
Mohammad Abdullah Al Faruque
Arquimedes Canedo Editors

Design
Automation of
Cyber-Physical
Systems

Design Automation of Cyber-Physical Systems

Mohammad Abdullah Al Faruque
Arquimedes Canedo
Editors

Design Automation of
Cyber-Physical Systems

123

Editors
Mohammad Abdullah Al Faruque
University of California, Irvine
Irvine, CA, USA

Arquimedes Canedo
Siemens Corporate Technology
Princeton, NJ, USA

ISBN 978-3-030-13049-7 ISBN 978-3-030-13050-3 (eBook)
https://doi.org/10.1007/978-3-030-13050-3

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13050-3

Introduction: Research Challenges in the
Design Automation of Cyber-Physical
Systems

Mohammad Abdullah Al Faruque and Arquimedes Canedo

Cyber-physical systems (CPS) are all around us – from smart watches and home
automation devices to traffic infrastructure, power grid, and transportation systems.
The penetration of CPS into the world is accelerating thanks to better Internet
connectivity, power-efficient computation, higher-capacity memory, and software
functions. In the past, CPS development was mainly driven by companies. Today,
all kinds of people from different backgrounds are proactively creating new CPS
thanks to the Internet, crowdfunding, crowdsourcing, availability of inexpensive
electronics, software tools, and access to additive manufacturing and other forms
of flexible manufacturing. As the complexity of products increases and the time-
to-market cycles shrink, CPS design automation tools and methodologies become a
necessity. In this book, design automation tools refer to software tools for designing
cyber-physical systems. Design automation methodologies refer to workflows
where these tools are used by engineers to analyze the CPS along one or more
phases of their life cycle.

CPS is a well-established discipline. There are several journals and confer-
ences specialized in specific aspects including the theory of CPS (ACM TCPS,
ICCPS), hybrid computation and control (HSCC), sensing (Sensys, IPSN), real-
time computation and communication (RTAS), and embedded systems (ESWEEK).
Unfortunately, the design automation aspect is not the primary focus of any of these
venues. On the other hand, design automation conferences (DAC, DATE, ICCAD)
have been mainly focused on electronic design automation. In recent years, these
conferences have expanded their reach, and currently, they have dedicated tracks
and special sessions on cyber-physical systems.

M. A. Al Faruque
University of California, Irvine, Irvine, CA, USA

A. Canedo
Siemens Corporate Technology, Princeton, NJ, USA

v

vi Introduction: Research Challenges in the Design Automation. . .

Design Engineering Testing Operation Tools

Part 1 Part 2 Part 3

Applications
• Smart grid
• Healthcare
• Manufacturing
• Energy storage

Research questions
• Verification and Validation
• Correctness and Safety
• Cyber-security

Research questions
• Complexity
• Heterogeneity
• Interoperability

Fig. 1 Organization of this book in terms of the CPS design automation lifecycle phases

This book aims at covering the gap between cyber-physical systems and design
automation communities and focuses on the most important research questions in
this intersection. This book is organized in three parts corresponding to the CPS
lifecycle phases as shown in Fig. 1. Part I consists of Design and Engineering, Part
II consists of Testing and Operation, and Part III consists of Application-Specific
Design Automation Methodologies and Tools. Each chapter is written by leading
researchers in the field and provides a focused discussion on the latest design
automation tools and methodologies. All the contributing authors of this book have
provided examples and use cases that illustrate how the presented design automation
tools and methodologies are used in practice.

Part I: Design and Engineering

The first two phases of the CPS design automation life cycle are design and
engineering. The design automation of the design phase consists of tools that
allow system experts to specify the purpose, or functionality, of the system and
its subcomponents. During design, one of the main research challenges is managing
the complexity that arises when requirements are associated to functions, and these
functions are decomposed into lower-level functions. Traditionally, the concept
design of CPS was done “on paper,” and unfortunately, there is very little computer
support. A recent trend in CPS design automation is the use of computational
concept design tools. These tools formalize the allocation of requirements to
functions and provide traceability. Chapter 1 presents such an approach that relies
on synthesis algorithms to automate the allocation of requirements to functions.

During the engineering phase, functions are allocated to specific implementa-
tions. In the engineering phase, the complexity increases further as functions can
be allocated to more than one implementation. For example, a communication
channel can be implemented through electrical, optical, or electromagnetic means.
The heterogeneity of components, technologies, protocols, materials, algorithms,
and communication presents a challenge to design automation tools. To manage this

http://dx.doi.org/10.1007/978-3-030-13050-3_1

Introduction: Research Challenges in the Design Automation. . . vii

challenge, Chapter 2 presents a platform-based approach to deal with alternative
system architectures. The third research challenge is the interoperability among
CPS. Inspired by the hourglass-shaped architecture of the Internet, Chapter 3
presents a model-based approach for the engineering of networked CPS.

Part II: Testing and Operation

The testing phase is extremely challenging for design automation because the
combination of cyber and physical components in a CPS makes the state space
extremely large. While formal methods can be applied to cyber components, these
are not suitable for physics-based components. Similarly, simulation is useful to
explore the physics but does not address all the cyber concerns and the interactions
between the two domains. Further complicating matters, the use of artificial
intelligence and autonomy in CPS is pushing the limits of validation and verification
of CPS. Addressing this problem, Chapter 4 presents an approach using formal
methods to reason about the correctness of CPS applications using a combination
of bounded time reachability analysis, simulation-guided reachability analysis, and
deductive techniques.

During the operation phase, the CPS is deployed and interacting with its
environment. A major challenge to design automation is to establish a baseline on
the safe and correct behavior of the CPS. An important characteristic of this phase
is the generation of large amounts of data that can be leveraged for correctness
and safety. Chapter 5 addresses this research question with a data-driven safety
verification approach of CPS. The third research challenge is cybersecurity. The
interaction of the CPS with the environment creates exposures to known and
unknown attack vectors both cyber and physical. This represents an important
research question that Chapter 6 addresses with a model-based system assurance
approach for the design of cyber-resilient CPS.

Part III: Application-Specific Design Automation
Methodologies and Tools

Every CPS application domain such as manufacturing, healthcare, smart grid, and
energy storage has unique requirements that design automation must take into
account to be the most effective. For example, smart grids are very large CPS that
are distributed in large geographical areas, and their main function is to control
the energy demand response. Therefore, design automation tools for smart grids
have specialized in control. Chapter 7 presents the latest developments in optimal
design of distributed controllers for large-scale power grids. Similarly, healthcare
systems due to their safety-critical nature have very strict requirements on their

http://dx.doi.org/10.1007/978-3-030-13050-3_2
http://dx.doi.org/10.1007/978-3-030-13050-3_3
http://dx.doi.org/10.1007/978-3-030-13050-3_4
http://dx.doi.org/10.1007/978-3-030-13050-3_5
http://dx.doi.org/10.1007/978-3-030-13050-3_6
http://dx.doi.org/10.1007/978-3-030-13050-3_7

viii Introduction: Research Challenges in the Design Automation. . .

software and hardware. Chapter 8 presents model-based approaches to software
design of rehabilitation systems. The design automation of manufacturing parts has
been dominated by computer-aided design tools. Chapter 9 presents a deep learning
approach to reason about manufacturing parts. Many CPS are battery-operated, and
this presents unique challenges to the design automation tools. Chapter 10 presents
the latest developments in design automation tools for energy storage systems.

http://dx.doi.org/10.1007/978-3-030-13050-3_8
http://dx.doi.org/10.1007/978-3-030-13050-3_9
http://dx.doi.org/10.1007/978-3-030-13050-3_10

Contents

Part I Design and Engineering

1 Concept Design: Modeling and Synthesis from Requirements
to Functional Models and Simulation . 3
Jiang Wan, Nafiul Rashid, Arquimedes Canedo,
and Mohammad Abdullah Al Faruque

2 Platform-Based Design for Automotive and Transportation
Cyber-Physical Systems . 21
Chung-Wei Lin, Bowen Zheng, Hengyi Liang, and Qi Zhu

3 An Hourglass-Shaped Architecture for Model-Based
Development of Networked Cyber-Physical Systems 41
Muhammad Umer Tariq and Marilyn Wolf

Part II Testing and Operation

4 Formal Techniques for Verification and Testing
of Cyber-Physical Systems . 69
Jyotirmoy V. Deshmukh and Sriram Sankaranarayanan

5 Data-Driven Safety Verification of Complex Cyber-Physical
Systems . 107
Chuchu Fan and Sayan Mitra

6 System Assurance in the Design of Resilient Cyber-Physical
Systems . 143
Thomas A. McDermott, Arquimedes Canedo, Megan M. Clifford,
Gustavo Quirós, and Valerie B. Sitterle

ix

x Contents

Part III Application-Specific Design Automation Methodologies
and Tools

7 Optimal Design of Distributed Controllers for Large-Scale
Cyber-Physical Systems . 181
Amer Mešanović, Xiaofan Wu, Simone Schuler, Ulrich Münz,
Florian Dörfler, and Rolf Findeisen

8 Model-Driven Software Design Automation for Complex
Rehabilitation . 211
Pranav Srinivas Kumar and William Emfinger

9 Design Automation Using Structural Graph Convolutional
Neural Networks . 237
Sujit Rokka Chhetri, Jiang Wan, Arquimedes Canedo,
and Mohammad Abdullah Al Faruque

10 Design Automation for Energy Storage Systems . 261
Swaminathan Narayanaswamy, Sangyoung Park,
Sebastian Steinhorst, and Samarjit Chakraborty

Index . 287

Part I
Design and Engineering

Chapter 1
Concept Design: Modeling and Synthesis
from Requirements to Functional Models
and Simulation

Jiang Wan, Nafiul Rashid, Arquimedes Canedo,
and Mohammad Abdullah Al Faruque

1.1 Introduction

Cyber-physical systems (CPS) are the new generation of automated systems that
come with the tight coupling of the cyber and physical world. Examples include
automotive systems, smart grids, healthcare monitoring, robotics, etc. Unlike
embedded systems, which are generally standalone devices, a complete CPS is a
combination of interacting physical components with physical inputs and outputs,
forming a network using cyber components [27]. The main advantage of CPS is
that it allows different physical components from disparate domains to interact.
This flexibility brings new challenges for the design of CPS as it requires the
collaboration of multiple domain experts/engineers from different fields. On the
other hand, the competition among market peers and time-to-market of the products
requires faster design, simulation, development, and deployment of CPS. The
only way to meet these requirements is by developing integrated and automated
engineering tools. The purpose of these tools is to bring the design requirements of
CPS from different domains under one umbrella at the very early design stage.

J. Wan · N. Rashid (�) · M. A. Al Faruque
University of California, Irvine, Irvine, CA, USA
e-mail: nafiulr@uci.edu

A. Canedo
Siemens Corporate Technology, Princeton, NJ, USA

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_1&domain=pdf
mailto:nafiulr@uci.edu
https://doi.org/10.1007/978-3-030-13050-3_1

4 J. Wan et al.

1.1.1 Motivation

One of the most technologically advanced and complex cyber-physical systems
currently being produced is Automotive CPS. The traditional method of developing
automobiles with completely mechanically driven systems is obsolete nowadays.
Modern automobiles are now developed with the marriage of cyber and physically
driven systems. The cyber components consist of the networked systems [5] and the
software (electronic control units [ECUs]) that controls the physical components.
For example, hundreds of cooperating cyber components interacting with the multi-
physics physical processes in an automobile contribute to the rapid advances in
various areas such as safety, fuel consumption, efficiency, etc. Multiple domain
experts from various organizations collaborate to design a modern automobile,
which can consist of hundreds of ECUs [1, 13]. It is a challenging task for companies
to collaborate to improve the automotive design process. Therefore, it is important
to create design automation tools to facilitate multi-disciplinary collaboration [15].

The objective of developing state-of-the-art automotive design tools is to reduce
the critical path [45]. The detailed design phase [7, 22, 41] that includes precise
engineering specifications created by the domain experts is called the critical path.
Engineers from every domain have their preferred design tools to work with. For
example, control engineering is done using LabView [25], LMS [28], Model-
ica [31], and Matlab/Simulink [39]; electrical engineers use Electronic Design
Automation (EDA) design tools; mechanical engineering is supported by Computer-
Aided Design (CAD) and Engineering (CAE) tools; and software engineers use
UML [30] and in-house software development environments [9]. However, the
incompatibility between different domains has made it difficult to combine these
tools to perform system-level analysis and simulations [17]. Therefore, model-based
systems engineering (MBSE) methodologies and tools [19] have become more
popular as they allow high-fidelity multi-disciplinary system-level simulations.

1.1.2 Functional Modeling

A functional model decouples the design specifications (functions) of the systems
from the behavior and/or architecture and reflects what each system does. Detailed
domain-specific knowledge is discouraged in a functional model. Thus, it facilitates
collaboration among different disciplines, bringing the domain experts’ minds to the
same level of abstraction [45]. The high abstraction level in the functional models
makes them a suitable formalism for CPS design. Functional models abstract the
details of the continuous and discrete dynamics of CPS and allow cross-domain
collaboration [22, 41, 44]. Moreover, functional modeling is a systems engineering
activity [18] that allows systems and their subsystems to be described in terms of
their respective functionalities. Although functional models are very useful, they
may have additional security issues which are not within the scope of this chapter.

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 5

Various researchers have addressed the inherent security issues in CPS design as a
whole [2] and at the functional level [43].

To adopt the use of functional models as a system engineering practice, the
formalization of a functional model [21, 35] is very important. To facilitate that,
the Functional Basis language [21, 40] has been successfully implemented for
function decomposition in the early design stage [10, 24, 36, 46]. The use of
a constrained vocabulary as well as well-defined functions and flow semantics
may help establish the functional modeling practice among different designers.
Thus, it allows them to rely on the same language to design and analyze systems.
As a result, Functional Basis language has become the de-facto standard for
functional modeling [34]. Functional Basis defines three flow categories (material,
energy, and signal) that expand into a total of 18 flow types, and 8 function
categories with a total of 32 primitive functions as presented and discussed in
[45]. Although Functional Basis language has been successfully used to provide
a common platform of communication among different domain experts, the current
major research challenge is making it executable for performing extensive design
space exploration. Therefore, generating an executable system-level model from the
functional model to perform design space exploration is essential for the adoption
of this methodology in industry [45]. The functional model has already been used to
synthesize architecture for automotive design [20]. However, this synthesis process
is not automatic and does not utilize the functional model to help the design
space exploration at the architecture level. Notably, an earlier work [12] has also
demonstrated the possibility of using Functional Basis language to enable the early
stage design automation for CPS.

1.1.3 Simulation in CPS

To design, validate, and test complex systems like CPS, simulation is widely used
during the early design stage across industries. Simulations allow the engineers to
analyze systems virtually in the cyber domain instead of implementing an actual
prototype of these systems in the physical domain. Thus, simulations are quite cost-
effective and efficient for the early design stage evaluation of the systems.

There are many state-of-the-art design automation tools [4, 28] that use various
system simulation languages. For example, VHDL-AMS [14], Simscape [38], and
Modelica [31] are some of the system simulation languages that allow modeling and
simulation of multi-disciplinary systems. However, the lack of early stage design
tools causes the simulation models to be generated manually by the domain experts.
This manual process is very time consuming and less effective for multi-disciplinary
systems as each of the disciplines has their own domain-specific tools and language.
Although, SysML [33] is proposed as a domain-independent system-level modeling
language [3, 23, 46], it has limitations in terms of expressing and executing those
models [6].

6 J. Wan et al.

This chapter discusses a novel approach mentioned in [45] for the creation
of CPS design tools. Throughout the chapter, we will use automotive CPS and
its related terms as an example of CPS. The rest of the chapter is organized as
follows: Section 1.2 presents the detailed implementation of a functional model
synthesis tool [45] that enables directly selecting architectures and generating high-
fidelity multi-disciplinary simulation models from a functional model. Furthermore,
Sect. 1.2.1 discusses the feedback function to facilitate the generation of closed loop
system-level simulation models, an essential concept for control, software, sensors,
and actuators of a CPS. Sections 1.2.2.4 and 1.2.3 present the detailed implemen-
tation of the synthesis tool in two separate steps. Section 1.2.2.4 discusses the
contextualization-based mapping technique that translates functions to architecture
components based on the contextualization of the components and (feedback) flows.
Section 1.2.3 discusses the technique to generate the corresponding simulation
models from the selected architectures. Section 1.2.4 presents the refinement process
used to generate the high-fidelity simulation models. An example evaluation of a
CPS use case is presented in Sect. 1.3 to demonstrate the usability of the discussed
functional model synthesis tool. Finally, Sect. 1.4 concludes the chapter.

1.2 Functional Model Synthesis Tool

The main objective of the functional model synthesis tool is to support the automatic
generation of CPS simulation models from the functional models. A functional
model is a labeled directed multigraph, where each node is a function in the model
and each edge represents the flow from source to target node. On the other hand,
a simulation model is a strongly typed component with well-defined CPS ports
and connectors that obey the energy conservation principles in various domains and
allow components to exchange physical energy and data. The generated simulation
models are comparable to the manual selection as done by the experts.

This chapter capitalizes on the method [45] that exploits the key insights of
the two approaches mentioned in [11, 12]. In [11], researchers have developed
a context-sensitive mapping technique to synthesize general purpose low-fidelity
simulation models without leveraging any domain-specific knowledge. In [12], they
have developed a high-level synthesis technique that utilizes the domain-specific
knowledge in automotive architectures to generate medium fidelity simulation mod-
els. Combining the strength of these two approaches, researchers in [45] developed
a novel functional model synthesis tool for synthesizing high-fidelity multi-domain
CPS simulation models. The overall design flow of the tool is presented in Fig. 1.1.
The feedback function and architecture templates used in the tool provide the
basis for an architecture-driven mapping of functions to components. This mapping
is further contextualized by the context-sensitive synthesis technique to generate
simulations.

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 7

Fig. 1.1 The design flow of the functional model synthesis tool [45]

1.2.1 Feedback Function

In principle [35], a function is a process applied to an input flow to produce an
output flow. That is why most functional models lack feedback information. With
the approach mentioned in this chapter, when the functional model is transformed
into a system-level simulation model, the synthesis technique applies design rules
to create feedback of flows and components with the help of a feedback function as
a complementary to the Functional Basis language. Figure 1.2 shows the syntax
and semantics of the proposed feedback function. The feedback function has 2
properties: (1) The syntax feeds back a flow produced by a successor function to
a predecessor function (a function executed earlier in time relative to a successor);
(2) The semantics define the reuse or returning of material, energy, or signal flow to
a predecessor function.

1.2.2 Synthesizing Architecture Models

As shown in Fig. 1.1, once the functional model is ready, the next step is to
synthesize it into architecture models. The researchers from electronic design

8 J. Wan et al.

Fig. 1.2 Feedback function can be visualized as a flow from a successor to a predecessor function
[45]

automation refer the architecture-based design also as platform-based design [42]. It
allows the collaborative development of complex systems across different organiza-
tions [8]. The reusability of components offered by these architectures/platforms
saves billions of dollars for the companies annually [16]. The method uses the
existing knowledge of architectures to develop the architecture synthesis technique
of the functional model synthesis tool. The architecture synthesis method supports
the early design stage by synthesizing all the system-level potential architectural
solutions that satisfy the design intent depicted by the designer in the functional
model.

An architecture component is a pair of functional model, and a list of
constraints that specify relevant architectural parameters and properties such as the
number of cylinders in an engine and data path width in an ECU. An architecture
template is a multigraph, where each node is an architecture component, and each
edge is the connector connecting the source component and target component.
Each of the architecture components is associated with a list of constraints that
this architecture must meet. An architecture library consists of two sub-libraries,
where one sub-library is a collection of architecture components and another is
a collection of architecture templates. And user given requirements is a set of
requirements expressed in temporal logic that determine the expected system’s
characteristics.

The architecture synthesis technique uses the architecture library, composed
by architecture components and templates, to allocate functions to candidate
architectures. The functional model created using the Functional Basis language
allows the functional model synthesis tool to validate the design contracts [37]
because the interfaces are strongly typed and can be mapped to CPS contexts (i.e.,

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 9

electrical, mechanical, signals, etc.) [11]. As a result, the contextualization-based
mapping technique is used for mapping functional models to candidate architectures
in the following subsections.

1.2.2.1 Contextualization Based on Input/Output Flows

In order to reliably generate high-quality simulation models, finding the correct
function-to-component mapping for a given functional model is very important.
Therefore, every function within the functional model of a CPS must be contex-
tualized by its input and output flows. Two types of flows are defined for every
function: primary and secondary. Primary flows are the flows that are inherent to a
given function. The primary flows are fixed for every function, and they add no new
information to the system. Therefore, for flow-contextualization, secondary flows
are necessary. Secondary flows are the non-essential inputs/outputs of a function.
Secondary flows reduce the many-to-many function-to-component relation down to
a one-to-one mapping.

1.2.2.2 Contextualization Based on Components

The system-level components provided by academic and commercial libraries [26,
31, 32] are reusable but are not sufficient for automatic synthesis (which is explained
in detail in Sect. 1.2.4.2). Therefore, to automatically generate the correct simulation
models, it is very important to define the level of component granularity required
by the synthesis techniques. For example, each simulation component (such as
Modelica) defines both the structure (i.e., a capacitor) and its dynamic behavior
using differential equations. Additionally, a component’s connectors (or ports)
specify the equations to honor energy conservation principles. Finally, components
have an annotation field that can be used to store information about the component
such as its documentation or icon.

The name-space of the component in a library is used to classify its domain
(e.g., Modelica.Electrical.Analog.Basic and Modelica.Mechanics.Components) and
to locate the component (e.g., resistor and damper). Since the technique works at
the component level, the equations and behaviors associated with the component
are never modified. The type of connectors in a component is used to determine
the correct physical interface and generate compliant simulation models. Connector
types are also useful to generate the energy conservation laws when a feedback
function relates various components. A component’s annotation field can be used as
the means to associate and store the mappings of components-to-functions. Given
the required level of component granularity, this technique imports the functions
of a functional model and builds an abstract syntax tree to access a component’s
connectors, equations, techniques, and annotations during the mapping process.

10 J. Wan et al.

Fig. 1.3 A context tree for the “Convert” function of the automotive system

1.2.2.3 Context-Sensitive Mapping of Functions to Components

Context-sensitive mapping enables the mapping from functions to components. The
mapping requires a specific function, a functional model, and a set of potential com-
ponents to be mapped as input. First, it parses the input components into an abstract
syntax tree (AST), where equations, techniques, connectors, and annotations are
accessible for the technique. One context tree may be built for each function while
mapping the input function to the component (an example of the context tree is
shown in Fig. 1.3). Based on the context given by the function’s signature (root
node) and the secondary input/output flows (inner nodes), the realization mechanism
may be deduced from basic engineering principles and added as the leaf nodes. The
context tree may then be traversed (starting at the root) to create a path according
to the existing secondary flows and the appropriate realization mechanism. This
path may represent the flow-based contextualized function and all the functions and
flows in the path may be mapped to the input components, thus may create a set of
appropriate mapping. The details of the context-sensitive mapping may be found in
[45] along with the pseudo code of the mapping technique.

1.2.2.4 Function to Architecture Synthesis

With the help of the context-sensitive mapping technique, the high-level synthesis
technique may be developed for synthesizing functional model to architectural
models. Given a functional model and the user-defined requirements as inputs,
the objective of the function to architecture synthesis technique is to find the set
of architecture templates in architecture library that fully or partially map to the
functional model.

The function to architecture synthesis technique will generate both full and
partial mappings from a functional model into a set of architecture templates based
on the knowledge contained in the architecture library. The synthesis technique

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 11

may also provide top-down and bottom-up refinements as design suggestions for
functional model and architecture templates. The synthesis technique may perform
a branch and bound synthesis [29] as follows: First, it can prune the selection of
architecture templates whose constraints do not meet the requirements. Based on
the selected architecture templates, it will aggregate the maximum possible mapping
from functional model to architecture templates using the context-sensitive mapping
technique.

After the architecture template design space has been expanded, the synthesis
technique will perform a multi-step pruning process on each architecture template.
Once the pruning is done, the synthesis technique will refine all partial mappings
in a top-down manner. And the bottom-up refinement can be done on the functions
that exist on the selected architecture templates but not in the functional model.
The details of the refinement process are presented in Sect. 1.2.4. The refinement
suggestions can help the designers to increase the fidelity of the original functional
model. The details of the function to architecture synthesis technique can be found
in [45] along with the pseudo code.

1.2.3 Architecture to Simulation Model Synthesis

Once the candidate architectures have been identified from the functional models
using the function to architecture synthesis technique, the next step is to generate
the corresponding simulation models.

The architecture to simulation model synthesis technique will generate simu-
lation models for all the architecture-mapped functional models identified by the
function to architecture synthesis technique. First, it will broaden the simulation
design space for each of the architecture templates generated in Sect. 1.2.2.4.
Whenever an architecture-mapped function cannot be mapped to any simulation
component, a top-down refinement of simulation models may be constructed (see
details of the refinement process in Sect. 1.2.4). Then, it will expand the simulation
design space by creating individual simulation models for all possible combinations
of simulation components that match an architecture-mapped functional model.
Finally, it will add connections to every model according to the topology in their
corresponding architecture component. Interested readers may refer to [45] for the
details of the synthesis technique.

1.2.4 Process of Refinement

Designing CPS is a complex process that involves multiple iterations. For example,
in automotive CPS one design is refined multiple times by multiple personnel
from various organizations. The synthesis technique presented in this chapter
supports the refinement of the low-fidelity functional models to achieve high fidelity.

12 J. Wan et al.

For example, after the initial candidate architectures have been identified, the
architecture models may contain a set of functions that are not modeled in the
original functional model. Thus, a refined functional model can be created by back-
propagating this architecture information to the functional model. This refinement
is referred to as bottom-up refinement as information is being propagated from a
lower level of abstraction (architecture) to a higher level of abstraction (functions)
to achieve high fidelity. The level of fidelity is the amount of qualitative and
quantitative information that can be obtained from a model. On the other hand,
incompleteness of a model is the lack of fidelity necessary to answer a specific
engineering question. And, refinement is the process by which the level of fidelity
of a model is increased to make it less incomplete, and thus the ability to answer
more detailed engineering questions.

1.2.4.1 Top-down Refinement Process

As the name implies, a top-down refinement increases the level of fidelity by
propagating the information from a higher level of abstraction (functions) to a
lower level of abstraction (architecture). For example, sometimes a functional model
contains a set of functions that are not fulfilled by any of the components in
the architecture library. To satisfy those functional requirements of that particular
functional model, a new architecture component with the relative complement of the
functions is created by the new architecture component in the architecture library.

1.2.4.2 Bottom-up Refinement Process

The bottom-up refinement analyzes the ports and interface of a simulation compo-
nent to determine the functions automatically. In addition to that, the flow (energy,
material, and signals) transformations occurring within the component’s internal
structure is also determined. Using the functions performed by the simulation
components, the bottom-up step classifies the components in a library. Thus, it
helps to achieve a correlation between functions, architectures, and simulation
components that design tools may use to synthesize simulation models for candidate
system architectures.

The type of energy, material, or signals that one component exchanges with
another through its ports can be obtained using the components’ interface analysis.
The interface analysis infers the functions achieved by a given simulation compo-
nent as shown in Fig. 1.4. For example, the Electric Motor component has three
ports: thermal, electrical, and rotational mechanical energy. Typically, conjugate
variables that represent effort/flow are used to exchange energy between the sim-
ulation components. Electrical energy, rotational mechanical energy, and thermal
energy are represented by the conjugate variables’ voltage/current, torque/angular
velocity, and temperature/heat flow, respectively. As the relationship between the
functional level and simulation component level energy is known, the technique

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 13

Fig. 1.4 Extraction of functions from simulation components [45]

Fig. 1.5 Structural analysis on simulation components reveals additional domains and the energy,
material, and signal transformations between them [45]

determines that the Electric Motor is able to perform the function of “Convert”
energy from any port to the other ports. This leads to six inferred functions.

Sometimes, this technique also performs a structural analysis—a hierarchical
traversal and flattening—of the internal simulation component structure to expose
all the domains (e.g., electrical, mechanical, thermal, signals, etc.) that are not
visible through the interface of the simulation components. Figure 1.5 shows how

14 J. Wan et al.

structural analysis helps to expose all the domains revealing the invisible functions.
Interested readers can refer to [45] to know the details about the structural analysis.

1.3 Evaluation of Functional Model Synthesis Tool

This section presents a real-world automotive case study as introduced in [45].
The case study demonstrates the effectiveness of functional model synthesis tool to
synthesize the multi-domain simulation model using the cyber-physical aspects of a
functional model. The tool generates the simulation models automatically using the
existing architecture knowledge after evaluating different candidate architectures of
designing an engine system. It also demonstrates how the feedback function and
the refinement process help to generate the high-fidelity multi-domain simulation
models.

1.3.1 Architecture Model Synthesis

Figure 1.6 represents the functional model of the engine system. Using the
architectural templates shown in Fig. 1.7, the functions (blocks) and flows (arrows)
can be naturally mapped to the main subsystems of an automotive system . For
example, the function “convert chem. energy to rot. mech. energy” can be mapped
to an Engine ICE, Series Hybrid, and Parallel Hybrid architectures.

Table 1.1 shows the user-defined requirements and Table 1.2 shows the con-
straints for five automotive architecture templates. The function to architecture
synthesis technique in Sect. 1.2.2.4 eliminates the third constraint of minimum price
(Electric Fuel Cell) from the architectural design space as it violates user-defined
requirements maximum price. Furthermore, the synthesis technique also eliminates

Fig. 1.6 An example functional model of an automotive power-train, associated requirements, and
architectural constraints [45]

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 15

Fig. 1.7 Architecture templates for the engine block [45]

Table 1.1 User-defined
requirements

Description Value

Minimum energy efficiency 35%

Maximum weight 2000 kg

Maximum price $40,000

Table 1.2 Constrain list of architecture templates

Description ICE Series hybrid Parallel hybrid Electric EFCa

Max. energy efficiency 20% 37% 37% 60% 50%

Min. total weight 2000 kg 2000 kg 2000 kg 2000 kg 2000 kg

Min. price $20,000 $30,000 $30,000 $30,000 $50,000

Input energy Chem. Chem., Elec. Chem., Elec. Elec. Elec.

Output energy Mech. Mech. Mech. Mech. Mech.

Energy price $3/gallon $0.23/kWh $0.23/kWh $0.23/kWh $0.15/kWh
aEFC electric fuel cell

the Electric architecture template because neither “Store EE” nor “Convert EE to
RME” functions exist in the functional model. It is to note that the ICE architecture
template fully matches the functional model, whereas the Series Hybrid and Parallel
Hybrid templates partially match the functional model.

16 J. Wan et al.

1.3.2 Simulation Model Synthesis

Functional models support the technology-independent design requirements. More-
over, the functional model synthesis tool uses the design requirements to facilitate
the automatic generation of simulation models for different architectures that
satisfy those design requirements. For example, a software engineer may create
a functional model to design the engine control system (ECU and its control
software) represented by the “Sense” and the “Control” functions as shown in
Fig. 1.6. However, the software engineer might be able to do so with a very minimal
knowledge of mechanical engineering.

1.3.3 Feedback Function’s Usability

The two feedback functions shown in Fig. 1.6 are used as an additional support to
the Functional Basis language [45]. Researchers in [45] designed a functional model
of an engine system using only Functional Basis language and without the feedback
function. The intention is to demonstrate the usability of the feedback functions.
Then that functional model is synthesized using the functional model synthesis
tool to generate the simulation models for the ICE architecture. Simulation models
are synthesized from both functional models (with feedback and without feedback
function) and their performances are compared. The fuel consumption is much less
with feedback functions compared to the one without feedback functions as shown
in Fig. 1.8. Furthermore, Fig. 1.9 demonstrates that engine models synthesized with
feedback functions generate much less emissions (CO, NOx, and HC) as compared
to the ones without the feedback functions. The reason is, the feedback functions
are mapped to additional control units which cause more efficient use of the engine.

Fig. 1.8 Comparison of the fuel consumption between the synthesized simulation models
with/without “Feedback” [45]

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 17

Fig. 1.9 Comparison of emissions between the simulation models with/without “Feedback” [45]

Fig. 1.10 Bottom-up refinement of a functional model [45]

1.3.4 Refinement Process Analysis

The usefulness of the bottom-up refinement of the discussed methodology is
illustrated in Fig. 1.10. As shown in Fig. 1.6, original functional model does not
have the functions “Convert RME to EE,” “Convert EE to RME,” and “Store
EE.” However, the function to architecture synthesis technique in Sect. 1.2.2.4
generates the partial mappings to architectures (ICE, Hybrid, and Electric) and
system engineers get the refined functional models suggestions. For example, new
functions such as “Convert RME to EE,” “Store EE,” and “Convert EE to RME”
are created using the Hybrid architecture mapping. The number of functions in the
refined functional models generated from three different mappings is presented in
Fig. 1.11.

18 J. Wan et al.

Fig. 1.11 Number of functions in the refined functional models [45]

1.4 Conclusion

This chapter discusses the role of functional models in the design and development
of CPS. It starts by creating the functional model from design requirements.
Moreover, the chapter emphasizes the design automation techniques that automat-
ically generate high-fidelity multi-domain simulation models from the functional
model. The functional model synthesis tool [45] as discussed in this chapter takes
the advantage of existing architectures’ knowledge to develop other candidate,
architecture-specific simulation models for complex CPS and facilitates early design
space exploration. For the detailed implementation of the tool, the concept of
a “Feedback” function [45] is also discussed to capture feedback flows that are
essential for complex systems using control, software, sensors, and actuators. A
context-sensitive mapping technique is also discussed to construct an appropriate
engineering context that facilitates the selection of function-to-component mappings
by considering the surrounding flows of a function. Moreover, a refinement process
is also discussed that backpropagates the results as design suggestions to the system-
level designers. Finally, the usability of the discussed functional model synthesis
tool is presented using an automotive engine system.

References

1. Abelein, U., Lochner, H., Hahn, D., & Straube, S. (2012, March). Complexity, quality and
robustness-the challenges of tomorrow’s automotive electronics. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2012 (pp. 870–871). Piscataway: IEEE.

1 Concept Design: Modeling and Synthesis from Requirements to Functional. . . 19

2. Al Faruque, M., Regazzoni, F., & Pajic, M. (2015, October). Design methodologies for
securing cyber-physical systems. In Proceedings of the 10th International Conference on
Hardware/Software Codesign and System Synthesis (pp. 30–36). New York: IEEE Press.

3. Alvarez Cabrera, A. A., Erden, M. S., & Tomiyama, T. (2009). On the potential of function-
behavior-state (FBS) methodology for the integration of modeling tools. In Proceedings of the
19th CIRP Design Conference Competitive Design. Bedford: Cranfield University Press.

4. ANSYS Tool Kits for Automotive Solutions. http://www.ansys.com/Industries/Automotive/
5. AUTOSAR Automotive Open System Architecture. https://www.autosar.org/
6. Bassi, L., Secchi, C., Bonfe, M., & Fantuzzi, C. (2011). A SysML-based methodology for

manufacturing machinery modeling and design. IEEE/ASME Transactions on Mechatronics,
16(6), 1049–1062.

7. Boucher, M., & Houlihan, D. (2008). System design: New product development for mechatron-
ics. Boston: Aberdeen Group.

8. Broy, M., Gleirscher, M., Kluge, P., Krenzer, W., Merenda, S., & Wild, D. (2009). Automotive
architecture framework: Towards a holistic and standardised system architecture description.
White paper. IBM Corporation. Technical Report, Technische Universität München. TUM-
I0915.

9. Broy, M., Kruger, I. H., Pretschner, A., & Salzmann, C. (2007). Engineering automotive
software. Proceedings of the IEEE, 95(2), 356–373.

10. Bryant, C. R., Stone, R. B., McAdams, D. A., Kurtoglu, T., & Campbell, M. I. (2005). Concept
generation from the functional basis of design. In ICED 05: 15th International Conference
on Engineering Design: Engineering Design and the Global Economy (p. 1702). Barton:
Engineers Australia.

11. Canedo, A., Schwarzenbach, E., & Al Faruque, M. A. (2013, April). Context-sensitive
synthesis of executable functional models of cyber-physical systems. In Proceedings of the
ACM/IEEE 4th International Conference on Cyber-Physical Systems (pp. 99–108). New York:
ACM.

12. Canedo, A., Wan, J., & Al Faruque, M. A. (2014, November). Functional modeling compiler
for system-level design of automotive cyber-physical systems. In 2014 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), (pp. 39–46). Piscataway: IEEE.

13. Charette, R. N. (2009). This car runs on code. IEEE Spectrum, 46(3), 3.
14. Christen, E., & Bakalar, K. (1999). VHDL-AMS-a hardware description language for analog

and mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 46(10), 1263–1272.

15. Cooprider, A. (2014). Automotive embedded systems tutorial-part I. In Proceedings of the 51th
Design Automation Conference, DAC (Vol. 2014).

16. Dahmus, J. B., Gonzalez-Zugasti, J. P., & Otto, K. N. (2001). Modular product architecture.
Design Studies, 22(5), 409–424.

17. Derler, P., Lee, E. A., & Vincentelli, A. S. (2012). Modeling cyberphysical systems. Proceed-
ings of the IEEE, 100(1), 13–28.

18. Erden, M. S., Komoto, H., van Beek, T. J., D’Amelio, V., Echavarria, E., & Tomiyama, T.
(2008). A review of function modeling: Approaches and applications. Ai Edam, 22(2), 147–
169.

19. Fortney, G. (2014, August). Model based systems engineering using validated executable
specifications as an enabler for cost and risk reduction. In Proceedings of the 2014 Ground
Vehicle Systems Engineering and Technology Symposium (GVSETS).

20. Helms, B., & Shea, K. (2012). Computational synthesis of product architectures based on
object-oriented graph grammars. Journal of Mechanical Design, 134(2), 021008.

21. Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., & Wood, K. L. (2002). A functional basis
for engineering design: Reconciling and evolving previous efforts. Research in Engineering
Design, 13(2), 65–82.

http://www.ansys.com/Industries/Automotive/
https://www.autosar.org/

20 J. Wan et al.

22. Komoto, H., & Tomiyama, T. (2012). A framework for computer-aided conceptual design
and its application to system architecting of mechatronics products. Computer-Aided Design,
44(10), 931–946.

23. Kruse, B., Mnzer, C., Wlkl, S., Canedo, A., & Shea, K. (2012, August). A model-based
functional modeling and library approach for mechatronic systems in SysML. In ASME 2012
International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference (pp. 1217–1227). New York: American Society of Mechanical
Engineers.

24. Kurtoglu, T., & Campbell, M. I. (2009). Automated synthesis of electromechanical design
configurations from empirical analysis of function to form mapping. Journal of Engineering
Design, 20(1), 83–104.

25. LabVIEW System Design Software. http://www.ni.com/labview/
26. Lawrence Berkeley National Laboratory - Modelica Buildings Library. http://

simulationresearch.lbl.gov/modelica
27. Lee, E. A. (2008, May). Cyber physical systems: Design challenges. In 11th IEEE Symposium

on Object Oriented Real-Time Distributed Computing (ISORC) (pp. 363–369). Piscataway:
IEEE.

28. LMS Imagine.Lab AMESim. http://www.lmsintl.com/
29. McFarland, M. C., Parker, A. C., & Camposano, R. (1990). The high-level synthesis of digital

systems. Proceedings of the IEEE, 78(2), 301–318.
30. Mellor, S. J., Balcer, M., & Foreword By-Jacoboson, I. (2002). Executable UML: A foundation

for model-driven architectures. Boston: Addison-Wesley Longman Publishing Co.
31. Modelica Association, Modelica Standard Library. https://modelica.org/libraries/Modelica/
32. Modelon - Vehicle Dynamics Library. http://www.modelon.com/
33. OMG Systems Modeling Language (SysML). http://www.omgsysml.org/
34. Oregon State University, Design Engineering Lab, Design Repository. http://

designengineeringlab.org/
35. Pahl, G., & Beitz, W. (2013). Engineering design: A systematic approach. New York: Springer

Science & Business Media.
36. Rudov-Clark, S. D., & Stecki, J. (2009, March). The language of FMEA: On the effective

use and reuse of FMEA data. In Sixth DSTO International Conference on Health & Usage
Monitoring (pp. 9–12).

37. Sangiovanni-Vincentelli, A., Damm, W., & Passerone, R. (2012). Taming Dr. Frankenstein:
Contract-based design for cyber-physical systems. European Journal of Control, 18(3), 217–
238.

38. Simscape. http://www.mathworks.com/products/simscape/
39. Simulink. http://www.mathworks.com/products/simulink/
40. Stone, R. B., & Wood, K. L. (2000). Development of a functional basis for design. Journal of

Mechanical Design, 122(4), 359–370.
41. Uckun, S. (2011). Meta II: Formal co-verification of correctness of large-scale cyber-physical

systems during design. Palo Alto Research Center, Technical Report, 1–43.
42. Vincentelli, A. S. (2002). Defining platform-based design. EEDesign of EETimes.
43. Wan, J., Canedo, A., & Al Faruque, M. A. (2015, September). Security-aware functional

modeling of cyber-physical systems. In 2015 IEEE 20th Conference on Emerging Technologies
& Factory Automation (ETFA) (pp. 1–4). Piscataway: IEEE.

44. Wan, J., Canedo, A., & Al Faruque, M. A. (2017). Cyberphysical codesign at the functional
level for multidomain automotive systems. IEEE Systems Journal, 11(4), 2949–2959.

45. Wan, J., Canedo, A., & Al Faruque, M. A. (2017). Functional model-based design methodology
for automotive cyber-physical systems. IEEE Systems Journal, 11(4), 2028–2039.

46. Wolkl, S., & Shea, K. (2009, January). A computational product model for conceptual design
using SysML. In ASME 2009 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (pp. 635–645). New York: American
Society of Mechanical Engineers.

http://www.ni.com/labview/
http://simulationresearch.lbl.gov/modelica
http://simulationresearch.lbl.gov/modelica
http://www.lmsintl.com/
https://modelica.org/libraries/Modelica/
http://www.modelon.com/
http://www.omgsysml.org/
http://designengineeringlab.org/
http://designengineeringlab.org/
http://www.mathworks.com/products/simscape/
http://www.mathworks.com/products/simulink/

Chapter 2
Platform-Based Design for Automotive
and Transportation Cyber-Physical
Systems

Chung-Wei Lin, Bowen Zheng, Hengyi Liang, and Qi Zhu

Acronyms

ADAS Advanced driver assistance systems
AUTOSAR Automotive open system architecture
CACC Cooperative adaptive cruise control
CAN Controller area network
ECU Electronic control units
OEM Original equipment manufacturer
PBD Platform-based design
TDMA Time division multiple access
TSN Time-sensitive networking
V2V Vehicle-to-vehicle
V2X Vehicle-to-X

C.-W. Lin (�)
National Taiwan University, Taipei, Taiwan
e-mail: cwlin@csie.ntu.edu.tw

B. Zheng
University of California, Riverside, CA, USA

H. Liang · Q. Zhu
Northwestern University, Evanston, IL, USA

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_2&domain=pdf
mailto:cwlin@csie.ntu.edu.tw
https://doi.org/10.1007/978-3-030-13050-3_2

22 C.-W. Lin et al.

2.1 Platform-Based Design Methodology for Connected
Vehicles

Automotive design has become more complex than ever due to the rapid devel-
opment of connected and autonomous technology. This trend affects not only the
design of individual vehicles but also the operation of entire vehicular transportation
system, through connected vehicle applications such as intelligent traffic signals,
collaborative adaptive cruise control (CACC), and vehicle platooning. The safety-
critical nature of these systems makes it essential to rigorously ensure functional
correctness and to quantitatively evaluate system metrics throughout the design pro-
cess and across all system layers. In this chapter, we will introduce the application of
the platform-based design (PBD) paradigm in connected vehicles. We will present
how the principles of the PBD paradigm, in particular the definition of platforms
and the mapping between functional and architectural platforms, may be carried out
across the system layers, from connected vehicle applications to individual vehicle
functionality, and then to in-vehicle software, hardware, and physical layers.

2.1.1 Design Challenges for Connected Vehicles

In the following, we will first introduce some of the major challenges for connected
vehicles, and then outline how the PBD paradigm may be applied to their design.

• Addressing high-volume and dynamic input data: The size of a signal in
conventional control systems is usually not very large. It can be only a binary
to indicate “on” or “off” of a component, or several bytes to represent the value
of a measurement. However, for advanced driver assistance systems (ADAS)
and autonomous functions in modern vehicles, the inputs from lidars, radars,
cameras, and other sensors could induce much larger data at a high input data
rate. For example, an advanced lidar can have input data rate that is up to
100 Mbps, which far exceeds the capacity of currently prevalent in-vehicle bus
protocol, the controller area network (CAN), and the processing capability of
current electronic control units (ECUs). Moreover, such input data rate may
significantly vary under different road conditions, moving speed, and light
intensity, which presents further challenges to the system design, as detailed
below.

