
Chapter 5
Data-Driven Safety Verification
of Complex Cyber-Physical Systems

Chuchu Fan and Sayan Mitra

5.1 Introduction

Cyber-physical systems (CPS) are often safety critical and are expected to work
in uncertain environments. Ensuring design correctness and safety of CPS has
significant financial and legal implications. Existing design and test methodologies
are inadequate for providing the needed level of safety assurances. For example,
Koopman [55] argues how naïve test driving for reasonable catastrophic failure rates
for a fleet of vehicles can grow to hundreds of billions of miles—a figure that is
beyond the capabilities of even for large corporations. Formal verification, designed
and deployed properly, can be the first line of defense against design bugs making
their way into unsafe products [16].

A formal verification algorithm takes as input a cyber-physical system’s (CPS)
model and a requirement, and decides whether or not all the behaviors of the system
meet the requirement. If the decision is “yes,” the algorithm provides a supporting
proof of this fact, which can then be used for certification, documentation, and for
future testing, and maintenance. If the decision is “no,” the algorithm produces
a supporting counterexample or a “bug trace.” This is a particular behavior of
the systems resulting from specific initial states and inputs, which violates the
requirement. For cyber-physical systems (CPS), the mathematical model may be
a dynamical, switched, or a hybrid system, and the requirement may be a safety
property, a stability property, or a temporal logic property.

Most instances of this model-based formulation of the verification problem for
CPS are known to be undecidable [39, 67]. Significant progress has been made in
the last decade and many powerful tools have been developed to solve approximate

C. Fan · S. Mitra (�)
University of Illinois at Urbana-Champaign, ECE Department, Champaign, IL, USA
e-mail: cfan10@illinois.edu; mitras@illinois.edu

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_5&domain=pdf
mailto:cfan10@illinois.edu
mailto:mitras@illinois.edu
https://doi.org/10.1007/978-3-030-13050-3_5

108 C. Fan and S. Mitra

versions of these problems for specific model classes [7, 15, 35, 36, 54]. Yet, these
purely model-based techniques do not handle nonlinear and hybrid models that
arise in practice. Real-world systems are often described by a heterogeneous mix of
simulation code, differential equations, block diagrams, look-up tables, and machine
learning modules, and it is unreasonable to even expect complete and precise models
in the first place.

In the last 5 years, data-driven verification algorithms have gained momentum.
Data-driven algorithms use executions (or numerical simulations) of the model in
addition to statically analyzing the model itself. Thus, the verification algorithm can
use powerful numerical simulators as a subroutine, which is particularly relevant
for nonlinear models that do not permit a closed-form analytical solution. This
opens the door to also verifying autonomous systems without complete and precise
models.1

The basic principle of data-driven verification combines model-based reachabil-
ity analysis with sensitivity analysis of the complex or unknown parts of the system.
Sensitivity analysis algorithms give (probabilistic or worst-case) bounds on how
much the states or outputs of a module change, with small changes in the input
parameters. Under certain assumptions about the underlying system, we show that
data-driven verification can indeed provide rigorous guarantees about system safety.
An earlier sequence of papers culminating in [24] developed sensitivity analysis
algorithms for nonlinear and hybrid systems with known models. These techniques
are implemented in the C2E2 tool, which has been effectively used to verify an
engine control system [46], a NASA-developed collision alerting protocol [63], and
satellite controllers [24, 29]. For systems with unknown models, the deterministic
sensitivity analysis algorithms have to be replaced with methods that only rely on
execution data. In [32], we have shown how this problem can be cast as the well-
known problem of learning a linear separator, and therefore, can be solved with
probabilistic correctness guarantees. The resulting tool DRYVR was used to ana-
lyze several autonomous and ADAS-based2 maneuvers [31, 32]. Other successful
applications range across medical devices [40, 44], automotive [6, 22, 28, 47], air-
traffic management [25], and energy systems [26]. A noteworthy related approach
is simulation-driven falsification, which addresses the problem of finding bugs, but
does not aim to prove their absence [1]. The search for bugs is formulated as an
optimization problem, and since this typically works out to be a nonlinear and non-
convex problem, stochastic optimization tools are employed to guide the search. The
preeminent tool implementing this approach is S-taliro [5]; it has been effectively
used to search for bugs in several practical applications [27, 65].

We present a broad and unified overview of data-driven verification with several
case studies using both C2E2 and DRYVR . We classify the verification problems

1Autonomous systems sometimes also have incomplete requirements. The black-box approach
described here does not address that problem.
2ADAS stands for advanced driving assistance systems such as adaptive cruise control, automatic
emergency braking, etc.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 109

regarding both the nature of the model and the requirement. First, in Sect. 5.2 we
provide the necessary mathematical preliminaries; experienced readers can skip
this. In Sect. 5.3, we set up the bounded verification problem and the related
subproblem of sensitivity analysis. The existing techniques are described in the
context of dynamical systems in Sect. 5.4, and extended for hybrid systems in
Sect. 5.5. In Sect. 5.6, we discuss the black-box verification as in DRYVR. Two
recent applications of data-driven verification are discussed in some detail, including
a spacecraft rendezvous maneuver in Sect. 5.7.2 and an engine control challenge in
Sect. 5.7.3. In Sect. 5.8, we conclude with a short summary of open problems and
future research directions. Finally, in Sect. 5.9, we present pointers to additional
works for further reading.

5.2 Mathematical Preliminaries

We will begin by defining the concepts and notations used throughout the chapter.

Matrix Norms For any matrix A ∈ R
n×n, AT is its transpose; λmax(A) and

λmin(A) are the maximum and minimum eigenvalues; aij denotes the element in
the ith row and j th column. ‖A‖1, ‖A‖2, ‖A‖∞, ‖A‖F denote, respectively, the
1, 2, infinity, and the Frobenius norms of A. |A| is the matrix obtained by taking the
element-wise absolute value of matrix A.

Given a positive definite n × n real-valued matrix M , the M-norm of a vector
x ∈ R

n, ‖x‖M = √
xT Mx is the norm of x under the transformation M . Such M-

norm will be used to represent reach sets of the system as ellipsoids. For any M � 0,
there exists a nonsingular matrix C ∈ R

n×n, such that M = CT C and we write C as

M
1
2 . So, ‖x‖M = √

xT CT Cx = ‖Cx‖. That is, ‖x‖M is the 2-norm of the linearly
transformed vector Cx. When M = I is the identity matrix, ‖x‖I coincidences with
the 2-norm.

For sets S1, S2 ⊆ R
n, hull(S1, S2) is their convex hull. The hull of a set of

n × n matrices is defined in the usual way, by considering each matrix as a vector
in R

n2
. The diameter of a compact set S is defined as Dia(S) = supx,y∈S ‖x − y‖.

EM,δ(x0) = {x | ‖x − x0‖M ≤ δ} represents an ellipsoid centered at x0 ∈ R
n ,

with shape M and size δ. The δ ball around x0: Bδ(x) = {x | ||x − x0|| ≤ δ} is a
special case of EM,δ(x0) where M is the identity matrix I . A predicate over Rn is a
computable function φ : Rn → B that maps each state in R

n to either True or False.

Interval Matrices For a pair of matrices B,C ∈ R
n×n with the property that:

bij ≤ cij for all 1 ≤ i, j ≤ n, we define the set of matrices Interval([B,C]) �
{A ∈ R

n×n|bqij ≤ aij ≤ cij , 1 ≤ i, j ≤ n}. Any such set of matrices is
called an interval matrix. Interval matrices will be used to linearly over-approximate
behaviors of nonlinear models. Two useful notions are the center matrix and the
range matrix, defined, respectively, as CT([B,C]) = (B + C)/2 and RG([B,C]) =
(C − B)/2. Then, Interval([B,C]) can also be written as Interval([Ac −

110 C. Fan and S. Mitra

Ar,Ac + Ar]), where Ac = CT([B,C]), Ar = RG([B,C]). A vertex matrix of
an interval matrix Interval([B,C]) is a matrix V whose every element is either
bij or cij . Let VT(Interval([B,C])) be the set of all the vertex matrices of the
interval matrix Interval([B,C]). The cardinality of VT(Interval([B,C]))
with B,C ∈ R

n×n is 2n2
.

Dynamical Systems Let us denote the set of all the real-valued variables in the
model as the set X. For this set of variables, the set of all values the variables can
take, denoted as val(X), is isomorphic to R

n.
A continuous behavior of the system is modeled as a trajectory. A trajectory ξ

is defined as a function ξ : dom → val(X) where dom is the time domain of
evolution, and it is either [0, T] for some T > 0, or it is [0,∞). The domain of ξ

is referred as ξ.dom. The state of the system along the trajectory at time t ∈ τ.dom

is ξ(t). For a bounded trajectory with ξ.dom = [0, T], the duration ξ.dur = T .
For unbounded trajectories, ξ.dur is defined as ∞. The first state ξ(0) is denoted by
τ.fstate, and for a bounded trajectory the last state ξ.lstate = ξ(T) and ξ.ltime = T .

A T1-prefix of ξ , for any T1 ∈ ξ.dom, is the trajectory ξ1 : [0, T1] → R
n, such

that for all t ∈ [0, T1], ξ1(t) = ξ(t). A set of trajectories T is prefix-closed if for
any ξ ∈ T , any of its prefix of ξ is also in T . A set T is deterministic if for
any pair ξ1(t), ξ2(t) ∈ T , if ξ1(0) = ξ2(0) then one is a prefix of the other. See,
for example, [52] for detailed explanation of trajectories closed under prefix, suffix,
and concatenation.

The continuous evolution of an n-dimensional dynamical system is given by an
ordinary differential equation (ODE):

ẋ = f (x), (5.1)

where f : Rn → R
n is a locally Lipschitz and continuously differentiable function.

A trajectory ξ is a solution of Eq. (5.1) if ∀t ∈ ξ.dom, d
ξ(t)
dt

= f (ξ(t)). The
existence and uniqueness of solutions are guaranteed by the Lipschitz continuity
of f . With an initial states and a time bound, an ODE defines a unique trajectory.
Therefore, we abuse the notation and let ξ(x0, t) denote the solution ξ(t) starting
from ξ(0) = x0. The Jacobian of f , Jf : Rn → R

n×n, is a matrix-valued function
of all the first-order partial derivatives of f with respect to x, that is:

[
Jf (x)

]
ij

= ∂fi(x)

∂xj

.

Example 5.1 The Moore–Greitzer model of a jet engine compression system is
studied in [56] to understand and prevent two types of instabilities: rotating stall
and surge. With a stabilizing feedback controller operating in the no-stall mode, it
has the following dynamics:

{
u̇ = −v − 3

2u2 − 1
2u3

v̇ = 3u − v
. (5.2)

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 111

The Jacobian of the system is

Jf (x) =
[−3u − 3

2u2 −1
3 −1

]
. (5.3)

5.3 Overview of Data-Driven Verification

5.3.1 Simulations and Reachable States

Obtaining closed-form or analytical solutions for nonlinear ordinary differential
equations (ODEs) is generally impossible; however, libraries such as VNODE-
LP [62] and CAPD [11] use validated numerical integration to generate a sequence
of evaluations of ξ with guaranteed error bounds. We define a simulation as a
sequence of time-stamped hyper-rectangles that contain a solution of the system.

Definition 5.1 (Simulation) For any x0 ∈ R, τ > 0, ε > 0, T > 0, a (x0, τ, ε, T)-
simulation of the system described in Eq. (5.1) is a sequence of time-stamped sets
{(Ri, ti)

k
i=0} satisfying the following:

1. 0 < ti − ti−1 ≤ τ , for each i = 1, . . . , k, and t0 = 0 and tk = T ; τ is called the
maximum sampling period.

2. Each Ri is a hyper-rectangle in R
n with a diameter smaller than ε.

3. ξ(x0, ti) ∈ Ri , for each i = 0, 1, . . . , k, and ∀t ∈ (ti−1, ti), ξ(x0, t) ∈
hull(Ri−1, Ri), for i = 1, . . . , k.

