An alternative way for the identification procedure is the evaluation of the
damage values over the cycle ratio as the second set of test data. In this case, the
parameters in α have to be identified in order to fit Eq. (22.42) with the data points.
Unfortunately, damage is an internal variable and cannot be measured directly, but
only indirectly by means of several methods, see Lemaitre and Dufailly (1987). The
main difficulties are the reasonable choice and the reliable detection of the quantity,
which is supposed to represent damage best for the particular case of application.

For the previous explained direct identification of the parameters in α, creep
damage must be negligible compared to fatigue damage, which is the necessary
condition for the application of the Eqs. (22.36) to (22.54). If this is not the case,
then the fatigue damage parameters σu, σdf and k as well as the parameters in the
function α have to be numerically and simultaneously optimised in a last step by
means of S-N curves and rupture times from two-level loadings or indirect damage
measurements.

The tests for the parameter identification must provide an almost homogeneous
state of stress in the bonding layer. Therefore, the adhesive layer thickness must be
very thin in order to describe its constitutive behaviour by a cohesive zone model,
see e.g. Su et al (2004). This applies to structural adhesives, which usually have
a bonding layer thickness between 0.1 and 1 mm. Second, the geometries of the
adherends as well as the load application in the test setup must be appropriate such
that peeling and inhomogeneous shear loading is minimised. Examples are the spec-
imens with single lap and butt joints and the corresponding test setups in Schlim-
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mer et al (2012); Schneider et al (2012) and Cavdar and Meschut (2017) providing
almost homogeneous shear-, tension- and combined shear and tension in the thin
structural adhesive bonding layer.

22.5 Application to Lifetime Prediction for Adhesive Joints

In the following, the application in Kroll and Matzenmiller (2017) and Kroll (2018)
of the proposed damage model is presented for the lifetime prediction of butt-
bonded thin steel tubes under two-level torsional loading with force control until
rupture. The bonding layer consists of the thermosetting, one-component, ductile
modified epoxy structural adhesive BETAMATE™1496V and has a thickness of
0.3 mm only. Therefore, it is modelled as a cohesive zone, which suffers pure shear
stress tt due to the torsional loading of the specimen. The preparation of the ad-
herends, the bonding procedure and the test setup are detailly described in Cavdar
and Meschut (2017).

The test results in Fig. 22.3 show nonlinear damage accumulation due to LH
loading, while the data points for HL loading almost coincide with the dashed line,
representing linear damage accumulation. The location of some data points outside
the unit square may be explained by the scatter of the data, because this phenomenon
exists for both the LH and HL sequence. Another explanation refers to an effect
of the firstly applied load level, which in some situations, mostly for LH loading,
increases the fatigue life for the subsequently applied load level. For an amount of
loading cycles belowΔN2 = 0.5NR2, this effect may even increase the original CA
fatigue life.

Since the model equations in this contribution do not account for scatter of data
and the previously mentioned effect of lifetime increase, only the unit square is il-

Fig. 22.3 Experimental test
data (Cavdar and Meschut,
2017) due to High-Low (HL)
and Low-High (LH) two-level
shear loading with f = 10Hz;
number of cycles to rupture
for high loading (in MPa)
tt1=16.97+13.88 sin(2πft)
is NR1 = 5663 and for low
loading (in MPa)
tt2 = 13.2 + 10.8 sin(2πft)
is NR2 = 713246
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lustrated in Fig. 22.4, where lifetime predictions are compared with the test results.
The predictions denoted with ODE1, ODE2 and ODE3 result from the implicit nu-

Fig. 22.4 Experimental test data and prediction for two-level loading in Fig. 22.3 for (a) pure
fatigue (Ḋc = 0) and (b) creep-fatigue; ODE1: Eqs. (22.3), (22.4), (22.5), (22.12), (22.13); ODE2:
Eqs. (22.3), (22.4), (22.5), (22.13) (22.33), (22.35); ODE3: Eqs. (22.3), (22.4), (22.5), (22.13),
(22.35), (22.57), (22.58); analyt. HL: Eq. (22.55); analyt. LH: Eq. (22.56)

merical solution of the corresponding damage evolution equation, for which the two
step backward differentiation formula together with the second order finite differ-
ence approximation are applied, see Kroll and Matzenmiller (2015). Besides the
presented model equations in the previous sections, the following expressions are
additionally considered for ODE3:

Ḋf =

(
1− (1−D)k+1

)αmin

1− αmin

( 〈σeqf − σdf〉
(σu − σdf)(1−D)

)k 〈σ̇eqf〉
σu − σdf

, (22.57)

αmin(t) = min
0≤τ≤t

α(τ) . (22.58)

The damage model parameters in Tabelle 22.1 are identified and optimised accord-
ing to Kroll and Matzenmiller (2017); Kroll (2018) as explained in Sect. 22.4 by
means of data from tests of the steel tube specimen under torsional creep and CA
fatigue loading, see Cavdar and Meschut (2017). The parameters in the equivalent
stresses given by Eqs. (22.5) and (22.13) are irrelevant in the following due to pure
shear loading. The factor for nonlinear damage accumulation is active for all numer-

Table 22.1 Identified damage model parameters in Kroll and Matzenmiller (2017); Kroll (2018)
by means of test data in Cavdar and Meschut (2017)

σdc [MPa] σref [MPa] n [-] σdf [MPa] σu [MPa] k [-] αp1 [-] αp2 [-] αp3 [-] τu [MPa]

0 51 19 0 49 19 1 1 -10 39

exp. HL

exp. LH
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ODE1 HL
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ical computations: αp2 = 1. Since no data for the course of damage over cycles or
time are considered, the identification of parameter αp1 is obsolete, thus: αp1 = 1.
The parameter αp3 = −10 in Eq. (22.35) is applied for numerical stability, see Kroll
and Matzenmiller (2017) and Kroll (2018) for details. The ultimate shear strength
τu = 39MPa is identified by means of torsion tests of the steel tube specimen under
quasistatic loading Cavdar and Meschut (2017).

The amplitude and maximum of σeqf in Eq. (22.35) are computed from stress
values in the last half cycle, which consists of the most recently passed local mini-
mum and maximum stress as well as the values in between. A detailed description
and an alternative formulation are given in Kroll and Matzenmiller (2017); Kroll
(2018).

Due to the consideration of pure fatigue damage in Fig. 22.4(a), the numerical
predictions for ODE1, ODE2 and ODE3 match with the analytical expressions in
the previous sections. Since ODE1 becomes a separable differential equation for
pure fatigue damage, it represents linear damage accumulation and the predictions
match with the dashed black line, represented by Eq. (22.32) forK = 2. The predic-
tions with ODE2 match with Eqs. (22.55) and (22.56), which verifies the numerical
solution. The predictions with ODE2 are in better agreement with the test data com-
pared to ODE1 for the LH sequence. But they are worse for the HL sequence. As
ODE3 matches with the dotted red line and with the black dashed line, it provides
the best results for the representation of the damage accumulation of the structural
adhesive at hand. Thereby, Eq. (22.58) ensures α to be constant for the HL scenario
in order to match the prediction with the dashed black line for linear accumulation,
since α1 = −1.252 and α2 = 0.169, cf. Fig. 22.3.

In Fig. 22.4(b), ODE1 represents nonlinear damage accumulation again because
of n = k, which is a result of the identification for creep and CA fatigue loading, see
Table 22.1. The predictions with ODE2 differ from the curves represented by Eqs.
(22.55) and (22.56), which shows the influence of creep damage. The predictions
with ODE3 are still in best agreement with the test data.

22.6 Conclusion

In this contribution, nonlinear damage accumulation is modelled by a damage dif-
ferential equation with a creep and fatigue part for the consideration of the load-
ing sequence effect. Three integrations of the differential equation are presented for
one-level loading, where different integration limits are applied in order to get three
results: the time to rupture and the course of damage over time, both for the ini-
tially undamaged state, as well as the damage increment due to a load level. These
three results are used to demonstrate the damage accumulation behaviour for pure
creep and fatigue damage. They represent the Robinson and Palmgren–Miner rules
of linear damage accumulation, if the underlying damage differential equation is
separable and confirm that nonlinear damage evolution not automatically implies
nonlinear damage accumulation.
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The magnitude of creep damage is low compared to fatigue damage for usual
HCF loading, which justifies the consideration of pure fatigue damage for the mod-
elling of nonlinear damage accumulation. An adaption is proposed of the fatigue
damage part by a factor, which contains the approach for variable α and influences
the course of damage over time and the lifetime prediction due to VA loading, but
not the prediction due to CA loading. The definition of the variable α ensures separa-
bility of the damage equation for each load level in the case of pure fatigue damage,
but inseparability in general. Thus, nonlinear damage accumulation can be modelled
independently from the S-N approach for CA loading. This is shown by the three
integrations of the damage differential equation with different limits, providing a
procedure for the identification of the parameters in the function for α.

Two particular approaches for α are validated by means of the comparison of
numerical lifetime predictions with test data for an adhesive layer subjected to shear
loading. Since the predictions are in good agreement with the test data, it is con-
cluded that the loading sequence effect is well captured for pure shear loading.

Nonlinear creep damage accumulation is not considered, but it can be modelled
similarly to the fatigue damage accumulation (Kroll, 2018). Although the influences
of mean stress, pressure, multiaxiality and nonproportionality on the lifetime for CA
loading and the corresponding considerations by the damage model are addressed in
Kroll and Matzenmiller (2015, 2017) and Kroll (2018), they have to be experimen-
tally investigated for VA loading of structural adhesives in order to further validate
the proposed approach for the variable α according to the presented theory. There-
fore, multiaxial tests with two-level loading and different mean stresses as well as
indirect damage measurement for one-level loading have to be performed.
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Chapter 23

A Non-equilibrium Approach Concerning

Thermostatics of Schottky Systems

Wolfgang Muschik

Abstract Non-equilibrium processes in Schottky systems generate by projection
and relaxation reversible accompanying processes which serve as thermostatic ap-
proximations of different accuracy. The compatibility of the accompanying pro-
cesses with the non-equilibrium ones according to the embedding theorem is shortly
discussed.

Keywords: Schottky systems · Contact quantities · Non-equilibrium entropy ·
Thermostatic approach · Embedding theorem

23.1 Introduction

Once in 1982 after having written his Diplomarbeit (Müller, 1982), we were inter-
ested in the following problem (Müller and Muschik, 1983; Muschik and Müller,
1983): In contrast to Rational Thermodynamics—which starts with “bodies”—we
considered an “open” multicomponent discrete (Schottky) system for deriving the
usual balance equations of mass, momentum, energy and entropy. Of course, evi-
dent was that these balance equations are not influenced by closing or opening of
the considered discrete system, but the purpose of our procedure was to define quan-
tities, such as the stress tensor, as measurable contact quantities, thus avoiding the
more formal definitions of the mixture theory (Müller, 1973).

Also evident was at that time, that discrete systems play a prominent role for the
description of technical devices because of their often complicated geometry which
prevents the application of a field formulation on account of unknown boundary con-
ditions of the fields. Thus, a global description as discrete systems in contact with

Wolfgang Muschik
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their environments is adequate. Favourable to this description is that thermodyna-
mics of discrete systems is well developed (Muschik, 1993) and thermodynamical
concepts—such as exchanges, partitions, state spaces and processes—can be easily
formulated. An other reason is that these technical non-equilibrium devices are of-
ten successfully treated by use of thermostatic procedures. The question arises: what
is the link between non-equilibrium systems and their thermostatic descriptions?

The paper is organized as follows: First of all, some facts of open non-equilibrium
Schottky systems are repeated, such as state spaces, processes, First and Second
Law, contact and exchange quantities. Subsequently, the thermostatic approxima-
tion and its consequences are considered.

23.2 Schottky Systems

A system1 G, described as undecomposed and homogeneous, which is separated by a
partition ∂G from its environment2 G� is called a Schottky system (Schottky, 1929),
if the interaction between G and G� through ∂G can be described by

heat exchange
•
Q, power exchange

•
W, and material exchange

•
nnne. (23.1)

The power exchange is related to the work variables aaa of the system

•
W = AAA· •

aaa . (23.2)

Here, AAA are the generalized forces which are as well known as the work variables.

Kinetic and potential energy are constant and therefore out of scope.
•
Q is measur-

able by calorimetry and the time rate of the mole numbers due to material exchange
•
nnne by weigh.

23.2.1 State Spaces and Processes

A large state space3 Z (Muschik, 1990a) is decomposed into its equilibrium sub-
space containing the equilibrium variablesΩΩΩ and into the non-equilibrium part con-
taining the variablesΞΞΞ which are not included in the equilibrium subspace

ZZZ = (ΩΩΩ,ΞΞΞ) ∈ Z. (23.3)

1 G ⊂ R3 may be a control volume or a “body” without material transport through its surface.
2 The environment is a heat reservoir, that means, its temperature is not influenced by the exchanges
with the system.
3 Two kinds of state spaces should be distinguished: small and large ones. Small state spaces
require constitutive equations, which contain histories of the state space variables, whereas large
state spaces avoid such histories.
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The states of equilibrium ΩΩΩ are defined by time independent states of an isolated
Schottky system and are determined by the Zeroth Law: The state space of a thermal
homogeneous Schottky system in equilibrium is spanned by the work variables, the
mole numbers and the internal energy

ΩΩΩ = (aaa,nnn, U) −→ ZZZ = (aaa,nnn, U,ΞΞΞ). (23.4)

A projection P is introduced which projects the non-equilibrium state ZZZ onto the
equilibrium subspace (Muschik, 1993)

PZZZ = P
(
aaa,nnn, U,ΞΞΞ

)
= ΩΩΩ =

(
aaa,nnn, U

)
=: ZZZ∗ ∈ PZ (23.5)

whose projected states are marked by ∗. If the considered system is in equilibrium,
the non-equilibrium variables become dependent on the equilibrium ones

ZZZeq :=
(
PZZZ,ΞΞΞ(PZZZ)

)
=: PeqZZZ ∈ PeqZ, PeqZZZ �= PZZZ. (23.6)

The projection P cuts the non-equilibrium variables, whereas Peq takes their values
at equilibrium into account which are not zero in general.

A process, defined as a trajectory on the non-equilibrium state space,

ZZZ(t) =
(
aaa,nnn, U,ΞΞΞ

)
(t), t = time (23.7)

generates by projection a trajectory on the equilibrium subspace

PZZZ(t) =
(
aaa,nnn, U

)
(t) = ZZZ∗(t) (23.8)

which is different from the “equilibrium process”

ZZZeq(t) =
(
PZZZ,ΞΞΞ(PZZZ)

)
(t) =

(
aaa,nnn, U,ΞΞΞ(aaa,nnn, U)

)
(t) (23.9)

which is generated by isolation (the equilibrium variables are constant during the
irreversible relaxation to equilibrium) of the Schottky system at time t and relaxation
into the corresponding equilibrium state keeping the “time” as path parameter of
ZZZeq(t).

Both trajectories—PZZZ(t) and PeqZZZ(t)—are induced by the original irreversible
processZZZ. Consequently, they depend on the same equilibrium variables

(
aaa,nnn, U

)
as ZZZ, but in a different way as a comparison of (23.8) with (23.9) depicts. Tra-
jectories on the equilibrium subspace are denoted as reversible processes, a bit
strange denotation because no “process” with progress in time takes place on the
equilibrium subspace. The “time” in (23.8) and (23.9) is generated by projection
and relaxation, representing the path parameter along the reversible processes. Both
trajectories are also denoted as accompanying processes of ZZZ(t) (Keller, 1971). Al-
though not existing in nature, reversible processes serve as mathematical closing
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of the set of “real” (irreversible) processes which are defined as trajectories on the
non-equilibrium state space.

23.2.2 The First Law

Up to now, the internal energy was introduced in (23.4)1 as one variable of the
equilibrium subspace of a thermally homogeneous4 Schottky system. The connec-
tion between the time rate of the internal energy of the system and the exchange
quantities through ∂G is established by the First Law

•
U =

•
Q +hhh· •

nnne+
•
W (23.10)

which states that the internal energy U of the system should be conserved in isolated
Schottky systems.5 The second term of the RHS of (23.10) originates from the fact
that the heat exchange has to be redefined for open systems (

•
nnn e �= 000) (W. Muschik

and S. Gümbel, 1969). Here,hhh are the molar enthalpies of the chemical components
in G. The modified heat exchange which is combined with the material exchange
appearing in the First Law (23.10) was used by Haase (1969).

23.2.3 Entropy Rate and Second Law

Considering a discrete system G, a quantity JJJ of G is called balanceable, if its time
rate can be decomposed into an exchange ΨΨΨ with the environment and a production
RRR in the interior of the system

•
JJJ = ΨΨΨ +RRR, ΨΨΨ = ΦΦΦ+ ϕ

•
nnne. (23.11)

The exchange is composed of its conductive part ΦΦΦ and its convective part ϕ
•
nnne.

Doubtless, a non-equilibrium entropy of a Schottky system is a balanceable quan-
tity6. Presupposing that the power exchange does not contribute to the entropy rate,
if the heat exchange is taken into consideration, we obtain according to (23.1) a
balance equation

•
S (ZZZ) =

1

Θ

•
Q +sss· •

nnne +Σ. (23.12)

Here,
•
Q and

•
nnn e are the exchange quantities, sss the molar entropy, whereas Σ is the

entropy production which is not negative according to the Second Law

4 Thermally homogeneous means: there are no adiabatic partitions in the interior of the system.
5 Irreversible processes in isolated systems do not change their internal energy.
6 about the existence of a “non-equilibrium” entropy see Muschik (2018)
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Σ ≥ 0 −→ •
S ≥ 1

Θ

•
Q +sss· •

nnne −→ 0 ≥
∮ [ 1

Θ

•
Q +sss· •

nnne
]
dt. (23.13)

If the considered Schottky system is adiabatically unique7 (Muschik, 2009), the en-

tropy rate
•
S is the time derivative of a state space function entropy S(ZZZ) according

to (23.4).
Presupposing that all chemical components in G have the same temperature Θ,

the non-equilibrium molar entropies sss in (23.12) are (Kestin, 1979)

sss =
1

Θ

(
hhh−μμμ

)
. (23.14)

Consequently taking (23.10) and (23.14) into account, the entropy rate (23.12) be-
comes

•
S =

1

Θ

( •
U −AAA· •

aaa −μμμμμμμμμ· •
nnne

)
+Σ. (23.15)

Because the external mole number rates
•
nnn e are no state variables8, but the mole

numbers themselves are included in the equilibrium subspace (23.4)1 according to
the Zeroth Law, the missing term for generating the mole numbers in (23.15) is
hidden in the entropy production

Σ = − 1

Θ
μμμμμμμμμ· •
nnn i +Σ0, (23.16)

and (23.15) results in

•
S (ZZZ) =

1

Θ

( •
U −AAA· •

aaa −μμμμμμμμμ· •
nnn

)
+Σ0, (23.17)

if the internal mole number changes due to chemical reactions

•
nnn i =

•
nnn − •

nnne (23.18)

are taken into account. Because the bracket in (23.17) contains only rates of equi-
librium variables, those of the non-equilibrium state variables appear in the entropy
production Σ0 which is established below.

7 Adiabatic uniqueness means that the final equilibrium state of an irreversible relaxation of an
isolated system is unique, a statement which is not satisfied in Stochastical Thermodynamics.
8 because they depend on the environment



338 Wolfgang Muschik

23.3 Contact Quantities

23.3.1 Defining Inequalities

The non-equilibrium quantities Θ and sss in (23.12) are contact quantities (Muschik,
2009; Muschik and Brunk, 1975; Muschik, 1977; Muschik and Brunk, 1977) which
are determined by defining inequalities9 (Muschik, 2009, 2018)( 1

Θ
− 1

T�

) •
Q

∗≥ 0,
( hhh
Θ
− hhh

�

T�

)
· •
nnne ∗≥ 0,

(μμμ�
T�

− μμμ
Θ

)
· •
nnne ∗≥ 0. (23.19)

In more detail: the non-equilibrium Schottky systen G is in contact with a thermally
homogeneous equilibrium environment G� of the thermostatic temperature T�, the
molar equilibrium enthalpy hhh� and the equilibrium chemical potential μμμ�. All the
chemical components in G� have the same temperature T�.

We now consider special equilibrium environments which cause that certain non-
equilibrium contact rates vanish

G�
� :

•
Q = 0,−→ Θ = T�

� , (23.20)

G�
nj :

•
nj = 0,−→ hj =

T�
�
T�
h�j , μj =

T�
�
T�
μ�j . (23.21)

For deriving (23.20)2 and (23.21)2,3 from (23.19), the following proposition (Muschik,
1984) is used:

f(XXX) ·XXX ≥ 000 (for allXXX ∧ f continuous atXXX = 000) =⇒ f(000) = 000. (23.22)

Consequently, the non-equilibrium contact quantities contact temperature Θ, molar
non-equilibrium enthalpieshhh and non-equilibrium chemical potentialsμμμ are defined
by equilibrium quantities of special contacting equilibrium environments according
to (23.20) and (23.21). The contact temperature is a non-equilibrium analogue to the
thermostatic equilibrium temperature in the following sense: The system’s contact
temperature is that thermostatic temperature of the system’s equilibrium environ-
ment for which the net heat exchange between the system and this environment
through an inert partition vanishes by change of sign according to (23.21). In equi-
librium, the contact temperature changes into the thermostatic temperature of the
system which is equal to that of the environment.

9
∗ means a setting
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23.3.2 Internal Energy and Contact Temperature

As easily to demonstrate, contact temperature Θ and internal energy U are indepen-
dent of each other in non-equilibrium. For this purpose, a rigid partition ∂G (

•
aaa≡ 000)

between the Schottky system G and its equilibrium environment G� is chosen which
is impervious to matter (

•
nnn e ≡ 0) and a time-dependent environment temperature

T�(t) which is always set equal to the value of the momentary contact temperature
Θ(t) of G, resulting according to (23.19)1 and (23.10) in

T�(t) ∗= Θ(t) −→
•
Q = 0 −→ •

U = 0. (23.23)

BecauseΘ is time-dependent and U is constant, totally different from thermostatics,
both quantities are independent of each other.

Because the contact temperature is independent of the internal energy, it repre-
sents an additional variable which is included in Σ0. The choice of further non-
equilibrium variables depends on the system in consideration. Here, internal vari-
ables ξξξ are chosen because they allow a great flexibility of describing non-equilibria
(Muschik, 1990b; Maugin and Muschik, 1994). Consequently, the created non-
equilibrium state space and the entropy production caused by the contact tempe-
rature and the internal variables are

ZZZ = (aaa,nnn, U,Θ,ξξξ), Σ0 = α
•
Θ +βββ·

•
ξξξ ≥ 0. (23.24)

According to (23.9), the contact temperature is in equilibrium a function of the inter-
nal energy, the work variables and the mole numbers. That is the “thermal equation
of state.”

23.4 Thermostatic Approach for Schottky Systems

The entropy “rate” of the accompanying process PZZZ ofZZZ is according to (23.5) and
(23.17)

•
S

∗(PZZZ) =
1

T ∗
( •
U −AAA∗· •

aaa −μμμμμμμμμ∗· •
nnn

)
, AAA∗ := AAA(PZZZ), μμμ∗ := μμμ(PZZZ),

(23.25)
Evident is, that the equilibrium subspace quantities T ∗, AAA∗ and μμμ∗ are different
from the non-equilibrium ones Θ, AAA and μμμ in (23.17). The entropy rate belonging
to the accompanying process (23.9) is according to (23.24)
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•
S (PeqZZZ) =

•
S (PZZZ,ΞΞΞ(PZZZ)) =

1

T eq

( •
U −AAAeq· •

aaa −μμμμμμμμμeq· •
nnn

)
=:

•
S

eq(PZZZ), (23.26)
•
S (PeqZZZ) =

(∂S(ZZZeq)

∂U
+
∂S(ZZZeq)

∂ΞΞΞ
· ∂ΞΞΞ
∂U

) •
U + (23.27)

+
(∂S(ZZZeq)

∂aaa
+
∂S(ZZZeq)

∂ΞΞΞ
· ∂ΞΞΞ
∂aaa

)
· •
aaa +

+
(∂S(ZZZeq)

∂nnn
+
∂S(ZZZeq)

∂ΞΞΞ
· ∂ΞΞΞ
∂nnn

)
· •
nnn, (23.28)

and the connection to the original irreversible process T is given analogous to
(23.25)2 by

AAAeq := AAA(PeqZZZ), μμμeq := μμμ(PeqZZZ). (23.29)

A comparison of (23.25) with (23.26) to (23.29) results in the following facts: The
irreversible process T generates an accompanying process on the equilibrium sub-
space

T : ZZZ(t) −→ R : PZZZ(t) = (aaa,nnn, U)(t). (23.30)

This accompanying process is charged with different equilibrium entropies

S∗(PZZZ) �= Seq(PZZZ) (23.31)

dependent on the specially chosen thermostatic approximation: S∗ not considering
any irreversibility and Seq taking it partly into account by the equilibrium values of
the non-equilibrium variables. Interesting is that different equilibrium entropies can
be defined on the common equilibrium subspace depending on the chosen thermo-
static approximation of the original irreversible process.

23.5 The Embedding Theorem

Because equilibrium and non-equilibrium entropies have to be compatible with each
other, we have to demand the embedding theorem: the non-equilibrium entropy
rate integrated along an irreversible process T starting and ending in equilibrium
states—A∗ and B∗ or Aeq and Beq—has the same value as the equilibrium entropy
difference between these two equilibrium states calculated along the corresponding
accompanying process R

T∗
∫ B∗

A∗

•
S (ZZZ)dt = R

∫ B∗

A∗

•
S

∗(PZZZ)dt = S∗(B∗)− S∗(A∗), (23.32)

Teq

∫ Beq

Aeq

•
S (ZZZ)dt = R

∫ Beq

Aeq

•
S

eq(PZZZ)dt = Seq(Beq)− Seq(Aeq).(23.33)

This yields according to (23.13)2,3
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•
S (ZZZ)dt = 0,

∮
•
S

∗(PZZZ)dt
∮

•
S

eq(PZZZ)dt = 0. (23.34)

According to (23.17) and (23.25)1, the embedding theorems (23.32) and (23.33)
results in

T∗/R
∫ B∗

A∗

[ •
S (ZZZ)− •

S
∗(PZZZ)

]
dt = 0 =

= T∗/R
∫ B∗

A∗

[( 1

Θ
− 1

T ∗
) •
U −

(AAA
Θ
− AAA

∗

T ∗
)
· •
aaa − (23.35)

−
(μμμ
Θ
− μμμ

∗

T ∗
)
· •
nnn +Σ0

]
dt,

Teq/R

∫ Beq

Aeq

[ •
S (ZZZ)− •

S (PeqZZZ)
]
dt = 0 =

= Teq/R

∫ Beq

Aeq

[( 1

Θ
− 1

T eq

) •
U −

(AAA
Θ
− AAA

eq

T eq

)
· •
aaa − (23.36)

−
(μμμ
Θ
− μμμ

eq

T eq

)
· •
nnn +Σ0

]
dt.

Every equilibrium entropy has to be defined uniquely, that means process in-
dependently on the equilibrium subspace. If the considered system is adiabatically
unique (Muschik, 2009), to each equilibrium entropy non-equilibrium entropies can
be uniquely defined by use of the entropy production. By construction, these non-
equilibrium entropies satisfy the embedding theorem which represents a constraint
for the contact quantities. Here, the procedure is the other way round: the non-
equilibrium process induces the thermostatic approximation by accompanying re-
versible processes.

23.6 Summary

A non-equilibrium discrete Schottky system is considered which is approximately
described as undecomposed and homogeneous and which is contacted with an equi-
librium environment by an undecomposed partition permeable to heat, power and
material. A non-equilibrium state space of the Schottky system is introduced being
composed of the equilibrium subspace and of non-equilibrium state variables, the
contact temperature and a set of internal variables. Every non-equilibrium process
generates by projection or by relaxation onto the equilibrium subspace a reversible
accompanying process on which equilibrium entropies are defined as approxima-
tions of different accuracy of the original irreversible process. The compatibility of
these equilibrium entropies with the non-equilibrium entropy of the original irre-
versible process has to be tested by using the embedding theorem.
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Chapter 24

On the Temperature Gradient in the Standard

Troposphere

Ingo Müller & Wolf Weiss

Abstract The temperature gradient in the upper troposphere is−0.65 K
100m . We sug-

gest that the thermal diffusion factor of air in the gravitational field determines this
gradient.

Keywords: Troposphere · Thermal diffusion · Temperature gradient

24.1 Introduction

The troposphere up to a height of ca. 10 km consists of two layers: The lower layer,
up to a maximal height of ca. 2 km in our latitudes and on sunny summer days,
is strongly agitated by convective thermal up- and down-draughts. The temperature
gradient in that range is −1 K

100m provided that the air is dry which we shall assume
here. That value is well-understood and exhaustively explained in the meteorologi-
cal literature: It is due to the adiabatic expansion of the rising air "bubbles".

Above that range the normal condition of the troposphere is a state of rest, and the
temperature gradient has a constant value of−0.65 K

100m as far up as the troposphere
reaches1. To be sure, there may be violent motion in all directions – horizontal and
vertical – even in the upper troposphere. It occurs in thunderstorms and hurricanes.
But those are local and transient phenomena and they do not concern us, because the
vast majority of the tropospheric air above a height of ca. 2 km is stationary most of
the time; it is essentially at rest, and has the small temperature gradient −0.65 K

100m .
We ask why there is a temperature gradient in that range at all, and why the gradient
is independent of the height?

Ingo Müller · Wolf Weiss
Technische Universität Berlin, Germany
e-mail: ingo.mueller@alumni.tu-berlin.de, wolf.weiss@alumni.tu-berlin.de

1 This gradient is part of the standard atmosphere (Wikipedia, 2019) abstracted by meteorologists
from their observations.
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Another somewhat surprising observation concerns the composition of air: 21%
oxygen and 79% of the lighter nitrogen2. One might have expected that those ratios
vary with the height – more of the heavy oxygen near the bottom (say). This is
not the case, however. Indeed, samples gathered by airplanes, rockets, and balloons
from all heights of the troposphere have the same composition, see Chapman and
Cowling (1970, p. 257), Roedel and Wagner (2011, p. 71), and Ishidoya et al (2012).

We combine the governing thermodynamic equations for a mixture of ideal gases
with the observed conditions in the upper troposphere and come to the conclusion
that the reason for the temperature gradient is related to thermal diffusion. This
conclusion may have been reached by meteorologists before; if so, we are unaware
where and when this has happened. The literature known to us provides information
about the observed conditions, but it does not offer an explanation, e.g. see Manabe
and Strickler (1964, p. 363).

24.2 Equations of Balance and Constitutive Relations

For a mixture of ν non reacting constituents α = 1, 2, ..., ν the equations of balance
of masses and momenta of the constituents and of energy of the mixture as a whole
read

∂"α

∂t
+
∂"αvαi
∂xi

= 0

∂"αvαj
∂t

+
∂("αvαj v

α
i − tαij)

∂xi
= mα

j + "αfj

"
∂ε

∂t
+ "vi

∂ε

∂xi
+
∂qi
∂xi

= tij
∂vi
∂xj

(24.1)

The customary notation is employed here: "α, vαi , tαij ,mα
i are the partial mass den-

sities, velocities, stresses and the inter-constituent forces respectively of the con-
stituents.

ν∑
α=1

mα
i = 0

holds, because the momentum of the mixture as a whole is conserved. fi is the
specific force of gravitation so that

fi = (0, 0,−g) = (0, 0,−9.81m
s2
)

holds, if gravity acts opposite to the x3-axis. ", vi, tij , ε, and qi in (24.1)3 are defined
by

2 We ignore the presence of argon, because it is small, merely 1%.
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" =

ν∑
α=1

"α, vi =

ν∑
α=1

"α

"
vαi , tij =

ν∑
α=1

(
tαij − "αuαi uαj

)
,

ε =
ν∑

α=1

"α

"

(
εα +

uαi u
α
i

2

)
, qi =

ν∑
α=1

(
qαi + "α

(
εα +

uαj u
α
j

2

)
uαi − tαijuαj

)
(24.2)

where εα and qαi are the specific internal energies of the constituents and their heat
fluxes.

uαi = vαi − vi
is called the diffusion velocity; it is also – sometimes – useful to introduce the dif-
fusion fluxes

Jα
i = "αuαi ,

whose sum over α obviously vanishes. If derivation of the equations (24.1) and
(24.2) is needed, it may be obtained from Müller (1985, p. 172 ff.).

In a binary mixture the fields to be determined are "1(xk, t), "2(xk, t), v1i (xk, t),
v2i (xk, t), and T (xk, t) or, more conveniently

"(xk, t), vj(xk, t), T (xk, t), c ≡ "1/" and Ji(xk, t) = "1u1i . (24.3)

c is called the concentration of constituent 1. For that choice of fields the appropriate
equations follow from (24.2). They have the forms

∂"

∂t
+
∂"vi
∂xi

= 0,

"
∂vj
∂t

+ "vi
∂vj
∂xi

− ∂tij
∂xi

= "fj ,

"
∂ε

∂t
+ "vi

∂ε

∂xi
+
∂qi
∂xi

= tij
∂vi
∂xj

,

"
∂c

∂t
+ "vi

∂c

∂xi
+
∂Ji
∂xi

= 0,

∂Ji
∂t

+
∂

∂xj

(
Jivj +

1

"c
JiJj + ctij − t1ij

)
= −Jj ∂vi

∂xj
+ tij

∂c

∂xj
+m1

i .

(24.4)

This latter form is most appropriate for our purposes. Although it is formally more
complicated than (24.1), – particularly (24.4)5 –, the two sets are completely equiva-
lent for binary mixtures. And obviously neither set is closed. In order to close (24.4)
we need constitutive equations which relate the constitutive quantities

tij , t
1
ij , m

1
i , ε, and qi (24.5)

to the fields (24.3) in a manner dependent on the nature of the constituents. For
instance, in a typical case, the constitutive quantities (24.5) at point xi and time t
may depend on the values of the fields (24.3) at that point and time, and on the
gradients and rates of change of the fields there.
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The evaluation of the constitutive functions is the subject of thermodynamics of
mixtures. It relies heavily on the entropy principle. We do not go into this here.
Suffice it to say that the interaction force m1

i and the flux of internal energy qi are
assumed to be given – in terms of the relative velocity of the constituents and of the
temperature gradient – by linear constitutive relations of the forms

m1
i = mV

(
v1i − v2i

)
+mT

∂T

∂xi
,

qi = qV
(
v1i − v2i

)
+ qT

∂T

∂xi
.

(24.6)

One might think that the gradients of "α – or the gradients of " and c – should
also be represented on the right hand sides of (24.6) along with v1i −v2i and ∂T/∂xi.
However, such terms are forbidden by the entropy principle, at least for mixtures of
ideal gases, see again Müller (1985).

In the early days of theories of mixtures of gases the equations of balance (24.4)
and the constitutive relations (24.6) were derived from the kinetic theory of gases.
The latter ones came out as first approximations in a complicated iterative scheme
– the Chapman-Enskog method, see (Chapman and Cowling, 1970, p. 140). While
the present macroscopic theory is conceptually simpler than the kinetic theory, we
cannot ignore the earlier work, if only because it has set the standards in the field
and has fixed the nomenclature. Thus our coefficientsmV andmT are related to the
diffusion coefficient D and to the thermal diffusion factor α – both defined in the
kinetic theory – by

mV = −kT n
1n2

n

1

D
and mT = k

n1n2

n
α. (24.7)

k = 1.38 · 10−23J/K is the Boltzmann constant, and n1, n2, and n = n1 + n2 are
number densities of molecules. In the kinetic theory it is customary and appropriate
to choose nα as variables, or n and X = n1/n , rather than "α, or " and c. X is
called the mol fraction of constituent α. D and α have been measured and tables of
their values are available, see again Chapman and Cowling (1970). Actually D and
α can also be calculated in the kinetic theory from an assumed model of molecular
interaction; the agreement between measured and calculated values is fairly good,
if not perfect.

Now, however, the foregoing arguments about m1
i and qi refer to an isotropic

fluid and it may well be argued that air in the atmosphere is not isotropic, because
there is a preferred direction, the vertical direction, defined by gravitation. We may
ask the question: Does a horizontal temperature gradient create the same horizontal
interaction forcem1

i as a vertical gradient of the same magnitude does for a vertical
interaction force? We allow for a negative answer to this question by splitting the
equations for m1

i and qi into two parts, one part for the horizontal components 1, 2
and the other one for the vertical component. Thus (24.6) is replaced by
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m1
i = − kT
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n1n2
n

(
v1i − v2i

)
+ k

n1n2
n
α⊥
∂T

∂xi
,

q1i = q⊥V
(
v1i − v2i

)
+ q⊥T

∂T

∂xi
(i=1,2)
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3 = −kT
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n
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∂x3
,

q13 = q
‖
V

(
v1i − v2i

)
+ q

‖
T

∂T

∂x3
.

(24.8)

The coefficientsD⊥, α⊥, q⊥V , q⊥T in the horizontal components may differ fromD‖,
α‖, q‖V , q‖T in the vertical component. And we call α⊥ and α‖ the thermal diffusion
factors.

24.3 Application to the Troposphere

As discussed in the introduction we shall consider the upper part of the troposphere
to be essentially stationary with both constituents – O2 and N2 – at rest, in stark
contrast to the name which literally means sphere of change 3. For stationary pro-
cesses and with vi = 0 and Ji = 0 the equations (24.4)1,4 are identically satisfied
and the equations (24.4)2,3,5 reduce to

−∂tij
∂xi

= "fj

∂
(
ctij − t1ij

)
∂xj

= tij
∂c

∂xj
+m1

i ,

∂qi
∂xi

= 0.

(24.9)

We insert tij = −nkTδij and t1ij = −n1kTδij – appropriate to the ideal gas
character of air – as well as (24.8), or what is left of (24.8) in the case of rest. Thus
we obtain4

∂nT

∂xi
= 0 (i = 1, 2) ,

∂nT

∂x3
= −n

(
μ2 +

(
μ1 − μ2)X)

g

k

(24.10)

3 Weather phenomena occur in the troposphere. Hence the name, notwithstanding the observation
that the bulk of the upper troposphere – above the clouds – is at rest most of the time.
4 From here on � and c are replaced by n and X, because that makes the equations a little simpler.
The reason why thermodynamicists prefer � over n is that �vi is the density of a conserved quantity,
the momentum, which nvi is not, and that the gravitational force density is proportional to � not
n. On the other hand, physicists prefer n over � , because n can be counted – in principle – while �

has to be weighed. When all is said and done, however, the choice comes down to a matter of taste.
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2∑
i=1

∂

∂xi

(
q⊥T
∂T

∂xi

)
+
∂

∂xi

(
q
‖
T

∂T

∂x3

)
= 0, (24.12)

where μα are the molecular masses of the constituents. It is thus clear that it was
prudent to distinguish between α⊥ and α‖. Indeed, if the air were isotropic in the
presence of gravitation – so that α⊥ were equal to α‖ – the two equations (24.11)
could not both be satisfied.

The equations (24.10) through (24.12) still permit many solutions for n(xi),
X(xi), and T (xi), even though the air is at rest and without diffusion. Let us con-
sider two of those solutions:

If T is constant, (24.12) is identically satisfied and we conclude from (24.10) 1

and (24.11)1 that n and X can only depend on x3. And (24.11)2 implies that

X(x3) =

X(0) exp

(
μ2 − μ1
kT

gx3

)
1−X(0)

(
1− exp

(
μ2 − μ1
kT

gx3

)) (24.13)

holds, whence n(x3) may easily be calculated by integration of (24.11)2. It follows
that the temperature in the troposphere cannot be constant, because it has been ob-
served – as reported in the introduction – that the composition of the air does not
change with height.

Now then, let us investigate a case which is consistent with those observations
in the upper troposphere: If T depends only on x3, we conclude from (24.12) that
its gradient must be constant and observations have shown that the constant gradi-
ent has the value −0.65 K

100m . Also no height-dependence of X has been observed.
Therefore (24.11)2 reduces to – with μ1 = 32μH , μ2 = 28μH for oxygen and
nitrogen (μH = 1.67 · 10−27kg) –

−α‖0.65 K
100m

= 4
g

k/μH
, hence α‖ = −0.73. (24.14)

We conclude that the conditions in the standard troposphere satisfy the equations
(24.4) and (24.8) provided that the vertical thermo-diffusion factor α‖ has the value
-0.73. And we suggest that this value be confirmed in the laboratory. That should
be easy for a person with the proper equipment: All it takes is to set up an upward
temperature gradient in a box, – so as to avoid convection –, wait for stationarity,
and measure the eventual mol fractions on top and at the bottom.
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Incidentally, the value α‖ = −0.73 is about 40 times bigger in magnitude than
the measured value α⊥ = 0.018 , see Chapman and Cowling (1970, p. 278), – apart
from having a different sign5.

24.4 Discussion

The foregoing considerations do not explain, of course, how the conditions of the
standard troposphere come about. They merely explain how the fields n(xi),X(xi),
and T (xi) are related in a stationary state of rest. And, if X(xi) is constant, – as
observed –, they permit the calculation of the temperature field as a consequence of
thermal diffusion.

Thermal diffusion is, perhaps, the most esoteric one of the transport processes in
gases. Thus for instance it has no clear-cut simple explanation in terms of molecular
motion as diffusion itself has, or thermal conduction, or viscous friction. Chapman
and Cowling (1961) in the 2nd edition of their book deplore the lack of such an
“elementary” interpretation.6

Still, thermal diffusion is on everybody’s mind in the context of the separation
columns for the enrichment of isotopes capable of nuclear fission. This may well
be the most common application of thermal diffusion as a contributing effect in
a complicated process of convection, diffusion and thermal conduction. An early
paper (Furry et al, 1939) by Furry, Jones, and Onsager deals with the problem. This
work is not relevant to our investigation, however, because the temperature gradient
is set up horizontally, so that our equation (24.11)2 is absent; also there is convective
motion.

More recently, there is a sizable community interested in thermal diffusion as the
driving force for the spreading of pollutants in air and the segregation of polymer
molecules of different sizes in liquids. Thus there are regular international meetings
on the subject, a fairly recent one in Bonn, Germany. The proceedings (Wiegand
et al, 2008) are available with dozens of contributions on thermal diffusion in simple
fluids, polymer melts, chemically reacting fluids, porous materials, thin channels,
with and without a gravitational field.

Among those contributions, Galliero and Montel (2008) come closest to our in-
vestigation. It is concerned with the gravitational segregation in oil reservoirs and
how this may be affected by thermal diffusion. In the article our equation (24.11)
– with a single value for α⊥ and α‖, however – is integrated and the result is used
for the calculation of the vertical gradient of the concentration. Such a gradient of
concentration does not exist in the atmosphere, see above.

In another interesting contribution, Wiegand et al (2008) use molecular dynamics
to describe atmospheric pollution, and they in fact calculate the air temperature in

5 α⊥ is positive, if constituent 1 has a bigger molecular mass than constituent 2: μ1 > μ2.
6 See Chapman and Cowling (1961, p. 143 and pp. 399-401). Ominously the authors have dropped
these remarks in the 1970 edition of the book. By that time it may have become inappropriate,
perhaps, to write in a book about what one does not know.
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the troposphere. It comes out linear, but the gradient is too big. Moreover, they give
a somewhat hasty interpretation of the temperature gradient.

Thus it appears, – unlikely as this may seem –, that nobody before us has identi-
fied thermal diffusion as the dominating phenomenon in the upper troposphere.

24.5 Remark on the Lack of Isotropy of Air in a Gravitational

Field

Looking back on the arguments of Sect. 24.2 we recognize that it is the replacement
of (24.6) by (24.8) that has made it possible to have a vertical temperature gradient
in the troposphere without a gradient of composition, cf. (24.11). Therefore let us
take a critical view at the equations (24.8). There are two peculiarities involved.

First of all, the equations (24.8) depend on the choice of coordinates: horizontal
axes x1, x2 and vertical axis x3. That choice is dictated by having the gravitational
field fj point opposite to the x3-axis. If we wish to make the equations independent
of the choice of coordinates, it suffices to replace the scalar coefficientsmV through
qT in (24.6) – generically we may call them c – by tensors of the form

cij = c
⊥δij +

(
c‖ − c⊥

) fifj
f2
. (24.15)

With those tensorial coefficients the interaction forcem1
i reads

m1
i =

(
m⊥

V δij +
(
m

‖
V −m⊥

V

) fifj
f2

)(
v1j − v2j

)
+

(
m⊥

T δij +
(
m

‖
T −m⊥

T

) fifj
f2

)
∂T

∂xj

(24.16)

which clearly reduces to the two equations (24.8) form1
i , if we choose

fi = (0, 0,−g).

The second peculiarity is more subtle and it concerns a basic tenet of continuum
thermodynamics. Indeed, continuum mechanics and thermodynamics stipulate that
the governing equations should be strictly divided into balance laws and constitutive
equations: While the former ones are universal and may contain inertial and gravi-
tational forces, the latter ones should not be influenced by such forces; they should
merely represent the properties of the materials under consideration, here air. This
distinction found its expression in the principle of material frame indifference. Con-
stitutive equations like (24.16) are clearly incompatible with that axiom.

It is true that material frame indifference is a somewhat precarious proposition according to
molecular theories. Thus the kinetic theory of gases contradicts the principle: According to the ki-
netic theory the heat flux is no longer opposite to the temperature gradient. Rather it has a compo-
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nent perpendicular to gradT due to the Coriolis force on the molecular motion, see Müller (1972).
However, quantitatively this is a small effect, and it is therefore mostly ignored.

In our case it is possible to save material frame indifference by replacing fi in
(24.16) by

1

| gradp |
∂p

∂xi

so that the equation reads

m1
i =

⎛⎜⎜⎝m⊥
V δij +

(
m

‖
V −m⊥

V

) ∂p

∂xi

∂p

∂xj
| gradp |2

⎞⎟⎟⎠(
v1i − v2j

)

+

⎛⎜⎜⎝m⊥
T δij +

(
m

‖
T −m⊥

T

) ∂p

∂xi

∂p

∂xj
| gradp |2

⎞⎟⎟⎠ ∂T

∂xj
.

(24.17)

Since the pressure p, as part of the stress tij , is a constitutive quantity, there
is no contradiction with material frame indifference. And, if stationarity prevails,
and vi and Ji both vanish, the pressure gradient points opposite to fi, and (24.17)
reduces to (24.16). This scheme, however, seems a somewhat artificial recipe for
the rescue of material frame indifference. It may be better to rethink the principle
fundamentally in its application to bodies in a gravitational field, or inertial force
fields.
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Chapter 25

A Brief History of Mechanical Stress and the

Method of Experimental Micromechanics with

the Raman Microprobe

Giuseppe Pezzotti

Abstract The Raman microprobe is a unique tool for experimental stress analyses
at the microscopic level, capable to overcome the drawbacks of other probes includ-
ing low spatial resolution and lack of tensorial stress deconvolution. The presence
of elastic stress in the lattice of crystalline materials results in shifts in frequency
of Raman bands, which in turn obey individual dependencies, related to the specific
molecular vibrations that they represent. More importantly, the observed frequency
shifts depend on the reciprocal orientation between different stress components and
the vibrating lattice. We present here some basic algorithms for stress assessments
with the Raman micro-probe and validate them with some examples of practical en-
gineering applications. We also introduce some details for three-dimensional mea-
surement procedures using a confocal microprobe through a characterization of the
probe itself. The high spatial resolution, the complete contactless nature, and the
possibility to deconvolute the six independent components of the stress tensor from
the Raman spectrum are key features, which place the Raman method at the frontiers
of modern micromechanics.

Keywords: Experimental mechanics · Raman microprobe · Stress analysis · Mi-
cromechanics
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25.1 Introduction

25.1.1 A bit of History on the Concepts of Stress and Strain

When Hooke conceived his principle of elasticity in 1658, he certainly created a new
concept but conspicuously failed in finding simple words to explain it. Despite the
mathematical link between stress and strain was recorded in history as the Hooke’s
law, the cause-effect mechanism between tension and deformation was left obscure
and unexplained in the Hooke’s description. In the 17th century, the word “stress”
did not even exist to promptly convey the concept that we all nowadays understand
and use in many diverse circumstances. The situation was probably worsened by the
fact that Hooke, in a lack of definitions and suitable math, created an anagram to
describe the new concept: CEIIINOSSSTTUU (deciphered in Latin as “ut tension
sic vis”, namely, “like the distension so the force”): conceptual confusion followed
for a couple of centuries. About 150 years later, a definition of modulus of elasticity
was reported by Thomas Young to the British Admiralty as “a fundamental concept
in engineering which would enable preventing ships from sinking and buildings and
bridges from falling down”. However, his definition did not help much in shedding
conceptual clarity onto the fundamental concepts of stress and strain: “The modulus
of elasticity of any substance is a column of the same substance, capable of produc-
ing a pressure on its base which is to the weight causing a certain degree of com-
pression as the length of the substance is to the diminution of its length.” (Young,
1807) The reply of the British Admiralty, not surprisingly, was: “Though science
is much respected by their Lordships and your paper is much esteemed, it is too
learned in short it is not understood.” (Müller, 2014) Nearly two centuries after the
Hooke’s intuition, Cauchy succeeded in rigorously defining the concepts of stress
and strain as second-rank tensors. Building upon this progress, in 1826, Navier el-
egantly located their correct proportionality relationship (yet in usage nowadays).
Since then, because of the matching contributions of four brilliant minds, we have
indeed learnt how to “prevent ships from sinking and bridging from falling down”.
However, a number of circumstances in modern mechanics at the microscopic scale
yet challenge such historical findings. The concepts of stress and strain, posited by
Cauchy and Navier about two centuries ago, withstand the test of time, but need
more specific definitions and new approaches to be predictively applied.

25.1.2 Residual Stress Ghosts from the Industrial World

In the experimental practice, mechanical stresses are often highly graded in space
and might appear as ghostly entities because their magnitude depends on the scale
at which they are measured: the larger the scale of measurements, the smaller the
measured stress magnitude. An internal state of stress can develop within a solid as a
consequence of an externally applied force (referred to as “applied stresses”). How-
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ever, another important category of stresses exists in a solid even in absence of any
externally applied force: the so-called “residual stresses” (Hosford, 2010). Devices
experience residual stresses since their manufacturing cycle, and the magnitude of
such stresses could be as high as the GPa level. Residual stresses become involved
with any manufactured device any time different materials or phases with different
physical properties (e.g., elastic modulus and/or thermal expansion coefficient) are
“forced” to join, link or bond to each other, or even when a monolithic material
is exposed to local gradients of temperature or repeated loading cycles. No matter
how precise and sophisticated a manufacturing process could be conceived, there
will always be the possibility that residual stresses silently remain hidden within
the as-manufactured device. The residual stress field shall eventually overlap ex-
ternally applied stresses and stresses related to functional fatigue during service,
significantly degrading the reliability of the device and reducing its lifetime. So,
re-examining ad litteram the Hooke’s definition “ut tension sic vis” in the case of
residual stress brings us no visible tension and no apparent vis, just a ghostly en-
tity. . . although the device might yet fail because of it. Residual stresses are usually
highly graded at the microscopic scale, for example, across grain boundaries, in-
terfaces, or nearby micro-cracks, edges, holes, or notches. Accordingly, attempts
to probe them at the tens of micron might result in apparently stress-free outputs.
Invisible to the naked eye and hidden to dimensional inspections, microscopically
graded stresses might thus elude X-ray or neutron scattering probes because those
probes average over too large volumes. Popular examples of modern devices prone
to residual stresses are: multilayered capacitors (ceramic and metal parts bonded to-
gether), and femoral heads in artificial joints (bearing dome and internal taper). The
uncontrolled presence of microscopic residual stresses has long represented a curse
for device manufacturers.

