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2.1 Platform-Based Design Methodology for Connected
Vehicles

Automotive design has become more complex than ever due to the rapid devel-
opment of connected and autonomous technology. This trend affects not only the
design of individual vehicles but also the operation of entire vehicular transportation
system, through connected vehicle applications such as intelligent traffic signals,
collaborative adaptive cruise control (CACC), and vehicle platooning. The safety-
critical nature of these systems makes it essential to rigorously ensure functional
correctness and to quantitatively evaluate system metrics throughout the design pro-
cess and across all system layers. In this chapter, we will introduce the application of
the platform-based design (PBD) paradigm in connected vehicles. We will present
how the principles of the PBD paradigm, in particular the definition of platforms
and the mapping between functional and architectural platforms, may be carried out
across the system layers, from connected vehicle applications to individual vehicle
functionality, and then to in-vehicle software, hardware, and physical layers.

2.1.1 Design Challenges for Connected Vehicles

In the following, we will first introduce some of the major challenges for connected
vehicles, and then outline how the PBD paradigm may be applied to their design.

• Addressing high-volume and dynamic input data: The size of a signal in
conventional control systems is usually not very large. It can be only a binary
to indicate “on” or “off” of a component, or several bytes to represent the value
of a measurement. However, for advanced driver assistance systems (ADAS)
and autonomous functions in modern vehicles, the inputs from lidars, radars,
cameras, and other sensors could induce much larger data at a high input data
rate. For example, an advanced lidar can have input data rate that is up to
100 Mbps, which far exceeds the capacity of currently prevalent in-vehicle bus
protocol, the controller area network (CAN), and the processing capability of
current electronic control units (ECUs). Moreover, such input data rate may
significantly vary under different road conditions, moving speed, and light
intensity, which presents further challenges to the system design, as detailed
below.

• Computation architecture design: High-volume and dynamic input data has
a significant impact on the design of the computation platform. Should system
designers add more ECUs or upgrade existing ECUs to more powerful ones for
handling the data? What types of new computation elements such as GPUs,
FPGAs, or ASIC accelerators are needed? Can the computation architecture
be dynamically adapted to handle the changing data rate? Answering these
questions requires the development of new design methodologies.
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• Communication architecture design: To address the high-volume and dynamic
input data, original equipment manufacturers (OEMs) have been exploring new
in-vehicle communication architectures such as those based on the Ethernet
protocol. However, systematic methodologies are still greatly needed to meet the
data processing requirements. Furthermore, the new communication protocols,
including both in-vehicle protocols and inter-vehicle protocols for vehicle-to-
everything (V2X) communication, should be carefully designed and integrated
with the conventional protocols that are still important for conventional/legacy
components. The integration of different protocols also relies on the design and
analysis of gateways, which further increase the design complexity.

• Topology design: As there are different protocols and multiple network devices
in an automotive system, it is not trivial to decide the connection of sensors,
actuators, and ECUs to network devices. The decisions are constrained by design
requirements and affected by the trade-offs between performance, cost, and even
wiring weight. Furthermore, the topology should follow the harness and routing
graph in an automotive system and is often challenging to design.

• Safety: Automotive systems are safety-critical systems, and there are many
constraints that have to be met for ensuring system safety. For instance, the end-
to-end latency from detecting sensor input to applying control often has to meet
a strict deadline, which requires rigorous worst-case analysis based on formal
mathematical models. However, with the increase of functional and architectural
complexity, accurately building those models and conducting worst-case analysis
has become increasingly challenging.