That is, at each time point ti , the trajectory of the system ξ(x0, ti) is contained
in the hyper-rectangle Ri , and during the time intervals t ∈ (ti−1, ti), the trajectory
ξ(x0, t) is contained in the convex hull of Ri−1 and Ri .

For a given initial set Θ ⊆ R
n, a state x ∈ R

n is said to be reachable if there exist
a state θ ∈ Θ and a time t ≥ 0 such that ξ(θ, t) = x. We denote by ξ(Θ, [t1, t2]) the
set of states that are reachable from Θ at any time t ∈ [t1, t2]. The set of reachable
states at time t from initial set Θ is denoted by ξ(Θ, t). Given an n-dimensional
dynamical system as in Eq. (5.1), a compact initial set Θ ⊂ R

n, an unsafe set
U ⊆ R

n, and a time bound T > 0, the safety verification problem (also called
the bounded invariant verification) is to decide whether ξ(Θ, [0, T]) ∩ U = ∅. This
problem is of fundamental importance as it captures many practical requirements.

Next, we define reachtubes, which are also sequences of time-stamped hyper-
rectangles, but unlike simulations, they contain ξ(Θ, [0, T]).
Definition 5.2 (Reachtube) For any Θ ⊂ R

n, T > 0, a (Θ, T)-reachtube is a
sequence of time-stamped compact sets {(Oi, ti)

k
i=0}, such that for each i in the

sequence, ξ(Θ, [ti−1, ti]) ⊆ Oi .

112 C. Fan and S. Mitra

As we shall see in Sect. 5.3.3, computing precise reachtubes is sufficient for
safety verification. Data-driven verification algorithms compute reachtubes from
simulations using sensitivity analysis that we will discuss next.

5.3.2 Discrepancy Functions

Sensitivity of the solutions to changes in the initial states is formalized by discrep-
ancy functions. Specifically, a discrepancy function bounds the distance between
two neighboring trajectories as a function of the distance between their initial states
and time [23, 30].

Definition 5.3 (Discrepancy Function) A continuous function β : R≥0 ×R
≥0 →

R
≥0 is a discrepancy function of (5.1) with initial set Θ if:

(1) for any pair of states x1, x2 ∈ Θ , and any time t ≥ 0,

‖ξ(x1, t) − ξ(x2, t)‖ ≤ β(‖x1 − x2‖, t), and

(2) for any t ,

lim
‖x1−x2‖→0+ β(‖x1 − x2‖, t) = 0.

In Definition 5.3, the norm can be any norm. We will make specific choices
for designing algorithms. Consider the system (5.1), and suppose with L > 0 is the
Lipschitz constant for f (x). Then, it can be shown that β(‖x1−x2‖2, t) = eLt‖x1−
x2‖2 is a discrepancy function (Proposition 1 in [21]). For Example 5.1, L = 2 is
a Lipschitz constant, and therefore, e2t‖x1 − x2‖2 can be used as a discrepancy
function for the jet engine system.

According to the definition of discrepancy function, for system (5.1), at any time
t , the ball centered at ξ(x0, t) with radius β(δ, t) contains every solution of (5.1)
starting from Bδ(x0). Therefore, by bloating the simulation trajectories using the
corresponding discrepancy function, we can obtain an over-approximation of the
reachtube. We remark that this definition of discrepancy function is similar to the
incremental lyapunov functions [4]; however, here we do not require that trajectories
converge to each other.

5.3.3 Verification Algorithm

We are now ready to present the verification algorithm (Algorithm 1). The basic
idea is simple and appeared in [18, 23] at different levels of generality. Recall, the
goal is to have an algorithm that answers bounded safety queries correctly: given

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 113

Algorithm 1: Simulation-driven verification algorithm
input: Θ, T ,U, ε0, τ0

1 δ ← Dia(Θ); ε ← ε0; τ ← τ0; RTall ← ∅;
2 C ← Cover(Θ, δ, ε);
3 while C �= ∅ do
4 for 〈θ, δ, ε〉 ∈ C do
5 ψ = {(Ri, ti)

k
i=0} ← Simulate(θ, T , ε, τ);

6 RT ← Bloat(ψ, δ, ε);
7 if RT ∩ U = ∅ then
8 C ← C\{〈θ, δ, ε〉}; RTall ← RTall ∪ RT ;
9 else if ∃j, Rj ⊆ U then

10 return (U,ψ)

11 else
12 C ← C ∪ Cover(Bδ(θ), δ

2 , ε
2)\{〈θ, δ, ε〉};

13 τ ← τ
2 ;

14 return (SAFE, RTall);

system (5.1), a compact initial set Θ ⊂ R
n, an unsafe set U ⊆ R

n, and a time bound
T > 0, it answers whether ξ(Θ, [0, T]) ∩ U = ∅. A verification algorithm is said
to be sound if it answers the safety question correctly and it is said to be complete
if it is guaranteed to terminate on any input. We know that for general nonlinear
and hybrid models, the unbounded time verification problem is undecidable, that is,
no algorithm exists that is both sound and complete. Even for the bounded time,
version of this problem is known to be undecidable. Algorithm 1 is sound and is
guaranteed to terminate under a mild assumption on the inputs.

If there exists some ε > 0 such that Bε(ξ(Θ, [0, T]))∩U = ∅, we say the system
is robustly safe. That is, all states in some envelope around the system behaviors are
safe. If there exist some ε, x ∈ Θ, such that Bε(ξ(x, t)) ⊆ U over some interval
[t1, t2], 0 ≤ t1 < t2 ≤ T , we say the system is robustly unsafe. An algorithm is
said to be relatively complete if it is guaranteed to terminate when the system is
either robustly safe or robustly unsafe. Algorithm 1 is relatively complete. Another
way of saying this is that Algorithm 1 is a semidecision procedure for robust safety
verification.

The algorithm consists of the following three main steps: (1) Simulate the system
from a finite set of states (θ) that are chosen from the compact initial set Θ . The
union of a set of balls of diameter δ centered at each of the states should contain
Θ . (2) Bloat the {(Ri, ti)

k
i=0} simulations using a discrepancy function such that the

bloated sets are reachtubes from the initial covers. (3) Check each of these over-
approximations, and decide if the system is safe or not. If such a decision cannot be
made, then we should start from the beginning with balls with smaller diameter δ.

There are several functions referred to in Algorithm 1. Functions Dia() and
Simulate() are defined to return the diameter of a set and a simulation result,
respectively. The Bloat() function takes as the inputs the simulation ψ starting
from θ , the size of the initial cover δ, and the simulation precision ε, and returns a
reachtube that contains all the trajectories starting from the initial cover Bδ(θ). This

114 C. Fan and S. Mitra

can be done by bloating the simulation using a discrepancy function as described in
Sect. 5.4, which is an over-approximation of the distance between any neighboring
trajectories starting from Bδ(θ). Function Cover() returns a set of triples {〈θ, δ, ε〉},
where θs are sample states, the union of Bδ(θ) covers Θ , and ε is the precision of
simulation.

Initially, C contains a singleton 〈θ0, δ0 = Dia(Θ), ε0〉, where Θ ⊆ Bδ0(θ0)

and ε0 is a small positive constant. For each triple 〈θ, δ, ε〉 ∈ C, the while-
loop from Line 3 checks the safety of the reachtube from Bδ(θ), which is
computed in Lines 5–6. ψ is a (θ, T , ε, τ)-simulation, which is a sequence of time-
stamped rectangles {(Ri, ti)} and is guaranteed to contain the trajectory ξ(θ, T) by
Definition 5.1. Bloating the simulation result ψ by the discrepancy function to get
RT, a (Bδ(θ), T)-reachtube, we have an over-approximation of ξ(Bδ(θ), [0, T]).
The core function Bloat() will be discussed in detail next. If RT is disjoint from
U , then the reachtube from Bδ(θ) is safe and the corresponding triple can be safely
removed from C. If for some j , Rj (one rectangle of the simulation) is completely
contained in the unsafe set, then we can obtain a counterexample in the form of a
trajectory that violates the safety property. Otherwise, the safety of ξ(Bδ(θ), [0, T])
is not determined, and a refinement of Bδ(θ) needs to be made with smaller δ and
smaller ε, τ .

Figure 5.1 gives a conceptual demonstration of Algorithm 1 running on the jet
engine example (Example 5.1).

Theorem 5.1 Algorithm 1 is sound. That is, if it returns SAFE, then indeed
ξ(Θ, [0, T]) ∩ U = ∅; if it returns UNSAFE, then it also finds a counterexample,
the simulation ψ which enters U . Algorithm 1 is also relatively complete. That is,
for any robustly safe or unsafe system, it will terminate and decide either SAFE or
UNSAFE.

A crucial and challenging aspect of Algorithm 1 is choosing an appropriate
discrepancy function with which to implement the Bloat() function. In the next
section, we introduce algorithms that implement this function.

Fig. 5.1 Conceptual demonstration of verification algorithm. Red rectangle: unsafe set, cyan
rectangle: cover of initial set K . Simulations (blue lines) cannot guarantee safety, but together
with sensitivity analysis give reachsets (gray region) to prove safety (green region) or identify bug
traces

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 115

5.4 Computing Discrepancy

In this section, we discuss several approaches for computing discrepancy functions
of dynamical systems. We start with the simplest case of stable linear systems where
Lyapunov equations can be used for computing discrepancy. Then, we move on to
discuss nonlinear models and contraction metrics, and finally, we discuss locally
optimal methods for general nonlinear systems.

5.4.1 Linear Models

For a linear time invariant (LTI) system ẋ = Ax, if the system is asymptotically
stable we can find a discrepancy function by solving the Lyapunov equation:

Theorem 5.2 For asymptotically stable linear system ẋ = Ax, given any positive
definite matrix Q ∈ R

n×n, β(‖x1 − x2‖M, t) = e−γ t‖x1 − x2‖M is a discrepancy
function, where M � 0 can be found by solving the Lyapunov equation AT M +
MA + Q = 0 and γ = λmin(Q)

2λmax(M)
.

Proof Fix any x1, x2 ∈ R
n, and let y(t) = ξ(x1, t) − ξ(x2, t), we have

d
‖y(t)‖2

M

dt
= ẏT (t)My(t) + y(t)Mẏ(t) = yT (t)(AT M + MA)y(t)

= −yT (t)Qy(t) ≤ −λmin(Q)yT (t)y(t)

≤ − λmin(Q)
λmax(M)

yT (t)My(t) = − λmin(Q)
λmax(M)

‖y(t)‖2
M

By applying Grönwall’s inequality, we obtain

‖y(t)‖M ≤ e
− λmin(Q)

2λmax(M) ‖y(0)‖M. (5.4)

5.4.2 Nonlinear Models: Optimization-Based Approaches

For nonlinear systems with trajectories that exponentially converge to each other,
contraction metrics can be used as a certificate for this convergence [58]. Discrep-
ancy functions can be computed from contraction metrics.

Definition 5.4 (From [58]) A uniform metric M : Rn × R
≥0 → R

n×n is called a
contraction metric for (5.1) if ∃γ ∈ R

≥0 such that:

J T
f (x)M(x, t) + M(x, t)Jf (x) + Ṁ(x, t) + γM(x, t) � 0.

116 C. Fan and S. Mitra

Theorem 5.3 (Theorem 2 from [58]) For system given by (5.1) that admits
a contraction metric M, the trajectories converge exponentially with time, i.e.,
∃k ≥ 1, γ > 0 such that, ∀x1, x2 ∈ R

n, yT (t)y(t) ≤ kyT (0)y(0)e−γ t , where
y(t) = ξ(x1, t) − ξ(x2, t).

Proposition 5.1 (Proposition 5 from [21]) For system given by (5.1) that admits
a contraction metric M, β(‖x1 − x2‖2, t) = √

ke− γ
2 t‖x1 − x2‖2 is a discrepancy

function, where k, γ are from Theorem 5.3.

In [8], a technique for establishing exponential convergence among trajectories
using sum of squares (SOS) optimization is proposed. Informally, it searches for a
contraction metric that satisfies conditions given in Definition 5.4 as follows:

1. Select the degree of the polynomial d for contraction metric M(x). That is, all the
terms in the contraction metric are fixed degree polynomial terms in the n real
variables. For example, the general form of M(x) for a two-dimensional system

with variables u and v is given as

[∑
aij v

iuj
∑

bij v
iuj

∑
cij v

iuj
∑

dij v
iuj

]
.