25.1.3 The Need for a Microscopic and Contactless Probe for
Stress

Technologists have long relied on finite element modelling (FEM) for predicting in-
ternal stress and counteracting structural failures in devices (Rohlmann et al, 1980).
Despite the usefulness of this method, limitations due to its purely computational
nature might arise, which might include an insufficient understanding of the phys-
ical phenomena involved with the computations and/or an arbitrary/inappropriate
choice of boundary conditions. For this reason, precise and flexible experimental
stress probes have long been searched for. Leaving aside center-hole drilling, which
has widely been used but requires material removal being, non-destructive stress
probes are based on different physical principles: diffractive methods, such as X-
ray and neutron diffraction directly measure the lattice displacements due to strain,
while the ultrasonic method relies on variations in velocity of ultrasonic waves upon
stress magnitude. Note that each of the above-mentioned methods presents advan-
tages and disadvantages (not discussed here; for a review, see Withers and Bhadeshia
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Fig. 25.1 Comparison of in-
plane and in-depth spatial
resolution among various
stress measurement methods

(2001)). However, all the above methods have a common shortcoming in their spa-
tial resolution, which can hardly be pushed toward the single micrometer. Figure
25.1 shows an indicative plot, which summarizes the in-plane and in-depth spatial
resolution of different stress probes. From the plot, it is clear that none of the above-
mentioned probes matches the needs of modern miniaturized devices.

The Raman probe exploits molecular vibrations and its spatial resolution is dic-
tated by the wavelength of the laser used to excite the Raman scattered light. With
using conventional lasers in the visible, a spatial resolution in the order of the single
micrometer can be easily achieved. The Raman probe is Gaussian in nature and its
response function can be easily calibrated according to defocusing procedures on
each given material (Atkinson and Jain, 1999). This enables to enhance spatial reso-
lution beyond the diffraction limit. The Raman frequency is quite sensitive to stress
and the availability of several bands in the Raman spectrum allows deconvoluting
the local stress tensor with a single measurement. Information of crystallographic
orientation is also contained in the collected spectrum, provided that preliminary
calibrations are made on the investigated material (Pezzotti, 2013, 2017; Pezzotti
and Zhu, 2015). In the following sections, we will first show the basics of spatially
and tensor-deconvoluted stress assessments by Raman spectroscopy, and then de-
scribe two applications of this technique to modern devices.
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25.2 Working Algorithms for Stress Assessments by Raman

Spectroscopy

25.2.1 Step 1: Extracting Crystallographic Information with
Polarized Probes

The inherent properties of a phonon with respect to Raman scattering are described
by a second-rank Raman tensor, R, namely a quantity that is represented by a 3x3
matrix of Raman tensor elements (RTE) (Loudon, 1964). The tensor, R, is related
to an expansion of the polarizability tensor in powers of the scalar amplitude of the
vibrational displacement of the lattice (to the first order). Therefore, the polarizabil-
ity tensor and the Raman tensors are simply related through a direct proportionality
relationship. Upon exploiting symmetry properties of the phonons, one can deduce
the number of independent components of the Raman tensor, which proves always
smaller than the total number of nine elements of a second-rank tensor. In the case of
the A1 phonon in a tetragonal crystal of BaTiO3, for example, the number of inde-
pendent components is only two, given the symmetry in the crystal basal plane, and
reduces to one for the B1 phonon. A more complex and (less symmetric) structure,
such as a monoclinic lattice, possesses three and two independent Raman tensor
elements for the Ag and Bg phonons, respectively. The Raman tensor formalism
has a direct physical meaning. If neither the energy of the incoming nor that of the
scattered light is in resonance with an electronic interband excitation of the solid,
the Raman tensor represents the partial derivative of the dielectric tensor of the
material with respect to the phonon normal coordinate of the vibration for a given
frequency of the incoming laser (Cardona and Giintherodt, 1982). This tensorial
formalism is based on the simple concept that different phonon branches in a crystal
will correspond to different symmetries of vibration and will, thus, be conditional
on irreducible representations of the space group of the studied crystal lattice. The
selection rules for Raman-active phonons can be determined by standard methods
of group theory, while the intensities of Raman-scattered radiations can be ratio-
nalized according to the directions of polarized incoming/scattered monochromatic
light with respect to the principal axes of the investigated crystal (Loudon, 1964).
In other words, the experimental collection of polarized Raman spectra from known
crystallographic planes might serve as a means for providing physical insight into
the actual symmetry properties of phonon branches or, vice versa, the knowledge of
the selection rules for the investigated crystal can be applied to quantitative assess-
ments of unknown crystallographic directions. Polarized Raman experiments can be
defined according to the so-called Porto formalism in Porto and Krishnan (1967),
namely by means of two distinct systems of Cartesian axes (associated to the incom-
ing and scattered radiation), and described by a total of four rotational indexes. The
formalism, expressed as i(kl)j , means that the incident light is propagated along
the i direction with its electric vector in the k direction, while the Raman scattered
light is collected from the j direction with the analyzer so placed that it passes light
with the electric vector aligned along the l direction. The symbols outside and inside



358 Giuseppe Pezzotti

the brackets refer to directions of light propagation and electric vector, respectively.
The relative intensities of a given Raman mode can be described, as follows:

I ∝ |eiRes|2 (25.1)

where I is the scattered Raman intensity, R ≡ Ry is the second-rank Raman ten-
sor; and ei and es are the unit polarization vectors of the electric field for incident
and scattered light, respectively. In the present experiments, the polarization of the
incident light was fixed (i.e., parallel to the y-axis), while both parallel and cross
polarization were applied to the Raman scattered light in a backscattered geometry.
Such configurations correspond to z(yy)z̄ and z(xy)z̄, respectively (cf. Fig. 25.2 for
our choice of Cartesian axes and Euler angles for the vibrational modes generated
in different crystal structures). The configurations expressed as z(yy)z̄ and z(xy)z̄
will be henceforth simply denoted as “parallel” and “cross” polarization configura-
tion, respectively. The unit polarization vectors can then be explicitly expressed in
Cartesian coordinates:

ei xyz =
(
0 1 0

)
, e

‖
i xyz =

⎛⎜⎜⎝
0

1

0

⎞⎟⎟⎠ , e⊥i xyz =

⎛⎜⎜⎝
1

0

0

⎞⎟⎟⎠ (25.2)

where the superscripts, ‖ and ⊥, refer to parallel and cross configurations, respec-
tively. Taking now into account the matrix of Euler angles, Φxyz and its inverse Φ̃xyz,
which enable one transforming the Cartesian system of coordinates associated to the
crystallographic frame into that of the laboratory frame, the back-scattered intensity

Fig. 25.2 Definition of Cartesian axes and Euler angles for (a) tetragonal and (b) trigonal
(corundum) structures
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of any Raman band can be expressed as:

Rxyz = ΦxyzRΦ̃xyz (25.3)

where the transformation matrix of Euler angles and its inverse are given as

Φxyz =

⎛⎜⎜⎝
cos θ cosϕ cosψ − sinϕ sinψ cos θ sinϕ cosψ + cosϕ sinψ − sin θ cosψ

− sinϕ cosψ − cos θ cosϕ sinψ cosϕ sinψ − cos θ sinϕ sinψ sin θ sinψ

sin θ cosϕ sin θ sinϕ cos θ

⎞⎟⎟⎠
(25.4)

Φ̃xyz =

⎛⎜⎜⎝
cos θ cosϕ cosψ − sinϕ sinψ − sinϕ cosψ − cos θ cosϕ sinψ sin θ cosϕ

cos θ sinϕ cosψ + cosϕ sinψ cosϕ cosψ − cos θ sinϕ sinψ sin θ sinϕ

− sin θ cosψ sin θ sinψ cos θ

⎞⎟⎟⎠
(25.5)

with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, and 0 ≤ ψ ≤ 2π. Euler angles (θ, ϕ, ψ), Carte-
sian coordinate crystal system, XcryYcryZcry, and laboratory system coordinates,
xlabylabzlab, as defined for the tetragonal and trigonal crystallographic structures,
are shown in Fig. 25.2. Substituting for Eqs. (25.3)-(25.5) into Eq. (25.1), and in-
troducing the Raman tensor, R, pertaining to each of the investigated crystal struc-
tures, it is possible to obtain a series of independent periodic equations in three
Euler angles, which represent an expansion of the so-called Raman selection rules
of crystals and fully describe the angular dependences of the intensity of the Raman
modes for any given crystal structure. Accordingly, an explicit morphology for such
“extended” Raman selection rules can be worked out and experimentally validated
for any available crystal. As an example, we consider here the tetragonal structure
of barium titanate (BaTiO3), which belongs to the C4v (in Schönflies notations) or
4mm (in Hermann–Mauguin notations) point group. The irreducible representation
of the optical modes, according to group theory, is expressed as (Loudon, 1964;
DiDomenico Jr et al, 1968):

Γ = 3T1u + T2u (25.6)

Each of the T1u modes in the irreducible representation splits into A1 + E modes.
These modes can be classified as longitudinal optic (LO) or transverse optic (TO),
according to the propagation direction of the scattered light with respect to incoming
polarization. This physical circumstance explains why we can observe four modes:
A1(TO), A1(LO), E(TO), and E(LO) from each T1u mode. T2u is usually referred
to as the “silent mode,” although it represents a mixedB1+E mode. For this reason,
it is no longer be silent. However, the spectral separation between its components
is small, which impedes their separate measurement (El Marssi et al, 2003). The
second-rank tensors, pertaining to BaTiO3 crystal, has been calculated by Loudon
(1964) and, for the active Raman phonon modes A1, B1, and E can be expressed,
as follows:
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RA1
=

⎡⎣a 0 0
0 a 0
0 0 b

⎤⎦ ; RB1
=

⎡⎣ c 0 0
0 −c 0
0 0 0

⎤⎦ ; RE(X) =

⎡⎣ 0 0 e
0 0 0
e 0 0

⎤⎦ ; RE(Y ) =

⎡⎣ 0 0 0
0 0 e
0 e 0

⎤⎦
(25.7)

where the constants a, b, c, and e represent the four independent Raman tensor ele-
ments that describe the Raman response of the tetragonal structure. General angular
dependencies on Euler angles of the intensities of different Raman modes in a tetrag-
onal structure can be explicitly given according to Eqs. (25.1), (25.5), and (25.7), as
follows:

I
‖
A1

= Ψ‖ ∣∣bsin2 θsin2ψ + a(− cosψ sinϕ− cos θ cosϕ sinψ)
2

+a(cosϕ cosψ − cos θ sinϕ sinψ)
2
∣∣∣2 +H‖ (25.8)

I
‖
B1

= Ψ‖
∣∣∣c(cosψ sinϕ+ cos θ cosϕ sinψ)

2

− c(cosϕ cosψ − cos θ sinϕ sinψ)
2
∣∣∣2 +H‖

(25.9)

I
‖
E(X) = Ψ

‖|2e sin θ sinψ(cosψ sinϕ+ cos θ cosϕ sinψ)|2 +H‖ (25.10)

I
‖
E(Y ) = Ψ

‖|2e sin θ sinψ(cosϕ cosψ − cos θ sinϕ sinψ)|2 +H‖ (25.11)

I⊥A1
= Ψ⊥∣∣(a− b) cosψsin2θ sinψ∣∣2 +H⊥ (25.12)

I⊥B1
= Ψ⊥

∣∣∣ c
2
(2 cos θ cos 2ψ sin 2ϕ+ (1 + cos2θ) cos 2ϕ sin 2ψ)

∣∣∣2 +H⊥ (25.13)

I⊥E(X)
= Ψ⊥|e sin θ(cos 2ψ sinϕ+ cos θ cosϕ sin 2ψ)|2 +H⊥ (25.14)

I⊥E(Y )
= Ψ⊥|e sin θ(cosϕ sin 2ψ − cos θ sinϕ sin 2ψ)|2 +H⊥ (25.15)

where the parameters Ψ‖, Ψ⊥, H‖, H⊥ are instrumental constants that depend on
the optical circuit in the Raman setup and can be preliminary calibrated. They might
be different for different Raman bands. Note also that the above constants have a
physical nature, but also contain values characteristic of the measurement device
(i.e., in particular of the optical circuit adopted). Therefore, the numerical values
of the measured constants might differ when measured with different instruments
(and/or under even slightly different conditions of the same optical circuit) and need
to be calibrated case by case. The Raman intensity of the E mode consists of two
distinct components, E(X) and E(Y ) (cf. Eqs. (14.14), (25.11) and Eqs. (25.14),
(25.15)). The related bands almost fully overlap and only a cumulative Raman emis-
sion can be experimentally measured. Such a cumulative emission can be described
according to the following equation:

IE = xIE(X) + (1− x)IE(Y ) (25.16)

which is valid for both parallel and cross configurations. The weight parameter, x,
can be assumed equal to 0.5, if band symmetry is observed, which is often the case.
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The Raman spectrum of the tetragonal structure of BaTiO3 presents two bands at
around 520 (A1(TO)) and 720 cm-1 (A1(LO)), which represent the transverse optic
mode of the Ti-O stretching vibration in TiO6 octahedra and its longitudinal op-
tic pair, respectively. An additional band located at around 280 cm-1, also belongs
to the A1(TO) mode, but arises from O-Ti-O bending vibrations. A sharp band lo-
cated at around 310 cm-1 arises from a mix mode B1 + E(TO) and originates from
Ti-O3 torsional vibrations. Equations (14.12)-(25.16) can thus be applied to indi-
vidual planes of the tetragonal structure for selected Euler angles to locate four in-
dependent working equations needed to experimentally measure the Raman tensor
elements in Eq. (14.11). One of the possible choices of working equations by fix-
ing the out-of-plane Euler angles and rotating the Raman probe within the selected
crystallographic plane is, as follows:

For the a-plane: θ = π
2 ; ϕ = 0

RI
‖
270/305 =

I
‖
A1

I
‖
B1+E

=
(a cos2 ψ + b sin2 ψ)2

cos2 ψ(c2 + 2e2 sin2 ψ)
(25.17)

RI⊥270/305 =
I⊥A1

I⊥B1+E

=
2(a− b)2 sin 2ψ

c2 + 2e2 − (c2 − 2e2) cos 4ψ
(25.18)

For the c-plane: θ = 0; ϕ = 0

RI
‖
720/305 =

I
‖
A1+E

I
‖
B1+E

=
a2∣∣c(sin2 ψ − cos2 ψ)

∣∣2 (25.19)

RI⊥720/305 =
I⊥A1+E

I⊥B1+E

=
1∣∣2c cosψ sinψ

∣∣2 (25.20)

where RI represents relative intensity ratios of the bands located by the subscripts.
Figure 25.3(a) shows parallel- and cross-polarized Raman spectra collected on the
a- and c-plane of BaTiO3 single-crystal together with a deconvolutive fitting of the
spectra according to the above-indicated vibrational modes (our choice of Carte-
sian axes and Euler angles for the tetragonal structure are shown in Fig. 25.2(a)).
From the observed periodicity trends obtained upon in-plane rotation (shown in
Fig. 25.3(b)), it can be seen that the bands from the A mode are greatly enhanced
when the c-axis of the tetragonal structure is perpendicular to the laser polariza-
tion vector. Conversely, they undergo an abrupt intensity decrease when the c-axis
is parallel to the laser polarization vector. The experimentally determined angu-
lar dependence of the intensities of various Raman bands of tetragonal BaTiO3
can be fit to linear combinations of Eqs. (25.17)-(25.20) in order to retrieve the
four elements of the Raman tensor of BaTiO3, as follows: a=0.318±0.041, b=-
0.871±0.062; c=0.290±0.009; and, e=0.817±0.072. With the precise knowledge
of the Raman tensor elements, one can now use Eqs. (14.12)-(25.16) to locate the
set of three unknown Euler angles at any location of a BaTiO3 sample. Similar treat-
ments starting from the irreducible representation of the optical modes, according
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Fig. 25.3 (a) Polarized Raman spectra on different crystallographic planes of tetragonal BaTiO3;
and, (b) in-plane angular dependencies of their Raman intensities on selected crystallographic
planes (see labels in inset; broken lines are least-square fitting curves to the experimental data dots)

to group theory, could be worked out for different crystallographic structures (Pez-
zotti, 2013, 2017; Pezzotti and Zhu, 2015). Of interest in this paper are the RTE
of the trigonal (corundum) structure of Al2O3. The trigonal structure possesses 4
independent RTE, which were precisely determined, as follows (Pezzotti and Zhu,
2015): a=-0.8±0.001, b=0.2±0.001; c=0.015±0.03; and, d=-0.49±0.011.

25.2.2 Deconvoluting the Stress Tensor Elements

The so-called “secular equation” links the strain tensor to the shift in Raman fre-
quency of the vibrational modes available to a given crystal structure. The secular
equation can be directly derived from the dynamic equation (in its linear approxi-
mation for small deformations) by introducing the variance with strain due to anhar-
monic effects in the lattice (Ganesan et al, 1970). The phonon deformation poten-
tials (PDP) are constants, which describe the stiffness of crystal lattice vibrations.
They represent a set of proportionality parameters to individual components of the
strain tensor in the secular equation. Altered values of phonon frequencies under
a given strain tensor can be retrieved by diagonalization of the secular equation,
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whose solution leads to a set of eigenvalues, which relate the Raman frequency to
the strain tensor components. The PDP constants thus represent a link between the
strain tensor components and the changes induced on phonon frequency, the same
way the elastic compliance tensor components link the strain components to stresses
(i.e., through the generalized Hooke’s law). When a general stress field, σkl, (with
k, l = x, y, z) is applied to a single-crystal along arbitrary crystallographic axes,
the configuration of the stress tensor expressed in any orthogonal reference frame
(i.e., the laboratory reference frame) can be transformed into an equivalent tensor
in the crystal reference frame, σij , (with i, j = 1, 2, 3) by using tensorial rules of
coordinate transformation, as follows:⎡⎢⎢⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

⎤⎥⎥⎦
⎡⎢⎢⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎥⎥⎦
⎡⎢⎢⎣
Φ̃11 Φ̃12 Φ̃13

Φ̃21 Φ̃22 Φ̃23

Φ̃31 Φ̃32 Φ̃33

⎤⎥⎥⎦ (25.21)

where the transformation matrix, Φij , and its inverse, Φ̃ij , in the crystal reference
frame are given by Eqs. (14.9) and (14.10) in terms of three Euler angles. Under
a given elastic stress field, the Raman frequencies of each individual vibrational
mode in the crystal will be altered due to the anharmonic nature of atomic inter-
actions. It follows that, for any j-th vibrational mode associated with a frequency,
ωj , an effective force constant, Kj , can be defined, which is the second deriva-
tive of the crystal potential energy with respect to mode normal coordinates. The
change in force constants under stress/strain can be then represented with a matrix,
[ΔK] = ΔKij = Kij − K(0)

ij , whose size is in turn determined by the degener-
acy characteristics of the Raman mode. The eigenvalues, λ, of the [ΔK] matrix are
related to the alteration, Δω, of a Raman frequency, ω, under stress with respect to
the unstressed frequency, ω0, as follows:

λ = ω2 − ω2
0 ≈ 2ω0(ω − ω0) = 2ω0Δω (25.22)

and can be obtained by solving the crystal-structure dependent equation:

det{[ΔK]− λ[I]} = 0 (25.23)

where [I] is a unit diagonal matrix. The symmetry of the crystal under stress is
determined by the symmetry elements common to both the unstrained crystal and
the strain ellipsoid, namely the geometric representation of the three-dimensional
state of strain that develops during a homogeneous deformation. Each vibrational
mode is then associated to a stress-free frequency, ω0, and to an effective force
constant,Kij (i.e., the second derivative of the crystal potential energy with respect
to normal mode coordinates). The PDP constants, Kijkl, are the components of a
fourth-rank tensor, connecting the strain tensor to the changes of the elements of the
matrix of phonon force constants, ΔKij , as follows:

ΔKij = Kij −K(0)
ij = Kijklεkl (25.24)
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The dynamical equation that relates each non-degenerate optical phonon of the crys-
tal structure to terms linear in strain has the following form:

Kij = K
(0)
ij +

3∑
k,l=1

εklK
(ε)
ij,kl = ω

2
0δij +

3∑
k,l=1

εkl
∂Kij

∂εkl
(25.25)

where δij is the Kronecker delta in its usual meaning and the strain tensor, εij , along
the principal crystallographic axes of a general crystal is related to the stress tensor,
σkl, through the usual equation:

εij = Sijklσkl (25.26)

where Sijkl is the matrix of elastic compliance constants. A quantity referred to as
the perturbing potential, V , which is the summation of terms linear in strain (directly
related to the basis functions of the crystal symmetry), can be also defined as:

V =

3∑
i,j=1

Vijεij (25.27)

where the constants Vij , are the PDP constants of the crystal, namely the elements of
a (symmetric) second-rank tensor. A comparison between Eqs. (25.25) and (25.27)
clarifies the relationship between effective force constants, Vij , and the perturbing
potential, V . The general procedure in Raman assessments of stress tensors, thus,
will consist in setting first the total change in energy of the vibrational state of the
crystal according to Eq. (25.27) and to the basis functions characteristic of the stud-
ied crystal structure (i.e., known from group theory) (DiDomenico Jr et al, 1968).
Then, the changes in phonon force constants, ΔKij , can be made explicit and the
contributions of different vibrational modes separated by means of Eq. (25.25). Fi-
nally, rearranging from Eqs. (25.22) and (25.23), working equations for the spectral
shifts of each vibrational mode can be obtained as a function of the PDP constants
and of strain (or stress through Eq. (25.26)) tensor components. The obtained equa-
tions fully describe the shift of individual Raman bands in response to a given ten-
sorial stress/strain state. The tensorial relationship between strain and stress, applied
along the principal crystallographic axes for the trigonal structure of sapphire, can
explicitly be expressed, as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 0 0

S12 S11 S13 −S14 0 0

S13 S13 S33 0 0 0

S14 −S14 0 S44 0 0

0 0 0 0 S44 2S14

0 0 0 0 2S14 S66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ23

σ13

σ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25.28)
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where Sij are the elastic compliance constants of the sapphire crystal, with val-
ues reported as: S11 = 2.3 × 10−12Pa−1, S12 = −0.7 × 10−12Pa−1, S13 =
−0.4 × 10−12Pa−1, S33 = 2.2 × 10−12Pa−1, S44 = 6.8 × 10−12Pa−1, and
S14 = 0.5 × 10−12Pa−1 (Goto et al, 1989). The perturbing potential, V , for the
trigonal (corundum) structure can be deduced from the irreducible representation of
the sapphire crystal, according to group theory: Γ = 2A1g+2A1u+3A2g+3A2u+
5Eg+5Eu. The components of the tensor operator, Vij , of the trigonal structure can
be grouped as follows:

V =
∑
i,j

Vijεij =
1

2
(V11 + V22)(ε11 + ε22) + V33ε33 +

1

2
[(V11 − V22)(ε11 − ε22)

+ V12ε12] + 2V13ε13 + 2V23ε23
(25.29)

In Eq. (25.29), (V11 + V22) and V33 belong to A1g , (V11 − V22) and V13 belong
to Eg(X), while V12 and V23 belong to Eg(Y ), according to the basis functions
appropriate for the representations of theA1g andEg modes of theD3d point group.
Under stress, the energy of a vibrational state belonging to A1g will shift by an
amount:

1

2

〈
A1g

∣∣V11 + V22∣∣A1g

〉(
ε11 + ε22

)
+

〈
A1g

∣∣V33∣∣A1g

〉
ε33 (25.30)

with the remaining terms vanishing according to the orthogonality theorem. Conse-
quently, for the non-degenerated A1g mode, Eq. (25.23) can be rewritten as:∣∣KA

1 ε11 +K
A
2 ε22 +K

A
3 ε33 − λ

∣∣ = 0 (25.31)

According to Eqs. (25.22) and (25.30), the spectral shift of the A1g mode is,
therefore:

ΔωA = ωA − ω0,A =
1

2ω0,A
(KA

1 ε11 +K
A
2 ε22 +K

A
3 ε33) (25.32)

where KA
1 = KA

2 = 1
2 〈A1g | V11 + V22 | A1g〉 and KA

3 = 〈A1g | V33 | A1g〉 are
the PDP constants. Equations (25.28) and (25.32) can then be re-arranged to give:

ΔωA =
1

2ω0,A

[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)σ11

+ (KA
2 S11 +K

A
1 S12 +K

A
3 S13)σ22

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S33)σ33

] (25.33)

According to Eqs. (25.24), (25.25), (25.21), and (25.33), the spectral shift of the
Raman mode in response to stress in the laboratory reference frame can explicitly
be expressed as:
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ΔωA =
1

2ω0,A

{[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)(cos θ cosϕ cosψ − sinψ sinϕ)2

+ (KA
2 S11 +K

A
1 S12 +K

A
3 S13)(cosψ sinϕ+ cos θ cosϕ sinψ)2

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S33) sin

2 θ cos2 ϕ
]
σxx

+
[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)(− sin 2ϕ sin2 ψ + cos2 θ sin 2ϕ cos2 ψ

+ cos θ cos 2ϕ sin 2ψ) + (KA
2 S11 +K

A
1 S12 +K

A
3 S13)(cos

2 θ sin 2ϕ sin2 ψ

− sin 2ϕ cos2 ψ − cos θ cos 2ϕ sin 2ψ)

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S13) cos

2 θ sin 2ϕ
]
σxy

+
[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)(sinϕ sin θ sin 2ψ − cosϕ sin 2θ cos2 ψ)

+ (KA
2 S11 +K

A
1 S12 +K

A
3 S13)(− sinϕ sin θ sin 2ψ − cosϕ sin 2θ sin2 ψ)

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S33)(cosϕ sin 2θ

]
σxz

+
[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)(cos θ sinϕ cosψ + sinψ cosϕ)2

+ (KA
2 S11 +K

A
1 S12 +K

A
3 S13)(− cos θ cosϕ sinψ + cosψ sinϕ)2

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S33) sin

2 θ sin2 ϕ
]
σyy

+
[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)(− cosϕ sin θ sin 2ψ − sinϕ sin 2θ cos2 ψ)

+ (KA
2 S11 +K

A
1 S12 +K

A
3 S13)(− cosϕ sin θ sin 2ψ − sinϕ sin 2θ sin2 ψ)

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S33) sinϕ sin 2θ

]
σyz

+ [(KA
1 S11 +K

A
2 S12 +K

A
3 S13) sin

2 θ cos2 ψ

+ (KA
2 S11 +K

A
1 S12 +K

A
3 S13) sin

2 θ sin2 ψ

+ (KA
1 S13 +K

A
2 S13 +K

A
3 S33)]σzz

}
(25.34)

In order to express in close form the elements of the matrix Vij for the doubly
degenerate states X and Y of the Eg mode, a decomposition of the products of the
basis functions of the class D3d should preliminary be performed. Accordingly, the
secular equation for the Eg mode can be expressed in terms of PDP constants,KE

1 ,
KE

2 ,KE
3 andKE

4 , as follows:
∣∣∣∣∣K

E
1 (ε11 + ε22) +K

E
2 ε33 +K

E
3 (ε11 − ε22) +KE

4 ε13 − λ KE
3 ε12 +K

E
4 ε23

KE
3 ε12 +K

E
4 ε23 KE

1 (ε11 + ε22) +K
E
2 ε33 −KE

3 (ε11 − ε22)−KE
4 ε13 − λ

∣∣∣∣∣ = 0

(25.35)
where

KE
1 =

1

2

〈
ψ(A1g)|V11 + V22

〉
(25.36)

KE
2 =

〈
ψ(A1g)|V33

〉
(25.37)

KE
3 =

1

2

〈
ψX(Eg)|V11 − V22

〉
=

1

2

〈
ψY (Eg)|V12

〉
(25.38)

KE
4 = 2

〈
ψX(Eg)|V13

〉
= 2

〈
ψY (Eg)|V23

〉
(25.39)

According to Eqs. (25.22) and (25.35), the spectral shift can be expressed as:
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ΔωE(X,Y ) = ωE(X,Y ) − ω0,E(X,Y ) =
1

2ω0,E(X,Y )

[
KE

1 (ε11 + ε22) +K
E
2 ε33

±
√
[KE

3 (ε11 − ε22) +KE
4 ε13]

2 + (KE
3 ε12 +K

E
4 ε23)

2

]
(25.40)

By considering the relationship between strain and stress in Eq. (25.28), Eq. (25.40)
can be rewritten, as follows:

ΔωE(X,Y ) =
1

2ω0,E

{[
KE

1 (S11 + S12) +K
E
2 S13

]
(σ11 + σ22) + (2KE

1 S13 +K
E
2 S33)σ33

±
{[
KE

3 (S11 − S12)(σ11 − σ22) +KE
4 (S44σ13 + 2S14σ12)

]2
+

{
2KE

3

[
S14σ13 + (S11 − S12)σ12

]
+KE

4

[
S14(σ11 − σ22) + S44σ23

]}2} 1
2
}

(25.41)
The overall peak shift of the combined signal can be set as the average of indi-

vidual peak-shifts weighted by their relative intensities:

Δω̄ =

2∑
i=1

(
IiΔωi

)
2∑

i=1

Ii

(25.42)

For the cases of cross and parallel polarization, Eq. (25.42) can then be re-written
as:

Δω̄
⊥‖
E =

ΔωXI
⊥‖
Eg(X) +ΔωY I

⊥‖
Eg(Y )

I
⊥‖
Eg(X) + I

⊥‖
Eg(Y )

(25.43)

which can in turn be expanded into:

Δω̄
⊥‖
E =

1

2ω0,E
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E
2 S13

]
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E
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⊥‖
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Eg(Y ))

{[
KE
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]2

+

{
2KE

3

[
S14σ13 + (S11 − S12)σ12] +KE

4 [S14(σ11 − σ22) + S44σ23
]}2} 1

2
}

(25.44)
or, in the laboratory reference frame:
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Δω̄
⊥‖
E =

1

2ω0,E

{[
KE

1 (S11 + S12) +K
E
2 S13

][
σxx(cos

2 θ cos2 ϕ+ sin2ϕ) + σxy(−sin2ϕ+ cos2θ sin 2ϕ)

+ σxz(−cosϕ sin 2θ) + σyy(cos2θ + 1)(sin2ϕ cos2 ψ + cos2ϕ sin2 ψ) + σyz(− sinϕ sin 2θ) + σzzsin
2θ

]
+ (2KE

1 S13 +K
E
2 S33)

[
σxx sin

2 θ cos2 ϕ+ σxy cos
2 θ sin 2ϕ+ σxz cosϕ sin 2θ + σyy sin

2 θ sin2 ϕ

+ σyz sinϕ sin 2θ + σzz cos
2 θ

]

+
I
‖⊥
Eg(X)

− I‖⊥Eg(Y )

I
‖⊥
Eg(X)

+ I
‖⊥
Eg(Y )

×
{{
KE

3 (S11 − S12)
{
σxx(cos

2 θ cos2 ϕ cos 2ψ − cos 2ψ sin2 ϕ− sin 2ϕ cos θ sin 2ψ)

+ σxy(sin 2ϕ cos 2ψ(1 + cos2 θ) + 2 cos θ cos 2ϕ sin 2ψ)

+ σxz(2sinϕ sin θ sin 2ψ − cosϕ sin 2θ cos 2ψ)

+ σyy

[
(cos2 θ − 1)(sin2 ϕ cos2 ψ + sin2 ψ cos2 ϕ) + cos θ sin 2ψ sin 2ϕ

]
+ σyz(−2cosϕ sin θ sin 2ψ − sinϕ sin 2θ cos 2ψ) + σzz sin

2 θ cos 2ψ

+KE
4

{
S44

{
σxx

[
cos θ sin θ cos2 ϕ cosψ − sin θ cosϕ sinϕ sinψ

]
+ σxy

[
cos θ sin θ sin 2ϕ cosψ + sin θ cos 2ϕ sinψ

]
+ σxz(cos 2θ cosϕ cosψ − cos θ sinϕ sinψ)

+ σyy

[
cos θ sin θ sin2 ϕ cosψ + sin θ sinϕ cosϕ sinψ

]
+ σyz(cos 2θ sinϕ cosψ + cos θ cosϕ sinψ)

− σzz cos θ sin θ cosψ

}
+ 2S14

{
σxx

[
(sin2 ϕ− cos2 θ cos2 ϕ) sinψ cosψ − cos θ sinϕ cosϕ cos 2ψ

]
+ σxy

[
cos θ cos 2ϕ cos 2ψ − sin 2ϕ sinψ cosψ(1 + cos2 θ)

]
+ σxz(cosϕ sin 2θ sinψ cosψ + sinϕ sin θ cos 2ψ)+

+ σyy

[
cos θ sinϕ cosϕ cos 2ψ + sinψ cosψ(cos2 ϕ− cos2 θ sin2 ϕ)

]
+ σyz(sinϕ sin 2θ sinψ cosψ − cosϕ sin θ cos 2ψ)

− σzz sin
2 θ sinψ cosψ

}}2

+

{
2KE

3

[
S14

{
σxx

[
cos θ sin θ cos2 ϕ cosψ − sin θ cosϕ sinϕ sinψ

]
+ σxy

[
cosθ sin θ sin 2ϕ cosψ + sin θ cos 2ϕ sinψ

]
+ σxz(cos 2θ cosϕ cosψ − cos θ sinϕ sinψ)

+ σyy

[
cos θ sin θ sin2 ϕ cosψ + sin θ sinϕ cosϕ sinψ

]
+ σyz(cos 2θ sinϕ cosψ + cos θ cosϕ sinψ)

− σzz cos θ sin θ cosψ

}
(S11 − S12)

{
σxx

[
(sin2 ϕ− cos2 θ cos2 ϕ) sinψ cosψ − cos θ sinϕ cosϕ cos 2ψ

]
+ σxy

[
cos θ cos 2ϕ cos 2ψ − sin 2ϕ sinψ cosψ(1 + cos2 θ)

]
+ σxz(cosϕ sin 2θ sinψ cosψ + sinϕ sin θ cos 2ψ)

+ σyy

[
cos θ sinϕ cosϕ cos 2ψ + sinψ cosψ(cos2 ϕ− cos2 θ sin2 ϕ)

]
+ σyz(sinϕ sin 2θ sinψ cosψ − cosϕ sin θ cos 2ψ)− σzz sin

2 θ sinψ cosψ

}]
+KE

4

{
S14

{
σxx(cos

2 θ cos2 ϕ cos 2ψ − cos 2ψ sin2 ϕ− sin 2ϕ cos θ sin 2ψ)

+ σxy(sin 2ϕ cos 2ψ(1 + cos2 θ) + 2 cos θ cos 2ϕ sin 2ψ) + σxz(2 sinϕ sin θ sin 2ψ − cosϕ sin 2θ cos 2ψ)

+ σyy

[
(cos2 θ − 1)(sin2 ϕ cos2 ψ + sin2 ψ cos2 ϕ) + cos θ sin 2ψ sin 2ϕ

]
+ σyz(−2 cosϕ sin θ sin 2ψ − sinϕ sin 2θ cos 2ψ) + σzz sin

2 θ cos 2ψ

}
+ S44

{
σxx

[
− cos θ sin θ cos2 ϕ sinψ − sin θ cosϕ sinϕ cosψ

]
+ σxy

[
− cosθ sin θ sin 2ϕ sinψ + sinθ cos 2ϕ cosψ

]
+ σxz(− cos 2θ cosϕ sinψ − cos θ sinϕ cosψ) + σyy

[
− cos θ sin θ sin2 ϕ sinψ + sin θ sinϕ cosϕ cosψ

]
+ σyz(−cos2θ sinϕ sinψ + cos θ cosϕ cosψ) + σzz cos θ sin θ sinψ

}}}2} 1
2
}}

(25.45)
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As described in in the previous section, local information of crystal orientation
in a sample with the corundum structure (i.e., the local values of the Euler angles,
(θϕψ) can be retrieved, based on the knowledge of the RTE constants, from the
angular dependencies of experimentally obtained polarized Raman intensities. Pro-
vided that also the PDP constants of sapphire become known, a tensorial algorithm
based on Eqs. (25.34) and (25.45) applied to different bands could be built up, with
the related Euler angles determined from best fitting the measured intensity varia-
tions as a function of in-plane rotation angle. A simple approach to PDP calibrations
consists in generating a known uniaxial stress field along a known direction of the
investigated crystal, for example, in a four-point flexure jig. The jig, equipped with a
load-cell, is then placed under the Raman microprobe, and Raman line scans can be
performed along its thickness to reveal spectral shifts along the bar thickness. Figure
25.4(a) shows a schematic draft of the bending calibration setup with the selected
Euler angles and laboratory Cartesian system. The PDP calibration method using
the four-point flexure configuration involves both compressive and tensile uniaxial
stresses, whose maxima, ±σmax , are of the same magnitude. The uniaxial (elastic)
stress field varies linearly along the bar thickness, as a function of the abscissa, y, as
follows:

σxx(y) =
2y

h
σmax =

2y

h
× 3P (L− I)

2wh2
(25.46)

where P is the (known) applied load, w and h are the width and the thickness of
the bending bar, respectively, and L and l are the large and the small span of the
bending jig, respectively (cf. Fig. 25.4(a)). Figure 25.5(a) shows a series of polarized
Raman spectra taken on different crystallographic planes. Upon applying a given
bending load, P , a series of spectra can be collected at locations along the specimen

Fig. 25.4 (a) Bending and (b) compression calibration setups and the related definition of
Cartesian coordinates and Euler angles
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thickness, as a function of the abscissa, y. Since the uniaxial stress, σxx , is linked
to the abscissa, y, through Eq. (25.46), the experimentally collected dependence,
Δω(y), can then be converted into a dependence, Δω(±σxx) . For this simple case
of uniaxial stress, Eqs. (25.34) and (25.45), forA1g andEg modes, respectively, can
be greatly simplified to become:

Δω
‖⊥
A =ΔωA =

1

2ω0,A

{[
(KA

1 S11 +K
A
2 S12 +K

A
3 S13)(cos θ cosϕ cosψ − sinψ sinϕ)2

+ (KA
2 S11K

A
11S12 +K

A
3 S13)(cosψ sinϕ+ cos θ cosϕ sinψ)2

+ (KA
1 S13K

A
2 S13 +K

A
3 S33) sin

2 θ cos2 ϕ
]
σxx

}
(25.47)

and

Fig. 25.5 (a) Polarized Raman spectra on different crystallographic planes of trigonal Al2O3; and,
(b) bending calibration plots (and their best linear fits) as obtained by impinging the laser probe
upon different crystallographic faces of a sapphire single-crystal (crystallographic planes as
defined in Fig. 25.2(b))



25 Micromechanics with the Raman Microprobe 371
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}
(25.48)

Under the assumption of a linearly elastic deformation of the bending bar, the
plot of spectral shifts, Δω(σxx), in the interval, −σmax ≤ σxx ≤ σmax, is linear.
The slope of such a plot, Π , depends on the vibrational mode analyzed and is re-
lated to a specific combination of PDP constants, as governed by Eqs. (25.47) and
(25.48). It should be noted that, as far as the corundum structure is concerned, the
full set of PDP constants includes 7 independent values, namely 3 and 4 constants
for the A1g and the Eg mode, respectively. In other words, one needs to carry out at
least four uniaxial bending experiments along different crystallographic directions.
Four different bending calibration tests with a uniaxial stress field were made in 4
different configurations, as follows: (Case 1) loading direction,m-axis; stress direc-
tion, a-axis (θ = ϕ = ψ = 0); (Case 2) loading direction, a-axis; stress direction,
m-axis (θ = ϕ = 0;ψ = π

2 ); (Case 3) loading direction, m-axis; stress direction,
c-axis (θ = π

2 ;ϕ = ψ = 0); and, (Case 4) loading along direction, [1̄101] ; stress
direction, [112̄0] (θ = 29π

90 ;ϕ = π
6 ;ψ = π

2 ). The four cases mentioned above are
schematically depicted in Fig. 25.5(b) with reference to the orientation of the corun-
dum structure depicted in Fig. 25.2(b). The equations derived from Eqs. (25.47) and
(25.48), which are pertinent to the above 4 cases and give the predicted slopes of the
plots Δω(σxx), can be listed, as follows:
Case 1:

Δω
‖⊥
A =
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A
2 S12 +K

A
3 S13

2ω0,A
σxx (25.49)
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Case 2:

Δω
‖⊥
A =
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2 S11 +K

A
1 S12 +K

A
3 S13

2ω0,A
σxx (25.51)
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σxx (25.53)
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(25.56)
According to the equations given above, the PDP constants of the detected vibra-

tional bands were extracted from four independent sets of calibration data in bending
configuration on single-crystalline sapphire samples uniaxially loaded along differ-
ent crystallographic directions. Figures 25.5(b) show bending calibration plots of
spectral shifts for the 417 cm-1 A1g vibrational mode as a function of uniaxial stress
magnitude for the five different samples (Cases 1-4), in parallel polarization config-
uration. Linear fitting according to the least square method enabled us to retrieve the
values of the slopes,Π , which are explicitly given in inset to Fig. 25.5(b). Accord-
ingly, a system of working equations could be obtained from Eqs. (25.49), (25.51),
(25.53), and (25.55), as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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S11 + 3S12 cos
2 29π

90
+ 3S13 sin

2 29π

90

)
KA

1 +

(
S12 + 3S11 cos

2 29π

90
+ 3S13 sin

2 29π

90

)
KA

2

+

(
S13 + S13 cos

2 29π

90
+ 3S33 sin
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90

)
KA

3 = −1467
(25.57)

All the obtained experimental plots were linear in the stress interval investigated,
but exhibited different slopes. Similarly, for the 378 cm-1 Eg mode, calibration plots



25 Micromechanics with the Raman Microprobe 373

obtained on the sapphire single-crystals for Cases 1-4 (not shown). A system of
independent equations could then be obtained, according to Eqs. (25.50), (25.52),
(25.54) and (25.56), as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(25.58)
The last one in Eq. (25.58) was obtained from the bending on a polycrystalline

alumina. Upon solving the two independent systems of Eqs. (25.57) and (25.58),
the two sets of PDP values, KA

i (i = 1, 2, 3) and KA
j (j = 1, 2, 3, 4) could be

determined, which corresponds to the 417 cm-1 band of theA1g mode and to the 378
cm-1 band of the Eg mode, respectively. Similar procedures were also performed on
the shifts recorded for the band located at around 645 cm-1 (belonging to the A1g

vibrational mode), and for the three bands detected at around 430, 578, and 750 cm-1

(all belonging to the Eg vibrational mode). The values of PDP constants obtained
for all the above-mentioned Raman bands are listed in Table 25.1.

Table 25.1 PDP constants for the trigonal structure of Al2O3

Band Mode K1 K2 K3 K4

(×103cm−2) (×103cm−2) (×103cm−2) (×103cm−2)

378 Eg -293±22 -227±24 -3.2±0.5 -8.5±1
417 A1g -396±19 -406±6 -777±18 -
430 Eg -664±67 -613±74 -112±15 -30±5
576 Eg -976±89 -721±76 -259±38 -16±3
645 A1g -610±69 -380±50 -764±73 -
750 Eg -2117±319 -1193±166 -165±28 -35±4

A similar procedure can be applied to a tetragonal crystal of BaTiO3 with us-
ing the appropriate secular equation and elastic constants in order to obtain the PDP
constants (Pezzotti, 2013). Given the small dimensions of the available BaTiO3 crys-
tal, we used calibrations in compression (Fig. 25.4(b)) or exploited the equibiaxial
stress field developed at a crack tip (Pezzotti, 2013). The PDP values retrieved for
the tetragonal BaTiO3 crystal are listed in Table 25.2.
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Table 25.2 PDP constants for the tetragonal structure of BaTiO3

Band Mode a a b b c
(Uniax. compress.) (Biax. tens.) (Uniax. compress.) (Biax. tens.) (Biax. tens.)

270 A1(TO2) 838±39 987±101 458±38 606±60 -
520 A1(TO2) 1016±195 1224±250 424±93 623±221 -
490 E(TO4) - 2306±426 - -1622±214 250±50

25.2.3 Deconvoluting the Raman Probe in Space

Raman spectra collected at given geometrical locations (x0, y0, z0) contain spectral
contributions originating from portions of the crystal belonging to the finite probe
volume. Accordingly, a probe deconvolution procedure is needed, which is based on
the introduction of a probe response function (PRF). The PRF describes the intensity
of light scattered from a given point (x, y, z) when the incident laser beam is focused
at the point (x0, y0, z0). A suitable mathematical form of PRF in three dimensions
can be given as follows (Atkinson and Jain, 1999):

G(x, y, z, x0, y0, z0) ∝ exp
[
− 2

(x− x0)2 + (y − y0)2
R2

]
×

[
p2

(z − z0)2 + p2 e
−2αeffz

]
(25.59)

where R is the waist diameter of the laser probe in its focal plane, p is the in-depth
probe response parameter, which for an unfocused beam tends to infinity, and αeff
is the effective absorption coefficient of the material at the incident wavelength. The
values of these parameters for the investigated crystals were determined in previ-
ous studies in Pezzotti (2013); Pezzotti and Zhu (2015) as: BaTiO3: p=15.3 and
13.0μm (for a− and c−plane, respectively), R=3.0 and 5.0μm (for a- and c-plane,
respectively), and αeff = 3.4 × 10-3 and 2.0 × 10-3 μm-1 (for a− and c−plane,
respectively); and, Al2O3: p=3.6μm, R=2.0μm, and αeff=0.030μm-1. In order to
obtain a complete description of the observed Raman spectrum, Iobs(ω), a convolu-
tion of infinitesimal spectral contributions originating from each point of the probe
volume in the sample must be considered, as described by the following equation:

Iobs(ω) ∝
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
0

I(ω)e

[
−2

(x− x0)2 + (y − y0)2
R2

]
p2

p2 + (z − z0)2 e
−2αeffzdxdydz

(25.60)
where I(ω) is the local Raman line shape, which is in turn a function of the local
stress field in the case of an inhomogeneous stress distribution inside the probe
volume. If the spectral shift of a selected Raman band in presence of stress, Δω =
ω − ω0, is negligible with respect to the band width, (i.e., (ω − ω0)2 << N2 ), the
observed band shift can be expressed to a degree of precision by an average shift
weighted by the effective scattered intensity at the irradiated point. Accordingly,
the observed band shift, Δωobs(x0, y0, z0), can be calculated from the PRF as a
weighted average of infinitesimal (local) band shifts, Δω(x, y, z) , emitted from
different parts of the probe, as follows:
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Δωobs(x0, y0, z0) =

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
0

G(x, y, z, x0, y0, z0)Δω(x, y, z)dxdydz∫ +∞
−∞

∫ +∞
−∞

∫ +∞
0

G(x, y, z, x0, y0, z0)dxdydz
(25.61)

Note that a deconvolution procedure using the above equation involves the so-
lution of an integral equation whose unknown function, Δω(x, y, z), lies inside a
triple integral. The solution for such equation is not unique unless the “character” of
the unknown function can be guessed a priori or the morphology of the (experimen-
tally retrieved) convoluted function can be assumed to yet retain the “character” of
the native function and be used as a trial function. One usually accepts that the char-
acter of the deconvolute function should coincide with that of the experimentally
retrieved function before deconvolution.

25.3 Applications of Raman Stress Analysis to Modern Devices

25.3.1 Miniaturized Multilayered Ceramic Condensers

BaTiO3 ceramic with its high dielectric constant is the most common dielectric con-
stituent of commercial multilayer ceramic capacitors (MLCC). However, this ma-
terial is highly anisotropic, and also prone to crystallographic instability (domain
switching) and phase transitions during service. The most recent technological de-
velopments to-wards miniaturization of MLCC dielectric devices have foreseen a
significant decrease in layer thickness (down to few micrometers) for both ceramic
dielectric layers and internal metallic Ni electrodes Kishi et al (2003). The purpose
of doing so is to increase the MLCC capacitance by increasing the number of the
dielectric layers. In such a miniaturized context and given the high anisotropy in
dielectric constant of the BaTiO3 crystallites, a control of the texture of crystallo-
graphic domains becomes crucial for the performance of the device and decisive for
its reliability. Significant variations in electric and mechanical properties of ferro-
electric materials could arise from the formation of residual stress-driven domain
textures. The formation of such textures is indeed a consequence of the mechani-
cal residual stresses developed in the dielectric MLCC layers upon manufacturing,
which are partly released by the domain formation. Residual stresses are mainly due
to the high thermal expansion mismatch between Ni metal and BaTiO3 ceramic (den
Toonder et al, 2003). Common reasons of failure stem from the presence of internal
defects introduced during manufacturing (Nakano et al, 2003), residual stress fields
experienced during firing or at various stages of assembly (Saito and Chazono, 2003;
Uchino et al, 1989), and mechanical, thermal and/or electric fatigue during opera-
tion (Nomura et al, 1995). In all the above cases (and their combinations), internal
cracks generate across the dielectric layers, which represent short/leakage current
paths.

Given the importance of domain structures and residual stress fields in MLCC,
several methods have been proposed for their detection and visualization. They
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include optical (polarized) microscopy, scanning force microscopy, and neutron
diffraction (for a review see Potnis et al (2011)). However, Raman spectroscopy has
some advantages on those methods: it enables to reach single-micronscale spatial
resolution in the BaTiO3 dielectric layers and to concurrently measure the tensor-
resolved stress state. We employed the polarized Raman algorithms given in the
previous sections for a quantitative characterization of local domain textures and
residual stresses in the BaTiO3 dielectric layers of a miniaturized MLCC device.
Figure 25.6(a) shows a schematic draft of a MLCC device less than one millime-
ter in total thickness, and an optical micrograph of the BaTiO3 interlayer 5μm in
thickness, which was probed with a Raman probe size of a single micron and a step
of 0.1μm in an area 5 × 5μm2 (2500 measurement points). In Fig. 25.6(b), maps
of domain texture in the investigated area are given in terms of three Euler angles
in space as defined in Fig. 25.6(a). The local orientation of the domain c-axis was
obtained by locally rotating in-plane (angle ψ) the polarized Raman probe at each
measurement point, and then computing the values of three Euler angles by best fit-
ting the experimentally obtained curves according to Eqs. (14.12)-(25.16) (based
on the knowledge of the RTE for the BaTiO3 crystal as determined in Subsect.

