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Preface

This volume contains a collection of papers related to research presented at the
INdAM Workshop “Moduli of K-stable varieties”, which was held in Rome, from
10 to 14 July 2017, at Sapienza Università di Roma.

The theme of the workshop, and hence also the theme of this book, was
moduli theory. The basic goal of moduli theory is to form a parameter space for
algebraic varieties. The centrality of this problem in geometry goes back at least to
Riemann’s dissertation, and has been maintained in the twentieth century through
the renowned work of Mumford and others. In modern algebraic geometry the three
most important classes of varieties are Calabi-Yau varieties, canonically polarised
varieties and Fano varieties. The main goal is to construct well-behaved projective
moduli spaces for these classes of varieties. In the case of polarised Calabi-Yau
manifolds, a quasi-projective moduli space parametrizing smooth varieties was
formed in the 1980s and 1990s by Schumacher and Viehweg, but the structure of its
compactifications remain unclear. The case of canonically polarised varieties was
clarified greatly by Kollár-Shepherd-Barron in 1988, and a well-behaved projective
moduli space has now been formed using many of the recent important advances in
birational geometry.

The situation of Fano varieties is quite different, and was completely unclear
until the last decade. The fundamental issue is that moduli spaces of Fano varieties
are not automatically separated. With motivations more related to Kähler geometry
rather than moduli theory, Tian and Donaldson introduced the notion of K-stability
in order to understand the existence of Kähler-Einstein metrics on Fano varieties.
Over time it became apparent that K-stability was also the right notion for forming
moduli spaces: through work of Li-Wang-Xu, Spotti-Sun-Yao and Odaka, one can
form a moduli space of smooth K-stable Fano varieties, and can even compactify
this space by including certain singular K-stable Fano varieties at the boundary.
Moreover, through work of Odaka, the moduli space of Calabi-Yau varieties and
canonically polarised varieties can equally be seen as moduli spaces of K-stable
varieties. Thus K-stability plays an important unifying role in moduli theory.
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vi Preface

This volume contains two surveys, suitable for beginners in the field, on the
moduli theory of K-stable varieties. The first is by Spotti, who details much of
the analytic theory surrounding Kähler-Einstein metrics and how one can explicitly
construct moduli spaces of K-stable Fano varieties using the theory of Gromov-
Hausdorff convergence. The second is by Wang, who gives a detailed introduction
to the general abstract construction of the moduli space of K-stable Fano varieties,
which uses a combination of ideas from algebraic, differential and symplectic
geometry.

The volume includes a further six research articles. On the more analytic side is
work of Legendre and Sjöström Dyrefelt. Legendre studies the existence of special
almost-Kähler metrics on almost complex manifolds, including a proof that the
existence of such metrics is equivalent to a suitable notion of K-stability. Sjöström
Dyrefelt demonstrates novel results in the theory of K-stability of arbitrary complex
manifolds, proving the best known results in this direction.

On the algebraic side, the volume contains work of Ambro-Kollár, Codogni-
Stoppa, Fujita and Odaka. Ambro-Kollár develop further the theory of semi-log
canonical pairs, which are crucial in compactifying various moduli spaces. Codogni-
Stoppa study the notion of equivariant K-stability, which is suitable for certain
symmetric varieties. They show how one can use such results to reprove a link
between canonical Kähler metrics and K-stability. Fujita also studies K-stability
of highly symmetric varieties called toric varieties, from a different point of view
to the traditional work. Odaka develops a new approach to compactifying moduli
spaces of curves, which uses tropical geometry.

We gratefully thank the Istituto Nazionale di Alta Matematica “Francesco
Severi” for providing funding and logistical support for our workshop.

We also thank Jacopo Stoppa for organising the workshop with us.

Rome, Italy Giulio Codogni
Cambridge, UK Ruadhaí Dervan
Rome, Italy Filippo Viviani
December 14, 2018
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These pictures were taken in the library and courtyard of the Department of
Mathematics “Guido Castelnuovo”, Sapienza University of Rome. The building for
the School of Mathematics, inaugurated in 1935, was designed by Gio Ponti, who
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Minimal Models of Semi-log-canonical
Pairs

Florin Ambro and János Kollár

Abstract We compare the minimal model of a log canonical pair with the minimal
model of its reduced boundary. These results are then used to study the existence of
the minimal model of a semi-log-canonical pair using its normalization.

Keywords Minimal model · Semi-log-canonical · Adjunction · Flip

In birational geometry, it is frequently necessary to work not just with log canonical
pairs (X,�), but with their non-normal variants, called semi-log-canonical pairs.
Such pairs appear when one tries to compactify the moduli spaces of varieties and
in inductive arguments.

Many properties of log canonical pairs have been generalized to the semi-log-
canonical setting [1, 2, 8, 9, 18], but it was observed in [17] that log canonical rings
of semi-log-canonical pairs are not always finitely generated and some flips of semi-
log-canonical pairs do not exist. Note that, by contrast, abundance holds for a semi-
log-canonical pair iff it holds for its normalization; this was proved in increasing
generality in [7, 10–12, 15, 16, 22].

The aim of this note is to describe some conditions that guarantee the existence
of minimal models for certain semi-log-canonical pairs. Our assumptions are rather
restrictive, but they may be close to being optimal. The key is to understand an even
simpler question involving log canonical pairs: How does the boundary of a log
canonical pair change under a flip?

This is a very natural problem, that first appeared explicitly in Tsunoda’s
treatment of semi-stable flips [21], later in Shokurov’s approach that reduces flips
to special flips [16, 23] and in [13, Sec.4]; see also [5].

F. Ambro (�)
Institute of Mathematics “Simion Stoilow” of the Romanian Academy, Bucharest, Romania
e-mail: florin.ambro@imar.ro

J. Kollár
Princeton University, Princeton, NJ, USA
e-mail: kollar@math.princeton.edu

© Springer Nature Switzerland AG 2019
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2 F. Ambro and J. Kollár

We are thus led to the following general questions.

Question 1 Let (X,D + �) be an lc pair that is projective over a base scheme S
with relatively ample divisor H , where all divisors in D appear with coefficient 1.
Set (X0,D0 +�0) := (X,D +�) and for i = 1, . . . ,m let

φi : (Xi−1,Di−1 +�i−1) ��� (Xi,Di +�i)

be the steps of the (X,D + �)-MMP with scaling of H ; see Definition 11. Let
ρ : D̄→ D be the normalization. Do the restrictions

φiD := φi |D̄i−1 : (D̄i−1,DiffD̄ �
i−1) ��� (D̄i ,DiffD̄ �

i)

form the steps of the MMP starting with (D̄0,DiffD̄ �
0) := (D̄,DiffD̄ �) and with

scaling of ρ∗H ?

Notation 2 We follow the terminology and notation of [18, 20].
From now on, whenever we write a divisor as D + �, we assume that all

irreducible components ofD appear with coefficient 1 (�may also contain divisors
with coefficient 1).

Let ρ : D̄→ D denote the normalization. The different of� on D̄ is denoted by
DiffD̄ �. It is a Q-divisor on D̄ that satisfies a natural Q-linear equivalence

KD̄ + DiffD̄ � ∼Q ρ
∗(KX +D +�

)
. (1)

See [18, 4.2] for a precise definition and its main properties. In order to avoid
secondary sub and superscripts, we usually write DiffD̄ �

i instead of the more
precise DiffD̄i �

i .
In the original definition, a step of the MMP corresponds to an extremal ray

[6]. By (1), any contraction of an extremal ray on X induces the contraction of an
extremal face on D̄, but the face may well have dimension >1. In an MMP with
scaling of an ample divisor, the steps correspond to certain contractions of extremal
faces. The divisor H plays a very minor role in the sequel, but it makes it possible
for us to tell exactly which MMP steps we get.

We see in Paragraph 21 that a positive answer to Question 1 can be used to answer
the following problem on slc pairs.

Question 3 Let (X,�) be an slc pair that is projective over a base scheme S with
normalization π : (X̄, D̄ + �̄) → (X,�), conductor D̄ ⊂ X̄ and H an ample
divisor on X. Set (X̄0, D̄0 + �̄0) := (X̄, D̄ + �̄) and for i = 1, . . . ,m let

φ̄i : (X̄i−1, D̄i−1 + �̄i−1) ��� (X̄i , D̄i + �̄i)

be the steps of the (X̄, D̄ + �̄)-MMP with scaling of π∗H . Do we get

φi : (Xi−1,�i−1) ��� (Xi,�i)
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that form the steps of the (X,�)-MMP with scaling of H and such that (X̄i , D̄i +
�̄i) is the normalization of (Xi,�i)?

Example 4 We give two types of examples showing that in Question 1 we usually
do not get the steps of the (D̄,DiffD̄ �)-MMP.

(4.1) Start with a smooth variety X′, a smooth divisor D′ ⊂ X′ and another
smooth divisor C′ ⊂ D′. Assume that KX′ + D′ is ample. Set X := BC ′X′ with
exceptional divisor E and let D ⊂ X denote the birational transform ofD′.

For any 1 ≥ ε > 0, (X,D+ εE) is an lc pair whose canonical model is (X′,D′)
and (D′, 0) is its own canonical model.

However, (D, ε DiffD E) ∼= (D′, εC′) is different from (D′, 0).
Note further that KX + D is the pull-back of KX′ + D′, hence semiample and

big. Thus the stable base locus ofKX+D+ εE is E. If 1 > ε > 0 then the only log
canonical center of (X,D + εE) is D and the other log centers are E and E ∩ D;
see Definition 6. Thus the stable base locus contains the log centers but not the log
canonical center.

Here are some concrete examples.
(4.1.1) LetX′ be a smooth surface,D′ ⊂ X′ a smooth rational curve andC′ ⊂ D′

a set of 3 points. Then (D,DiffD E) ∼= (D′, C′) has ample log canonical class but
(D′, 0) ∼= (P1, 0) has negative log canonical class.

(4.1.2) For dimX′ ≥ 3 it can also happen that the (D, ε DiffD E)-MMP tells us
to contract C′. Take X′ = P3 and let D′ ⊂ X′ be a smooth surface of degree 5 that
contains a line C′. Then the self-intersection of C′ is −3, thus for 1 ≥ ε > 1

3 the
first (and only) step of the (D, ε DiffD E)-MMP is to contract C′.

(4.2) Let B be a smooth curve and f : X → B be a flat family of surfaces with
quotient singularities and such thatKX is Q-Cartier.

Let g : X → Z be a flipping contraction. (For concrete examples, see [20, 2.7]
or the list in [19].) Thus there is a closed point 0 ∈ B such that g is an isomorphism
over B \ {0}. SetD := X0 and let C ⊂ D denote the flipping curve. Our example is
the pair (X,D). Here DiffD 0 = 0, hence we need to compare the MMP for (X,D)
with the MMP for (D, 0).

Over 0 ∈ B we have a birational contraction g0 : X0 → Z0 that contracts
C ⊂ X0 to a point. Moreover (C · KX0) = (C · KX) < 0, thus Z0 is again log
terminal and the contraction g0 : X0 → Z0 is a step in the MMP for X0 = D.

However, since g : X → Z a flipping contraction, the special fiber of the flip
g+ : X+ → Z is another surface X+0 → Z0 with a new exceptional curve C+ ⊂
X+0 such that (C+ ·KX+0 ) = (C

+ ·KX+) > 0. Thus X+0 is not the canonical model

of X0 and X0 ��� X+0 is not even a step of any minimal model program.
We can easily arrange thatKX+ is ample. In this case the stable base locus ofKX

is the flipping curve C ⊂ X0 = D. The only log canonical center of (X,D) is D
which is not contained in the stable base locus of KX.

It is easy to see that D must have at least 1 non-canonical singularity that is also
contained in C. This gives a 0-dimensional log center of (X,D) that is contained in
the stable base locus.
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Example 5 Every counter example to Question 1, where D is normal, gives a
counter example to Question 3 as follows.

Let b ∈ B be a smooth, projective, pointed curve of genus ≥ 1. We can glue
(X,D+�) to (B ×D, {b}×D+B ×DiffD �) alongD to get an slc pair (Y,�Y )
whose normalization is the disjoint union of (X,D + �) and (B × D, {b} × D +
B ×DiffD �). On (X,D +�) we get the steps of the (X,D +�)-MMP

φi : (Xi−1,Di−1 +�i−1) ��� (Xi,Di +�i)

and these restrict to

φiD : (Di−1,DiffD �i−1) ��� (Di,DiffD �i).

Let us denote the steps of the (D,DiffD �)-MMP by

ψi : (Di−1,DiffD �i−1) ��� (Di,DiffD �i).

Then the steps of the (B ×D, {b} ×D + B × DiffD �)-MMP are given by

(
B×Di−1, {b}×Di−1+B×DiffD �i−1

)
���

(
B×Di, {b}×Di+B×DiffD �i

)
.

If (Di,DiffD �i) � (Di,DiffD �i), then we can not glue the resulting pairs

(Xi,Di +�i) and
(
B ×Di, {b} ×Di + B × DiffD �i

)
.

Thus the (Y,�Y )-MMP does not exist.

We give positive answers to Questions 1 and 3 when the singularities of (X,D+
�) (resp. of (X̄, D̄+ �̄)) are mild along the exceptional locus of φ (resp. of φ̄). We
use discrepancies to make this assertion precise.

Definition 6 Let (X,�) be an lc pair. An irreducible subvariety W ⊂ X is called
a log canonical center (resp. a log center) of (X,�) if there is a divisor E over X
such that centerX E = W and a(E,X,�) = −1 (resp. a(E,X,�) < 0).

Assume next that� = D +� and let ρ : D̄→ D denote the normalization. By
adjunction [18, 4.9],W ⊂ D̄ is a log center of (D̄,DiffD̄ �) iff ρ(W) is a log center
of (X,D +�). See [18, Chap.7] for more on log centers.

From now on we assume that the base scheme S is essentially of finite type over
a field of characteristic 0. Our main result is the following.

Theorem 7 Using the notation and assumptions of Question 1, assume in addition
that the intersection ofD with the exceptional locus of

	m := φm ◦ · · · ◦ φ1 : X ��� Xm
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does not contain any log center of (X,D +�). Then the maps

φi
D̄
: (D̄i−1,DiffD̄ �

i−1) ��� (D̄i ,DiffD̄ �
i)

form the steps of the MMP starting with (D̄0,DiffD̄ �
0) := (D̄,DiffD̄ �) and with

scaling of ρ∗H .

Remark 8 As the Examples (4.1.1–4.1.2) show, we need to avoid all log centers,
not just the log canonical centers.

It can happen that φi is an isomorphism along Di−1. Thus the precise claim is
that each φi

D̄
is either an isomorphism or an MMP step. (The literature is somewhat

inconsistent. Usual definitions of MMP steps allow isomorphisms, but in many
statements they are tacitly excluded.)

Theorem 9 Using the notation and assumptions of Question 3, assume in addition
that the intersection of D̄ with the exceptional locus of

	m
X̄
:= φ̄m ◦ · · · ◦ φ̄1 : X̄ ��� X̄m

does not contain any log center of (X̄, D̄ + �̄).
Then the first m steps of the (X,�)-MMP with scaling of H exist

φi : (Xi−1,�i−1) ��� (Xi,�i),

and (X̄i , D̄i + �̄i) is the normalization of (Xi,�i).
Proof Let (X,�) be an slc pair with normalization (X̄, D̄ + �̄)→ (X,�), where
D̄ ⊂ X̄ is the conductor. Let ρ : D̄n → D̄ denote its normalization.

The gluing theory of [18, Chap.5] says that there is a (regular) involution

τ : (D̄n,DiffD̄n �̄)→ (D̄n,DiffD̄n �̄),

and X is obtained from X̄ by identifying the equivalence classes of the relation
generated by τ on X̄.

Next let

φ̄i : (X̄i−1, D̄i−1 + �̄i−1) ��� (X̄i , D̄i + �̄i)

be the steps of the (X̄, D̄ + �̄)-MMP with scaling of π∗H and assume that
Theorem 7 applies. Then

φ̄iD :
(
(D̄i−1)n,DiffD̄n �̄

i−1) ���
(
(D̄i )n,DiffD̄n �̄

i
)
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are steps of the
(
D̄n,DiffD̄n �̄

)
-MMP with scaling of ρ∗π∗H . Since both DiffD̄n �̄

and ρ∗π∗H are τ -invariant, the τ -action descends to give (regular) involutions

τ i : ((D̄i )n,DiffD̄n �̄
i
)→ (

(D̄i )n,DiffD̄n �̄
i
)
.

Let Zi ⊂ X̄i denote the intersection ofDi with the exceptional locus of

(φi ◦ · · · ◦ φ1)−1 : X̄i ��� X̄.

By our assumption, Zi does not contain any of the log centers of
(
X̄i , D̄i + �̄i).

Thus τ i defines a finite equivalence relation on X̄i by [18, 9.55]. Therefore the
geometric quotient πi : X̄i → Xi of X̄i by the equivalence relation generated by
τ i exists by [18, 9.21]. Next [18, 5.38] shows that (Xi,�i) is slc. By Lemma 12 the
resulting rational map

φi : (Xi−1,�i−1) ��� (Xi,�i)

is an MMP step with scaling of H . ��
Note that if X is a normal crossing variety [18, 1.7] then the log centers of (X, 0)

are exactly the log canonical centers of (X, 0), which are also the strata of X, so the
important distinction between log centers and log canonical centers is not visible in
this case.

The normalization π : (X̄, D̄) → X is a normal crossing pair. It is conjectured
that (X̄, D̄) has a minimal model. This is currently known if KX̄ + D̄ has non-
negative Kodaira dimension (on every irreducible component) and the dimension is
≤ 5 [3].

If a minimal model φ : X ��� Xmin exists, then its normalization (X̄min, D̄min)

is a dlt pair whose canonical class is nef. The abundance conjecture predicts that its
canonical class is semi-ample, but this is known only if the dimension is ≤ 4 [14].
However, if abundance holds for (X̄min, D̄min) then [12, Thm.1.4] implies that the
canonical class of Xmin is also semi-ample. In particular, the canonical ring of X
is finitely generated. (Note that on (X̄min, D̄min) we always need the dlt case of the
abundance conjecture, which is not even known in the general type case.)

Thus Theorem 9 implies the following. Conjecturally, the dimension restrictions
should not be necessary.

Corollary 10 Let X be a pure dimensional, projective, normal crossing variety.
Assume that KX has non-negative Kodaira dimension on every irreducible compo-
nent of X and its stable base locus does not contain any stratum of X.

(1) If dimX ≤ 5 then X has a minimal model φ : X ��� Xmin, φ is a local
isomorphism at all log canonical centers and Xmin is semi-dlt [18, 5.19].

(2) If dimX ≤ 4 then the canonical ring of X is finitely generated. ��
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Before we start the proof of Theorem 7, we need to define what a step of an
MMP is.

Definition 11 (MMP steps) An MMP step is a diagram of S-schemes

(X,�)
φ��� (X′,�′)

f ↘ ↙ f ′
Z

(2)

with the following properties.

(1) X and X′ are pure dimensional,
(2) (X,Θ) and (X′,Θ ′) are log canonical pairs,
(3) φ is birational,
(4) f, f ′ are projective and generically finite,
(5) −(KX +�) is f -ample and KX′ +�′ is f ′-ample and
(6) �′ = φ∗�.

Equivalently,−(KX+�) is f -ample and (X′,�′) is the canonical model of (X,�)
[20, 3.50].

We frequently call φ : (X,�) ��� (X′,�′) an MMP step if it sits in a diagram
as in (2) for suitable Z. We prove in Lemma 14 that

(7) f ′ has no exceptional divisors. That is, if E′ ⊂ X′ is a divisor then f ′|E′ is also
generically finite.

Together with (3) this implies that φ is a rational contraction, that is, φ−1 has no
exceptional divisors.

Our definition differs from traditional usage in 2 small ways. First, we do not
assume that the relative Picard number of f is 1. Second, our Z is not uniquely
determined by φ : (X,�) ��� (X′,�′); if Z → Z1 is finite then we can replace Z
by Z1. The usual choice is to take the unique Z such that f∗OX = OZ . However,
the latter condition is not preserved when passing to the normalization of X or to a
divisor in X. Thus allowing different choices of Z is convenient for us. We do not
even assume that f and f ′ are dominant.

If H is a Q-Cartier divisor on X then (2) is an MMP step with scaling of H if, in
addition,

(8) H is f -ample,−H ′ := −φ∗H is f ′-ample,
(9) KX + � + cH is numerically f -trivial for some c ∈ Q, (this implies that

KX′ +�′ + cH ′ is numerically f ′-trivial) and
(10) KX + �+ cH has positive degree on every proper, irreducible curve C ⊂ X

that is not contracted by f and lies over a closed point of Z.

In practice we start with a pair (X,�+c′H) such thatKX+�+c′H is ample over
S. We then decrease the value of c′ until we reach c ≤ c′ such that KX + �+ cH
is nef but not ample. If a multiple of KX + � + cH is semiample, it gives us
f : X→ Z; see [4] for details.
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For slc pairs, one needs to pay extra attention to the non-normal locus, and
there are various possible definitions. However, if φ is a local isomorphism at all
codimension 1 singular points, then the above definition works without changes.
This is the only case that we use in the sequel.

The following comparison result is clear from the definition.

Lemma 12 Let (X,�) and (X′,�′) be pure dimensional slc pairs with normaliza-
tions π : (X̄, D̄+ �̄)→ (X,�) and π ′ : (X̄′, D̄′ + �̄′)→ (X′,�′). Then (2) is an
MMP step iff

(X̄, D̄ + �̄) φ̄
��� (X̄′, D̄′ + �̄′)

f̄ ↘ ↙ f̄ ′
Z

(3)

is an MMP step, where f̄ = f ◦ π and f̄ ′ = f ′ ◦ π ′.
Furthermore, if H is a Q-Cartier divisor on X then (2) is an MMP step with

scaling of H iff (3) is an MMP step with scaling of π∗H . ��
Next we consider a generalization of MMP steps.

Definition 13 A diagram as in (2) is called a sub-MMP step if

(1) the assumptions (11.2–11.5) hold,
(2) f ′ is allowed to have exceptional divisors and
(3) coeffG′ �′ ≤ coeffG′ � for every divisor G′ ⊂ X′ that is not f ′-exceptional.

(By Lemma 14 this inequality then holds for all divisors overX.)

The following example is good to keep in mind. Let X be a smooth surface and
C ⊂ X a smooth, rational curve with self-intersection ≤ −3. Let X → X′ denote
the contraction of C.

Then (X,C) ��� (X, 0) and (X′, 0) ��� (X, 0) are both sub-MMP step. Thus φ
can be an isomorphism on the underlying varieties yet a non-trivial sub-MMP step.

The main reason for this definition is Lemma 16, but first we prove that the usual
discrepancy inequalities (cf. [20, 3.38] or [18, 1.19 and 1.22]) also hold for sub-
MMP steps.

Lemma 14 Consider a sub-MMP step of lc pairs

(X,�)
φ��� (X′,�′)

f ↘ ↙ f ′
Z
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where f, f ′ are birational. Then a(E,X′,�′) ≥ a(E,X,�) for every divisor E
over X. Furthermore, for every E, the following are equivalent.

(1) a(E,X′,�′) > a(E,X,�).
(2) φ is not a local isomorphism at the generic point of centerX E.
(3) φ−1 is not a local isomorphism at the generic point of centerX′ E.
(4) Either f or f ′ has positive dimensional fiber over the generic point of

centerZ E.

Proof Let Y be the normalization of the main component of the fiber productX×Z
X′ with projectionsX

g← Y
g′→ X′. Write

KY ∼Q g
∗(KX +�)− F and KY ∼Q g

′∗(KX′ +�′)− F ′ (4)

where g∗F = � and g′∗F ′ = �′. Thus

F ′ − F ∼Q g
′∗(KX′ +�′)− g∗(KX +�) is (f ′ ◦ g′)-nef. (5)

Note that (f ′ ◦ g′)∗(F − F ′) = f∗� − f ′∗�′ is effective by assumption (13.3).
Therefore F − F ′ is effective by [20, 3.39], proving the required inequality.

It is clear that (1)⇒ (2), (2)⇔ (3) and (2)⇒ (4). Thus assume (4).
By [20, 3.39] the support of F − F ′ contains Ex(f ′ ◦ g′). Arguing similarly we

get that it also contains Ex(f ◦ g). Thus a(E,X′,�′) > a(E,X,�) if either f or
f ′ has positive dimensional fiber over the generic point of centerZ E. ��
Corollary 15 A sub-MMP step φ : (X,�) ��� (X′,�′) is an MMP step iff
a(G′,X′,�′) = a(G′,X,�) for every divisorG′ ⊂ X′.
Proof If φ is an MMP step then�′ = φ∗�, hence a(G′,X′,�′) = a(G′,X,�) for
every divisorG′ ⊂ X′.

Conversely, if G′ ⊂ X′ is an f ′-exceptional divisor then a(G′,X′,�′) >
a(G′,X,�) by Lemma 14.1. Thus there are no f ′-exceptional divisors and so
�′ = φ∗�. ��
Lemma 16 Let φ : (X,�) ��� (X′,�′) be an MMP step sitting in a diagram
(2). Assume that (X,�) is lc, � = D + � where D is reduced with normalization
ρ : D̄ → D and none of the irreducible components of D is contracted by φ. Then
the diagram

(
D̄,DiffD̄ �

) φD���
(
D̄′,DiffD̄′ �

′)

fD ↘ ↙ f ′D
Z

(6)

is a sub-MMP step.
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Proof Assumptions (11.2–11.4) are clear and (11.5) holds since

KD̄ + DiffD̄ � ∼Q ρ
∗(KX +D +�).

It remains to show that (13.3) holds. More generally, we show that

a(E, D̄,DiffD̄ �) ≤ a
(
E, D̄′,DiffD′ �

′) (7)

for every divisor E over D̄.
We may assume that f, f ′ are birational. Let Y be the normalization of the main

component of the fiber productX ×Z X′ with projectionsX
g← Y

g′→ X′. As in (4)
write

g∗(KX +D +�) ∼Q g
′∗(KX′ +D′ +�′

)+ F − F ′, (8)

where F − F ′ is effective by [20, 3.38] or by Lemma 14.
Let DY denote the normalization of the birational transform of D on Y .

Restricting (8) to DY we get

(g|DY )∗(KD̄ + DiffD̄ �) ∼Q (g
′|DY )∗

(
KD̄′ + DiffD̄′ �

′)+ F |DY (9)

and F |DY is also effective. ��
Corollary 17 Using the notation and assumptions of Lemma 16, let p ∈ D̄ be a
point. Then φD :

(
D̄,DiffD̄ �

)
���

(
D̄′,DiffD̄′ �

′) is a local isomorphism at p iff
φ : X ��� X′ is a local isomorphism at π(p).

Note that the claims about X and D are different. As in Example 4.1, it can
happen that φD : D̄ ��� D̄′ is an isomorphism but DiffD̄′ �

′ �= (φD)∗ DiffD̄ �.

Proof If φ is a local isomorphism at π(p) then clearly φD is a local isomorphism
at p. Conversely, if φD : D̄ ��� D̄′ is a local isomorphism at p then the maps
gD : DY → D̄ and g′D : DY → D̄′ are isomorphic to each other near p. By (9)

g∗D DiffD̄ �− g′D∗ DiffD̄′ �
′ = (g|DY )∗(F − F ′).

If φ is not a local isomorphism at π(p) then Supp(F −F ′) contains p by [20, 3.38]
or by Lemma 14, thus DiffD̄ � �= DiffD̄′ �

′ in every neighborhood of p. ��
Proposition 18 Using the notation of Lemma 16, assume in addition thatD∩Ex(φ)
does not contain any log center of (X,D +�). Then (6) is an MMP step.

Proof Assume to the contrary that (6) is not an MMP step. Then, by Corollary 15,
there is a divisor G′ ⊂ D̄′ such that

a(G′, D̄,DiffD̄ �) < a(G
′, D̄′,DiffD̄′ �

′). (10)
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Since a(G′, D̄′,DiffD̄′ �
′) = − coeffG′ DiffD̄′ �

′ ≤ 0, this implies that centerD̄ G
′

is a log center of (D̄,DiffD̄ �). By adjunction [18, 4.8], centerX G′ is also a log
center of (X,D +�).

Finally (10) also shows that φ is not a local isomorphism at the generic point of
centerX G′. ��

Note that Proposition 18 almost implies Theorem 7, except that it is not quite
clear how to compare Ex(	m) ⊂ X with the Ex(φi) ⊂ Xi−1, and this would
be needed in order to directly apply Proposition 18. The following variant of the
concept of exceptional set gives a clearer picture.

Definition 19 (Divisorial exceptional set) Let φ : X ��� X′ be a birational map
of schemes that are proper over S. The divisorial exceptional set of φ, denoted by
DEx(φ), is the set of all divisors E overX such that φ is not a local isomorphism at
the generic point of centerX E.

Thus the usual exceptional set Ex(φ) ⊂ X is the union of the centers of the
divisors in DEx(φ). The advantage of divisorial exceptional sets is that we can
compare them for different birational models.

Lemma 20 Let φi : (Xi−1,�i−1) ��� (Xi,�i) be a sequence of sub-MMP steps.
Then

(1) DEx(φm ◦ · · · ◦ φ1) = {E : a(E,X0,�0) < a(E,Xm,�m)} and
(2) DEx(φm ◦ · · · ◦ φ1) = DEx(φ1) ∪ · · · ∪ DEx(φm).

Proof The containments

DEx(φm ◦ · · · ◦ φ1) ⊃ {E : a(E,X0,�0) < a(E,Xm,�m)}
DEx(φm ◦ · · · ◦ φ1) ⊂ DEx(φ1) ∪ · · · ∪ DEx(φm)

(11)

are clear. For a single MMP step φ : (X,�) ��� (X′,�′), Lemma 14.1 shows that

DEx(φ) = {E : a(E,X,�) < a(E,X′,�′)}. (12)

Combining with the inequalities a(E,Xi−1,�i−1) ≤ a(E,Xi,�i) we obtain that
a(E,X0,�0) ≤ a(E,Xm,�m) and

a(E,X0,�0) < a(E,Xm,�m)⇔ E ∈ DEx(φ1) ∪ · · · ∪ DEx(φm).

This shows that

{E : a(E,X0,�0) < a(E,Xm,�m)} = DEx(φ1) ∪ · · · ∪ DEx(φm),

which completes the proof. ��
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21 (Proof of Theorem 7) By assumption none of the irreducible components ofD
is contained in Ex(	m), thus the maps φiD are birational. They sit in diagrams

(
D̄i−1,DiffD̄ �

i−1
) φiD���

(
D̄i ,DiffD̄ �

i
)

f iD ↘ ↙ giD
Zi

(13)

that are sub-MMP steps by Lemma 16.
Assume to the contrary that φmD is not an MMP step. Then, by Corollary 15, there

is a divisorGm ⊂ D̄m such that

a(Gm, D̄m−1,DiffD̄ �
m−1) < a(Gm, D̄m,DiffD̄ �

m) ≤ 0. (14)

Combining with the inequalities a(Gm, D̄i−1,DiffD̄ �
i−1) ≤ a(Gm, D̄i ,DiffD̄ �

i)

of Lemma 14.1, we get that

a(Gm, D̄,DiffD̄ �) < a(G
m,Dm,DiffD̄ �

m) ≤ 0.

Thus centerD̄ G
m is a log center of (D̄,DiffD̄ �).

By (14) Gm ∈ DEx
(
φmD

)
, hence by (20.2) Gm ∈ DEx

(
φmD ◦ · · · ◦ φ1

D

)
. Thus

	m = φm ◦ · · · ◦ φ1 : X ��� Xm is also not an isomorphism at the generic point of
centerD Gm ⊂ X. This contradicts the assumptions of Theorem 7. ��
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Torus Equivariant K-Stability

Giulio Codogni and Jacopo Stoppa

Abstract It is conjectured that to test the K-polystability of a polarised variety it is
enough to consider test-configurations which are equivariant with respect to a torus
in the automorphism group. We prove partial results towards this conjecture. We
also show that it would give a new proof of the K-polystability of constant scalar
curvature polarised manifolds.

Keywords Canonical Kaehler metrics · GIT · K-stability · Torus actions

1 Introduction

The Yau-Tian-Donaldson conjecture for Fano manifolds [7, 23, 25] predicts that a
smooth Fano M admits a Kähler-Einstein metric if and only if it is K-polystable,
a purely algebro-geometric condition expressed through the positivity of a certain
limit of GIT weights (the Donaldson-Futaki weight or invariant). There are by now
several proofs, in different degrees of generality (i.e. allowing M to have mild
singularities, a boundary in the MMP sense, and/or slightly modifying the notion
of K-stability), using different methods.

For an arbitrary polarised manifold (X,L) the most natural generalisation
of a Kähler-Einstein metric is a constant scalar curvature Kähler (cscK) metric
representing the first Chern class of L. If such a metric exists, (X,L) is called a
cscK manifold.

A Kähler-Einstein metric, or more generally a cscK metric, if it exists, can
always be taken invariant under the action of a compact group of automorphisms
of M . From the GIT point of view, when the point whose stability we would
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like to investigate has a non-trivial reductive stabiliser H , the Hilbert-Mumford
Criterion can be strengthened: it is enough to consider one-parameter subgroups
which commute with H [10]. These facts suggest the following folklore conjecture
(all the notions required in the rest of this introduction will be recalled in Sect. 3.)

Conjecture 1 Let (X,L) be a polarised variety and let G be a reductive subgroup
of Aut(X,L). Then (X,L) is K-polystable if and only if for every G-equivariant
test-configuration the Donaldson-Futaki invariant is greater than or equal to zero,
with equality if and only if the normalisation of the test-configuration is a product.

An analytic proof in the case of Fano manifolds is given in [6], relying on an
alternative approach to the Yau-Tian-Donaldson conjecture. An algebro-geometric
proof in the Fano case and whenG is a torus is given in [12].

Recall that a cscK manifold has reductive automorphism group, so K-polystable
varieties are expected to have a reductive automorphism group as well; this problem
is studied in [5]. Because of this it is natural to formulate Conjecture 1 just for
reductive subgroups of Aut(X,L).

There is a general expectation that for the existence of a cscK metric one actually
needs some enhancement of the original notion of K-stability. Quite a few different
notions have been proposed. In this paper we focus on the generalisation of K-
stability based on (possibly non-finitely generated) filtrations of the coordinate ring
of (X,L) (see Definition 24). This notion has been proposed by G. Székelyhidi in
[22], building on the work of D. Witt Nyström [24]; in [21], it is called K̂-stability.
In [22], it is shown that, given a cscK manifold (X,L), if the connected component
of the identity of Aut(X,L) is equal to C∗, then (X,L) is K̂-stable. Importantly
for us [22] also discusses a variant of K̂-stability which replaces the Donaldson-
Futaki invariant of a filtration with the asymptotic Chow weight Chow∞, and proves
that the K̂-stability result remains true for this variant (the two notions coincide
when dealing with classical test-configurations, corresponding to finitely generated
filtrations).

Our main result is a step towards a proof of Conjecture 1 in the general case, or
possibly of a variant of Conjecture 1 in the K̂-stability setup.

Theorem 2 Let (X,L) be a polarised variety. Fix a complex torus T ⊂ Aut(X,L)
and let (X ,L) be a test-configuration with Donaldson-Futaki invariant DF(X ,L).
Then we can associate to (X ,L) a T -equivariant filtration χ of the coordinate
ring of (X,L) whose asymptotic Chow weight satisfies Chow∞(χ) ≤ DF(X ,L).
If moreover χ is finitely generated, then it corresponds to a T -equivariant test-
configuration which is a flat one-parameter limit of (X ,L), and in particular has
the same Donaldson-Futaki invariant and L2 norm.

Theorem 2 follows at once from Lemmas 29, 30 and Theorem 31, proved in
Sect. 4. Theorem 31 shows that given a generalised test-configuration in the sense
of [22], corresponding to a possibly non-finitely generated filtration χ , we can
specialise it to a T -invariant filtration χ̄ with Chow∞(χ̄) ≤ Chow∞(χ). In the
“Appendix” we show that non-finitely generated filtrations can actually arise in
Theorem 2.
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In Sect. 5 we show that Conjecture 1 combined with ideas from [17, 19] naturally
leads to a proof that cscK manifolds are K-polystable. K-polystability of cscK
manifolds is proved in [2] using completely different methods.

Notation In this paper a polarised variety (X,L) is a complex projective variety X
endowed with a very ample and projectively normal line bundle L. For the purposes
of this paper one may always replace L with a positive tensor power, so these
assumptions are not restrictive.

2 Some Results on Filtrations in Finite Dimensional GIT

In this section we discuss some preliminary notions in a finite dimensional GIT
context.

Let V be a finite dimensional complex vector space. Pick an increasing filtration
F = {FiV }i∈Z of V by complex subspaces (with index set Z) and a C∗-action λ on
V .

Definition 3 The specialisation F̄ of F via λ is the filtration given by

F̄iV = lim
τ→0

λ(τ) · FiV,

where the limit is taken in the appropriate Grassmannian.

Equivalently F̄iV is the subspace spanned by the vectors v̄ as v varies in FiV ,
where v̄ denotes the lowest weight term with respect to the action of λ. The filtration
F̄ is λ-equivariant by construction, that is each F̄iV is preserved by λ.

Let G be a reductive group acting on V , and assume that the kernel of the action
is a finite group.

Definition 4 Let γ be a one-parameter subgroup of G acting on V as above. The
weight filtration of γ is the increasing filtration F = {FiV }i∈Z given by

FiV =
⊕

j≥−i
Vj

where Vj is the weight j eigenspace for the action of γ .

Let P(γ ) be the parabolic subgroup of G associated to the one-parameter
subgroup γ . By definition this is the subgroup preserving the flag F .

Suppose that λ is an additional one-parameter subgroup of G. We wish to
characterise the specialisation of the weight filtration F of γ via the action of λ.
For this we recall that the intersection of parabolic subgroupsP(λ)∩P(γ ) contains
a maximal torus T ofG (see e.g. [3] Proposition 4.7). Moreover all maximal tori in
a parabolic subgroup are conjugated by elements of the parabolic, hence there exists
a one-parameter subgroup χ of T such that χ is conjugate to γ via an element in
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P(γ ), so that the weight filtration associated to χ is still F . Let

γ̄ (t) = lim
τ→0

λ(τ)χ(t)λ(τ )−1.

This limit exists because χ lies in the parabolic P(λ), see [13] section 2.2.

Lemma 5 Suppose that F is the weight filtration of γ . The specialisation F̄ of F
via λ coincides with the weight filtration of γ̄ . It follows in particular that F̄ is
induced by a one-parameter subgroup of G.

Note that the filtration F̄ is uniquely defined, but γ̄ is not (for example, it depends
on the choice of T ).

Proof The key remark is that the weight j eigenspace of λ(τ)χ(t)(λ(τ ))−1 is λ(τ) ·
Vj . Now for every v ∈ V we have

γ̄ (t)(v) = lim
τ→0

λ(τ)χ(t)(λ(τ ))−1(v)

so v is a weight j eigenvector for γ̄ if and only if v belongs to

lim
τ→0

λ(τ) · Vj

where the limit is taken in the appropriate Grassmannian. ��
Definition 6 The Hilbert-Mumford weight of a vector v ∈ V with respect to the
one-parameter subgroup γ is

HM(v, γ ) = min
i
{v ∈ FiV }

where F is the weight filtration of γ .

This depends only on the weight filtration of γ and we will also denote it by
HM(v, F ) rather than HM(v, γ ) if we wish to emphasise this fact. But notice that
a general filtration of V will not come from a one-parameter subgroup of the fixed
reductive groupG.

Remark 7 With our sign convention HM(v, γ ) is the weight of the induced action
of γ on the fibre OP(V )(1)[v]0 of the hyperplane line bundle on P(V ) over [v]0 =
limτ→0 λ(τ) · [v]. Thus for example the Hilbert-Mumford Criterion says that [v] is
GIT semistable if and only if HM(v, γ ) ≥ 0 for all one-parameter subgroups γ .

Proposition 8 Let λ be a one-parameter subgroup of the stabiliser of [v] ∈ P(V ).
The we have

HM(v, F̄ ) ≤ HM(v, γ )

where F̄ is the specialisation via λ of the weight filtration F of γ .
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Recall that by Lemma 5 the filtration F̄ is the weight filtration of a one-parameter
subgroup ofG.

Proof We only need to show that v ∈ FiV implies v ∈ F̄iV . This follows from
the fact that v is an eigenvector of λ, so it is equal to its lowest weight term v̄ with
respect to the action of λ. ��

It is easy to produce examples where the inequality of Proposition 8 is strict.

Example 9 We chooseG = SL(2,C) with its standard action on V = C2, and

v = e2, γ (t) =
(
tk 0
0 t−k

)
, λ(τ ) =

(
τh 0

τh − τ−h τ−h
)

for fixed h, k > 0. Note that λ stabilises [v] ∈ P(V ). One checks that γ is not
contained in the parabolic P(λ). But conjugating γ with a suitable element in P(γ )
gives

(
1 1
0 1

)
γ

(
1 −1
0 1

)
=

(
tk t−k − tk
0 t−k

)
= χ ∈ P(γ ) ∩ P(λ).

A straightforward computation gives

lim
τ→0

λ(τ)χ(λ(τ ))−1 =
(

t−k 0
t−k − tk tk

)
= γ̄ ,

so we have

HM(v, γ̄ ) = −k < HM(v, γ ) = k.

It is important to realise that even if γ does not stabilise [v] ∈ P(V ) its
specialisation γ̄ with respect to a λ in the stabiliser could well lie in the stabiliser
(so abusing the K-stability terminology which will be recalled in the next section,
in the present finite-dimensional setup and without imposing further restrictions, we
can end up with a “product test-configuration”).

Example 10 Let V, γ, λ be as in the previous example. We choose v = e1 + e2.
Then [v] ∈ PV is stabilised by λ and by γ̄ , but not by γ . Note that in this case we
have HM(v, γ ) = HM(v, γ̄ ) = k.

Let F,F ′ be filtrations of V with index set Z. We say that F is included in F ′ if
FiV ⊂ F ′i V holds for all i. The following observation follows immediately from the
definition of the Hilbert-Mumford weight and will be useful in later applications.
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Lemma 11 Let F , F ′ be the weight filtrations of some one-parameter subgroups.
If F is included in F ′ then we have

HM(v, F ′) ≤ HM(v, F )

for all v in V .

3 Filtrations, Test-Configurations, Approximations

Let (X,L) be a polarised variety. One of the main objects of study in this paper are
test-configurations of (X,L). Let us briefly recall their definition.

Definition 12 Let C∗ act in the standard way on C. A test-configuration (X ,L) for
(X,L) with exponent r is a C∗-equivariant flat morphism π : X → C, together with
a π-ample line bundle L and a linearisation of the action of C∗ on L, such that the
fibre over 1 is isomorphic to (X,L⊗r ). We say that (X ,L) is

• very ample, if L is π-very ample;
• a product, if it is isomorphic to (X × C, L⊗r �OC), where the action of C∗ on
X×C is induced by a one-parameter subgroup λ of Aut(X,L) by λ(τ) · (x, t) =
(λ(τ ) · x, τ t);

• trivial, if it is a product and, moreover, λ is trivial;
• normal, if the total space X is normal;
• equivariant with respect to a subgroup H ⊂ Aut(X,L), if the action of C∗ can

be extended to an action of C∗ ×H such that the action of {1}×H is the natural
action of H on (X,L⊗r );

• in the Fano case, a test-configuration is a special degeneration if X is normal, all
the fibres are klt and a positive rational multiple of L equals−KX (this notion is
due to Tian [23], see also [11] Definition 1).

The normalisation of a test-configuration is the normalisation of X endowed
with the natural induced line bundle and C∗ action (or C∗ × H action). A test-
configuration is a product if and only if the central fibre X0 is isomorphic to X: by
standard theory in this case there is a trivialisation X ∼= X × C and the C∗-action
on X corresponds to a C∗-action onX×C preservingX×{0}, which must then be
induced by a C∗-action on X as above.

The following result summarises observations of Ross-Thomas [16] and Odaka
[14].

Proposition 13 For all sufficiently large r there is a bijective correspondence
between increasing filtrations of H 0(X,L⊗r )∨ (with index set Z) and very ample
test-configurations of exponent r . Such a test-configuration is a product if and
only if the corresponding filtration is the weight filtration of a one-parameter
subgroup of Aut(X,L), and it is equivariant with respect to a reductive subgroup
H ⊂ Aut(X,L) if and only if the corresponding filtration is preserved by H .
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Proof An arbitrary increasing filtration of H 0(X,L⊗r )∨ is induced by the weight
filtration of a one-parameter subgroup of GL(H 0(X,L⊗r )∨), so we can associate
to a filtration the (very ample) test-configuration induced by this one-parameter
subgroup. If two one-parameter subgroups induce the same filtration then the
corresponding test-configurations are isomorphic, see [14] Theorem 2.3 and its
proof. Conversely, by [16, Proposition 3.7], for all sufficiently large r a very
ample test-configuration of exponent r is always induced by a one-parameter
subgroup of GL(H 0(X,L⊗r )∨), and this gives the filtration. The other claims are
straightforward. ��

One can act on a test-configuration (X ,L) in two basic ways (see e.g. [8]
section 2). Firstly we can pull-back (X ,L) via a base-change t �→ tp. The
effect on the corresponding filtration is to multiply all the indices of the filtration
by p. Equivalently the weights of the corresponding one-parameter subgroup are
multiplied by p. Secondly we can rescale the linearisation of the action on L by a
constant factor. The effect on the corresponding filtration is to shift all indices by
some integer k. Equivalently we are composing the corresponding one-parameter
subgroup with a one-parameter subgroup in the the center of GL(H 0(X,L⊗r )∨),
which corresponds in turn to adding k to all the weights.

Combining the two operations above we can modify the weights to get a filtration
with only positive indices, or alternatively to get a filtration induced by a one-
parameter subgroup of SL(H 0(X,L⊗r )∨).

There is a more global correspondence between filtrations and test-configu-
rations, which avoids fixing the exponent. We introduce the homogeneous coor-
dinate ring

R = R(X,L) =
⊕

k≥0

Rk =
⊕

k≥0

H 0(X,L⊗k).

We focus on filtrations of R of a special type.

Definition 14 We define a filtration χ of R to be sequence of vector subspaces

H 0(X,O) = F0R ⊂ F1R ⊂ · · ·

which is

(i) exhaustive: for every k there exists a j = j (k) such that FjRk = H 0(X,L⊗k),
(ii) multiplicative: (FiRl)(FjRm) ⊂ Fi+j Rl+m,

(iii) homogeneous: if f is in FiR then each homogeneous piece of f also lies in
FiR.

We denote by χk the filtration of H 0(X,L⊗k) induced by χ .

Note that when considering filtrations of R we restrict to those which only have
non-negative indices; let us also notice that describing χ is equivalent to describe χk
for every k. There are two basic algebraic objects attached to a filtration as above.
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Definition 15 Let χ be a filtration. The corresponding Rees algebra is

Rees(χ) =
⊕

i≥0

FiR t
i

The graded modules are

gri (H
0(X,L⊗k)) = Fi(H 0(X,L⊗k))/Fi−1(H

0(X,L⊗k))

The graded algebra is

gr(χ) =
⊕

k,i≥0

gri (H
0(X,Lk))

The Rees algebra is a subalgebra of R[t], and by the following elementary result,
whose proof relies on the projective normality of L, it is possible to reconstruct χ
from it.

Lemma 16 Let A be a C-subalgebra of R[t]. We define a filtration χA of R as
follows

FiR = {s ∈ R | t i s ∈ A}

The filtration χA satisfies the conditions of Definition 14 if and only if A satisfies the
conditions

• A ∩ R = H 0(X,OX);
• for every s ∈ H 0(X,L) there exists an i such that t i s ∈ A;
• if t if is in A, then, for each of the homogenous component fk of f , t ifk is also

in A.