2. Calculate R(x) = J T
f (x)M(x) + M(x)Jf (x) + Ṁ(x) and enforce constraints on

aij , bij , cij and dij such that R(x) is symmetric.
3. Impose the restrictions that polynomials yT M(x)y and −yT R(x)y are sum of

squares polynomials and solve for the feasibility using SOS tools. If the solution
exists, then the SOS solver will find values of coefficients of polynomials.

4. If the solution is feasible, compute the exponential rate of convergence by
computing the value of γ such that:

J T
f (x)M(x) + M(x)Jf (x) + Ṁ(x) + γM(x) ≺ 0.

5. If SOS solver returns infeasible, then increase the degree of the polynomial terms
in M and repeat.

For a given nonlinear ordinary differential equation (ODE), a contraction metric
that is a sum of squares polynomial is not guaranteed to exist, and hence, the above
procedure is not guaranteed to terminate.

5.4.3 Nonlinear Models: Local Discrepancy

The main obstacle to finding a (global) discrepancy function for general nonlinear
systems is the difficulty to globally bound the convergence (or divergence) rates
across all trajectories. By restricting the definition of discrepancy functions over
carefully computed parts of the state space, we will gain two benefits. First, such
local discrepancy functions will still be adequate to compute Bloat needed in
Algorithm 1. Second, it will become possible to compute a local discrepancy
function automatically from simulation traces.

We begin by observing that, over a compact set S ⊆ R
n, the Jacobian Jf of the

system described by Eq. (5.1) can be over-approximated by an interval matrix. Then,

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 117

we establish that the distance between two trajectories in S satisfies a differential
equation from a set of differential equations described using the interval matrix.
By bounding the matrix measure of the interval matrix, we can get a discrepancy
function.

Since we assume that the system is continuously differentiable, the Jacobian
matrix is continuous, and therefore, over a compact set S, the elements of Jf (x) are
bounded. That is, there exists an interval matrix A such that ∀x ∈ S, Jf (x) ∈ A .
For interval matrix A = Interval(B,C), the bounds B and C can be obtained
using interval arithmetic or an optimization toolbox by maximizing and minimizing
the terms of Jf over S. (The set S can be chosen to be a coarse over-approximation
of the reach set, obtained using the Lipschitz constant as in Sect. 5.4.) Once
the bounds are obtained, we use the interval matrix that over-approximates the
behavior of Jf (x) over S to analyze the rate of convergence or divergence between
trajectories:

Lemma 5.1 (Lemma 3.4 from [29]) For system (5.1) with initial set Θ starting
from time t1, suppose S ⊆ R

n is a compact convex set, and [t1, t2] is a time interval
such that for any ξ(Θ, [t1, t2]) ⊆ S. If there exists an interval matrix A such that
∀x ∈ S, Jf (x) ∈ A , then for any x1, x2 ∈ Θ , and for any t ∈ [t1, t2], the distance
y(t) = ξ(x2, t) − ξ(x1, t) satisfies ẏ(t) = A(t)y(t), for some A(t) ∈ A .

ẏ(t) = A(t)y(t) used in Lemma 5.1 can be used to define a discrepancy function.
Given any matrix M � 0, ‖y(t)‖2

M = yT (t)My(t), and by differentiating ‖y(t)‖2
M ,

we have that for any fixed t ∈ [t1, t2]:

d‖y(t)‖2
M

dt
= ẏT (t)y(t) + yT (t)ẏ(t) = yT (t)(A(t)T M + MA(t))y(t), (5.5)

for some A(t) ∈ A . We write A(t) as A in the following for brevity. If there exists

a γ̂ such that AT M + MA � γ̂M,∀A ∈ A , then (5.5) becomes
d‖y(t)‖2

M

dt
≤

γ̂ ‖y(t)‖2
M. After applying Grönwall’s inequality, we have

‖y(t)‖M ≤ ‖y(t1)‖Me
γ̂
2 (t−t1),∀t ∈ [t1, t2].

The above provides a discrepancy function: β(‖x1−x2‖M, t) = ‖x1−x2‖Me
γ̂
2 (t−t1).

This discrepancy function could result in more or less conservative reachtubes,
depending on the selection of M and γ̂ . Ideally, we would like to identify the optimal
M such that we can obtain the tightest bound γ̂ . This problem is formulated as
follows:

min
γ̂∈R,M�0

γ̂ (5.6)

s.t AT M + MA � γ̂M, ∀A ∈ A .

118 C. Fan and S. Mitra

Solving (5.6) to obtain the optimal γ̂ for each time interval involves solving
optimization problems with infinite numbers of constraints (imposed by the infinite
set of matrices in A). To overcome this problem, we introduce a strategy to
transform (5.6) to an equivalent problem with finitely many constraints based on
the vertex matrices.

Lemma 5.2 (Lemma 4.1 from [29]) For system (5.1) with initial set Θ starting
from time t1, suppose S ⊆ R

n is a compact convex set, and [t1, t2] is a time interval
such that for any x ∈ Θ , t ∈ [t1, t2], ξ(x, t) ∈ S. Let M be a positive definite n × n

matrix. If there exists an interval matrix A such that:

(a) ∀ x ∈ S, Jf (x) ∈ A , and
(b) ∃ γ̂ ∈ R, ∀ Ai ∈ VT(A), AT

i M + MAi � γ̂M ,

then for any x1, x2 ∈ Θ and t ∈ [t1, t2]:

‖ξ(x1, t) − ξ(x2, t)‖M ≤ e
γ̂
2 (t−t1)‖x1 − x2‖M.

Lemma 5.2 suggests the following bilinear optimization problem for finding
discrepancy over compact subsets of the state space:

min
γ̂∈R,M�0

γ̂ (5.7)

s.t. for each Ai ∈ VT(A), AT
i M + MAi � γ̂M.

Letting γ̂max be the maximum of the eigenvalues of AT
i +Ai for all i, then AT

i +Ai �
γ̂maxI (i.e., M = I) holds for every Ai , so a feasible solution exists for (5.7). To
obtain a minimal feasible solution for γ̂ , we choose a range of γ ∈ [γmin, γmax],
where γmin < γmax and perform a line search of γ̂ over [γmin, γmax]. Note that if
γ̂ is fixed, then (5.7) is a semidefinite program (SDP), and a feasible solution can
be obtained by an SDP solver. As a result, we can solve (5.7) using a line search
strategy, where an SDP is solved at each step.

This approach is computationally intensive due to the potential O(2n2
) matrices

in VT(A) that appear in the SDP (5.7). In [29], a second method is shown to avoid
the exponential increase in the number of constraints in (5.7), at the expense of
lower accuracy (i.e., increasing the conservativeness).

5.4.4 Algorithm to Compute Local Optimal Reach Set

Given an initial set Bδ(x) and time bound T , Lemma 5.2 provides discrepancy
functions over compact subsets of the state space, and over a bounded time horizon.
To compute the reach set of a nonlinear model from a set of initial states over a long
time horizon [0, T], we will divide the time interval [0, T] into smaller intervals

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 119

[0, t1], . . . , [tk−1, tk = T], and compute a piece-wise discrepancy function, where
each piece is relevant for a smaller portion of the state space and time.

Consider two adjacent subintervals of [0, T], a = [t1, t2] and b = [t2, t3].
Let EMa,ca(t2)(ξ(x0, t2)) be an ellipsoid that contains ξ(Bδ(x), t2), and suppose we
are given a matrix Mb and we want to select a cb(t) such that ξ(Bδ(x), t2) ⊆
EMb,cb(t2)(ξ(x0, t2)). To over-approximate the reach set for the interval b, we require
that cb(t2) is chosen so that at the transition time t2:

EMa,ca(t2)(ξ(x0, t2)) ⊆ EMb,cb(t2)(ξ(x0, t2)). (5.8)

This is a standard SDP problem to compute the minimum value for cb(t2) that
ensures (5.8) (see, for example, [10]). This minimum value is used as cb(t2) for
computing the reachtube for time interval b.

Let Ea denote the ellipsoid EMa,ca(t2)(ξ(x0, t2)) and Eb denote the ellipsoid
EMb,c(ξ(x0, t2)). The problem of minimizing cb(t2), given Ma,Mb, ca(t2), such that
Eq. (5.8) holds, is the following optimization problem:

min c

s.t. Eb ⊇ Ea.
(5.9)

In what follows, let cb(t2) be equal to a solution of the above. We can transfer
problem (5.9) to the following sum-of-squares problem as the “S procedure” [57] to
make it solvable by SDP solvers:

min c

s.t. c − ‖x − ξ(x0, t2)‖2
Mb

− λ
(
ca(t2) − ‖x − ξ(x0, t2)‖2

Ma

)
≥ 0, λ ≥ 0.

(5.10)

We present an algorithm to compute a (Bδ(x), T)-reachtube for system (5.1)
using the results from Lemmas 5.2. The inputs to Algorithm Bloat are as follows:
(1) A simulation ψ of the trajectory ξ(x, t), where x = ξ(x, t0) and t0 = 0,
represented as a sequence of points ξ(x, t0), . . . , ξ(x, tk) and a sequence of hyper-
rectangles Rec(ti−1, ti) ⊆ R

n. That is, for any t ∈ [ti−1, ti], ξ(x, t) ∈ Rec(ti−1, ti).

(2) The Jacobian matrix Jf (·). (3) A Lipschitz constant L for the vector field (this
can be replaced by a local Lipschitz constant for each time interval). (4) A matrix
M0 and constant c0 such that Bδ(x) ⊆ EM0,c0(x). The output is a (Bδ(x), T)-
Reachtube. We assume that the exact simulation of the solution ξ(x, t) exists and can
be represented as a sequence of points and hyper-rectangles for ease of exposition.

Algorithm Bloat uses Lemma 5.2 to update the coordinate transformation
matrix Mi to ensure an optimal exponential rate γi of the discrepancy function in
each time interval [ti−1, ti]. It will solve the optimization problem (5.7) in each time
interval to get the local optimal rate, and solve the optimization problem (5.8) when
it moves forward to the next time interval.

120 C. Fan and S. Mitra

Algorithm 2: Algorithm Bloat
input : ψ , Jf (·), L, M0, c0
initially: RT ← ∅, γ0 ← −100

1 δ0 = Dia
(
EM0,c0 (x)

)
;

2 for i = 1:k do
3 �t ← ti − ti−1 ;
4 S ← Bδi−1eL�t (Rec(ti−1, ti)) ;
5 A ← Interval[B,C] such that Jf (x) ∈ Interval[B,C],∀x ∈ S ;
6 if ∀V ∈ VT(A) : V T Mi−1 + Mi−1V ≤ γi−1Mi−1 then
7 Mi ← Mi−1; ;
8 γi ← arg min

γ∈R ∀V ∈ VT(A) : V T Mi + MiV ≤ γMi ;

9 ctmp ← ci−1

10 else
11 compute Mi, γi from Eq. (5.7) ;
12 compute minimum ctmp such that EMi−1,ci−1 (ξ(x, ti−1)) ⊆ EMi,ctmp (ξ(x, ti−1)) ;
13 ci ← ctmpe

γi�t ;
14 δi ← Dia(EMi,ci

(ξ(x, ti))) ;
15 Oi ← Bδ′/2(Rec(ti−1, ti)) where δ′ = max{dia

(
EMi,ctmp (ξ(x, ti−1))

)
, δi} ;

16 RT ← RT ∪ [Oi, ti] ;
17 return RT ;

The algorithm proceeds as follows. The diameter of the ellipsoid containing the
initial set Bδ(x) is computed as the initial set size (Line 1). At Line 4, Rec(ti−1, ti),
which contains the trajectory between [ti−1, ti] is bloated by the factor δi−1e

L�t

which gives the set S that is guaranteed to contain ξ(Bδ(x), t) for every t ∈ [ti−1, ti].
Next, at Line 5, an interval matrix A containing Jf (x), for each x ∈ S, is computed.
The “if” condition in Line 6 determines whether the Mi−1, γi−1 used in the previous
iteration satisfy the conditions of Lemma 5.2 (γ0 when i = 1, where γ0 is an initial
guess). This condition will avoid performing updates of the discrepancy function if
it is unnecessary. If the condition is satisfied, then Mi−1 is used again for the current
iteration i (Lines 7–9) and γi will be computed as the smallest possible value such
that Lemma 5.2 holds (Line 8) without updating the shape of the ellipsoid (i.e.,
Mi = Mi−1). In this case, the γi computed using Mi−1 in the previous iteration
(i − 1) may not be ideal (minimum) for the current iteration (i), but we assume
that it is acceptable. If Mi−1 and γi−1 do not satisfy the conditions of Lemma 5.2,
that means the previous coordinate transformation can no longer ensure an accurate
exponential converging or diverging rate between trajectories. Then, Mi and γi are
recomputed at Line 11. For the vertex matrix constraints case, (5.7) is solved to
update Mi and γi .

