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Abstract Skin, like all biological materials, adapts to mechanical cues. When
expanded beyond its physiological regime over extended time periods, skin grows.
This intuitive knowledge has been leveraged clinically in a widely used surgical
technique called tissue expansion, in which a surgeon inserts a balloon-like device
and inflates it gradually over months to grow skin for reconstructive purposes.
However, it is currently not possible to anticipate how much of the deformation due
to the expander is growth and how much of it is elastic strain, and tissue expansion
protocols remain arbitrary, based on each physician’s experience and training,
leading to an unacceptable frequency of complications. Here we show a continuum
mechanics framework to describe skin growth based on the multiplicative split
of the deformation gradient in to growth and elastic tensors. We present the
corresponding finite element implementation, in which the growth component is
an internal variable stored and updated at the integration points of the finite element
mesh. The model is applied to study the deformation and growth patterns of skin for
different expander shapes, as well as in patient specific scenarios, showing excellent
qualitative agreement with clinical experience. Experimental methods to calibrate
and validate the translation of the model to the clinical setting are briefly discussed.
We expect that the proposed modeling framework will increase our fundamental
understanding of how skin grows in response to stretch, and it will soon lead to
personalized treatment plans to achieve the desired patterns of skin growth while
minimizing complications.
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1 Introduction

Unlike structural materials, living tissues have the capacity to adapt to the envi-
ronment, and in particular to mechanical cues. There are two main mechanisms
by which tissues respond chronically to mechanical input: growth and remodeling.
Growth is the addition of mass, and remodeling is associated to permanent changes
in microstructure [1]. Skin growth is encountered in our everyday lives; we all
probably have noticed changes in skin surface area when we gain or lose weight.
Pregnancy also induces remarkable and evident skin adaptation, both growth and
remodeling [2]. Yet, this intuitive notion about our everyday tissue adaptation had
not captivated our scientific interest or the ambition to systematically control skin
growth for medical applications until recently.

The first reported case of tissue expansion dates to 1957 when Dr. Neumann
implanted a balloon in the neck of a patient who had lost an ear. He then inflated
the balloon with water over a period of 8 weeks. When the balloon was taken out,
skin had grown approximately 50% with respect to the initial area of skin, and the
new tissue was used to reconstruct the ear [3]. This was the first example of tissue
expansion, a technique that has since revolutionized reconstructive surgery [4–6].
At the core of tissue expansion is the ability to leverage the remarkable adaptation
of skin growth in response to stretch beyond the physiological limit for the creation
of skin flaps.

Currently, tissue expansion is used ubiquitously in the field of plastic and
reconstructive surgery, to resurface large portions of skin after removal of giant
birth defects (termed nevus), to reconstruct breasts after mastectomy, to create
new skin for burn patients, and to grow skin needed after the excision of skin
cancer [7, 8]. Tissue expanders are produced by different manufactures and they
come in different sizes and shapes. The popularity of this procedure hinges on
its crucial capacity to grow new tissue that has the same mechanical properties,
appearance, and blood supply as the surrounding skin, making it particularly ideal
for aesthetic reasons [9]. Yet, despite the demand for this procedure, there are still
no tools to predict how skin adapts to stretch, and the current treatment planning
continues to rely extensively on the surgeon’s experience and training rather than
on engineering design tools. Unfortunately, complications and suboptimal outcomes
are still common and there is no gold standard for the treatment strategy of
individual patients. Instead, there are many arbitrary tissue expansion protocols
[10–12].

In this chapter we show the latest progress in modeling skin growth in response
to stretch beyond the physiological regime, how simulations of skin growth can
be used to increase our fundamental understanding of tissue adaptation, and as a
stepping stone towards the incorporation of computational tools in routine clinical
practice with the end goal of aiding in the decision making process and minimizing
complications from tissue expansion.

Figure 1 shows the case of an 11-year old who had a giant nevus in the right
shoulder that was to be resected. Nevi are giant birthmarks associated with increased
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Fig. 1 Complications after tissue expansion. (a) 11-year-old patient with giant nevus. (b) Tissue
expanders were used to grow skin by chronic overstretch. (c) Expanded tissue was advanced to
correct the defect. (d–f) Excessive tension due to insufficient skin growth led to a chronic wound.
(g–h) After full thickness graft there was scarring and contracture at the neck and shoulder

risk of malignancy and constitute a concern for psychological development during
childhood and are hence typically resected early in life [13]. In the case shown, two
tissue expanders were placed and gradually inflated over several months. At the end
of the inflation, the expanders were removed and the newly grown skin was used
to reconstruct the adjacent area. Unfortunately, the amount of grown skin was less
than needed and the resulting flaps were closed under significant tension, leading to
wound dehiscence and necrosis. Ultimately, a full thickness graft was needed, but
the secondary intention healing concluded in a hypertrophic scar with contracture.
Had there been tools to predict and monitor the amount of newly grown skin and the
resulting flap deformation, this patient would have received an uneventful treatment
plan without complications.

