
Chapter 3
An Hourglass-Shaped Architecture
for Model-Based Development
of Networked Cyber-Physical Systems

Muhammad Umer Tariq and Marilyn Wolf

3.1 Introduction

Many technological achievements have been enabled by the field of feedback
control systems, which deals with the process of controlling a physical system
through a feedback controller. If the feedback controller is implemented as a real-
time computer system, the resulting configuration of the feedback control system
is referred to as embedded control system. Some prime examples of embedded
control systems are automotive systems, avionics systems, and smart grid. The
typical development process of an embedded control system can be partitioned
into two distinct stages: controller design and controller implementation. During
the controller design stage, a control systems engineer models the physical plant,
derives the feedback control law, and validates the controller design through
mathematical analysis and simulation. During the controller implementation stage,
a computer systems engineer implements the feedback controller as a real-time
computer system.

The field of embedded control systems brings together the fields of control
theory and real-time computer systems. However, as noted in [15], the fields of
control theory and real-time computer systems typically employ two completely
different types of models: analytical models and computational models. As a
result, two vastly different design processes are currently popular for the two
stages of embedded control system development process: feedback controller
design and feedback controller implementation as real-time computer system. Due
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to the inherent differences between the abovementioned two stages, currently
popular development methodologies for embedded control systems support very
few correct-by-construction properties and depend heavily on testing the final
implementation for creating confidence in the correct operation of an embedded
control system under various runtime operating conditions. Therefore, current
development techniques for embedded control systems are not capable of efficiently
handling the ever-increasing complexity of these systems.

These limitations of the traditional embedded control system development
techniques have created interest in taking a fresh look at the abstractions used
in the traditional embedded control systems development process, resulting in a
new field, cyber-physical systems (CPS) [39, 40]. The aim of CPS research is
to develop an integrated theory as well as an integrated development toolset for
controller design and controller implementation phases of the embedded control
system development process. The hope is that this CPS research will enable the
cost-effective development and maintenance of more complex versions of embedded
control systems.

Recent CPS research efforts can be divided into two major categories: platform-
imperfection-aware feedback controller design and CPS-friendly computing plat-
form design. Under the category of platform-imperfection-aware feedback con-
troller design, theoretical developments from the fields of hybrid systems [3],
switched systems [21], time-delay systems [7], networked control systems [41],
multi-agent networked systems [29], and game theory [16] are leveraged to develop
a feedback controller design that takes into account the imperfections of the
runtime computing platform (such as communication delays or failures caused
by communication network congestion or cyber security attacks) at the design
time [37]. The resulting “platform-imperfection-aware” feedback controller is either
robust against the imperfections of runtime computing platform or possesses the
capability to switch between different control modes to overcome the imperfections
of runtime computing platform. Under the category of CPS-friendly computing
platform design, CPS research has focused on specialized runtime computing
platforms that have more predictable timing performance or provide correct-by-
construction composition of software components. Some examples of this approach
are provided in [17, 19, 22].

Model-based development (or model-driven development) of cyber-physical
systems has the potential to bind the abovementioned CPS research efforts into
an integrated, cross-layer CPS development methodology. In model-based develop-
ment paradigm, high-level or platform-independent models (PIM) are transformed
into lower-level or platform-specific models (PSM) through the process of model
transformation. Both high-level and lower-level models are described using their
own domain-specific modeling languages (DSMLs) [32]. In this chapter, we propose
an approach to model-based development of networked cyber-physical systems
(CPS) that is centered on the notion of a standardized design specification language.
The proposed design specification language can be used to build a CPS design
specification model that can serve as a CPS-aware interface between control systems
engineer and embedded systems engineer.
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Fig. 3.1 Illustration of hourglass-shaped architecture of Internet; adapted from [2]

The proposed approach is inspired by the hourglass-shaped architecture of
Internet, illustrated in Fig. 3.1. The narrow waist of hourglass-shaped architecture
suggests that there is less diversity of protocols at this layer of Internet [2]. Any
application that can operate based on the services of IP layer can be deployed on the
Internet, and any underlying technology that can transport bytes from one point to
another according to IP services can be used in the Internet. Similarly, according
to the proposed approach to the model-based development of networked CPS
(Fig. 3.2), a wide range of DSMLs (and associated analysis tools) can be utilized
to develop a platform-imperfection-aware feedback controller design, which is then
specified using a standardized CPS design specification language. The proposed
feedback controller design can then be analyzed for mapping on to wide range of
runtime CPS computing platforms by utilizing their corresponding DSMLs (and
associated analysis tools). This approach can support the goals of an integrated CPS
theory and development methodology while still taking into account the differences
between the domain-specific skillset that control systems engineers and embedded
system engineers typically possess.