At Line 12, an SDP is solved to identify the smallest constant ctmp for discrepancy
function updating such that EMi−1,ci−1(ξ(x, ti−1)) ⊆ EMi,ctmp(ξ(x, ti−1)). At
Line 13, we compute the updated ellipsoid size ci such that EMi,ci

(ξ(x, ti)) contains
ξ(Bδ(x), ti). At Line 14, the diameter of EMi,ci

(ξ(x, ti)) is assigned to δi for next

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 121

iteration. At Line 15, the set Oi is computed such that it contains the reach set during
time interval [ti−1, ti]. Finally, at Line 16 RT is returned as an over-approximation
of the reach set.

The next lemma states that the γ produced by Line 11 is a local optimal
exponential converging or diverging rate between trajectories.

Lemma 5.3 (Lemma 5.1 from [29]) In the ith iteration of Algorithm Bloat,
suppose A is the approximation of the Jacobian over [ti−1, ti] computed in Line 5.
If Ei−1 is the reach set at ti−1, then for all M ′ and γ ′ such that ξ(Ei−1, ti) ⊆
EM ′,c′(ξ(x, ti)) where c′ is computed from γ ′ (Line 13), we have that the γ produced
by Line 11 satisfies γ ≤ γ ′.

Theorem 5.4 ensures soundness of the verification algorithm.

Theorem 5.4 (Theorem 5.2 from [29]) For any (x, T)-simulation ψ =
ξ(x, t0), . . . , ξ(x, tk) and any constant δ ≥ 0, a call to Bloat(ψ, δ) returns a
(Bδ(x), T)-reachtube.

Proof By Lemma 5.2, at any time t ∈ [ti−1, ti], any other trajectory ξ(x′, t) starting
from x′ ∈ EMi−1,ci−1(ξ(x, ti−1)) is guaranteed to satisfy

‖ξ(x, t) − ξ(x′, t)‖Mi
≤ ‖ξ(x, ti−1) − x′‖Mi

e
γi
2 (t−ti−1). (5.11)

Then, at time ti , the reach set is guaranteed to be contained in the ellipsoid
EMi,ci

(ξ(x, ti)).
At Line 15, we want to compute the set Oi such that it contains the reach set

during time interval [ti−1, ti]. According to Eq. (5.11), at any time t ∈ [ti−1, ti],
the reach set is guaranteed to be contained in the ellipsoid EMi,c(t)(ξ(x, t)), where
c(t) = ctmpe

γi(t−ti−1). Oi should contain all the ellipsoids during time [ti−1, ti].
Therefore, it can be obtained by bloating the rectangle Rec(ti−1, ti) using the largest
ellipsoid’s radius (half of the diameter). Since eγi(t−ti−1) is monotonic (increasing
when γi > 0 or decreasing when γi < 0) with time, the largest ellipsoid during
[ti−1, ti] is either at ti−1 or at ti . So, the largest diameter of the ellipsoids is
max{dia

(
EMi,ctmp (ξ(x, ti−1))

)
, δi}. Thus, at Line 15, Oi computed at Line 15 is

an over-approximation of the reach set during time interval [ti−1, ti].
When i = 1, because the initial ellipsoid EM0,c0(x) contains the initial set Bδ(x),

we have that EM1,c1(ξ(x, t1)) defined at Line 14 contains ξ(Bδ(x), t1). Also at
Line 15, O1 contains ξ(Bδ(x), [t0, t1]). Repeating this reasoning for subsequent
iterations, we have that EMi,ci

(ξ(x, ti)) contains ξ(Bδ(x), ti), and Oi contains
ξ(Bδ(x), [ti−1, ti]). Therefore, RT returned at Line 16 is a (Bδ(x), T)-Reachtube.

Remark 5.1 It is straightforward to modify Algorithm 2 to accept validated simu-
lations and the error bounds introduced. At Line 4 and Line 15, instead of bloating
Rec(ti−1, ti), we need to bloat hull({Ri−1, Ri}), which is guaranteed to contain
the solution ξ(x, t),∀t ∈ [ti−1, ti]. Also, at Line 12 and Line 14, when using the
ellipsoid EMi,ci

(ξ(x, ti)), we use EMi,ci
(0) ⊕ Ri .

122 C. Fan and S. Mitra

5.5 Hybrid System Verification

Hybrid systems are a natural and popular model for representing cyber-physical
systems [3, 38, 51, 61]. One can view a hybrid system as a collection of ODEs—
one for each mode—and a set of discrete transition rules for switching between the
ODEs or modes. Thus, the continuous behavior of a hybrid system is described by
differential equations, and discrete behavior is described by a set of transition rules
that can be defined in terms of a labeled control graph, a program, or an automaton.
In this section, we present extensions of the data-driven verification approach to fit
hybrid models.

5.5.1 Hybrid Model

We will use L to denote a finite set of modes, locations, or discrete states. We will
use a Euclidean space X ⊆ R

n for the continuous state. The combined hybrid state
space is L ×X. The discrete behavior or mode transitions will be specified a control
graph over L with labels defining the guards and resets on X. A guard on X is
predicate G : X → B, and reset function is a mapping R : X → X.

Definition 5.5 Given a hybrid state space L × X, a control graph on L × X is a
labeled directed graph G = 〈V, E, elab〉, where:

1. V ⊆ L is the set of vertices,
2. E ⊆ V × V is the set of edges, and
3. elab labels each edge e ∈ E with finitely many guards and reset maps on X.

The evolution of the system’s continuous state variables is formally described by
the continuous functions of initial states and time called trajectories (see Sect. 5.2).
For a hybrid system with L modes, each trajectory is labeled by a mode in L. A
trajectory labeled by L is a pair 〈ξ(x0, t), �〉 where ξ(x0, t) is a trajectory starting
from x0, and � ∈ L. A deterministic, prefix-closed set of labeled trajectories TL
describes the behavior of the continuous variables in modes L.

In this section, we consider hybrid system with explicit continuous dynamics
expressions. That is, the dynamical evolution of the hybrid system’s continuous
state variables in each mode is expressed by ODEs. Therefore, a hybrid system
is formally defined as follows:

Definition 5.6 A hybrid system H is a tuple 〈X, L,Θ, Linit,G, TL〉, where:

1. X × L is the hybrid state space,
2. Θ × Linit ⊆ X × L is a compact set of initial states,
3. G = 〈V, E, elab〉 is a control graph on X × L, and
4. TL is a set of deterministic, prefix-closed labeled trajectories. For each � ∈ L, a

set of trajectories TL� is specified by differential equations f� : Rn → R
n and an

invariant I� ⊆ R
n, such that over any trajectory 〈ξ, �〉 ∈ TL�, ξ evolves according

to d
ξ
dt

= f�(ξ) at each time in the domain of ξ , and ξ satisfies the invariant I�.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 123

Semantics of H is given in terms of executions which are sequences of
trajectories consistent with the modes defined by the control graph. An execution
of H starting from x0 ∈ Θ and �init ∈ Linit is a sequence of labeled trajectories
exec(x0, �init) = 〈ξ�1 , �1〉, · · · , 〈ξ�k

, �k〉 such that:

1. ξ�1 .fstate = x0 ∈ Θ and �1 = �init ∈ Linit,
2.

∑k
j=1 ξ�j

.dur = T ,
3. �1, · · · , �k follow the control graph G. That is, for each i > 1, there is an edge

e ∈ E : vi−1 → vi with the edge label elab = [Guarde]{Resete}, such that vi−1
corresponds to the mode �i−1 and vi corresponds to the mode �i , ξ�i−1 .lstate
satisfies the guard: Guarde(ξ�i−1 .lstate) = True, and ξ�i

.fstate satisfies the reset
map: Resete(ξ�i

.fstate) = True.

The set of all executions of H is denoted by ExecsH . A state 〈x, �〉 is reachable
at vertex � (of graph G) if there exists an execution 〈ξ�1, �1〉, . . . , 〈ξ�k

, �k〉 ∈
ExecsH , i ∈ {1, . . . k}, and t ′ ∈ ξi .dom such that � = �i , x = ξ�i

(t ′). The
set of reachable states is defined as:

ξ(H , T) = {〈x, �〉 | for some �, 〈x, �〉isreachableatvertex�}.

Given a set of (unsafe) states U ⊆ X × L, the bounded safety verification problem
is to decide whether ξ(H , T) ∩ U = ∅.

Example 5.2 A hybrid system that models the behavior of a cardiac pacemaker
system is given in Fig. 5.2a. The hybrid system has two modes, namely, Stim_on
and Stim_off. The continuous variables u and v model the voltage and the current
on the tissue membrane and the timer t measures the time spent in each location.

Stim

a

b

on
ṫ = 1

u̇= −u(0.9(u+1)+u2)− v+1
v̇= u−2v

Stim off
ṫ = 1

u̇= −u(0.9(u+1)+u2)− v
v̇= u−2v

[t = 5]{t ′ = 0}

[t = 20]{t ′ = 0}

Fig. 5.2 (a) Hybrid system model of a cardiac cell with a pacemaker. (b) Sample execution of
the cardiac cell-pacemaker system from the initial state [0, 0.1, 0.1]. Blue and green trajectories
correspond to the Stim_on and Sim_off modes, respectively

124 C. Fan and S. Mitra

The system stays in Stim_on location when the pacemaker gives a stimulus to the
cell and is in Stim_off when the stimulus is absent. The discrete transition from
Stim_on to Stim_off is enabled when t = 5; and t is reset to 0 after a transition;
u and v are left unchanged. Transition from Stim_off to Stim_on is enabled when
t = 20; and both these transitions are urgent. Thus, the pacemaker gives a stimulus
every 25 time units for a duration of 5 time units. The behavior of the continuous
variables t, u, v within a time period is given in Fig. 5.2b.

5.5.2 Hybrid System Verification Algorithm

We outline the hybrid extension of Algorithm 2 now presented as Algorithm 3.
Algorithm 2 computes the set of reachable states for a given continuous system as
described in Eq. (5.1) for a given time interval. Therefore, one can essentially apply
this algorithm for each of the relevant modes of a hybrid system. For simplicity, let
us assume that all the mode invariants and transition guards to be convex polyhedra,
and that all the reset mappings are linear functions. Without loss of generality,
we assume that there is only one mode �init in the set of initial locations Linit.
Algorithm 3 performs the following three steps iteratively until the time horizon
for verification:

1. For the given mode � and a given initial set Θ , the algorithm first simulates from
the center of Θ , computes the Jacobian of the continuous dynamics in mode �,
and then computes the reachable set RT� for that mode from Θ for the bounded
remaining time specified using Algorithm 2.

2. The reachable set is pruned by removing all the states that violate the mode
invariant.

3. The reachable set is checked to satisfy any guards for discrete transitions, and if
so, the initial states for the next mode are computed by applying the reset map
of the states that satisfy the guard predicate. As the reachable set of states for a
hybrid system at a given time might belong to two different modes, we track the
discrete transitions using a queue of tuples 〈Θnext, �next , tleft〉, where �next is the
next location that needs to be checked, Θnext is the initial set that corresponds to
the location �next , and tleft is remaining time we need to compute the reachable
set in �next .