• Reliability: The reliability of automotive systems relies on many factors, such as
the fault-tolerant and redundant architectures for single-point-of-failures. Several
protocols such as the time-sensitive networking (TSN) support replications and
eliminations (if redundant at destinations) of frames. As shown in Fig. 2.1, these
operations can increase the reliability of communication, but they also induce
higher costs and more communication traffic. Furthermore, they require mul-
tiple routing paths, which makes topology design more challenging. Similarly,
redundant ECUs may increase the reliability of computation, but they also lead
to higher costs and design complexity.
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Fig. 2.1 The trade-off between cost, reliability, and switch performance in automotive design
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• Security: System security is a rising issue for automotive systems. It requires a
cross-layer solution that includes security mechanisms compatible with existing
V2X communication protocols, lightweight security mechanisms within individ-
ual vehicles, and component-level security mechanisms. Due to tight resource
constraints and stringent design requirements, security should be considered
from the beginning of the design process; otherwise, it is often too late or
impossible to add security at late stages.

2.1.2 Mapping Problems for Connected Vehicles

We propose the PDB methodology to address these growing design challenges of
connected vehicles. The key idea of PBD is to capture the system with a number
of abstraction layers called platforms, and divide the complex design process into
a series of mappings from higher-layer to lower-layer platforms. The mapping
between two platform layers is, in fact, a design space exploration process, where
different options (abstracted as design variables) for implementing the high-layer
platform model (i.e., “functionality”) on the lower-layer platform components
(i.e., “architecture”) are explored with respect to a set of design objectives and
constraints.

Figure 2.2 shows how the design of connected vehicles can be addressed with the
PBD paradigm as a series of mapping problems across platform layers, including
mapping connected vehicle applications to vehicle functionality, mapping vehicle
functionality to software tasks, mapping software tasks to hardware components,
and mapping hardware components to physical layout.

2.2 Mapping Connected Vehicle Applications to Vehicle
Functionality

In the following sections, we will go through some representative problems for
each of these mapping problems. At the top layer, the PBD paradigm is applied
to the mapping from connected vehicle applications, such as cooperative adaptive
cruise control (CACC), lane merging, and autonomous intersection, to functionality
of individual vehicles. The mapping problem can be formulated as follows:

• Platforms: (1) The higher-layer platform is captured by the models of connected
vehicle applications, such as CACC and autonomous intersections; and (2) the
lower-layer platform includes the models of individual vehicles in both the cyber
domain (computation and communication models) and the physical domain
(vehicle dynamics).
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Fig. 2.2 Platform-based design for connected vehicles through mapping across multiple platform
layers: (1) mapping connected vehicle applications to vehicle functionality, (2) mapping vehicle
functionality to software tasks, (3) mapping software tasks to hardware components, and (4)
mapping hardware components to physical layout

• Design Space: The design variables to be explored include the setting of con-
tracts (constraints) on individual vehicle behavior/functionality—in the physical
domain, this means constraints on vehicle’s path planning and motion control;
in cyber domain, this means constraints on computation latency, communication
latency, reliability, etc.
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• Design Objectives and Constraints: These could include safety, liveness,
deadlock-free, fairness, traffic efficiency (e.g., for CACC and autonomous
intersections), fuel consumption and emission (e.g., for eco-driving applications).

We have been developing a system-level modeling, synthesis and validation
framework for connected vehicle applications [22, 27] and applying it to the
above mapping (design space exploration) problem. In particular, we apply the
methodology to a CACC application [9, 22] and an autonomous intersection
management application [21, 23].

In the CACC application, vehicles inform each other about their speeds and
accelerations via vehicle-to-vehicle (V2V) messages to maintain safe distances
between them. We study the impact of communication delays and losses on the
system safety and performance based on simulations, and then, in turn, derive
the constraints for individual vehicle planning and control (i.e., constraints in the
physical domain) [22].

In the autonomous intersection application, autonomous vehicles approaching
an intersection will communicate with an intersection manager via vehicle-to-
infrastructure (V2I) messages to request the right to enter and pass the intersection.
The manager will then decide/schedule the entering order for the vehicles. We again
study this application with consideration of communication delays and losses, and
observe the significant impact of communication on system safety, liveness, and
deadlock-free properties.