• Computation architecture design: High-volume and dynamic input data has
a significant impact on the design of the computation platform. Should system
designers add more ECUs or upgrade existing ECUs to more powerful ones for
handling the data? What types of new computation elements such as GPUs,
FPGAs, or ASIC accelerators are needed? Can the computation architecture
be dynamically adapted to handle the changing data rate? Answering these
questions requires the development of new design methodologies.

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 23

• Communication architecture design: To address the high-volume and dynamic
input data, original equipment manufacturers (OEMs) have been exploring new
in-vehicle communication architectures such as those based on the Ethernet
protocol. However, systematic methodologies are still greatly needed to meet the
data processing requirements. Furthermore, the new communication protocols,
including both in-vehicle protocols and inter-vehicle protocols for vehicle-to-
everything (V2X) communication, should be carefully designed and integrated
with the conventional protocols that are still important for conventional/legacy
components. The integration of different protocols also relies on the design and
analysis of gateways, which further increase the design complexity.

• Topology design: As there are different protocols and multiple network devices
in an automotive system, it is not trivial to decide the connection of sensors,
actuators, and ECUs to network devices. The decisions are constrained by design
requirements and affected by the trade-offs between performance, cost, and even
wiring weight. Furthermore, the topology should follow the harness and routing
graph in an automotive system and is often challenging to design.

• Safety: Automotive systems are safety-critical systems, and there are many
constraints that have to be met for ensuring system safety. For instance, the end-
to-end latency from detecting sensor input to applying control often has to meet
a strict deadline, which requires rigorous worst-case analysis based on formal
mathematical models. However, with the increase of functional and architectural
complexity, accurately building those models and conducting worst-case analysis
has become increasingly challenging.

• Reliability: The reliability of automotive systems relies on many factors, such as
the fault-tolerant and redundant architectures for single-point-of-failures. Several
protocols such as the time-sensitive networking (TSN) support replications and
eliminations (if redundant at destinations) of frames. As shown in Fig. 2.1, these
operations can increase the reliability of communication, but they also induce
higher costs and more communication traffic. Furthermore, they require mul-
tiple routing paths, which makes topology design more challenging. Similarly,
redundant ECUs may increase the reliability of computation, but they also lead
to higher costs and design complexity.

lower cost
lower reliability

higher switch load

higher cost
lower reliability

lower switch load

higher cost
higher reliability

higher switch load

Fig. 2.1 The trade-off between cost, reliability, and switch performance in automotive design

24 C.-W. Lin et al.

• Security: System security is a rising issue for automotive systems. It requires a
cross-layer solution that includes security mechanisms compatible with existing
V2X communication protocols, lightweight security mechanisms within individ-
ual vehicles, and component-level security mechanisms. Due to tight resource
constraints and stringent design requirements, security should be considered
from the beginning of the design process; otherwise, it is often too late or
impossible to add security at late stages.

2.1.2 Mapping Problems for Connected Vehicles

We propose the PDB methodology to address these growing design challenges of
connected vehicles. The key idea of PBD is to capture the system with a number
of abstraction layers called platforms, and divide the complex design process into
a series of mappings from higher-layer to lower-layer platforms. The mapping
between two platform layers is, in fact, a design space exploration process, where
different options (abstracted as design variables) for implementing the high-layer
platform model (i.e., “functionality”) on the lower-layer platform components
(i.e., “architecture”) are explored with respect to a set of design objectives and
constraints.

Figure 2.2 shows how the design of connected vehicles can be addressed with the
PBD paradigm as a series of mapping problems across platform layers, including
mapping connected vehicle applications to vehicle functionality, mapping vehicle
functionality to software tasks, mapping software tasks to hardware components,
and mapping hardware components to physical layout.

2.2 Mapping Connected Vehicle Applications to Vehicle
Functionality

In the following sections, we will go through some representative problems for
each of these mapping problems. At the top layer, the PBD paradigm is applied
to the mapping from connected vehicle applications, such as cooperative adaptive
cruise control (CACC), lane merging, and autonomous intersection, to functionality
of individual vehicles. The mapping problem can be formulated as follows:

• Platforms: (1) The higher-layer platform is captured by the models of connected
vehicle applications, such as CACC and autonomous intersections; and (2) the
lower-layer platform includes the models of individual vehicles in both the cyber
domain (computation and communication models) and the physical domain
(vehicle dynamics).

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 25

road side unit

task

task

tasksignal

signal

signal

signal

signal

signaltask

task

task

task

task

ECU Controller

ECU ECU

gateway

sensor

sensor

sensor controller

ECU

Controller Area Network

Ethernet

Connected
Vehicle

Applications

Vehicle
Functionality

Software
Tasks

Hardware
Components

Physical
Layout

Platform-Based Design
through mapping across
multiple platform layers

throttle

brake

engine
control

shift
logic transmission

vehicle

Fig. 2.2 Platform-based design for connected vehicles through mapping across multiple platform
layers: (1) mapping connected vehicle applications to vehicle functionality, (2) mapping vehicle
functionality to software tasks, (3) mapping software tasks to hardware components, and (4)
mapping hardware components to physical layout

• Design Space: The design variables to be explored include the setting of con-
tracts (constraints) on individual vehicle behavior/functionality—in the physical
domain, this means constraints on vehicle’s path planning and motion control;
in cyber domain, this means constraints on computation latency, communication
latency, reliability, etc.

26 C.-W. Lin et al.

• Design Objectives and Constraints: These could include safety, liveness,
deadlock-free, fairness, traffic efficiency (e.g., for CACC and autonomous
intersections), fuel consumption and emission (e.g., for eco-driving applications).

We have been developing a system-level modeling, synthesis and validation
framework for connected vehicle applications [22, 27] and applying it to the
above mapping (design space exploration) problem. In particular, we apply the
methodology to a CACC application [9, 22] and an autonomous intersection
management application [21, 23].

In the CACC application, vehicles inform each other about their speeds and
accelerations via vehicle-to-vehicle (V2V) messages to maintain safe distances
between them. We study the impact of communication delays and losses on the
system safety and performance based on simulations, and then, in turn, derive
the constraints for individual vehicle planning and control (i.e., constraints in the
physical domain) [22].

In the autonomous intersection application, autonomous vehicles approaching
an intersection will communicate with an intersection manager via vehicle-to-
infrastructure (V2I) messages to request the right to enter and pass the intersection.
The manager will then decide/schedule the entering order for the vehicles. We again
study this application with consideration of communication delays and losses, and
observe the significant impact of communication on system safety, liveness, and
deadlock-free properties.

We then develop and analyze a delay-tolerant protocol for autonomous inter-
section management [21], as shown in Fig. 2.3. The protocol assures that as long

Protocol Design and Modeling

Timed
Automata

UPPAAL
Verification

Protocol
Simulator

SUMO
TraCI API

Simulation

State Machines

Fig. 2.3 Design and validation of delay-tolerant autonomous intersections [21]

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 27

as the communication delays are bounded, every vehicle will eventually cross the
intersection (i.e., liveness property) and vehicles with conflicting routes will never
enter the intersection at the same time (i.e., safety property). We verify the safety
and liveness properties of our protocol by building more abstract timed automata
models and leveraging the UPPAAL verification tool [19]. Finally, we implement
our protocol in the SUMO traffic simulation suite [18], with the extension of
modeling communication delays, to study the system performance. Such analysis
allows us to derive the delay constraints on V2I communication in the cyber domain,
which includes the delays of in-vehicle processing and the delays of V2I message
transmissions, for ensuring system safety, liveness, deadlock-free, and performance.

2.3 Mapping Vehicle Functionality to Software Tasks

Once we have the specifications and constraints of individual vehicle functionality,
the PBD paradigm can be applied to conduct the mapping from vehicle functionality
to software tasks. This mapping problem can be formulated as follows:

• Platforms: (1) The higher-layer platform is captured by the models of vehicle
functionality (e.g., Simulink models, timed automata), including in-vehicle sens-
ing, computation and communication models, as well as V2X communication
models; and (2) the lower-layer platform includes the models of software tasks
and communication protocols.

• Design Space: The design variables to be explored include the generation of
software tasks from functional models (i.e., mapping from functional blocks
to tasks) and the design of communication protocols (including signals) from
functional models.

• Design Objectives and Constraints: These may include a variety of constraints
and optimization objectives on system performance, safety, security, cost, relia-
bility, extensibility, memory size, reusability, modularity, etc.

For the mapping across these two layers, we have developed algorithms for
exploring software task generation, allocation, and scheduling from functional
models of finite state machines [25] and synchronous block diagrams [4, 6],
two main models of computation in synchronous models that are widely used in
capturing embedded sensing, control, and computation applications.

In [25], we developed a general partitioned model for multi-task implementations
of synchronous finite state machines, and defined two metrics for measuring the
quality of task implementations: the breakdown factor and the action extensibility.
We then developed a heuristic algorithm to explore robust and extensible task
generation and scheduling based on the two metrics. The experimental results
demonstrated significant improvement on the two metrics from our algorithm, and
showed the importance of exploring task generation options for synchronous finite
state machines.

28 C.-W. Lin et al.

In [6], we developed an algorithm for direct generation of software tasks on
single-core platforms from synchronous block diagrams, with respect to modularity,
reusability, code size, and latency. This work showed the promise of exploring task
generation for synchronous block diagrams.

In [4], we developed a complete model-based synthesis flow for automotive
software systems that follow the AUTOSAR standard [1]. The synthesis flow opti-
mizes the generation of AUTOSAR runnables from synchronous block diagrams,
the mapping of runnables onto software tasks, and the allocation and scheduling
of tasks onto multi-core ECU platforms. A key idea of this flow is to develop a
uniformed formalism of firing and execution timing automata (FETA) to capture
the periodic timing behavior of functional blocks, runnables, and tasks. Leveraging
FETA, the flow can more accurately model and reason about system timing behavior
across different layers during the entire mapping process. Finally, the synthesis
flow addresses constraints and objectives on a variety of metrics when solving
the mapping problems, including software engineering objectives such as runnable
modularity, reusability, and code size as well as timing and resource objectives such
as system schedulability and memory cost. In particular, the flow focuses on trading
off modularity with schedulability during the mapping from functional blocks to
runnables, and on minimizing memory cost under schedulability constraints during
the mapping from runnables to tasks and from tasks to ECU cores. Similarly
as [6, 25], this work showed the importance of exploring task generation options
when mapping vehicle functionality to software tasks. Furthermore, it demonstrated
the benefits of explicitly considering timing during task generation and having a
uniformed formalism such as FETA to capture timing behavior across system layers.

2.4 Mapping Software Tasks to Hardware Components

Once we have a model of software tasks and their communication signals, the PBD
paradigm can be further applied to explore the mapping of tasks onto hardware
components. We have briefly discussed this above in [4] and will elaborate it more
in this section. The mapping formulation for task to hardware platform mapping can
be captured as follows:

• Platforms: (1) The higher-layer platform is typically modeled as task graphs with
communication signals; and (2) the lower-layer platform includes architectural
models of hardware components.

• Design Space: The design variables include task allocation, task scheduling,
signal mapping to memory transactions or bus/wireless messages, message
scheduling, etc.

• Design Objectives and Constraints: The constraints and objectives address
metrics such as latency, schedulability, cost, energy consumption, extensibility,
fault tolerance, and security.

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 29

In the following, we will demonstrate a few different mapping platforms across
these two layers.

2.4.1 Conventional CAN-Bus Systems

The controller area network (CAN) protocol is still the most common in-vehicle
network. The mapping problem from a task graph to a CAN-based system can be
solved by the PBD paradigm. As shown in Fig. 2.4, the functional model is a task
graph that consists of a set of tasks, denoted by T = {τ1, τ2, . . . , τ|T|}, and a set
of signals, denoted by S = {σ1, σ2, . . . , σ|S|}. Each signal σi is between a source
task and a destination task. Each task is activated periodically and communicate
with each other through signals. The architecture model is a distributed CAN-
based platform that consists of a set of ECUs, denoted by E = {ε1, ε2, . . . , εnE},
and a CAN bus that connects all the ECUs. Each ECU εk can send a set of
messages, denoted by Mk = {μk,1, μk,2, . . . , μk,|Mk |}. ECUs are assumed to run
AUTOSAR/OSEK-compliant operation systems that support preemptive priority-
based task scheduling. The bus uses the standard CAN bus arbitration model that
features non-preemptive priority-based message scheduling [2].

A path π is an ordered interleaving sequence of tasks and signals, defined
as π = (τr1 , σr1 , τr2 , σr2 , . . . , σrk−1 , τrk). src(π) = τr1 is the path’s source and
snk(π) = τrk is its sink. Sources are activated by external events, while sinks
activate actuators. Multiple paths may exist between each source–sink pair. We
assume all tasks in a path perform computations that contribute to a distributed
function, from the collection of sensor data to the remote actuation. The worst-
case end-to-end latency incurred when traveling a path π is denoted as lπ , which

CAN busECU

fu
nc

ti
on

al
m

od
el

3

1

1,1

1,2

2

1

6

5

4

8

7

2

3

4

5

6

21
2,1

2,2

3

ar
ch

it
ec

tu
re

pl
at

fo
rm

task allocation signal packing

broadcast

task signal

message

s

s

s

s
s

m

m

m

m
e e e

s

t

t

t

t t

tt

t

Fig. 2.4 The task mapping problem in a CAN-based system

30 C.-W. Lin et al.

represents the largest possible time interval that is required for the change of the
input (or sensed) value at the source to be propagated and cause a value change (or
an actuation response) at the sink.

During mapping, the functional model is mapped onto the architecture platform,
as shown in Fig. 2.4. Specifically, the tasks are allocated to ECUs, and the signals
are packed into messages and transmitted on the CAN bus in a broadcast fashion.
Messages are triggered periodically and each message contains the latest values of
the signals that mapped to it. Static priorities are assigned to tasks and messages
for priority-based scheduling. The design space of task allocation, signal packing,
and priority assignment is explored with respect to a set of design objectives and
constraints.

For detailed problem formulations and their corresponding algorithms, please
refer to our previous publications on task mapping for the CAN-based platform, with
the consideration of end-to-end latency [3, 5, 24, 30], extensibility [10, 26, 28, 29],
fault tolerance [20], and security [13, 15].

In the following, we will introduce task mapping onto two different architectural
platforms—one replaces the CAN bus by a time division multiple access (TDMA)
switch, and the other one utilizes an OS hypervisor to support multiple operating
systems running on a hardware component.

2.4.2 Advanced Architecture: TDMA-Based Systems

The TDMA-based protocol is a very representative synchronous protocol and
an abstraction of many existing protocols, such as the FlexRay [7], the Time-
Triggered Protocol [17], the Time-Triggered Ethernet [16], and the Time-Sensitive
Networking [8]. These protocols are likely to be adopted in future intelligent
vehicles to support high and dynamic data rate. Compared with Ethernet, they also
have more deterministic and predictable timing behavior. Compared with priority-
based networks such as the CAN protocol, TDMA-based systems have fundamental
differences in system modeling (in particular for latency modeling), on security
mechanism selection (a global time is available for security reasons), on design
space (network scheduling is the focus of this work but not a factor for CAN-
based systems), and on algorithm design. Therefore, the approaches for CAN-based
systems in the previous section do not apply to TDMA-based systems.

As shown in Fig. 2.5, similar to the system model in the previous section,
the functional model is a task graph that consists of a set of tasks, denoted by
T = {τ1, τ2, . . . , τ|T|}, and a set of signals, denoted by S = {σ1, σ2, . . . , σ|S|}.
Each signal σi is between a source task and a destination task, and each task
is activated periodically and communicates with each other through signals. The
architecture model is a distributed platform that consists of a set of ECUs, denoted

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 31

ECU switch
fu

nc
ti
on

al
m

od
el

3

1

1

2

2

1

6

5

4

8

7

2

3

4

5

6

21
4

5

3

ar
ch

it
ec

tu
re

pl
at

fo
rm

task allocation signal mapping

transmission

task signal

message

3 6

schedule 3 6 5 1 4 2 3 6 5 1 4 2

cycle cycle

5 5

s

s

s

s
ss

eee

m

m

m

m m

m

m

m mmmmmmmmmmmm

t

t

t

t

t

tt

t

Fig. 2.5 The mapping problem of a TDMA-based system

by E = {ε1, ε2, . . . , εnE}, and ECUs are assumed to support preemptive priority-
based task scheduling. The nodes are connected through a TDMA-based switch (we
focus on the single-switch case in this chapter, and our formulation can be extended
to multi-switches cases). A set of messages is communicated among nodes through
the switch, denoted by M = {μ1, μ2, . . . , μ|M|}. The switch uses a TDMA-based
model for scheduling, in which each time slot in the schedule can be assigned to one
message. Several time slots form a cycle, and the network switch repeats the same
scheduling sequence after each cycle. It is possible that a time slot is empty (not
assigned to any message) in a schedule, and it is also possible that there are more
than one time slots assigned to the same message in a cycle.

During mapping, the functional model is mapped onto the architecture platform,
as shown in Fig. 2.5. Specifically, the tasks are allocated to ECUs, and the signals
are one-to-one mapped onto messages and transmitted on the network. Messages are
triggered periodically and each message contains the latest values of the signals that
are mapped to the message. Static priorities are assigned to tasks for priority-based
scheduling, and the time slots in the schedule are assigned to messages. The design
space of task allocation, priority assignment, and switch scheduling is explored with
respect to a set of design objectives and constraints.

For detailed problem formulation and its corresponding algorithm, please refer
to our previous publications [12, 14] that address security in the mapping process.

32 C.-W. Lin et al.

Fig. 2.6 (a) A traditional architecture, and (b) an architecture supported by an OS hypervisor

Fig. 2.7 The tasks are allocated to the operating systems, and the operating systems are scheduled
on the OS hypervisor

2.4.3 Advanced Architecture: OS-Hypervisor-Based Systems

In this section, we consider mapping onto platforms with OS hypervisor. In
Fig. 2.6a, there is a traditional architecture where the tasks are allocated directly
on the ECUs. In Fig. 2.6b, an OS hypervisor runs between hardware and operating
systems and virtualizes hardware. As a result, tasks and operating systems can
be executed in a hardware-independent way. The OS hypervisor in Fig. 2.6b is
categorized as a type-1 OS hypervisor which runs directly on hardware, while
a type-2 OS hypervisor runs on a host operating system and supports other
guest operating systems. In the market, there have been several OS hypervisors
available. Although they have different features and specific applications (not only
for automotive systems), the fundamental goal is still to virtualize hardware and
provide high flexibility and isolation.

As shown in Fig. 2.7, the system model consists of a set of tasks, a set of operating
systems, and an OS hypervisor. Each task τi is triggered periodically. We assume

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 33

that all operating systems are identical, and each operating system ωi supports
the preemptive fixed-priority scheduling. The OS hypervisor supports the TDMA
scheduling and maintains a schedule in which each partition ρi is assigned to one
operating system,1 and the OS hypervisor repeats the schedule after each cycle. It is
possible that there is more than one partition assigned to the same operating system
in a cycle.

The research on developing the mapping algorithm for this model is still ongoing.

2.4.4 Heterogeneous Communication Architectures

There are still some limitations with those approaches above. First, there is usually
only one protocol to be considered, so the design methods cannot be applied to
heterogeneous communication architectures. Next, the designs are for conventional
functions which do not have very high data rates, and thus they cannot support
ADAS and autonomous functions. Lastly, the architectures are usually fixed so
that system designers have no flexibility to select appropriate hardware devices
and design a topology for them. To address these problems and the challenges
in Sect. 2.1, in this section, we propose a design methodology based on the PBD
paradigm for heterogeneous communication architectures in automotive systems.

The design methodology is based on the mapping from functional models to
architectural models. The notations which will be used in the methodology are listed
in Table 2.1. We first define a device and an architectural model as follows:

Definition 2.1 A device δ is either a sensor, an actuator, an ECU, or a network
device.

The location of a device is usually fixed according to the floor planning of
an automotive system. A network device can be a CAN bus, a TSN switch, or a
gateway.

Definition 2.2 An architectural model Δ is a set of devices.

An architectural model can be given by system designers directly or extracted
from standardized languages. Each device in an architectural model is only a
candidate, which means that it is possibly not selected during the mapping.

Definition 2.3 For each device δ, it is associated with a parameter Cδ as the device
cost of δ. For each pair of devices δ and δ′, it is with a parameter Dδ,δ′ as the
connection cost of δ and δ′ and another parameter Eδ,δ′ as the compatibility of δ

and δ′.

1Some existing OS hypervisors allow one partition to be assigned to more than one operating
system, and those operating systems are scheduled by their priorities. This can be generalized to
the system model by defining task priority as a 2-tuple.

34 C.-W. Lin et al.

Table 2.1 Notations in the design methodology for heterogeneous communication architectures

δ A device

Cδ The device cost of δ

Dδ,δ′ The connection cost of δ and δ′

Eδ,δ′ The compatibility of δ and δ′

ι An implementation

Sι The set of devices of ι

Tι The set of logical connections between devices of ι

Uι The set of reliability and safety constraints on logical paths between devices of Uι

Δ An architectural model or a set of devices

I A functional model or a set of implementations

n The number of functional models

σ A sensor

π An actuator

θ An ECU

φ A network device

Σ The set of sensors

Π The set of actuators

Θ The set of ECUs

Φ The set of network devices

The parameter Dδ,δ′ can be pre-computed based on the harness and routing graph
in an automotive system, and it can be set as the distance or the wiring weight
between δ and δ′ which are physically connected. If Dδ,δ′ = ∞, it means that there
is no physical connection between δ and δ′. On the other hand, Eδ,δ′ = 1 if and only
if δ and δ′ can be selected at the same time. The existence of the parameter Eδ,δ′ is
to address the challenge of device selection mentioned in Sect. 2.1, e.g., if both of
a regular ECU and an upgraded ECU are the candidates at the same location, only
one of them can be selected.

As shown in Fig. 2.8a, the architectural model Δ has five devices including one
sensor, one actuator, two ECUs, and one CAN bus. If δ2 is a regular ECU, δ3 is
an upgraded ECU, and both of them are the candidates at the same location, then
only one of them can be selected. Therefore, Eδ2,δ3 = 0, while Eδi,δj

= 1 for
any other pair of devices. On the other hand, all devices except the CAN bus are
only connected to the CAN bus, so Dδi,δj

= ∞ for any pair of devices where
i, j ∈ {1, 2, 3, 4}.
Definition 2.4 Given Δ, Σ is the set of sensors, Π is the set of actuators, Θ is the
set of ECUs, Φ is the set of network devices, and thus Δ = Σ ∪ Π ∪ Θ ∪ Φ.
Throughout the section, σ is a sensor, π is an actuator, θ is an ECU, φ is a network
device,

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 35

Then, we define an implementation and a functional model as follows:

Definition 2.5 An implementation ι is associated with Sι as the set of devices, Tι

as the set of logical connections between devices, and Uι as the set of reliability and
safety constraints on logical paths between devices.

Note that Tι can be represented by a set of subsets in Sι, and Uι can be represented
by a set of reliability and safety constraints on tuples of elements in Sι.

Definition 2.6 A functional model I is a set of implementations, and it can be
implemented by any ι ∈ I .

We define a functional model by its possible implementations on devices because
we can translate system designers’ experience into candidate implementations
and significantly reduce the complexity and search space during design space
exploration (e.g., we can keep the scenario that both ECUs need to be upgraded
at the same time).

It should be mentioned that, in most cases, a functional model has the same
sensors and actuators in all of its implementations, e.g., the sensors and actuators
that the functions of a blind spot monitor use are fixed. On the other hand, there
is usually some flexibility selecting ECUs to execute corresponding functions, no
matter they are at the same location or at different locations, so a functional model
usually has different sets of ECUs in its implementations. Lastly, there is usually no
network device in an implementation, although it may be implied by the harness and
routing graph or objective optimization and constraint satisfaction during mapping.

As shown in Fig. 2.8b, the functional model is {ι1, ι2}. For ι1, Sι1 = {δ1, δ2, δ4},
Tι1 = {{δ1, δ2}, {δ2, δ4}}, and Uι1 consists of the constraints on path (δ1, δ2, δ4), e.g.,
its end-to-end latency of the functional path of ι1 must be smaller than its deadline.
Similarly, for ι2, Sι2 = {δ1, δ3, δ4}, Tι2 = {{δ1, δ3}, {δ3, δ4}}, and Uι2 consists of the
constraints on path (δ1, δ3, δ4).

1

5: CAN bus

E
2, 3

= 0

se
ns

or

E
C

U

E
C

U

ac
tu

at
or

2,
5

3,
5

1,
5

4,
5

or

constraints

constraints

(b)(a)

D

D D
D

l

l

1

2

2 3 4

1 2 3 4
1 2 4

3 41

5

d

d

d d

d d

d

d

d

d d

d
d

dd

d

d d d d d

d d d

dd

Fig. 2.8 (a) An architectural model with one sensor, one actuator, two ECUs, and one CAN
bus, where the two ECUs are incompatible, and only one of them can be selected. (b) Two
implementations of a functional model. One of them should be selected, depending on objective
optimization and constraint satisfaction during mapping

36 C.-W. Lin et al.

With the definitions of an architectural model and a functional model, the design
problem can be defined as follows:

• Given an architectural model Δ and n function model {I1, I2, . . . , In}, select
an implementation for each functional model such that all devices of selected
implementations are compatible, all reliability and safety constraints of selected
implementations are satisfied, and the objective is optimized.

As mentioned in Sect. 2.1, a reliability constraint can be the requirement of
multiple routing paths. A safety constraint can be the utilization bound of each
device or the requirement that the end-to-end latency of a functional path must be
smaller than its deadline. The most typical objective is to minimize total cost which
includes all device costs and all connection costs. Some other possible objectives
are weight minimization, latency minimization, and performance maximization.
As shown in Fig. 2.8, one implementation in Fig. 2.8b should be selected to
implement the functional model, depending on objective optimization and constraint
satisfaction during mapping.

Here is the summary of how the methodology addresses the design challenges
mentioned in Sect. 2.1.

• Addressing high-volume and dynamic input data. By objective optimization
and constraint satisfaction during mapping, a functional model with high data
rate will be served by faster network devices (protocols) after mapping. If nearby
ECUs are not powerful enough for dynamic data rate, a functional model will
connect its sensors or actuators to further ECUs, and related objectives (e.g.,
connection cost) and constraints (e.g., end-to-end latency) will also be considered
during mapping.

• Computation architecture design. In the methodology, different types of ECUs
at the same location are all included in an architectural model and marked by
the compatibility (Eδ,δ′). As mentioned above, this allows us to translate system
designers’ experience into candidate implementations and keep the scenario that
both ECUs need to be upgraded at the same time. Then, the challenges in Sect. 2.1
can be addressed by objective optimization and constraint satisfaction during
mapping. If a device has no load after mapping, it means that it is not selected.

• Communication architecture design. Similar to device selection, a network
device may have no load on it, which means that it is not selected. On the
other hand, gateways are considered in the methodology to composite different
protocols.

• Topology design. In an architectural model, all possible connections and their
costs (Dδ,δ′) are pre-computed. During mapping, those connections are candi-
dates, and their costs can be considered.

• Safety. The end-to-end latency of a path can be defined with Uι in a functional
model and its implementations. Note that a frame is a special case of a path
between two devices. The methodology leaves flexibility for system designers to
apply different timing models. If those models are not available or their results
are over-pessimistic so that simple bounds on the utilization of network devices

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 37

are adopted as safety constraints, the utilization of a device, which is a special
case of a path with only one device, can also be defined with Uι.

• Reliability. Similarly, all possible connections are candidates so that a function
model can construct multiple routing paths from them.

• Security. Although security is not the focus of the methodology, other protocols
and gateways in heterogeneous communication architecture can provide opportu-
nities for adding security protections. The methodology is a platform for further
security considerations during design stages.

• Optimization objective. The methodology leaves flexibility for system design-
ers to set total cost, wiring weight, reliability, or performance as their objectives.
To deal with different objectives, generalized optimization approaches should be
applied.

Heterogeneous communication architectures are expected to be deployed to sup-
port ADAS and autonomous functions. In this section, we propose a methodology
to address those challenges on heterogeneous communication architectures. Based
on the methodology, we can formulate a problem and its corresponding algorithm to
solve mapping problems at this level. The corresponding research is still ongoing.

2.5 Mapping Hardware Components to Physical Layouts

Finally, we can apply the PBD paradigm to map hardware components to physical
layouts. Hardware components typically have pre-defined places for them. For
example, radars should be placed at the front or rear side of a vehicle, not inside
the vehicle. These components are connected by wires, which need to go through
harnesses as shown in Fig. 2.9. The mapping problem from hardware to physical
layouts can be captured as follows and illustrated in Fig. 2.10.

• Platforms: (1) The higher-layer platform includes a set of logical connections
between hardware components; and (2) the lower-layer platform includes a
physical routing graph that consists of wiring harnesses, connections between
harnesses, locations (where a wire gets in or out of a harness) of wire harnesses,
and hardware components.

• Design Space: The design variables to be explored include placement of splices,
physical routing paths, and wire sizes.

• Design Objectives and Constraints: The metrics to be considered include total
wiring length, total wiring weight, fuel efficiency, resistance, signal quality,
space, and capacities of locations.

One problem formulation and its corresponding algorithm have been proposed
in [11]. The features of the problem are:

• A logical connection can be defined as a hypergraph, i.e., a connection (hyper-
edge) can connect more than two components (vertices). To physically connect
those components, we need to add splices physically (Steiner vertices logically),

38 C.-W. Lin et al.

locationlocation

wireswires

wires wires

componentcomponent

Fig. 2.9 A harness model with its locations [11]. Two components are connected by a wire, and
the wire goes through the harness

(a)

Splice

(b)

Component
A

Component
B

Component
C

A

B

C

Fig. 2.10 (a) The logical connection between three hardware components is mapped to (b) the
physical routing graph including a splice

which are similar to switches in network routing. A Steiner-tree problem for wire
routing is also common in electronic design automation.

• The placement of harnesses is fixed. As a result, the problem is to select routing
paths upon the given harnesses, and thus the number of potential routing paths
is limited. From this perspective, the problem is closer to network routing rather
than wire routing in electronic design automation.

• Similarly, a splice can only be placed at a location of a harness, so the number of
potential locations is also limited.

• Considering resistance, the total wiring length and the total wiring weight have
a quadratic relation because to maintain the same resistance for a wire, its length
and the area of its cross section need to increase or decrease linearly. The total
wiring weight is relevant to fuel efficiency as it is up to 30 kg in modern vehicles.

Please refer to [11] for detailed problem formulation and its corresponding
algorithm.

2.6 Summary

In this chapter, we introduced the platform-based design (PBD) paradigm for
automotive and transportation systems, and the application of PBD to map the
high-level specification of connected vehicle applications to individual vehicle

2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems 39

functionality, and then to software and hardware implementations, and finally to
physical layouts. We believe that the PBD paradigm is a promising methodology to
address the rapidly growing complexity of automotive design and improve design
quality and productivity.

Acknowledgements We gratefully acknowledge the support from the National Science Founda-
tion of the United States under Awards 1834324, 1834701, and 1839511, the Ministry of Education
in Taiwan under Grant Number NTU-107V0901, and the Ministry of Science and Technology in
Taiwan under Grant Number MOST-108-2636-E-002-011.

References

1. AUTOSAR. http://www.autosar.org
2. Robert Bosch GmbH. (1991). CAN specification (Version 2.0).
3. Davare, A., Zhu, Q., Di Natale, M., Pinello, C., Kanajan, S., & Sangiovanni-Vincentelli, A.

(2007, June). Period optimization for hard real-time distributed automotive systems. In Design
Automation Conference (DAC’07).

4. Deng, P., Cremona, F., Zhu, Q., Di Natale, M., & Zeng, H. (2015, April). A model-based
synthesis flow for automotive CPS. In 2015 ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS) (pp. 198–207).

5. Deng, P., Zhu, Q., Davare, A., Mourikis, A., Liu, X., & Natale, M. D. (2016, December). An
efficient control-driven period optimization algorithm for distributed real-time systems. IEEE
Transactions on Computers, 65(12), 3552–3566.

6. Deng, P., Zhu, Q., Di Natale, M., & Zeng, H. (2014, June). Task Synthesis for latency-
sensitive synchronous block diagram. In 2014 9th IEEE International Symposium on Industrial
Embedded Systems (SIES) (pp. 112–121).

7. FlexRay Consortium. (2010, October). FlexRay communications system protocol specification
(Version 3.0.1).

8. IEEE. (2011, March). IEEE standard for local and metropolitan area networks — timing and
synchronization for time-sensitive applications in bridged local area networks. In IEEE Std
802.1AS-2011 (pp. 1–292).

9. Liang, H., Jagielski, M., Zheng, B., Lin, C., Kang, E., Shiraishi, S., et al. (2018, November).
Network and system level security in connected vehicle applications. In 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).

10. Liang, H., Wang, Z., Zheng, B., & Zhu, Q. (2017, November). Addressing extensibility and
fault tolerance in can-based automotive systems. In 2017 IEEE/ACM International Symposium
on Networks-on-Chip (NOCS).

11. Lin, C.-W., Rao, L., Giusto, P., D’Ambrosio, J., & Sangiovanni-Vincentelli, A. (2015,
November). Efficient wire routing and wire sizing for weight minimization of automotive
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
34(11), 1730–1741.

12. Lin, C.-W., Zheng, B., Zhu, Q., & Sangiovanni-Vincentelli, A. (2015, December). Security-
aware design methodology and optimization for automotive systems. ACM Transactions on
Design Automation of Electronic Systems, 21(1), 18:1–18:26.

13. Lin, C.-W., Zhu, Q., Phung, C., & Sangiovanni-Vincentelli, A. (2013). Security-aware mapping
for CAN-based real-time distributed automotive systems. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (pp. 115–121)

14. Lin, C.-W., Zhu, Q., & Sangiovanni-Vincentelli, A. (2014, November). Security-aware
mapping for TDMA-based real-time distributed systems. In 2014 IEEE/ACM International
Conference on Computer-Aided Design (pp. 24–31)

http://www.autosar.org

40 C.-W. Lin et al.

15. Lin, C.-W., Zhu, Q., & Sangiovanni-Vincentelli, A. (2015, March). Security-aware modeling
and efficient mapping for CAN-based real-time distributed automotive systems. IEEE Embed-
ded Systems Letters, 7(1), 11–14.

16. SAE. (2011, November). Time-triggered ethernet. SAE Standard AS6802.
17. SAE. (2011, February). TTP communication protocol. SAE Standard AS6003.
18. SUMO. (2017). http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
19. UPPAAL. (2017). https://www.uppaal.org/
20. Zheng, B., Gao, Y., Zhu, Q., & Gupta, S. (2015, October). Analysis and optimization of

soft error tolerance strategies for real-time systems. In 2015 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS) (pp. 55–64).

21. Zheng, B., Lin, C. W., Liang, H., Shiraishi, S., Li, W., & Zhu, Q. (2017, May). Delay-
aware design, analysis and verification of intelligent intersection management. In 2017 IEEE
International Conference on Smart Computing (SMARTCOMP) (pp. 1–8).

22. Zheng, B., Lin, C.-W., Yu, H., Liang, H., & Zhu, Q. (2016, November). CONVINCE: A cross-
layer modeling, exploration and validation framework for next-generation connected vehicles.
In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

23. Zheng, B., Sayin, M. O., Lin, C. W., Shiraishi, S., & Zhu, Q. (2017, November). Timing and
security analysis of VANET-based intelligent transportation systems: (invited paper). In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 984–991).

24. Zheng, W., Zhu, Q., Natale, M. D., & Sangiovanni-Vincentelli, A. (2007). Definition of
task allocation and priority assignment in hard real-time distributed systems. In RTSS ’07:
Proceedings of the 28th IEEE International Real-Time Systems Symposium (pp. 161–170)

25. Zhu, Q., Deng, P., Di Natale, M., & Zeng, H. (2013, March). Robust and extensible task
implementations of synchronous finite state machines. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2013 (pp. 1319–1324)

26. Zhu, Q., Liang, H., Zhang, L., Roy, D., Li, W., & Chakraborty, S. (2017, June). Extensibility-
driven automotive in-vehicle architecture design. In 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC) (pp. 1–6)

27. Zhu, Q., & Sangiovanni-Vincentelli, A. (2018, Sept). Codesign methodologies and tools for
cyber–physical systems. Proceedings of the IEEE, 106(9), 1484–1500.

28. Zhu, Q., Yang, Y., Natale, M. D., Scholte, E., & Sangiovanni-Vincentelli, A. (2010). Opti-
mizing the software architecture for extensibility in hard real-time distributed systems. IEEE
Transactions on Industrial Informatics, 6(4):621–636.

29. Zhu, Q., Yang, Y., Scholte, E., Natale, M. D., & Sangiovanni-Vincentelli, A. (2009). Optimiz-
ing extensibility in hard real-time distributed systems. In RTAS ’09: Proceedings of the 2009
15th IEEE Real-Time and Embedded Technology and Applications Symposium (pp. 275–284).

30. Zhu, Q., Zeng, H., Zheng, W., Di Natale, M., & Sangiovanni-Vincentelli, A. (2012). Opti-
mization of task allocation and priority assignment in hard real-time distributed systems. ACM
Transactions on Embedded Computing Systems, 11(4), 85:1–85:30.

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
https://www.uppaal.org/

Chapter 3
An Hourglass-Shaped Architecture
for Model-Based Development
of Networked Cyber-Physical Systems

Muhammad Umer Tariq and Marilyn Wolf

3.1 Introduction

Many technological achievements have been enabled by the field of feedback
control systems, which deals with the process of controlling a physical system
through a feedback controller. If the feedback controller is implemented as a real-
time computer system, the resulting configuration of the feedback control system
is referred to as embedded control system. Some prime examples of embedded
control systems are automotive systems, avionics systems, and smart grid. The
typical development process of an embedded control system can be partitioned
into two distinct stages: controller design and controller implementation. During
the controller design stage, a control systems engineer models the physical plant,
derives the feedback control law, and validates the controller design through
mathematical analysis and simulation. During the controller implementation stage,
a computer systems engineer implements the feedback controller as a real-time
computer system.

The field of embedded control systems brings together the fields of control
theory and real-time computer systems. However, as noted in [15], the fields of
control theory and real-time computer systems typically employ two completely
different types of models: analytical models and computational models. As a
result, two vastly different design processes are currently popular for the two
stages of embedded control system development process: feedback controller
design and feedback controller implementation as real-time computer system. Due

M. U. Tariq (�)
ProsumerGrid, Inc., Atlanta, Georgia
e-mail: mumertariq@prosumergrid.com

M. Wolf
Georgia Institute of Technology, Atlanta, Georgia
e-mail: marilyn.wolf@ece.gatech.edu

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_3&domain=pdf
mailto:mumertariq@prosumergrid.com
mailto:marilyn.wolf@ece.gatech.edu
https://doi.org/10.1007/978-3-030-13050-3_3

42 M. U. Tariq and M. Wolf

to the inherent differences between the abovementioned two stages, currently
popular development methodologies for embedded control systems support very
few correct-by-construction properties and depend heavily on testing the final
implementation for creating confidence in the correct operation of an embedded
control system under various runtime operating conditions. Therefore, current
development techniques for embedded control systems are not capable of efficiently
handling the ever-increasing complexity of these systems.

These limitations of the traditional embedded control system development
techniques have created interest in taking a fresh look at the abstractions used
in the traditional embedded control systems development process, resulting in a
new field, cyber-physical systems (CPS) [39, 40]. The aim of CPS research is
to develop an integrated theory as well as an integrated development toolset for
controller design and controller implementation phases of the embedded control
system development process. The hope is that this CPS research will enable the
cost-effective development and maintenance of more complex versions of embedded
control systems.

Recent CPS research efforts can be divided into two major categories: platform-
imperfection-aware feedback controller design and CPS-friendly computing plat-
form design. Under the category of platform-imperfection-aware feedback con-
troller design, theoretical developments from the fields of hybrid systems [3],
switched systems [21], time-delay systems [7], networked control systems [41],
multi-agent networked systems [29], and game theory [16] are leveraged to develop
a feedback controller design that takes into account the imperfections of the
runtime computing platform (such as communication delays or failures caused
by communication network congestion or cyber security attacks) at the design
time [37]. The resulting “platform-imperfection-aware” feedback controller is either
robust against the imperfections of runtime computing platform or possesses the
capability to switch between different control modes to overcome the imperfections
of runtime computing platform. Under the category of CPS-friendly computing
platform design, CPS research has focused on specialized runtime computing
platforms that have more predictable timing performance or provide correct-by-
construction composition of software components. Some examples of this approach
are provided in [17, 19, 22].

Model-based development (or model-driven development) of cyber-physical
systems has the potential to bind the abovementioned CPS research efforts into
an integrated, cross-layer CPS development methodology. In model-based develop-
ment paradigm, high-level or platform-independent models (PIM) are transformed
into lower-level or platform-specific models (PSM) through the process of model
transformation. Both high-level and lower-level models are described using their
own domain-specific modeling languages (DSMLs) [32]. In this chapter, we propose
an approach to model-based development of networked cyber-physical systems
(CPS) that is centered on the notion of a standardized design specification language.
The proposed design specification language can be used to build a CPS design
specification model that can serve as a CPS-aware interface between control systems
engineer and embedded systems engineer.

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 43

Thunderbird Silverlight FireFox Skype Kazaa MPlayer

RTPPOP

TCP UDP

IPv4

HTTPSMTP
Skype/Kazaa
P2P Protocol

PPP Ethernet 802.11 DOCSIS

Coaxial Cable Twisted Pair
Optical
Fiber

CDMA TDMA

Applications

Technologies

TCP/UDP

IP

Fig. 3.1 Illustration of hourglass-shaped architecture of Internet; adapted from [2]

The proposed approach is inspired by the hourglass-shaped architecture of
Internet, illustrated in Fig. 3.1. The narrow waist of hourglass-shaped architecture
suggests that there is less diversity of protocols at this layer of Internet [2]. Any
application that can operate based on the services of IP layer can be deployed on the
Internet, and any underlying technology that can transport bytes from one point to
another according to IP services can be used in the Internet. Similarly, according
to the proposed approach to the model-based development of networked CPS
(Fig. 3.2), a wide range of DSMLs (and associated analysis tools) can be utilized
to develop a platform-imperfection-aware feedback controller design, which is then
specified using a standardized CPS design specification language. The proposed
feedback controller design can then be analyzed for mapping on to wide range of
runtime CPS computing platforms by utilizing their corresponding DSMLs (and
associated analysis tools). This approach can support the goals of an integrated CPS
theory and development methodology while still taking into account the differences
between the domain-specific skillset that control systems engineers and embedded
system engineers typically possess.

The rest of the chapter is organized as follows. In Sect. 3.2, we present some
related work. In Sect. 3.3, we present the details of the proposed hourglass-shaped
architecture for model-based development of networked cyber-physical systems.
In Sect. 3.4, we document a number of requirements that any standardized CPS
design specification language must satisfy. In Sect. 3.5, we present the overview
of a proposed CPS design specification language. In Sects. 3.6–3.8, we discuss
the concrete syntax, abstract syntax, and semantics of the proposed CPS design
specification language, respectively. In Sect. 3.9, we present the conclusion.

44 M. U. Tariq and M. Wolf

Fig. 3.2 Illustration of
hourglass-shaped model of
CPS design and analysis
process

3.2 Related Work

Figure 3.3 presents a summary of specification languages and analysis tools
used in the different stages of a typical embedded control system development
process. Simulink [27] (combined with auxiliary tools such as Stateflow [28] and
Simscape [26]) has become a de facto standard in the field of embedded control
systems for specification and refinement (through simulation) of the feedback
controller design, developed by a control engineer through the application of
various analytical controller design strategies available in the literature for the field
of control theory [5]. Once a feedback controller design has shown acceptable
performance in the Simulink-based simulation environment, a computer system
engineer takes on the task of implementing this feedback controller design as
a real-time computer system. Various tools have been developed over the years
to help a computer systems engineer in this process of converting a feedback
controller design from a Simulink-based specification to a real-time computer
system implementation. Specialized modeling languages, such as UML (combined
with MARTE profile) [30], SysML [10], and AADL [8], help in the process of
designing the system and software architecture of the required real-time computer
system. Specialized programming languages, such as Lustre [12], Esterel [4],
Signal [20], and Giotto [14], help in the development of real-time computer system
whose timing performance can be formally guaranteed.

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 45

Fig. 3.3 Embedded control systems: development steps, specification languages, and analysis
tools; adapted from [36]

Model-based development (MBD) paradigm has also been successfully
employed in the domain of embedded control system in order to improve the
productivity of a computer systems engineer during the process of conversion of a
feedback controller design into a real-time computer system. In MBD paradigm,
high-level or platform-independent models (PIM) are transformed into lower-level
or platform-specific models (PSM) through the process of model transformation.
Both high-level and lower-level models are described using their own domain-
specific modeling languages (DSMLs) [32]. A DSML is first defined through a
meta-modeling step. A meta-model of a DSML defines the basic constructs (along
with their relationships and constraints) that can be used in a DSML. Model
transformation step of MBD paradigm uses the meta-models of DSMLs to define
transformation rules from higher-level (platform-independent) models to lower-
level (platform-specific) models. Model-driven architecture (MDA) [9], model
integrated computing (MIC) [18], and eclipse modeling framework (EMF) [11, 33]
initiatives represent three popular MBD efforts.