The rest of the chapter is organized as follows. In Sect. 3.2, we present some
related work. In Sect. 3.3, we present the details of the proposed hourglass-shaped
architecture for model-based development of networked cyber-physical systems.
In Sect. 3.4, we document a number of requirements that any standardized CPS
design specification language must satisfy. In Sect. 3.5, we present the overview
of a proposed CPS design specification language. In Sects. 3.6–3.8, we discuss
the concrete syntax, abstract syntax, and semantics of the proposed CPS design
specification language, respectively. In Sect. 3.9, we present the conclusion.
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Fig. 3.2 Illustration of
hourglass-shaped model of
CPS design and analysis
process

3.2 Related Work

Figure 3.3 presents a summary of specification languages and analysis tools
used in the different stages of a typical embedded control system development
process. Simulink [27] (combined with auxiliary tools such as Stateflow [28] and
Simscape [26]) has become a de facto standard in the field of embedded control
systems for specification and refinement (through simulation) of the feedback
controller design, developed by a control engineer through the application of
various analytical controller design strategies available in the literature for the field
of control theory [5]. Once a feedback controller design has shown acceptable
performance in the Simulink-based simulation environment, a computer system
engineer takes on the task of implementing this feedback controller design as
a real-time computer system. Various tools have been developed over the years
to help a computer systems engineer in this process of converting a feedback
controller design from a Simulink-based specification to a real-time computer
system implementation. Specialized modeling languages, such as UML (combined
with MARTE profile) [30], SysML [10], and AADL [8], help in the process of
designing the system and software architecture of the required real-time computer
system. Specialized programming languages, such as Lustre [12], Esterel [4],
Signal [20], and Giotto [14], help in the development of real-time computer system
whose timing performance can be formally guaranteed.
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Fig. 3.3 Embedded control systems: development steps, specification languages, and analysis
tools; adapted from [36]

Model-based development (MBD) paradigm has also been successfully
employed in the domain of embedded control system in order to improve the
productivity of a computer systems engineer during the process of conversion of a
feedback controller design into a real-time computer system. In MBD paradigm,
high-level or platform-independent models (PIM) are transformed into lower-level
or platform-specific models (PSM) through the process of model transformation.
Both high-level and lower-level models are described using their own domain-
specific modeling languages (DSMLs) [32]. A DSML is first defined through a
meta-modeling step. A meta-model of a DSML defines the basic constructs (along
with their relationships and constraints) that can be used in a DSML. Model
transformation step of MBD paradigm uses the meta-models of DSMLs to define
transformation rules from higher-level (platform-independent) models to lower-
level (platform-specific) models. Model-driven architecture (MDA) [9], model
integrated computing (MIC) [18], and eclipse modeling framework (EMF) [11, 33]
initiatives represent three popular MBD efforts.

In the domain of embedded control systems, various model transformation
(code generation) tools have been developed to automatically generate executable
code from Simulink models for various real-time computing platforms. Embedded
Coder [25], from Mathworks, Inc., is a commercially available example of such a
code generation tool. Another example of a Simulink-based MBD toolset for a more
specialized real-time computing platform has been reported in [6].

Building on the MBD paradigm, Sztipanovits et al. [35] describe a methodology
for cyber-physical system integration and illustrate their methods on the design of a
network of quadrotor UAVs. They identify three design layers: physical, platform,
and computation/communication. Their methodology emphasizes component-based
design and its associated requirement, compositionality. They identify passivity
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as a key characteristic that enables composition of control systems. They identify
network characteristics required to compositionally analyze the UAV network.

In a later paper, Sztipanovits et al. [34] describe a CPS methodology and tool
suite used for vehicle design. Their tool suite embodies two design platforms: the
model integration platform describes the semantic relationships between the models
used in design; the tool integration platform describes translations between tools
in the flow. Their framework allows them to construct design spaces and analyze
the characteristics of those design spaces. Their modeling language CyPhyML
includes sublanguages to describe components, system architectures, architectural
parameters, analysis models, and testbenches.

However, the CPS model-based development community has not been as suc-
cessful as some other communities in identifying a design flow which promotes the
reuse of tools and can support a range of application domains and implementation
targets. For instance, the classic text on compilers [1] identifies several steps in the
classical compilation process which are common to a broad class of programming
languages: lexical analysis, syntactic analysis, semantic analysis, intermediate code
generation, code optimization, and code generation. In this classical compilation
process, the intermediate code (developed in an intermediate language such as three-
address code) plays a pivotal role by providing an independent narrow interface
between a set of source code languages and a set of target machines. Similarly,
as illustrated in Fig. 3.1 and detailed in [2], the IP layer can be considered the
narrow waist of an hourglass-shaped architecture of Internet. Any application that
can operate based on the services of IP layer can be deployed on the Internet, and any
underlying technology that can transport bytes from one point to another according
to IP services can be used in the Internet.

While model-based development of networked cyber-physical systems is a chal-
lenging problem, we believe that abovementioned observations from the domains
of software compilation and Internet architecture can be leveraged to improve the
model-based development process for networked cyber-physical systems. There-
fore, in this chapter, we propose an approach to model-based development of
networked cyber-physical systems (CPS) that is centered on the notion of a
standardized CPS design specification language, capable of playing an analogous
role to the intermediate language and the IP layer from the domains of software
compilation and Internet architecture.