Schematically, the underlying biological control of skin adaptation is shown
in Fig. 2. In vivo, the skin is in a homeostatic configuration, possibly with some
residual stress [14]. The tissue expanders, gradually inflated over a long time period,
impose supra-physiological deformations that trigger local adaptation, i.e. growth.
As a result, homeostasis is regained locally. When the expander is removed, the
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Fig. 2 Skin mechanotransduction. In the physiological state the skin is in local homeostasis.
There are two main cell types present in skin, keratinocytes in the epidermis and fibroblast in
the dermis. These cells response to mechanical cues and modify their immediate environment to
regain homeostasis, leading to skin growth

grown skin is used for reconstructive purposes [15]. From the surgeon’s point of
view, the primary challenge in anticipating the amount of new skin comes from the
fact that the observed deformation is a combination of prestrain, elastic deformation,
and growth [16]. The continuummechanics framework for finite volumetric growth
presented here is an ideal approach to model the interplay between the different
components of the deformation.

While it is evident that skin grows in response to stretch, the underlying
biological mechanisms remain poorly understood. Figure 2 shows our current
understanding of the biological pathways involved in skin mechanoadaptation. As
for all living matter, the cells resident in the tissue are the ones responsible for
sensing the local stress or deformation, transforming these mechanical inputs into
chemical signals, and responding in consequence by altering their proliferation rate
and remodeling their extra cellular matrix (ECM). The process by which cells
interpret stress and strain, turning them into chemical signals inside the cell, is
called mechanotransduction [17]. We emphasize the notion of a local homeostatic
configuration determined by a single cell in their immediate micro-environment. In
other words, as illustrated in Fig. 2, skin growth can be modeled as a local process
determined by the cell response. This assumption aligns well with experimental
evidence showing that growth is greater in zones of higher deformation [16].

The skin is made out of two layers, the epidermis is at the top and the dermis
is at the bottom [18]. Keratinocytes are the most abundant cell population in the
epidermis, while the main resident cells of the dermis are the fibroblasts. At the
interface between dermis and epidermis there is a basement membrane made out
of collagen type IV and laminin that serves as an anchoring matrix for the first
layer of keratinocytes [19]. This initial layer of the epidermis is also called the basal
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layer. Basal keratinocytes are tasked with the constant renewal of the epidermis
[20]. When a basal keratinocyte divides asymmetrically creating a daughter cell
that is not in contact with the basement membrane, this cell continues a process of
terminal differentiation as it makes its way to the outer surface where it is released
by desquamation [21]. Other layers of the epidermis are thus non proliferative.
Not surprisingly, basal keratinocytes are the most important mechanosensitive cells
in the epidermis [22]. Mechanosensing by these cells is associated primarily with
integrin signaling [23]. Integrins are proteins that serve as anchoring points between
the cell membrane and the surrounding ECM, and have been recognized as a general
mechanosensing tool across cell types [24]. In the epidermis, integrins concentrate
in the basal layer [25]. In the rest of the epidermis, cell-cell adhesion is regulated
by desmosomes [26]. There are also indirect mechanotransduction pathways. For
instance, integrin signaling has been shown to crosstalk with growth factor receptors
such as epithelial growth factor receptor (EGF-R) [23, 27]. Both of these pathways
ultimately leads to increase keratinocyte proliferation through mitogen-activated
protein (MAP) kinase signaling [28].

In the dermis, fibroblasts are a hallmark example of mechanosensitive cells [29].
The dermis is primarily made out of collagen type I, and fibroblasts constitute
a scarce cell population in this environment [30]. Fibroblasts sense mechanical
signals through integrins which serve as their attachment points to the ECM.
Upon stretch, integrin signaling is linked to three crucial cell processes needed
for ECM remodeling. First, fibroblasts collagen remodeling is widely regulated
by the transforming growth factor beta (TGF-β) signaling pathway. In response
to applied stretch, TGF-β1 is upregulated [31]. Activation of this pathway then
contributes to the regulation of the collagen network. Collagen production is the
second process of interest. For skin growth, new ECM must be created, which
entails production of collagen by fibroblasts. In response to stretch, fibroblasts show
increased collagen deposition [32]. Thirdly, to facilitate ECM remodeling, matrix
metalloproteinases (MMP) are needed to degrade collagen crosslinking. MMP-2
and MMP-9 are particularly upregulated in response to mechanical loading [33].
The biological control of skin growth is, in summary, a complex process driven by
local cell mechanosensing and action of cells in their immediate microenvironment.

Parallel to the interest in the underlying biological adaptation, modeling skin
growth requires equally assiduous attention to this tissue’s mechanical behavior.
Skin is a nonlinear, transversely isotropic, and hyperelasticmaterial that can undergo
extreme deformations during tissue expansion [34, 35]. The theoretical framework
to describe skin growth for finite deformations is the multiplicative decomposition
of the deformation gradient into growth and elastic contributionswithin a continuum
mechanics description [36]. This split was initially introduced to model tissue
growth in response to stress by Rodriguez and coworkers just over two decades
ago [37], and it was inspired by the multiplicative split of the deformation gradient
used to model plasticity at finite strains [38]. The multiplicative split into growth and
elastic components has been used to model the growth of tumors, the heart, blood
vessels, and heart valves, to name a few examples [39–42]. An axisymmetric model
of skin growth was first considered 10 years ago [43]. The growth component of the
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deformation reflects the local biological adaptation. The elastic part is associated
with the residual stresses induced by growth, as well as stress and deformation due
to external loading. The application of this theoretical framework to predict skin
growth in realistic scenarios has required the development of novel finite element
methods specifically tailored to growing tissues undergoing extreme changes over
time. In the case of skin, particular attention is needed to account for the mechanical
behavior of this structure as a thin, nonlinear membrane [44].