In the domain of embedded control systems, various model transformation
(code generation) tools have been developed to automatically generate executable
code from Simulink models for various real-time computing platforms. Embedded
Coder [25], from Mathworks, Inc., is a commercially available example of such a
code generation tool. Another example of a Simulink-based MBD toolset for a more
specialized real-time computing platform has been reported in [6].

Building on the MBD paradigm, Sztipanovits et al. [35] describe a methodology
for cyber-physical system integration and illustrate their methods on the design of a
network of quadrotor UAVs. They identify three design layers: physical, platform,
and computation/communication. Their methodology emphasizes component-based
design and its associated requirement, compositionality. They identify passivity

46 M. U. Tariq and M. Wolf

as a key characteristic that enables composition of control systems. They identify
network characteristics required to compositionally analyze the UAV network.

In a later paper, Sztipanovits et al. [34] describe a CPS methodology and tool
suite used for vehicle design. Their tool suite embodies two design platforms: the
model integration platform describes the semantic relationships between the models
used in design; the tool integration platform describes translations between tools
in the flow. Their framework allows them to construct design spaces and analyze
the characteristics of those design spaces. Their modeling language CyPhyML
includes sublanguages to describe components, system architectures, architectural
parameters, analysis models, and testbenches.

However, the CPS model-based development community has not been as suc-
cessful as some other communities in identifying a design flow which promotes the
reuse of tools and can support a range of application domains and implementation
targets. For instance, the classic text on compilers [1] identifies several steps in the
classical compilation process which are common to a broad class of programming
languages: lexical analysis, syntactic analysis, semantic analysis, intermediate code
generation, code optimization, and code generation. In this classical compilation
process, the intermediate code (developed in an intermediate language such as three-
address code) plays a pivotal role by providing an independent narrow interface
between a set of source code languages and a set of target machines. Similarly,
as illustrated in Fig. 3.1 and detailed in [2], the IP layer can be considered the
narrow waist of an hourglass-shaped architecture of Internet. Any application that
can operate based on the services of IP layer can be deployed on the Internet, and any
underlying technology that can transport bytes from one point to another according
to IP services can be used in the Internet.

While model-based development of networked cyber-physical systems is a chal-
lenging problem, we believe that abovementioned observations from the domains
of software compilation and Internet architecture can be leveraged to improve the
model-based development process for networked cyber-physical systems. There-
fore, in this chapter, we propose an approach to model-based development of
networked cyber-physical systems (CPS) that is centered on the notion of a
standardized CPS design specification language, capable of playing an analogous
role to the intermediate language and the IP layer from the domains of software
compilation and Internet architecture.

3.3 Hourglass-Shaped Architecture for Model-Based CPS
Development

Two major categories of CPS research are platform-imperfection-aware feedback
controller design and CPS-friendly computing platform design. Model-based devel-
opment of cyber-physical systems has the potential to bind the abovementioned
CPS research efforts into an integrated, cross-layer CPS development methodology.

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 47

This section presents an approach to model-based development of networked cyber-
physical systems (CPS) that is centered on the notion of a standardized design
specification language. The proposed design specification language can be used to
build a CPS design specification model that can serve as a CPS-aware interface
between control systems engineer and embedded systems engineer. The proposed
approach is inspired by the hourglass-shaped architecture of Internet, illustrated in
Fig. 3.1. The narrow waist of hourglass-shaped architecture suggests that there is
less diversity of protocols at this middle layer of Internet [2], while many different
protocols can be employed at top and bottom layers of Internet.

According to the proposed hourglass-shaped architecture for model-based net-
worked CPS development, illustrated in Fig. 3.2, a wide range of DSMLs (and
associated analysis tools) can be utilized to develop a platform-imperfection-aware
feedback controller design, which is then specified using a standardized DSML
for CPS design specification. Furthermore, according to the proposed hourglass-
shaped architecture, the platform-imperfection-aware feedback controller design
(specified using the standardized DSML) can then be analyzed for mapping on to
various runtime CPS computing platforms by utilizing corresponding DSMLs (and
associated analysis tools).

The proposed hourglass-shaped architecture can enable effective coordination
between control systems engineer and embedded systems engineer during model-
based development of networked cyber-physical system, while still allowing them to
concentrate and specialize in the CPS-aware, model-based tools developed in their
respective domains. This approach can support the goals of an integrated CPS theory
and development methodology while taking into account the differences between
the domain-specific skillset that control systems engineer and embedded system
engineer must acquire during their respective academic training.

The proposed hourglass-shaped architecture for model-based development of
networked CPS consists of three explicit phases: (1) platform-imperfection-aware
feedback controller design, (2) CPS design specification, and (3) constraints-aware
platform mapping.

3.3.1 Platform-Imperfection-Aware Feedback Controller
Design

In this phase, control systems engineer designs a feedback controller that takes into
account the imperfections of the runtime computing platform (such as communica-
tion delays or failures caused by communication network congestion) at the design
time. The resulting “platform-imperfection-aware" feedback controller is either
robust against the imperfections of runtime computing platform or possesses the
capability to switch between different control modes to overcome the imperfections
of runtime computing platform. In this phase, control systems engineer utilizes
various results from CPS research [37] that have been achieved over the recent

48 M. U. Tariq and M. Wolf

years by leveraging the theoretical advances from the fields of hybrid systems [3],
switched systems [21], time-delay systems [7], networked control systems [41],
multi-agent networked systems [29], and game theory [16].

During this phase, a control systems engineer can utilize any model-based tool
from the following three categories: (a) various DSMLs (and associated analysis
tools) that were used in the traditional control system design process [26–28], (b)
recently proposed DSMLs (and associated analysis tools) that are employed by
the numerous cyber-physical co-design CPS research efforts [13, 31], and (c) any
DSMLs (and associated analysis tools) that are proposed by any future CPS research
into integrated cyber-physical design.

3.3.2 CPS Design Specification

In this phase, the results of the platform-imperfection-aware feedback controller
design process are captured using a standardized DSML for CPS design specifi-
cation. This CPS design specification must capture the sensed and actuated-upon
physical plant parameters as well as the networked controller aspects of a CPS
design. However, the networked controller aspects of CPS design should not be
described by specifying the runtime computing infrastructure, instead networked
controller aspects of CPS design should be described at an abstract level by
specifying various control nodes and sensor ports, actuator ports, input message
ports, and output message ports associated with these control nodes.

This CPS design specification must also capture the feedback control adaptation
strategy to handle the imperfect performance of runtime computing and communi-
cation platform. This element of CPS design can also be captured at an abstract level
by specifying various controller modes of a control node and a mode switching logic
based on QoS violations associated with sensor ports, actuator ports, input message
ports, and output message ports of the control node. A CPS design specification can
also declare some QoS constraints of sensor ports, actuator ports, input message
ports, and output message ports to be hard. This will indicate that these QoS
properties must be satisfied by runtime computing platform, because there is no
safe backup mode of operation in case of violation of these QoS properties.

3.3.3 Constraints-Aware Platform Mapping

In this phase, the mapping of the CPS design specification (described using
standardized DSML) onto various runtime computing platform is analyzed to either
choose the most appropriate mapping or figure out the appropriate parameter
settings for a runtime computing platform so that the platform can meet the QoS
constraints of CPS design (and minimize the time that the system has to spend in a
backup mode of operation). During this process, various model transformations can

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 49

also be applied to translate the CPS design specification model into appropriate
models that can be used as input for corresponding analysis tools (simulation
or formal verification) associated with each of the candidate runtime computing
platform technologies. Some specialized examples of these runtime computing
platforms are Lustre [12], Esterel [4], Signal [20], and Giotto [14] with their own
formal computing semantics. More traditional RTOS-based computing platforms
can be captured and analyzed through UML (MARTE Profile) or AADL-based
models and analysis tools [8, 30].

3.4 Requirements for Standardized CPS Design Specification
Language

Following are some of the major requirements that a CPS design specification
language (CPS-DSL) must meet:

3.4.1 Physical Plant Parameter Specification

A CPS-DSL must clearly identify the physical plant parameters that are sensed or
actuated upon by the feedback controller.

3.4.2 Networked Controller Specification

An appropriate CPS-DSL must also describe the various elements of a networked
controller design. These elements include topology of sensors, actuators, and control
nodes, local control law for each control node, and information exchanged between
different control nodes.

3.4.3 Specification of Controller Adaptation Strategies

For the emerging wide-area CPS application domains, such as smart grid, the
performance of communication subsystem cannot be guaranteed. Therefore, CPS-
DSL must also define the timing constraints on the information exchange among
different control nodes and the control adaptation strategies in case of violation of
these timing constraints.

50 M. U. Tariq and M. Wolf

3.4.4 Interface Between Control Systems Engineer and
Real-Time Computer Systems Engineer

A CPS design specification captures the output of platform-imperfection-aware
feedback controller design process, and it also serves as input to the process of
developing a functionally equivalent embedded implementation of the feedback
controller design. Therefore, the CPS-DSL should be designed in such a way that it
can serve as an effective communication interface between control systems engineer
and real-time computer systems engineer.

3.4.5 Formal Semantics

A CPS design specification language must support formal semantics. The existence
of formal semantics of a CPS design specification language (CPS-DSL) opens up
the possibility to prove formal equivalence properties between a CPS-DSL-based
CPS design specification and the corresponding CPS deployment on a computing
platform.

3.5 A Proposed CPS Design Specification Language:
Overview

This section presents the summary of a proposed CPS-DSL that can meet the
requirements identified in Sect. 3.4. Various aspects (such as concrete syntax,
abstract syntax, and semantics) of the definition of proposed CPS-DSL are described
in detail in Sects. 3.6–3.8.

The individual language elements of the proposed CPS-DSL can be divided
into three categories: physical system elements, cyber system elements, and cyber-
physical interface elements. Table 3.1 provides a list of the language elements in
each of the abovementioned three categories.

Table 3.1 Language elements of the proposed CPS-DSL

Category Language elements

Physical system elements CompoundPhysicalPlant, PhysicalSystemParameter

Cyber-physical interface elements Sensor, Actuator

Cyber system elements ComputingNode, CommunicationNetwork, ControlApp,
SensorPort, ActuatorPort, InputMsgPort, OutputMsgPort,
Mode, ModeSwitchLogic, ControllerFunction,
ControllerFunctionMemory, PeriodicControllerInput,
PeriodicControllerOutput

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 51

3.5.1 Physical System Elements

CompoundPhysicalPlant and PhysicalSystemParameter elements belong to the
category of physical system elements. CompoundPhysicalPlant element is used to
represent the physical plant of a CPS. A CompoundPhysicalPlant element contains
a set of PhysicalSystemParameter elements. PhysicalSystemParameter elements of
the proposed CPS-DSL are used to identify the parameters of a physical plant that
are to be sensed and actuated upon by the cyber subsystem of a CPS.

3.5.2 Cyber-Physical Interface Elements

Sensor and Actuator elements make up the category of cyber-physical interface
elements. Cyber-physical interface of a CPS design is captured by a set of Sensor
and Actuator elements. Each Sensor and Actuator element is associated with a
corresponding PhysicalSystemParameter element.

3.5.3 Cyber System Elements

ComputingNode, CommunicationNetwork, ControlApp, SensorPort, ActuatorPort,
InputMsgPort, OutputMsgPort, Mode, ModeSwitchLogic, ControllerFunction,
ControllerFunctionMemory, PeriodicControllerInput, and PeriodicController-
Output make up the category of cyber system elements. Cyber aspects of a
CPS design include the topology of computing nodes, the controller application
executing on each computing node, and the message exchange among computing
nodes. The topology of controller computing nodes is captured by connecting
a set of ComputingNode elements to a CommunicationNetwork element.
Each ComputingNode element includes a ControlApp element and a set of
SensorPort, ActuatorPort, InputMsgPort, and OutputMsgPort elements. SensorPort,
ActuatorPort, and ControlApp elements combine to capture the local control
application executing on a computing node.

InputMsgPort and OutputMsgPort elements of proposed CPS-DSL are intended
to capture the message exchange among computing nodes of a CPS. However,
in a generic cyber-physical system, perfect behavior of communication subsystem
cannot be guaranteed. As a result, a CPS design must specify the timing constraints
on information exchange among computing nodes and different modes of operation
for local feedback control law that are used in case of violation of these timing
constraints. In the proposed CPS-DSL, InputMsgPort and OutputMsgPort elements
capture the timing constraints on the information exchange among computing node.

Each ControlApp element includes a ModeSwitchLogic element and a set of
Mode elements to capture the different modes of operation of feedback control
law for handling QoS fault scenarios. Each Mode element specifies the control

52 M. U. Tariq and M. Wolf

action taken by the feedback controller in that mode of operation through a
set of ControllerFunction, PeriodicControllerInput, and PeriodicControllerOutput
elements.

3.6 Proposed CPS Design Specification Language: Concrete
Syntax

Since Simulink [27] (combined with auxiliary Stateflow [28] and Simscape [26]
blocks) has become a de facto standard in the domain of embedded control systems,
concrete syntax of the proposed CPS-DSL has been implemented as an extension to
standard blocks available in Simulink. In particular, a new Simulink library [36] has
been developed that provides a Simulink block for each element of the proposed
CPS-DSL, described in Sect. 3.5. Moreover, Simulink’s mask interface capability
has been used to provide each new Simulink block with a custom look, and a
dialog box for entering element-specific parameters, such as the timing constraints
associated with an InputMsgPort element.

Figure 3.4 shows a Simulink model that specifies a CPS design using the
Simulink-based concrete syntax of the proposed CPS-DSL. Figure 3.5 shows the
internal details of a ComputingNode block, which contains a ControlApp block
and a set of SensorPort, ActuatorPort, InputMsgPort, and OutputMsgPort blocks.
Figure 3.6 shows the internal details of ControlApp block, which consists of a set of
Mode blocks and a ModeSwitchLogic block. Figure 3.7 shows the internal details of
Mode block, which contains a set of ControllerFunction, PeriodicControllerInput,
and PeriodicControllerOutput blocks. Figure 3.8 shows the internal details of
ControllerFuncton block, which contains a description of feedback control law
using standard Simulink computation blocks.

Fig. 3.4 A CPS design, specified as Simulink model with the proposed CPS-DSL

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 53

Sensor Interface

SensorPort

customerOverride

NetworkInterface

InputM sgPort

reqPower

ActuatorPort

ActuatorInterface
genPower

status

OutputMsgPort

11

1 ControlApp

DemandResponseB

Fig. 3.5 Internal details of ComputingNode block, named CompNodeB, in Fig. 3.4

Mode

Mode

NormalMode

InMsgPort

OutMsgPort

ActPort

SensePort

2

2

1

1

CustomerOverrideModeModeSwitchLogic

Fig. 3.6 Internal details of ControlApp block, named DemandResponseB, in Fig. 3.5

Fig. 3.7 Internal details of Mode block, named NormalMode, in Fig. 3.6

Fig. 3.8 Internal details of
ControllerFunction block,
named
NormalControllerFunction, in
Fig. 3.7

54 M. U. Tariq and M. Wolf

Fig. 3.9 Ecore-based meta-model of proposed CPS-DSL

3.7 Proposed CPS Design Specification Language: Abstract
Syntax

Abstract syntax of the proposed CPS-DSL has been implemented as an Ecore-based
meta-model [11], combined with a set of object constraint language (OCL)-based
constraints. Ecore meta-modeling language was originally developed as a part of
Eclipse Modeling Framework (EMF) project [33], while OCL was developed as a
part of the UML standardization effort [38]. Figure 3.9 shows a simplified version of
the Ecore-based meta-model for the proposed CPS-DSL. Table 3.2 provides some
examples of OCL-based constraints that are part of the abstract syntax definition of
the proposed CPS-DSL.

3.8 Proposed CPS Design Specification Language: Semantics

According to the semantics of the proposed CPS-DSL, at a given time, only one
Mode element inside a ControlApp is active. ModeSwitchLogic element is evaluated
at specific time instants, defined by the following two properties of the currently-
active mode: mode period and switch frequency from active mode to mode j (the

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 55

Table 3.2 Abstract syntax definition of proposed CPS-DSL: examples of OCL-based constraints

context ControlApp

inv numOfSimultanoeousActiveModes:

modes− >select(active = true)− >size() = 1

context ControllerFunction

inv equalityOfSamplingPeriods:

inputs− >any(true).samplingPeriod = outputs− >any(true).samplingPeriod

context ControllerFunction

inv limitOnComputationDelay:

self.computationDelay < outputs− >any(true).samplingPeriod

context CPSDesignSpecificationModel

inv noUnusedSensor:

cyPhyInterface.sensors− >asSet() = cyberSystem.compNodes.sPorts.sensor− >asSet()

context CPSDesignSpecificationModel

inv noUnusedActuator:

cyPhyInterface.actuators− >asSet() = cyberSystem.compNodes.aPorts.actuator− >asSet()

number of equally-distant time instants in a single mode period at which the mode
switch condition from active mode to mode j is evaluated).

As long as a certain Mode element is active, its constituent PeriodicControl-
lerInput and PeriodicControllerOutput elements periodically sample the values at
their inputs and store them at the output until the next sampling time instant. A
ControllerFunction element contains the specification of feedback control law com-
putation and is always sandwiched between a pair of PeriodicControllerInput and
PeriodicControllerOutput elements with same sampling period T and synchronized
sampling instants. The sampling period T , associated with a ControllerFunction,
is defined in terms of the following two properties: mode period and controller
function frequency (the number of equally-distant time instants in a single mode
period at which the controller function is evaluated). Moreover, a ControllerFunc-
tion element takes time �t to transfer any change in its input to its output where
0 < �t < T . A ControllerFunction element may also contain one or more
ControllerFunctionMemory elements.

By design, the proposed CPS-DSL leaves its exact semantics dependent on the
language used to define the control law computation inside a ControllerFunction
element. This capability makes the proposed CPS-DSL more flexible. However, for
the rest of this chapter, it will be assumed that Simulink computation blocks are
used to define the control law computation inside a ControllerFunction element.

As outlined in Sect. 3.4.5, semantics of the proposed CPS-DSL should ideally
be formally defined. In their seminal work on the application of linear temporal
logic (LTL) for formal verification of reactive computer systems, Manna and
Pnueli [23, 24] presented a generic model of a reactive computer system in the form
of a transition system. (This transition system will be referred to as Manna–Pnueli
Transition System in the rest of this chapter.) They showed that various existing

56 M. U. Tariq and M. Wolf

programming languages and specification formalisms for reactive computer systems
can be mapped into this generic model. They also observed that their generic
model of reactive computer systems is designed to be capable of capturing any
programming language or specification formalism for reactive computer system,
proposed in the future. In Sect. 3.8.1, we summarize the abovementioned Manna–
Pnueli Transition System. In Sect. 3.8.2, we describe the semantics of the proposed
CPS-DSL in terms of Manna–Pnueli Transition System.

3.8.1 Manna-Pnueli Transition System

Manna–Pnueli Transition System < Π,Σ, T ,Θ >, intended to serve as a generic
model for reactive computer systems, consists of the following components:

• Π = {u1, . . . , un}—A finite set of state variables.
Each state variable is a typed variable, whose type indicates the domain from

which the values of that variable can be assigned. Some of these state variables
are data variables, which represent the data elements that are declared and
manipulated by the program of a reactive computer system. Other state variables
are control variables, which keep track of the progress in the execution of a
reactive computer system’s program.

• Σ—A set of states.
Each state s in Σ is an interpretation of Π . An interpretation of a set of

typed variables is a mapping that assigns to each variable a value in its domain.
Therefore, each state s in Σ assigns each variable u in Π a value over its domain,
which is denoted by s[u].

• T —A finite set of transitions.
Each transition τ in T represents a state-changing action of the reactive

computer system and is defined as a function τ : Σ → 2Σ that maps a state s in
Σ into the (possibly empty) set of states τ(s) that can be obtained by applying
action τ to state s. Each state s′ in τ(s) is defined to be a τ -successor of s. A
transition τ is said to be enabled on s if τ(s) �= φ, that is, s has a τ -successor. It
is required that one of the transitions, τI , called the idling transition, is an identity
transition, i.e., τI (s) = {s} for every state s. The transitions other than the idling
transition are called diligent transitions.

• Θ—An initial condition.
Initial condition is an assertion (Boolean expression) that characterizes the

states at which the execution of reactive computer system’s program can begin.
A state s satisfying Θ is called an initial state.

Each transition τ can be characterized by an assertion ρτ (Π,Π ′), called the
transition relation, of the following form:

ρτ (Π,Π ′) : Cτ (Π) ∧ (y′1 = e1) ∧ · · · ∧ (y′k = ek)

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 57

This transition relation consists of the following elements:

• An enabling condition Cτ (Π), which is an assertion, describing the condition
under which the state s may have a τ -successor.

• A conjunction of modification statements

(y′1 = e1) ∧ · · · ∧ (y′k = ek),

which relate the values of the state variables in a state s to their values in a
successor state s′ obtained by applying τ to s. Each modification statement yi =
ei describes the value of a state variable in state s′ as an expression consisting of
the state variable values in state s.

As an example, for a transition system with Π = {x, y, z},

ρτ : (x > 0) ∧ (z′ = x − y)

describes a transition τ that is enabled only when x is positive and this transition
assigns the value of z in state s′ equal to the value of x − y in state s.

3.8.1.1 Computations

A computation of Manna–Pnueli Transition System < Π,Σ, T ,Θ > is defined to
be an infinite sequence of states

σ : s0, s1, s2, . . .

satisfying the following requirements:

• Initiation: The first state s0 is an initial state, i.e., it satisfies the initial condition
of the transition system.

• Consecution: For each pair of consecutive states si, si+1 in σ , si+1 ∈ τ(si) for
some transition τ in T . The pair si, si+1 is referred to as a τ -step. It is possible
for a given pair to be both a τ -step and a τ ′-step for τ �= τ ′.

• Diligence: Either the sequence contains infinitely many diligent steps or it
contains a terminal state (defined as a state to which only idling transitions can be
applied). This requirement excludes the sequences in which, even though some
diligent transition is enabled, only idling steps are taken beyond some point. A
computation that contains a terminal state is called a terminating computation.

Indices i of states in a computation σ are referred to as positions. If τ(si) �= φ (τ
enabled on si), it is said that the transition τ is enabled at position i of computation
σ . If si+1 ∈ τ(si), it is said that transition τ is taken at position i. Several transitions
may be enabled at a single position. Moreover, one or more transitions may be
considered to be taken at the same position. A state s is called reachable in a
transition system if it appears in some computation of the system.

58 M. U. Tariq and M. Wolf

3.8.2 Manna–Pnueli Transition System-Based Representation
of CPS-DSL

According to the proposed CPS design specification language (CPS-DSL), a
ComputingNode block contains a ConrolApp block and a set of SensorPort, Actu-
atorPort, InputMsgPort, and OutputMsgPort blocks. Furthermore, the ControlApp
block contains a set of Mode blocks and a ModeSwitchLogic block. Based on these
constituent blocks, a ComputingNode block, CompNode1, of CPS-DSL can be
represented as the Manna–Pnueli Transition System, PCompNode < ΠPCompNode

,
ΣPCompNode

, TPCompNode
, ΘPCompNode

>, outlined below, where:

• ΠPCompNode
—A finite set of state variables.

ΠPCompNode1 = {t, t switch
CompNode1,modeCompNode1, t

next
CompNode1,

sensePort1
CompNode1, sensePort2

CompNode1,

. . . , sensePort
p

CompNode1,

inMsgPort1
CompNode1, inMsgPort2

CompNode1,

. . . , inMsgPortrCompNode1,

actP ort1
CompNode1, actP ort2

CompNode1, . . . , actP ort
q

CompNode1,

outMsgPort1
CompNode1, outMsgPort2

CompNode1,

. . . , outMsgPort lCompNode1,

periodicControllerIn1
CompNode1,

periodicControllerIn2
CompNode1,

. . . , periodicControllerIna
CompNode1,

periodicControllerOut1
CompNode1,

periodicControllerOut2
CompNode1,

. . . , periodicControllerOutbCompNode1,

controllerFunctionMemory1
CompNode1,

controllerFunctionMemory2
CompNode1,

. . . , controllerFunctionMemoryc
CompNode1}

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 59

where

t = time,
t switch
CompNode1 = latest mode switch time of ControlApp block, associated with

ComputingNode block CompNode1,
modeCompNode1 = current mode of ControlApp block, associated with Com-

putingNode block CompNode1,
tnext
CompNode1 = next relevant time instant (actuator update, output message

update) during the current mode of operation of ControlApp block, associated
with ComputingNode block CompNode1,

sensePort iCompNode1 = A SensorPort block, contained in the ComputingNode
block CompNode1,

inMsgPortiCompNode1 = An InputMsgPort block, contained in the Comput-
ingNode block CompNode1,

actPort iCompNode1 = An ActuatorPort block, contained in the ComputingNode
block CompNode1„

outMsgPortiCompNode1 = An OutputMsgPort block, contained in the Comput-
ingNode block CompNode1,

peridoicControllerIni
CompNode1 = A PeriodicControllerInput block that is

contained in a mode of the ControlApp block, associated with ComputingNode
block CompNode1,

peridoicControllerOutiCompNode1 = A PeriodicControllerOutput block that
is contained in a mode of the ControlApp block, associated with ComputingN-
ode block CompNode1,

controllerFunctionMemoryi
CompNode1 = A ControllerFunctionMemory

block that is contained in the ControllerFuction block of a mode of the
ControlApp block, associated with ComputingNode block CompNode1,

• ΣPCompNode
—A set of states.

Each state s in Σ is an interpretation of Π . An interpretation of a set
of typed variables is a mapping that assigns to each variable a value in its
domain. The domain of state variables t , t switch

CompNode1, and tnext
CompNode1 is R≥0. The

domain of state variable modeCompNode1 is ModesCompNode1 = {Set of modes of
ControlApp block, contained in the ComputingNode block CompNode1}. Given
the following definitions of Πα and D, all the state variables in Πα have the
domain D:

Πα = {sensePort iCompNode1, actP ort iCompNode1, outMsgPortiCompNode1,

periodicControllerIni
CompNode1, periodicControllerOutiCompNode1,

controllerFunctionMemoryi
CompNode1}

D = {x | (x ∈ R)

∧ (x can be represented by type double of computer system)}

60 M. U. Tariq and M. Wolf

The state variable inMsgPortiCompNode1 has the following domain:

P = {(x, y) | (x ∈ R) ∧ (y ∈ D)}

• TPCompNode
—A finite set of transitions.

TPCompNode1 = τI ∪ T ModeSwitches
CompNode1 ∪ T T imeIncrement

CompNode1

where

τI = Idling Transition

T ModeSwitches
CompNode1 = {τmodeimodej

CompNode1 | ∃ a mode switch from modei to modej in the
ModeSwitchLogic block of ControlApp block, associated with ComputingN-
ode block CompNode1}

T T imeIncrement
CompNode1 = {τmode1

CompNode1, τ
mode2
CompNode1, . . . , τ

modeM

CompNode1}
As outlined in the summary of Manna–Pnueli Transition System approach,

presented in Sect. 3.8.1, each transition τ can be characterized by an enabling
condition and a set of modification statements. Based on the abovementioned
set of transitions TPCompNode1 of PCompNode1, all the diligent transitions of
PCompNode1 can be completely described through the enabling conditions and

modification statements of the following generic transitions: τ
modeimodej

CompNode1 and

τ
modei

CompNode1.

(a) τ
modeimodej

CompNode1 : Enabling Condition

C
τ

modeimodej
CompNode1

= (modeCompNode1 == modei)

∧ModeSwitchConditionCompNode1(t,modei,modej)

∧ModeSwitchCheckT imeCompNode1

(t, t switch
CompNode1,modei,modej)

where

ModeSwitchConditionCompNode1(t,modei,modej) = An assertion that
returns true if the mode switch condition associated with mode switch
from modei to modej in the ModeSwitchLogic block, contained in the
ComputingNode block CompNode1, is true at time t .

ModeSwitchCheckT imeCompNode1(t, t
switch
CompNode1,modei,modej) = An

assertion that returns true if t − t switch
CompNode1 = a{ Periodmodei

SwitchFreqmodeimodej
}, for

some a ∈ {1, 2, . . . , SwitchFreqmodeimodej
}.

(b) τ
modeimodej

CompNode1 : Modification Statements

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 61

1. modeCompNode1
′ = modej

2. t switch
CompNode1

′ = t

3. tnext
CompNode1

′ = t + tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t + tj = t switch

CompNode1
′

+ a{ Periodmodej

ControllerFunctionFreqcontrollerFucntiond

}),

for some

a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
}

and for some

controllerFunctiond ∈ ControllerFunctions
modej

CompNode1

}

4.

periodicControllerOuts
modej

CompNode1

′ = ModeSwitchFunction
modeimodej

CompNode1

(periodicControllerOuts
modei

CompNode1)

where
ModeSwitchFunction

modeimodej

CompNode1 = A function that produces the values to

which periodicControllerOuts
modej

CompNode1 are initialized after the mode
switch from modei to modej of ControlApp, associated with CompNode1

5.

actPorts
modej

CompNode1

′ = ControllerOutsT oActs
modej

CompNode1

(periodicControllerOuts
modej

CompNode1

′
)

where
ControllerOutsT oActs

modej

CompNode1 = A function that captures the input–
output relationship (produced by the combined effect) of all the connec-
tions between PeriodicControllerOutput blocks and ActuatorPort blocks
in modej of CompNode1.

6.

outMsgPorts
modej

CompNode1

′ = ControllerOutsT oOutMsgs
modej

CompNode1

(periodicControllerOuts
modej

CompNode1

′
)

62 M. U. Tariq and M. Wolf

where
ControllerOutsT oOutMsgs

modej

CompNode1 = A function that captures the
input–output relationship (produced by the combined effect) of all the
connections between PeriodicControllerOutput blocks and OutputMsgPort
blocks in modej of CompNode1.

7.

periodicControllerInscontrollerFucntionb

′

= LoadControllerInputs
modej

controllerFunctionb
(sensePorts

modej

CompNode1

′
,

inMsgPorts
modej

CompNode1

′
, periodicControllerOuts

modej

CompNode1

′
)

for every controllerFunctionb ∈ ControllerFunctions
modej

CompNode1

where
LoadControllerInputs

modej

controllerFunctionb
= A function that captures

the input–output relationship (produced by the combined effect) of
all the connections between PeriodicControllerInput blocks, associated
with ControllerFunction block controllerFunctionb in modej , and
SensorPorts, InputMsgPorts, and PeriodicControllerOutput blocks in
modej of CompNode1.

(c) τ
modei

CompNode1: Enabling Condition

C
τ

modei
CompNode1

= (modeCompNode1 == modei)

∧ ¬(ModeSwitchConditionCompNode1(t,modei ,modec)

∧ModeSwitchCheckT imeCompNode1(t, tswitch
CompNode1, modei , modec))

∀modec ∈ {modec | ∃ a mode switch f rom modei to modec of ControlApp

associated with ComputingNode block CompNode1}

(d) τ
modei

CompNode1: Modification Statements

1. t ′ = tnext
CompNode1

2. tnext
CompNode1

′ = t ′ + tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t ′ + tj = t switch

CompNode1

+ a{ Periodmodei

ControllerFucntionFreqcontrollerFunctiond

})

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 63

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
}

and
for some controllerFunctiond ∈ ControllerFunctions

modei

CompNode1

}

3.

(periodicControllerOutscontrollerFunctione

′,

controllerFunctionMemorycontrollerFunctione

′) =
f controllerFunctione (periodicControllerInscontrollerFunctione ,

controllerFuctionMemorycontrollerFunctione)

∀controllerFunctione ∈
{
controllerFunctione |

(controllerFunctione ∈ ControllerFunctions
modei

CompNode1)

∧ (t ′ = t switch
CompNode1 + a{ Periodmodei

ControllerFunctionFreqcontrollerFunctione

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctione }
}

where
f controllerFunctione = The function implemented by the internal com-

ponents (Simulink blocks) of ControllerFunction block controller

Fucntione.
4.

periodicControllerInscontrollerFunctionf

′ =
LoadControllerInputs

modei

controllerFunctionf
(sensePorts

modei

CompNode1
′
,

inMsgPorts
modei

CompNode1
′
, periodicControllerOuts

modei

CompNode1
′
)

∀controllerFunctionf ∈
{
controllerFunctionf |

(controllerFunctionf ∈ ControllerFunctions
modei

CompNode1)

∧ (t ′ = t switch
CompNode1 + a{ Periodmodei

ControllerFunctionFreqcontrollerFunctionf

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctionf
}
}

64 M. U. Tariq and M. Wolf

5.

actPorts
modei

CompNode1
′ =

ControllerOutsT oActs
modei

CompNode1(periodicControllerOuts
modei

CompNode1
′
)

6.

outMsgPorts
modei

CompNode1
′ =

ControllerOutsT oOutMsgs
modei

CompNode1

(periodicControllerOuts
modei

CompNode1
′
)

• ΘPCompNode
—An initial condition. Any initial state s of transition system

PCompNode must satisfy the following initial conditions:

t = 0
t switch
CompNode1 = 0
modeCompNode1 = mode1

tnext
CompNode1= min

{
tj | (tj > 0)∧(tj = a{ Periodmode1

ControllerFunctionFreqcontrollerFunctiond
})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
} and for

some controllerFunctiond ∈ ControllerFunctions
mode1
CompNode1

}

3.9 Conclusion

Taking inspiration from the hourglass-shaped architecture of the Internet, this chap-
ter has proposed an hourglass-shaped architecture for model-based development of
networked cyber-physical systems. Similar to the central role played by TCP/IP
protocols in the Internet architecture, the proposed architecture for model-based
networked CPS development is centered on the notion of a standardized CPS design
specification language.

The proposed hourglass-shaped architecture can enable effective coordination
between control systems engineers and embedded systems engineers during a
model-based CPS development process, while still acknowledging the differences
between the domain-specific skillset that control systems engineer and embedded
system engineer typically possess. The chapter has also proposed a version of
the abovementioned CPS design specification language and discussed its various
aspects such as concrete syntax, abstract syntax, and semantics.

3 An Hourglass-Shaped Architecture for Model-Based Development of. . . 65

References

1. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, techniques,
and tools (2nd ed.). Boston: Addison-Wesley Longman Publishing Co., Inc.

2. Akhshabi, S., & Dovrolis, C. (2013). The evolution of layered protocol stacks leads to an
hourglass-shaped architecture. In Dynamics on and of complex networks (Vol. 2, pp. 55–88).
New York: Springer.

3. Antsaklis, P. J. (1998). Hybrid control systems: An introductory discussion to the special issue.
IEEE Transactions on Automatic Control, 43(4), 457–460.

4. Berry, G., & Gonthier, G. (1992). The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2), 87–152.

5. Brogan, W. L. (1991). Modern control theory. Upper Saddle River: Prentice-Hall.
6. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., & Niebert, P. (2003). From

simulink to scade/lustre to TTA: A layered approach for distributed embedded applications.
In ACM sigplan notices (Vol. 38, pp. 153–162). New York: ACM.

7. Dugard, L., & Verriet, E. (1998). Stability and control of time-delay systems. Lecture notes in
control and information sciences. Berlin: Springer.

8. Feiler, P. H., & Gluch, D. P. (2012). Model-based engineering with AADL: An introduction to
the SAE architecture analysis & design language. Boston: Addison-Wesley.

9. Frankel, D. S. (2003). Model driven architecture: Applying MDA to enterprise computing.
Hoboken: Wiley.

10. Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical guide to SysML: The systems
modeling language. Burlington: Morgan Kaufmann.

11. Gronback, R. C. (2009). Eclipse modeling project: A domain-specific language toolkit. Boston:
Addison-Wesley Professional.

12. Halbwachs, N., Caspi, P., Raymond, P., & Pilaud, D. (1991). The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9), 1305–1320.

13. Henriksson, D., & Elmqvist, H. (2011). Cyber-physical systems modeling and simulation with
Modelica. In International Modelica Conference (Vol. 9). Linköping: Modelica Association.

14. Henzinger, T., Horowitz, B., & Kirsch, C. (2003). Giotto: A time-triggered language for
embedded programming. Proceedings of the IEEE, 91(1), 84–99.

15. Henzinger, T. A., & Sifakis, J. (2006). The embedded systems design challenge. In FM 2006:
Formal Methods (pp. 1–15). Berlin: Springer.

16. Jones, M., Kotsalis, G., & Shamma, J. S. (2013). Cyber-attack forecast modeling and
complexity reduction using a game-theoretic framework. In Control of cyber-physical systems
(pp. 65–84). Heidelberg: Springer.

17. Kang, W., Kapitanova, K., & Son, S. H. (2012). Rdds: a real-time data distribution service for
cyber-physical systems. IEEE Transactions on Industrial Informatics, 8(2), 393–405.

18. Karsai, G., Sztipanovits, J., Ledeczi, A., & Bapty, T. (2003). Model-integrated development of
embedded software. Proceedings of the IEEE, 91(1), 145–164.

19. Lee, E. A. (2009). Computing needs time. Communications of the ACM, 52(5), 70–79. https://
doi.org/10.1145/1506409.1506426

20. LeGuernic, P., Gautier, T., Le Borgne, M., & Le Maire, C. (1991). Programming real-time
applications with signal. Proceedings of the IEEE, 79(9), 1321–1336.

21. Liberzon, D., & Morse, A. S. (1999). Basic problems in stability and design of switched
systems. IEEE Control Systems, 19(5), 59–70.

22. Liu, I., Reineke, J., Broman, D., Zimmer, M., & Lee, E. A. (2012). A PRET microarchitecture
implementation with repeatable timing and competitive performance. In IEEE 30th Interna-
tional Conference on Computer Design (ICCD), 2012 (pp. 87–93). https://doi.org/10.1109/
ICCD.2012.6378622

23. Manna, Z., & Pnueli, A. (1991). The temporal logic of reactive and concurrent systems:
Specification. New York: Springer.

https://doi.org/10.1145/1506409.1506426
https://doi.org/10.1145/1506409.1506426
https://doi.org/10.1109/ICCD.2012.6378622
https://doi.org/10.1109/ICCD.2012.6378622

66 M. U. Tariq and M. Wolf

24. Manna, Z., & Pnueli, A. (1995). Temporal verification of reactive systems: Safety. New York:
Springer.

25. Mathworks inc. (2016). Embedded coder r2015b. http://www.mathworks.com/products/
embedded-coder/

26. Mathworks inc. (2016). Simscape r2015b. http://www.mathworks.com/products/simscape/
27. Mathworks inc. (2016). Simulink r2015b. http://www.mathworks.com/products/simulink/
28. Mathworks inc. (2016). Stateflow r2015b. http://www.mathworks.com/products/stateflow/
29. Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks.

Princeton: Princeton University Press.
30. Selic, B., & Gérard, S. (2013). Modeling and analysis of real-time and embedded systems with

UML and MARTE: Developing cyber-physical systems. New York: Elsevier.
31. Simko, G., Lindecker, D., Levendovszky, T., Neema, S., & Sztipanovits, J. (2013). Specifi-

cation of cyber-physical components with formal semantics–integration and composition. In
Model-driven engineering languages and systems (pp. 471–487). Berlin: Springer.

32. Stahl, T., Völter, M., Bettin, J., Haase, A., & Helsen, S. (2006). Model-driven software
development: Technology, engineering, management. Hoboken: Wiley.

33. Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008). EMF: Eclipse modeling
framework. Boston: Addison-Wesley Professional.

34. Sztipanovits, J., Bapty, T., Koutsoukos, X., Lattmann, Z., Neema, S., & Jackson, E. (2018).
Model and tool integration platforms for cyber-physical system design. Proceedings of the
IEEE, 106, 1–26. https://doi.org/10.1109/JPROC.2018.2838530

35. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., & Gupta, V. (2012).
Toward a science of cyber–physical system integration. Proceedings of the IEEE, 100(1), 29–
44. https://doi.org/10.1109/JPROC.2011.2161529

36. Tariq, M. U., Florence, J., & Wolf, M. (2014). Design specification of cyber-physical
systems: Towards a domain-specific modeling language based on simulink, eclipse modeling
framework, and giotto. In: ACESMB@ MoDELS (pp. 6–15).

37. Tarraf, D. C. (2013). Control of cyber-physical systems. In Proceedings of Lecture Notes in
Control and Information Sciences (Vol. 449).

38. Warmer, J. B., & Kleppe, A. G. (2003). The object constraint language: Getting your models
ready for MDA. Boston: Addison-Wesley Professional.

39. Wolf, W. (2009). Cyber-physical systems. Computer, 42(3), 88–89. https://doi.org/10.1109/
MC.2009.81

40. Wolf, M., & Serpanos, D. (2017). Safety and security of cyber-physical and internet of things
systems [point of view]. Proceedings of the IEEE, 105(6), 983–984. https://doi.org/10.1109/
JPROC.2017.2699401

41. Zhang, W., Branicky, M. S., & Phillips, S. M. (2001). Stability of networked control systems.
IEEE Control Systems, 21(1), 84–99.

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/simscape/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/stateflow/
https://doi.org/10.1109/JPROC.2018.2838530
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1109/MC.2009.81
https://doi.org/10.1109/MC.2009.81
https://doi.org/10.1109/JPROC.2017.2699401
https://doi.org/10.1109/JPROC.2017.2699401

Part II
Testing and Operation

Chapter 4
Formal Techniques for Verification
and Testing of Cyber-Physical Systems

Jyotirmoy V. Deshmukh and Sriram Sankaranarayanan

4.1 Introduction

Cyber-physical systems (CPS) involve the tight coupling of physical components
such as electrical, mechanical, hydraulic, and biological with software systems
that are primarily involved in tasks such as sensing, communication, control, and
interfacing with human operators. Software components in CPS are often designed
using the model-based development (MBD) paradigm [113]. The MBD process
proceeds in many steps: (1) First, the designer specifies the plant model, i.e., the
dynamical characteristics of the physical parts of the system using differential,
logical, and algebraic equations. Examples of plant models include the rotational
dynamics model of the camshaft in an automobile engine, the thermodynamic model
of an internal combustion engine, kinematic and dynamic models for ground and
air vehicles, and pharmacokinetic models of human physiology. (2) The next step
is to design control software to regulate the behavior of the physical system. This
step often involves the use of techniques from control theory to design embedded
controllers, techniques from distributed systems to achieve communication and
coordination, and more recently, techniques from artificial intelligence to allow
learning and adaptation. (3) The final step is to define an environment model
which encapsulates physical assumptions on the exogenous quantities that affect
the system (such as atmospheric turbulence, driver behavior, or meal intake by
a patient). The composition of these three types of models (plant, software, and
environment) constitutes the overall closed-loop system.

J. V. Deshmukh (�)
University of Southern California, Los Angeles, CA, USA
e-mail: jyotirmoy.deshmukh@usc.edu

S. Sankaranarayanan
University of Colorado, Boulder, CO, USA
e-mail: srirams@colorado.edu

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_4&domain=pdf
mailto:jyotirmoy.deshmukh@usc.edu
mailto:srirams@colorado.edu
https://doi.org/10.1007/978-3-030-13050-3_4

70 J. V. Deshmukh and S. Sankaranarayanan

Typically, plant models in an MBD process are deterministic. Any uncertainty
is encoded in the environment model as either a nondeterministic choice on inputs
to the plant model (subject to an appropriate set of constraints) or a random choice
on the inputs subject to an appropriate probability distribution. Though it is also
possible to model certain phenomena such as manufacturing variations, uncer-
tainties in physics-based modeling, and sensor/actuator noise using a stochastic
dynamical plant model, industrial MBD frameworks rarely use stochastic models
during the control design process. The controller models are typically deterministic,
as they represent a software implementation. In this chapter, we focus on plant
and controller models that are deterministic, and environment models that are
nondeterministic (not stochastic1).

Mathematical models for CPS applications help us analyze the system in multiple
ways: (1) models are simulated under various input conditions to predict how the
system as a whole would behave. Often these input conditions may be hard and
expensive to recreate in the physical world. For systems involving human operators,
models serve as an important alternative to real physical tests that may be dangerous
or even unethical; and (2) models can expose latent/hidden system variables that
are hard to measure, and thus allow us to examine their presumed behavior. In
Sect. 4.2, we summarize various kinds of mathematical models that are used in the
CPS domain, and typical applications for each model type.

Next, we describe behavioral specifications. Note that many industrial settings
use the term requirements to mean behavioral specifications. The term specification
is instead used to designate a specification model—a high-level programmatic
description of the embedded software code. Behavioral specifications go hand-in-
hand with models and describe desirable properties of the system as a whole. The
specifications can be high level (“end-to-end”), describing a desired property of the
system as a whole (e.g., the car will not be physically damaged by the action of the
adaptive cruise control subsystem) or at the modular level, focusing on an individual
module of the system (e.g., when the input to the controller is within [−2, 2], the
output must be within [−1, 1]). In Sect. 4.2, we also discuss a formalism used for
behavioral specifications of CPS models.