We then develop and analyze a delay-tolerant protocol for autonomous inter-
section management [21], as shown in Fig. 2.3. The protocol assures that as long
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Fig. 2.3 Design and validation of delay-tolerant autonomous intersections [21]
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as the communication delays are bounded, every vehicle will eventually cross the
intersection (i.e., liveness property) and vehicles with conflicting routes will never
enter the intersection at the same time (i.e., safety property). We verify the safety
and liveness properties of our protocol by building more abstract timed automata
models and leveraging the UPPAAL verification tool [19]. Finally, we implement
our protocol in the SUMO traffic simulation suite [18], with the extension of
modeling communication delays, to study the system performance. Such analysis
allows us to derive the delay constraints on V2I communication in the cyber domain,
which includes the delays of in-vehicle processing and the delays of V2I message
transmissions, for ensuring system safety, liveness, deadlock-free, and performance.

2.3 Mapping Vehicle Functionality to Software Tasks

Once we have the specifications and constraints of individual vehicle functionality,
the PBD paradigm can be applied to conduct the mapping from vehicle functionality
to software tasks. This mapping problem can be formulated as follows:

• Platforms: (1) The higher-layer platform is captured by the models of vehicle
functionality (e.g., Simulink models, timed automata), including in-vehicle sens-
ing, computation and communication models, as well as V2X communication
models; and (2) the lower-layer platform includes the models of software tasks
and communication protocols.

• Design Space: The design variables to be explored include the generation of
software tasks from functional models (i.e., mapping from functional blocks
to tasks) and the design of communication protocols (including signals) from
functional models.

• Design Objectives and Constraints: These may include a variety of constraints
and optimization objectives on system performance, safety, security, cost, relia-
bility, extensibility, memory size, reusability, modularity, etc.

For the mapping across these two layers, we have developed algorithms for
exploring software task generation, allocation, and scheduling from functional
models of finite state machines [25] and synchronous block diagrams [4, 6],
two main models of computation in synchronous models that are widely used in
capturing embedded sensing, control, and computation applications.

In [25], we developed a general partitioned model for multi-task implementations
of synchronous finite state machines, and defined two metrics for measuring the
quality of task implementations: the breakdown factor and the action extensibility.
We then developed a heuristic algorithm to explore robust and extensible task
generation and scheduling based on the two metrics. The experimental results
demonstrated significant improvement on the two metrics from our algorithm, and
showed the importance of exploring task generation options for synchronous finite
state machines.
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In [6], we developed an algorithm for direct generation of software tasks on
single-core platforms from synchronous block diagrams, with respect to modularity,
reusability, code size, and latency. This work showed the promise of exploring task
generation for synchronous block diagrams.

In [4], we developed a complete model-based synthesis flow for automotive
software systems that follow the AUTOSAR standard [1]. The synthesis flow opti-
mizes the generation of AUTOSAR runnables from synchronous block diagrams,
the mapping of runnables onto software tasks, and the allocation and scheduling
of tasks onto multi-core ECU platforms. A key idea of this flow is to develop a
uniformed formalism of firing and execution timing automata (FETA) to capture
the periodic timing behavior of functional blocks, runnables, and tasks. Leveraging
FETA, the flow can more accurately model and reason about system timing behavior
across different layers during the entire mapping process. Finally, the synthesis
flow addresses constraints and objectives on a variety of metrics when solving
the mapping problems, including software engineering objectives such as runnable
modularity, reusability, and code size as well as timing and resource objectives such
as system schedulability and memory cost. In particular, the flow focuses on trading
off modularity with schedulability during the mapping from functional blocks to
runnables, and on minimizing memory cost under schedulability constraints during
the mapping from runnables to tasks and from tasks to ECU cores. Similarly
as [6, 25], this work showed the importance of exploring task generation options
when mapping vehicle functionality to software tasks. Furthermore, it demonstrated
the benefits of explicitly considering timing during task generation and having a
uniformed formalism such as FETA to capture timing behavior across system layers.