The rest of this chapter is organized as follows, in the next section we cover
the standard description of volumetric growth theory within continuum mechanics.
Then we introduce the corresponding finite element discretization. Examples are
shown next. We finish the chapter with a conclusions section.

2 Growth Theory

2.1 Kinematics

We start by introducing the reference geometry defined by material coordinates
X ∈ B0 that are mapped by ϕ to the current configuration x ∈ B. The local
deformation is captured by the deformation gradient F = ∂x/∂X. The framework
of volumetric growth assumes the split of the deformation gradient into growth and
elastic contributions

F = F e· F g (1)

Conceptually, this split involves the notion of a microscopic configuration where
additional kinematic assumptions can be made [45]. Cells can change their imme-
diate microenvironment in response to mechanical cues. These permanent changes
in the local ECM define the growth component of the deformation Fg. Seen in this
way, the multiplicative split introduces an intermediate incompatible configuration
[46]. The tensor field Fe is the local deformation required to assemble the grown
differential volume elements into the current, observed, geometry. Therefore, while
F is the gradient of a deformation field, neither Fg or Fe are compatible with a
deformation, i.e., they are not gradients of any field. A complimentary explanation
is to imagine that all we know is the current configuration and we proceed to cut this
geometry into small pieces and remove all external loading. Due to residual stresses
in the material, the individual pieces would deform elastically to achieve their
local equilibrium or, equivalently, their stress-free state. Measuring the deformation
between the stress-free state of each of these individual pieces to the current
configurationwould yield Fe. This view of the elastic component of the deformation
has led to experiments to determine the residual stresses in soft tissues. Perhaps
the most well-known example of this investigation is the opening angle experiment
used to determine the residual stress in arteries [47]. The residual stress field,
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however, is not necessarily homogeneous over an entire tissue. In that case, a single
cutting line is insufficient to reconstruct the residual stress distribution. Recent
experiments on skin have characterized a non-homogeneous elastic deformation
field by implementing the thought experiment described above: A sizable skin patch
was cut into multiple small pieces, revealing a spatially-varying elastic deformation
field induced by tissue expansion [46].

The volume change also follows the multiplicative split

J = J eJ g (2)

Where the total volume change is J = det (F), and the elastic and growth
components are Je = det (Fe), and Jg = det (Fg). Skin is a thin membrane and
in response to stretch it grows primarily in plane. Thus, we are interested in the area
change

ϑ = ‖cof (F ) · n0‖ = ϑeϑg (3)

Which can also be decomposed into a growth term ϑg, and an elastic area
contribution ϑe. The operator cof(◦) = det (◦)(◦)T is the cofactor of the second
order tensor (◦), and applied to the surface normal in the reference configuration n0
it yields the area change. In what follows we derive equilibrium equations in the
reference configuration. We introduce the right Cauchy Green deformation tensor

C = F T · F (4)

However, the growth component of the deformation does not produce stress.
Returning to our imaginary experiment in which we cut the current configuration
into small pieces, only the elastic component of the deformation produces stress
[48, 49]. The deformation tensor for the elastic component is

Ce = F g−T · C· F g−1 (5)

We remark that there are three main deformation measures, but only two of
them are independent. In other words, the current configuration described by the
deformation map ϕ is the observed geometry. For instance, in tissue expansion,
this deformation map is a combination of both elastic deformation due to the
inflation of the balloon, and permanent skin growth. Determining one of the two
components of the deformation is enough to fully characterize the local kinematics.
This will be important in the finite element implementation. We also note that we
focus on the deformations measured with respect to the reference configuration.
Alternatively, the strains could be calculated with respect to the current, deformed
state [50].
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2.2 Balance Equations

Mass is not conserved in growing tissues and the analysis of skin as an open
thermodynamic system is required [51]. The permanent changes in volume due to
the growth tensor Fg are associated with an addition of mass. Let ρ0 denote the
material density field. Since mass it is not conserved for this system, we have

ρ̇0 = Div(R) + R0 (6)

Density can change due to a fluxR or a source term R0. The operator Div(◦) is the
divergence operator in the reference configuration. Consequently, the mass-specific
form for the balance of linear momentum balance is

ρv̇ = Div(F · S) + ρ0b (7)

With v̇ = ϕ̇, S is the second Piola-Kirchhoff stress tensor, and the momentum
flux is thenF · S. Themomentum source per unit referencemass is b. We remark that
for open systems, the mass-specific version of the dissipation inequality contains
an extra entropy source to account for the growing system, see [52] for a detailed
review of the open system treatment in the context of biological growth.

2.3 Constitutive Models for Skin Growth

The multiplicative split of the deformation into growth and elastic contributions
requires the definition of separate constitutive relations. The momentumflux is asso-
ciated with the elastic deformation, and the biological process of mechanosensing
and adaptation is linked to the growth tensor. To describe the mechanical behavior of
skin we adopt a Neo-Hookean strain energy density function [53]. Other constitutive
models for the elastic part are possible and have been explored. For instance, in
our previous work we have also used a worm-like chain model, as well as the
strain energy function proposed by Holzapfel, Ogden and Gasser, which allows
consideration of skin anisotropy [54, 55]. An increasingly detailed and accurate
understanding of skin mechanical behavior needs to be taken into consideration for
the continuous updating of skin growth models [34]. For this chapter we restrict
ourselves with the Neo-Hookean description.