3.3 Hourglass-Shaped Architecture for Model-Based CPS
Development

Two major categories of CPS research are platform-imperfection-aware feedback
controller design and CPS-friendly computing platform design. Model-based devel-
opment of cyber-physical systems has the potential to bind the abovementioned
CPS research efforts into an integrated, cross-layer CPS development methodology.
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This section presents an approach to model-based development of networked cyber-
physical systems (CPS) that is centered on the notion of a standardized design
specification language. The proposed design specification language can be used to
build a CPS design specification model that can serve as a CPS-aware interface
between control systems engineer and embedded systems engineer. The proposed
approach is inspired by the hourglass-shaped architecture of Internet, illustrated in
Fig. 3.1. The narrow waist of hourglass-shaped architecture suggests that there is
less diversity of protocols at this middle layer of Internet [2], while many different
protocols can be employed at top and bottom layers of Internet.

According to the proposed hourglass-shaped architecture for model-based net-
worked CPS development, illustrated in Fig. 3.2, a wide range of DSMLs (and
associated analysis tools) can be utilized to develop a platform-imperfection-aware
feedback controller design, which is then specified using a standardized DSML
for CPS design specification. Furthermore, according to the proposed hourglass-
shaped architecture, the platform-imperfection-aware feedback controller design
(specified using the standardized DSML) can then be analyzed for mapping on to
various runtime CPS computing platforms by utilizing corresponding DSMLs (and
associated analysis tools).

The proposed hourglass-shaped architecture can enable effective coordination
between control systems engineer and embedded systems engineer during model-
based development of networked cyber-physical system, while still allowing them to
concentrate and specialize in the CPS-aware, model-based tools developed in their
respective domains. This approach can support the goals of an integrated CPS theory
and development methodology while taking into account the differences between
the domain-specific skillset that control systems engineer and embedded system
engineer must acquire during their respective academic training.

The proposed hourglass-shaped architecture for model-based development of
networked CPS consists of three explicit phases: (1) platform-imperfection-aware
feedback controller design, (2) CPS design specification, and (3) constraints-aware
platform mapping.

3.3.1 Platform-Imperfection-Aware Feedback Controller
Design

In this phase, control systems engineer designs a feedback controller that takes into
account the imperfections of the runtime computing platform (such as communica-
tion delays or failures caused by communication network congestion) at the design
time. The resulting “platform-imperfection-aware" feedback controller is either
robust against the imperfections of runtime computing platform or possesses the
capability to switch between different control modes to overcome the imperfections
of runtime computing platform. In this phase, control systems engineer utilizes
various results from CPS research [37] that have been achieved over the recent
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years by leveraging the theoretical advances from the fields of hybrid systems [3],
switched systems [21], time-delay systems [7], networked control systems [41],
multi-agent networked systems [29], and game theory [16].

During this phase, a control systems engineer can utilize any model-based tool
from the following three categories: (a) various DSMLs (and associated analysis
tools) that were used in the traditional control system design process [26–28], (b)
recently proposed DSMLs (and associated analysis tools) that are employed by
the numerous cyber-physical co-design CPS research efforts [13, 31], and (c) any
DSMLs (and associated analysis tools) that are proposed by any future CPS research
into integrated cyber-physical design.

3.3.2 CPS Design Specification

In this phase, the results of the platform-imperfection-aware feedback controller
design process are captured using a standardized DSML for CPS design specifi-
cation. This CPS design specification must capture the sensed and actuated-upon
physical plant parameters as well as the networked controller aspects of a CPS
design. However, the networked controller aspects of CPS design should not be
described by specifying the runtime computing infrastructure, instead networked
controller aspects of CPS design should be described at an abstract level by
specifying various control nodes and sensor ports, actuator ports, input message
ports, and output message ports associated with these control nodes.

This CPS design specification must also capture the feedback control adaptation
strategy to handle the imperfect performance of runtime computing and communi-
cation platform. This element of CPS design can also be captured at an abstract level
by specifying various controller modes of a control node and a mode switching logic
based on QoS violations associated with sensor ports, actuator ports, input message
ports, and output message ports of the control node. A CPS design specification can
also declare some QoS constraints of sensor ports, actuator ports, input message
ports, and output message ports to be hard. This will indicate that these QoS
properties must be satisfied by runtime computing platform, because there is no
safe backup mode of operation in case of violation of these QoS properties.

3.3.3 Constraints-Aware Platform Mapping

In this phase, the mapping of the CPS design specification (described using
standardized DSML) onto various runtime computing platform is analyzed to either
choose the most appropriate mapping or figure out the appropriate parameter
settings for a runtime computing platform so that the platform can meet the QoS
constraints of CPS design (and minimize the time that the system has to spend in a
backup mode of operation). During this process, various model transformations can
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also be applied to translate the CPS design specification model into appropriate
models that can be used as input for corresponding analysis tools (simulation
or formal verification) associated with each of the candidate runtime computing
platform technologies. Some specialized examples of these runtime computing
platforms are Lustre [12], Esterel [4], Signal [20], and Giotto [14] with their own
formal computing semantics. More traditional RTOS-based computing platforms
can be captured and analyzed through UML (MARTE Profile) or AADL-based
models and analysis tools [8, 30].

3.4 Requirements for Standardized CPS Design Specification
Language

Following are some of the major requirements that a CPS design specification
language (CPS-DSL) must meet:

3.4.1 Physical Plant Parameter Specification

A CPS-DSL must clearly identify the physical plant parameters that are sensed or
actuated upon by the feedback controller.