2.4 Mapping Software Tasks to Hardware Components

Once we have a model of software tasks and their communication signals, the PBD
paradigm can be further applied to explore the mapping of tasks onto hardware
components. We have briefly discussed this above in [4] and will elaborate it more
in this section. The mapping formulation for task to hardware platform mapping can
be captured as follows:

• Platforms: (1) The higher-layer platform is typically modeled as task graphs with
communication signals; and (2) the lower-layer platform includes architectural
models of hardware components.

• Design Space: The design variables include task allocation, task scheduling,
signal mapping to memory transactions or bus/wireless messages, message
scheduling, etc.

• Design Objectives and Constraints: The constraints and objectives address
metrics such as latency, schedulability, cost, energy consumption, extensibility,
fault tolerance, and security.
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In the following, we will demonstrate a few different mapping platforms across
these two layers.

2.4.1 Conventional CAN-Bus Systems

The controller area network (CAN) protocol is still the most common in-vehicle
network. The mapping problem from a task graph to a CAN-based system can be
solved by the PBD paradigm. As shown in Fig. 2.4, the functional model is a task
graph that consists of a set of tasks, denoted by T = {τ1, τ2, . . . , τ|T|}, and a set
of signals, denoted by S = {σ1, σ2, . . . , σ|S|}. Each signal σi is between a source
task and a destination task. Each task is activated periodically and communicate
with each other through signals. The architecture model is a distributed CAN-
based platform that consists of a set of ECUs, denoted by E = {ε1, ε2, . . . , εnE},
and a CAN bus that connects all the ECUs. Each ECU εk can send a set of
messages, denoted by Mk = {μk,1, μk,2, . . . , μk,|Mk |}. ECUs are assumed to run
AUTOSAR/OSEK-compliant operation systems that support preemptive priority-
based task scheduling. The bus uses the standard CAN bus arbitration model that
features non-preemptive priority-based message scheduling [2].

A path π is an ordered interleaving sequence of tasks and signals, defined
as π = (τr1 , σr1 , τr2 , σr2 , . . . , σrk−1 , τrk ). src(π) = τr1 is the path’s source and
snk(π) = τrk is its sink. Sources are activated by external events, while sinks
activate actuators. Multiple paths may exist between each source–sink pair. We
assume all tasks in a path perform computations that contribute to a distributed
function, from the collection of sensor data to the remote actuation. The worst-
case end-to-end latency incurred when traveling a path π is denoted as lπ , which
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Fig. 2.4 The task mapping problem in a CAN-based system
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represents the largest possible time interval that is required for the change of the
input (or sensed) value at the source to be propagated and cause a value change (or
an actuation response) at the sink.

During mapping, the functional model is mapped onto the architecture platform,
as shown in Fig. 2.4. Specifically, the tasks are allocated to ECUs, and the signals
are packed into messages and transmitted on the CAN bus in a broadcast fashion.
Messages are triggered periodically and each message contains the latest values of
the signals that mapped to it. Static priorities are assigned to tasks and messages
for priority-based scheduling. The design space of task allocation, signal packing,
and priority assignment is explored with respect to a set of design objectives and
constraints.

For detailed problem formulations and their corresponding algorithms, please
refer to our previous publications on task mapping for the CAN-based platform, with
the consideration of end-to-end latency [3, 5, 24, 30], extensibility [10, 26, 28, 29],
fault tolerance [20], and security [13, 15].

In the following, we will introduce task mapping onto two different architectural
platforms—one replaces the CAN bus by a time division multiple access (TDMA)
switch, and the other one utilizes an OS hypervisor to support multiple operating
systems running on a hardware component.