Given a mathematical model of the system M , and a behavioral specification ϕ,
there are two main kinds of analysis problems that focus on ensuring correctness
of the CPS design: formal verification and falsification. The main purpose of
verification is to prove the absence of failures in a given CPS model, where a
failure is defined as the violation of a given formal specification. Many verification
procedures perform a best-effort search for a proof of system correctness, wherein
a failure to find one may lead to an inconclusive result. On the other hand, test
generation or falsification focuses on providing evidence of the presence of failures

1Allowing stochasticity in the plant or environment model necessitates treating the closed-loop
CPS model as a stochastic dynamical system. The techniques for verification and testing of such
systems are quite different. As we wish to focus on techniques that are closer to industrial use of
MBD for CPS applications, we refer the reader to [36, 71] for excellent surveys.

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 71

in the form of counterexamples. Falsification procedures perform a best effort
search for a counterexample to the property of interest, with a failure to find a
counterexample leading to an inconclusive result.

We now formalize these problems. A typical abstraction for a mathematical
model of a CPS, M , is as a stateful system that maps timed input behaviors (i.e.,
input signals) to output signals. A signal is defined as a function mapping a time
domain—a finite or infinite subset of positive real numbers—to some value in a
signal domain. For simplicity, we consider signal domains that are compact subsets
of the real numbers. For ease of exposition, we assume that the time domain for the
input and output signals is the same set T, and the input and output signal domains
are respectively U and Y . Let the initial set of states for M be the set X0. Let
u ∈ T

U be an input signal and let y ∈ T
Y be an output signal. Thus, M defines

a function that maps a state x0 ∈ X0, and an input signal u to an output signal y,
i.e., y = M(x0, u). Finally, assume that we are given a specification ϕ, which maps
every pair (u, y) to true or false.

Definition 4.1 (Verification) Given a model M , with initial states X0, a time
domain T, input domain U and output domain Y , and a specification ϕ, the formal
verification problem provides a proof that for all x0 ∈ X0, and for all u ∈ T

U , if
y = M(x0, u), then ϕ(u, y) is true.

There are several techniques that have been proposed to solve the verification
problem for CPS models. The most popular among these are reachability analysis
techniques that are based on computing the set of states reachable (usually within a
given finite-time horizon) from a given set of initial conditions and for a given set
of input signals. In such techniques, a common assumption is that the system state
is fully observable (i.e., the output signals are simply the state trajectories of the
system). Further, the specification is typically provided as a set of unsafe states that
should not be reached by the system. We discuss these techniques in Sect. 4.3.

The advantage of techniques based on reachability is that they are highly
automatic; however, for systems with nonlinearities and switching behaviors, these
techniques may suffer from imprecision. An alternative approach is to use manual
insight to propose an invariant for the given CPS model. An invariant is a set that is
guaranteed to contain the system behaviors for all time. The computational effort is
then to automate the invariant generation process (as much as possible) and verify
the validity of the system invariant. We discuss such techniques in Sect. 4.4.

In Sect. 4.5, we discuss various specification-driven falsification techniques for
CPS models. A falsification problem attempts to provide a refutation to a verification
question for a system. Formally, we define falsification as follows.

Definition 4.2 (Falsification) Given a model M , with initial states X0, a time
domain T, input domain U and output domain Y , and a specification ϕ, the
falsification problem provides a proof that there is some x0 ∈ X0, and some
u ∈ T

U , such that y = M(x0, u), and ϕ(u, y) is false.

Falsification approaches are based on systematically searching for a counterex-
ample to a specification. In Sect. 4.5, we present robustness-guided falsification

72 J. V. Deshmukh and S. Sankaranarayanan

approaches that use a robustness metric to map properties ϕ(u, y) that provide
true/false interpretation to signals to real-valued interpretations that measure how
close a trace comes to satisfying or violating a property.

Finally, in Sect. 4.6, we highlight a significant challenge on the horizon for CPS
applications that aspire to become autonomous or semi-autonomous. Developers for
such applications are increasingly using AI-based software such as artificial (and
deep) neural networks for various aspects such as perception, planning/decision-
making, and control. We review some of the key challenges in this domain and
summarize some of the recent work seeking to address these challenges.

4.1.1 Motivating Examples

In this section, we describe two motivating examples that illustrate the need for
model-based design supported by formal design verification tools.

4.1.1.1 Autonomous Driving

There has been significant recent interest in the ability of vehicles to drive
autonomously, i.e., without any intervention by a human driver [28, 77, 100]. The
typical software stack for an autonomous vehicle consists of several components: (1)
a perception component that processes data about the environment coming through
sensors such as a Radar, forward-facing cameras, and LiDAR (light detection and
ranging), (2) a decision/planning component that uses the environment models
created by the perception component to plan the motion of the vehicle, and (3) a low-
level control component that interfaces with the actuators of the vehicle to physically
realize the motion plan determined by the planning component. There is ample
scope for model-based design of the interfaces between each of these components.
In particular, we consider one of the simplest problems for an autonomous vehicle,
which is that of regulating its speed. This is based either on a desired speed
determined by the high-level motion planner in accordance with the current weather
conditions and speed-limit regulations, or based on the speed of the vehicle in front
(whichever is lesser). The objective is twofold, if there is a lead car, then the ego
car should always maintain a safe following distance from the lead car; otherwise,
it should maintain a speed close to that suggested by the high-level motion plan.

An adaptive cruise controller (ACC) is a control scheme that seeks to automate
the task of choosing the right acceleration for the ego vehicle so as to main-
tain its safety and performance objectives. Radar-based ACC systems have been
implemented in several commercial cars, but continue to be of relevance in the
autonomous-driving space, where the sensor inputs are not restricted to Radar.
Furthermore, a typical autonomous vehicle has several subsystems that may try to
control the longitudinal acceleration of the car (e.g., a controller that attempts to
execute a lane-change maneuver, or a controller to execute an emergency stopping

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 73

Lead Car
Kinematic

Model

Sensor
Model

+
Ego Car

Kinematic
Model

Speed/
Position
Sensors

Adaptive
Cruise

Controller

alead(t) n(t)

aego(t)

Fig. 4.1 Schematic diagram for an adaptive cruise control system

maneuver). In such cases, it is important that the ACC system is not designed in
isolation, but is cognizant of other systems around it.

A schematic model of a typical ACC system is shown in Fig. 4.1. The typical
model of the environment is to construct a kinematic model of the lead car (based
on Newton’s laws of motion), while assuming that the lead car can dynamically
change its acceleration (denoted by alead(t)). The sensor model then captures the
quantities in the lead car’s motion that can be measured by the ego car. For example,
for a Radar-based sensor, this would be the relative distance between the cars and
the velocity of the lead car. The kinematic model of the ego car models the effect
of the controller and environment inputs on the ego car’s motion. We assume that
the adaptive cruise controller estimates the ego car’s motion through speed sensors
(possibly coupled with an odometry-based position computation model). These
sensors could have an associated measurement noise (modeled by n(t)). Finally,
the ACC outputs a control signal (typically the ego car’s acceleration, shown as
aego(t)).

Recent work has focused on formal verification and correct-by-construction
synthesis of ACC systems. In [102], the authors use quantified dynamic logic
to verify the local lane control problem which uses an invariant-based theorem-
proving approach. In [104], the authors use reachability analysis for proving safety
of ACC systems. On the other hand, in [17, 114], the authors use correct-by-
construction approaches using Lyapunov theory and control barrier certificates to
automatically obtain safe implementations of ACC systems. While these studies
have demonstrated the power of formal verification, more work can be done in
formalizing behavioral specifications for an ACC system, and then applying the
different techniques considered in this chapter to prove correctness of such a system.

4.1.1.2 Artificial Pancreas

Type-1 diabetes is characterized by the inability to regulate the blood glucose
(BG) levels within an euglycemic range [70, 180]mg/dl in the human body due
to the absence of insulin, a hormone that is responsible for reducing BG levels.
The treatment is to externally replace the lost insulin. However, this insulin must

74 J. V. Deshmukh and S. Sankaranarayanan

+ Insulin Pump Human Patient Sensor (CGM)

Control Algorithm +

b(t) u(t) G(t)

Gs(t)

n(t)

uc(t)

Fig. 4.2 Overview of the key components of an artificial pancreas control system. b(t): external
insulin, u(t): insulin infused, G(t): BG level, n(t): measurement error, Gs(t): sensed glucose level,
uc(t): insulin infusion commanded

be delivered to compensate increases in blood glucose levels due to meals or
endogenous glucose production by the liver. Too much insulin can expose the patient
to the risk of hypoglycemia wherein the blood glucose levels fall below 70 mg/dl,
whereas too little insulin causes high BG levels due to hyperglycemia wherein BG
levels rise above 180 mg/dl leading to long-term damage to kidneys, eyes, heart,
and the peripheral nerves. In order for insulin to be delivered, it is often infused
subcutaneously through an insulin pump—a device that is programmed to deliver a
constant low rate of insulin, known as basal insulin, or a larger bolus of insulin in
advance of a meal or to treat high BG values [38, 138].

The artificial pancreas project seeks to partially or fully automate the delivery
of insulin by combining a continuous glucose sensor which periodically senses
BG levels subcutaneously, an insulin pump that delivers insulin, and a closed-loop
control algorithm that uses inputs from the CGM and the user to control BG levels
to a target value [48, 86, 143]. A schematic diagram is shown in Fig. 4.2.

Because of the severe risks posed by hypo- and hyperglycemia, AP devices are
safety critical. They need to be used by patients 24/7/365 without expert supervision,
though they are capable of serious harm to the patient. As a result, their design
and implementation require careful consideration and thus form an ideal target for
formal methods/automated reasoning approaches.

Notable attempts to verify medical devices include work on pacemakers and
implantable cardiac defibrillators (ICDs). This started with physiological models
of excitable cells in the heart [119], leading to approaches that employ these models
to test closed-loop systems [88, 117].

Lee and collaborators studied a PID-based closed-loop system meant for intra-
operative use in patients [39], using the dReal SMT solver [76] to prove safety
for a range of parameters and controller gains. Other approaches to verifying
artificial pancreas systems have relied on falsification, using temporal logic robust-
ness [56, 68], and incorporated in tools such as S-TaLiRo [1, 111] and Breach [55].
Sankaranarayanan et al. have studied the use of falsification techniques for verifying
closed-loop control systems for the AP [34]. Their initial work investigated a PID
controller proposed by Steil et al. [140, 141] based on published descriptions of

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 75

the control system available. Another recent study by Sankaranarayanan et al. [135]
was performed to test a predictive pump shutoff controller designed by Cameron
et al. [35] that has undergone outpatient clinical trials, recently [103]. Recently,
Kushner et al. studied a personalized approach to analyzing controller parameters
using data-driven models [96]. These studies have demonstrated the ability of
formal approaches to verification and falsification to provide important behavioral
specifications, combine a variety of models for every aspect of the artificial
pancreas, and prove/falsify important properties.

4.2 Mathematical Models and Specifications

“All models are wrong but some are useful”–George E. Box [32].

Verifying properties of a system requires mathematical models and formal specifi-
cations. In this section, we briefly describe the varieties of mathematical models
and specification formalisms that are used in cyber-physical systems (CPS). As
mentioned earlier, CPS combine a variety of heterogeneous components, including
physical (mechanical, electrical, chemical, and biological) systems, electronic (ana-
log and digital circuits), and software components. Furthermore, they are subject to a
wide variety of input stimuli from the environment that can range from disturbances
such as wind to inputs from human operators. As a result, mathematical modeling is
a key first step in order to provide a framework wherein we can define key properties
of the system in a formal manner. A variety of mathematical models are employed
in CPS, including ordinary and partial differential equation models for physical and
biological components, automata-based models for digital electronic components,
and software. Finally, stochastic models capture the behavior of disturbances such
as the wind, noise, measurement errors, component failures, or mistakes made by
human operators.

4.2.1 Mathematical Models

Table 4.1 lists some commonly employed mathematical models and the type of
components that they are used to model. These models range from continuous-time
models such as ODEs and SDEs to discrete time models such as finite and extended
state machines. Each of these models have been well studied by communities of
mathematicians, physicists, and engineers.

However, the challenge of CPS applications arises in the combination of multiple
modeling paradigms within the same system. Due to this combination, the modeling

76 J. V. Deshmukh and S. Sankaranarayanan

Table 4.1 Commonly employed mathematical models for various aspects of a CPS

Model type Component type Examples

Ordinary differential equation
(ODE) [107]

Physical/analog Vehicle body, engine speed, drug
pharmacokinetics

Partial differential equation
(PDE)

Physical continuum Fluid flow, electromagnetic field,
fabric, paper

Finite state automata [137] Software/electronics Switching logic, relays, digital
circuits, software

Extended state automata Software Software controllers

Timed automata [12] Real-time software Schedulers, watchdog timers

Markov chains [115] Disturbances/failures Component failures, job arrivals

Stochastic differential equation
(SDE) [116]

Disturbances Wind disturbances, measurement
noise

of CPS has focused on the combination of discrete-time models such as automata
and continuous models such as ODEs to yield hybrid dynamical systems that are
capable of continuous-time evolution in conjunction with discrete mode transitions.

4.2.1.1 Hybrid Systems

Hybrid systems model processes that combine the continuous evolution of state
over time with discrete jumps that can instantaneously change the state as well as
the future course of the dynamics. Such systems arise from a variety of sources:
physical systems involving contact forces, biological systems, controlled systems
with switched or periodically updated control action, and in general, software-
driven control systems. The field of hybrid systems evolved historically from two
complementary sources that included computer scientists studying languages and
formalisms defined by the interaction of automata with physical process [9, 83];
control theorists extending previously well studied continuous models to include
discrete switching actions [33, 139]. Labinaz et al. present an early survey that
touches upon the historical development of hybrid systems [97].

The hybrid automaton model was proposed to provide a conceptual model for
expressing hybrid systems [10]. Figure 4.3 shows an example of a hybrid automaton
model expressing a temperature controller for a house that is heated by turning
on/off a source of heated/cooled air. The automaton has two modes ON: representing
the dynamics of the room temperature when the heater is turned on and OFF:
representing the dynamics when the heat is turned off.

Definition 4.3 (Hybrid Automaton) Given a vector of system variables x ∈ X,
control inputs u ∈ U , and disturbances w ∈ W , a hybrid automaton H :
〈L,E, I, F,G,R〉 consists of the following components:

1. A finite set of modes L : {�1, . . . , �n} and transitions that form edges between
locations E ⊆ L× L,

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 77

ON
dQ
dt = (Th −Tr)Mdc
dQL
dt = Tr−To

Req
dTr
dt = 1

Mac
dQ
dt − dQL

dt
dW
dt =W0

dQ
dt

OFF
dQ
dt = 0
dQL
dt = Tr−To

Req
dTr
dt = 1

Mac
dQ
dt − dQL

dt
dW
dt = 0

Tr ≥ Tre f +5

Tr ≤ Tre f −5

Fig. 4.3 Hybrid automaton model for the house heating demo example. The state variables include
Q, the heat flowing in to the room, QL, the heat lost to the outside, Tr , the room temperature, and
W , the total heating cost. The parameters are shown in blue and include Ma the mass of air inside
the house, Req the “thermal resistance” equivalent of the house, Md , the air flow rate through the
heater, c the heat capacity of air at constant pressure, W0 is cost per unit heat, and Tref the desired
reference temperature. The disturbance input is To the outside air temperature, shown in red

2. A map I that associates each location � ∈ L, a location invariant I� ⊆ X,
3. A map F that associates each mode �i ∈ L with a vector field Fl : X×U×W �→

(T X) that forms the RHS of the ODE: dx
dt
= F�i

(x, u, w). The function F� is
assumed to be Lipschitz continuous over x and continuous over the remaining
inputs for all � ∈ L.

4. A guard map G that associates with a guard set G(�1,�2) with each transition, and
5. A reset map R that associates each transition with an update function R(�1,�2) :

I�1 �→ I�2 .

The initial condition of a hybrid automaton is given by a location �0 ∈ L and an
initial state x0 ∈ I�0 . Let u : [0, T] �→ U be a control input signal and w : [0, T] �→
W be a disturbance input. The state of a hybrid automaton is given by a pair (�, x)

where � ∈ L and x is a state belonging to the invariant set I� associated with the
mode �. The execution of a hybrid automaton over a time horizon T (can be finite
or infinite T = ∞) is given by a sequence of flows and jumps:

• A flow (�, x, τ) � (�, x′, τ + δ) for δ ≥ 0 is a solution to the ODE dx
dt
=

F�(x, u, w) starting from the initial condition t0 = τ, x(τ) = x with u(·) as
the signal u(t) with t ∈ [τ, τ + δ) and likewise, w as the signal w(t) over t ∈
[τ, τ + δ). This trajectory is uniquely defined since F� is Lipschitz. Finally, x′ is
the state x(τ + δ).

• A jump (�, x, τ) → (�′, x′, τ) is an instantaneous transition from mode � to �′
wherein (�, �′) ∈ E, and x ∈ G(�,�′) must belong to the guard set of the transition.
The state x′ = R(�,�′)(x) is obtained by applying the reset map corresponding to
the transition (�, �′) to the state x.

An execution trace of the hybrid automaton yields a hybrid time trajectory
comprised of flows and jumps starting from the initial state (�0, x0) at time 0.

(�0, x0, 0) � (�1, x1, t1)→ (�′1, x′1, t1) � (�2, x2, t2)→ · · ·

78 J. V. Deshmukh and S. Sankaranarayanan

4.2.2 Specifications

In the formal methods literature, the term specifications is often used to describe
the expected behavior of the overall system. Specifications can express properties
defined over several behaviors of the system (e.g., the average energy consumption,
mean time to failure, etc.), and can also express properties over individual system
executions (e.g., the value of the overshoot is less than 10% of the reference
value, the response time is at most 5 s, etc.). The first class of properties (that are
defined over several system behaviors) are called hyperproperties [47]. The second
class of properties are trace properties, i.e., given a (discrete or continuous) trace
representing a system behavior, we can check the satisfaction or violation of such a
property on this trace.

Types of Properties In hyperproperties, we can further make a distinction between
statistical hyperproperties, i.e., properties that reason about statistical aspects of
the system (such as average energy consumption, mean time to failure, etc.), and
relational hyperproperties. There has been limited work on estimating statistical
properties of CPS models [2], but not much work has been done to verify or
falsify statistical hyperproperties. Relational hyperproperties are gaining popularity
for expressing security and privacy properties such as information leakage, robust
I/O behavior, noninterference, noninference, etc. [47, 112]. For example, consider
a potential side-channel power attack: there exists a system behavior where for
the input u the signal representing the magnitude of power (say y) that exceeds
the value c for τ seconds, but for all other inputs u′ near u, the corresponding
y′ is always below some value d s.t. d < c. There has not been much work
on verification of relational hyperproperties for CPS models. Thus, as verification
or testing for hyperproperties is a nascent field with limited results for narrow
subproblems [29, 30, 53, 70]. Hence, we do not discuss this aspect in detail in this
chapter, but instead focus on verification and falsification for trace properties.

4.2.2.1 Temporal Logics for Trace Properties

There are several possible ways in which trace-level properties can be expressed
and checked. Many industrial practitioners often write custom programs in their
preferred programming language to check a trace-level property. These programs
are also known as property monitors. An offline monitor checks the satisfaction
of a finite-time trace-level property by a given finite-time system execution after
the execution has terminated. On the other hand, an online monitor continuously
checks the satisfaction or violation of the property as the system runs. In an MBD
framework, the same terminology applies to simulations of system behavior: offline
monitoring requires the simulation to have terminated.

Having customized programs for property monitors can pose challenges in terms
of interpretability and maintainability, and is prone to manual programming errors.
An elegant alternative is to use a suitable logical formalism to describe the desired

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 79

trace-level property. One such formalism is that of linear temporal logic (LTL). LTL
was introduced in the late 1970s [123] to reason about the temporal behaviors of
reactive systems, i.e., input-output systems with Boolean, discrete-time signals. CPS
rarely have discrete-valued, discrete-time behaviors, as the physical components
in a CPS have real-valued behaviors that evolve continuously in time. To reason
about such systems, later, temporal logics such as timed propositional temporal
logic (TPTL) [14], the duration calculus [37], and metric temporal logic (MTL) [94]
were introduced to deal with dense-time system executions. These logics required
first creating a set of atomic Boolean predicates over signals, and then introduced
formulas that contained temporal operators that could be interpreted over dense
time.

Signal Temporal Logic (STL) STL [106] was proposed in the context of analog
and mixed-signal circuits as a specification language for expressing constraints on
real-valued signals directly in the formula expressing the property of interest. Let
x be an n-dimensional signal representing the system execution over some finite
time, and for simplicity, let the codomain of this variable be R

n. Without loss of
generality, these predicates can be reduced to the form μ = f (x) ∼ c, where f is a
scalar-valued function from R

n to R.
Temporal formulas are formed using temporal operators, “always” (denoted as

G), “eventually” (denoted as F) and “until” (denoted as U). Each temporal operator
is indexed by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞) or [a,∞)

where each of a, b is a nonnegative real-valued constant. If I is an interval, then an
STL formula is written using the following grammar:

ϕ := true
| μ atomicproposition
| ¬ϕ negation
| ϕ1 ∧ ϕ2 conjunction
| ϕ1 UI ϕ2 untiloperator

The always and eventually operators are defined as special cases of the until
operator as follows: GI ϕ � ¬FI¬ϕ, FI ϕ � true UI ϕ. When the interval I is
omitted for the until operator, we take it as the default interval of [0,+∞). The
semantics of STL formulas are defined informally through examples as follows.

Example 4.1 The signal x satisfies an atomic predicate f (x) > 10 at time t (where
t ≥ 0) if the value of f (x(t)) at time t is greater than 10.

The signal x satisfies ϕ = G[0,2) (x > −1) if for all time 0 ≤ t < 2, x(t) > −1.
The signal x1 satisfies ϕ = F[1,2) x1 > 0.4 iff there exists time t such that 1 ≤

t < 2 and x1(t) > 0.4.
The signal x = (x1, x2) over two-dimensional space satisfies the formula ϕ =

(x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some time u where 2.3 ≤ u ≤ 4.5 and
x2(u) < 1, and for all time v in [2.3, u), x1(u) is greater than 10.

80 J. V. Deshmukh and S. Sankaranarayanan

We formally define the semantics of STL as follows:

Definition 4.4 (STL Semantics) STL semantics are defined in terms of the satis-
faction operator |�, for a given signal x at each time t as follows:

(x, t) |� μ ⇐⇒ x(t) |� μ

(x, t) |� ¬ϕ ⇐⇒ (x, t) �|� ϕ

(x, t) |� ϕ1 ∧ ϕ2 ⇐⇒ (x, t) |� ϕ1 and (x, t) |� ϕ2

(x, t) |� G[a,b]ϕ ⇐⇒ ∀t ′ ∈ [t + a, t + b](x, t ′) |� ϕ

(x, t) |� F[a,b]ϕ ⇐⇒ ∃t ′ ∈ [t + a, t + b](x, t ′) |� ϕ

(x, t) |� ϕ1 U[a,b] ϕ2 ⇐⇒ ∃t ′ ∈ [t + a, t + b] s.t.
(x, t ′) |� ϕ2 and
∀t ′′ ∈ (t, t ′), (x, t ′′) |� ϕ1

Beyond STL Recently, there have been several efforts to consider alternatives to
STL to address specific properties that may be cumbersome to express in STL, or
inexpressible in STL. Timed regular expressions (TRE) first introduced in 2002
[21] allow expressing localized patterns in CPS behaviors. An efficient monitoring
procedure has been proposed for TREs in [150], and an implementation of this
procedure is available in the Montre tool [149]. Quantitative regular expressions
(QREs) [13, 16] is yet another modeling and programming abstraction for spec-
ifying complex numerical queries over data streams. These have been used for
analyzing complex behaviors such as arrhythmia in cardiac signals [4].

Finally, differential dynamic logic [120] is a logic for specifying and verifying
correctness of hybrid systems. The language allows specifying hybrid systems
operationally as hybrid programs and uses automated deduction-based theorem
proving tools (such as KeyMaera and its extensions [74, 122]) to verifying program
correctness. A key difference between deductive techniques and those that we con-
sider in this chapter is that deductive techniques often require manual intervention in
the form of lemmas and proof strategy selection when the automated theorem prover
fails to prove program correctness. We omit such techniques from this chapter, and
the interested reader can find an extensive treatment in [121].

4.3 Reachability Analysis

Reachability analysis asks whether a hybrid system starting from a set of initial
states X0 can reach any state in a given target set U . The problem is of fundamental
importance to hybrid systems since the target set U often describes dangerous states
which we wish to avoid reaching during an execution of the system.

Example 4.2 Consider the house heating system shown in Fig. 4.3. It is considered
dangerous if the temperature of the house falls below 10 centigrade, while the sys-
tem continues to be operational and the outside temperature behaves “reasonably”:

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 81

that is, it must be in the range [−20, 50] ◦C and cannot increase/decrease more than
5 ◦C/h. Let us assume an initial state with Tr = 27. Is there a scenario in which the
value of Tr ≤ 10 is possibly under the constraints on the behavior of the outside
temperature? Here, the target unsafe set is U : {(�,Q,QL, Tr ,W) | Tr ≤ 10}.

Another safety property asks whether it is possible for T ≤ Tref − 5 and
simultaneously, the heater is in the “OFF” state. Here, the unsafe set is V :
{(�,Q,QL, Tr ,W) | T ≤ Tref − 5 ∧ � = OFF}.

Reachability analysis has been studied using a variety of approaches, and for
various restrictions on the hybrid automaton model.

4.3.1 Decidability of Reachability

First, it is well known that the reachability problem is undecidable even for simple
cases. For instance, in the absence of hybrid dynamics, reachability is undecidable
for polynomial ODEs involving 3 or more state variables [82]. Furthermore, for
linear dynamical systems, it is known that reachability of a single target state y
from a single given initial state x0 is decidable. However, the reachability problem
of a hyperplane target from a single state initial set (known as the Skolem–Pisot
problem) is open. Recent result by Chonev connects the undecidability of this
problem to a well-known and open number theoretic conjecture called the Schaunel
conjecture [44]. Alur and Dill showed that the reachability problem is decidable for
timed automata that can be seen as hybrid automata whose continuous variables are
all clocks with dynamics dT

dt
= 1. Furthermore, the guard conditions are restricted

to comparing clocks with fixed constants, and resets are limited to setting clocks
to fixed constant values. The result relies on an untiming construction through
the region abstraction that produces a finite state automaton which is bisimulation
equivalent to the original infinite state timed automaton [12]. However, Henzinger
et al. show that if we allow “stopwatches,” i.e., clocks that can be stopped by setting
dT
dt
= 0 in certain modes, even the presence of a single stopwatch in a timed

automaton model renders the reachability problem undecidable [84]. The timed
automaton model can be generalized to rectangular hybrid dynamics that allows
the derivative of each variable xi to lie within an interval dxi

dt
∈ [l(m)

i , u
(m)
i] in each

mode m. Henzinger et al. [84] show that the reachability problem is decidable for
initialized rectangular hybrid automata that adds the following constraint: for every
transition τ from mode m to m̂, if the dynamics for dxi

dt
changes going from m to

m̂, then the variable xi must be reset to constant value by τ . However, failing this
condition, the problem is undecidable, in general. Asarin et al. consider polyhedral
hybrid systems that are defined by partitioning the state space into polyhedral
regions defining modes and associating each polyhedral region with a mode m and
a corresponding constant differential equation dxi

dt
= c

(m)
i [23]. Transitions happen

when the system moves from one polyhedral region to another in this model. While
the reachability problem is decidable for 2D (planar) systems, it is undecidable for

82 J. V. Deshmukh and S. Sankaranarayanan

Table 4.2 Summary of a few results establishing decidability/undecidability of reachability for
hybrid systems

System Outcome Description

Timed automata [12] Decidable dxi

dt
= 1 for all xi and all modes, guards

xi{≤,≥,=}c and resets xi := c

Stopwatch automata [84] Undecidable Timed automata + at least one stopwatch with
dxi

dt
= 0 allowed in some modes

Initialized rectangular
automata [83, 84]

Decidable Rectangular dynamics dxi

dt
∈ [li , ui] for each xi

and mode, guards + resets as in timed
automata. Transition between different
dynamics should reinitialize a variable

Polyhedral hybrid
automata [23]

Undecidable Decidable for 2 or fewer state variables

O-minimal hybrid automata
[98]

Decidable Automata whose guards, reset maps, and flows
can be defined in an O-minimal logical theory

systems involving 3 or more variables. Table 4.2 summarizes some of the significant
results on decidability/undecidability of reachability for various classes of hybrid
systems.

Understanding the boundary between decidable and undecidable subclasses has
been an active area of investigation with some open problems. However, early
results showed that seemingly simple hybrid automata models can exhibit a high
degree of complexity in terms of their behaviors. As a result, the focus has gradually
shifted from finding new decidable classes to finding practical algorithms that can
be useful to analyze models of interest to practitioners, even if the overall problem
is known to be undecidable.

4.3.2 Reachability Using Over-Approximations

As discussed previously, the problem of deciding questions of reachability is
undecidable. However, for many practical systems, the problem of reachability
analysis can be resolved by computing over-approximations of the reachable set
of states starting from the initial set X0, or alternatively, by computing over-
approximations of the backward reachable set starting from the unsafe/target set
U . This is pictorially illustrated in Fig. 4.4. Over-approximations can be obtained
for a finite time horizon if the value of T is finite, or an infinite time horizon if
T = ∞. Naturally, infinite-time horizon approximations are more complicated and
approached using deductive methods discussed in subsequent sections. The rest of
this section focuses, for the most part, on finite-time horizon reachability analysis.

Let S ⊆ X be a subset of states of a system and X0 be the initial set. We say
that S is a (forward) over-approximation for a time interval [0, T) iff for any initial
state x(0) ∈ X0, any state x(t) reachable from x(0) at time t ∈ [0, T) belongs to S.

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 83

X0

S
P U

V

Fig. 4.4 S: Over-approximation of reachable set of states includes the initial condition X0 and
all states reached by trajectories starting from X0. P : Backward-over approximation containing
all states that can reach U . The set of states U is proven unreachable since U ∩ S is empty, or
alternatively, However, the set of states V may or may not be reachable since V ∩ S is not empty

Using the forward over-approximation S, we may conclude that U is unreachable if
U ∩ S = ∅.

Alternatively, we can prove unreachability by computing a set of backward
reachable states P ⊆ X such that U ⊆ P for the target set and every trajectory
of the system x(·) such that x(t) ∈ U at time t ∈ [0, T) must satisfy x(0) ∈ P .
If P ∩ X0 = ∅, we may now conclude that no run of the system starting from X0
may reach U within the given time horizon. Figure 4.4 illustrates how a backward
reachable set can be used to prove unreachability, as well.

4.3.2.1 Approximate Reachability: Overview

We will now discuss how reachability analysis works at the high level, focusing
first on computing over-approximations of forward reachable states starting from
the initial state X0 and an initial mode �0 of the hybrid system. The approach is
based on symbolic model checking, wherein a set of reachable states is iteratively
computed by repeatedly applying the post-condition operator to the initial set of
states. The post-condition operator applied to a set of states S captures all the states
reachable from S in a single “computational” step. Let post(S) denote the post-
condition of S. Thus, we would normally compute

X0 ∪ post(X0) ∪ post2(X0) ∪ · · · .

However, there are three core problems with this approach:

1. Hybrid systems combine the continuous evolution of state variables with discrete
transitions. There is no natural notion of a single discrete computational step.

2. The sets postk(X0) become increasingly complicated to represent in a computer,
making the process prohibitively expensive.

84 J. V. Deshmukh and S. Sankaranarayanan

3. The iteration does not terminate in finitely many steps for most systems, and
therefore, the approach may not terminate.

The other alternative is to perform a backward iteration, starting from the unsafe
set of states and iterating the weakest pre-condition operator. The precondition
operator applied to a set of states S captures all those states that will reach S in one
computational step. Let pre(S) denote the weakest precondition operator applied to
a set S. Thus, we would normally compute

U ∪ pre(U) ∪ pre2(U) ∪ · · · .

Once again, the same three problems we encountered for post-conditions arise for
preconditions as well.

Reachability algorithms overcome the three key problems mentioned above
through two important and closely intertwined ideas: (1) abstraction of the hybrid
system by a simpler model; and (2) abstract (over-approximate) representation
of sets of states by geometric primitives such as rectangles, polyhedra, ellipsoids,
zonotopes, and Taylor models.

4.3.2.2 Abstractions

A system abstraction seeks to replace a given hybrid automaton S by another finite
or infinite state system T over the same state space and set of modes as S , such
that every trajectory of S is also a trajectory of T . In this case, we will write
S � T . Note, however, that T may have more trajectories that are not trajectories
of S . It is easy to show that any reachable state of S starting from a given state X0
is also reachable in T (starting from a suitable superset of X0).

Early approaches considered finite state abstractions that transform a given
hybrid automaton into a finite state machine which simulates the original system, or
in special cases, such as timed automata or initialized rectangular automata, exhibits
a stronger connection through bisimulation relations [15, 24]. However, most
systems of interest have been observed not to have finite bisimulation quotients.
To circumvent this, Girard and Pappas consider the notion of an approximate
bisimulation relation that is defined by means of a comparison metric between
states of the two systems so that as the systems evolve in time starting from
related initial states, the distance decays over time [79]. The notion of approximate
bisimulation relations expands the class of systems for which we may find suitable
finite state abstractions with some property preservation guarantees. Nevertheless,
it remains the case that finding finite (approximate) bisimulation quotients is rare
and seldom feasible for practical systems. Other approaches for finding finite
abstractions have employed the use of predicate abstractions with counterexample
guided refinements [11]. While the approach can perform well if the right set of
predicates were to be provided, the problem of deriving such a set of predicates is
often hard in practice. Furthermore, the refinement loop may often generate a large

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 85

number of predicates making the finite state abstraction prohibitively expensive.
More recently, hybridization approaches have investigated the abstraction of more
complex dynamics such as nonlinear ODEs, linear hybrid systems by simpler
dynamics such as rectangular automata [22, 50, 125, 132]. On one hand, these
approaches can provide tradeoffs between the accuracy of the abstraction and
its size. On the other hand, these approaches can also suffer from the curse of
dimensionality since they rely on decomposing the state space into small compact
regions in order to bound the error between the original system and the abstraction.

A related class of abstractions seeks to eliminate continuous dynamics by
replacing the ODEs by relational models that relate a state x and a future reachable
state x′. Building such relational models can then allow off-the-shelf tools for
model checking infinite state discrete systems to tackle the verification problem.
The idea of relationalization, though implicit in earlier works such as Podelski
and Wagner [124], was first formalized by Tiwari and Sankaranarayanan under
the notion of relations that abstracted time away as well as relations that captured
change in state over a fixed time step [136, 154]. Subsequent work studied various
ways of constructing these relations that tracked time explicitly as “time-aware”
relations [109]. Recently, Chen et al. explored the construction of these relations
for nonlinear systems [42]. One of the key drawbacks for existing methods lies in
the lack of approaches to refine these relations once they are constructed. A related
issue lies in the tradeoff between constructing a coarse but simple relation versus a
more complex and less conservative approximation. Approaches that can construct
“multi-scale” relations that selectively refine interesting parts of the relation remain
unexplored at the time of writing.

4.3.2.3 Flowpipe Computation

Flowpipe computation approaches rely primarily on computing reachable sets by
approximating the time trajectories of the system rather than abstracting the system
itself. A large variety of flowpipe computation approaches have been proposed in
the literature, and many proposed techniques are supported by tools for experimental
validation. Some of these tools are specialized to linear hybrid systems, while others
tackle a larger class of nonlinear systems. Most flowpipe construction methods are
instances of the forward reachability computation using the post-condition operator
presented previously. However, in order to extend this scheme to hybrid systems, it
is important to consider four important aspects (illustrated in Fig. 4.5).

1. A systematic way to represent sets of continuous states. Since not all sets
are representable inside a computer, common representations include intervals,
convex polyhedra, ellipsoids, zonotopes, support vectors, and Taylor models.

2. Once a representation is chosen, we need to compute sets of reachable states
for given nonlinear dynamics inside a mode. This operation has been variously
termed “time elapse,” “continuous post-condition,” or “continuous image com-
putation” in the literature.

86 J. V. Deshmukh and S. Sankaranarayanan

INITIALINITIAL

CONTINUOUS
IMAGE

MODE # 1 TRANSITION
GUARD

S

MODE # 2

Fig. 4.5 Illustration of basic primitives for flowpipe computation. Starting from initial set in mode
1, we perform a continuous image computation for a given time horizon. Next, we compute states
from which a transition to a different mode (mode 2) is possible. From these states, we compute
the reachable states for mode 2 shown in orange

3. The effect of a discrete transition must be computed. This operation is called
“discrete post” or “discrete image” computation.

4. Finally, the primitives mentioned above must be integrated into a model checking
scheme that employs them in order to compute the reachable set estimation for
the system as a whole. To this end, operations such as subsumption checks,
aggregation, simplification, and extrapolation are often used.

The fundamental scheme of performing forward reachability using a combination
of continuous and discrete image computation with specialized operators has been
carried out through a variety of approaches, which are summarized in Table 4.3.

Table 4.3 presents an overview of selected approaches-based classified in terms
of the representations used for sets, and the type of models handled by the approach.
As we note in the table, there has been significant recent work in scaling up the
reachability analysis of linear ODEs to millions of variables [25], linear hybrid
systems to many hundreds of variables [73], and nonlinear systems up to a few
tens of variables (assuming nonchaotic and nonstiff ODEs) [7, 41]. Furthermore,
a variety of recent tricks including decomposition of a monolithic model into
smaller submodels that can be exploited by the reachability analysis [43]. However,
significant variability in performance is seen across models. Furthermore, many of
the approaches have numerous tunable parameters that need to be carefully adjusted
for each model to obtain optimal performance. Another important drawback lies in
the lack of support for richer models of hybrid systems that can incorporate features
such as lookup tables, gain scheduling, predictive models, and learning-enabled
loops involving neural networks. Supporting these features remains the subject of
ongoing research at the time of writing this survey.

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 87

Table 4.3 Reachability analysis approaches using flowpipe construction at a glance

Reference, Representation, and Dynamics Remarks

Krogh et al. [45, 46], Polyhedra, NLHybrid Precise flowpipes for linear systems. Uses
numerical optimization for nonlinear systems.
Builds abstract finite state model for checking

Dang et al. [31, 49], Orthogonal
Polyhedra, LHybrid

Introduced face lifting algorithm for computing
reachable sets

Kurzhanski and Varaiya [95], Ellipsoids,
LODE

Uses ellipsoidal calculus and introduced the idea
of support vectors. Handling of discrete
transitions requires approximations due to
ellipsoid–hyperplane intersections

Mitchell and Tomlin [108], Level Sets,
NLHybrid

Uses Hamilton–Jacobi PDEs solved using
state-space discretization. Solves viability
problems (computation of control and
reachability)

Girard [78], Zonotopes, LHybrid Efficient image computation for continuous
dynamics. Handling of discrete transitions
remains problematic similar to ellipsoids.
Available as part of Spaceex tool

Frehse et al. [73], Support Functions,
LHybrid

Efficient image computation and handling of
discrete transitions. Implemented in tool SpaceEx

Berz and Makino [27, 105], Taylor Models,
NLODE

No handling of discrete transitions. Introduced
higher-order interval methods for guaranteed
ODE integration

Chen et al. [40, 41], Taylor Models,
NLHybrid

Extends techniques from Berz et al. with handling
of discrete transitions

Althoff et al. [7, 8], Multiple, NLHybrid Combination of multiple set valued
representations including nonlinear zonotopes,
matrix zonotopes, and Taylor models for
nonlinear hybrid systems reachability analysis

Bak and Duggirala [25], Polyhedron,
LODE

Using simulations to implicitly compute reachable
sets and resolve safety properties. Shown to scale
beyond hundreds of thousands of state variables

NLHybrid: Nonlinear hybrid, NLODE: Nonlinear ODEs with continuous RHS, LODE: Linear
ODEs, LHybrid: Linear hybrid

4.3.2.4 Constraint Solvers and Reachability

Another approach relies on using constraint solvers for estimating reachable sets
that can be used to prove properties of interest. This approach essentially integrates
many of the ideas summarized thus far naturally into a constraint-solving frame-
work. The approach has been termed the SAT-modulo ODE approach, originated in
the work by Ratschan and She [129, 130], Ratschan et al. [72], incorporated into
tools such as HySAT [85]. More recently, the approach was formalized by Gao
et al. into delta-decision procedures for proving properties of hybrid systems [76].
The key idea is to provide procedures that can either conclude that a system does
not satisfy a property or that the system under a bounded perturbation violates

88 J. V. Deshmukh and S. Sankaranarayanan

a perturbed property, under a well-defined perturbation model. A similar idea
is presented independently by Ratschan wherein termination of the reachability
analysis is guaranteed under the condition of robust safety wherein a bounded
perturbation of the system continues to satisfy the safety property in question [130].

4.3.2.5 Simulation-Guided Reachability Analysis

A significantly different approach for estimating reachable states relies on using
simulations coupled with user-provided annotations. The main idea is to obtain
a simulation trajectory and to bloat the trajectory in such a way that for each
initial state included in the bloated trajectory, the trajectory beginning at this initial
state is also included in the bloated trajectory. Such a bloated trajectory is also
known as a reach tube. The first idea to compute reach tubes was by exploiting
the sensitivity of the numerical solutions of an ODE to perturbations in its initial
conditions [57]. A similar idea was also explored in [91] for continuous dynamical
systems with inputs. Recent advances in simulation-based reachability have shown
promise in being able to handle models with industrial-scale complexity [62, 63, 69].
These techniques rely on a user-provided annotation in the form of a discrepancy
function. Essentially, a discrepancy function provides a mechanism of bounding
the distance between adjacent trajectories as a function of the distance between the
initial states for the trajectories. Thus, with a reasonably tight discrepancy function,
an over-approximation of the reachable state space can be obtained by performing a
(potentially) small number of simulations.

4.4 Techniques Based on Safety Invariants

Techniques based on reachability are highly automated and have shown remarkable
progress. However, when faced with highly nonlinear plant models, and especially
in the presence of discrete switching, these techniques can suffer from loss of
precision.

A different approach is offered by semi-automated techniques based on invari-
ants. The simplest definition of an invariant is that it is a set such that starting
from an element of this set, the time evolution of the system trajectories remains
within this set at all times. Typically, we consider the forward time evolution of
the system trajectories (i.e., time increases along a trajectory), and thus focus on
forward invariants. Given a set of safe states S, an invariant set I is called a safety
invariant, if I ∩ S = ∅. Various kinds of invariants have been proposed in the
literature to help automate proofs of safety. The prime challenge in invariant-based
verification is that it is typically very difficult to find invariants in an automated
fashion, and may require human insight.

A key body of work in invariant-based verification is with the use of the
KeyMaera and KeyMaeraX theorem proving tools [74, 122]. These tools allow a

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 89

user to systematically construct the proof of safety of a hybrid system (modeled
as a hybrid program). The user has the choice of introducing various kinds of
invariants to automate safety proofs. An important class considered is that of
differential invariants [120]. These are invariants that allow proving the properties
of a differential equation without having to solve the equation itself. See [120]
for a comprehensive survey. There are certain specializations of invariant-based
reasoning that we discuss now.

Control Envelopes. Arechiga et al. [20] present the problem of safety verification
for embedded control systems. Here, given a model of the continuous dynamics of
a plant, the technique postulates the computation of an envelope-invariant pair. The
technique assumes that the plant dynamics are given by an ODE of the form:

ẋ = f (x, u),

where x is the state of the plant, and u is the control input from some set U . We
assume that we are given an invariant set N (a subset of the plant state space X).
We then compute a control envelope E that is a function from X to P(U).2 The
pair (N,E) satisfy the property that for all times t , for any given state x(t) ∈ N ,
if the input provided by the controller u(t) is in the set E(x), then for all t ′ > t ,
x(t ′) ∈ N . Further, if the intersection of N and the set of unsafe states is empty,
this gives us a proof of the safety of the closed-loop control system. They also
provide specific examples of control envelope-invariant pairs, but does not provide
a procedure to compute such pairs for general systems. Computing such control
envelopes remains an interesting problem that has attracted recent interest due to
applications to runtime monitoring.

Barrier Certificates. A barrier certificate is a type of a safety certificate. Let X be
the state space of a system specified by the ODE ẋ = f (x), let I be the set of
initial states for the system, and let S be the set of safe states for the system. Then, a
barrier certificate is defined as a differentiable function B, which has the following
properties:

1. ∀x ∈ I : B(x) ≤ 0,
2. ∀x ∈ S : B(x) > 0,
3. ∀x ∈ X : (B(x) = 0) �⇒ ∂B

∂x · f (x) < 0

The intuitive idea is that the set B(x) = 0 serves as a barrier preventing the
trajectories of the system that originate in the set I from reaching the set S. As
B is a continuous and differentiable function, every trajectory that starts at a point
where B is negative must pass a point where B is zero before reaching a point where
B is positive. However, because the Lie derivative of B along the manifold where
B(x) = 0 is negative, at each point, the system dynamics forces the B function from
not increasing. Barrier certificates were first proposed in [126, 127], and a procedure

2For a set X, let P(X) denote its power set.