Fig. 25.6 (a) Schematic draft of MLCC miniaturized device, its internal electrode structure (with
micrograph of the investigated interlayer area), and the related definition of Cartesian coordinates
and Euler angles; (b) maps of three Euler angles in space in the interlayer area shown in the
micrograph in (a); and, (c) maps of six independent stress components in space in the interlayer
area shown in the micrograph in (a)
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25.2.1). Figure 25.6(c) shows maps of the six independent stress tensor components
in the same zone of the dielectric layer, according to the Cartesian axes given in Fig.
25.6(a)). The tensor-deconvoluted stress values were obtained according to the PDP
constants in Table 25.2 and a treatment of the secular equation for the tetragonal
structure (Pezzotti, 2013) similar to that described in Sect. 25.2.2 for the trigonal
structure. Figures 25.6(b) and (c) contain fundamental information that clarifies the
formation of crystallographic domains and their interactions with the residual stress
field. The orientation of the domain structures experienced a clear gradient with in-
creasing distance from the Ni-electrode area, the closer the distance from the elec-
trode, the more homogeneous and marked the orientation pattern. Far from being
randomly distributed, both in-plane and out-of-plane orientation angles appeared to
obey a symmetric configuration with respect to the thickness direction (y-axis). The
crystallographic structure of the dielectric interlayer was affected by steeper out-
of-plane angular gradients as compared to the in-plane angle, although such fluc-
tuations occurred within relatively narrow angular intervals of 10deg-15deg. Note
that there was a clear correspondence between the geometry of the domains and the
distributions of residual stresses; both hydrostatic and deviatoric components being
mainly relaxed at the central parts were the “switched” domain structure appeared
the most homogeneous. In other words, the present experiments demonstrated that
the formation of domain textures occurs in order to relax manufacturing residual
stresses due to thermal expansion mismatch between dielectrics and electrodes. The
evolution of switching in the BaTiO3 inter-layers under an electric field applied to
the internal electrodes can be rationalized and computed by appropriate modeling in
Choudhury et al (2007), but the domain conditions become difficult to predict when
affected by thermal fatigue because of the complex nature of the generated residual
stress fields. The impact of domain textures on the dielectric performance has been
discussed in detail in a previous publication by Okai et al (2011). It was found that
a non-random angular distribution of the domain c-axis, e.g., a strongly aligned one
along a given axis of the MLCC device, significantly alters the effective value of
dielectric constant as compared to a random angular population. In particular, the
dielectric response of the MLCC could actually be lower than that expected for the
same design with a random structure (i.e., in which all the directions in space exist
with the same probability and thus the dielectric constant is simply the average of
those along the a- and c-axis). The polarized Raman probe thus becomes a precious
and unique instrument in microelectronics for understanding the evolution of do-
main orientation during service, thus leading to improved reliability and elongated
lifetimes in MLCC devices.

25.3.2 Ceramic Femoral Heads in Artificial Hip Joint

Another field in which polarized Raman spectroscopy could suitably be applied in
micromechanical assessments is joint orthopedics. A stunning finding is that a resid-
ual stress state remains stored onto the surface of ceramic femoral head retrievals,
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which thus retain “memory” of the sliding conditions in vivo, even if the sliding
counterpart is a softer material (i.e., polyethylene). This circumstance is important
in forensics, because it gives us a chance to interpret eventual complications and
malfunctioning that might have occurred in vivo after the component has been ex-
tracted from the patient’s body. Moreover, abnormal kinematics (coupled with mate-
rial degradation) is hardly reproducible by in vitro simulations or obviously explain-
able through computational approaches. Raman spectroscopic algorithms contribute
to link the joint performance with the micromechanical features that occur in real
in vivo situations. Contact stresses play a fundamental role in the long term clin-
ical performance of the artificial hip joint prostheses (Brand et al, 2001), because
surface wear and the generation of polyethylene wear particles is recognized as one
of the major factors contributing to loosening and failure of the prosthesis in the
longer term. High wear rate and subsequently the partial or total penetration of the
ceramic femoral head into the soft polyethylene acetabular liner can also cause ab-
normal biomechanics, such as joint migration, impingement, and fixation loosening.
Accordingly, the establishment of a spectroscopic link between the residual stress
states stored onto the ceramic head surface and the loading conditions in vivo en-
ables acquiring precious biomechanical information, which contributes to improve
the design of long-lasting artificial hip joints.

In this section, the principal stress magnitude was computed (after experimen-
tally measuring the local magnitudes of the full set of stress components) and
mapped on short (2 y and 6 mo), medium (8 y and 2 mo), and long-term (19 y) Al2O3
femoral head retrievals, which served in the human body coupled with polyethylene
liners. Figure 25.7(a) shows a schematic draft of a femoral head sliding against an
acetabular liner under body weight. Swing angles are shown in the cases of nor-
mal and abnormal gait, the latter case being a consequence of the previously men-
tioned phenomenon of “head migration.” Head migration might occur during ser-
vice due to an excess of wear and deformation of the polyethylene acetabular liner
(Fig. 25.7(b)). Under such circumstances, the head occupies a restricted zone of the
liner and slides with a limited angular swing (cf. Figs. 25.7(a) and (b)). Such an
altered kinematics produces increased contact stresses, especially when the ceramic
head directly impinges against the metallic cup that supports the polyethylene liner
(Khanna and Beaulé, 2014). As a consequence of such an abnormal situation, metal-
lic debris can be found on the ceramic surface, as shown in the scanning electron
micrograph and in the in toto fractional map of metal stain in Figs. 25.7(a) and (b),
respectively. In the bottom part of Fig. 25.7(a), the gait trajectory is shown together
with the main path of sliding, and the paths of maximum shear and maximum pres-
sure. The specific zone where all those paths intercept is subjected to formidable
stress fields during gait. Under normal conditions, the residual stress field tends to
concentrate at two specific zones, which correspond to the apex of the gait trajectory
(cf. bottom part of Fig. 25.7(a)). During the joint lifetime, the stresses are initially of
a tensile nature in these zones but, in the long range, they turn into compressive ones
because the effect of repeated pressure prevails on the initial surface microdamage
(compare maps of the trace of principal residual stresses for Case 1 and Case 3 in
Fig. 25.7(c)). Case 2 (also in Fig. 25.7(c)) is a typical case of abnormal kinematics
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for the hip joint, with a number of distinct impingement zones (corresponding to a
number of different spots of concentrated residual stress) in addition to the two phys-
iological ones at the apex of the gait trajectory. Such a detrimental situation usually
arises form recurrent hip sub-luxation/dislocations and/or from malpositioning dur-
ing surgery. An in-depth tensor-resolved stress analysis is shown in Fig. 25.7(c) with
a plot as a function of the in-depth abscissa, z, of the six independent stress compo-
nents at the conjunction of maximum pressure and shear trajectories. The location
of the Raman measurement is shown in the micrograph of Fig. 25.7(a) together
with the Cartesian axes and the selected polarization direction. After determining
the crystallographic orientation of the Al2O3 grain according to the extended selec-
tion rules and the knowledge of the RTE (see Sect. 25.2.1), both hydrostatic and
deviatoric stress components were computed from experimental Raman band shifts,
according to the algorithm explained in Sect. 25.2.2 (Eqs. (25.47)-(25.58)). The con-
focal probe was shifted along the in-depth direction, z, and the obtained trend then
deconvoluted in space using the Raman probe response function discussed in Sect.

Fig. 25.7 (a) Schematic draft of artificial hip joint, swing angles under normal and abnormal gait,
and the paths of maximum pressure and shear stress (with micrograph of the investigated
microstructural area with the related Cartesian coordinates); (b) schematic draft of femoral head
migration and in toto map of metal contamination; and, (c) in toto maps of the trace of principal
stress tensor for three retrievals exposed in vivo for different periods of time (see labels), and
dependence on the in-depth z-axis for the six independent stress components in space at the
location of maximum pressure and shear stress paths shown in the micrograph in (a)
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25.2.3 (Eq. (25.61)). From the measured in-depth trends, we could locate the fol-
lowing main items, based on the hypothesis that the residual stresses actually reflect
the stress state developed during service on the surface of the ceramic bearing:

(i) The hydrostatic stress tensor component, σzz , was always compressive in na-
ture because caused by body weight. The magnitude of this residual stress com-
ponent was quite high, but it matched predictions according to Hertzian contact
against the metallic support of the acetabular liner (Zhu et al, 2017);

(ii) The in-plane hydrostatic components, σxx and σyy are believed to mainly arise
from partial lateral rotations (usually referred to as micro-displacement) of the
femoral head during gait. The former experienced a pronounced in-depth varia-
tion and changed from compressive into tensile along the z-axis, while the latter
followed a similar trend, but experienced a lower tensile magnitude along the
subsurface.

(iii) The magnitudes of all the contact shear stress components were negligibly
small. Shear stresses might have been relaxed by grain pulling out (as also vis-
ible in the micrograph of Fig. 25.7(a));

In substance, the evolution of residual stress motifs in space could be examined with
micrometric resolution by Raman spectroscopy. Complications and malfunctioning
became visualized post mortem through analyzing the residual stress fields stored
on the surface of retrieved femoral heads. Raman spectroscopy thus helps unveiling
peculiar micromechanical features as they occur during real in vivo situations.

25.4 Conclusion

This paper briefly reviewed the history of stress, posited the importance of expand-
ing the concepts to residual stresses, and provided algorithms to measure their spa-
tially and tensorially deconvoluted components by a completely non-contact Raman
spectroscopic method. Quantitative algorithms to assess domain textures and single-
grain crystallographic orientations at the microscopic level in three Euler angles
were also reported. Confocal/polarized Raman analyses were found capable to ad-
vance understanding of basic phenomena behind the performance of both electronic
and biomedical devices, and examples of such analyses were explicitly shown. In a
more general perspective, the computational Raman algorithms could inspire new
criteria in design, quality control, and lifetime of new devices, while concurrently
incorporating a deterministic monitoring of residual stress parameters, a so far con-
spicuously neglected task that Raman spectroscopy could effectively accomplish.
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Chapter 26

Analytical Solutions of 2-dimensional Second

Gradient Linear Elasticity for Continua with

Cubic-D4 Microstructure

Luca Placidi, Giuseppe Rosi & Emilio Barchiesi

Abstract We consider in this paper analytical solutions for some remarkable cases
and for a linear anisotropic D4 second gradient elastic model. The purpose is that of
constitutive parameter identification. In general, analytical solutions are considered
less important than in the past due to fast numerical tools and to the fact that they are
generally very difficult to achieve. However, they still play very important roles such
as for numerical comparison and for dealing with pathological mechanical systems.

Keywords: Analytical solution · Metamaterial · Inverse analysis · Parameter deter-
mination

26.1 Introduction

Metamaterials (see the reviews Del Vescovo and Giorgio (2014); Barchiesi et al
(2018)) represent a very important challenge for engineering design and modeling.
Indeed, from the point of view of numerical simulations, metamaterials are intrin-
sically complex to model and require high computational power Bilotta and Turco
(2009); Cazzani and Ruge (2012); Garusi et al (2004); Hendy and Turco (2008).
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Discrete models, because of the increasing performances of modern computers,
are becoming a suitable choice for capturing all the important features of complex
multi-scale or microstructured mechanical systems (see Baraldi et al (2013); Rahali
et al (2015); Placidi et al (2017a); Goda et al (2012) for numerical and theoretical
results). Still, the development of continuum models is fundamental because of the
possibility of having both analytical, in some simplified cases, and numerical so-
lutions to be used in optimization processes. As it is well known, Classic Cauchy
continuum theory is not rich enough to be used in the framework of metamaterial
modelling if the geometry of the microstructure is not explicitly described (like in,
e.g., Franciosi et al (2018)). Indeed, the size of the microstructural features (see,
e.g., AminPour and Rizzi (2016); Aminpour and Rizzi (2015, 2016); Aminpour
et al (2014) for nano-sized objects) is so small that the increased degrees of free-
dom results in a high computational cost and the effective geometry of the resulting
body is complex (see e.g pantographic structures dell’Isola et al (2018); Scerrato
et al (2016b) or truss structures Alibert et al (2003); Seppecher et al (2011)). Thus,
numerical simulations, within the standard 3D Cauchy elasticity model, of the exact
geometry of a 3D body goes generally beyond the present hardware capabilities.
Starting with works of Piola dell’Isola et al (2015, 2016, 2019), when numerical
simulations could not clearly be performed with the aid of computers, the neces-
sity to find new, generalized, models able to deal with complex microstructures and
from a continuum point of view is strongly felt by the scientific community. Higher
order gradient continua Auffray et al (2015a) fulfill the above mentioned charac-
teristics, via e.g. an homogenization criterion Cecchi and Rizzi (2001); Dos Reis
and Ganghoffer (2012); Goda et al (2014); Rahali et al (2015), and second gradient
dell’Isola et al (2009, 2008); Mindlin (1964); Pideri and Seppecher (1997); San-
sour and Skatulla (2009); Terravecchia et al (2014); Selvadurai (1973) 2D elastic
materials, in general anisotropic Auffray et al (2015b); dell’Isola and Steigmann
(2015); Indelicato and Albano (2009); Steigmann (2009); Steigmann and dell’Isola
(2015); Walpole (1984) ones, are the subject of this contribution. It is a matter of
fact that the higher order continua can be seen as a specialization of micromor-
phic/microstructured continua Misra and Poorsolhjouy (2015); Misra and Singh
(2015); Misra and Huang (2012); Misra et al (2015); Misra and Singh (2014), where
the kinematical descriptors added to the Cauchy model are independent of the clas-
sic ones, by means of certain assumptions. Even if generalized continuum models
have proven to be more efficient, as we have discussed above, one of the main issue
concerning such models is the lack of procedures for estimating their constitutive
coefficients. In this paper, analytical solutions will be derived for the purpose of
constitutive parameter identification.

From a numerical point of view, difficulties mainly consist in conceiving new
numerical schemes Atluri and Cazzani (1995); Greco and Cuomo (2015); Solaria
et al (1997); Andreaus et al (2018) for finite element simulations suitable for higher
order continua. In particular higher degree of continuity Bilotta et al (2010) of the
basis functions must be guaranteed Cuomo et al (2014); Greco and Cuomo (2014);
Hughes et al (2014). Among others, the fundamental reasons justifying these diffi-
culties are related, e.g., to the inclusion of impact behaviors Andreaus et al (2013);
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Bersani et al (2013); Kezmane et al (2017), of instabilities Luongo and D’annibale
(2012); Piccardo et al (2015); Rizzi and Varano (2011a,b); Ruta et al (2008); Scer-
rato et al (2016a); Spagnuolo and Andreaus (2018) and/or of surface effects Al-
tenbach et al (2010); dell’Isola and Rotoli (1995); Rosi et al (2017) and of dam-
age or plastic behaviour D’Annibale and Luongo (2013); Goda et al (2012, 2014);
Placidi et al (2018).

In general, analytical solutions are considered less important than in the past
due to the new numerical tools dell’Isola and Seppecher (1995). Besides, they are
generally very difficult to achieve. However, they still play the very important role
for numerical comparison and for dealing with pathological mechanical systems
Bersani et al (2016). In other words, in these cases, they are useful for the verifica-
tion of those new numerical solution procedures, for which the use of the analytical
solutions as a benchmark is needed.

In this paper, analytical solutions will be defined for the purposes of convenient
constitutive parameter identification Placidi et al (2017a); Turco (2013) and will be
exploited for that objective in a further contribution.

26.2 Outline of the Model

We briefly recall, in this Section, the main facts about the linear two-dimensional
elastic second gradient D4 cubic continuum model employed in this paper. The
model has been developed in more detail in Placidi et al (2017a). The reference
configuration B is a 2-dimensional body, where X denotes the coordinates of its
material points. The internal energy density functional U (G,∇G) is a function of
the deformation matrix G =

(
FTF− I) /2 and of its gradient ∇G. F = ∇χ is

the deformation gradient, where χ is the placement function, FT is the transpose of
F, and ∇ is the gradient operator. The energy functional E (u (·)) depends on the
displacement u = χ −X and includes two contributions, that are the internal and
the external energies,

E (u (X)) =

∫
B

[
U (G,∇G)− bext · u−mext · ∇u

]
dA (26.1)

−
∫
∂B

[
text · u+ τext · [(∇u)n]

]
ds−

∫
[∂∂B]

fext · u

where the dot is the scalar product between vectors or tensors (in the case mext ·∇u)
and n is the unit external normal. bext and mext are the external body force and
double force, respectively, per unit area. text and τext are the external force and
double force, respectively and per unit length. fext is the external concentrated force,
that is applied on the set of vertices [∂∂B]. The boundary ∂B is assumed to be the
union ofm regular parts Σc (with c = 1, . . . ,m) and the so-called boundary of the
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boundary [∂∂B] is assumed to be the union of the corresponding m vertex-points
Vc (with c = 1, . . . ,m) with coordinates Xc.

The most general second gradient quadratic function representing the internal
energy density is

U (G,∇G) = Û (ε, η) =
1

2
CIJεIεJ +

1

2
Aαβηαηβ (26.2)

where, the indexes I and J vary from 1 to 3, the indexes α and β vary from 1 to 6,
εI is the I-th component of the following column-vector ε

ε =

⎛⎝ G11

G22√
2G12

⎞⎠ , (26.3)

ηα is the α-th component of the following column-vector η

η =

⎛⎜⎜⎜⎜⎜⎜⎝

G11,1

G22,1√
2G12,2

G22,2

G11,2√
2G12,1

⎞⎟⎟⎟⎟⎟⎟⎠ , (26.4)

CIJ is the IJ-th component of the 3× 3 matrix C

C =

⎛⎝ c11 c12 0
c12 c11 0
0 0 c33

⎞⎠ , (26.5)

for a D4 material, see also Auffray et al (2015b). Aαβ is the αβ-th component of
the matrix A

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 a13 0 0 0
a12 a22 a23 0 0 0
a13 a23 a33 0 0 0
0 0 0 a11 a12 a13
0 0 0 a12 a22 a23
0 0 0 a13 a23 a33

⎞⎟⎟⎟⎟⎟⎟⎠ , (26.6)

Stress and hyper stress tensors are,

Sij =
∂U

∂Gij
, Tijh =

∂U

∂Gij,h
, (26.7)
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26.3 Some Explicit Computations for the Identification

Procedure

26.3.1 Stress and Hyperstress in Terms of the Displacement Field

Some explicit computations, which are instrumental for the identification procedure,
will be shown in this Section. Thus, the stress components read from (26.7)1, (26.2),
(26.3) and (26.5):

S11 = c11G11 + c12G22, (26.8)
S12 = S21 = c33G12, (26.9)

S22 = c12G11 + c11G22. (26.10)

The hyperstress components read from (26.7)2, (26.2), (26.4) and (26.6):

T111 = a11G11,1 + a12G22,1 +
√
2a13G12,2, (26.11)

T112 = a12G22,2 + a22G11,2 +
√
2a23G12,1, (26.12)

T121 = T211 =

√
2

2
a13G22,2 +

√
2

2
a23G11,2 + a33G12,1, (26.13)

T122 = T212 =

√
2

2
a13G11,1 +

√
2

2
a23G22,1 + a33G12,2, (26.14)

T221 = a12G11,1 + a22G22,1 +
√
2a23G12,2, (26.15)

T222 = a11G22,2 + a12G11,2 +
√
2a13G12,1. (26.16)

By replacing the components of the strain and of the strain gradient tensors in terms
of the displacement field yields,

G11 = u1,1, G12 = G21 = 1
2 (u1,2 + u2,1) , G22 = u2,2, (26.17)

G11,1 = u1,11, G11,2 = u1,12, G22,1 = u2,12, G22,2 = u2,22, (26.18)
G12,1 = G21,1 = 1

2 (u1,12 + u2,11) , G12,2 = G21,2 = 1
2 (u1,22 + u2,12) . (26.19)

Insertion of (26.17-26.19) into (26.8-26.16), gives the stress and the hyperstress
fields in terms of the displacement fields, i.e.,

S11 = c11u1,1 + c12u2,2, (26.20)

S12 = S21 =
1

2
c33 (u1,2 + u2,1) , (26.21)

S22 = c11u2,2 + c12u1,1, (26.22)

and
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T111 = a11u1,11 + a12u2,12 +
a13√
2
(u1,22 + u2,12) , (26.23)

T112 = a12u2,22 + a22u1,12 +
a23√
2
(u1,12 + u2,11) , (26.24)

T121 = T211 =

√
2

2
a13u2,22 +

√
2

2
a23u1,12 +

1

2
a33 (u1,12 + u2,11) , (26.25)

T122 = T212 =

√
2

2
a13u1,11 +

√
2

2
a23u2,12 +

1

2
a33 (u1,22 + u2,12) , (26.26)

T221 = a12u1,11 + a22u2,12 +
a23√
2
(u1,22 + u2,12) , (26.27)

T222 = a11u2,22 + a12u1,12 +
a13√
2
(u1,12 + u2,11) . (26.28)

26.3.2 Partial Differential Equations and Boundary Conditions

The system of PDEs for anisotropic D4 elastic second gradient materials has been
deduced by the stationary principle in Placidi et al (2017b,c,a). Here, it is made
explicit the first partial differential equation,

c11u1,11 +
1

2
c33 (u1,22 + u2,12) + c12u2,12 = (26.29)

= a11u1,1111 +
√
2 (a13 + a23)

(
1

2
u2,1222 +

1

2
u2,1112 + u1,1122

)
+ a22u1,1122

+a12 (u2,1222 + u2,1112) + a33 (u1,2222 + u1,1122 + u2,1222 + u2,1112)

−bext1 +mext
11,1 +m

ext
12,2

The other partial differential equation, because of the D4-symmetry, is simply given
by an interchange of the indices 1 and 2 in (i) the displacement field u, in (ii) its
derivatives, in (iii) the external force per unit area bext, in (iv) the external double
force per unit area mext and in (v) its derivatives (not in the indices of the constitu-
tive coefficients of eqns. (26.5) and (26.6)!).

The rectangular geometry of the homogeneous 2-dimensional second gradient
elastic body we will here investigate has been pictured in Fig. 26.1. The exter-
nal force and double force field per unit length have been already characterized
in Placidi et al (2017b,c,a) for each sides of the rectangle of Fig. 26.1. In the rest
of this subsection we will make these forces and double forces in terms stress and
hyperstress tensors.

The characterization of side S is done as follows
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t1 = tS1 = S11 − T112,2 − T111,1 − T121,2 (26.30)
t2 = tS2 = S21 − T211,1 − T212,2 − T221,2, (26.31)

τ1 = τS1 = T111, (26.32)
τ2 = τS2 = T211. (26.33)

The characterization of side Q is, onthe other side, as foollows

t1 = tQ1 = −S11 + T112,2 + T111,1 + T121,2 (26.34)

t2 = tQ2 = −S21 + T211,1 + T212,2 + T221,2, (26.35)

τ1 = τQ1 = T111 (26.36)

τ2 = τQ2 = T211. (26.37)

We remark that, because of symmetry reasons, tQ1 in (26.34) and tQ2 in (26.35) are
the opposite of tS1 in (26.30) and of tS2 in (26.31), respectively, and that τQ1 in (26.36)
and τQ2 in (26.37) are the same of τS1 in (26.32) and of τS2 in (26.33), respectively.

The characterization of side R is done as follows

t1 = tR1 = S12 − T121,1 − T112,1 − T122,2 (26.38)
t2 = tR2 = S22 − T221,1 − T212,1 − T222,2, (26.39)

τ1 = τR1 = T122, (26.40)
τ2 = τR2 = T222. (26.41)

We remark that, again for the same reasons, tR1 in (26.38) and tR2 in (26.39) are the
same of tS2 in (26.31) and of tS1 in (26.30), respectively, by changing the indices 1
and 2. Besides, because of symmetry reasons, τR1 in (26.40) and τR2 in (26.41) are
the same of τS2 in (26.32) and of τS1 in (26.33), respectively, by changing the indices
1 and 2.

Finally, the characterization of side T is, on the other side, done as follows

t1 = tT1 = −S12 + T121,1 + T112,1 + T122,2, (26.42)
t2 = tT2 = −S22 + T221,1 + T212,1 + T222,2, (26.43)

τ1 = τT1 = T122, (26.44)
τ2 = τT2 = T222. (26.45)

We again remark that tT1 in (26.42) and tT2 in (26.43) are the opposite of tR1 in
(26.38) and of tR2 in (26.39), respectively, and that τT1 in (26.44) and τT2 in (26.45)
are the same of τR1 in (26.40) and of τR2 in (26.41), respectively.

The external force on vertices are characterized in Placidi et al (2017b,c,a) for
each vertices. For vertices V1 and V3 we have

fα = −Tα21 − Tα12, α = 1, 2 (26.46)

For vertices V2 and V4, on the other side, we have
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fα = Tα21 + Tα12, α = 1, 2 (26.47)

26.4 Analytical Solutions of Homogeneous Second Gradient

Model

In this section we explore, in each subsection, analytical solutions of this homoge-
neous 2-dimensional second gradient elastic model. In particular, force and double
force for each sides and per unit length, have been calculated as well as the vertex-
concentrated forces.

26.4.1 Simple Tension Test

The following displacement field is considered,

u1 = 0, u2 =
δ

20

(
−1 + X2

l

)
. (26.48)

This is achieved, from (26.29), by neglecting distributed forces and double forces
(bext = mext = 0) and by imposing the following set of kinematical boundary
conditions for the macroscopic second gradient model (Fig. 26.1). At Q, that is at
X1 = 0 and ∀X2 ∈ [−l, l]

u1 (0, X2) = u1,1 (0, X2) = 0, u2 (0, X2) =
δ

20

(
−1 + X2

l

)
, u2,1 (0, X2) = 0.

Fig. 26.1 Nomenclature and
geometry of the homoge-
neous 2-dimensional second
gradient elastic body.
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At R, that is ∀X1 ∈ [0, L] and at X2 = l,

u1 (X1, l) = u1,2 (X1, l) = u2 (X1, l) = 0, u2,2 (X1, l) =
δ

20l
.

At S, that is at X1 = L and ∀X2 ∈ [−l, l]

u1 (L,X2) = u1,1 (L,X2) = 0, u2 (L,X2) =
δ

20

(
−1 + X2

l

)
, u2,1 (L,X2) = 0.

At T , that is ∀X1 ∈ [0, L] and at X2 = −l,

u1 (X1,−l) = u1,2 (X1,−l) = 0, u2 (X1,−l) = − δ
10
, u2,2 (X1,−l) = δ

20l
.

From Placidi et al (2017b,c, 2015, 2017a) force and double force at each side have
been calculated

tS,ext1 = c12
δ

20l
, tS,ext2 = 0, τS,ext1 = 0, τS,ext2 = 0, (26.49)

tQ,ext
1 = −c12 δ

20l
, tQ,ext

2 = 0, τQ,ext
1 = 0, τQ,ext

2 = 0, (26.50)

tR,ext
1 = 0, tR,ext

2 = c11
δ

20l
, τR,ext

1 = 0, τR,ext
2 = 0, (26.51)

tT,ext
1 = 0, tT,ext

2 = −c11 δ
20l
, τT,ext

1 = 0, , τT,ext
2 = 0, (26.52)

as well as vertex forces,(
fextj

)
Vi

= 0, i = 1, 2, 3, 4, j = 1, 2

26.4.2 Simple Shear Test

The following displacement field is considered,

u1 =
δ

20l
(X2 + l) , u2 = 0. (26.53)

This is achieved by considering no distributed forces and double forces

bext = mext = 0
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and by imposing the following set of kinematical boundary conditions for the
macroscopic second gradient model of Fig. 26.1.

At Q, that is at X1 = 0 and ∀X2 ∈ [−l, l]

u1 (0, X2) =
δ

20l
(X2 + l) , u1,1 (0, X2) = 0, u2 (0, X2) = 0, u2,1 (0, X2) = 0.

At R, that is ∀X1 ∈ [0, L] and at X2 = l,

u1 (X1, l) =
δ

10
, u1,2 (X1, l) = u2 (X1, l) = 0, u2,2 (X1, l) = 0.

At S, that is at X1 = L and ∀X2 ∈ [−l, l]

u1 (L,X2) =
δ

20l
(X2 + l) , u1,1 (L,X2) = 0, u2 (L,X2) = 0, u2,1 (L,X2) = 0.

At T , that is ∀X1 ∈ [0, L] and at X2 = −l,

u1 (X1,−l) = u1,2 (X1,−l) = 0, u2 (X1,−l) = 0, u2,2 (X1,−l) = 0.

From Placidi et al (2017b,c, 2015, 2017a) force and double force at each side have
been calculated

tS,ext1 = 0, tS,ext2 = c33
δ

40l
, τS,ext1 = 0, τS,ext2 = 0, (26.54)

tQ,ext
1 = 0, tQ,ext

2 = −c33 δ
40l
, τQ,ext

1 = 0, τQ,ext
2 = 0, (26.55)

tR,ext
1 = c33

δ

40l
, tR,ext

2 = 0, τR,ext
1 = 0, τR,ext

2 = 0, (26.56)

tT,ext
1 = −c33 δ

40l
, tT,ext

2 = 0, τT,ext
1 = 0, τT,ext

2 = 0, (26.57)

as well as vertex forces,(
fextj

)
Vi

= 0, i = 1, 2, 3, 4, j = 1, 2

26.4.3 Heavy Sheet

Let ρ be the mass per unit area and A the total area of the second gradient ho-
mogeneous elastic body and ρm be the mass per unit area and Am the total area
of the non-homogeneous first gradient elastic body. Thus, the correct identification
between the two mass densities is as follows
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ρm = ρ
A

Am

The following displacement field is considered,

u1 = 0, u2 =
ρg (X2 − l) (3l +X2)

2c11
. (26.58)

This is achieved by the following distributed forces and double forces

bext1 = mext
ij = 0, ∀i, j, bext2 = −gρ

the following set of kinematical boundary conditions for the macroscopic second
gradient model of Fig. 26.1.

At Q, that is at X1 = 0 and ∀X2 ∈ [−l, l]

u1 (0, X2) = u1,1 (0, X2) = 0,

u2 (0, X2) =
ρg (X2 − l) (3l +X2)

2c11
,

u2,1 (0, X2) = 0.

At R, that is ∀X1 ∈ [0, L] and at X2 = l,

u1 (X1, l) = u1,2 (X1, l) = u2 (X1, l) = 0, u2,2 (X1, l) =
2ρgl

c11
.

At S, that is at X1 = L and ∀X2 ∈ [−l, l]

u1 (L,X2) = u1,1 (L,X2) = 0,

u2 (L,X2) =
ρg (X2 − l) (3l +X2)

2c11
,

u2,1 (L,X2) = 0.

At T , that is ∀X1 ∈ [0, L] and at X2 = −l,

u1 (X1,−l) = u1,2 (X1,−l) = 0, u2 (X1,−l) = −2ρgl2

c11
, u2,2 (X1,−l) = 0.

From Placidi et al (2017b,c, 2015, 2017a) force and double force at each side have
been calculated

tS,ext1 = c12
ρg (X2 + l)

c11
, tS,ext2 = 0,

τS,ext1 = 0, τS,ext2 =

√
2

2
a13
ρg

c11
. (26.59)
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tQ,ext
1 = −c12 ρg (X2 + l)

c11
, tQ,ext

2 = 0,

τQ,ext
1 = 0, τQ,ext

2 =

√
2

2
a13
ρg

c11
. (26.60)

tR,ext
1 = 0, tR,ext

2 = 2ρg l, τR,ext
1 = 0, τR,ext

2 = a11
ρg

c11
. (26.61)

tT,ext
1 = 0, tT,ext

2 = 0, τT,ext
1 = 0, τT,ext

2 = a11
ρg

c11
. (26.62)

as well as vertex forces,

(
fext1

)
Vi

= −
(
a12 +

√
2

2
a13

)
ρg

c11
, i = 1, 3 (26.63)

(
fext1

)
Vi

=

(
a12 +

√
2

2
a13

)
ρg

c11
, i = 2, 4 (26.64)(

fext2

)
Vi

= 0, i = 1, 2, 3, 4. (26.65)

26.4.4 Non-conventional Bending

The following displacement field is considered,

u1 = 0, u2 = −BX
2
1

2
, (26.66)

where B is a small constant with the physical dimension of the inverse of a length.
This is achieved by the following distributed forces and double forces

bext1 = mext
ij = 0, ∀i, j, bext2 = −B

2
c33

and set of kinematical boundary conditions for the macroscopic second gradient
model of Fig. 26.1.
At Q, that is at X1 = 0 and ∀X2 ∈ [−l, l]

u1 (0, X2) = u1,1 (0, X2) = 0, u2 (0, X2) = 0, u2,1 (0, X2) = 0.

At R, that is ∀X1 ∈ [0, L] and at X2 = l,

u1 (X1, l) = u1,2 (X1, l) = 0, u2 (X1, l) = −BX
2
1

2
, u2,2 (X1, l) = 0.
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At S, that is at X1 = L and ∀X2 ∈ [−l, l]

u1 (L,X2) = u1,1 (L,X2) = 0, u2 (L,X2) = −B L
2

2
, u2,1 (L,X2) = −B L.

At T , that is ∀X1 ∈ [0, L] and at X2 = −l,

u1 (X1,−l) = u1,2 (X1,−l) = 0, u2 (X1,−l) = −BX
2
1

2
, u2,2 (X1,−l) = 0.

From Placidi et al (2017b,c, 2015, 2017a) force and double force at each side have
been calculated

tS,ext1 = 0, tS,ext2 = −B
2
X1c33, τ

S,ext
1 = 0, τS,ext2 = −B

2
a33, (26.67)

text,Q1 = 0, tQ,ext
2 =

B

2
X1c33, τ

Q,ext
1 = 0, τQ,ext

2 = −B
2
a33, (26.68)

text,R1 = −B
2
X1c33, t

ext,R
2 = 0, τR,ext

1 = 0, τR,ext
2 = −

√
2

2
a13B, (26.69)

text,T1 =
B

2
X1c33, t

ext,T
2 = 0, τT,ext

1 = 0, τT,ext
2 = −

√
2

2
a13B, (26.70)

as well as vertex forces,

(
fext1

)
Vi

= B

(√
2

2
a23 +

1

2
a33

)
, i = 1, 3 (26.71)

(
fext1

)
Vi

= −B
(√

2

2
a23 +

1

2
a33

)
, i = 2, 4 (26.72)(

fext2

)
Vi

= 0, i = 1, 2, 3, 4. (26.73)

26.4.5 Trapezoidal Case

Let us take into account the following displacement field

u1 = 0, u2 = T X1X2, (26.74)

where T is a small constant with the physical dimension of the inverse of a length.
This is achieved by the following distributed forces and double forces

bext2 = mext
ij = 0, ∀i, j, bext1 = T

(
c12 +

1

2
c33

)
and set of kinematical boundary conditions for the macroscopic second gradient
model of Fig. 26.1.



396 Luca Placidi, Giuseppe Rosi & Emilio Barchiesi

At Q, that is at X1 = 0 and ∀X2 ∈ [−l, l]

u1 (0, X2) = u1,1 (0, X2) = 0, u2 (0, X2) = 0, u2,1 (0, X2) = T X2.

At R, that is ∀X1 ∈ [0, L] and at X2 = l,

u1 (X1, l) = u1,2 (X1, l) = 0, u2 (X1, l) = T X1X2, u2,2 (X1, l) = T X1.

At S, that is at X1 = L and ∀X2 ∈ [−l, l]

u1 (L,X2) = u1,1 (L,X2) = 0, u2 (L,X2) = T LX2, u2,1 (L,X2) = T X2.

At T , that is ∀X1 ∈ [0, L] and at X2 = −l,

u1 (X1,−l) = u1,2 (X1,−l) = 0, u2 (X1,−l) = −T lX1, u2,2 (X1,−l) = T X1.

From Placidi et al (2017b,c, 2015, 2017a) force and double force at each side have
been calculated,

text,S1 = c12T X1, t
ext,S
2 =

1

2
T c33X2,

τS,ext1 = T

(
a12 +

√
2

2
a13

)
, τS,ext2 = 0,

text,Q1 = −T c12X1, t
ext,Q
2 = −1

2
T c33X2

τQ,ext
1 = T

(
a12 +

√
2

2
a13

)
, τQ,ext

2 = 0,

text,R1 =
1

2
T c33X2, t

ext,R
2 = T c11X1,

τR,ext
1 =

T

2

(√
2a23 + a33

)
, τR,ext

2 = 0,

text,T1 = −1

2
T c33X2, t

ext,T
2 = −T c11X1,

τT,ext
1 =

T

2

(√
2a23 + a33

)
, τT,ext

2 = 0,

as well as vertex forces, (
fext1

)
Vi

= 0, i = 1, 2, 3, 4 (26.75)(
fext2

)
Vi

= −T
(
a22 +

√
2a23 +

1

2
a33

)
, i = 1, 3 (26.76)

(
fext2

)
Vi

= T

(
a22 +

√
2a23 +

1

2
a33

)
, i = 2, 4. (26.77)
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26.5 Conclusion

In this paper we have derived analytical solutions for a second gradient elastic model
with a D4 cubic symmetry in the static case. For this model, in 2D, nine constitutive
coefficients are needed, that is six more than the standard first gradient case, where
only three constitutive coefficients are needed. Thus, identification analysis is not
an easy task and analytical solutions can concur in achieving the searched param-
eter identification. Such analytical solutions are computed for simple mechanical
tests, namely: simple tension test, simple shear test, heavy sheet, non-conventional
bending and the trapezoidal case.

These solutions will be used in a further contribution for the convenient identifi-
cation of the nine coefficients (Abali et al, 2015). In fact, it is a matter of facts that
if we can measure, for the four cited experiments, the force t and the double force
τ per unit length and the force f at the edges, then the identification of the material
coefficients could be done as shown in Table 26.1.

Table 26.1 Material coefficients

Experiment Identified constants Equations for the identification
Simple tension c11 and c12 (26.51) and (26.49)
Simple shear c33 (26.54)
Heavy sheet a11, a12, and a13 (26.61), (26.63), and (26.59)

Non-conventional bending a23, and a33 (26.71) and (26.68)
Trapezoidal case a22 (26.76)
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Chapter 27

Gradient Theory of Adhesion and Tabor

Parameter

Valentin L. Popov

Abstract There are two basic approaches to mathematical description of media hav-
ing microstructure, or more general, one or more intrinsic characteristic lengths. The
first approach is to consider the underlying structure explicitly. The opposite possi-
bility is to try to simulate the medium still as a homogeneous one but having either
additional degrees of freedom or being characterized by some intrinsic characteris-
tic length. This second way is the way used in a wide spectrum of micropolar and
gradient approaches.
In the present paper, the philosophy of the gradient approaches is applied to the
problem of adhesion. Adhesive forces have some range of action which naturally
introduces a length parameter into the system. Relative role which plays this char-
acteristic length in adhesive behavior is governed by a parameter introduced 1977
by Tabor. However, the interaction range is only one possible characteristic length in
adhesion. Other lengths may be connected with spatial heterogeneity of the surfaces
at the micro scale. We discuss the possibility of describing adhesion with a finite
characteristic length in the framework of a continuum theory introducing proper
gradient expansion. The result is both encouraging and disappointing: The gradient
theory provides a description of adhesion with finite length which is much simpler
compared with known explicit approaches. However, it remains phenomenological,
so that proper physical interpretation of the characteristic length is not straightfor-
ward.
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27.1 Introduction

1971 Johnson, Kendall and Roberts (JKR) published their classical paper on the
theory of adhesion of elastic bodies having shape of paraboloids of revolution in
Johnson et al (1971). Four years later, an alternative theory was published by Der-
jaguin et al (1975) followed soon by a paper of Tabor (1977) who demonstrated that
both theories are limiting cases of very short range (JKR) and long range (DMT)
adhesive forces. He introduced a parameter, known as “Tabor parameter” which ba-
sically compares the characteristic action range of adhesive forces with the length
of the adhesive “neck.”

The JKR theory is applicable well for macroscopic bodies. It is based on a sim-
ple physical concept of energy balance as first formulated by Griffith (1921) in his
theory of brittle cracks. The simplicity of the theoretical ideas behind and the possi-
bility of using the energy-based methods for analyzing adhesive contacts made JKR
theory very popular. However, for micromechanical devices a finite range of adhe-
sive forces may play an essential role. That is why the DMT theory and its general-
izations, especially to contacts of rough surfaces, continue attracting vivid interest
of researchers as in Ciavarella (2017). An important contribution for understanding
the transition between both limiting cases of JKR and DMT provided the theory of
Maugis (1992) who considered adhesive contact problem of parabolic bodies with
very simple interaction potential (with adhesive pressure remaining constant up to
some critical distance and vanishing abruptly at larger distances.) This simple inter-
action made it possible to provide an almost completely analytical solution.

The JKR solution for adhesive contact of axially symmetric bodies can alter-
natively be derived in the framework of the formalism of the Method of Dimen-
sionality Reduction (MDR) described in Popov and Heß (2015). In this method, the
three-dimensional contact is first mapped onto a contact problem of a modified plane
profile with a linear elastic foundation (Winkler foundation, a series of independent
springs). After solution of the contact problem for this simple system, the exact
three-dimensional solution can be easily restored using the rules of the Method of
Dimensionality Reduction. In the present paper we will proceed from the formula-
tion of the JKR theory via MDR and suggest a generalization to adhesion exhibiting
a characteristic length scale.

The paper is organized as follows: In Sect. 27.2 we shortly recapitulate the main
steps of the method of dimensionality reduction. In Sect. 27.3 we suggest a general-
ization of the simple adhesive MDR to adhesion with finite length scale. Sect. 27.4
concludes the paper.
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27.2 Method of Dimensionality Reduction Formulation of

Johnson-Kendall-Roberts Theory

We consider the frictionless normal contact between two elastic bodies with the
elasticity moduli E1 and E2, and Poisson’s ratios ν1 and ν1. The axisymmetric
difference between the profiles will be written as z̃ = f(r), where r is the polar
radius in the contact plane. As is well known since Hertz, this contact problem is
equivalent to the contact of a rigid indenter with the profile z̃ = f(r) and an elastic
half-space with the effective elasticity modulus E∗ as in Hertz (1882):

1

E∗ =
1− ν21
E1

+
1− ν22
E2

. (27.1)

As already mentioned in the Introduction, the contact of any given axially symmet-
ric bodies can be solved very easily with the so-called “Method of Dimensionality
Reduction.” Solving the contact problem in the framework of the MDR requires two
preparatory steps:
I. Firstly, the three-dimensional elastic bodies are replaced by a Winkler foundation:
a linear arrangement of elements with independent degrees of freedom with arbitrary
but sufficiently small distance Δx between the elements, as shown in Fig. 27.1. In
the case of elastic bodies, the foundation consists of linear elastic springs with a
normal stiffness

Δkz = E∗Δx , (27.2)

whereby E∗ is given by Eq. (27.1).
II. In the second step, the three-dimensional profile z̃ = f(r) (Fig. 27.2, left) is
transformed to a plane profile g(x) (Fig. 27.2, right) according to “MDR-Transform”

g(x) = |x|
∫ |x|

0

f ′(r)√
x2 − r2 dr . (27.3)

The further calculation procedure consists of the following steps:
III. The profile g(x) is now pushed into the one-dimensional elastic foundation de-
fined according to (27.2) until a contact radius a is reached. Until this point, the
adhesion will not be considered. This process is depicted in Fig. 27.3 on the left.
IV. After that the indenter is lifted up. It is assumed that all springs involved in

the contact adhere to the indenter—the contact radius thus remains constant. In this

Fig. 27.1 One-dimensional
elastic foundation (Winkler
foundation).
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Fig. 27.2 With in the MDR, the three-dimensional profile f(r) is transformed to a plane profile
g(x) according to the transformation rule (27.3).

process, the springs at the edge experience the maximum increase in tension. Upon
reaching the the critical value of elongation of the outer springs

Δl(a) =

√
2πaΔγ

E∗ (27.4)

they detach (Fig. 27.3 right).Δγ is here the specific work of separation per unit area.
This criterion was discovered by Heß (2011) and is known as rule of Hess. A simple
derivation of this criterion can be found in Popov et al (2018). The displacement of
the outer springs is in the critical state negative, with the absolute value equal to the
critical value (27.4):

w(a) = d− g(a) = −Δl(a) (27.5)

where d is the indentation depth. It follows that

d = g(a)−Δl(a) . (27.6)

This equation determines the relation between the contact radius and the indentation
depth in an adhesive contact.

The normal force FN is given by the sum of all springs in contact:

Fig. 27.3 Qualitative representation of the indentation and lifting process of a parabolic planar
indenter with an elastic foundation which exactly models the properties of the adhesive contact
between a rigid parabolic indenter and an elastic half-space.
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FN = 2E∗
∫ a

0

[
d− g(x)

]
dx . (27.7)

Note that solution of the described replacement model coincides exactly with the
solution of the corresponding three-dimensional problem (proofs can be found in
Popov and Heß (2015) and Popov et al (2018).)

The criterion (27.4) can be also formulated as a critical value of the stress inten-
sity factor. Indeed, by defining the linear force density

qz(x) =
ΔFN (x)

Δx
= E∗w(x) = E∗

{
d− g(x) , |x| < a
0 , |x| > a , (27.8)

with w(x) being the vertical displacement of springs in the MDR model, one can
restore the stress distribution in the original three-dimensional problem by using
Equation (27.7)

σzz(r) = −r(r) = 1

π

∫ ∞

r

q′z(x)√
x2 − r2 dx . (27.9)

If the force density has a jump, the corresponding stress distribution will have a
typical for cracks square-root singularity.

The absolute stability of the contact is determined by the relations (27.10)

dg(a)

da

∣∣∣
a=ac

= ξ

√
πΔγ

2E∗ac
, ξ =

{
3 , force-control trials,
1 , displacement-control trials.

(27.10)

where the body shape enters only over the derivative of the effective MDR-trans-
formed profile g(x) at the edge of the contact.

It is important to stress that the whole essential information about the contact
properties of any profile is completely contained in the effective profile g(x) which
directly determines both the current contact radius while its derivative determining
the condition for the absolute stability.

27.3 Generalization of Method of Dimensionality Reduction for

Adhesion with Finite Length Scale

If the adhesion problem contains a finite length, then the formulation of the adhe-
sion criterion should be changed in a way allowing for definition of a characteris-
tic length. At this point we introduce a corresponding formulation formally, with-
out discussion of physical mechanisms behind. A detailed analysis of the physical
meaning of the characteristic length which will be introduced below will be subject
of later research.
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Our suggestion is to replace the equilibrium condition (27.5) by a generalized
condition [

w2 − L2
( dw

dx

)2
]
x=a

= Δl(a)2 , (27.11)

where L is some characteristic length associated with adhesive interaction. In the
following we analyze the properties of adhesive contact with the above generalized
law of adhesion. Criterion (27.11) can be written explicitly as

(
d− g(a))2 − L2

( dg(a)

da

)2

=
2πaΔγ

E∗ . (27.12)

Consider as example a parabolically shaped body with the profile f(r) = r2/(2R)
where R is the radius of curvature. The corresponding MDR-modified profile is,
according to (27.3), g(x) = x2/R and criterion (27.12) takes the form(

d− a
2

R

)2

− 4
L2

R2
a2 =

2πaΔγ

E∗ . (27.13)

The relation of the indentation depth and contact radius is thus given by

d =
a2

R
−

√
2πaΔγ

E∗ + 4
L2

R2
a2 (27.14)

while the dependency of the normal force on the contact radius being determined
by the equation

FN = 2E∗
∫ a

0

[
d− g(x)] dx = 2E∗

(
ad− a3

3R

)
= 2E∗

(
2

3

a3

R
− a

√
2πaΔγ
E∗ + 4

L2

R2
a2

)
.

(27.15)

After normalizing the quantities to the critical values of the force-controlled trial of
the JKR approximation (critical values of the JKR theory)

â :=
a

ac
, d̂ :=

d

|dc| , F̂ :=
FN
|Fc| (27.16)

with

ac =
(9πR2Δγ

8E∗
)1/3

, dc = −1

4

(3π2(Δγ)2R

(E∗)2
)1/3

, Fc = −3

2
πΔγR (27.17)

we can rewrite (27.14) and (27.15) in the form

d̃ = 3ã2 − 4
√
ã+ Λ−2ã2 , F̃N = ã3 − 2ã

√
ã+ Λ−2ã2 , (27.18)

where Λ is a dimensionless parameter defined by the following expression:
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Λ =
( πΔγR2

192L3E∗
)1/3

. (27.19)

As L is a phenomenological parameter which till now does not have a clear physi-
cal meaning, it is logically to consider Λ just as a new fitting parameter. Note that
Λ3/2 ∝ R, and thus thus can be considered as directly related to the Tabor parameter
(which is also proportional to the radius of curvature.)

We would like to stress here, that the adhesion law used in the present paper does
not coincide with that of Maugis’s model and corresponding relations should not be
compared with those of the Maugis’s theory. For very large values of Λ we reca-
pitulate the JKR theory. For intermediate values of Λ the adhesion curve deforms
similarly to prediction of Maugis’s theory as in Maugis (1992). However, while
Maugis’s theory is in a sense “exact” (at least for the kind of interaction potential
used by him), the present theory can be considered only for values of Λ > 2.

From a “philosophical point of view” restriction of the field of applicability of
gradient theories by system sizes larger than (or comparable to) the characteristic
length is a basic, intrinsic restriction. Indeed, the characteristic length intends to
describe a “microstructure” of the system; this is obviously only possible as far
as we are at the scale larger than the characteristic length of microstructure. From
mathematical point of view, gradient theories are based on expansions of relevant
quantities (stresses of energies) with respect to gradients and have sense only as long
as the characteristic length of the system remains smaller than the characteristic size
of the system.

Figure 27.4 presents dependencies of normal force on the indentation depth ob-
tained by parametric plot of Eqs. (27.18) and (27.19) in the interval from Λ = ∞
(JKR limit) to a critical value of Λ ≈ 2 roughly corresponding to the limiting case
of DMT. Smaller values of Λ correspond to no physical reality.

27.4 Conclusion

The charm of gradient theories consists in their simplicity and the drawback in their
phenomenological character and limited range of applicability. Basing on the gradi-
ent expansions, this class of theories is applicable only as long as the characteristic
length due to gradient expansion is much smaller than the relevant system lengths.
In the case of adhesion, this means that the gradient theory can picture the limiting
case of JKR and the case of moderate Tabor parameters but not the limiting case of
extremely small Tabor parameters. For the case of moderate Tabor parameters, the
gradient theory provides a very convenient, easy-to-derive and easy-to-use approxi-
mation.

To the best knowledge of the author, this is the first attempt of considering scale
effects in adhesion using gradient approaches. Further developments surely may
lead to more universal approaches with proper physical interpretation of the under-
lying length scales.
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Fig. 27.4 Dependencies of the normal force on the indentation depth according to Eqs. (27.18) and
(27.19) for a series of values of parameter Λ.
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Chapter 28

Cavity Flow of a Micropolar Fluid - a Parameter

Study

Wilhelm Rickert & Sebastian Glane

Abstract This paper presents a parameter study of the flow of a micropolar fluid.
The underlying equations and the choice of boundary conditions are discussed. Two
flow situations are considered: Couette flow as a reference problem and the lid-
driven cavity problem. The governing equations are specialized for the case of two-
dimensional flow and discussed in dimensionless form. Several dimensionless pa-
rameters common in the theory of micropolar fluids are identified and their impact
on the solutions is analyzed using the finite element method.