A filtration χ equals χA, where A is the Rees algebra of χ . There is an inclusion
of filtrations χ1 ⊂ χ2 (i.e. an inclusion of filtered pieces) if and only if there is a
corresponding inclusion of the Rees algebras Rees(χ1) ⊂ Rees(χ2).

The following notion is crucial for us.

Definition 17 A filtration is called finitely generated if its Rees algebra is finitely
generated.

Let us review the relation between finitely generated filtrations and test-
configurations, as developed by Witt Nyström [24] and Székelyhidi [22] (see
[4, Proposition 2.15] for a precise statement).

Let χ be a finitely generated filtration. The Rees algebra Rees(χ) is a finitely
generated flat C[t]-module; this means that the associated relative Proj with its
naturalO(1) is a test-configuration (X ,L). The central fibre is the Proj of the graded
algebra gr(χ); the C∗-action on the central fibre is given by minus the i-grading of
gr(χ).
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On the other hand let (X ,L) be an exponent r test-configuration. Consider the
filtrationF ofH 0(X,L⊗r ) associated to it by Proposition 13. Up to base-change and
scaling of the linearisation we can assume that all the weights are positive. Denote
by N the length of this filtration. Let A be the C-subalgebra of R[t] generated by

H 0(X,L)tN ⊕
N⊕

i=1

FiH
0(X,L⊗r )t i

Then the filtration associated to A via Lemma 16 is the filtration of R induced
by (X ,L) (the second assumption in Lemma 16 holds because L is projectively
normal, i.e. R is generated in degree 1).

Suppose that χ is a not necessarily finitely generated filtration. Following [22]
Section 3.2 we can define finitely generated approximations χ(r) as follows. Let F
be the filtration induced by χ on H 0(X,L⊗r ), this corresponds to an exponent r
test-configuration (X ,L), then χ(r) is the finitely generated filtration corresponding
to (X ,L). Note that this construction also makes sense when χ is finitely generated
and corresponds to (X ,L), in which case χ(r) corresponds to (X ,L⊗r ).

Definition 18 We introduce two “weight functions” attached to χ , given by

wχ(k) = w(k) =
∑

i

(−i) dim gri (H
0(X,L⊗k)),

respectively

dχ (k) = d(k) =
∑

i

i2 dim gri (H
0(X,L⊗k)).

If χ is a finitely generated filtration (corresponding to a test-configuration
(X ,L)) then by equivariant Riemann-Roch we have, for all sufficiently large k,

h(k) = h0(X,L⊗k) = a0k
n + a1k

n−1 + · · ·
w(k) = b0k

n+1 + b1k
n + · · ·

d(k) = c0k
n+2 + c1k

n+1 + · · ·

Definition 19 Let χ be a finitely generated filtration (which thus corresponds to a
test-configuration). One defines the r-th Chow weight, Donaldson-Futaki weight (or
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invariant) and the L2 norm as

Chowr (χ) = Chowr (X ,L) = r b0

a0
− w(r)
d(r)

,

DF(χ) = DF(X ,L) = a1b0 − a0b1

a2
0

,

||χ ||2
L2 = ||(X ,L)||L2 = c0 − b

2
0

a0
.

Note that a straightforward computation shows that we have

lim
r→∞Chowr (X ,L⊗r ) = DF(X ,L).

Definition 20 A polarised variety (X,L) is K-semistable if DF(X ,L) ≥ 0 for
every test-configuration (X ,L).

Given a subgroup H of Aut(X,L), we say that (X,L) is H -equivariantly K-
semistable if DF(X ,L) ≥ 0 for every H -equivariant test-configuration (X ,L).

Definition 21 A normal polarised variety (X,L) is K-polystable if for every test-
configuration (X ,L) with normal total space we have DF(X ,L) ≥ 0, with equality
if and only if (X ,L) is a product.

Given a subgroup H of Aut(X,L), (X,L) is H -equivariantly K-polystable if
for every H -equivariant test-configuration (X ,L) with normal total space we have
DF(X ,L) ≥ 0, with equality if and only if (X ,L) is a product.

Following [22] (Definition 3 and Equation (33)) we also define the following two
invariants of a non-finitely generated filtration.

Definition 22 The Donaldson-Futaki and asymptotic Chow weights of a filtration
χ are given by

DF(χ) = lim inf
r→∞ DF(χ(r)) ,

respectively

Chow∞(χ) = lim inf
r→∞ Chowr (χ(r)) .

Note that χ(r) is an exponent r test configuration, so it is natural to consider
its r-th Chow weight. Let us also emphasise that, when χ is finitely generated,
both these invariants coincide with the classical Donaldson-Futaki weight, see [22,
Section 3.2]. In general these two invariants differ, see [22, Example 4]; we do not
know if there is an inequality relating them.
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Definition 23 The L2 norm of a filtration χ is given by

||χ ||2 = lim inf
r→∞ ||χ

(r)|| .

In [22, Lemma 8] it is shown that the above liminf is actually a limit.

Definition 24 A polarised variety is K̂-semistable if for any filtration χ ofR(X,L)
we have

DF(χ) ≥ 0.

It is K̂-stable if the equality holds if and only if ||χ ||2 = 0. One can make parallel
definitions replacing DF(χ) with the asymptotic Chow weight Chow∞(χ).

One easily checks that K̂-semistability is equivalent to K-semistability. On the
other hand K̂-stability is (at least a priori) stronger than K-stability, and just as
K-stability it implies that the automorphism group of (X,L) has no nontrivial one-
parameter subgroups.

Székelyhidi [22] (Theorem 10 and Proposition 11) proves that if (X,L) is cscK
with trivial automorphisms then it is K̂-stable, including the variant notion using the
Chow∞ weight.

At present we do not know a good candidate for the notion of K̂-polystability
(i.e. allowing Aut(X,L)/C∗ to be non-finite, where by C∗ we mean the central one
parameter subgroup which acts as the identity on X and scales L).

4 Specialisation of a Test-Configuration

In the classical situation of a torus T acting on a projective variety one can specialise
a point p to a fixed point p̄ for the action of T : one picks a generic one-parameter
subgroup λ of T and the specialisation is p̄ = limτ→0 λ(t) · p. This specialisation
does depend on λ and when we need to emphasise this dependence we will denote
it by p̄λ. In this section we first generalise this construction to test-configurations,
and then prove some basic facts which imply our main result Theorem 2.

Definition 25 Let (X ,L) be an exponent r test-configuration and F be the
corresponding filtration of H 0(X,L⊗r )∨ given by Proposition 13. Let T be a torus
in Aut(X,L), and F̄ the specialisation of F via a generic one-parameter subgroup
λ of T . Then the specialisation (X̄ , L̄) of (X ,L) is the T -equivariant exponent r
test-configuration corresponding to F̄ .

The specialisation depends on the choice of r and λ, but we will mostly suppress
this in the notation.

We make a brief digression in order to discuss Definition 25. Recall that
by Proposition 13 an exponent r test-configuration for (X,L) is obtained by
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embedding ι : X ↪→ PH 0(X,L⊗r )∨ with the complete linear system |rL| and
by taking the flat closure of ι(X) under the action of a one-parameter subgroup
γ of GL(H 0(X,L⊗r )∨). The corresponding test-configuration (X ,L) is a closed
subscheme of PH 0(X,L⊗r )∨ × C (in fact it can be canonically completed to a
closed subscheme of PH 0(X,L⊗r )∨ × P1 by gluing with the trivial family at
infinity). If λ is a one-parameter subgroup of Aut(X,L) one could attempt to define
the λ-specialisation of (X ,L) by taking its flat closure as a closed subscheme of
PH 0(X,L⊗r )∨ × C under the action of λ. We give a simple example showing that
such a flat closure is not preserved by γ in general, so it is not a λ-equivariant test-
configuration in a natural way. In fact we also show that in general the total space of
the flat closure cannot support a test-configuration, and compute the corresponding
specialisation (X̄ , L̄) in the sense of Definition 25 in the example.

Example 26 Embed ι : P1 ↪→ P2 via Veronese [s0 : s1] �→ [s2
0 : s0s1 : s2

1 ] and act
with the one-parameter subgroup γ of SL(3,C) given by diag(t−1, t2, t−1). This
gives a test-configuration (X ,L) of exponent 2 for (P1,OP1(1)) with total space
X ⊂ P2 ×C which is the variety V (xz− t6y2). Now choose

λ =
(

1 1
0 1

)(
τh 0
0 τ−h

)(
1 −1
0 1

)
∈ SL(2,C) = Aut(P1,OP1(1)).

The induced one-parameter subgroup in SL(3,C), which we still denote by λ, is
given by

λ =
⎛

⎝
τ 2h 1− τ 2h (τ−h − τh)2
0 1 −2(1− τ−2h)

0 0 τ−2h

⎞

⎠ .

One computes

λ(τ) ·X = V (τ 2hx((τ−h− τh)2x−2(1− τ−2h)y+ τ−2hz)− t6((1− τ 2h)x+y)2).

Since λ(τ) ·X ⊂ P2 ×C is a familiy of divisors it is straightforward to take the flat
limit at τ → 0. For h > 0 one finds

lim
τ→0

λ(τ) · X = V (x(x + 2y + z)− t6(x + y)2) =: X̄ . (1)

The central fibre V (x(x + 2y + z)) is not preserved by γ , so the flat limit X̄ is not
the total space of a test-configuration in a natural way. In this specific case, we can
still find a non-canonical C∗-action on X̄ which turns it into a λ-equivariant test-
configuration. On the other hand, for h < 0, we find that the flat limit X̄ is given by
the divisor

lim
τ→0

λ(τ) · X = V (x2(t6 − 1)).
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This may be thought of as the product, thickened test-configuration V (x2) glued to
six copies of P2, and clearly it cannot be the total space of a test-configuration for
P1.

We can also consider the specialisation (X̄ , L̄) of (X ,L) in the sense of
Definition 25. The conjugate one-parameter subgroup λ(τ)γ (t)(λ(τ ))−1 is given
by

⎛

⎝
t−1 −t−1(−1+ τ 2h)(−1+ t3) −2t−1(−1+ τ 2h)2(−1+ t3)
0 t2 2t−1(−1+ τ 2h)(−1+ t3)
0 0 t−1

⎞

⎠ ,

so γ lies in the parabolic P(λ) if and only if h > 0. In this case (X̄ , L̄) is obtained
by acting on V (xz − y2) with γ̄ = limτ→0 λ(τ)γ (t)(λ(τ ))

−1. The resulting test-
configuration is precisely (1). The central fibre X̄0 = V (x(2(x+y)+z)) is preserved
by γ̄ and λ and we obtain a λ-equivariant test-configuration in a canonical way.

For h < 0 we have γ /∈ P(λ) and we must first conjugate γ by some element
g ∈ P(γ ) to obtain χ ∈ P(λ). A direct computation shows that one can choose

g =
⎛

⎝
1 0 −1
1 1 0
0 0 1

⎞

⎠ , χ =
⎛

⎝
t−1 0 0

t−1 − t2 t2 t−1 − t2
0 0 t−1

⎞

⎠

yielding

γ̄ = lim
τ→0

λ(τ)χ(t)(λ(τ ))−1 =
⎛

⎝
t2 t−1 − t2 −t−1 + t2
0 t−1 0
0 0 t−1

⎞

⎠ .

The corresponding test-configuration (X̄ , L̄) is given by

V (t3x(x + 2y + z)− (x + y)2)

endowed with the action of γ̄ , which commutes with λ. Diagonalising γ̄ (which is
of course compatible with diagonalising λ) we see that (X̄ , L̄) is isomorphic to the
test-configuration induced by diag(t−1, t−1, t2) given by V (t3xz− y2).

Finally note that the test-configuration (X ′,L′) (isomorphic to (X ,L)) defined
by χ is

V ((x + y)(y + z)− t3y(x + 2y + z)).

Taking the flat closure of (X ′,L′) under the action of λ gives the one-parameter
family of divisors of P1 ×C parametrised by τ

(x + y)2 − t3x(x + 2y + z)+ τ−2h(1− t3)(x + y)(x + 2y + z).
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This is a flat one-parameter family taking (X ′,L′) to (X̄ , L̄).

We explain next an alternative approach to specialising test-configurations which
is more global, i.e. independent of the exponent, and is based on filtrations of the
homogeneous coordinate ring. Let χ be the filtration ofR = R(X,L) corresponding
to (X ,L), and T a torus in Aut(X,L).

Definition 27 Let λ : C∗ → T be a one-parameter subgroup. The specialisation χ̄
of χ with respect to λ is given by χ̄k = limτ→0 λ(τ) · χk , where the limit is taken
in the appropriate Grassmannian; the specialization depends on λ, but we suppress
it from the notation. If the image of λ is generic in T (i.e. it avoids finitely many
hyperplanes in the lattice of 1PS’s of T ), then χ̄ is T equivariant, and we call it a
speicalization of χ with repsect to T .

It is straightforward to check that χ̄ is still a filtration of R in the sense
of Definition 14. The limit filtration χ̄ can also be described as follows. Let
Rees(χ) ⊂ R be the Rees algebra of the finitely generated filtration χ . A one-
parameter subgroup λ : C∗ → Aut(X,L) acts on R and on R[t] (trivially on t) and
we may define a C[t]-subalgebra Reesλ(χ) ⊂ R by

Reesλ(χ) = { lim
τ→0

λ(τ)(s) : s ∈ Rees(χ)}.

Then χ̄ is precisely the filtration of R whose Rees algebra is Reesλ(χ), i.e.

F̄iRk = {s ∈ Rk : t i s ∈ Reesλ(χ)}.

The crucial difficulty with this more global approach lies in the fact that the Rees
algebra of χ̄ is not finitely generated in general. This is a well-known phenomenon
in commutative algebra and an explicit example is given in the “Appendix”.

Let (X ,L) be a very ample test-configuration of exponent r . Given a generic one-
parameter subgroup of T ⊂ Aut(X,L) we can perform two basic constructions. On
the one hand we can specialise (X ,L) to (X̄ , L̄) in the sense of Definition 25. This
specialisation corresponds to a finitely generated filtration η. The Veronese filtration
η(j) corresponds to the Veronese test-configuration (X̄ , L̄⊗j ) with exponent jr . On
the other hand (X ,L) corresponds to a finitely generated filtration χ of R via the
construction described at the end of the previous section. We may specialise χ to
χ̄ and consider a finitely generated approximation χ̄ (j), corresponding to a test-
configuration of exponent jr: by definition this is in fact (X̄ ,L⊗j ). Since χ̄ is not
finitely generated (in general), the filtrations η(j), χ̄ (j) will differ for infinitely many
j , that is the test-configurations (X̄ , L̄⊗j ) and (X̄ ,L⊗j ) differ for infinitely many
j . However we can establish a simple comparison.

Proposition 28 The filtration of H 0(X,L⊗jr ) induced by χ̄ (or equivalently by
χ̄ (j) or (X̄ ,L⊗j )) is included in the filtration of the same vector space induced by
η(j), i.e. by the filtration corresponding to (X̄ , L̄⊗j ).
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Proof The result follows at once from the fact that the Rees algebra of χ̄ contains
all the generators of the Rees algebra of η, by construction. ��

Let us show that when χ̄ is finitely generated then (X̄ , L̄) is in fact a flat limit of
(X ,L) under a C∗-action, and in particular the filtrations χ̄ (j), η(j) coincide for all
j , that is (X̄ , L̄⊗j ) and (X̄ ,L⊗j ) coincide. In order to simplify the notation (without
loss of generality) we assume in the following result that (X̄ , L̄) has exponent 1 and
χ is the corresponding finitely generated filtration.

Lemma 29 Suppose that Rees(χ̄) = Reesλ(χ) is a finitely generated C[t]-
subalgebra of R[t]. Then there exist an embedding ι : X → PN × C and a
1-parameter subgroup λ̂ : C∗ → GL(N + 1,C) such that

• ι∗OPN (1) = L⊗r for some r ≥ 1,
• λ̂ acting on PN preserves ι(X1) ∼= X and restricts to the induced action of λ on
it,
• the 1-parameter flat family of subschemes ofPN×C induced by λ̂ (acting trivially
on the second factor) has central fibre isomorphic to X̄ := Proj(Rees(χ̄))
endowed with its natural Serre line bundleO(r).

In particular it follows that the central fibre (X̄0,L′⊗r0 ) is a flat 1-parameter
degeneration of the central fibre (X0,L⊗r0 ) (as closed subschemes of PN ).

Proof If Rees(χ̄ ) = Reesλ(χ) ⊂ R[t] is a finitely generated C[t]-subalgebra there
exists a finite set of elements σi of Rees(χ) such that the limits limτ→0 λ(τ) · σi
generate Rees(χ̄). Since λ(τ) is C[t]-linear and we have λ(τ)·(s1+s2) = λ(τ)·s1+
λ(τ)·s2 and λ(τ)·(s1s2) = (λ(τ )·s1)(λ(τ )·s2) for all s1, s2 ∈ R, we can then choose
our σi of the special form σi = tp(i)si where the si are homogeneous elements ofR.
Moreover, enlarging the collection of σi ’s, we can assume that the elements tp(i)si ,
i = 0, . . . , N generate Rees(χ). For a suitable r ≥ 1 the monomials s̃j in our
elements si of homogenous degree r generate the Veronese algebra R̃ =⊕

k�0 Rkr

(which is thus generated in degree 1) and so the corresponding elements tp(j)s̃j
generate the Veronese algebra

⊕
k�0(Fkr R̃)t

kr and their limits tp(j) limτ→0 λ(τ)·s̃j
generate the Veronese algebra

⊕
k�0(F̄kr R̃)t

kr .
With these assumptions we define a surjective morphism of C[t]-algebras

φ : C[ξ0, . . . , ξN ][t] →
⊕

k�0

(Fkr R̃)t
kr

by φ(t) = t , φ(ξi) = tp(i)s̃i . Suppose that the action of λ is given by λ(τ) · s̃i =∑
j aij (τ )s̃j . We define a one-parameter subgroup λ̂ : C∗ → GL(C1[ξ0, . . . , ξN ]),

acting on degree 1 elements by λ̂(τ ) · ξi = ∑
j aij (τ )ξj , and extend its action

trivially on t . The morphism φ induces the required embedding

ι : X = ProjC[t ]
⊕

k�0

(Fkr R̃)t
kr → ProjC[t ]C[ξ0, . . . , ξN ][t],
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which intertwines the actions of λ and λ̂. By construction the limit as τ → 0 of the
flat family of closed subschemes of PN × C given by

λ̂(τ ) · ι( ProjC[t ]
⊕

k�0

(Fkr R̃)t
kr
)

is isomorphic to ProjC[t ]
⊕
k�0(F̄kr R̃)t

kr and so it gives a copy of X̄ embedded in

PN ×C as a flat 1-parameter degeneration of X .
To prove the statement on central fibres we look at the family of closed

subschemes of PN given by

λ̂(τ ) · ι(X0) = λ̂(τ ) · ι
(

ProjC[t ] gr
⊕

k�0

(Fkr R̃)t
kr
)
.

Taking the flat closure of this 1-parameter family we obtain a closed subscheme
Y0 ⊂ PN whose underlying reduced subscheme Y red

0 is contained in X̄0 ⊂ PN . By
flatness the Hilbert function of Y0 is the same as that of the central fibre (X0,L⊗r0 )

and so the same as that of the general fibre (X,L⊗r ). Similarly the Hilbert function
of X̄0 ⊂ PN is the same as that of (X̄0, L̄⊗r0 ) and so the same as that of the general
fibre (X,L⊗r ). As we have Y red

0 ⊂ X̄0 ⊂ PN and X̄0,Y0 ⊂ PN have the same
Hilbert functions we must actually have Y0 = X̄0 as required. ��

The following observation follows immediately from the definitions of the
weight functions (Definitions 18 and 19) and of the specialisation χ̄ (Definition 27).

Lemma 30 In the situation of Lemma 29 we have

w(X̄ ,L̄)(k) = w(X ,L)(k), d(X̄ ,L̄)(k) = d(X ,L)(k).

for all k. In particular we have

DF(X̄ , L̄) = DF(X ,L), ||(X̄ , L̄)||L2 = ||(X ,L)||L2 .

Let us now consider the general case.

Theorem 31 Let χ be a possibly non-finitely generated filtration, and let χ̄ be its
specialisation with respect to a torus T ⊂ Aut(X,L) in the sense of Definition 27.
Then we have

Chow∞(χ̄) ≤ Chow∞(χ).

Proof We claim that the inequality Chowr (χ̄ (r)) ≤ Chowr (χ(r)) holds for every r .
By Definition 22 this will imply the Theorem.

Before proving the claim, let us recall the relation between the Chow weight
and classical GIT, following [16, Section 3], [9, Section 7] and [22, Section 2]. Let
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Vr = H 0(X,L⊗r )∨, and denote by γ a 1PS of GL(Vr) which induces the test
configuration associated to χ(r). The group GL(Vr) acts on the appropriate Chow
variety Zr , and X ⊂ P(H 0(X,L⊗r )∨) gives a point [X] ∈ Zr . On Zr we have the
classical, ample Chow line bundle, giving a linearisation for the action of GL(Vr).
The r-th Chow weight of χ(r) introduced in Definition 19 is the Hilbert-Mumford
weight of the point [X] ∈ Zr under γ , computed with respect to a convenient
rational rescaling of the ample Chow line bundle (with this normalisation the Chow
line bundle becomes an ample Q-line bundle, but this causes no difficulties).

The claim now follows from Proposition 8, i.e. the fact that Hilbert-Mumford
weights decrease under specialisation. ��

5 Application to cscK Polarised Manifolds

In this Section we show that Conjecture 1 combined with ideas from [17, 19] implies
a new proof that cscK manifolds are K-polystable.

Theorem 32 Let (X,L) be a cscK manifold and let T be a maximal torus in
Aut(X,L). Then (X,L) is T -equivariantly K-polystable.

More explicitly, Theorem 32 states that, given a normal T -equivariant test
configuration (X ,L), we have

DF(X ,L) ≥ 0

with equality if and only if (X ,L) is a product.

Proof Let (X ,L) be a normal T -equivariant test configuration. By a result of
Donaldson [8] (X,L) is K-semistable, so it is enough to assume that (X ,L) is not a
product and to show that we cannot have DF(X ,L) = 0. We argue by contradiction
assuming DF(X ,L) = 0.

Denote by α the C∗ action on (X ,L). Let βi be an orthogonal basis of 1-
parameter subgroups βi of Aut(X,L) (see [20] for a discussion of the formal inner
product on C∗-actions). As (X ,L) is T -equivariant, there are C∗-actions β̃i on
(X ,L), preserving the fibres, commuting with each other and with α, and extending
the action of βi . Fixing i, the total space (X ,L) endowed with the C∗-action α± β̃i
is a test-configuration for (X,L), with Donaldson-Futaki invariant

DF(α ± β̃i) = DF(α)± DF(β̃i)

= ±DF(β̃i)

(the first equality follows since α, β̃i are commuting C∗-actions on the same
polarised scheme). Since we are assuming that (X,L) is cscK we know it is K-
semistable and so we must have DF(β̃i) = 0 for all i. Let (X ,L)⊥T denote the
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L2-orthogonal in the sense of [20], i.e. the test-configuration with total space (X ,L)
endowed with C∗-action

α −
∑

i

〈α, β̃i 〉
||β̃i ||2

β̃i .

Then we see that DF(X ,L)⊥T = 0.
Since X is normal and not isomorphic to X × C, by [19] section 3 there exists a

point p ∈ (X1,L1) which is fixed by the maximal torus T , and such that denoting
by α · p the closure of the orbit of p in (X ,L) we have

DF(Blα·p X ,L − εE)⊥T = DF(X ,L)⊥T − Cεn−1 +O(εn)
= −Cεn−1 +O(εn) (2)

for some constant C > 0. Here (Blα·p X ,L − εE) is the test-configuration for
(Blp X,L−εE) (E, E denoting the exceptional divisors) induced by blowing up the
orbit α · p in X with sufficiently small rational parameter ε > 0. Since p is fixed by
T there is a natural inclusion T ⊂ Aut(Blp X,L−εE) and then (Blα·p X ,L−εE)⊥T
denotes the L2 orthogonal to T in the sense of [20].

As explained in [19] Theorem 2.4 a well-known result of Arezzo, Pacard and
Singer [1] implies that the polarised manifold (Blp X,L− εE) admits an extremal
metric in the sense of Calabi. The semistability result of [20] shows that we must
have DF(Blα·p X ,L − εE)⊥T ≥ 0. But this contradicts (2), so we must have in fact
DF(X ,L) > 0 as claimed. ��
Corollary 33 If Conjecture 1 holds, then cscK manifolds are K-polystable.

Proof Let (X,L) be a cscK manifold, and T a maximal torus in Aut(X,L).
Theorem 32 implies that (X,L) is T -equivariantly K-polystable. Conjecture 1 then
implies that (X,L) is K-polystable. ��
Remark 34 The proof of the main result of [19] (Theorem 1.4) shows that if (X,L)
is extremal and T ⊂ Aut(X,L) is a maximal torus then we have DF(X ,L)⊥T > 0
for all T -equivariant test-configurations whose normalisation is not induced by a
holomorphic vector field in T (or equivalently, which are not isomorphic to such a
product outside a closed subscheme of codimension at least 2). If the assumption
is dropped there are counterexamples. Note that Theorem 1.4 in [19] is mistakenly
stated without this assumption. See [11] Remark 4 and the note [18] for further
discussion.
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Appendix

In this appendix we present an example of a test-configuration (X ,L) with a 1-
parameter subgroup λ : C∗ → Aut(X,L) such that the λ-equivariant filtration χ̄
of Definition 25 is not finitely generated. This is done by adapting a well-known
example in the literature on canonical bases of subalgebras, due to Robbiano and
Sweedler ([15] Example 1.20).

Consider the polynomial algebra C[t][x, y] over the ring C[t] and let A denote
the C[t]-subalgebra generated by

t (x + y), txy, txy2, t2y.

Then A ⊂ R[t] is the Rees algebra of a homogeneous, multiplicative, pointwise left
bounded finitely generated filtration χ of the homogeneous coordinate ring R =
C[x, y] of the projective line (P1,OP1(1)). So ProjC[t ]A endowed with its natural
Serre bundle O(1) is a test-configuration for P1. Consider the 1-parameter subgroup
λ : C∗ → SL(H 0(P1,OP1(1))) acting by

λ(τ) · x = τ−1x, λ(τ ) · y = τy.

We let χ̄ be the limit of χ under the action of λ as in the proof of Proposition 27.

Proposition 35 The limit filtration χ̄ is not finitely generated.

Proof The 1-parameter subgroup λ induces a term ordering > on the C[t]-algebra
C[t][x, y]which is compatible with the graded C[t]-algebra structure and for which
we have x > y. Let us denote the initial term of an element σ ∈ C[t][x, y] by in> σ .
The Rees algebra Rees(χ̄) coincides with the initial algebra of A defined by

in> A = {in> σ : σ ∈ A }.

We show that in> A is not finitely generated. The proof follows closely the original
argument in [15] Example 1.20.

Claim 1 The algebra A contains all the monomials of the form tn−1xyn for n ≥ 3,
and does not contain elements which have a homogeneous component of the form
tkxyn for k < n−1. In particular no element of A can have initial term of the form
tkxyn for k < n− 1. To check the first statement we observe that we have for n ≥ 3

tn−1xyn = t (x + y)tn−2xyn−1 − t (xy)t (tn−3xyn−2)

and then argue by induction starting from the fact that A contains the monomials
t (x + y), txy, txy2. For the second statement it is enough to check that A does not
contain tkxyn for k < n−1 (sinceA is a graded subalgebra). This is a simple check.
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Claim 2 The algebra A does not contain elements which have a homogeneous
component of the form tkyj for k ≤ j . In particular no element of A can have
initial term of the form tkyj for k ≤ j . Since A is a graded subalgebra it is enough
to show that tkyj cannot belong to A if k ≤ j . All the elements of A are of the form
f (t (x+y), txy, txy2, t2y)where f (x1, x2, x3, x4) is a polynomial with coefficients
in C[t]. Assuming

f (t (x + y), txy, txy2, t2y) = tkyj

and setting y = 0 gives f (tx, 0, 0, 0) = 0. Similarly setting x = 0 gives
f (ty, 0, 0, t2y) = tkyj . If k ≤ j it follows that necessarily k = j and
f (x1, 0, 0, x2) = x1. Comparing with f (tx, 0, 0, 0)we find tx = 0, a contradiction.

Claim 3 in> A is not finitely generated. Assuming in> A is finitely generated we
can find a finite set σi of elements ofA such that in> σi generate in> A. By finiteness
we can choose m  1 such that for all i we have in> σi �= tm−1xym. On the
other hand by Claim 1 we know that for all m we have tm−1xym ∈ in> A. By
the definition of a term ordering we know thus that tm−1xym must be a product of
powers of initial terms of the elements σi . As x appears linearly it follows that there
must be two generators σi , σj with in> σi = tpxyr , respectively in> σj = tqys with
p+ q = m− 1, r + s = m. By Claim 1 we must have p ≥ r − 1 and by Claim 2 we
must have q > s. Hence p+ q > r + s− 1 = m− 1 so p+ q ≥ m, a contradiction.

��
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Notes on K-Semistability of Toric
Polarized Varieties

Kento Fujita

Abstract We give a systematical construction of the blowup type test configuration,
named the basic blowup type test configuration, for a toric polarized variety from a
torus invariant prime divisor. If the barycenter of the associated polytope is not equal
to the barycenter of its facets, then we can find a torus invariant prime divisor such
that the Donaldson-Futaki invariant of the associated test configuration is negative.

Keywords K-stability · Toric varieties · Constant scalar curvature Kähler metrics

2010 Mathematics Subject Classification Primary 14L24; Secondary 14M25

1 Introduction

For the theory of toric varieties, we refer the readers to [4] and [8]. When we
consider toric varieties, the base field k is assumed to be an algebraically closed
field (of any characteristic). In this note, we systematically construct blowup type
destabilizing test configurations for K-unstable toric polarized pairs. Let us recall
some basic notions in order to state our result.

Notation 1.1 We set N := ⊕d
i=1 Zei , M := HomZ(N,Z), NR := N ⊗Z R and

MR := M ⊗Z R. Let {e∗i }1≤i≤d ⊂ M be the dual basis of {ei}1≤i≤d , and let
〈, 〉 : MR × NR → R be the natural pairing. Let P ⊂ MR be a full-dimensional
lattice polytope, let {Qλ}λ∈� be the set of facets of P , let Hλ (λ ∈ �) be the linear
span of Qλ (i.e., the affine hyperplane in MR with Qλ ⊂ Hλ). Let dx (resp., dxλ
(λ ∈ �)) be the canonical Lebesgue measure onMR (resp., onHλ) such thatMR/M

(resp.,Hλ/(Hλ ∩M)) is of measure 1.

Definition 1.2 Take any λ ∈ �.
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(1) Let

vol(P ) :=
∫

P

dx

be the volume of P . Similarly, let

vol(Qλ) :=
∫

Qλ

dxλ

be the (relative) volume of Qλ. Moreover, we set vol(∂P ) :=∑
λ∈� vol(Qλ).

(2) The barycenter b(P ) ∈ MR of P is defined by

〈b(P ), v〉 =
∫
P 〈x, v〉dx
vol(P )

for any v ∈ NR. Similarly, the (relative) barycenter b(Qλ) ∈ MR of Qλ is
defined by

〈b(Qλ), v〉 =
∫
Qλ
〈x, v〉dxλ

vol(Qλ)

for any v ∈ NR, and the barycenter b(∂P ) ∈ MR of ∂P is defined by

b(∂P ) :=
∑
λ∈� vol(Qλ)b(Qλ)

vol(∂P )
.

Remark 1.3

(1) For any λ ∈ �, we have b(Qλ) ∈ Hλ. Indeed, there exist vλ ∈ NR and aλ ∈ R

such that Hλ ⊂ MR is defined by the equation

{u ∈ MR | 〈u, vλ〉 = aλ}.

By the definition of b(Qλ), we have

〈b(Qλ), vλ〉 =
∫
Qλ
aλdxλ

vol(Qλ)
= aλ.

(2) From the definition of b(∂P ), we have

〈b(∂P ), v〉 =
∑
λ∈�

∫
Qλ
〈x, v〉dxλ

∑
λ∈� vol(Qλ)

for any v ∈ NR.
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We recall the following well-known result:

Theorem 1.4 (see [6]) Let X be the projective toric variety and L be the ample
Cartier divisor on X associated with P ⊂ MR. If b(∂P ) �= b(P ), then (X,L) is
K-unstable.

The purpose of this note is to give an explicit blowup type destabilizing test
configuration of (X, rL) (for r  1) from some specific torus invariant prime
divisor. More precisely, we will see the following result:

Theorem 1.5 Let X be the projective toric variety and L be the ample Cartier
divisor on X associated with P ⊂ MR. For any torus invariant prime divisor
D on X, we can construct the basic blowup type test configuration (X ,L)/A1 of
(X, rL) via D (see Definition 4.4) for any sufficiently divisible r ∈ Z>0. Moreover,
if b(∂P ) �= b(P ), then we can chooseD with DF(X ,L) < 0.

Thus, we give an alternative proof of Theorem 1.4. We emphasize that, when
b(P ) �= b(∂P ), the existence of destabilizing blowup type test configuration is
well-known from Theorem 1.4. Our construction of the basic blowup type test
configuration via a torus invariant prime divisor is similar to the construction in [7],
very easy to construct, and very easy to compute the Donaldson-Futaki invariant.
The computation of the Donaldson-Futaki invariant relies on the (weighted) Ehrhart
theory.

2 On the Barycenters of Lattice Polytopes

Definition 2.1 For a bounded set S ⊂ MR, for v ∈ NR and for k ∈ Z≥0, we set

LS(k) := #(kS ∩M),
f vS (k) :=

∑

u∈kS∩M
〈u, v〉.

From now on, we fix Notation 1.1.

Theorem 2.2

(1) (see [6, Proposition 4.1.3]) LP (k) is a polynomial of degree d . Moreover, we
have

LP (k) = vol(P )kd + 1

2
vol(∂P )kd−1 +O(kd−2).

(2) f vP (k) is a polynomial of degree at most d + 1. Moreover, we have

f vP (k) = vol(P )〈b(P ), v〉kd+1 + 1

2
vol(∂P )〈b(∂P ), v〉kd +O(kd−1).
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Proof
(1) is well-known. LP (k) is called the Ehrhart polynomial of P . See [2,

Lemma 3.19, Theorem 3.8 and Theorem 5.6].
(2) It is well-known that f vP (k) is a polynomial of degree at most d + 1 and

lim
k→∞

f vP (k)

kd+1
= vol(P )〈b(P ), v〉.

See [1, Proposition 17] for example. Since

f av+a
′v′

S (k) = af vS (k)+ a′f v
′

S (k)

holds for any a, a′ ∈ R and for any v, v′ ∈ NR, we may assume that v = e1. Let us
write

f
e1
P (k) = fd+1k

d+1 + fdkd +O(kd−1).

For a bounded set S ⊂ MR, let cone(S) ⊂ MR ⊕ Re∗d+1 be the cone spanned by
{(s, 1) | s ∈ S}. Moreover, for any set T ⊂ MR ⊕ Re∗d+1, we set the formal sum of
monomials

σT (!z) := σT (z1, . . . , zd+1) :=
∑

m∈T∩(M⊕Ze∗d+1)

!zm,

where !zm := zm1
1 · · · zmd+1

d+1 with 〈m, ei〉 = mi . We note that

∂σcone(S)

∂z1
(1, . . . , 1, zd+1) =

∑

k∈Z≥0

f
e1
S (k)z

k
d+1.

By Stanley’s reciprocity (see [2, Theorem 4.3]), we have

σcone(P )(z
−1
1 , . . . , z−1

d+1) = (−1)d+1σInt(cone(P ))(z1, . . . , zd+1).

By taking ∂•
∂z1
(1, . . . , 1, zd+1), we have

−∂σcone(P )

∂z1
(1, . . . , 1, z−1

d+1) = (−1)d+1 ∂σInt(cone(P ))

∂z1
(1, . . . , 1, zd+1).
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By the above equalities, together with [2, Exercise 4.5], we have

∑

k≥1

f
e1
P (−k)zkd+1 = −

∑

k≤0

f
e1
P (−k)zkd+1

= −∂σcone(P )

∂z1
(1, . . . , 1, z−1

d+1) = (−1)d+1 ∂σInt(cone(P ))

∂z1
(1, . . . , 1, zd+1)

= (−1)d+1
∑

k≥1

f
e1
Int(P )(k)z

k
d+1.

This implies that

f
e1
P (−k) = (−1)d+1f

e1
Int(P )(k)

for any k ∈ Z>0. Thus

f
e1
∂P (k) = f e1

P (k)− f e1
Int(P )(k) = 2fdkd +O(kd−1)

holds. We already know that

f
e1
∂P (k)−

∑

λ∈�
f
e1
Qλ
(k) = O(kd−1),

f
e1
Qλ
(k) is a polynomial of degree at most d for any λ ∈ �, and

lim
k→∞

f
e1
Qλ
(k)

kd
= vol(Qλ)〈b(Qλ), e1〉.

Therefore,

fd = 1

2

∑

λ∈�
vol(Qλ)〈b(Qλ), e1〉 = 1

2
vol(∂P )〈b(∂P ), e1〉

holds. ��
Definition 2.3 For a full-dimensional lattice polytope P ⊂ MR and for v ∈ NR,
we can write

LP (k) = Ldkd + Ld−1k
d−1 +O(kd−2),

f vP (k) = fd+1k
d+1 + fdkd +O(kd−1).

We define

DF(P, v) := Ld−1fd+1 − Ldfd .
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The following is trivial.

Lemma 2.4 Let P , v be as in Definition 2.3.

(1) For any r ∈ Z>0, we have DF(rP, v) = r2d DF(P, v).
(2) For any u ∈ M , we have DF(P + u, v) = DF(P, v).
(3) For any a ∈ R, we have DF(P, av) = aDF(P, v).

Proof

(1) We have LrP(k) = LP (rk) and f vrP (k) = f vP (rk).
(2) We have LP+u(k) = LP (k) and f vP+u(k) = f vP (k)+ k〈u, v〉LP (k).
(3) We have f avP (k) = af vP (k). ��

3 K-Semistability

We quickly recall the theory of K-stability. For detail, see [6] and [9] for example.

Definition 3.1 (see [6, 9–11] for example) Let X be a d-dimensional normal
projective variety over k and L be an ample Cartier divisor on X.

(1) A coherent ideal sheaf I ⊂ OX×A1
t

is said to be a flag ideal if I is of the form

I = In + In−1t
1 + · · · + I1tn−1 + (tn),

where OX ⊃ I1 ⊃ · · · ⊃ In are coherent ideal sheaves on X.
(2) Let I be a flag ideal, let r ∈ Z>0, let � : X → X × A1 be the blowup along

I, let E ⊂ X be the Cartier divisor defined by OX (−E) = IOX , and we
set L := �∗p∗1L⊗r (−E). Then (X ,L)/A1 is said to be a blowup type test
configuration of (X, rL) if L is semiample over A1.

(3) Let (X ,L)/A1 be a blowup type test configuration of (X, rL). For any k ∈ Z>0,
we set

w(k) := − dim

(
H 0(X × A1, p∗1L⊗kr )
H 0(X ×A1, p∗1L⊗krIk)

)

.

It is known that w(k) is a polynomial of degree at most d+ 1 for k  0 (see [9,
§3] for example). Set

w(k) = wd+1k
d+1 + wdkd +O(kd−1),

h0(X,L⊗kr ) = Ldkd + Ld−1k
d−1 +O(kd−2).
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The Donaldson-Futaki invariant DF(X ,L) of (X ,L)/A1 is defined by

DF(X ,L) := Ld−1wd+1 − Ldwd.

(4) (X,L) is said to be K-unstable if there exists a blowup type test configuration
(X ,L)/A1 of (X, rL) for some r ∈ Z>0 such that DF(X ,L) < 0 holds. In this
case, the test configuration (X ,L)/A1 is said to be a blowup type destabilizing
test configuration of (X, rL). If (X,L) is not K-unstable, then we say that
(X,L) is K-semistable.

Remark 3.2 It is obvious that (X,L) is K-semistable if and only if (X, rL) is
K-semistable for some (equivalently, for any) r ∈ Z>0. Thus, we can define K-
semistability for (X,L) with L an ample Q-divisor.

4 Basic Blowup Type Test Configurations

Let X be the projective d-dimensional toric variety over k associated with a fan �
in NR. Let {vλ}λ∈� be the set of primitive generators of the set of one-dimensional
cones in �. For any λ ∈ �, let Dλ ⊂ X be the torus invariant prime divisor on X
associated with a one-dimensional cone R≥0vλ ∈ �.

Let L :=∑
λ∈� dλDλ be a torus invariant ample Cartier divisor on X (dλ ∈ Z),

and let P ⊂ MR be the corresponding lattice polytope, that is,

P := {u ∈ MR | 〈u, vλ〉 ≥ −dλ for any λ ∈ �}.

Since L is ample, P is full-dimensional. Moreover, there is a one-to-one correspon-
dence between the set of facets on P and �. For any λ ∈ �, let Qλ ⊂ P be the
corresponding facet.

Lemma 4.1 For any k, j ∈ Z≥0, we have

H 0(X,L⊗k) =
⊕

u∈kP∩M
kχu.

Moreover, for any λ ∈ �, as a subset of H 0(X,L⊗k), we have

H 0(X,L⊗k(−jDλ)) =
⊕

u∈kP∩M,
〈u,vλ〉≥−kdλ+j

kχu.

Proof Well-known. See [8, p. 66 and p. 61] for example. ��
Now, we construct a blowup type test configuration for a given torus invariant

prime divisor. The construction is similar to the one in [7]. Fix λ0 ∈ � and set
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d0 := dλ0 , v0 := vλ0 and D0 := Dλ0 for simplicity. Fix τ ∈ Z>0 such that

{u ∈ MR | 〈u, v0〉 ≥ −d0 + τ } = ∅

holds. Take r ∈ Z>0 sufficiently divisible such that rP ⊂ MR is a normal lattice
polytope (i.e., the graded k-algebra

⊕

k∈Z≥0

H 0(X,L⊗kr )

is generated by H 0(X,L⊗r )). By Lemma 4.1, the graded k-algebra

⊕

k,j∈Z≥0

H 0(X,L⊗kr (−jD0)) =
⊕

k∈Z≥0,
j∈[0,krτ ]∩Z

H 0(X,L⊗kr (−jD0))

is generated by

⊕

j∈[0,rτ ]∩Z
H 0(X,L⊗r (−jD0)).

For any j ∈ [0, rτ ] ∩Z, let us set the coherent ideal sheaf Ij ⊂ OX as the image
of the composition

H 0(X,L⊗r (−jD0))⊗k L
⊗(−r) ↪→ H 0(X,L⊗r )⊗k L

⊗(−r) ev−→ OX,

where ev is the natural evaluation homomorphism. Let us consider the flag ideal

I := Irτ + Irτ−1t
1 + · · · + I1trτ−1 + (trτ ) ⊂ OX×A1

t
.

Note that, by construction, we have Ij ⊂ OX(−jD0) for any j ∈ [0, rτ ] ∩ Z and
OX = I0 ⊃ I1 ⊃ · · · ⊃ Irτ = 0. For any k ∈ Z>0 and for any j ∈ [0, krτ ] ∩ Z, we
set

J(k,j) :=
∑

j1+···+jk=j,
j1,...,jk∈[0,rτ ]∩Z

k∏

l=1

Ijl .

By construction, we have

Ik = J(k,krτ ) + J(k,krτ−1)t
1 + · · · + J(k,1)tkrτ−1 + (tkrτ )

for any k ∈ Z>0.
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Lemma 4.2 (see [7, Lemma 3.1]) For any k ∈ Z>0 and for any j ∈ [0, krτ ] ∩ Z,
the coherent ideal sheaf J(k,j) is equal to the image of the homomorphism

H 0(X,L⊗kr (−jD0))⊗k L
⊗(−kr) ↪→ H 0(X,L⊗kr )⊗k L

⊗(−kr) ev−→ OX.

In particular, we have

H 0(X,L⊗kr (−jD0)) = H 0(X,L⊗kr · J(k,j))

as subspaces of H 0(X,L⊗kr ).

Proof The proof is same as the proof of [7, Lemma 3.1]. ��
Let � : X → X × A1 be the blowup along I, let E ⊂ X be the Cartier divisor

defined by the equation OX (−E) = IOX , and we set L := �∗p∗1L⊗r (−E).
Lemma 4.3 (see [7, Lemma 3.2]) L is semiample over A1. Thus (X ,L)/A1 is a
blowup type test configuration of (X, rL).

Proof The proof is same as the proof of [7, Lemma 3.2]. ��
Definition 4.4 (see [7, Definition 10]) We call the (X ,L)/A1 the basic blowup
type test configuration of (X, rL) via D0.

The following proposition is important.

Proposition 4.5 We have

DF(X ,L) = r2d DF(P, v0).

Proof Let

w(k) = wd+1k
d+1 +wdkd +O(kd−1),

h0(X,L⊗kr ) = Ldkd + Ld−1k
d−1 +O(kd−2)

be as in Definition 3.1. Recall that DF(X ,L) = Ld−1wd+1 − Ldwd . Note that
h0(X,L⊗kr ) is the Ehrhart polynomialLrP (k) of rP . By the definition of w(k) and
by Lemma 4.2, we have

w(k) = −krτh0(X,L⊗kr )+
krτ∑

j=1

h0(X,L⊗kr · J(k,j))

= −krτLrP (k)+
krτ∑

j=1

h0(X,L⊗kr (−jD0)).



46 K. Fujita

Note that, by Lemma 4.1, we have

krτ∑

j=1

h0(X,L⊗kr (−jD0))

=
krτ∑

j=1

#{u ∈ krP ∩M | 〈u, v0〉 ≥ −krd0 + j }

=
∑

u∈krP∩M
(〈u, v0〉 + krd0) = krd0LrP (k)+ f v0

rP (k).

Thus we get

w(k) = kr(d0 − τ )LrP (k)+ f v0
rP (k).

This equality, together with Lemma 2.4, immediately implies that DF(X ,L) =
DF(rP, v0) = r2d DF(P, v0). ��

By using Proposition 4.5, we can show the following theorem. Theorem 1.5 is a
direct consequence of Theorem 4.6.

Theorem 4.6 Assume that b(P ) �= b(∂P ). Then we can find λ ∈ � and r ∈ Z>0
such that DF(X ,L) < 0 holds, where (X ,L)/A1 is the basic blowup type test
configuration of (X, rL) via Dλ.

Proof By Theorem 2.2, for v ∈ NR \ {0}, the condition DF(P, v) < 0 is equivalent
to the condition

〈b(P ), v〉 < 〈b(∂P ), v〉.

We know that b(P ) ∈ Int(P ). Let us set

t0 := min{t ∈ R≥0 | b(P )+ t (b(P )− b(∂P )) ∈ ∂P },

and we set

c := b(P )+ t0(b(P )− b(∂P )) ∈ ∂P.

Pick any facetQλ ⊂ P with c ∈ Qλ. By construction, we have 〈c, vλ〉 = −dλ, and

〈b(P )+ t (b(P )− b(∂P )), vλ〉 > −dλ
for any 0 ≤ t < t0. Thus we have 〈b(P ), vλ〉 < 〈b(∂P ), vλ〉. Therefore the blowup
type test configuration (X ,L)/A1 of (X, rL) given by X, L, λ, and r constructed
as above satisfies that DF(X ,L) < 0. ��
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5 Examples

We see several examples for the readers’ convenience. We note that all the examples
in the section are examples that have been considered before.