2.4.2 Advanced Architecture: TDMA-Based Systems

The TDMA-based protocol is a very representative synchronous protocol and
an abstraction of many existing protocols, such as the FlexRay [7], the Time-
Triggered Protocol [17], the Time-Triggered Ethernet [16], and the Time-Sensitive
Networking [8]. These protocols are likely to be adopted in future intelligent
vehicles to support high and dynamic data rate. Compared with Ethernet, they also
have more deterministic and predictable timing behavior. Compared with priority-
based networks such as the CAN protocol, TDMA-based systems have fundamental
differences in system modeling (in particular for latency modeling), on security
mechanism selection (a global time is available for security reasons), on design
space (network scheduling is the focus of this work but not a factor for CAN-
based systems), and on algorithm design. Therefore, the approaches for CAN-based
systems in the previous section do not apply to TDMA-based systems.

As shown in Fig. 2.5, similar to the system model in the previous section,
the functional model is a task graph that consists of a set of tasks, denoted by
T = {τ1, τ2, . . . , τ|T|}, and a set of signals, denoted by S = {σ1, σ2, . . . , σ|S|}.
Each signal σi is between a source task and a destination task, and each task
is activated periodically and communicates with each other through signals. The
architecture model is a distributed platform that consists of a set of ECUs, denoted
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Fig. 2.5 The mapping problem of a TDMA-based system

by E = {ε1, ε2, . . . , εnE}, and ECUs are assumed to support preemptive priority-
based task scheduling. The nodes are connected through a TDMA-based switch (we
focus on the single-switch case in this chapter, and our formulation can be extended
to multi-switches cases). A set of messages is communicated among nodes through
the switch, denoted by M = {μ1, μ2, . . . , μ|M|}. The switch uses a TDMA-based
model for scheduling, in which each time slot in the schedule can be assigned to one
message. Several time slots form a cycle, and the network switch repeats the same
scheduling sequence after each cycle. It is possible that a time slot is empty (not
assigned to any message) in a schedule, and it is also possible that there are more
than one time slots assigned to the same message in a cycle.

During mapping, the functional model is mapped onto the architecture platform,
as shown in Fig. 2.5. Specifically, the tasks are allocated to ECUs, and the signals
are one-to-one mapped onto messages and transmitted on the network. Messages are
triggered periodically and each message contains the latest values of the signals that
are mapped to the message. Static priorities are assigned to tasks for priority-based
scheduling, and the time slots in the schedule are assigned to messages. The design
space of task allocation, priority assignment, and switch scheduling is explored with
respect to a set of design objectives and constraints.

For detailed problem formulation and its corresponding algorithm, please refer
to our previous publications [12, 14] that address security in the mapping process.
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Fig. 2.6 (a) A traditional architecture, and (b) an architecture supported by an OS hypervisor

Fig. 2.7 The tasks are allocated to the operating systems, and the operating systems are scheduled
on the OS hypervisor

2.4.3 Advanced Architecture: OS-Hypervisor-Based Systems

In this section, we consider mapping onto platforms with OS hypervisor. In
Fig. 2.6a, there is a traditional architecture where the tasks are allocated directly
on the ECUs. In Fig. 2.6b, an OS hypervisor runs between hardware and operating
systems and virtualizes hardware. As a result, tasks and operating systems can
be executed in a hardware-independent way. The OS hypervisor in Fig. 2.6b is
categorized as a type-1 OS hypervisor which runs directly on hardware, while
a type-2 OS hypervisor runs on a host operating system and supports other
guest operating systems. In the market, there have been several OS hypervisors
available. Although they have different features and specific applications (not only
for automotive systems), the fundamental goal is still to virtualize hardware and
provide high flexibility and isolation.

As shown in Fig. 2.7, the system model consists of a set of tasks, a set of operating
systems, and an OS hypervisor. Each task τi is triggered periodically. We assume
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that all operating systems are identical, and each operating system ωi supports
the preemptive fixed-priority scheduling. The OS hypervisor supports the TDMA
scheduling and maintains a schedule in which each partition ρi is assigned to one
operating system,1 and the OS hypervisor repeats the schedule after each cycle. It is
possible that there is more than one partition assigned to the same operating system
in a cycle.

The research on developing the mapping algorithm for this model is still ongoing.