The Helmholtz free energy ψ = ̂ψ (C,F g), through the use of the dissipation
inequality, yields the definition of the second Piola-Kirchhoff stress tensor as the
thermodynamically conjugate tensor to the right Cauchy-Green deformation tensor

S = 2ρ0
∂ψ

∂C
= 2

∂ψ

∂Ce : ∂Ce

∂C
= F g−1· Se· F g−T (8)
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For a classical Neo-Hookean solid the free energy takes the form

ρ0ψ = 1

2
λln2

(

J e
) + 1

2
μ

(

Ce : I − 3 − 2 ln
(

J e
))

(9)

The strain energy in (9) is parameterized by the Lame constants λ and μ. It can
be further seen from (8) that the elastic deformation is the only one that produces
stress, leading to the definition of elastic second Piola-Kirchhoff stress tensor

Se = 2ρ0
∂ψ

∂Ce = (

λ ln
(

J e
) − μ

)

Ce−1 + μI (10)

For implementation of the finite element algorithm, the definition of the elastic
constitutive moduli is also needed

Le = 2
∂Se

∂Ce = λCe−1 ⊗ Ce−1 + (

μ − λ ln
(

J e
)) [

Ce⊗Ce + Ce⊗Ce
]

(11)

For the growth component of the deformation we postulate that growth occurs
primarily in plane [56, 57]. Recall that the normal to the skin surface is denoted n0,
the growth tensor for area growth takes the form

F g = √
ϑgI +

(

1 − √
ϑg

)

n0 ⊗ n0 (12)

The rate of change of the area growth, ϑ̇g , is used to define the mass source in (6),

R0 = ρ0

(

1+ 2
√

ϑ̇g/
√

ϑg
)

. The area growth variable is defined with a constitutive

law for its rate of change. It is assumed that the rate of area growth is proportional
to the elastic area strain at a point [58, 59]. This form of the growth tensor is
assumed based on our knowledge of fibroblast and keratinocyte mechanosensing
and experimental evidence that skin grows more in areas subjected to larger strains
during tissue expansion [60, 61]. Specifically, we postulate the growth law

ϑ̇g = kg
(

ϑg
)

φg
(

ϑe
)

(13)

In which kg(ϑg) is a weighting function to capture saturation of the growth rate
at higher growth, and the function φg(ϑe) captures the mechanosensing response
and it is thus a function of the elastic area change. The weighting function is further
expanded as

kg
(

ϑg
) = 1

τ

(

ϑmax − ϑg

ϑmax − 1

)γ

(14)
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Where the parameter τ represents a time scale for growth, ϑmax prevents
unbounded growth, and γ characterizes the nonlinearity of the curve. The growth
criterion is

φg
(

ϑe
) =

〈

ϑe − ϑcrit
〉

(15)

The parameter ϑcrit is related to the physiological regime. In our everyday activ-
ities, skin undergoes constant deformation that may not trigger growth. Moreover,
skin is naturally prestrained [14]. Therefore, growth takes place only when the
elastic stretch goes beyond the physiological limits [62, 63]. The notation 〈◦〉 is
used for the Macaulay brackets.

The constitutive equations introduced in this section are clearly nonlinear, and
solution of the equilibrium problem and update of the growth variable require
iterative methods. The discretization and computational algorithm based on the
finite element method are described in the next section. However, anticipating the
need for the consistent linearization of the stress with respect to the deformation
we have already introduced the elastic constitutive moduli Le. We now proceed to
define the constitutive moduli with respect to the initial configuration

L = 2
∂S

∂C
=

(

F g−1⊗F g−1
)

: Le :
(

F g−T ⊗F g−T
)

+ 2

(

∂S

∂F g : ∂F g

∂ϑg

)

⊗ ∂ϑg

∂C

(16)

The second term in (16) benefits from additional discussion. The second Piola-
Kirchhoff stress is the pull-back of the elastic stress defined in the intermediate
configuration. At constant total deformation F, the derivative of the stress S with
respect to the growth tensor consists of two terms, the derivative of the pull-back
operation itself, which is clearly a function of Fg, but also the derivative of Se,
which can be obtained from the use of the chain rule. We have

∂S

∂F g = − (

F g−1⊗S + S⊗F g−1
) − (

F g−1⊗F g−1
) : 1

2Le : (

F g−T ⊗Ce + Ce⊗F g−T
)

(17)

The last terms in Eq. (16) relating the growth multiplier ϑg to the total
deformation C, are computed based on the specific form of the growth tensor and
the growth rate [64].

3 Finite Element Discretization

In the development of the theoretical framework in Sect. 2, all quantities of interest
were presented with respect to the reference configuration. To solve the equilibrium
Eq. (7) in a quasi-static approach, a finite element discretization based on a total
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Lagrangian formulation is thus adopted. An alternative framework to simulate the
growth of skin in tissue expansion is an Eulerian description, see [50].

In the finite element formulation, given the split of the total deformation into
two contributions, each with its own set of constitutive relations, two independent
variables need to be considered. Having a constitutive relation for the growth rate,
we naturally choose ϑg as one of the independent variables. Then, considering a
classical finite element methodology in the Lagrangian setting, it is straightforward
to consider the total deformation as the second independent variable.