Algorithm 3 computes the reachable set for a hybrid system. The main loop that
performs the three key steps iteratively happens from Line 2 to Line 9. Line 2
simulates from the center state of Θ . Then at Line 3, we compute an ellipsoid
EM0,c0(center(Θ)) to contain the initial set Θ as an ellipsoidal initial set is
required by Algorithm 2. Line 4 computes the Jacobian matrix of f�, continuous
dynamics in mode �. With these elements, at Line 5, we can use the Bloat function
as Algorithm 2 to get the reachable set of states from Θ for the corresponding

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 125

Algorithm 3: Algorithm HybridReachtube
input : Hybrid System H = 〈X ∪ {�},Θ, �init, T ,G, TL〉, Time bound T , Lipschitz

constants {L�}�∈L, Parameters for validated simulation ε, τ .
initially: Q ← 〈Θ, �init, T 〉, RT hybrid ← ∅

1 for each 〈Θ, �, tleft〉 ∈ Q do
2 ψ = {(Ri, ti)

k
i=0} ← Simulate(center(Θ), tleft, ε, τ) ;

3 Compute M0, c0 such that Θ ⊆ EM0,c0 (center(Θ)) ;
4 Jf�

(x) ← Jacobian matrix of f� in mode � ;
5 RT� ← Bloat(ψ, Jf�

(x), L�,M0, c0) ;
6 RT� ← RT� ∩ I� ;
7 {〈Θnext, �next , tleft〉} ← discreteTransitions(RT�) ;
8 RT hybrid ← RT hybrid ∪ RT� ;
9 Q.append({〈Θnext, �next , tleft〉}) ;

10 return RT hybrid ;

mode �. Line 6 checks the invariant for the reachable set and line 7 computes
the states reached Θnext and the remained time tleft to be checked after discrete
transitions.

C2E2
Algorithms 1–3 are the core procedures implemented in the verification tool
Compute Execute Check Engine(C2E2) developed at University of Illinois [24, 33].
C2E2 is a software tool for simulating and verifying hybrid automata models.
Hybrid models and the requirements have to be specified in an xml format. The
tool parses the xml model to generate C++ libraries for numerical simulations and
computes other relevant quantities like the Jacobians of the different modes. Using
the data-driven verification algorithms, C2E2 can automatically check bounded
time invariant properties of nonlinear hybrid automata. The tool also supports
compositional modeling, a graphical user interface for model editing, and plotting.
C2E2 has been used for modeling and analyzing robots, autonomous cars, and
medical devices. Some of these applications are discussed in Sect. 5.7.

Example 5.3 (Example 5.2 Continued) Figure 5.3 shows the reachtubes of the
continuous variables u and v of the cardiac cell-pacemaker system computed using
the verification tool C2E2.

5.6 Verification of Models with Black-Box Components

In hybrid system models, we have discussed thus far the evolution of the continuous
state variables that is explicitly described by differential equations and trajectories.
In real-world control systems, “models” are typically a heterogeneous mix of
simulation code, differential equations, block diagrams, and hand-crafted look-up
tables. Extracting clean mathematical models (e.g., ODEs) from these descriptions

126 C. Fan and S. Mitra

Fig. 5.3 Reachtubes of the cardiac cell-pacemaker system produced by C2E2 with initial set t ∈
[0, 0], u, v ∈ [0, 0.2]. Left: u vs time. Right: v vs time. Blue and green regions correspond to the
Stim_on and Stim_off modes, respectively

is usually infeasible. The high-level logic deciding the transitions of when and for
how long the system stays in each mode is usually implemented in a relatively
clean piece of code and this logical module can be seen as the control graph as
in Definition 5.5. In contrast, the dynamics of physical plant, with hundreds of
parameters, is more naturally viewed as a “black-box.” That is, it can be simulated
or tested with different initial conditions and inputs, but it is nearly impossible to
write down a nice mathematical model. This unavailability of explicit “white-box”
models is a major roadblock for formal techniques becoming practical for CPS.
In this section, we address this problem in the context of data-driven verification.
We will view hybrid systems as a combination of a “white-box” control graph that
specifies the mode switches and a “black-box” that can simulate the continuous
evolution in each mode.

5.6.1 A Hybrid Formalism Accommodating Black-Boxes

Suppose the hybrid system has a set of modes L and continuous state space X as
in Definition 5.6. The mode switches are defined by a control graph over L and X,
as in Definition 5.5. The black-box generates a set of trajectories TL in X for each
mode in L. We denote by TLinit,� = {ξ.fstate | 〈ξ, �〉 ∈ TL}, the set of initial states
of trajectories in mode �. Without loss of generality, we assume that TLinit,� is a
connected, compact subset of X.

Instead of a closed-form description of TL as in Definition 5.6, we have a
simulator that can generate sampled data points on individual trajectories. We will
develop techniques that avoid over-reliance on the models generating the trajectories
and instead, work with sampled data of ξ(·) generated from the simulators. Of

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 127

course, in order to obtain safety guarantees we will need to make assumptions about
the underlying system generating the data.

Definition 5.7 A simulator for a (deterministic and prefix-closed) set TL of tra-
jectories labeled by L is a function (or a program) SIM that takes as input a mode
label � ∈ L, an initial state x0 ∈ TLinit,�, and a finite sequence of time points
t1, . . . , tk , and returns a sequence of states SIM(x0, �, t1), . . ., SIM(x0, �, tk) such
that there exists 〈ξ, �〉 ∈ T with ξ.fstate = x0 and for each i ∈ {1, . . . , k},
SIM(x0, �, ti) = ξ(ti).

For simplicity, we assume that the simulations are perfect (as in the last equality
of Definition 5.7). Formal guarantees of soundness are not compromised if we use
validated simulations instead. Our new definition of a hybrid system, therefore,
is analogous to Definition 5.6 except that TL is a set of deterministic trajectories
labeled by L that can be simulated but does not necessarily come from any known
differential equations. Executions and reachable states are defined analogously to
those in Sect. 5.5.1.

5.6.2 Learning Discrepancy from Simulations

The key subroutine needed for computing the reachable states with Algorithm 1 has
to compute a discrepancy function which upper bounds the distance between trajec-
tories. Owing to the absence of ODE models, the Bloat function of Algorithm 2
is useless. We will use a probabilistic algorithm for estimating the discrepancy from
the data generated by black-box simulators [32].

Recall that a discrepancy function is a continuous function β : Rn×R
≥0 → R

≥0,
such that for any pair of identically labeled trajectories 〈ξ1, �〉, 〈ξ2, �〉 ∈ TL, and any
t ∈ ξ1.dom ∩ ξ2.dom: (a) β upper bounds the distance between the trajectories, that
is:

‖ξ1(t) − ξ2(t)‖ ≤ β(‖ξ1.fstate − ξ2.fstate‖, t), (5.12)

and (b) β converges to 0 as the initial states converge, i.e., for any trajectory ξ and
t ∈ ξ.dom, if a sequence of trajectories ξ1, . . . , ξk, . . . has ξk.fstate → ξ.fstate,
then β(‖ξk.fstate − ξ.fstate‖, t) → 0. We present a simple method for discovering
discrepancy functions that only uses simulations. Our method is based on a classical
result in PAC learning theory [53]. We revisit this result before applying it to finding
discrepancy functions.

Learning Linear Separators
For Γ ⊆ R × R, a linear separator is a pair (a, b) ∈ R

2 such that:

∀(x, y) ∈ Γ. x ≤ ay + b. (5.13)

128 C. Fan and S. Mitra

Let us fix a subset Γ that has a (unknown) linear separator (a∗, b∗). Our goal is
to discover some (a, b) that is a linear separator for Γ by sampling points in Γ .3

The assumption is that elements of Γ can be drawn according to some (unknown)
distribution D . With respect to D , the error of a pair (a, b) from satisfying Eq. (5.13)
is defined to be errD (a, b) = D({(x, y) ∈ Γ | x > ay + b}) where D(X) is the
measure of set X under distribution D . Thus, the error is the measure of points (w.r.t.
D) that (a, b) is not a linear separator for. There is a very simple (probabilistic)
algorithm that finds a pair (a, b) that is a linear separator for a large fraction of
points in Γ , as follows.

1. Draw k pairs (x1, y1), . . . (xk, yk) from Γ according to D ; the value of k will be
fixed later.

2. Find (a, b) ∈ R
2 such that xi ≤ ayi + b for all i ∈ {1, . . . k}.

Step 2 involves checking feasibility of a linear program, and so can be done quickly.
This algorithm, with high probability, finds a linear separator for a large fraction of
points.

Proposition 5.2 (Proposition 4 from [32]) Let ε, δ ∈ R
≥0. If k ≥ 1

ε
ln 1

δ
, then,

with probability ≥ 1 − δ, the above algorithm finds (a, b) such that errD (a, b) < ε.

Proof The result follows from the PAC learnability of concepts with low VC
dimension [53]. However, since the proof is very simple in this case, we reproduce
it here for completeness. Let k be as in the statement of the proposition, and
suppose the pair (a, b) identified by the algorithm has error > ε. We will bound
the probability of this happening.

Let B = {(x, y) | x > ay + b}. We know that D(B) > ε. The algorithm chose
(a, b) only because no element from B was sampled in Step 1. The probability
that this happens is ≤ (1 − ε)k . Observing that (1 − s) ≤ e−s for any s, we get

(1 − ε)k ≤ e−εk ≤ e− ln 1
δ = δ. This gives us the desired result.

5.6.3 Discrepancy Functions as Linear Separators

Using the above result, we will compute discrepancy functions from simulation
data, independently for each mode. Let us fix a mode � ∈ L, and a domain [0, T]
for each trajectory. The special type of discrepancy functions that we will learn
from simulation data are called global exponential discrepancy (GED) and have the
special form:

β(‖x1 − x2‖, t) = ‖x1 − x2‖Keγ t .

3We prefer to present the learning question in this form as opposed to the one where we learn a
Boolean concept because it is closer to the task at hand.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 129

Here, K and γ are constants. Thus, for any pair of trajectories ξ1 and ξ2 (for mode
�), we have

∀t ∈ [0, T]. ‖ξ1(t) − ξ2(t)‖ ≤ ‖ξ1.fstate − ξ2.fstate‖Keγ t .

Taking logs on both sides and rearranging terms, we have

∀t. ln
‖ξ1(t) − ξ2(t)‖

‖ξ1.fstate − ξ2.fstate‖ ≤ γ t + ln K.

It is easy to see that a global exponential discrepancy is nothing but a linear separator

for the set Γ consisting of pairs
(

ln ‖ξ1(t)−ξ2(t)‖‖ξ1.fstate−ξ2.fstate‖ , t
)

for all pairs of trajectories

ξ1, ξ2 and time t . Using the sampling-based algorithm described before, we could
construct a GED for a mode � ∈ L, where sampling from Γ reduces to using
the simulator to generate traces from different states in TLinit,�. Proposition 5.2
guarantees the correctness, with high probability, for any separator discovered by
the algorithm. However, for our reachability algorithm to not be too conservative,
we need K and γ to be small. Thus, when solving the linear program in Step 2 of
the algorithm, we search for a solution minimizing γ T + ln K .

Learned Discrepancy and Guarantees in Practice
In theory, there is some probability that the learned discrepancy function β is
incorrect. That is, some pair of executions ξ, ξ ′ ∈ TL of the system, starting from
the same initial state Θ , diverges more than the bound given by the computed
β. However, experiments in [32] on dozens of modes with complex, nonlinear
trajectories suggest that this almost never happens. In the reported experiments, for
each mode a set Strain of simulation traces that start from independently drawn
random initial states in TLinit,� are used to learn a discrepancy function. Each trace
has between 100–10, 000 data points, depending on the relevant time horizon and
sample times. Then, another set Stest of 1, 000 simulations traces are drawn for
validating the computed discrepancy. For every pair of trace in Stest and for every
time point, it is checked whether the computed discrepancy satisfies Eq. (5.12). It
is observed that for |Strain| > 10 the computed discrepancy function is correct for
96% of the points Stest in and for |Strain| > 20 it is correct for more than 99.9%,
across all experiments.