2.4.4 Heterogeneous Communication Architectures

There are still some limitations with those approaches above. First, there is usually
only one protocol to be considered, so the design methods cannot be applied to
heterogeneous communication architectures. Next, the designs are for conventional
functions which do not have very high data rates, and thus they cannot support
ADAS and autonomous functions. Lastly, the architectures are usually fixed so
that system designers have no flexibility to select appropriate hardware devices
and design a topology for them. To address these problems and the challenges
in Sect. 2.1, in this section, we propose a design methodology based on the PBD
paradigm for heterogeneous communication architectures in automotive systems.

The design methodology is based on the mapping from functional models to
architectural models. The notations which will be used in the methodology are listed
in Table 2.1. We first define a device and an architectural model as follows:

Definition 2.1 A device δ is either a sensor, an actuator, an ECU, or a network
device.

The location of a device is usually fixed according to the floor planning of
an automotive system. A network device can be a CAN bus, a TSN switch, or a
gateway.

Definition 2.2 An architectural model Δ is a set of devices.

An architectural model can be given by system designers directly or extracted
from standardized languages. Each device in an architectural model is only a
candidate, which means that it is possibly not selected during the mapping.

Definition 2.3 For each device δ, it is associated with a parameter Cδ as the device
cost of δ. For each pair of devices δ and δ′, it is with a parameter Dδ,δ′ as the
connection cost of δ and δ′ and another parameter Eδ,δ′ as the compatibility of δ

and δ′.

1Some existing OS hypervisors allow one partition to be assigned to more than one operating
system, and those operating systems are scheduled by their priorities. This can be generalized to
the system model by defining task priority as a 2-tuple.
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Table 2.1 Notations in the design methodology for heterogeneous communication architectures

δ A device

Cδ The device cost of δ

Dδ,δ′ The connection cost of δ and δ′

Eδ,δ′ The compatibility of δ and δ′

ι An implementation

Sι The set of devices of ι

Tι The set of logical connections between devices of ι

Uι The set of reliability and safety constraints on logical paths between devices of Uι

Δ An architectural model or a set of devices

I A functional model or a set of implementations

n The number of functional models

σ A sensor

π An actuator

θ An ECU

φ A network device

Σ The set of sensors

Π The set of actuators

Θ The set of ECUs

Φ The set of network devices

The parameter Dδ,δ′ can be pre-computed based on the harness and routing graph
in an automotive system, and it can be set as the distance or the wiring weight
between δ and δ′ which are physically connected. If Dδ,δ′ = ∞, it means that there
is no physical connection between δ and δ′. On the other hand, Eδ,δ′ = 1 if and only
if δ and δ′ can be selected at the same time. The existence of the parameter Eδ,δ′ is
to address the challenge of device selection mentioned in Sect. 2.1, e.g., if both of
a regular ECU and an upgraded ECU are the candidates at the same location, only
one of them can be selected.

As shown in Fig. 2.8a, the architectural model Δ has five devices including one
sensor, one actuator, two ECUs, and one CAN bus. If δ2 is a regular ECU, δ3 is
an upgraded ECU, and both of them are the candidates at the same location, then
only one of them can be selected. Therefore, Eδ2,δ3 = 0, while Eδi,δj

= 1 for
any other pair of devices. On the other hand, all devices except the CAN bus are
only connected to the CAN bus, so Dδi,δj

= ∞ for any pair of devices where
i, j ∈ {1, 2, 3, 4}.
Definition 2.4 Given Δ, Σ is the set of sensors, Π is the set of actuators, Θ is the
set of ECUs, Φ is the set of network devices, and thus Δ = Σ ∪ Π ∪ Θ ∪ Φ.
Throughout the section, σ is a sensor, π is an actuator, θ is an ECU, φ is a network
device,
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Then, we define an implementation and a functional model as follows:

Definition 2.5 An implementation ι is associated with Sι as the set of devices, Tι

as the set of logical connections between devices, and Uι as the set of reliability and
safety constraints on logical paths between devices.