3.4.2 Networked Controller Specification

An appropriate CPS-DSL must also describe the various elements of a networked
controller design. These elements include topology of sensors, actuators, and control
nodes, local control law for each control node, and information exchanged between
different control nodes.

3.4.3 Specification of Controller Adaptation Strategies

For the emerging wide-area CPS application domains, such as smart grid, the
performance of communication subsystem cannot be guaranteed. Therefore, CPS-
DSL must also define the timing constraints on the information exchange among
different control nodes and the control adaptation strategies in case of violation of
these timing constraints.
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3.4.4 Interface Between Control Systems Engineer and
Real-Time Computer Systems Engineer

A CPS design specification captures the output of platform-imperfection-aware
feedback controller design process, and it also serves as input to the process of
developing a functionally equivalent embedded implementation of the feedback
controller design. Therefore, the CPS-DSL should be designed in such a way that it
can serve as an effective communication interface between control systems engineer
and real-time computer systems engineer.

3.4.5 Formal Semantics

A CPS design specification language must support formal semantics. The existence
of formal semantics of a CPS design specification language (CPS-DSL) opens up
the possibility to prove formal equivalence properties between a CPS-DSL-based
CPS design specification and the corresponding CPS deployment on a computing
platform.

3.5 A Proposed CPS Design Specification Language:
Overview

This section presents the summary of a proposed CPS-DSL that can meet the
requirements identified in Sect. 3.4. Various aspects (such as concrete syntax,
abstract syntax, and semantics) of the definition of proposed CPS-DSL are described
in detail in Sects. 3.6–3.8.

The individual language elements of the proposed CPS-DSL can be divided
into three categories: physical system elements, cyber system elements, and cyber-
physical interface elements. Table 3.1 provides a list of the language elements in
each of the abovementioned three categories.

Table 3.1 Language elements of the proposed CPS-DSL

Category Language elements

Physical system elements CompoundPhysicalPlant, PhysicalSystemParameter

Cyber-physical interface elements Sensor, Actuator

Cyber system elements ComputingNode, CommunicationNetwork, ControlApp,
SensorPort, ActuatorPort, InputMsgPort, OutputMsgPort,
Mode, ModeSwitchLogic, ControllerFunction,
ControllerFunctionMemory, PeriodicControllerInput,
PeriodicControllerOutput
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3.5.1 Physical System Elements

CompoundPhysicalPlant and PhysicalSystemParameter elements belong to the
category of physical system elements. CompoundPhysicalPlant element is used to
represent the physical plant of a CPS. A CompoundPhysicalPlant element contains
a set of PhysicalSystemParameter elements. PhysicalSystemParameter elements of
the proposed CPS-DSL are used to identify the parameters of a physical plant that
are to be sensed and actuated upon by the cyber subsystem of a CPS.

3.5.2 Cyber-Physical Interface Elements

Sensor and Actuator elements make up the category of cyber-physical interface
elements. Cyber-physical interface of a CPS design is captured by a set of Sensor
and Actuator elements. Each Sensor and Actuator element is associated with a
corresponding PhysicalSystemParameter element.

3.5.3 Cyber System Elements

ComputingNode, CommunicationNetwork, ControlApp, SensorPort, ActuatorPort,
InputMsgPort, OutputMsgPort, Mode, ModeSwitchLogic, ControllerFunction,
ControllerFunctionMemory, PeriodicControllerInput, and PeriodicController-
Output make up the category of cyber system elements. Cyber aspects of a
CPS design include the topology of computing nodes, the controller application
executing on each computing node, and the message exchange among computing
nodes. The topology of controller computing nodes is captured by connecting
a set of ComputingNode elements to a CommunicationNetwork element.
Each ComputingNode element includes a ControlApp element and a set of
SensorPort, ActuatorPort, InputMsgPort, and OutputMsgPort elements. SensorPort,
ActuatorPort, and ControlApp elements combine to capture the local control
application executing on a computing node.

InputMsgPort and OutputMsgPort elements of proposed CPS-DSL are intended
to capture the message exchange among computing nodes of a CPS. However,
in a generic cyber-physical system, perfect behavior of communication subsystem
cannot be guaranteed. As a result, a CPS design must specify the timing constraints
on information exchange among computing nodes and different modes of operation
for local feedback control law that are used in case of violation of these timing
constraints. In the proposed CPS-DSL, InputMsgPort and OutputMsgPort elements
capture the timing constraints on the information exchange among computing node.

Each ControlApp element includes a ModeSwitchLogic element and a set of
Mode elements to capture the different modes of operation of feedback control
law for handling QoS fault scenarios. Each Mode element specifies the control
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action taken by the feedback controller in that mode of operation through a
set of ControllerFunction, PeriodicControllerInput, and PeriodicControllerOutput
elements.

3.6 Proposed CPS Design Specification Language: Concrete
Syntax

Since Simulink [27] (combined with auxiliary Stateflow [28] and Simscape [26]
blocks) has become a de facto standard in the domain of embedded control systems,
concrete syntax of the proposed CPS-DSL has been implemented as an extension to
standard blocks available in Simulink. In particular, a new Simulink library [36] has
been developed that provides a Simulink block for each element of the proposed
CPS-DSL, described in Sect. 3.5. Moreover, Simulink’s mask interface capability
has been used to provide each new Simulink block with a custom look, and a
dialog box for entering element-specific parameters, such as the timing constraints
associated with an InputMsgPort element.