DryVR
Replacing the Bloat function in Algorithm 3 with a subroutine for learning
discrepancy, we can obtain a complete verification algorithm for black-box hybrid
models. This is the core of the approach implemented in the open-source DRYVR
verification tool [32]. The tool supports other forms of discrepancy functions (for
example, piece-wise exponential and polynomial) that can also be learned from
simulation data with the same type of guarantees. DryVR has been effectively
employed to analyze space-craft control systems and maneuvers involving multiple
autonomous and semiautonomous vehicles (see Sect. 5.7 for some examples).

130 C. Fan and S. Mitra

5.7 Verification Case Studies

Data-driven verification algorithms have been implemented in a number of software
tools such as Breach [19], C2E24 [33], and DryVR5 [32]. These tools have been
effective in verifying challenging benchmark applications from the automotive,
aerospace, energy, and medical devices domain. In the following, we discuss three
applications that were beyond the capabilities of automatic verification tools until
recently, and help paint a picture of the rapid developments in this area over the last
5 years.

5.7.1 Automatic Braking and Forward Collision Avoidance
System

Growth of autonomy and advanced driver assist (ADAS) features in cars has led to
significant pressures for assuring system-level safety at design time. The broad topic
of safety certification for such systems is currently a big open problem. While this
topic touches multiple technical challenges in several disciplines that are beyond
the scope of our discussion (for example, human-autonomy interactions, traffic
modeling, and testing for different weather conditions), formal verification, and
in particular data-driven verification can play an effective role for creating safety
assurance cases needed for certification with standards like the ISO2626 [64]. Here,
we summarize a comprehensive case study from [31] which looks at the most
common type of rear-end crashes involving automatic emergency braking (AEB)
and forward collision avoidance systems.

Each scenario for safety verification is constructed by composing several hybrid
automaton models—one for each vehicle or road agent. Each vehicle has several
continuous variables including the x, y-coordinates of the vehicle on the road, its
velocity, heading, and steering angle. The detailed dynamics of each vehicle comes
from a black-box simulator (for example, written in Python or MatLab). The higher-
level decisions about the modes (for example, for “cruising,” “speeding,” “merging
left,” etc.) followed by the vehicles are captured by control graphs. In more detail, a
vehicle can be controlled by two input signals, namely the throttle (acceleration or
brake) and the steering. By choosing appropriate values for these input signals, the
modes are defined— cruise: move forward at constant speed, speedup: constant
acceleration, brake: constant (slow) deceleration, and em_brake: constant (hard)
deceleration. The switching rules (guards) between the modes is defined by “driver
models.” For example, one such rule might state that if the distance between the
ego vehicle and its leading car drops below a threshold Ssafe, then the ego vehicle

4C2E2 available from:http://publish.illinois.edu/c2e2-tool/.
5DryVR available from:https://gitlab.engr.illinois.edu/dryvrgroup/dryvrtool.

http://publish.illinois.edu/c2e2-tool/
https://gitlab.engr.illinois.edu/dryvrgroup/dryvrtool

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 131

Fig. 5.4 Verification of the vehicles overtake scenario. Left: safe reachtube. Right: unsafe
execution. Vehicle A’s (red) modes are shown above each subplot. Vehicle B (green) is in cruise.
Top: sxA, sxB vs time. Bottom: syA, syB vs time

switches to brake after a delay of Treact, where Treact is a parameter corresponding
to driver’s reactions time. Typical values of these parameters were obtained from
previously available driving data. The composed hybrid automaton graph is then
presented to DRYVR as the input model.

Consider a scenario with Vehicle A behind B in the same lane starting with the
same speed, and A wanting to overtake B. A will switch to the left lane after it
approaches B, and then switch back to the right lane once it is ahead of B. In some
cases, A may fail to get ahead of B, in which case it times out and returns back
in the right lane behind B. The safety requirement is that the vehicles maintain
safe separation. Figure 5.4 (left) shows a version of this scenario that is verified to
be safe by DRYVR. The plots show the reachtube over-approximations computed
by DRYVR. Vehicle B stays in the cruise always but Vehicle A goes through a
sequence of modes speedup, change_left, speedup, brake, and change_right,
cruise to overtake B. Figure 5.4 left top shows the projection of reachtubes on
lateral positions (sxA in red and sxB in green) subplot, and the bottom plot shows
the positions along the lane (syA in red and syB in green, in the bottom plot).
Initially, for both i ∈ {A,B}, sxi = vxi = 0 and vyi = 1, i.e., both are cruising at
constant speed at the center of the right lane, initial positions along the lane are
syA ∈ [0, 2], syB ∈ [15, 17]. As time advances, Vehicle A moves to left lane
(sx decreases) and then back to the right, while B remains in the right lane, as A
overtakes B (bottom plot). With a different initial set, syB ∈ [30, 40], DRYVR finds
counterexample demonstrating unsafe behavior of the system (Fig. 5.4 (right)). In
both of these instances, the running time for verification is of the order of minutes.

In [31], hundreds of scenarios are analyzed for 2 and 3 vehicles, with different
ranges of initial velocities of the cars, different reaction times (Treact), and different
braking profiles. DRYVR proves certain scenarios to be safe and for others it
computes the severity of accidents based on the worst-case relative velocity of
collisions. In [31], it is shown how these verification results can be aggregated with
information about the distribution of model parameters (Treact, Ssafe, etc.), to assess
the system-level risk, which in turn is essential for determining automotive safety

132 C. Fan and S. Mitra

integrity levels (ASIL) for standards like the ISO26262 . In summary, this case study
demonstrated that data-driven verification can be effective in analyzing relevant
vehicle autonomy scenarios involving complex composition of hybrid automata and
black-box simulators.

5.7.2 Autonomous Spacecraft Rendezvous

The extreme cost of failures and the infeasibility of terrestrial testing have made for-
mal methods singularly attractive for space systems. Reachability-based automatic
safety verification for satellite control systems was first studied in [48]. At the time
of that study, hybrid verification tools were available only for linear hybrid systems,
which have restricted applicability because many satellite control problems involve
nonlinear orbital dynamics and nonlinear constraints. Here, we present a case study
based on the ARPOD problem introduced in [43]. ARPOD stands for autonomous
rendezvous proximity operations and docking. It captures an overarching mission
needed to assemble a new space station that has been launched in separate modules.
Our discussion here is based on the results presented in [12, 14].

A generic ARPOD scenario involves a passive module or a target (launched
separately into orbit) and a chaser spacecraft that must transport the passive
module to an on-orbit assembly location. The chaser maintains a relative bearing
measurement to the target, but initially it is too far to use its range sensors.
Once range measurements become available, the chaser gets more accurate relative
positioning data and it can stage itself to dock with the target. Docking must happen
with a specific angle of approach and closing velocity, in order to avoid collision
and to ensure that the docking mechanisms on each spacecraft will mate.

For simplicity, here we discuss the planar (or 2-dimensional) version of the
model. The variables of the hybrid model include position (relative to the target)
x, y (in meters), time t (in minutes), and horizontal and vertical velocity vx, vy .
The modes of the hybrid automaton capture four phases of the docking maneuver.
Each phase is defined by a separation distance ρ = √

x2 + y2 between the chaser
and target spacecraft, closing this distance from up to 10 km down to 0, and then
performing a maneuver once the satellites are docked. As seen in Fig. 5.5 (left),
the chaser spacecraft begins in Phase 1 while the separation distance ρ is not
available but only has angular of approach θ = atan(

y
x
) available, and the system

is unobservable. While ρ gets small enough, the mission moves into Phase 2,
where the chaser spacecraft now has a ranging measurement to the chaser spacecraft
and must position itself for the Phase 3 docking. After the chaser moves such
that ρ ≤ 100, the docking phase, Phase 3 is initiated and additional docking port
constraints are active. Once the spacecraft dock (i.e., ρ = 0), both spacecraft move
into Phase 4, where the joint assembly must move to the relocation position.

The chaser must adhere to different sets of constraints in each discrete mode.
In [13], a switched linear quadratic regulator (LQR) is designed to meet these
constraints while maintaining liveness in navigating toward the target spacecraft.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 133

Phase 2
ẋ= f2(x,u2)

Phase 3
ẋ= f3(x,u3)

ρ ≤ 100; t ≤ t2

Passive
ẋ= fp(x)
t ≥ t1

[≤ 100]

[≥ 100]

[t ∈ [t1, t2]]

[t ∈ [t1, t2]]

r

r

Fig. 5.5 Left: description of the overall mission phases (not to scale). Right: hybrid system model
of the autonomous spacecraft rendezvous mission

Figure 5.5 (right) gives the hybrid system model of interest. In addition to the
existing mode, the model also has a Passive mode in which the chaser has
the thrusters shut down. The system may nondeterministically transition to the
Passive mode as a result of a failure or loss of power. The nonlinear dynamic
equations describing the motion of the chaser spacecraft relative to the target is
given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = vx

ẏ = vy

v̇x = n2x + 2nvy + μ

r2 − μ

r3
c
(r + x) + ux

mc

v̇y = n2y − 2nvx − μ

r3
c
y + uy

mc
.

The parameters are μ = 3.986×1014×602 [m3 / min2], r = 42164×103 [m], mc =
500 [kg], n =

√
μ

r3 , and rc = √
(r + x)2 + y2. The linear feedback controllers

for the different modes are defined as [ux, uy]T = K1x for mode Phase 2, and
[ux, uy]T = K2x for mode Phase 2, where x = [x, y, vx, vy]T is the vector of
system states. The feedback matrices Ki were determined with an LQR approach
applied to the linearized system dynamics, where the detailed number can be found
at [13]. In mode Passive, the system is uncontrolled [ux, uy]T = [0, 0]T . The
spacecraft starts from the initial set x ∈ [−925,−875] [m], y ∈ [−425,−375] [m],
vx = 0 [m/min] and vy = 0 [m/min]. For the considered time horizon of t ∈ [0, 200]
[min], the following specifications have to be satisfied:

• Line-of-sight: In mode Phase 3, the spacecraft has to stay
inside line-of-sight cone:

{[x, y]T | (x ≥ −100) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}.

134 C. Fan and S. Mitra

0

–2000

–4000

–6000

20000

10000

–10000

0

time

x

y

Fig. 5.6 Left: reachtube of x (x-axis) vs y (y-axis) produced by C2E2. Right: reachtube of x vs
time (above) and y vs time (below) produced by DRYVR

• Collision avoidance: In mode Passive, the spacecraft has to avoid a collision
with the target, which is modeled as a box B with 0.2 m edge length and the
center placed at the origin.

• Velocity constraint: In mode Phase 3, the absolute velocity has to stay below
3.3 [m/min]:

√
v2
x + v2

y ≤ 3.3 [m/min].

C2E2 was used to prove that the autonomous rendezvous system with the LQR
controller satisfying the above requirements. Figure 5.6 (left) shows the reachtube of
x (x-axis) vs y (y-axis) produced by C2E2. A different control strategy for ARPOD
was proposed in [60] which characterizes the family of individual controllers and
the required properties they should induce for the closed-loop system to solve the
problem within each phase, then use a supervisor that robustly coordinates the
individual controllers. Using these controlled subsystems as a black-box, we have
been able to check the safety of the overall system using DRYVR. Figure 5.6 (right)
shows the reachtube of x and y produced by DRYVR.

5.7.3 Powertrain Control System

The demand of greater fuel efficiency and lower emissions constantly challenges
automotive companies to improve control software in the powertrain systems.
Recently, a suite of benchmarks were published in [45] to introduce realistic,
industrial scale models to the formal verification community. The suite consists of
three Simulink® models with increasing levels of complexity and sophistication.
These models capture the behavior of chemical reactions in internal combustion
engines, and hybrid models are deemed suitable for capturing the discrete transitions

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 135

of control software and the continuous parameters in these models. At a high level,
the models take inputs from a driver (throttle angle) and the environment (sensor
failures), and define the dynamics of the engine. The key controlled quantity is
the air-to-fuel ratio which in turn influences the emissions, the fuel efficiency, and
torque generated.