Keywords: Micropolar fluid theory · Microstructured material · Lid-driven cavity
problem · Forced convection

28.1 Introduction

Generalized continuum theories have gained high interest in continuum mechanics
and material modeling. Among Cosserat elasticity and gradient theories for solids
and the Ericksen-Leslie theory for liquid crystals, Eringen’s micropolar theory is one
of the representatives of this field, see Ariman et al (1973) for an extensive review
and Maugin (2011) for a historical discussion. Since its introduction by Eringen
(1964), the theory of micropolar fluids has been widely applied, for example in the
modeling of blood, Ariman et al (1973), particle suspensions, liquid crystals, lubri-
cation, Prakash and Sinha (1975), and colloidal suspensions, Eringen (1991). In a
series of papers, Müller and Vilchevskaya extended micropolar theory and investi-
gated the production of microinertia, see Müller and Vilchevskaya (2017); Müller
et al (2017); Müller and Vilchevskaya (2018); Vilchevskaya and Müller (2018). This
extension may be applied to problems with microstructural changes.
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In this study the effect of micropolar material parameters is investigated through
parameter variations using a numerical model. The flow problem considered in
the parameter study is the lid-driven cavity problem. This is a (benchmark) prob-
lem in fluid mechanics. Many authors report numerical solutions for the flow of
a Navier–Stokes fluid in a two or three dimensional cavity using different numer-
ical techniques, see Botella and Peyret (1998); Bruneau and Saad (2006); Cortes
and Miller (1994); Erturk and Gökccöl (2008); Freitas et al (1985); Nallasamy and
Prasad (1977). Furthermore, this problem was studied for a thermally-driven flow of
a buoyant fluid using the Boussinesq approximation, Iwatsu and Hyun (1995); Ka-
reem et al (2016); Le Quere et al (1981), for nanofluids, Tiwari and Das (2007), and
also for multiphase flow, Anders and Weinberg (2011); Chakravarthy and Ottino
(1996). In context of micropolar fluids, thermally-driven convection was studied
for cavities with different geometrical shapes, Aydin and Pop (2007); Bourantas and
Loukopoulos (2014); Gibanov et al (2016a,b); Hsu and Chen (1996); Jena and Bhat-
acharyya (1986); Sheremet et al (2017), and including electromagnetic fields, Türk
and Tezer-Sezgin (2017). Most of the papers on the micropolar cavity problem are
concerned with the influence of micropolar parameters on the onset of convection
(critical Rayleigh number), on the heat transfer and effects of the “vortex viscosity”
on the heat generation. However, a parameter study neglecting thermal effects and
only focusing on the mechanical behavior has not yet been conducted to the best of
the authors’ knowledge.

Following a presentation of the theory of micropolar fluids in Sect. 28.2, two flow
situations are considered: Couette flow as a reference problem and the lid-driven
cavity flow. The governing equations are specialized for these two-dimensional
problems in Sect. 28.3 and subsequently solved numerically using the finite ele-
ment method. The numerical procedure is described in Sect. 28.4 and a convergence
analysis is performed based on the analytical solution for the Couette flow. The pa-
rameter study is presented and discussed in Sect. 28.5 before a conclusion is given
in Sect. 28.6.

28.2 Theory of Micropolar Fluids

In context of a generalized continuum theory, the balance equations of mass, mo-
mentum and energy are supplemented by additional balances for the fields of angu-
lar velocity and moment of inertia. This introduces additional flux terms as well as
production terms in the balance equations and the constitutive equations are mod-
ified in order to account for effects associated to the additional fields. Moreover,
additional constitutive equations for the coupled stress and the production terms are
required. In this paper, the theory of micropolar fluids is employed, in which an
additional independent rotational degree of freedom, namely the angular velocity
field1, ω(x, t), is introduced. In this framework, the microinertia tensor, J(x, t), is

1 The angular velocity field is sometimes also referred to as the microgyration vector, cf. Eringen
(2001).
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an additional field accounting for the inertia of the material against microrotation.
Below, we present the equations governing micropolar fluids and neglect microin-
ertia effects later on.

28.2.1 Governing Local Balance Equations

In spatial description, the governing local equations are the balances of mass, linear
momentum, moment of inertia and spin (Müller and Vilchevskaya, 2018)

dρ

dt
= −ρ(∇ · v) , ρ

dv

dt
= ∇ · σ + ρf ,

dJ

dt
= ω × J − J × ω + χ ,

ρ
d

dt

(
J · ω)

= ∇ · μ+ σ ·· 〈3〉ε + ρm+ ρχ · ω ,
(28.1)

where ρ is the density, v the velocity, σ the Cauchy stress tensor, f the specific
body force, J the inertia tensor, μ the couple stress tensor, m the specific vol-
ume couple, χ the symmetric production of moment of inertia, and

〈3〉
ε the complete

anti-symmetric tensor (density) of rank three. The standard scalar product of two
tensors of second rank can be evaluated via A ··B = AijBij , where Einstein’s
summation convention applies and an orthonormal coordinate system is used. Fur-
thermore, cross products of a second-rank tensor A and a vector b are given by
A× b = (A⊗ b) ·· 〈3〉ε and b×A =

〈3〉
ε ·· (b⊗A).2

This set of equations accounts for microstructural changes, because a produc-
tion term, χ, is present in balance of the moment of inertia tensor. While such a
production is not present in early works on micropolar fluids, see Eringen (1964,
1966), it was later introduced by Eringen (1985) to model a sticking of fluid to
suspended rigid particles, see Eringen (1991, 1985); Zhilin (2006). Other examples
for microstructural changes such as the crushing of particles, Glane et al (2017);
Vilchevskaya and Müller (2018), the expansion of pressurized spherical particles,
Müller and Vilchevskaya (2018), or the orientation and elongation of charged parti-
cles in an electric field, Müller and Vilchevskaya (2018), were proposed in a series
of papers. Therein, different types of constitutive equations for the production term
were studied. According to Zhilin (2006), the production term can be neglected, if
the particles are considered rigid on the microscale. In summary, the question of
whether or not the production term shall be included is a question of modeling of a
specific fluid.

2 In an orthonormal coordinate system, the components of this product may also be expressed as:

(A× b)ij = Aikblεklj .
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28.2.2 Constitutive Laws and Field Equations

The local balances stated in Eq. (28.1) need to be supplemented by suitable consti-
tutive equations. In this study, the quantities χ, g, and m are neglected later and
linear constitutive relations for the flux terms σ and μ are employed. For isotropic
micropolar fluids the following constitutive relations were derived in, e.g., Cowin
(1974); Eringen (2001); Zhilin (2006) and are applied subsequently:

• The Cauchy stress tensor is given by

σ = (−p+ λ∇ · v)1+ 2μD − 2τ(W +
〈3〉
ε · ω) , (28.2)

where D is the symmetric and W is the skew-symmetric part of the velocity
gradient v ⊗ ∇. In Eq. (28.2), p denotes the thermodynamic pressure, λ and
μ the volume and shear viscosity, respectively, and τ is an additional viscosity
associated to rotational shear, which also has the unit kg m−1 s−1. The vorticity,
w = ∇× v/2, may be referred to as regional angular velocity, Cowin (1974),
and is the axial vector of the skew-symmetric part of the velocity gradient with
W = −〈3〉

ε ·w. Thus, the last term in Eq. (28.2) is a difference between the local
angular velocity and the vorticity. Therefore, we may refer to τ as rotational
shear viscosity. Note that, in the limiting case τ → 0, the constitutive relation
of an ordinary Navier–Stokes fluid is recovered.
• The couple stress tensor can be written as:

μ = α(∇ · ω)1+ 2βQ− 2γR , (28.3)

where Q is the symmetric and R the skew-symmetric part of the angular veloc-
ity gradient ω ⊗ ∇. Here, α, β and γ are generalized viscosities that have the
unit kg m s−1. The constitutive relations for the Cauchy stress and couple stress
tensor is similar. However, it should be noted that the couple stress tensor, μ,
does not have a direct functional dependency on the velocity field, which is not
the case for the Cauchy stress tensor, σ.

In the following, we restrict the analysis to constant material coefficients. Inser-
tion of the constitutive equations specified above gives rise to the following field
equations:

0 =
dρ

dt
+ ρ(∇ · v) , dJ

dt
= ω × J − J × ω + χ ,

ρ
dv

dt
= −∇p+ (λ+ μ− τ)∇[∇ · v] + (μ+ τ)Δv + 2τ∇× ω + ρf ,

ρ
d

dt
(J · ω) = (α+ β − γ)∇[∇ · ω] + (β + γ)Δω − 4τω + (28.4)

+ 2τ∇× v + ρm+ ρχ · ω ,

where Δ is the Laplace operator.
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According to Müller and Vilchevskaya (2018), the production of moment of in-
ertia, χ, must be interpreted as an additional constitutive quantity. However, we
restrict our investigations to rigid spherical particles (on the mesoscale). As a con-
sequence, the moment of inertia tensor is a constant spherical tensor, i.e., J = J01,
the production of moment of inertia vanishes and Eq. (28.4)2 is fulfilled trivially
because ω×J −J ×ω vanishes. Additionally we assume that the micropolar fluid
is incompressible, i.e., the mass density is a constant, ρ0. Moreover, we assume that
the specific body force, f , and the specific volume couple, m, are negligible. Under
these assumptions, Eqs. (28.4) reduce to:

∇ · v = 0 , ρ0
dv

dt
= −∇p+ (μ+ τ)Δv + 2τ∇× ω ,

ρ0J0
dω

dt
= (α+ β − γ)∇[∇ · ω] + (β + γ)Δω + 2τ∇× v − 4τω .

(28.5)

28.3 Problem Statement

In the following, two different problems of a stationary and two-dimensional flow
of a micropolar fluid are considered. Figure 28.1 shows the two different problems.
First, the Couette flow is considered as a reference problem, see Fig. 28.1a. For this
problem, an analytical closed-form solution can be obtained for micropolar fluids,
cf. Cowin (1974), which is subsequently used for a verification of the finite element
method.

ey
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h

� → ∞

v

Γ1

Γ3

Γ2Γ4

(a) Couette flow problem.
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ex

v

�

�

Γ1

Γ2

Γ3

Γ4

(b) Lid-driven cavity problem.

Fig. 28.1 Example problems.

The second problem is the lid-driven cavity problem, see Fig. 28.1b. At the top
of the cavity, a “conveyor” modeled through purely tangential velocity forces a fluid
motion in the underlying domain.
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28.3.1 Dimensionless Equations

The parameters present in the equations for micropolar fluids are the generalized
viscosities α, μ, τ , α, β, γ and the generalized inertias ρ0, J0. In order to determine
the governing combinations of these material parameters, the problem is written in
dimensionless form. The normalized quantities are introduced as:

x = �ref x̃ , v = vref ṽ , t = tref t̃ , p = pref p̃ , ω = ωrefω̃ , (28.6)

where symbols with a tilde are dimensionless. As usual in fluid mechanics, the time
scale is chosen as the time scale of convective transport, i.e., tref = �ref/vref , and the
pressure is normalized by pref = ρ0v

2
ref . Because of the fact that we will impose

zero spin boundary conditions at walls, the angular velocity field, ω, is solely trig-
gered by the velocity. It seems therefore reasonable to choose the reference angular
velocity accordingly. Here, ωref = vref/�ref is applied to emphasize the influence of
the velocity. As a consequence, the following dimensionless system of equations
arises:

∇̃ · ṽ = 0 ,
dṽ

dt̃
= −∇̃p̃+ 1

(1−N2)Re

(
Δ̃ṽ + 2N2∇̃ × ω̃

)
,

dω̃

dt̃
=

1

ΘRe

(
1

M2
∇̃[∇̃ · ω̃] +

1

L2
Δ̃ω̃ +

2N2

(1−N2)

[∇̃ × ṽ − 2ω̃
])
,

(28.7)

with the characteristic numbers

Re =
ρ0vref�ref
μ

, L =
�ref
l
, M =

�ref
m
, N =

√
τ

μ+ τ
,

Θ =
J0
�2ref

, l =

√
β + γ

μ
, m =

√
α+ β − γ

μ
.

(28.8)

Therein, Re is the Reynolds number, N is the coupling number, L, M and Θ are
characteristic length scale parameters. While all of the aforementioned parameters
are dimensionless, the parameters l and m have the dimension of a length. Thus L
and M are referred to as length scale parameters. Note that the parameters N and
L are usually employed in context of Eringen’s micropolar theory, see, e.g., Cowin
(1974); Rueger and Lakes (2016); Singh (1982), because they are characteristic for
solutions of common flow problem such as Hagen-Poiseuille flow, cf. Cowin (1974),
or Couette flow, see Eq. (28.14).

The coupling parameter N may vary between zero and one, where the former
corresponds to a vanishing influence of the mesoscopic scale and the latter rep-
resents a negligible macroscopic scale. Obviously, the limit value N = 0 can be
achieved by considering an ordinary fluid. The case of N = 1, however, is a rather
theoretical limit and only values smaller than one should be considered. The other
length scale parameters such as L andM are positive numbers that may become in-
finite in the limit of a vanishing influence of the mesoscopic scale. In the other limit
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of a strong influence they tend to zero but are always greater than zero, because the
shear viscosity, μ, does not vanish.

We proceed by employing the following two dimensional ansatz for the velocity
and angular velocity to both problems:

ṽ = ṽx(x̃, ỹ)ex + ṽy(x̃, ỹ)ey , ω̃ = ω̃(x̃, ỹ)ez . (28.9)

Note that the angular velocity field is solenoidal in the two-dimensional case and
therefore the parameter M is not present in the equations specialized for two-
dimensional flows. The simplified dimensionless system reads:

∇̃ · ṽ = 0 , ṽ · (∇̃ ⊗ ṽ) = −∇̃p̃+ 1

(1−N2)Re

(
Δ̃ṽ + 2N2∇̃ × ω̃

)
,

ṽ · (∇̃ω̃) = 1

ΘRe

(
1

L2
Δ̃ω̃ +

2N2

(1−N2)

[
(∇̃ × ṽ) · ez − 2ω̃

])
. (28.10)

In contrast to a Navier–Stokes fluid with the Reynolds number as a single character-
istic parameter, there are four characteristic parameters for a micropolar fluid. For
a discussion of the rough orders of magnitude of the dimensionless parameters in
context with blood flow the reader is referred to Sect. 28.5.

28.3.2 Boundary Conditions and Boundary Value Problems

For the statement of a complete problem, the equations presented above need to be
supplemented by boundary conditions. For ordinary fluids physically correct bound-
ary conditions seem to be “intuitively” clear, so that it is customary to impose (say)
no-slip boundary conditions for the velocity at solid walls, because fluids usually
stick to walls. It turns out, that this is neither intuitively clear nor always true. Al-
though the historical review in Day (1990) strongly suggests, that the no-slip bound-
ary condition is applicable in many flow situations, there are papers, e.g., Brenner
(2011); Lauga et al (2007), stating, that there are several mechanisms, which can
lead to slip effects. Lauga et al (2007) state, that although there are different mech-
anisms for slip at fluid-solid interfaces, a distinction is of no practical importance.
Furthermore, the so-called apparent slip length ranges over several orders of magni-
tude up to hundreds of nanometers. However, because usual (macroscopic) experi-
ments are of much larger dimensions, the effect of slip is negligible such that no-slip
boundary conditions at solid walls are reasonably applicable in many flow situations
- at least as a first approximation.

Analogously the question of correct boundary conditions for the angular ve-
locity in the theory of micropolar fluids is still under debate, see Alizadeh et al
(2011); Hogan and Henriksen (1989); Kirwan (1986); Kolpashchikov et al (1983);
Łukaszewicz (1999); Silber et al (2007). There are several suggestions of boundary
conditions for the angular velocity at solid walls, but there is no convincing argu-



418 Wilhelm Rickert & Sebastian Glane

ment for one of them to be always preferable. Most of the suggested conditions can
be categorized in three groups and may be referred to as follows:

• stick (or slip) controlled, where the angular velocity is prescribed due to the
state of the wall (and the fluid) but independently of the velocity,
• vorticity controlled, where the angular velocity is proportional to the vorticity

of the fluid near the wall, or
• force controlled, where the term force also refers to generalized forces and the

angular velocity is influenced through forces and moments acting on the surface
of the fluid.

While the first condition is analogous to the (say) no-slip condition of the velocity,
the same comments as above apply for the angular velocity. Łukaszewicz (1999)
refers to this boundary condition as “physically clear (the viscous fluid sticks to the
solid boundary).” However, another study considers slip conditions and confirms
them by molecular dynamic simulations, Chakraborty and Chakraborty (2008).

Another boundary condition commonly used is to assume that the angular ve-
locity is proportional to the vorticity, Kirwan (1986); Kolpashchikov et al (1983);
Hogan and Henriksen (1989). The reasoning behind this is, that the microstructure
near solid walls needs to become irrelevant such that the angular velocity is solely
given through the vorticity.

A third type of boundary conditions considers the coupling of angular ve-
locity, vorticity and possible moment tractions at interfaces, Aero et al (1965);
Łukaszewicz (1999). However, the correct choice of boundary conditions involv-
ing tractions is still under debate even for ordinary fluids, Sani and Gresho (1994).
The same applies for micropolar fluids. Insights of how to impose angular velocity
boundary conditions experimentally is given in none of the references mentioned
above, see also Rickert et al (2018) for a discussion.

In this paper, only geometric boundary conditions directly applied on the velocity
or angular velocity field are considered. Furthermore, we will impose only no-slip
boundary conditions, because they are experimentally confirmed, Day (1990), at
least for ordinary fluids.

In the Couette flow problem, two parallel plates of infinite extent are moving rel-
atively to each other. The upper plate moves at a prescribed velocity v = v0ex while
the bottom plate is at rest. The angular velocity is assumed to vanish at both plates,
because they are manufactured in such a way not to induce any microrotation. In or-
der to mimic Couette flow, periodic boundary conditions are employed. Hence, the
boundary value problem is to solve Eqs. (28.10) subjected to the following boundary
conditions: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω̃(x̃) = 0 , ṽ(x̃) = 0 , x̃ ∈ Γ1 ,
ω̃(x̃) = 0 , ṽ(x̃) = ex , x̃ ∈ Γ3 ,
ṽ(x̃ = 0, ỹ) = ṽ(x̃ = �/h, ỹ) ,

ω̃(x̃ = 0, ỹ) = ω̃(x̃ = �/h, ỹ) ,
0 < ỹ < 1 .

(28.11)

For the lid-driven cavity problem, it is also assumed that the angular velocity
vanishes at the top. Furthermore, at all other boundaries the velocity and the angu-
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lar velocity vanish. The complete boundary value problem consists of Eqs. (28.10)
subjected to the following boundary conditions:{

ω̃(x̃) = 0 , ṽ(x̃) = ex , x̃ ∈ Γ3 ,
ω̃(x̃) = 0 , ṽ(x̃) = 0 , x̃ ∈ (Γ1 ∪ Γ2 ∪ Γ4) .

(28.12)

28.3.3 Reference Solution

For the Couette flow, an analytical solution is given in Cowin (1974) and derived
in Rickert et al (2018). Cowin (1974) uses a semi-inverse ansatz for the stationary
solution:

v = v(y)ex , ω = ω(y)ez , p = p(y) , (28.13)

for which the convective terms drop out. Hence, the resulting problem is linear and
the following solution can be derived:

v(ỹ)

v0
=

1

2(1− P )
[
2ỹ − P

(
1 +

sinh(NL[2ỹ − 1])

sinh(NL)

)]
,

ω(ỹ)
v0/h

=
1

2(1− P )
[
cosh(NL[2ỹ − 1])

cosh(NL)
− 1

]
, P =

N

L
tanh(NL) ,

(28.14)

where ỹ = y/h is the dimensionless vertical coordinate and for the dimensionless
numbers �ref = h is applied. The solution does not depend on the parameter Θ,
which describes the influence of the microinertia.

28.4 Numerical Treatment

We solve the resulting set of dimensionless partial differential equations (28.10)
using the finite element method. A spatial discretization based on the stable P2-
P1 Taylor-Hood element for velocity and pressure is employed, Taylor and Hood
(1973). The scalar angular velocity is discretized using a P1 element. We describe
the derivation of the weak form for both of the proposed problems in the Appendix.

The FEniCS library, Alnæs et al (2015); Logg et al (2012), as applied for many
problems in continuum mechanics (Abali, 2017), allows to solve the finite element
problem once the weak form is implemented. The discrete weak form represents
a set of nonlinear algebraic equations, which is commonly solved using Newton’s
method. However, for our stationary problem, there is no appropriate initial guess
available. Due to this fact, the solution procedure is altered and based on a hybrid
approach possessing a larger convergence radius (Elman et al, 2006). This hybrid
approach first performs a Picard iteration and as a second step applies Newton’s
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method. The main difference between the two steps lies in the linearization of the
convective term, see Elman et al (2006).

The parameter study requires a series of subsequent simulations and while one
parameter is varied, we use the previous solution as the initial guess. This reduces
the number of iterations required. In this sense, our method can also be regarded
as a continuation method. Nevertheless, we tested the hybrid approach without pa-
rameter continuation and the simulations converged over the entire range of tested
parameters.

28.4.1 Convergence Analysis

In order to verify the implemented finite element code, we perform a convergence
analysis based on the analytical solution of the Couette flow problem. The set of
nominal values for the dimensionless parameters given in Sec. 28.5 is used. The
error of the numerical solution obtained from the finite element program w.r.t. the
analytical solution is computed using the following error measures:

eabs(ψ) =

∫
V
‖ψana − ψnum‖ dV∫

V
dV

, erel(ψ) =

∫
V
‖ψana − ψnum‖ dV∫

V
‖ψana‖ dV

,

(28.15)
where the ‖·‖ is the absolute value if ψ is a scalar and the Eulidean norm if ψ is
a vector. Here, eabs and erel refer to the absolute and relative error respectively.
Furthermore, ψana and ψnum denote the analytical and the numerical solution, re-
spectively. A series of simulations on globally refined meshes is performed and the
fineness of the mesh is characterized by the number of nodes, n, in the vertical di-
rection of the channel (ey direction). Although the mesh is not successively refined,
the aspect ratio of the elements remains constant in the refinement process, which
ensures that the quality of the elements is not deteriorated.

Figure 28.2 shows the results of the convergence analysis. The errors for the ve-
locity (Fig. 28.2a) as well as for the angular velocity (Fig. 28.2b) decrease monotoni-
cally for the relative and the absolute error as the number of nodes is increased. Both
regression lines have a slope of −2 in the double logarithmic chart, which indicates
that the method is of second order. In conclusion, our finite element implementation
to simulate the stationary flow of a micropolar fluid is convergent and therefore it
is considered as a reliable tool to assess the influence of the model parameters in
more complex flow situations. The largest number of nodes in the vertical direction
applied in the convergence analysis is 800, which corresponds to 645 284 degrees
of freedom in total.



28 Cavity Flow of a Micropolar Fluid - a Parameter Study 421

•absolute error �relative error regression line

102 103

10−5

10−6

10−7

10−8

1
−2.01

n

e(
ṽ
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Fig. 28.2 Convergence results for the Couette flow problem. The legend above applies for both
diagrams.

28.5 Results and Discussion

In this section, the results of the parameter study for the lid-driven cavity problem
shown in Fig. 28.1b are presented. The computations are performed on an equidis-
tant grid using 100 points in horizontal and vertical direction. For the parameter
analysis a set of nominal values is selected and only one parameter at a time is var-
ied in a given range. The following nominal values are chosen: Re = 200, L = 0.4,
N = 0.25, and Θ = 10−9. This choice as well as the parameter ranges will be
motivated by the following considerations.

In context of blood flow with a viscosity of μ = 3× 10−3 kg m−1 s−1 to 4× 10−3

kg m−1 s−1 (Popel and Pittman, 2000), the nominal Reynolds number corresponds
to a mean velocity of 5.6× 10−2 m s−1 to 7.6× 10−2 m s−1 for a reference length
of 1 cm. If the reference length is 1mm, the mean velocity ranges from 5.6× 10−1

m s−1 to 7.6× 10−1 m s−1. Comparing these values with the ones given in Lieber
(2000) suggests that the Reynolds number is slightly too high when considering
arterioles. However, blood flow is not stationary and the Reynolds number, which
depends on the type of the blood vessel and ranges from approx. 0.005 to 7000, ex-
ceeds six orders of magnitude (Caro et al, 2012). Therefore, the Reynolds number
is varied over a large range in this study.

Based on the viscosities for human blood specified in Kang and Eringen (1976)
and Papautsky et al (1999), N = 0.25 and L = 0.4 is obtained as a rough estimate
for a reference length of 1 cm. The length scale parameter L decreases linearly, if
the reference length decreases, but it strongly depends upon the viscosities and may
therefore vary over a larger range. In order to obtain an estimate for Θ, erythrocytes
are considered as a principle of component of blood. Applying �ref = 0.1mm to 1
mm for the diameter of small arteries or terminal branches (Schneck, 2000), and
d ≈ 7.5 μm for the diameter of erythrocytes, Schneck (2000), gives J0 ≈ 10−12 m2
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andΘ = 10−6 to 10−5. This number would of course increase to 10−2 for arterioles
(d < 100 μm) or even to 1 for capillaries (d < 10 μm), see Schneck (2000).

In view of the facts outlined above, the Reynolds number is varied from the 0.01
to 5000. The coupling parameter N is varied from 0 to 0.95. The length scale L is
varied from 10−3 to 102, where the latter represents a rather extreme case. Finally,
the parameter Θ characterizing microinertia is varied from 10−9 to 1.

28.5.1 Vertical and Horizontal Profiles

The results are presented by using line plots of the velocity and angular velocity
along the vertical and horizontal middle lines of the cavity, see dashed lines in
Figs. 28.3. In Fig. 28.3a an example of the streamline of the flow of an ordinary
Navier–Stokes fluid is given. There is a main eddy located close to the center and
two so-called Moffatt eddies are present at the two bottom corners, Moffatt (1964).
The eddy structure of this problem was explored in detail for Navier–Stokes fluids.
It was shown that another eddy occurs close to the top-left corner and secondary cor-
ner eddies are present for higher Reynolds numbers (Shankar, 1993; Shen, 1991).

Figures 28.4 and 28.5 show the profiles for varying values ofN . Considering the
horizontal and vertical profiles of the angular velocity, it is evident that the larger the
value of N the larger the amplitudes of the angular velocity. The angular velocity
is mainly negative along the horizontal and vertical profile for small to moderate
values of N . There are small domains at the boundaries, where the angular velocity
is positive.3 These domains grow for large values of N . This suggests that the
parameter N gradually changes the spatial structure of the angular velocity field,
whereas the qualitative behavior is not altered. The influence of the parameterN on
the velocity profiles is not so strong when compared to the angular velocity. Slight
changes are visible, which are more prominent in the vertical profile.

Figures 28.6 and 28.7 show the profiles for varying values of L. In the profiles
of the angular velocity the formation of a very thin boundary layer is visible—the
larger L the thiner the boundary layer. The boundary layer is most prominent at
the top of the cavity, whereas there is no layer at the bottom. At the left and right
walls, boundary layers are also present. Although the amplitudes differ only by an
order of magnitude compared to those obtained for large values ofN , the qualitative
structure of the profiles for the angular velocity is very different when L is varied.
Comparing the angular velocity profiles for varying L among each other shows,
that apart from a scaling a marginal shift in the spatial structure is visible. The zero
crossings move gradually, if L varies. For the influence of the parameter L on the
velocity profiles, the same applies as for the parameterN—a significant change was
not observed.

Figures 28.8 and 28.9 show the profiles for varying values of Re. Increasing
the Reynolds number above approximately 100 results in changes of the velocity

3 These domains are not really visible due to the scaling.
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Fig. 28.3 Streamlines (a) and profiles of the velocity (b, c) for the lid-driven cavity problem of a
Navier–Stokes fluid with Re = 200. Color indicates the magnitude of the velocity.

profiles. If the Reynolds number is below approximately 10, the profiles of the
velocity are identical for the horizontal and vertical direction regardless of the value
of Re. The same holds true for the angular velocity. At higher Reynolds numbers,
a boundary layer develops and the center of the main vortex (zero crossing of the
velocity in the vertical profile) moves downwards. Regarding the vertical profiles,
there is a correlation of the angular velocity with the velocity—the minimum of the
angular velocity is roughly located where the velocity is zero. This effect is also
visible in the right inset of Fig. 28.8 in terms of a decrease of the angular velocity
at x̃ ≈ 0.5 for Re ≥ 200. We stress that this decrease is not due to a change of
the underlying solution because the angular velocity is linked to the velocity field
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Fig. 28.4 Horizontal profiles of the velocity and angular velocity for different values of N . The
other parameters Re, L, and Θ have nominal values.
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Fig. 28.5 Vertical profiles of the velocity and angular velocity for different values of N . The other
parameters Re, L, and Θ have nominal values.
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Fig. 28.6 Horizontal profiles of the velocity and angular velocity for different values of L. The
other parameters Re, N , and Θ have nominal values.
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Fig. 28.7 Vertical profiles of the velocity and angular velocity for different values of L. The other
parameters Re, N , and Θ have nominal values.
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Fig. 28.8 Horizontal profiles of the velocity and angular velocity for different values of Re. The
other parameters L, N , and Θ have nominal values.

for chosen set of parameters. Finally, note that the angular velocity in Figs. 28.8 and
28.9 is three orders of magnitudes smaller than for example in Figs. 28.6 and 28.7.

The last parameter, which was varied, is the microinertia parameter Θ. An influ-
ence of the microinertia parameter was not observed in the velocity field for the set
of nominal values chosen in this study. This is expected because Θ is not present in
the balance of linear momentum. The angular velocity field is also not significantly
altered for small and moderate values of Θ.

In summary, the approach of varying one parameter while the others parameter
keep their nominal values has shown that the microinertia has the smallest effect
on the structure of the solution. However, this is only true for the considered case
and parameter set. The velocity field changes the most, if the Reynolds number is
increased. But smaller alterations are also observable in the velocity field, if the
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ỹ

−3 −2 −1 0 1

×10−3

0

0.2

0.4

0.6

0.8

1

ω̃(x̃ = 0.5, ỹ)

ỹ

Re: 0.01 0.1 1 10 200 1000 5000

Fig. 28.9 Vertical profiles of the linear and angular velocity for different values of Re. The other
parameters L, N , and Θ have nominal values.

micropolar viscosity parameters L and N are changed. The micropolar viscosity
parameters L and N both yield to the changes in the angular velocity field. The
largest amplitudes associated with these parameters are approximately 0.3 and 3 re-
spectively. In a broad sense, the parameterN scales the solution, whereas increasing
values of the parameter L result in a stronger boundary layer.

28.5.2 Analysis of the Angular Velocity Field

Figure 28.10 shows the angular velocity for a representative selection of parameters
combinations. In Figs. 28.10a and 28.10b, the microrotation is confined to the top
layer of the cavity and the spatial structure is strongly connected to the velocity field,
see Fig. 28.3a. Comparing Figs. 28.10a to 28.10b suggests that the region at the top
gets wider and thiner ifN is increased. In Figs. 28.10c and 28.10d, boundary layers
become apparent. They are strongest close to the top-right corner of the cavity and
the angular velocity penetrates deeper regions of the cavity.

An explanation might be that for the considered parameter set the convective
term in Eq. (28.10)3 can be dropped because the product ΘRe is small. This gives
the following spin balance:

1

L2
Δ̃ω̃ +

2N2

(1−N2)

[
(∇̃ × ṽ) · ez − 2ω̃

]
= 0 , (28.16)

which is interpreted as a Helmholtz equation for ω̃ with the source term ∇̃ × ṽ. If
the parameter L is large, the diffusive term is negligible because the factorN2/(1−
N2) is of order 1 for N < 0.9. In the limit, we can make the approximation ω̃ ≈
(∇̃ × ṽ)/2 · ez , which means that the angular velocity ω̃ is directly coupled to the
vorticity. This approximation was roughly confirmed for L = 50 by comparing the
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Fig. 28.10 Angular velocity field ω̃ for different values of N and L. The other parameters have
nominal values.

spatial structure of the angular velocity field with the one of the vorticity using our
numerical results. However, for moderate values of L, the terms governed by the
coupling parameter N are balanced with the diffusion term. This seems to weaken
the coupling mechanism because strong gradients close to the walls and corners are
smoothed by diffusion. In conclusion, the findings suggest the dominant parameter
for the lid-driven cavity problem is the micropolar viscosity parameter L.
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28.6 Conclusion

This paper presents a parameter study of a micropolar fluid in a lid-driven cavity
using the nominal values: Re = 200, L = 0.4, N = 0.25, and Θ = 10−9, which
were discussed in context with the example of blood flow. Based on our results, we
find that for the lid-driven cavity flow problem:

• The Reynolds number has the strongest effect on the velocity field and only in-
fluences the angular velocity by enhanced convective transport to lower regions.
The observed effects are analogous to the results for a Navier–Stokes fluid.
• The microviscosity parameters L and N govern the coupling mechanism be-

tween velocity and angular velocity. Their influence on the velocity is rather
weak but strong regarding the angular velocity. For the both parameters, the
angular velocity is confined in the top half of the cavity. Especially, the param-
eter L was identified as the one responsible for the formation of thin boundary
layers close to the top-right corner.
• By scaling arguments, we explained the role of the parameter L in the spin

balance for the considered case. We showed that low values of L smooth the
solution for the angular velocity, whose source is located at regions of large
velocity gradients, e.g., at boundary layers. The larger L the less the diffusivity
and the more is the angular velocity confined to these boundary layers.
• The microinertia parameter Θ has almost no influence on the results. Only very

large values of Θ lead to visible alterations in the angular velocity field.

Our study points to several aspects, which could be addressed in future work.
First, we have only varied one parameter at a time, which limits us to lines in the
parameter space. A full coverage of the parameter space allows to fully explore the
mutual influence of the parameters. Secondly, stationary solutions were computed,
which may be not be stable at all. Because of this, a stability analysis should be per-
formed by either integrating the equations in time using the precomputed station-
ary solution as an initial condition or by performing a linear perturbation analysis.
Third, the example of buoyancy driven flow in the cavity should be studied to further
explore the impact of the parameters identified in this study. This could also incor-
porate microstructural changes due to temperature or pressure fluctuations, which
were proposed in Müller and Vilchevskaya (2017).

Appendix: Weak Forms

For the finite element formulation of Eqs. (28.10), weak forms of the differential
equations need to be derived. Subsequently, the following short hand notation for
inner products in the volume and on the boundary will be applied:

(
A,B

)
Ω
=

∫
Ω

A %B dV ,
〈
A,B

〉
Γ
=

∫
Γ

A %B dA ,
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where A %B represents the contraction of two tensors A and B of arbitrary rank
to a scalar. Here, Ω denotes the domain of integration with the boundary Γ = ∂Ω.
With the help of the operators

A(φ,ψ) =
(∇̃ ⊗ φ, ∇̃ ⊗ψ

)
Ω
, B(φ, ψ) =

(∇̃ · φ, ψ)
Ω
,

C(φ,ψ) =
(
ṽ · (∇̃ ⊗ φ),ψ

)
Ω
, DΓ(φ,ψ) =

〈
φ,ψ × ez

〉
Γ
,

D(φ,ψ) =
(
φ, ∇̃ · (ψ × ez)

)
Ω
=

(
φ,
∂ψy

∂x
− ∂ψx

∂y

)
Ω
,

a multiplication of Eqs. (28.10) with test functions δp, δv, δω, δJ and subsequent
integration over the (dimensionless) domain gives rise to the following weak forms:

B(ṽ, δp) = 0 ,

C(ṽ, δv) = B(δv, p̃)− 〈
p̃n, δv

〉
Γ
+

2N2

(1−N2)Re

{
D(ω̃, δv)−DΓ(ω̃n, δv)

}
+

+
1

(1−N2)Re

{〈
n · (∇̃ ⊗ ṽ), δv

〉
Γ
−A(ṽ, δv)

}
,

C(ω̃, δω) =
1

L2ΘRe

(〈
n · (∇̃ω̃), δω〉

Γ
−A(ω̃, δω)

)
+

+
2N2

(1−N2)ΘRe

(
D(δω, ṽ)− 2

(
ω̃, δω

)
Ω

)
.

For the lid-driven cavity problem, pure Dirichlet boundary conditions are considered
in form of no-slip conditions for both the velocity and angular velocity. In this case,
the test functions δp, δv and δω vanish at the boundary and therefore all boundary
terms vanish. Hence, the simplified weak forms can be written as:

B(ṽ, δp) = 0 ,

C(ṽ, δv) = B(δv, p̃)− 1

(1−N2)Re

(
A(ṽ, δv)− 2N2D(ω̃, δv)

)
,

C(ω̃, δω) =
1

ΘRe

[
2N2

(1−N2)

(
D(δω, ṽ)− 2

(
ω̃, δω

)
Ω

)
− 1

L2
A(ω̃, δω)

]
.

The same holds for the Coutte flow except for the periodic boundaries Γ2 and Γ4.
The surface integral related to the pressure, p, vanishes due to periodicity. The pres-
sure gradient has the same values at Γ2 and Γ4, but the normal vectors have a dif-
ferent direction, i.e., nΓ2

= −nΓ4
. Therefore, the simplified weak forms for the

Couette flow can be expressed as:
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B(ṽ, δp) = 0 ,

C(ṽ, δv) = B(δv, p̃) +
2N2

(1−N2)Re
D(ω̃, δv) +

+
1

(1−N2)Re

{〈
n · (∇̃ ⊗ ṽ), δv

〉
Γ
−A(ṽ, δv)

}
,

C(ω̃, δω) =
1

L2ΘRe

(〈
n · (∇̃ω̃), δω〉

Γ
−A(ω̃, δω)

)
+

+
2N2

(1−N2)ΘRe

(
D(δω, ṽ)− 2

(
ω̃, δω

)
Ω

)
.

References

Abali BE (2017) Computational Reality, 1st edn. Advanced Structured Materials, Springer
Aero EL, Bulygin AN, Kuvshinskii EV (1965) Asymmetric hydromechanics. Journal of Applied

Mathematics and Mechanics 29(2):333–346
Alizadeh M, Silber G, Nejad AG (2011) A continuum mechanical gradient theory with an ap-

plication to fully developed turbulent flows. Journal of Dispersion Science and Technology
32(2):185–192

Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME,
Wells GN (2015) The fenics project version 1.5. Archive of Numerical Software 3(100)

Anders D, Weinberg K (2011) A variational approach to the decomposition of unstable viscous
fluids and its consistent numerical approximation. ZAMM—Journal of Applied Mathematics
and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 91(8):609–629

Ariman T, Turk M, Sylvester N (1973) Microcontinuum fluid mechanic—A review. International
Journal of Engineering Science 11(8):905–930

Aydin O, Pop I (2007) Natural convection in a differentially heated enclosure filled with a microp-
olar fluid. International Journal of Thermal Sciences 46(10):963–969

Botella O, Peyret R (1998) Benchmark spectral results on the lid-driven cavity flow. Computers &
Fluids 27(4):421–433

Bourantas G, Loukopoulos V (2014) Modeling the natural convective flow of micropolar nanoflu-
ids. International Journal of Heat and Mass Transfer 68:35–41

Brenner H (2011) Beyond the no-slip boundary condition. Physical Review E 84(4):0463,091–8
Bruneau CH, Saad M (2006) The 2d lid-driven cavity problem revisited. Computers & Fluids

35(3):326–348
Caro CG, Pedley TJ, Schroter RC, Seed WA (2012) The mechanics of the circulation., 2nd edn.

Cambridge University Press
Chakraborty D, Chakraborty S (2008) Towards a generalization of hydrodynamic boundary con-

ditions for flows of fluids with homogeneous internally rotating structures. Physics Letters A
372(33):5462–5466

Chakravarthy V, Ottino J (1996) Mixing of two viscous fluids in a rectangular cavity. Chemical
Engineering Science 51(14):3613–3622

Cortes AB, Miller JD (1994) Numerical experiments with the lid driven cavity flow problem. Com-
puters & Fluids 23(8):1005–1027

Cowin SC (1974) The theory of polar fluids. In: Yih CS (ed) Advances in Applied Mechanics, vol.
14, Academic Press, Inc., New York, pp 279–347

Day MA (1990) The no-slip condition of fluid dynamics. Erkenntnis 33(3):285–296



28 Cavity Flow of a Micropolar Fluid - a Parameter Study 431

Elman H, Silvester D, Wathen A (2006) Finite Elements and Fast Iterative Solvers: with Applica-
tion in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation,
vol 1. Oxford University Press

Eringen AC (1964) Simple microfluids. International Journal of Engineering Science 2(2):205–217
Eringen AC (1966) Theory of micropolar fluids. Journal of Mathematics and Mechanics 16(1):1–

18
Eringen AC (1985) Rigid suspensions in viscous fluid. International Journal of Engineering Sci-

ence 23(4):49–495
Eringen AC (1991) Continuum theory of dense rigid suspensions. Rheologica Acta 30(1):23–32
Eringen AC (2001) Microcontinuum Field Theories- II Fluent Media. Springer, Berlin, Heidelberg,

New York
Erturk E, Gökccöl C (2008) Fourth-order compact formulation of navier-stokes equations and

driven cavity flow at high reynolds numbers. International Journal for Numerical Methods in
Fluids 50(4):421–436

Freitas CJJ, Street RL, Findikakis AN, Koseff JR (1985) Numerical simulation of three-
dimensional flow in a cavity. International Journal for Numerical Methods in Fluids 5(6):561–
575

Gibanov NS, Sheremet MA, Pop I (2016a) Free convection in a trapezoidal cavity filled with a
micropolar fluid. International Journal of Heat and Mass Transfer 99:831–838

Gibanov NS, Sheremet MA, Pop I (2016b) Natural convection of micropolar fluid in a wavy dif-
ferentially heated cavity. Journal of Molecular Liquids 221:518–525

Glane S, Rickert W, Müller WH, Vilchevskaya E (2017) Micropolar media with structural trans-
formations: Numerical treatment of a particle crusher. In: Advanced problems in mechanics/
Proceedings of the XLV Summer school-conference, Russian Academy of Sciences, Institute
for Problems in Mechanical Engineering, Peter the Great St.Petersburg Polytechnic University,
pp 197–211

Hogan HA, Henriksen M (1989) An evaluation of a micropolar model for blood flow through an
idealized stenosis. Journal of Biomechanics 22(3):211–218

Hsu TH, Chen CK (1996) Natural convection of micropolar fluids in a rectangular enclosure. In-
ternational Journal of Engineering Science 34(4):407–415

Iwatsu R, Hyun JM (1995) Three-dimensional driven-cavity flows with a vertical temperature gra-
dient. International Journal of Heat and Mass Transfer 38(18):3319–3328

Jena SK, Bhatacharyya SP (1986) The effect of microstructure on the thermal convection in a rect-
angular box of fluid heated from below. International Journal of Engineering Science 24(1):69–
78

Kang CK, Eringen AC (1976) The effect of microstructure on the rheological properties of blood.
Bulletin of Mathematical Biology 38(2):135–159

Kareem AK, Gao S, Ahmed AQ (2016) Unsteady simulations of mixed convection heat transfer in
a 3d closed lid-driven cavity. International Journal of Heat and Mass Transfer 100:121–130

Kirwan AD (1986) Boundary conditions for micropolar fluids. International Journal of Engineering
Science 24(7):1237–1242

Kolpashchikov VL, Migun NP, Prokhorenko PP (1983) Experimental determination of material
micropolar fluid constants. International Journal of Engineering Science 21(4):405–411

Lauga E, Brenner M, Stone H (2007) Microfluidics: The no-slip boundary condition. In: Tropea
C, Yarin AL, Foss JF (eds) Springer Handbook of Experimental Fluid Mechanics, Springer,
Berlin, Heidelberg, New York, pp 1219–1240

Le Quere P, Humphrey JAC, Sherman FS (1981) Numerical calculation of thermally driven two-
dimensional unsteady laminar flow in cavities of rectangular cross section. Numerical Heat
Transfer 4(3):249–283

Lieber BB (2000) Arterial Macrocirculatory Hemodynamics. In: Bronzino JD (ed) The Biomedical
Engineering Handbook, vol 1, 2nd edn, CRC Press, chap 30

Logg A, Wells GN, Hake J (2012) DOLFIN: a C++/Python Finite Element Library, Springer,
chap 10, pp 173–225



432 Wilhelm Rickert & Sebastian Glane

Łukaszewicz G (1999) Micropolar fluids: Theory and applications. Springer Science & Business
Media

Maugin GA (2011) A Historical Perspective of Generalized Continuum Mechanics. In: Altenbach
H, Maugin GA, Erofeev V (eds) Mechanics of Generalized Continua, Springer, Berlin, Heidel-
berg, chap 1, pp 3–19

Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics
18(1):1–18

Müller WH, Vilchevskaya EN (2017) Micropolar theory from the viewpoint of mesoscopic and
mixture theories. Physical Mesomechanics 20(3):263–279

Müller WH, Vilchevskaya EN (2018) Micropolar theory with production of rotational inertia: A
rational mechanics approach. In: Altenbach H, Pouget J, Rousseau M, Collet B, Michelitsch
T (eds) Generalized Models and Non-classical Approaches in Complex Materials 1, Advanced
Structured Materials, Springer International Publishing, pp 581–606

Müller WH, Vilchevskaya EN, Weiss W (2017) Micropolar theory with production of rotational
inertia: A farewell to material description. Physical Mesomechanics 20(3):250–262

Nallasamy M, Prasad KK (1977) On cavity flow at high reynolds numbers. Journal of Fluid Me-
chanics 79(2):391–414

Papautsky I, Brazzle J, Ameel T, Frazier AB (1999) Laminar fluid behavior in microchannels using
micropolar fluid theory. Sensors and Actuators A: Physical 73(1-2):101–108

Popel AS, Pittman RN (2000) Mechanics and Transport in the Microcirculation. In: Bronzino JD
(ed) The Biomedical Engineering Handbook, vol 1, 2nd edn, CRC Press, chap 31

Prakash J, Sinha P (1975) Lubrication theory for micropolar fluids and its application to a journal
bearing. International Journal of Engineering Science 13(3):217–232

Rickert W, Müller WH, Vilchevskaya EN (2018) A note on couette flow of micropolar fluids
according to eringen’s theory. Mathematics and Mechanics of Complex Systems Submitted

Rueger Z, Lakes RS (2016) Experimental cosserat elasticity in open-cell polymer foam. Philosoph-
ical Magazine 96(2):93–111

Sani RL, Gresho PM (1994) Résumé and remarks on the open boundary condition minisymposium.
International Journal for Numerical Methods in Fluids 18(10):983–1008

Schneck DJ (2000) An Outline of Cardiovascular Structure and Function. In: Bronzino JD (ed)
The Biomedical Engineering Handbook, vol 1, 2nd edn, CRC Press, chap 1

Shankar PN (1993) The eddy structure in stokes flow in a cavity. Journal of Fluid Mechanics
250:371–383

Shen J (1991) Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Compu-
tational Physics 95(1):228–245

Sheremet MA, Pop I, Ishak A (2017) Time-dependent natural convection of micropolar fluid in a
wavy triangular cavity. International Journal of Heat and Mass Transfer 105:610–622

Silber G, Janoske U, Alizadeh M, Benderoth G (2007) An application of a gradient theory with dis-
sipative boundary conditions to fully developed turbulent flows. Journal of Fluids Engineering
129(5):643–651

Singh K (1982) Couette flow of microthermopolar fluids between two parallel plates. Acta Me-
chanica 43(1):1–13

Taylor C, Hood P (1973) A numerical solution of the navier-stokes equations using the finite ele-
ment technique. Computers & Fluids 1(1):73–100

Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially
heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer
50(9):2002–2018

Türk Ö, Tezer-Sezgin M (2017) FEM solution to natural convection flow of a micropolar nanofluid
in the presence of a magnetic field. Meccanica 52(4):889–901

Vilchevskaya EN, Müller WH (2018) Some remarks on recent developments in micropolar contin-
uum theory. Journal of Physics: Conference Series 991(1):012,079

Zhilin PA (2006) A micro-polar theory for binary media with application to flow of fiber suspen-
sions. In: Indeitsev DA, Ivanova EA, Krivtsov A (eds) Advanced Problems in Mechanics, vol 2,
Russian Academy of Sciences, Insitute for Problems in Mechanical Engineering



Chapter 29

Graded Insulation to Improve High Pressure

Resistance in Deepwater Flowlines: a Closed

Form Analytical Elastic Solution

Roberta Sburlati & Maria Kashtalyan

Abstract In this paper, an insulated pipe system comprising the inner pipe, insula-
tion and outer jacket is investigated in the context of elasticity theory with the view
to establish whether introducing stiffness gradient in the insulation would improve
performance of the pipe under external pressure. Closed form analytical solutions
are derived for stresses and displacements in the pipe system. Comparative analysis
of pipes with homogeneous and graded insulation is performed and beneficial effect
of graded insulation on stresses and displacements in the pipe is established.

Keywords: Elasticity theory · Syntactic foam · Internal pressure · External pressure

29.1 Introduction

Oil and gas production in deep and ultra deepwater faces many technological chal-
lenges (Bruschi et al, 2015). High temperatures of extracted fluid combined with low
external temperature and high hydrostatic pressure of the deepwater environment
place simultaneous requirements for thermal insulation and mechanical integrity on
the production infrastructure. Failure of subsea infrastructure can lead to significant
environmental pollution (Drumond et al, 2018).

Over the past two decades, for fields with flow assurance challenges pipe-in-pipe
systems have been developed in which the annular space between the inner and outer
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pipes is filled with insulation material to meet specific thermal requirements while
the outer pipe is designed to withstand high external pressure dictated by the water
depth and installation method (Bai and Bai, 2014). The capability to maintain the
required temperature of the fluid inside the inner pipe can be further increased by
using electrically heated pipe-in-pipe systems which offer enhanced flow assurance
(Denniel et al, 2011; Denniel, 2015).

Lightweight alternatives to pipe-in-pipe systems based on steel pipes surrounded
by insulation materials without the need for the outer steel pipe were considered
by Grosjean et al (2009); Choqueuse et al (2010) and Bouchonneau et al (2010).
A finite element model was developed for predicting thermomechanical behaviour
of complex multi-layered pipes subjected to ultra-deepwater conditions, which was
validated using experimental data for large-scale industrial prototype. Analytical so-
lutions for stresses and displacements in heated and pressurised multi-layered pipes
were developed by Vedeld and Sollund (2014) and Sollund et al (2014). Solution of
Vedeld and Sollund (2014), which assumed uniform temperature distribution within
each layer of the pipe, was subsequently refined by Yeo et al (2017), who found that
the refined solution was able to produce more accurate predictions than the original
solution of Vedeld and Sollund (2014). Analysis of coupled thermo-mechanical phe-
nomena in such systems can be accomplished only by computational means (Abali,
2017).

Currently, insulation materials used in thermally insulated multilayered sys-
tems used in subsea applications include polymers and syntactic foams, which are
polymer-matrix composites filled with hollow glass particles (microspheres, mi-
croballoons). They combine thermal insulation function with low buoyancy and high
compressive strength (Lachambre et al, 2013). Properties of syntactic foams can be
further enhanced by incorporating additional reinforcing phases such as nanoclay
and nano- and micro-fibres (Gupta et al, 2013). Another way of enhancing proper-
ties of syntactic foams involves introducing a stiffness gradient within the syntactic
foam, either by varying volume fraction of microballoons or by varying microbal-
loon wall thickness. Varying volume fraction leads to a gradient in the coefficient
of thermal expansion and moisture absorption, which results in warping when the
material is exposed to changing temperature or moisture conditions. These disad-
vantages are absent in graded syntactic foams with constant volume fraction and
varying wall thickness which were first proposed by Gupta (2007).