Figure 3.4 shows a Simulink model that specifies a CPS design using the
Simulink-based concrete syntax of the proposed CPS-DSL. Figure 3.5 shows the
internal details of a ComputingNode block, which contains a ControlApp block
and a set of SensorPort, ActuatorPort, InputMsgPort, and OutputMsgPort blocks.
Figure 3.6 shows the internal details of ControlApp block, which consists of a set of
Mode blocks and a ModeSwitchLogic block. Figure 3.7 shows the internal details of
Mode block, which contains a set of ControllerFunction, PeriodicControllerInput,
and PeriodicControllerOutput blocks. Figure 3.8 shows the internal details of
ControllerFuncton block, which contains a description of feedback control law
using standard Simulink computation blocks.

Fig. 3.4 A CPS design, specified as Simulink model with the proposed CPS-DSL
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Fig. 3.9 Ecore-based meta-model of proposed CPS-DSL

3.7 Proposed CPS Design Specification Language: Abstract
Syntax

Abstract syntax of the proposed CPS-DSL has been implemented as an Ecore-based
meta-model [11], combined with a set of object constraint language (OCL)-based
constraints. Ecore meta-modeling language was originally developed as a part of
Eclipse Modeling Framework (EMF) project [33], while OCL was developed as a
part of the UML standardization effort [38]. Figure 3.9 shows a simplified version of
the Ecore-based meta-model for the proposed CPS-DSL. Table 3.2 provides some
examples of OCL-based constraints that are part of the abstract syntax definition of
the proposed CPS-DSL.

3.8 Proposed CPS Design Specification Language: Semantics

According to the semantics of the proposed CPS-DSL, at a given time, only one
Mode element inside a ControlApp is active. ModeSwitchLogic element is evaluated
at specific time instants, defined by the following two properties of the currently-
active mode: mode period and switch frequency from active mode to mode j (the



3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 55

Table 3.2 Abstract syntax definition of proposed CPS-DSL: examples of OCL-based constraints

context ControlApp

inv numOfSimultanoeousActiveModes:

modes− >select( active = true )− >size() = 1

context ControllerFunction

inv equalityOfSamplingPeriods:

inputs− >any( true ).samplingPeriod = outputs− >any( true ).samplingPeriod

context ControllerFunction

inv limitOnComputationDelay:

self.computationDelay < outputs− >any( true ).samplingPeriod

context CPSDesignSpecificationModel

inv noUnusedSensor:

cyPhyInterface.sensors− >asSet() = cyberSystem.compNodes.sPorts.sensor− >asSet()

context CPSDesignSpecificationModel

inv noUnusedActuator:

cyPhyInterface.actuators− >asSet() = cyberSystem.compNodes.aPorts.actuator− >asSet()

number of equally-distant time instants in a single mode period at which the mode
switch condition from active mode to mode j is evaluated).

As long as a certain Mode element is active, its constituent PeriodicControl-
lerInput and PeriodicControllerOutput elements periodically sample the values at
their inputs and store them at the output until the next sampling time instant. A
ControllerFunction element contains the specification of feedback control law com-
putation and is always sandwiched between a pair of PeriodicControllerInput and
PeriodicControllerOutput elements with same sampling period T and synchronized
sampling instants. The sampling period T , associated with a ControllerFunction,
is defined in terms of the following two properties: mode period and controller
function frequency (the number of equally-distant time instants in a single mode
period at which the controller function is evaluated). Moreover, a ControllerFunc-
tion element takes time �t to transfer any change in its input to its output where
0 < �t < T . A ControllerFunction element may also contain one or more
ControllerFunctionMemory elements.

By design, the proposed CPS-DSL leaves its exact semantics dependent on the
language used to define the control law computation inside a ControllerFunction
element. This capability makes the proposed CPS-DSL more flexible. However, for
the rest of this chapter, it will be assumed that Simulink computation blocks are
used to define the control law computation inside a ControllerFunction element.

As outlined in Sect. 3.4.5, semantics of the proposed CPS-DSL should ideally
be formally defined. In their seminal work on the application of linear temporal
logic (LTL) for formal verification of reactive computer systems, Manna and
Pnueli [23, 24] presented a generic model of a reactive computer system in the form
of a transition system. (This transition system will be referred to as Manna–Pnueli
Transition System in the rest of this chapter.) They showed that various existing
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programming languages and specification formalisms for reactive computer systems
can be mapped into this generic model. They also observed that their generic
model of reactive computer systems is designed to be capable of capturing any
programming language or specification formalism for reactive computer system,
proposed in the future. In Sect. 3.8.1, we summarize the abovementioned Manna–
Pnueli Transition System. In Sect. 3.8.2, we describe the semantics of the proposed
CPS-DSL in terms of Manna–Pnueli Transition System.