The most complicated model (Model 1) in the suite captures all the interactions
taking place in a physical process and faithfully models the control software. It
contains several hierarchical components in Simulink® with look-up tables, and
delay differential equations. Model 1 is simplified to a model with periodic inputs to
ordinary differential equations using several heuristics (Model 2), which as per the
authors, exhibit similar behavior of Model 1. Then, Model 2 is further simplified to
a hybrid system with only polynomial ODEs (Model 3). At the time of publication
of [45], these models were beyond the reach of the then available verification
tools, but within a year the simplified models were verified using C2E2 [22], and
subsequently, the more complex models were handled by DryVR in [32].

In more detail, Model 2 and 3 have four variables: intake manifold pressure p,
air-fuel ratio λ, intake manifold pressure estimate pe, and integrator state i, and
four modes: Start_up, Normal, Power, and Sensor_fail. The hybrid model also
receives an input signal θin (throttle angle) as the user input. The required safety
specification of powertrain control systems was given in [45] as a number of Signal
Temporal Logic properties. Here, we only illustrate one primary result for each
model, with the simple unsafe set U : in Power mode, t > 4 ∨ λ /∈ [12.4, 12.6],
in Normal mode, t > 4 ∨ λ /∈ [14.6, 14.8]. We refer readers to [22, 32] for more
comprehensive studies involving other scenarios and requirements.

Figure 5.7 (left) shows the hybrid model of the powertrain control system Model
2. The physical plant dynamics are modeled using continuous variables xp = [p, λ],

Start up
ṫ = 1
ẋc = 0

ẋp = f (xp)

Sensor fail
ṫ = 1
ẋc = 0

ẋp = f (xp)

Normal
ṫ = 1
ẋc = 0

ẋp = f (xp)

Power
ṫ = 1
ẋc = 0

ẋp = f (xp)

[t = h]
{xc = gi(xc), t = 0}

[t = h]
{xc = go(xc), t = 0}

[t = h]
{xc = gc(xc), t = 0}

[t = h]
{xc = go(xc), t = 0}

[timer = Ts]
[Se

nso
r F
ails

]

[in ≥ 70◦]

[in ≤ 50◦]

q

q

Fig. 5.7 Left: hybrid system model of the powertrain control system Model 2. Right: reachtube
for λ vs time of Model 2 produced by DRYVR

136 C. Fan and S. Mitra

Start up
ẋ= fs(x)

Sensor fail
ẋ= fs f (x)

Normal
ẋ= fn(x)

Power
ẋ= fp(x)

[timer = Ts]
[Se
nso

r F
ail
s]

[in ≥ 70◦]

[in ≤ 50◦]

q

q

Fig. 5.8 Left: hybrid system model of the powertrain control system Model 3. Right: reachtube for
λ vs time of Model 3 produced by C2E2; blue and green regions correspond to the Start_up and
Normal modes, respectively

which evolve according to a nonlinear ODE ẋp = f (xp). The controller variables
xc = [pe, i] are, instead, updated periodically every h time units by the reset
functions gi(xc), go(xc), gc(xc) in different modes. We treat the entire system as
a black-box simulator with the four given variables and four modes. With the initial
set p ∈ [0.6115, 0.6315], λ ∈ [14.6, 14.8], pe ∈ [0.5555, 0.5755], i ∈ [0, 0.01],
DRYVR is able to prove that the system satisfies the safety requirements as stated
above. Figure 5.7 (right) shows a safe reachtube of the Air/Fuel variable λ computed
using DRYVR going through the sequence of modes Start_up, Normal, Power, and
Normal.

Model 2 got further simplified such that all four variables are continuous and
follow a set of polynomial differential equations in Model 3 (see [45] for detailed
ODEs). This model can be handled by C2E2. Figure 5.8 (left) shows the hybrid
model (Model 3), and Fig. 5.8 (right) gives a safe reachtube of λ from the same
initial set as above.

Both the spacecraft rendezvous and the powertrain control applications can be
verified by either C2E2 or DRYVR within a couple of minutes. These two case
studies show that for hybrid systems with complex nonlinear ODEs, C2E2 can take
the verification challenge, and when it is difficult to get a complete mathematical
model of the system, DRYVR can address the problem by treating the dynamics in
each mode as a black-box.

5.8 Conclusions

Data-driven verification has shown promise in a range of real-world problems.
The key to its success is the powerful amalgamation of the speed of numerical
simulations with the guarantees coming from sensitivity analysis.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 137

Nevertheless, these are the early days of exploration of these ideas; and the
current approaches have several limitations: First, we observe that the tools produce
better results when the system is stable. This is because the proposed methods
can usually find a tighter discrepancy function for stable systems, which in
turn decreases the number of refinements needed to conclude safety or find a
counterexample. For unstable systems, the over-approximation of reachable sets
can get very conservative, and therefore, the algorithm may not terminate in a
reasonable amount of time. Second, our proposed algorithm mainly looks at safety
requirements, although the computed reachtubes can be used to check for much
more general specifications such as linear temporal logic. Usability of the tools
remains to be improved if they are to be adopted commercially. Modeling, inter-
operation with simulators, editing properties, and analyzing verification results—all
of this has to become user-friendly. Finally, as usual, scalability remains a challenge.
The dimension of the state space of the biggest examples the current tools have
handled within a reasonable amount of time (around 2 h) is 12 for nonlinear
systems and 350 for linear systems. High dimensionality will not only increase the
difficulty of computing discrepancy functions but also introduce a huge number of
refinements as the number of initial covers needed to cover the initial set in data-
driven verification will increase exponentially.

Other important directions that call for further investigation are broadly com-
positional techniques for handling networked and distributed CPS. Examples of
such systems are abundant in automotive control systems, power networks, and
embedded medical devices. The naïve approach to consider such systems is to
compute the cross-product of all components. However, in this way, the resulting
hybrid system will become inevitably complicated with huge dimensionality and
a tremendous amount of mode switches. Methods to make the analysis scalable
for networked CPS with large-scale components will become a necessity. As an
early step towards this direction, the notion of input-to-state discrepancy was
introduced in [41, 42], and has been used to conduct a compositional sensitivity
analysis of closed networked dynamical and hybrid systems [40]. The learning-
based discrepancy function approach can be seen as learning an envelope which
safely contains the possibly trajectories of the system. It is worth to explore more
interesting learning models for identifying the dynamics of the black-box systems.
There has been a methodology with a long history for building mathematical
models of dynamic systems using the system’s input and output behaviors called
system identification. However, methods for identifying and verifying systems with
guarantees remain to be developed.

5.9 Further Reading

Many new works on verification of CPS got published every year. The major
conferences in this area include but not limit to International Conference on Hybrid
Systems: Computation and Control (HSCC), International Conference on Computer

138 C. Fan and S. Mitra

Aided Verification (CAV), and Applied Verification for Continuous and Hybrid
Systems (ARCH).

Recently, verification tools such as Flow* [15], NLTOOLBOX [17], iSAT [34],
dReach [54], and CORA [2] have demonstrated the feasibility of verifying nonlinear
dynamic and hybrid models. These tools are still limited in terms of the complexity
of the models and the type of external inputs they can handle, and they require quite
often manual tuning of algorithmic parameters. Some of these tools’ approaches
for reach set estimation operate directly on the vector field involving higher-order
Taylor expansions [15, 54]. However, this method suffers from complexity that
increases exponentially with both the dimension of the system and the order of the
model.

Several approaches have been proposed to obtain proofs about (bounded time)
invariant or safety properties from simulations [20, 37]. A technique that is very
close to discrepancy functions is called sensitivity matrix, a matrix that captures
the sensitivity of the system to its initial condition x0. This is then used to give
an upper bound on the distance between two system trajectories. In [49], the
authors provided sound simulation-driven methods to over-approximate the distance
between trajectories, but these methods are mainly limited to affine and polynomial
systems. For general nonlinear models, this approach may not be sound, as higher-
order error terms are ignored when computing this upper bound.

The idea of computing the reach sets from trajectories is similar to the notions of
incremental Lyapunov function [4]. In this work, we do not require systems to be
incrementally stable. Similar ideas have also been considered for control synthesis
in [68]. The work closest to this paper involves reachability analysis using matrix
measures [59], where the authors use the fact that the matrix measure of the Jacobian
matrix can bound the distance between neighboring trajectories [9, 66]. Unlike
the approach in this paper which automatically computes the bounds on matrix
measures, the technique there relies on user-provided closed-form matrix measure
functions, which are in general difficult to compute.

Although data-driven verification is a young field, the literature in this area is
growing and interesting results are published every year. For an alternative view of
this topic from the modeling, testing, and verification of embedded control system
perspective, we refer the interested readers to [50].

References

1. Abbas, H., & Fainekos, G. E. (2011). Linear hybrid system falsification through local search.
In Proceedings of the 9th International Symposium on Automated Technology for Verification
and Analysis (ATVA 2011), Taipei, Taiwan, October 11–14, 2011 (pp. 503–510). https://doi.
org/10.1007/978-3-642-24372-1_39.

2. Althoff, M., & Grebenyuk, D. (2016). Implementation of interval arithmetic in CORA 2016.
In ARCH Workshop (pp. 91–105). Manchester: EasyChair.

https://doi.org/10.1007/978-3-642-24372-1_39
https://doi.org/10.1007/978-3-642-24372-1_39

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 139

3. Alur, R., Courcoubetis, C., Henzinger, T. A., & Ho, P. H. (1993). Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In R. L. Grossman,
A. Nerode, A. P. Ravn, & H. Rischel (Eds.), Hybrid systems. Lecture notes in computer science
(Vol. 736, pp. 209–229). Berlin: Springer.

4. Angeli, D. (2002). A Lyapunov approach to incremental stability properties. IEEE Transactions
on Automatic Control, 47(3), 410–421.

5. Annapureddy, Y., Liu, C., Fainekos, G., & Sankaranarayanan, S. (2011). S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In TACAS. Berlin: Springer.

6. Aréchiga, N., Kapinski, J., Deshmukh, J. V., Platzer, A., & Krogh, B. (2015). Numerically-
aided deductive safety proof for a powertrain control system. Electronic Notes in Theoretical
Computer Science, 317, 19–25.

7. Asarin, E., Bournez, O., Dang, T., & Maler, O. (2000). Approximate reachability analysis
of piecewise-linear dynamical systems. In B. Krogh & N. Lynch (Eds.), Hybrid systems:
computation and control. Lecture notes in computer science (Vol. 1790, pp. 20–31). Berlin:
Springer.

8. Aylward, E.M., Parrilo, P.A., & Slotine, J. -J. E. (2008). Stability and robustness analysis of
nonlinear systems via contraction metrics and SOS programming. Automatica, 44(8), 2163–
2170.

9. Boichenko, V.A., & Leonov, G.A. (1998). Lyapunov’s direct method in estimates of topological
entropy. Journal of Mathematical Sciences, 91(6), 3370–3379.

10. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in
system and control theory. Studies in applied mathematics (Vol. 15). Philadelphia, PA: SIAM.

11. CAPD. (2002). Computer assisted proofs in dynamics.
12. Chan, N., & Mitra, S. (2017). Verified hybrid LQ control for autonomous spacecraft ren-

dezvous. In 56th IEEE Annual Conference on Decision and Control, CDC 2017, Melbourne,
December 12–15, 2017 (pp. 1427–1432). Piscataway: IEEE.

13. Chan, N., & Mitra, S. (2017) Verified hybrid LQ control for autonomous spacecraft rendezvous.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 1427–1432).
Piscataway: IEEE.

14. Chan, N., & Mitra, S. (2017). Verifying safety of an autonomous spacecraft rendezvous
mission. In ARCH17. 4th International Workshop on Applied Verification of Continuous and
Hybrid Systems, Collocated with Cyber-Physical Systems Week (CPSWeek), Pittsburgh, PA,
April 17, 2017 (pp. 20–32).

15. Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2013). Flow*: an analyzer for non-linear
hybrid systems. In CAV (pp. 258–263). Berlin: Springer.

16. Cook, B. (2018). Formal reasoning about the security of amazon web services. In Computer
Aided Verification—30th International Conference, CAV 2018, held as part of the Federated
Logic Conference, FloC 2018, Oxford, July 14–17, 2018, Proceedings, Part I (pp. 38–47).
New York: Springer International Publishing.