Investigation of the dependence of the elastic properties of syntactic foams on
volume fraction and wall thickness over the full range of wall thicknesses was per-
formed by Porfiri and Gupta (2009). It was found that while the Young’s modulus
of syntactic foams with very thin microballoons is lower than that of the matrix,
thick-walled microballons can stiffen the matrix material. This means that graded
syntactic foams with gradient in microbaloon wall thickness have the potential of
performing both insulating and load-bearing functions.

Beneficial effect of stiffness gradient on stress and displacement fields in multi-
layered systems has been already established for coating/substrate systems (Kash-
talyan and Menshykova, 2009; Sburlati et al, 2013) and sandwich pipes Sburlati and
Kashtalyan (2016). Using thin functionally graded layer was also shown to reduce
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stresses in hollow pressurized cylinders (Sburlati, 2012) and spherical vessels (Ata-
shipour and Sburlati, 2016) as well as around open holes (Sburlati et al, 2014). A
versatile computational approach to modelling materials with gradients in elastic
properties has been proposed by Abali et al (2012) and Abali et al (2014).

In this paper, the effect of stiffness gradient within the insulation layer on perfor-
mance of thick-walled pipe subjected to internal and external pressure is investigated
in the context of elasticity theory. A closed-form analytical solution to the problem
is derived for a three-layer system comprising the inner pipe, insulation layer and
outer jacket. On its basis, a comparative study of stress and displacement fields in
pipes with homogeneous and graded insulation is then performed.

29.2 Analytical Modelling

29.2.1 Problem Formulation

Figure 29.1 shows cross-section of a three-layer system comprising the inner pipe,
insulation and outer jacket, although industrial prototypes may include additional
layers such as primer and adhesive layers (Bouchonneau et al, 2010). The system
is referred to the cylindrical co-ordinate system, with z-axis directed along the pipe
axis. The inner pipe has inner radius a and outer radius b and is modelled as homo-
geneous isotropic material with Young’s modulus Ea and Poisson’s νa.

The insulation has inner radius b and outer radius c and is modelled as graded
isotropic material with constant Poisson’s ratio νc and Young’s modulus that is a
linear function of the radius in the form

Fig. 29.1 Sketch of the pipe
cross-section
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E(r) = E2r + E1 (29.1)

If the Young’s modulus values Eb at r = b and Ec at r = c are known then coeffi-
cients E1 and E2 are equal to

E1 =
Ecb− Ebc

b− c , E2 = −Ec − Eb

b− c (29.2)

where
E(b) = E2b+ E1, E(c) = E2c+ E1 (29.3)

The Young’s moduliEb andEc of the insulation material are generally not related
to the Young’s modulus Ea of the inner pipe, but are dictated by what it physically
possible to achieve in a particular insulation material. A discussion of this is given
in Sect. 29.3. The outer jacket has inner radius c and outer radius d and is modelled
as homogeneous isotropic material with Young’s modulus Ed and Poisson’s ratio
νd.

The system is subjected to inner pressure pi and outer pressure po. Perfect bond-
ing conditions are assumed between the pipe and insulation and the insulation and
outer jacket, so that continuity conditions for stresses and displacements are fulfilled
at the interfaces r = b and r = c, respectively.

29.2.2 Method of Solution

Due to the axial symmetry of the system and applied loading, we can analyse it
as plane strain elasticity problem. In this case, the equilibrium equations, strain-
displacement equations and stress-strain relations have the form

dσr
dr

+
σr − σθ
r

= 0,

εr =
du

dr
, εθ =

u

r
,

σr =
E(r)

(1 + ν)(1− 2ν)
[(1− ν) εr + νεθ] ,

σθ =
E(r)

(1 + ν)(1− 2ν)
[(1− ν) εθ + νεr] .

(29.4)

By using the displacement formulation, the above equations can be reduced to
Navier equation

d2u(r)

dr2
+

1

r

du(r)

dr
− u(r)
r2

+
1

E(r)

(
dE(r)

dr

)(
du(r)

dr
+

ν

(1− ν)
u(r)

r

)
= 0.

(29.5)
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The specific form of Navier equations depends on the function that describes varia-
tion of the Young’s modulus with the radial co-ordinate within each component of
the system. For the inner pipe and outer jacket, which are treated as homogeneous
isotropic materials with constant Young’s modulus, Navier equation is reduced to

d2u(r)

dr2
+

1

r

du(r)

dr
− u(r)
r2

= 0 (29.6)

For the inner pipe, the solution of Navier equation can be written as

u(r) = A1r +
A2

r
(29.7)

Stresses in the inner pipe are then given as

σr(r) =
2Ea

(1 + νa)(1− 2νa)
A1 − Ea

(1 + νa)r2
A2,

σθ(r) =
2Ea

(1 + νa)(1− 2νa)
A1 +

Ea

(1 + νa)r2
A2.

(29.8)

Similarly, for the outer jacket, the solutions of Navier equation can be written as

u(r) = C1r +
C2

r
(29.9)

Stresses in the outer jacket are then

σr(r) =
2Ea

(1 + νa)(1− 2νa)
C1 − Ea

(1 + νa)r2
C2,

σθ(r) =
2Ea

(1 + νa)(1− 2νa)
C1 +

Ea

(1 + νa)r2
C2.

(29.10)

For the graded insulation, which is modelled as graded isotropic material with linear
variation of the Young’s modulus with the radial co-ordinate, Eq. (29.1), Navier
equation becomes

d2u(r)

dr2
+

(α− 2r)

(α− r)r
du(r)

dr
− 4α+ (1− β2)r

4(α− r)r2 u(r) = 0 (29.11)

where

α = −E1

E2
, β =

√
9νc − 5√
νc − 1

. (29.12)

Solution to this equation can be found in terms of hypergeometric functions as

u(r) = B1r
−(β+1)/2Θ1(r) +B2r

(β−1)/2Θ2(r) (29.13)

where
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Θ1(r) = 2F1

([
β

2
− 1

2
,
β

2
+

3

2

]
, [β + 1] ,

α

r

)
,

Θ2(r) = 2F1

([
−β
2
− 1

2
,−β

2
+

3

2

]
, [−β + 1] ,

α

r

)
.

(29.14)

Then stresses in the insulation can be expressed as

σr(r) = w11(r − α)r−(3+β)/2Θ1(r)B1 + w12(r − α)r−(3−β)/2Θ2(r)B2

+ w13(r − α)r−(5+β)/2Θ3(r)B1 + w14(r − α)r−(5−β)/2Θ4(r)B2,

σθ(r) = w21(r − α)r−(3+β)/2Θ1(r)B1 + w22(r − α)r−(3−β)/2Θ2(r)B2

+ w23(r − α)r−(5+β)/2Θ3(r)B1 + w24(r − α)r−(5−β)/2Θ4(r)B2,
(29.15)

where

Θ3(r) = 2F1

([
β

2
+

5

2
,
β

2
+

1

2

]
, [β + 2] ,

α

r

)
,

Θ4(r) = 2F1

([
−β
2
+

1

2
,−β

2
+

5

2

]
, [−β + 2] ,

α

r

)
.

(29.16)

and

w11 = − (β − 3)(β + 3)2E2

2(β + 1)(β2 − 7)
, w12 = − (β − 3)2(β + 3)E2

2(β − 1)(β2 − 7)
,

w13 = − (β − 3)(β + 3)2E2 α

2(β + 1)2(β2 − 7)
, w14 = − (β − 3)2(β + 3)E2 α

2(β − 1)2(β2 − 7)
,

w21 =
(β − 3)(β + 3)2(β − 1)E2

4(β + 1)(β2 − 7)
, w22 = − (β − 3)2(β + 3)(β + 1)E2

4(β − 1)(β2 − 7)
,

w23 =
(β − 3)(β + 3)2(β2 − 5)E2 α

8(β + 1)2(β2 − 7)
, w24 = − (β − 3)2(β2 − 5)(β + 3)E2 α

8(β − 1)2(β2 − 7)
.

(29.17)
Arbitrary constants A1, A2, B1, B2, C1, C2 are determined by boundary conditions
at the innermost and outermost radii of the insulated pipe system as well as conti-
nuity conditions at the interfaces.

They have been found as

A1 =
(1 + νa)(2νa − 1)pi

Ea
− (2νa − 1)

a2
A2,

C1 =
(1 + νd)(2νd − 1)po

Ed
− (2νd − 1)

d2
C2,

B1 =
b(β+3)/2

Θ1(b)
A1 +

b(β−1)/2

Θ1(b)
A2 − b

β Θ2(b)

Θ1(b)
B2,

B2 = −c
−β Θ1(c)

Θ2(c)
B1 +

c(3−β)/2

Θ2(c)
C1 +

c−(β+1)/2

Θ2(c)
C2,

(29.18)
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and
A2 = −a10a22 − a12a20

a11a22 − a12a21 , C2 =
a10a21 − a11a20
a11a22 − a12a21 . (29.19)

Quantities aij with i = 0, 1, 2; j = 0, 1, 2, involved in the above expressions, are
listed in Appendix.

29.3 Results and Discussion

Similarly to Sburlati (2012), the correctness of the proposed analytical solution is
verified by setting Ea = Eb = Ec = Ed and establishing that it is possible to
recover the results given by the well-known Lamé solution for a homogenous thick-
walled pipe from the present solution. The developed solution is used to study the
effect of insulation grading on the pipe performance under external and internal
pressure.

The geometry of the insulated pipe system is set as follows: inner radius of the
pipe a = 0.1 m outer radius of the pipe b = 0.12 m, inner radius of the jacket
c = 0.180 m, outer radius of the jacket d = 0.185 m. The external pressure is taken
as 30 MPa.

Material properties of the reference system with homogeneous insulation are
adapted from Bouchonneau et al (2010) and are listed in Table 29.1.

It is evident from Table 29.1 that the Young’s modulus of Polypropelene (PP)
syntactic foam insulation is slightly lower than the modulus of the PP outer jacket
(1.1 GPa versus 1.3 GPa). This indicates that wall thickness of microballoons in
the insulation was very small. It is worth pointing out that when Porfiri and Gupta
(2009) analysed the dependence of the elastic properties of syntactic foams on vol-
ume fraction and wall thickness over the full range of wall thicknesses, they found
that the Young’s modulus of syntactic foams with very thin microballoons is lower
than that of the matrix, while thick microballons stiffen the matrix material.

The relationship between microballoon wall thickness and the Young’s modu-
lus of the resulting particle-reinforced composite, established by Porfiri and Gupta
(2009), can be turned to advantage in graded syntactic foams. For instance, by keep-
ing the volume fraction of microballoons constant (e.g. 60%) and varying wall thick-
ness with the radius, one can produce a graded syntactic foam with the Young’s
modulus that varies from the modulus of the matrix Em at the outer interface r = c
to 10Em at the inner interface r = b. The corresponding variation of the Poisson’s

Table 29.1 System with homogeneous insulation

Component Material Young’s modulus Poisson’s ratio
Inner pipe Steel 218 GPa 0.33
Insulation PP Syntactic Foam 1.1 GPa 0.32
Outer jacket PP 1.3 GPa 0.40
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ratio, according to Porfiri and Gupta (2009), would be from about 0.8 νm at r = c
to 0.7 νm at r = b; however, this variation is small and can be neglected to simplify
the analysis.

Material properties of the system with graded insulation based on the above con-
siderations have been proposed and are listed in Table 29.2.

The properties of the inner pipe and outer jacket are the same as in the reference
system, whereas modulus of the insulation varies from 13 GPa at the interface with
the inner pipe to 1.3 GPa at the interface with the outer jacket. Figure 29.2 shows
variation of the normalised Young’s modulus Ē(r) = E(r)/E(a) through the wall
thickness of the pipe system.

Figures 29.3-29.5 show variation of respectively normalised radial displacement
ū(r) = u(r)/d, normalised radial stress σ̄r(r) = σr(r)/po, and normalised hoop
stress σ̄θ(r) = σθ(r)/po, through the wall thickness of the system, subjected to
external pressure of 30 MPa. The results for the reference system with homogeneous
insulation are shown in red, while the results for the system with graded insulation
are shown in blue.

Under the external pressure, use of graded insulation leads to significant reduc-
tion of radial displacement in the insulation layer and the outer jacket (Fig. 29.3).
The influence of graded insulation on the radial stress is comparatively small
(Fig. 29.4). The hoop stress is reduced in pipe and jacket (Fig. 29.5); instead, the
insulation redistribution of hoop stress is observed, with stress magnitude in the
vicinity of the inner pipe increasing and in the vicinity of the outer jacket decreasing.
In Table 29.3 we compare in details the values between graded and homogeneous
insulation cases.

Table 29.2 System with graded insulation

Component Material Young’s modulus Poisson’s ratio
Inner pipe Steel 218 GPa 0.33
Insulation PP Syntactic Foam (r = b) 13 GPa 0.32

PP Syntactic Foam (r = c) 1.3 GPa 0.32
Outer jacket PP 1.3 GPa 0.40

Fig. 29.2 Variation of the
normalised Young’s modulus
through the thickness of the
pipe system
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Fig. 29.3 Normalised radial
displacement in the pipe sys-
tem with and without graded
insulation under external pres-
sure

Fig. 29.4 Normalised radial
stress in the pipe system with
and without graded insulation
under external pressure

Fig. 29.5 Normalised hoop
stress in the pipe system with
and without graded insulation
under external pressure

Figures 29.6-29.8 show variation of respectively radial displacement, radial stress
σ̄r(r) = σr(r)/pi, and hoop stress σ̄θ(r) = σθ(r)/pi, through the wall thickness of
the pipe, subjected to internal pressure of 10 MPa.

Under the internal pressure, use of graded insulation leads to significant reduction
of radial displacement in both the insulation layer and the outer jacket (Fig. 29.6),
and also to a slight increase of the radial stress (Fig. 29.7) in the pipe and the insu-
lation layers in the vicinity of their interface. The hoop stress in the inner pipe is
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Table 29.3 Comparison of hoop stress values in pipes with graded or homogeneous insulation
under external pressure

Component Location Hoop stess (MPa) Difference %
Graded Homogeneous

Inner pipe r = a -223.18 -228.29 -2.24
r = b -189.08 -193.42 -2.24

Insulation r = b -26.25 -17.29 51.73
r = c -16.74 -22.18 -24.49

Outer jacket r = c -22.84 -30.18 -24.32
r = d -23.04 -30.17 -23.65

Fig. 29.6 Normalised radial
displacement in the pipe sys-
tem with and without graded
insulation under internal pres-
sure

Fig. 29.7 Normalised radial
stress in the pipe system with
and without graded insulation
under internal pressure

reduced, while an increase in the hoop stress is observed in the insulation layer, at
the interface with the pipe (Fig. 29.8).
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Fig. 29.8 Normalised hoop
stress in the pipe system with
and without graded insulation
under internal pressure

29.4 Conclusions

In this paper, a closed form analytical solution for an insulated deepwater pipe sys-
tem comprising an inner pipe, an insulation layer and an outer jacket is developed.
Both the inner pipe and the outer jacket are modelled as homogeneous materials,
while the insulation layer is assumed to contain a stiffness gradient of the type that
can be realised in syntactic foams by varying wall thickness of glass microballoons
while keeping their volume fraction constant. Based on the derived analytical so-
lution, stress analysis of pipe systems with graded insulation subjected to external
and internal pressure is performed and the beneficial effect of graded insulation on
stresses and displacements in the system is established and quantified.

The developed closed-form analytical solution, while focusing on purely elastic
behaviour and neglecting thermal effects, can be used as a valuable benchmark for
validating models that attempt to take into account combined mechanical and ther-
mal effects. Even in absence of stiffness gradients, such models often need to make
simplifying assumptions to arrive at the results, as pointed out in our discussion of
Vedeld and Sollund (2014) solution in Sect. 29.1. It is therefore helpful to have a
benchmark elasticity solution that can be used to assess accuracy of approximate
analytical and numerical models.
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Appendix

The coefficients of equations (29.19) are
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a11 =
(b− α) ((−2 νa + 1) b2 + a2

)
cβ/2Θ2 (c) (w11Θ1 (b) b+ w13Θ3 (b))

a2b3
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
− (−b+ α) (b2 (2 νa − 1)− a2) bβc−β/2Θ1 (c) (Θ2 (b)w12b+Θ4 (b)w14)

a2b3
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
− (a− b) (a+ b)Ea

(1 + νa) a2b2
,

a12 =
(b− α) ((2 νd − 1) c2 − d2) bβ/2−3/2 (w11 − w12)Θ2 (b)Θ1 (b)√

cd2
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
− (b− α) ((2 νd − 1) c2 − d2) bβ/2−5/2 (−Θ2 (b)w13Θ3 (b) +Θ1 (b)w14Θ4 (b))√

cd2
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

) ,

a21 = − (c− α) (b2 (2 νa − 1)− a2) bβ/2 (Θ4 (c)Θ1 (c)w14 −Θ3 (c)Θ2 (c)w13)√
bc5/2

(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
a2

+
(c− α) (b2 (2 νa − 1)− a2) bβ/2 (w11 − w12)Θ2 (c)Θ1 (c)√

bc3/2
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
a2

,

a22 =
(α− c) ((2 νd − 1) c2 − d2) (c−β/2Θ2 (b) b

βΘ1 (c)w11 − cβ/2Θ1 (b)Θ2 (c)w12

)(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
c2d2

− (α− c) ((2 νd − 1) c2 − d2) (−Θ3 (c) c
−β/2Θ2 (b) b

βw13 +Θ4 (c) c
β/2Θ1 (b)w14

)
c3

(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
d2

−Ed (c− d) (c+ d)
c2d2 (1 + νd)

.

And, for inner pressure (i), the remaining coefficients assume the following form

a
(i)
10 =

(−b+ α) (1 + νa) (2 νa − 1)
(−bβc−β/2Θ1 (c)Θ2 (b)w12 + c

β/2Θ2 (c)Θ1 (b)w11

)
pi(−c−β/2Θ2 (b) bβΘ1 (c) + cβ/2Θ1 (b)Θ2 (c)

)
Ea

+
(−b+ α) (1 + νa) (2 νa − 1)

(−bβc−β/2Θ4 (b)Θ1 (c)w14 + c
β/2Θ3 (b)Θ2 (c)w13

)
pi

b
(−c−β/2Θ2 (b) bβΘ1 (c) + cβ/2Θ1 (b)Θ2 (c)

)
Ea

− pi,

a
(i)
20 = − (c− α) (1 + νa) (2 νa − 1) b3/2+β/2Θ2 (c)Θ1 (c) (w11 − w12) pi

c3/2
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
Ea

− (α− c) (1 + νa) (2 νa − 1) b3/2+β/2 (Θ4 (c)Θ1 (c)w14 −Θ3 (c)Θ2 (c)w13) pi

c5/2
(
c−β/2Θ2 (b) bβΘ1 (c)− cβ/2Θ1 (b)Θ2 (c)

)
Ea

,

while, for outer pressure (o), we obtain
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a
(o)
10 = − (−b+ α) (1 + νd) (2 νd − 1) bβ/2c3/2Θ1 (b)Θ2 (b) (w11 − w12) po

b3/2
(−c−β/2Θ2 (b) bβΘ1 (c) + cβ/2Θ1 (b)Θ2 (c)

)
Ed

− (−b+ α) (1 + νd) (2 νd − 1) bβ/2−5/2c3/2 (Θ2 (b)w13Θ3 (b)−Θ1 (b)w14Θ4 (b)) po(−c−β/2Θ2 (b) bβΘ1 (c) + cβ/2Θ1 (b)Θ2 (c)
)
Ed

,

a
(o)
20 = − (α− c) (1 + νd) (2 νd − 1)

(−c−β/2bβΘ2 (b)Θ1 (c)w11 + c
β/2Θ2 (c)Θ1 (b)w12

)
po(−c−β/2Θ2 (b) bβΘ1 (c) + cβ/2Θ1 (b)Θ2 (c)

)
Ed

− (α− c) (1 + νd) (2 νd − 1)
(−c−β/2bβΘ3 (c)Θ2 (b)w13 + c

β/2Θ4 (c)Θ1 (b)w14

)
po

c
(−c−β/2Θ2 (b) bβΘ1 (c) + cβ/2Θ1 (b)Θ2 (c)

)
Ed

+ po.
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Chapter 30

On Brake Pad Shim Characterization:

a Homogenization Approach and Finite Element

Analysis

Dominik Schmid, Nils Gräbner & Utz von Wagner

Abstract Brake squeal is a typical problem of “Noise, Vibration, Harshness” (NVH)
phenomena in the automotive world leading to potential customer complaints. This
high frequency noise in the audible frequency range of approximately 1 kHz to
15 kHz is induced by self excitation resulting from the frictional contact between
brake pad and disk. A typical industrial countermeasure to address this problem is
the mounting of thin composite structures consisting of elastomer and steel layers,
so called shims, on the pad backplates. They are applied to increase the damping
and to influence the vibration shapes.
The computational modeling of shims using Finite Elements is still a complex task
and shows significant potential for improvement. To avoid problems resulting from
element sizes of the partially very thin layers a classical homogenization theory from
literature is considered. This homogenization approach maps shim properties in an
improved manner which contributes to substantially smaller model sizes as well
as less simulation effort and time. Therefore, analytical approaches for constrained
layer damping structures are introduced and corresponding theoretical results are
presented. To validate these theoretical results, experimental investigations are car-
ried out on shims bonded to structures, especially steel plates and brake pads.
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30.1 Introduction

Numerous technical applications especially in lightweight structures nowadays re-
quire high stiffness characteristics with simultaneously high damping ratios in order
to avoid undesired vibrations. A typical example for fulfilling such requirements is
the application of composites. These structures meet the requirements by exhibit-
ing good damping behavior without loosing stiffness (Marcelin et al, 1995). The
application of such composites called shims on brake pad backplates is a typical
countermeasure against undesired vibration phenomena like brake squeal. Brake
squeal is a high frequency noise in the audible frequency range of approximately
1 kHz to 15 kHz based on self-excited vibrations caused by friction forces between
pad and disk (Kinkaid et al, 2003; Cantoni et al, 2009). Shims are thin layer bonded
structures consisting of viscoelastic elastomer layers and steel plates with high stiff-
ness. Figure 30.1 shows the general set-up of a brake pad with shim consisting of
the friction material being in contact with the disk during the braking process, the
backplate and the shim, which is coupled to the backplate by an adhesive layer.
Designing and selecting appropriate shims is still a major task to solve. There are
plenty of experimental investigations required to find the right shim matching the
individual noise problems of the respective brake. This includes the experimental
investigation of the components as well as dynamometer tests of the entire brake
and tests in the vehicle.

A standard industrial tool in the investigation of brake squeal is the so-called
complex eigenvalue analysis (CEA). The CEA is based on large Finite Element
models of the entire brake with disk, pads, caliper, carrier and the suspension. Equi-
librium positions resulting from the applied brake torque are calculated by a static
analysis and the equations of motion are linearized with respect to them (Gräbner
et al, 2016). Gyroscopic terms and, due to the friction forces between disk and pads
circulatoric terms, i.e. self excitation, is present. This may result in positive real
parts of the eigenvalues, i.e. instability of the aforementioned equilibrium solution.
Therefore the overall goal of CEA is to characterize the stability behavior of equi-
librium solutions of brake systems as an indicator for possible onset of squeal. The
accurate calculation of the eigenvalues anyway is a challenging problem (Gräbner
et al, 2016) for that large gyroscopic-circulatory systems. The squealing itself is a
limit cycle oscillation requiring to consider nonlinearities (Gräbner et al, 2014) and
corresponding bifurcation behavior.

Fig. 30.1 Brake pad compo-
sition (Schmid, 2018a)

shim

backplate

friction material
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Damping is well known to influence and to be able to suppress self-excited vibra-
tions, see e.g. (Gräbner et al, 2015) both in the linear as well as in the nonlinear case.
On the other hand, damping is hard to identify and therefore in many applications
only estimated or even neglected. Neglected or underestimated damping in general
leads to overestimated eigenvalues with positive real parts and corresponding po-
tential squeal frequencies. Therefore, modeling of damping, at least for components
introduced by intention in order to damp vibrations like the shims, is a key issue for
improved modeling of the system’s behavior. Hereby, mapping the damping capac-
ity of the shim’s viscoelastic layer is an essential point. Compared to the overall high
amount of literature on brake squeal including several review papers like the already
mentioned in Kinkaid et al (2003) and Cantoni et al (2009) publications on model-
ing of shims are somewhat rare. Examples for FE investigations including shims
are in Festjens et al (2012) and Kang (2012). Esgandari and Olatunbosun (2016)
implemented Rayleigh damping in elastomer layers of shims, steel layers are still
undamped. Rayleigh parameter are used based on previous investigations from Flint
et al (2004). There are also some technical standards on shims like in SAE-J3001
(2011).

The problem in including the shims in FE-models are the thin layers in shims,
which in general may have thicknesses in the range of 0.1mm. Using element sizes
in the same range with, in the FE sense "healthy", ratios of element dimensions
would lead to element numbers which cannot be handled, if complete models of the
entire brake are considered.

Therefore, the basic idea of the work described in this paper is, to homogenize
the shim layered structure using classical theories and approaches. This is done in
order to enable larger element sizes allowing for acceptable numbers of degrees of
freedom, which can be handled in models of the entire brake. In this contribution
shims with two thin elastomer layers enclosed by a metal core are examined in
detail.

There is a large number of publications on the dynamics of composites com-
bining metal and elastomer layers. One of the first theories has been published in
the middle of the last century by Oberst describing unconstrained damping treat-
ments (Oberst and Frankenfeld, 1952; Oberst et al, 1954). The purpose was to ho-
mogenize structures consisting of layers with different characteristics. As a result a
single layer with equivalent mechanical properties describing stiffness and damping
ratios is obtained. Characterizing system properties analytically Kerwin extended
Oberst’s theory considering an additional stiff top layer Kerwin Jr (1959) which in
the following was called constrained layer. The energy dissipation for constrained
layer compounds is mainly induced by shearing of the viscoelastic core material and
exceeds the extensional damping of unconstrained damping treatments Ross et al
(1959). The developed theory for free vibrations was introduced for fully coverage
of the damping and constraining layer considering pinned-pinned boundary condi-
tions. DiTaranto also addressed this problem and developed a sixth order equation
for longitudinal displacement. He formulates the loss factor for coverage of the en-
tire beam for any boundary condition (DiTaranto, 1965). The transverse displace-
ment of beams with damping treatments has been published by Mead and Markuš
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for arbitrary boundary conditions and has been extended for forced vibrations (Mead
and Markuš, 1969) and (Mead and Markuš, 1970). Using an energy approach an
exact solution for the sixth order equation as well as numerical approaches were
described by Rao (Rao, 1978).

The publications listed so far require full coverage of all layers. In general brake
pads used in vehicles show only partial coverage of shims bonded to back plates. The
more general set-up of only partial coverage has been investigated by Nokes describ-
ing damping of beams for any symmetrical boundary conditions requiring a centered
constrained layer on the structure (Nokes and Nelson, 1968). Markuš (1974) dealed
with the damping mechanism of beams and developed a theory for partially covered
constrained layers predicting damping for any boundary conditions. Damping mate-
rial calculation formulas of sandwich beams with partially covering damping layers
have been presented by Sylwan achieving equal damping properties compared to
full coverage (Sylwan, 1978). Moreover two approximate solutions and one exact
method for the damping description of partially covered sandwich beams have been
published by Lall et al (1988). Flint presents essential publications in his PhD thesis
considering full coverage (Flint, 2002). An overview and classification of relevant
surface damping treatments can be found in the books from Nashif et al (1985) and
Sun and Lu (1995).

The aim of this contribution is to carry out Finite Element simulations of
homogenized shims with a view to less experimental effort and better prediction
quality. With this stiffness characteristics of shims and in particular loss factors of
shims bonded to rectangular steel plates are determined analytically and applied to
an Abaqus CAE model. The loss factors for full coverage are compared consider-
ing torsional and flexural mode shapes. The damping behavior of the viscoelastic
core is implemented in a Finite Element model. As a further step towards the im-
proved shim modeling, brake pads are examined numerically. Furthermore, concrete
recommendations on modeling and meshing shims are introduced. Finally experi-
mental investigations are carried out to validate damping and stiffness characteristics
using methods as described in SAE guideline J3001 (SAE-J3001, 2011).

30.2 Modeling of Shims

The dynamical characterization of shims includes modal parameters like natural
frequencies, mode shapes and damping ratios. The focus is to map torsional and
bending modes analytically. Therefore, mechanical models focusing on stiffness and
damping behavior of shims are examined. Following most set-ups in literature and
in order to prevent influence resulting from the support, which may affect natural
frequencies and damping characteristics, a free-free support is utilized for model-
ing and experimental investigations (Ewins, 1984) in the following. These boundary
conditions will of course change, if the resulting pad and shim model will be inte-
grated into the model of the entire brake.
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30.2.1 Continuous Mechanical Systems

For introduction classical models for torsional vibrations of bars as well as Euler-
Bernoulli beams with a rectangular cross section are reconsidered in the following,
where the corresponding formulas can be taken from textbooks, e.g. Hagedorn and
DasGupta (2007). A free-free torsional bar is shown in Fig. 30.2, where G is the
shear modulus, " the mass density as well as IP and IT are the polar and torsional
moments of inertia respectively. Describing the geometrical dimensions of the bar,
the length l, the width b and height h are introduced. The following partial differen-
tial equation describes the torsional free vibrations ϑ(x, t) of the bar with uniform
cross section by

∂2 ϑ

∂ t2
− c2 ∂

2 ϑ

∂ x2
= 0, (30.1)

where c is the wave propagation speed for the torsional vibrations with

c2 =
GIT

" IP
. (30.2)

Taking the boundary conditions of the system ϑ
′
(0, t) = 0 and ϑ

′
(l, t) = 0 into

account, the natural frequencies ftn can be determined as

ftn =
n c

2 l
∀n ∈ N. (30.3)

In general for isotropic materials, G can be expressed by the respective Young’s
modulus E and the Poisson’s ratio ν

G =
E

2 (1 + ν)
. (30.4)

A rectangular Euler-Bernoulli beam executing lateral vibrations is sketched in
Fig. 30.3. The corresponding partial differential equation describing lateral free vi-
brations w(x, t) of an Euler-Bernoulli beam with uniform cross section is given by

∂2 w

∂ t2
+
EIy

"A

∂4 w

∂ x4
= 0. (30.5)

The equation includes the flexural rigidity with the geometrical moment of inertia Iy

and the area A. With the free-free boundary conditions w
′′
(0, t) = 0, w

′′
(l, t) = 0,

w
′′′
(0, t) = 0 and w

′′′
(l, t) = 0 the natural frequencies can be determined in the

Fig. 30.2 Rectangular free-
free bar
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b

h

G, ρ, IP, IT, l

ϑ(x, t)
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Fig. 30.3 Free-free Euler-
Bernoulli beam
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following form considering correction terms en Hagedorn and DasGupta (2007)

fbn =
1

2π

(
2n+ 1

2
π+ en

)2
1

l2

√
E Iy

"A
∀n ∈ N (30.6)

with e1 = 0.01766 and e2 = −0.00078. Results determined using this approach are
denoted as “analytical homogenized” (analytical hom) in Sect. 30.5.

30.2.2 Constrained Layer Damping Theory

In contrast to free layer damping, where the extension of the composite caused by
length change due to bending is responsible for the damping behavior, constrained
layer damping treatments, in the following denoted as CLD approach, are more
complicated to describe. Shearing of the viscoelastic layer, which is the main mecha-
nism of energy dissipation, is induced due to the deflection of both elastic layers.
The investigated assembly is illustrated in Fig. 30.4. The following theory is based
on the formulations of Rao Rao (1978). The damping mechanism of the elastomer
layer is characterized by the complex dynamic shear modulus in Eq. (30.7), where
η2 is the core loss factor and G2 the elastic shear modulus Leaderman (1949). Here
and in the following all parameters marked with ∗ denote complex numbers:

G∗
2 = G2(1 + i η2). (30.7)

Classifying and comparing the computed results with data from literature, loss fac-
tors of metals lie between 10−4 and 10−3 approximately, whereas polymers can be
expected to possess loss factors in the range of 10−1 to 2 · 100, see Oberst (1956)

c

l

2h
3

2h
2

2h
1

u1(x)

u3(x)

x

w(x)

x = 0 x = 1
E1, A1, I1

E3, A3, I3

Constraining layer (steel)

Damping material (elastomer)

Beam structure (steel)

Fig. 30.4 Constrained layer damping with full coverage, according to Rao (1978)
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and Beranek and Vér (1992); in some sources polymer loss factors are specified
even up to 101 Ottl (1981). For describing flexural modes the main assumptions for
the isotropic and homogeneous layers are according to Rao (1978):

• small beam deflections are considered which are determined using Euler-
Bernoulli hypothesis
• the elastomer core layer is sheared which is the main energy dissipation mech-

anism
• longitudinal displacements of layers are continuous
• longitudinal and rotatory inertia effects are neglected

Ross, Kerwin and Ungar as well as other authors like Nokes and Nelson assumed,
that mode shapes of the beam are unaffected by the damping treatment Kerwin Jr
(1959) and Nokes and Nelson (1968). This fact was also confirmed experimentally
in this contribution. Constrained layer damping theories consider the longitudinal
displacements of the elastic layers u1 and u3 as well as the vertical displacement of
the beam structure w. Characteristic sandwich equations can be formulated in terms
of the transverse deflection w(x, t) only

−∂
6w

∂x6
+ g∗(1 + Y )

∂4w

∂x4
− ∂4w

∂t
2
∂x2

+ g∗
∂2w

∂t
2 = 0. (30.8)

where x and t constitute normalized space and time coordinates as well as Y and g∗

constitute geometric and shear parameters as

Y =
(h1 + h3 + 2h2)

2

E1 I1 + E3 I3

E1A1E3A3

E1A1 + E3A3
, (30.9)

g∗ =
G∗

2 A2 l
2

4h22

E1A1 + E3A3

E1A1E3A3
. (30.10)

Solving the sixth order partial differential equation the ansatz (30.11) can be used.
A complex exponential ansatz for wm(x, t) is assumed, where k∗n are characteristic
values, Am the coefficients and Ω∗

m the complex frequency factors

wm(x, t) =

6∑
n=1

Am ek
∗
nx eΩ

∗
mt. (30.11)

Substituting (30.11) in (30.8) yields the characteristic equation

−k∗ 6
n + g∗(1 + Y )k∗ 4

n +Ω∗ 2
m (k∗ 2

n − g∗) = 0. (30.12)

Solving the polynomial (30.12) for k∗n, three square-roots are obtained depending
on the frequency factor Ω∗

m. This parameter includes the angular frequency Ωm of
the sandwich compound and the loss factor ηstruc,m of the entire structure.

Ω∗
m = Ωm

√
1 + i ηstruc,m (30.13)
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The sixth order differential Eq. (30.8) for full coverage requires six boundary con-
ditions, three for each end of the beam to determine the unknown coefficients A1

to A6. For a structure with unrestrained free ends there is no bending moment and
shear force at the left end (x = 0) and right end (x = 1) of the beam. Additionally,
the normal force is zero. The free-free unrestrained boundary conditions are given
by

wIV
m(x)− g∗(1 + Y )wII

m(x)−Ω∗2
m wm(x) = 0, (30.14)

wV
m(x)− g∗(1 + Y )wIII

m(x)−Ω∗2
m w

I
m(x) = 0, (30.15)

wIV
m(x)− g∗ Y wII

m − Ω∗2
m wm(x) = 0. (30.16)

These six equations can be transferred in a linear, homogeneous system of equations,
where MA defines a square matrix and a is the vector of unknown coefficients A1

to A6

MA a = 0. (30.17)

To obtain non-trivial solutions a the determinant of MA has to be zero. Analytical
determined frequencies and loss factors are compared with experimental investiga-
tions to verify the prediction quality of this approach.

30.3 Experimental Investigations

Measuring modal parameters the test rig in Fig. 30.5 is used, considering standard
methods as e.g. described in the SAE test procedure J3001 SAE-J3001 (2011). To
prevent double hits during excitation, an automatic impulse hammer 1) is applied.
The system response has been measured in point 2) by using a single point laser vi-
brometer detecting the velocity of the measurement objects in out of plane direction.
To minimize the influence of the support, the test object is suspended (hung up) in
a frame by strings. The investigations included shims bonded to rectangular steel

Fig. 30.5 Experimental
set-up for shim investiga-
tions Schmid (2018b)

1
2
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Fig. 30.6 Mobility of shims
bonded to structure
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plates with dimensions 180x50x5mm3 as well as brake pads with identical shims.
Examining full coverage of the base structure shims are applied having equal length
and width dimensions. A transfer function for one shim type bonded to brake pad
backplates is illustrated in Fig. 30.6 in the range up to 10 kHz. These transfer func-
tions are the basis for determining modal damping values for flexural and torsional
mode shapes. The half-power bandwidth method has been applied for all damping
ratios ϑ, considering a 3 dB decay logarithmically seen in equation

2ϑ =
1

2

[(
Ωo

ωd
− ωd

Ωo

)
−

(
Ωu

ωd
− ωd

Ωu

)]
(30.18)

for nonsymmetrical transfer functions where ϑ is the modal damping ratio, ωd the
natural angular frequency and Ωo, u are angular frequencies determined from the
transfer functions Beards (1983). The first four eigenmodes of a rectangular plate
are presented in Fig. 30.7. Torsional and flexural mode shapes alternate for the
first eight eigenfrequencies. Odd numbered natural frequencies represent bending
modes, whereas even numbered modes correspond to torsion. Additional param-
eters playing an important role to obtain a more realistic mapping are the stress
history and temperature impact on elastomers (Lazan, 1968), which we intend to
address in future investigations. Also the rheological behavior of the viscoelastic
layer may play an important role (Jones, 2001).

Fig. 30.7 Experimentally
identified mode shapes of
shims bonded to steel plates

1st mode shape
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2nd mode shape
torsion

3rd mode shape
bending

4th mode shape
torsion
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30.4 Finite Element Approach

In the following multi- and single-layer shim structures are analyzed based on the-
ories from literature applied to our shim problem. Corresponding FE results are
denoted in Sect. 30.5 as “FE multilayer” and “FE hom” depending on the num-
ber of layers. The aim hereby is to map shims as homogenized entity to avoid
modeling problems resulting from the layer thickness. As a simulation tool for
modeling the shims and carrier structures, Abaqus CAE is used. All results have
been produced using frequency and complex frequency steps of the implicit solver
Abaqus/Standard. Specifically the Lanczos solver is used for this task Lanczos
(1950).

30.4.1 Damping

Several aspects and problems of modeling damping in FE-models of brakes have
been addressed in Gräbner et al (2015). Structural (30.19) as well as Rayleigh damp-
ing (30.20) are integrated for shim structures in Abaqus

Mq̈+K(1 + iβstruc.)q = f , (30.19)

Mq̈+ (αM+ βK)q̇+Kq = f . (30.20)

These are linear systems of differential equations, where q is the displacement vec-
tor as a function of time, M the mass matrix, K the stiffness matrix and f the exci-
tation vector. Instead of using a classical damping matrix for the energy dissipation,
a complex stiffness matrix for structural damping is considered with the damping
parameter βstruc. of the material. For Rayleigh damping α and β are introduced
to influence the damping behavior. This damping type is a mathematical construct
weighting the impact of mass and stiffness matrices. The influence of α and β on
the damping ratio ϑ can be calculated from Eq. (30.21) (Zienkiewicz, 1977), where
ω0 is the natural angular frequency of the system

ϑ =
α+ β ω2

0

2ω0
. (30.21)

Rayleigh damping is implemented for homogenized structures and the friction ma-
terial separately, whereas layer bonding structures are described using structural
damping for metal layers and viscoelastic layers. Figure 30.8 outlines a Rayleigh fit
for experimental results which are shown as round marks. Therefore, a least squares
fitting method (FindFit), which is implemented in Wolfram Mathematica is used.
Using experimental modal analysis, statistical evaluations have shown, that samples
of formal identical brake pads have a slight variance in natural frequencies and a se-
rious variance in damping ratios. Deviations of almost 20% are identified regardless



30 Brake Pad Shim Characterization Using Homogenization Approach 457

Fig. 30.8 Approximation of
experimental modal damping
ratios
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of the mode shape. Hence, the implementation of the exact dissipation parameter is
not expedient and justifies the Rayleigh approach.

30.4.2 Stiffness - Homogenization Theory

In the following the theory from Ross et al (1959) is used for the improved model-
ing of shims. The technique is based on summarizing elastic and viscoelastic lay-
ers up to one single layer with equivalent properties. This homogenization requires
homogeneous single layers for creating a body with equal mechanical properties
including density, thickness, stiffness and damping features, as shown in Fig. 30.9
schematically. Stiffness characteristics mainly come from the metal layers, in par-
ticular the base beam, whereas the structure loss factor depends on the shearing
of the elastomer coating. This theory requires geometrical information about each
layer as well as rheological specifications like material properties. Isotropic mate-
rial behavior is required to all further computations. Therefore, the overall density
and the replacement of Young’s modulus of the compound is implemented for im-
proved computations. Poisson ratio effects coming from the homogenization are
neglectable for FE-simulations. The Poisson’s ratio ν of the homogenization struc-
ture is assumed to be 0.3 corresponding to the elastic layers. In general the Poisson’s
ratio of elastomers is specified by 0.5 in literature. Avoiding numerical issues in FE
calculations the Poisson’s ratio of each viscoelastic layer is defined here as 0.49.

Fig. 30.9 Homogenization of
a three layer compound

layer structure homogenized structure

beam structure

elastomer
constraining layer

h 1
h 3

h 2
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Shims, examined in more detail, consist of a stiff steel structure (constraining
layer) and elastomer layers. Note that the homogenization includes the beam struc-
ture, the elastomer layer and the constraining layer. Adhesive layers and further top
layers have to be modeled additionally. Equation (30.22) shows the flexural rigidity
ratioE I of the homogenized structure

E I = E1
h31
12

+ E2
h32
12

+ E3
h33
12

− E2
h22
12

(
h31 −D
1 + g

)
+ E1 h1D

2

+ E2 h2 (h21 −D)
2
+ E3 h3 (h31 −D)

2 (30.22)

−
(
E2 h2
2

(h21 −D) + E3 h3(h31 −D)

)(
h31 −D
1 + g

)
.

The resulting composite with only one layer considers the thickness diversity of the
steel and viscoelastic layer, whereE is the Young’s modulus, h the thickness of each
layer shown in Fig. 30.9, I the corresponding geometrical moment of inertia, p the
wave number (eigenvalue per length) and G2 the shear modulus of the viscoelastic
core as seen in Eq. (30.23) Nashif et al (1985).

D =
E2 h2

(
h21 − h31

2

)
+ g(E2 h2 h21 + E3 h3 h31)

E1 h1 +
1
2E2 h2 + g(E1 h1 + E2 h2 + E3 h3)

(30.23)

with the parameters:

h31 =
1

2
(h1 + h3) + h2 (30.24)

h21 =
1

2
(h1 + h2) (30.25)

g =
G2

E3 h3 h2 p2
. (30.26)

If there is no width difference between the single layers, the resulting Young’s modu-
lus only depends on thickness and elasticity ratios. The homogenization properties
received are used for analytical and numerical models.

30.4.3 Modeling

Common problematic issues in modeling shims on brake pads, e. g. hourglass ef-
fects, may result from the selection of inappropriate element types as shown in
Fig. 30.10. Often, reduced elements or elements without using hourglass control
lead to zero energy modes which can be checked easily by inspecting the mode
shapes. Moreover, the meshing of composite shim structures has to be done with
high accuracy due to the layer thickness. A massive increase in degrees of freedom
entails inevitably. The investigated shim type consists of one steel and two elastomer
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Fig. 30.10 Hourglass effect
occuring at FE model with
non-homogenized shim

layers one on each side, which is bonded on rectangular steel plates and backplates
of brake pads. Figure 30.11 shows two test objects, the multilayer mesh compound
and the homogenized structure. For layer bonding structures the components are as-

rectangular plate brake pad

Fig. 30.11 FE modeling before and after having applied the homogenization theory to rectangular
plates and brake pads

original shim

homogenized structure

original shim

homogenized structure
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sembled using tie constraints. Solid as well as shell elements with eight nodes (S8R)
are used for modeling steel plates and modified shim parts. Brake pad backplates are
meshed exclusively with solid elements. When implementing the improved brake
pad in a FE brake model, solid elements are recommended to be used due to several
interactions of the brake pad in further steps. An examination on hexahedron ele-
ments with linear (C3D8) and quadratical (C3D20) approach has been carried out.
To analyze the mesh influence a convergence analysis has been carried out with the
original shim structure and after having applied the homogenization theory from
Ross-Kerwin-Ungar. Thus, the element length is varied that leads to an aspect ra-
tio of approximately 1:40 to 1:1 considering the thickness of the unmodified shim
compound. The same element length has been applied for each layer. Quadratical
elements show a very good convergence for computed natural frequencies even for
a coarse mesh. Whereas the elements with linear approach need to be meshed with
much smaller element length achieving the same results. This is due to the fact that
additional middle nodes for each element map the shearing of structures more de-
tailed. Note that higher mode shapes need to be computed with smaller aspect ratios
to achieve a convergence behavior. Consequently for thin structures the quadratical
approach is recommended to use.

30.5 Results and Validation

Results of the described methods for the investigated shim type in the range up
to 5 kHz for a fully covered rectangular steel plate and in the range up to 10 kHz
for a brake pad are shown in Table 30.1. An analytical constrained layer damping
approach (CLD approach) for bending shapes, classical analytical calculations for
homogenized structures (Sect. 30.2.1), Finite Element computations comparing the
homogenized and the layered shim structure are demonstrated. In Abaqus imple-
menting Rayleigh as well as structural damping in the investigated structures has
been focused. The extension on brake pads has been carried out considering a higher
degree of complexity including geometry and the influence of the lining.

To validate the approaches, results from experimental modal analyses are shown.
Thus, loss factors of elastomers often depend on frequency (temperature) and am-
plitude Crandall (1970), all experimental investigations are carried out at room tem-
perature (230). Natural frequencies and characteristic loss factors are listed in Ta-
ble 30.1. The experimental loss factors are determined having regard to the power-
bandwidth method from Eq. (30.18).

Overall, natural frequencies of Finite Element computations yield a very good
compliance with experimental investigations. In particular loss factors of the rect-
angular beam and shim modeled as several monolayers overestimate the damping
behavior from the second mode shape. Structural damping only showed good results
for the backplate. In both homogenized single layer test structures the implemented
Rayleigh-damping showed a very good agreement with experimental determined
loss factors. Solid as well as shell elements deliver excellent results and map the
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Table 30.1 Comparison of shim natural frequencies and loss factors for a free-free support

f1a η1 f2b η2 f3a η3 f4b η4 f5a η5
Object Method / Hz - / Hz - / Hz - / Hz - / Hz -

steel plate Experimental 819 0.008 1769 0.004 2244 0.004 3663 0.003 4381 0.001

steel plate Experimental 872 0.014 1809 0.018 2341 0.019 3722 0.016 4472 0.022
with shim FE multi layer∗ 878 0.014 1780 0.025 2353 0.025 3672 0.025 4494 0.027

FE hom∗ 847 0.017 1788 0.014 2333 0.015 3714 0.019 4551 0.023
FE hom∗∗ 847 0.017 1787 0.014 2332 0.015 3711 0.019 4548 0.022
CLD approach 881 0.009 - - 2367 0.019 - - 4525 0.021
Analytical hom 848 - 1763 - 2347 - 3526 - 4595 -

backplate Experimental 2348 0.003 3483 0.002 5766 0.001 7664 0.001 9820 0.001

backplate Experimental 2475 0.017 3548 0.015 5817 0.013 7622 0.011 9755 0.010
with shim FE multi layer∗ 2447 0.018 3508 0.017 5810 0.016 7638 0.013 9726 0.012

FE hom∗ 2416 0.019 3543 0.014 5838 0.011 7698 0.011 9780 0.011

brake pad Experimental 4045 0.024 5334 0.029 7373 0.027 9900 0.024
with shim FE hom∗ 4362 0.023 5731 0.025 7409 0.024 10061 0.031
a bending mode, b torsional mode, ∗ solid elements, ∗∗ shell elements

progression of the damping behavior correctly. Note that the first natural frequency
in both cases is below the experimental determined frequency.

Regarding a complete brake pad the friction material behaves like a typical trans-
versely isotropic material. Out-of-plane is the preferred direction of the lining char-
acterized by less stiffness. The stiffness of the lining increases with piston pressure
applied in normal direction. For Finite Element models engineering constants are
used in Abaqus for describing the behavior for a certain pressure stage. Therefore
experimental identified natural frequencies are lower than numerical computed ones
listed here. Detailed information on this topic can be found e. g. in Hornig (2015).
Beside this, the application of the homogenized shim structure enables to reduce
the number of degrees of freedom. Figure 30.12 depicts the modeling advantage,
whereby all components compared are meshed with the same element length. Two
test objects, a rectangular plate with dimensions of 180x50x5 mm3 fully covered
with a shim and a backplate with the same shim type are listed. In particular quadrat-
ical solid elements (C3D20) and shell elements (S8R) are used for the considered
structures. The number of elements needed for convergence is much less for ho-
mogenized models, which reduces the computation time drastically. The reduction
of degrees of freedom is intended for large FE brake models often built with several
million degrees of freedom. Achieving similar results using the homogenization the-
ory, shims are highly recommended to be modeled as one layer over the thickness.
Furthermore elements with full integration and second order approach are recom-
mended preventing hourglass effects and shear locking as described in Flanagan and
Belytschko (1981) and Bathe (1996). The analytical constrained layer damping ap-
proach provides a very good forecast quality for bending shapes. Solely the loss
factor of the first bending mode deviates from the actual damping. Simple contin-
uum mechanical approaches reflect only the stiffness characteristics of structures
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Fig. 30.12 Reduction of computation time due to improved single layer modeling

presented in Sect. 30.2.1. The results for torsional vibrations point out, that there
has been simplified modeling for this application at increasing frequencies.

To sum up it can be said, that the results of the applied analytical and modified
FE single layer approach conduct in very good compliance with the experimental
investigations.

30.6 Conclusion and Outlook

The analytical constrained layer damping approach allows the prediction of natural
frequencies and loss factors of bending mode shapes without considering relevant
damping ratios carried out in prior investigations. Experimental evaluations of for-
mal identical brake pads have shown, that there’s a not neglectable deviation in the
damping ability. Therefore the exact mapping of damping characteristics in Finite
Element models is not feasible and favours the Rayleigh approach clearly. By mod-
eling each layer separately the meshing becomes a challenging task due to the layer
thickness. Therefore, the homogenization approach is the preferred modeling tech-
nique. A significant reduction of computation time for homogenized shim structures
arose from a much lower number of degrees of freedom.