3.8.1 Manna-Pnueli Transition System

Manna–Pnueli Transition System < Π,Σ, T ,Θ >, intended to serve as a generic
model for reactive computer systems, consists of the following components:

• Π = {u1, . . . , un}—A finite set of state variables.
Each state variable is a typed variable, whose type indicates the domain from

which the values of that variable can be assigned. Some of these state variables
are data variables, which represent the data elements that are declared and
manipulated by the program of a reactive computer system. Other state variables
are control variables, which keep track of the progress in the execution of a
reactive computer system’s program.

• Σ—A set of states.
Each state s in Σ is an interpretation of Π . An interpretation of a set of

typed variables is a mapping that assigns to each variable a value in its domain.
Therefore, each state s in Σ assigns each variable u in Π a value over its domain,
which is denoted by s[u].

• T —A finite set of transitions.
Each transition τ in T represents a state-changing action of the reactive

computer system and is defined as a function τ : Σ → 2Σ that maps a state s in
Σ into the (possibly empty) set of states τ(s) that can be obtained by applying
action τ to state s. Each state s′ in τ(s) is defined to be a τ -successor of s. A
transition τ is said to be enabled on s if τ(s) �= φ, that is, s has a τ -successor. It
is required that one of the transitions, τI , called the idling transition, is an identity
transition, i.e., τI (s) = {s} for every state s. The transitions other than the idling
transition are called diligent transitions.

• Θ—An initial condition.
Initial condition is an assertion (Boolean expression) that characterizes the

states at which the execution of reactive computer system’s program can begin.
A state s satisfying Θ is called an initial state.

Each transition τ can be characterized by an assertion ρτ (Π,Π ′), called the
transition relation, of the following form:

ρτ (Π,Π ′) : Cτ (Π) ∧ (y′
1 = e1) ∧ · · · ∧ (y′

k = ek)
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This transition relation consists of the following elements:

• An enabling condition Cτ (Π), which is an assertion, describing the condition
under which the state s may have a τ -successor.

• A conjunction of modification statements

(y′
1 = e1) ∧ · · · ∧ (y′

k = ek),

which relate the values of the state variables in a state s to their values in a
successor state s′ obtained by applying τ to s. Each modification statement yi =
ei describes the value of a state variable in state s′ as an expression consisting of
the state variable values in state s.

As an example, for a transition system with Π = {x, y, z},

ρτ : (x > 0) ∧ (z′ = x − y)

describes a transition τ that is enabled only when x is positive and this transition
assigns the value of z in state s′ equal to the value of x − y in state s.

3.8.1.1 Computations

A computation of Manna–Pnueli Transition System < Π,Σ, T ,Θ > is defined to
be an infinite sequence of states

σ : s0, s1, s2, . . .

satisfying the following requirements:

• Initiation: The first state s0 is an initial state, i.e., it satisfies the initial condition
of the transition system.

• Consecution: For each pair of consecutive states si, si+1 in σ , si+1 ∈ τ(si) for
some transition τ in T . The pair si, si+1 is referred to as a τ -step. It is possible
for a given pair to be both a τ -step and a τ ′-step for τ �= τ ′.

• Diligence: Either the sequence contains infinitely many diligent steps or it
contains a terminal state (defined as a state to which only idling transitions can be
applied). This requirement excludes the sequences in which, even though some
diligent transition is enabled, only idling steps are taken beyond some point. A
computation that contains a terminal state is called a terminating computation.

Indices i of states in a computation σ are referred to as positions. If τ(si) �= φ (τ
enabled on si), it is said that the transition τ is enabled at position i of computation
σ . If si+1 ∈ τ(si), it is said that transition τ is taken at position i. Several transitions
may be enabled at a single position. Moreover, one or more transitions may be
considered to be taken at the same position. A state s is called reachable in a
transition system if it appears in some computation of the system.
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3.8.2 Manna–Pnueli Transition System-Based Representation
of CPS-DSL

According to the proposed CPS design specification language (CPS-DSL), a
ComputingNode block contains a ConrolApp block and a set of SensorPort, Actu-
atorPort, InputMsgPort, and OutputMsgPort blocks. Furthermore, the ControlApp
block contains a set of Mode blocks and a ModeSwitchLogic block. Based on these
constituent blocks, a ComputingNode block, CompNode1, of CPS-DSL can be
represented as the Manna–Pnueli Transition System, PCompNode < ΠPCompNode

,
ΣPCompNode

, TPCompNode
, ΘPCompNode

>, outlined below, where:

• ΠPCompNode
—A finite set of state variables.

ΠPCompNode1 = {t, t switch
CompNode1,modeCompNode1, t

next
CompNode1,

sensePort1
CompNode1, sensePort2

CompNode1,

. . . , sensePort
p

CompNode1,

inMsgPort1
CompNode1, inMsgPort2

CompNode1,

. . . , inMsgPortrCompNode1,

actP ort1
CompNode1, actP ort2

CompNode1, . . . , actP ort
q

CompNode1,

outMsgPort1
CompNode1, outMsgPort2

CompNode1,

. . . , outMsgPort lCompNode1,

periodicControllerIn1
CompNode1,

periodicControllerIn2
CompNode1,

. . . , periodicControllerIna
CompNode1,

periodicControllerOut1
CompNode1,

periodicControllerOut2
CompNode1,

. . . , periodicControllerOutbCompNode1,

controllerFunctionMemory1
CompNode1,

controllerFunctionMemory2
CompNode1,

. . . , controllerFunctionMemoryc
CompNode1}
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where

t = time,
t switch
CompNode1 = latest mode switch time of ControlApp block, associated with