Example 5.1 (cf. [5, Example 4.4]) Set d := 2, v0 := −e1 − e2, v1 := −e1, v2 :=
−e2, v3 := e1 and v4 := e2. Let � be the complete fan in NR such that the set of
one-dimensional cone is equal to the set

{R≥0v0, . . . ,R≥0v4}.

We know that the toric varietyX = X� is the del Pezzo surface of degree 7. LetE0,
E1, E2 be the torus invariant curve onX corresponding with R≥0v0, R≥0v1, R≥0v2,
respectively. Then E1, E2 are the exceptional curves of the birational morphism
X→ P2 and E0 is the (−1)-curve on X apart from E1, E2.

Set L := a0E0 + a1E1 + a2E2. Then L is ample if and only if a1 + a2 > a0,
a0 > a1 and a0 > a2. From now on, we assume that L is ample. The associated
lattice polytope P ⊂ MR is the set of x ∈ MR with 0 ≤ 〈x, e1〉 ≤ a1, 0 ≤ 〈x, e2〉 ≤
a2 and 〈x, e1〉 + 〈x, e2〉 ≤ a0. Thus we can show that

vol(P ) = 1

2
(2a0a1 + 2a0a2 − a2

0 − a2
1 − a2

2),

〈b(P ), e1〉 = −a
3
0 + 3a2

0a2 − 3a0a
2
2 + a3

2 + 3a0a
2
1 − 2a3

1

3(2a0a1 + 2a0a2 − a2
0 − a2

1 − a2
2)

,

〈b(P ), e2〉 = −a
3
0 + 3a2

0a1 − 3a0a
2
1 + a3

1 + 3a0a
2
2 − 2a3

2

3(2a0a1 + 2a0a2 − a2
0 − a2

1 − a2
2)

,

〈b(∂P ), e1〉 = a0a1

a0 + a1 + a2
,

〈b(∂P ), e2〉 = a0a2

a0 + a1 + a2
.

Assume that b(P ) = b(∂P ). Then, since 〈b(∂P ), a2e1 − a1e2〉 = 0, we have
〈b(P ), a2e1 − a1e2〉 = 0. The condition is equivalent with the condition (a2 −
a1)(a1 + a2 − a0)

3 = 0. This implies that a1 = a2. Set b := a1/a0 ∈ (1/2, 1). On
the other hand, the condition 〈b(P ), e1〉 = 〈b(∂P ), e1〉 implies that (2b − 1)(b −
1)(b2 − b + 1) = 0. This leads to a contradiction. Thus b(P ) �= b(∂P ). Hence
(X,L) is K-unstable for any ample L.

Example 5.2 (cf. [12, Proposition 5.2], [5, Example 4.5]) Set d := 2, v1 := −e1,
v2 := −e2, v3 := e1 + e2 and v′i := −vi for i = 1, 2, 3. Let � be the complete fan
in NR such that the set of one-dimensional cones is equal to the set

{R≥0vi, R≥0v
′
i}i=1,2,3.
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We know that the toric varietyX = X� is the del Pezzo surface of degree 6. LetE1,
E2, E3, E′1, E′2, E′3 be the torus invariant curve on X corresponding with R≥0v1,
R≥0v2, R≥0v3, R≥0v

′
1, R≥0v

′
2, R≥0v

′
3, respectively. ThenE1,E2,E3 (resp.,E′1,E′2,

E′3) are mutually disjoint (−1)-curves.
Set L := a0(E

′
1+E′2+E′3)+a1E1+a2E2+a3E3. Then L is ample if and only

if 2a0 > a1, 2a0 > a2, 2a0 > a3, a1 + a2 > a0, a2 + a3 > a0, and a3 + a1 > a0.
From now on, we assume that L is ample. The associated lattice polytope P ⊂ MR

is the set of x ∈ MR with −a0 ≤ 〈x, e1〉 ≤ a1, −a0 ≤ 〈x, e2〉 ≤ a2 and −a3 ≤
〈x, e1〉 + 〈x, e2〉 ≤ a0. Thus we can show that

vol(P ) = 1

2
(−3a2

0 + 4a0a1 + 4a0a2 + 4a0a3 − a2
1 − a2

2 − a2
3),

〈b(P ), e1〉 = 6a0a
2
1 − 2a3

1 + a3
2 − 3a0a

2
2 − 3a0a

2
3 + a3

3

3(−3a2
0 + 4a0a1 + 4a0a2 + 4a0a3 − a2

1 − a2
2 − a2

3)
,

〈b(P ), e2〉 = 6a0a
2
2 − 2a3

2 + a3
1 − 3a0a

2
1 − 3a0a

2
3 + a3

3

3(−3a2
0 + 4a0a1 + 4a0a2 + 4a0a3 − a2

1 − a2
2 − a2

3)
,

〈b(∂P ), e1〉 = a0(2a1 − a2 − a3)

3a0 + a1 + a2 + a3
,

〈b(∂P ), e2〉 = a0(2a2 − a1 − a3)

3a0 + a1 + a2 + a3
.

Set bi := ai/a0 for i = 1, 2, 3. We note that, for any 1 ≤ i, j ≤ 3,

3− 3bi + b2
i + bibj + b2

j =
3

4
(2− bi)2 +

(
1

2
bi + bj

)2

> 0

holds.
Assume that b(P ) = b(∂P ). The condition 〈b(P ), e1〉 = 〈b(∂P ), e1〉 and

〈b(P ), e2〉 = 〈b(∂P ), e2〉 is equivalent with the condition b1 + b2 + b3 = 3, or

2b3
1 + 6b1 − 3b1(b2 + b3)− 3(b2 + b3)+ 6b2b3 − (b3

2 + b3
3) = 0 (1)

and

2b3
2 + 6b2 − 3b2(b1 + b3)− 3(b1 + b3)+ 6b1b3 − (b3

1 + b3
3) = 0. (2)

Assume that b1 + b2 + b3 �= 3. The Eq. (1) minus the Eq. (2) is equivalent to the
condition (b1−b2)(b

2
1+b1b2+b2

2−3b3+3) = 0. If b2
1+b1b2+b2

2−3b3+3 = 0,
then, from the Eq. (1), we have (3− 3b1 + b2

1 + b1b2 + b2
2)(3− 3b2 + b2

1 + b1b2 +
b2

2)(12 + 3b1 + 3b2 + b2
1 + b1b2 + b2

2) = 0. This leads to a contradiction. Thus
b1 = b2. From the Eq. (2), we have (b1− b3)(3− 3b1+ b2

1 + b1b3+ b2
3) = 0. Thus

we have b1 = b2 = b3. Therefore, the condition b(P ) = b(∂P ) is equivalent to the
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condition b1+b2+b3 = 3 or b1 = b2 = b3. In particular, if (X,L) is K-semistable
for L ample with L = a0(E

′
1 + E′2 + E′3) + a1E1 + a2E2 + a3E3, then we have

a1 + a2 + a3 = 3a0 or a1 = a2 = a3.

Example 5.3 (cf. [3, Theorem C]) Set r := d − 1 and assume that r ≥ 1. Let
(m1, . . . ,mr) ∈ Z⊕r≥0 \ {(0, . . . , 0)}. Set e0 := −(e1 + · · · + er), u1 := −ed ,
u0 := −u1 + m1e1 + · · · + mrer . Let � be the complete fan in NR such that
the set of full-dimensional cones is equal to the set

{R≥0u0 + R≥0e0 + · · · + R≥0ei−1 + R≥0ei+1 + · · · + R≥0er}0≤i≤r
∪ {R≥0u1 + R≥0e0 + · · · + R≥0ei−1 + R≥0ei+1 + · · · + R≥0er}0≤i≤r .

Then the toric variety X = X� is equal to

PP1

(
OP1 ⊕OP1(m1)⊕ · · · ⊕OP1(mr)

)

by [4, Example 7.3.5]. Let De0 , Du0 ⊂ X be the torus invariant prime divisor on
X corresponding with R≥0e0, R≥0u0, respectively. Set L := aDe0 + bDu0 for a,
b ∈ Z. We know that L is ample if and only if a, b > 0 holds. From now on, we
assume thatL is ample, i.e., a, b ∈ Z>0. Set c := b/a ∈ Q>0. The associated lattice
polytope P ⊂ MR is the set x ∈ MR with

〈x, e1〉, . . . , 〈x, er 〉 ≥ 0,
r∑

i=1

〈x, ei〉 ≤ a,

〈x, ed 〉 ≥ 0,

〈x, ed 〉 ≤ b +
r∑

i=1

mi〈x, ei〉.

Let Qe0 , . . . ,Qer , Qu0 , Qu1 ⊂ P be the facet of P corresponding with
R≥0e0, . . . ,R≥0er , R≥0u0, R≥0u1, respectively. We can show that

vol(P )

ar+1 =
1

r!c +
1

(r + 1)!
r∑

i=1

mi,

vol(Qk)

ar
= 1

(r − 1)!c +
1

r!
∑

i∈{1,...,r}\{k}
mi (1 ≤ k ≤ r),

vol(Qe0)

ar
= 1

(r − 1)!c +
1

r!
r∑

i=1

mi,

vol(Quj )

ar
= 1

r! (j ∈ {0, 1}),
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and

vol(P )〈b(P ),−e0〉
ar+2

= r

(r + 1)!c +
r + 1

(r + 2)!
r∑

i=1

mi,

vol(Qek )〈b(Qek ),−e0〉
ar+1 = r − 1

r! c +
r

(r + 1)!
∑

i∈{1,...,r}\{k}
mi (1 ≤ k ≤ r),

vol(Qe0)〈b(Qe0),−e0〉
ar+1 = 1

(r − 1)!c +
1

r!
r∑

i=1

mi,

vol(Quj )〈b(Quj ),−e0〉
ar+1 = r

(r + 1)! (j ∈ {0, 1}).

Hence we have

vol(∂P )

ar
= r + 1

(r − 1)!c+
1

r!

(

c + r
r∑

i=1

mi

)

,

vol(∂P )〈b(∂P ),−e0〉
ar+1 = r

(r − 1)!c+
1

(r + 1)!

(

2r + (r2 + 1)
r∑

i=1

mi

)

.

This implies that

1

a2r+2 vol(P ) vol(∂P )〈b(P ) − b(∂P ), e0〉

= 2

(r + 1)!(r + 2)!

(
r∑

i=1

mi

)(

(r + 1)c +
(

r∑

i=1

mi

)

− 1

)

> 0.

Therefore, we have b(P ) �= b(∂P ). As a consequence, we have showed the
following proposition.

Proposition 5.4 (cf. [3, Theorem C]) Assume that X = PP1(O ⊕O(m1)⊕ · · · ⊕
O(mr)) for some m1, . . . ,mr ∈ Z. If X is not isomorphic to P1 × Pr , then (X,L)
is K-unstable for any ample L on X.
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A Note on Extremal Toric Almost
Kähler Metrics

Eveline Legendre

Abstract An almost Kähler structure is extremal if the Hermitian scalar curvature
is a Killing potential (Lejmi, Int J Math 21(12):1639–1662, 2010). When the almost
complex structure is integrable it coincides with extremal Kähler metric in the sense
of Calabi (Extremal Kähler metrics. II. In: Chavel I, Farkas HM (eds) Differential
geometry and complex analysis. Springer, Berlin, 1985, pp 95–114). We observe
that the existence of an extremal toric almost Kähler structure of involutive type
implies uniform K-stability and we point out the existence of a formal solution of the
Abreu equation for any angle along the invariant divisor. Applying the recent result
of Chen and Cheng (On the constant scalar curvature Kähler metrics (III), General
automorphism group. ArXiv1801.05907v1) and He (On Calabi’s extremal metric
and properness. arXiv:math.DG/1801.07636), we conclude that the existence of a
compatible extremal toric almost Kähler structure of involutive type on a compact
symplectic toric manifold is equivalent to its relative uniformK–stability (in a toric
sense). As an application, using (Apostolov et al., Adv Math 227:2385–2424, 2011),
we get the existence of an extremal toric Kähler metric in each Kähler class of
P(O⊕O(k1)⊕O(k2)).
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1 Introduction

The objects and problems of toric Kähler geometry have been fruitfully translated
in terms of convex affine geometry in the works of Abreu [1], Guillemin [22], Don-
aldson [16], Apostolov and al. [2] with important applications in the very hard and
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central problem of Calabi extremal Kähler metrics [6]. In particular, Donaldson used
this theory to prove the celebrated Yau–Tian–Donaldson conjecture, [12, 33, 34], for
toric surfaces with vanishing Futaki invariant in [12, 13, 15, 16]. There is a relative
version of this conjecture due to Székelyhidi [31] which is more relevant in the
presence of symmetries and for general extremal (non constant scalar curvature)
Kähler metrics. This conjecture predicts that given a complex compact manifold
(M2n, J ) with a Kähler class � and a maximal compact torus T ⊂ Aut(M, J ), the
existence of an invariant extremal Kähler metrics in � is equivalent to the “relative
K–stability” of (M2n, J,�) in a sense to be determined precisely but which would
be related to an algebro-geometric notion of stability.

We recall briefly the toric counterpart of this theory, with more details in Sect. 2,
as it was developed by Donaldson [12]. In the toric setting, (M2n, J,�) is invariant
by a compact torus T = T n and caracterized completely by a convex polytope P ,
open and relatively compact in t∗, the dual of the Lie algebra t of T , together with
an affine measure σ ∈M(P ) on the boundary of P . The K–stability (relative to T )
is related to the positivity of a certain functional

L(P ,σ )(f ) =
∫

∂P

f σ − 1

2

∫

P

fAσ dx

on a set C̃ of convex functions f on P , see Definition 3.1. In this definition, dx =
dx1∧· · ·∧dxn is a Lebesgue measure on t∗ % Rn and Aσ ∈ Aff(t∗) is the extremal
affine function, see Sect. 2.4. Following [12, 32], if there exists λ > 0 such that

L(P ,σ )(f ) ≥ λ
∫

∂P

f σ

for any “normalized” f in C̃ then (P, σ ) is uniformly K–stable and K–stable if
λ = 0 is the only possible choice , see Definition 3.1.

The K–stability or uniformK–stability only depends on P and σ and we define

uKs(P ) = {σ ∈M(∂P ) | (P, σ ) is uniformlyK–stable},
Ks(P ) = {σ ∈M(∂P ) | (P, σ ) is K–stable}. (1)

Of course we have uKs(P ) ⊂ Ks(P ).
Compatible Kähler structures are essentially parametrized by a set of convex

functions S(P, σ ) ⊂ C∞(P ), called symplectic potentials and satisfying some
boundary condition, recalled in Sect. 2.2, depending on σ . Given u ∈ S(P, σ ), the
associated Kähler structure (gu, Ju) is extremal in the sense of Calabi if it satisfies
the following so-called Abreu equation

S(Hu) = −
n∑

i,j=1

∂2uij

∂xi∂xj
∈ Aff(t∗) (2)
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where Hu = (uij ) =
(

∂2u
∂xi∂xj

)−1
is the inverse Hessian of u for a flat connection

on t∗ % Rn.
The relative version of the Yau–Tian–Donaldson conjecture for toric manifold is

generalized following [12] by the prediction that, given a simple relatively compact
polytope P ⊂ Rn, one should have

{σ ∈M(∂P ) | ∃u ∈ S(P, σ ) such that S(Hu) ∈ Aff(t∗)} = Ks(P ). (3)

Some experts think that the stability condition must be strengthened and one of the
suggestion, see [9, 32], is to conjecture that

{σ ∈ M(∂P ) | ∃u ∈ S(P, σ ) such that S(Hu) ∈ Aff(t∗)} = uKs(P ). (4)

As we argue in Sect. 3.2, by combining Chen–Li–Sheng work [9] and the recent
progress of Chen–Cheng [8] and He [24], with Donaldson [12] and Zhou–Zhu [35]
results this conjecture is indeed true.

Theorem 1.1 Given any compact convex labelled simple polytope (P, σ ),

∃u ∈ S(P, σ ) such that S(Hu) ∈ Aff(t∗) (5)

if and only if (P, σ ) is uniformlyK–stable (i.e. σ ∈ uKs(P )).

In the constant scalar curvature case, that is when A(P ,σ ) is a constant, this last
statement is Theorem 1.8 of Chen–Cheng in [8] given that Donaldson showed in
[12, Proposition 5.2.2] that uniform K-stability of (P, σ ) is equivalent to the L1–
stability of Chen and Cheng. Theorem 1.1 above is an application of He’s recent
important result [24].

Remark 1.2 To pass from Theorem 1.1 to a positive resolution of the relative
version of the Yau–Tian–Donaldson conjecture one would need to show that the
uniform stability of a labelled polytope is equivalent to the stability with respect to
toric degenerations, see Remark 3.2.

Observe that (2) is a non-linear 4-th order PDE problem on φ but only a linear
second order PDE problem on Hφ . Denote AK(P, σ ) the set of matrix-valued
function H : P → Gl(Rn) symmetric, positive definite and satisfying some
boundary condition depending on σ detailed in Sect. 2.3. Then one can define a
smooth toric almost Kähler structure (gH , JH ) on (M,ω) as explained in [2, 28]
and recalled in Sect. 2.3. Such an almost Kähler structure (gH , JH ) is extremal in
the sense of Lejmi if it satisfies the Abreu equation (6), that is

S(H) = −
n∑

i,j=1

∂2Hij

∂xi∂xj
∈ Aff(t∗). (6)
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Lejmi studied the notion of extremal toric almost Kähler metrics in [28] and
showed that a large and interesting part of them (the involutive type ones) is in one-
to-one correspondence with AK(P, σ ).

Chen–Li–Sheng proved that existence of a toric Calabi extremal Kähler metrics
implies that the toric variety is uniformly K–stable, proving one side of the
conjecture for toric manifolds [9]. In this note we observe and explain that their
proof works equally well for extremal almost Kähler metrics and prove that

Proposition 1.3 For any simple relatively compact P ⊂ Rn, we have

{σ ∈ M(∂P ) | ∃H ∈ AK(P, σ ) such that S(H) ∈ Aff(t∗)} ⊂ uKs(P ). (7)

In particular, if (M, J, g, ω) is a compact toric Kähler manifold such that (M,ω)
admits a compatible extremal toric almost Kähler metrics of involutive type then
(M, J, [ω]) is uniformlyK–stable1 with respect to toric degenerations.

As a direct consequence of this last Proposition and Theorem 1.1 above we get

Corollary 1.4 The existence of an extremal toric almost Kähler metric of involutive
type compatible with ω implies the existence of a compatible extremal toric Kähler
metric.

Remark 1.5 It is unlikely that in general, for compact Kähler manifold of non-toric
type, the existence of an extremal almost Kähler metric (M, J, ω) implies uniform
K–stability of (M, J ) or the existence of an extremal Kähler metric compatible with
ω. However, as pointed out in [25], a certain notion of stability could generalize the
conjecture and theory to almost Kähler metrics.

In [3], for any k2, k1 > 0 and any toric symplectic form ω on the total space of
the projective bundle P(O⊕O(k1)⊕O(k2))→ P1, they construct explicit examples
of extremal almost Kähler metrics compatible with ω. One can check directly that
these metrics are of involutive type. As an application of Corollary 1.4 we get the
following.

Corollary 1.6 Each Kähler class of P(O ⊕ O(k1) ⊕ O(k2)) admits a compatible
extremal toric Kähler metric.

The convex affine geometry point of view has been exploited successfully to
provide a complete understanding of the situation, confirming the relative version
of the Yau–Tian–Donaldson conjecture, when the moment polytope is a convex
quadrilateral in [4, 5, 26, 30] (in particular for toric compact orbisurfaces with
second betti number equal 2) including explicit solution or destabilizing test
configuration whenever they exist. A key ingredient of the aforementioned papers
is an explicit formal solution HA,B : P → Sym2(t∗) depending on 2 polynomials
A and B on one variable satisfying the boundary condition depending on σ and
satisfying the second order PDE corresponding to the extremal equation of Calabi.

1Here uniform K-stability should be understand as defined above, see Remark 3.2.
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One of the main observations of [4, 5, 26, 30] is that HA,B is positive definite if
and only if the labelled polytope (P, σ ) is K–stable and if and only if HA,B is the
inverse Hessian of a symplectic potential.

A complete answer, like the one given for convex quadrilateral is certainly out
of reach for convex polytope in general. However, we point out in this note that
some parts of the strategy of [4, 5, 26, 30] may be extended in general thanks to the
following observation.

Proposition 1.7 For any simple labelled polytope (P, σ ), there exists an infinite
dimensional family of formal extremal solutions H : P → Sym2(t∗) of Eq. (6)
satisfying the boundary condition associated to σ . Whenever one of these solutions
is positive definite on the interior of P , (P, σ ) is uniformly K–stable.

We discuss in Sect. 3.4 consequences of this last result and open problems in
relation with the relative toric version of the Yau–Tian–Donaldson conjecture.

In the next section we gather facts, definition, key results and recall brief
explanations on the topic of toric extremal (almost) Kähler metrics. Section 3
contains the proof of Propositions 1.3 and 1.7.

2 Labelled Polytope and Toric (Almost) Kähler Geometry

2.1 Rational Labelled Polytopes and Toric Symplectic Orbifolds

2.1.1 Notations

In the sequel a polytope P refers to an open, convex, polyhedral, simple and
relatively compact subset of an affine space t∗ % Rn. Simple means that each vertex
is the intersection of exactly n facets (where n is the dimension of t∗). We order and
denote the facets F1, . . . Fd ⊂ P . Choosing a non-zero inward normal vector !ns ∈ t
to each facet Fs , we can write

P = {x ∈ t∗ | �!n,s(x) > 0, s = 1, . . . , d}

where �!n,s is the unique affine-linear function on t∗ such that d�!n,s = !ns and

Fs = �−1
!n,s(0) ∩ P .

Definition 2.1 Let P ⊂ t∗ be a polytope as above.

(a) A labelling for P is an ordered set of non-zero vectors !n = (!n1, . . . , !nd) ∈ (t)d
each !ns being normal to the facet Fs and inward to P . A labelled polytope is a
pair (P, !n).

(b) A rational labelled polytope is a triple (P, !n,�) where (P, !n) is a labelled
polytope and � ⊂ t is a lattice containing the labels !n1, . . . , !nd .
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(c) A Delzant polytope is a pair (P,�) where � ⊂ t is a lattice containing a set
of labels !n = (!n1, . . . , !nd) such that for each vertex {p} = ∩s∈IpFs the set
{!ns | s ∈ Ip} is a Z–basis of �.

We denote by N(P ) := {!n = (!n1, . . . , !nd) ∈ (t)d | (P, !n) labelled polytope}.
Obviously N(P ) % Rd>0. We will also be working on the dual space M(P ) of
measures σ on ∂P such that there exists a labelling !n ∈ N(P ) satisfying

!ns ∧ σ = −dx on Fs (8)

where dx = dx1 ∧ · · · ∧ dxn is a fixed affine invariant volume form on t∗. Again
M(P ) % Rd>0 and σ ∈ M(P ) is determined by its restriction to the facets of P . We
write (formally) σ = (σ1, . . . , σd) where σs = σ|Fs is an affine invariant (n − 1)–
form on the hyperplane supporting Fs .

Remark 2.2 Fixing dx = dx1 ∧ · · · ∧ dxn once and for all, we get a bijection
N(P ) % M(P ), !n �→ σ!n with inverse σ �→ !nσ given by the relation (8). In the
following we use both notation (P, σ ) or (P, !n) for the labelled polytope (P, !nσ ).

2.1.2 Delzant–Lerman–Tolman Correspondence

Delzant showed that compact toric symplectic manifolds are in one to one cor-
respondance with Delzant polytopes via the momentum map [11] and Lerman–
Tolman [29] extended the correspondence to orbifolds by introducing rational
labelled polytope. They are many ways to construct the corresponding (compact)
toric symplectic orbifold (M,ω, T := t/�) from the data (P, !n,�). We recall only
the one we will use which, as far as we know, has been developed in [14, 18, 27].

(1) Local toric charts: Each vertex p of P is the intersection of n facets thus
corresponds to a subset Ip ⊂ {1, . . . , d} of n indices which in turn corresponds
to a basis of t namely {!ns | s ∈ Ip} that induces a sublattice�p = spanZ{!ni | i ∈
Ip} of �. Considering the torus Tp = t/�p we get a (non-compact) toric
symplectic manifold

(Mp := ⊕s∈IpC!ns % Cn, ωstd, Tp)

by identifying Tp % Tn = Rn
/
Zn via which Tp acts on Cn. The momentum

map xp : Mp → t∗ is given

xp(z) = p + 1

2

∑

∈Ip
|zs |2αs

where {α!n,i | i ∈ Ip} ⊂ t∗ is the dual basis of {!ni | i ∈ Ip}.
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(2) Gluing over P × T : Now using the exact sequence

�/�p ↪→ Tp
φp
� T

where T = t/� we get a way to glue equivariantly the (uniformizing) chartMp
over P × T seen as a toric symplectic manifold with momentum map x being
the projection on the first factor, see [27] for more details.

In this construction, (M,ω) is obtained as the compactification of (P × T , dx ∧
dθ). Here dx ∧ dθ is the canonical symplectic form of P × T coming from the one
of the universal cover P × t ⊂ t∗ × t. In particular, we get directly a set of action
angle coordinates (x, θ) on the set where the action is free M̊ = P × T = x−1(P ).
These coordinates are usually constructed with the help of a Kähler metric [7] and
one can prove that they are well defined up to an equivariant symplectomorphism.

2.2 Symplectic Potentials and Toric Kähler Metrics

Let (M,ω, T ) be a compact toric symplectic orbifold associated with the rational
labelled polytope (P, !n,�). In particular x : M → P is the momentum map. We
fix a set of action angle coordinates (x, θ) on the set M̊ where the torus action
is free. The next proposition gathers some now well-known facts establishing a
correspondence between toric Kähler structures and symplectic potentials.

Proposition 2.3 ([1, 2, 13, 22]) For any strictly convex function u ∈ C∞(P ),

gu =
∑

i,j

uij dxi ⊗ dxj + uij dθi ⊗ dθj , (9)

with (uij ) = Hess u and (uij ) = (uij )
−1, is a smooth Kähler structure on

P × T compatible with the symplectic form dx ∧ dθ . Conversely, any T –invariant
compatible Kähler structure on (P × T , dx ∧ dθ) is of this form.

Moreover, the metric gu is the restriction of a smooth (in the orbifold sense) toric
Kähler metric on (M,ω) if and only if

(1) u ∈ C0(P ) whose restriction to P or to any face’s interior (except vertices), is
smooth and strictly convex;

(2) u− u!n is the restriction of a smooth function defined on an open set containing
P where

u!n = 1

2

d∑

s=1

�!n,s log �!n,s (10)

is the so-called Guillemin potential.



60 E. Legendre

The functions u satisfying the conditions of the previous Proposition are called
symplectic potentials and we denote the set of such as S(P, !n) or S(P, σ!n) . In
sum, the set of smooth compatible toric (orbifold) Kähler metrics on (M,ω, T ) is
in one-to-one correspondance with the quotient of S(P, !n) by Aff(t∗,R), acting by
addition. The correspondance is explicit and given by (9).

Remark 2.4 The Guillemin potential u!n lies in S(P, !n) and corresponds to the
Guillemin Kähler metric on the toric symplectic orbifold in the rational case.

The boundary conditions (1) and (2) of Proposition 2.3 appear when comparing
the metrics gu and gu!n on the chartsMp as defined in Sect. 2.1.2.

Remark 2.5 Passing from symplectic to complex point of views is direct in toric
geometry. Given u ∈ S(P, σ ) the map (x, θ) �→ (∇u)x +

√−1θ provides the
complex coordinates as the coordinates on the universal covering of the big orbit
M̊ % (C∗)n, see e.g. [14]. In these coordinates the Kähler potential of the Kähler
form ω is the Legendre transform of u.

2.3 Toric Almost Kähler Metrics

An almost Kähler structure (g, J, ω) on M2n has everything of a Kähler structure
but the endomorphism J ∈ �(End(TM)), is not necessarily integrable. That is, g
is a Riemannian metric, ω is a symplectic form, and J ∈ �(End(TM)) squares to
minus the identity and they satisfy the following compatibility relation:

g(J ·, J ·) = g(·, ·) g(J ·, ·) = ω(·, ·).

A toric almost Kähler metric (g, J ) is then an almost Kähler metric on a toric
symplectic manifold/orbifold (M,ω, T ) such that (g, J ) is compatible with ω and
g (equivalently J ) is invariant by the torus T .

Let (M,ω, T ) be a toric symplectic manifold with a momentum map x : M → t∗
and moment polytope P = x(M) labelled by !n ∈ N(P ). We use notation
layed in Sect. 2.1.1 and fix a set of affine coordinates x = (x1, . . . , xn) on t∗.
In [28], the author proves among other things that T –invariant almost Kähler
structures compatible with (M,ω) and such that the g–orthogonal distribution to
the orbit is involutive (we call it toric almost Kähler structure of involutive type) are
parametrized by symmetric bilinear forms

H : P → Sym2(t∗) (11)



A Note on Extremal Toric Almost Kähler Metrics 61

satisfying some conditions pointed out in [2] that we now recall.

(i) Smoothness H is the restriction on P of a smooth Sym2(t∗)–valued function
defined on an open neighborhood of P .

(ii) Boundary condition For any point y in interior of a codimension 1 face Fs ⊂
P , we have

Hy(!ns, ·) = 0 (12)

dHy(!ns, !ns) = 2!ns. (13)

(iii) Positivity For any point y in interior F̊ of a face F ⊂ P , H is positive definite
as Sym2(TyF̊ )–valued function.

Proposition 2.6 ([2, 28]) Let (M,ω, T ) be a toric symplectic manifold and (g, J )
be a compatible T –invariant almost Kähler metric of involutive type compatible
with ω. Then the symmetric bilinear form defined for a, b ∈ t and x ∈ P

by Hx(a, b) := gp(Xa,Xb) for any p ∈ M such that x(p) = x, satisfies
the conditions (i), (ii) and (iii). Moreover, for any such symmetric bilinear form
H : P → Sym2(t∗) satisfying conditions (i), (ii) and (iii) there is a unique
compatible T –invariant almost Kähler metric (gH , JH ) of involutive type satisfying
Hx(p)(a, b) = gHp (Xa,Xb) for any p ∈ M . With respect to action angle coordinates

(x, [θ ]) on t∗ × T % M̊ , the metric g is given as

g =
∑

i,j

Gij dxi ⊗ dxj +Hij dθi ⊗ dθj , (14)

where G = (Gij ) = H−1.

Remark 2.7 Condition (12) implies that H(us, ·) : P → R vanishes on Fs and in
particular is constant. Then for all y ∈ F̊s , we have

(dH)y(us, ·) ∈ t∗ ⊗ (TyF̊s)0 = t∗ ⊗ Rus

where (TyF̊s)0 = Rus denotes the annihilator of TyF̊s ⊂ Ty(t∗) = t∗ in t. Therefore
condition (13) is that the trace of (dH)y(us, ·) equals 2.

Fixing an affine invariant volume form dx = dx1 ∧ · · · ∧ dxn, the labelling !n ∈
N(P ) corresponds to a measure σ ∈ M(P ) as defined in Sect. 2.1.1. Observe that the
Boundary Condition above (i.e. condition (ii) namely (12), and (13)) implies that2

σ = 1

2

n∑

i,j=1

(−1)iHij,j dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. (15)

2When a set of coordinates is fixed, we use the notation f,i = ∂
∂xi
f , f,ij = ∂2

∂xj ∂xi
f ...
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Assuming condition (12) holds condition (13) is equivalent to (15).
Thanks to Proposition 2.6 we can parametrize the space of compatible toric

almost Kähler metrics of involutive type as

AK(P, σ ) := {H : P → Sym2(t∗) |H satisfies conditions (i), (ii) and (iii)}.

The inverse (uij ) of the Hessian of symplectic potential u ∈ S(P, !n) can be
extended as a bilinear form Hu ∈ AK(P, σ ). Observe also that for H0,H1 ∈
AK(P, σ ) we have

Ht = tH1 + (1− t)H0 ∈ AK(P, σ ) ∀t ∈ [0, 1].

The space AK(P, σ ) is then a convex infinite dimensional set of metrics.

2.4 The Extremal Vector Field

Given a symplectic potential u ∈ S(P, !n) the scalar curvature of the Kähler metric
gu is given by the pull back to M of the following expression, called the Abreu
formula

S(Hu) = −
n∑

i,j=1

∂2uij

∂xi∂xj
(16)

as proved in [1] by direct computation. The function (16) extends as a smooth
function on P because the boundary condition (2) of Proposition 2.3 implies that
(uij ) ∈ �(P, t∗ ⊗ t∗) extends as a smooth bilinear form on P , see [2]. It is
shown in [28] that the suitable connection one should consider in case of almost
extremal metrics is the Chern connection (which do not coincides with the Levi-
Civita connection in the non-Kähler setting). It turns out that the formulas in the toric
case coincide in the sense that for H ∈ AK(P, σ ), the Hermitian scalar curvature
is the pull-back of

S(H) := −
n∑

i,j=1

Hij,ij .

Calabi’s extremal Kähler metrics are caracterized by the condition that the
Hamiltonian vector field of the scalar curvature is a Killing vector field [6] and
extremal almost Kähler metric are defined with the same condition on the Hermitian
scalar curvature [28]. Therefore, here, they correspond to the H ∈ AK(P, σ ) such
that

S(H) ∈ Aff(t∗,R). (17)
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As observed by Donaldson in [16], picking an invariant volume form dx = dx1∧
.... ∧ dxn on t∗, the L2–projection of S(Hu) on Aff(t∗,R) does not depend on the
choice of u ∈ S(P, !n). This fact holds for H ∈ AK(P, σ ) and is the effect of a
more general theory of invariant developed in [19, 20, 28] which in the toric case
follows from integration by parts. Indeed, using the condition (ii) of definition of
AK(P, σ ) we have that for any f ∈ Aff(t∗,R) and H ∈ AK(P, σ )

∫

P

S(H)f dx = 2
∫

∂P

f σ!n. (18)

These computations do not require the existence of a lattice containing !nσ , the
labelling associated to σ!n ∈M(P ) (see Sect. 2.1.1), or of a compact toric symplectic
orbifold anywhere. Summing up these facts we get the following key result.

Proposition 2.8 ([16, 19, 20, 28]) For any labelled polytope (P, σ ), there exists a
unique affine function AP,σ ∈ Aff(t∗,R) such that

∫

P

AP,σ f dx =
∫

P

S(H)f dx = 2
∫

∂P

f σ (19)

for any f ∈ Aff(t∗,R) and any H ∈ AK(P, σ ). Moreover, if there exists H ∈
AK(P, σ ) such that the metric gH is extremal almost Kähler in the sense of Calabi
(and Lejmi) then

S(H) = AP,σ . (20)

Remark 2.9 A direct corollary of the last Proposition is that the functional L(P ,σ )
vanishes identically on affine-linear function.

Remark 2.10 The function AP,σ depends linearly on σ ∈M(P ).

2.5 Extremal Kähler Metrics Unicity and an Open Condition

Uniqueness of extremal toric Kähler metric in a given class for a fixed torus is not
an issue thanks to the proof of Guan in [21], using the convexity of the K–energy
functional over geodesics. His proof works very well on symplectic potentials in
S(P, !n) as soon as P is compact using the works of [16], see e.g. [26, §2.2.1],
because S(P, !n) is a convex set with respect to smooth geodesics for the Mabuchi
metric (which, here, are the affine lines (1 − t)u0 + tu1) defined on the space of
Kähler metrics [21]. Therefore, we get the following unicity result.

Proposition 2.11 Let (P, !n) be a labelled polytope. If u0, u1 ∈ S(P, !n) satisfy
S(u0) = S(u1) = AP,!n then u1 − u0 is the restriction to P of an affine linear
function on t∗.
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Donaldson proved in [15] that the set of labelling !n ∈ N(P ) for which the
Abreu’s equation has a solution is open in N(P ), the d–dimensional open cone of
labellings of P in td .

Proposition 2.12 (Donaldson [15]) Let (P, σ ) be a labelled polytope. Assume that
there is a potential u ∈ S(P, !nσ ) satisfying the Abreu equation. Then there exists
an open neighborhood U ⊂ M(P ) of σ such that for each σ̃ ∈ U there exists a
potential ũ ∈ S(P, !nσ̃ ) satisfying the Abreu equation.

The statement in [15] is not exactly the one above but the proof works in this
degree of generality. The argument is standard. The linearisation of u �→ S(Hu) is
an elliptic operator. To get around the lack of compacity of P , Donaldson argue that
the system of charts associated to the vertices, see Sect. 2.1.2, provides the kind of
compactification needed. This idea is developed with details in [27].

3 Uniform K–Stability and Extremal Almost Kähler Metrics

3.1 Uniform K–Stability and Chen–Li–Sheng Result

Consider the functional

L(P ,σ )(f ) =
∫

∂P

f σ − 1

2

∫

P

fAσ dx

which can be defined on various spaces of functions onP , for exampleC0(P ). From
Proposition 2.8 we get that L(P ,σ ) vanishes identically on the space of affine-linear
functions.

Following [12], we define the set C∞ of continuous convex function on P which
are smooth on the interior, we have S(P, σ ) ⊂ C∞ for all σ ∈ M(P ). We fix
po ∈ P , the set of a normalized functions is

C̃ := {f ∈ C∞ | f (p) ≥ f (po) = 0 ∀p ∈ P }.

Note that the only affine-linear function in C̃ is the trivial one.

Definition 3.1 A labelled polytope (P, σ ) is uniformlyK–stable if there exists λ >
0 such that

L(P ,σ )(f ) ≥ λ
∫

∂P

f σ

for any f ∈ C̃.

Remark 3.2 Let T (P ) be the set of continuous piecewise linear convex functions
on P , that is f ∈ T (P ) if there are f1, . . . , fm ∈ Aff(t∗,R) such that f (x) =
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max{f1(x), . . . , fm(x)} for x ∈ P . Given a lattice � ⊂ t, we define T (P,�) ⊂
T (P ), the set of continuous piecewise linear convex functions on P taking integral
values on the dual lattice �∗ ⊂ t∗. When (P, η,�) is rational Delzant and its
vertices lie in the dual lattice�∗ ⊂ t∗, the associated symplectic manifold (M,ω) is
rational (that is [ω] ∈ H 2

dR(M,Q)) and for any compatible toric complex structure
J on M the Kähler manifold (M, J, k[ω]) (for some k big enough) is polarized
by a line bundle Lk → M . In this situation, Donaldson presents in [12] a way to
associate a test configuration (Xf ,Lf ) over (M,L) to any function f ∈ T (P,�)
such that the Donaldson–Futaki invariant of (Xf ,Lf ) coincides, up to a positive
multiplicative constant, with L(P ,σ )(f ). These test configurations are called toric
degenerations in [12] and [35]. The Yau–Tian–Donaldson conjecture predicts that
if AP,!n is a constant and there exists a solution u ∈ S(P, !n) of the Abreu equation
(2) then

L(P ,σ )(f ) ≥ 0

for any f ∈ T (P,�) with equality if and only f is affine-linear.

Observe that the map f �→ ∫
∂P f σ is a norm on C̃. Therefore, Definition 3.1

coincides with the notion of uniform K–stability in the sense of Székelyhidi [32]
but with a different norm and adapted to the toric situation. Moreover, this is the
notion of stability in Definition 3.1 that Chen–Li–Sheng used in [9] to prove that

Theorem 3.3 ([9]) If (P, σ ) is a labelled polytope and that there exists a solution
u ∈ S(P, σ ) of the Abreu equation (2) then (P, σ ) is uniformly K–stable.

Proof of Proposition 1.3 Our Proposition 1.3 follows by observing that in the proof
of the last Theorem, Chen–Li–Sheng only use the fact that the Hessian and inverse
Hessian Hu of the solution u ∈ S(P, σ ) are positive definite on the interior of P .
One important step for their proof is to show that : a labelled polytope (P, σ ) is
uniformly K–stable if and only if L(P ,σ )(f ) ≥ 0 on some compactification CK∗ of
C̃. But this is general and does not need any hypothesis on the existence of a solution
of the Abreu equation. This latter hypothesis is only needed for Lemma 5.1 of [9].
The crucial observation is the following, ifH : P → Sym2(t∗) satisfies Eq. (6), that
is S(H) = −∑n

i,j=1Hij,ij = A(P ,σ ) then the boundary conditions (ii) of Sect. 2.3
implies that

L(P ,σ )(f ) =
∫

P

〈H,Hessf 〉dx (21)

whenever f is twice differentiable. Formula (21) goes back to [12].
Therefore, let H be a solution of equation (6), then for any interval I ⊂⊂ P and

sequence of convex functions fk ∈ C∞ ⊂ C∞(P ) converging locally uniformly
to f then we have, using (21) and weak convergence of Monge–Ampère measures,
that

L(P ,σ )(fk) ≥ τmI (f )



66 E. Legendre

wheremI (f ) is the Monge–Ampère measure induced by f on I and τ is a positive
constant independant of k. This is the claim of Lemma 5.1 of [9] from which one
can derive Proposition 1.3 using the same argument than [9] in the last paragraph of
their section 5. ��

3.2 Uniform K–Stability Implies the Existence of an Extremal
Toric Kähler Metric

In this paragraph we will put together the work of Donaldson [12], He in [24] and
Zhou–Zhu [35] to prove that

Proposition 3.4 Let (P, σ ) be a compact convex simple polytope. If (P, !n) is
uniformly K–stable then there exists u ∈ S(P, σ ) such that

S(Hu) = A(P ,σ ).

Given a compact group K ⊂ Aut0(M, J ) containing the extremal vector field
(the Hamiltonian Killing version of it [20]) in its Lie algebra center and a fixed
J–compatible K–invariant Kähler metric ω, one can define the modified Mabuchi
K–energy as a functional K on the space of K–invariant Kähler potentials HK :=
{φ ∈ C∞(M)K |ω + ddcφ > 0}. This functional is important because it detects
the K–invariant extremal Kähler metrics in (M, J, [ω]). Let K = K0 be a compact
subgroup of Aut0(M, J ) whose complexified Lie algebra h0 is the reduced part of
h := LieAut0(M, J ). Denote G0 the complexification of K0 in Aut0(M, J ). An
important ingredient in this theory is a certain distance d1,G0 on HK introduced by
Darvas [10] and corresponding to the L1–norm on TφHK0 . That is for ψ ∈ TφHK0 ,
the norm

∫
M
|ψ|ωnφ allows to compute the length of curves and then d1(φ0, φ1) is

the infimum of the length of the curves joining φ0 and φ1. Then d1,G0(φ0, φ1) =
infg∈G0 d1(φ0, g

∗φ1).

Theorem 3.5 (Theorem 4 of He [24]) There is a K0–invariant extremal Kähler
metrics in (M, J, [ω]) if and only if the modified Mabuchi K–energy is bounded
below onHK0 and proper with respect to d1,G0 .

On a toric manifold, following Donaldson [12], it is more natural to define the
K–energy on the space of symplectic potentials as follow. Let (P, σ ) be a labelled
compact simple polytope with extremal affine function AP,!n ∈ Aff(t∗,R) and u ∈
S(P, σ ), the modified Mabuchi K–energy (of the corresponding Kähler potential)
is

F(P ,σ )(u) = −
∫

P

log det(uij )dx + L(P ,σ )(u). (22)
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Indeed, direct calculation shows that the critical points of this functional on S(P, !n)
are the symplectic potentials satisfying

S(Hu) = A(P ,σ ).

This allows us to translate He’s Theorem (recalled in Theorem 3.5 above) in terms
of (P, σ ) only. As explained in [27], when it concerns T –invariant objects (T ⊂
K0 in the toric case), analytic proofs e.g. estimates of Chen–Cheng [8], translate
without problems using the smooth local complex charts (which do exist for any
simple labeled polytope) and the compacity of P . Then to prove Proposition 3.4 it
is sufficient to show that F(P ,σ ) is bounded below on C̃ and that it is proper with
respect to d1,G0 .

The first condition is given by Donaldson.

Lemma 3.6 (Lemma 3.2 of Donaldson [12]) If (P, σ ) is uniformly K–stable then
F(P ,σ ) is bounded below on C̃.

We will derive the second using the following result.

Lemma 3.7 (Lemma 2.3 of Zhou–Zhu [35]) If (P, σ ) is uniformly K–stable then
there exist real positive constants C,D such that

F(P ,σ )(u) ≥ C
∫

P

udx −D (23)

for all u ∈ C̃.

Given two normalized symplectic potentials u0, u1 ∈ S(P, σ )∩C̃∞, we consider
the curve ut = tu1 + (1 − t)u0 ∈ S(P, σ ) and the curve given by its Legendre
transform φt : t → R (which is a curve of Kähler potentials in the sense that
(ω = ddcφt , J ) is bihomorphically isometric to (ω, Jut ) on M̊ , see e.g. [1, 14, 27]).

Thanks to the normalization we have
∫
P
udx = ∫

P
|u|dx for u ∈ C̃ and u̇t (x) =

−φ̇t ((∇ut )x) thus

∫

P
|u0|dx +

∫

P
|u1|dx ≥

∫

P
|u1 − u0|dx =

∫ 1

0

∫

P
|u̇t |dx dt

=
∫ 1

0

∫

P
|φ̇t ((∇ut )x)|dx dt =

∫ 1

0

∫

t
|φ̇t (y)| det(D∇φt )ydy dt

where the last equality uses the change of variables into complex coordinates, see
Remark 2.5. This is used to get the expression

∫ 1

0

∫

t
|φ̇t (y)| det(D∇φt )ydy dt = 1

(2π)n

∫ 1

0

∫

M

|φ̇t |ωnφt dt.
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Now, the right hand side of the last expression is the Darvas length [10] of the curve
φt connecting two Kähler potentials ψ0 := φ0 − φ and ψ1 := φ1 − φ in HK0 ,
therefore

1

(2π)n

∫ 1

0

∫

M

|φ̇t |ωnφt dt ≥ d1(ψ0, ψ1) ≥ d1,G0(ψ0, ψ1).

Summing up, for any u1 ∈ S(P, σ ) ∩ C̃∞, we have that

∫

P

|u0|dx +
∫

P

u1dx ≥ d1,G0(ψu0 , ψu1)

with ψu being the Kähler potential corresponding to the metric associated to
u. In particular, fixing u0 and substituting to u1 a sequence u1,k such that
d1,G0(φu0, φu1,k ) → +∞ we get that

∫
P u1,kdx → +∞ which, using Zhou–Zhu

properness Lemma 3.7, implies that

F(P ,σ )(u1,k)→+∞.

This, with Lemma 3.6 above, is enough to fulfill He’s condition and get that there
exists a torus invariant extremal Kähler metric. That is, it concludes the proof of
Proposition 3.4 which, together with Theorem 3.3 of Chen–Li–Sheng [9] gives
Theorem 1.1.

3.3 Extremal Almost Kähler Metrics

In this note we are interested in the H ∈ AK(P, σ ) satisfying the Abreu
equation (20). We will consider the following set of formal solutions

W(σ ) := {H : P → Sym2(t∗) |H satisfies conditions (i), (ii) and S(H) = AP,σ }

W :=
⊔

σ∈M(P )

W(σ ).

The only thing a Sym2(t∗)–valued function H ∈ W misses to define an extremal
toric almost Kähler metric in the sense of Lejmi is the positivity (that is condition
(iii)). Therefore

W+(σ ) := AK(P, σ ) ∩W(σ )

parametrizes the space of extremal toric almost Kähler metrics of involutive type
on P × t with boundary conditions imposed by the condition (ii) with respect to σ
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(see (15)). Translated in our notation, Lejmi proved in [28], see also [12], that the
set W+(σ ) is either empty or infinite dimensional.

Proposition 3.8 Let P be a simple polytope. For any labelling σ ∈ M(P ) the set
W(σ ) is not empty. Moreover, the set

{σ ∈M(P ) |W+(σ ) �= ∅}

is a non-empty open convex cone in M(P ).