Primarily the advantage for future works is to reduce experimental investigations
in a greater scope, improve the prediction quality of potential squeal frequencies
and make the development of quiet brakes more efficient. The implementation of
these homogenized shim structures in a FE complete model of the brake will be
conducted in further steps. Furthemore the impact of varying temperature on shim
loss factors has been depicted in prior examinations and can now be implemented
in Finite Element calculations (Schmid et al, 2017).
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Chapter 31

Teaching Mechanics: Inequalities in Statically

Indeterminate Static Friction Problems

Patrick Schneider & Reinhold Kienzler

Abstract In this contribution,1 we provide a mathematical treatment of the inequal-
ity systems arising from two toy examples of statically indeterminate, static friction
problems with multiple contact planes. Both examples illustrate general phenomena
that are not covered by introductory textbooks. The first one illustrates that a certain
inequality might restrict the solution set for a certain choice of a parameter, while
being not restrictive for another choice of the parameter. The example also illus-
trates why it is not sufficient to investigate only the limit case of impending motion
(H = μ0N) for more complex problems.
The second example illustrates that the positiveness of contact forces can also be a
limiting condition. It treats a problem where equilibrium might be lost by slipping
or by losing contact, where it is a-priori unclear which condition is decisive.
Finally, we investigate the intriguing question how this knowledge can be exploited
by a purely hypothetical evil professor—not to upset anyone, we give him a common
German surname as a working name, say professor Müller—to set up test problems
that are solved wrongly by the majority of students.
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31.1 Introduction

Although a variety of German textbooks treating the basic concepts of statics in En-
gineering Mechanics is available, we refer only to Gross et al (2006) in the follow-
ing, which is used at several German universities. The arguments set forth, however,
apply equally well to other textbooks written in either German or English language.
Being quite compendious, the book teaches some concepts only at a few, easy ex-
amples. Static Friction is treated in a particular short section. A single example for a
statically indeterminate static friction problem is provided (Example 9.2 b)), which
is also the only example of a problem with more than one contact plane. Here only
a graphical solution is provided with the comment that a mathematical solution is
“not quite simple” because of the inequalities.

We do not question the merits or general quality of Gross et al (2006), we rather
keep the style of this textbook in the following with the intention that our contri-
bution might serve as an extension. Thus the aim of this paper is to provide two
more toy examples for statically indeterminate static friction problems, both involv-
ing two contact planes, featuring a mathematical treatment of the inequality system,
in order to enable students to deal with these kinds of problems in a general manner.
Both toy examples are kept minimalistic enough to be easy to comprehend, while
illustrating important phenomena that are not treated by Gross et al (2006), or any
other basic course textbook known to the authors.

31.2 Aim of the First Example

The first given example basically extends example 9.1 from Gross et al (2006) to
a second plane of contact, while keeping the kinematics as simple as in 9.1, by the
use of a kinematic coupling.

The paragraph before example 9.1 in Gross et al (2006) closes with the remark
that in the case of a system involving inequalities due to static friction (|H| ≤ μ0N)
it is “often easier” to investigate only the equation system given by the limit case of
impending motion (H = μ0N). This advise can be misleading, since the informa-
tion whether a bound acts as upper or lower bound is essential and lost following
the advice. Furthermore, due to the nature of an inequality, a formal bound of the
limit case equation system might not at all be restrictive to the solution set. Also
it is unclear what happens if the bounds intersect, perhaps because of a singularity.
All these phenomena happen in the example problem below, although the problem
is easy to treat, if the inequalities are investigated in an adequate manner.
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31.3 First Example

Let us consider the toy example of two bricks on top of each other (mass m1 > 0
and m2 > 0) on an inclined ramp (angle 0 < α < π/2) which are connected by a
rope that runs over a pulley, as depicted in Fig. 31.1. The rope is assumed to be rigid
and massless and the pulley is assumed to be frictionless. The coefficient of static
friction between the ramp and the second brick, as well as between the bricks, shall
be denoted by μ0. The task is to determine whether or not the system is in static
equilibrium.

Obviously the two bricks will not both slide upwards the ramp and cannot slide
both downwards the ramp due to the rope. One of two possible motions is that the
upper brick (I) slides downwards while the lower brick (II) slides upwards. To
prevent this motion the static friction forces H1 > 0 and H2 > 0 act as depicted in
the free-body diagram in Fig. 31.2, where G1 = m1g and G2 = m2g.

The equilibrium of forces reads:

I :↗: S +H1 −G1 sin(α) = 0, (31.1)
↖: N1 −G1 cos(α) = 0, (31.2)

II :↗: S −H1 −H2 −G2 sin(α) = 0, (31.3)
↖: N2 −N1 −G2 cos(α) = 0. (31.4)

Solving equations (31.2) and (31.4) for the contact forces, we obtain

N1 = G1 cos(α), (31.5)
N2 = (G1 +G2) cos(α) (31.6)

Fig. 31.1 Toy example with
two planes of static friction.

Fig. 31.2 Free-body diagram
for prevented downwards
motion of the upper brick (I)
and upwards motion of the
lower brick (II).
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and eliminating the rope-normal force S from the equations (31.1) and (31.3) we
get

2H1 +H2 = (G1 −G2) sin(α). (31.7)

The inequalities of static friction (Coulomb’s law)

|H1| = H1 ≤ μ0N1,

|H2| = H2 ≤ μ0N2,

have to be satisfied as well. Insertion of the inequalities into equation (31.7) and
elimination of the contact forces by using equations (31.5) and (31.6) yields a single
inequality that assures the prevention of the predicted motion

G1 (tan(α)− 3μ0) ≤ G2 (tan(α) + μ0).

(Note that we divided the equation by cos(α) > 0.) While the right hand side is
positive, the left hand side can be negative, if the round bracket is negative. In this
case, the inequality is always satisfied. Only if the round bracket is positive, we
obtain an upper bound for the mass ratio that has to be satisfied in order to prevent
the predicted motion

G1

G2
=
m1

m2
≤ tan(α) + μ0

tan(α)− 3μ0
, if tan(α) > 3μ0. (31.8)

The other possible motion is that brick (I) slides upwards while brick (II) slides
downwards. To prevent this motion, the static friction forces have to act in the op-
posite direction, i.e. we have H1 < 0 and H2 < 0. In this case the inequalities of
static friction are

−H1 ≤ μ0N1,

−H2 ≤ μ0N2.

Again, the insertion of the inequalities into equation (31.7) and elimination of the
contact forces by using equations (31.5) and (31.6) yields a single inequality that
assures the prevention of motion

G1 (tan(α) + 3μ0) ≥ G2 (tan(α)− μ0).

It is always satisfied if tan(α) ≤ μ0, otherwise we obtain a lower bound for the
mass ratio

G1

G2
=
m1

m2
≥ tan(α)− μ0

tan(α) + 3μ0
, if tan(α) > μ0. (31.9)

The mass ratio has to satisfy the bounds (31.9) and (31.8) simultaneously in
order for the system to be in equilibrium. If one of the two bounds is violated the
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system will slide in the corresponding direction. The situation is depicted in Fig.
31.3 for different values of μ0. In the leftmost graph the direction of movement is
depicted that will take place, if the systems mass ratio is in the light or dark gray
area. The area of equilibrium is hatched. Like indicated in the second graph, there
is always a range (0 < α ≤ tan−1(μ0)) for the angle, where we have equilibrium
independent of the mass ratio. This is known as the cone of friction. In the range
tan−1(μ0) < α ≤ tan−1(3μ0), we have only a lower bound - the upper brick
has to be heavy enough to prevent downwards motion of the lower brick. For α >
tan−1(3μ0) we have a range of admissible mass ratios that narrows towards the
value 1 for α → π/2. The threshold α = tan−1(3μ0) is depicted by the vertical
dashed line - it is the singular value of the upper bound. For α = π/2 we can only
have equilibrium for equal masses, independent of the coefficient of static friction,
and on the other hand, we always have equilibrium for equal masses independent

Fig. 31.3 The systems mass ratios for static equilibrium for μ0 = 1
10

, 3
10

, 5
10

(left, right, bottom).
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of the coefficient of static friction or the angle (horizontal gray line). Like we see
by the three graphs, the corridor of equilibrium narrows if μ0 gets smaller. For the
limit case of frictionless materials equal masses are the only possibility to achieve
equilibrium.

31.4 Aim of the Second Example

Like in Gross et al (2006), all basic course books teach students that contact forces
N act normal to the contact plane, that they are headed towards the contact partners
and have to be included accordingly in free-body diagrams. However, the condition
that we have contact is also an inequality, i.e., N ≥ 0, that needs to be satisfied.

In typical dry friction toy problems, it is mostly pretty obvious that no lift-offwill
occur. Anyway, it is a good advice to give to students to check at least a-posteriori,
if the contact forces are positive once an example problem has been solved. If they
are not (and the calculation is right), an unexpected lift of the system would occur
and the solution is wrong. As an example, often static friction problems ask for a
limit load F that can be applied to the system so that it is still in equilibrium. If for
the limit load derived from the inequalities of static friction the contact forces are
negative, the limit load has to be derived from the, in this case more demanding,
condition of positive contact forces instead.

The objective of the second example is to provide the solution to a toy problem
where it is a-priori unclear, if the equilibrium fails due to losing contact or sliding of
the system. In a second step, we furthermore investigate under which parameter sets
the lift-off condition gets decisive over the slip condition. In other words, how can
an evil professor set up the parameters, so that an unexpected lift-off occurs and all
of his students that do not check the contact forces for being positive will compute
the wrong limit load.

31.5 Second Example

We consider the modified example of two bricks on top of each other that are con-
nected by a rope. A positive force F > 0 attacks at the second brick under an angle
0 < α < π/2. The first brick will turn out to have a greater mass than the second one
and is therefore depicted bigger in Fig 31.4, however we do not make any a-priori
assumptions with respect to the bricks masses at this point, besides, of course, being
positive (m1 > 0, m2 > 0). Again, the ropes are assumed to be rigid and massless
and the pulleys are assumed to be frictionless. We have the same coefficient of static
friction μ0 > 0 between the ground and the second brick, as well as between the
bricks. First, we investigate once again the conditions under which the system is in
a state of static equilibrium.
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Fig. 31.4 Second toy exam-
ple.

The only possible sliding motion of the system is given by the lower brick (II)
sliding leftwards and the upper brick (I) sliding rightwards. In order to prevent the
motion, the static friction forces H1 > 0 and H2 > 0 have to act as depicted in the
free-body diagram in Fig. 31.5, where G1 = m1g and G2 = m2g.

The equilibrium of forces reads:

I :→: S −H1 = 0, (31.10)
↑: N1 −G1 = 0, (31.11)

II :→: S +H1 +H2 − F cos(α) = 0, (31.12)
↑: N2 −N1 −G2 + F sin(α) = 0. (31.13)

From equation (31.11) we directly obtain a positive contact force

N1 = G1 > 0 (31.14)

but the second contact force, derived from equation (31.13)

N2 = G1 +G2 − F sin(α) (31.15)

is only non-negative, if the vertical component of F is smaller or equal the combined
weight of the bricks

G1 +G2 ≥ F sin(α), (31.16)

which is the first inequality that has to be fulfilled so that the system is in equilib-
rium. The second one is again obtained by eliminating S from the equations (31.10)

Fig. 31.5 Free-body diagram
for prevented rightwards
motion of the upper brick (I)
and leftwards motion of the
second, lower brick (II).
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and (31.12)

2H1 +H2 = F cos(α)

and insertion of the inequalities of static friction

|H1| = H1 ≤ μ0N1,

|H2| = H2 ≤ μ0N2,

and subsequent insertion of the equations for the contact forces (31.14) and (31.15),
eventually leading to the inequality

3G1 +G2 ≥ F
(

1

μ0
cos(α) + sin(α)

)
. (31.17)

If inequality (31.16) is harmed, the system will lift off, whereas, violation of in-
equality (31.17) results in the predicted sliding motion. More elegantly, equilibrium
can be characterized by simultaneous fulfillment of the inequality system

G1 +G2

F
≥ sin(α), (31.18)

G1

F
≥ 1

2μ0
cos(α). (31.19)

However, this representation does not answer the question when the inequality
for contact becomes decisive over the inequality for prevented sliding - How has
an evil professor to set up the parameters, so that not checking the positivity of
the normal forces will lead to an erroneous result? In the evil case the negation of
inequality (31.16) holds true simultaneously to the original inequality (31.17), so
that we have to find a positive mass ration G1/G2 that fulfills

1

3

F

G2

(
1

μ0
cos(α) + sin(α)

)
− 1

3
≤ G1

G2
<
F

G2
sin(α)− 1. (31.20)

Actually, in many cases it is impossible to fulfill these inequalities. Note that
upper and lower bound are linear functions in F/G2 and that for F/G2 = 0 the up-
per(!) bound starts at −1, and therefore lower than the lower bound, which starts at
−1/3. So a necessary condition for lifting becoming decisive is that the inclination
of the upper bound is greater than the inclination of the lower bound what happens
only if

α > tan−1

(
1

2μ0

)
. (31.21)

(Here the monotonicity of the tangent has been used). The situation is sketched in
Fig. 31.6 on the left. Only in the light gray regime the inequality for contact can
become decisive.
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Fig. 31.6 On the left: Only in the light gray area lifting can be decisive due to (31.21). On the
right: Bounds of (31.20) for α = π/4 and μ0 = 0, 6.

Having selected appropriate values of α and μ the parameter F/G2 has to be
selected greater or equal the intersection value of the bounds, which means

F

G2
≥ 1

sin(α)− 1
2μ0

cos(α)
. (31.22)

The corresponding mass ratio at the intersection point is

G1

G2
=

1

2μ0 tan(α)− 1
, (31.23)

which is always positive due to inequality (31.21). Therefore, we finally have a
nonempty range for the selection of a positive G1/G2 by (31.20).

Note that the mass ratio (31.23) gets singular for the limit angle of inequality
(31.21). This means that although it is possible to have decisiveness of the contact
inequality in the high angle regime for low mass ratios (which is not surprising),
it requires in general a high mass ratio near the boundary line of the left graph of
figure 31.6, i.e., in the area where the lift-off is not necessarily expected.

As an example, let us pick a point not that close to the boundary line, say
α = π/4 and μ0 = 0, 6. Then from equations (31.22) and (31.23), we find the
intersection point to be (F/G2 =

√
2/12 ≈ 8, 49 ;G1/G2 = 5). The bounds of

(31.20) are depicted in figure 31.6 on the right. If we are above the upper bound of
(31.20), we are in the equilibrium regime. In the light gray regime, we have loss of
equilibrium due to a negativeN2 (lift-off), while the inequality for prevented sliding
is still fulfilled. So the desired evil problem would be for example, to set the param-
eters to α = π/4, μ0 = 0, 6, G1/G2 = 10 and ask for the maximum F so that the
system is still in static equilibrium.
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31.6 Discussion

Usually, textbooks on statics, e.g., Gross et al (2006), comment that it is “often
easier” to attack static friction problems by examining the limit case of impending
motion H = μ0N . The first example of this paper provides a case where the a-
posteriori interpretation of the functional dependencies of the bounds derived from
the limit equation system is at least difficult. From the equation system alone it is
impossible. Note that, for example, in the first regime (0 < α ≤ tan−1(μ0)) both
bounds for the positive mass ratio are negative, which might lead to the conclusion
that no equilibrium can be achieved, however, the opposite is true, there are no
bounds for the mass ratio at all. Going over to the easier to handle limit equation
system of impending motion comes along with an actual loss of information! For a
proper treatment it is necessary to investigate the actual system of inequalities like
done in this paper.

The second example handles a problem where it is a-priori unclear if the equilib-
rium fails due to losing contact or sliding of the system. A case not discussed by the
standard textbooks. We investigated under which conditions for the parameters the
lift-off can actually happen and give a hint how this knowledge can be exploited by
evil professors to set up test problems which will be solved wrongly by the majority
of students.

Finally there is only one more thing left to say: “Happy birthday Professor
Müller!”
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Chapter 32

Initial Damage of Composite Materials

Vladimir S. Shorkin, Victoria Yu. Presnetsova, Vadim M. Presniakov, Sergey N.
Romashin, Larisa Yu. Frolenkova & Svetlana I. Yakushina

Abstract In composite materials, damage occurs even without excessive loading,
because of the discrepancy between material parameters of adhered materials. This
damage (damage of nonconformity) is expressed as a violation of the continuity at
the interface. A mathematical model of the interaction of inclusion particles and the
composite matrix, based on taking into account nonlocal interactions of contacting
materials particles is proposed. The quantifying parameter of damage is determined
from the condition of stationarity of the energy of the elastic deformations of the
discrepancy. The distribution of the nonconformity damage found in this way is
proposed to be used to determine the initial distribution of the scattered damage of a
homogeneous material that models composite material. Such scattered damage can
be used to solve evolution equations in problems of fracture mechanics.

Keywords: Composite · Defects of discrepancy · Damage · Adhesion · Kinetic
equation · Nonlocal multiparticle interaction · Second-order material

32.1 Introduction

Composite materials, especially nanostructured composites are widely used in elec-
tronics, medicine, various technical applications, for example in the aerospace craft
(Valiev et al, 2007). When investigating the strength of these materials, models
based on continuum mechanics of fracture are used. To evaluate the strength, an
approach based on the application of damage parameter introduced by Kachanov
(1974) and Rabotnov (1959) is used. This parameter is introduced explicitly into
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the defining relationships for describing the distribution of damages in a homoge-
neous medium (the medium models a real heterogeneous composite (Volegov et al,
2016, 2017)). Currently, there are scalar, vector and tensor characteristics of dam-
age (Aptukov, 2007; Astaf’ev VI, 2001; Lokoshchenko, 2012). The development of
damageability is determined by evolutionary kinetic equations that reflect the irre-
versible nature of damage (Volegov et al, 2017; Lokoshchenko, 2012). To obtain a
unique solution it is necessary to set the initial damage parameter value. This value
corresponds to the absence of external influences on the studied body. Usually the
damage at the initial time (initial damage) is considered to be absent. Although for
the case when the damage characterizes the volume of formed pores, it is possible
to distinguish the initial damage from zero (Kashtanov and Petrov, 2006).

Atomic lattices of inclusions and matrices are different and incoherent. When
forming a composite they tend to coincide, continue each other and become coher-
ent. In this case, stresses and deformations of the discrepancy develop. If coher-
ence is violated, they relax by reducing the energy of the discrepancy. The areas of
the contact surface of the inclusion particles and the matrix with broken coherence
are considered to be the defects of discrepancy (Gutkin, 2012; Gutkin and Ovidko,
2009; Gutkin et al, 2007; Ovid’ko and Sheinerman, 2002).

In this paper, the areas of the contact surface of the inclusion particle and the
matrix along which their lattices are coherent are called the areas of their adhesion.
The areas of the contact surface, along which the coherence of the lattices is vio-
lated, are called damaged. The term “damage” in this paper means the absence of
adhesion partly on the interface between inclusion and matrix. It is characterized by
a scalar parameter β, which for brevity hereinafter is also called “damage.” It quan-
tifies relatively the missing bound on the interface. Using the parameter β defined
along the boundary of one inclusion particle, we can determine the parameter ω that
characterizes the scattered damage to the damage of a homogeneous medium that
models a heterogeneous composite.

In both cases, the damage is considered to be initial if it is determined in the
absence of external influences affecting the stress-strain state of the composite. A
method for determining the initial value of the damage β is proposed. Along with
the parameter β ∈ [0, 1], a parameter α = 1−β ∈ [0, 1] called “continuity” is used.

32.2 General Statements

A macroscopic analysis is used in this paper. Materials of inclusion particles and ma-
trix are modeled as linear elastic materials. They are characterized by different sets
of elastic constants. A macroscopic approach is the most common when describing
defects of discrepancy. By minimizing the energy of a system of interacting bodies,
this approach makes it possible to determine its critical parameters (Ovid’ko and
Sheinerman, 2002). In our case, such parameters are the parameters β and ω.

Let the element of the composite B(1) be an inclusion particle, and the matrix
B(2) be two homogeneous solid bodies, contacting along a surface S(12) that has a
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unit normal nnn(12) directed from B(1) to B(2) and a normal nnn(21) = −nnn(12) directed
from B(2) to B(1).

The appearance of stresses, deformations, and defects of discrepancy—caused by
adhesion between materials of bodies B(1) and B(2)—is effected by the distortion
of atomic lattices from their state far from the contact surface to the state at which
they are coherent. In order to reflect this distortion in determining the parameter
β, it is assumed that the bodies B(1) and B(2) were first obtained by a mental,
and then by a real instantaneous release from the corresponding infinitely extended,
homogeneous, isotropic elastic medium Ω(1) and Ω(2) at the same temperature. As
a reference configuration of bodies B(1) and B(2), the configuration that they had in
the composition Ω(1) and Ω(2) after the mental selection is accepted.

It is assumed that when a composite is formed, the deformations of the inclusion
particles B(1) and the matrix B(2) are small enough that changes in the density of
their materials can be neglected. At the moment considered, there are no external
effects on the composite, the composite is in a state of equilibrium, the temperature
is distributed evenly over it.

Let uuu(j) be the displacement of body particles B(j) (j = 1, 2) relatively to the
reference state. It is believed that there are no temperature effects on the displace-
ment fields and the density of the material. Temperature effects are generated only
by the adhesion interaction of bodiesB(j) along the surface S(12). It is assumed that
the norms of the first and second displacement gradients satisfy the inequalities:∥∥∇uuu(j)∥∥� 1 h

∥∥∇2uuu(j)
∥∥� 1, (32.1)

where h is the characteristic size of the composite-inclusion element.
It is also assumed that the stress-strain states of inconsistency that develop in

the vicinity of different particles do not affect each other. For the adhesion of solid
materials, it is characteristic that the atomic structure of one material continues the
structure of another (Bakulin et al, 2011; Mamonova et al, 2016; Raynolds et al,
1996). It is obvious that the lattices of the contacting bodies are coherent.

The incoherence of atomic lattices in section S1−α ≡ Sβ ⊂ S(12) corresponds
to the absence of ideal adhesion at this site. Depending on the nature of defects of
discrepancy along Sβ , the type of conjugation conditions for the displacement and
stress fields that develop in bodies B(j) in the vicinity dV(j) of the section Sβ of
their contact surface may be different.

It is assumed that on every elementary section dS(12) of the contact surface S(12)
there is an area of dSα(12) where there is adhesion and the area dS1−α ≡ dSβ n
which adhesion (coherence of the lattices) is disturbed Figure 32.1.

dS(12) = dSα + dSβ = αdS(12) + βdS(12). (32.2)

On sections dSα and dSβ the conditions of interaction of bodiesB(1) toB(2) are
different. It is assumed that the displacements uuuα(j) and uuuβ(j) of material points on
them are independent of each other. The first are defined only on dSα, the second -
only on dSβ . Wherein:
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Fig. 32.1 Distribution of dis-
placements on the elementary
contact area.
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(32.3)

The area dS(12) (if it is assumed to be continuous) is attributed to the average
displacement uuu(j) Figure 32.2

uuu(j) = αuuuα(j) + βuuuβ(j) = (1− β)uuuα(j) + βuuuβ(j) (32.4)

The transition from the volume values of the displacement of the material parti-
cles of each of the bodies B(j) to their surface values by S(j), (and therefore also on
S(12) ⊂ S(j)) and vice versa is continuous and smooth. Therefore, it is assumed that
the distributions of the resultant fields uuu(j) = uuu(j)(rrr) over the areas V(j) occupied
by the bodies B(j), have a structure described by the equality (32.4). Herewith, the
field uuuα(j) for rrr ∈ V(j) is generated by the surface field uuuα(j) for rrr ∈ dSα. The field
uuuβ(j) for rrr ∈ V(j) is generated by the surface field uuuβ(j) for rrr ∈ dSβ .

The conditions for the coherence of lattices, as well as its violations, are pro-
posed to be described in the model of homogeneous isotropic linearly elastic ma-
terials of the second order that are in the state of adhesive contact. In this case, the
energy of their elastic deformation depends not only on the first, but also on the sec-
ond gradients of displacements. These quantities are considered to be generalized
displacements, on which the generalized forces|two stress tensors PPP (1)

(j) and PPP (2)
(j) ,

Fig. 32.2 The scheme of the
damaged adhesion contact of
the bodies B1 and B2.
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respectively, the second and third ranks (Aifantis, 1992; Mindlin, 1965; Belov and
Lurie, 2007b). It should be noted that a lot of papers have been devoted to con-
structing models in which the described surface effects are considered in continuous
elastic medium, for example, Belov and Lurie (2009); Gurtin and Murdoch (1975);
Povstenko (1993); Altenbach et al (2010, 2012); Eremeyev et al (2009); Belov and
Lurie (2007a).

It is also assumed that the fields uuu(j) = uuu(j)(rrr), uuuα(j) = uuuα(j)(rrr) and uuuβ(j) =
uuuβ(j)(rrr) (rrr ∈ V(j)) are described by the same model of a linearly elastic isotropic
medium. For the fields uuu(j) = uuu(j)(rrr) , the change in the potential energy of the
body B = B(1)

⋃
B(2) relative to the reference state is a functional that depends on

distribution of the first∇uuu(j) and the second∇2uuu(j) displacement gradients in each
of the parts B(j).

W(12) =W(12)

(∇uuu(1),∇uuu(2),∇2uuu(1),∇2uuu(2)
)
. (32.5)

For any fixed values of the parameter β, in the absence of the influence of external
mechanical influences, the system B = B(1)

⋃
B(2) and any part of it are in a state

of equilibrium. In this case, the distributions of the arguments of the functional
(32.5) in terms of their domains of definition correspond to its stationary value,
when

δ(W(12)(α)) =

2∑
j=1

∫
V(j)

δw(j)dV(j)

=

2∑
j=1

∫
V(j)

[
PPP

(1)
(j) · ·δ(∇uuu(j))T +PPP

(2)
(j) · · · δ(∇2uuu(j))

T
]
= 0.

(32.6)

Herew(j) is the volume density of the energy distribution of the elastic deformations
caused in the bodies B(j) by the uneven distribution of the averaged displacements
(32.4);

PPP
(n)
(j) =

∂w(j)

∂(∇nuuu(j))T
(n = 1, 2) - stress tensors. (32.7)

Integrating by parts, taking Ostrogradsky’s theorem into account, on the basis of
expression (32.6), we can obtain the differential equations of equilibrium for each
of the bodies B(j), the boundary conditions for them on the free sections S0(j) =
S(j)\S(12) of their boundaries, and the variational condition of conjugation of the
displacement and stress fields along the contact surface S(12). These expressions
have the following form

∇ · (PPP (1)
(j) −∇ ·PPP (2)

(j)) = 0 rrr ∈ V(j) (32.8)

nnn(j) · (PPP (1)
(j) −∇ ·PPP (2)

(j))−∇S · (nnn(j) ·PPP (2)
(j)) = 0 rrr ∈ S0(j) (32.9)

(nnn(j)nnn(j)) · ·PPP (2)
(j) rrr ∈ S0(j) (32.10)
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S(12)

{[
nnn(12) ·

(
PPP

(1)
(1) −∇ ·PPP (2)

(1)

)
−∇S ·

(
nnn(12) ·PPP (2)

(1)

)]
· δuuu(1)

+
[
nnn(21) ·

(
PPP

(1)
(2) −∇ ·PPP (2)

(2)

)
−∇S ·

(
nnn(21) ·PPP (2)

(2)

)]
· δuuu(2)

}
dS(12)

+

∫
S(12)

{(
(nnn(12)nnn(12)) · ·PPP (2)

(1)

)
· δ (∂uuu(1)/∂n(12))

+
(
(nnn(21)nnn(21)) · ·PPP (2)

(2)

)
· δ (∂uuu(2)/∂n(21))} dS(12) = 0. (32.11)

Here nnn is the unit vector of the outward normal to the section of the surface S
defined by the corresponding lower index; ∂uuu/∂n = nnn · (∇uuu) - the designation of
the derivative in its direction; ∇S - gradient along the surface S.

In the linear theory of elasticity of second-order materials, the tensors PPP (1)
(j) and

PPP
(2)
(j) are linear functions of the gradients ∇uuu(j) and ∇2uuu(j). Therefore, taking into

account representation (32.4), we can obtain:

PPP
(n)
(j) = αPPP

(n)
α(j) + βPPP

(n)
β(j) (n = 1, 2). (32.12)

Substituting the representations (32.4) and (32.12) into the system (32.8) -
(32.10), assuming that the parameter β is arbitrary, for tensors PPP (n)

α(j) and PPP (n)
β(j)

we can obtain two independent systems of equilibrium equations and boundary
conditions that coincide with the expressions (32.8) - (32.10). Substituting (32.4)
and (32.12) into expression (32.11), taking into account that αdS(12) = dSα and
βdS(12) = dSβ it is possible to obtain the integral variational condition of the
displacement and stress fields’ conjugation, satisfied by tensors PPP (n)

α(j), PPP
(n)
β(j) and

vectors uuuα(j), uuuβ(j). On its basis, the conditions for conjugation of the fields of the
listed objects on each of the sections αdS(12) = dSα and βdS(12) = dSβ based on
the following assumptions are constructed.

In areas dSα where adhesion is observed between the bodies B(1) and B(2),
the coherence of their lattices is conserved not only in the equilibrium state of the
system, but also in the variation of its stress-strain state. In this case

δuuuα(1) = δuuuα(2), δ

(
∂uuuα(1)

∂n(12)

)
= δ

(
∂uuuα(2)

∂n(12)

)
(32.13)

The displacements uuuα(j) and their gradients ∇uuuα(j), defined on Sα ⊂ S(12), taking
into account (Frolenkova and Shorkin, 2013), satisfy the conditions:

uuuα(1) − uuuα(2) = 0, ∇uuuα(1) −∇uuuα(2) = CCCS(12). (32.14)

The components of the vector uuuα(12) and the tensor CCCS(12) are determined on the
basis, for example, of the relations presented in Ovid’ko and Sheinerman (2002).
These relations take into account the discrepancy between the parameters of atomic
lattices of bodies B(1) and B(2).
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In addition to conditions (32.13) and (32.14), the equalities in the areas of adhe-
sive contact are:

nnn(12) ·
(
PPP

(1)
α(1) −∇ ·PPP (2)

α(1)

)
−∇S ·

(
nnn(12) ·PPP (2)

α(1)

)
+nnn(21) ·

(
PPP

(1)
α(2) −∇ ·PPP (2)

α(2)

)
−∇S ·

(
nnn(21) ·PPP (2)

α(2)

)
= 0. (32.15)

(nnn(12)nnn(12)) · ·PPP (2)
α(1) + (nnn(21)nnn(21)) · ·PPP (2)

α(2) = 0. (32.16)

In the areas of absence of adhesive contact (for rrr ∈ dSβ), it is assumed that there
is no “ disclosure ” of the mismatch defect. Hence

δuuuβ(1) = δuuuβ(2), uuuβ(j) = uuuα(j). (32.17)

It is assumed that the edges of the defect do not interact with each other. Since
there are no other possible effects on them except for mutual ones, so on each of the
edges for rrr ∈ dSβ the qualities are:

nnn(12) ·
(
PPP

(1)
α(1) −∇ ·PPP (2)

α(1)

)
−∇S ·

(
nnn(12) ·PPP (2)

α(1)

)
= 0, (32.18)

nnn(21) ·
(
PPP

(1)
α(2) −∇ ·PPP (2)

α(2)

)
−∇S ·

(
nnn(21) ·PPP (2)

α(2)

)
= 0, (32.19)

(nnn(12)nnn(12)) · ·PPP (2)
α(1) = 0, (32.20)

(nnn(21)nnn(21)) · ·PPP (2)
β(2) = 0. (32.21)

Conditions (32.17) - (32.21) are sufficient for unambiguous definition uuuβ(j), in-
cluding for rrr ∈ dSβ . Therefore, it is assumed that

δ

(
∂uuuβ(1)

∂n(12)

)
= 0, δ

(
∂uuuβ(2)

∂n(12)

)
= 0. (32.22)

Conditions (32.13) - (32.21) are sufficient to satisfy the conjugation condition
(32.11). In this case, the problems of determining the fields uuu(j)(rrr) and uuuβ(j)(rrr)
are independent of each other. On the basis of their solution, we can obtain an ex-
pression for the discrepancy energy of the bodies B(1) and B(2).

W(12)(β) = (1− β)2Wαα + β(1− β)Wαβ + β2Wββ . (32.23)

Values Wpm p,m = α, β are the sums of the combined body B = B(1)

⋃
B(2)

works of internal generalized forces PPP (k)
(j) (k = 1, 2) on internal generalized dis-

placements ∇kuuu(j). They are defined by the equalities

W(pm) =

2∑
j=1

2∑
k=1

∇kuuu(j)∫
0

PPP
(k)
p(j)d(∇kuuu(j)). (32.24)
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Assuming that the damage of the adhesive contact contributes to the achievement
of the interaction energy of the inclusion particles and the composite matrix of the
minimum value, we can obtain a formula by which we can calculate the value of the
damage parameter

β =
∂W(12)

∂β
=

[
1 +

2Wββ −Wαβ

2Wαα −Wαβ

]−1

. (32.25)

It is proposed to use a second-order material model in the calculations, which
is a consequence of the nonlocal model presented in Shorkin (2011); Shorkin et al
(2011). The relationship between stresses and strains is given by

PPP
(k)
(j) = PPP

0(k)
(j) +

2∑
m=1

(∇muuu(j))

n step︷︸︸︷·...· CCCm,k
j . (32.26)

Here PPP 0(k)
(j) are the tensors of the initial stresses caused by the properties of the

material; CCCm,k
j are the tensors of elastic constants caused by the properties of the

material. These tensors are defined by equalities (Dolgov et al, 2015):

PPP
0(k)
(j) =

∫
V(j)

1

k!

(
d

dlll12
Φ
(2)
(j)

)
lllk12dV2(j)

+

3∑
q=2

∫
V(j)

⎡⎢⎣ ∫
V(j)

1

k!

(
d

dlll1q
Φ
(3)
(j)

)
lllk1qdV2(j)

⎤⎥⎦ dV3(j). (32.27)

CCC
(m,k)
(j) =

∫
V(j)

1

m!k!
lllk12

(
d2

dlll212
Φ
(2)
(j)

)
lllm12dV2(j)

+
3∑

p,q=2

∫
V(j)

⎡⎢⎣ ∫
V(j)

1

m!k!
lllk1p

(
d2

dlll1pdlll1q
Φ
(3)
(j)

)
lllm1qdV2(j)

⎤⎥⎦ dV3(j). (32.28)

In expressions (32.27), (32.28), the following terms:

Φ
(2)
(j)(lll12)dV1(j)dV2(j) and Φ

(3)
(j)(lll12, lll13)dV1(j)dV2(j)dV3(j)

are the potentials of pair and triple nonlocal interactions, respectively. The former
evaluates the interaction of the particle dB2(j) with dB1(j); and the latter quantifies
the interaction of particles dB2(j) and dB3(j) with dB1(j). Both terms are propor-
tional to their volumes and lll1p denotes the position vector of the particle position
dBp(j) relative to dB1(j).

In order to illustrate the conclusions about the possibility of determining the dam-
age of the discrepancy by the methods of mechanics of a deformable solid body, the
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value β is calculated for several pairs of inclusion materials and a matrix, which
form a flat layered structure. It was assumed that the distance h between the contact
surfaces of the material B(1) with the material B(2) and the radius of their curvature
is much higher than the effective radius R of pair and ternary interparticle interac-
tions. On the basis of this assumption, it was assumed that the value determined for
two semi-infinite bodies contacting along the plane coincides with the same value
determined for the real contact surfaces of real particles from materials B(1) and
B(2).

A confirmation of the presence of dislocations of mismatch of crystal lattices,
which in this work are considered to be damaged, is a picture Figure 32.3. One can
cite a number of similar photos, for example, presented in Wang (2012).

In addition to the analysis of photos similar to those presented in Möbus and
Trampert (2003), the analysis of the correspondence of the damage of the adhesive
contact with the results of calculation by the molecular dynamics of the boundary
structure Ni-Al, Cu-Au, Ni- Fe is proposed. These results are presented in Poletaev
et al (2015).

The calculations were carried out based on the methods described in Romashin
et al (2015); Frolenkova and Shorkin (2017); Romashin et al (2016). Their essence
is as follows. It is assumed that the studied materials are homogeneous and isotropic.
In this case, the potentials of pair and triple interactions of particles of contacting
materials depend only on the distances between the particles. The type of these
dependencies is introduced. For pair interactions, this is an analogue of the Morse
potential. For triple interactions, the potential is proportional to the product of the
potentials of pair interactions of two particles of a triple with the chosen as the main
one. Presnetsova et al (2018) presents a rational for the stability of the system of
elementary particles of a continuous medium, the interaction of which is described
by such potentials.

The set of potentials of pair and triple interactions contains three unknown pa-
rameters. To determine them, the connections of the parameters of inter particle
interactions with the parameters of lame obtained on the basis of (32.28) were used.
In addition, the possibility of describing the nonlinearity of the dispersion law for
acoustic plane waves in an elastic medium is used. The Lame parameters and the
nonlinearity characteristics of the dispersion law are considered to be known (Kittel,
2004). The parameters of the inter particle potentials are found using the obtained
bonds. The found parameters are used to calculate the characteristics of the elastic
state of the studied materials additional to the Lame parameters.

Fig. 32.3 Photo of mismatch
dislocations at the interface
of InSb (top) and GaAs (bot-
tom) crystals in the plane
(111) obtained by electron
microscope.
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Based on the data obtained, the characteristic of the rupture of the adhesive con-
tact of the pairs structure Ni-Al, Cu-Au, Ni- Fe is calculated. To calculate the lame
parameters, the following values of Young’s modules and Poisson’s ratios of the
materials of these pairs were used (Grigoriev, 1991):

• For Ni: E = 2.0 · 1011N/m2, ν = 0.28.
• For Al: E = 0.7 · 1011N/m2, ν = 0.35.
• For Cu: E = 1.3 · 1011N/m2, ν = 0.34.
• For Au: E = 0.8 · 1011N/m2, ν = 0.37.
• For Fe: E = 2.1 · 1011N/m2, ν = 0.29.

The difference of lattice parameters (Poletaev et al, 2015) (Ni-Al - 14.9%, Cu-Au -
12.8%, Ni-Fe - 3.2%) leads to the formation of mismatch dislocations at the inter-
face: the higher this difference, the higher the dislocation density is obviously. As
a result of calculation of damage of adhesive contact by methods of this work it is
received for Ni-Al - β = 0.17, Cu-Au - β = 0.09, Ni-Fe - β = 0.01. The observed
correlation of the discrepancy between the parameters of the grids of contacting ma-
terials and the damage of their adhesive contact testifies in favor of the fairness of
the calculation methods of the latter.

If the value of the damage parameter β is high, it is proposed to check the exis-
tence of adhesion between the contacting materials on the basis of Presnetsova et al
(2017). There are proposed criteria for the presence or absence of adhesion between
materials for which the young modulus and Poisson’s ratio are known. For example,
the material talc is known for its property not to stick to solid materials. In Pres-
netsova et al (2017) this is confirmed quantitatively in the study of iron and talc ad-
hesion, if for it (Vakhromeev et al, 1997; Erofeev et al, 2006):E = 0.16·1011N/m2,
ν = 0. It is established that the particles of talc when approaching the iron body will
be repelled from it. In assessing the damage (assuming the presence of adhesion be-
tween iron and talc) can be obtained: β = 0.87. This corresponds to the lack of
adhesion.

The possibility of finding the distribution of the damage mismatch β = β(rrr)
along the boundaries S(12) of the inclusion particles, which are distributed over the
volume of the composite in the absence of external influences on it, allows us to
introduce the initial distribution of the scattered damage ω = ω(rrr). One of the
options for determining the scattered damage is an option similar to that presented
in Aptukov (2007).

ω =
1

S

∫
∑

S(12)

βdS(12), (32.29)

where S is the surface area of the representative volume of the composite.
Recently, there has been a growing interest in the study of materials with a

nanocrystalline structure, since it was found that a decrease in the size of crystallites
(or any other structural formations) below a certain threshold nanoscale value leads
to a radical change in the physical properties of these materials. Equations (32.27)
and (32.28) indicate that the method proposed for calculating the damage in this
paper allows to describe this effect.
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32.3 Conclusion

A mathematical model of the interaction of inclusion particles and the matrix of
a composite material is proposed. It is based on the nonlocal model of an elas-
tic medium developed by the authors, based on taking into account the paired and
ternary interactions of its particles. The model makes it possible, on the basis of
data on the elastic characteristics of the inclusion particles and matrix materials, to
calculate the damage of their adhesion contact, which is caused by the mismatch of
the parameters of their lattices. The damage area is considered to be the area of their
contact surface along which the adhesion condition is violated - the preservation at
its intersection not only the continuity but also the smoothness of the deformations
of the material fibers. To build the model, as a consequence of the nonlocal model,
the theory of elasticity of second-order materials is used. The possibility to find the
distribution of damage mismatch along the boundaries of inclusion particles is pro-
posed to be used to determine the initial distribution of the scattered damage of a
homogeneous medium that models a heterogeneous composite. The assumption is
made that taking into account the nonlocality of the interaction of particles of inter-
acting materials will make it possible to describe the effects specific to nanocom-
posites.
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Chapter 33

How the Properties of Pantographic Elementary

Lattices Determine the Properties of

Pantographic Metamaterials

Emilio Turco

Abstract In this paper we describe a three-scales homogenization process which we
use to determine a macroscopic model for pantographic metamaterials. The smallest
scale refers to the length at which the considered deformable mechanical system can
be modeled as a Cauchy’s continuum. Of course, at this scale, its geometry is rather
complex. The meso-scale refers to a length at which the system can be modeled as
a Hencky-type discrete system constituted by masses interconnected by extensional
and rotational springs. At macro-scale the model to be used is a generalized plate
whose deformation energy depends on geodesic curvature. While the direct identi-
fication from the smallest scale to the macro-scale seems rather difficult, the iden-
tification from smallest scale to meso-scale can be successfully obtained. The geo-
metrical properties, along with Young and Poisson coefficients of the used isotropic
material, at the smallest scale determine the extensional and rotational stiffnesses to
be used at the meso-scale. On the other hand, the Piola-type identification process
allows us to determine the stiffnesses of the macroscopic generalized plate model,
via a simple asymptotic expansion. We have observed that this process is valid in
both cases when the smallest scale is of the order of microns and when the small-
est scale is of the order of tenth of millimeters. Some experimental and numerical
results supporting this statement are exhibited.

Keywords: Mechanics of (meta)materials · Lagrangian models · Micro-meso and
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33.1 Introduction

In technical literature there are not clearly established homogenization methods
(however, see the attempts Franciosi et al, 2018; Karamooz et al, 2014; Karamooz
and Kadkhodaei, 2015; Saeb et al, 2016; Abali et al, 2016) leading to higher gra-
dient continua starting from mechanical systems showing complex geometrical mi-
crostructures and highly inhomogeneous stiffnesses fields. Therefore, we have de-
cided to use a three-scales homogenization process building the macroscopic con-
tinuum model for pantographic metamaterials in a three-steps process. The study of
this class of mechanical systems has a great importance in design of metamaterials,
see, e.g., , the review (Barchiesi et al, 2018c). Some identification results are how-
ever available, see, for instance, Barchiesi and Placidi (2017); Placidi et al (2017b);
Yang et al (2018); Placidi et al (2015, 2017a); Placidi and El Dhaba (2017); Placidi
et al (2017c); Barchiesi et al (2018b); Lekszycki et al (2018).

The analysis becomes more difficult when the considered pantographic spec-
imens undergo damage and plasticity phenomena: the identification of macro-
mechanical properties seems beyond actual state-of-the-art. However, the results
found in Placidi et al (2018a,b) supply an important guidance for this more general
identification procedure, as they give a possible target macro-model.

At the smallest scale the considered deformable body is, at least from the theoret-
ical point of view, mechanically homogeneous but its geometry is involved, show-
ing, see Fig. 33.1, large gaps and narrow material connections (pivots) in which
deformation energy may be concentrate. At this length scale the standard three-
dimensional Cauchy continuum model can be usefully introduced. Unfortunately
due to the complex geometry and the expected deformation patterns, to use this
modeling one needs heavy numerical codes, involving, for simple specimens, even
several millions of degrees of freedom. Therefore, also with a view towards tech-
nological applications and having in mind some interesting optimization problems,
there is a need to find so-called reduced order models.

However, a direct deduction algorithm, even using some simple formal perturba-
tion methods, has not been yet clearly and satisfactorily developed. Therefore, it has
been proposed to introduce a meso-scale where the deformable body is modeled by

Fig. 33.1 Three-dimensional
rendering of a pantographic
lattice with a blow-up of a
part.
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means of a Hencky-type discrete Lagrangian system, see Turco et al (2016c) for the
model and Turco et al (2016e,a,b) for the comparison, for some remarkable cases,
between experiments and numerical simulations. This system is constituted by ma-
terial points, in which one will concentrate masses when inertia has to be taken into
account, interconnected by extensional and rotational springs, see Fig. 33.2. These
springs will have deformation energies whose constitutive law can be linked with
the geometrical and mechanical properties characterizing the system at the lowest
scale. This identification is rather simple, at least from the theoretical point of view,
and can be performed by using the methods already conjectured by Piola (dell’Isola
et al, 2015, 2019) and developed by Hencky (1921) to obtain some estimates of the
buckling load for Elastica.1

Finally, at the macro-scale the model which seems to us to be the most suit-
able is a generalized plate. In standard plate theories, the curvature is the only
deformation measure due to the transverse displacement on the current configu-
ration. Instead the true mechanical nature of pantographic sheets can be captured
by a two-dimensional continuum only by introducing a deformation energy depend-
ing on so-called geodesic curvature (Steigmann and dell’Isola, 2015; Giorgio et al,
2016, 2015, 2017b, 2018) and on twisting of the material curves modeling the pan-
tographic fibers.

Hencky-type discrete models, by using Piola’s identification (see dell’Isola et al,
2016), based on the identification of finite differences with derivatives, immedi-
ately produces a macro-model which belongs to the just described class of gener-
alized plates. Therefore even if the direct identification from the smallest scale to
the macro-scale cannot be attained directly, the just described three steps process
is rather successful, at least when limiting ourselves to numerical identifications.
However the numerical tuning of constitutive parameters can be driven by some

Fig. 33.2 Meso-mechanical
model for the in-plane me-
chanical behavior of a pan-
tographic lattice with non-
orthogonal beams.

x1

x2

L2

L1

ε α π− α
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b

b
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1 The identification process is not so simple if we want to model the whole nonlinear mechanical
behavior of the pantographic lattice by using, as we discuss later, only three parameters.
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theoretical knowledge: indeed the main geometrical properties, together with the
Young and Poisson coefficients of the Cauchy material used as a model at the small-
est scale, can give an order of magnitude for the values of those extensional and
rotational stiffnesses which are correct at the meso-scale.

The aforementioned general three-steps procedure is valid even if the lowest
length scale has different values. Actually it has been experimentally proven that in
both cases, when the smallest scale is of the order of microns and when the smallest
scale is of the order of tenth of milli-meters, it can be applied successfully. Therefore
the same numerical procedure for getting predictive models can be usefully applied
in these two different cases simply varying a few constitutive parameters. We be-
lieve however that, when going down to lower length scales, some quantum effects
may arise and in such cases the applicability of Cauchy models may be disputable.

In this work, after this brief introduction, we firstly describe in Sect. 33.2 the
pantographic micro-structure starting from the presentation of the fundamental brick
or unit. Successively, in Sect. 33.3 we propose a strategy to determine the triplets of
stiffnesses which completely define the Lagrangian meso-mechanical model and we
use, in Sect. 33.4, the obtained results to estimate the macro-mechanical parameters
following the identification described in dell’Isola et al (2016). Some concluding
remarks, in Sect. 33.5 close the paper along with some future challenges.

33.2 Description of Pantographic Units used to form

Pantographic Micro-structures

The crucial feature of pantographic modules consists in the presence of pivots as in-
terconnecting structural elements to link different, rectilinear or curvilinear, beams.
Figure 33.3, for instance, is a shot of a pantographic lattice with orthogonal fibers in-
side a testing machine immediately before an elongation test. We remark that the ob-
tained assembly of beams is, generally speaking, a lattice and not a truss. However,
equivalent truss structures have been conceived having the same behavior as panto-
graphic modules, see, e.g., , Seppecher et al (2011); Turco et al (2017a); Khakalo
and Niiranen (2018). The presence of pivots in a specifically designed geometri-
cal pattern induce the existence of so-called floppy modes, i.e., deformation modes
whose associated deformation energy is vanishing or very small when compared

Fig. 33.3 Shot of a panto-
graphic lattice with orthog-
onal fibers inside a testing
machine immediately before
an elongation test.
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Fig. 33.4 Pantographic lattice
formed by three units (the
central unit is highlighted by
means of a red box).

with the other deformation modes. The existence of floppy modes implies that at a
macro-level the deformation energy exhibits some singularities and therefore some
new mathematical tools were needed to start studying the well-posed problems for
pantographic metamaterials, see, e.g., , Boutin et al (2017).

Looking at Fig. 33.4 we distinguish three units each one formed by beams hav-
ing rectangular cross-section and pivots, that is cylinders with circular cross-section.
An exploded drawing of, for example, the central unit is reported in Fig. 33.5 high-
lighting the dimensions of the �b long beam with rectangular bb × hb cross-section
and those of the circular cross-section cylinder (dc and hc are the diameter and the
height, respectively).

Although in this work we refer to orthogonal families of rectilinear beam, there
are examples, which show some interesting peculiarities, of non-orthogonal rectilin-
ear beams, see Turco et al (2017b), and curvilinear beams, see Scerrato et al (2016);
Giorgio et al (2016).

The composition of complex structures by using pantographic modules allows
for the design of

1. pantographic beams: they can be obtained by a sequence of units which growths
in one direction, see, e.g., , Barchiesi et al (2018a); Birsan et al (2012);

2. pantographic sheets: they can be obtained by a sequence of units which growths
in two directions, see, e.g., , dell’Isola et al (2016); Eremeyev et al (2018);
Khakalo et al (2018); Eremeyev and dell’Isola (2018) and the reviews Spagn-
uolo and Andreaus (2018); Laudato and Di Cosmo (2018); Golaszewski et al
(2018);

3. pantographic blocks: they can be obtained by a sequence of lattices which
growths in one direction, see, e.g., , dell’Isola et al (2018).

33.3 How the unit Properties Determine the Meso-stiffnesses

Once the geometry is perfectly described we need the parameters which describe the
mechanical behavior of the used material. Several specimens were built using 3D
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Fig. 33.5 Exploded drawing
of a pantographic unit formed
by two orthogonal beams
with rectangular cross-section
connected with a cylindrical
pivot.

bb

hb

�b

hp

dp

printing process both using as material the polyamide and aluminum or steel. Usual
printing process are based on melting processes of pulverized material. This kind
of process may alter the mechanical parameters of the used material. In addition, as
we will discuss in the following, since it may introduce some hollows which surely
could alter appreciably the mechanical parameters of the material. For the moment,
we may start with the value of the Young modulus Y and the Poisson ratio ν given
for the material used in the printing process. For example, the polyamide, following
EN ISO 527, has Y = 1700 MPa and ν = 0.4.