ComputingNode block CompNode1,
modeCompNode1 = current mode of ControlApp block, associated with Com-

putingNode block CompNode1,
tnext
CompNode1 = next relevant time instant (actuator update, output message

update) during the current mode of operation of ControlApp block, associated
with ComputingNode block CompNode1,

sensePort iCompNode1 = A SensorPort block, contained in the ComputingNode
block CompNode1,

inMsgPortiCompNode1 = An InputMsgPort block, contained in the Comput-
ingNode block CompNode1,

actPort iCompNode1 = An ActuatorPort block, contained in the ComputingNode
block CompNode1„

outMsgPortiCompNode1 = An OutputMsgPort block, contained in the Comput-
ingNode block CompNode1,

peridoicControllerIni
CompNode1 = A PeriodicControllerInput block that is

contained in a mode of the ControlApp block, associated with ComputingNode
block CompNode1,

peridoicControllerOutiCompNode1 = A PeriodicControllerOutput block that
is contained in a mode of the ControlApp block, associated with ComputingN-
ode block CompNode1,

controllerFunctionMemoryi
CompNode1 = A ControllerFunctionMemory

block that is contained in the ControllerFuction block of a mode of the
ControlApp block, associated with ComputingNode block CompNode1,

• ΣPCompNode
—A set of states.

Each state s in Σ is an interpretation of Π . An interpretation of a set
of typed variables is a mapping that assigns to each variable a value in its
domain. The domain of state variables t , t switch

CompNode1, and tnext
CompNode1 is R≥0. The

domain of state variable modeCompNode1 is ModesCompNode1 = {Set of modes of
ControlApp block, contained in the ComputingNode block CompNode1}. Given
the following definitions of Πα and D, all the state variables in Πα have the
domain D:

Πα = {sensePort iCompNode1, actP ort iCompNode1, outMsgPortiCompNode1,

periodicControllerIni
CompNode1, periodicControllerOutiCompNode1,

controllerFunctionMemoryi
CompNode1}

D = {x | (x ∈ R)

∧ (x can be represented by type double of computer system)}
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The state variable inMsgPortiCompNode1 has the following domain:

P = {(x, y) | (x ∈ R) ∧ (y ∈ D)}

• TPCompNode
—A finite set of transitions.

TPCompNode1 = τI ∪ T ModeSwitches
CompNode1 ∪ T T imeIncrement

CompNode1

where

τI = Idling Transition

T ModeSwitches
CompNode1 = {τmodeimodej

CompNode1 | ∃ a mode switch from modei to modej in the
ModeSwitchLogic block of ControlApp block, associated with ComputingN-
ode block CompNode1}

T T imeIncrement
CompNode1 = {τmode1

CompNode1, τ
mode2
CompNode1, . . . , τ

modeM

CompNode1}
As outlined in the summary of Manna–Pnueli Transition System approach,

presented in Sect. 3.8.1, each transition τ can be characterized by an enabling
condition and a set of modification statements. Based on the abovementioned
set of transitions TPCompNode1 of PCompNode1, all the diligent transitions of
PCompNode1 can be completely described through the enabling conditions and

modification statements of the following generic transitions: τ
modeimodej

CompNode1 and

τ
modei

CompNode1.

(a) τ
modeimodej

CompNode1 : Enabling Condition

C
τ

modeimodej
CompNode1

= (modeCompNode1 == modei)

∧ ModeSwitchConditionCompNode1(t,modei,modej )

∧ ModeSwitchCheckT imeCompNode1

(t, t switch
CompNode1,modei,modej )

where

ModeSwitchConditionCompNode1(t,modei,modej ) = An assertion that
returns true if the mode switch condition associated with mode switch
from modei to modej in the ModeSwitchLogic block, contained in the
ComputingNode block CompNode1, is true at time t .

ModeSwitchCheckT imeCompNode1(t, t
switch
CompNode1,modei,modej ) = An

assertion that returns true if t − t switch
CompNode1 = a{ Periodmodei

SwitchFreqmodeimodej
}, for

some a ∈ {1, 2, . . . , SwitchFreqmodeimodej
}.

(b) τ
modeimodej

CompNode1 : Modification Statements



3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 61

1. modeCompNode1
′ = modej

2. t switch
CompNode1

′ = t

3. tnext
CompNode1

′ = t + tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t + tj = t switch

CompNode1
′

+ a{ Periodmodej

ControllerFunctionFreqcontrollerFucntiond

}),

for some

a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
}

and for some

controllerFunctiond ∈ ControllerFunctions
modej

CompNode1

}

4.

periodicControllerOuts
modej

CompNode1

′ = ModeSwitchFunction
modeimodej

CompNode1

(periodicControllerOuts
modei

CompNode1)

where
ModeSwitchFunction

modeimodej

CompNode1 = A function that produces the values to

which periodicControllerOuts
modej

CompNode1 are initialized after the mode
switch from modei to modej of ControlApp, associated with CompNode1

5.

actPorts
modej

CompNode1

′ = ControllerOutsT oActs
modej

CompNode1

(periodicControllerOuts
modej

CompNode1

′
)

where
ControllerOutsT oActs

modej

CompNode1 = A function that captures the input–
output relationship (produced by the combined effect) of all the connec-
tions between PeriodicControllerOutput blocks and ActuatorPort blocks
in modej of CompNode1.