17. Dang, T., Le Guernic, C., & Maler, O. (2009). Computing reachable states for nonlinear
biological models. In CMSB. Lecture notes in computer science (Vol. 5688, pp. 126–141).
Berlin: Springer.

18. Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In CAV (pp. 167–170). Berlin: Springer.

19. Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In Computer Aided Verification. CAV 2010. Lecture Notes in Computer Science (Vol. 6174).
Berlin: Springer.

20. Donzé, A., & Maler, O. (2007). Systematic simulation using sensitivity analysis. In HSCC
(pp. 174–189). Berlin: Springer.

21. Duggirala, P. S. (2015). Dynamic Analysis of Cyber-Physical Systems. PhD thesis. Champaign:
University of Illinois at Urbana-Champaign.

22. Duggirala, P. S., Fan, C., Mitra, S., & Viswanathan, M. (2015). Meeting a powertrain
verification challenge. In Computer Aided Verification (pp. 536–543). Berlin: Springer.

140 C. Fan and S. Mitra

23. Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Verification of annotated models from
executions. In EMSOFT (pp. 26:1–26:10). Piscataway: IEEE Press.

24. Duggirala, P. S., Mitra, S., Viswanathan, M., & Potok, M. (2015). C2E2: A verification tool for
stateflow models. In TACAS (pp. 68–82). Berlin: Springer.

25. Duggirala, P. S., Wang, L., Mitra, S., Viswanathan, M., & Muñoz, C. (2014). Temporal
precedence checking for switched models and its application to a parallel landing protocol.
In Formal methods (pp. 215–229). Cham: Springer.

26. El-Guindy, A., Han, D., & Althoff, M. (2016) Formal analysis of drum-boiler units to maximize
the load-following capabilities of power plants. IEEE Transactions on Power Systems (99),
1–12.

27. Fainekos, G. E. (2015). Automotive control design bug-finding with the s-taliro tool. In
American Control Conference, ACC 2015, Chicago, IL, July 1–3, 2015 (p. 4096). Piscataway:
IEEE.

28. Fainekos, G. E., Sankaranarayanan, S., Ueda, K., & Yazarel, H. (2012) Verification of
automotive control applications using S-TaLiRo. In American Control Conference (ACC), 2012
(pp. 3567–3572). Citeseer. Piscataway: IEEE.

29. Fan, C., Kapinski, J., Jin, X., & Mitra, S. (2016). Locally optimal reach set over-approximation
for nonlinear systems. In EMSOFT (pp. 6:1–6:10). New York: ACM.

30. Fan, C., & Mitra, S. (2015). Bounded verification with on-the-fly discrepancy computation. In
ATVA (pp. 446–463). Berlin: Springer.

31. Fan, C., Qi, B., & Mitra, S. (2018). Data-driven formal reasoning and their applications in
safety analysis of vehicle autonomy features. IEEE Design & Test, 35(3), 31–38.

32. Fan, C., Qi, B., Mitra, S., Viswanathan, M. (2017). Dryvr: data-driven verification and
compositional reasoning for automotive systems. In Computer Aided Verification, CAV 2017
(pp. 441–461). Heidelberg: Springer International Publishing

33. Fan, C., Qi, B., Mitra, S., Viswanathan, M., & Duggirala, P. S. (2016). Automatic reachability
analysis for nonlinear hybrid models with C2E2. In Computer Aided Verification–28th
International Conference, CAV 2016, Toronto, ON, July 17–23, 2016, Proceedings, Part I
(pp. 531–538). Cham: Springer.

34. Fränzle, M., Herde, C., Teige, T., Ratschan, S., & Schubert, T. (2007). Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. JSAT, 1(3–4),
209–236.

35. Frehse, G. (2005). Phaver: algorithmic verification of hybrid systems past hytech. In M. Morari
& L.Thiele (Eds.), HSCC (Vol. 3414, pp. 258–273) Lecture notes in computer science . Berlin:
Springer.

36. Frehse, G., Guernic, C. L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A.,
Dang, T, & Maler, O. (2011). SpaceEx: scalable verification of hybrid systems. In S. Qadeer &
G. Gopalakrishnan (Eds.), CAV. Lecture Notes in Computer Science. Berlin: Springer.

37. Girard, A., Pola, G., & Tabuada, P. (2010). Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Transactions on Automatic Control, 55(1), 116–
126.

38. Henzinger, T. A. (1996). The theory of hybrid automata. In 11th Annual IEEE Symposium on
Logic in Computer Science (pp. 278–292). Washington: IEEE Computer Society.

39. Henzinger, T. A., Kopke, P. W., Puri, A., & Varaiya, P. (1998). What’s decidable about hybrid
automata? Journal of Computer and System Sciences, 57, 94–124.

40. Huang, Z., Fan, C., Mereacre, A., Mitra, S., & Kwiatkowska, M. Z. (2014). Invariant
verification of nonlinear hybrid automata networks of cardiac cells. In CAV (pp. 373–390).
Berlin: Springer.

41. Huang, Z., Fan, C., & Mitra, S. (2017). Bounded invariant verification for time-delayed
nonlinear networked dynamical systems. Nonlinear Analysis: Hybrid Systems, 23, 211–229.

42. Huang, Z., & Mitra, S. (2014). Proofs from simulations and modular annotations. In HSCC,
Berlin, Germany. New York: ACM press.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 141

43. Jewison, C., & Erwin, R. S. (2016). A spacecraft benchmark problem for hybrid control and
estimation. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp. 3300–3305).
Piscataway: IEEE.

44. Jiang, Z., Pajic, M., Moarref, S., Alur, R., & Mangharam, R. (2012). Modeling and verification
of a dual chamber implantable pacemaker. In TACAS (pp. 188–203). Berlin: Springer.

45. Jin, X., Deshmukh, J. V., Kapinski, J., Ueda, K., & Butts, K. (2014). Powertrain control
verification benchmark. In Proceedings of the 17th International Conference on Hybrid
Systems: Computation and Control, HSCC ’14 (pp. 253–262). New York, NY: ACM.

46. Jin, X., Deshmukh, J. V., Kapinski, J., Ueda, K., & Butts, K. R. (2014). Powertrain control
verification benchmark. In 17th International Conference on Hybrid Systems: Computation
and Control (Part of CPS Week), HSCC’14, Berlin, April 15–17, 2014 (pp. 253–262). New
York: ACM.

47. Jin, X., Donzé, A., Deshmukh, J. V., & Seshia, S. A. (2015). Mining requirements from closed-
loop control models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(11), 1704–1717.

48. Johnson, T. T., Green, J., Mitra, S., Dudley, R., & Erwin, R. S. (2012). Satellite rendezvous
and conjunction avoidance: case studies in verification of nonlinear hybrid systems. In FM
2012: Formal Methods—18th International Symposium, Paris, France, August 27–31, 2012.
Proceedings (pp. 252–266). Berlin: Springer.

49. Julius, A. A., & Pappas, G. J. (2009). Trajectory based verification using local finite-time
invariance. In HSCC (pp. 223–236). Berlin: Springer.

50. Kapinski, J., Deshmukh, J. V., Jin, X., Ito, H., & Butts, K. (2016). Simulation-based approaches
for verification of embedded control systems: an overview of traditional and advanced
modeling, testing, and verification techniques. IEEE Control Systems, 36(6), 45–64.

51. Kaynar, D. K., Lynch, N., Segala, R., & Vaandrager, F. (2005). The theory of timed I/O
automata. Synthesis Lectures on Computer Science. Morgan Claypool, November. Also
available as Technical Report MIT-LCS-TR-917.

52. Kaynar, D. K., Lynch, N., Segala, R., & Vaandrager, F. (2010). The theory of timed I/O
automata. Synthesis Lectures on Distributed Computing Theory, 1(1), 1–137.

53. Kearns, M. J., & Vazirani, U. V. (1994) An introduction to computational learning theory.
Cambridge: MIT press.

54. Kong, S., Gao, S., Chen, W., & Clarke, E. (2015) dReach: δ-reachability analysis for hybrid
systems. In TACAS (pp. 200–205). Berlin: Springer.

55. Koopman, P., & Wagner, M. (2016) Challenges in autonomous vehicle testing and validation.
SAE International Journal of Transportation Safety, 4(2016-01-0128), 15–24.

56. Krstic, M., Kokotovic, P. V., & Kanellakopoulos, I. (1995). Nonlinear and adaptive control
design (1st ed.). New York, NY: Wiley.

57. Liberzon, D. (2012). Switching in systems and control. Berlin: Springer Science & Business
Media.

58. Lohmiller, W., & Slotine, J. -J. E. (1998) On contraction analysis for non-linear systems.
Automatica, 34(6), 683–696.

59. Maidens, J., & Arcak, M. (2015). Reachability analysis of nonlinear systems using matrix
measures. IEEE Transactions on Automatic Control, 60(1), 265–270.

60. Malladi, B. P., Sanfelice, R. G., Butcher, E., & Wang, J. (2016). Robust hybrid supervisory
control for rendezvous and docking of a spacecraft. In 2016 IEEE 55th Conference on Decision
and Control (CDC) (pp. 3325–3330). Piscataway: IEEE.

61. Mitra, S. (September 2007). A Verification Framework for Hybrid Systems. PhD thesis.
Cambridge, MA: Massachusetts Institute of Technology, 02139.

62. Nedialkov, N. (2006). VNODE-LP: validated solutions for initial value problem for ODEs.
Technical report. Hamilton: McMaster University.

63. Perry, R. B., Madden, M. M., Torres-Pomales, W., & Butler, R. W. (2013). The simpli-
fied aircraft-based paired approach with the ALAS alerting algorithm. Technical Report
NASA/TM-2013-217804. Hampton: NASA, Langley Research Center.

142 C. Fan and S. Mitra

64. Road vehicles—Functional safety. (November 2011). Standard, International Organization for
Standardization (ISO), Geneva, Switzerland.

65. Sankaranarayanan, S., Kumar, S. A., Cameron, F., Bequette, B. W., Fainekos, G., & Maahs,
D. M. (March 2017) Model-based falsification of an artificial pancreas control system. SIGBED
Review, 14(2), 24–33.

66. Sontag, E. D. (2010). Contractive systems with inputs. In Perspectives in mathematical system
theory, control, and signal processing (pp. 217–228). Berlin: Springer.

67. Vladimerou, V., Prabhakar, P., Viswanathan, M., & Dullerud, G. E. (2008). Stormed hybrid
systems. In ICALP (2). Lecture Notes in Computer Science (Vol. 5126, pp. 136–147). Berlin:
Springer.

68. Zamani, M., Pola, G., Mazo, M., & Tabuada, P. (2012). Symbolic models for nonlinear control
systems without stability assumptions. IEEE Transactions on Automatic Control, 57(7), 1804–
1809.

	5 Data-Driven Safety Verification of Complex Cyber-PhysicalSystems
	5.1 Introduction
	5.2 Mathematical Preliminaries
	5.3 Overview of Data-Driven Verification
	5.3.1 Simulations and Reachable States
	5.3.2 Discrepancy Functions
	5.3.3 Verification Algorithm

	5.4 Computing Discrepancy
	5.4.1 Linear Models
	5.4.2 Nonlinear Models: Optimization-Based Approaches
	5.4.3 Nonlinear Models: Local Discrepancy
	5.4.4 Algorithm to Compute Local Optimal Reach Set

	5.5 Hybrid System Verification
	5.5.1 Hybrid Model
	5.5.2 Hybrid System Verification Algorithm

	5.6 Verification of Models with Black-Box Components
	5.6.1 A Hybrid Formalism Accommodating Black-Boxes
	5.6.2 Learning Discrepancy from Simulations
	5.6.3 Discrepancy Functions as Linear Separators

	5.7 Verification Case Studies
	5.7.1 Automatic Braking and Forward Collision Avoidance System
	5.7.2 Autonomous Spacecraft Rendezvous
	5.7.3 Powertrain Control System

	5.8 Conclusions
	5.9 Further Reading
	References