Proof First, note that the Abreu equation is linear on W and that the boundary
condition data σ ∈ M(P ) depends lineary on the Sym2(t∗)–valued function thanks
to (15). Therefore, it is sufficient to find an open set U ⊂ M(P ) of σ ’s such that
W(σ ) is not empty to prove the first assertion. Indeed, in this case U would contain
a basis {σs}s=1,...,d ⊂ U and any σ̃ ∈ M(P ) is such σ = ∑d

s=1 asσs with as ∈
R. Picking any solution Hs ∈ W(σs) we have

∑d
s=1 asHs ∈ W(σ̃ ). According

to [27] for each polytope there exists σKE ∈ M(P ), unique up to dilatation, and
a symplectic potential uKE ∈ S(P, !nσKE ) such that the metric guKE is Kähler–
Einstein on P × t with respect to the natural symplectic structure on t∗ × t. In
particular, HuKE is a solution of Abreu’s equation and thus HuKE ∈ W+(σKE).
Thanks to Donaldson openness result, see Proposition 2.12 above, there exists an
open set U ⊂ M(P ) of σ ’s such that W+(σ ) is not empty. The second assertion
follows the same argument with a special care for positive definite condition. ��

Proposition 1.7 is a direct consequence of the last proposition.

3.4 The Space of Formal Solutions

Proposition 3.9 (Donaldson [12]) Let (P, σ ) be a labelled polytope. Assume the
set W+(σ ) is non empty. Then the functional N :W+(σ )→ R defined by

N(H) =
∫

P

log(detH) dx

is concave and the critical point, if it exists, is the inverse of a Hessian of a potential
u ∈ S(P, !nσ ).

The union of the W+(σ ) is a convex cone

W+ :=
⊔

σ∈M(P )

W+(σ ).

From the observation (15), the map m : W+ → M(P ) taking H ∈ W+ to the
measure m(H) = σ ∈ M(P ) is well-defined. The “fibers” of m are the W+(σ ).
Proposition 1.3 implies that the image of the map m lies into uKs(P ).
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Note that W+ contains the inverse Hessians of the extremal Kähler potentials,
that is the union over M(P ) of KW+(σ ) := {Hu | u ∈ S(P, uσ ), Hu ∈ W+(σ )}.
When non-empty, KW+(σ ) contains a unique point, the maximum of H on
W+(σ ) thanks to Proposition 3.9. Since N is continuous on W+, KW+ :=⊔
σ∈M(P )KW+(σ ) is connected. The relative toric version of the Yau–Tian–

Donaldson conjecture is then equivalent to

(i) KW+ meets each fiber W+(σ ),
(ii) m is onto.

The assertion (i) is that if there exists an extremal toric almost Kähler metric
compatible with ω then there exists an extremal toric Kähler metric and assertion
(ii) is that if (P, σ ) is uniformlyK–stable then there exists an extremal toric almost
Kähler metric compatible with ω. This is Corollary 1.4.

4 Miscellaneous

4.1 The Normal and the Angle

Let !m = ( !m1, . . . , !md) and !n = (!n1, . . . , !nd) be two distinct sets of labels on
the same polytope P ⊂ t∗ and assume that (P, !m,�) is rational Delzant and thus
associated to a compact toric symplectic manifold (M,ω, T = t/�) through the
Delzant–Lerman–Tolman correspondance. For any u ∈ S(P, !n) the metric gu,
see (9), defines a smooth Kähler metric on P × t % M̊ = x−1(P ) compatible
with ω. However, since u /∈ S(P, !m) the metric gu is not the restriction of a smooth
metric onM . The behavior of gu along the boundary of M̊ has been analysed in [27]
and we recall the conclusion below.

Recall that !ms and !ns are inward to P and normal to the facet Fs . We denote
as > 0 the real number such that

as !ns = !ms.
Note that the boundary condition of S(P, !n) depends on the labelling via the
Guillemin potential u!n, see Remark 2.4. Also, all the potentials in S(P, !n) have
the same behavior along ∂P and for every u ∈ S(P, !n), gu differs from gu!n only
by the addition of a smooth tensor on P × T ⊂ t∗ × T . Therefore, without loss of
generality, we pick u!n ∈ S(P, !n) to understand that behavior.

The metric gu!n which is smooth on M̊ = P × T = x−1(P ), has a

• singularity of cone angle type and angle 2asπ along x−1(F̊s), if as < 1;
• smooth extension on x−1(P ∪ F̊s ), if as = 1;
• singularity caracterized by a large angle 2asπ > 2π along x−1(F̊s), if as > 1.

where, here, we have adopted the terminology in [17].
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Proposition 4.1 ([27]) Let (M,ω, T ) be a toric compact symplectic manifold with
labelled moment polytope (P, !m,�) and momentum map x : M → t∗. For
any labelling !n of P , any potential u ∈ S(P, !n) provides a Kähler metric gu,
defined via (9), smooth and compatible with ω on M̊ = x−1(P ) and with cone
angle singularity 2π(!ns/ !ms) transverse to the divisor x−1(F̊s). Conversely, any
compatible T –invariant Kähler metric smooth outside a divisor D and with cone
angle singularity transverse to D is of this form.

It is straighforward to extend the argument proving the last proposition to almost
Kähler metric. Indeed we just compared the behaviour of the Hessian and inverse
Hessian of u!n and u !m. Therefore, any H ∈ AK(P, σ!n) defines an almost Kähler
metrics on M̊ and with cone angle singularity 2π(!ns/ !ms) transverse to the divisor
x−1(F̊s).

4.2 The Constant Scalar Curvature Case

In case (P, !n,�) is rational and associated to a compact toric symplectic orbifold
(M,ω, T ) via the Delzant–Lerman–Tolman correspondance and assuming we fix a
compatible toric Kähler structure (gu, Ju) (so that u ∈ S(P, !n)) then the classical
Futaki invariant evaluated on the real holomorphic vector field JuXf induced by the
affine linear function f ∈ Aff(t∗,R) is defined in [19] to be

Fut(M, [ω])(f ) :=
∫

M

(S(Hu)− S[ω])(x∗f )ωn/n! (24)

where S[ω] =
∫
M
S(Hu)ωn/

∫
M
ωn is the normalized total scalar curvature. Now

using (18) and the Fubini’s Theorem of product integration, to express Fut(M, [ω])
in terms of (P, !n) and dx we see that S[ω] = 2

∫
∂P
σu/

∫
P
dx and

Fut(M, [ω])(f ) = 2
∫
P
dx

(∫

∂P

f dσ!n
∫

P

dx −
∫

P

f dx

∫

∂P

dσ!n
)
.

This observation is a motivation to introduce the functional

Fut(P, !n)(f ) :=
∫

∂P

f dσ!n
∫

P

dx −
∫

P

f dx

∫

∂P

dσ!n, (25)

which in the rational case, up to a multiplicative positive constant, is the classical
Futaki invariant restricted to the complex Lie algebra t⊕ J t. Moreover, in the case
the classical Futaki invariant vanishes, equivalently when Aσ is a constant (which is
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then Aσ = 2
∫
∂P σu/

∫
P dx) then

Fut(P, !n)(f ) = 2
∫
P dx

L(P ,σ )(f )

for any f ∈ Aff(t∗,R).

Corollary 4.2 Given any labelled polytope (P, !n), if there exists a symplectic
potential u ∈ S(P, !n) such that gu has constant scalar curvature then Fut(P, !n)
vanishes identically on Aff (t∗,R).

Let η and !n be labellings for the same polytope P . Then, for each s = 1, . . . , d ,
ηs and !ns are inward to P and normal to the facet Fs and so there is a real number
as > 0 such that

as !ns = ηs.

When restricted on Fs , we have dσ!n = asdση. Therefore,

Fut(P, !n)(f ) =
∫

P

dx
∑

s

as

∫

Fs

f dση −
∫

P

f dx
∑

s

as

∫

Fs

dση (26)

and thus

Fut(P, !n)(f ) =Fut(P, η)(f )

−
∫

P

dx
∑

s

(1− as)
∫

Fs

f dση +
∫

P

f dx
∑

s

(1− as)
∫

Fs

dση.

(27)

Note that, whenever (P, η,�) is rational Delzant and thus associated to a compact
toric symplectic manifold (M,ω, T = t/�) through the Delzant–Lerman–Tolman
correspondance, the last expression coincides, up to some multiplicative positive
constant, with the log Futaki invariant (relative to the torus T ) defined in [17].
Indeed, consider the case where a1 = β and as = 1 for s = 2, . . . , d then we
recover from (27) that

FutD,β( f , [ω]) = 2(2π)nFut(P, !n)(f )
∫
M
ωn

(28)

where we follow the notation of [23] with D = x−1(F1).

Observe from (26) that the vanishing of the Futaki invariant imposes linear
conditions on the labelling normals.
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Proposition 4.3 Given a polytope P ⊂ t∗ of dimension n with d facets, there exists
a (d − n)–dimensional cone C(P ) ⊂ td of labelling !n ∈ C(P ) such that Fut(P, !n)
vanishes identically on Aff (t∗,R).

In [27] the last proposition follows non trivial consideratio, we give an elemen-
tary proof here.

Proof Put coordinates x = (x1, . . . , xn) on t∗ and translate P if necessary so that∫
P
xidx = 0 for any i = 1, . . . , n. The result follows if the linear map Rd −→ Rn

defined by

Rd , a �→
(

d∑

s=1

as

(∫

P

xi dx

∫

Fs

dσ!n −
∫

P

dx

∫

Fs

xidσ!n
))

i=1,...,n

(29)

is onto and his kernel meets the positive quadrant ofRd . With the suitable coordinate
chosen the rhs of (29) is up to non-zero multiplicative constant

(
d∑

s=1

as

∫

Fs

x1dσ!n, . . . ,
d∑

s=1

as

∫

Fs

xndσ!n

)

∈ Rn.

This is onto by convexity of P , indeed, for any coordinates xi there is a facet of P
on which xi is sign definite. Basic consideration on barycenter and the observation
that 0 ∈ P imply that the kernel of the map (29) contains an element of the positive
quadrant of Rd . ��
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Tropical Geometric Compactification
of Moduli, I – Mg Case

Yuji Odaka

To the memory of Kentaro Nagao.

Abstract We compactify the classical moduli variety of compact Riemann surfaces
by attaching moduli of (metrized) graphs as boundary. The compactifications do not
admit the structure of varieties and patch together to form a big connected moduli
space in which �gMg is open dense.

The metrized graphs, which are often studied as “tropical curves”, are obtained
as Gromov-Hausdorff collapse by fixing diameters of the hyperbolic metrics of the
Riemann surfaces. This phenomenon can be also seen as an archemidean analogue
of the tropicalization of Berkovich analytification ofMg [1].

Keywords Moduli of curves · Compactification · Tropical geometry

1 Introduction

Let us recall that the moduli space of smooth projective curves admits a “canonical”
modular compactification constructed in Deligne-Mumford [16] first as an algebraic

stack Mg
DM

.1 Later on, the moduli stack was proved to have a coarse projective
variety which is normal and of dimension 3g − 3 [29, Especially, III], [19, 39].

The boundary of the compactification still parametrizes geometric objects which
are certain nodal curves called “stable curves” characterized by the GIT stability
[19, 39] or by the K-stability ([42, 4.1], also cf. [39, 40], [33, §7]). Hence the GIT

1Here we put the superscript “DM”, often omitted in the literatures, to clearly distinguish from the
compactifications we introduce in this paper.
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construction [38] applies [19, 39] while it also fits to more general moduli existence
conjecture for K-(semi)stable polarized varieties (“K-moduli” cf., [43]).

In this paper, we introduce a pair of new compactifications of Mg which are no
longer varieties but compact Hausdorff toplogical spaces. In the first compactifica-

tion which we denote as Mg
GH

, the boundaries parametrize the Gromov-Hausdorff
limits of compact Riemann surfaces with rescaled Poincaré (i.e., Kähler-Einstein)
metrics with diameter 1, which we identify as certain graphs (Theorem 2.4). Hence

we would like to call the compactificationMg
GH

Gromov-Hausdorff compactifica-
tion.

In the second compactifications of Mg , we further encode some non-negative
integer weights on the vertices of the limit graphs. We call the metrized graphs
with such weights, weighted metrized graphs. The class of our limits graph is
very close to what has been studied as “(stable) tropical curves” in the literatures
(e.g., [8, 10, 11, 35]). Our point is that we can construct a refined compactification

of Mg than Mg
GH

by encoding the weights. The obtained compactifications will
be called “tropical geometric compactifications”. We chose the term because the
boundaries coincides with the moduli spaces of such tropical curves, which are also
studied in the literatures (e.g., [8, 10, 11, 35] again), while we also avoided the
term “tropical compactification” already used by J. Tevelev whose context is very
different, namely, the problem of compactifying subvarieties of a torus in a toric
variety (cf., [52]).

Let us explain the backgrounds by discussing a broader picture for moduli spaces
of more general varieties. There are two major backgrounds for this work, which we
recall now:

(i) The current extensive approach to the Strominger-Yau-Zaslow mirror symme-
try conjecture [51]. Indeed, conjectures of Gross-Wilson [22, §6], Todorov,
Kontsevich-Soibelman [31] (cf., e.g., the survey on the Gross-Siebert program
[21]) speculates certain families of Calabi-Yau varieties with its Ricci-flat
Kähler metrics collapse to integral affine manifolds with singularities in the
Gromov-Hausdorff sense, which are recently often regarded as some tropical
version of Calabi-Yau varieties.

(ii) The algebraicity of non-collapsed Gromov-Hausdorff limits of Kähler- Einstein
manifolds [17], its applications to moduli of Fano varieties [43, 47, 49], later
followed by [34, 44, 50].

There is a similarity between the above two i.e. (i) and (ii) as the first i.e. (i) is in
particular showing that the collapsed Gromov-Hausdorff limits of Kähler-Einstein
manifolds are “tropical algebraic” objects while the second (ii) is showing that
the non-collapsed limits of Kähler-Einstein (Fano) manifolds are algebro-geometric
objects i.e., varieties.



Tropical Geometric Moduli Compactification 77

For moduli spaces of Fano manifolds, which we discussed in (cf., [17, 34, 43, 44,
47, 50]), the two kinds of the compactifications

(α) the Gromov-Hausdorff metric compactification of the moduli space of Kähler-
Einstein manifolds with the rescaled Kähler-Einstein metrics with fixed diam-
eters (ourMg

GH
andMg

T
to be introduced in this paper are on this side) which

is closer to the spirit of (i) and

(β) algebro-geometric compactified moduli of K-stable varieties, e.g. Mg
DM

as in
(ii)

essentially coincide because of the non-collapsing of the metrics. However they
“look” completely different in the non-Fano case due to collapse of the Kähler-
Einstein metrics as we show in the present series of papers. Indeed, the author
believes that the Gromov-Hausdorff compactification while fixing the volume
(rather than the diameter), if it exists in an appropriate sense, should be closer in
spirit to (β). Nevertheless, as we observe in the case ofMg in this paper, we believe
that the two series of compactifications (α) and (β) must be deeply connected in
general.

In the present paper, first we start with the classification of all the possible
Gromov-Hausdorff limits of the compact Riemann surfaces with Kähler-Einstein
metrics of diameters 1. Then using the classification, we construct the compactifi-
cations and proceed to analyze their structures.

Our connection between classical algebro-geometric compactifications and trop-
ical moduli spaces can be seen as an archimedean analogue of the tropicalization
(skeleton) of non-archimedean analytification of the moduli varieties which is
recently studied in [1]. We discuss this analogy towards the end of the Sect. 2.2.

Another interesting point of our compactifications Mg
GH

, is that they naturally
patch together to form a big (infinite dimensional) conneted moduli space in which

Mg are open subsets for all g. We will call it infinite join and denotes it asM∞
GH

.
It would be interesting to pursue this line of research for moduli varieties

of other polarized varieties. For instance, the author conjectures that the moduli
schemes of smooth canonical models, again with the rescaled Kähler-Einstein
metrics of diameters 1, are also precompact for Gromov-Hausdorff distance and
the corresponding collapses will be dual intersection complexes of KSBA semi-
log-canonical models in certain generalized sense. Such speculation is inspired by
the recent Kollár-Shepherd-Barron-Alexeev (KSBA) compactification (cf., e.g., the
survey [30]) and the observation that it is a moduli scheme of K-stable varieties
([40, 41], also [4]).

Throughout this article, we work over the complex number field C unless
otherwise stated.

Notes added, part Two years after our original preprint of this paper, Boucksom-
Jonsson [7, §2] generalized the Morgan-Shalen compactification [37] which can
be also further generalized to orbifolds in [45, Appendix]. It may be convenient
to mention here that the compactification applied to Mg are different from our
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compactification. More precisely, although it can be set-theoritically identified with

ourMg
wT

but has different topology. See [45, Theorem 3.7] for the details.
Also, after that, we had other further developments with Yoshiki Oshima for the

case ofAg and moduli of K-trivial varieties case (cf., [46]). In loc.cit, we put a focus
on the moduli of K3 surfaces, after the works of [22, 23, 31].

2 Gromov-Hausdorff Compactification of Mg

2.1 Precompactness

For each compact Riemann surface of genus g(≥ 2), we put rescale of the Kähler-
Einstein metric with the diameter 1.2 Recall that the Kähler-Einstein metric is
nothing but the famous Poincaré metric in this case. The first point we should clarify
is the precompactness of Mg with the associated Gromov-Hausdorff distance (for
its definition we refer to e.g. [9, Chapter 7]) on it. We denote the Gromov-Hausdorff
distance as dGH. Recall that the precompactness of a subset of the space of all
compact metric spaces means its closure with respect to the Gromov-Hausdorff
topology is compact. During the process of degenerations i.e., going to boundary of
Mg, the curvature tends to −∞, so we can not apply the Gromov’s precompactness
theorem [20] in our situation. Instead we can apply the following theorem of Shioya
[48] and the Gauss-Bonnet theorem to prove it.

Theorem 2.1 ([48, Theorem 1.1]) For two fixed positive real numbersD > 0 and
c > 0, consider the set S(D, c) of closed 2-dimensional Riemannian manifolds
(R, d) with

(i) the diameter diam(d) < D
(ii) and the total absolute curvature

∫
R
|K(R,d)|vol(R) < c where K(R,d) and

vol(R) denotes the Gaussian curvature and the volume form with respect to
the metric d .

Then the set S(D, c) is precompact with respect to the associated Gromov-
Hausdorff distance.

By applying the above theorem, we get the following desired precompactness.

Corollary 2.2 (Mg, dGH) is precompact.

First proof It directly follows from the Shioya’s theorem above (2.1) since our total
absolute curvature is constant due to the Gauss-Bonnet theorem. ��

2Readers will find later that this specific constant 1 does not have any specific meaning as we only
meant to fix it, so we can rather set it to be any fixed positive constant.
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We include another proof of Corollary 2.2 in the next section, in which we also
classify all the Gromov-Hausdorff limits.

2.2 Gromov-Hausdorff Collapse of Riemann Surfaces

Before stating a theorem, we precisely fix some graph theoretic terminology we use
in this paper.

Definition 2.3 In the present paper, a metrized (finite) graph means a finite
connected non-directed graph with finite positive lengths attached to all edges. It is
not necessarily simple, i.e., loops and several edges with the same ends are allowed.
A contraction of a finite graph is a graph which can be obtained from the original
graph by contracting some of its edges.

The main result of this section is the following theorem, which implies the
precompactness of Mg and also classify all the possible Gromov-Hausdorff limits
of compact hyperbolic surfaces while fixing their diameters.

Theorem 2.4 Let {Ri}i∈Z>0 be an arbitrary sequence of compact Riemann surfaces
of fixed genus g ≥ 2. Suppose {(Ri, dKE

diam(Ri )
)}i converges in the Gromov-Hausdorff

sense. Here dKE denotes the Poincaré metric3 on each Ri and its diameter is
diam(Ri).

Then the limit is the metric space associated to either

(i) a metrized graph of diameter 1 or
(ii) a compact Riemann surface of genus g.

Assume furthermore that the sequenceRi converges to [R∞] ∈ MDM
g (which can

be always be achieved by passing to a subsequence since M
DM
g is compact). Then

if [R∞] ∈ Mg we are in case (ii) and Ri converges in the Gromov-Hausdorff sense
to the metric space underlying R∞; if, on the other hand, [R∞] �∈ Mg then we are
in case (i) and the Ri converges to the metric space underlying a metrized graph
whose underlying graph is a contraction of the dual graph of R∞.

Conversely, any metrized graph with diameter 1 whose underlying graph is a
contraction of some (possibly 0) edges of the dual graph of a stable curve of genus
g, can occur in this way (i).

Proof We fix a reference compact Riemann surface S and regard the Teichmuller
space Tg as the set of marked compact Riemann surfaces [φ : S %−→ R] where we
only care of the isotopy type of φ.

First we briefly recall the basic of the pair-of-pants decomposition of S, which we
abbreviate as pants decomposition from now on for short, and later we will explain

3I.e., the hyperbolic metric which is also a Kähler-Einstein metric, hence the notation.
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how to apply it.

S =
⋃

0≤a≤g−2

Pa

with the associated simple closed boundary geodesics s1, · · · , s3g−3. Then in turn it
naturally induces the corresponding pants decompositions of R

R =
⋃

0≤a≤g−2

Pa(R)

for all elements [φ : S %−→ R] of Tg since we can take simple closed boundary
geodesics in the corresponding homology classes. The associated simple closed
boundary geodesics {sj (R)}j of R gives the (real analytic) Fenchel-Nielsen coordi-
nates on it

(l1, · · · , l3g−3; θ1, · · · , θ3g−3) : Tg ∼= R
3g−3
>0 × (R/2πZ)3g−3,

where lj is the length of sj and θj is corresponding twist parameters (cf., [26]). Then
the following well-known theorem is due to L. Bers.

Fact 2.5 ([5, Theorem 2 for the type (g, 0) case]) Fix a positive integer g ≥ 2.
Then there is a uniform constant Cg such that for an arbitrary compact hyperbolic
Riemann surface R, there is a pant decomposition whose corresponding lengths lj
of any dividing simple closed geodesic satisfy lj < Cg.

We now argue as follows. Suppose we are given a sequence {Ri}i∈Z>0 of compact
Riemann surfaces of the fixed genus g ≥ 2, as in the statement of Theorem 2.4. We
replace it by its certain subsequence, after several steps as follows. Firstly, due to

the compactness of the Deligne-Mumford compactification Mg
DM

, we can replace
the sequence {Ri} by subsequence, if necessary, to ensure the existence of a limit

of [Ri] inside Mg
DM

. By applying the Bers’ Theorem 2.5, for each i, we have a
pants decomposition satisfying the assertion of Theorem 2.5, i.e., all the lengths of
the corresponding simple closed geodesics are less than a uniform constant Cg . For
each Ri , we fix such a pants decomposition from now on. On the other hand, note
that for each pants decomposition there is a corresponding graph whose vertices are
(pair of) pants while edges are common geodesics is 3-regular with 2g− 2 vertices.
We call this graph the combinatorial type of the pant decomposition. See for instance
[24, around Definition 1.5] for the details. The number of edges of such a graph is
3g−3 so obviously there is only a finite possibilities for such graphs. Hence, there is
only a finite possibilities of combinatorial type of pants decomposition. Therefore,
by passing to an appropriate subsequence of {Ri} again, if necessary, we can and do
assume the combinatorial type of the pants decompositions we took, which satisfies
the condition lj < Cg of Fact 2.5, stays fixed. By the upper bound of lj , by further
passing to an appropriate subsequence of {Ri} again, if necessary, we can and do
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assume moreover that limi→∞ lj (Ri) = Lj for some constants Lj ∈ [0, Cg] ⊂
[0,∞) for each j .

The simple geodesics sj (Ri) of Ri with Lj = 0 are representing the vanishing
cycles, i.e., all the cycles that shrink to nodal singularities of the corresponding limit

in the Deligne-Mumford compactification Mg
DM

. We make the following claim,
although the author believes this has been known to or expected by the experts.

Claim 2.6 There is an index j with Lj = 0, if and only if the diameter of the non-
rescaled hyperbolic metrics (i.e., with constant Gaussian curvature −1) tends to
+∞. This is also equivalent to that the limit of the sequence [Ri] does not belong
toMg .

Otherwise, passing to a subsequence, the Gromov-Hausdorff limit R∞ of {Ri}i
exists as a compact Riemann surface of the same genus g.

Proof of Claim 2.6 If all the Lj are non-zero, then the compactness of

{(l1, · · · , l3g−3; θ1, · · · , θ3g−3) | Li − ε ≤ li ≤ Cg for 1 ≤ ∀i ≤ 3g − 3} ⊂ Tg
for small enough positive real number ε straightforwardly implies that the corre-
sponding points [Ri] ∈ Tg converge inside Tg.

Now, we denote the space of all compact metric spaces with the Gromov-
Hausdorff topology as CMet. Here, we recall the following standard fact well-
known to experts.

Fact 2.7 (Gromov-Hausdorff continuity on Mg) If we consider the map
	 : Mg → CMet, sending [R] to the underlying topological surface with the
Poincaré metric. Also define 	1 : Mg → CMet by sending [R] to the underlying
topological surface with the rescaled Poincaré metric with the diameter 1. Then
these 	 and 	1 are both continuous with respect to the complex analytic topology
onMg.

This is fairly standard but we write the arguments for convenience. Obviously, the
continuity of 	1 follows from that of 	 because the diameters of the hyperbolic
metrics vary continuously due to the continuity of 	. In turn, the continuity of
	 follows, for instance, from the interpretation of the family as a family of the
quotients of the upper half plane by continuously deforming Fuchsian subgroup of
PSL(2,R). (The isomorphic class of the Fuchsian group is not changed, as it is the
isomorphic class of the fundamental group of genus g compact Riemann surface.)
Or it also follows from the implicit function theorem applied to the constancy of
the Gaussian curvature. Hence, in particular, the diameters of the (non-rescaled,
original) Poincaré metrics of Ri are bounded and the Gromov-Hausdorff limit of Ri
with the rescaled Poincaré metric is still a compact Riemann surface of genus g.

On the other hand, if Lj = 0 for at least one index j , then the famous collar
theorem [28] applies and directly shows that for each i there is a cylinder (called
“collar”) inside Ri , including the closed geodesic lj , whose diameter tends to +∞.
We end the proof of the Claim 2.6. ��
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From now on, we assume these equivalent conditions are satisfied i.e., [R∞] /∈
Mg. Otherwise, the subsequence converges to a compact Riemann surface (i.e.,
“does not degenerate”), which corresponds to the case (ii) of Theorem 2.4. This
is again because of the continuity of the surfaces with the rescaled Poincaré metrics
parametrized byMg with respect to the Gromov-Hausdorff topology.

Let us denote the diameter of the Poincaré (hyperbolic) metric dKE of Ri as di .
Then recall that what we are analysing is the metric behaviour of (Ri,

dKE
di
) and we

wish to determine its Gromov-Hausdorff limit. For that, we analyze the behaviour of
the pant (Pa(Ri),

dKE
di
) in this proof. We denote the three boundary geodesics of the

pants as sb(Pa)(b = 1, 2, 3), or sb(Ri;Pa)(b = 1, 2, 3) for precision, which may
partially be identified in the Riemann surface Ri i.e., e.g. s1(Ri;Pa) = s2(Ri;Pa)
can be possible. From now on, whenever the context is clear, we sometimes omit
Ri and simply denote the pants of Ri as Pa , not Pa(Ri) and its boundary geodesics
sb(Pa)(b = 1, 2, 3) rather than sb(Ri;Pa)(b = 1, 2, 3).

Let us recall a standard fact in the Teichmuller theory (cf., [26, Chapter 3,
§1.5, §2]) which claims that the pant Pa(Ri) can be cut and separated into two
isometric hyperbolic hexagonsQa(Ri) andQ′a(Ri) canonically by geodesics which
connect different boundary geodesics of the pant Pa(Ri). Let us also recall from [26,
Chapter 3, §1.5, §2] that the interior part of the hyperbolic hexagonsQa(Ri), with
its hyperbolic metric, can be regarded as an open subset of a unit disc with the
hyperbolic metric dKE, in a unique way up to the isometry group of the disk i.e.,
PGL(2,R). We denote the center of the unit disc as p.

Let us call the 3 boundaries of the hexagon which were originally part of
the boundaries of the pant Pa as boundary geodesics. In any case, the important
invariants are the lengths of the 3 boundary geodesics which are half of the lengths
of the boundary geodesics sb(Ri;Pa)(b = 1, 2, 3) of the original pant Pa . Indeed,
it is a well-known fact that biholomorphic type ofQa (so also for Pa) is determined
by the lengths of the three boundary geodesics (cf., e.g., [26]). We now study the
Gromov-Hausdorff limit of the hyperbolic hexagon Qa while fixing diameters.
Then, recall from the Claim 2.6, it follows that dKE(p, sb(Ri;Pa)) → +∞ for
i →∞ if and only if the corresponding boundary geodesic sb(Ri;Pa) shrinks i.e.,
length(sb(Ri;Pa))→ 0 for i →∞.

To each Pa , we associate a tree �a , just as a combinatorial graph, with

• the vertex set V (�a) := {va} � {wb | sb(Ri;Pa) shrinks} and
• the edge set E(�a) := {vawb | sb(Ri;Pa) shrinks}.

Denote the diameter of the hyperbolic hexagonQa(Ri) with respect to Poincaré
metric as di(a). (Recall that the diameter of whole Ri is di .) We analyze the
asymptotic behaviour of (Ri,

dKE
di
) by further “decomposing” into that of Qa(Ri)

as above.
First we fix a constant 0 < ε - 1 so that the sequence of the half pant {Qa(Ri)}i

satisfies that the diskD(p, (1−ε)) with center p and radius (1−ε) contains all non-
shrinking boundary geodesics of Qa(Ri). Then thinking of the distance between
each point in (Qa(Ri) ∩D(p, (1 − ε)) and p, we straightforwardly obtain that the
diameter of {(Qa(Ri)∩D(p, (1−ε)), dKE)}i is bounded above by Cε . On the other
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hand, the diameters of the collar neighborhoods of shrinking boundary geodesics
tends to +∞ by the collar theorem [28]. Hence, we have that

Claim 2.8 (Diverging hyperbolic hexagon) di(a)→∞ for i →∞ if and only if
there is an index b with length(sb(Ri;Pa))→ 0 for i →∞.

Claim 2.9 (Limit of hyperbolic hexagon, I) If we consider the sequence
(Qa(Ri),

dKE
di(a)

) for i = 1, 2, · · · , it has the Gromov-Hausdorff limit as a metrized
tree �a in the case when length(sb(Ri;Pa)) → 0 for some b when i → ∞.
Otherwise its Gromov-Hausdorff limit is still some hyperbolic hexagon.

The last sentence of Claim 2.9 holds because, for any b, length(sb(Ri;Pa))
converges to a positive real number from our assumption when i →+∞ and di(a)
are bounded above, converging to a positive real number as well. Thus, the Gromov-
Hausdorff limit of (Qa(Ri), dKE) can be taken simply as the Hausdorff limit inside
the unit disk which implies the desired claim.

Next, we compare the diameters of each hyperbolic hexagon Qa(Ri) and the
whole Riemann surface Ri .

Claim 2.10 (Diameters comparison)

(i) For any i there is at least oneQa(Ri) (or equivalently, its index a) such that

di ≤ 12(g − 1)di(a). (1)

(ii) Suppose that an index a satisfies that di(a)→∞ when i →∞. Then, for any
a and large enough i, we have

di(a)

2
≤ di. (2)

Proof of Claim 2.10 The second assertion (ii) easily follows from the definition.
Indeed, it can be proven as follows. First we can assume di(a) is the length of
a geodesic γ : [0, 1] → Ri connecting two points γ (0), γ (1) in the union of the
boundary geodesics. Then its midpoint γ ( 1

2 ) and one of the endpoints, say γ (1),
of the geodesic has the same distance in whole Ri i.e., after gluing the boundary
geodesics. Hence (ii) follows.

Our first assertion (i) is proved as follows. Take a shortest geodesic δ : [0, 1] →
Ri connecting two points in Ri with length(δ) = diam(Ri). An elementary
observation shows that the maximum number of the connected components of
Im(δ) ∩Qa(Ri) is at most 3 so that we have

length(Im(δ) ∩Qa(Ri)) ≤ 3di(a) (3)

length(Im(δ) ∩Q′a(Ri)) ≤ 3di(a). (4)

Indeed, if we write

Ia := {t ∈ [0, 1] | δ(t) ∈ Qa} = [α1, α2] � · · · � [α2m−1, α2m],
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with 0 ≤ α1 ≤ α2 ≤ · · ·α2m, then note that δ(α2) and δ(α2m−1) are connected
by a geodesic of length at most di(a), by the definition of di(a). Since δ is taken
to be a shortest geodesic,

∑
1≤k<m length(δ([α2k−1, α2k])) ≤ di(a) which gives

our desired estimate (3), and also (4) similarly. Hence, by summing up, we obtain
di ≤ 6

∑
a di(a). Since #{a} = 2(g − 1), we obtain the desired inequality (2). ��

From the Claims 2.8 and 2.10 (i),(ii) we have that di →∞ if and only if there is
some Pa with di(a)→∞. Also it follows from the Claim 2.10, if Pa satisfies that
for some b length(sb(Ri;Pa))→ 0 for i →∞, by further passing to a subsequence
we can assume that Ri satisfies that

di(a)

2
≤ di ≤ 12(g − 1)di(a),

for a fixed a, say a = 1. On the other hand,

di(a)

2
≤ di

holds for any a. Hence, combining Claims 2.9 and 2.10, we have that

Claim 2.11 (Limit of hyperbolic hexagon, II) Under our assumption that [R∞] /∈
Mg, if we consider the sequence (Qa(Ri),

dKE
di
) for i → ∞, it converges in the

Gromov-Hausdorff sense to either a metrized tree � or a point.

The convergence to the point occurs exactly when
di

di(a)
→ +∞ for i → +∞.

From the above Claim 2.11, it follows that the global Gromov-Hausdorff limit of
(Ri,

dKE
di
) is a metrized graph which is obtained by gluing all �a at wb’s whose

corresponding boundary geodesics sj are the same in the whole Riemann surface
Ri . The resulting graph is either the dual graph of the corresponding stable curve
R∞ or a graph obtained from the dual graph after contracting several edges to points.
(We simply call such procedure a contraction of a graph in this paper.)

Now let us move on to the proof of the converse direction (the last paragraph of
the statements of Theorem 2.4). That is, starting from an arbitrary finite metrized
graph � of diameter 1 which satisfies the assumption of the last paragraph of
Theorem 2.4, we wish to prove there is a sequence of compact Riemann surfaces
Ri(i = 1, 2, · · · ) of genus g such that � is the Gromov-Hausdorff limit of (Ri,

dKE
di
)

i.e., the rescaled Poincaré metrics of diameter 1.
We fix an arbitrary stable curve R whose dual graph contracts to the underlying

graph of �. Such R exists due to our assumption on �. Then take a smooth point in
each of the irreducible components of R and denote them by pi . Here the index i
corresponds to each irreducible component. We take a semi-universal deformation
of R as {R!t }!t∈U with an open neighborhood U ′ ⊂ C3g−3 of !0, satisfying R!0 = R
and take pi,!t of R!t with pi,!0 = pi which is continuous with respect to !t . From here,

we use a smaller open neighborhood of !0 denoted by U ⊂ U ′ with Ū ⊂ U ′. Note
that there is a discriminant locusD ⊂ U such that !t /∈ D if and only if R!t is smooth.
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We fix a uniform pants decomposition of R!t so that the nodes xk of R are shrunk
dividing geodesics sk of the decomposition. For each node xk of R connecting
the irreducible components including pi and pj , there is a corresponding shortest
geodesic γk,!t connecting pi,!t and pj,!t if R!t is smooth which intersects with sk .

Recall that there is a standard submersive holomorphic map φ = {φk}k : U →∏
k Kur(xk), where Kur(xk) stands for the Kuranishi space underlying a semi-

universal deformation of the node singularity xk, and φk is induced by restricting
the deformation of R to a neighborhood of each node xk . In this case, Kur(xk) can
be regarded as an open neighborhood of 0 in C and the discriminant locus D is the
divisor ∪kφ−1

k (0). For the proof of the fact that φ is submersive, i.e., its differential
dφ is surjective, see [16, Proposition 1.5]. Since the distance of pi, pj for i �= j in
R with respect to the hyperbolic metric is +∞ (i.e., not defined as a real number),
for a sequence {!tm}m=1,2,··· ⊂ U \D,

length(γk,!tm;R!tm)→+∞

form→∞ if and only if φk(!tm)→ !0.
On the side of �, for each node xk of R, also an edge γk of � corresponds, which

may be possibly contracted to a point. If it is contracted, we regard it as an edge of
length 0.

From the above discussions with the surjectivity of φ, for large enough positive
integersm 1, there is !tm ∈ U \D

length(γk, !tm;R !tm) = m · length(γk;�) if γk is not contracted in � (5)

length(γk, !tm;R !tm) =
√
m if γk is contracted in �. (6)

Then, the above taken sequence of smooth compact Riemann surfaces {R!tm}m with
the rescaled Poincaré metric converges to a metrized graph and from (5) and (6), the
limit metrized graph coincides with �. We complete the proof of the last paragraph
of Theorem 2.4. ��
Remark 2.12 A while after the first version of this paper, we essentially gave
another (logically independent) more moduli-theoritic proof of Theorem 2.4 in the
sequel [45] by using [54]. Precisely speaking, Theorem 2.4 follows from [45, §3.2.1,
Theorem 3.7 and its proof] which depends on [54].

Remark 2.13 In the simpler case of g = 1, i.e., elliptic curves case, we also have
a similar phenomenon as discussed in the introduction of [22]. It can be regarded
as the easiest prototypical example of the sequel paper [45] on the moduli spaces
of principally polarized abelian varieties and also well-known to the experts of
the Strominger-Yau-Zaslow mirror symmetry conjetures. Thus we give only brief
description as an introduction to our sequels [45, 46].
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Suppose there is a sequence of elliptic curve {C/(Z+Zτi)}i where τi belongs to
the standard fundamental domainW of the upper half plane H modulo the modular
group SL(2,Z), that is

W := {τ ∈ H | |Re(τ )| ≤ 1, |τ | ≥ 1}.

If Im(τi) does not diverge, then after passing to a subsequence, they converge in the
Gromov-Hausdorff sense to an elliptic curve. If Im(τi) diverges, then the Gromov-

Hausdorff limit of a subsequence of

{(
Ri,

dKE

diam(dKE)

)}

i=1,2,···
is S1( 1

2π ), the

circle of radius 1
2π . On the other hand, for a family of elliptic curves over the

punctured disk, the compactified Néron model after suitable base change is well-
known to be n-gon with some n ∈ Z>0. Thus their dual graphs are topologically S1,
which is homeomorphic to the Gromov-Hausdorff limit discussed above.

Remark 2.14 For the case of curves with punctures (marked points), i.e., elements
of Mg,n with n ≥ 1, as the natural hyperbolic metric has hyperbolic cusp
singularities of infinite diameters around the punctures, we have not been able to
make a suitable formulation to study Gromov-Hausdorff collapses.

Professor Y-G.Oh kindly pointed out to me that a different but similar kind of
“graph-like thin” metrics also appear as “(general) minimal area metric” studied by
Zwiebach and Wolf-Zwiebach (cf., e.g., [53, 55]) for constructing closed string field
theory. The metrics are expected to be isometric to flat semi-infinite cylinders around
the punctures. The graph structure is regarded as a version of Feynman diagrams
there.

Remark 2.15 Our Theorem 2.4 suggests that the conjectures of Gross-Wilson [22,
§6], Kontsevich-Soibelman [31] and Gross-Siebert (cf., [21]) on the correspondence
of Gromov-Hausdorff limit and dual complex of degeneratingCalabi-Yau manifolds
may well have an analogue in negative Ricci curvature Kähler-Einstein case, i.e.,
those projective manifolds with ample canonical classes.

Let us trace again the proof of our Theorem 2.4 to see some analogy with
the tropicalization of the Berkovich analytification [1]. The one page arguments
below does not contain any substantially concrete results and rather we mean
to give a re-interpretation of our Theorem 2.4 and compare with [1]. In our
theorem 2.4, starting with an arbitrary sequence of compact hyperbolic surfaces,
we took a nice subsequence which converges to a stable curve in the Deligne-
Mumford compactification and also converging in the Gromov-Hausdorff sense
(while fixing the diameter). Let us call such sequence of compact hyperbolic
surfaces of genus g(≥ 2) “strongly convergent sequence”. We denote the set of
such strongly convergent sequences of compact hyperbolic Riemann surfaces as4

SMg .

4Here, S stands for a sequence.
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Definition 2.16 For the positive integer g ≥ 2, let Sg be the set of the underlying
metric spaces of the metrized graphs which appear as the Gromov-Hausdorff limits
of sequences of compact Riemann surfaces of genus g(≥ 2), and associate Gromov-
Hausdorff distance structure on it.

Note that Sg is also compact by Theorem 2.4 and the simple fact that Sg is closed
under the Gromov-Hausdorff convergence.

Then what we have constructed in the proof of Theorem 2.4 is the following two
kinds of limiting maps

r : SMg → Mg
DM

(7)

which maps {Ri} to the limit (Deligne-Mumford) stable curve and

t : SMg → Sg (8)

which maps {Ri} to the Gromov-Hausdorff limit. Furthermore, we proved that r and
t are compatible in the sense that the underlying graph of t ({Ri}) is a contraction of
the dual graph of the limit stable curve r({Ri}).

On the other hand, in the recent paper [1] by Abramovich-Caporaso-Payne, the
following is proved.

Fix an algebraically closed base field k with trivial valuation. If we consider the Berkovich
analytification Mg

an
[2] of the Deligne-Mumford compactification Mg , then the deforma-

tion retraction to the Berkovich skeleton [3] is the “tropicalization” map towards the moduli
of tropical curves of genus g.

Note that the Berkovich analytification parametrises stable curves over valu-
ation fields which contains k (with trivial valuation) and it can be regarded as
(a subspace of) this as an “algebro-geometric” analogue of the set of strongly
convergent sequence of compact Riemann surfaces SMg. From this viewpoint,
their tropicalization (deformation retract) is an analogue of our map t . The analogue

of r in the Berkovich geometric setting [1] is the reduction mapMg
an→ Mg

DM
.

2.3 The Construction of Mg
GH

We define our Gromov-Hausdorff compactification of the moduli space of curves,
first set-theoretically as

Mg
GH := Mg � Sg.

Recall that we have defined Sg in Definition 2.16 as the moduli space of the
underlying metric spaces of the metrized graphs which appear as the Gromov-
Hausdorff limits of sequences of compact Riemann surfaces of genus g(≥ 2). Then
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we put a topology on it, whose open basis consists of the following two kinds of
subsets:

(i) open subsets ofMg (with respect to the complex analytic topology) and
(ii) the metrics balls with centers are in Sg .

What we mean by the metric ball, with its center [G] ∈ Sg ⊂ Mg
GH

(G is a
metrized graph) and radius r ∈ R>0, is simply defined as

B([G], r) := {[C] ∈ MgGH | dGH([C], [G]) < r}.

The obtained topological space Mg
GH

is compact due to our Theorem 2.4. It also
satisfies the Hausdorff separation axiom simply because the Gromov-Hausdorff
limit as compact metric space is unique as general theory (cf., [9]).

The readers may wonder why we do not simply use the notion of the metric
completion above. However, note that the complex conjugate ι ∈ Aut(C/R) reverses
the natural orientation of the corresponding Riemann surface, which does not

change it metric space structure. A subtle technical point here is that Mg
GH

is not
exactly the metric completion with respect to the Gromov-Hausdorff topology, of
the set of compact Riemann surfaces of genus g by regarding the Riemann surfaces
just as metric spaces. That is because it would discard the complex structures and
ignore the effect of ι above (cf., e.g., [47, 49]).

Recall that Sg is defined as the moduli spaces of the underlying metric spaces
of our limit metrized graphs as in Theorem 2.4. For each finite (metrized) graph �,
let us denote the number of 1- valent vertices by v1(�) and denote the first betti
number of � by b1(�). Then, more specifically and concretely, Sg can be described
as follows.

Proposition 2.17 The metric spaces parametrized by Sg can be characterized by a
purely topological condition that the underlying topological spaces of the metrized
graphs satisfy v1(�)+ b1(�) ≤ g.
Note there is a subtle distinction between the metrized graph and the underlying
metric space, which is simply a 1-dimensional CW complex with a metric. The
reason is that the underlying metric space does not see the 2-valent vertices. It is
also not enough to consider metrized graphs without 2-valent vertices since a circle
can not be obtained in that way.

Proof of Proposition 2.17 From Theorem 2.4, we only need to specify the class of
dual graphs of stable curves with genus g.

A stable curve C of genus g whose irreducible decomposition is ∪iCi with dual
graph � satisfies

g =
∑

i

g(Cνi )+ b1(�), (9)
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where ν denotes the normalization and b1 denotes the first Betti number. From the
stability condition, for each component Ci which corresponds to a 1-valent vertex
of �, g(Cνi ) ≥ 1. This is essentially the only numerical stability condition. Thus we
have g =∑

i g(C
ν
i )+ b1(�) ≥ v1(�)+ b1(�). Tracing back the above discussion,

it is also easy to see that it is a sufficient condition as well. ��
Remark 2.18 One remark, which the author hopes to be useful, is that in the above
characterisation of metrized graphs which are parametrised in Sg , rather than putting
the “diameter 1” condition, it may be easier to impose that “the sum of lengths of
edges is 1” when we try to concretely describe the structure of our compactifications.
Note that these two moduli spaces are naturally homeomorphic, simply by rescaling
the metrics on our metrized graphs.

3 Related Moduli Spaces and Comparison

In this section, we further studyMg
GH

somewhat indirectly by comparing with other

moduli spaces in literatures, and also construct some variants of Mg
GH

on the way,

including what we call tropical geometric compactifications and denote byMg
T

.

3.1 Comparison with Tropical Moduli Spaces

Recently Brannetti-Melo-Viviani [8] constructed moduli spaceMtr
g of the weighted

metrized graphs, i.e., (�,w : V (�) → Z≥0) of where � is a metrized graph such
that

• 1-valent vertex v must have w(v) ≥ 2,
• 2-valent vertex v must have w(v) ≥ 1,
• b1(�)+∑

v∈V (�) w(v) = g,

with a natural topology (as well as some finer “stacky fan” structure) on it. Caporaso
[10] introduced its log versionsMtrop

g,n . See [8, 10] for the details. The moduli space
Mtr
g is similar to our boundary Sg but there is an essential difference which is

the presence of the weight function w above that morally encodes genus of each
component of the limit Deligne-Mumford stable curves.

Similarly to what is done in [8, 10, 15], the combinatorial type of the underlying
graph of a metrized graph gives a stratification on Sg such that each strata is a finite
quotient of a simplex. A basic property of our moduli space Sg is the following.

Proposition 3.1 The function Sg , [�] �→ v1(�) + b1(�) is a lower semicontinu-
ous function on Sg with respect to the Gromov-Hausdorff topology which has been
previously considered.
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Proof The assersion follows easily from Theorem 2.4 combined with the precom-
pactness (Corollary 2.2) but let us give a more straightforward combinatorial proof.

It is enough to see that if we contract one edge e, the function v1 + b1 does not
increase. If the edge e is a loop, then the process decreases b1 by 1 and v1 increases
at most 1. If the edge e is not a loop, then the contraction does not change the
homotopy type of the graph so that it keeps b1 unchanged, and v1 does not increase
(it may decrease by 1 or 2). ��

Note that through the modular interpretations, there is a sequence of canonical
closed embeddings

Sg ↪→ Sg+1 ↪→ · · · , (10)

while other compactifications of moduli of curves and the moduli of weighted
tropical curves by [8, 10, 11] do not have this chain of canonical inclusions.