For the deformation, the degrees of freedom are given by the displacements at
the nodes of the finite element mesh. We note that growth is considered as a local
process, completely specified by the deformation at a point. In consequence, the
growth multiplier is discretized as an internal variable at the integration points of
the finite element mesh [36]. In what follows we distinguish between the solution
of the local problem dictated by (13), and that of the global momentum equilibrium
problem expressed in (7).

3.1 Local Problem: Growth Update

The growth update is done in each element independently. Consider the discretiza-
tion of the time domain into nstp subintervals

T =
⋃nstp

n=1
[tn, tn+1] (18)

For a given time step [tn, tn + 1], we are interested in calculating the update of the
area growth at the end of the time step ϑ

g
n+1, given its value at the beginning of the

time step ϑ
g
n , and the current total deformation F at tn + 1. The subscript (◦)t + 1 to

denote the end of the current time step will be omitted from now on. Recall that the
constitutive equation for growth reported in (13) is the definition of the growth rate
given the growth and elastic area changes. We adopt a backward Euler scheme to
update the growth multiplier such that

ϑg = ϑ
g
n + �tϑ̇g (19)

Since this is an implicit scheme for time integration, and the growth rate is a
nonlinear function of the current growth and elastic area changes, we solve for the
update of the area growth using Newton-Raphson iterations. Recasting (19) into a
residual Rϑ = ϑg −ϑ

g
n −�tϑ̇g .= 0, we then get the derivative needed for the local

Newton iterations

Kϑ = ∂Rϑ

∂ϑg
= 1 −

(

∂kg

∂ϑg
φg + kg∂φg

∂ϑg

)

�t (20)
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Where the functions kg(ϑg) and φg(ϑe) were defined in (14) and (15) above.
Note that the growth criterion depends on the elastic area change, but the residual is
constructed for the new growth multiplier under constant total deformation F, i.e.,
constant ϑ . Therefore, Eq. (3) should be used to introduce ϑe = ϑ /ϑg.

3.2 Global Problem: Total Deformation

We solve for the deformation of the finite element mesh to satisfy mechanical
equilibrium (7). The growth of soft tissues occurs slowly in time such that inertia
effects can be neglected. We thus set v̇ = 0. We also ignore the contribution of body
forces b = 0. Then, consider the weak form of the mechanical equilibrium problem
following integration by parts

∫

B0

∇δϕ : (F · S) dV0 = 0 (21)

Appropriate boundary conditions should also be considered. There is no special
treatment required for the boundary conditions, prescribed displacements or bound-
ary loads can be applied in the same way as for standard finite element formulations
in the finite deformation regime. In (21), the virtual displacements or test functions
δϕ were used to transform (19) into its weak form. To discretize (19) in space we
consider the partition of the domain B0 into nel elements

B0 =
⋃nel

e=1
Be

0 (22)

The geometry of each finite element is in turn defined by nodal positions and
nodal basis functions. We apply the isoparametric Bubnov-Galerkin interpolation
such that the deformation field ϕel and the test functions δϕel inside of an element
are interpolated with the same basis functions

ϕel =
∑nen

i=1
Niϕi , δϕ

el =
∑nen

j=1
Njδϕj (23)

Where ϕi, δϕj are the nodal values used to discretize the deformation and test
function fields; Ni, Nj are the nodal shape functions, and nen are the number of nodes
per element. The gradients of the deformation field and the test function inside of
an element follow directly from (23)

∇ϕel =
∑nen

i=1
ϕi ⊗ ∇Ni,∇δϕel =

∑nen

j=1
δϕj ⊗ ∇Nj (24)
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The discretized deformation and test function fields are used in the weak form of
the equilibrium equation to define the global residual

Rϕ
I = Anel

e=1

∫

Be

∇Ni · (F · S) dVe
.= 0 (25)

The operator Anel

e=1 is called the assembly operator and it links the residual
associated with the node i, local to an element e, to the residual in terms of the
global node numbering I. In order to find the deformation field ϕ that leads to
the vanishing of the residual, a global Newton-Raphson iteration is needed. Note
that the discretized residual (25) is highly nonlinear because of the definition of
the second Piola-Kirchhoff stress in (8), compounded with the nonlinearity of the
growth process. Therefore, we introduce the consistent tangent

Kϕ
IJ = ∂Rϕ

I

∂ϕJ

= Anel

e=1

∫

Be

[(

∇Ni ·F
)sym·L·

(

F T · ∇Nj
)sym + ∇Ni ·S· ∇NjI

]

dV

(26)

In summary, given the deformation ϕn and the growth ϑ
g
n at time tn, we want to

solve for the total deformation ϕ and the new growth ϑg at time tn + 1. To do so, an
initial guess for the deformation is given ϕ(0). With this guess, the growth multiplier
is updated at every integration point with the local Newton iterations. Then, the
residual and algorithmic tangent defined in (25) and (26) are computed and used
to generate the increment �ϕ = −Kϕ−1

IJ Rϕ . The deformation field then is updated
ϕ(1) = ϕ(0) + �ϕ. This process is iterated until convergence is achieved.