In Turco et al (2016c) a completely discrete Lagrangian model has been intro-
duced to capture the in-plane mechanical response of pantographic lattice. It is based
on three mechanical parameters for modeling the stretching, bending and shearing
strain energy of the whole lattice2. The basic idea derives from the Hencky approach
for modeling the bending strain energy. Roughly speaking, each beam is modeled by
a series of rigid links and elastic joints (rotational springs of stiffness b). Increasing
the number of the elastic joints, Hencky obtained estimates approaching to the bi-
furcation load of the Elastica. It is almost simple to prove, see Turco (2018); Turco
et al (2018b), that using de Saint-Venant results for a beam under bending we might

2 This idea has been enhanced, improving the bending energy by means of a h-refinement, in Turco
et al (2018a,b).
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estimate the parameter b form the geometry and the Young modulus. In practice,
when the number of elastic joints is large enough3, we have:

b =
Y J

�
, being J =

bbh
3
b

12
. (33.1)

In the same way we might estimate the spring stiffness a used to model the stretching
strain energy. In formula:

a =
Y A

�
, being A = bbhb . (33.2)

The third parameter c is related to the torsional stiffness of the cylinder with circular
cross-section or, briefly, of the pivot. Also in this case we can use the de Saint-Venant
solution for the torsion to estimate c:

c =
GIp
hc
, being G =

Y

2(1 + ν)
and Ip =

πd4p
32
. (33.3)

The aforementioned road to estimate the parameters is very simple, and therefore
attractive, but it is based on hypotheses too far from the phenomenon which we want
do describe. In particular:

1. de Saint-Venant results are accurate for beams and pivots long enough (respect
to the dimensions of their cross-section); this is not verified for pantographic lat-
tices where the ratios �b/hb and hp/dp are approximatively, see again Fig. 33.5
for the meaning of the used symbols, 18.4 and 2.22, respectively;

2. the intrinsic porosity of the material obtained by 3D printing process reduces,
often in a remarkable way, the Young modulus of the printed specimens;
Fig. 33.6 shows a part of a beam using three different, and increasing, mag-
nifications; it is almost clear the granular nature of the printed material, fur-
thermore, micro X-ray computed tomography analysis show the presence of
hollows of not negligible dimensions in the printed material;

3. the theoretical geometry is only an approximation of the true one, see again
Fig. 33.6, however the presence of errors on the stiffness parameters gives stable
results as is proved in Turco and Rizzi (2016);

4. in almost all the experiments pantographic lattices undergo large displacements,
this is completely far from the de Saint-Venant results.

For all the aforementioned reasons the values suggested from the de Saint-Venant
solutions can only be a starting point for an accurate enough estimation of the stiff-
ness parameters of the discrete model. Refined values of these estimates can be
derived comparing the results of numerical simulations4 with those deriving from

3 In Turco (2018) some quantitative results relative to the buckling load of an elastic beam are
reported. Two and five rigid links estimate the buckling load with an error of 18.9% and 2.23%,
respectively.
4 Numerical simulations whose results are reported in Figs. 33.7 and 33.8 were performed by use
an in-house made code which considers large displacements (but neglect material nonlinearities
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Fig. 33.6 Blow-up sequence of a pantographic lattice part built by a 3D printing process using
polyamide powder; the sequence clearly shows the granular nature of the specimen.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

u/umax = 0.25 u/umax = 0.5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

u/umax = 0.75 u/umax = 1

Fig. 33.7 Extensional test with controlled displacement u on the right side nodes: sequence of
deformations for u/umax = 0.25, 0.5, 0.75 and 1 for a pantographic lattice formed by three units
(colors show the strain energy level achieved on beams, small circles represent the nodes of the
discrete model).

experiments following the methodologies reported in Turco (2017). In practice,

and viscous effects) modeling the pantographic lattices as a set of rigid links and elastic joints to
approximate the bending and shearing strain energy. The bending contributions are improved by
adding an intermediate node between two close pivots (pivots and additional nodes are drawn in
Fig. 33.7 using small circles). In addition, the model considers also the stretching energy, see Turco
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by choosing the triplet (a, b, c) which fits the experimental results, see Fig. 33.8,
i.e., the load-displacement curve and the deformations at some prefixed points of
the curve, see Fig. 33.7 which reports the displacements for u/umax = 0.25, 0.5,
0.75 and 1 along with the strain energy level achieved on beams by means of col-
ors for the pantograph depicted in Fig. 33.4. We remark that the nonlinearity of
the force-displacement curve is only due to the large displacements attained both
in the experiment and in its numerical simulation. Even if the viscoelastic effect is,
in general, present in the polyamide, here we have not considered this effect in the
numerical simulations since the experimental loading rate was designed to remove
viscous phenomena.

In other words minimizing the discrepancy between the experiment and its nu-
merical simulation in a least square fashion:5

arg min
(a,b,c)

(‖n(a, b, c)−m‖2) , (33.4)

being n and m the vector collecting the numerical and measured, in some experi-
ment, response, respectively. We remark that the vector m, and consequently n, can
collect different kind of information such as the measured force and displacements
in a prefixed number of points of the structure both corresponding to an assigned
displacement (if we consider a load-displacement curve obtained by assigning the
displacement).

In addition, since experimental measurements surely include errors, for example
those deriving from the instrumental precision, the least square formulation (33.4)
can be made able to filter these errors by an additional term which imposes, by
means a Lagrangian multiplier λ, a desired condition, in formula:6

arg min
(a,b,c)

(‖n(a, b, c)−m‖2 + λ2‖c‖2) , (33.5)

having used the constrain condition c. In several cases to filter the errors in m it
is enough to choose the solution which has the minimum norm corresponding to
c = [a b c]T , see again Turco (2017).

Particularly useful for a fixed pantographic lattice is the plot of the load-displacement,
such that reported in Fig. 33.9, which immediately suggests the values of the triplet
(a, b, c) which best fit the experimental load-displacement curve.

et al (2018b) for more details. Numerical simulations try to reproduce the experimental tests whose
results are displacement-controlled and the whole test reproduce quasi-static results.
5 This method is also known as Levenberg-Marquardt algorithm.
6 This method is also known as damped Levenberg-Marquardt algorithm.
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Fig. 33.8 Extensional test with controlled displacement u on the right side nodes: experimental, in
black, and best fitting, in red, of the load-displacement curve for a pantographic lattice formed by
three units.

33.4 Meso-macro Identification

The original work by Hencky deals with beams, see Hencky (1921). Hencky wanted
to find a discrete Lagrangian system which approximates the Euler beam, when the
number of used beams tends to infinity. The beams considered by Hencky are inex-
tensible and the Euler bending stiffness is obtained by introducing suitable rotational
springs. It is remarkable to note that already Piola (dell’Isola et al, 2014, 2019),
although for different epistemological reasons, wanted to introduce a discrete La-
grangian system to approximate Euler continuum beam. Piola was motivated by the
need of justifying physically the Euler’s and Bernoulli’s dependence of deformation
energy on curvature. Therefore the correspondence between the Euler’s continuum
model and Hencky’s discrete model has been established by Piola for justifying
some modeling choices, while by Hencky for practical computing purposes.
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Fig. 33.9 Load-displacement curves useful for a quick estimate of the stiffness triplet (a, b, c).

The work of Piola and Hencky gave us the conceptual tool for finding, from the
constitutive parameters of the meso-scale model the corresponding values of the
constitutive parameters of the second gradient plate theory to be used at macro-level
for pantographic sheets. The material coefficients for macro-generalised plate theory
have to be determined in terms of the meso-springs stiffnesses. Here, it is crucial the
procedure established in dell’Isola et al (2016). One has to remark that usually the
identification procedures have been studied mainly in linear regimes (even if some
remarkable results were obtained in Alibert and Della Corte (2015); Seppecher et al
(2011); Braides et al (2018). The presented identification process allows for the
treatment of problems in which large displacements occur.

The meso-stiffness parameters a, b and c identified by the process described in
Sect. 33.3 can be used to identify the macro-stiffness parameters A, B and C to be
used in an in-plane model such as well-described in dell’Isola et al (2016) or in an
out-of-plane model such as presented in Giorgio et al (2018). Starting from Piola’s
ansatz, a straightforward procedure gives:
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A = a ,

B = b ,

C =
c

ε2
,

(33.6)

being ε the distance between two successive elastic joints.7 We remark that in
dell’Isola et al (2016) the energy associated to the shearing part has a ρ exponent,
i.e., it is not quadratic in general, as that presented in Turco et al (2016c), therefore
continuum and discrete models can be linked only in the case ρ = 2.

Equation (33.6) represents a formal statement which is assuring that the consid-
ered system, at macro-level, behaves as a second gradient material. It is a sufficient
condition which, once verified at meso-level, assures that the macro-system must
have a deformation energy depending on second gradient of displacement. In an in-
tuitive way one usually says that: to get a macro second gradient material one has
to have high contrast in meso-stiffnesses. In Equation (33.6) small letters charac-
terize meso-stiffnesses of the Hencky-type springs, while the corresponding capital
letters refer to macro elasticity coefficients, including second gradient ones. The
characteristic length-scales at macro-level are given by ratio square roots

√
B/A

and
√
B/C. Therefore it is evident that such length-scales can be different from ε,

when suitable choices for the values of meso-stiffnesses are made. In order to have
large boundary layers where second gradients of displacement are concentrated, ra-
tio square roots

√
b/a and

√
b/c must be very large. This statement substantiates

the intuitive statement recalled few lines before.

33.5 Concluding Remarks and Future Challenges

The problem of designing novel metamaterials requires a modeling capability which
includes the possibility to optimize structural parameters, see dell’Isola et al (2018).
In the context of pantographic microstructures the optimization required involves
the capacity to perform at high speed complex numerical calculations. Indeed the
pantographic sheets are intended to supply a scientific concept suitable to obtain
as technological output a metamaterial capable to undergo large deformations and
displacements while remaining in elastic regimes.

Of course the existence of elongation floppy modes favors this kind of per-
formances. Indeed the pantographic module has been conceived, see Alibert et al
(2003) exactly to get an approximation of ideal pure second gradient materials ex-
hibiting elongations with null or very small deformation energies. The initial moti-
vation was purely scientific, however some demands from aeronautical engineering
require the development of such kind of materials in the effort to build light com-
posite structures for flying vehicles.

7 The relation between macro- and micro-stiffnesses reported in Eq. (33.6) derive from the micro-
macro identification based on the Piola’s ansatz. A detailed explanation of the computations nec-
essary to reach these results is reported in dell’Isola et al (2016).
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The pure demand of existence of elongation floppy modes is not sufficient to
calculate the most suitable microstructure for a given tailored purpose. Actually an
optimization process is unavoidable. This process requires large computing burdens
and, therefore, imposes the formulation of a modeling procedure which is the sim-
plest possible. While it is undoubted that the modeling at the lowest scale is both
more detailed and more complex if one wants to obtain predictive specifications, the
macro continuum model, although of scientific interest, do requires a formulation
of a discretized version to be implemented into a numerical code. It is therefore our
opinion that the most suitable modeling procedure is what we have called meso-
model, as we believe to have proven in the argumentations presented in this paper.

Finally, we list some open problems which we will tackle in the next future:

1. even if the proposed method seems to produce reliable results, we are strongly
interested to any strategies able to correlate experimental measurements to the
identification of stiffnesses, e.g., , that reported in Placidi et al (2015);

2. it will be interesting to consider problems where the inertia forces are non neg-
ligible and therefore the hypothesis of quasi-static application of external loads
or given displacements is not close enough to well-describe the underline prob-
lem; in these cases, following the guidelines reported in Giorgio et al (2017a);
Engelbrecht and Berezovski (2015); Javili et al (2015), might be useful to verify
if the proposed parameter identification furnishes results equivalent in accuracy
to those obtainable in quasi-static loading, see, e.g., , di Cosmo et al (2018);
Abd-alla et al (2017); Berezovski et al (2016);

3. in this work we only considered the simplest law for describing the strain en-
ergy; however, the proposed strategy is open to consider more sophisticated
models as in Braides et al (2018); Atai and Steigmann (1997); Challamel et al
(2014); Placidi and Barchiesi (2018); Turco et al (2016d);

4. since the meso-mechanical model able to represent the behavior of pantographic
structures can be considered as a Representative Elementary Volume (REV) for
a continuum models, see, for example, the attempt Andreaus et al (2018), and
that this has to be surely discretized, modern interpolation laws such as based
on B-splines and NURBS, see Piegl and Tiller (1997); Cottrell et al (2009);
Greco et al (2017); Greco and Cuomo (2013); Cuomo et al (2014); Balobanov
and Niiranen (2018); Cazzani et al (2016), look like interesting;

5. discrete models are the fundamental brick to construct continuum models, see,
e.g., , Shirani et al (2018), able to treat plane or three-dimensional problems,
see Turco (2018); Eugster et al (2014), or to consider problems involving foams
using the suggestions reported in De Masi et al (2008, 2009); Grimmett (2016);

6. finally, it appears interesting and fruitful to consider as an alternative approach
the peridynamic formulation, see e.g., Diyaroglu et al (2015); Meo et al (2016).
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Chapter 34

Metallic Interconnection Technologies for High

Power Vertical Cavity Surface Emitting Lasers

Modules

Constanze Weber, Lena Goullon, Matthias Hutter & Martin Schneider-Ramelow

Abstract Highly reliable power VCSEL (Vertical Cavity Surface Emitting Lasers)
array systems with an optimized optical output require a plan parallel assembly
for a homogeneous radiation and an advanced packaging design to ensure good
heat dissipation and an overall reliable performance. The aim of this study is to
evaluate if metallic interconnection technologies like soldering and silver sintering
can meet these requirements. Therefore, GaAs dies with VCSEL arrays of more
than 2000 single lasers were mounted on substrates by soldering using AuSn20 and
SnAg3 solder as well as by applying pressure assisted silver sintering. The sam-
ples were analyzed using ultrasonic microscopy (C-SAM), X-ray microscopy and
3D laser profilometry. Cross-sections of selected samples were made and analyzed
using light- and scanning electron microscopy (SEM). Soldered and silver sintered
samples were subjected to thermal cycling between -55°C and +125°C to validate
the reliability of the metallic interconnects. Furthermore, it was tested, if it is pos-
sible to assemble a DCB onto a micro channel water cooler made of copper by
pressure assisted silver sintering in order to enable an advanced heat transfer of the
high power VCSEL module.
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34.1 Introduction

VCSELs are highly reliable and have a high potential for advanced and robust ap-
plications. They have been used for low power applications like laser mice or data
sensing for more than 10 years already. By upscaling a single VCSEL to an array of
more than 2000 VCSELs high power modules, like the one shown in Fig. 34.1, can
be realized. Using these kind of arrays the application field of VCSELs can be en-

Fig. 34.1 High power VCSEL array module.

larged for example to build high power VCSEL pump modules for surface cleaning
or infrared radiant heating (Moench et al, 2014).

The VCSEL module shown is built up with a DCB (direct copper bonded) assem-
bled with 23 GaAs dies on top (1st level) and mounted on a copper micro channel
water cooler (2nd level). The gap between the dies is 200μm. Each GaAs die has a
VCSEL array of more than 2000 single lasers as shown in Fig. 34.2.

Fig. 34.2 GaAs die (4 mm2) with VCSEL array of more than 2000 VSCELs.
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The heat produced by such high integrated VCSEL arrays needs to be effectively
transferred to a heat spreader and further to a cooling system. Therefore, high power
VCSEL array systems require mounting technologies, which are reliable and enable
an optimized heat transfer at 1st as well as at 2nd level.

Metallic interconnection technologies like soldering using AuSn20 and SnAg3
or silver sintering can meet these requirements (Hutter, 2009; Weber et al, 2014;
Hutter et al, 2016).

However, depending on the interconnection technology chosen individual chal-
lenges have to be considered in order to obtain a reliable interconnect of high quality.
In addition, direct VCSEL attach requires a very plan parallel assembly of the die
in respect to the surface of the substrate. While for silver sintered joints this goal
is rather easily achievable conducting soldering requires the use of very thin sol-
der lines or the usage of spacers so that tilting cannot happen to a large scale. On
the other hand, while for soldering the gaps between the dies on 1st level (down to
200μm) are not worth mentioning for silver sintering the gap size is a challenging
factor. Processes need to be adjusted in order to ensure that no shortcut will by gen-
erated during the application of the Ag sintering material or during the application
of the dies. All these issues are demanding tasks to improve the reliability of the
three different 1st level interconnects.

In addition, applying silver sintering as 2nd level interconnection technology to
improve the thermal heat transfer of the VCSEL module, is challenging as well,
since current silver sintering pastes and processes are recommended for a maximum
area of about 100 mm2 only. Therefore, processes have to be developed and adjusted
to ensure high quality large area interconnects between the ceramic-based substrate
and the micro channel water cooler of the VCSEL module.

The aim of this work is to increase the lifetime of a high power VCSEL pump
module and assure a very high reliability by optimizing the thermal properties and
quality of the 1st and 2nd level interconnects.

Therefore, high power VCSEL pump modules were built by applying metallic
joining technologies like soldering using eutectic AuSn20 and SnAg3 solder at 1st

level and applying silver sintering at 1st and 2nd level.
The joining processes were adjusted in order to optimize the quality of the in-

terconnects considering the individual challenges described beforehand. In order to
validate the quality of the interconnects ultrasonic microscopy (C-SAM), X-ray mi-
croscopy and 3D laser profilometry were conducted. Furthermore, cross-sections
were prepared and analysed using light- and scanning electron microscopy (SEM).
Furthermore, the reliability of soldered and silver sintered 1st level interconnects
was tested by thermal cycling in a range of -55°C to +125°C.
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34.2 1st Level Interconnection—Mounting GaAs Dies with

VCSEL Array onto Ceramic-based Substrate

34.2.1 Application of Metallic Interconnection Technologies

For the 1st level die attach of the GaAs dies three interconnection technologies have
been used, namely soldering using eutectic AuSn20, soldering using SnAg3 pre-
forms with Ni spacers and silver sintering using preforms.

Soldering with eutectic AuSn20 solder means that the interconnects consist of
the intermetallic phases Au5Sn (ζ ′) and AuSn (δ) as shown in the binary phase
diagram in Fig. 34.3. Such interconnects exhibit a very high creep resistance (Hutter,
2009; Goullon et al, 2015).

For the die attach of the GaAs dies with VCSEL array using AuSn20 the solder
was provided by Au and Sn multilayers on the substrate side, which were deposited
by thin film technologies. Besides that other approaches like electroplating AuSn
layers from the die side or by using preforms are often used. However, both variants
are not feasible for the application of this study. The GaAs dies with VCSEL array
were provided as single dies and the deposition of the galvanic layers would have
to be done on wafer-level. Using AuSn20 preforms a rather thick solder line is gen-
erated. This leads to two main issues. On the one hand, a thick intermetallic bond
line can lead to a critical stress state. On the other hand, the thicker the bond line
the more likely tilting can happen on a large scale during soldering. In order to join
the GaAs dies to a substrate serving as a heat spreader, the dies were placed on the

Fig. 34.3 Binary phase dia-
gram of Au-Sn with Au5Sn
and AuSn phases highlighted,
adapted from TCS (1999).
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Au-rich solder depots of the substrate using a fine placer. The soldering was carried
out in a reflow batch oven. For reduction of oxides gaseous flux was used.

As shown in Fig. 34.4, the soldering process was adjusted optimal to generate an
almost void free solder joint. The Sn was transformed totally into Au5Sn and AuSn
during the soldering. The final bond line thickness is about 5μm. A tilt of the die of
less than 1μm could be generated.

Sn-based solders are used most commonly for die attach. The solder is provided
either as paste or as preform. 50μm-100μm are typical values for the bond line
thickness. Therefore, the tilt of the die can be double- or even three-digit. In order to
ensure a homogeneous emission pattern of the VCSEL array a plan parallel assem-
bly of the GaAs is an important requirement. In order to reduce the process related
tilt of the die during soldering with the SnAg3 solder, preforms with additional Ni
spacers were used. Adding spacers can prevent the occurrence of a major tilt, es-
pecially if the diameter of the Ni particles is of the same size as the targeted solder
bond line (see Fig. 34.5). For the die attach of the GaAs dies SnAg3 preforms with a

Fig. 34.4 Cross-section of GaAs die mounted on ceramic-based substrate by soldering with
AuSn20 provided by Au and Sn thin film multilayers on the substrate side.

Fig. 34.5 Schematic sketch of process flow using SnAg3 solder preform with Ni spacers.
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thickness of 30μm and Ni spacers with a diameter of 30μm were used. The solder-
ing was carried out in a reflow batch oven. For the reduction of oxides gaseous flux
was used. In Fig. 34.6, light microscopic images of a cross-section as well as a 3D
profilometry picture of the assembly are shown. Based on the results the soldering

Fig. 34.6 Cross-section of GaAs die mounted on ceramic-based substrate by soldering using a
SnAg3 preform with Ni spacers (top and bottom left) and 3D laser profilometry measurement of
the assembly (bottom right).

process was adjusted optimal to generate an almost void free solder joint having a
bond line thickness of about 25μm and a tilt of about 9μm. Compared to the solder-
ing process using SnAg3 solder without spacers the tilt of the die could be reduced
by a factor of 10.

Silver sintering is an interconnection technology, which provides monometallic
silver interconnects that can be generated by applying joining temperatures of less
than 40% of the melting point of pure silver (Tm = 961°C). The interconnection
is generated by diffusion between micro- and or nano-scaled silver particles only.
Therefore, no melting occurs during the entire joining process.

The high melting point, the increased high thermal and electrical conductivity as
well as the resulting high creep resistance of such interconnects are the key advan-
tages compared to common solder joints.

Just like solders silver sinter materials are available as paste or as preform. How-
ever, silver sinter preforms are less common and relatively rare on the market. By
using preforms the main advantage is that the silver material application and the
sintering step can be done using only one machine, while for silver sintering with
pastes three to four different machines (printer, oven, die bonding machine and/or
sinter press) are needed.

Figure 34.7 shows the process flow of sintering with silver sinter preform. The
process can be done fully automatic using a die bonding machine. At first the die is
picked and heated up followed by stamping the sinter preform. The sinter preform
remains on the backside of the die and is then used to make the die attach by apply-
ing temperatures above 200°C and pressure of at least 10 MPa for a few seconds or
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Fig. 34.7 Schematic sketch of the process flow of silver sintering using Ag sinter preform.

even minutes. A more important aspect, which lead to choose silver sinter preforms
instead of a silver sinter paste, was due to the design of the high power VCSEL array
module. The gap between the dies is 200μm. Applying silver sinter paste without
causing shortcuts would have been difficult or even impossible.

As shown in Fig. 34.8, using a silver sinter preform based process the dies can be
placed and sintered with high accuracy and without causing any shortcuts. In order
to generate a high quality joint; but still ensure that the VCSELs will not be damaged
during the pressure assisted sintering, the sintering parameter were adjusted. By
optimizing the main process parameters (temperature and time) the pressure applied
could be reduced down to 5 MPa.

As shown in Fig. 34.9 using the adjusted parameter set a very good adhesion
between the silver sinter layer and the GaAs die as well as between the sintered
silver and the substrate can be generated. As visible in the light microscopic image
(Fig. 34.9, bottom left) the porosity and the bond line thickness can mainly be influ-
enced by the surface roughness of the substrate. The average porosity of the preform
in the initial state is about 35%. After the sintering step the remaining porosity av-

Fig. 34.8 GaAs dies with VCSEL array mounted on DCB by pressure assisted silver sintering
using preforms.
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Fig. 34.9 Cross-section of GaAs dies mounted on DCB by pressure assisted silver sintering using
preforms.

erages 18%. The final bond line thickness averages 25μm. A tilt of the die of less
than 1μm could be generated.

34.2.2 Reliability Testing of Soldered and Silver Sintered 1st Level
Interconnects

In order to evaluate the reliability of the three different joining technologies (solder-
ing with AuSn20, soldering with SnAg3 and pressure assisted silver sintering) for
each variant three samples with a single GaAs die with VCSEL array was mounted
onto a DCB (see Fig. 34.10). The samples were subjected to thermal cycling be-

Fig. 34.10 Sketch of the test
samples used for reliability
testing design made by project
partner Philips.
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Fig. 34.11 Cross-section of GaAs die mounted on DCB by soldering with AuSn20 after 500
thermal cycles.

tween -55°C and +125°C in a three chamber oven. Initially, after 100, 500 and
finally after 1000 thermal cycles the samples were analyzed using C-SAM. Based
on the non-destructive analysis method no failures could be detected up to and in-
cluding 500 thermal cycles.

In Fig. 34.11, a cross-section image of an AuSn solder joint after 500 thermal cy-
cles is shown. Based on the light microscopic analyses no solder fatigue or fracture
of the GaAs die is present. All samples were tested non-destructively using C-SAM
and X-ray microscopy. C-SAM is used in order to detect defects like delaminations,
weak adhesions or cracks in particular. X-ray microscopy is used to detect three-
dimensional defects like voids and cracks.

Even after 1000 thermal cycles neither the die nor any of the die attaches tested
were damaged. Representatively, Fig. 34.12 shows C-SAM images of the die at-
tach generated by soldering with AuSn20 at the initial state and after 1000 thermal
cycles. Based on the results of the C-SAM analyses after 1000 thermal cycles no
failures could be detected. The light grey area reflects the bonding area having a
good adhesion. The dark grey spots are voids in the joint as the comparison with the
X-ray image (Fig. 34.12, top left) shows. Although no damages occurred at the die
attaches tested, as shown in Fig. 34.12 (bottom right) the end of life of the modules
tested was due to failures in the ceramic-based substrates. The DCB is the bottleneck
of the system, since a delamination between copper and ceramic occurred.

34.3 2nd Level Interconnection—Mounting DCB onto a Micro

Channel Water Cooler by Pressure Assisted Silver Sintering

The main challenge for the 2nd level interconnect using silver sintering technology
was to generate a high quality joint having a homogeneous densification of the sil-
ver particles over a bonding area of more than 800 mm2. Compared to soldering
silver sintering is a rather new interconnection technology, which is mainly used for
1st level interconnects having bonding areas of 100 mm2 at the maximum. In addi-
tion, to the significant enlargement of the bonding area the pressure applied during
the sintering step needed to be adjusted in order to ensure that the micro channel
cooler will not be damaged during the pressure assisted sintering. Therefore, the
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pressure applied was reduced by a factor of more than three compared to pressures
of 30-40 MPa, which are typically applied for 1st level interconnects. However, the
pressure needed to generate a dense and reliable 2nd level interconnect is still too
high to use common pick and place machines to apply a sintering process using
silver sinter preforms. Therefore, in order to mount the DCB of the high power VC-
SEL module onto the micro channel water cooler a sintering process using a silver
sinter paste was the method of choice. The paste was deposited by stencil printing
using a 150μm thick stencil. After the deposition of the paste onto the backside
of the DCB, the substrate with the printed depot was pre-dried in an oven to com-
bust the main organics of the paste. Then the DCB was placed onto the cooler as
shown in Fig. 34.13. The joining of the DCB to the cooler was done by pressure
assisted sintering using a hydraulic press. Cross-sectioning and SEM was carried
out to evaluate the quality of the sintered joint. The results show, that the sintered

Fig. 34.12 GaAs die with VCSEL array mounted on DCB by soldering with AuSn20 at the initial
state (C-SAM and X-ray image) and after 1000 thermal cycles (C-SAM image and photograph).
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silver interconnect has a homogeneous sinter line thickness of about 70μm over the
whole area. Furthermore, a very good adhesion to the joining partners was gener-
ated, as shown in Fig. 34.14. The remaining porosity is less than 20%. Studies have
shown, that comparable silver sintered probes in fact have a lower thermal conduc-
tivity than pure silver. However, by replacing Sn-based solder with sintered silver
the significant increase of the thermal conductivity is still beneficial regarding the
transfer of the heat produced by the high integrated VCSEL arrays (Ras, 2015).

34.4 Conclusions

The aim of this work was to increase the lifetime of high power VCSEL pump
modules and assure a very high reliability by optimizing the thermal properties and
quality of the 1st and 2nd level interconnects. Based on the results solder (AuSn20
and SnAg3) as well as silver sintered joints have been proven viable in order to act

Fig. 34.13 Photographs of DCB backside after drying the printed silver sinter paste and after
mounting the DCB onto the micro channel cooler by pressure assisted silver sintering.

Fig. 34.14 Cross-section of DCB mounted on micro channel cooler by pressure assisted silver
sintering.
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as reliable 1st level interconnects. Even after 1000 thermal cycles between -55°C
and +125°C neither the die nor any of the die attaches tested were damaged. The
end of life of the modules tested was due to failures in the ceramic-based substrates.
In addition, it was shown, that pressure assisted silver sintering can be applied as
2nd level interconnection technology in order to further improve the heat transfer of
the high power VCSEL pump module.
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Chapter 35

Coupled Thermal and Electrochemical Diffusion

in Solid State Battery Systems

Marek Werner & Kerstin Weinberg

Abstract In the light of today’s extensive research on rechargeable batteries a
electro-chemically diffusion model for a temperature sensitive multi-phase solid is
presented. The derivation of the model is based on the framework of the Thermo-
dynamics of Irreversible Processes with the assumption of a local equilibrium. The
physical effects which are accounted for are: the flux of ions including chemical
reactions, the heat flux, the electrical current, and their coupling resulting, e.g. in
phase decomposition, thermal diffusion, and thermoelectric effects. Two numerical
examples illustrate typical applications and demonstrate the versatility of the cou-
pled multi-physics model.

Keywords: Phase-field · Non-equilibrium thermodynamics · Thermal and electro-
chemical diffusion

35.1 Introduction

Given the rise of portable electronics, mobile devices and especially electric cars,
the demand for secondary batteries is expected to grow rapidly in the following
years (Aifantis et al, 2010). Currently, the most successful secondary batteries are
lithium based. In the automotive industry alone estimates indicate that the market for
lithium batteries will grow from its current size of $10 billion in 2015 to $50 billion
by 2020 (Berger, 2012). This extraordinary potential explains the strong interest in
the optimization of high energy-density batteries in these day.

A typical lithium-ion battery consists of a positive lithium metal electrode, a neg-
ative graphite carbon electrode and a polymeric electrolyte in between, see Fig. 35.1.
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During charging, the elementary chemical reaction at the carbon anode is

e−

reduction of Li+

Li

Li+ + e−
diffusion

diffusion

migration

migration

electrode

graphite

electrolyte
intercalation

of Li

+−

Fig. 35.1 Charging process at the lithium anode

Li+ + e− +C6 � LiC6 .

In this treatise the process of charging and discharging in a lithium-ion battery elec-
trode will be modeled by recourse to a classical Boltzmann continuum approach
(Truesdell and Toupin, 1960). The physical mechanisms which are assumed to con-
tribute are: the particle exchange between the anode and the electrolyte, the diffusion
in the anode, the thermal conduction, and heat flux, and the energetic forces associ-
ated with the elastic and electrostatic fields of the system.

The formal derivation of our electrochemo-thermo-mechanical model is based on
concepts from the Thermodynamics of Irreversible Processes (TIP) in Eckart (1940)
and on the Non-Equilibrium Thermodynamics (NET) in the spirit of De Groot and
Mazur (1962). In this sense we assume a local equilibrium within the level of a small
representative volume element. This implies that the globally defined balance rela-
tions are valid for the material point at x ∈ Ω and in its infinitesimal neighborhood
within the domain, Ω ⊂ IR3.

The remaining of the paper is organized as follows: In Sect. 35.2 we derive the
electrochemical-thermo-mechanical model of lithium transport through the solid in
full detail. An extended diffusion model involving electrical, thermal, mechanical,
and chemical diffusion contributions is formulated and specified to in Sect. 35.3
where also some remarks on the solution procedure are made. In Sect. 35.4 two
numerical examples demonstrate the capability and versatility of the presented ap-
proach. The paper concludes with a short summary.
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35.2 Electrochemo-thermo-mechanical Diffusion

The constitutive equations, which characterize the material properties of continuous
media, must conform with the basic laws of thermodynamics namely the conserva-
tion of energy and the entropy principle. To ensure this, we start with basic balance
equations and introduce the total mass density ρ of our n-component system and the
normalized concentration ck of the kth component by

ρ =

n∑
k=1

ρk and ck =
ρk
ρ
. (35.1)

The conservation of mass can be expressed as

ρ
dck
dt

= − divJk +

r∑
j=1

vkjJj , k ∈ {1, 2, . . . , n}, (35.2)

where Jk represents the diffusive mass flow density. The parameter Jj is called
the reaction rate of the jth of r chemical reactions and vkj denotes a parameter
which is proportional to the stoichiometric coefficient that weights the contribution
of component k, i.e. formulation (35.2) incorporates mass production. Since mass
is conserved in each separate chemical reaction, it holds

n∑
k=1

vkj = 0, j ∈ {1, 2, . . . , r}. (35.3)

For later reference we introduce the chemical affinity Aj of the jth reaction

Aj =

n∑
k=1

vkjμk, j ∈ {1, 2, . . . , r} (35.4)

where μk is the chemical potential per unit mass of component k.
The electric field e (x, t), which is assumed to be given by the gradient of an

electric potential, e = −∇φe, is proportional to the electric displacement field
(induction) d through the vacuum permittivity. A common constitutive relation as-
sumes a corrected permittivity ε to account for the specific dielectric material which
results in

d = ε e . (35.5)

For a local electric charge density ρz, with z being the charge per unit mass, the
equilibrium equations of electrostatics (Gauss’s flux theorem and the Maxwell–
Faraday equation) must hold,

divd = ρz and ∇× e = 0 . (35.6)
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In a mixture of n components the total current density I is composed of a convective
component ρzv with barycentric velocity v and a conductive current density i,

I = ρzv + i = ρzv +

n∑
k=1

zkJk . (35.7)

Comparing the total charge density ρz =
∑n

k=1 ρkzk with (35.1) gives the charge,
z =

∑n
k=1 ckzk. With (35.2) the law of conservation of charge follows,

ρ
dz

dt
= − div i . (35.8)

The linear momentum has now, aside of the convective flow and the mechanical
stress tensor σ, also an electric contribution which is known as Maxwell stress
tensor σM = εe ⊗ e − 1

2εe
2I, cf. Landau et al (2013). The symbol I denotes the

identity tensor. We state the change of momentum density

dρv

dt
= − div

(
ρv ⊗ v + σ − σM

)
. (35.9)

The equation of motion which has now an additional term following from the
current density (35.7).

ρ
dv

dt
= − divσ +

n∑
k=1

ρkF k +

n∑
k=1

ρkzke (35.10)

Here the F k are conservative external forces (dead loads) and zke are the non-
conservative Lorentz forces acting on a component k, both per unit mass. The F k

are derived from a stationary potential ψk with F k = −∇ψk.

35.2.1 First Law of Thermodynamics

Multiplying Eq. (35.10) with the barycentric velocity field v and making use of the
tensor differential relation div (σ · v) = divσ · v + σ : ∇v gives the balance
equation for the kinetic energy density

ρ
d 1
2v

2

dt
= − div (σ · v) + σ : ∇v +

n∑
k=1

ρkF k · v + ρzv · e (35.11)

The first two terms on the right hand side comprise the density of mechanical work
flow, in particular, σ : ∇v is the power density of deformation. The third term
summarizes the conservative forces which result from the potential energy per unit
volume ρψ. The rate of change of ρψ =

∑n
k=1 ρkψk leads to a flux term

∑
k ψkJk

and a remaining source term −∑
k Jk · F k, where F k is the dead load acting
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on component k, and Jk is the corresponding mass flux. A detailed derivation of
these terms can be found in Anders and Weinberg (2012). Additionally, the Poynting
theorem of energy conservation for electromagnetic fields is known, 1

2∂e
2/∂t =

I · e, with current density (35.7). With all this at hand we may restate (35.11) as an
equation for the rate of change of the kinetic, the potential, and the electric energy

∂
(
ρ( 12v

2 + ψ) + e2
)

∂t
=− div

(
ρ

(
1

2
v2 + ψ

)
v + σ · v +

∑
k

ψkJk

)

+ σ : ∇v −
n∑

k=1

Jk · F k − i · e . (35.12)

From this formulation it can be seen, that the sum of kinetic, potential, and electric
energy is not a conserved quantity: a source term appears at the right-hand side. The
total energy per unit mass e within an arbitrary control volume Ω, however, needs
to be conserved and according to the first law of thermodynamics it can only change
due to an energy flux rate Je through the boundary Γ = ∂Ω,

d

dt

∫
Ω

ρe dΩ =

∫
Ω

∂ρe

∂t
dΩ = −

∫
∂Ω

Je · n dΓ (35.13)

where n denotes the unit outward normal on ∂Ω. An application of the Gauss–
Ostrogradsky theorem provides the local form of energy conservation,

∂ρe

∂t
= − divJe (35.14)

where Je is a total energy flux rate density. It has to include a convective term ρev,
an energy flux rate density σ · v due to mechanical work performed on the system,
a potential energy flux rate density if applicable, and a heat flow density Jθ.

Je = ρev + σ · v +

n∑
k=1

ψkJk + Jθ (35.15)

To specify the internal energy per unit mass u we can as well attribute the difference
between e and ρ( 12v

2 + ψ) + e2 in (35.12),

ρu = ρe−
(
ρ(

1

2
v2 + ψ) + e2

)
. (35.16)

Then, subtracting (35.12) from (35.14), we obtain the balance equation for the in-
ternal energy

∂ρu

∂t
= − div (ρuv + Jθ)− σ : ∇v +

n∑
k=1

Jk · F k + i · e (35.17)
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This equation shows that the internal energy is not conserved in this constellation as
well. Again there is a source term, which is equal but of opposite sign to the source
term in the balance equation (35.12) of the sum of kinetic, potential and electric
energy. Therefore such a formulation of the balance equation for the internal energy
inherently guarantees the conservation of total energy.

In our notation it is convenient to write Eq. (35.17) in an alternative form. For this
purpose we split the total pressure tensor σ into a hydrostatic part pI = tr (σ) /3I
and a remaining deviatoric part S:

σ = pI+ S (35.18)

With relations (35.18) Eq. (35.17) becomes1

ρ
du

dt
= − divJθ − p div v − S : ∇v +

n∑
k=1

Jk · F k + i · e . (35.20)

Here we have used that I : ∇v = div v. Now we can employ another version of the
mass continuity equation in terms of the specific volume ν ≡ ρ−1

ρ
dν

dt
= div v (35.21)

to establish

du

dt
= −ν divJθ − pdν

dt
− νS : ∇v + ν

n∑
k=1

Jk · F k + νi · e . (35.22)

The last terms of Eq. (35.20) and (35.22) represent the amount of electric energy
transformed into internal energy per unit volume and per unit time. The acting
Lorentz forces are non-conservative forces.

35.2.2 Second Law of Thermodynamics

The entropy per unit mass s is a function of numerous variables which are necessary
to define the macroscopic state of the system entirely. The total differential of s in
state of equilibrium is given by the common Gibbs relation

1 By means of the rate form of the continuity mass equation dρ/dt = −ρ div v we get for any
scalar field α the identity

ρ
dα

dt
=

∂ (ρα)

∂t
+ div (ραv) . (35.19)
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Tds = du+ pdν −
n∑

k=1

μkdck, (35.23)

where p is the ambient pressure and T the absolute temperature. Following the local
equilibrium hypothesis of the classical TIP, the local version of Eq. (35.23) becomes

T
ds

dt
=

du

dt
+ p

dν

dt
−

n∑
k=1

μk
dck
dt
. (35.24)

We intend to find an explicit form of this relation and to bring it into the typical
structure of a balance equation

ρ
ds

dt
= − divJs + πs, (35.25)

where Js is a general entropy flux rate and πs is an entropy source strength. Ac-
cording to the second law of thermodynamics the entropy source πs vanishes for
reversible (equilibrium) thermodynamic processes and it holds πs > 0 for irre-
versible processes. Consequently, it must hold πs ≥ 0 for a general thermodynamic
process.

To specify Eq. (35.24) we insert the expressions for the internal energy (35.22)
and the mass balance (35.2). For brevity we drop the dead loads in the following,
F k = 0, and obtain with the chemical affinity (35.4) the expression

ρT
ds

dt
= − divJθ − S : ∇v +

n∑
k=1

μk divJk + i · e−
r∑

j=1

AjJj . (35.26)

By means of simple differential relations we obtain the entropy balance equation
in the required form (35.25),

ρ
ds

dt
= − div

(
1

T

(
Jθ −

n∑
k=1

μkJk

))
− 1

T 2
Jθ∇T

− 1

T

n∑
k=1

Jk ·
(
T∇

(μk
T

)
− zke

)
− 1

T
S : ∇v − 1

T

r∑
j=1

AjJj .

(35.27)

From comparison with (35.25) it is possible to identify the entropy flux rate as

Js =
1

T

(
Jθ −

n∑
k=1

μkJk

)
(35.28)

and the entropy source term as
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πs = − 1

T 2
Jθ∇T − 1

T

n∑
k=1

Jk · T∇
(μk
T

)
+

1

T

n∑
k=1

zkJk · e− 1

T
S : ∇v − 1

T

r∑
j=1

AjJj ≥ 0. (35.29)

At the first glance the separation of relation (35.27) into an entropy flux rate Js and
an entropy source πs is arbitrary, however, the quantities have to satisfy a number
of requirements which validate this specific separation. For example, the entropy
source expression has to vanish in the thermodynamic equilibrium and it has to be
invariant under coordinate transformations and rigid movements which both is the
case here. The entropy source (35.29) has five contributions which all are related to a
flow quantity. The first term of (35.29) arises from heat conduction and is connected
to heat flow Jθ, the second is a weighted mass diffusion flow Jk, the third term
stems from the mass diffusion of electric charges of the n components, the fourth
one comprised the inelastic mechanical work, and the last term is a sum of chemical
rates Jj multiplied by their affinities Aj .

Expression (35.28) shows that the entropy flow rate consists of a heat flow rate
and a current due to diffusion. In order to separate all thermodynamic forces related
to the temperature gradient we will take the second term of (35.29), apply the chain
rule, and modify flow rate Jθ to a generalized heat flow rate J ′

θ,

J ′
θ = Jθ −

n∑
k=1

hkJk (35.30)

where hk := μk − T∂μk/∂T is the partial specific enthalpy of component k. This
heat flow can now be used to restate the entropy flux as

Js =
1

T
J ′

θ +

n∑
k=1

skJ
r
k (35.31)

where sk = −(μk − hk)/T is the partial specific entropy of component k. In this
way the entropy flux comprises the heat flow, the flow of enthalpy and, additionally
to (35.28), a transport of partial entropies sk relative to the barycentric velocity v
with Jr

k = ρk(vk − v).
We consider a solid-state system at rest and write Jr

k = Jk = ρkvk. For exam-
ple, we obtain for a metal with a flux of electrons e− in a stationary lattice,

Js =
1

T
J ′

θ + se−Je− , (35.32)

and with current I = ze−Je− this gives for the entropy source

πs = − 1

T
Js∇T − 1

T
I

(
∇μe
ze
− e

)
(35.33)
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The entropy source (35.29) and (35.33) seem to indicate that the thermodynamic
forces conjugate to the mass diffusion fluxes Jk do not only consist of the chemical
potential but instead an additional term of electrostatic origin appears. This contri-
bution can also be attributed to the chemical potential of component k by recourse
to the definition e = −∇φe and

μ∗k = μk + zkφe . (35.34)

In this way the electrochemical potential consists of the ordinary microscopic chem-
ical potential and an additional long-range, macroscopic electric potential. The in-
ternal energy may also be redefined as u∗ = u+zφe, which would give an additional
term in Eq. (35.24), i.e.

T
ds

dt
=

du∗

dt
+ p

dν

dt
−

n∑
k=1

μ∗k
dck
dt

− zdφe
dt
. (35.35)

In the following we will leave the general scenario in order to reduce the general
form of the entropy source (35.29) to a multicomponent isotropic mixture in an
isobaric, mechanically equilibrated systems without external forces and chemical
reactions. Because the incorporation of mechanical effects follows the well known
strategies of continuum mechanics and the effect of chemical reactions has been
studied in detail in Weinberg et al (2018), see also Goddard (2015). We focus here
on the reduced entropy source in a non-moving reference system,

πs = − 1

T
Js∇T − 1

T

n∑
k=1

Jk · (∇μk − zke) , (35.36)

and we treat mass flux Jk and current Ik = zkJk separately to illuminate the
electrochemical coupling effects in a solid mixture.

35.3 Constitutive Relations

In general TIP applications the terms in the entropy source are classified into ther-
modynamic fluxes and quantities which multiply the fluxes are called thermody-
namic forces or affinities. In this sense we regard the entropy source as a linear
combination of thermodynamic fluxes J• multiplied by their corresponding affini-
ties X•:

πs = JsXs +

n−1∑
k=1

JkXk (35.37)

The assumption of a homogeneous linear dependency between the fluxes and affini-
ties with material parameters Lij (Onsager coefficients),



528 Marek Werner & Kerstin Weinberg

J• = L••X• +
n−1∑
j=1

L•jXj , (35.38)

leads to a quadratic expression for the entropy source strength. Since we study here
isotropic systems, the Onsager coefficients are scalars; they would be tensor valued
quantities for anisotropic crystalline systems.

If we specifically consider an electroneutral system of n charged or uncharged
components, of which the entropy source has been derived above, we may write this
expression as

πs = − 1

T
Js∇T − 1

T

n∑
k=1

Jk ·∇μk +
1

T
I · e (35.39)

with I =
∑n

k=1 Ik being the total current as a sum of partial currents Ik = zkJk

of component k. Expressed as a closed system at rest, we may formulate the phe-
nomenological equations for the fluxes as

Js = −Lss∇T −
n−2∑
j=1

Lsj∇μ̂j + Lsee , (35.40)

Jk = −Lks∇T −
n−2∑
j=1

Lkj∇μ̂j + Lkee , k ∈ {1, 2, . . . , n− 2}, (35.41)

I = −Les∇T −
n−2∑
j=1

Lej∇μ̂j + Leee . (35.42)

Here the two depended mass fluxes are already eliminated by the definition of the
current and with the condition of mass conservation,

∑n−1
k=1 Jk = 0. Correspond-

ingly, μ̂k denotes the relative chemical potentials. In this way we obtain the consti-
tutive equations for a system coupling thermal diffusion, mass diffusion, and electric
current. The specific n-component material enters these equations through the def-
inition of the chemical potentials of the components and via the material parameter
Lss, Lsj , . . . Lee. For these coefficients the Onsager reciprocal relations mandate
symmetry,

Ljs = Lsj , Lkj = Ljk, Lej = Lje, j ∈ {1, 2, . . . , n− 2} , (35.43)

and, due to the positive definiteness of the entropy source, it also holds

Lss ≥ 0, Lkk ≥ 0, Lee ≥ 0, LiiLjj ≥ 1

4
(Lij + Lji)

2
. (35.44)

The material coefficients of the equations (35.40 -35.42) are related to the differ-
ent effects of heat conduction, diffusion, and electric conductivity. They are com-
binations and modifications of coefficients which are known from simple empirical
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relations. For example, Lss is the heat conductivity of the system per temperature
λ/T (Fourier’s law); Lsj is related to the Dufour effect, where a heat flow is caused
by concentration gradients; and Lse is the Peltier coefficient π/T . The coupling
coefficients Lks characterize the phenomenon of thermal diffusion (Ludwig–Soret
effect), where a mass diffusion current is caused by temperature gradients; Lkj are
mass diffusion coefficients and the electric transport coefficients Lke is given by the
transference number of the component tk divided by zk. The thermopower param-
eter Les is the negative Seebeck coefficient S which quantifies the thermoelectric
effect, i.e. the amount of direct conversion of a temperature differences to electric
voltage (Seebeck effect); Lej is the partial diffusion potential of component j and
Lee directly refers to the electric resistivity of the system (Ohm’s law).

For practical applications these relations are commonly simplified and may re-
sult in the empirical equations of thermal diffusion and thermoelectricity. The main
advantage of the outlined strict derivation in the sense of TIP is a clear interaction of
the coupling effects. For all the coupling coefficients the Onsager relations (35.43-
35.44) hold which implies, e.g. S = −π/T . However, this does not say anything
about the magnitude of the coupling terms. For example thermophoresis can clearly
be observed in polymers, where different particle types move differently under the
force of the temperature gradient, whereas the cross contribution from the Dufour
phenomenon on the temperatures field is hardly measurable. The same holds for
the electric field, where a temperature gradient induces an electric Seebeck current
I ∝ −S∇T whereas the inverse Peltier effect Jθ = π/Te might be negligible.

What remains is to define the chemical potential which, in the simplest case,
is determined by the concentration gradient between the n components (Natsiavas
et al, 2016). Here, in the battery anode, the material mixture tends to form phases
of different composition, e.g. LiC6 and Li2C2. We choose a variational approach to
determine μk. Then the free energy of a mixture is of the general form∫

Ω

ρΨ dΩ =

∫
Ω

ρ
[
Ψ chm + Ψ sur] dΩ

where Ψ chm denotes the chemical free energy and Ψ sur is the contribution of the
interphase surface energy, all per unit mass of the bulk. Additional energy contri-
butions resulting from elasticity and/or viscous flow may be added, cf. Anders and
Weinberg (2011); Anders et al (2012); Anders and Weinberg (2018). Specifically
we consider the energy of a binary mixture where it simply holds c2 = 1− c1 =: c.
For the chemical energy we make use of a Porter’s-type model which is known from
Flory–Huggins thermodynamics of mixing.

Ψ chm (c, T ) =

n=2∑
i=1

{
gici + θRTci ln(ci) +

1

2

n=2∑
j �=i

χijRTcicj

}
(35.45)

= g1(1− c) + g2c+ θRT [c ln (c) + (1− c) ln (1− c)]
+ χRTc (1− c)
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The terms g1(1 − c) and g2c denote the enthalpic contribution to the Gibbs free
energy density per unit mass of the individual components; θ is a temperature de-
pendent material parameter, R is the universal gas constant, and the interaction pa-
rameter χ = (χ12 + χ21)/2 characterizes the chemical interaction between the
constituents of the mixture. In particular, for χ < 2θ the energy is convex which cor-
responds to a homogeneous solution. A separation of phases will be observed only
for χ > 2θ, when the chemical energy (35.45) turns into a double-well function,
i.e., it has two relative minima and a concave region in between. The co-existence
of two phases causes surface energy term,

Ψ sur (∇c, T ) =
n=2∑
i=1

κi(T )

2
‖∇ci‖2 =

κ(T )

2
‖∇c‖2 (35.46)

where κ = κ1 + κ2 is related to specific surface energy of the interfacial regions
between the domains of each phase. The variational derivative of the free energy
density with respect to ck, gives the chemical potential μk per unit mass,

μk = ∂ckΨ
chm −∇ · [∂∇ck (Ψ

sur)] (35.47)

which can be specified for the binary mixture to

μ = μ2 = ∂cΨ
chm −∇ · [∂∇c (Ψ

sur)] = ∂cΨ
chm − κΔc− ∂κ

∂T
∇T∇c . (35.48)

Without additional electric contributions the uncoupled model for mass diffusion
(Js = 0, I = 0 in Eqs. 35.40-35.42) corresponds to the classical Cahn–Hilliard
model in Cahn (1965). Please note that the derivative of the interfacial energy den-
sity introduces a biharmonic operator which requires a special treatment for numer-
ical solution.