6.

outMsgPorts
modej

CompNode1

′ = ControllerOutsT oOutMsgs
modej

CompNode1

(periodicControllerOuts
modej

CompNode1

′
)
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where
ControllerOutsT oOutMsgs

modej

CompNode1 = A function that captures the
input–output relationship (produced by the combined effect) of all the
connections between PeriodicControllerOutput blocks and OutputMsgPort
blocks in modej of CompNode1.

7.

periodicControllerInscontrollerFucntionb

′

= LoadControllerInputs
modej

controllerFunctionb
(sensePorts

modej

CompNode1

′
,

inMsgPorts
modej

CompNode1

′
, periodicControllerOuts

modej

CompNode1

′
)

for every controllerFunctionb ∈ ControllerFunctions
modej

CompNode1

where
LoadControllerInputs

modej

controllerFunctionb
= A function that captures

the input–output relationship (produced by the combined effect) of
all the connections between PeriodicControllerInput blocks, associated
with ControllerFunction block controllerFunctionb in modej , and
SensorPorts, InputMsgPorts, and PeriodicControllerOutput blocks in
modej of CompNode1.

(c) τ
modei

CompNode1: Enabling Condition

C
τ

modei
CompNode1

= (modeCompNode1 == modei)

∧ ¬(ModeSwitchConditionCompNode1(t,modei ,modec)

∧ ModeSwitchCheckT imeCompNode1(t, tswitch
CompNode1, modei , modec))

∀modec ∈ {modec | ∃ a mode switch f rom modei to modec of ControlApp

associated with ComputingNode block CompNode1}

(d) τ
modei

CompNode1: Modification Statements

1. t ′ = tnext
CompNode1

2. tnext
CompNode1

′ = t ′ + tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t ′ + tj = t switch

CompNode1

+ a{ Periodmodei

ControllerFucntionFreqcontrollerFunctiond

})
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for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
}

and
for some controllerFunctiond ∈ ControllerFunctions

modei

CompNode1

}

3.

(periodicControllerOutscontrollerFunctione

′,

controllerFunctionMemorycontrollerFunctione

′) =
f controllerFunctione (periodicControllerInscontrollerFunctione ,

controllerFuctionMemorycontrollerFunctione )

∀controllerFunctione ∈
{
controllerFunctione |

(controllerFunctione ∈ ControllerFunctions
modei

CompNode1)

∧ (t ′ = t switch
CompNode1 + a{ Periodmodei

ControllerFunctionFreqcontrollerFunctione

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctione }
}

where
f controllerFunctione = The function implemented by the internal com-

ponents (Simulink blocks) of ControllerFunction block controller

Fucntione.
4.

periodicControllerInscontrollerFunctionf

′ =
LoadControllerInputs

modei

controllerFunctionf
(sensePorts

modei

CompNode1
′
,

inMsgPorts
modei

CompNode1
′
, periodicControllerOuts

modei

CompNode1
′
)

∀controllerFunctionf ∈
{
controllerFunctionf |

(controllerFunctionf ∈ ControllerFunctions
modei

CompNode1)

∧ (t ′ = t switch
CompNode1 + a{ Periodmodei

ControllerFunctionFreqcontrollerFunctionf

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctionf
}
}
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5.

actPorts
modei

CompNode1
′ =

ControllerOutsT oActs
modei

CompNode1(periodicControllerOuts
modei

CompNode1
′
)

6.

outMsgPorts
modei

CompNode1
′ =

ControllerOutsT oOutMsgs
modei

CompNode1

(periodicControllerOuts
modei

CompNode1
′
)

• ΘPCompNode
—An initial condition. Any initial state s of transition system

PCompNode must satisfy the following initial conditions:

t = 0
t switch
CompNode1 = 0
modeCompNode1 = mode1

tnext
CompNode1 = min

{
tj | (tj > 0)∧(tj = a{ Periodmode1

ControllerFunctionFreqcontrollerFunctiond
})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
} and for

some controllerFunctiond ∈ ControllerFunctions
mode1
CompNode1

}

3.9 Conclusion

Taking inspiration from the hourglass-shaped architecture of the Internet, this chap-
ter has proposed an hourglass-shaped architecture for model-based development of
networked cyber-physical systems. Similar to the central role played by TCP/IP
protocols in the Internet architecture, the proposed architecture for model-based
networked CPS development is centered on the notion of a standardized CPS design
specification language.

The proposed hourglass-shaped architecture can enable effective coordination
between control systems engineers and embedded systems engineers during a
model-based CPS development process, while still acknowledging the differences
between the domain-specific skillset that control systems engineer and embedded
system engineer typically possess. The chapter has also proposed a version of
the abovementioned CPS design specification language and discussed its various
aspects such as concrete syntax, abstract syntax, and semantics.
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