Note that Tι can be represented by a set of subsets in Sι, and Uι can be represented
by a set of reliability and safety constraints on tuples of elements in Sι.

Definition 2.6 A functional model I is a set of implementations, and it can be
implemented by any ι ∈ I .

We define a functional model by its possible implementations on devices because
we can translate system designers’ experience into candidate implementations
and significantly reduce the complexity and search space during design space
exploration (e.g., we can keep the scenario that both ECUs need to be upgraded
at the same time).

It should be mentioned that, in most cases, a functional model has the same
sensors and actuators in all of its implementations, e.g., the sensors and actuators
that the functions of a blind spot monitor use are fixed. On the other hand, there
is usually some flexibility selecting ECUs to execute corresponding functions, no
matter they are at the same location or at different locations, so a functional model
usually has different sets of ECUs in its implementations. Lastly, there is usually no
network device in an implementation, although it may be implied by the harness and
routing graph or objective optimization and constraint satisfaction during mapping.

As shown in Fig. 2.8b, the functional model is {ι1, ι2}. For ι1, Sι1 = {δ1, δ2, δ4},
Tι1 = {{δ1, δ2}, {δ2, δ4}}, and Uι1 consists of the constraints on path (δ1, δ2, δ4), e.g.,
its end-to-end latency of the functional path of ι1 must be smaller than its deadline.
Similarly, for ι2, Sι2 = {δ1, δ3, δ4}, Tι2 = {{δ1, δ3}, {δ3, δ4}}, and Uι2 consists of the
constraints on path (δ1, δ3, δ4).
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Fig. 2.8 (a) An architectural model with one sensor, one actuator, two ECUs, and one CAN
bus, where the two ECUs are incompatible, and only one of them can be selected. (b) Two
implementations of a functional model. One of them should be selected, depending on objective
optimization and constraint satisfaction during mapping
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With the definitions of an architectural model and a functional model, the design
problem can be defined as follows:

• Given an architectural model Δ and n function model {I1, I2, . . . , In}, select
an implementation for each functional model such that all devices of selected
implementations are compatible, all reliability and safety constraints of selected
implementations are satisfied, and the objective is optimized.

As mentioned in Sect. 2.1, a reliability constraint can be the requirement of
multiple routing paths. A safety constraint can be the utilization bound of each
device or the requirement that the end-to-end latency of a functional path must be
smaller than its deadline. The most typical objective is to minimize total cost which
includes all device costs and all connection costs. Some other possible objectives
are weight minimization, latency minimization, and performance maximization.
As shown in Fig. 2.8, one implementation in Fig. 2.8b should be selected to
implement the functional model, depending on objective optimization and constraint
satisfaction during mapping.

Here is the summary of how the methodology addresses the design challenges
mentioned in Sect. 2.1.

• Addressing high-volume and dynamic input data. By objective optimization
and constraint satisfaction during mapping, a functional model with high data
rate will be served by faster network devices (protocols) after mapping. If nearby
ECUs are not powerful enough for dynamic data rate, a functional model will
connect its sensors or actuators to further ECUs, and related objectives (e.g.,
connection cost) and constraints (e.g., end-to-end latency) will also be considered
during mapping.

• Computation architecture design. In the methodology, different types of ECUs
at the same location are all included in an architectural model and marked by
the compatibility (Eδ,δ′). As mentioned above, this allows us to translate system
designers’ experience into candidate implementations and keep the scenario that
both ECUs need to be upgraded at the same time. Then, the challenges in Sect. 2.1
can be addressed by objective optimization and constraint satisfaction during
mapping. If a device has no load after mapping, it means that it is not selected.

• Communication architecture design. Similar to device selection, a network
device may have no load on it, which means that it is not selected. On the
other hand, gateways are considered in the methodology to composite different
protocols.