4 Examples

The above modeling framework has been used to study the fundamental mecha-
nisms and implications of the growth process, as well as to showcase its potential
for medical application [50, 65]. More recently, this theoretical framework has been
paired with experiments on large animal models to get an even more in depth
knowledge of the processes at the cellular scale [66]. Computational modeling of
skin growth has helped us gain key insights and rationalize decision making during
tissue expansion [58]. In particular, an important motivation for our work has been
the lack of a gold standard for the expansion protocols [4, 67, 68]. Today, expander
size and shape are chosen arbitrarily, based on the surgeons training and experience.
Hence, in this section we start by presenting the simulation of skin growth for
different expander geometries [54]. Ideal cases are tremendously useful to get
generalizable knowledge and propose protocol guidelines. However, in clinical
scenarios, every patient has a unique geometry and requires an individualized
procedure. Thus, in the second portion of this section we also present the application
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of our modeling framework to study skin growth in a patient-specific case of scalp
reconstruction [69].

4.1 Expander Shape

Tissue expanders come in different sizes and shapes. The most common ones
are spherical, crescent, rectangular and square. Anticipating the relative area
growth from these different expanders has been challenging and, instead, empirical
correction factors have been introduced [70]. Unfortunately, our inability to predict
skin response to chronic hyper-stretch can lead to cases where not enough skin
is harvested at the end of expansion and wound complications ensue [71]. In the
opposite case, expansion can be aggressive and occur over a significant amount of
time, resulting in excess skin that gets discarded at the time of surgery [6]. Here we
present the virtual inflation of different expander shapes and show that even with the
same material parameters and filled to an equal volume over the same time period,
different shapes produce vastly different growth contours and overall area gain.

Figure 3 shows the finite element discretization of four different expanders. In all
cases, the reference configuration was a flat, square sheet of tissue with dimensions
12× 12 cm2, and with a thickness of 0.2 cm. A total of 1728 trilinear brick elements
were used to discretize the geometry.

The material parameters used in the simulation were the Lame constants
λ = 0.577 MPa, μ = 0.0385 MPa. For the growth constitutive equations, the
critical area strain was set to ϑcrit = 1.01, the maximum area growth was limited to
ϑmax = 2.4, the timescale of growth was τ = 1.0, and the nonlinearity parameter
used was γ = 2. Note that the time used is non-dimensional since we are

Fig. 3 Finite element modeling of different expander shapes. Four different expander shapes were
simulated. The same discretization consisting of 1728 triliniear brick elements was used for all
cases. The shapes depicted are, from left to right: sphere, square, rectangle, and crescent. In all
cases the initial geometry was a flat sheet of tissue [53]
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Fig. 4 Area growth due to tissue expansion. The snapshots show four consecutive time points
during a virtual inflation process simulated with custom finite element tools tailored for skin growth
modeling. The contours depict the amount of area growth. The apex of the expander is stretched
more and also shows the greatest growth. Growth is progressively less toward the periphery of the
expanded area. The same trend in the area growth distribution is seen for different expander shapes.
However, total growth is different across expander geometries. The sphere expander achieves the
most area gain compared to the other shapes [53]

concerned with the relative behavior across different expander shapes and not direct
comparison to a clinical case.

The virtual inflation was prescribed by gradually applying a pressure of
0.002MPa over 40 loading steps spanning a nondimensional time of t = 4. The skin
is then left to grow under a constant pressure over the next 460 steps of �t = 0.1
until t = 50. Figure 4 shows the relative area gain contours for each of the expanders
over time. The area gain is calculated by measuring the total area being expanded.
The initial area is measured based on the highlighted faces in Fig. 3 and is thus
A0 = NdA, where N is the number of faces that are part of the expanded skin and dA
is the area of each face. In the beginning of the simulation all faces are square and
have the same area. The final area is obtained with the sum of the growth multipliers
as Af = (∑

ϑ
g
e
)

dA, where the subscript denotes area growth per element.
The sphere expander grows the most compared to the other expander shapes,

achieving a relative area gain Af /A0 of 1.59, followed by the square expander
which grows 1.37 in area compared to the initial state. Even though we did not
calibrate the model directly to experimental or clinical evidence, this amount of
growth does align with values reported in the literature. For instance, in the first
tissue expansion performed by Neumann [3], an expander was filled over a span
of 2 months to produce an are gain of approximately 1.5 times the initial area.
The rectangular expander in our simulations grows 1.2 times in area, and the
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crescent expander grows the least, achieving only 1.11 fractional area gain. These
simulations underscore the importance of computational models to guide basic
design principles of tissue expansion treatment. Area gain is not the only factor
considered when deciding a tissue expansion protocol, but anticipating changes in
area gain due to different expanders based on predictive models is a requirement for
the improvement of this technique [66].

Subsequent work from our group has verified experimentally that different
expanders produce different growth patterns, and that the spherical expander induces
greater growth compared to the crescent expander [46]. Furthermore, we have
confirmed experimentally that the growth pattern resembles the elastic and total
deformation fields, with greater area growth in zones undergoing larger deformation
[16]. This validates our phenomenological approach to a certain degree. Clearly,
more experiments are needed to fully calibrate the computational model, especially
regarding the underlying biological control, but even at the current stage, this
framework is able to provide valuable and quantitative insight of how the parameters
of the tissue expansion protocol are connected to the final shape and amount of
newly grown skin.