Inside the moduli spaceMtr
g of (weighted) tropical curves in the sense of [8], let

us consider the closed locus Swtg which parametrizes those with the diameter 1 (“wt”
of Swtg stands for weights. )

Proposition 3.2 We have natural morphisms as follows.

∂Mtr
g :=Mtr

g \ {a point with weight g} ∼= Swtg × R>0 � Swtg � Sg. (11)

Sg has a finite stratification which satisfies that each strata is a finite group quotient
of an open simplex and Sg is “purely” (3g − 4) dimensional for each g(≥ 2) in the
sense that, if we denote the union of (3g − 4)-dimensional strata as Soog ⊂ Sg , then
it is an open dense subset. In addition, the last morphism of (11) is a proper map
such that each fiber over Soo

g is finite.

Proof A tropical curve in the sense of [8] has finite non-zero diameter unless it
is a point, so that we get the first isomorphism. Secondly, starting from a tropical
curve which is not topologically a point, just by forgetting the weights and the 2-
valent vertices, we get the underlying metric space of a metrized graph. It defines
the last morphism Swtg � Sg , which we denote as r . It follows straightforward
from the topology on Swtg in [8] that this morphism is continuous and this is
surjective by Proposition 2.17. From the compactness of Swtg and Sg , it follows
automatically that the morphism is proper. Note that for any point p in Swtg which

has 2-valent vertices, r−1(r(p)) is non-finite. It is because that for each metric space
X corresponding to a point in Sg , if it is underlying metric space of certain weighted
tropical curve (weighted metrized graph) � parametrized in Swtg , once we know the
locations of vertices in X, there are only finite choices of � which corresponds to
the decomposition of g − b1(X) into non-negative integer weights attached to the
vertices.

It is easy to see that Sg has a natural finite stratification by the homeomorphic
class of the underlying graphs. Each strata can be seen as the moduli of metrized
graphs with the same underlying graph, with the sum of the length of edges are
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1 by rescaling the metrics. Hence it is homeomorphic to the quotient of an open
simplex with respect to a linear action of a finite group, which is the automorphism
group of each graph. Next we proceed to the proof of the fact that Sg is purely
3g − 4-dimensional as in the statement of Proposition 3.2. Indeed, for any given
(underlying metric space of) a metrized graph � of the diameter 1 which satisfies
v1(�) + b1(�) < g, by attaching small circles or short edges and rescaling, the
corresponding point [�] ∈ Sg can be easily perturbed to a point inside the strata with
v1 + b1 = g. The strata can be easily checked to have dimension 3g − 4, as 3g − 3
is the number of edges inside � following elementary graph theory. This fact is also
well known in the algebro-geometric field of study of the so-called Mumford curves.
Thus, the union Soog of (3g−4)-dimensional cells form open dense subset. For each

p = [�] ∈ Soog , the r-fiber r−1(r(p)) = {p} since for a point [�′] in the fiber, the
vertices of the graph�′ are nothing but the non-smooth points of r(�′) = r(�) as an
underlying topological space and furthermore�′ does not have any positive weights
on the vertices because of the formula (9). We complete the proof of Proposition 3.2.

��

3.2 Construction of Mg
T

It is possible to modify our construction of Mg
GH

to make more compatibility with
the above “weighted tropical moduli spaces” of [8, 10, 11]. That is, for a collapsing
sequence of genus g compact Riemann surfaces as in Theorem 2.4, we can encode
the information of the genera of the irreducible components of the limiting stable
curves on the limiting graph. More precisely speaking, first we consider the set

Mg
T :=Mg � Swtg ,

on which we put a topology as follows. A subset C of Mg
T

is closed if and only
if

• C ∩ Swtg is closed in Swtg and
• any Gromov-Hausdorff collapsed graphs of compact Riemann surfaces which are

in C ∩Mg , attached with the genera of components of the normalization of the
limit stable curve in [16] sense, which we suppose to exist, is actually in C∩Swtg .

The compactness, the Hausdorff property of Mg
T

, and the fact thatMg is open and

dense inside Mg
T

all follow straightforwardly from our Theorem 2.4 and its proof.

We would like to call this compactification Mg
T

of Mg as the tropical geometric
compactification ofMg .
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From the construction we have a natural continuous surjective map

Mg
T � Mg

GH
,

which restricts to the identity map on the open subsetMg .

3.3 Finite Join M≤g
GH

and Infinite Join M∞
GH

An interesting phenomenon is that, as the following definitions show, our Gromov-

Hausdorff compactification Mg
GH

naturally patches together for different g thanks
to the sequence of the canonical inclusions (10) of Sg .

Definition 3.3 The finite joins of our Gromov-Hausdorff compactifications are
defined inductively as topological spaces

M≤0
GH := M0

GH = { Riemann sphere CP1} (singleton),

M≤1
GH := M1

GH :=M1 � {S1( 1

2π

)}(= A1
T

in the next section )

(one point compactification)

and for g ≥ 2 as

M≤g
GH := (M≤(g−1)

GH ∪MgGH
)/ ∼,

where the equivalence relation ∼ is simply the identification of the closed subset

Sg−1 ⊂ Sg and another closed subset Sg−1 ⊂ M≤(g−1)
GH

. From the definition, we
have natural inclusion relations

· · ·M≤(g−1)
GH ⊂ M≤gGH · · · .

Then we set

M∞
GH := lim−→

g

M≤g
GH = ∪gM≤gGH

,

and call it infinite join of our Gromov-Hausdorff compactifications.
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The boundary ofM∞
GH

by which we mean the natural subset ∪g(∂MgGH = Sg),
should be regarded as a tropical version of the space5 “M∞” introduced and studied
recently by Ji-Jost [27].

Also note thatM∞
GH

is connected and all our Gromov-Hausdorff compactifica-

tionMg
GH

is inside this infinite join.

3.4 Comparison with the Outer Spaces

There is a classical theory of the outer space Xn by Culler-Vogtman [15], which
is an analogue of the Teichmuller space for metrized graphs. There, the analogous
discrete group to the mapping class group is the outer automorphism group Out(Fn)
of the free group Fn with rank n. From now on, we use g instead of their n to unify
our notation.

Recall that the quotientXg/Out(Fg) parametrizes graphs � with b1(�) = g with
v1(�) = 0.

We introduce another moduli space of graphs as a subset of Sg (with the induced
topology) as

Sog := {� ∈ Sg | v1(�)+ b1(�) = g} ⊂ Sg.

It is simply the complement of Sg−1 ⊂ Sg by the definition. The following
proposition essentially goes back to [13].

Proposition 3.4 There is a canonical cellular open embedding Xg/Out(Fg) ↪→
Sog(⊂ Sg). The image of Xg/Out(Fg) is open dense in Sg (thus so is Sog ).

Proof First of all, it follows from the lower semicontinuity of the first Betti number
of metrized graphs b1(�) thatXg/Out(Fg) is an open subset of Sog . For each � ∈ Sog
with v1(�)+ b1(�) = g and 0 < ε - 1, we define graph(s) φε(�) as follows. For
each leave vw where v is a 1-valent vertix, we put a small loop of length εl(vw).
Doing the same for all edges and rescale the metric on whole graph to make its
diameter 1, we get a metrized graph which we denote as φε(�). This construction
naturally defines a perturbation of elements of Sog to those of Xg/Out(Fg). The fact
that all of these are unions of relative interiors of the cells with respect to that CW
complex structure follow straightforward from the definitions.

We also need to prove Sog is dense inside Sg . We provide an elementary proof
for convenience. Let us analyze the neighborhood of � ∈ Sg−1 ⊂ Sg . Starting
from any such � with a point p ∈ �, we can similarly consider �’s deformation
ψt (�) ∈ Xg/Out(Fg) for t > 0, for example, as follows. Set v1(�)+b1(�) = g−d .
Taking a point p, we define ψt (�) as a union of � and a bouquet i.e., the union of d

5They call it “universal moduli spaces”.
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length t loops which passes through p. Thus in particular Xg/Out(Fg) is open and
dense in Sg and hence so is Sog as well. ��
Notes added, part We end this section with the following notes added, about the
relation with [32] which was kindly taught by its author L.Lang in June of 2015. I
appreciate him for informing it.

Remark 3.5 L. Lang defined “tropical convergence” of compact Riemann surfaces
to metrized graphs as the convergence of the ratios of the lengths of shrinking
geodesics, which represent vanishing cycles, in his [32, Definition 1.1]. As also
written in [32, v2, §1.3], that notion of convergence is not equivalent to ours, i.e.
Gromov-Hausdorff convergence of hyperbolic metrics. See more details on the
original paper [32]. The author also gives more detailed arguments in [45, §3].

4 Investigating Topology

We would like to make the first step of investigation of the topology of our
compactifications and their boundaries.

First, we recall the fact that the moduli space of smooth projective curves has
vanishing higher homology groups, proved by J. Harer [25]. His proof shows the
existence of a deformation retract via the cell complex structure of the Teichmuller
space (the so called “arc complex”).

Theorem 4.1 ([25, Theorem 4.1]) For g ≥ 2 and i > 4g − 5, we have

Hi(Mg;Q) = 0 and Hi(Mg;Q) = 0.

So combined with the Poincaré-Lefschetz duality for orbifold, we get that for i ≤
2g − 2

Hi
c(Mg;Q) = 0 and HBM

i (Mg;Q) = 0,

where Hi
c denotes the cohomology group with compact supports and HBM

i denotes
the Borel-Moore homology group.

The above Theorem 4.1 has the following consequence.

Corollary 4.2 For i < 2g − 2, we have

Hi(Mg
T;Q) = Hi(Sg;Q),

Hi(Mg
T;Q) = Hi(Sg;Q).

Proof It follows simply from the exact sequences of compactly supported cohomol-
ogy groups or the Borel-Moore homology groups. ��
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Fig. 1 The boundary S2 of M2
T

Thus the study of homology and cohomology of our Gromov-Hausdorff com-
pactification is reduced to that of the boundary for a specific range of degrees.
Motivated by it, let us study the topology6 of our boundary Sg . First, we sketch
the following cases of small g.

Example 4.3 S1 is just a point which stands for the circle of length 1. S2 is a two 2-
simplices (triangles) patched together along one of their edges for each. In one side
of the 2-simplex, the inner points parametrize a union of two circles and a segment
connecting them. The other side of the 2-simplex, the inner points parametrize a
union of circle with a segment connecting two points in the circle. We refer to the
picture below, where the parametrized metrized graphs are pictured around each
stratum (Fig. 1).

Note that obviously S1 and S2 are both contractable.

Since the open dense locus Sog of Sg is a rational classifying space of Out(Fg) as
known to [15], it has in general highly nontrivial topology. Indeed its cohomology
is those of Out(Fg) (cf., e.g., [18] for non-vanishing cohomology for g = 5 case),
we expect interesting topological structure on Sg for large g.

We define

S∞ := lim−→ Sg = ∪gSg,

the injective limit with respect to the canonical embeddings Sg−1 ↪→ Sg ↪→
Sg+1 · · · (cf., (10)). After a kind suggestion of the referee, the author learnt that our

6A while after the appearance of the first version of this paper as arXiv:1406.7772, Chan-Galatius-
Payne [12] appears which systematically studies the topology of the moduli of weighted metrized
graphs with n(> 0)-marked points i.e. the “log version” of SwTg .
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S∞ can be informally (but not logically) seen as a tropical analogue of the infinite
union of the classical moduli spaces studied in [14, 27].

While we expect that each Sg has highly nontrivial topologies in general, we
observe the following.

Theorem 4.4 The topological space S∞ is contractible. In particular, for any k ≥
0, lim−→

g

Hk(Sg;Q) = 0.

Proof Consider the cone of Sg , i.e., CSg := (Sg × [0, 1])/(Sg × {1}). It is enough
to construct a series of continuous maps {φg : CSg → S∞}g≥2 which satisfies

(i) φg maps (Sg × {1}) to a point as φg(Sg × {1}) = {the unit interval [0, 1] (as a
metrized graph)},

(ii) φg|Sg×{0} = id|Sg ,
(iii) and φg+1|CSg = φg.

Indeed, from the third condition, they glue together to form a continuous map

φ∞: CS∞ → S∞

and this gives a deformation retract of S∞ into a point of S∞ which corresponds to
the unit interval [0, 1] again as a metrized graph.

We construct the map φg by the following three steps.

Step 1 (Adding vertices) First we construct φg|Sg×[0, 1
3 ]. For any (�, t) ∈ Sg ×

[0, 1
3 ], suppose the set of vertices of � is V (�) = {p1, · · · , pm} and the set of edges

is E(�) = {e1, · · · , en}. We define a new metrized graph ψg(�, t) for t ∈ (0, 1
3 ]

by setting the vertices set as {p1, · · · , pm} � {p′1, · · · , p′m} and define the set of

edges and their lengths as follows. The set of edges of ψg(�, t) is E(�) � {pip′i |
1 ≤ i ≤ m}. We call an edge in E(�) ⊂ E(ψg(�, t)) as old edge in this proof,

while the edges of the form pip
′
i will be called new edges. We put their length

l(pip
′
i ) = t while we keep the length of old edges as the same as �. Then we

rescale the length of all edges of ψg(�, t)(0 < t ≤ 1
3 ) to make the diameter 1 and

denote the obtained metrized graph as φg(�, t). Note that the image of φg|Sg×[0, 1
3 ]

is a priori not inside Sg . Indeed, while the metrized graphs parametrized in Sg are
characterized by v1 + b1 by Proposition 2.17, we have that

v1(φg(�, t)) = #V (�),

which is bigger than v1(�) if and only if � is not homeomorphic to the closed
interval. This φg |Sg×[0, 1

3 ] is continuous from the construction.
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Step 2 (Contraction of old edges) Our next step is the construction of φg|Sg×[ 13 , 2
3 ].

Roughly speaking, in this step of t increasing from 1
3 to 2

3 , we gradually contract
the old edges i.e., those which belong to E(�). We make this rigorous as follows.

First, as in Step 1, we construct ψg(�, t) for t ∈ [ 13 , 2
3 ] by setting its vertices set

and edges set as

V (ψg(�, t)) := V (φg(�, 1

3
))

= {v1, · · · , vm} � {w1, · · · , wm} for t ∈ [1

3
,

2

3

)
,

V (ψg(�, t)) := {v} � {w1, · · · , wm} for t = 2

3
,

E(ψg(�, t)) := E(φg(�, 1

3
))

= E(�) � {viwi | 1 ≤ i ≤ n} for t ∈ [1

3
,

2

3

)
,

E(ψg(�, t)) := {vwi | 1 ≤ i ≤ n} for t = 2

3
.

Then we put the metrics on the edges of φg(�, t) as follows.7

length(viwi;φg(�, t)) := 1

3
,

length(vivj ;φg(�, t)) := (2− 3t)length(vivj ;�).

The above construction of ψg(�, t) realizes shrink of old edges in φg(�, 1
3 ). Then

finally we define the metrized graph φg(�, t) as rescale of ψg(�, t) with the
diameter 1.

From the construction, the continuity ofψg|Sg×[ 13 , 2
3 ] and φg|Sg×[ 13 , 2

3 ] are obvious.

The limit graph φg |t= 2
3

is a metrized tree whose edges all share a common vertex

so that its shape looks like “∗”. Precisely speaking, it is a metrized graph graphs
whose

• vertices set is {v} � {wi | 1 ≤ i ≤ m} and
• edges set is {vwi | 1 ≤ i ≤ m}.
Let us call this type of tree “∗-type” with n(= #E(�)) leaves.

Step 3 (Deforming to the unit interval) The final step is the construction of
φg|Sg×[ 23 ,1]. The moduli space of ∗-type trees � (as we defined and discussed above

in Step 2) with n leaves of diameter 1, with the Gromov-Hausdorff topology, is

7The notation of the following is that the length of edge l in a graph G is denoted as length(l,G).
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Fig. 2 Picture proof of Theorem 4.4

homeomorphic to the moduli space of those whose sum of lengths of edges is 1,
simply by rescaling. And the latter is the simplex

�n := {(x1, · · · , xn) | 0 ≤ x1 ≤ x2 ≤ · · · xn ≤ 1,
n∑

i=1

xi = 1}.

The contractability of the simplex above ensures, or we can directly see that there is
a deformation retract of each � ∈ �n to the interval [0, 1]. This gives φg|Sg×[ 23 ,1].

The desired properties (i), (ii), (iii) are all straightforward from the construction.
We complete the proof of Theorem 4.4. To help understanding for the readers, we
summarize our three Steps below as an example picture (Fig. 2). ��

Acknowledgements The first version of this paper appeared in June, 2014 (arXiv:1406.7772)
and this is a revised exposition of the former half, i.e. the Mg case, of the original preprint. The
companion paper [45] is a revision of the latter half, i.e. the Ag part of arXiv:1406.7772, together
which included later developments.

The author would like to thank Radu Laza, Valentino Tosatti, Shouhei Honda, Daisuke
Kishimoto, Takeo Nishinou, Takao Yamaguchi for helpful discussions and Simon Donaldson, Kei
Irie, Hiroshi Iritani, Nariya Kawazumi, Richard Thomas for their helpful comments and interests
which encouraged me. The author also would like to thank Lionel Lang for teaching him his paper
[32] (see Remark 3.5) on June of 2015, and thank also the anonymous referee and Yoshiki Oshima
who helped the author to improve the presentation recently.

This paper and its companion paper [45] are dedicated to 15 years memory of Kentaro Nagao.
Looking back, I can never stop deeply thanking Nagao-san for all the inspirations from the
beginning and the warm friendliness. I hope he would be delighted again.



Tropical Geometric Moduli Compactification 99

References

1. Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves.
Ann. Sc. de l’ENS 48, 765–809 (2015)

2. Berkovich, V.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields.
Mathematical Surveys and Monographs, No. 33. American Mathematical Society, Providence
(1990).

3. Berkovich, V.: Smooth p-adic analytic spaces are locally contractible. Invent. Math. 137(1),
1–84 (1999)

4. Berman, R., Guenancia, H.: Kähler-Einstein metrics on stable varieties and log canonical pairs.
Geom. Funct. Anal. 24(6), 1683–1730 (2014)

5. Bers, L.: An Inequality for Riemann Surfaces, Differential Geometry and Complex Analysis,
pp. 87–93. Springer, Berlin (1985)

6. Borel, A.: Stable real cohomology of arithmetic groups. Ann. Sci. de L’É. N. S. 4, 235–272
(1974)

7. Boucksom, S., Jonsson, M.: Tropical and non-archimedean limits of degenerating families of
volume forms. arXiv:1605.05277

8. Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math. 226, 2546–2586
(2011)

9. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in
Mathematics, vol. 33. American Mathematical Society, Providence (2001)

10. Caporaso, L.: Algebraic and tropical curves: comparing their moduli spaces. In: Farkas, G.,
Morrison, I. (eds.) Handbook of Moduli. Volume I. Advanced Lectures in Mathematics (ALM),
vol. 24. International Press, Somerville (2013)

11. Cavalieri, R., Hampe, S., Markwig, H., Ranganathan, D.: Moduli spaces of rational weighted
stable curves and tropical geometry (2014). arXiv:1404.7426

12. Chan, M., Galatius, S., Payne, S.: The tropicalization of the moduli space of curves II: topology
and applications. arXiv:1604.03176

13. Chan, M., Melo, M., Viviani, F.: Tropical Teichmullër and Siegel spaces. In: Brugallé, E.
(ed.) Algebraic and Combinatorial Aspects of Tropical Geometry. Contemporary Mathematics,
vol. 589, pp. 45–85. American Mathematical Society, Providence (2013)

14. Codogni, G.: Hyperelliptic Schottky problem and stable modular forms. Documenta Mathe-
matica 21, 445–466 (2016)

15. Culler, M., Vogtmann, K.: Moduli of graphs and automorphisms of free groups. Invent. Math.
84(1), 91–119 (1986)

16. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publications
Mathématiques de l’I.H.É.S. 36, 75–109 (1969)

17. Donaldson, S., Sun, S.: Gromov-Hausdorff limits of Kahler manifolds and algebraic geometry.
Acta Math 213, 63–106 (2014)

18. Elbaz-Vincent, P., Herbert, G., Soulé, C.: Quelques calculs de la cohomologie de GLN(Z) et
de la K-théorie de Z. C. R. Math. Acad. Sci. Paris 335(4), 321–324 (2002)

19. Gieseker, D.: Lectures on Moduli of Curves. Tata Institute of Fundamental Research Lectures
on Mathematics and Physics, vol. 69, pp. iii+99. Springer, Berlin/New York (1982)

20. Gromov, M.: Structures métriques pour les variétés riemanniennes. Textes Mathématiques, No.
1, pp. 1–120. CEDIC/Fernand Nathan, Paris (1981)

21. Gross, M.: Mirror symmetry and the Strominger-Yau-Zaslow conjecture. In: Jerison, D., Kisin,
M., Mrowka, T., Stanley, R.P., Yau, H.-T. (eds.) Current Developments in Mathematics 2012,
pp. 133–191. International Press, Somerville (2013)

22. Gross, M., Wilson, P.M.H.: Large complex structure limits of K3 surfaces. J. Differ. Geom.
55(3), 475–546 (2000)

23. Gross, M., Tosatti, V., Zhang, Y.: Gromov-Hausdorff collapsing of Calabi-Yau manifolds.
Commun. Anal. Geom. 24, 93–113 (2016)



100 Y. Odaka

24. Hamenstädt, U.: Teichmuller theory. In: Farb, B., Hain, R., Looijenga, E. (eds.) Moduli Space
of Riemann Surfaces. IAS/Park City Mathematics Series, vol. 20. Park City Lectures (2011)

25. Harer, J.: The virtual cohomological dimension of the mapping class group of an oriented
surface. Invent. Math. 84, 157–176 (1986)

26. Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmüller Spaces. Springer, Tokyo (1992)
27. Ji, L., Jost, J.: Universal moduli spaces of Riemann surfaces. J. Geom. Phys. 114, 124–137

(2017)
28. Keen, L.: Collars on Riemann surfaces. In: Greenberg, L. (ed.) Discontinuous Groups and

Riemann Surfaces, pp. 263–268. Princeton University Press, Princeton (1974)
29. Knudsen, F.: The projectivity of the moduli space of stable curves. III. The line bundles on

Mg,n, and a proof of the projectivity of Mg,n in characteristic 0. Math. Scand. 52(2), 200–212
(1983)

30. Kollár, J.: Moduli of varieties of general type. In: Farkas, G., Morrison, I. (eds.) Handbook
of Moduli, Volume II. Advanced Lectures in Mathematics, vol. 25, pp. 131–167. International
Press, Boston (2013)

31. Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedian geometry. In: The
Unity of Mathematics. Progress in Mathematics, vol. 244, pp. 321–385. Birkhäuser Boston,
Boston (2006)

32. Lang, L.: Harmonic tropical curves. arXiv:1501.07121v2
33. Li, J., Wang, X.: Hilbert-Mumford criterion for nodal curves. Compositio Math 151, 2076–

2130 (2015)
34. Li, C., Wang, X., Xu, C.: Degeneration of Fano Kähler-Einstein varieties. arXiv:1411.0761v2
35. Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In: Proceedings

of the International Conference on Curves and Abelian Varieties in Honor of Roy Smith’s 65th
Birthday, Athens. Contemporary Mathematics, vol. 465, pp. 203–231 (2007)

36. Mirzaii, B., Van der Kallen, W.: Homology stability for symplectic groups (2001).
arXiv:0110163

37. Morgan, J., Shalen, P.B.: Valuations, trees, and degenerations of hyperbolic structures. Ann.
Math. 120, 401–476 (1984)

38. Mumford, D.: Geometric Invariant Theory. Ergebnisse der Mathemauk und ihrer Grepzgebiete.
Springer, Berlin (1965)

39. Mumford, D.: Stability of projective varieties. Enseignement Math. (2) 23(1–2), 39–110 (1977)
40. Odaka, Y.: The GIT stability of polarized varieties via discrepancy, Ann. Math. 177, 645–661

(2013)
41. Odaka, Y.: The Calabi conjecture and K-stability. I. M. R. N. 2012(10), 2272–2288 (2012)
42. Odaka, Y.: A generalization of Ross-Thomas slope theory. Osaka J. Math. 50, 171–185 (2013)
43. Odaka, Y.: On the moduli of Kähler-Einstein Fano manifolds. In: Proceeding of Kinosaki

Algebraic Geometry Symposium (2013). arXiv:1211.4833 v4
44. Odaka, Y.: Compact moduli spaces of Kähler-Einstein Fano manifolds. Publ. R. I. M. S 51,

549–565 (2015)
45. Odaka, Y.: Tropical geometric compactification of moduli, II – Ag case and algebraic limits –,

I.M.R.N. 2018 (It includes a developed version of the latter half of arXiv:1406.7772v1)
46. Odaka, Y., Oshima, Y.: Collapsing K3 surfaces and Moduli compactification.

arXiv:1805.01724
47. Odaka, Y., Spotti, C., Sun, S.: Compact moduli of Del Pezzo surfaces and Kähler-Einstein

metrics. J. Diff. Geom. 102(1), 127–172 (2016). arXiv:1210.0858
48. Shioya, T.: The limit spaces of two dimensional manifolds with uniformly bounded integral

curvature. Trans. A.M.S. 351(5), 1765–1801 (1999)
49. Spotti, C.: Degenerations of Kähler-Einstein Fano manifolds. Ph.D. thesis, Imperial College

(2012)
50. Spotti, C., Sun, S., Yao, C.: Existence and deformations of Kahler-Einstein metrics on

smoothable Q-Fano varieties. Duke Math. J. 165(16), 3043–3083 (2016)
51. Strominger, A., Yau, S.T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–

259 (1996)



Tropical Geometric Moduli Compactification 101

52. Tevelev, J.: Compactifications of subvarieties of tori. Am. J. Math. 129, 1087–1104 (2007)
53. Wolf, M., Zweibach, B.: The plumbing of minimal area surfaces. J. Geom. Phys. 15, 23–56

(1994)
54. Wolpert, S.: The hyperbolic metric and the geometry of the universal curve. J. Differ. Geom.

31(2), 417–472 (1990)
55. Zwiebach, B.: How covariant closed string theory solves a minimal area problem. Commun.

Math. Phys. 136, 83–118 (1991)



A Partial Comparison of Stability
Notions in Kähler Geometry

Zakarias Sjöström Dyrefelt

Abstract In this follow up work to Dyrefelt (J Geom Anal, 2017. https://doi.org/
10.1007/s12220-017-9942-9), Dervan and Ross (Math Res Lett 24, 2017), Der-
van (Math Ann, 2017. https://doi.org/10.1007/s00208-017-1592-5), and Sjöström
Dyrefelt (Int Math Res Not 2018. https://doi.org/10.1093/imrn/rny094) we intro-
duce and study a notion of geodesic stability restricted to rays with prescribed
singularity types. A number of notions of interest fit into this framework, in
particular algebraic- and transcendental K-polystability, equivariant K-polystability,
and the geodesic K-polystability notion introduced by the author in Sjöström
Dyrefelt (Int Math Res Not 2018. https://doi.org/10.1093/imrn/rny094). We provide
a partial comparison of the above notions, and show equivalence of some of
these notions provided that the underlying manifold satisfies a certain ‘weak cscK’
condition. As an application this proves K-polystability of a new family of cscK
manifolds with irrational polarization.

Keywords K-stability · Geodesic stability · Constant scalar curvature · Kähler
metrics · Yau-Tian-Donaldson conjecture

1 Introduction

An important open problem in Kähler geometry is the Yau-Tian-Donaldson (YTD)
conjecture, which predicts that existence of canonical metrics (in the sense of
Calabi [12]) is equivalent to a suitable stability notion in algebraic geometry. In the
case of Fano manifolds (X,−KX) equipped with the anticanonical polarization the
conjecture was proven with respect to the classical algebraic notion of K-stability
with roots in geometric invariant theory [19–21]. For polarized manifolds (X,L),
or even completely arbitrary Kähler manifolds (X,ω), finding the precise stability
notion that makes the conjecture hold is then a central part of the problem. Indeed,
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it is then debated which ones of a rapidly growing number of proposed stability
notions (transcendental/algebraic/equivariant/filtration/uniform K-stability) should
be the most relevant to the conjecture, and the relationship between these a priori
differing notions is largely unexplored. In this follow up work to [31, 32, 43, 44]
we aim to address this knowledge gap, by means of comparing some of the central
stability notions in Kähler geometry to each other.

We will focus on the case of constant scalar curvature Kähler (cscK) metrics and
related algebro-geometric stability notions. In particular we will investigate possible
natural comparisons with the geodesic stability notion used in the recent proof of
the properness conjecture, due to Chen-Cheng [17, 18]. In this context, a notion of
special interest to us is the notion of geodesic K-polystability, which was introduced
in [44]. This is a new notion that means that (X, [ω]) is K-semistable, and moreover,
the Donaldson-Futaki invariant vanishes precisely for the test configurations whose
“associated geodesic ray” is induced by a holomorphic vector field (in a sense
made precise in the aforementioned paper [44]). As such, it can be interpreted
as a weaker version of the geodesic stability notion used by Chen-Cheng [17],
which is in turn known to be equivalent to existence of cscK metrics [16–18]. This
is particularly interesting in order to better understand the relationship between
geodesic stability and the algebraic notions of K-polystability. Ultimately, such a
comparison is precisely what is required to prove or disprove the YTD conjecture.

In view of the classical correspondence between geodesic rays and test configura-
tions, see e.g. [1, 3, 7, 9, 23, 32, 40, 42–44] and references therein, there are a number
of reasons to believe that geodesic K-polystability is a natural stability notion.
First of all, it was proven in [7, 44] that constant scalar curvature Kähler (cscK)
manifolds are geodesically K-polystable, thus proving one direction of a natural
YTD conjecture in this setting. Moreover, if Aut0(X) = ∅ and the underlying
class is cscK, then geodesic K-polystability is equivalent to the usual K-polystability
notion [44]. It was also checked by R. Dervan in an appendix to [44] that geodesic
K-polystability implies equivariant K-polystability (as introduced in his paper [31]),
generalizing a notion introduced in [34, 46], which is conjectured to be equivalent to
the cscK condition. When Aut0(X) �= ∅ or the underlying Kähler class is not cscK,
the relationship to the full non equivariant K-polystability notion however remains
an open problem (of importance to understanding the YTD conjecture).

To study the above stability notions we introduce the terminology of stability loci
in the Kähler cone: Denote by K-polystable locus the set of Kähler classes α in the
Kähler cone of X such that (X, α) is K-polystable, and use similar terminology for
other stability notions. Likewise, we say that the cscK locus is the set of all Kähler
classes α on X which contain a cscK metric. In particular, the YTD conjecture
then translates to the statement that the cscK locus coincides with the K-polystable
locus. This way stability may be considered not as a question on a single given
polarization, but as a question about characterizing a certain subset of the Kähler
cone. This is sometimes a useful point of view, as we shall see in this note. We may
in particular ask the following broad but central questions: How can we compare the
cscK locus and the various stability loci? What stability loci coincide in the Kähler
cone of X (i.e. which stability notions are equivalent)? In this note we will give
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some partial answers to the second part of this question, and set up the framework
for continuing to study such problems in future work.

1.1 On Comparing Geodesic Stability and K-Stability

The main results of this paper are partial results towards comparing geodesic
stability in the sense of Chen-Cheng [18] with classical K-stability notions, as well
as (transcendental) K-polystability of (X, [ω]) in the sense of [44]. The status of
the comparison problem for stability notions in Kähler geometry is as follows: For
arbitrary compact Kähler manifolds (X,ω) (such that the associated Kähler class
[ω] ∈ H 1,1(X,R) is possibly irrational) we have inclusions

cscK locus ⊆ Geodesically K-polystable locus,

and it is straightforward to see that K-polystable locus⊆ Geodesically K-polystable
locus. It is however open whether the cscK locus is included in the K-polystable
locus, and it is unknown what is the precise relationship between the geodesically
K-polystable locus and the K-polystable locus (especially if the underlying class
does not admit a cscK metric). These are questions that concern the relationship
between test configurations and their associated geodesic rays in the space of Kähler
metrics. Indeed, the problem here posed is equivalent to asking if a test configuration
is a product (in the sense that Xπ−1(C) % X × C) precisely if its associated
geodesic ray is induced by a holomorphic vector field on X (Definition 2.3). In
this paper we observe that it is enough to show K-polystability is equivalent to
geodesic K-polystability for any given privileged polarization (X, [ω]), and the
above equivalence will automatically extend to the whole Kähler cone of X. As
a first main result, we prove the following:

Main Theorem 1 Let (X,ω) be a compact Kähler manifold and suppose that the
K-polystable locus �= ∅. Then (X, [ω]) is K-polystable if and only if it is geodesically
K-polystable.

In particular, this gives a partial answer to the question of comparing K-polystability
and geodesic K-polystability. In light of [44, Theorem 1.1] we also have the
following first result of K-polystability for cscK manifolds that are not necessarily
polarized and are allowed to admit holomorphic vector fields:

Corollary 1.1 Let (X,ω) be a cscK manifold with K-polystable locus �= ∅. Then
(X, [ω]) is K-polystable.
Note that his proves one direction of the YTD conjecture for a new family of
compact Kähler manifolds (X,ω) with irrational polarization, i.e. when [ω] ∈
H 1,1(X,R) is an arbitrary Kähler class on X not necessarily in the rational lattice
H 2(X,Q). As part of the proof we in particular obtain the following result,
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which sheds additional light on the connection between geodesic rays and test
configurations, extending results of [7].

Theorem 1.2 Let (X,ω) be a compact Kähler manifold and suppose that the K-
polystable locus �= ∅. Suppose that (X ,A) is a test configuration for (X, [ω]). Then
the following are equivalent:

• Xπ−1(C) % X × C

• The associated geodesic ray is induced by a holomorphic vector field on X
(Definition 2.3).

Main Theorem 1 and Theorem 1.2 together strengthen the expectation that the
notions of K-polystability and geodesic K-polystability are equivalent in general.
Combined with [44, Theorem 1.1], Theorem 1.2 moreover reduces the statement
“cscK manifolds are K-polystable”, which is an important problem still open for
arbitrary Kähler manifolds, to understanding whether the K-polystable locus is non-
empty.

As a natural family of examples we may consider compact Kähler manifolds
that we shall refer to as weakly cscK, i.e. such that the cscK locus �= ∅ in the
Kähler cone CX of X. Indeed, polarized weakly cscK manifolds (X,L) satisfy the
hypothesis that the K-polystable locus �= ∅, since cscK then implies K-polystability
(see [3, 7]). Moreover, there are many interesting concrete examples of weakly cscK
manifolds; in particular any Kähler-Einstein Fano manifold is weakly cscK. We
have the following immediate corollary of Theorem 1 for weakly cscK polarized
manifolds:

Theorem 1.3 Let (X,L) be a polarized weakly cscK manifold. Then

(1) (X,L) is K-polystable if and only if it is geodesically K-polystable.
(2) (X,L) is equivariantly geodesically K-polystable if and only if it is equivari-

antly K-polystable.

The stability notions referred to in (1) are the classical (algebraic) K-polystability
and (algebraic) geodesic K-polystability for polarized manifolds, see Sect. 3.3 for
precise definitions. In (2) we say that (X, [ω]) is equivariantly geodesically K-
polystable if and only if it is geodesically K-polystable with respect to equivariant
test configuratons (see [31, 44] for the Kähler case). Hence, this extends result of
[7] from the case of polarized cscK manifolds to weakly cscK polarized manifolds.
Note further that the result (2) holds also for arbitrary compact Kähler manifolds,
using the formalism for [32, 43]. The result (1) can be checked in this setting at least
if the automorphism group is discrete, but it is not known in general. This remains
an open question.

We also record the following comparison of stability notions, which holds
even for non-polarized Kähler manifolds (X,ω) (for the compatibility notion see
Sect. 3.4 and references therein):

Theorem 1.4 Suppose that (X,ω) is a weakly cscK Kähler manifold with Aut0(X)
discrete. Then (X, [ω]) is uniformly K-stable if and only if (X, [ω]) is coercive
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with respect to the set of subgeodesic rays compatible with a relatively Kähler test
configuration for (X, [ω]). Likewise, (X, [ω]) is K-stable if and only if (X, [ω]) is
geodesically stable with respect to the set of subgeodesic rays compatible with a
relatively Kähler test configuration for (X, [ω]).

1.2 Equivalence of Notions of Product Configuration

Another corollary of the techniques of this paper concerns the equivalence of various
notions of product configurations occurring in the literature. This is interesting in
its own right, since it addresses the question of equivalence of several commonly
seen (and a priori different) candidate notions of K-polystability. Indeed, these
notions have in commmon that they ask that the so called Donaldson-Futaki
invariant DF(X ,A) is non-negative for all test configurations (X ,A) for (X, α),
with equality if and only if (X ,A) is a “product”, in a suitable sense. Addressing
a question asked in the author’s thesis [45], the following result proves that several
commonly seen notions of product configuration are in fact equivalent:

Theorem 1.5 Suppose that (X,L) is a polarized weakly cscK manifold. Let (X ,L)
be a relatively Kähler test configuration for (X,L), with associated geodesic ray
(ϕt )t≥0. Then the following are equivalent:

(1) Xπ−1(C) % X × C

(2) Xπ−1(�r)
% X ×�r for each r > 0, where �r := {z ∈ C | |z| < r}.

(3) X0 % X
(4) The associated geodesic ray (ϕt )t≥0 is induced by a holomorphic vector field V

on X.

As before, the point is that this holds even if the underlying Kähler class c1(L) does
not admit any cscK metrics, as long as (X,L) is weakly cscK. In fact, note that if we
want the K-polystable locus to contain the properness locus, then there is no choice
but to define products as objects whose associated subgeodesic rays satisfy

inf
g∈G J(g.ϕt ) = 0,

whereG := Aut0(X) is the connected component of the automorphism group ofX,
the action g.ϕ on potentials is defined as in Sect. 2.1, and

J(ϕ) :=
∫

X

ϕωn − 1

n+ 1

n∑

k=0

∫

X

ϕωk ∧ ωn−kϕ .

This is why geodesic K-polystability is such a natural notion, because it is “the most
obvious” notion satisfying the above requirement.
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The techniques used to prove the above results rely on understanding paths of test
configurations when changing the underlying class, and in particular the existence
of such paths that preserve the associated geodesic ray.

1.3 Idea of the Proofs: Special Paths of Test Configurations
and an Injectivity Lemma

Let α, β ∈ H 1,1(X,R) be two Kähler classes on X. In order to study how K-
polystability notions vary as we vary the underlying class, one has to understand
how to relate test configurations for (X, α) to test configurations of (X, β). A first
straightforward observation is the following (part (1) on convex combinations of test
configurations should be compared to e.g. [35] in the setting of polarized manifolds,
part (2) is a direct consequence of the intersection theoretic point of view due to
[4, 32, 39, 43, 50] and part (3) is a direct consequence of [44]):

Theorem 1.6 Let α, β ∈ CX and set αs := (1−s)α+sβ, for s ∈ [0, 1]. Suppose that
(X ,A) and (X ,B) is a relatively Kähler test configuration for (X, α) and (X, β)
respectively. Then

(1) (X , (1 − s)A+ sB) is a relatively Kähler test configuration for (X, αs).
(2) The maps [0, 1] , s �→ DF(X , (1 − s)A+ sB) and [0, 1] , s �→ JNA(X , (1 −

s)A+ sB) are continuous.
(3) Suppose that ρA(t) and ρB(t) are the uniquely associated geodesic rays

respectively, and write ρs(t) := (1− s)ρA(t)+ sρB(t) If αs = [ωs ], then

DF(X , (1− s)A+ sB) = lim
t→+∞ t

−1Mωt (ρs(t))− ((X0,red − X0) ·An).

In practice, it is however not a given to know something about the set of test
configurations for a different polarization than the one considered. A key question
then becomes: How can one relate the test configurations for (X, α) to the test
configurations for (X, β)? In this direction, we prove the following extended version
of the injectivity lemma [44, Theorem 1.8] (now allowing for a change of the
underlying class):

Main Theorem 2 Let α := [ω] and β := [θ ] be Kähler classes onX. Suppose that
there is a subgeodesic ray ρ(t) ∈ PSH(X,ω)∩PSH(X, θ) which is compatible with
two relatively Kähler test configurations (X ,A) and (Y,B) for (X, α) and (X, β)
respectively. Then the canonical C∗-equivariant isomorphism X \ X0 → Y \ Y0
extends to an isomorphism X → Y .

A slightly more precise result relating test configurations of (X, α) to those of (X, β)
is given below:

Main Theorem 3 Let α ∈ CX and suppose that (X ,A) is a relatively Kähler
smooth and dominating test configuration for (X, α). Then, for each β ∈ CX there
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is a λ > 0 such that λβ > α and a relatively Kähler test configuration (Y,B) for
(X, λβ) such that

(1) Y = X ,
(2) The test configurations (X ,A) ∼ (Y,B), i.e. there is a geodesic ray ρ(t)

compatible with both.

In particular, if α = [ω] and λβ = [θ ], then we have

DF(X ,A) = lim
t→+∞ t

−1Mω(ρ(t))− ((X0,red − X0) ·An)

and

DF(X ,B) = lim
t→+∞ t

−1Mθ (ρ(t))− ((X0,red − X0) · Bn).

This result has a number of straightforward applications, in particular to proving
Theorem 1.2.

1.4 Applications to the Topology of the K-Semistable
and Uniformly K-Stable Loci

The techniques of this paper also yield some basic properties of the K-semistable
and uniformly K-stable loci, where uniform K-stability is defined with respect to
the norm JNA, i.e. (X, [ω]) is uniformly K-stable if there is a δ > 0 such that
DF(X ,A) ≥ δJNA(X ,A) for all relatively Kähler test configurations (X ,A) for
(X, [ω]) (see Sect. 5.3 for further details). In particular, the techniques of variation
of the underlying class in the Kähler cone (Theorem 1.6) immediately yield the
following characterization of the K-semistable locus of the Kähler cone (cf. [35,
Theorem G] for an analogous result in the projective setting).

Theorem 1.7 The K-semistable locus is closed in Euclidean topology in the Kähler
cone of X.

Recall moreover that the cscK locus is open relative to the Futaki vanishing locus
(see [11]), i.e. the cscK locus can be written asU∩CF , whereU is an open set in the
Kähler cone CX). As a consequence of this, the K-semistable and cscK loci can only
coincide whenever they both equal ∅ or CX. The fact that these stability loci are in
general not equal has been known by means of counterexamples (see e.g. [48] and
[36, Corollary 1.2]), but this yields a complementary perspective on this question.
Since the K-polystable locus is moreover expected to be open relative to the Futaki
vanishing locus, we expect in the same way that the set of strictly K-semistable
Kähler classes form the complement of an open set inside a closed set in the Kähler
cone. As before, it is known by example (see [36, 48]) that strictly K-semistable
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classes exist, but this would give some additional information (for example we
would expect strictly K-semistable to exist in abundance, except exceptional cases.)

In case the automorphism group is discrete, we may also give a similar
characterization of the uniformly K-stable locus. To do this we associate to each
Kähler class α ∈ CX its ‘stability threshold’, that is

�(α) := sup{δ > 0 |DF(X ,A) ≥ δJNA(X ,A)} > −∞,

where the supremum is taken over all relatively Kähler test configurations (X ,A)
for (X, α). Moreover, introduce the level sets

Uδ := {α ∈ CX | �(α) ≥ δ}.

We then make the following observation:

Theorem 1.8 The uniformly K-stable locus can be written as a union

U :=
⋃

δ>0

Uδ,

where each set Uδ is closed in the Euclidean topology in the Kähler cone.

Note that the K-semistable locus equals U0, so Theorem 1.7 is a special case of
Theorem 1.8.

1.5 Organization of the Paper

The goal of Sects. 2, 3, and 4 is to rigorously clarify how to view various K-
stability notions as special cases of the classical geodesic stability notion (which
is now known to be equivalent to existence of cscK metrics, due to recent progress
of Chen-Cheng [17, 18]). In order to do this, some standard preliminary notions
are recalled in Sect. 2. The slightly non-standard geodesic stability notion used in
this paper is discussed in Sect. 2.3.2. In Sect. 3 the definitions of a wide variety
of (transcendental) K-polystability notions are given. In Sect. 4 we compare these
notions, and give proofs of other main results. Section 5 contains three applications
of the methods used in our proof, in particular to weakly cscK manifolds and
basic topological properties of the K-semistable and uniformly K-stable loci.
The formalism for test configurations used in this paper is based on the notions
introduced in [31, 32, 43, 44].
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2 Variants of the Geodesic Stability Notion in Kähler
Geometry

Throughout this paper, let (X,ω) be a compact Kähler manifold. Let n := dimC(X)

be the complex dimension of X. Write

V :=
∫

X

ωn := (αn)X

for the Kähler volume of X.

2.1 The Space of Kähler Metrics and Geodesics

Consider the space

Hω := {ϕ ∈ C∞(X) | ωϕ := ω + ddcϕ > 0}, (ddc := i

2π
∂∂̄)

of smooth Kähler potentials. In a landmark paper by Mabuchi [38] it was shown that
Hω is a Riemannian symmetric space (of infinite dimension, with TϕH % C∞(X)).
Following Darvas [25, 26, 28, 29] and others we however privilege the point of view
of considering H as a path metric space endowed with a certain Finsler metric d1.
To introduce it, let d1 : Hω×Hω → R+ be the path length pseudometric associated
to the weak Finsler metric on Hω defined by

||ξ ||ϕ := V −1
∫

X

|ξ |ωnϕ, ξ ∈ TϕHω = C∞(X).

More explicitly, if [0, 1] , t �→ φt is a smooth path in X, then let

l1(φt ) :=
∫ 1

0
||φ̇t ||φt dt

be its length, and set

d1(ϕ,ψ) = inf
{
l1(φt ), (φt )0≤t≤1 ⊂ Hω, φ0 = ϕ, φ1 = ψ

}
,

where the infimum is taken over smooth paths t �→ φt as above. It can then be
seen that (Hω, d1) is a metric space which is not complete (see [28, Theorem 2] and
the survey article [27] for details and background). The completion E of (Hω, d1)

was described by Darvas [26]. For the purpose of discussing energy functionals and
geodesic stability we will in particular consider the subspace E1 ⊂ E of ω-psh
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functions of finite L1-energy, i.e. the subspace of all ϕ ∈ E such that

∫

X

|ϕ|ωnϕ < +∞.

2.1.1 Group Actions

Let G := Aut0(X) be the connected component of the complex Lie group of
biholomorphisms of (X, J ), whose Lie algebra consists of real vector fields V
satisfying LV J = 0. For each g ∈ G we then have [g∗ω] = [ω] (this follows
from Moser’s trick in symplectic geometry, see e.g. [13, Chapter III.7]). The group
G thus acts naturally on the space K := {ωϕ := ω+ddcϕ : ϕ ∈ C∞(X), ωϕ > 0} of
Kähler metrics onX, so that g · ξ := g∗ξ, g ∈ G, ξ ∈ K. The space K is moreover
in one-to-one correspondence with the space H0 := H ∩ E−1(0) of normalized
Kähler potentials. Following [29, Section 5.2] the group G therefore also acts on
H0, so that g · ϕ is the unique element in H0 satisfying g · ωϕ = ωg·ϕ . As in [29,
Lemma 5.8]) one may moreover show that

g · ϕ = g · 0+ ϕ ◦ g. (1)

By the ddc-lemma the function g · 0 is smooth, hence bounded, on X.

2.1.2 Geodesics in the Space of Kähler Metrics

There is also a natural notion of geodesic (and subgeodesic) rays in H. To define
it, suppose that I ⊆ (0,+∞) is an open interval. Let I , t �→ ϕt be any curve of
functions on X. Then (ϕt )t∈I can be identified with an S1-invariant function 	 on
X ×�I , where ϕt(x) = 	(x, e−t+is), and

�I := {τ ∈ C | − log |τ | ∈ I }.