• Topology design. In an architectural model, all possible connections and their
costs (Dδ,δ′) are pre-computed. During mapping, those connections are candi-
dates, and their costs can be considered.

• Safety. The end-to-end latency of a path can be defined with Uι in a functional
model and its implementations. Note that a frame is a special case of a path
between two devices. The methodology leaves flexibility for system designers to
apply different timing models. If those models are not available or their results
are over-pessimistic so that simple bounds on the utilization of network devices
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are adopted as safety constraints, the utilization of a device, which is a special
case of a path with only one device, can also be defined with Uι.

• Reliability. Similarly, all possible connections are candidates so that a function
model can construct multiple routing paths from them.

• Security. Although security is not the focus of the methodology, other protocols
and gateways in heterogeneous communication architecture can provide opportu-
nities for adding security protections. The methodology is a platform for further
security considerations during design stages.

• Optimization objective. The methodology leaves flexibility for system design-
ers to set total cost, wiring weight, reliability, or performance as their objectives.
To deal with different objectives, generalized optimization approaches should be
applied.

Heterogeneous communication architectures are expected to be deployed to sup-
port ADAS and autonomous functions. In this section, we propose a methodology
to address those challenges on heterogeneous communication architectures. Based
on the methodology, we can formulate a problem and its corresponding algorithm to
solve mapping problems at this level. The corresponding research is still ongoing.

2.5 Mapping Hardware Components to Physical Layouts

Finally, we can apply the PBD paradigm to map hardware components to physical
layouts. Hardware components typically have pre-defined places for them. For
example, radars should be placed at the front or rear side of a vehicle, not inside
the vehicle. These components are connected by wires, which need to go through
harnesses as shown in Fig. 2.9. The mapping problem from hardware to physical
layouts can be captured as follows and illustrated in Fig. 2.10.

• Platforms: (1) The higher-layer platform includes a set of logical connections
between hardware components; and (2) the lower-layer platform includes a
physical routing graph that consists of wiring harnesses, connections between
harnesses, locations (where a wire gets in or out of a harness) of wire harnesses,
and hardware components.

• Design Space: The design variables to be explored include placement of splices,
physical routing paths, and wire sizes.

• Design Objectives and Constraints: The metrics to be considered include total
wiring length, total wiring weight, fuel efficiency, resistance, signal quality,
space, and capacities of locations.

One problem formulation and its corresponding algorithm have been proposed
in [11]. The features of the problem are:

• A logical connection can be defined as a hypergraph, i.e., a connection (hyper-
edge) can connect more than two components (vertices). To physically connect
those components, we need to add splices physically (Steiner vertices logically),
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Fig. 2.9 A harness model with its locations [11]. Two components are connected by a wire, and
the wire goes through the harness
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Fig. 2.10 (a) The logical connection between three hardware components is mapped to (b) the
physical routing graph including a splice

which are similar to switches in network routing. A Steiner-tree problem for wire
routing is also common in electronic design automation.

• The placement of harnesses is fixed. As a result, the problem is to select routing
paths upon the given harnesses, and thus the number of potential routing paths
is limited. From this perspective, the problem is closer to network routing rather
than wire routing in electronic design automation.

• Similarly, a splice can only be placed at a location of a harness, so the number of
potential locations is also limited.

• Considering resistance, the total wiring length and the total wiring weight have
a quadratic relation because to maintain the same resistance for a wire, its length
and the area of its cross section need to increase or decrease linearly. The total
wiring weight is relevant to fuel efficiency as it is up to 30 kg in modern vehicles.

Please refer to [11] for detailed problem formulation and its corresponding
algorithm.

2.6 Summary

In this chapter, we introduced the platform-based design (PBD) paradigm for
automotive and transportation systems, and the application of PBD to map the
high-level specification of connected vehicle applications to individual vehicle
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functionality, and then to software and hardware implementations, and finally to
physical layouts. We believe that the PBD paradigm is a promising methodology to
address the rapidly growing complexity of automotive design and improve design
quality and productivity.
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