90 J. V. Deshmukh and S. Sankaranarayanan

based on Sum-of-Squares programming was proposed for finding barrier certificates
for systems with polynomial dynamics. These techniques were extended for systems
with certain nonpolynomial dynamics [81, 118]. However, the problem of finding
barrier certificates for general nonlinear systems remains open.

Simulation-Guided Search for Invariants. Though invariant-based techniques show
a lot of promise to prove safety of systems with highly nonlinear and hybrid
dynamics, finding the required invariants remains a hard problem. In [145, 146], the
authors suggested a simulation-guided technique to estimate the region-of-attraction
(ROA) for a given dynamical system. The main idea in this work was to convert
a set of bilinear matrix inequalities encountered in estimating the ROA (which
are computationally expensive to solve) into linear matrix inequalities, which are
computationally less expensive.

In [90], the authors propose a technique to iteratively compute an invariant using
simulations, based on the idea of estimating Lyapunov functions. Given a system of
the form ẋ = f (x), where f (0) = 0, a Lyapunov function V (x) is a function that is
positive everywhere except when x = 0, its Lie derivative ∂V

∂x is negative everywhere
except at 0, and at x = 0, both the value of V and its Lie derivative is 0. A Lyapunov
function is a tool that can be used to prove stability of a system to the point x = 0.
Furthermore, any level set of the Lyapunov function, i.e., L(x) = {x|V (x) = �}
is an invariant for the system. The iterative procedure in the technique proposed in
[90] is as follows: (1) the technique fixes the form of a candidate Lyapunov function
as some polynomial P(c, x), where c is a vector of coefficients of the polynomial
function, (2) it uses a set of discrete-time trajectories of the system from a given
set of initial states, and uses these to impose constraints on c, (3) it solves the
constraints using an appropriate solver to obtain a candidate Lyapunov function,
(4) it searches for counterexample for the candidate using an SMT solver, and (5)
if a counterexample exists, it is added to the set of initial conditions used in step 2,
and the method repeats; else, it terminates with an answer.

The key step is in the formulation of constraints in step 2. For a fixed polynomial
form with unknown coefficients, imposing positivity of V at each point in a system
trajectory results in a linear constraint. Suppose we are given two points in a
discrete-time trajectory of the system (say xn = x(tn), and xn+1 = x(tn+1)), where
tn+1 > tn. Then, a sufficient condition for the negativity of the Lie derivative is to
impose that V (xn)− V (xn+1) > 0. Note that this is again a linear constraint in the
coefficients of V as xn and xn+1 are known. Thus, solving the constraints in step 3
can be done using a standard linear-programming solver.

Step 4 also merits a remark. A candidate Lyapunov function (or by extension
a candidate invariant that is the level set of the candidate Lyapunov function)
obtained in Step 4 satisfies the required conditions for being a valid Lyapunov
function (resp., invariant) on the selected set of system trajectories, but there is no
guarantee that these conditions are met globally in the state space. Thus, the method
uses a satisfiability modulo theories (SMT) solver that is equipped to reason about
satisfiability of arbitrary nonlinear queries; δ-sat solver dReal is such a solver [76].
It returns an answer unsat if the query is unsatisfiable, otherwise returns a interval

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 91

of width δ in the state space where the query may be satisfiable. As checking validity
of a condition is equivalent to checking the satisfiability of its negation, an unsat
answer from dReal helps us establish the conditions required for a given set to be an
invariant.

4.5 Falsification Techniques

In this section, we will review techniques to perform requirement-driven test
generation of CPS models. There are several automated test generation procedures
and heuristics that attempt to tackle this problem by viewing it as a special case of
software testing. Commercial tools such as the Simulink Design Verifier™ (SLDV)
toolbox from the Mathworks [75, 99], the Reactis® [131] tool, and the TestWeaver
tool from QTronic [89] are notable for their adoption within industrial MBD
practice.

The Reactis Tester tool evaluates open-loop controller models with a patented
technique to generate test inputs using a combination of random and targeted
methods. The targeted phase of the tool uses data structures to store intermedi-
ate states, and constraint-solving algorithms to search for previously uncovered
coverage targets. SLDV uses techniques based on SAT modulo theories (SMT) in
conjunction with the Prover tool to automatically generate test inputs to maximize
coverage criteria. SLDV is intended for open-loop (discrete-time) controller models,
as it cannot process closed-loop (hybrid) models.

The TestWeaver tool does test generation with the goal to maximize state
coverage of the underlying system (where coverage is defined in a specific fashion).
The test generation algorithm itself is based on proprietary heuristics. The tool
relies on the user to quantize the inputs to the model-under-test, discretize the time
domain, and also to manually identify system variables that are most sensitive to the
inputs. This user intervention may require an understanding of the system dynamics
and engineering intuition to use the tool effectively.

With the exception of certain features in TestWeaver, the above tools are
primarily focused on testing the controller models for CPS systems, while unable to
effectively reason about the plant/environment model. Furthermore, the properties
that these tools check are typically hand-coded by the user and tend to be simpler
static properties (such as the bounds on a signal value over a specified time interval).

We now discuss falsification techniques that overcome some of the shortcomings
of the existing commercial techniques in various ways:

1. They allow specifications expressed in formal specification languages such as
those based on signal temporal logic (STL). This allows complex temporal
properties over continuous-valued, continuous-time signal to be seamlessly
specified.

2. They can effectively search both continuous and hybrid state spaces that arise
from closed-loop models.

92 J. V. Deshmukh and S. Sankaranarayanan

3. They can be augmented with metrics to measure coverage of continuous and
hybrid state spaces.

4. They can combine search for bugs in the software controller with corner case
behaviors in the continuous plant model.

In this chapter, we discuss two main classes of such techniques. The first class
of techniques allows falsifying closed-loop specifications of temporal behavior
with the help of black-box optimization tools. The second class of techniques
combines a novel exploration of plant model behaviors with a technique inspired
by multiple shooting methods found in numerical ODE solving with symbolic
execution techniques for analyzing controller code.

4.5.1 Falsifying Temporal Specifications Using Optimization

A key technology that enables falsification techniques is quantitative satisfaction
semantics for real-time temporal logics. Robust satisfaction semantics were pro-
posed for metric temporal logic by Fainekos and Pappas in their seminal paper
[68], while quantitative semantics for STL were proposed by Donzé and Maler [58],
which we now explain.

Quantitative Semantics of STL. For a formula ϕ in a given logical formalism and
a signal trace x, Boolean satisfaction semantics for the logic provide a true/false
answer for whether x satisfies ϕ. Quantitative semantics extend this notion to robust
satisfaction, i.e., they define a robust satisfaction degree (abbreviated as robustness)
of ϕ by x. The intuition is that if the robustness value is a positive number, then x
satisfies ϕ; if it is negative, it does not satisfy ϕ, and the magnitude of the robustness
degree indicates how strongly ϕ is satisfied (or violated).

We provide the formal robustness semantics for STL below in terms of a function
ρ that maps a given trace x, a formula ϕ, and a time t to a real number. This function
for a predicate of the form f (x) > 0 at time t is simply the value of f (x) at time
t , i.e., ρ(f (x) > 0, x, t) = f (x(t)). Then, ρ is defined inductively for every STL
formula using the following rules:

ρ(¬ϕ, x, t) = −ρ(ϕ, x) (4.1)

ρ(ϕ1 ∧ ϕ2, x, t) = min(ρ(ϕ1, x, t), ρ(ϕ2, x, t)) (4.2)

ρ(FI ϕ, x, t) = sup
t ′∈t+I

ρ(ϕ, x, t ′) (4.3)

ρ(GI ϕ, x, t) = inf
t ′∈t+I

ρ(ϕ, x, t ′) (4.4)

ρ(ϕ1UI ϕ2, x, t) = sup
t ′∈t+I

(
min

(
ρ(ϕ2, x, t ′), inf

t ′′∈[t,t ′)
ρ(ϕ1, x, t ′′)

))
(4.5)

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 93

By convention, the robustness of ϕ by x is then simply ρ(ϕ, x, 0). If we omit the
time argument, the implicit assumption is that we are computing the robustness at
time 0, i.e., ρ(ϕ, x) = ρ(ϕ, x, 0).

We recall that a closed-loop model M can be viewed as a function mapping finite-
time input signals u (defined over time [0, T]) to output signals y. For simplicity, we
assume that the specification ϕ is an appropriate STL formula over output signals.
Then, the falsification problem can be restated as a search for an input signal u such
that ρ(ϕ, y) < 0. The central idea in most falsification tools is to solve this problem
by solving the following optimization problem:

u∗ = arg min
u s.t. y=M(u)

ρ(ϕ, y) (4.6)

If we find a u∗ such that ρ(ϕ,M(u∗)) < 0, then we have effectively found a
violation of the specification, or successfully falsified the model. While the above
setup seems straightforward, there are several caveats.

Input Signal Parameterization. The first is that optimizing over a dense-time input
signal is an infinite-dimensional optimization problem. A common approach is to
make the search space finite by assuming a finite parameterization of the input signal
space. For example, one of the approaches adopted by tools such as S-TaLiRo [19]
and Breach [55] is to introduce n uniformly spaced discrete time points t0, . . . , tn−1
along the time axis, also known as control points. Here, t0 = 0, and tn−1 = T .
Then, the input signal u is defined in terms of (u0, . . . , un−1), as follows: for all
i ∈ [0, n − 1]: u(t) = ui if i

n−1T ≤ t < i+1
n−1T . In simpler terms, the signal u(t)

is obtained by constant interpolation over values (u0, . . . , un−1) equally spaced in
time. This notion can be generalized by introducing variably spaced time points, and
user-defined interpolation functions (such as piecewise linear, splines, etc.).

Another approach is to define a finite grid over the input signal space, i.e., in
addition to discretization of the time axis, we also quantize the value axis of the
signal. The input signal is ultimately constructed using interpolation over points
over this finite grid. (See Fig. 4.6a for an illustration.) Such a grid can then be refined
iteratively by the optimization algorithm. This is the approach explored in [52].

Nonconvex Search Space. Most optimization tools critically rely on the optimiza-
tion problem being defined over a convex space, which enables gradient descent-like
optimization methods. Further, such approaches may also require the exact analytic
gradient to be available. The optimization problem set up in Eq. (4.6) almost never
has such nice properties. First, the method M can be an arbitrary hybrid dynamical
system with a high-dimensional state space. Further, the cost function ρ is itself
not a smooth function of its input. Thus, most falsification tools rely on black-box
optimization techniques such as the derivative-free Nelder–Mead technique used
in Breach [55], heuristic search techniques such as genetic algorithms [19], Ant
Colony optimization [18], the Cross Entropy method [134], or stochastic gradient
descent combined with discrete Tabu search [52]. A common theme in these

94 J. V. Deshmukh and S. Sankaranarayanan

t

u

(a)

�1

�2

�3

�4

t1 t2 t3 t4 t5t0 t

u

(b)

�1

�2

�3

�4

t1 t2 t3 t4 t5t0

Fig. 4.6 (a) Example of using a finite grid to approximate an input signal. The input signal u(t) is
obtained by constant interpolation over the sequence (�2, �2, �2, �2, �4, �4) over the time domain
(t0, t1, t2, t3, t4, t5). (b) Example of a grid neighbor of the input signal shown in (a)

methods is to evaluate the cost function, i.e., the robustness value for a heuristically
sequence of points in the input space, and generally choose input points with lower
costs. The exact heuristics of how the sequence of inputs is chosen depends on the
specific algorithm in question. For example, in Fig. 4.6b, we show how an input
signal corresponding to the grid neighbor of the input signal in Fig. 4.6a is chosen
for cost function evaluation.

Recently, given the immense success of machine learning techniques in learning
and approximating black-box functions, there have been efforts to apply such
methods to the falsification problem [6, 51, 92].

Yet another class of methods focuses on simultaneously trying to maximize
coverage of the hybrid state space and find a violation of the property of interest.
The technique in [59] iteratively computes the input signal incrementally using the
rapidly exploring random trees (RRT) algorithm used for motion planning. The
RRT algorithm is tuned to pick goal states that maximize a weighted combination
of the (incremental) robustness of the output signal, and a coverage metric over
the continuous state space of the closed-loop model. In [5], the authors combine
a coverage metric on the input signal space with a machine learning technique to
classify already covered regions in the input space. In [54], the authors define a
hybrid distance metric to obtain coverage over discrete mode switches in the closed-
loop model.

4.5.2 Falsification Using Trajectory Splicing

Thus far, the approaches to falsification are single shooting approaches that search
over a single trajectory starting from some initial condition that falsifies the speci-
fication. An alternative approach is to use multiple shooting, wherein the approach

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 95

1
2

3

′
1 ′

2

′
3

′′
1 ′′

2

′′
3

(a) (b) (c) (d)

t

t

t
t

t

t
t

t

t

Fig. 4.7 An illustration of the trajectory splicing approach: (a) segmented trajectory reaching
unsafe states (shaded red) starting from initial states (shaded blue), (b) refining an abstract
counterexample and narrowing the inter-segment gap, (c) further narrowing the gap by refinement,
and (d) a concrete trajectory with no gaps

splices a collection of trace segments that take us from one state to another in the
state space. An approximate trajectory takes a sequence of such trace segments with
possible gaps between the ith trace segment and the (i+1)th segment. The approach
then iteratively narrows the gap through a suitable optimization procedure, leading
from an initial sequence of segments to a trajectory of the system obtained when
the gaps are reduced to zero. The trajectory splicing approach using local gradient
descent was first proposed by Zutshi et al., inspired in turn by collocation-based
approaches to integrating systems of differential equations and similar multiple
shooting approaches to optimal control (see [152]). Subsequently, this was extended
to a larger class of systems using graph-based search and iterative refinement [153].
See Fig. 4.7 for an illustration of the iterative refinement procedure used in the tool
S3CAM that performs trajectory splicing for arbitrary hybrid systems.

Trajectory splicing is essentially a state-space exploration technique for hybrid
systems. Recall that in many CPS applications, the closed-loop system model is
often expressed as a hybrid or continuous plant model composed with a discrete
software controller. It is possible to enhance the efficacy of splicing-based falsifica-
tion techniques by combining trajectory segments explored in the plant’s state space
by symbolic execution of the controller. This approach was explored in [151], and
uses symbolic path exploration tools based on SMT solvers. The scalability of this
technique is currently limited by that of existing SMT solvers.

4.6 Challenge Problem: Verification of AI-Based Systems

AI-based systems, especially those based on artificial neural networks (ANNs) and
by extension, deep neural networks (DNNs) have gained increasing prominence in
CPS applications where they support perception tasks from rich image, LIDAR, and
other sensor data [80], and the design of control using ideas such as reinforcement
learning [142]. However, a key drawback of neural networks lies in the inability

96 J. V. Deshmukh and S. Sankaranarayanan

of humans to understand their operation and the well-publicized instances of
incorrect operation that can potentially endanger life [110]. How do we verify
systems governed by deep neural networks? Currently, the problem of verifying
CPS applications that use ANNs/DNNs has received increasing attention from
researchers and two independent streams have emerged.

Testing for Perception Components. The first set of techniques focuses on testing
deep neural networks used for perception tasks. One approach lies in reasoning
about properties of the perception tasks such as recognizing features in images
reliably. The main challenges in this area include the hard challenge of writing
behavioral specifications for perception tasks that involve feature rich input sources
such as images, videos, and LIDAR data streams. Another challenge lies in the sheer
size of the network in terms of the number of neurons and the depth of the network,
which makes existing verification tools hard to apply directly. Adversarial test
generation is a popular paradigm which has spawned a number of research papers,
focused on identifying mild perturbations to images that result in failed object
recognition. Typical approaches use gradient search over the network, or a mixed
integer linear programming problem to analyze the robustness of classification
tasks to a set of changes to pixels in the images [133, 144]. Another related
direction of research is framed as a search for “adversarial” inputs that expose
problems with the current network. A linear programming-based approach for
finding adversarial inputs is presented by Bastani et al. [26]. A related approach for
finding adversarial inputs using SMT solvers that relies on a layer-by-layer analysis
is presented by Huang et al. [87]. Currently, falsification-based approaches have
proven advantageous for these tasks given the sheer size and complexity of the
neural networks involved. Yet, the number of simulations needed, and time taken
for each simulations remain astronomically high. Currently, it is important to derive
approaches that can significantly reduce both these bottlenecks for falsification.

Dreossi et al. present an approach that uses falsification to test neural network-
based perception systems used in autonomous driving by manually generating
scenes with known ground truth data [60, 61]. A more elaborate end-to-end
approach has been proposed by Abbas et al. using falsification tools to drive the
process of testing various scenarios and popular gaming engines to recreate the
driving scenarios in order to provide visual inputs to the cameras [3], or the use
of robotic simulators to create visual inputs to the perception algorithm (in concert
with a closed-loop vehicle dynamics model and a controller) [147].

Testing/Verification of AI-Based Control. The second stream of work considers
the safe learning of control laws that take the form of neural network, starting from
high level behavioral end-to-end specifications. Here, verification approaches have
reported more initial successes due to the much smaller size of neural networks
involved in these tasks, when compared to perception tasks. A fundamental primi-
tive that arises in such verification involves the propagation of interval uncertainties
over a neural network. Recently, there has been a surge of interest in this problem
starting from an approach that linearizes the nonlinear activation function [128],
the Reluplex solver by Katz et al. that modifies the Simplex approach to handle

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 97

piecewise linear constraints posed by the nonlinear rectified linear units [93], an
approach using a reduction to mixed integer solvers [101], a combination of local
and global search [65], and an integration of convexification with conflict clauses
driven by a SAT solver [67]. Whereas these works have considered the neural
network in isolation, recent work by Dutta et al. has focused on integrating the
learning and verification in a systematic manner using both plant and controller
models [64, 66]. The work in [148] uses a closed-loop model of a plant and a
neural network-based controller (trained using reinforcement learning) and obtains
a barrier certificate for the system. The technique relies on using simulations to find
an appropriate barrier certificate and uses the interval constraint propagation-based
SMT solver dReal [76] to provide the ultimate proof of safety.

While most of the above approaches have initiated the work of tackling the
hard problem of verifying AI-based systems, there is more work to be done.
Scaling current approaches to real-world DNNs is a significant challenge, as
is the challenge of expressing verification goals for such algorithms in a clean
mathematical formalism.

4.7 Conclusion

In this chapter, we reviewed some of the main topics in the formal verification and
falsification of cyber-physical systems. The key challenge for such systems is the
coupling of the continuous-time behaviors of a physical component with discrete-
time control software in the presence of an uncertain environment. Such systems
can be mathematically modeled as hybrid dynamical systems. Proving safety of such
systems over a bounded time horizon can be addressed by solving the reachability
analysis problem for such hybrid systems, which involves over-approximating the
set of behaviors of the system, and proving that this set does not include the unsafe
behaviors. An alternate approach is to use falsification techniques that seek to find
incorrect system behaviors through systematic search procedures. A key assumption
for verification or falsification is the ability to express safe behaviors of a system in
a formal specification language. We review signal temporal logic, which is a formal
logic capable of expressing several interesting properties for CPS applications. We
conclude the chapter with a challenge problem that will test the limits of existing
verification and falsification techniques.

Acknowledgements We dedicate this chapter to the memory of Dr. Oded Maler, a great friend
and collaborator, who shaped our knowledge and perspectives on this vast topic through numerous
insightful discussions over the years. The authors also acknowledge contributions from numerous
collaborators with special thanks to Xin Chen, Georgios Fainekos, James Kapinski, Nikos
Aréchiga, Xiaoqing Jin, and Aditya Zutshi.

This work was funded in part by the US National Science Foundation (NSF) under award
numbers CAREER 0953941, CNS 1319457, CPS 1446900, SHF 1527075, CPS 1646556, CCF
1837131, and the Air Force Research Laboratory (AFRL). All opinions expressed are those of the
authors and not necessarily of the US NSF or AFRL.

98 J. V. Deshmukh and S. Sankaranarayanan

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., & Gupta, A. (2013). Probabilistic
temporal logic falsification of cyber-physical systems. ACM Transactions on Embedded
Computing Systems, 12, 95.

2. Abbas, H., Hoxha, B., Fainekos, G., & Ueda, K. (2014). Robustness-guided temporal logic
testing and verification for stochastic cyber-physical systems. In 2014 IEEE 4th Annual
International Conference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER) (pp. 1–6). Piscataway: IEEE.

3. Abbas, H., O’Kelly, M., Rodionova, A., & Mangharam, R. (2017). Safe at any speed: A
simulation-based test harness for autonomous vehicles. In 7th Workshop on Design, Modeling
and Evaluation of Cyber Physical Systems (CyPhy’17).

4. Abbas, H., Rodionova, A., Bartocci, E., Smolka, S. A., & Grosu, R. (2017). Quantitative
regular expressions for arrhythmia detection algorithms. In Proceedings of the International
Conference on Computational Methods in Systems Biology (pp. 23–39). Berlin: Springer.

5. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., & Jin, X. (2017). Classification and
coverage-based falsification for embedded control systems. In International Conference on
Computer Aided Verification (pp. 483–503). Berlin: Springer.

6. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., & Hao, J. (2018). Falsification of cyber-physical
systems using deep reinforcement learning. arXiv preprint arXiv:1805.00200.

7. Althoff, M. (2015). An introduction to CORA 2015. In Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (pp. 120–151).

8. Althoff, M., & Grebenyuk, D. (2016). Implementation of interval arithmetic in CORA 2016.
In Proceedings of the 3rd International Workshop on Applied Verification for Continuous and
Hybrid Systems (pp. 91–105).

9. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., et al.
(1995). The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1),
3–34.

10. Alur, R., Courcoubetis, C., Henzinger, T. A., & Ho, P. H. (1993). Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In Workshop
on International Hybrid Systems (pp. 209–229). Berlin: Springer.

11. Alur, R., Dang, T., & Ivančić, F. (2003). Counter-example guided predicate abstraction of
hybrid systems. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Lecture Notes in Computer Science (Vol. 2619, pp. 208–223). Berlin:
Springer

12. Alur, R., & Dill, D.L. (1994). A theory of timed automata. Theoretical Computer Science,
126(2), 183–235.

13. Alur, R., Fisman, D., & Raghothaman, M. (2016). Regular programming for quantitative
properties of data streams. In Proceedings of the European Symposium on Programming
Languages and Systems (pp. 15–40). Berlin: Springer.

14. Alur, R., & Henzinger, T. A. (1989). A really temporal logic. In Proceedings of the Symposium
on Foundations of Computer Science (pp. 164–169).

15. Alur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G.J. (2000). Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88(7), 971–984.

16. Alur, R., Mamouras, K., & Ulus, D. (2017). Derivatives of quantitative regular expressions.
In Models, algorithms, logics and tools (pp. 75–95). Cham: Springer.

17. Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic
programs with application to adaptive cruise control. In 2014 IEEE 53rd Annual Conference
on Decision and Control (CDC) (pp. 6271–6278). Piscataway: IEEE.

18. Annapureddy, Y. S. R., & Fainekos, G. E. (2010). Ant colonies for temporal logic falsification
of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE Industrial
Electronics (pp. 91–96). Piscataway: IEEE.

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 99

19. Annpureddy, Y., Liu, C., Fainekos, G. E., & Sankaranarayanan, S. (2011). S-TaLiRo: A tool
for temporal logic falsification for hybrid systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (pp. 254–257). Berlin: Springer.

20. Aréchiga, N., & Krogh, B. (2014). Using verified control envelopes for safe controller design.
In 2014 American Control Conference (ACC) (pp. 2918–2923). Piscataway: IEEE.

21. Asarin, E., Caspi, P., & Maler, O. (2002). Timed regular expressions. Journal of the ACM,
49(2), 172–206.

22. Asarin, E., Dang, T., & Girard, A. (2007). Hybridization methods for the analysis of nonlinear
systems. Acta Informatica, 43(7), 451–476.

23. Asarin, E., Maler, O., & Pnueli, A. (1995). Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science, 138, 35–65.

24. Baier, C., & Katoen, J. P. (2008). Principles of model checking. Cambridge, MA: MIT Press.
25. Bak, S., & Duggirala, P. S. (2017). HyLAA: A tool for computing simulation-equivalent

reachability for linear systems. In Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control (pp. 173–178). New York: ACM.

26. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A.
(2016). Measuring neural net robustness with constraints. In Advances in Neural Information
Processing Systems (pp. 2613–2621).

27. Berz, M. (1999). Modern map methods in particle beam physics. Advances in Imaging and
Electron Physics (Vol. 108). London: Academic.

28. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al. (2016)
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

29. Bonakdarpour, B., & Finkbeiner, B. (2016). Runtime verification for HyperLTL. In Interna-
tional Conference on Runtime Verification (pp. 41–45). Cham: Springer.

30. Bonakdarpour, B., Sanchez, C., & Schneider, G. (2018). Monitoring hyperproperties by
combining static analysis and runtime verification. In International Symposium on Leveraging
Applications of Formal Methods (pp. 8–27). Berlin: Springer.

31. Bournez, O., Maler, O., & Pnueli, A. (1999). Orthogonal polyhedra: Representation and
computation. In Hybrid systems: Computation and control. Lecture Notes in Computer
Science (Vol. 1569, pp. 46–60). Berlin: Springer.

32. Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in
Statistics (pp. 201–236). London: Academic.

33. Brockett, R. (1993). Hybrid models for motion control systems. In Essays on control:
Perspectives in the theory and its applications (pp. 29 –53). Boston: Birkhäuser.

34. Cameron, F., Fainekos, G., Maahs, D. M., & Sankaranarayanan, S. (2015). Towards a verified
artificial pancreas: Challenges and solutions for runtime verification. In Proceedings of
Runtime Verification (RV’15). Lecture Notes in Computer Science (Vol. 9333, pp. 3–17).
Cham: Springer.

35. Cameron, F., Wilson, D. M., Buckingham, B. A., Arzumanyan, H., Clinton, P., Chase, H. P.,
et al. (2012). Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm.
Journal of Diabetes Science and Technology, 6(5), 1142–1147.

36. Cassandras, C. G., & Lygeros, J. (2006). Stochastic hybrid systems. Boca Raton: CRC Press.
37. Chaochen, Z., Hoare, C. A. R., & Ravn, A. P. (1991). A calculus of durations. Information

Processing Letters, 40(5), 269–276.
38. Chee, F., & Fernando, T. (2007). Closed-loop control of blood glucose. Berlin: Springer.
39. Chen, S., O’Kelly, M., Weimer, J., Sokolsky, O., & Lee, I. (2015). An intraoperative glucose

control benchmark for formal verification. In 5th IFAC conference on Analysis and Design of
Hybrid Systems (ADHS) (2015)

40. Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2012). Taylor model flowpipe construction
for non-linear hybrid systems. In Proceedings of the 2012 IEEE 33rd Real-Time Systems
Symposium (RTSS’12) (pp. 183–192). Piscataway: IEEE.

41. Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2013). Flow*: An analyzer for non-linear
hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes
in Computer Science (Vol. 8044, pp. 258–263). Berlin: Springer.

100 J. V. Deshmukh and S. Sankaranarayanan

42. Chen, X., Mover, S., & Sankaranarayanan, S. (2017). Compositional relational abstraction for
nonlinear systems. ACM Transactions on Embedded Computing Systems, 16(5s), 187.

43. Chen, X., & Sankaranarayanan, S. (2016). Decomposed reachability analysis for nonlinear
systems. In 2016 IEEE Real-Time Systems Symposium (RTSS) (pp. 13–24). Piscataway: IEEE.

44. Chonev, V., Ouaknine, J., & Worrell, J. (2016). On the Skolem problem for continuous
linear dynamical systems. In 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016). Leibniz International Proceedings in Informatics (Vol. 55, pp.
100:1–100:13). Wadern: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

45. Chutinan, A., & Krogh, B. (1998). Computing polyhedral approximations to flow pipes for
dynamic systems. In Proceedings of the 37th IEEE Conference on Decision and Control.
Piscataway: IEEE.

46. Chutinan, A., & Krogh, B. H. (2003). Computational techniques for hybrid system verifica-
tion. IEEE Transactions on Automatic Control, 48(1), 64–75. https://doi.org/10.1109/TAC.
2002.806655

47. Clarkson, M. R., & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security,
18(6), 1157–1210.

48. Cobelli, C., Man, C. D., Sparacino, G., Magni, L., Nicolao, G. D., & Kovatchev, B. P. (2009).
Diabetes: Models, signals and control (methodological review). IEEE Reviews in Biomedical
Engineering, 2, 54–95.

49. Dang, T., & Maler, O. (1998). Reachability via face lifting. In Hybrid Systems: Computation
and Control. Lecture Notes in Computer Science (Vol. 1386, pp. 96–109). Berlin: Springer

50. Dang, T., Maler, O., & Testylier, R. (2010). Accurate hybridization of nonlinear systems. In
Hybrid Systems: Computation and Control (HSCC ’10) (pp. 11–20). New York: ACM.

51. Deshmukh, J., Horvat, M., Jin, X., Majumdar, R., & Prabhu, V. S. (2017). Testing
cyber-physical systems through Bayesian optimization. ACM Transactions on Embedded
Computing Systems, 16(5s), 170.

52. Deshmukh, J., Jin, X., Kapinski, J., & Maler, O. (2015). Stochastic local earch for falsification
of hybrid ystems. In International Symposium on Automated Technology for Verification and
Analysis (pp. 500–517). Berlin: Springer.

53. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M. N., & Seidl, H. (2012). Model checking
information flow in reactive systems. In International Workshop on Verification, Model
Checking, and Abstract Interpretation (pp. 169–185). Berlin: Springer.

54. Dokhanchi, A., Zutshi, A., Srinivas, R. T., Sankaranarayanan, S., & Fainekos, G. E. (2015).
Requirements driven falsification with coverage metrics. In 2015 International Conference
on Embedded Software (EMSOFT’15) (pp. 31–40). Piscataway: IEEE.

55. Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In International Conference on Computer Aided Verification (pp. 167–170). Berlin:
Springer.

56. Donzé, A., Ferrère, T., & Maler, O. (2013). Efficient robust monitoring for STL. In Computer
Aided Verification (pp. 264–279). Berlin: Springer.

57. Donzé, A., & Maler, O. (2007). Systematic simulation using sensitivity analysis. In Inter-
national Workshop on Hybrid Systems: Computation and Control (pp. 174–189). Berlin:
Springer.

58. Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals.
In Formal Modeling and Analysis of Timed Systems (pp. 92–106). Berlin: Springer.

59. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Deshmukh, J., & Jin, X. (2015). Efficient
guiding strategies for testing of temporal properties of hybrid systems. In NASA Formal
Methods Symposium (pp. 127–142). Berlin: Springer.

60. Dreossi, T., Donzé, A., & Seshia, S. A. (2017). Compositional falsification of cyber-physical
systems with machine learning components. In NASA Formal Methods. Lecture Notes in
Computer Science (Vol. 10227). Berlin: Springer.

61. Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A., & Seshia, S.A. (2017). Systematic testing
of convolutional neural networks for autonomous driving. In Reliable Machine Learning in

https://doi.org/10.1109/TAC.2002.806655
https://doi.org/10.1109/TAC.2002.806655

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 101

the Wild (RMLW) Workshop, Cf. https://people.eecs.berkeley.edu/~tommasodreossi/papers/
rmlw2017.pdf

62. Duggirala, P. S., Fan, C., Mitra, S., & Viswanathan, M. (2015). Meeting a powertrain
verification challenge. In Proceedings of the 27th International Conference on Computer
Aided Verification. Part I (pp. 536–543). Cham: Springer.

63. Duggirala, P. S., Potok, M., Mitra, S., & Viswanathan, M. (2015). C2E2: A tool for verifying
annotated hybrid systems. In Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control (HSCC’15) (pp. 307–308). New York: ACM.

64. Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine, 51(16),
151–156.

65. Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Output range analysis for deep
feedforward neural networks. In Proceedings of NASA Formal Methods Symposium (NFM).
Lecture Notes in Computer Science (Vol. 10811, pp. 121–138). Berlin: Springer.

66. Dutta, S., Kushner, T., & Sankaranarayanan, S. (2018). Robust data-driven control of artificial
pancreas systems using neural networks. In M. Češka, & D. Šafránek (Eds.), Computational
methods in systems biology (pp. 183–202). Cham: Springer.

67. Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In
International Symposium on Automated Technology for Verification and Analysis. Lecture
Notes in Computer Science (Vol. 10482, pp. 269–286). Berlin: Springer.

68. Fainekos, G. E., & Pappas, G. J. (2009). Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42), 4262–4291.

69. Fan, C., Kapinski, J., Jin, X., & Mitra, S. (2018). Simulation-driven reachability using matrix
measures. ACM Transactions on Embedded Computing Systems, 17(1), 21:1–21:28.

70. Finkbeiner, B., Rabe, M. N., & Sánchez, C. (2015). Algorithms for model checking HyperLTL
and HyperCTL*. In International Conference on Computer Aided Verification (pp. 30–48).
Berlin: Springer.

71. Forejt, V., Kwiatkowska, M., Norman, G., & Parker, D. (2011). Automated verification
techniques for probabilistic systems. In International School on Formal Methods for the
Design of Computer, Communication and Software Systems (pp. 53–113). Berlin: Springer.

72. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., & Teige, T. (2007). Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. Journal on
Satisfiability, Boolean Modeling and Computation, 1, 209–236.

73. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., et al. (2011). SpaceEx:
Scalable verification of hybrid systems. In International Conference on Computer Aided
Verification (CAV’11). Lecture Notes in Computer Science (Vol. 6806, pp. 379–395). Berlin:
Springer.

74. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., & Platzer, A. (2015). KeYmaera X: An
axiomatic tactical theorem prover for hybrid systems. In Proceedings of International
Conference on Automated Deduction (Vol. 9195, pp. 527–538). Cham: Springer. https://doi.
org/10.1007/978-3-319-21401-6_36

75. Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., & Shashidhar, K. (2008).
Automotgen: Automatic model oriented test generator for embedded control systems. In
A. Gupta & S. Malik (Eds.), Computer aided verification. Lecture Notes in Computer Science
(Vol. 5123, pp. 204–208). Berlin: Springer.

76. Gao, S., Kong, S., & Clarke, E. M. (2013). dReal: An SMT solver for nonlinear theories over
the reals. In International Conference on Automated Deduction (CADE’13). Lecture Notes in
Computer Science (Vol. 7898, pp. 208–214). Berlin: Springer.

77. Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous driving? The
Kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 3354–3361). Piscataway: IEEE.

78. Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. In International
Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science
(Vol. 3414, pp. 291–305). Berlin: Springer.

https://people.eecs.berkeley.edu/~tommasodreossi/papers/rmlw2017.pdf
https://people.eecs.berkeley.edu/~tommasodreossi/papers/rmlw2017.pdf
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36

102 J. V. Deshmukh and S. Sankaranarayanan

79. Girard, A., & Pappas, G. J. (2005). Approximate bisimulations for nonlinear dynamical
systems. In Proceedings of the 44th IEEE Conference on Decision and Control (pp. 684–
689). Piscataway: IEEE.

80. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT
Press. http://www.deeplearningbook.org

81. Goubault, E., Jourdan, J. H., Putot, S., & Sankaranarayanan, S. (2014). Finding non-
polynomial positive invariants and lyapunov functions for polynomial systems through
darboux polynomials. In Proceedings of the American Control Conference (ACC) (pp. 3571–
3578). New York: IEEE Press.

82. Hainry, E. (2008). Reachability in linear dynamical systems. In Logic and theory of
algorithms (pp. 241–250). Berlin: Springer.

83. Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the Logic in
Computer Science (pp. 278–292). Piscataway: IEEE.

84. Henzinger, T. A., Kopke, P. W., Puri, A., & Varaiya, P. (1998). What’s decidable about hybrid
automata? Journal of Computer and System Sciences, 57(1), 94–124.

85. Herde, C., Eggers, A., Franzle M., & Teige, T. (2008). Analysis of hybrid systems using
HySAT. In Third International Conference on Systems, 2008 (pp. 13–18). Piscataway: IEEE.

86. Hovorka, R. (2005). Continuous glucose monitoring and closed-loop systems. Diabetic
Medicine, 23(1), 1–12.

87. Huang, X., Kwiatkowska, M., Wang, S., & Wu, M. (2017). Safety verification of deep neural
networks. In Proceedings of the Computer Aided Verification (pp. 3–29). Cham: Springer.

88. Jiang, Z., Pajic, M., Moarref, S., Alur, R., & Mangharam, R. (2012). Modeling and verification
of a dual chamber implantable pacemaker. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science (Vol. 7214, pp. 188–203).
Berlin: Springer.

89. Junghanns, A., Mauss, J., & Tatar, M. (2008). Tatar: Testweaver—a tool for simulation-based
test of mechatronic designs. In 6th International Modelica Conference, Bielefeld, March 3.
Citeseer

90. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., & Aréchiga, N. (2014). Simulation-
guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th
International Conference on Hybrid Systems: Computation and Control (pp. 133–142). New
York: ACM.

91. Kapinski, J., Krogh, B. H., Maler, O., & Stursberg, O. (2003). On systematic simulation of
open continuous systems. In International Workshop on Hybrid Systems: Computation and
Control (pp. 283–297). Berlin: Springer.

92. Kato, K., Ishikawa, F., & Honiden, S. (2018). Falsification of cyber-physical systems with
reinforcement learning. In 2018 IEEE Workshop on Monitoring and Testing of Cyber-Physical
Systems (MT-CPS) (pp. 5–6). Piscataway: IEEE.

93. Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017). Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer
Aided Verification (pp. 97–117). Berlin: Springer.

94. Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-Time
System, 2(4), 255–299.

95. Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis.
In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in
Computer Science (Vol. 1790, pp. 202–214). Berlin: Springer.

96. Kushner, T., Bortz, D., Maahs, D., & Sankaranarayanan, S. (2018). A data-driven approach to
artificial pancreas verification and synthesis. In International Conference on Cyber-Physical
Systems (ICCPS’18). New York: IEEE Press.

97. Labinaz, G., Bayoumi, M. M., & Rudie, K. (1997). A survey of modeling and control of
hybrid systems. Annual Reviews in Control, 21, 79–92.

98. Lafferriere, G., Pappas, G. J., & Sastry, S. (2000). O-minimal hybrid systems. Mathematics
of Control, Signals and Systems, 13(1), 1–21.

http://www.deeplearningbook.org

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 103

99. Leitner, F., & Leue, S. (2008). Simulink design verifier vs. SPIN a comparative case study.
In Proceedings of the 13th International Workshop on Formal Methods for Industrial Critical
Systems.

100. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., et al. (2011).
Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles
Symposium (IV) (pp. 163–168). Piscataway: IEEE.

101. Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward
ReLU neural networks. http://arxiv.org/abs/1706.07351

102. Loos, S. M., Platzer, A., & Nistor, L. (2011). Adaptive cruise control: Hybrid, distributed, and
now formally verified. In International Symposium on Formal Methods (pp. 42–56). Berlin:
Springer.

103. Maahs, D. M., Calhoun, P., Buckingham, B. A., Chase, H. P., Hramiak, I., Lum, J., et al.
(2014). A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1
diabetes. Diabetes Care, 37(7), 1885–1891.

104. Magdici, S., & Althoff, M. (2017). Adaptive cruise control with safety guarantees for
autonomous vehicles. IFAC-PapersOnLine, 50(1), 5774–5781.

105. Makino, K., & Berz, M. (2003). Taylor models and other validated functional inclusion
methods. Journal of Pure and Applied Mathematics, 4(4), 379–456.

106. Maler, O., & Nickovic, D. (2004). Monitoring temporal properties of continuous signals.
In Proceedings of Formal Modeling and Analysis of Timed Systems (pp. 152–166). Berlin:
Springer.

107. Meiss, J. D. (2007). Differential dynamical systems. Philadelphia: SIAM.
108. Mitchell, I., & Tomlin, C. (2000). Level set methods for computation in hybrid systems.

In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in
Computer Science (Vol. 1790, pp. 310–323). Berlin: Springer.

109. Mover, S., Cimatti, A., Tiwari, A., & Tonetta, S. (2013). Time-aware relational abstractions
for hybrid systems. In Proceedings of the Eleventh ACM International Conference on
Embedded Software (EMSOFT ’13) (pp. 14:1–14:10). Piscataway: IEEE Press.

110. National Transportation Safety Board (NTSB) (2016). Collision between a car operating with
automated vehicle control systems and a tractor-semitrailer truck. https://www.ntsb.gov/news/
events/Documents/2017-HWY16FH018-BMG-abstract.pdf

111. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., & Pappas, G.J.
(2010). Monte-Carlo techniques for falsification of temporal properties of non-linear hybrid
systems. In Proceedings of Hybrid Systems: Computation and Control (pp. 211–220). New
York: ACM.

112. Nguyen, L. V., Kapinski, J., Jin, X., Deshmukh, J. V., & Johnson, T. T. (2017). Hyperprop-
erties of real-valued signals. In Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design (pp. 104–113). New York: ACM.

113. Nicolescu, G., & Mosterman, P. J. (2009). Model-based design for embedded systems (1st
ed.). Boca Raton: CRC Press.

114. Nilsson, P., Hussien, O., Chen, Y., Balkan, A., Rungger, M., Ames, A., et al. (2014).
Preliminary results on correct-by-construction control software synthesis for adaptive cruise
control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 816–
823). Piscataway: IEEE.

115. Norris, J. (1998). Markov chains. Cambridge: Cambridge University Press.
116. Øksendal, B. K. (2000). Stochastic differential equations: An introduction. Berlin: Springer.
117. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., & Lee, I. (2014). Model-

driven safety analysis of closed-loop medical systems. IEEE Transactions on Industrial
Informatics, 10(1), 3–16.

118. Papachristodoulou, A., & Prajna, S. (2005). Analysis of non-polynomial systems using the
sum of squares decomposition. In Positive Polynomials in Control (pp. 23–43). Berlin:
Springer.

http://arxiv.org/abs/1706.07351
https://www.ntsb.gov/news/events/Documents/2017-HWY16FH018-BMG-abstract.pdf
https://www.ntsb.gov/news/events/Documents/2017-HWY16FH018-BMG-abstract.pdf

104 J. V. Deshmukh and S. Sankaranarayanan

119. Pei, Y., Entcheva, E., Grosu, R., & Smolka, S. (2005) Efficient modeling of excitable cells
using hybrid automata. In Proceedings of the Computational Methods in Systems Biology
(pp. 216–227).

120. Platzer, A. (2008). Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning, 41(2), 143–189.

121. Platzer, A. (2010). Logical analysis of hybrid systems: Proving theorems for complex
dynamics. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-14509-4

122. Platzer, A., & Clarke, E. M. (2008). Computing differential invariants of hybrid systems
as fixedpoints. In A. Gupta & S. Malik (Eds.), Proceedings of computer aided verification.
Lecture Notes in Computer Science (Vol. 5123, pp. 176–189). Berlin: Springer.

123. Pnueli, A. (1977). The temporal logic of programs. In Proceedings of Symposium on
Foundations of Computer Science (pp. 46–57). Piscataway: IEEE.

124. Podelski, A., & Wagner, S. (2007). Region stability proofs for hybrid systems (pp. 320–335).
Berlin: Springer.

125. Prabhakar, P., Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Hybrid automata-based
CEGAR for rectangular hybrid systems. In R. Giacobazzi, J. Berdine, I. Mastroeni (Eds.),
Verification, model checking, and abstract interpretation (pp. 48–67). Berlin: Springer.

126. Prajna, S. (2005). Optimization-based methods for nonlinear and hybrid systems verification.
Ph.D. thesis, California Institute of Technology, Caltech, Pasadena, CA, USA.

127. Prajna, S., & Jadbabaie, A. (2004). Safety verification of hybrid systems using barrier
certificates. In Hybrid Systems: Computation and Control (pp. 477–492). Berlin: Springer.

128. Pulina, L., & Tacchella, A. (2012). Challenging smt solvers to verify neural networks. AI
Communications, 25(2), 117–135.

129. Ratschan, S., & She, Z. (2005). Safety verification of hybrid systems by constraint
propagation based abstraction refinement. In International Workshop on Hybrid Systems:
Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 573–589).
Berlin: Springer.

130. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. ACM Transactions on Embedded Computing Systems, 6(1), 8. http://
doi.acm.org/10.1145/1210268.1210276

131. Reactive Systems Inc. (2003). Model-based testing and validation of control software with
reactis. http://www.reactive-systems.com/papers/bcsf.pdf

132. Roohi, N., Prabhakar, P., & Viswanathan, M. (2016). Hybridization based CEGAR for hybrid
automata with affine dynamics. In M. Chechik, & J. F. Raskin (Eds.), Tools and algorithms
for the construction and analysis of systems (pp. 752–769). Berlin: Springer.

133. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., & Kwiatkowska, M. (2018). Global
robustness evaluation of deep neural networks with provable guarantees for L0 norm. http://
arxiv.org/abs/1804.05805

134. Sankaranarayanan, S., & Fainekos, G. E. (2012). Falsification of temporal properties of
hybrid systems using the cross-entropy method. In ACM International Conference on Hybrid
Systems: Computation and Control (pp. 125–134). New York: ACM.

135. Sankaranarayanan, S., Kumar, S. A., Cameron, F., Bequette, B. W., Fainekos, G., & Maahs, D.
M. (2017). Model-based falsification of an artificial pancreas control system. ACM SIGBED
Review, 14(2), 24–33.

136. Sankaranarayanan, S., & Tiwari, A. (2011). Relational abstractions for continuous and hybrid
systems. In International Conference on Computer Aided Verification. Lecture Notes in
Computer Science (Vol. 6806, pp. 686–702). Berlin: Springer.

137. Siper, M. J. (2005). An Introduction to mathematical theory of computation (2nd ed.).
Toronto: Thompson Publishing (Course Technology)

138. Skyler, J. S. (Ed.). (2012). Atlas of diabetes (4th ed.). Berlin: Springer.
139. Sontag, E. D. (1981). Nonlinear regulation: The piecewise linear approach. IEEE Transac-

tions on Automatic Control, 26(2), 346–358.
140. Steil, G., Panteleon, A., & Rebrin, K. (2004). Closed-sloop insulin delivery—the path to

physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125–144.

https://doi.org/10.1007/978-3-642-14509-4
http://doi.acm.org/10.1145/1210268.1210276
http://doi.acm.org/10.1145/1210268.1210276
http://www.reactive-systems.com/papers/bcsf.pdf
http://arxiv.org/abs/1804.05805
http://arxiv.org/abs/1804.05805

4 Formal Techniques for Verification and Testing of Cyber-Physical Systems 105

141. Steil, G. M. (2013). Algorithms for a closed-loop artificial pancreas: The case for
proportional-integral-derivative control. Journal of Diabetes Science and Technology, 7,
1621–1631.

142. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1).
Cambridge: MIT Press.

143. Teixeira, R. E., & Malin, S. (2008). The next generation of artificial pancreas control
algorithms. Journal of Diabetes Science and Technology, 2, 105–112.

144. Tjeng, V., & Tedrake, R. (2017). Verifying neural networks with mixed integer programming.
http://arxiv.org/abs/1711.07356

145. Topcu, U., & Packard, A. (2009). Stability region analysis for uncertain nonlinear systems.
IEEE Transactions on Automatic Control, 54, 1042–1047.

146. Topcu, U., Seiler, P., & Packard, A. (2008). Local stability analysis using simulations and
sum-of-squares programming. Automatica, 44, 2669–2675.

147. Tuncali, C. E., Fainekos, G., Ito, H., & Kapinski, J. (2018). Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In Proceedings of
IEEE Intelligent Vehicles Symposium (IV)

148. Tuncali, C. E., Kapinski, J., Ito, H., & Deshmukh, J. V. (2018). Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In Proceedings of the
55th Annual Design Automation Conference, DAC 2018 (pp. 30:1–30:6). New York: ACM.

149. Ulus, D. (2017). Montre: A tool for monitoring timed regular expressions. In Proceedings of
the International Conference on Computer Aided Verification (pp. 329–335). Berlin: Springer.

150. Ulus, D., Ferrère, T., Asarin, E., & Maler, O. (2014). Timed pattern matching. In Proceedings
of the International Conference on Formal Modeling and Analysis of Timed Systems (pp.
222–236). Berlin: Springer.

151. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Jin, X. (2016). Symbolic-numeric
reachability analysis of closed-loop control software. In Hybrid Systems: Computation and
Control (HSCC) (pp. 135–144). New York: ACM Press.

152. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2013). A trajectory splicing
approach to concretizing counterexamples for hybrid systems. In IEEE Conference on
Decision and Control (CDC) (pp. 3918–3925). New York: IEEE Press.

153. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2014). Multiple-shooting
CEGAR-based falsification for hybrid systems. In International Conference on Embedded
Software (EMSOFT) (pp. 5:1–5:10). New York: ACM Press.

154. Zutshi A., Sankaranarayanan S., & Tiwari A. (2012). Timed relational abstractions for
sampled data control systems. In P. Madhusudan & S. A. Seshia (Eds.), Computer Aided
Verification. Lecture Notes in Computer Science (Vol. 7358). Berlin: Springer.

http://arxiv.org/abs/1711.07356

Chapter 5
Data-Driven Safety Verification
of Complex Cyber-Physical Systems

Chuchu Fan and Sayan Mitra

5.1 Introduction

Cyber-physical systems (CPS) are often safety critical and are expected to work
in uncertain environments. Ensuring design correctness and safety of CPS has
significant financial and legal implications. Existing design and test methodologies
are inadequate for providing the needed level of safety assurances. For example,
Koopman [55] argues how naïve test driving for reasonable catastrophic failure rates
for a fleet of vehicles can grow to hundreds of billions of miles—a figure that is
beyond the capabilities of even for large corporations. Formal verification, designed
and deployed properly, can be the first line of defense against design bugs making
their way into unsafe products [16].

A formal verification algorithm takes as input a cyber-physical system’s (CPS)
model and a requirement, and decides whether or not all the behaviors of the system
meet the requirement. If the decision is “yes,” the algorithm provides a supporting
proof of this fact, which can then be used for certification, documentation, and for
future testing, and maintenance. If the decision is “no,” the algorithm produces
a supporting counterexample or a “bug trace.” This is a particular behavior of
the systems resulting from specific initial states and inputs, which violates the
requirement. For cyber-physical systems (CPS), the mathematical model may be
a dynamical, switched, or a hybrid system, and the requirement may be a safety
property, a stability property, or a temporal logic property.

Most instances of this model-based formulation of the verification problem for
CPS are known to be undecidable [39, 67]. Significant progress has been made in
the last decade and many powerful tools have been developed to solve approximate

C. Fan · S. Mitra (�)
University of Illinois at Urbana-Champaign, ECE Department, Champaign, IL, USA
e-mail: cfan10@illinois.edu; mitras@illinois.edu

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_5&domain=pdf
mailto:cfan10@illinois.edu
mailto:mitras@illinois.edu
https://doi.org/10.1007/978-3-030-13050-3_5

108 C. Fan and S. Mitra

versions of these problems for specific model classes [7, 15, 35, 36, 54]. Yet, these
purely model-based techniques do not handle nonlinear and hybrid models that
arise in practice. Real-world systems are often described by a heterogeneous mix of
simulation code, differential equations, block diagrams, look-up tables, and machine
learning modules, and it is unreasonable to even expect complete and precise models
in the first place.

In the last 5 years, data-driven verification algorithms have gained momentum.
Data-driven algorithms use executions (or numerical simulations) of the model in
addition to statically analyzing the model itself. Thus, the verification algorithm can
use powerful numerical simulators as a subroutine, which is particularly relevant
for nonlinear models that do not permit a closed-form analytical solution. This
opens the door to also verifying autonomous systems without complete and precise
models.1

The basic principle of data-driven verification combines model-based reachabil-
ity analysis with sensitivity analysis of the complex or unknown parts of the system.
Sensitivity analysis algorithms give (probabilistic or worst-case) bounds on how
much the states or outputs of a module change, with small changes in the input
parameters. Under certain assumptions about the underlying system, we show that
data-driven verification can indeed provide rigorous guarantees about system safety.
An earlier sequence of papers culminating in [24] developed sensitivity analysis
algorithms for nonlinear and hybrid systems with known models. These techniques
are implemented in the C2E2 tool, which has been effectively used to verify an
engine control system [46], a NASA-developed collision alerting protocol [63], and
satellite controllers [24, 29]. For systems with unknown models, the deterministic
sensitivity analysis algorithms have to be replaced with methods that only rely on
execution data. In [32], we have shown how this problem can be cast as the well-
known problem of learning a linear separator, and therefore, can be solved with
probabilistic correctness guarantees. The resulting tool DRYVR was used to ana-
lyze several autonomous and ADAS-based2 maneuvers [31, 32]. Other successful
applications range across medical devices [40, 44], automotive [6, 22, 28, 47], air-
traffic management [25], and energy systems [26]. A noteworthy related approach
is simulation-driven falsification, which addresses the problem of finding bugs, but
does not aim to prove their absence [1]. The search for bugs is formulated as an
optimization problem, and since this typically works out to be a nonlinear and non-
convex problem, stochastic optimization tools are employed to guide the search. The
preeminent tool implementing this approach is S-taliro [5]; it has been effectively
used to search for bugs in several practical applications [27, 65].

We present a broad and unified overview of data-driven verification with several
case studies using both C2E2 and DRYVR . We classify the verification problems

1Autonomous systems sometimes also have incomplete requirements. The black-box approach
described here does not address that problem.
2ADAS stands for advanced driving assistance systems such as adaptive cruise control, automatic
emergency braking, etc.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 109

regarding both the nature of the model and the requirement. First, in Sect. 5.2 we
provide the necessary mathematical preliminaries; experienced readers can skip
this. In Sect. 5.3, we set up the bounded verification problem and the related
subproblem of sensitivity analysis. The existing techniques are described in the
context of dynamical systems in Sect. 5.4, and extended for hybrid systems in
Sect. 5.5. In Sect. 5.6, we discuss the black-box verification as in DRYVR. Two
recent applications of data-driven verification are discussed in some detail, including
a spacecraft rendezvous maneuver in Sect. 5.7.2 and an engine control challenge in
Sect. 5.7.3. In Sect. 5.8, we conclude with a short summary of open problems and
future research directions. Finally, in Sect. 5.9, we present pointers to additional
works for further reading.

5.2 Mathematical Preliminaries

We will begin by defining the concepts and notations used throughout the chapter.

Matrix Norms For any matrix A ∈ R
n×n, AT is its transpose; λmax(A) and

λmin(A) are the maximum and minimum eigenvalues; aij denotes the element in
the ith row and j th column. ‖A‖1, ‖A‖2, ‖A‖∞, ‖A‖F denote, respectively, the
1, 2, infinity, and the Frobenius norms of A. |A| is the matrix obtained by taking the
element-wise absolute value of matrix A.

Given a positive definite n × n real-valued matrix M , the M-norm of a vector
x ∈ R

n, ‖x‖M =
√

xT Mx is the norm of x under the transformation M . Such M-
norm will be used to represent reach sets of the system as ellipsoids. For any M � 0,
there exists a nonsingular matrix C ∈ R

n×n, such that M = CT C and we write C as

M
1
2 . So, ‖x‖M =

√
xT CT Cx = ‖Cx‖. That is, ‖x‖M is the 2-norm of the linearly

transformed vector Cx. When M = I is the identity matrix, ‖x‖I coincidences with
the 2-norm.

For sets S1, S2 ⊆ R
n, hull(S1, S2) is their convex hull. The hull of a set of

n × n matrices is defined in the usual way, by considering each matrix as a vector
in R

n2
. The diameter of a compact set S is defined as Dia(S) = supx,y∈S ‖x − y‖.

EM,δ(x0) = {x | ‖x − x0‖M ≤ δ} represents an ellipsoid centered at x0 ∈ R
n ,

with shape M and size δ. The δ ball around x0: Bδ(x) = {x | ||x − x0|| ≤ δ} is a
special case of EM,δ(x0) where M is the identity matrix I . A predicate over Rn is a
computable function φ : Rn→ B that maps each state in R

n to either True or False.

Interval Matrices For a pair of matrices B,C ∈ R
n×n with the property that:

bij ≤ cij for all 1 ≤ i, j ≤ n, we define the set of matrices Interval([B,C]) �
{A ∈ R

n×n|bqij ≤ aij ≤ cij , 1 ≤ i, j ≤ n}. Any such set of matrices is
called an interval matrix. Interval matrices will be used to linearly over-approximate
behaviors of nonlinear models. Two useful notions are the center matrix and the
range matrix, defined, respectively, as CT([B,C]) = (B +C)/2 and RG([B,C]) =
(C − B)/2. Then, Interval([B,C]) can also be written as Interval([Ac −

110 C. Fan and S. Mitra

Ar,Ac + Ar]), where Ac = CT([B,C]), Ar = RG([B,C]). A vertex matrix of
an interval matrix Interval([B,C]) is a matrix V whose every element is either
bij or cij . Let VT(Interval([B,C])) be the set of all the vertex matrices of the
interval matrix Interval([B,C]). The cardinality of VT(Interval([B,C]))
with B,C ∈ R

n×n is 2n2
.

Dynamical Systems Let us denote the set of all the real-valued variables in the
model as the set X. For this set of variables, the set of all values the variables can
take, denoted as val(X), is isomorphic to R

n.
A continuous behavior of the system is modeled as a trajectory. A trajectory ξ

is defined as a function ξ : dom → val(X) where dom is the time domain of
evolution, and it is either [0, T] for some T > 0, or it is [0,∞). The domain of ξ

is referred as ξ.dom. The state of the system along the trajectory at time t ∈ τ.dom

is ξ(t). For a bounded trajectory with ξ.dom = [0, T], the duration ξ.dur = T .
For unbounded trajectories, ξ.dur is defined as∞. The first state ξ(0) is denoted by
τ.fstate, and for a bounded trajectory the last state ξ.lstate = ξ(T) and ξ.ltime = T .

A T1-prefix of ξ , for any T1 ∈ ξ.dom, is the trajectory ξ1 : [0, T1] → R
n, such

that for all t ∈ [0, T1], ξ1(t) = ξ(t). A set of trajectories T is prefix-closed if for
any ξ ∈ T , any of its prefix of ξ is also in T . A set T is deterministic if for
any pair ξ1(t), ξ2(t) ∈ T , if ξ1(0) = ξ2(0) then one is a prefix of the other. See,
for example, [52] for detailed explanation of trajectories closed under prefix, suffix,
and concatenation.

The continuous evolution of an n-dimensional dynamical system is given by an
ordinary differential equation (ODE):

ẋ = f (x), (5.1)

where f : Rn→ R
n is a locally Lipschitz and continuously differentiable function.

A trajectory ξ is a solution of Eq. (5.1) if ∀t ∈ ξ.dom, d
ξ(t)
dt
= f (ξ(t)). The

existence and uniqueness of solutions are guaranteed by the Lipschitz continuity
of f . With an initial states and a time bound, an ODE defines a unique trajectory.
Therefore, we abuse the notation and let ξ(x0, t) denote the solution ξ(t) starting
from ξ(0) = x0. The Jacobian of f , Jf : Rn → R

n×n, is a matrix-valued function
of all the first-order partial derivatives of f with respect to x, that is:

[
Jf (x)

]
ij
= ∂fi(x)

∂xj

.

Example 5.1 The Moore–Greitzer model of a jet engine compression system is
studied in [56] to understand and prevent two types of instabilities: rotating stall
and surge. With a stabilizing feedback controller operating in the no-stall mode, it
has the following dynamics:

{
u̇ = −v − 3

2u2 − 1
2u3

v̇ = 3u− v
. (5.2)

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 111

The Jacobian of the system is

Jf (x) =
[−3u− 3

2u2 −1
3 −1

]
. (5.3)

5.3 Overview of Data-Driven Verification

5.3.1 Simulations and Reachable States

Obtaining closed-form or analytical solutions for nonlinear ordinary differential
equations (ODEs) is generally impossible; however, libraries such as VNODE-
LP [62] and CAPD [11] use validated numerical integration to generate a sequence
of evaluations of ξ with guaranteed error bounds. We define a simulation as a
sequence of time-stamped hyper-rectangles that contain a solution of the system.

Definition 5.1 (Simulation) For any x0 ∈ R, τ > 0, ε > 0, T > 0, a (x0, τ, ε, T)-
simulation of the system described in Eq. (5.1) is a sequence of time-stamped sets
{(Ri, ti)

k
i=0} satisfying the following:

1. 0 < ti − ti−1 ≤ τ , for each i = 1, . . . , k, and t0 = 0 and tk = T ; τ is called the
maximum sampling period.

2. Each Ri is a hyper-rectangle in R
n with a diameter smaller than ε.

3. ξ(x0, ti) ∈ Ri , for each i = 0, 1, . . . , k, and ∀t ∈ (ti−1, ti), ξ(x0, t) ∈
hull(Ri−1, Ri), for i = 1, . . . , k.

That is, at each time point ti , the trajectory of the system ξ(x0, ti) is contained
in the hyper-rectangle Ri , and during the time intervals t ∈ (ti−1, ti), the trajectory
ξ(x0, t) is contained in the convex hull of Ri−1 and Ri .

For a given initial set Θ ⊆ R
n, a state x ∈ R

n is said to be reachable if there exist
a state θ ∈ Θ and a time t ≥ 0 such that ξ(θ, t) = x. We denote by ξ(Θ, [t1, t2]) the
set of states that are reachable from Θ at any time t ∈ [t1, t2]. The set of reachable
states at time t from initial set Θ is denoted by ξ(Θ, t). Given an n-dimensional
dynamical system as in Eq. (5.1), a compact initial set Θ ⊂ R

n, an unsafe set
U ⊆ R

n, and a time bound T > 0, the safety verification problem (also called
the bounded invariant verification) is to decide whether ξ(Θ, [0, T])∩U = ∅. This
problem is of fundamental importance as it captures many practical requirements.

Next, we define reachtubes, which are also sequences of time-stamped hyper-
rectangles, but unlike simulations, they contain ξ(Θ, [0, T]).
Definition 5.2 (Reachtube) For any Θ ⊂ R

n, T > 0, a (Θ, T)-reachtube is a
sequence of time-stamped compact sets {(Oi, ti)

k
i=0}, such that for each i in the

sequence, ξ(Θ, [ti−1, ti]) ⊆ Oi .

112 C. Fan and S. Mitra

As we shall see in Sect. 5.3.3, computing precise reachtubes is sufficient for
safety verification. Data-driven verification algorithms compute reachtubes from
simulations using sensitivity analysis that we will discuss next.

5.3.2 Discrepancy Functions

Sensitivity of the solutions to changes in the initial states is formalized by discrep-
ancy functions. Specifically, a discrepancy function bounds the distance between
two neighboring trajectories as a function of the distance between their initial states
and time [23, 30].

Definition 5.3 (Discrepancy Function) A continuous function β : R≥0 ×R
≥0 →

R
≥0 is a discrepancy function of (5.1) with initial set Θ if:

(1) for any pair of states x1, x2 ∈ Θ , and any time t ≥ 0,

‖ξ(x1, t)− ξ(x2, t)‖ ≤ β(‖x1 − x2‖, t), and

(2) for any t ,

lim
‖x1−x2‖→0+

β(‖x1 − x2‖, t) = 0.

In Definition 5.3, the norm can be any norm. We will make specific choices
for designing algorithms. Consider the system (5.1), and suppose with L > 0 is the
Lipschitz constant for f (x). Then, it can be shown that β(‖x1−x2‖2, t) = eLt‖x1−
x2‖2 is a discrepancy function (Proposition 1 in [21]). For Example 5.1, L = 2 is
a Lipschitz constant, and therefore, e2t‖x1 − x2‖2 can be used as a discrepancy
function for the jet engine system.

According to the definition of discrepancy function, for system (5.1), at any time
t , the ball centered at ξ(x0, t) with radius β(δ, t) contains every solution of (5.1)
starting from Bδ(x0). Therefore, by bloating the simulation trajectories using the
corresponding discrepancy function, we can obtain an over-approximation of the
reachtube. We remark that this definition of discrepancy function is similar to the
incremental lyapunov functions [4]; however, here we do not require that trajectories
converge to each other.

5.3.3 Verification Algorithm

We are now ready to present the verification algorithm (Algorithm 1). The basic
idea is simple and appeared in [18, 23] at different levels of generality. Recall, the
goal is to have an algorithm that answers bounded safety queries correctly: given

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 113

Algorithm 1: Simulation-driven verification algorithm
input: Θ, T ,U, ε0, τ0

1 δ← Dia(Θ); ε ← ε0; τ ← τ0;RTall ← ∅;
2 C← Cover(Θ, δ, ε);
3 while C �= ∅ do
4 for 〈θ, δ, ε〉 ∈ C do
5 ψ = {(Ri, ti)

k
i=0} ← Simulate(θ, T , ε, τ);

6 RT← Bloat(ψ, δ, ε);
7 if RT ∩ U = ∅ then
8 C← C\{〈θ, δ, ε〉}; RTall ← RTall ∪ RT ;
9 else if ∃j, Rj ⊆ U then

10 return (U,ψ)

11 else
12 C← C ∪ Cover(Bδ(θ), δ

2 , ε
2)\{〈θ, δ, ε〉};

13 τ ← τ
2 ;

14 return (SAFE, RTall);

system (5.1), a compact initial set Θ ⊂ R
n, an unsafe set U ⊆ R

n, and a time bound
T > 0, it answers whether ξ(Θ, [0, T]) ∩ U = ∅. A verification algorithm is said
to be sound if it answers the safety question correctly and it is said to be complete
if it is guaranteed to terminate on any input. We know that for general nonlinear
and hybrid models, the unbounded time verification problem is undecidable, that is,
no algorithm exists that is both sound and complete. Even for the bounded time,
version of this problem is known to be undecidable. Algorithm 1 is sound and is
guaranteed to terminate under a mild assumption on the inputs.

If there exists some ε > 0 such that Bε(ξ(Θ, [0, T]))∩U = ∅, we say the system
is robustly safe. That is, all states in some envelope around the system behaviors are
safe. If there exist some ε, x ∈ Θ, such that Bε(ξ(x, t)) ⊆ U over some interval
[t1, t2], 0 ≤ t1 < t2 ≤ T , we say the system is robustly unsafe. An algorithm is
said to be relatively complete if it is guaranteed to terminate when the system is
either robustly safe or robustly unsafe. Algorithm 1 is relatively complete. Another
way of saying this is that Algorithm 1 is a semidecision procedure for robust safety
verification.

The algorithm consists of the following three main steps: (1) Simulate the system
from a finite set of states (θ) that are chosen from the compact initial set Θ . The
union of a set of balls of diameter δ centered at each of the states should contain
Θ . (2) Bloat the {(Ri, ti)

k
i=0} simulations using a discrepancy function such that the

bloated sets are reachtubes from the initial covers. (3) Check each of these over-
approximations, and decide if the system is safe or not. If such a decision cannot be
made, then we should start from the beginning with balls with smaller diameter δ.

There are several functions referred to in Algorithm 1. Functions Dia() and
Simulate() are defined to return the diameter of a set and a simulation result,
respectively. The Bloat() function takes as the inputs the simulation ψ starting
from θ , the size of the initial cover δ, and the simulation precision ε, and returns a
reachtube that contains all the trajectories starting from the initial cover Bδ(θ). This

114 C. Fan and S. Mitra

can be done by bloating the simulation using a discrepancy function as described in
Sect. 5.4, which is an over-approximation of the distance between any neighboring
trajectories starting from Bδ(θ). Function Cover() returns a set of triples {〈θ, δ, ε〉},
where θs are sample states, the union of Bδ(θ) covers Θ , and ε is the precision of
simulation.

Initially, C contains a singleton 〈θ0, δ0 = Dia(Θ), ε0〉, where Θ ⊆ Bδ0(θ0)

and ε0 is a small positive constant. For each triple 〈θ, δ, ε〉 ∈ C, the while-
loop from Line 3 checks the safety of the reachtube from Bδ(θ), which is
computed in Lines 5–6. ψ is a (θ, T , ε, τ)-simulation, which is a sequence of time-
stamped rectangles {(Ri, ti)} and is guaranteed to contain the trajectory ξ(θ, T) by
Definition 5.1. Bloating the simulation result ψ by the discrepancy function to get
RT, a (Bδ(θ), T)-reachtube, we have an over-approximation of ξ(Bδ(θ), [0, T]).
The core function Bloat() will be discussed in detail next. If RT is disjoint from
U , then the reachtube from Bδ(θ) is safe and the corresponding triple can be safely
removed from C. If for some j , Rj (one rectangle of the simulation) is completely
contained in the unsafe set, then we can obtain a counterexample in the form of a
trajectory that violates the safety property. Otherwise, the safety of ξ(Bδ(θ), [0, T])
is not determined, and a refinement of Bδ(θ) needs to be made with smaller δ and
smaller ε, τ .

Figure 5.1 gives a conceptual demonstration of Algorithm 1 running on the jet
engine example (Example 5.1).

Theorem 5.1 Algorithm 1 is sound. That is, if it returns SAFE, then indeed
ξ(Θ, [0, T]) ∩ U = ∅; if it returns UNSAFE, then it also finds a counterexample,
the simulation ψ which enters U . Algorithm 1 is also relatively complete. That is,
for any robustly safe or unsafe system, it will terminate and decide either SAFE or
UNSAFE.

A crucial and challenging aspect of Algorithm 1 is choosing an appropriate
discrepancy function with which to implement the Bloat() function. In the next
section, we introduce algorithms that implement this function.

Fig. 5.1 Conceptual demonstration of verification algorithm. Red rectangle: unsafe set, cyan
rectangle: cover of initial set K . Simulations (blue lines) cannot guarantee safety, but together
with sensitivity analysis give reachsets (gray region) to prove safety (green region) or identify bug
traces

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 115

5.4 Computing Discrepancy

In this section, we discuss several approaches for computing discrepancy functions
of dynamical systems. We start with the simplest case of stable linear systems where
Lyapunov equations can be used for computing discrepancy. Then, we move on to
discuss nonlinear models and contraction metrics, and finally, we discuss locally
optimal methods for general nonlinear systems.

5.4.1 Linear Models

For a linear time invariant (LTI) system ẋ = Ax, if the system is asymptotically
stable we can find a discrepancy function by solving the Lyapunov equation:

Theorem 5.2 For asymptotically stable linear system ẋ = Ax, given any positive
definite matrix Q ∈ R

n×n, β(‖x1 − x2‖M, t) = e−γ t‖x1 − x2‖M is a discrepancy
function, where M � 0 can be found by solving the Lyapunov equation AT M +
MA+Q = 0 and γ = λmin(Q)

2λmax(M)
.

Proof Fix any x1, x2 ∈ R
n, and let y(t) = ξ(x1, t)− ξ(x2, t), we have

d
‖y(t)‖2M

dt
= ẏT (t)My(t)+ y(t)Mẏ(t) = yT (t)(AT M +MA)y(t)

= −yT (t)Qy(t) ≤ −λmin(Q)yT (t)y(t)

≤ − λmin(Q)
λmax(M)

yT (t)My(t) = − λmin(Q)
λmax(M)

‖y(t)‖2M
By applying Grönwall’s inequality, we obtain

‖y(t)‖M ≤ e
− λmin(Q)

2λmax(M) ‖y(0)‖M. (5.4)

5.4.2 Nonlinear Models: Optimization-Based Approaches

For nonlinear systems with trajectories that exponentially converge to each other,
contraction metrics can be used as a certificate for this convergence [58]. Discrep-
ancy functions can be computed from contraction metrics.

Definition 5.4 (From [58]) A uniform metric M : Rn × R
≥0 → R

n×n is called a
contraction metric for (5.1) if ∃γ ∈ R

≥0 such that:

J T
f (x)M(x, t)+ M(x, t)Jf (x)+ Ṁ(x, t)+ γM(x, t) ! 0.

116 C. Fan and S. Mitra

Theorem 5.3 (Theorem 2 from [58]) For system given by (5.1) that admits a
contraction metric M, the trajectories converge exponentially with time, i.e., ∃k ≥
1, γ > 0 such that, ∀x1, x2 ∈ R

n, yT (t)y(t) ≤ kyT (0)y(0)e−γ t , where y(t) =
ξ(x1, t)− ξ(x2, t).

Proposition 5.1 (Proposition 5 from [21]) For system given by (5.1) that admits
a contraction metric M, β(‖x1 − x2‖2, t) =

√
ke−

γ
2 t‖x1 − x2‖2 is a discrepancy

function, where k, γ are from Theorem 5.3.

In [8], a technique for establishing exponential convergence among trajectories
using sum of squares (SOS) optimization is proposed. Informally, it searches for a
contraction metric that satisfies conditions given in Definition 5.4 as follows:

1. Select the degree of the polynomial d for contraction metric M(x). That is, all the
terms in the contraction metric are fixed degree polynomial terms in the n real
variables. For example, the general form of M(x) for a two-dimensional system

with variables u and v is given as

[∑
aij v

iuj
∑

bij v
iuj

∑
cij v

iuj
∑

dij v
iuj

]
.

2. Calculate R(x) = J T
f (x)M(x) + M(x)Jf (x) + Ṁ(x) and enforce constraints on

aij , bij , cij and dij such that R(x) is symmetric.
3. Impose the restrictions that polynomials yT M(x)y and −yT R(x)y are sum of

squares polynomials and solve for the feasibility using SOS tools. If the solution
exists, then the SOS solver will find values of coefficients of polynomials.

4. If the solution is feasible, compute the exponential rate of convergence by
computing the value of γ such that:

J T
f (x)M(x)+ M(x)Jf (x)+ Ṁ(x)+ γM(x) ≺ 0.

5. If SOS solver returns infeasible, then increase the degree of the polynomial terms
in M and repeat.

For a given nonlinear ordinary differential equation (ODE), a contraction metric
that is a sum of squares polynomial is not guaranteed to exist, and hence, the above
procedure is not guaranteed to terminate.

5.4.3 Nonlinear Models: Local Discrepancy

The main obstacle to finding a (global) discrepancy function for general nonlinear
systems is the difficulty to globally bound the convergence (or divergence) rates
across all trajectories. By restricting the definition of discrepancy functions over
carefully computed parts of the state space, we will gain two benefits. First, such
local discrepancy functions will still be adequate to compute Bloat needed in
Algorithm 1. Second, it will become possible to compute a local discrepancy
function automatically from simulation traces.

We begin by observing that, over a compact set S ⊆ R
n, the Jacobian Jf of the

system described by Eq. (5.1) can be over-approximated by an interval matrix. Then,

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 117

we establish that the distance between two trajectories in S satisfies a differential
equation from a set of differential equations described using the interval matrix.
By bounding the matrix measure of the interval matrix, we can get a discrepancy
function.

Since we assume that the system is continuously differentiable, the Jacobian
matrix is continuous, and therefore, over a compact set S, the elements of Jf (x) are
bounded. That is, there exists an interval matrix A such that ∀x ∈ S, Jf (x) ∈ A .
For interval matrix A = Interval(B,C), the bounds B and C can be obtained
using interval arithmetic or an optimization toolbox by maximizing and minimizing
the terms of Jf over S. (The set S can be chosen to be a coarse over-approximation
of the reach set, obtained using the Lipschitz constant as in Sect. 5.4.) Once
the bounds are obtained, we use the interval matrix that over-approximates the
behavior of Jf (x) over S to analyze the rate of convergence or divergence between
trajectories:

Lemma 5.1 (Lemma 3.4 from [29]) For system (5.1) with initial set Θ starting
from time t1, suppose S ⊆ R

n is a compact convex set, and [t1, t2] is a time interval
such that for any ξ(Θ, [t1, t2]) ⊆ S. If there exists an interval matrix A such that
∀x ∈ S, Jf (x) ∈ A , then for any x1, x2 ∈ Θ , and for any t ∈ [t1, t2], the distance
y(t) = ξ(x2, t)− ξ(x1, t) satisfies ẏ(t) = A(t)y(t), for some A(t) ∈ A .

ẏ(t) = A(t)y(t) used in Lemma 5.1 can be used to define a discrepancy function.
Given any matrix M � 0, ‖y(t)‖2M = yT (t)My(t), and by differentiating ‖y(t)‖2M ,
we have that for any fixed t ∈ [t1, t2]:

d‖y(t)‖2M
dt

= ẏT (t)y(t)+ yT (t)ẏ(t) = yT (t)(A(t)T M +MA(t))y(t), (5.5)

for some A(t) ∈ A . We write A(t) as A in the following for brevity. If there exists

a γ̂ such that AT M + MA ! γ̂M,∀A ∈ A , then (5.5) becomes
d‖y(t)‖2M

dt
≤

γ̂ ‖y(t)‖2M. After applying Grönwall’s inequality, we have

‖y(t)‖M ≤ ‖y(t1)‖Me
γ̂
2 (t−t1),∀t ∈ [t1, t2].

The above provides a discrepancy function: β(‖x1−x2‖M, t) = ‖x1−x2‖Me
γ̂
2 (t−t1).

This discrepancy function could result in more or less conservative reachtubes,
depending on the selection of M and γ̂ . Ideally, we would like to identify the optimal
M such that we can obtain the tightest bound γ̂ . This problem is formulated as
follows:

min
γ̂∈R,M�0

γ̂ (5.6)

s.t AT M +MA ! γ̂M, ∀A ∈ A .

118 C. Fan and S. Mitra

Solving (5.6) to obtain the optimal γ̂ for each time interval involves solving
optimization problems with infinite numbers of constraints (imposed by the infinite
set of matrices in A). To overcome this problem, we introduce a strategy to
transform (5.6) to an equivalent problem with finitely many constraints based on
the vertex matrices.

Lemma 5.2 (Lemma 4.1 from [29]) For system (5.1) with initial set Θ starting
from time t1, suppose S ⊆ R

n is a compact convex set, and [t1, t2] is a time interval
such that for any x ∈ Θ , t ∈ [t1, t2], ξ(x, t) ∈ S. Let M be a positive definite n× n

matrix. If there exists an interval matrix A such that:

(a) ∀ x ∈ S, Jf (x) ∈ A , and
(b) ∃ γ̂ ∈ R, ∀ Ai ∈ VT(A), AT

i M +MAi ! γ̂M ,

then for any x1, x2 ∈ Θ and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e
γ̂
2 (t−t1)‖x1 − x2‖M.

Lemma 5.2 suggests the following bilinear optimization problem for finding
discrepancy over compact subsets of the state space:

min
γ̂∈R,M�0

γ̂ (5.7)

s.t. for each Ai ∈ VT(A), AT
i M +MAi ! γ̂M.

Letting γ̂max be the maximum of the eigenvalues of AT
i +Ai for all i, then AT

i +Ai !
γ̂maxI (i.e., M = I) holds for every Ai , so a feasible solution exists for (5.7). To
obtain a minimal feasible solution for γ̂ , we choose a range of γ ∈ [γmin, γmax],
where γmin < γmax and perform a line search of γ̂ over [γmin, γmax]. Note that if
γ̂ is fixed, then (5.7) is a semidefinite program (SDP), and a feasible solution can
be obtained by an SDP solver. As a result, we can solve (5.7) using a line search
strategy, where an SDP is solved at each step.

This approach is computationally intensive due to the potential O(2n2
) matrices

in VT(A) that appear in the SDP (5.7). In [29], a second method is shown to avoid
the exponential increase in the number of constraints in (5.7), at the expense of
lower accuracy (i.e., increasing the conservativeness).

5.4.4 Algorithm to Compute Local Optimal Reach Set

Given an initial set Bδ(x) and time bound T , Lemma 5.2 provides discrepancy
functions over compact subsets of the state space, and over a bounded time horizon.
To compute the reach set of a nonlinear model from a set of initial states over a long
time horizon [0, T], we will divide the time interval [0, T] into smaller intervals

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 119

[0, t1], . . . , [tk−1, tk = T], and compute a piece-wise discrepancy function, where
each piece is relevant for a smaller portion of the state space and time.

Consider two adjacent subintervals of [0, T], a = [t1, t2] and b = [t2, t3].
Let EMa,ca(t2)(ξ(x0, t2)) be an ellipsoid that contains ξ(Bδ(x), t2), and suppose we
are given a matrix Mb and we want to select a cb(t) such that ξ(Bδ(x), t2) ⊆
EMb,cb(t2)(ξ(x0, t2)). To over-approximate the reach set for the interval b, we require
that cb(t2) is chosen so that at the transition time t2:

EMa,ca(t2)(ξ(x0, t2)) ⊆ EMb,cb(t2)(ξ(x0, t2)). (5.8)

This is a standard SDP problem to compute the minimum value for cb(t2) that
ensures (5.8) (see, for example, [10]). This minimum value is used as cb(t2) for
computing the reachtube for time interval b.

Let Ea denote the ellipsoid EMa,ca(t2)(ξ(x0, t2)) and Eb denote the ellipsoid
EMb,c(ξ(x0, t2)). The problem of minimizing cb(t2), given Ma,Mb, ca(t2), such that
Eq. (5.8) holds, is the following optimization problem:

min c

s.t. Eb ⊇ Ea.
(5.9)

In what follows, let cb(t2) be equal to a solution of the above. We can transfer
problem (5.9) to the following sum-of-squares problem as the “S procedure” [57] to
make it solvable by SDP solvers:

min c

s.t. c − ‖x − ξ(x0, t2)‖2Mb
− λ

(
ca(t2)− ‖x − ξ(x0, t2)‖2Ma

)
≥ 0, λ ≥ 0.

(5.10)

We present an algorithm to compute a (Bδ(x), T)-reachtube for system (5.1)
using the results from Lemmas 5.2. The inputs to Algorithm Bloat are as follows:
(1) A simulation ψ of the trajectory ξ(x, t), where x = ξ(x, t0) and t0 = 0,
represented as a sequence of points ξ(x, t0), . . . , ξ(x, tk) and a sequence of hyper-
rectangles Rec(ti−1, ti) ⊆ R

n. That is, for any t ∈ [ti−1, ti], ξ(x, t) ∈ Rec(ti−1, ti).

(2) The Jacobian matrix Jf (·). (3) A Lipschitz constant L for the vector field (this
can be replaced by a local Lipschitz constant for each time interval). (4) A matrix
M0 and constant c0 such that Bδ(x) ⊆ EM0,c0(x). The output is a (Bδ(x), T)-
Reachtube. We assume that the exact simulation of the solution ξ(x, t) exists and can
be represented as a sequence of points and hyper-rectangles for ease of exposition.

Algorithm Bloat uses Lemma 5.2 to update the coordinate transformation
matrix Mi to ensure an optimal exponential rate γi of the discrepancy function in
each time interval [ti−1, ti]. It will solve the optimization problem (5.7) in each time
interval to get the local optimal rate, and solve the optimization problem (5.8) when
it moves forward to the next time interval.

120 C. Fan and S. Mitra

Algorithm 2: Algorithm Bloat
input : ψ , Jf (·), L, M0, c0
initially: RT← ∅, γ0 ←−100

1 δ0 = Dia
(
EM0,c0 (x)

)
;

2 for i = 1:k do
3 �t ← ti − ti−1 ;
4 S ← Bδi−1eL�t (Rec(ti−1, ti)) ;
5 A ← Interval[B,C] such that Jf (x) ∈ Interval[B,C],∀x ∈ S ;
6 if ∀V ∈ VT(A) : V T Mi−1 +Mi−1V ≤ γi−1Mi−1 then
7 Mi ← Mi−1; ;
8 γi ← arg min

γ∈R ∀V ∈ VT(A) : V T Mi +MiV ≤ γMi ;

9 ctmp ← ci−1

10 else
11 compute Mi, γi from Eq. (5.7) ;
12 compute minimum ctmp such that EMi−1,ci−1 (ξ(x, ti−1)) ⊆ EMi,ctmp (ξ(x, ti−1)) ;
13 ci ← ctmpe

γi�t ;
14 δi ← Dia(EMi,ci

(ξ(x, ti))) ;
15 Oi ← Bδ′/2(Rec(ti−1, ti)) where δ′ = max{dia

(
EMi,ctmp (ξ(x, ti−1))

)
, δi} ;

16 RT← RT ∪ [Oi, ti] ;
17 return RT ;

The algorithm proceeds as follows. The diameter of the ellipsoid containing the
initial set Bδ(x) is computed as the initial set size (Line 1). At Line 4, Rec(ti−1, ti),
which contains the trajectory between [ti−1, ti] is bloated by the factor δi−1e

L�t

which gives the set S that is guaranteed to contain ξ(Bδ(x), t) for every t ∈ [ti−1, ti].
Next, at Line 5, an interval matrix A containing Jf (x), for each x ∈ S, is computed.
The “if” condition in Line 6 determines whether the Mi−1, γi−1 used in the previous
iteration satisfy the conditions of Lemma 5.2 (γ0 when i = 1, where γ0 is an initial
guess). This condition will avoid performing updates of the discrepancy function if
it is unnecessary. If the condition is satisfied, then Mi−1 is used again for the current
iteration i (Lines 7–9) and γi will be computed as the smallest possible value such
that Lemma 5.2 holds (Line 8) without updating the shape of the ellipsoid (i.e.,
Mi = Mi−1). In this case, the γi computed using Mi−1 in the previous iteration
(i − 1) may not be ideal (minimum) for the current iteration (i), but we assume
that it is acceptable. If Mi−1 and γi−1 do not satisfy the conditions of Lemma 5.2,
that means the previous coordinate transformation can no longer ensure an accurate
exponential converging or diverging rate between trajectories. Then, Mi and γi are
recomputed at Line 11. For the vertex matrix constraints case, (5.7) is solved to
update Mi and γi .

At Line 12, an SDP is solved to identify the smallest constant ctmp for discrepancy
function updating such that EMi−1,ci−1(ξ(x, ti−1)) ⊆ EMi,ctmp(ξ(x, ti−1)). At
Line 13, we compute the updated ellipsoid size ci such that EMi,ci

(ξ(x, ti)) contains
ξ(Bδ(x), ti). At Line 14, the diameter of EMi,ci

(ξ(x, ti)) is assigned to δi for next

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 121

iteration. At Line 15, the set Oi is computed such that it contains the reach set during
time interval [ti−1, ti]. Finally, at Line 16 RT is returned as an over-approximation
of the reach set.

The next lemma states that the γ produced by Line 11 is a local optimal
exponential converging or diverging rate between trajectories.

Lemma 5.3 (Lemma 5.1 from [29]) In the ith iteration of Algorithm Bloat,
suppose A is the approximation of the Jacobian over [ti−1, ti] computed in Line 5.
If Ei−1 is the reach set at ti−1, then for all M ′ and γ ′ such that ξ(Ei−1, ti) ⊆
EM ′,c′(ξ(x, ti)) where c′ is computed from γ ′ (Line 13), we have that the γ produced
by Line 11 satisfies γ ≤ γ ′.

Theorem 5.4 ensures soundness of the verification algorithm.

Theorem 5.4 (Theorem 5.2 from [29]) For any (x, T)-simulation ψ =
ξ(x, t0), . . . , ξ(x, tk) and any constant δ ≥ 0, a call to Bloat(ψ, δ) returns a
(Bδ(x), T)-reachtube.

Proof By Lemma 5.2, at any time t ∈ [ti−1, ti], any other trajectory ξ(x′, t) starting
from x′ ∈ EMi−1,ci−1(ξ(x, ti−1)) is guaranteed to satisfy

‖ξ(x, t)− ξ(x′, t)‖Mi
≤ ‖ξ(x, ti−1)− x′‖Mi

e
γi
2 (t−ti−1). (5.11)

Then, at time ti , the reach set is guaranteed to be contained in the ellipsoid
EMi,ci

(ξ(x, ti)).
At Line 15, we want to compute the set Oi such that it contains the reach set

during time interval [ti−1, ti]. According to Eq. (5.11), at any time t ∈ [ti−1, ti],
the reach set is guaranteed to be contained in the ellipsoid EMi,c(t)(ξ(x, t)), where
c(t) = ctmpe

γi(t−ti−1). Oi should contain all the ellipsoids during time [ti−1, ti].
Therefore, it can be obtained by bloating the rectangle Rec(ti−1, ti) using the largest
ellipsoid’s radius (half of the diameter). Since eγi(t−ti−1) is monotonic (increasing
when γi > 0 or decreasing when γi < 0) with time, the largest ellipsoid during
[ti−1, ti] is either at ti−1 or at ti . So, the largest diameter of the ellipsoids is
max{dia

(
EMi,ctmp (ξ(x, ti−1))

)
, δi}. Thus, at Line 15, Oi computed at Line 15 is

an over-approximation of the reach set during time interval [ti−1, ti].
When i = 1, because the initial ellipsoid EM0,c0(x) contains the initial set Bδ(x),

we have that EM1,c1(ξ(x, t1)) defined at Line 14 contains ξ(Bδ(x), t1). Also at
Line 15, O1 contains ξ(Bδ(x), [t0, t1]). Repeating this reasoning for subsequent
iterations, we have that EMi,ci

(ξ(x, ti)) contains ξ(Bδ(x), ti), and Oi contains
ξ(Bδ(x), [ti−1, ti]). Therefore, RT returned at Line 16 is a (Bδ(x), T)-Reachtube.

Remark 5.1 It is straightforward to modify Algorithm 2 to accept validated simu-
lations and the error bounds introduced. At Line 4 and Line 15, instead of bloating
Rec(ti−1, ti), we need to bloat hull({Ri−1, Ri}), which is guaranteed to contain
the solution ξ(x, t),∀t ∈ [ti−1, ti]. Also, at Line 12 and Line 14, when using the
ellipsoid EMi,ci

(ξ(x, ti)), we use EMi,ci
(0)⊕ Ri .