We will be mainly interested in the case I = (0,+∞), when �I is the punctured
unit disc in the complex plane. Let p1 : X × �I → X the first projection. We
then say that a collection (ϕt )t∈I of locally bounded Kähler potentials on X is a
subgeodesic ray if 	 ∈ PSH(X × �I , p∗1ω), i.e. p∗1ω + ddc	 ≥ 0 in the weak
sense of currents. Moreover, it is said to be a geodesic ray if it is subgeodesic and
maximal with respect to this property, or equivalently, if the S1-invariant associated
function	 satisfies the following homogeneous complex Monge-Ampère equation

(π∗1ω + ddc	)n+1 = 0,
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on π−1(�̄) seen as a manifold with boundary. We refer to e.g. [5, 33], and references
therein, for details on this notion. For the delicate question of regularity of geodesic
rays in this setting, see [24].

2.2 The K-Energy Functional and cscK Metrics

Let (X,ω) be a compact Kähler manifold and let

Ric(ω) := −ddc logωn

be the associated Ricci curvature form (where ddc :=
√−1
2π ∂∂̄ is normalized so that

[Ric(ω)] = c1(X)). We say that ω is a cscK metric if it satisfies the cscK equation

S(ω) = S̄, (2)

where

S(ω) := trωRic(ω) := nRic(ω) ∧ ωn−1

ωn

is the scalar curvature of ω and S̄ is the mean scalar curvature, given by

S̄ := V−1
∫

X

S(ω) ωn = n
∫
X

Ric(ω) ∧ ωn−1
∫
X ω

n
:= n(c1(X) · αn−1)X

(αn)X
. (3)

As observed by Mabuchi in [37] the cscK metrics can be characterized by variational
methods, as the minima of a certain functional called the Mabuchi K-energy
functional. It is the unique functionalM : Hω → R satisfying M(0) = 0 and

d

dt
M(ϕt ) = −V−1

∫

X

ϕ̇t (S(ωϕt )− S̄) ωnϕt .

for any smooth path (ϕt )t≥0 in the H. Note that part of the assertion of Mabuchi
was that such a functional exists, and whenever they exist, the minimizers of this
functional are precisely the cscK potentials ϕ ∈ Hω, i.e. the corresponding Kähler
form ωϕ := ω + ddcϕ satisfies the cscK equation (2).

The K-energy can moreover be extended to the setting of locally bounded ω-
psh functions on X, i.e. to a functional M : PSH(X,ω) ∩ L∞(X) → R ∪ {+∞}.
Similarily, there is an extension to the space E1 of locally finite energy potentials.
To see this, recall that the K-energy functional can be written explicity using the so
called Chen-Tian formula as the sum

M = Mpp +Ment
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of a pluripotential and an entropy part. Here

Ment (ϕ) := V−1
∫

X

log

(
ωnϕ

ωn

)
ωnϕ ∈ [0,+∞)

and Mpp(ϕ) is a linear combination of terms of the form

∫

X

ϕωk ∧ ωn−kϕ

and
∫

X

ϕωk ∧ ωn−k−1
ϕ ∧ Ric(ω).

The pluripotential terms can be made sense of due to [5, 26]. The entropy term in
the formula for M can always be made sense of as a lower semicontinous functional
Ment : E1 → [0,+∞], defined as the relative entropy of the probability measures
ωnϕ/V and ωn/V (see [8, 17] and references therein).

2.3 Holomorphic Vector Fields, the �-Invariant and Geodesic
Stability

In order to define the notion of geodesic stability, we first introduce the notation
for holomorphic vector fields that we will use: Suppose that (X,ω) is a compact
Kähler manifold and denote by J : TX → TX the associated complex structure.
A real vector field on X is a section of the real tangent bundle TX of X. It is
said to be real holomorphic if its flow preserves the complex structure, i.e. it has
vanishing Lie derivative LV J = 0. A holomorphic vector field on a compact
manifold is automatically C-complete, and its flow φt is an action of (C,+) on
X by holomorphic automorphisms. Conversely, one may associate to every additive
action φ : C×X→ X by holomorphic automorphisms on X the vector field

Vφ(x) := d

dt
φ(t, x)|t=0,

called the infinitesimal generator of X. The vector field Vφ is holomorphic and C-
complete on X, with the flow φ.

Definition 2.1 A real holomorphic vector field V on X is said to be Hamiltonian if
it admits a Hamiltonian potential hVω ∈ C∞(X,R) such that the contraction

iV (ω) := V /ω =
√−1∂̄hVω .
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Remark 2.2 Equivalently, a real holomorphic vector field admits a Hamiltonian
potential if and only if it has a zero somewhere, see LeBrun-Simanca [11].

Note further that the Hamiltonian potential is unique up to constants, so to relieve
this ambiguity we impose the normalization

∫

X

hVωω
n = 0.

For the purpose of comparing with the situation for polarized manifolds (X,L) it
is interesting to recall that Hamiltonian vector fields are precisely those that lift to
line bundles, see [34, Lemma 12]. A real holomorphic Hamiltonian vector field is
automatically a Killing field, since LV J = LV ω = 0 implies that also LV g = 0 for
the Riemannian metric associated to the Kähler form ω.

2.3.1 Geodesic Rays Induced by Holomorphic Vector Fields

For future use we recall also the notion of geodesic rays arising from holomorphic
vector fields on X: In order to explain this notion, recall that the connected
component of the Lie group G := Aut0(X) of automorphisms of X act on K
by pullback g.ω := g∗ω, and induces a corresponding action on H0 via the
identification H0 % K, as described in (1). If V is a real holomorphic Hamiltonian
vector field on X, then exp(tJV ) is an element of the Lie group G for each
t ∈ [0,+∞). If we set

ωt := exp(tJV )∗ω, t ∈ [0,+∞)

then (ωt )t≥0 is a geodesic ray in K, see [38]. The corresponding geodesic ray in H0
is denoted by ϕt := exp(tJV ).ϕ0, where ϕ0 = 0 such that ωϕ0 = ω.

Definition 2.3 A geodesic ray is said to be induced by the holomorphic vector field
if it is of the form ϕt = exp(tJV ).ϕ0 for some real holomorphic Hamiltonian vector
field V on X,

2.3.2 The �-Invariant and Geodesic Stability

In order to state the definition of geodesic stability that we will use, let [0,+∞) ,
t �→ ρ(t) := ϕt be a given locally finite energy geodesic ray in E1

0 := E1 ∩E−1(0).
Following [17, 18, 23] we consider the following numerical invariant

�(ρ(t)) := lim
t→+∞ t

−1M(ρ(t)),

associated to the given geodesic ray ρ(t). This quantity is well-defined by convexity
of the K-energy functional, see [2, 22] and also [6] for convexity of the extension
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of the K-energy to finite energy spaces. Recall also that two geodesic rays (ϕt ) and
(ξt ) are said to be parallel if

d1,G(ϕt , ξt ) := inf
g,h∈Gd1(g.ϕt , h.ξt ) < C

for some constant C > 0 independent of t .

Definition 2.4 The pair (X, [ω]) is said to be geodesically stable if and only if
�(ρ(t)) ≥ 0 for every unit speed geodesic ray ρ(t), with equality precisely when
ρ(t) is induced by a holomorphic vector field on X.

Note that in the paper [18] of Chen-Cheng geodesic stability was defined with
respect to rays parallel to geodesics induced by holomorphic vector fields, which
we do not do here. However, our definition turns out to be equivalent to geodesic
stability with respect to rays induced by holomorphic vector fields. Indeed, we have
the following:

Proposition 2.5 (cf. [44, Proposition 4.10]) Suppose that (X,ω) is a cscK mani-
fold. Let [0,+∞) , t �→ ρ(t) be a unit speed geodesic ray in E1

0 . Then the following
are equivalent:

(1) The ray ρ(t) is of finite d1,G-length, i.e. d1,G(ϕt , ϕ0) < C for some constant
C > 0 independent of t

(2) The ray ρ(t) is parallel to a ray induced by a holomorphic vector field
(3) The ray ρ(t) is itself induced by a holomorphic vector field

Proof The implication (1) and (3) is precisely the statement of [44, Proposi-
tion 4.10]. The implication (3) ⇒ (2) is immediate, since any ray is parallel to
itself. Finally, if ρ(t) is parallel to a ray ξVt induced by a holomorphic vector field
(and with ξV0 = ρ(0)), then

d1,G(ρ(t), ρ(0)) ≤ d1,G(ρ(t), ξ
V
t )+ d1,G(ξ

V
t , ρ(0)) < C

by the triangle inequality. Indeed, the first term is bounded by C by the assumption
that ρ(t) and ξVt are parallel. Moreover

d1,G(ξ
V
t , ρ(0)) = inf

g,h∈Gd1(g.ξ
V
t , h.ρ(0)) = d1(ρ(0), ρ(0)) = 0,

since xiVt = exp(tJV ).ρ(0) for some real holomorphic Hamiltonian vector field V
on X (so in particular, exp(tJV ) ∈ G). Hence (2)⇒ (1). Putting this together, we
conclude that (2)⇒ (1)⇒ (3)⇒ (2), thus completing the proof. ��
As a corollary we have the following:

Corollary 2.6 Geodesic stability (Definition 2.4) is equivalent to geodesic stability
in the sense of Chen-Cheng [18].
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Proof Geodesic stability in our sense clearly implies geodesic stability in the sense
of Chen-Cheng [18] (any ray is in particular parallel to itself). The latter geodesic
stability condition was moreover proven in [18] to be equivalent to existence of
cscK metrics. On the other hand, suppose that (X,ω) is a cscK manifold. Then
it follows from Proposition 2.5 that a geodesic ray is parallel to a ray induced by
a holomorphic vector field, if and only if it is itself induced by a holomorphic
vector field. In other words, geodesic stability in the sense of Chen-Cheng implies
the geodesic stability notion of Definition 2.4. Putting this together, the considered
geodesic stability notions must be equivalent. ��

2.4 A Weak Geodesic Stability Notion

In order to later compare geodesic stability to K-stability notions (see Sects. 3.5
and 4) it is also natural to introduce a slightly more flexible terminology. In this
direction, we give the following definition, which emphasizes possible differences
in the vanishing condition for the �-invariant:

Definition 2.7 ((S, S0)-geodesic stability) Let S0 ⊂ S be subsets of the set
of locally finite energy geodesic rays in E1

0 . The pair (X, [ω]) is then (S, S0)-
geodesically stable if and only if �(ρ(t)) ≥ 0 for every unit speed geodesic ray
ρ(t) ∈ S, with equality precisely when ρ(t) ∈ S0.

If S is taken to be the full set of unit speed locally finite energy geodesic rays in E1
0 ,

and S0 is as any of the conditions (1)–(3) in Proposition 2.5, then (S, S0)-geodesic
stability of (X, [ω]) is equivalent to geodesic stability of (X, [ω]) (in the sense of
Chen-Cheng, alternatively Definition 2.4). We next recall the definitions of various
stability notions in algebraic geometry, and show that they fit into the framework of
the above notion of (S, S0)-geodesic stability.

3 Notions of K-Polystability in Kähler Geometry

In this section we recall the general formalism of transcendental K-stability for
Kähler manifolds, first introduced in [32, 43], and describe how various stability
notions in algebraic geometry can be naturally defined from this point of view.

3.1 Preliminaries on Test Configurations

We first recall the concept of test configurations forX, following [43]. As a reference
for this section we use [43, Section 3].
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Definition 3.1 A test configuration for X consists of

• a normal complex space X , compact and Kähler, with a flat morphism π : X →
P1

• a C∗-action ρ on X lifting the canonical action on P1

• a C∗-equivariant isomorphism

X \ π−1(0) % X × (P1 \ {0}) (4)

Remark 3.2 Note that since π is flat the central fiber X0 := π−1(0) is a Cartier
divisor, so X \ X0 is dense in X in Zariski topology.

The trivial test configuration for X is given by (X := X × P1, λtriv, p2), where
p2 : X × P1 → P1 is the projection on the 2nd factor, and λtriv : C∗ × X → X ,
(τ, (x, z)) �→ (x, τz) is the C∗-action that acts trivially on the first factor. If we
instead let σ : C∗ × X → X be any C∗-action on X, then we obtain an induced
test configuration as above with λ(τ, (x, z)) := (σ (τ, x), τz) (by also taking the
compactification so that the fiber at inifinity is trivial). Such test configurations are
called product test configurations of (X, α). In either case, we identify X with X ×
{1} and the canonical equivariant isomorphism (4) is then explicitly induced by the
isomorphisms X ∼= X × {1} → X × {τ } given by x �→ λ(τ, (x, 1)) =: λ(τ) · x.
Note moreover that if V is any real holomorphic Hamiltonian vector field onX, then
it may or may not generate a C∗-action, and only if it does there is a clear way to
associate a product test configuration to it (as described above). This is a subtle key
issue.

We further define the notion of test configuration for (X, α), where α ∈
H 1,1(X,R) is any Kähler class on X: In order to do so, we first recall that the
notions of Kähler forms and plurisubharmonic functions can be defined on complex
spaces, see [44, 45] for details on this in the present context. If (X,L) is a polarized
manifold, then a test configuration for (X,L) is given by a C∗-equivariant flat family
(X ,L)→ C, see e.g. [9] and references therein for details and background on this
classical definition first used in this form in [34]. More generally, we will work with
the formalism for arbitrary Kähler manifolds, of which the above can be considered
a special case. A test configuration for the polarized pair (X, α) is then defined as
follows:

Definition 3.3 A test configuration for (X, α) is a pair (X ,A) where X is a test
configuration for X, and A ∈ H 1,1

BC(X,R)
C∗ is a C∗-invariant (1, 1)−Bott-Chern

cohomology class whose image under (4) is p∗1α.

We give a few remarks and examples on how to compare cohomological test
configurations with algebraic test configurations (X ,L) for a polarized manifold
(X,L).
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(1) If (X,L) is any compact Kähler manifold endowed with an ample line bundle
L (so X is projective), and (X ,L) is a test configuration for (X,L) in the
usual algebraic sense, cf. e.g. [34], then (X , c1(L)) is a cohomological test
configuration for (X, c1(L)). This observation is useful, since many examples
of algebraic test configurations (X ,L) for polarized manifolds (X,L) are
known, see e.g. [47, 49] and references therein.

(2) There are more cohomological test configurations for (X, c1(L)) than there
are algebraic test configurations for (X,L) (take for instance (X ,A) with A
a transcendental class as in the above definition), but in some cases the ensuing
stability notions can nonetheless be seen to be equivalent (see [43, Section 3]).

3.2 Intersection Theoretic Numerical Invariants

Following [43] we recall the following intersection theoretic definition of the
classical Donaldson-Futaki invariant:

Definition 3.4 ([32, 43]) To any cohomological test configuration (X ,A) for
(X, α) we may associate its Donaldson-Futaki invariant DF(X ,A) and its non-
Archimedean Mabuchi functional MNA(X ,A), first introduced in [9]. They are
given respectively by the following intersection numbers

DF(X ,A) := S̄
n+ 1

V −1(An+1)X̂ + V −1(KX /P1 ·An)X̂

and

MNA(X ,A) := DF(X ,A) + ((X0,red − X0) ·An)X̂
computed on any smooth and dominating model X̃ of X (due to the projection
formula it does not matter which one). Note that DF(X ,A) ≥ MNA(X ,A) with
equality precisely when X0 is reduced.

In case X is smooth, KX /P1 := KX − π∗KP1 denotes the relative canonical class
taken with respect to the flat morphism π : X → P1. In the general case of a
normal (possibly singular) test configuration X for X, we however need to give
meaning to the intersection number KX · A1 · · · · · An, for Ai ∈ H 1,1

BC (X ,R). To
do this, suppose that X̃ is a smooth model for X , with π ′ : X̃ → X the associated
morphism. Since X̃ is smooth the canonical class KX̃ := ωX̃ is a line bundle. Now
consider ωX := O(KX ) := (π ′∗ωX̃ )∗∗, i.e. the “reflexive extension” of ωX̃ , which
is a rank 1 reflexive sheaf on X . We then set

(ωX ·A1 · · · · ·An) := (KX̃ · π ′∗A1 · · · · · π ′∗An). (5)
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Using the projection formula (or an argument of the type [32, Lemma 2.15] in the
Kähler category) it is straightforward to see that the above intersection number is
independent of the choice of model/resolution π ′ : X̃ → X . In particular this holds
for the Donaldson-Futaki invariant DF and the non-archimedean Mabuchi functional
MNA.

3.3 Product Test Configurations and Several Definitions
of K-Polystability

A number of natural variants of K-polystability for Kähler manifolds are given as
follows:

Definition 3.5 In analogy with the usual definition for polarized manifolds, and
following [43, Section 3], we say that

• (X, α) is K-semistable if DF(X ,A) ≥ 0 for all normal and relatively Kähler test
configurations (X ,A) for (X, α).

• (X, α) is K-polystable if it is K-semistable, and in addition DF(X ,A) = 0 if and
only if X is a product, where the latter means that one of the following conditions
hold:

(1) X|π−1(C)

(2) X0 := π−1(0) % X
(3) X|π−1(�r)

= X ×�r , where r ∈ (0,+∞) and �r := {z ∈ C | |z| ≤ r}.
We will refer to these conditions as strong, weak and r-K-polystability respec-
tively.

Note that demanding that X is C∗-equivariantly isomorphic toX×P1 is not enough:
For instance, there are (algebraic) product test configurations (X,L) × C whose
Donaldson-Futaki invariant vanishes, but whose compactifications overP1 (and thus
their corresponding cohomological test configuration (X̄ , c1(L̄))) is not a product.
See e.g. [9, Example 2.8]. Hence the definition (1) is the strongest notion of product
that makes sense to consider in the context of K-polystability.

When it is necessary to make the distinction, we will refer to the above stability
notions as cohomological. In the same vein, we refer to the analogous stability
notions for polarized manifolds (see e.g. [3, 9, 34]) as algebraic. It is an interesting
topic to compare cohomological and algebraic stability notions to eachother.

Regarding the cohomological notions, it was proven in [43, Theorem A] that
cscK manifolds are always K-semistable. Moreover, if (X,L) is a polarized
manifold, then (X,L) is K-semistable in the usual algebraic sense iff (X, c1(L))

are (cohomologically) K-semistable [43, Proposition 3.14]. In other words, the
algebraic and the cohomological notions of K-semistability are equivalent. It is an
open question whether the same holds for K-polystability, but at least one of the
implications always holds: if (X,L) is a polarized manifold such that (X, c1(L))
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is cohomologically K-polystable, then (X,L) is algebraically K-polystable (cf. [44,
Proposition 2.22]). This holds regardless of the notion (1)–(3) of product that one
uses. In particular, the above notions of K-polystability generalizes the usual notion
for polarized manifolds considered in [3, 7].

3.4 Test Configurations Embedded in the Space of Subgeodesic
Rays

We here briefly recall a key notion from the papers [43, 44], making precise the
relationship between subgeodesic rays and test configurations, The goal is to view
test configurations as “embedded” in the space of subgeodesic rays on X, in a sense
made precise below. This allows in particular to compare the � and the Donaldson-
Futaki invariants, and more generally, to interpret certain K-polystability notions as
weak versions of geodesic stability, by restricting the set of rays along which one
tests the �-invariant.

In order to recall the definition of subgeodesic rays compatible with a given test
configuration, we suppose that (X ,A) is a (possibly singular) relatively Kähler test
configuration for (X, α). By taking the normalization of the graph of X ��� X×P1

and resolving singularities, we can always find a smooth model X̂ for X , i.e. a
C∗-equivariant bimeromorphic morphism ρ : X̂ → X , where X̂ is smooth and
dominates the productX × P1. This yields the following situation:

X̂

X X × P1 X

P1

ρ

π

μ

p1

p2

Now let (ϕt ) be a locally bounded subgeodesic ray on X, with 	 the S1-invariant
function on X × �̄ associated to the given ray (ϕt )t≥0, such that ϕt(x) =
	(x, e−t+is) for each t ∈ [0,+∞). By [43, Proposition 3.10] we then have

ρ∗A = μ∗p∗1α + [D],

where D =∑n
j=1 aiDi is a divisor on X̂ supported on the central fiber X̂0. We can

further decompose the current of integration ofD as δD = θD + ddcψD , where θD
is any smooth S1-invariant (1, 1)-form on X̂ . Locally, we then have

ψD =
∑

j

aj log |fj | mod C∞,
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where the fj are local defining equations for the irreducible components Dj
respectively. Note that the choice of ψD is uniquely determined modulo a smooth
function on X̂ , so in particular it determines a unique singularity type. A locally
bounded subgeodesic ray (ϕt )t≥0 on X is then said to be L∞-compatible with
(X ,A) if # := 	 ◦ μ + ψD extends to a locally bounded ρ∗�-psh function
on X̂ . Similarily, a smooth curve (ϕt )t≥0 is C∞-compatible with (X ,A) if # :=
	◦μ+ψD extends smoothly across X̂0. In particular, an important point is that the
singularity type of 	 ◦ μ is determined by the Green function ψD .

Example 3.6 We give two examples:

(1) As a central example, let � be a smooth S1-invariant (1, 1)-form such that
[�] = A. For τ ∈ (0, 1] we denote by �τ the restriction of � to the fiber
Xτ . As noted in [32],�τ and �1 are cohomologous, so we may define a family
of functions (ϕτ )τ∈(0,1] on X by the relation λ(τ)∗�τ − �1 = ddcϕτ . We can
in turn define a (ψt )t∈[0,+∞) on X defined by the relation ψt := ϕe−t . It is
smooth and C∞-compatible with (X ,A), but not in general a subgeodesic ray
(although it is still a useful tool in many cases, see e.g. [43, Section 4]).

(2) Moreover, there is a well known construction that yields a unique (up to certain
choices) geodesic ray associated to a given test configuration, obtained by
solving a certain homogeneous complex Monge-Ampère equation on X̂ . We
refer to [43, Section 4] for details on the construction. This geodesic ray is then
L∞-compatible but in general not C∞-compatible with (X ,A) (this relates to
the intricate question of regularity of such geodesics, see e.g. [24]).

The main results of [44] consist of an injectivity lemma as well as results on
asymptotics of energy functionals along compatible subgeodesic rays. They can be
summarized by considering the assignment

R : (X ,A) �→ [(ϕt )(X ,A)],

that maps any relatively Kähler test configuration (X ,A) for (X, α) to the set of
subgeodesic rays compatible with (X ,A). This map satisfies the following two key
properties:

Theorem 3.7 ([44, Theorem 1.5 and Theorem 1.8]) Suppose that (X,ω) is a
compact Kähler manifold. Let (X ,A) be a relatively Kähler test configuration for
(X, α), and denote by (ϕt )t≥0 any compatible subgeodesic ray in R(X ,A). Then

(1) (Asymptotics of the K-energy)

lim
t→+∞ t

−1M(ϕt) = DF(X ,A) + ((X0,red − X0) ·An).

(2) (Injectivity) Let (Y,B) be another relatively Kähler test configuration for
(X, α). Suppose that

R(X ,A) ∩ R(Y,B) �= ∅.
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Then the canonical C∗-equivariant isomorphism X \ X0 → Y \ Y0 extends to
an isomorphism X → Y .

By relaxing the cscK assumption, we will improve on this result in Sect. 4 below.

3.5 Interpretation of K-Polystability as (S, S0)-Geodesic
Stability

It is useful to take a point of view which promotes that K-stability is really
something tested along geodesic rays, and we discuss how various K-stability
notions can be viewed rather explicitly as special cases of the geodesic stability
notion used in a recent series of remarkable papers by Chen-Cheng [16–18]. The aim
is thus to help clarifying the precise relationship between the abundance of stability
notions available in the literature today. In order to do this, suppose that ρ(t) is a
locally finite energy unit speed geodesic ray in the space E1

0 := E1 ∩ E−1(0). First
recall the invariant

�(ρ(t)) := lim
t→+∞ t

−1M(ρ(t))

introduced in [16–18] (here M is the Mabuchi K-energy functional). If the geodesic
ray ρ(t) is “compatible” with a test configuration (X ,A) for (X, [ω]), in a sense
made precise in [43, 44], then the �-invariant essentially coincides with the
Donaldson-Futaki invariant (up to an explicit error term that vanishes when the total
space of the test configuration is reduced). More precisely, we have

�(ρ(t)) = DF(X ,A) + ((X0,red − X0) ·An),

by Theorem 3.7. With reference to the definition of (S, S0)-geodesic stability
introduced in Sect. 2.4, recall that when S is taken to be the set of all unit speed
geodesic rays in E1

0 , and S0 is the set of all geodesic rays induced by holomorphic
vector fields on X, then (S, S0)-geodesic stability turns out to be equivalent to
the geodesic stability notion used in [17, 18]. When it comes to geodesic K-
polystability, we have an analogous interpretation as follows:

Theorem 3.8 The pair (X, [ω]) is geodesically K-polystable if and only if it is
(S, S0)-geodesically stable, where S is the set of subgeodesic rays compatible with
a relatively Kähler test configuration for (X, [ω]) and S0 is the set of geodesic rays
induced by some holomorphic vector field on X.

Remark 3.9 A similar result applies also to other stability notions, such as slope
stability, introduced in [41]. More precisely, one then chooses S as the set of all
subgeodesic rays compatible with test configurations given by the deformation to the
normal cone construction (see e.g. [4, Example 5.3]). Moreover, all the alternative
K-polystability notions discussed in Sect. 3.3 are also of this form, by varying the



124 Z. Sjöström Dyrefelt

set S0 in the obvious way (the set of subgeodesic rays compatible with product test
configurations, in the various senses respectively).

The above discussion fits well with the well known connection between test
configurations and geodesic rays, as well as geodesic stability and the Yau-Tian-
Donaldson conjecture. The notation introduced may also serve as a convenient
common framework for all these different stability notions in Kähler geometry.

4 Stability Loci and Proof of Main Results

4.1 Stability Loci in the Kähler Cone

Let CX ⊂ H 1,1(X,R) be the open cone of Kähler classes on X. The classical
point of view on the question of existence of canonical metrics is to exploit a
variational approach, when it is natural to characterize existence of constant scalar
curvature Kähler metrics in a given Kähler class on a given compact Kähler
manifold. Thanks to the introduction of stability notions for pairs (X, α) of a
given Kähler manifold and a Kähler class α ∈ CX, we may however ask the
following question: Given a compact Kähler manifold (X,ω), can we characterize
the subsets of CX consisting of the Kähler classes α for which the pair (X, α) is K-
polystable/geodesically K-stable/cscK. The same question can of course be asked
for any stability condition (K-semistability, slope stability etc). This slight change
in point of view is sometimes useful, as we show below. In particular, note that the
Yau-Tian-Donaldson conjecture can be reformulated as the statement that the cscK
locus (alternatively, the geodesically stable locus) equals to K-polystable locus (in a
suitable sense).

From the work of Berman-Darvas-Lu [7] and Chen-Cheng [18] we have equality
of the cscK locus and the geodesically stable locus, and from the work [31, 32, 43,
44] we have inclusions

cscK locus ⊆ geodesically K-polystable locus ⊆ K-semistable locus,

and in [44, Appendix] it was proven that the

geodesically K-polystable locus ⊆ equivariantly K-polystable locus.

The various K-polystability notions discussed in Sect. 3.3 have similar inclusions,
but it is an open question whether equality holds (we will show in Theorem 4.12
below that this is indeed the case). When it comes to one of the main questions
of this paper, namely comparing K-polystability with geodesic K-polystability, we
know that there is an inclusion

K-polystable locus ⊆ geodesically K-polystable locus.
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However, it is quite possible that for certain unquantized (i.e. unpolarized) compact
Kähler manifolds the K-polystable locus is in fact empty (using the stronger
transcendental stability notion, see Sect. 3.3. More precisely, the following questions
are of particular interest to us here:

Question 4.1 Do we have an inclusion cscK locus ⊆ K-polystable locus? Do the
K-polystable and geodesically K-polystable loci coincide in general?

By the above discussion, an affirmative answer to the second question implies an
affirmative answer also to the first one. In the sections that follow we will develop
the tools to state and prove some partial results in this direction.

4.2 Convex Combinations and Changing the Underlying
Kähler Class

We first focus on relating test configurations to eachother in the case when we
change also the underlying Kähler class. More precisely, we set out to compare
test configurations for (X, α) and (X, β), where α, β ∈ CX are different Kähler
classes on X, which in turn yields a proof of Theorem 1.6. As a first observation,
we note the following result on the �-invariant under convex combinations of rays
along convex combinations of the underlying Kähler classes:

Proposition 4.2 Let α, β ∈ CX and set αs := (1−k)α+ sβ, for s ∈ [0, 1]. Suppose
that ρα(t) and ρβ(t) are smooth subgeodesic rays with respect to (X, α) and (X, β)
respectively. Then ρs(t) := (1− s)ρα(t)+ sρβ (t) are subgeodesic rays with respect
to (X, αs), and the map

[0, 1] , s �→ �(ρs(t))

is continuous.

Proof This follows immediately from the definitions. Indeed, fix Kähler forms
ω0, ω1 on X such that α := [ω0] and β := [ω1]. In turn, let ωs := (1− s)ω0 + sω1,
such that αs = [ωs]. By hypothesis we then have

ω0 + ddcρα(t) ≥ 0

and

ω1 + ddcρβ(t) ≥ 0.

Therefore also

ωs + ddcρs(t) = (1− s)(ω0 + ddcρα(t))+ s(ω1 + ddcρβ(t)) ≥ 0,
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i.e. ρs(t) is a subgeodesic ray. Finally, the map

[0, 1] , s �→ �(ρs(t))

is clearly a polynomial in s, hence continuous. ��
As a particular case we obtain the following result on convex combinations of
test configurations, where parts (1)–(2) should be compared with an observation
in A. Isopoussu’s thesis [35] (where only the setting of polarized manifolds was
considered):

Theorem 4.3 Let α, β ∈ CX and set αs := (1−s)α+sβ, for s ∈ [0, 1]. Suppose that
(X ,A) and (X ,B) is a relatively Kähler test configuration for (X, α) and (X, β)
respectively. Then

(1) (X , (1 − s)A+ sB) is a relatively Kähler test configuration for (X, αs).
(2) The maps

[0, 1] , s �→ DF(X , (1− s)A+ sB)

and

[0, 1] , s �→ JNA(X , (1 − s)A+ kB)

are continuous.
(3) Suppose that ρA(t) and ρB(t) are subgeodesic rays C∞-compatible with

(X ,A) and (X ,B) respectively, and write ρs(t) := (1 − s)ρA(t) + kρB(t)
If αs = [ωs], then

DF(X , (1− s)A+ sB) = lim
t→+∞ t

−1Mωt (ρs(t))− ((X0,red − X0) ·An).

Proof The first assertion follows from the basic fact that the set of relatively Kähler
classes on X is convex. In order to see that (X , (1−s)A+sB) is a test configuration
for (X, αs) we may pass to a resolution ρ : X̂ → X . Then ρ∗A = μ∗p∗1α + [D]
and ρ∗B = μ∗p∗1α + [E]. Hence

ρ∗ ((1− s)A+ sB) = μ∗p∗1αs + (1− s)[D] + s[E],

and the conclusion (1) follows. The assertion (2) follows immediately from the
definition of DF and JNA as intersection numbers (it is straightforward to see that
[0, 1] , s �→ DF(X , (1 − s)A + sB) and [0, 1] , s �→ JNA(X , (1 − s)A + sB)
are polynomials in k of degree at most n + 1, thus continuous). Finally, in order to
prove (3) it suffices (by [44, Theorem 1.5]) to show that ρs(t) is C∞-compatible
with (X , (1 − s)A + sB). This is also immediate. To see it, let 	0 and 	1 denote
the S1-invariant functions on X × �̄ associated to ρα(t) and ρβ(t) respectively
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(so that ρα(t) = 	0(x, e
−t+iv) and ρβ(t) = 	1(x, e

−t+iv) as before). If we let
μ, [E], [D] be as above, then

μ∗((1− s)	0+ s	1)+ (1− s)[D]+ s[E] = (1− s)(μ∗	0+[D])+ s(μ∗	1+[E])

extends smoothly across X0 (since both terms do so, by hypothesis). This concludes
the proof. ��
An interesting point is to emphasize that these proofs become very simple once we
take the point of view chosen above.

4.3 The Set of Product Configurations

It is a subtle but important point to understand how to properly define the concept
of a product test configuration. A suggestion in [43] was that a test configuration
should be called a product (or “geodesic product”) if and only if it is compatible
with a geodesic ray induced by a holomorphic vector field. Of course, if (X ,A) is a
product in the traditional sense (i.e. the total space is isomorphic toX×C away from
the fiber at infinity), then it is compatible with a ray of this form. The more difficult
part is to establish the converse, in which case of only partial results are known:
First, if we restrict to the case of polarized manifold (X,L) and their usual algebraic
test configurations (X ,L), then it was proven in [7] that this holds whenever the
underlying class is cscK. Secondly, assuming existence of a cscK metric, the same
holds for the more general transcendental test configurations (X ,A) for (X, α),
provided that the test configuration is taken to be equivariant (see [31, 44]).

The goal of this section is to explain that the hypothesis that the underlying class
is cscK can be weakened. Indeed, we will show that it is enough to assume that
there exists a cscK metric in some (possibly different) Kähler class on X, i.e. the
cscK locus �= ∅. In order to establish this result, the following lemma constitutes
the key step:

Lemma 4.4 Let α, β ∈ CX such that also β − α ∈ CX. Suppose that (X ,A) is a
relatively Kähler test configuration for (X, α), with associated geodesic ray ρ(t).
Then there exists a relatively Kähler test configuration (X ,B) for (X, β), with the
same total space X , and which is C∞-compatible with the same geodesic ray ρ(t).

Proof By resolution of indeterminacy there is a smooth and dominating test
configuration ρ : X̂ → X for X such that

X̂

X X × P1 X

ρ
μ

p1
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Then it follows from [43, Proposition 3.10] that ρ∗Aα = μ∗p∗1α + [D] for some

R-divisor D on X̂ supported on X̂0. Now set Aβ := A + η, where η is a (1, 1)-
cohomology class on X which satisfies

ρ∗Aβ − ρ∗Aα = μ∗p∗1(β − α).

Since β − α ∈ CX, it follows that μ∗p∗1(β − α) is nef. Therefore ρ∗η is nef on

X̂ , so also η is nef on X , and Aβ = A + η is relatively Kähler (as a sum of a
relatively Kähler and relatively nef classes). Hence we have a cohomological test
configuration (X ,Aβ) for (X, β). Moreover, this new test configuration satisfies
ρ∗Aβ = μ∗p∗1β + [D], with the same μ and [D] as before. As a consequence, also
(X ,Aβ) is C∞-compatible with the geodesic ray ρ(t), which is what we wanted to
prove. ��
In particular we then obtain the following corollary, where Futα(X, V ) denotes the
classical Futaki invariant of the vector field V on X, and CF ⊆ CX denotes the set
of all Kähler classes α for which Futα(X, ·) vanishes identically:

Proposition 4.5 Suppose that (X ,A) is a relatively Kähler test configuration for
(X, α) whose associated geodesic ray ρ(t) is induced by a holomorphic vector
field V on X. Then for each β ∈ CX there is a relatively Kähler test configuration
(X ,Aβ) for (X, β), with the same total space X , such that

DF(X ,Aβ) = Futβ(X, V ).

In particular, if β ∈ CF , then DF(X ,Aβ) = 0.

Proof Pick λ > 0 such that λβ − α ∈ CX. By Lemma 4.4 there exists a relatively
Kähler test configuration (X ,Aλβ) for (X, λβ) that is compatible with a ray ρ(t)
induced by a holomorphic vector field, i.e. of the form ρ(t) := exp(tJV ).ρ(0) for
some real holomorphic Hamiltonian vector field V onX. By [44, Theorem 3.10] we
then have

DF(X ,Aλβ) = lim
t→+∞

d

dt
M(ρ(t)) = Futλβ(X, V ),

which vanishes if β ∈ CF Finally, set Aβ := λ−1Aλβ . Then (X ,Aβ) is a relatively
Kähler test configuration for (X, β) and

S̄λβ = λ−1S̄β

Vλβ = λnVβ.
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One then checks that

DFλβ(X, λAβ) = S̄λβ

(n+ 1)Vλβ
(λAβ)n+1 + 1

Vλβ
(KX /P1 · (λAβ)n) =

= S̄β

(n+ 1)Vβ
(Aβ)n+1 + 1

Vβ
(KX /P1 ·Anβ) = DFβ(X,Aβ),

which in turn equals Futβ(X, V ). This completes the proof. ��
This result has several immediate and key applications below.

4.4 Proof of Theorems 3 and 1

As a first application of Lemma 4.4 and Proposition 4.5, we prove the following (the
main new point being that we allow changing the underlying Kähler class):

Theorem 4.6 Let α ∈ CX and suppose that (X ,A) is a relatively Kähler smooth
and dominating test configuration for (X, α). Then, for each β ∈ CX there is a λ > 0
such that λβ > α, and a relatively Kähler test configuration (Y,B) for (X, λβ) such
that

(1) Y = X ,
(2) The test configurations (X ,A) ∼ (Y,B), i.e. there is a subgeodesic ray ρ(t)

that is C∞-compatible with both.

In particular, if α = [ω] and λβ = [θ ], then we have
DF(X ,A) = lim

t→+∞ t
−1Mω(ρ(t))− ((X0,red − X0) ·An)

and

DF(X ,B) = lim
t→+∞ t

−1Mθ (ρ(t))− ((X0,red − X0) · Bn).

Proof The statements (1) and (2) are simply Lemma 4.4. The last statement
regarding the asymptotics of the K-energy is precisely [44, Theorem 1.5]. ��
The first main point of the above discussion is that we may now deduce the following
main result:

Theorem 4.7 (cf. Theorem 1.2) Let (X,ω) be a compact Kähler manifold and
suppose that the K-polystable locus �= ∅. Suppose that (X ,A) is a test configuration
for (X, [ω]). Then the following are equivalent:
• Xπ−1(C) % X × C

• The associated geodesic ray is induced by a holomorphic vector field on X.
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Proof Since the K-polystable locus⊆ CF we may without loss of generality assume
that α := [ω] ∈ CF . Now suppose for contradiction that the K-polystable locus is
strictly contained in the geodesically K-polystable locus. Then there is a relatively
Kähler test configuration (X ,A) which is a geodesic product (i.e. C∞-compatible
with a subgeodesic ray induced by a real holomorphic Hamiltonian vector field V
on X), but not a product configuration (in the sense that Xπ−1(C) % X). Assuming
that α ∈ CF we then have

DF(X ,A) = Futα(X, V ) = 0.

Moreover, the K-polystable locus is non-empty, so we may pick β ∈ CX in
such a way so that (X, β) is K-polystable. By Proposition 4.5 there is then a test
configuration (X ,B) for (X, β), with the same total space X , such that DF(X ,B) =
0 (indeed (X ,B) is a geodesic product and β ∈ CF because (X, β) is K-polystable).
Since (X ,B) is a relatively Kähler non-product configuration, this contradicts that
(X, β) is K-polystable. Hence, if the K-polystable locus is non-empty then it must
coincide with the geodesically K-polystable locus. In particular, the conditions (1)
and (2) are equivalent. This finishes the proof. ��
In particular, the above proof gives a partial answer to the question of comparing
the K-polystability and geodesic K-polystability notions:

Corollary 4.8 Let (X,ω) be a compact Kähler manifold and suppose that the
K-polystable locus �= ∅. Then the K-polystable locus equals the geodesically K-
polystable locus.

As a next key point, the above results are independent of whether we consider K-
polystability with respect to Xπ−1(C) % X × C or X0 % X, as explained below.

4.5 Equivalence of Notions of Product Configuration

We now discuss the equivalence of various notions of product configurations and
their corresponding K-polystability notions. For the purpose of this discussion,
consider the following list of reasonable variants of the usual algebraic notion of
product configuration:

Definition 4.9 We say that (X, α) is

(1) strongly K-polystable if it is K-polystable with respect to product configurations
in the sense that Xπ−1(C) % X ×C.

(2) weakly K-polystable if it is K-polystable with respect to product configurations
in the sense that X0 % X.

(3) r-K-polystable if it is K-polystable with respect to product configurations in the
sense that Xπ−1(�r)

% X ×�r , for any r > 0.
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Remark 4.10 In the case of polarized manifolds (X,L) the strong K-polystability
condition is rather that X % X×C, since then test configurations are usually defined
over C rather than directly over P1.

The strong and weak K-polystability notions are both used frequently in the
literature surrounding the YTD conjecture, see e.g. [8] and references therein. The
goal is now to seize the opportunity to address the question of whether or not these
conditions (1)–(3) are in fact equivalent. As preparation, we first check the following
simple claim, suggested by the terminology:

Proposition 4.11 If r > r ′ then strong K-polystability⇒ r-K-polystability⇒ r ′-
K-polystability⇒ weak K-polystability

Proof Suppose that there is a Kähler class α ∈ CX which is a strongly K-polystable
but not weakly K-polystable. Then there is a test configuration satisfying X0 %
X, Xπ−1(C) �% X × C and DF(X ,A) > 0. But this is a contradiction. The same
argument goes through if r > r ′, since then Xπ−1(�r)

% X × �r implies that
Xπ−1(�r′ ) % X ×�r ′ . ��
We now address the question of whether these a priori differing K-polystability
notions, used by various authors in the literature, are in fact equivalent. Conve-
niently, it turns out that this is the case, thus clarifying the relationship between
various results regarding the respective notions of K-polystability:

Theorem 4.12 Suppose that (X,ω) is a compact Kähler manifold with non-empty
strong K-polystability locus. Then the following notions are equivalent:

(1) Strong K-polystability
(2) r-K-polystability for any r ∈ (0,+∞)
(3) Weak K-polystability
(4) Geodesic K-polystability
(5) S-geodesic stability with respect to the set of all geodesic rays compatible with

relatively Kähler test configurations for (X, α)

Proof Let S be a subset of all relatively Kähler test configurations for X. Suppose
for contradiction that there is an α ∈ CX such that (X, α) is weakly K-polystable but
not strongly K-polystable. Then there is, by definition, a test configuration (X ,A)
for (X, α) which is relatively Kähler, and satisfies X0 % X, DF(X ,A) = 0, but
Xπ−1(C) �% X×C. Now pick β strongly K-polystable. Then (X ,A+μ∗p∗1(β−α)) is
a relatively Kähler test configuration for (X, β), with the same total space as (X ,A).
But by Proposition 4.11 the pair (X, β) is, in particular, weakly K-polystable, and
X0 % X. Hence, by definition, DF(X ,A+μ∗p∗1(β−α)) = 0. Finally, since (X, β)
is also strongly K-polystable, we then have Xπ−1(C) % X × C). Conversely, it is
clear that if Xπ−1(C) % X × C) then also X0 % X. This finishes the proof of the
equivalence (1)⇔ (3).

The exact same proof applies to any situation when we compare K-polystability
notions with respect to notions of product where one notion implies the other, and
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both satisfy the requirement that DF(X ,A) = 0 for products. This way we prove
that (1)⇔ (2). Finally, the equivalence (1)⇔ (4) is Theorem 1.2. ��
Remark 4.13 If we were to consider K-polystability with respect to products in the
sense that X % X × P1 (for transcendental test configurations as in [24, 31, 32, 43,
44]), then the corresponding K-polystable locus would not contain the cscK locus
in general. In fact, whenever Aut0(X) �= ∅ the K-polystable locus would always be
empty, so Xπ−1(C) % X × C yields the strongest notion of product configuration of
this type that is worth considering.

5 Weakly cscK Manifolds and Applications

5.1 The Special Case of Weakly cscK Manifolds

In view of the above main results, it is interesting to study situations when some of
the above mentioned stability loci are non-empty (and for which we will then be able
to establish that certain stability notions must be equivalent). A natural candidate
for such manifolds are those compact Kähler manifolds (X,ω) that admit a cscK
metric in some possibly different Kähler class α �= [ω] ∈ CX. We will refer to such
manifolds as weakly cscK.

Definition 5.1 We say that a compact Kähler manifold is weakly cscK if the
associated cscK locus �= ∅.
Note that a manifold can be weakly cscK without being cscK. Examples of this
phenomenon can in particular be obtained by any Kähler-Einstein manifolds which
also admits K-unstable polarizations. Concretely, it was shown through a study of
slope stability, in [41, Example 5.30], that e.g. P2 blown up in 8 points in generic
position satisfies this condition (see also [30] and [14, 15] for a more explicit
treatment of this and other Del Pezzo surface examples). The idea is then to use the
techniques of changing the underlying Kähler class, to reduce the study of arbitrary
polarizations to the case when the underlying Kähler class admits a cscK metric.
Some noteworthy corollaries of Theorems 1.2 and 1 follow:

Theorem 5.2 Let (X,L) be a polarized weakly cscK manifold. Then the following
holds:

(1) (X,L) is K-polystable if and only if it is geodesically K-polystable.
(2) (X,L) is equivariantly geodesically K-polystable if and only if it is equivari-

antly K-polystable

For arbitrary compact Kähler manifolds (X,ω) the result (1) is known to hold if the
automorphism group is discrete, see [44], and the second point (2) holds in general.
In particular, we record the following result related to Remark 3.9:
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Theorem 5.3 Suppose that X is a weakly cscK Kähler manifold with Aut0(X)
discrete. Then (X, α) is uniformly K-stable if and only if (X, α) is coercive with
respect to the set of subgeodesic rays compatible with a relatively Kähler test
configuration for (X, α). Likewise, (X, α) is K-stable if and only if (X, α) is
geodesically stable with respect to the set of subgeodesic rays compatible with a
relatively Kähler test configuration for (X, α).

Proof (Proof of Theorem 5.2) This is an immediate consequence of Theorem 1.
Indeed, under the stated hypotheses the K-polystable locus is non-empty, by results
of [3], so (X,L) is K-polystable if and only if it is geodesically K-polystable,
even c1(L) does not itself admit a cscK metric. Finally, K-polystability trivially
implies equivariant K-polystability, so also the equivariantly K-polystable locus is
non-empty. In the same way as above, this proves (2). ��
A reformulation of the above Theorem 5.2 is that, on weakly cscK polarized
manifolds, a ray compatible with a test configuration is induced by a holomorphic
vector field precisely if the test configuration is a product:

Theorem 5.4 Suppose that (X,L) is a polarized weakly cscK manifold. Let (X ,L)
be a relatively Kähler test configuration for (X,L) with compatible subgeodesic ray
(ϕt ) ∈ R(X ,L). ThenX % X×C if and only if (ϕt )t≥0 is induced by a holomorphic
vector field on X.

This extends a result of [3] from the case of cscK manifolds, to the larger class of
weakly cscK manifolds.

5.2 An Extended Injectivity Lemma

Finally, it is worth noting that the above techniques can be used to extend the
injectivity lemma (see Theorem 3.7, part (2)) from the setting of a fixed underlying
Kähler class, to the setting of different underlying Kähler classes α, β ∈ CX. Such
injectivity type results were in [44] a key tool in proving equivariant K-polystability,
geodesic K-polystability, and K-polystability whenever the automorphism group is
discrete. It is also of independent interest.

In order to state the result, recall the assignment R : (X ,A) �→ [
(ϕt )

(X ,A)] from
Sect. 3.4. We then have the following:

Theorem 5.5 Suppose that α := [ω] and β := [θ ] are Kähler classes on X and
let (X ,A) and (Y,B) be relatively Kähler test configurations for (X, α) and (X, β)
respectively. Suppose that

R(X ,A) ∩ R(Y,B) �= ∅.