35.4 Numerical Examples

In the following, we present two- and three-dimensional computational studies of
binary and ternary systems in order to illustrate the application of the derived gen-
eral model. Because we tackle diffusion problems, i.e. large deformations are not
involved, the method of finite differences is employed to provide a fast solution of
the systems; for a discussion of different solution algorithms we refer to Anders et al
(2012). In the first example the influence of the temperature on the concentration
field will be demonstrated and in the second example the system will be exposed to
an isothermal environment where the concentration fields are subjected to reactive
interactions.
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35.4.1 Thermal Diffusion

For the formulation of the kinetics and thus the temporal evolution of the normalized
concentration field we need to shift all remaining fields and potentials to a dimen-
sionless description. Therefore, the spatial field x is scaled by a characteristic length
� and rewritten as x = �x̃. The time t is treated in the same way and reformulated
as t = τ t̃, the temperature field as T = T0ϑ, and the chemical potential (35.48)
as μ = (RT0/Mm)μ̃, where Mm is the molar mass. With this substitutions, it fol-
lows for the notation of a dimensionless temporal derivative that

◦• = τ •̇ and for the
dimensionless spatial derivative that ∇̃• = �∇•. By inserting (35.2) into (35.42)
and exploiting Fourier’s law for heat conduction both, the chemical field and the
temperature field follow an extended Cahn–Hilliard equation in our modeling. For
parameter identification see Schuß et al (2018).

◦
c =M1∇̃ · [c(1− c)(∇̃μ̃)T −M21∇̃ϑ] (35.49)
◦
ϑ =M3∇̃ · [c(1− c)(∇̃μ̃)T −M43∇̃ϑ] (35.50)

The gradient of the chemical potential is obtained at constant temperature (index
T ). M1 is a normalized diffusivity D, M21 is a weighted Soret coefficient ST , M3

is a normalized Dufour coefficient Md, M43 is a normalized fraction of thermal
conductivity k to the Dufour coefficient and cp is the isobaric molar specific heat
capacity. The binary density field is given by ρ(c) = ρ1/f(c) where f(c) = 1 +
c(r − 1) and r = ρ1/ρ2 is the ratio of pure densities, cf. Anders et al (2012).
We use the numerical values which are listed in Table 35.1 for a simulation on a
unit cube with N = 128 equidistant grid points in each dimensional direction and a
normalized time increment Δt̃ = 5 · 10−3.

The initial concentration is set to c = 0.8 within the domains

Table 35.1 Normalized simulation parameters

M1 M21 M3 M43 θ̃ χ̃ κ̃

τD

�2
STT0 − τ

�2
RMd

cpρ1
−kT0

Md
θMm 2.5θ̃

κτ

D�2

10−3 5 · 10−2 −5 · 10−5 −2 · 10−1 1 2.5 6 · 10−5

Fig. 35.2 Visualization of
Ω ⊃ (Ω1

c ∪Ω2
c ∪Ω3

c ∪Ωϑ)

Ωϑ

Ω3
c

Ω1
c

Ω2
c

Ω

x̃

ỹ

1

0 1
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Ω1
c = {(x̃, ỹ) ∈ R

2 | 0.1 ≤ x̃ ≤ 0.4, 0.6 ≤ ỹ ≤ 0.9} (35.51)

Ω2
c = {(x̃, ỹ) ∈ R

2 | 0.6 ≤ x̃ ≤ 0.9, 0.1 ≤ ỹ ≤ 0.4} (35.52)

Ω3
c = {(x̃, ỹ) ∈ R

2 | 0.15 ≤ x̃ ≤ 0.3, 0.15 ≤ ỹ ≤ 0.3} (35.53)

and to c = 0.2 on Ω\(Ω1
c ∪Ω2

c ∪Ω3
c ). We perform two simulations.

In the first simulation we choose an isothermal setting; it is displayed in the
upper panel in Fig. 35.3. It is known from the standard Cahn–Hilliard model that
the energy minimization leads to round shaped islands and according to the Ostwald
ripening both larger phases grow on the expense of the smaller one.

In a second simulation we choose the same setup for the concentration field and
allow locally for an increasing temperature field onΩϑ which is located between one
of the larger phases and the smaller phase. The applied temperature bridge enables a
preferential flux direction and as a consequence a predominantly growth of the larger
connected phase; it is displayed in the lower panel in Fig. 35.2. The mentioned heat
generation source is placed within the squared region

Ωϑ = {(x̃, ỹ) ∈ R
2 | 1/6 ≤ x̃ ≤ 1/3, 1/3 ≤ ỹ ≤ 2/3} (35.54)

and raises within the first 3000 normalized time increments (t̃ ≤ 15) such that the
initially normalized global unit temperature ϑ is increased by 10−4 per time step
and in total by 30% on Ωϑ. Note that this procedure leads to an increasing average
temperature on Ω. Thus the temperature is not a conserved quantity. Moreover, due
to the missing biharmonic operator in (35.50) no temperature islands are formed,
although on the first glance the governing equations (35.49) and (35.50) look simi-
larly.

t̃ = 0 t̃ = 250 t̃ = 450 t̃ = 750 t̃ = 3000 t̃ = 10900

un
co

up
le

d
c

co
up

le
d

c
ϑ

Fig. 35.3 Influence of locally increased temperature on chemical decomposition. Color coding:
c ∈ [0, 1] and θ ∈ [1, 1.3] where higher values are shown in red and lower values in blue.
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35.4.2 Multifield Chemical Reactions

In this example we study a ternary mixture with concentrations c1 = cA, c2 = cB ,
c3 = cC , in an isothermal environment. The constituents are subjected to a two-way
bimolecular reaction (self-reaction).

nAA+ nBB � nCC (35.55)

Both, the forward reaction nAA + nBB → nCC and the backward reaction
nCC → nAA + nBB, have rate coefficients k+ and k−, respectively. The cor-
responding reaction rate J1 = k+cnA

1 c
nB
2 − k−cnC

3 is considered in Eq. (35.2).
Similar characteristic quantities as in the first example are used and, furthermore,
the hard constraint of mass conservation c1 + c2 + c3 = 1 is employed. Then each
of the two remaining fields follows an extended Cahn–Hilliard equation.

◦
c1 = ∇̃ · (M∇μ1) + v11

{
k+cnA

1 c
nB
2 − k−[1− (c1 + c2)]

nC
}

(35.56)
◦
c2 = ∇̃ · (M∇μ2) + v21

{
k+cnA

1 c
nB
2 − k−[1− (c1 + c2)]

nC
}

(35.57)

Both chemical potentials are calculated by Eq. (35.48) and we assume nA = nB =
nC = 1 and k+ = k− = k.

For the computation we use a uniform mesh consisting of 128 grid points in each
direction. The uniformly perturbed initial concentration values are cj1 = 0.22 ±
0.01Xj and cj2 = 0.21± 0.01Xj on Ω, where Xj ∼ U(0, 1), ∀j ∈ {1, . . . , 1283}.
Periodic boundary conditions apply. The normalized time increment is set to Δt̃ =
10−2. The mobility isM = 1, the gradient energy coefficients are κ1 = κ2 = κ3 =
128−3, θ = 0.35, and the interaction parameters are χij = 1.25 for all 1 ≤ i, j ≤ 3.

We compare two different scenarios with each other, see Fig 35.4. In the first case
with zero reaction rate (k = 0) we observe c3 to be the dominant phase which forms
a foam like matrix structure. The smaller phases tend to reduce their surface energy
by the formation of nuggets. One should keep in mind, that the shown snapshot
is an arbitrarily chosen point in time and not a final stable state of decomposition
in this dynamic process. Of course, the system continues to decompose until all
subdomains of a species merge to a single one. The displayed arrangements of each
phase give some insight into the complexity of the system.

A different situation is observed for the second case with a bimolecular reaction.
Please note that reactants are counted as negative numbers by convention, here we
have kv11 = kv21 = −600/1283. In this reactive case, phase c3 is quenched in
between c1 and c2 which can hardly be seen in the surface plot. The single phase
arrangements illustrate the pattern. The fact that the C-rich phase arranges at the
interface between specimen A and B follows from reaction (35.55), which states
that specimens of type A and of type B are needed to produce the specimen of type
C.
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no reaction rate
= + +

reaction rate
= + +

t̄
=

0

t̄ = 105 c1 c2 c3

Fig. 35.4 From left to right: initial configuration, snapshot at the early stage (after t̄ = 10, 000) of
resulting morphologies for both, a ternary non-reactive system (top line) and a reactive system
(bottom line), and extraction of its single phases c1, c2, and c3.

35.5 Conclusion

In this work an extended diffusion model involving electrical, thermal, mechanical,
and chemical contributions is formulated and applied to two illustrative examples.
The derivation of the coupled multi-field model is based on the Thermodynamic of
Irreversible Processes (TIP), cf. De Groot and Mazur (1962).

Finally, we want to mention that the appropriate derivation of the entropy-flux js

is subject to many discussions, see Cimmelli et al (2014); Muschik and Ehrentraut
(1996) among others. At one hand, the local equilibrium hypothesis is the corner-
stone of the classical strategy, i.e. thermodynamic state variables in non-equilibrium
states are considered to be the same as in equilibrium. It is still under debate that
other variables, not found at equilibrium, might be able to influence non-equilibrium
processes. On the other hand, the standard procedure, which implies that the glob-
ally defined balance relations are valid for a material point at x and its infinitesimal
neighborhood, has the severe drawback, that weakly nonlocal continuum theories
which take the gradients of the unknown variables as independent state variables,
result to be not compatible with second law, (Ván, 2003). This applies, e.g., for
higher gradient elasticity, phase-field fracture approaches or similar models. For our
model of diffusion in solid state battery systems, however, we have no reason to
assume additional state variables and thus the derived TIP based model is compre-
hensive.

Acknowledgements The authors gratefully acknowledge the support of the Deutsche Forschungs-
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Chapter 36

Nonclassical Bending Behavior of Thin Strips of

Photochromic Liquid Crystal Elastomers Under

Light Illuminations

Yang Zhang & Yongzhong Huo

Abstract Photochromic liquid crystal elastomers (LCEs) bend when irradiated by
light of suitable wavelength. However, due to the rotation of the liquid crystal direc-
tor, rather large shear strains are inevitably produced and some basic assumptions of
the classical simple beam theory of Euler-Bernoulli fail to be satisfied. In this work,
we use the first-order shear deformation beam theory of Timoshenko to model the
unusual quasi-soft bending behavior of soft LCEs under light illuminations. The
results show that in addition to the large shear strain, the effect of initial effective
length ratio makes a great difference to the deflections due to the rotation of di-
rector. This represents the first direct verification that Euler-Bernoulli beam theory
fails to deal with such nonclassical bending of soft LCEs, while Timoshenko beam
model can work sufficiently well, which also gives a possible method to measure
the effective opto bending moment experimentally.

Keywords: Liquid crystal elastomer · Photochromic materials · Beam theory

36.1 Introduction

Photochromic LCEs doped with rod-like groups, such as azobenzenes, which un-
dergo trans-cis isomerization on absorption of UV photons, are found to contract
when irradiated at suitable wavelengths since the local order is disrupted by the
kinked dopant groups (Warner and Terentjev, 2007; Finkelmann et al, 2001). Since
light is absorbed by the material (Corbett and Warner, 2006, 2008), the reduction in
intensity through the thickness of a cantilever gives a gradient of response and then
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non-uniform strains lead to the bending of a cantilever of the active material as in
Ikeda et al (2003); Camacholopez et al (2004); Yu et al (2003); Jin et al (2006).

The light induced bending behavior of LCEs with a beam model based on simple
bending assumptions has been studied by several authors (Jin et al, 2006; Warner
and Mahadevan, 2004; van Oosten et al, 2007; Jin et al, 2010a,b, 2011; Dunn, 2007;
Dunn and Maute, 2009; He, 2007; Modes et al, 2011; Warner et al, 2010; Warner
and Corbett, 2010; Zeng et al, 2010). Besides, due to the unusual soft or semi-soft
behavior of LCEs, the rotation of the LC director can have a strong effect on the
mechanical response of the materials as shown in Warner and Terentjev (2007); Jin
et al (2010b, 2011). Lin et al (2012) proposed the constitutive equation including
the effect of the photo isomerization, and found that the opto-mechanical behaviors
are also affected by the soft behavior . Large shear strains occur in the quasi-soft
bending due to the anisotropy and its very special mechanical properties (soft elas-
ticity) of LCEs. However, on this occasion, straight lines normal to the mid-plane of
LCE beams before deformation won’t remain normal to the mid-plane after defor-
mation, which finally leads the classical Euler-Bernoulli beam assumption to fail as
discussed in Lin et al (2012).

The first-order shear deformation beam theory of Timoshenko allows for the ef-
fect of transverse shear deformation which is neglected in the Euler-Bernoulli beam
theory. In the first-order shear deformation theory, the transverse shear strain is as-
sumed to be constant with respect to the thickness coordinate, so shear correction
factors are introduced to correct for the discrepancy between the actual transverse
shear force distributions and those computed using the relations of the TBT in Tim-
oshenko (1921); Reddy et al (1997).

In this paper, the Timoshenko beam model for quasi-soft bending of pho-
tochromic LCEs under light illuminations is presented. Based on the assumption
of the form of the displacement and the stress field, the governing equations and
the general solutions of rotations and deflections of beams are obtained. The finite
element results are compare with the theoretical results of TBT model for various
external loads. A numerical method is used to evaluate shear correction factor intro-
duced in TBT.

36.2 TBT Model for Optical-mechanical Bending of Beam

Shaped Specimens

36.2.1 Optical-mechanical Constitutive Relations

As shown in Fig. 36.1, we consider a uniform LCE beam with length L, thick-
ness h and width w. The director of the sample is parallel with x direction, i.e.
n0 = (1, 0, 0)

T and it is illuminated upward by unpolarized light along the y di-
rection from the bottom. Here a linearized opto-mechanical constitutive relation of
soft LCEs for infinitesimal deformations obtained by one of the authors, see Lin
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et al (2012), is applied to study the light induced bending behavior of photochromic
LCEs. As n0 = (1, 0, 0)

T, the components of Cauchy stress take the form

σxx =
E

1 + ν
(εxx − εrxx)− p,

σyy =
E′

1 + ν′

[(
εyy − εryy

)
+

ν − ν′
(1 + ν) (1− ν′) (εxx − ε

r
xx)

]
− p,

σzz =
E′

1 + ν′

[
(εzz − εrzz) +

ν − ν′
(1 + ν) (1− ν′) (εxx − ε

r
xx)

]
− p,

σxy = 2G′
(
εxy − r0 − 1

r0 + 1
ωxy

)
,

σxz = 2G′
(
εxz − r0 − 1

r0 + 1
ωxz

)
,

σyz = 2Gεyz,

(36.1)

where εij are the Cauchy strains, ωij are the antisymmetric parts of the displace-
ment gradient, εrij are the light-induced strains and p is the lagrangian multiplier
introduced due to the incompressibility. The elastic constants and the light-induced
strains are given by

β =
r

r0
, E = μβ

1
3
2 + β

β
, E′ = 2μβ

1
3
2 + β

1 + β
, ν′ =

1

1 + β
, ν =

1

2
,

G =
E′

2 (1 + ν′)
, G′ =

1

2

r0 + 1

r0 − 1

(
1

β
− 1

)
,

εrxx = −1− β
2 + β

, εryy = εrzz = −νεrxx,

(36.2)

where μ is the effective shear moduli, r and r0 denote the anisotropy of the shape
distribution of nematic network in the current configuration and in the reference
configuration, respectively. Under light illuminations, the anisotropy denoted by r

Fig. 36.1 The schematic of the beam shaped specimen under upward unpolarized light.
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decreases due to the photo isomerization and decays with the penetration depth of
light. Here we assume that the change is very small, that is, (r0 − r)/r0 � 1. Thus
β is less than but approximately equal to 1. The parameters used for calculations
in the following part are the same as those in Lin et al (2012). Note that for this
unusual constitutive relation in Eq. (36.1), the first terms of three normal stresses
represent the deviatoric part of stress tensor and p is the spherical part, which can be
determined by using the incompressibility constraint. More details on the derivation
of Eq. (36.1) has been given in Lin et al (2012).

If there is no light illumination, which means r = r0, the light induced strain εrxx
is zero and the soft material behaves as an isotropic and incompressible Hookean
material, except for its vanished in-plane shear moduli G′, which is often referred
as the soft behavior as predicted by the neo-classical elastic energy. However, the
material behavior is rather different under light illumination. Due to β �= 1, two
elastic moduli and two Poisson’s ratio arise in constitutive relation of Eq. (36.1),
and single domain LCEs become transverse isotropy in the plane perpendicular to
the director. In addition, the light induced change of the effective length ratio r0− r
will produce nonzero shear moduli G′ and light induced strain εr.

Besides, the Young’s moduli and light induced strain depend on the effective
length ratio , which are affected by the light illumination conditions (incident light
intensity i0 and light decay distance d). Since light is absorbed by the material, the
reduction in light intensity through the thickness of a cantilever gives a gradient of
response and non-uniform strains lead to the bending of a cantilever of the active
material. Therefore, the LCE material under light illumination becomes a functional
gradient material. Moreover, the light induced decrease of the effective length ratio
r implies the light induced anisotropy.

As observed in experiments and discussed in several theoretical works, the elastic
moduli of single domain LCEs are anisotropic and depend strongly on the temper-
ature. However, it is necessary to take into consideration that the stress induces a
biaxiality of the liquid crystal molecules in order to obtain this anisotropy. In the
present paper, the biaxiality is neglected for simplicity. Thus, the elastic moduli are
taken as isotropic under mechanical loading and the anisotropy is induced by the
light illumination.

36.2.2 Timoshenko Beam Model

Beam theories are developed by assuming the form of the displacement or stress
field as a linear combination of unknown functions and the thickness coordinate. In
Timoshenko beam theory (TBT), for stress components, we have basic assumption

σyy = σzz = 0. (36.3)

Combining (36.3) and the incompressibility tr(ε) = 0, we get
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p =
E′

2 (1 + ν′)
εyy =

E′

2 (1 + ν′)
εzz = − E′

(1 + ν′)
εxx. (36.4)

Hence, we can obtain the following constitutive equations for the bending of LCE
beams

σxx = E (εxx − εrxx) , σxy = 2G′
(
εxy − r0 − 1

r0 + 1
ωxy

)
. (36.5)

The Timoshenko beam theory (TBT) is based on the in-plane displacement field
at z = 0

u (x, y) = u0 (x) + (y − ȳ)φ (x) , v (x, y) = v0 (x) + ṽ (y) , (36.6)

where u0 (x) and v0 (x) is the displacements of the point (x, ȳ) on plane z = 0,
φ (x) denotes the rotation of straight lines normal to the mid-plane about z axes
and ṽ (y) denotes the difference of displacements between the two points (x, y) and
(x, ȳ). In view of the displacement field given in Eq. (36.6), the in-plane strains and
rotation components are given by

εxx =
∂u

∂x
=
∂u0
∂x

+ φ′ (x) (y − ȳ) = ε0xx + φ′ (x) (y − ȳ) ,

εyy =
∂v

∂y
=
∂ṽ

∂y
,

εxy =
1

2

(
∂u

∂y
+
∂v

∂x

)
=

1

2
(φ (x) + v′0 (x)) ,

ωxy =
1

2

(
∂u

∂y
− ∂v
∂x

)
=

1

2
(φ (x)− v′0 (x)) .

(36.7)

Insert expressions of Eq. (36.7) into constitutive equations Eq. (36.5) and we can
express the bending momentMxx and shear force Qx in terms of v0 (x) and φ (x)

Mxx =

∫∫
A

σxx (y − ȳ) dA =

∫∫
A

E
(
ε0xx + φ′ (x) (y − ȳ)− εrxx

)
(y − ȳ) dA

= Dφ′ (x) +Meff ,

Qx =

∫∫
A

σxydA =

∫∫
A

2G1

1 + r0
(φ+ r0v

′
0) dA = KsAxy (φ+ r0v

′
0) ,

(36.8)
where

D =

∫∫
A

E(y − ȳ)2dA,

Meff = −
∫∫

A

Eεrxx (y − ȳ) dA,

Axy =

∫∫
A

2G′

1 + r0
dA.

(36.9)
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and Ks is the shear correction factor that has been introduced to compensate for
the error caused by assuming a constant shear stress distribution through the beam
depth. The shear correction factor depends not only on the material and geometric
parameters but also on the loading and boundary conditions. Here,

ȳ =

∫∫
A
EydA∫∫

A
EdA

≈ h
2
. (36.10)

From Eq. (36.8), we can write the relations of generalized displacement field and
externally applied loads as

φ′ (x) =
Mxx −Meff

D
, v′0 (x) = − 1

r0
φ (x) +

Qx

r0KsAxy
. (36.11)

Then institute Eq. (36.11) into the balance equations of moments and forces

dMxx

dx
= Qx, −dQx

dx
= q, (36.12)

we can get the governing equation of deflections

v′′0 (x) =
Meff −Mxx

r0D
+

q

KsAxyr0
. (36.13)

Note that without considering the last term in Eq. (36.13), the solutions of Eq. (36.13)
are reduced to Euler-Bernoulli beam theory when r0 = 1. In other words, there exist
large discrepancies between the two theories EBT and TBT in the bending of soft
LCE beams.

Furthermore, the solutions for the Timoshenko beam under the light actuations
and external distributing loads q may be readily obtained by integrating the fourth-
order differential equation and using two boundary conditions from at each end
of the beam to evaluate the integration constants. By integrating Eqs. (36.12) and
(36.11) with respect to x field, we can express general solutions of the bending
moments, shear forces, rotations and deflections of beams as

Mxx =ML
xx −QL

x (L− x)−
∫ L

x

∫ L

ξ

qdηdξ,

Qx = QL
x +

∫ L

x

qdξ,

φ (x) = φ0 +

∫ x

0

1

D
(Mxx −Meff)dξ,

v0 (x) = v
0
0 −

φ0

r0
x+

∫ x

0

1

r0

∫ ξ

0

1

D
(Meff −Mxx)dηdξ +

∫ x

0

Qx

r0KsAxy
dξ.

(36.14)
where v00 , φ

0, ML
xx, Q

L
x are constants of integration. These constants are to be

determined by using the boundary conditions of the particular beam.
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For free (F), simply supported (S) and clamped (C) ends, boundary conditions
are given by

F : Qx =Mxx = 0, S : v0 =Mxx = 0, C : φ = v0 = 0. (36.15)

36.3 Examples of Cantilever Beams and Numerical Results

The most important class of problems involves cantilever beams, which are usually
tested experimentally in mechanics. Here, we take cantilever beams for examples
and use three simple cases to demonstrate our theoretical model. The first case with
q = 0 shows only the effect of light illuminations, and the other two with a point
load q = fδ (x− L) and uniformly distributed loads q = q0 represent the coupled
effect of optical and mechanical loads.

In all the three cases, the cantilever beams is clamped at x = 0 and is free at x =
L. Thus according to Eqs. (36.15), the boundary conditions are set by v00 = φ0 = 0
and ML

xx = QL
x = 0. Substitue the conditions into Eqs. (36.14) and we obtain the

solutions to cantilever beams as

φ (x) =

∫ x

0

1

D
(Mxx −Meff)dξ,

v0 (x) =

∫ x

0

1

r0

∫ ξ

0

1

D
(Meff −Mxx)dηdξ +

∫ x

0

Qx

r0KsAxy
dξ.

(36.16)

For brevity, we assume that beams have the uniform anisotropy at the initial state,
i.e. r0 is a constant, and we only consider uniform cantilever beams under uniform
light illuminations, so D and Meff are independent of x coordinate with the form
D = D0 and Meff = M0

eff . Besides, notice that the shear correction factor should
be taken into account if nonzero shear forces are present.

Besides, the finite element method proposed by Lin et al (2012) is used to model
the deformation of the specimen under light illuminations and finite element re-
sults are used to compare with the theoretical results of TBT model. To investigate
whether straight lines normal to the mid-plane of LCE beams will remain straight
after deformation or not, the displacements in the axial direction vs. y coordinates
are plotted in Fig. 36.2. It shows the displacement u changes linearly with the y
coordinate and the plane cross-section assumption is still valid.

36.3.1 First Case: no Load

In this case, beams are only driven by optical loads, i.e. q = Qx = Mxx = 0 and
thus solutions read

φ (x) = −M
0
eff

D0
x, v0 =

M0
eff

2r0D0
x2. (36.17)
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Fig. 36.2 Displacements uof cross section along y axis for three cases. (r0 = 3, i0 = 2, d/h = 1)

Obviously, the maximum deflection occurs at x = L

vmax
0 =

M0
eff

2r0D0
L2. (36.18)

In an experiment, we can obtain the effective optical bending moment through mea-
suring the maximum deflection of cantilever beams.

The following expression can well describe the relation of the solution of EBT
and the solution of TBT in this case

vL0 =
1

r0
vE0 , (36.19)

where the superscript “T” and the superscript “E” respectively denotes the quantity
in TBT and the quantity in EBT. It’s obvious that the solutions of TBT is reduced
to Euler-Bernoulli beam solutions if r0 = 1. For anisotropy LCEs, it holds r0 > 1,
which implies that the effect of r0 finally leads the classical EBT to fail. Figures
36.3 and 36.4 indicate that theoretical results of TBT model agree well with the
finite element results for different initial anisotropy r0 and different dimensionless
incident light intensites i0.
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Fig. 36.3 (a) Rotation curves and (b) deflection curves for different r0. (i0 = 2, d/h = 1)
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Fig. 36.4 Rotation curves and deflection curves for different i0. (i0 = 3, d/h = 1)
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36.3.2 Second Case: a Point Load

In this case, we consider a cantilever beam with a concentrated load f applied at the
free end. The solutions are given by

φ (x) = −M
0
eff

D0
x− f

D0
x
(
L− x

2

)
,

v0 (x) =
M0

eff

2r0D0
x2 +

f

2r0D0
x2

(
L− x

3

)
+

f

r0KsAxy
x.

(36.20)

Notice that shear correction factorKs is introduced in the expression of deflections
due to nonzero shear forces, which however, does not arise in the expression of
rotations. Figure 36.5 indicates that the solutions of rotations in TBT model agree
well with the finite element results in this case.

Fig. 36.5 Rotation curves for different concentrated loads. (r0 = 3, i0 = 2, d/h = 1)

Here, a numerical method is used to evaluate the shear correction factor. For
beams with different length, we can obtain the forces f , which satisfy v0 (L) = 0.
From the expression of Eq. (36.20), we have the following expression if v0 (L) = 0
holds

−M
0
eff

2fL︸ ︷︷ ︸
Y

=
1

3
+

1

Ks

(
D0

Axyh2

)(
h

L

)2

︸ ︷︷ ︸
X

. (36.21)

So in FEM, we can find out a unique force f that can make the free end satisfy
v0 (L) = 0 and the obtained points for different length of beams (X,Y ) are plotted
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in Figure 36.6. It shows that the shear correction factor is independent of length of

Fig. 36.6 Points of FE resutls are fitted by a line using the linear least square method.
(r0 = 3, i0 = 2, d/h = 1)

beams and loads. And the points are fitted with the line y = 0.328 + 1.177x by
linear least square method, which implies that Ks = 1.177−1 = 0.850. Figure 36.7
indicates that the theoretical results of deflections fit well with the finite element
results in this case whenKs = 0.850.

36.3.3 Third Case: Uniformly Distributed Load

The solutions of cantilever beams with uniformly distributed load q = q0 are given
by

φ (x) =− M
0
eff

D0
x+

q0
2D0

(
−L2x+ Lx2 − x

3

3

)
,

v0 (x) =
M0

eff

2r0D0
x2 +

q0
2r0D0

x2
(
1

2
L2 − 1

3
Lx+

1

12
x2

)
+

q0
r0KsAxy

x
(
L− x

2

)
.

(36.22)

Figure 36.8 shows that numerical comparisons of both rotations and deflections be-
tween the theory and finite element results show good agreement when the shear
correction factorKs = 0.850 has been taken into consideration.
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Fig. 36.7 Deflection curves for different concentrated loads. (r0 = 3, i0 = 2, d/h = 1)

36.4 Discussion About Shear Correction Factor

One of the main difficulties in using Timoshenko beam theory is the proper selection
of the shear correction factor, since in TBT the shear correction factor is introduced
to allow for the fact that the shear stress is not uniform over the cross section. In
history, many authors have published definitions of the shear correction factor and
have proposed various methods to calculate it. Most of these approaches fall into one
of two categories. The first approach is to use the shear correction factor to match
the frequencies of vibration of various beam constructions with exact solutions to
the theory of elasticity. The second approach is to use the shear correction factor to
account for the difference between the average shear or shear strain and the actual
shear or shear strain using exact solutions to the theory of elasticity. At the present
stage of theories and experiments, Timoshenko’s expression in Timoshenko (1921)
and Cowper’s one in Cowper (1966) will be the most probable ones. Although not
explicitly written in Timoshenko (1921), the shear correction factor obtained in the
first manner for a rectangular beam is

Ks =
(5 + 5ν)

(6 + 5ν)
, (36.23)

where ν is the Poisson’s ratio.
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Fig. 36.8 (a) Rotation and (b) deflection curves for various uniformly distributed loads.
(r0 = 3, i0 = 2, d/h = 1)
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Cowper (1966) calculated the shear correction factor using an approach from the
second category described above. For a rectangular isotropic homogeneous beam,
Cowper found the following shear correction factor:

Ks =
10 (1 + ν)

12 + 11ν
. (36.24)

With regard to our incompressible materials of LCEs, the Poisson’s ratio is close
to 0.5, as indicated in Eq. (36.2). Hence, according to the Timoshenko’s expression
and Cowper’s, the shear correction factor for the rectangle is respectively 0.882 and
0.857. Our numerical results indicate that of the shear correction factor is about
0.850 very close to Cowper’s formula Eq. (36.24).

36.5 Conclusions

Photochromic LCE is a currently developed smart material, which can contract and
bend under suitable light illuminations. However, due to the unusual soft or semi-
soft behavior of LCEs, the rotation of the LC director can have strong effect on
the mechanical response of the materials. Large shear strains occur in the quasi-
soft bending due to its very special mechanical properties (soft elasticity) of LCEs,
which finally lead the classical Euler-Bernoulli beam assumption to a failure even
for slender strips.

In this paper, the first-order shear deformation beam theory model of Timoshenko
for quasi-soft bending of photochromic LCEs under light illuminations has been
presented, which allows for the effect of transverse shear deformation. General so-
lutions of the bending moments, shear forces, rotation and deflections of beams
subjected to optical and mechanical loads are given, and the solutions show much
difference between EBT and TBT. The effect of r0 arises due to the free rotation of
director of LCEs.

In TBT, the shear correction factor has to been taken into consideration due to
the assumption of a constant shear stress distribution through the beam depth. The
shear correction factor evaluated in the numerical method is 0.850, which shows
good agreement with the value predicted by Cowper’s formula. Numerical results
indicate that TBT model we presented fits very well with finite element results for
different geometric parameters and different loading and boundary conditions of
beams.

Acknowledgements We gratefully acknowledge the support of this research by the National Nat-
ural Science Foundation of China (11461161008, 11772094) and Joint Funds of National Natural
Science Foundation of China (No. Y81GLW1101).

References

Camacholopez M, Finkelmann H, Palffymuhoray P, Shelley M (2004) Fast liquid-crystal elastomer
swims into the dark. Nature Materials 3(5):307–10



552 Yang Zhang & Yongzhong Huo

Corbett D, Warner M (2006) Nonlinear photoresponse of disordered elastomers. Physical Review
Letters 96(23):237,802

Corbett D, Warner M (2008) Polarization dependence of optically driven polydomain elastomer
mechanics. Physical Review E Statistical Nonlinear & Soft Matter Physics 78(6 Pt 1):061,701

Cowper GR (1966) The shear coefficients in Timoshenko’s beam theory. Journal of Applied Me-
chanics 33(2):335–340

Dunn ML (2007) Photomechanics of mono- and polydomain liquid crystal elastomer films. Journal
of Applied Physics 102(1):307

Dunn ML, Maute K (2009) Photomechanics of blanket and patterned liquid crystal elastomer films.
Mechanics of Materials 41(10):1083–1089

Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids.
Physical Review Letters 87(1):015,501

He LH (2007) Surface deformation of nematic elastomers under striped illumination. Physical
Review E Statistical Nonlinear & Soft Matter Physics 75(1):041,702

Ikeda T, Nakano M, Yu Y, Tsutsumi O, Kanazawa A (2003) Anisotropic bending and unbending be-
havior of azobenzene liquid-crystalline gels by light exposure. Advanced Materials 15(3):201–
205

Jin L, Xin J, Huo Y (2006) Light-induced nonhomogeneity and gradient bending in photochromic
liquid crystal elastomers. Science in China 49(5):553–563

Jin L, Yan Y, Huo Y (2010a) A gradient model of light-induced bending in photochromic liquid
crystal elastomer and its nonlinear behaviors. International Journal of Non-Linear Mechanics
45(4):370–381

Jin L, Zeng Z, Huo Y (2010b) Thermomechanical modeling of the thermo-order–mechanical cou-
pling behaviors in liquid crystal elastomers. Journal of the Mechanics & Physics of Solids
58(11):1907–1927

Jin L, Lin Y, Huo Y (2011) A large deflection light-induced bending model for liquid crystal elas-
tomers under uniform or non-uniform illumination. International Journal of Solids & Structures
48(22):3232–3242

Lin Y, Jin L, Huo Y (2012) Quasi-soft opto-mechanical behavior of photochromic liquid crystal
elastomer: Linearized stress–strain relations and finite element simulations. International Jour-
nal of Solids & Structures 49(18):2668–2680

Modes CD, Bhattacharya K, Warner M (2011) Gaussian curvature from flat elastica sheets. Pro-
ceedings Mathematical Physical & Engineering Sciences 467(2128):1121–1140

van Oosten CL, Harris KD, Bastiaansen CW, Broer DJ (2007) Glassy photomechanical liquid-
crystal network actuators for microscale devices. Eur Phys J E Soft Matter 23(3):329–336

Reddy JN, Wang CM, Lee KH (1997) Relationships between bending solutions of classical and
shear deformation beam theories. International Journal of Solids & Structures 34(26):3373–
3384

Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibra-
tions of prismatic bars. Philosophical Magazine 41(245):744–46

Warner M, Corbett D (2010) Suppression of curvature in nematic elastica. Proceedings of the Royal
Society A 466(2122):3561–3578

Warner M, Mahadevan L (2004) Photoinduced deformations of beams, plates, and films. Physical
Review Letters 92(13):134,302

Warner M, Terentjev EM (2007) Liquid Crystal Elastomers. Oxford University Press,
Warner M, Modes CD, Corbett D (2010) Curvature in nematic elastica responding to light and

heat. Proceedings Mathematical Physical & Engineering Sciences 466(2122):2975–2989
Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature

425(6954):145
Zeng Z, Jin L, Huo Y (2010) Strongly anisotropic elastic moduli of nematic elastomers: Analytical

expressions and nonlinear temperature dependence. Eur Phys J E Soft Matter 32(1):71–79



Chapter 37

A Simple Qualitative Model for the

Pressure-induced Expansion and Wall-stress

Response of Fluid-filled Biological Channels

Tarek I. Zohdi

Abstract This work investigates the effects of a pressure increase in deformable
fluid-filled biochannels, such as arteries and veins. Simple qualitative expressions
are developed relating pressure-induced changes to the biochannel expansion, volu-
metric flow rate, and biochannel wall stress. Such relations are necessary for a rapid
analysis in potential applications such as post-traumatic stress, hemorrhagic strokes,
atherosclerotic plaque buildup, etc. The relations are based on the development of
functions that correct classical pressurized thin-tube expressions for hoop stress for
finite deformations.

Keywords: Pressure increase · Biochannels · Fluid flow

37.1 Introduction

This work studies the pressure-induced expansion and stress increase in deformable
fluid-filled biochannels, such as arteries, vein, etc. This is motivated by interest in
hypertension, hemorrhagic strokes and recently wide-spread interest in the effects
of body-blows to pressure-induced biochannel rupture, arising from contact sports,
such as boxing, football, ice-hockey, etc. Simple expressions are developed relating
the pressure-induced changes to the biochannel expansion, volumetric flow rate and
biochannel wall stress. Intended applications include post-traumatic stress, hemor-
rhagic strokes, atherosclerotic plaque buildup. The expressions developed allow for
rapid analysis of such systems, circumventing the use of computationally-intensive
numerical methods for detailed studies. The long-term objective is to couple such
models to kinematic systems developed in Zohdi (2017) to simulate a wide range
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of induced forces involving fist-to-head and fist-to-chest force calculations in order
to determine the connections to possible channel expansion and wall-stress, lead-
ing to arterial rupture 1. However, in certain circumstances, the fluid-induced shear
stress may decrease, which increases the tendency of atherosclerotic plaque buildup
(Zohdi, 2005, 2004, 2014). These scenarios are discussed further in the paper.

37.2 Classical Pressure-flow Relations

We consider a relatively simple model problem comprised of a biochannel which is
filled with a fluid (such as blood, Fig. 37.1). By following Coleman et al (2012, Sect.
13.i), we consider a steady helical flow; by taking an annular element and summing
the pressure and shear forces in the axial x-direction, we obtain

−∂P
∂x

+
1

r

∂(rτ)

∂r
= 0⇒ 1

r

∂(rτ)

∂r
=
∂P

∂x
, (37.1)

where P is the pressure and τ is the shear stress (in physical coordinates). Under the
assumption that the pressure gradient is constant along the radius, integrating yields

τ =
r

2

(
∂P

∂x

)
+
C1

r
= μ

∂v

∂r
, (37.2)

where v denotes the velocity along the axial direction and μ is the (shear) viscosity
of the filling fluid. Integrating again yields

Fig. 37.1 Nomenclature for a simplified flow and stress analysis.

1 This approach employs a combined kinematic and energy analysis, by drawing on methods used
in the robotics literature (for example, see Hunt, 1978; Hartenberg and Denavit, 1964; Howell,
2001; McCarthy and Soh, 2010; McCarthy, 1990; Reuleaux, 1876; Sandor and Erdman, 1984;
Slocum, 1992; Suh and Radcliffe, 1978; Uicker Jr et al, 2003).

t

R

A
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x
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v(r) =
1

μ

(
r2

4

(
∂P

∂x

)
+ C1 ln r

)
+ C2. (37.3)

v(r = 0) must be finite, thus C1 = 0, and v(r = R) = 0 yields

v(r) = −R
2

4μ

(
∂P

∂x

)(
1−

( r
R

)2
)
. (37.4)

The stress becomes

τ(r) = μ
∂v(r)

∂r
=
r

2

∂P

∂x
. (37.5)

The stress at the wall becomes

τw = −τ(r = R) = −R
2

∂P

∂x
. (37.6)

An important observation is that if the radius of the channel grows, and the pressure
gradient remains constant or grows, then the shear induced wall stress decreases.
However, the flow rate can also be computed to reveal

Q =

∫
A

v dA = −
∫
A

R2

4μ

(
∂P

∂x

)(
1−

( r
R

)2
)
rdrdθ =

= −2πR2

4μ

(
∂P

∂x

)(
r2

2
− r4

4R2

) ∣∣∣r=R

r=0
= − 1

μ

(
∂P

∂x

)
πR4

8
,

(37.7)

thus indicating that decreasing R decreases the flow rate, if the pressure gradient
does not increase appropriately. The implications of this are discussed further in the
paper.

37.3 Simple Approximations of Radial Deformation

We now consider the radial deformation of the biochannel as a function of the
pressure in the fluid (Fig. 37.1). We make the simplifying assumption that it is a
thin-walled circular tube which expands self-similarly (uniformly) to a larger cir-
cular tube. At any point along the tube, the radial expansion is simplified by pos-
tulating it to be a linear function of the length-averaged mean pressure differential,
ΔPm = Pm − Pm

o with the nominal pressure Pm
o , of the form:

R

Ro
= 1 +Kw(P

m − Pm
o ) = 1 +KwΔP

m, (37.8)

where R is the deformed radius, Ro is the nominal (atΔPm = 0) radius and Kw is
a constant that represents the compliance of radial expansion. In order to determine
the constant, consider a thin-walled cylindrical tube of mean radius Ro and thick-
ness to is pressurized internally with ΔPm. We also make the classical assumption
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that the tube is (eventually) closed at both ends. To calibrate/approximate the wall
compliance constant, we can resort to its infinitesimal deformation response and we
modify the classical thin-walled tube approximations, as explained next.

37.3.1 Estimate of Wall Stresses

We consider a tube with deformed radius R, thickness t and length L and initial
radius Ro, thickness to and length Lo. For the thin-walled tube approximations, the
stress components at point A in the wall (Fig. 37.1, far from the edges) of the tube,
as a function of the applied pressure arise from the hoop (circumferential) stresses
and the longitudinal stresses, leading to

[σ] =

⎡⎣σxx σxy σxzσyx σyy σyz
σzx σzy σzz

⎤⎦ =

⎡⎣ΔPmR/2t 0 0
0 ΔPmR/t 0
0 0 0

⎤⎦ . (37.9)

37.3.2 Determination of the Compliance Constant

In order to calibrate the constant Kw, we first assume a self-similar infinitesimal
deformation, ignoring end-effects, with stresses given by

[σ] =

⎡⎣σxx σxy σxzσyx σyy σyz
σzx σzy σzz

⎤⎦ =

⎡⎣ΔPmRo/2to 0 0
0 ΔPmRo/to 0
0 0 0

⎤⎦ , (37.10)

and linear elasticity, isotropic and homogeneous with Young’s modulus E and Pois-
son ratio ν. The strains in the tube at point A can be computed to be, using Hooke’s
law:

[ε] =

⎡⎣ εxx εxy εxzεyx εyy εyz
εzx εzy εzz

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎣
ΔPm

E

Ro

to
(
1

2
− ν) 0 0

0
ΔPm

E

Ro

to
(1− ν

2
) 0

0 0 −ΔP
m

E

Ro

to

3ν

2

⎤⎥⎥⎥⎥⎥⎦
(37.11)

The change in the tube radius

ΔR/Ro =
R−Ro

Ro
≈ εyy,
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by relating the perimeters:

2πR− 2πRo ≈ 2πRoεyy ⇒ R−Ro

Ro
≈ εyy. (37.12)

Thus, one may immediately write

R−Ro

Ro
=
ΔPm

E

Ro

to
(1− ν

2
)⇒ R = Ro(1 +

ΔPm

E

Ro

to
(1− ν

2
)) (37.13)

Thus, an estimate of the compliance to radial expansion is

Kw =
Ro

toE
(1− ν

2
) (37.14)

We assume that the wall compliance remains constant over the ΔPm regimes of
interest. At point A (the problem is radially symmetric), as a function of ΔPm, the
change in thickness is Δt/to ≈ εzz , which leads to

t− to
to

= −ΔP
m

E

3νRo

2to
⇒ t = to(1− ΔP

m

E

3νRo

2to
). (37.15)

37.3.3 Stress Correction Factors

For the finite deformation case, we approximate the stresses by

σxx =
ΔPmR

2t
≈ ΔP

mRo

2to

⎡⎢⎢⎣
(
1 +

ΔPm

E

Ro

to
(1− ν

2
)

)
(1− ΔP

m

E

3νRo

2to
)

⎤⎥⎥⎦
︸ ︷︷ ︸

correction factor
def
= φ

=
ΔPmRo

2to
φ

(37.16)
and

σyy =
ΔPmR

t
≈ ΔP

mRo

to

⎡⎢⎢⎣ (1 +
ΔPm

E

Ro

to
(1− ν

2
))

(1− ΔP
m

E

3νRo

2to
)

⎤⎥⎥⎦ =
ΔPmRo

to
φ. (37.17)
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37.3.4 Corrected Material Failure Criteria

There are obviously many possible models for material failure. The most appropri-
ate for a tubelike failure (longitudinal rupture) would likely be a hoop-stress failure
criteria based on

σyy =
ΔPmR

t
≤ σ∗H (37.18)

so that
ΔPmRo

to
≤ σ

∗
H

φ
, (37.19)

where the correction factor φ by Eq. (37.16) is a function ofΔPm. In order to isolate
ΔPm, we write inequality (37.19) by setting

A(ΔPm)2 +BΔPm + C = 0, (37.20)

where

• A = 1,

• B =
to
Roc2

(Ro

to
+ c1σ

∗
H

)
, where c1 =

Ro3ν

2Eto
and c2 =

Ro

Eto

(
1− ν

2

)
and

• C = −σ
∗
Hto
c2Ro

.

Consequently, we have

ΔPm ≤ 1

2A

(
−B ±

√
B2 − 4AC

)
(37.21)

which on taking the positive root leads to

RoΔP
m

to
≤ Eγ

2− ν (37.22)

where γ is given by

γ
def
= −

(
1 +

3νσ∗H
2E

)
+

√√√√((
1 +

3νσ∗H
2E

)2

+
σ∗H2(2− ν)

E

)
=

= −
(
1 +

3νσ∗H
2E

)
+

√
1 +

σ∗Hν
E

+
4σ∗H
E

+

(
3νσ∗H
2E

)2

.

(37.23)

We may then write
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ΔPmRo

to
≤ Eγ

2− ν =
E

2− ν

(
−

(
1 +

3νσ∗H
2E

)
+

+

√
1 +

σ∗Hν
E

+
4σ∗H
E

+

(
3νσ∗H
2E

)2
)

def
= σ∗,corrH ,

(37.24)

which is a “corrected” failure criteria. We have a number of observations:

• Observation #1: In special cases, such as ν = 0 (no transverse contraction),

γ = −1 +
√(

1 +
4σ∗H
E

)
, (37.25)

thus
ΔPmRo

to
≤ E

2
γ =

E

2

(√
1 +

4σ∗H
E

− 1

)
. (37.26)

One can linearize γ around σ∗H = 0, yielding

γ = −1 +
√(

1 +
4σ∗H
E

)
≈ 2

E
σ∗H , (37.27)

thus recovering
ΔPmRo

to
≤ σ∗H , (37.28)

for small values of σ∗H .
• Observation #2: The change in the domain length given by ΔL/Lo ≈ εxx

tends to zero as the material becomes volume preserving, ν → 1/2, thus L =
L0. In this isochoric or incompressible case2 of ν = 1

2 (incompressible)

ΔPmRo

to
≤ 2E

3

⎛⎝−(
1 +

3

4

σ∗H
E

)
+

√
1 +

9σ∗H
2E

+

(
3σ∗H
4E

)2
⎞⎠ . (37.29)

• Observation #3: Although for soft tissue, a criterion based on von Mises
equivalent stress would not be most appropriate, an estimate for the maximum
allowable pressure, based on the von Mises (distortion energy) criterion is

3||σ′||2 = (σxx−σyy)2 + (σxx−σzz)2 + (σyy−σzz)2 + 6(σ2xy+σ
2
xz+σ

2
yz)

= (ΔPmR/2t)2 + (ΔPmR/2t)2 + (ΔPmR/t)2 + 6τ2w

≤ 2σ2o , (37.30)

2 Of course, an incompressible soft matter would be modeled by a hyperelastic material model
stemming from energy description, herein we explain the physical significance by observing a
volume preserving deformation.
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where, σo is a material constant (failure stress) determined from a standard
uniaxial failure tension test. There are, of course, numerous other criteria for
failure.

37.4 Subsequent Flow Changes

Due the change in the radius, the fluid flow changes according to

σxz = τw = −R
2

∂P

∂x
= −Ro

2

(
1 +

ΔPm

E

Ro

to

(
1− ν

2

)
︸ ︷︷ ︸

λ

)
∂P

∂x
, (37.31)

where λ can be interpreted as a fluid-flow correction factor.

37.5 Closing Remarks

This work developed simple expressions between pressure change and mechanical
response of the soft tissue filled with a fluid. The main results of the paper were,
under some simplifying assumptions (self-similar expansion) at finite deformations:

• An expression relating the change in pressure

– to the expansion of the biochannel radius,
– to the reduction of the biochannel wall thickness,
– to the wall stress of the biochannel,

• A flow correction relation for a biochannel with changing radius.

These relations are based on the development of functions that correct classical pres-
surized thin-tube expressions (φ) for hoop stress for finite deformations. Possible
applications are to stroke and post-traumatic stress and, in particular, hemorrhagic
strokes and alimentary rupture. The expressions developed allow for rapid analy-
sis of such systems, reserving the direct use of computationally-intensive numerical
methods for detailed studies as for example in Abali (2017). In closing, we make a
few more observations with respect to flow changes and fluid-induced shear stresses,
which were alluded to earlier in the paper. We note that v(r) is a maximum where

∂v

∂r
= 0 =

r

2μ

∂P

∂x
, (37.32)

which is at r = 0. Thus,

vmax = v(r = 0) = −R
2

4μ

(
∂P

∂x

)
⇒ v(r) = vmax

(
1−

( r
R

)2
)

(37.33)
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Relating this to the flow rate yields:

Q =

∫
A

v dA =
πvmaxR

2

2
⇒ vmax =

2Q

πR2
, (37.34)

and we obtain

v(r) =
2Q

πR2

(
1−

( r
R

)2
)

(37.35)

The stress becomes

τ(r) = μ
∂v(r)

∂r
= −4μQr

πR4
. (37.36)

The stress at the wall becomes

τw = −τ(r = R) = 2μvmax

R
=

4μQ

πR3
. (37.37)

Explicitly, the shear stress becomes:

σxz = τw = −R
2

∂P

∂x
= −Ro

2
(1 +

ΔPm

E

Ro

to
(1− ν

2
))
∂P

∂x
=

4μQ

πR3

=
4μQ

π

(
Ro(1 +

ΔPm

E

Ro

to
(1− ν

2
))

)3 .
(37.38)

Thus, unless Q increases appropriately, the fluid-induced shear stress at the wall
will decrease. For example, consider an increase in volumetric flow rate due to the
change in lumen (cavity of the artery) diameter of the following form

Q(ΔP ) = πR2vm, (37.39)

where R = R(ΔP ) and vm (the mean velocity) is constant, which implies from
Equation 37.7 that

vm = − 1

μ

∂P

∂x

R2

8
, (37.40)

which leads to

τw =
4μQ

πR3
=

4μπR2vm

πR3
=

4μvm

R
. (37.41)

Thus, the wall shear stress will decrease. Low wall shear stress is associated with
the growth of plaque buildup (Zohdi, 2005, 2004, 2014; Zohdi et al, 2004), due to
the accumulation of material in diseased arteries. This is often the initial stage of
arterial occlusive growth processes (Ambrosi et al, 2011; Göktepe et al, 2010; Men-
zel and Kuhl, 2012; Kuhl et al, 2007; Zöllner et al, 2012). For surveys of plaque-
related work, see Chyu and Shah (2001); Davies et al (1993); Corti et al (2002);
Kaazempur-Mofrad et al (2005, 2004, 2003); Libby (2001); Libby et al (2001,
2002); Libby and Aikawa (2002); Loree et al (1992); Richardson et al (1989); Shah
(1997); van der Wal and Becker (1999). Thus, in addition to coronary diseases,
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the accumulation of material subsequently reduces the cross-sectional area of the
biochannel, which can lead to dementia-like symptoms, potentially due to the build
up of calcium and fatty deposits on biochannel walls (Wenk et al, 2010; Klepach
et al, 2012; Lee et al, 2013; Weinberg et al, 2009). This is under current investiga-
tion by the author.
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