4.2 Pediatric Tissue Expansion

Undoubtedly, the primary motivation for modeling skin growth in response to
stretch is to transform clinical practice and improve surgery outcomes. The model-
ing framework presented here has been applied to study the growth of skin in patient
specific geometries. In this section we present two cases of scalp reconstruction
concerning the excision of a giant nevus following prolonged inflation of tissue
expanders over the scalp. Reconstruction of birth defects is a common application
of tissue expansion [13]. In the head and neck region, careful planning is essential
but also extremely complicated [6]. In fact, currently, no predictive tool exists to
aid the surgeon during preoperative planning of skin expansion. Therefore, the two
cases shown here are a n important advancement towards personalized planning
of tissue expansion based on computational modeling. The two inflation protocols
presented are particularly interesting because a giant nevus of a similar size and
location needed to be removed in both cases. Yet, despite the similarities between
the two defects, different expansion protocols were performed [8, 72]. We were
interested in comparing both strategies with computational modeling tools in order
to assess if one alternative is more adequate than the other in terms of fractional area
gain.

Starting from CT scan data, we reconstructed the skin geometry and recreated
both procedures virtually with our custom finite element implementation [73].
The same material and growth parameters were used in the two cases, and the
differences in growth patterns and total area growth were quantified. Figure 5 shows
the photographs of the two clinical cases of interest. The top row shows a one-year
old baby girl with a giant nevus in the left scalp [72]. Three tissue expanders were
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Fig. 5 Tissue expansion for nevus resection. Two cases of tissue expansion are shown for two
clinical cases. In the top row, the case of a one-year old baby girl is shown. Three expanders were
placed, one in the forehead and two in the scalp [72]. The bottom row shows the case of a one-year
old boy with a similar giant nevus. In this case, an expander was placed in the cheek, a second
expander was positioned in the forehead, and a third expander was located in the top of the scalp
[8]

placed, one in the forehead, one in the top of the scalp, and one in the posterior scalp.
The second case is a one-year old boy with a similar giant nevus in the right scalp
[8]. Three tissue expanders were used to grow the skin needed for the correction of
the defect. In this case, one expander was placed in the cheek, one in the forehead,
and one on the top of the scalp.

Figure 6 shows the contours of the growth multiplier for several time points of
the simulation. Both cases are depicted in the same figure to allow for side-by-
side comparison. For the case study I, following the clinical scenario, one virtual
expander was placed in the posterior scalp. The skin in this region consisted of 2270
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Fig. 6 Pediatric patient-specific model of tissue expansion. The top row shows the area growth
contours for case I. Three expanders were placed in the forehead and scalp regions. Growth is
greater at the apex of the expanded region and less toward the periphery of the expander. Area
growth increases for the four time points shown. At the end of the simulation a total fractional
area gain of 1.68 is achieved, and the absolute area available for reconstruction is 251.2 cm2. The
bottom row shows four snapshots for case II. A similar defect needed to be resected but in this case
one expander was placed in the cheek. Area growth contours obey the same trends as seen in case
I. The overall fractional area gain in this case was 1.76, however, the absolute area available for
reconstruction at the end of the expansion was 227.1 cm2. Adapted from [50] with permission

trilinear brick elements and spanned an area of 53.1 cm2. Two more expanders were
placed in the top of the scalp and the forehead. The expanded skin in this area was
discretized with 3820 brick elements covering an area of 96.3 cm2. For the case
study II, aligned with the clinical case, one expander was placed in the posterior
scalp, where the area of skin affected by expansion consisted of 2088 elements and
covered 50.5 cm2. An expander in the forehead and one in the cheek were then
placed. The expanded forehead region was 48.8 cm2 in area and was made up of
1800 elements. In the cheek the skin was modeled with 1200 elements and had an
initial area of 29.3 cm2.

Growth in the patient specific geometries follows the trends observed in the ideal
settings of the previous section. As the expanded region is pressurized, the regions
in the apex of the expander experience the greatest deformation. In consequence,
skin grows more at the apex of the expander and progressively less towards the



Constitutive Modelling of Skin Growth 95

periphery. This phenomenon is a consequence of the growth constitutive law, Eq.
(13), itself based on our current understanding of skin mechanobiology.

There is always an interplay between the total, observed deformation, and the
underlying tissue growth. In other words, at the beginning of the expansion process,
most of the deformation is reversible, but as the process continues, skin will grow to
restore the elastic stretch to ϑcrit. The comparison of these two cases highlights the
importance of considering patient-specific geometries when planning a procedure.

Quantitatively, for the top row of Fig. 6 corresponding to case I, the total area
of expanded skin in this case starts at 149.4 cm2, and progressively increases to
190.2 cm2, 207.4 cm2, 220.4 cm2 and reaches 251.2 cm2 by the end of the inflation
process. The total fractional area gain for this case was 1.68. The different expanded
regions grew differently for case I. The posterior scalp increased 1.73 in area, while
the forehead and top scalp regions grew 1.66 in area. The bottom row of Fig. 6,
corresponding to the case II, showed an overall fractional area gain of 1.77. The
initial area of the expanded region for case II was 128.7 cm2, and at the snapshots
shown, the area increased to 176.0 cm2, 191.3 cm2, 202.1 cm2 and 227.1 cm2.
Similar to case I, different expanders induced different area growth. The top of the
scalp contributed 1.74 area gain, the forehead grew 1.82 the original surface, and
the cheek grew by 1.72 times its initial area.