Then the canonical C∗-equivariant isomorphism X \ X0 → Y \ Y0 extends to an
isomorphism X → Y .
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Remark 5.6 The hypothesis R(X ,A) ∩ R(Y,B) �= ∅ here means that there is
a subgeodesic ray ρ(t) ∈ PSH(X,ω) ∩ PSH(X, θ) which is compatible with
two relatively Kähler test configurations (X ,A) and (Y,B) for (X, α) and (X, β)
respectively.

Proof of Theorem 5.5 The idea of the proof is to extend [44, Theorem 1.8] using
the key Lemma 4.4 in order to control the change of the underlying Kähler class.
Indeed, first fix Kähler forms ωα and ωβ such that [ωα] = α and [ωβ ] = β. By
hypothesis R(X ,A)∩R(Y,B) �= ∅ there is a subgeodesic ray ρ(t) ∈ PSH(X,ωα)∩
PSH(X,ωβ) which is compatible with two relatively Kähler test configurations
(X ,A) and (Y,B) for (X, α) and (X, β) respectively. Now pick (X ,Aβ) as in
Lemma 4.4. Then (X ,Aβ ) and (Y,B) are relatively Kähler test configurations
for (X, β), both compatible with the same subgeodesic ray ρ(t). By applying the
injectivity lemma [44, Theorem 1.8] we then finally see that the canonical C∗-
equivariant isomorphism X \ X0 → Y \ Y0 extends to an isomorphism X → Y .
This is what we wanted to prove. ��

5.3 Topology of the K-Semistable and Uniformly K-Stable Loci

The techniques of variation of the underlying class in the Kähler cone immediately
yield some basic information on the structure and topology of the K-semistable and
uniformly K-stable loci in the Kähler cone. Here (X, α) is said to be uniformly
K-stable if there is a δ > 0 such that DF(X ,A) ≥ δJNA(X ,A) for all relatively
Kähler test configurations (X ,A) for (X, α) that dominateX × P1 via a morphism
μ : X → X × P1 (testing for these is enough by [45]). For such test configurations
the norm JNA(X ,A) is defined as the intersection number

JNA(X ,A) := (μ∗p∗1α ·A)−
(An+1)

n+ 1
.

computed on X (as before p1 : X × P1 → X denotes the first projection). We refer
to [32, 43–45] for details.

The following first result should be compared to [35, Theorem G]:

Theorem 5.7 The K-semistable locus is closed in Euclidean topology in the Kähler
cone of X.

Proof By [43, Proposition 3.12] it suffices to test K-semistability for relatively
Kähler test configurations (X ,A) for (X, α) that are smooth and dominating, i.e.
there is a morphism μ : X → X × P1 such that p1 ◦ μ = π : X → P1. Hence, we
may fix any given relatively Kähler smooth and dominating test configuration X for
X. By [43, Proposition 3.10] we moreover have

A = μ∗p∗1α + [D]
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for some R-divisor D on X supported on the central fiber X0. Since A is Kähler,
there is an open neighbourhood Uα ⊂ CX of α such that Aβ := μ∗p∗1β + [D] ∈
CX for every β ∈ Uα. In view of the intersection theoretic interpretation of the
Donaldson-Futaki invariant, note that the map

Uα , β �→ DF(X ,Aβ)

is continuous. As a consequence, suppose that α �∈ K-semistable locus. Then there
exists a smooth and dominating test configuration (X ,Aα) as above such that
DF(X ,Aα) < 0. But by continuity there exists an open neighbourhood Vα ⊂ Uα
such that DF(X ,Aβ) < 0 for each β ∈ Vα. In other words, if α �∈ K-semistable
locus, then there is an open neighbourhood satisfying Vα ⊂ CX\K-semistable locus.
Hence the K-semistable locus is open in the Kähler cone of X, which is what we
wanted to prove. ��
Due to the fact that the cscK locus is open (see [11]) a consequence of this is that
K-semistability is not equivalent to existence of cscK metrics. This has been known
previously by means of counterexamples (see e.g. [36, 48]). Nonetheless, this yields
a complementary perspective on this question. From this, we we also record the
following corollary of independent interest:

Corollary 5.8 The inclusion cscK locus ⊂ K-semistable locus is strict whenever
the K-semistable locus �= ∅, CX.
This also yields concrete examples of manifolds with “many” strictly semistable
(i.e. K-semistable but not K-stable) Kähler classes:

Example 5.9 (Strictly semistable examples) Consider the Del Pezzo surface X =
Blp1,...,p8P

2 to be the blowup of P2 in 8 points p1, . . . , p8 in general position. First
of all, it is well known that X is Kähler-Einstein, so (X,−KX) is K-stable by [48].
In other words, the K-stable locus, thus also the K-semistable locus, is non-empty.
On the other hand, it was shown in [41] that X admits K-unstable polarizations,
so the K-semistable locus is �= CX. Since both the K-stable locus and the K-
semistable locus are �= ∅, CX, whereas the former is open and the latter is closed
in the Euclidean topology in CX, it follows that the strictly K-semistable locus is
non-empty, i.e. the set K-semistable locus \ K-stable locus �= ∅. This gives a new
method of answering the question of existence of strictly K-semistable classes.

5.3.1 The Uniformly K-Stable Locus

Now suppose that (X,ω) is a compact Kähler manifold with discrete automorphism
group, i.e Aut0(X) = ∅. Then similar arguments can also be made for the uniformly
K-stable locus in the Kähler cone of X. To see this, we associate to each Kähler
class α ∈ CX the finite real number

�(α) := sup{δ > 0 |DF(X ,A) ≥ δJNA(X ,A)}
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where the condition above should hold for all relatively Kähler test configurations
(X ,A) for (X, α). Moreover, introduce the sets

Uδ := {α ∈ CX | �(α) ≥ δ}

We then make the following observation:

Theorem 5.10 The uniformly K-stable locus can be written as a union

U :=
⋃

δ>0

Uδ,

where each Uδ is closed in the Euclidean topology in the Kähler cone.

Proof The proof is analogous as the one in Theorem 5.7, but applied to DF− δJNA

instead. For the convenience of the reader we give the argument: By [45, Proposition
3.2.20] it suffices to test uniform K-stability for relatively Kähler test configurations
(X ,A) for (X, α) that are smooth and dominating, i.e. there is a morphism μ :
X → X × P1 such that p1 ◦ μ = π : X → P1. Hence, we may fix any given
relatively Kähler smooth and dominating test configuration X for X. As before, by
[43, Proposition 3.10] we moreover have A = μ∗p∗1α + [D] for some R-divisor
D on X supported on the central fiber X0. Since A is Kähler, there is an open
neighbourhood Uα ⊂ CX of α such that Aβ := μ∗p∗1β + [D] ∈ CX for every
β ∈ Uα . In view of the intersection theoretic interpretation of both the Donaldson-
Futaki invariant and the non-Archimedean J-functional, note that the map

Uα , β �→ DF(X ,Aβ)− δJNA(X ,Aβ)

is continuous for each δ ∈ R. As a consequence, fix a δ ∈ R and suppose that
α �∈ Uδ . Then, by definition, there exists a smooth and dominating test configuration
(X ,Aα) as above such that DF(X ,Aα) < δJNA(X ,Aβ). But by continuity there
exists an open neighbourhood Vα ⊂ Uα such that DF(X ,Aβ) < δJNA(X ,Aβ for
each β ∈ Vα . In other words, if α �∈ Uδ , then there is an open neighbourhood
satisfying Vα ⊂ CX \ Uδ. Hence for each δ ∈ R, the set Uδ is open in the Kähler
cone of X. Finally, it is clear that the uniformly K-stable locus can be written

U :=
⋃

δ>0

Uδ,

completing the proof. ��
Remark 5.11 The K-semistable locus equals

Kss =
⋃

δ≥0

Uδ (= U0).

so Theorem 5.7 is a special case of Theorem 5.10.
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We finally note the following reformulation of Theorem 5.10:

Corollary 5.12 The stability threshold

CX , α �→ �(α)

is upper semicontinous.

We expect that it is also lower semicontinuous, but leave this question for future
work.
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Kähler-Einstein Metrics via Moduli
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Abstract We discuss some ideas behind a strategy that has been used to construct
Kähler-Einstein metrics for explicit families of Fano varieties.

Keywords Kähler-Einstein metrics · Moduli spaces · Fano varieties

1 Introduction

A major problem in complex differential geometry consists in understanding which
Fano manifolds admit Kähler-Einstein metrics. Recall that a n-dimensional complex
manifold X is said to be Fano if it has positive first Chern class or, equivalently, its
anticanonical bundle K−1

X = ∧n
T X is ample. Geometrically, a Kähler-Einstein

(KE) metric is simply an Einstein space for which parallel transport commutes with
the underlying compatible complex rotation. It is a non-trivial fact that such metrics,
necessarily with positive constant scalar curvature, are unique up to the natural
symmetries (biholomorphisms and scalings). Thus KE metrics provide a way to
canonically “geometrize” Fano manifolds. However, not all Fano manifolds admit
such metrics, as the classical example of the blow-up of the projective plane in one
point shows.
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Understanding exactly which Fano manifolds admit KE metrics has been the
object of intense investigation in the last decades. These studies culminated in the
recent solution of the so-called Yau-Tian-Donaldson conjecture in the Fano case ([8]
for the “if” part, and [4] for the “only if”):

Theorem 1.1 A smooth Fano manifold X admits a KE metric if and only if is K-
polystable.

Such result shows that the transcendental problem of finding a KE metric (a
solution of a geometric PDE) is equivalent to the purely algebro-geometric property
of K-stability. In short, checking K-stability amounts to compute the positivity
of certain numerical invariant (Donaldson-Futaki invariant) on C∗-equivariant
degenerations of a Fano manifoldX to a possibly singular variety X0.

However, despite its fundamental theoretical importance, the above theorem is at
present not very useful in constructing new KE metrics since, in general, it is still
impossible to verify the K-stability property from its definition, due to the too many
degenerations which a-priori need to be checked.

In this note, we would like to describe a different method for showing existence
of KE metric on explicitly given Fano manifolds, which has been used in [31, 34]
and it can possibly be applied in many other new situations.

Often Fano manifolds comes in complex families π : X → H, with π−1(t) =
Xt Fano variety. By varying the base parameter t we obtain in general non-
biholomorphic (but still diffeomorphic) Fano manifolds. To keep an easy example
in mind, consider the case of hypersurfaces of degree less than n + 2 in CPn+1.
By varying the coefficients of the defining polynomials, we obtain in general
different Fano varieties. It is important to mention here that in low dimensions Fano
manifolds are fully classified: each one is given as a member of some explicit family.
In dimension two the classification is classical. In dimension three it is obtained
thanks to works of Fano, Iskovskikh, Mori and Mukai [21].

It is then natural to ask the following question:

Question 1.2 Which Fano varieties in a given explicit family π : X → H carry
KE metrics?

A natural strategy to analyze such situation consists in investigating the KE
existence problem by studying variations of the parameters t ∈ H. The idea of
studying the KE problem by varying the complex structure is definitely not a new
one. Indeed, it was used by Tian to solve the KE existence problem in dimension two
[37]. He proved that, in each degree d = c2

1(X) < 5 the KE condition is non-empty,
open and closed within the subset of a natural parameter space Hd parameterizing
smooth Fano surfaces of degree d .

Here we are going to explain an extension of such ideas. We do not focus on
smooth Fanos only, but we also consider some degenerate singular limits. Moreover,
we crucially make use of stability conditions (K-stability and classical GIT) in
the study of how the KE condition varies in a family, by relating degenerations
to concrete algebraic moduli constructions. We refer to this method as to the
moduli continuity method. Such strategy was first used in [31] to study the so-
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called Gromov-Hausdorff (GH) moduli compactification of the space of smooth
KE Fano surfaces (for degree d = 4 there is a previous work of T. Mabuchi and
S. Mukai [28], which uses a slightly different approach). By applying this method,
we do not only understand precisely which smoothable Fanos in a given family
admit KE metrics, but we also provide a concrete description of the “abstract” GH
moduli compactification, also known as K-moduli space (see [33] for a survey on
such moduli spaces of algebraic varieties with their relation to special metrics).
Moreover, this gives an explicit classification of the singularities of GH limits of
certain Einstein manifolds, which is definitely interesting from a purely differential
geometric point of view.

2 The Moduli Continuity Method

The moduli continuity method can be described as a strategy that can be used to
answer Question 1.2. We now explain and comment the main steps, in a somehow
idealized situation. Since our focus is on the main ideas, we refer to the literature
for precise definitions and arguments.

Being a continuity method, it is not a surprise that it consists of three main parts:
non-emptiness, small variations and large variations. We are going to describe very
quickly the first two, while spending more time on the last one, since it has been the
object of some very recent advances.

Non-emptiness The first step consists in finding within our family π : X → H a
Fano variety Xt0 for which we can “easily” conclude that a KE metric exists on it.
But where to look for such variety? As a general rule, we should look for a Fano
which is more symmetric and apply some existence criterion, such as theG-invariant
α-invariant, with G ⊆ Aut(X) finite.

In principle, we could possibly even search among mildly singular Fano within
the family. For example, the singular cubic surface xyz = t3 is a finite quotient of
the projective plane, and hence it has an obvious KE metric. Or we could look for
a toric varieties since, in this case, the KE problem is fully understood [5]. Note
that to actually apply the method starting from a singular variety, we would need to
argue that some nearby smoothing is KE (see discussion in the next step).

Small variations The next step concerns how the KE condition varies for small
perturbations of the complex parameters t ∈ H. If the automorphism groupAut(Xt)
is discrete, a simple application of the implicit function theorem shows that all Xs
sufficiently close to the KE manifold Xt admit KE metrics too. Actually, it can be
proved that, in such case, the KE condition is Zariski open [11, 30].

In general, however, the automorphism group does not need to be discrete
neither the KE condition open. Nevertheless, the situation is understood via a
local GIT picture [7, 36]: we can look at the natural induced action of the
reductive automorphism group on the space of infinitesimal deformations in order
to understand which nearby Fano manifold remains KE. The prototypical situation
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is the case of the Mukai-Umemura Fano 3-fold and its deformations, first analyzed
in [38]. We can then understand which are the Fanos near Xt in our family which
remain KE.

The singular situation is more subtle, but it has been discussed at least for metric
limits in [24, 35].

Large variations Let Xti a sequence of KE Fano manifolds in our family, and let
ti → t∞ ∈ H. The question now is: does Xt∞ (even singular) need to be KE too?

In general, the answer is negative. However, in certain situations, we can give a
positive answer. By the limit picture for KE Fanos of [12], eventually by passing to a
subsequence, we can assume thatXti converge in a “refined” GH sense to a singular
KE Fano variety X∞. That is, they converge both in the metric GH sense and as
complex cycles in a given uniform projective embedding. However, this abstract
natural limit X∞ a-priori does not need to be given by a variety within our original
starting family π : X → H.

To actually show that X∞ is indeed a (special!) member of our family, we need
three main steps:

1. Refined a-priori control on the singularities of GH (K-stable) limits.
2. Classifications of mildly singular Fanos.
3. Stability comparison argument.

The first point has seen recent advances, but we postpone its more careful
discussion in the next section. For the moment, we could just say that a consequence
of such analysis should give effective bounds (in terms of natural invariants of the
general member of the family) of the so-called Gorenstein index of X∞, that is, the
minimal power to which we need to raise the Q-Cartier anticanonical divisor−KX∞
to find a genuine line bundle.

Let us suppose that a small a-priori bound on the index has been achieved. As I
recalled at the beginning, in some situations, Fano manifolds have been classified.
Thus, it becomes now important to extend the classification to the mildly singular
Fanos as given by the first step. Usually, this ends up in showing an effective bound
on the very-ampleness of the anticanonical bundle. A further information one could
possibly use is that the limit X∞ is Q-Gorenstein smoothable. We think that this
analysis should rise interesting problems for algebraic geometers.

In a lucky case, the extended classification may give that X∞ is indeed
biholomorphic to a member of our family, say Xt∗ (see later for a discussion in
the case this does not hold). But, is Xt∗ biholomorphic to our starting flat limit Xt∞?

It is here that the last step enters the game (and, also, it is here the reason why
we have called such strategy a moduli continuity method). From Berman result [4]
we know that X∞ ∼= Xt∗ is K-polystable. On the other hand, on our family there
would usually be an equivariant action of a linear group G such that two varieties
are abstractly isomorphic if and only if there is an element of the group carrying one
to the other (just think for example to the natural action of SL(n + 2) on the space
of projective Fano hypersurfaces). This can give rise to a classical GIT problem.
It becomes now crucial to understand how K-stability relates to such classical GIT
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stability. In good situations (e.g., when one can check that the CM line bundle [32],
whose weight is the Donaldson-Futaki invariant, is an equivariant positive multiple
of a linearization considered in a classical GIT, the family is nice enough to avoid the
Li-Xu pathology, etc. . . ) we can infer that K-polystability implies GIT-polystability.
Thus we can conclude that t∗ is now in Hps , the GIT polystable locus. Moreover, a
Luna’s slice argument shows that [Xti ] converges to [Xt∗ ] in the analytic topology
of the explicit GIT quotient H//G. Using the fact that H//G is Hausdorff we can
now see that, if t∞ ∈ Hps , Xt∞ ∼= Xt∗ ∼= X∞ carries a KE metric.

Finally, running an open-closed argument and using the density of smooth Fanos
in our family, we can deduce that the natural injective (by uniqueness of the KE

metric) continuous map φ : EMGH → H//G we have constructed, is indeed

surjective. Here EMGH
is the compactification of the moduli spaces of KE Fanos

manifolds in our family up to biholomorphic isometries equipped with the refined
GH topology (also known as K-compactification). Hence φ is a homeomorphism by
the standard compact-to-Hausdorff argument.

In conclusion, the problem of understanding which Fanos in our family is KE
has been reduced to the study of a classical GIT quotient, that can be concretely
analyzed via standard algebro-geometric techniques.

There are few points we would like to emphasize and comment on. It is
worth noting that this approach requires to work necessarily with formation of
singularities, even if one cares about the existence only of smooth KE Fanos. This
is typical and not surprising in analysis (e.g., regularity theory, geometric flows,
etc. . . ). There is some “hard analysis” input also in this moduli continuity method
approach: this is “hidden” in the “algebraic regularity” result [12], itself based
on Cheeger-Colding regularity theory of limit spaces. After that, the argument
becomes addressable with help from algebraic geometry. This is possible thanks
to the presence of the underlying canonical algebraic structure, which make our KE
case, in a certain sense, special among geometric PDEs.

As we mentioned in the introduction, as a non-trivial by-product of such
moduli method we obtain a concrete description of all GH degenerations of the
KE metrics in our family. A further interesting question to investigate is if such
compactifications actually provide a compactification of a connected component of
the full Einstein moduli space on the real underlying smooth manifold. That is, it
would be interesting to see if there can be Einstein but non-Kähler deformations of
a KE Fano manifold. As far as we are aware, this problem has not been solved yet,
but it is very intriguing from a differential geometric viewpoint.

Finally, before discussing the crucial aspect of bounding a-priori the singularity
types of GH limits, we should stress that the strategy described will require, in
general, some adjustment in order to be applied: the main issue is that, in several
cases, the abstract GH limits cannot always live in the family we started with! To
deal with this problem, it would be needed to perform some birational modifications
of our original family in order to accommodate such limits. Even for hypersurfaces
in CPn+1 we cannot expect in general to reduce the KE problem just to the obvious
GIT quotient: for example, for quartics 3-folds in CP4 it is clear that one should
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consider, at least, one blow-up of the family at the non-reduced double quadric, in
order to accommodate the (KE) “hyperelliptic” Fanos which are given by taking
double covers of a quadric. In any case, the moduli continuity method can be
applied, with more work, also to such situations [31].

2.1 Refined A-Priori Control on the Singularities of GH Limits

By the general theory of Donaldson-Sun [12], we know that a GH limit X∞ of
smooth KE manifolds is a singular Fano variety with Q-Cartier canonical divisor
and Kamamata log terminal (klt) singularities, i.e., X∞ is normal and for each log-
resolution r : X̂∞ → X∞, the canonical divisor K

X̂∞ = r∗KX∞ +
∑
i aiEi

with discrepancies ai > −1. Moreover, X∞ carries a weak KE metric in the
sense of [14]. In this section we want to explain how to get further bounds on the
singularities.

In complex two dimension, it was previously known by works of Anderson, Tian
and many others, that GH limits are KE orbifolds, i.e., the singularities are locally
of type C2/�p, with �p ⊆ U(2) finite, acting freely on the sphere (precisely the
klt condition in dimension two) and the metric is orbifold smooth. Thus, a natural
invariant which measures the “sharpness” of a singularity is given by the order of the
group at p. Since the KE metric satisfies the Bishop-Gromov monotonicity formula,
we can relate the “local volume” (i.e., the order of the group) with the global volume
(which is preserved in GH limits), thus obtaining some a-priori bounds on the order
of the orbifold singularities. This was used for analyzing the two dimensional case
[31].

In higher dimension the situation becomes more subtle. First of all, the expected
general singularity won’t be of quotient type (Schlessinger’s rigidity). For example,
this happens for the ordinary double point ODP singularity

∑
i x

2
i = 0 in dimension

bigger than or equal to three. Moreover, if we rescale the weak KE metric near a
singularity p ∈ X∞, the metric tangent cone (a singular Calabi-Yau cone C(Yp))
won’t be in general locally biholomorphic (actually not even homeomorphic!) to the
singularity germ V ⊂ X∞ itself. Such local jump of the complex structure was first
observed by Hein and Naber [19] (the isolated Ak-singularity in three dimension
jumps to the flat splitting C × C2/Z2 as soon as k ≥ 3), and the picture has been
made general and precise in [13]. In any case, from a geometric measure theory
viewpoint, it still makes sense to define the density as a measure of the sharpness:

�p := lim
r→0

V ol(BKEp (r))

ω2nr2n = V ol(Yp)

V ol(S2n−1)
≤ 1.

As before, one could bound the densities using Bishop-Gromov estimates. However,
by some experimental inspection, the estimate one gets this way is too weak to be
of any use in higher dimension. In order to proceed further, we need new input from
algebraic geometry.
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Trying to find a purely algebro geometric construction of the metric tangent cones
and inspired by previous work [29] in Sasakian geometry by Martelli, Sparks and
Yau, Li introduced in [22] the following new invariant for a germ (V, p) of a klt
singularity, the infimum of the normalized volume of valuations:

ˆvol(V, p) := inf
ν∈Valp

An(ν) vol(ν) > 0,

where A(ν) is the log-discrepancy of a valuation and vol(ν) := lim supr→0
length(OV,p/{f |ν(f )≥r})

rn/n! its volume. It is proved in [6], that the infimum is actually a
minimum.

This new invariant has to be considered as the algebro-geometric analogue of the
metric density. The order of a germ of an holomorphic function at the singularity
computed with respect to the distance induced by the KE metric induces a valuation
νKE . In [20] it was proved that An(νKE) ˆvol(νKE) ≤ nn�p and equality holds
for quasi-regular tangent cones. More recently [23], the equality has been shown
to hold in any situation, and moreover νKE is indeed the (unique among the so-
called quasi-monomial valuations) minimizer. Hence for singularities in GH limits
ˆvol(V, p) = nn�p.

The next crucial ingredient is the following “algebro-geometric Bishop-Gromov”
estimate, proved by Liu [25] as a generalization of Fujita’s volume bound for K-
semistable Fano manifolds [16]:

cn1(X) ≤
(

1+ 1

n

)n
ˆvol(V, p),

for any germ of singularity (V, p) in a n-dimensional K-semistable Fano variety
X. This estimate is stronger than Bishop-Gromov estimate. Thus, provided that
the volume of a sequence of KE Fano manifolds is large enough, we obtain good
quantitative lower bounds for the volume densities at the singularities, since GH
limits are K-polystable, as a consequence of Berman’s result [4].

Moreover, it is very natural to expect that such densities satisfy certain gaps
among their values (in analogy with minimal surfaces theory, in which, for example,
the Willmore’s conjecture can be interpreted as a gap for the density of certain
minimal cone). Thus, since the ODP singularity is, in a rough sense, the simplest
one, it is very natural to expect the following:

Conjecture 2.1 ODP gap conjecture [34]: �p (= n−n ˆvol(V, p)) ≤ 2
(

1− 1
n

)n
,

for any singularity p ∈ Xn, and the equality holds iff the singularity is an ODP
(and the metric tangent cone is the ODP with its natural CY Stenzel’s cone metric)

This is clearly true thanks to the orbifold regularity of KE metrics for n = 2.
Moreover, using classification results for three dimensional canonical singularities,
it has been very recently proved in [26] that the value 16 is indeed the infimum of
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the normalized volume for all klt singularities (non-necessarily assumed to come
from GH limit).

To state the next theorem, let us introduce the following quantity,

V (n) = sup{�(Cn(Y )) | Cn(Y ) ∼= Ck × C(Y ′) � Cn, k ≥ 0, Y ′smooth},

and recall that the Fano index is the maximal r∈ N such that K−1
X = Lr for L an

ample line bundle.

Theorem 2.2 ([34]) Let X∞ be a GH limit of n-dimensional smooth KE Fanos Xi
of index r such that

cn1(Xi) >
(n+ 1)n

2
V (n).

Then X∞ has Gorenstein canonical singularities (i.e., the discrepancies are non-
negative for any log resolution) and K−1

X∞ = Lr for some line bunde L.

It is clear that 2
(

1− 1
n

)n ≤ V (n) ≤ 1. Thus, if cn1(X) > (n + 1)n/2 (that is,

if the volume is bigger half of the volume of the projective space), the hypothesis
holds. As we will see below, this condition is not empty. Moreover, since, as we have
recalled, for n = 3 the volume gap holds true [23, 26], the above theorem implies
(see [34]):

Corollary 2.3 GH limits of KE Fano 3-folds of degree bigger than 20 are Goren-
stein Fanos with canonical singularities and same Fano index. These include
intersections of two quadrics, cubic hypersurfaces, and Fano 3-folds of rank one
and degree 22 (deformations of the Mukai-Umemura manifold).

More generally, one can obtain bounds on the Gorenstein index, which can also
be very useful, as the two dimensional case shows.

In a nutshell the proof of Theorem 2.2 consists in:

1. Use the Liu’s estimate of the volume to find a bound on the fundamental group of
the possibly singular link of the metric tangent cone (by applying Colding-Naber
convexity of its smooth locus [9]);

2. Bound the Cartier index on the cone via some covering trick;
3. Use the 2-steps construction of metric tangent cone in [13], to obtain the index

bound on the original singular variety.

The definition of V (n) is used in combination to Schlessinger’s rigidity of quotient
singularities to rule out certain situations.

As [26] suggest, part of the arguments can be made fully algebraic and more
general by establishing that certain properties of the normalized volumes of
valuations (mostly related to coverings) holds, thus avoiding to use more differential
geometric techniques based on Cheeger-Colding theory.
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3 Applications

The moduli continuity method has been applied in dimension two to fully study
the GH compactification of KE surfaces in [31]. As a by-product we obtained
an explicit classification of two dimensional KE Fano orbifolds with singularities
of type C2/�, with � ⊆ SU(2). In the proof we used, in combination with
the bounds on the orbifold group, the classification of Q-Gorenstein smoothable
quotient singularities and classification results for certain smoothable Fano surfaces.
We then constructed algebraic moduli spaces of Fano surfaces, which we showed to
agree with the GH/K-moduli compactification via our strategy. While for degree 4
or 3 we could make use of classical GIT quotient, for degree 2 or 1 we performed
certain birational modifications, resulting in a “gluing” of GIT quotients.

In the recent [34], we applied the above Theorem 2.2 and used the moduli
strategy to show the following results.

Theorem 3.1 ([34]) A possibly singular complete intersection of two quadrics
X = Q1 ∩ Q2 in Pn+2 is KE (eq. is K-polystable) if and only if, up to
reparametrization,Q1 = 1 and Q2 is diagonal with no more than (n+ 3)/2 equal
eigenvalues and, if equality holds, then X ∼= {∑(n+1)/2

i=0 x2
i =

∑n+2
(n+3)/2 x

2
i = 0}.

In particular, all smooth intersections are KE, GH limits have at most bundles of
ODP as singularities, and the GH compactification agrees with the GIT quotient
Gr(2, Sym2(Cn+3))//SL(n + 3) obtained by associating to an intersection of two
quadrics its pencil.

Theorem 3.2 ([34]) If ODP gap conjecture 2.1 holds for any k ≤ n (which does
for n ≤ 3 [23, 26]), then a possibly singular cubic n-fold admits a KE (eq.
is K-polystable) if and only if it is GIT polystable for the SL(n + 2) action on
Sym3(Cn+2). In particular, all smooth cubics are KE.

Note that in dimension three GIT polystable cubics are fully classified [1]. For
n = 3, Theorem 3.2 has been derived also in [26] as a consequence of their volume
gap proof.

Thanks to the control of singularities provided by Theorem 2.2, the main point
in the proof of Theorems 3.1 and 3.2 consists in showing that the GH limits embed
naturally in the original family by applying Fujita’s classification of singular del
Pezzo varieties [15], and finally by using the continuity method strategy. The explicit
form of Theorem 3.1 follows by the GIT analysis [3]. For n = 3, Theorem 3.1 is
a bit special, since we hit the boundary of Theorem 2.2’s inequality. Nevertheless,
it can still be proven via rigidity arguments, avoiding to use the volume gap. We
remark that the existence of KE on all smooth intersections of two quadrics was
known before [2], but for cubics threefolds it was known only for special cases.
The generic singularity in the above examples is an ODP. However, from a metric
viewpoint, it is still unknown the full asymptotic to the Stenzel’s CY cone metric
[20].

Related to the above theorems, there are some interesting algebro geometric
questions which deserve further investigation. In particular: are there other cases in
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higher dimension where Theorem 2.2 applies? Is indeed true that all GIT semistable
cubics are normal in every dimension? What can we say about KE limits of Fano
manifolds of Picard rank one and degree 22? Namely, do they embed as intersections
of three sections of a tautological bundle on a Grassmannian similarly to the smooth
case? Can one study explicitly the associated GIT problem?

Finally, another direction which is interesting to explore is the so-called log case,
i.e., of Fano pairs (X,D) with D = ∑

i (1 − βi)Di , βi ∈ (0, 1) admitting singular
KE metrics with 2πβi cone singularities at the generic points of D. This situation
is not trivial, but well-understood, already in dimension one. It is known [27, 39]
that the existence of a KE metric on log-P1s, i.e., (P1,

∑n
i=1(1 − βi)pi) with βi ∈

(0, 1) and d = 2 −∑
i (1 − βi) > 0, is equivalent to the Troyanov’s condition

1− βi <∑
j �=i (1− βj ) for n ≥ 3, and β1 = β2 for n = 2. How the natural KE/K-

compactification looks in this case? For fixed n, d and values of the cone angles, the
only thing that can happen for limits is that points collide, since all the (marked) GH
limits must still be given by a log-P1s by Gauss-Bonnet. To understand the possible
limits one can use the moduli continuity method. It is in fact easy to see that the
Troyanov’s condition is equivalent (at least for rational angles) to GIT-stability for
the rational polarizationLβ := �ni=1O(1−βi) on (P1)n (weighted points). Thus, by

the continuity method, we have EMGH

n,d,β
∼= (P1)n//βSL(2). Note that, by varying

the cone angles, we obtain birational modifications of the moduli spaces.
In higher dimension, the situation is definitely more subtle, since also the divisor

Di may become quite singular in the limits. Even in dimension two, it is going to
be essential to use the new advances related to valuations and the expected tangent
cone description [10] to control the singularities of the divisors. Natural first steps
to investigate are the KE-compactifications of moduli of (P2, (1 − β)D), with D
degree d ≥ 3 hypersurface and, for example, cubic surfaces with an hyperplane
section [17]. At least for cone angles big enough, it is expected that the KE/K-
compactification does agree with some GIT quotient naturally associated to the
problem [18].
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GIT Stability, K-Stability and the Moduli
Space of Fano Varieties

Xiaowei Wang

Abstract This is a slightly extended version of the lecture notes of a mini-course in
the workshop of Moduli of K-stable Varieties given by the author, in which the main
construction of the proper moduli space of Q-Gorenstein smoothable K-semistable
Fano varieties in Li et al. (On proper moduli space of smoothable Kähler-Einstein
Fano varieties, ArXiv:1411.0761 v3, 2014) is outlined.

Keywords Geometric invariant theory (GIT) · Symplectic quotient · K-stability ·
Kähler-Einstein metric · Q-Fano variety

1 Introduction

Constructing moduli spaces for polarized algebraic varieties is a fundamental
problem in algebraic geometry. One of the main motivation of Geometric Invariant
Theory (GIT) invented by Mumford [37] is exactly for this purpose. In particular, it
has been successfully applied to construct the moduli space of canonically polarized
varieties in dimension one. For the two dimensional case, in [16] David Gieseker
successfully applied GIT to prove the existence of a quasi-projective moduli space
for minimal surfaces of general type. The advantage of GIT is that it produce a
projective coarse moduli, however, quite often it is difficult to characterize the
singular varieties appearing in the GIT compactification even for dimension two
(cf. [43]). However, if one wants to have a geometrically natural compactification
for these moduli spaces, the GIT method in its classical form fails to produce that
(cf. [49]). Thanks to the recent breakthrough coming from the theory of the Minimal
Model Program (MMP) (see [3] etc.), there is a canonical projective moduli space
parameterizing KSBA-stable varieties, named after Kollár-Shepher-Barron-Alexeev
(cf. [19, 23]).
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As for Fano varieties, the story is much subtler due to the appearance of
the continuous automorphism group and the difficulties that MMP becomes less
canonical in the Fano situation. Fortunately, the recent breakthrough in the Kähler-
Einstein problem, namely the solution to the Yau-Tian-Donaldson Conjecture
[4–6, 48] in a sense play an alternative role to [3] in canonically polarized case.
In [39], the authors make the first progress by constructing a proper moduli spaces
for K-semistable Del Pezzo surfaces. They have taken the advantage of the existence
of explicit GIT moduli spaces constructed by algebraic geometers in dimension two,
which is hard to generalize to higher dimensions.

In this note, we will outline our construction of moduli space of Q-Gorenstein
smoothable K-semistable Fano varieties of any dimension in [33]. The new feature
of our construction is that it is a hybrid of classical GIT and the Gromov-Hausdorff
compactification of the moduli of Kähler-Einstein manifolds. To put in another
word, we successfully endow a proper topological moduli space with an algebraic
structure. This process can be regarded as an generalization of the classical fact
GIT=symplectic quotient, the difficulty here is that our situation is neither a classical
GIT nor a symplectic quotient but luckily each aspect supplies exactly what is
missing in its counterpart.

Before we close the introduction, let us summarize the organization of the paper.
In Sect. 2, we recall some basic facts on classical GIT; in Sect. 3, we introduce the
definition of (log) K-stability and the master space Z∗ that will be used for our
construction of the moduli space; in Sect. 4, we sketch the main ideas of proving
the separatedness and Zariski openness of K-semistability; in Sect. 5, we present
the main construction; in Sect. 6, we state our results on projectivity of the moduli
space constructed in Sect. 5. Finally, in the last section we propose some problems
for future study.

2 GIT and Symplectic Quotient

In this section, we recall some basics of GIT and symplectic quotient which serve
as the classical way of constructing proper algebraic moduli space for algebro-
geometric objects. Let us start with a reductive algebraic group G acting on a
projective variety (Z,OZ(1)) polarized by a very ample1 line bundle OZ(1) such
that it is G-linearized, i.e. there is a G-action on the total space of OZ(1) covering
the G-action of Z such that ∀g ∈ G, the isomorphism g : OZ(1)|z → OZ(1)|g·z is
linear. Now let us fix a maximal subgroup K < G together with a K-invariant
Hermitian metric (OZ(1), h) → (Z,ω) with positive curvature form ω. It is
known that (cf. [37]) OZ(1) being linearized is equivalent to the existence of a

1We assume OZ(1) being very ample only to simplify our notation.
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K-equivariant moment map

μK : Z −→ k∗ satisfying d〈μ(z), ξ〉k = ω(·, σz(ξ)), ∀ξ ∈ k = Lie(K). (1)

where σz : k −→ TzZ denotes the infinitesimal action and 〈·, ·〉k is the AdK -
invariant inner product on k, with respect to which we identify k and its dual k∗
canonically.2

Definition 2.1 (Hilbert-Mumford (cf. Ch. 2 of [37])) Let z ∈ Z and λ : C× → G

be a one parameter subgroup (1-PS) of G, we define

wz(λ) := weight of C× � OZ(1)
∣
∣
z0

with z0 := lim
t→0

λ(t) · z.

We say z is semistable with respect to λ if wz(λ) ≥ 0, and z is semistable if it
is semistable with respect to any 1-PS of G; z is polystable if it is semistable with
wz(λ) = 0 if and only if z0 = lim

t→0
λ(t) · z ∈ Oz := G · z and is stable if z is

polystable and its stabilizer Gz < G is finite.

Theorem 2.2 (Kempf-Ness and Kirwan (cf. Ch. 8 of [37])) z ∈ Z is semistable
(resp. polystable) if and only if inf

y∈Oz
|μ(y)| = 0 (resp. min

y∈Oz
|μ(y)| = 0) or

equivalentlyOz ∩ μ−1(0) �= ∅ (resp. Oz ∩ μ−1(0) �= ∅). Furthermore, we have a
homeomorphism (with respect to the complex analytic topolgy)

Zss//G := Proj
⊕

k≥1

H 0(Z,OZ(k))
G −−−−−−→ μ−1(0)//K

Oz ∩ Zss �−→ K · zmin
(2)

where Zss ⊂ Z denotes the Zariski open subset of semistable points in Z and
Ozmin ⊂ Oz ∩ Zss is the unique closed orbit satisfying |μ(K · zmin)| = 0 .

Example 2.3 Consider theG = C×-action on (Z,OZ(1)) = (P2,OP2(1)) given by
t · [x, y, z] = [tx, t−1y, z]. Then OZ(1) is G-linearized and the moment map for
K = U(1) < G = C× is given by:

P2
μ

−−−−−−→ k ∼= √−1R

z := [z0, z1, z2] �−→
√−1(|z0|2 − |z1|2)

2π |z|2
, (3)

2From now on, we will abuse our notation by regarding the moment map μK to be k valued.
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and we have Zss = P2 \ {[1, 0, 0], [0, 1, 0]} and [0, 0, 1] ∈ Zss is the only strictly
polystable point. Furthermore, we have homeomorphism:

P1 ∼= P2 \ {[1, 0, 0], [0, 1, 0]}
C×

�� {|z0| = |z1|}/U(1).

Suppose z0 ∈ Zps ⊂ Zss, the subset of polystable points, then we may reduce
the GIT problem from group G to a smaller Gz0 < G, which is also reductive
by Matsushima’s theorem [38]. To see that, let us consider the G-equivariant
embedding (as OZ(1) is very ample)

Z(1) PM (1)

Z
H 0( Z(1))

PM . (4)

Since Gz0 is reductive, there is a maximal compact subgroup K < G satisfying
Gz0 = (Kz0)

C := (Gz0 ∩K)C. Let kz0 = Lie(Kz0) be the Lie algebra and we fix a
bi-invariant inner product 〈·, ·〉k on k and let k⊥z0

⊂ k be its orthogonal complement
with respect to 〈·, ·〉k. Then the infinitesimal action σz0 : g −→ Tz0P

M is Gz0-
equivariant in the sense that

σz0(Adgξ) = g · σz0(ξ) for all g ∈ Gz0 ,

and there is a Gz0 -invariant linear subspace z0 ∈ PW := P(W ′ ⊕ Cẑ0) ⊂ PM such
that

PM = P(W ′ ⊕ (k⊥z0
)C) = P(W ⊕ Cẑ0 ⊕ (k⊥z0

)C) with (k⊥z0
)C := k⊥z0

⊗ C, (5)

where 0 �= ẑ0 ∈ CM+1 is a lift of z0 ∈ PM and CM+1 = W ′ ⊕ Cẑ0 ⊕ (k⊥z0
)
C

is a
decomposition as Gz0 -module. Now consider the multiplication morphism

G× PW
φ

−−−−−−→ G · PW ⊂ PM

(g,w) �−→ g ·w
(6)

then for ξ ∈ gz0 and δw ∈ Tz0PW we have

dφ|(e,z0)(ξ, δw) = σz0(ξ)+ δw ∈ Tz0P
N ∼= (k⊥z0

)C ⊕ Tz0PW
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where e ∈ G is the identity, and as a consequence ker dφ|(e,z0) = gz0 . Now let us
define an open set

U0 :=
{
w ∈ PW

∣∣
∣rk

(
q ◦ dφ|{1}×PW : g× T PW → (TPN |PW )/TPW

)
= dim g⊥z0

}
⊂ PW

with q : T PN |PW → (TPN |PW)/TPW being the quotient morphism between
vector bundles over PW . Then it follows from the Implicit Function Theorem that:

Lemma 2.4 U0 ⊂ PW is a Gz0-invariant Zariski open set and ∀z ∈ U0 we have
ker(σz) ⊂ gz0 .

Notice that one only needsGz0 being reductive to obtain Lemma 2.4 above, and
hence a purely infinitesimal statement. But if we evoke the polystability of z0, a
global property of z0, then we obtain a stronger and global consequence. To state it
let us introduce

G×Gz0 UW := G× UW/ ∼ with (g,w) ∼ (gh, h−1w) ∀h ∈ Gz0,

then the morphism φ (cf. (11)) descends to the quotient G ×Gz0 PW which by
abusing of notation is still denoted by:

G×Gz0 PW
φ

−−−−−−→ G · PW ⊂ PM

(g,w) �−→ g ·w
(7)

Theorem 2.5 (Luna’s slice Theorem (cf. Theorem 1.12 of [44] and Theorem 5.3
of [10])) Let G be a reductive algebraic group acting on PM via a representation
ρ : G→ SL(M + 1) as above, hence OPM (1) is G-linearized. Suppose z0 ∈ PM is
G-polystable then we have

(1) Gz0 is reductive.
(2) There is a Gz0-invariant Zariski open set z0 ∈ UW ⊂ U0 ⊂ PW as above such

that the morphism

G×Gz0 UW
φ

−−−−−−→ G · UW ⊂ PM

(g,w) �−→ g · w
(8)

is strongly étale (cf. [10, Definition 4.14]). In particular, we have Gw < Gz0

for any w ∈ UW . and after a possible shrinking of UW , we may assume that φ
is an isomorphism.

We remark that although K-stability is a not GIT stability and we do not have
Luna’s slice Theorem a priori, we will establish all the consequences of Theorem 2.5
via a complete different mean. These consequences allow us to construct local affine
chart for our moduli space.
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Example 2.6 Applying Theorem 2.5 to the Example 2.3, we obtain:

(1) If z0 = [1, 1, 0] thenGz0 = {±1} and UW = PW \ [0, 0, 1] ⊂ PW = {x− y =
0} ⊂ P2 such that

C× ×{±1} UW
φ

−−−−−−→ P2 \ {[0, 1, 0], [1, 0, 0]} ⊂ P2

(g,w) �−→ g ·w
; (9)

is an isomorphism to Imφ = C× · UW .
(2) If z0 = [0, 0, 1] then Gz0 = G and UW = PW \ {[1, 0, 0], [0, 1, 0]} ⊂ PW =

P2 such that

C× ×C× UW
φ

−−−−−−→ P2 \ {[0, 1, 0], [1, 0, 0]} ⊂ P2

(g,w) �−→ g · w
. (10)

is an isomorphism Imφ = C× · UW .

Unfortunately, it is not known that K-stability can be fitted into a classical GIT
problem (cf. [13, 40]). In particular the ampleness of the CM-line bundle first
introduced by Tian [47] (cf. also [40]) over the Hilbert scheme is lacking. So instead
we develop an alternative approach, to achieve that let us introduce the following:

Assumption 2.7 (Properness) There is a closed K-invariant subset

PM

satisfying:

(1) ∀z ∈ PM , (G · z) ∩ � consists of at most one K-orbit. � is continuous in the
sense that for any sequence of {zi}∞i=1 ⊂ PM satisfying (G · zi) ∩ � �= ∅ and
lim
i→∞ zi = z∞ ∈ �, we have

lim
i→∞ distPM ((G · zi) ∩�,K · z∞) = 0.

(2) Gz = (Gz ∩K)C for all z ∈ �.
Now φ isGz0 -invariantwith respect to the action h·(g,w) = (gh−1, h·w), hence

it descends to a K-invariant map, which by abuse of notation it is still denoted by

G×Gz0 PW
φ

−−−−−−→ G · PW ⊂ PM .

(g,w) �−→ g ·w
(11)
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Moreover, it is a bi-holomorphism (see the proof of [44, Theorem 1.12]) from a
K-invariant tubular neighborhood

Nε(K · z0) :=
{
(g exp

√−1ξ,w) ∈ G×Gz0 V
∣
∣∣ g ∈ K, ξ ∈ k<ε

}
with k<ε := {ξ ∈ k | |ξ | < ε}

(12)

of the orbit K · z0 ∼= K/Kz0 onto φ(Uε) = K · exp k<ε · V for 0 < ε - 1, where
z0 ∈ V ⊂ PW is a K-invariant analytic open neighborhood.

Now suppose g̃ = g · exp
√−1ξ satisfies g ∈ K and ξ ∈ k with |ξ | < ε such

that g̃ · w = w∈ V then:

φ(g · exp
√−1ξ,w) = φ(g̃, w) = g̃ ·w = w = φ(e,w) and (g̃, w) ∈ Nε(K · z0).

These together with the fact that φ|Uε is bi-holomorphic imply that

(g̃, w)
Gz0∼ (e,w) ∈ G× PW

i.e. there is a h ∈ Gz0 such that (g̃h−1, hw) = (e,w), hence g̃ = h ∈ Gz0 ∩ Gw.
To summarize, we obtain the following:

Lemma 2.8 Let w ∈ V ⊂ PW (defined in (12)) and suppose g̃ ∈ Gw is of the form
g̃ = g · exp ξ with g ∈ K and ξ ∈ g satisfies |ξ | < ε. Then g̃ ∈ Gz0 .

Theorem 2.9 Let K be a compact Lie group acting on PM via a representation
K → U(M+1) andG = KC be its complexification. Let z0 ∈ PM with its stabilizer
Gz0 satisfyingGz0 = (Gz0 ∩K)C and z0 ∈ � ⊂ PM satisfying Condition 2.7. Then
there is an Gz0 -invariant Zariski open neighborhood z0 ∈ U sp ⊂ PW such that
for ∀w ∈ U sp ∩G ·� we have Gw < Gz0 .

Proof First, it suffices for us to prove our statement for an analytic neighborhood,
then by the constructibility we can pass it to a Zariski open neighborhood.

Suppose Assumption 2.7 holds, then the continuity of the slice � implies that
there is a sufficiently small analyticKz0 -invariant neighborhood z0 ∈ Ṽ ⊂ V ⊂ PW

such that for any w ∈ Ṽ∩(G ·�), there is a ξ ∈ (k⊥z0
)C satisfying |ξ | < δ < ε and

z ∈ � such thatw = exp ξ ·z. In particular, exp ξ ·Kz ·exp(−ξ) ⊂ Gw is a maximal
compact subgroup of Gw. Since Kz < K is compact we have

exp ξ ·Kz · exp(−ξ) = {h · exp(Adh−1ξ) · exp(−ξ) | h ∈ Kz}
⊂ {g · exp

√−1ζ |ζ ∈ g, |ζ | < ε and g ∈ K} .

By Lemma 2.8, we must have exp(−ξ) ·Kz · exp ξ ⊂ Gz0 . Hence

Gz0 ⊃
(

exp(−ξ) ·Kz · exp ξ
)C = Gw,
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since Gz0 is reductive. Finally, one notices that the set

{w ∈ PW | Gw < Gz0} ⊃ Gz0 · Ṽ
is Gz0 -invariant and constructible. This allows us to choose a Gz0 -invariant Zariski
open subset U sp ⊃ Gz0 · Ṽ , and our proof is completed. ��
Assumption 2.10 (Stabilizer Preserving) There is a Gz0 -invariant Zariski open
neighborhood of z0 ∈ U sp ⊂ PW such that Gw < Gz0 for all w ∈ U sp.