122 C. Fan and S. Mitra

5.5 Hybrid System Verification

Hybrid systems are a natural and popular model for representing cyber-physical
systems [3, 38, 51, 61]. One can view a hybrid system as a collection of ODEs—
one for each mode—and a set of discrete transition rules for switching between the
ODEs or modes. Thus, the continuous behavior of a hybrid system is described by
differential equations, and discrete behavior is described by a set of transition rules
that can be defined in terms of a labeled control graph, a program, or an automaton.
In this section, we present extensions of the data-driven verification approach to fit
hybrid models.

5.5.1 Hybrid Model

We will use L to denote a finite set of modes, locations, or discrete states. We will
use a Euclidean space X ⊆ R

n for the continuous state. The combined hybrid state
space is L×X. The discrete behavior or mode transitions will be specified a control
graph over L with labels defining the guards and resets on X. A guard on X is
predicate G : X→ B, and reset function is a mapping R : X→ X.

Definition 5.5 Given a hybrid state space L × X, a control graph on L × X is a
labeled directed graph G = 〈V, E, elab〉, where:

1. V ⊆ L is the set of vertices,
2. E ⊆ V× V is the set of edges, and
3. elab labels each edge e ∈ E with finitely many guards and reset maps on X.

The evolution of the system’s continuous state variables is formally described by
the continuous functions of initial states and time called trajectories (see Sect. 5.2).
For a hybrid system with L modes, each trajectory is labeled by a mode in L. A
trajectory labeled by L is a pair 〈ξ(x0, t), �〉 where ξ(x0, t) is a trajectory starting
from x0, and � ∈ L. A deterministic, prefix-closed set of labeled trajectories TL
describes the behavior of the continuous variables in modes L.

In this section, we consider hybrid system with explicit continuous dynamics
expressions. That is, the dynamical evolution of the hybrid system’s continuous
state variables in each mode is expressed by ODEs. Therefore, a hybrid system
is formally defined as follows:

Definition 5.6 A hybrid system H is a tuple 〈X, L,Θ, Linit,G, TL〉, where:

1. X × L is the hybrid state space,
2. Θ × Linit ⊆ X × L is a compact set of initial states,
3. G = 〈V, E, elab〉 is a control graph on X × L, and
4. TL is a set of deterministic, prefix-closed labeled trajectories. For each � ∈ L, a

set of trajectories TL� is specified by differential equations f� : Rn→ R
n and an

invariant I� ⊆ R
n, such that over any trajectory 〈ξ, �〉 ∈ TL�, ξ evolves according

to d
ξ
dt
= f�(ξ) at each time in the domain of ξ , and ξ satisfies the invariant I�.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 123

Semantics of H is given in terms of executions which are sequences of
trajectories consistent with the modes defined by the control graph. An execution
of H starting from x0 ∈ Θ and �init ∈ Linit is a sequence of labeled trajectories
exec(x0, �init) = 〈ξ�1 , �1〉, · · · , 〈ξ�k

, �k〉 such that:

1. ξ�1 .fstate = x0 ∈ Θ and �1 = �init ∈ Linit,
2.

∑k
j=1 ξ�j

.dur = T ,
3. �1, · · · , �k follow the control graph G. That is, for each i > 1, there is an edge

e ∈ E : vi−1 → vi with the edge label elab = [Guarde]{Resete}, such that vi−1
corresponds to the mode �i−1 and vi corresponds to the mode �i , ξ�i−1 .lstate
satisfies the guard: Guarde(ξ�i−1 .lstate) = True, and ξ�i

.fstate satisfies the reset
map: Resete(ξ�i

.fstate) = True.

The set of all executions of H is denoted by ExecsH . A state 〈x, �〉 is reachable
at vertex � (of graph G) if there exists an execution 〈ξ�1, �1〉, . . . , 〈ξ�k

, �k〉 ∈
ExecsH , i ∈ {1, . . . k}, and t ′ ∈ ξi .dom such that � = �i , x = ξ�i

(t ′). The
set of reachable states is defined as:

ξ(H , T) = {〈x, �〉 | for some �, 〈x, �〉isreachableatvertex�}.

Given a set of (unsafe) states U ⊆ X × L, the bounded safety verification problem
is to decide whether ξ(H , T) ∩ U = ∅.
Example 5.2 A hybrid system that models the behavior of a cardiac pacemaker
system is given in Fig. 5.2a. The hybrid system has two modes, namely, Stim_on
and Stim_off. The continuous variables u and v model the voltage and the current
on the tissue membrane and the timer t measures the time spent in each location.

Stim

a

b

on
ṫ = 1

u̇= −u(0.9(u+1)+u2)− v+1
v̇= u−2v

Stim off
ṫ = 1

u̇= −u(0.9(u+1)+u2)− v
v̇= u−2v

[t = 5]{t ′ = 0}

[t = 20]{t ′ = 0}

Fig. 5.2 (a) Hybrid system model of a cardiac cell with a pacemaker. (b) Sample execution of
the cardiac cell-pacemaker system from the initial state [0, 0.1, 0.1]. Blue and green trajectories
correspond to the Stim_on and Sim_off modes, respectively

124 C. Fan and S. Mitra

The system stays in Stim_on location when the pacemaker gives a stimulus to the
cell and is in Stim_off when the stimulus is absent. The discrete transition from
Stim_on to Stim_off is enabled when t = 5; and t is reset to 0 after a transition;
u and v are left unchanged. Transition from Stim_off to Stim_on is enabled when
t = 20; and both these transitions are urgent. Thus, the pacemaker gives a stimulus
every 25 time units for a duration of 5 time units. The behavior of the continuous
variables t, u, v within a time period is given in Fig. 5.2b.

5.5.2 Hybrid System Verification Algorithm

We outline the hybrid extension of Algorithm 2 now presented as Algorithm 3.
Algorithm 2 computes the set of reachable states for a given continuous system as
described in Eq. (5.1) for a given time interval. Therefore, one can essentially apply
this algorithm for each of the relevant modes of a hybrid system. For simplicity, let
us assume that all the mode invariants and transition guards to be convex polyhedra,
and that all the reset mappings are linear functions. Without loss of generality,
we assume that there is only one mode �init in the set of initial locations Linit.
Algorithm 3 performs the following three steps iteratively until the time horizon
for verification:

1. For the given mode � and a given initial set Θ , the algorithm first simulates from
the center of Θ , computes the Jacobian of the continuous dynamics in mode �,
and then computes the reachable set RT� for that mode from Θ for the bounded
remaining time specified using Algorithm 2.

2. The reachable set is pruned by removing all the states that violate the mode
invariant.

3. The reachable set is checked to satisfy any guards for discrete transitions, and if
so, the initial states for the next mode are computed by applying the reset map
of the states that satisfy the guard predicate. As the reachable set of states for a
hybrid system at a given time might belong to two different modes, we track the
discrete transitions using a queue of tuples 〈Θnext, �next , tleft〉, where �next is the
next location that needs to be checked, Θnext is the initial set that corresponds to
the location �next , and tleft is remaining time we need to compute the reachable
set in �next .

Algorithm 3 computes the reachable set for a hybrid system. The main loop that
performs the three key steps iteratively happens from Line 2 to Line 9. Line 2
simulates from the center state of Θ . Then at Line 3, we compute an ellipsoid
EM0,c0(center(Θ)) to contain the initial set Θ as an ellipsoidal initial set is
required by Algorithm 2. Line 4 computes the Jacobian matrix of f�, continuous
dynamics in mode �. With these elements, at Line 5, we can use the Bloat function
as Algorithm 2 to get the reachable set of states from Θ for the corresponding

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 125

Algorithm 3: Algorithm HybridReachtube
input : Hybrid System H = 〈X ∪ {�},Θ, �init, T ,G, TL〉, Time bound T , Lipschitz

constants {L�}�∈L, Parameters for validated simulation ε, τ .
initially: Q← 〈Θ, �init, T 〉, RT hybrid ← ∅

1 for each 〈Θ, �, tleft〉 ∈ Q do
2 ψ = {(Ri, ti)

k
i=0} ← Simulate(center(Θ), tleft, ε, τ);

3 Compute M0, c0 such that Θ ⊆ EM0,c0 (center(Θ));
4 Jf�

(x)← Jacobian matrix of f� in mode �;
5 RT� ← Bloat(ψ, Jf�

(x), L�,M0, c0);
6 RT� ← RT� ∩ I�;
7 {〈Θnext, �next , tleft〉} ← discreteTransitions(RT�);
8 RT hybrid ← RT hybrid ∪ RT�;
9 Q.append({〈Θnext, �next , tleft〉});

10 return RT hybrid ;

mode �. Line 6 checks the invariant for the reachable set and line 7 computes
the states reached Θnext and the remained time tleft to be checked after discrete
transitions.

C2E2
Algorithms 1–3 are the core procedures implemented in the verification tool
Compute Execute Check Engine(C2E2) developed at University of Illinois [24, 33].
C2E2 is a software tool for simulating and verifying hybrid automata models.
Hybrid models and the requirements have to be specified in an xml format. The
tool parses the xml model to generate C++ libraries for numerical simulations and
computes other relevant quantities like the Jacobians of the different modes. Using
the data-driven verification algorithms, C2E2 can automatically check bounded
time invariant properties of nonlinear hybrid automata. The tool also supports
compositional modeling, a graphical user interface for model editing, and plotting.
C2E2 has been used for modeling and analyzing robots, autonomous cars, and
medical devices. Some of these applications are discussed in Sect. 5.7.

Example 5.3 (Example 5.2 Continued) Figure 5.3 shows the reachtubes of the
continuous variables u and v of the cardiac cell-pacemaker system computed using
the verification tool C2E2.

5.6 Verification of Models with Black-Box Components

In hybrid system models, we have discussed thus far the evolution of the continuous
state variables that is explicitly described by differential equations and trajectories.
In real-world control systems, “models” are typically a heterogeneous mix of
simulation code, differential equations, block diagrams, and hand-crafted look-up
tables. Extracting clean mathematical models (e.g., ODEs) from these descriptions

126 C. Fan and S. Mitra

Fig. 5.3 Reachtubes of the cardiac cell-pacemaker system produced by C2E2 with initial set t ∈
[0, 0], u, v ∈ [0, 0.2]. Left: u vs time. Right: v vs time. Blue and green regions correspond to the
Stim_on and Stim_off modes, respectively

is usually infeasible. The high-level logic deciding the transitions of when and for
how long the system stays in each mode is usually implemented in a relatively
clean piece of code and this logical module can be seen as the control graph as
in Definition 5.5. In contrast, the dynamics of physical plant, with hundreds of
parameters, is more naturally viewed as a “black-box.” That is, it can be simulated
or tested with different initial conditions and inputs, but it is nearly impossible to
write down a nice mathematical model. This unavailability of explicit “white-box”
models is a major roadblock for formal techniques becoming practical for CPS.
In this section, we address this problem in the context of data-driven verification.
We will view hybrid systems as a combination of a “white-box” control graph that
specifies the mode switches and a “black-box” that can simulate the continuous
evolution in each mode.

5.6.1 A Hybrid Formalism Accommodating Black-Boxes

Suppose the hybrid system has a set of modes L and continuous state space X as
in Definition 5.6. The mode switches are defined by a control graph over L and X,
as in Definition 5.5. The black-box generates a set of trajectories TL in X for each
mode in L. We denote by TLinit,� = {ξ.fstate | 〈ξ, �〉 ∈ TL}, the set of initial states
of trajectories in mode �. Without loss of generality, we assume that TLinit,� is a
connected, compact subset of X.

Instead of a closed-form description of TL as in Definition 5.6, we have a
simulator that can generate sampled data points on individual trajectories. We will
develop techniques that avoid over-reliance on the models generating the trajectories
and instead, work with sampled data of ξ(·) generated from the simulators. Of

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 127

course, in order to obtain safety guarantees we will need to make assumptions about
the underlying system generating the data.

Definition 5.7 A simulator for a (deterministic and prefix-closed) set TL of tra-
jectories labeled by L is a function (or a program) SIM that takes as input a mode
label � ∈ L, an initial state x0 ∈ TLinit,�, and a finite sequence of time points
t1, . . . , tk , and returns a sequence of states SIM(x0, �, t1), . . ., SIM(x0, �, tk) such
that there exists 〈ξ, �〉 ∈ T with ξ.fstate = x0 and for each i ∈ {1, . . . , k},
SIM(x0, �, ti) = ξ(ti).

For simplicity, we assume that the simulations are perfect (as in the last equality
of Definition 5.7). Formal guarantees of soundness are not compromised if we use
validated simulations instead. Our new definition of a hybrid system, therefore,
is analogous to Definition 5.6 except that TL is a set of deterministic trajectories
labeled by L that can be simulated but does not necessarily come from any known
differential equations. Executions and reachable states are defined analogously to
those in Sect. 5.5.1.

5.6.2 Learning Discrepancy from Simulations

The key subroutine needed for computing the reachable states with Algorithm 1 has
to compute a discrepancy function which upper bounds the distance between trajec-
tories. Owing to the absence of ODE models, the Bloat function of Algorithm 2
is useless. We will use a probabilistic algorithm for estimating the discrepancy from
the data generated by black-box simulators [32].

Recall that a discrepancy function is a continuous function β : Rn×R≥0 → R
≥0,

such that for any pair of identically labeled trajectories 〈ξ1, �〉, 〈ξ2, �〉 ∈ TL, and any
t ∈ ξ1.dom∩ ξ2.dom: (a) β upper bounds the distance between the trajectories, that
is:

‖ξ1(t)− ξ2(t)‖ ≤ β(‖ξ1.fstate− ξ2.fstate‖, t), (5.12)

and (b) β converges to 0 as the initial states converge, i.e., for any trajectory ξ and
t ∈ ξ.dom, if a sequence of trajectories ξ1, . . . , ξk, . . . has ξk.fstate → ξ.fstate,
then β(‖ξk.fstate − ξ.fstate‖, t)→ 0. We present a simple method for discovering
discrepancy functions that only uses simulations. Our method is based on a classical
result in PAC learning theory [53]. We revisit this result before applying it to finding
discrepancy functions.

Learning Linear Separators
For Γ ⊆ R× R, a linear separator is a pair (a, b) ∈ R

2 such that:

∀(x, y) ∈ Γ. x ≤ ay + b. (5.13)

128 C. Fan and S. Mitra

Let us fix a subset Γ that has a (unknown) linear separator (a∗, b∗). Our goal is
to discover some (a, b) that is a linear separator for Γ by sampling points in Γ .3

The assumption is that elements of Γ can be drawn according to some (unknown)
distribution D . With respect to D , the error of a pair (a, b) from satisfying Eq. (5.13)
is defined to be errD (a, b) = D({(x, y) ∈ Γ | x > ay + b}) where D(X) is the
measure of set X under distribution D . Thus, the error is the measure of points (w.r.t.
D) that (a, b) is not a linear separator for. There is a very simple (probabilistic)
algorithm that finds a pair (a, b) that is a linear separator for a large fraction of
points in Γ , as follows.

1. Draw k pairs (x1, y1), . . . (xk, yk) from Γ according to D ; the value of k will be
fixed later.

2. Find (a, b) ∈ R
2 such that xi ≤ ayi + b for all i ∈ {1, . . . k}.

Step 2 involves checking feasibility of a linear program, and so can be done quickly.
This algorithm, with high probability, finds a linear separator for a large fraction of
points.

Proposition 5.2 (Proposition 4 from [32]) Let ε, δ ∈ R
≥0. If k ≥ 1

ε
ln 1

δ
, then,

with probability ≥ 1− δ, the above algorithm finds (a, b) such that errD (a, b) < ε.

Proof The result follows from the PAC learnability of concepts with low VC
dimension [53]. However, since the proof is very simple in this case, we reproduce
it here for completeness. Let k be as in the statement of the proposition, and
suppose the pair (a, b) identified by the algorithm has error > ε. We will bound
the probability of this happening.

Let B = {(x, y) | x > ay + b}. We know that D(B) > ε. The algorithm chose
(a, b) only because no element from B was sampled in Step 1. The probability
that this happens is ≤ (1 − ε)k . Observing that (1 − s) ≤ e−s for any s, we get

(1− ε)k ≤ e−εk ≤ e− ln 1
δ = δ. This gives us the desired result.

5.6.3 Discrepancy Functions as Linear Separators

Using the above result, we will compute discrepancy functions from simulation
data, independently for each mode. Let us fix a mode � ∈ L, and a domain [0, T]
for each trajectory. The special type of discrepancy functions that we will learn
from simulation data are called global exponential discrepancy (GED) and have the
special form:

β(‖x1 − x2‖, t) = ‖x1 − x2‖Keγ t .

3We prefer to present the learning question in this form as opposed to the one where we learn a
Boolean concept because it is closer to the task at hand.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 129

Here, K and γ are constants. Thus, for any pair of trajectories ξ1 and ξ2 (for mode
�), we have

∀t ∈ [0, T]. ‖ξ1(t)− ξ2(t)‖ ≤ ‖ξ1.fstate− ξ2.fstate‖Keγ t .

Taking logs on both sides and rearranging terms, we have

∀t. ln
‖ξ1(t)− ξ2(t)‖

‖ξ1.fstate− ξ2.fstate‖ ≤ γ t + ln K.

It is easy to see that a global exponential discrepancy is nothing but a linear separator

for the set Γ consisting of pairs
(

ln ‖ξ1(t)−ξ2(t)‖‖ξ1.fstate−ξ2.fstate‖ , t
)

for all pairs of trajectories

ξ1, ξ2 and time t . Using the sampling-based algorithm described before, we could
construct a GED for a mode � ∈ L, where sampling from Γ reduces to using
the simulator to generate traces from different states in TLinit,�. Proposition 5.2
guarantees the correctness, with high probability, for any separator discovered by
the algorithm. However, for our reachability algorithm to not be too conservative,
we need K and γ to be small. Thus, when solving the linear program in Step 2 of
the algorithm, we search for a solution minimizing γ T + ln K .

Learned Discrepancy and Guarantees in Practice
In theory, there is some probability that the learned discrepancy function β is
incorrect. That is, some pair of executions ξ, ξ ′ ∈ TL of the system, starting from
the same initial state Θ , diverges more than the bound given by the computed
β. However, experiments in [32] on dozens of modes with complex, nonlinear
trajectories suggest that this almost never happens. In the reported experiments, for
each mode a set Strain of simulation traces that start from independently drawn
random initial states in TLinit,� are used to learn a discrepancy function. Each trace
has between 100–10, 000 data points, depending on the relevant time horizon and
sample times. Then, another set Stest of 1, 000 simulations traces are drawn for
validating the computed discrepancy. For every pair of trace in Stest and for every
time point, it is checked whether the computed discrepancy satisfies Eq. (5.12). It
is observed that for |Strain| > 10 the computed discrepancy function is correct for
96% of the points Stest in and for |Strain| > 20 it is correct for more than 99.9%,
across all experiments.

DryVR
Replacing the Bloat function in Algorithm 3 with a subroutine for learning
discrepancy, we can obtain a complete verification algorithm for black-box hybrid
models. This is the core of the approach implemented in the open-source DRYVR
verification tool [32]. The tool supports other forms of discrepancy functions (for
example, piece-wise exponential and polynomial) that can also be learned from
simulation data with the same type of guarantees. DryVR has been effectively
employed to analyze space-craft control systems and maneuvers involving multiple
autonomous and semiautonomous vehicles (see Sect. 5.7 for some examples).

130 C. Fan and S. Mitra

5.7 Verification Case Studies

Data-driven verification algorithms have been implemented in a number of software
tools such as Breach [19], C2E24 [33], and DryVR5 [32]. These tools have been
effective in verifying challenging benchmark applications from the automotive,
aerospace, energy, and medical devices domain. In the following, we discuss three
applications that were beyond the capabilities of automatic verification tools until
recently, and help paint a picture of the rapid developments in this area over the last
5 years.

5.7.1 Automatic Braking and Forward Collision Avoidance
System

Growth of autonomy and advanced driver assist (ADAS) features in cars has led to
significant pressures for assuring system-level safety at design time. The broad topic
of safety certification for such systems is currently a big open problem. While this
topic touches multiple technical challenges in several disciplines that are beyond
the scope of our discussion (for example, human-autonomy interactions, traffic
modeling, and testing for different weather conditions), formal verification, and
in particular data-driven verification can play an effective role for creating safety
assurance cases needed for certification with standards like the ISO2626 [64]. Here,
we summarize a comprehensive case study from [31] which looks at the most
common type of rear-end crashes involving automatic emergency braking (AEB)
and forward collision avoidance systems.

Each scenario for safety verification is constructed by composing several hybrid
automaton models—one for each vehicle or road agent. Each vehicle has several
continuous variables including the x, y-coordinates of the vehicle on the road, its
velocity, heading, and steering angle. The detailed dynamics of each vehicle comes
from a black-box simulator (for example, written in Python or MatLab). The higher-
level decisions about the modes (for example, for “cruising,” “speeding,” “merging
left,” etc.) followed by the vehicles are captured by control graphs. In more detail, a
vehicle can be controlled by two input signals, namely the throttle (acceleration or
brake) and the steering. By choosing appropriate values for these input signals, the
modes are defined— cruise: move forward at constant speed, speedup: constant
acceleration, brake: constant (slow) deceleration, and em_brake: constant (hard)
deceleration. The switching rules (guards) between the modes is defined by “driver
models.” For example, one such rule might state that if the distance between the
ego vehicle and its leading car drops below a threshold Ssafe, then the ego vehicle

4C2E2 available from:http://publish.illinois.edu/c2e2-tool/.
5DryVR available from:https://gitlab.engr.illinois.edu/dryvrgroup/dryvrtool.

http://publish.illinois.edu/c2e2-tool/
https://gitlab.engr.illinois.edu/dryvrgroup/dryvrtool

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 131

Fig. 5.4 Verification of the vehicles overtake scenario. Left: safe reachtube. Right: unsafe
execution. Vehicle A’s (red) modes are shown above each subplot. Vehicle B (green) is in cruise.
Top: sxA, sxB vs time. Bottom: syA, syB vs time

switches to brake after a delay of Treact, where Treact is a parameter corresponding
to driver’s reactions time. Typical values of these parameters were obtained from
previously available driving data. The composed hybrid automaton graph is then
presented to DRYVR as the input model.

Consider a scenario with Vehicle A behind B in the same lane starting with the
same speed, and A wanting to overtake B. A will switch to the left lane after it
approaches B, and then switch back to the right lane once it is ahead of B. In some
cases, A may fail to get ahead of B, in which case it times out and returns back
in the right lane behind B. The safety requirement is that the vehicles maintain
safe separation. Figure 5.4 (left) shows a version of this scenario that is verified to
be safe by DRYVR. The plots show the reachtube over-approximations computed
by DRYVR. Vehicle B stays in the cruise always but Vehicle A goes through a
sequence of modes speedup, change_left, speedup, brake, and change_right,
cruise to overtake B. Figure 5.4 left top shows the projection of reachtubes on
lateral positions (sxA in red and sxB in green) subplot, and the bottom plot shows
the positions along the lane (syA in red and syB in green, in the bottom plot).
Initially, for both i ∈ {A,B}, sxi = vxi = 0 and vyi = 1, i.e., both are cruising at
constant speed at the center of the right lane, initial positions along the lane are
syA ∈ [0, 2], syB ∈ [15, 17]. As time advances, Vehicle A moves to left lane
(sx decreases) and then back to the right, while B remains in the right lane, as A
overtakes B (bottom plot). With a different initial set, syB ∈ [30, 40], DRYVR finds
counterexample demonstrating unsafe behavior of the system (Fig. 5.4 (right)). In
both of these instances, the running time for verification is of the order of minutes.

In [31], hundreds of scenarios are analyzed for 2 and 3 vehicles, with different
ranges of initial velocities of the cars, different reaction times (Treact), and different
braking profiles. DRYVR proves certain scenarios to be safe and for others it
computes the severity of accidents based on the worst-case relative velocity of
collisions. In [31], it is shown how these verification results can be aggregated with
information about the distribution of model parameters (Treact, Ssafe, etc.), to assess
the system-level risk, which in turn is essential for determining automotive safety

132 C. Fan and S. Mitra

integrity levels (ASIL) for standards like the ISO26262 . In summary, this case study
demonstrated that data-driven verification can be effective in analyzing relevant
vehicle autonomy scenarios involving complex composition of hybrid automata and
black-box simulators.

5.7.2 Autonomous Spacecraft Rendezvous

The extreme cost of failures and the infeasibility of terrestrial testing have made for-
mal methods singularly attractive for space systems. Reachability-based automatic
safety verification for satellite control systems was first studied in [48]. At the time
of that study, hybrid verification tools were available only for linear hybrid systems,
which have restricted applicability because many satellite control problems involve
nonlinear orbital dynamics and nonlinear constraints. Here, we present a case study
based on the ARPOD problem introduced in [43]. ARPOD stands for autonomous
rendezvous proximity operations and docking. It captures an overarching mission
needed to assemble a new space station that has been launched in separate modules.
Our discussion here is based on the results presented in [12, 14].

A generic ARPOD scenario involves a passive module or a target (launched
separately into orbit) and a chaser spacecraft that must transport the passive
module to an on-orbit assembly location. The chaser maintains a relative bearing
measurement to the target, but initially it is too far to use its range sensors.
Once range measurements become available, the chaser gets more accurate relative
positioning data and it can stage itself to dock with the target. Docking must happen
with a specific angle of approach and closing velocity, in order to avoid collision
and to ensure that the docking mechanisms on each spacecraft will mate.

For simplicity, here we discuss the planar (or 2-dimensional) version of the
model. The variables of the hybrid model include position (relative to the target)
x, y (in meters), time t (in minutes), and horizontal and vertical velocity vx, vy .
The modes of the hybrid automaton capture four phases of the docking maneuver.
Each phase is defined by a separation distance ρ = √

x2 + y2 between the chaser
and target spacecraft, closing this distance from up to 10 km down to 0, and then
performing a maneuver once the satellites are docked. As seen in Fig. 5.5 (left),
the chaser spacecraft begins in Phase 1 while the separation distance ρ is not
available but only has angular of approach θ = atan(

y
x
) available, and the system

is unobservable. While ρ gets small enough, the mission moves into Phase 2,
where the chaser spacecraft now has a ranging measurement to the chaser spacecraft
and must position itself for the Phase 3 docking. After the chaser moves such
that ρ ≤ 100, the docking phase, Phase 3 is initiated and additional docking port
constraints are active. Once the spacecraft dock (i.e., ρ = 0), both spacecraft move
into Phase 4, where the joint assembly must move to the relocation position.

The chaser must adhere to different sets of constraints in each discrete mode.
In [13], a switched linear quadratic regulator (LQR) is designed to meet these
constraints while maintaining liveness in navigating toward the target spacecraft.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 133

Phase 2
ẋ= f2(x,u2)

Phase 3
ẋ= f3(x,u3)

ρ ≤ 100; t ≤ t2

Passive
ẋ= fp(x)
t ≥ t1

[≤ 100]

[≥ 100]

[t ∈ [t1, t2]]

[t ∈ [t1, t2]]

r

r

Fig. 5.5 Left: description of the overall mission phases (not to scale). Right: hybrid system model
of the autonomous spacecraft rendezvous mission

Figure 5.5 (right) gives the hybrid system model of interest. In addition to the
existing mode, the model also has a Passive mode in which the chaser has
the thrusters shut down. The system may nondeterministically transition to the
Passive mode as a result of a failure or loss of power. The nonlinear dynamic
equations describing the motion of the chaser spacecraft relative to the target is
given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = vx

ẏ = vy

v̇x = n2x + 2nvy + μ

r2 − μ

r3
c
(r + x)+ ux

mc

v̇y = n2y − 2nvx − μ

r3
c
y + uy

mc
.

The parameters are μ = 3.986×1014×602 [m3 / min2], r = 42164×103 [m], mc =
500 [kg], n =

√
μ

r3 , and rc =
√

(r + x)2 + y2. The linear feedback controllers

for the different modes are defined as [ux, uy]T = K1x for mode Phase 2, and
[ux, uy]T = K2x for mode Phase 2, where x = [x, y, vx, vy]T is the vector of
system states. The feedback matrices Ki were determined with an LQR approach
applied to the linearized system dynamics, where the detailed number can be found
at [13]. In mode Passive, the system is uncontrolled [ux, uy]T = [0, 0]T . The
spacecraft starts from the initial set x ∈ [−925,−875] [m], y ∈ [−425,−375] [m],
vx = 0 [m/min] and vy = 0 [m/min]. For the considered time horizon of t ∈ [0, 200]
[min], the following specifications have to be satisfied:

• Line-of-sight: In mode Phase 3, the spacecraft has to stay
inside line-of-sight cone:

{[x, y]T | (x ≥ −100) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}.

134 C. Fan and S. Mitra

0

–2000

–4000

–6000

20000

10000

–10000

0

time

x

y

Fig. 5.6 Left: reachtube of x (x-axis) vs y (y-axis) produced by C2E2. Right: reachtube of x vs
time (above) and y vs time (below) produced by DRYVR

• Collision avoidance: In mode Passive, the spacecraft has to avoid a collision
with the target, which is modeled as a box B with 0.2 m edge length and the
center placed at the origin.

• Velocity constraint: In mode Phase 3, the absolute velocity has to stay below
3.3 [m/min]:

√
v2
x + v2

y ≤ 3.3 [m/min].

C2E2 was used to prove that the autonomous rendezvous system with the LQR
controller satisfying the above requirements. Figure 5.6 (left) shows the reachtube of
x (x-axis) vs y (y-axis) produced by C2E2. A different control strategy for ARPOD
was proposed in [60] which characterizes the family of individual controllers and
the required properties they should induce for the closed-loop system to solve the
problem within each phase, then use a supervisor that robustly coordinates the
individual controllers. Using these controlled subsystems as a black-box, we have
been able to check the safety of the overall system using DRYVR. Figure 5.6 (right)
shows the reachtube of x and y produced by DRYVR.

5.7.3 Powertrain Control System

The demand of greater fuel efficiency and lower emissions constantly challenges
automotive companies to improve control software in the powertrain systems.
Recently, a suite of benchmarks were published in [45] to introduce realistic,
industrial scale models to the formal verification community. The suite consists of
three Simulink® models with increasing levels of complexity and sophistication.
These models capture the behavior of chemical reactions in internal combustion
engines, and hybrid models are deemed suitable for capturing the discrete transitions

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 135

of control software and the continuous parameters in these models. At a high level,
the models take inputs from a driver (throttle angle) and the environment (sensor
failures), and define the dynamics of the engine. The key controlled quantity is
the air-to-fuel ratio which in turn influences the emissions, the fuel efficiency, and
torque generated.

The most complicated model (Model 1) in the suite captures all the interactions
taking place in a physical process and faithfully models the control software. It
contains several hierarchical components in Simulink® with look-up tables, and
delay differential equations. Model 1 is simplified to a model with periodic inputs to
ordinary differential equations using several heuristics (Model 2), which as per the
authors, exhibit similar behavior of Model 1. Then, Model 2 is further simplified to
a hybrid system with only polynomial ODEs (Model 3). At the time of publication
of [45], these models were beyond the reach of the then available verification
tools, but within a year the simplified models were verified using C2E2 [22], and
subsequently, the more complex models were handled by DryVR in [32].

In more detail, Model 2 and 3 have four variables: intake manifold pressure p,
air-fuel ratio λ, intake manifold pressure estimate pe, and integrator state i, and
four modes: Start_up, Normal, Power, and Sensor_fail. The hybrid model also
receives an input signal θin (throttle angle) as the user input. The required safety
specification of powertrain control systems was given in [45] as a number of Signal
Temporal Logic properties. Here, we only illustrate one primary result for each
model, with the simple unsafe set U : in Power mode, t > 4 ∨ λ /∈ [12.4, 12.6],
in Normal mode, t > 4 ∨ λ /∈ [14.6, 14.8]. We refer readers to [22, 32] for more
comprehensive studies involving other scenarios and requirements.

Figure 5.7 (left) shows the hybrid model of the powertrain control system Model
2. The physical plant dynamics are modeled using continuous variables xp = [p, λ],

Start up
ṫ = 1
ẋc = 0

ẋp = f (xp)

Sensor fail
ṫ = 1
ẋc = 0

ẋp = f (xp)

Normal
ṫ = 1
ẋc = 0

ẋp = f (xp)

Power
ṫ = 1
ẋc = 0

ẋp = f (xp)

[t = h]
{xc = gi(xc), t = 0}

[t = h]
{xc = go(xc), t = 0}

[t = h]
{xc = gc(xc), t = 0}

[t = h]
{xc = go(xc), t = 0}

[timer = Ts]
[Sensor Fails

]

[in ≥ 70◦]

[in ≤ 50◦]

q

q

Fig. 5.7 Left: hybrid system model of the powertrain control system Model 2. Right: reachtube
for λ vs time of Model 2 produced by DRYVR

136 C. Fan and S. Mitra

Start up
ẋ= fs(x)

Sensor fail
ẋ= fs f (x)

Normal
ẋ= fn(x)

Power
ẋ= fp(x)

[timer = Ts]
[Sen

sor
Fail

s]

[in ≥ 70◦]

[in ≤ 50◦]

q

q

Fig. 5.8 Left: hybrid system model of the powertrain control system Model 3. Right: reachtube for
λ vs time of Model 3 produced by C2E2; blue and green regions correspond to the Start_up and
Normal modes, respectively

which evolve according to a nonlinear ODE ẋp = f (xp). The controller variables
xc = [pe, i] are, instead, updated periodically every h time units by the reset
functions gi(xc), go(xc), gc(xc) in different modes. We treat the entire system as
a black-box simulator with the four given variables and four modes. With the initial
set p ∈ [0.6115, 0.6315], λ ∈ [14.6, 14.8], pe ∈ [0.5555, 0.5755], i ∈ [0, 0.01],
DRYVR is able to prove that the system satisfies the safety requirements as stated
above. Figure 5.7 (right) shows a safe reachtube of the Air/Fuel variable λ computed
using DRYVR going through the sequence of modes Start_up, Normal, Power, and
Normal.

Model 2 got further simplified such that all four variables are continuous and
follow a set of polynomial differential equations in Model 3 (see [45] for detailed
ODEs). This model can be handled by C2E2. Figure 5.8 (left) shows the hybrid
model (Model 3), and Fig. 5.8 (right) gives a safe reachtube of λ from the same
initial set as above.

Both the spacecraft rendezvous and the powertrain control applications can be
verified by either C2E2 or DRYVR within a couple of minutes. These two case
studies show that for hybrid systems with complex nonlinear ODEs, C2E2 can take
the verification challenge, and when it is difficult to get a complete mathematical
model of the system, DRYVR can address the problem by treating the dynamics in
each mode as a black-box.

5.8 Conclusions

Data-driven verification has shown promise in a range of real-world problems.
The key to its success is the powerful amalgamation of the speed of numerical
simulations with the guarantees coming from sensitivity analysis.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 137

Nevertheless, these are the early days of exploration of these ideas; and the
current approaches have several limitations: First, we observe that the tools produce
better results when the system is stable. This is because the proposed methods
can usually find a tighter discrepancy function for stable systems, which in
turn decreases the number of refinements needed to conclude safety or find a
counterexample. For unstable systems, the over-approximation of reachable sets
can get very conservative, and therefore, the algorithm may not terminate in a
reasonable amount of time. Second, our proposed algorithm mainly looks at safety
requirements, although the computed reachtubes can be used to check for much
more general specifications such as linear temporal logic. Usability of the tools
remains to be improved if they are to be adopted commercially. Modeling, inter-
operation with simulators, editing properties, and analyzing verification results—all
of this has to become user-friendly. Finally, as usual, scalability remains a challenge.
The dimension of the state space of the biggest examples the current tools have
handled within a reasonable amount of time (around 2 h) is 12 for nonlinear
systems and 350 for linear systems. High dimensionality will not only increase the
difficulty of computing discrepancy functions but also introduce a huge number of
refinements as the number of initial covers needed to cover the initial set in data-
driven verification will increase exponentially.

Other important directions that call for further investigation are broadly com-
positional techniques for handling networked and distributed CPS. Examples of
such systems are abundant in automotive control systems, power networks, and
embedded medical devices. The naïve approach to consider such systems is to
compute the cross-product of all components. However, in this way, the resulting
hybrid system will become inevitably complicated with huge dimensionality and
a tremendous amount of mode switches. Methods to make the analysis scalable
for networked CPS with large-scale components will become a necessity. As an
early step towards this direction, the notion of input-to-state discrepancy was
introduced in [41, 42], and has been used to conduct a compositional sensitivity
analysis of closed networked dynamical and hybrid systems [40]. The learning-
based discrepancy function approach can be seen as learning an envelope which
safely contains the possibly trajectories of the system. It is worth to explore more
interesting learning models for identifying the dynamics of the black-box systems.
There has been a methodology with a long history for building mathematical
models of dynamic systems using the system’s input and output behaviors called
system identification. However, methods for identifying and verifying systems with
guarantees remain to be developed.

5.9 Further Reading

Many new works on verification of CPS got published every year. The major
conferences in this area include but not limit to International Conference on Hybrid
Systems: Computation and Control (HSCC), International Conference on Computer

138 C. Fan and S. Mitra

Aided Verification (CAV), and Applied Verification for Continuous and Hybrid
Systems (ARCH).

Recently, verification tools such as Flow* [15], NLTOOLBOX [17], iSAT [34],
dReach [54], and CORA [2] have demonstrated the feasibility of verifying nonlinear
dynamic and hybrid models. These tools are still limited in terms of the complexity
of the models and the type of external inputs they can handle, and they require quite
often manual tuning of algorithmic parameters. Some of these tools’ approaches
for reach set estimation operate directly on the vector field involving higher-order
Taylor expansions [15, 54]. However, this method suffers from complexity that
increases exponentially with both the dimension of the system and the order of the
model.

Several approaches have been proposed to obtain proofs about (bounded time)
invariant or safety properties from simulations [20, 37]. A technique that is very
close to discrepancy functions is called sensitivity matrix, a matrix that captures
the sensitivity of the system to its initial condition x0. This is then used to give
an upper bound on the distance between two system trajectories. In [49], the
authors provided sound simulation-driven methods to over-approximate the distance
between trajectories, but these methods are mainly limited to affine and polynomial
systems. For general nonlinear models, this approach may not be sound, as higher-
order error terms are ignored when computing this upper bound.

The idea of computing the reach sets from trajectories is similar to the notions of
incremental Lyapunov function [4]. In this work, we do not require systems to be
incrementally stable. Similar ideas have also been considered for control synthesis
in [68]. The work closest to this paper involves reachability analysis using matrix
measures [59], where the authors use the fact that the matrix measure of the Jacobian
matrix can bound the distance between neighboring trajectories [9, 66]. Unlike
the approach in this paper which automatically computes the bounds on matrix
measures, the technique there relies on user-provided closed-form matrix measure
functions, which are in general difficult to compute.

Although data-driven verification is a young field, the literature in this area is
growing and interesting results are published every year. For an alternative view of
this topic from the modeling, testing, and verification of embedded control system
perspective, we refer the interested readers to [50].

References

1. Abbas, H., & Fainekos, G. E. (2011). Linear hybrid system falsification through local search.
In Proceedings of the 9th International Symposium on Automated Technology for Verification
and Analysis (ATVA 2011), Taipei, Taiwan, October 11–14, 2011 (pp. 503–510). https://doi.
org/10.1007/978-3-642-24372-1_39.

2. Althoff, M., & Grebenyuk, D. (2016). Implementation of interval arithmetic in CORA 2016.
In ARCH Workshop (pp. 91–105). Manchester: EasyChair.

https://doi.org/10.1007/978-3-642-24372-1_39
https://doi.org/10.1007/978-3-642-24372-1_39

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 139

3. Alur, R., Courcoubetis, C., Henzinger, T. A., & Ho, P. H. (1993). Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In R. L. Grossman,
A. Nerode, A. P. Ravn, & H. Rischel (Eds.), Hybrid systems. Lecture notes in computer science
(Vol. 736, pp. 209–229). Berlin: Springer.

4. Angeli, D. (2002). A Lyapunov approach to incremental stability properties. IEEE Transactions
on Automatic Control, 47(3), 410–421.

5. Annapureddy, Y., Liu, C., Fainekos, G., & Sankaranarayanan, S. (2011). S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In TACAS. Berlin: Springer.

6. Aréchiga, N., Kapinski, J., Deshmukh, J. V., Platzer, A., & Krogh, B. (2015). Numerically-
aided deductive safety proof for a powertrain control system. Electronic Notes in Theoretical
Computer Science, 317, 19–25.

7. Asarin, E., Bournez, O., Dang, T., & Maler, O. (2000). Approximate reachability analysis
of piecewise-linear dynamical systems. In B. Krogh & N. Lynch (Eds.), Hybrid systems:
computation and control. Lecture notes in computer science (Vol. 1790, pp. 20–31). Berlin:
Springer.

8. Aylward, E.M., Parrilo, P.A., & Slotine, J. -J. E. (2008). Stability and robustness analysis of
nonlinear systems via contraction metrics and SOS programming. Automatica, 44(8), 2163–
2170.

9. Boichenko, V.A., & Leonov, G.A. (1998). Lyapunov’s direct method in estimates of topological
entropy. Journal of Mathematical Sciences, 91(6), 3370–3379.

10. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in
system and control theory. Studies in applied mathematics (Vol. 15). Philadelphia, PA: SIAM.

11. CAPD. (2002). Computer assisted proofs in dynamics.
12. Chan, N., & Mitra, S. (2017). Verified hybrid LQ control for autonomous spacecraft ren-

dezvous. In 56th IEEE Annual Conference on Decision and Control, CDC 2017, Melbourne,
December 12–15, 2017 (pp. 1427–1432). Piscataway: IEEE.

13. Chan, N., & Mitra, S. (2017) Verified hybrid LQ control for autonomous spacecraft rendezvous.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 1427–1432).
Piscataway: IEEE.

14. Chan, N., & Mitra, S. (2017). Verifying safety of an autonomous spacecraft rendezvous
mission. In ARCH17. 4th International Workshop on Applied Verification of Continuous and
Hybrid Systems, Collocated with Cyber-Physical Systems Week (CPSWeek), Pittsburgh, PA,
April 17, 2017 (pp. 20–32).

15. Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2013). Flow*: an analyzer for non-linear
hybrid systems. In CAV (pp. 258–263). Berlin: Springer.

16. Cook, B. (2018). Formal reasoning about the security of amazon web services. In Computer
Aided Verification—30th International Conference, CAV 2018, held as part of the Federated
Logic Conference, FloC 2018, Oxford, July 14–17, 2018, Proceedings, Part I (pp. 38–47).
New York: Springer International Publishing.

17. Dang, T., Le Guernic, C., & Maler, O. (2009). Computing reachable states for nonlinear
biological models. In CMSB. Lecture notes in computer science (Vol. 5688, pp. 126–141).
Berlin: Springer.

18. Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In CAV (pp. 167–170). Berlin: Springer.

19. Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In Computer Aided Verification. CAV 2010. Lecture Notes in Computer Science (Vol. 6174).
Berlin: Springer.

20. Donzé, A., & Maler, O. (2007). Systematic simulation using sensitivity analysis. In HSCC
(pp. 174–189). Berlin: Springer.

21. Duggirala, P. S. (2015). Dynamic Analysis of Cyber-Physical Systems. PhD thesis. Champaign:
University of Illinois at Urbana-Champaign.

22. Duggirala, P. S., Fan, C., Mitra, S., & Viswanathan, M. (2015). Meeting a powertrain
verification challenge. In Computer Aided Verification (pp. 536–543). Berlin: Springer.

140 C. Fan and S. Mitra

23. Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Verification of annotated models from
executions. In EMSOFT (pp. 26:1–26:10). Piscataway: IEEE Press.

24. Duggirala, P. S., Mitra, S., Viswanathan, M., & Potok, M. (2015). C2E2: A verification tool for
stateflow models. In TACAS (pp. 68–82). Berlin: Springer.

25. Duggirala, P. S., Wang, L., Mitra, S., Viswanathan, M., & Muñoz, C. (2014). Temporal
precedence checking for switched models and its application to a parallel landing protocol.
In Formal methods (pp. 215–229). Cham: Springer.

26. El-Guindy, A., Han, D., & Althoff, M. (2016) Formal analysis of drum-boiler units to maximize
the load-following capabilities of power plants. IEEE Transactions on Power Systems (99),
1–12.

27. Fainekos, G. E. (2015). Automotive control design bug-finding with the s-taliro tool. In
American Control Conference, ACC 2015, Chicago, IL, July 1–3, 2015 (p. 4096). Piscataway:
IEEE.

28. Fainekos, G. E., Sankaranarayanan, S., Ueda, K., & Yazarel, H. (2012) Verification of
automotive control applications using S-TaLiRo. In American Control Conference (ACC), 2012
(pp. 3567–3572). Citeseer. Piscataway: IEEE.

29. Fan, C., Kapinski, J., Jin, X., & Mitra, S. (2016). Locally optimal reach set over-approximation
for nonlinear systems. In EMSOFT (pp. 6:1–6:10). New York: ACM.

30. Fan, C., & Mitra, S. (2015). Bounded verification with on-the-fly discrepancy computation. In
ATVA (pp. 446–463). Berlin: Springer.