This example shows that placing the expanders in distinct anatomical regions
can increase the overall area gain. At the same time, the absolute area useful for
reconstruction was greater in case I. In other words, case I was not as efficient in
terms of growth rate, but allowed for a greater area to be expanded and ultimately
produced more skin compared to case II. We remark that the parameters used in the
simulation were manually selected to match the clinical experience. A more careful
calibration is needed to make more powerful predictions and impact treatment
guidelines. On the other hand, these simulations were done with the same exact
parameters, thus isolating the contribution of treatment strategy to area gain. This
kind of insight is extremely valuable to design better tissue expansion treatments.

5 Conclusions

The future of reconstructive surgery is tied to new developments in our ability
to predict skin adaptation under non-physiological regimes. Growth is one of the
fundamental processes of skin tissues. Mathematical modeling of skin growth is
particularly relevant in the context of tissue expansion, a reconstructive surgery
technique that leverages the ability of living matter to adapt to mechanical cues
[74]. Despite the popularity of this technique, we are still unable to control skin
adaptation at will in order to grow skin patches of the desired area and shape.
For instance, tissue expanders are the standard treatment for breast reconstruction
after mastectomy, but complications and suboptimal outcomes characterized by
unnatural breast shape are still common and impact cancer survivors’ quality of
life [68]. Tissue expansion is also widely used for reconstruction of large birth
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defects such as nevus. Following skin growth, flap design is done with extreme
care. However, our inability to anticipate the amount of newly grown skin and the
new relaxed configuration of the skin after expander removal, can lead to excessive
mechanical stress after flap closure. Tension in the flap causes delayed healing,
wound dehiscence, necrosis, or hypertrophic scarring [6]. Solving these challenges
relies on our ability to accurately describe skin deformation and adaptation with
computational models. The progress in this area is already leading to personalized
treatment and data-driven approaches in medicine [50, 54].

In this chapter we summarized the modeling framework to describe skin growth
in response to supra-physiological stretch. The theoretical basis of this framework
is the multiplicative split of the deformation gradient into growth and elastic
contributions. This split has been adopted in the biomechanics community to model
a wide variety of tissues with excellent agreement against experimental evidence
[42]. Here we have specialized the general volumetric growth approach to skin
tissues, characterized by area growth. The numerical solution of tissue expansion
cases is achieved with custom finite element formulations [53].

In addition to modeling skin growth for its importance in tissue expansion, skin is
an ideal model system to gain fundamental insight into how living tissues respond
to mechanical cues. This is, at the same, a point for improvement of the current
modeling approaches of finite volumetric growth: new, detailed mechanosensing
models are lacking. Taking a step back, recall that the constitutive models needed to
close the balance equations and fully define the problem involve two contributions.
One set of constitutive relations corresponds to the elastic component of the
deformation. The other constitutive law is needed for the growth component. The
constitutive law for the elastic component has received significant attention over
the past five decades, and many models of skin’s mechanical behavior have been
proposed, see [34] for a thorough and recent overview of skin mechanics. The
biological aspect of growth mechanics remains poorly understood.

In this chapter we presented a phenomenological relationship connecting the
elastic strain to the growth rate at one point. This simple relationship, albeit
phenomenological, is indeed inspired on biological knowledge and clinical obser-
vation, and, while simple, has predicted growth patterns that were later confirmed
experimentally [16, 46, 66]. However, clinical interest is turning towards therapies
that control both the mechanical fields (amount and timing of expansion), as well
as the cellular mechanisms implicated in skin growth due to overstretch [75]. The
potential of these new techniques crucially relies on improving our understanding
of how exactly the resident skin cells are sensing the mechanical cues, and how
these inputs control the cell action on their local microenvironment. This remains
an exciting are of research.

In terms of the computational implementation of the continuum mechanics
framework, here we focused on a finite element formulation. New numerical
analysis tools such as isogeometric methods are an appealing alternative to simulate
skin growth. Isogeometric analysis uses basis functions that are C1 continuous over
the entire domain, enabling novel thin shell formulations for nonlinear membranes
based on Kirchhoff-Love kinematics [44, 76].
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Finally, in addition to soundmodeling approaches and robust numerical tools, the
need for extensive experimental calibration of these models cannot be understated.
Work on large animal models such as the swine are currently being stablished
for this purpose. Skin is advantageously exposed to the outside world and its
deformation can be captured with new 3D imaging techniques that are easily
incorporated into the operating room. We have used multi-view stereo to track the
deformation of large porcine skin patches over long time periods. Sacrificing the
animal at the end of the experiment reveals the elastic and growth components of the
deformation [66]. Animal models of tissue expansion were proposed decades ago,
however, they lacked a rigorous framework to distinguish the different components
of the deformation [77, 78]. Our experiments have confirmed that skin grows more
in the apex of the expander, and that different expander shapes induce different
growth patterns. The next step in experimental calibration of the skin growth models
is the acquisition of human data.

In conclusion, modeling of skin growth has advanced tremendously in the
past 10 years. It is currently an exciting field with new challenges in theory,
numerics, and experimentation. Addressing the gaps in the field will help us achieve
personalized and predictive tools for optimal preoperative planning and improved
reconstructive surgery outcomes.
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