Example 2.11 Notice that Assumption 2.10 does not hold in general, even in the
situation that a 1-PS α(t) degenerating lim

t→0
α(t) · z = z0, we cannot conclude that

Gzt < Gz0 . Consider the SL(2)-action on P(Sym⊗3C2). The 1-PS

α(t) = 1

2

[
1 1
−1 1

] [
t 0
0 t−1

] [
1 −1
1 1

]
= 1

2

[
t + 1/t −t + 1/t
−t + 1/t t + 1/t

]
∈ SL(2,C)

degenerates p(X, Y ) = (X−Y )(X−ζY )(X−ζ 2Y ) to p0(X, Y ) = 3

4
(X−Y )(X+

Y )2 ∈ P(Sym⊗3C2). Then Z/3Z ∼= SL(2)pt �⊂ SL(2)p0 = 〈1〉, and the map

SL(2)×Gm PW −→ SL(2) · PW
is not finite.

Twisting the linearization of Gz0 on OPM (1)|PW by the inverse of the character
corresponding to the action Gz0 � OPM (1)|z0 , we obtain that z0 ∈ PW is GIT-
polystable with respect to the newGz0 -linearization on OPM (1)|PW . Let U ss

W ⊂ PW

denote the GIT-semistable points with respect to this linearization and

πW : PW ⊃ U ss
W −→M := PW//Gz0 with πW(z0) = 0 ∈M (13)

denote the GIT quotient map. Let 0 ∈ BM(0, r) ⊂M be the open ball of radius r
with respect to a prefixed continuous metric. Then for each r > 0, we introduce

Definition 2.12 Let U ss
W,r be the connected component of

(G · π−1
W (B(0, r))) ∩ PW ⊂ U ss

containing z0. In particular, U ss
W,r is Gz0-invariant.

Remark 2.13 Under the Assumption 2.10, U ss
W,r is actually Gz0 -invariant. For

simplicity, let us first assume thatGz0 is finite, we notice theGz0 acts onG ·z∩U ss
W,r

then our claim follows from the following

G · z ∩ U ss
W,r = multz0(G · z0,PW) = |Gz0 | for 0 < r - 1.

The argument for generalGz0 is similar.
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Let [·] : G→ G/Gz0 denote the quotient map. We say a sequence {hi} ⊂ G is
bounded in G/Gz0 if and only if {ψ−1([hi])} is contained in a bounded subset of
K ×Kz0 (

√−1k⊥z0
), where ψ is the Cartan decomposition (cf. [44, equation (1.8)])

ψ : K ×Kz0 (
√−1k⊥z0

) −−−−−−→ G/Gz0 ,

(g,
√−1ξ) �−→ (g · exp

√−1ξ) ·Gz0

(14)

which is a K-equivariant diffeomophism.

Assumption 2.14 (Finite Distance) An analytic open neighborhood of z0 ∈
U fd ⊂ PW is of finite distance if there is a bounded (in the sense above) setGU fd �
G/Gz0 depending only on U fd and z0 such that for any pair (z, g) ∈ U fd × G
satisfying g ·z ∈ U fd, there is an h ∈ G, [h] ∈ GU fd � G/Gz0 such that g ·z = h·z,
where [·] : G→ G/Gz0 is the quotient map. It follows from the definition that U fd

is Gz0-invariant.

Lemma 2.15 Suppose both Assumptions 2.10 and 2.14 are satisfied. Then there is
a positive ε > 0 such that for any 0 < r < ε, U ss

W,r satisfies the following: for any
sequence {(gi, yi)} ∈ G ×Gz0 U ss

W,r satisfying zi = gi · yi → z∞ ∈ G · U ss
W,r , as

i →∞, after passing to a subsequence, there is a

(g∞, y∞) ∈ {(gi, yi)}i ⊂ G×Gz0 U ss
W,r such that g∞ · y∞ = z∞.

In particular, the map φ|G×Gz0U ss
W,r
: G×Gz0 U ss

W,r → G ·U ss
W,r is a finite morphism.

Proof First, we notice that after translating z∞ by a g ∈ G if necessary, we may
assume that z∞ ∈ U ss

W,r . Since we can always pass to a subsequence, we may and

will assume yi
i→∞−→ z∞∈ U ss

W,r after a possible decreasing of r as U ss
W,r ⊂ PW is

compact by Definition 2.12.
By Assumption 2.14, we may choose 0 < r - 1 such that U ss

W,r ⊂ U fd then
there is a sequence {hi} ⊂ G, with {[hi]} being bounded in G/Gz0 and satisfying
gi · yi = hi · yi , hence h−1

i · gi ∈ Gyi , ∀i. Now by Assumption 2.10, we have

h−1
i · gi ∈ Gyi < Gz0, ∀i,

from which we conclude that {[gi]} is bounded in G/Gz0 and hence the set
{(gi, yi)} ⊂ G ×Gz0 U ss

W,r is precompact. Thus the morphism φ|G×Gz0U ss
W,r
:

G×Gz0 U ss
W,r → G · U ss

W,r is a proper and étale morphism hence finite. ��
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3 K-Stability and Properties of Moduli Space

In this section, let us first recall the definition of K-stability. Let X be a Fano
manifold then for r  1,3 we have the embedding

(X,OX(−rKX)) ⊂ (PN,OPN (1)) with N + 1 = dimH 0(X,OX(−rKX)).

Definition 3.1 Let X be a normal projective variety with an effective Q-divisorD.
Suppose that

• (X,D) admits at worst Kawamata log terminal (klt) singularities (see [21, 2.34]);
• −(KX +D) is an ample Q-Cartier divisor.

Then we call (X,D) a log Q-Fano pair (resp. Q-Fano variety if D = 0).

Definition 3.2 Let (X;OX(−rKX)) be an n-dimensional Q-Fano variety and D ∈
| − mKX| be an effective prime divisor so that (X,D/m) is a log Q-Fano pair. A
log test configuration of (X,D/m;OX(−rKX)) consists of

(1) A projective flat morphism π : (X ,D;L)→ A1;
(2) A Gm-action on (X ,D;L), such that π is Gm-equivariant with respect to the

standard Gm-action on A1 via multiplication;
(3) L is relative ample and we have a Gm-equivariant isomorphism

(X ◦,D◦;L|X ◦) ∼= (X ×Gm,D ×Gm;π∗XOX(−rKX)) (15)

where (X ◦,D◦) = (X ,D) ×A1 Gm and πX : X ×Gm→ X.

A log test configuration is called a product test configuration if (X ,D;L) ∼=
(X × A1,D × A1;π∗XOX(−rKX)) where πX : X × A1 → X, and a trivial test
configuration if π : (X ,D;L)→ A1 is a product test configuration with Gm acting
trivially on X.

To proceed, let χ denote the Hilbert polynomial and we introduce ai, ãi , bi, b̃i ∈
Q via the following expansions.

• χ(X,L⊗k) := dimH 0(X,Lk) = a0k
n + a1k

n−1 +O(kn−2);
• χ(D, (L|D)⊗k) := dimH 0(D,Lk |D) = ã0k

n−1 +O(kn−2);
• w(k) := weight of Gm-action on ∧topH 0(X0,L

⊗k|X0) = b0k
n+1 + b1k

n +
O(kn−1);

• w̃(k) := weight of Gm-action on ∧topH 0(D0,L
⊗k |D0) = b̃0k

n +O(kn−1).

3Note, r will be chosen sufficiently divisible (whose existence is guaranteed by [33, Lemma
8.3]) so that all Q-Gorentstein smoothable K-semistable Fano varieties are embedded in PN (cf.
Definition of Z in (17) and Sect. 5).
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Now we are ready to state the algebro-geometric criterion for the existence of
conical Kähler-Einstein metric on a log Fano manifold (X,D) with cone angle
2π(1− (1− β)/m) along the divisorD ∈ | −mKX|.
Definition 3.3 For a Q-Fano varietyX with D ∈ |−mKX| and a real number β ∈
[0, 1], we define the log generalized Futaki invariant with the angle β as following:

DF1−β(X ,D;L) = DF(X ;L)+ (1− β) · CH(X ,D;L)

with

DF(X ;L) := a1b0 − a0b1

a2
0

and CH(X ,D;L) := 1

m
· a0b̃0 − b0ã0

2a2
0

(cf. [32, Definition 3.3] ) .

Then

DF1−β(X ,D;L⊗r ) = DF1−β(X ,D;L) .

We say (X,D;L) is called β-K-semistable if DF1−β(X ,D;L) ≥ 0 for any normal
test configuration (X ,D;L) , and β-K-polystable (resp. β-K-stable) if it is β-K-
semistable with DF1−β(X ,D;L) = 0 if and only if (X ,D;L) is a product test
configuration (resp. trivial test configuration).

Thanks to the linear dependence of DF1−β(X ,D;L) on β, we obtain that
(X,D;L) is β-K-semistable for any β ∈ (β1, β2] if (X,D;L) is both β1-K-
semistable and β2-K-polystable with β1 < β2.

Definition 3.4 Let

(Hχ;N := Hilbχ (PN), H(1))
Plücker

(PM, PM (1)) (16)

denote the Hilbert scheme of closed subschemes of PN with Hilbert polynomial
χ and Plücker denote the Plücker embedding. For a closed subscheme X ⊂ PN

with Hilbert polynomial χ
(
X, OPN (k)

∣∣
X

) = χ(k), let Hilb(X) ∈ Hχ;N denote its
Hilbert point, and

Z :=
{

Hilb(Y )

∣∣
∣∣∣
Y⊂PN be a smooth Fano manifold with N= dimH 0(Y,OY (−rKY )),
OPN (1)

∣∣
Y
∼= OY (−rKY ) and χ

(
Y, OPN (k)

∣∣
Y

)=χ(k).

}

⊂Hχ;N .
(17)

By the boundedness of smooth Fano manifolds with fixed dimension (see [22]), we
may choose r  1 such that Z includes all such Fano manifolds.

Now let Z ⊂ Hχ;N be the closure of Z ⊂ Hχ;N and Z
◦

be the open
subset of Z that parameterizes Q-Fano subvarieties X ⊂ PN such that
OY (−rKX) ∼ OPN (1)|X. Then one can introduce the CM line bundle λCM → Z

◦
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(cf. Definition 6.1) and apply the GIT machinery introduced in Sect. 2 to the
SL(N + 1)-invariant subscheme λCM → Z

◦
. Then for any test configuration (cf.

Definition 3.2 ) of a point Hilb(X) ∈ Z◦ coming from a 1-PS λ : Gm→ SL(N+1),
the Donaldson-Futaki invariant DF is precisely the weight wHilb(X)(λ) with respect
to the line bundle λCM. But this interpretation does not help us in the sense that
λCM → Z

◦
is not known to be ample (cf. [13] and [50]), in particular, the traditional

GIT machinery does not apply.

4 Separatedness and Zariski Openness of the K-Semistable
Locus

Inspired by the recent book by Kollár’s [20, §1.21 of Section 1.1] on the construction
of KSBA moduli space and the classical GIT machinery, in order to obtain well
behaved moduli spaces for a reasonable class of varieties V, it is necessary for us to
first establish the following properties:

(i) Boundedness. The class of schemes V is called bounded if there is a flat
morphism of schemes of finite type u : U → T such that every scheme in
V occurs as a fiber of U → T .

(ii) Properness.

(a) Valuative criterion of properness. Let B be a smooth curve, B◦ ⊂ B an
open set and πB◦ : X ◦ = X ×B B◦ → B◦ a proper, flat family whose
fibers are in V. Then there is a finite surjection p : A→ B such that there
is an extension

X ◦ ×B C =: W◦

πC◦

W
πC

B◦ ×B C =: C◦ C

,

(18)

where πA : W → A is also a proper, flat family whose fibers are in V.
(b) Separatedness. Suppose there are two flat families of schemes in V over a

smooth curve B satisfying:

X

π

f X

π

B

and X ◦

π

f |X◦=∼=
(X )◦

π

B◦ (19)

Then f extends to an isomorphism over B.
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(iii) Zariski openness. That is, for any flat family of varieties X → S, there is a
open subscheme T ⊂ S such that t ∈ T ⇐⇒ Xt ∈ V.

In our situation the right class V of varieties are the Q-Fano varieties that are
Q-Gorenstein smoothable and K-semistable. It is quite different from the KSBA
situation in the sense that the automorphism for X might be continuous, thus
the closed points of the moduli space are represented by S-equivalent (instead of
isomorphic) class of K-semistable varieties. And the condition (ii-b) above should
modified accordingly:

(ii-b)’ Separatedness. If there are two extensions in (19), then X0 and X ′0 are S-
equivalent, i.e. there are two test configurations:

(20)

such that Y0 ∼= Y ′0 is a K-polystableQ-Fano variety.

This makes our construction of the moduli space much subtler, and it partially
explains why we have to evoke Alper’s theory in Sect. 5.

In [12], Donaldson and Sun successfully established Property (i) and (ii-a). So the
first goal of [33], whose proof will be sketched below, is to establish the remaining
Property (ii-b) and (iii).

Theorem 4.1 Let X → C be a flat family of projective varieties over a pointed
smooth curve (C, 0) with 0 ∈ C. Suppose
(1) KX is Q-Cartier and −KX /C is relatively ample over C;
(2) for any t ∈ C◦ := C \ {0}, Xt is smooth and X0 is klt;
(3) X0 is K-polystable.

Then

(i) there is a Zariski open neighborhood U of 0 ∈ C on which Xt is K-semistable
for all t ∈ U , and K-stable if we assume further that X0 has a discrete
automorphism group;

(ii) for any other flat projective family X ′ → C satisfying (1)–(3) as above and

X ′ ×C C◦ ∼= X ×C C◦,

we can conclude X ′0 ∼= X0;
(iii) X0 admits a weak Kähler-Einstein metric ωKE(X0). If one assume further

that Xt is K-polystable for all t ∈ C◦ then (X0, ωKE(X0)) is the Gromov-
Hausdorff limit of {(Xt , ωKE(Xt )}t∈C◦ as t → 0, when the latter is endowed
with a Kähler-Einstein metric ωKE(Xt ) (which is unique up to Aut(Xt )) for
each t ∈ C◦.
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Our approach is a continuity method very similar to the one proposed by
Donaldson in [9]. Indeed, by throwing in an auxiliary divisor D ∈ | − mKX |,
we consider the following log extension of Theorem 4.1.

Theorem 4.2 For a fixed β ∈ [0, 1], let X → C be a flat family over a pointed
smooth curve (C, 0) with a relative codimension 1 cycle D over C. Suppose

(1) −KX /C is ample and D ∼C −mKX /C for some positive integer m > 1;
(2) for any t ∈ C◦ := C \ {0}, Xt and Dt are smooth, (X0,

1
m
D0) is klt;

(3) (X0,D0) is β-K-polystable. (cf. Definition 3.3).

Then

(i) there is a Zariski neighborhood U of 0 ∈ C, on which (Xt ,Dt ) is β-K-
semistable (in fact β-K-polystable if β < 1) for all t ∈ U ;

(ii) for any other flat projective family (X ′,D′)→ C with a relative codimension
1 cycle D′ satisfying (1)–(3) as above and

(X ′,D′)×C C◦ ∼= (X ,D)×C C◦,

we can conclude (X ′0,D′0) ∼= (X0,D0);
(iii) (X0,D0) admits a conical weak Kähler-Einstein metric with cone angle

2π(1− (1− β)/m) along D0, which is the Gromov-Hausdorff limit of
(Xti ,Dti ) endowed with the conical Kähler-Einstein metric with cone angle
2π(1− (1− βi)/m) along Dti ⊂ Xti for any sequence ti → 0 and βi ↗ β.

The proof of Theorem 4.2 is of algebro-geometric nature, but it is heavily based
on the analytic input from the recent breakthrough made in [4–6] and [48]. To save
the space, we will simply outline the ideas of the proof and ignore the technical
details. It is established via the following steps4:

(1) Using the fact that the set of log canonical thresholds satisfies ascending chain
condition (ACC) (see [17]) one can show that there is a constant β0 > 0
depending only on the dimension n such that for 0 < β ≤ β0 there is only
at most one possible extension of (X ,D) ×C C◦ → C◦ with at worst klt
singularities.

(2) Fix ε, such that 0 < ε < β0. We define a set B ⊂ [ε, 1] for which the
conclusions of Theorem 4.2 hold for the angles belonging to the set B. Step
one implies B ⊃ [ε, β0].

(3) Now to prove Theorem 4.1, let us first assume that all the nearby (in the analytic
topology5) fibers Xt are K-semistable. Then it suffices to show that B is open
and closed in [ε, 1). This based on two crucial facts. The first one says that
if we consider a reductive group G-acting on PM via a linear representation

4To avoid lengthy context of technicality, here we include a slight modification of what is already
included in the introduction section of [33].
5which we know in the end that it also holds in the Zariski topology.
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G→ SL(M+1) then theG-orbit structure near any p with reductive stabilizer
Gp < G admits a holomorphic fiberation over a neighborhood of a GIT
polystable point thanks to the infinitesimal action of g⊥p = Lie(Gp) ⊂ g =
Lie(G) (cf. (5) in Sect. 2). In particular, it guarantees that there are no nearby
distinct G-orbits of K-polystable points on the limiting orbit, that is, one has
the local uniqueness. (cf. [33, Lemma 3.1] for the precise statement). Second,
by using a crucial Intermediate Value Theorem type of results [33, Lemma
6.9]), we prove that if there is a different limit, which a priori could be far
away from the given central fiber in the parametrizing Hilbert scheme, then
we can indeed always find another limit which either specializes to (X0,D0)

in a test configuration or becomes the central fiber of a test configuration of
(X0,D0), violating the K-stability assumption. Similarly, this argument can also
be applied to study the case when β ↗ 1.

(4) To finish the proof, we need to verify the assumption that all the nearby fibers
Xt are K-semistable. For this, one needs two observations. First, it follows
from the work of [5, 6] and [48] that to check K-semistability of Xt , t �= 0,
it suffices to test for all one-parameter-group (1-PS) degenerations in a fixed
PN . Second, it follows from the classical GIT that K-semistable threshold
(kst)6 is a constructible function. So what remains to be shown is that it is also
lower semi-continuous (also observed in [46]), which is a consequence of the
upper semi-continuity of the dimension of the automorphism groups and the
continuity method deployed in the proof of Theorem 4.2.

We remark that in [46] a slightly weaker result (under an additional assumption that
Aut(X0) is finite) has been obtained along this line using a more analytical approach.

Finally, by an appropriate modification of the argument in the above we obtained
in [33] the following analogy of classical GIT.

Theorem 4.3 Suppose X is a Q-Gorenstein smoothable K-semistable Fano mani-
fold, then there is a test configurationX → C that degeneratesX to a K-polystable
X0. Moreover, X0 is uniquely determined by X.

5 The Moduli Space Exists as a Proper Scheme

With all the necessary properties in hand (cf. Sect. 4), we are ready to outline our
main construction in [33].

6For a Q-Fano varietyX together with a Q-Cartier divisorD ∈ |−KX |, we define the K-semistable
threshold for the log pair (X,D) as following:

kst(X,D) := sup {β ∈ (0, 1] | (X,D) is β-K-semistable } . (21)

In particular, it is positive by [33, Theorem 5.2].
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5.1 Set Up

First, we first fix our notation. Let X be a Q-Fano variety and we fix an r  1
sufficiently divisible such that OX(−rKX) is a very ample line bundle.

Definition 5.1 Let h⊗r be a continuous Hermitian metric on OX(−rKX) and �h
be the corresponding volume form on Xreg ⊂ X, the smooth part of X. We say X
admits a Kähler-Einstein metric, if the curvature form ωh for the metric h satisfies

ωnh = �h on Xreg. (22)

Let hKE denote a solution to (22) and {si}Ni=0 be an orthonormal basis of
H 0(OX(−rKX)) with respect to the inner product

|s|2 :=
∫

X

|s|2hKE
�hKE . (23)

The embedding given by

(X,OX(−rKX))
{si}Ni=0

�� (PN,OPN (1))

is called a Tian’s embedding, which is unique up to a U(N + 1)-translation.

Now let

(24)

be a flat family of Kähler-Einstein Q-Fano varieties (e.g. X is K-stable in The-
orem 4.1) and {si} be the local basis of the vector bundle π∗OX (−rKX /Z) =
π∗(OPN (1)|X ) induced from the coordinate sections of OPN (1) over a open
neighborhood 0 ∈ {|z| < ε} ⊂ Z such that {si (0)} induces Tian’s embedding for X.
We define a matrix

AKE(z) := [(si, sj )KE(z)] ∈
√−1u(N + 1)

with

(si, sj )KE(z) =
∫

Xz
〈si (z), sj (z)〉h⊗rKE

�KE ,
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then we obtain a family of Tian’s embeddings

T : X −→ PN. (25)

given by {A−1/2
KE (z)◦sj (z)}Nj=0. The map T extends continuously to X0 = X thanks

to Theorem 4.1 and the continuity of the metric hKE(z) at 0 ∈ S. In particular, we
have

AKE(z) = IN+1 +O(|z|). (26)

Now let Z ⊂ Hχ;N be the closure of Z ⊂ Hχ;N (defined in (17)) and Z◦ be the
open set of Z that parameterizes the K-semistable Q-Fano subvarieties Y satisfying
OY (−rKY ) ∼ OPN (1)|Y . Notice that the Gromov-Hausdroff limits of Fano Kähler-
Einstein manifolds are automatically in Z◦, so are the Q-Gorenstein smoothable
K-polystable Q-Fano varieties thanks to the seminal work of [4–6] and [48]. By
[33, Lemma 8.3], the Q-Gorenstein smoothable K-semistable Q-Fano varieties of
dimension n with a fixed volume form a bounded family. This in particular allows
us to prefix a sufficiently divisible r  1 such that Z◦ ⊂ Hχ,N contains all Q-
Gorenstein smoothable K-semistable Q-Fano varieties Hilbert polynomial χ . Let
Z∗ to be the semi-normalization of Z◦red which is the reduction of Z◦, the purpose
of introducing Z∗ is to guarantee that the scheme structure does not depend on
r  1 in the end.

Then we have a commutative diagram

(27)

whereX ∗ is the universal family overZ∗. Notice thatZ∗ inherit a canonical SL(N+
1)-action from Hχ;N .

Let (Z∗)kps ⊂ Z∗ denote the locus of K-polystable points in Z∗, which is a
constructible set thanks to the work in [33, Section 7 and 9]. By Theorem 4.3, we
have SL(N + 1) · z ∩ (Z∗)kps �= ∅ for every point z ∈ Z∗. By Theorem 4.1 and
[12, Theorem 1.2], the set of Hilbert points of the universal family X of Kähler-
Einstein Q-Fano varieties obtained via Tian’s embedding induces a proper U(N +
1)-invariant slice

KE := {Hilb(Xz, ωKE(Xz)) | z ∈ (Z∗)kps} Hχ;N Plücker
PM

PM/U(N + 1)
(28)
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where Hilb(Xz, ωKE(Xz)) denotes the Hilbert point of Xz corresponding to the
Tian’s embedding (unique up to U(N + 1)-translation) of Xz ⊂ PN using
the Kähler-Einstein metric ωKE(Xz). In particular, �KE is compact and satisfied
Assumption 2.7. And our goal is to endow an algebraic structure on the proper
topological moduli space �KE/U(N + 1). To be more precise, our goal is to prove
the following:

Theorem 5.2 For N  0, let Z∗ be the semi-normalization of the locus inside
Hilbχ (PN) parametrizing allQ-Gorenstein smoothable K-semistable Fano varieties
in PN with fixed Hilbert polynomial χ . Then the algebraic stack [Z∗/SL(N + 1)]
admits a proper semi-normal scheme KFN as its good moduli space. Furthermore,
for sufficiently large N , KFN does not depend on N .

To achieve that, our naive idea is to build a system of affine charts for each point
in �KE/U(N + 1) and then verify that they can be glued together and form a proper
scheme. The framework of this process has been established by Alper in [2] and [1],
which we recall first.

5.2 Alper’s Framework

In this subsection, let us recall the theory developed [2] and [1].

Definition 5.3 (Section 4.1 in [2]) Let X be an Artin stack andM be an algebraic
space. We say a morphism φ : Z → M is a good moduli space if

(1) The push-forward functor on quasi-coherent sheaves is exact;
(2) The induced morphism on sheaves OM → φ∗OZ is an isomorphism

The notion of good moduli space is introduced to extend the traditional GIT
quotient since we have the following:

Example 5.4 (Theorem 13.6 in [2]) Let G be a reductive algebraic group acting
on a polarized pair (Z,OZ(1)), i.e. OZ(1) is G-linearized as in Sect. 2. Then the
morphism from the Artin stack Z := [Z/G] → Z//G is a good moduli space in the
sense of Definition 5.3. Notice that GIT quotients are good quotients in the sense of
[10, Definition 2.12].

Definition 5.5 Let Z be an algebraic stack of finite type over C, and let z ∈ Z(C)
be a closed point with reductive stabilizer Gz. We say fz : Vz → Z is a local
quotient presentation around z if

(1) Vz = [SpecA/Gz], with A being a finite type C-algebra.
(2) fz is étale and affine.
(3) There exists a point v ∈ Vz such that fz(v) = z and fz induces isomorphism

Gv ∼= Gz.
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We say Z admits a local quotient presentation if there exists a local quotient
presentation around every closed point z ∈ Z .

Then we have the following

Theorem 5.6 (Theorem 10.3 in [2] and Theorem 4.1 in [1]) Let Z be an
algebraic stack of finite type over C, Suppose that

(1) for every closed point z ∈ Z , there is a local quotient presentation fz : Vz → Z
around z such that

(a) fz is stabilizer preserving at closed points of Vz, i.e. for any v ∈ Vz(C),
AutVz(C)(v)→ AutZ(C)(f (v)) is an isomorphism.

(b) fz sends closed points to closed points.

(2) For any C-point z ∈ Z , the closed substack {z} admits a good moduli spaces
(cf. [2, Section 1.2]).
Then Z admits a good moduli spaceM . If we assume further that

(3) Z admits a line bundle L → Z such that for any closed point z ∈ Z(C), the
stabilizer Gz < G acts on L|z trivially.

Then L descends to a line bundle L onM .

Remark 5.7 We may regard that the local quotient presentations correspond to the
collection of local charts covering our moduli space, and the stabilizer preserving
condition as a gluing condition for those charts. The general local condition for
descending the line bundle to a good quotient, already appeared in the work [11,
Theorem 2.3]. In particular, in order for L to descend it is crucial to establish the
assumption (2), (3) in the Theorem 5.6. This was firstly achieved for the moduli
space of Fano Kähler-Einstein varieties in [33, Section 8].

5.3 Existence of Good Moduli for C-Points in Z∗

In this subsection, we explain how to establish the assumptions needed to apply
Theorem 5.6.

Let us fix a K-polystableQ-Fano varietyX so that Hilb(X) ∈ Z∗, then it admits a
weak Kähler-Einstein metric by Theorem 4.1 from which we deduce that Aut(X) ⊂
SL(N+1) is reductive. By abusing the notation, let Hilb(X) denote the Hilbert point
for the Tian’s embedding of X ⊂ PN after we fix a basis of H 0(OX(−rKX)). Let
Hχ;N ⊂ PM be the Plücker’s embedding which is clearly SL(N + 1)-equivariant.
Then by [8, Proposition 1] or the proof of [33, Lemma 3.1], there is an Aut(X)-
invariant linear subspaceW ′ ⊂ CM+1 such that

CM+1 = W⊕aut(X)⊥ := W ′⊕C·ẑ0⊕aut(X)⊥ with aut(X)⊥⊕aut(X) = sl(N+1)
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is a decomposition as Aut(X)-invariant subspaces, where 0 �= ẑ0 ∈ CM+1 is a lift
of z0 := Hilb(X) ∈ PW ⊂ PM and we have

PM = P(W ⊕ aut(X)⊥) = P(W ′ ⊕ Cz0 ⊕ aut(X)⊥). (29)

In particular, this induces a representation ρ : Aut(X) → SL(W). On the other
hand, Hilb(X) is fixed by Aut(X). We let ρX : Aut(X)→ Gm denote the character
corresponding to the linearization of Aut(X) on OHχ;N (1)|Hilb(X) induced from the
embedding Aut(X) ⊂ SL(N + 1). Then we can introduce the following

Definition 5.8 A point z ∈ PW is GIT-polystable (resp. GIT-semistable) if z is
polystable(resp. semistable) with respect the linearization ρ ⊗ ρ−1

X on OPW(1) →
PW in the GIT sense.

To establish the assumption (1a) of Theorem 5.6, we have the following:

Theorem 5.9 (Theorem 8.5 [33]) There is an Aut(X)-invariant linear subspace
PW ⊂ Hχ;N and a Zariski open neighborhood Hilb(X) ∈ UW ⊂ PW ×Hχ;N Z

∗
such that for any Hilb(Y ) ∈ UW , Y is K-polystable if and only if Hilb(Y ) is GIT-
polystable with respect to Aut(X)-action on PW ×Hχ;N Z

∗.
Moreover, for all GIT-polystable Hilb(Y ) ∈ UW , we have Aut(Y ) < Aut(X), i.e.

the local GIT presentation induced from the multiplication morphism (11) in Sect.2:

UW � Aut(X) −→ Z∗/SL(N + 1),7

[w]Aut(X) �−→ [w]SL(N+1)
(30)

is stabilizer preserving in the sense of Theorem 5.6.

Proof To give a outline of the proof, let

� : Z∗ −→ Hχ;N × Z∗
z �−→ (z, z) .

(31)

be the diagonal morphism, we define OZ∗ := SL(N + 1) · �(Z∗) ⊂ Hχ;N × Z∗
where SL(N + 1) acts trivially on Z∗ and acts on Hχ;N via the action induced from
PN . This allows us to construct the family of limiting orbits space associated to the
family (27) as follows:

(32)

7Where [·]Aut(X) and [·]SL(N+1) denote the equivalent classes of the categorical quotients of UW
and Z∗ by Aut(X) and SL(N + 1) respectively.
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with BOZ∗ ⊂ Hχ;N × Z∗ be the closure of OZ∗ and BOz is the union of limiting
broken orbits. Now we claim that there is a unique closed K-polystable orbit inside
BOz. To see this, one only needs to notice that for any z ∈ Z∗, we can always
find a smooth curve f : C → Z∗ that passes through z and the image f (C)
meets the dense open locus inside ofZ∗ corresponding to smooth K-polystable Fano
manifolds with the maximal dimension of its SL(N+1)-orbit space. Then our claim
follows by applying Theorem 4.1 to the pull back family over C.

Now since in each BOz there is a unique closed orbit in Z∗, on the other hand,
as Hilb(X) ∈ PW ×Hχ;N Z

∗ is GIT-polystable there is an Aut(X)-invariant Zariski
open neighborhoodUW of Hilb(X) ∈ PW×Hχ;N Z

∗ inside the GIT-semistable locus
such that the intersection of BOz with UW is contains a unique closed orbit, i.e. the
GIT-polystable orbit. This implies that these two classes of closed orbits must agree
with each other. This finishes the proof of the first statement.

Finally to establish the last statement of Theorem 5.9, we only need to notice that
the slice �KE defined in (28) satisfies the Assumption 2.7 thanks to the following
fact in [6, Theorem 4]

Lemma 5.10 LetX be aQ-Gorenstein smoothableQ-Fano variety admitting weak
Kähler-Einstein metric. Then Aut(X) = (Isom(X))C. In particular, Aut(X) =
(Aut(X) ∩ U(N + 1))C.

So we are able to construct an analytic open set UW ⊂ PW ×Hχ;N Z
∗ that is

stabilizer preserving. To obtain the Zariski openness, one only needs to observe the
fact that

Aut(Z∗) := {(z,Gz) ∈ Z∗×SL(N+1) | Gz < SL(N+1) is the stabilizer of z in SL(N+1)}

is a constructible set. Hence our proof is completed. ��
Finally to prove Theorem 5.2, we need to establish the assumption (2) of

Theorem 5.6, that is, for each C-point [z] ∈ [Z∗/SL(N + 1)], {z} has a good
moduli space. But this will follow if we can show that the fibers of the quotient
are affine. Notice being affine (or equivalently z0 being GIT polystable) is part
of the assumption in Theorem 2.5. But K-stability is not GIT stability globally.
So instead of obtaining Assumption 2.10 as a consequence of Theorem 2.5, we
establish Assumption 2.10 first. This is the major difference between the classical
GIT and K-stability.

Let z = Hilb(Y ) ∈ UW specializing to a K-polystable z0 = Hilb(X) ∈ UW ⊂
Hχ;N via a 1-PS λ(t) : Gm → Aut(X) < SL(N + 1). Let (Y = X |C,X)→ (C =
λ(t) · z, z0) ⊂ UW be the restriction of the universal family X → Z∗ to the pointed
curve (C, z0) and also we prefix a basis {si} ⊂ OY(−rKY/C).

Lemma 5.11 Under the notation introduced above, we have Aut(Y ) < Aut(X) for
z := Hilb(Y ). As a direct consequence, after a possible shrinking of the Zariski
open neighborhood z0 ∈ UW ⊂ PW ×Hχ;N Z

∗, we have

SL(N + 1)z < Aut(X), ∀z ∈ UW
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where SL(N + 1)z is the stabilizer of z inside SL(N + 1). In particular, Assump-
tion 2.10 holds.

Proof The idea of proving the statement is to introduce an auxillary divisor D ∈
| −mKX |, and extend our argument in the proof of Theorem 5.9 to the log Q-Fano
varieties. For details, please see the proof of [33, Lemma 8.10]. ��
Next in order to apply Lemma 2.15, we now establish Assumption 2.14. Let us fix
G = SL(N + 1) and Gz0 = Aut(X).

Lemma 5.12 Let z0 ∈ U ss
W,r ⊂ PW be defined as in Definition 2.12 and

UZ∗,r := U ss
W,r ×Hχ;N Z

∗.

Then for 0 < r sufficient small, we have UZ∗,r ⊂ U fd, i.e. Assumption 2.14 is
satisfied for UZ∗,r .

Proof In order to better illustrate the idea without getting into messy technicalities,
we will prove a simple case that z0 is K-stable, hence Gz0 < ∞. As we have seen
Sect. 5.1, there is a proper U(N + 1)-invariant slice z0 ∈ �KE ⊂ Hχ;N obtained via
Tian’s embedding. By the continuity of �KE and transversality of the g⊥z0

-action on
U0, for some 0 < r ′′ < r ′ - 1 and 0 < ε - 1 we have

BZ∗(z0, r
′′) ⊂ U ss

W,r ′ ∩ expg⊥z0,<ε
·�, (33)

where g⊥z0,<ε
:= {ξ ∈ g⊥z0

| |ξ | < ε} and BZ∗(z0, r
′′) denotes the ball of

radius ε centered at z0 ∈ Z∗ with respect to a prefixed continuous metric on Z∗.
Moreover, by choosing a small r if necessary, we may assume Xz is K-stable for all
z ∈ BZ∗(z0, r

′′).
To see the lemma, let {si} be the local basis of π∗(OPN (1)|X ) corresponding to

the coordinate sections of PN such that the induced embedding of X = Xz0 ⊂
PN gives rise to Hilb(X). Now let us equip the line bundle OX (−rKX /Z∗,kps) ∼=
OPN (1)|X with a Hermitian metric which gives rise to the unique Kähler-Einstein
metric when restricted to each Xz with z ∈ BZ∗(z0, r

′′), and we can introduce the
matrix AKE(z)

As a consequence, for any pair (z, g) ∈ BZ∗(z0, r
′′) × G satisfying g · z ∈

BZ∗(z0, r
′′), there are h′, h′′ ∈ G such that under the quotient map

[·] : G→ G/Gz0,

h′ ·z, h′′ ·g ·z ∈ � and [h′], [h′′] ∈ G/Gz0 are perturbations of [1] ∈ G/Gz0 thanks
to (26). Since both h · z and h′ · g · z are the Hilbert points of Tian’s embedding of
the same Q-Fano variety, we know that u := h′−1 · h′′ · g ∈ U(N + 1). This implies
that g · z = h · z with h = h′′−1 · h′ · u and that [h] is uniformly bounded in G/Gz0

with a bound depending only on BZ∗(z0, r
′′) and z0. Since whether or not z lies in

U fd is independent of the Gz0 -translation, we conclude that Assumption 2.14 holds
for K-polystable points lies in UZ∗,r ⊂ Gz0 · BZ∗(z0, r

′′) for some 0 < r < r ′′. ��



GIT Stability, K-Stability and the Moduli Space of Fano Varieties 175

Proof of Theorem 5.2 By Sect. 5.2, proving our statement boils down to establish-
ing the following: for any closed point [z0] ∈ [Z∗/SL(N + 1)] there is an affine
neighbourhood z0 ∈ UW ⊂ PW determined in Theorem 5.9 such that

(1) The morphism [UW/Gz0] → [Z∗/G] is affine and strongly étale (i.e. stabilizer
preserving and sending closed point to closed point), and

(2) For any z ∈ Z∗ specializing to z0 under G-action, the closure of the substack
[z] inside [Z∗/G], {[z]} ⊂ [Z∗/G] admits a good moduli space.

Here we fix G = SL(N + 1) and Gz0 = Aut(X).
We have shown the morphism is strongly étale in Theorem 5.9. Next we confirm

the affineness. Since Z∗ → [Z∗/SL(N + 1)] is faithfully flat, it suffices to show
that

φ : G×Gz0 UW → Z∗

is affine. Since φ is quasi-finite and Z∗ is separated, it suffices to choose UW such
that G ×Gz0 UW is affine. Let UW ⊂ Z∗ ∩ P(W) be a Gz0 -invariant affine open
set. Then we know G ×Gz0 UW is affine since it is a quotient of the affine scheme
G × UW by the free action of the reductive group Gz0 . Furthermore, we have an
isomorphism

(G×Gz0 UW)//G ∼= UW//Gz0 .

Now we establish the second condition. Since we have already established the
uniqueness of minimal orbit contained in BOz0 stated after diagram (32), all we
need is the affineness of G · π−1

W (0) as it implies that for any z ∈ Z∗ satisfying
G · z , z0 the closure of [z] ∈ [Z∗/G] is a closed substack of [G · π−1

W (0)/G],
which can be written as the form [Spec(A)/G] for some affine scheme Spec(A),
hence [z] admits a good moduli space.

To obtain the affineness, one notices that Theorem 5.9 and Corollary 5.11
guarantee the Assumption 2.10, also we have already established Assumption 2.14
by Lemma 5.12. Thus the morphism

φ|G×Gz0Ur : G×Gz0 UZ∗,r → G · UZ∗,r (34)

is a finitemorphism for 0 < r - 1 by Lemma 2.15. By choosing 0 < r even smaller,

we may conclude that φ
∣
∣
∣G×Gz0UZ∗,r is an analytic isomorphism, since φ|G·z0 is

an isomorphism and immersion near G · z0. Now we restrict φ to the fiber over
[z0] ∈ [Z∗/G], we have a finite morphism

G×Gz0 π−1
W (0) −→ G · π−1

W (0) .

Since G ×Gz0 π−1
W (0) is a fiber of a GIT quotient morphism, we conclude that

G · π−1
W (0) is affine.
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As a consequence, the étale chart φ/G : (G ×Gz0 UW)//G → G · UW/G is
actually a finite morphism, which implies G · UW/G is affine. This gives an affine
neighborhood of [z0] ∈ KFN . This proves that the algebraic space KFN is actually
a scheme. Finally to prove the last statement of Theorem 5.2, we observe that the
boundedness of Q-Gorenstein smoothable K-semistable Q-Fano varieties (cf. [33,
Lemma 8.3]) implies that the closed points of KFN stabilize. However, since KFN
is semi-normal, we indeed know that they are isomorphic (see [18, 7.2]). ��

5.4 Moment Map and �KE

In this subsection, we give a moment map interpretation of the slice �KE. Let
(L, h) → (X,ω) be a symplectic manifold together with a Hermitian Line bundle
(L, h) whose curvature form is given by ω ∈ H 2(X,Z). Let

J (X,ω) = {J ∈ End(T X) | J 2 = −id, ω(J ·, J ·) = ω(·, ·), NJ = 0 and ω(·, J ·) > 0}

denote the space of integrable complex structures compatible with the symplectic
form ω, where NJ is the Nijenhuis tensor. Let �(X,L) denote the space of smooth
sections of L→ X. Let us consider the incidence variety

Z = {(s0, · · · , sN ; J ) | ∂̄J si = 0,∀i} ⊂
N+1

︷ ︸︸ ︷
�(X,L)× · · · × �(X,L) ×J (X,ω).

which is a ∞-dimensional Kähler manifold invariant under the diagonal action of
Hamiltonian group Ham(X,ω). On the other hand, the natural SU(N + 1)-action

on

N+1
︷ ︸︸ ︷
�(X,L) × · · · × �(X,L) commutes with the action of Ham(X,ω). Both actions

are Hamiltonian actions with moment map given by

π :
N

︷ ︸︸ ︷
�(X,L)× · · · × �(X,L) ×J (X, ω) −−−−−−−−→ su(N + 1)× ∧2n

0 X ;
(s0, · · · , sN ;J) �−→ (μsu({si}),μJ (J ):=(Ric(ω,J )−ω)∧ωn−1)

(35)

with

μsu({si}) =
∫

X

(〈si , sj 〉h − δij )ωn.

Then we have

�KE/SU(N + 1) = (μsu, μJ )−1(0, 0)

SU(N + 1)× Ham(X,ω)
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when restricted to the open locus

U = {J ∈ J (X,ω) | (X,ω, J ) is K-stable } ⊂ J (X,ω).

One should notice difference between our setting and the one in [7] is that the
symplectic form we use on J (X,ω) is not the same as the one used in [7], which is
the restriction of the Fubini-Study form of G(Nr + 1, �(X,L)) obtained from the
embedding

J (X,ω) −−−−−−→ G(Nr + 1, �(X,L))
J �−→ H 0

J (X,L) = span{s | ∂̄J s = 0} ⊂ �(X,L) for r  1.

We hope to elaborate these points of view in a future work.

6 Toward the Projectivity of KF

In this section, we address the projectivity of the moduli space KF constructed in
Theorem 5.2. First, let us recall the natural line bundle over Z∗ introduced by Tian.

Definition 6.1 ([47]) Let π : X → S be a flat family of Q-Fano varieties such that
mKX /S is Cartier for some integer m. We define the CM Q-line bundle λCM =
λCM(S) on S as the determinant line bundle associated to the push-forward of a
virtual Q-line bundle (in the sense of Grothendieck):

1

2n+1mn+1 det
[
π!

(
−(K−mX /S −KmX /S)n+1

)]
. (36)

Remark 6.2 In the following if it’s clear from the context we will just write line
bundle instead of Q-line bundle for convenience. Equivalently, we can define the
CM-line bundle using Knudsen-Mumford expansion (see [41], [42]):

det
(
π∗

(
K−mrX /S

))
= −λCM

(mr)n+1

(n+ 1)! +O(r
n).

By the Grothendieck-Riemann-Roch theorem, the first Chern class of λCM(S) is
given by the formula:

c1(λCM) = 1

2n+1mn+1
π∗

[
Ch

(
−(K−mX /S −KmX /S)n+1

)
Td(X /S)

]

(2)

= π∗
(
−c1(K

−1
X /S)

n+1
)
. (37)
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Theorem 6.3 (Theorem 1.1 in [34]) The CM line bundle λCM → Z∗ descends to a
Q-line bundle�CM on the proper moduli space KF . There is a canonically defined
continuous Hermitian metric hDP on �CM whose curvature form is a positive
current ωWP on KF which extends the canonical Weil-Petersson form ω◦WP on
KF◦ ⊂ KF , the open set of Fano manifolds with discrete automorphism.

Let us sketch the main idea behind the proof of Theorem 6.3:

(1) By applying the theory of Deligne pairings, for any smooth variety S together
with a flat family of Kähler-Einstein Fano varieties X → S containing an open
dense subset S◦ ⊂ S such that all fibers of X |S◦ → S◦ are Kähler-Einstein Fano
manifolds, one can construct a Hermitian metric hDP on the CM line bundle
λCM → S whose restriction to S◦ is the classical Weil-Petersson form. This is
based on the work of [14, Theorem 7.9].

(2) Theorem 4.1 and the partial-C0 estimate established in [12] together with an
extension of continuity results in [25] (cf. [34, Section 7]) allow us to show that
this metric is indeed continuous and its curvature form can be extended to a
positive current on S.

(3) Finally, to descend λCM → Z∗ to KF , two assumptions of Theorem 5.6
need to be satisfied. First, the Assumption (3) of Theorem 5.6 which is
an easy consequence of the vanishing of Donaldson-Futaki invariants for
Q-Fano varieties admitting Kähler-Einstein metrics. Second, which is much
more serious is the Assumption (1) of Definition 5.3 (or Assumption (2) of
Theorem 5.6). This is the consequence of goodness of our moduli space whose
proof occupies the major part of Sect. 5. In conclusion, CM line bundle λCM
together with the metric hDP can be descended to an Hermitian line bundle
(�CM, hDP) on KF . Moreover the curvature form of hDP is exactly the Weil-
Petersson current we want.

Finally, we close this section by indicating two important consequences of
Theorem 6.3: (1).�CM → KF is nef and big; (2). KF◦ is quasi-projective (cf.
[34, Theorem 1.2 ] for details).

7 Problems

The construction sketched above produces a merely abstract existence result, which
is far from being explicit, except for the work of [39] in dimension two. Recent
progress made by Liu-Xu [31] and Spotti-Sun [45] based on the work of Fujita,
Li, Liu and Li-Xu (cf. [15, 26–30] and [35, 36] etc.) produces quite a few explicit
examples. One interesting feature of those explicit constructions is that they all
admit a GIT construction. So it is natural to have a good understanding relation
between GIT and K-stability for the Fano varieties. On the other hand, by exhibiting
explicit examples in [49] it is shown that classical asymptotic GIT stability fails
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to produce proper algebraic moduli space for canonically polarized varieties. It
remains unclear if asymptotic GIT stability also fails for Fano case. To understand
this question, the first example we want to understand is

Problem 7.1 Whether or not asymptotic GIT stability can be used to produces
proper moduli spaces for Del Pezzo surfaces.

Some progresses are made in [24], but a complete answer to the above question
is still lacking since there is still quite limited methods of checking asymptotic
stability.

For the moduli space of sheaves over surfaces, we know that there is a dominant
map from the Gieseker compactification to Uhlenbeck’s compactification, which
is the vector bundle analogue of K-stable compactification thanks to the work
of Jun Li [28]. So the Uhlenbeck compactification obtained from the Hermitian-
Einstein metric is smaller. It was asked in [50] if such philosophy remains to be
true for the moduli space of Fano varieties, that is, in some sense the Kähler-
Einstein compactification is smaller than any GIT compactification. The explicit
construction mentioned in the above examples and [39, Theorem 3.4 ] seems to
suggest that Kähler-Einstein compactification is indeed minimal in the following
sense: Suppose a GIT quotient Z//G = M is the moduli space of Fano varieties
with a fixed Hilbert polynomial χ , suppose further that the general members admit
Kähler-Einstein metric and that the master space Z has minimal Picard rank, e.g.
one. ThenM is very likely the Kähler-Einstein compactification.

Problem 7.2 Can we make a more precise statement on the minimality of the
moduli space of K-semistable Fano varieties?

Finally, we finish this note by addressing the following well-expected though
challenging question rooted from Sect. 6.

Problem 7.3 ([39] and [34]) The descending of CM line bundle �CM → KF is
ample and hence KF is projective.
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