31. Fan, C., Qi, B., & Mitra, S. (2018). Data-driven formal reasoning and their applications in
safety analysis of vehicle autonomy features. IEEE Design & Test, 35(3), 31–38.

32. Fan, C., Qi, B., Mitra, S., Viswanathan, M. (2017). Dryvr: data-driven verification and
compositional reasoning for automotive systems. In Computer Aided Verification, CAV 2017
(pp. 441–461). Heidelberg: Springer International Publishing

33. Fan, C., Qi, B., Mitra, S., Viswanathan, M., & Duggirala, P. S. (2016). Automatic reachability
analysis for nonlinear hybrid models with C2E2. In Computer Aided Verification–28th
International Conference, CAV 2016, Toronto, ON, July 17–23, 2016, Proceedings, Part I
(pp. 531–538). Cham: Springer.

34. Fränzle, M., Herde, C., Teige, T., Ratschan, S., & Schubert, T. (2007). Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. JSAT, 1(3–4),
209–236.

35. Frehse, G. (2005). Phaver: algorithmic verification of hybrid systems past hytech. In M. Morari
& L.Thiele (Eds.), HSCC (Vol. 3414, pp. 258–273) Lecture notes in computer science . Berlin:
Springer.

36. Frehse, G., Guernic, C. L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A.,
Dang, T, & Maler, O. (2011). SpaceEx: scalable verification of hybrid systems. In S. Qadeer &
G. Gopalakrishnan (Eds.), CAV. Lecture Notes in Computer Science. Berlin: Springer.

37. Girard, A., Pola, G., & Tabuada, P. (2010). Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Transactions on Automatic Control, 55(1), 116–
126.

38. Henzinger, T. A. (1996). The theory of hybrid automata. In 11th Annual IEEE Symposium on
Logic in Computer Science (pp. 278–292). Washington: IEEE Computer Society.

39. Henzinger, T. A., Kopke, P. W., Puri, A., & Varaiya, P. (1998). What’s decidable about hybrid
automata? Journal of Computer and System Sciences, 57, 94–124.

40. Huang, Z., Fan, C., Mereacre, A., Mitra, S., & Kwiatkowska, M. Z. (2014). Invariant
verification of nonlinear hybrid automata networks of cardiac cells. In CAV (pp. 373–390).
Berlin: Springer.

41. Huang, Z., Fan, C., & Mitra, S. (2017). Bounded invariant verification for time-delayed
nonlinear networked dynamical systems. Nonlinear Analysis: Hybrid Systems, 23, 211–229.

42. Huang, Z., & Mitra, S. (2014). Proofs from simulations and modular annotations. In HSCC,
Berlin, Germany. New York: ACM press.

5 Data-Driven Safety Verification of Complex Cyber-Physical Systems 141

43. Jewison, C., & Erwin, R. S. (2016). A spacecraft benchmark problem for hybrid control and
estimation. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp. 3300–3305).
Piscataway: IEEE.

44. Jiang, Z., Pajic, M., Moarref, S., Alur, R., & Mangharam, R. (2012). Modeling and verification
of a dual chamber implantable pacemaker. In TACAS (pp. 188–203). Berlin: Springer.

45. Jin, X., Deshmukh, J. V., Kapinski, J., Ueda, K., & Butts, K. (2014). Powertrain control
verification benchmark. In Proceedings of the 17th International Conference on Hybrid
Systems: Computation and Control, HSCC ’14 (pp. 253–262). New York, NY: ACM.

46. Jin, X., Deshmukh, J. V., Kapinski, J., Ueda, K., & Butts, K. R. (2014). Powertrain control
verification benchmark. In 17th International Conference on Hybrid Systems: Computation
and Control (Part of CPS Week), HSCC’14, Berlin, April 15–17, 2014 (pp. 253–262). New
York: ACM.

47. Jin, X., Donzé, A., Deshmukh, J. V., & Seshia, S. A. (2015). Mining requirements from closed-
loop control models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(11), 1704–1717.

48. Johnson, T. T., Green, J., Mitra, S., Dudley, R., & Erwin, R. S. (2012). Satellite rendezvous
and conjunction avoidance: case studies in verification of nonlinear hybrid systems. In FM
2012: Formal Methods—18th International Symposium, Paris, France, August 27–31, 2012.
Proceedings (pp. 252–266). Berlin: Springer.

49. Julius, A. A., & Pappas, G. J. (2009). Trajectory based verification using local finite-time
invariance. In HSCC (pp. 223–236). Berlin: Springer.

50. Kapinski, J., Deshmukh, J. V., Jin, X., Ito, H., & Butts, K. (2016). Simulation-based approaches
for verification of embedded control systems: an overview of traditional and advanced
modeling, testing, and verification techniques. IEEE Control Systems, 36(6), 45–64.

51. Kaynar, D. K., Lynch, N., Segala, R., & Vaandrager, F. (2005). The theory of timed I/O
automata. Synthesis Lectures on Computer Science. Morgan Claypool, November. Also
available as Technical Report MIT-LCS-TR-917.

52. Kaynar, D. K., Lynch, N., Segala, R., & Vaandrager, F. (2010). The theory of timed I/O
automata. Synthesis Lectures on Distributed Computing Theory, 1(1), 1–137.

53. Kearns, M. J., & Vazirani, U. V. (1994) An introduction to computational learning theory.
Cambridge: MIT press.

54. Kong, S., Gao, S., Chen, W., & Clarke, E. (2015) dReach: δ-reachability analysis for hybrid
systems. In TACAS (pp. 200–205). Berlin: Springer.

55. Koopman, P., & Wagner, M. (2016) Challenges in autonomous vehicle testing and validation.
SAE International Journal of Transportation Safety, 4(2016-01-0128), 15–24.

56. Krstic, M., Kokotovic, P. V., & Kanellakopoulos, I. (1995). Nonlinear and adaptive control
design (1st ed.). New York, NY: Wiley.

57. Liberzon, D. (2012). Switching in systems and control. Berlin: Springer Science & Business
Media.

58. Lohmiller, W., & Slotine, J. -J. E. (1998) On contraction analysis for non-linear systems.
Automatica, 34(6), 683–696.

59. Maidens, J., & Arcak, M. (2015). Reachability analysis of nonlinear systems using matrix
measures. IEEE Transactions on Automatic Control, 60(1), 265–270.

60. Malladi, B. P., Sanfelice, R. G., Butcher, E., & Wang, J. (2016). Robust hybrid supervisory
control for rendezvous and docking of a spacecraft. In 2016 IEEE 55th Conference on Decision
and Control (CDC) (pp. 3325–3330). Piscataway: IEEE.

61. Mitra, S. (September 2007). A Verification Framework for Hybrid Systems. PhD thesis.
Cambridge, MA: Massachusetts Institute of Technology, 02139.

62. Nedialkov, N. (2006). VNODE-LP: validated solutions for initial value problem for ODEs.
Technical report. Hamilton: McMaster University.

63. Perry, R. B., Madden, M. M., Torres-Pomales, W., & Butler, R. W. (2013). The simpli-
fied aircraft-based paired approach with the ALAS alerting algorithm. Technical Report
NASA/TM-2013-217804. Hampton: NASA, Langley Research Center.

142 C. Fan and S. Mitra

64. Road vehicles—Functional safety. (November 2011). Standard, International Organization for
Standardization (ISO), Geneva, Switzerland.

65. Sankaranarayanan, S., Kumar, S. A., Cameron, F., Bequette, B. W., Fainekos, G., & Maahs,
D. M. (March 2017) Model-based falsification of an artificial pancreas control system. SIGBED
Review, 14(2), 24–33.

66. Sontag, E. D. (2010). Contractive systems with inputs. In Perspectives in mathematical system
theory, control, and signal processing (pp. 217–228). Berlin: Springer.

67. Vladimerou, V., Prabhakar, P., Viswanathan, M., & Dullerud, G. E. (2008). Stormed hybrid
systems. In ICALP (2). Lecture Notes in Computer Science (Vol. 5126, pp. 136–147). Berlin:
Springer.

68. Zamani, M., Pola, G., Mazo, M., & Tabuada, P. (2012). Symbolic models for nonlinear control
systems without stability assumptions. IEEE Transactions on Automatic Control, 57(7), 1804–
1809.

Chapter 6
System Assurance in the Design
of Resilient Cyber-Physical Systems

Thomas A. McDermott, Arquimedes Canedo, Megan M. Clifford,
Gustavo Quirós, and Valerie B. Sitterle

6.1 Background on Dependable and Secure Computing
and the Cyber-Physical System Context

Cyber-physical systems (CPS) are “engineered systems that are built from, and
depend upon, the seamless integration of computational algorithms and physical
components” [1]. A CPS has computers and networks which control physical
processes, often characterized by feedback loops that affect computations and the
physical outcomes of those computations. Figure 6.1 provides a general layered
depiction of a CPS framework [2]. Insertion or disruption of CPS control activities
is a unique concern for security. As shown in the figure, the design of CPS must
address these control activities in a device of interest but also with respect to the
interconnected human and machine systems that interact with it. In current times,
that interaction may be at long ranges, which introduces benefits in efficiency but
also increases security risk [3].

Traditional approaches to security, privacy, reliability, resilience, and safety may
be insufficient to address the risks to CPS. In the cybersecurity domain, CPS have
exposed cyber and physical world interfaces that are vulnerable to new types of
intrusions from both local and remote adversaries. CPS are frequently systems of

T. A. McDermott (�) · M. M. Clifford
Stevens Institute of Technology, Hoboken, NJ, USA
e-mail: tmcdermo@stevens.edu; mcliffor@stevens.edu

A. Canedo · G. Quirós
Siemens Corporate Technology, Princeton, NJ, USA
e-mail: arquimedes.canedo@siemens.com; gustavo.quiros@siemens.com

V. B. Sitterle
Georgia Tech Research Institute, Atlanta, GA, USA
e-mail: valerie.sitterle@gtri.gatech.edu

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_6

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_6&domain=pdf
mailto:tmcdermo@stevens.edu
mailto:mcliffor@stevens.edu
mailto:arquimedes.canedo@siemens.com
mailto:gustavo.quiros@siemens.com
mailto:valerie.sitterle@gtri.gatech.edu
https://doi.org/10.1007/978-3-030-13050-3_6

144 T. A. McDermott et al.

Fig. 6.1 CPS conceptual
model [2]

systems (SoS), which increases attack surfaces, system diversity, and complexity,
and difficulty in identifying system boundaries. The architectural constructs used
in the design of CPS should be able to be applied recursively or iteratively to
support the nested nature of CPS in the world, where the sensing, control, and
computational nature of CPS generally lead to emergent higher levels of behavior
and system intelligence [2]. This construct can be viewed as a set of hierarchical
layers of control. In the CPS hierarchy, resilience is a primary architectural attribute.
Characteristics of resilience in CPS include:

• Supervisory control methods that support graceful degradation of the system in
the presence of failures or malicious attacks.

• Maintenance of system availability using dynamic and potentially distributed
control system elements.

• Mechanisms to ensure the integrity of control functions in the presence of failures
or malicious attacks.

• Ability to address a range of human interactions across differing system perfor-
mance levels.

• Ability to recognize and respond to failures that disrupt CPS elements or control
functions to maintain levels of performance or to maintain safety and security.

• Ability to recognize and respond to intentional disruptions of CPS elements or
control functions in order to maintain levels of performance or to maintain safety
and security.

• Ability to protect and maintain the privacy of CPS system data or control states.
• Ability to evaluate CPS system resilience in different environments.
• Need to determine trade-offs in system performance, safety, and security in con-

ditions of complexity, changing threat environments, and emerging or unplanned
use cases.

These characteristics have been studied and employed in systems for several
years. What is changing in the context of CPS is the complexity of the system

6 System Assurance in the Design of Resilient Cyber-Physical Systems 145

control methods and the evolution of the external domain that constitutes a threat
to the system. The changes are a product of the computer/network interactions and
increased use of digital data in the control functions, along with the connected
nature of the cyber threat. In a CPS, cybersecurity meets physical security. Even
if the cyber domain is completely secure and the physical domain is completely
secure, the system still may not be secure because of the domain interactions and
interdependencies.

6.1.1 General Concepts of Resilience with Respect to CPS

General concepts of CPS resilience are found in engineering concepts of dependable
and secure computing systems. Resilience is the evaluated capability of the CPS
to resist threats using sets of design attributes and resulting patterns that produce
resilient effects. The general framework is shown in Fig. 6.2. CPS resilience can
be categorized into a set of dependability and security attributes. Dependability and
security are the ability of a system to avoid service failures and cover the interrelated
foundational attributes of availability, reliability, safety, integrity, confidentiality,
and maintainability [4]. These attributes work together to ensure the system’s
successful application. A vital aspect of these attributes is the overlap between the
characteristics of dependability (including availability, reliability, safety, integrity,
and maintainability) and security (including confidentiality, integrity, and availabil-
ity). The resilience definition of dependability is the ability of a system to avoid
service failures that are more frequent or more severe than is acceptable [4]. These
include security failures. Specific characteristics of security also include the avail-
ability of authorized access to the system, authentication of access, confidentiality
of both system functions and data on the system’s design, and integrity in terms of
unauthorized functionality [4].

In the CPS hierarchy, there is also a defined relationship between dependability
and trust. This relationship is defined by the dependence of one system on another,
and the acceptance that the other system is also dependable [4]. In CPS, this depen-
dence can be either human/machine or machine/machine. The NIST framework
highlights the concern of resilience in terms of trustworthiness related to the ability
of the CPS to withstand instability, unexpected conditions, and gracefully return
to predictable, but possibly degraded, performance. This is a system-of-systems
(SoS) concern, and CPS resilience must be considered as both a characteristic of
an individual CPS and as relationships between CPS and other systems.

CPS designs must consider this holistic framework, as there will be trade-
offs between the interrelated attributes. Designs that improve safety may reduce
the effectiveness of the actions for cybersecurity, resilience, or reliability [2].
Trustworthy CPS architectures must be based on a detailed understanding of the
physical properties and constraints of the system in the context of threats, attributes,
and effects. Analyses in support of design activities must include the creation and

146 T. A. McDermott et al.

Fig. 6.2 Related concerns for dependability and security in CPS (adapted from [4])

simulation of up-to-date adversary models as well as physical and functional models
of the CPS [2].

The outcome of CPS resilience is expressed in the operational characteristics of
the total system-of-systems. Using a U.S. Department of Defense (DoD) definition,
hardware and software components of systems “have the ability to reconfigure,
optimize, self-defend, and recover with little or no human intervention.” The DoD
further defines three aspects of resilience in an operational context: the systems are
trustworthy, missions of these systems can tolerate degradation or loss of resources,
and the systems have designs that provide means to prevail in the presence of
adverse events [5].

With respect to knowledge and skills, a CPS systems engineer must master all
knowledge areas related to resilient CPS: the threat, the system operation, and
human interactions, system vulnerabilities, approaches for resilient design, and
validation of the system. Design principles of resilient CPS [6] include the following
with related disciplinary domains:

1. Concepts of secure access control to and use of the system and system resources
(domain of system security engineering).

2. Understanding of design attributes that minimize exposure of vulnerabilities to
external threats (systems security engineering and dependable computing).

3. Understanding of design patterns to produce effects that protect and preserve
system functions or resources (dependable computing).

4. Approaches to monitor, detect, and respond to threats and security anomalies
(cybersecurity).

6 System Assurance in the Design of Resilient Cyber-Physical Systems 147

5. Understanding of network operations and external security services (information
systems).

6. Approaches to maintain system availability under adverse conditions (all of the
above).

6.1.2 Basis for a Functional Approach to Analysis
of Dependability and Security

This chapter focuses on the need for an interdisciplinary approach, founded on
rigorous system modeling, to CPS design and evaluation. Cybersecurity in the
broader concept of resilience in that security concentrates on protecting defense
systems from sentient adversaries. CPS are generally designed by initially spec-
ifying critical and other necessary functionality. The high-level functionality is
decomposed into specific functional capabilities, and system requirements derive
from these functional needs. Boehm and Kukreja [7] distinguish between functional
and non-functional requirements as what the system does and how well it does those
things, respectively. Non-functional requirements relate to those attributes shown in
Fig. 6.1. Security, another non-functional requirement, is assessed on how well a
given security design pattern protects the system as intended—without adversely
impacting the intended functional operational and performance capabilities.

Traditionally, systems theory has distinguished how a system is constituted
internally (i.e., its structure) from how the system manifests itself externally (i.e.,
its behavior) and deduced the latter from the former. This notion is the foundation
underlying hierarchical construction of systems with defined input and output
interfaces across multiple modular components. It has resulted in the extensive
focus on structural system representations to date in current cybersecurity protec-
tion methods. CPS, however, are heterarchical in nature. They are comprised of
numerous, heterogeneous elements acting both independently and interdependently.
Because of this complexity, traditional decomposition and predictive methods are
insufficient. In all complex systems, form (structure) and function (behavior) are
intrinsically linked. A system’s structural characteristics and what processes and
behaviors are possible within and as produced by that system are not separable.

Even so, many current methods focus extensively on structural system represen-
tations. The structural bias results in an overt conflation of resilience (in the broader
sense) with robustness or reliability, resulting in a focus on perimeter protection
methods to prevent threat intrusion or viewing threat attacks the same way one
would view failure modes. Cyber threats attack both structural components of a
system and its functions and create their effects in ways that do not exhibit charac-
teristics system failures. Even graph-based methods, a core approach highlighted
in this chapter, commonly evaluate the resilience of complex systems based on
structural properties. For example, approaches like random node or edge removal
are used to determine the impact on structural properties such as connectedness

148 T. A. McDermott et al.

[8]. There has been a significant emphasis on how structural statistical properties
of a network topology will be affected by additions (growth or augmentation) and
removals (failures or attacks) of nodes and links, and particularly how networks can
be more robust against the latter [9]. Those additions and removals are typically
assumed as perturbations coming from external sources, not incorporated into the
dynamics of the network itself. The literature is also replete with studies on the
dynamics of networks, meaning how a network changes its structure over time.
Dynamics of networks is distinct from studies of dynamical processes on networks,
which is necessary to capture functional preservation of CPS effectively.

6.2 Model-Based Assurance of CPS

The disciplinary aspects of engineering design for resilient CPS are further compli-
cated by the need for system assurance—“the justified confidence that the system
functions as intended and is free of exploitable vulnerabilities, either intentionally
or unintentionally designed or inserted as part of the system at any time during the
life cycle. This confidence is achieved by system assurance activities, which include
a planned, systematic set of multi-disciplinary activities to achieve the acceptable
measures of system assurance and manage the risk of exploitable vulnerabilities”
[10]. Assurance is a set of engineering practices that serve to evaluate the design of
the CPS for a reasonable set of dependability and security requirements based on
the operational use of the system. In the CPS design context, this is the selection of
technologies and processes that provide confidence the system operates as intended
in the presence of both accidental and intentional vulnerabilities [11]. The concept
of “designing in” CPS dependability and security requires a multidisciplinary set of
methods and tools. These are described in the remainder of the chapter with respect
to threats, tools, modeling methods, and assurance methods.

Model-based assurance (MBA) is a process that supports system verification
and validation requirements using both conceptual and analytical modeling and
simulation techniques. As digital engineering and model-based systems engineering
(MBSE) become more prevalent, there is potential to transform traditional system
assurance processes to more holistic and more evidence-based forms using models.
The current state of practice in system assurance is in need of a paradigm change.
Verification and validation of mission-critical systems through test and evaluation
has historically been the gold standard for assurance but is significantly expensive
and increasingly fraught with difficulty as systems become more complex, more
expansive, and more inter-dependent on other systems to realize their intended
capabilities. Bringing models into this process aims to relieve some of the expense
and make the entire process more flexible and amenable to changes that can occur
across a system’s lifecycle. The use of models to support analysis of assurance,
while promising and necessary, still faces an uphill challenge to establish the best
practices and systems engineering foundations required to produce what can be
counted as evidence to support assurance judgments. This is especially true for

6 System Assurance in the Design of Resilient Cyber-Physical Systems 149

CPS, often employed in system-of-systems operational configurations, increasingly
connected and increasingly complex when considered in the context of their higher
order dynamics with other systems in the environment and facing increasingly
diverse and sophisticated threats.

MBA is the use of a model or group of models as a basis of understanding
and to produce evidence that a given system will perform as intended in various
potential environments, operational conditions, arrangements with other systems,
etc. Part of MBA includes ensuring that a model allows determination of whether
a system design meets functional and non-functional requirements. In turn, to
do so requires ensuring that the model, with all of its levels of abstraction,
represents accurate system functional performance and characteristics. Any final
system implementations using model-based design approaches in an MBA context
should lead to a system design that is safe and secure, or analyzable with respect to
its safety and security. While most models may not exist at a level of specification
that a system may be completely built from their template, many of these models
can specify diverse categories of functional or other performance requirements that
a system will need to be safe and secure within a reasonable level of uncertainty.

CPS create new challenges to the concept of MBA. Specifically, what model-
based approaches capture relevant and representative levels of abstraction sufficient
to help validate the integrity of the system requirements and the integrity of
the design? CPS are generally designed by initially specifying critical and other
necessary functionality. The high-level functionality is decomposed into specific
functional capabilities, and system requirements derive from these functional needs.
From this perspective, MBA seeks to build a model-based process in concert
with existing MBSE practices to produce an evidentiary case that a system is
trustworthy with respect to the properties its stakeholders legitimately rely upon
within acceptable levels of risk.

The focus on analytic decomposition (i.e., identification of component failures)
in many current model-based approaches needs to be augmented by approaches that
enforce safe behavior (e.g., state-based evaluation of dynamic control). Assurance
must cover any undesired or unplanned event that results in a loss, and address
hazards and vulnerabilities as a system state or set of conditions that, together with
worst-case environmental conditions, will lead to a loss. To satisfy analysis for
the purpose of assurance, a model that is an abstraction of a system’s functional
behavior should represent failure effects in the system, how failures propagate
through the system, and observable conditions those failures manifest. A mission-
critical cyber-physical system must consider of all classes of system failures,
whether inherent or malicious, in rapidly changing external system-of systems
contexts. Future MBA methods, processes, and tools must go beyond traditional
quality assurance scope to include emergent dimensionality of the design space
through the evolving quantification of concepts such as flexibility and resilience.
They must also create a framework for describing these concepts as patterns of
design that can be captured into standard practices and tool libraries. The next
sections discuss these generalized patterns.

150 T. A. McDermott et al.

6.2.1 CPS Threat Patterns

The threats of concern to CPS are different than IT systems—they are constrained by
the nature of CPS and also functionally different. Griffor summarizes the CPS spe-
cific concerns as (1) tolerating intrusion and disruption of signal/information flow,
and (2) ensuring there is no insertion, fabrication, or replay of legitimate control
commands [3]. Table 6.1 enumerates a number of CPS-attack types. The attacks are
categorized according to what is being exploited: software vulnerabilities or flawed
network implementations (e.g., leading to cyber attacks), physical vulnerabilities,
or cyber-physical combinations [12].

Wan et al. further defined a set of generalized control system attack models of
specific concern to CPS shown in Table 6.2 [13].

Attack trees and attack-graph-based visualization offer an intuitive, well-
understood approach to capture the complexity of coordinated attack models and
to view the effects of the attacks and combined countermeasures. Attack graph
analysis is the most widely accepted method to assess how an attacker can gain
access to cyber assets in a CPS and how that can be used to exploit the system
functions. Up-front human-centered workshops capture the definition of cyber
assets in terms of system functions as well as the attack graph analysis that explores
the dependent functions that can be exploited by the attack. These provide a tool
basis to explore these basic patterns in multiple combinations. CPS functional
modeling must consider threat parameters as additional functions to be captured in
the control system design decomposition process, producing a graph of both the
control function and the attack.

6.2.2 CPS Countermeasure Patterns

Wan et al. also defined a set of threat countermeasure patterns of specific concern to
CPS shown in Table 6.3 [13].

These also can be captured into a functional model of the system, effec-
tively combining intended control functions, threat functions, and countermeasure
functions into a single model using selected patterns. This allows analysis of
“reasonable assurance,” which is effectively a cost trade. While the effects of the
attack–countermeasure interactions cannot be directly costed due to the lack of
details, CPS designers can assess the effectiveness or “residual risk” associated
with selected countermeasure patterns as shown in Table 6.3. For example, the
control parameter attack model requires an adversary with moderate knowledge of
the system functional design, low attack specific technical ability, and generally
low resources, while the countermeasure approach would have a low to medium
implementation cost, and low collateral impact to the system. On the other hand,
coordinated attack models that would be effective in identical binary copies of the
critical assets would have higher attacker specific technical ability and medium to

6 System Assurance in the Design of Resilient Cyber-Physical Systems 151

Ta
bl

e
6.

1
Ta

xo
no

m
y

of
C

PS
-a

tta
ck

ty
pe

s

C
yb

er
at

ta
ck

s
D

es
cr

ip
tio

n

N
et

w
or

k
de

ni
al

of
se

rv
ic

e
D

is
ru

pt
ne

tw
or

k
op

er
at

io
ns

to
st

op
co

nt
ro

ls
ig

na
l/fl

ow
du

ri
ng

th
e

at
ta

ck
pe

ri
od

M
al

w
ar

e
In

st
al

la
tio

n
of

m
al

ic
io

us
so

ft
w

ar
e,

or
vi

ru
se

s,
in

to
th

e
de

vi
ce

So
ft

w
ar

e
vu

ln
er

ab
ili

ty
ex

pl
oi

ta
tio

n
E

xp
lo

ita
tio

n
of

so
ft

w
ar

e
vu

ln
er

ab
ili

tie
s

su
ch

as
bu

ff
er

ov
er

ru
ns

,n
um

er
ic

al
ov

er
flo

w
s,

or
ba

ck
do

or
ap

pl
ic

at
io

ns
;c

an
be

de
fe

ct
s

or
in

te
nt

io
na

lly
cr

ea
te

d
P

hy
si

ca
la

tt
ac

ks
D

es
cr

ip
ti

on

Se
ns

or
sp

oo
fin

g
Pr

ov
id

in
g

fa
ls

e
se

ns
or

da
ta

to
th

e
C

PS
,e

ith
er

by
in

je
ct

in
g

fa
ls

e
in

fo
rm

at
io

n
in

to
th

e
se

ns
or

or
in

to
th

e
co

m
m

un
ic

at
io

n
pa

th
s

Si
gn

al
ja

m
m

in
g

D
is

ru
pt

in
g

co
nt

ro
l/s

ig
na

lfl
ow

by
pr

ev
en

tin
g

or
ch

an
gi

ng
th

e
si

gn
al

,p
ri

m
ar

ily
us

in
g

ex
te

rn
al

si
gn

al
s

H
ar

dw
ar

e
vu

ln
er

ab
ili

ty
ex

pl
oi

ta
tio

n
E

xp
lo

ita
tio

n
of

ha
rd

w
ar

e
vu

ln
er

ab
ili

tie
s

su
ch

as
ne

tw
or

k
pr

ot
oc

ol
er

ro
rs

,o
r

si
de

ch
an

ne
la

tta
ck

s
on

po
w

er
,c

oo
lin

g,
or

ot
he

r
flo

w
s

Ph
ys

ic
al

da
m

ag
e

Ph
ys

ic
al

ly
di

sr
up

tin
g

th
e

C
PS

to
di

sr
up

tc
on

tr
ol

si
gn

al
/fl

ow
,s

uc
h

as
da

m
ag

in
g

in
te

rc
on

ne
ct

s
or

se
ns

in
g

su
rf

ac
es

C
yb

er
-p

hy
si

ca
la

tt
ac

ks
D

es
cr

ip
ti

on

In
si

de
r

th
re

at
St

ea
lin

g
an

d/
or

m
od

if
yi

ng
de

si
gn

or
op

er
at

io
na

ld
at

a
fo

r
ex

pl
oi

ta
tio

n;
em

ph
as

iz
es

th
e

im
po

rt
an

ce
of

th
e

C
PS

de
si

gn
en

vi
ro

nm
en

t
Id

en
tit

y
sp

oo
fin

g
Pr

ov
id

in
g

si
gn

al
s

or
in

fo
rm

at
io

n
to

th
e

C
PS

th
at

ap
pe

ar
s

to
be

le
gi

tim
at

e,
su

ch
as

fa
ls

e
ne

tw
or

k
pa

ck
et

s;
us

ed
in

m
an

-i
n-

th
e-

m
id

dl
e

at
ta

ck
s

Su
pp

ly
ch

ai
n

co
m

pr
om

is
e

In
tr

od
uc

in
g

a
fla

w
ed

or
vu

ln
er

ab
le

ha
rd

w
ar

e
or

so
ft

w
ar

e
co

m
po

ne
nt

in
to

a
C

PS
w

he
n

it
is

be
in

g
m

an
uf

ac
tu

re
d

or
co

nfi
gu

re
d

In
fo

rm
at

io
n

di
sc

lo
su

re
M

on
ito

ri
ng

C
PS

in
fo

rm
at

io
n

to
ga

th
er

in
fo

rm
at

io
n

ne
ed

ed
fo

r
ad

di
tio

na
la

tta
ck

s
or

to
st

ea
lp

ri
va

te
in

fo
rm

at
io

n
So

ci
al

en
gi

ne
er

in
g

D
ec

ep
tio

n
or

in
flu

en
ce

on
th

e
C

PS
en

gi
ne

er
or

op
er

at
or

in
or

de
r

to
ga

in
in

fo
rm

at
io

n
fo

r
ot

he
r

at
ta

ck
s,

or
po

ss
ib

le
to

in
du

ce
po

or
sa

fe
ty

or
se

cu
ri

ty
de

ci
si

on
s

in
to

th
e

de
si

gn
R

ep
la

y
at

ta
ck

s
R

ec
or

di
ng

th
e

co
nt

ro
ls

ig
na

l/fl
ow

ov
er

a
pe

ri
od

of
tim

e,
in

or
de

r
to

re
pl

ac
e

th
e

ac
tu

al
si

gn
al

/fl
ow

w
ith

th
e

re
co

rd
ed

da
ta

to
co

nf
us

e
th

e
sy

st
em

C
on

tr
ol

sy
st

em
in

st
ab

ili
ty

D
is

ru
pt

in
g

co
nt

ro
l/s

ig
na

lfl
ow

in
or

de
r

to
pr

od
uc

e
co

nt
ro

ls
ys

te
m

in
st

ab
ili

ty

152 T. A. McDermott et al.

Table 6.2 Generalized control system attack models

Attack model Description

Interruption attack Also called denial-of-service attack, stops the control signal/flow
during the attack period

Man-in-the middle
attack

Mimics the human attack behavior. When the attack happens, the
control signal/flow is changed to a different manipulated signal/flow
controlled by the attacker

Replay attack Records the control signal/flow over a period of time in a vector, and
when the attack starts, it replaces the actual signal/flow with the
recorded data to confuse the system

Control parameter
attack

Modifies the vulnerable control parameters of the system to the
attacker’s defined parameters. This changes the quality of control of
the system

Coordinated attack Combines two or more basic attack models, for example, combining
a man-in-the-middle attack with a control parameter attack

high resources to implement but would also require more intrusive design impacts
to the CPS. Attack graph tools already have support for such cost/risk analyses.

The basic countermeasure patterns can be extended to more complex attack
strategies by combining patterns. For example, diverse redundancy is a pattern
that employs redundant control systems using differing hardware and/or algorithms
whose outputs are voted or averaged [13, 14]. This mitigates the ability for a
cyber threat to compromise all redundant elements in the system. The diversity and
redundancy can be provided by components and algorithms added to the functional
design of the control system. Horowitz and colleagues collected a number of these
redundancy strategies as summarized in Table 6.4.

The outcome of this process is a “cyber-protected system model.” The result is a
set of security design patterns described as to (a) their functional capabilities, (b) the
cyber assets they require to achieve their functional capabilities, (c) the critical cyber
assets and/or functions they will protect, and potentially if applicable (d) the specific
threat functional capabilities and/or threat cyber assets they are designed to detect
or counter through direct connective action. These patterns (actually a set of new
functions) can be designed into the CPS or a monitor device that tracks the CPS
functional behaviors externally. Using a general model-based approach, different
security patterns and countermeasure approaches can be implemented as updates to
the CPS as threats evolve. There are a number of processes and tools that support
this analysis. The most used are highlighted in the next section.

6.3 Tools to Evaluate Threat and Countermeasure Patterns

New methods and tools are needed for design and analysis of CPS dependability and
security. Tools and techniques exist for design and analysis of fault-tolerant systems,
and these tools may be adapted for application in the CPS domain. However,

6 System Assurance in the Design of Resilient Cyber-Physical Systems 153

Ta
bl

e
6.

3
G

en
er

al
iz

ed
co

nt
ro

ls
ys

te
m

co
un

te
rm

ea
su

re
pa

tte
rn

s
[1

3]

C
ou

nt
er

m
ea

su
re

D
es

cr
ip

tio
n

A
tta

ck
m

od
el

co
un

te
re

d

Is
ol

at
io

n
C

re
at

es
an

is
ol

at
ed

ru
nt

im
e

en
vi

ro
nm

en
t(

sa
nd

bo
x)

fo
r

th
e

cr
iti

ca
la

ss
et

th
at

is
re

si
st

an
ta

ga
in

st
at

ta
ck

s
E

sc
al

at
io

n,
in

te
rr

up
tio

n
at

ta
ck

s

R
ed

un
da

nc
y

R
ep

lic
at

es
th

e
fu

nc
tio

na
lit

y
of

th
e

cr
iti

ca
la

ss
et

in
or

de
r

to
cr

ea
te

m
ul

tip
le

pa
th

s
fo

r
hi

gh
av

ai
la

bi
lit

y
an

d
fa

ul
tt

ol
er

an
ce

in
th

e
ca

se
of

in
di

vi
du

al
fu

nc
tio

n
fa

ilu
re

s

A
tta

ck
s

th
at

di
sa

bl
e

in
di

vi
du

al
in

st
an

ce
s

of
cr

iti
ca

la
ss

et
s

an
d

fu
nc

tio
na

lit
y

D
iv

er
si

fic
at

io
n

Pr
od

uc
es

fu
nc

tio
na

lly
eq

ui
va

le
nt

va
ri

at
io

ns
of

bi
na

ri
es

ru
nn

in
g

in
so

ft
w

ar
e

cr
iti

ca
la

ss
et

s.
T

hi
s

is
an

en
ha

nc
em

en
to

f
th

e
re

du
nd

an
cy

co
un

te
rm

ea
su

re

C
oo

rd
in

at
ed

at
ta

ck
s,

ze
ro

-d
ay

at
ta

ck
s

ef
fe

ct
iv

e
in

id
en

tic
al

bi
na

ry
co

pi
es

of
th

e
cr

iti
ca

la
ss

et
s

Ph
ys

ic
al

ly
un

cl
on

ab
le

fu
nc

tio
n

Se
cu

re
s

th
e

in
te

gr
ity

an
d

pr
iv

ac
y

of
th

e
m

es
sa

ge
s

in
th

e
sy

st
em

us
in

g
a

ph
ys

ic
al

un
cl

on
ab

le
fu

nc
tio

n
(P

U
F)

th
at

is
ha

rd
to

pr
ed

ic
ta

nd
du

pl
ic

at
e

A
tta

ck
s

th
at

hi
ja

ck
th

e
co

m
m

un
ic

at
io

n
ch

an
ne

ls
su

ch
as

m
an

-i
n-

th
e-

m
id

dl
e

at
ta

ck
s

O
bf

us
ca

tio
n

O
bs

cu
re

s
th

e
re

al
m

ea
ni

ng
of

da
ta

/s
ig

na
ls

/fl
ow

s
by

m
ak

in
g

th
em

di
ffi

cu
lt

fo
r

an
at

ta
ck

er
to

un
de

rs
ta

nd
.I

tc
an

us
e

ra
nd

om
so

ur
ce

s
of

no
is

e
fr

om
th

e
en

vi
ro

nm
en

to
f

th
e

cr
iti

ca
la

ss
et

s
to

in
cr

ea
se

th
e

en
tr

op
y

A
tta

ck
s

th
at

re
qu

ir
e

kn
ow

le
dg

e
of

th
e

in
ne

r
w

or
ki

ng
s

of
th

e
sy

st
em

,i
ts

fu
nc

tio
ns

,a
nd

its
m

is
si

on

Pa
ra

m
et

er
as

su
ra

nc
e

C
om

pa
re

s
in

pu
td

at
a

to
a

ta
bl

e
of

va
lu

es
in

th
e

sy
st

em
to

ch
ec

k
fo

r
la

rg
e,

un
ex

pe
ct

ed
de

vi
at

io
ns

A
tta

ck
s

th
at

m
an

ip
ul

at
e

da
ta

fil
es

or
m

es
sa

ge
s

th
at

ar
e

se
nt

to
th

e
sy

st
em

D
at

a
co

ns
is

te
nc

y
ch

ec
ki

ng
V

er
ifi

es
th

e
so

ur
ce

of
a

pa
ra

m
et

er
ch

an
ge

A
tta

ck
s

th
at

us
e

op
er

at
or

sp
ec

ifi
c

da
ta

en
tr

y

154 T. A. McDermott et al.

Ta
bl

e
6.

4
Sp

ec
ifi

c
co

un
te

rm
ea

su
re

pa
tte

rn
s

fo
r

C
PS

C
ou

nt
er

m
ea

su
re

D
es

cr
ip

tio
n

R
ed

un
da

nc
y

C
he

ck
s

fo
r

er
ro

rs
by

co
m

pa
ri

ng
ou

tp
ut

s
fr

om
m

ul
tip

le
co

m
po

ne
nt

s
at

di
ff

er
en

tl
ev

el
s

of
th

e
sy

st
em

.T
hi

s
ca

n
ra

ng
e

fr
om

lo
gi

c
le

ve
ls

(p
ar

ity
or

cy
cl

ic
co

de
s)

to
st

ru
ct

ur
al

co
m

po
ne

nt
le

ve
ls

to
sy

st
em

le
ve

ls
.C

he
ck

in
g

ac
cu

ra
cy

an
d

la
te

nc
y

of
de

te
ct

io
n

is
im

pr
ov

ed
by

lo
w

er
le

ve
lt

ec
hn

iq
ue

s,
w

hi
le

hi
gh

er
-l

ev
el

te
ch

ni
qu

es
m

ay
be

m
or

e
co

st
ef

fe
ct

iv
e

Fo
rw

ar
d

er
ro

r
re

co
ve

ry
A

llo
w

s
co

nt
in

ue
d

sy
st

em
op

er
at

io
n

in
th

e
pr

es
en

ce
of

er
ro

rs
by

co
m

pe
ns

at
in

g
fo

r
th

e
er

ro
r

w
ith

co
rr

ec
tio

n
st

ra
te

gi
es

.T
hi

s
pr

ov
id

es
re

du
nd

an
cy

be
yo

nd
ju

st
er

ro
r

de
te

ct
io

n.
It

ca
n

al
so

be
im

pl
em

en
te

d
at

m
ul

tip
le

le
ve

ls
.F

ro
m

cy
cl

ic
co

rr
ec

tio
n

co
de

s
an

d
lo

w
er

le
ve

ls
to

vo
tin

g
st

ra
te

gi
es

at
co

m
po

ne
nt

or
sy

st
em

le
ve

ls
T

ri
pl

e
m

od
ul

ar
re

du
nd

an
cy

Pr
ov

id
es

fo
rw

ar
d

er
ro

r
re

co
ve

ry
w

ith
m

as
ki

ng
re

du
nd

an
cy

—
th

e
sy

st
em

ha
s

th
re

e
id

en
tic

al
m

od
ul

es
th

at
pe

rf
or

m
re

du
nd

an
t

op
er

at
io

ns
.T

he
ou

tp
ut

of
th

es
e

m
od

ul
es

is
ch

ec
ke

d
by

a
vo

tin
g

m
od

ul
e,

w
hi

ch
fo

rw
ar

ds
th

e
ou

tp
ut

ba
se

d
on

m
aj

or
ity

vo
te

.A
n

er
ro

r
in

on
e

of
th

e
m

od
ul

es
is

m
as

ke
d

by
th

e
m

aj
or

ity
B

ac
kw

ar
d

er
ro

r
re

co
ve

ry
T

ra
ck

s
kn

ow
n

go
od

pr
oc

es
s

st
at

es
as

re
co

ve
ry

po
in

ts
.W

he
n

an
er

ro
r

is
en

co
un

te
re

d
th

e
pr

oc
es

s
re

tu
rn

s
to

th
e

la
st

kn
ow

n
go

od
st

at
e.

T
hi

s
is

ef
fe

ct
iv

e
fo

r
te

m
po

ra
ry

er
ro

rs
bu

tc
an

re
cu

r
co

nt
in

uo
us

ly
(k

no
w

n
as

liv
el

oc
k)

in
th

e
pr

es
en

ce
of

pe
rm

an
en

te
rr

or
s

D
yn

am
ic

re
du

nd
an

cy
D

et
ec

ts
er

ro
rs

an
d

re
co

nfi
gu

re
s

th
e

sy
st

em
in

re
sp

on
se

.T
hi

s
is

of
te

n
re

fe
rr

ed
to

as
“h

ot
st

an
db

y”
w

he
n

th
e

re
co

nfi
gu

ra
tio

n
se

le
ct

s
a

co
nt

in
uo

us
ly

ru
nn

in
g

sy
st

em
an

d
“c

ol
d

st
an

db
y”

w
he

n
th

e
st

an
db

y
sy

st
em

ha
s

to
be

st
ar

te
d

D
iv

er
se

re
du

nd
an

cy
Sc

he
m

es
lik

e
tr

ip
le

m
od

ul
ar

re
du

nd
an

cy
ca

n
us

e
id

en
tic

al
or

di
ve

rs
e

m
od

ul
es

.U
se

of
di

ve
rs

e,
or

no
n-

id
en

tic
al

,m
od

ul
es

co
un

te
rs

er
ro

rs
th

at
m

ay
oc

cu
r

in
co

m
m

on
de

si
gn

s
bu

ta
ls

o
co

m
pl

ic
at

es
th

e
vo

tin
g

de
si

gn
D

at
a

co
ns

is
te

nc
y

ch
ec

ki
ng

V
er

ifi
es

th
e

so
ur

ce
of

a
pa

ra
m

et
er

ch
an

ge

6 System Assurance in the Design of Resilient Cyber-Physical Systems 155

traditional tools are insufficient for resilient CPS due to the complexity of these
systems and the potential for cyber attack.

Most failure analysis tools used today represent the process as a set of linear
causal models that sequence a series of events over time. Analysis of the system
anomaly is traced backwards in time from the system failure event (if it has
occurred) or forward in time from the analyzed potential event causes to their effects
(in a preventive design process). These analyses are essentially event chains with
branching logic [15]. They trace preconditions and effects of errors in the system as
a chain of events that progresses sequentially in time, then apply a countermeasure
pattern that changes the chain of events to a more desired effect.

These are a useful and logical way for the system designer to think about natural
and intentional causes of system disruption but ignore non-linear relationships such
as feedback. They also tend to ignore long timespan chains of events such as a
control attack that is placed in the system long before the compromise is planned
or intended. This leads to great subjectivity in the analysis. For example, a design
feature intentionally placed into a counterfeit programmable logic part can exist
for years before a separate piece of malicious software is inserted into a CPS by a
human attacker who gains control of the systems data through a third vulnerability
in a communications protocol. Together, none of this manifests themselves as errors,
and the effect might create a new system behavior that takes control of the CPS.

The design of the attack creates an additional set of control and feedback systems
in the CPS, which must be countered not by tracing linear chains of events and
preventing each, but by creating new design patterns that serve to limit these new
control behaviors from being exploited by a determined threat. The primary shortfall
of causal event models is that they limit the analysis of countermeasure designs to
similar linear cause and effect relationships [16].

A resilience analysis will convert the concept of a failure in a CPS to one of
availability, or continuity of service. A resilience analysis will ask the questions:

• What will disrupt the control operation, what are the vulnerable aspects?
• How will that affect the availability of the control function to other parts of the

system or to its human user?
• What other system components is that control function dependent upon, and to

what extent?
• Can those components also be trusted?
• What is the risk (and associated cost) to ensure trust?

In a linear causal analysis, these dependencies are often omitted because they
cannot be quantified, or an assumption is made subjectively to omit that dependency
for convenience. Although failure analysis remains important, it must be embedded
in a larger process that considers the functions that result from the CPS and
its external interactions and dependencies. Due to the complexity of the systems
involved, the analysis should not attempt to purely identify all interactions and
dependencies but should define hierarchies of control over essential CPS functions.
Resilience is a process of reducing or eliminating dysfunctional interactions. These

156 T. A. McDermott et al.

are interactions that can disrupt the availability of critical control functions or lead
to potentially hazardous states in the controlled process [16].

6.3.1 Mission/Operational Resilience Analysis

The resilience analysis starts with human-centered workshops to capture the
definition of cyber assets in terms of system functions as well as the threat attack
analysis that explores the dependent functions that can be exploited by the attack.
Besides being a manual technique, the main limitation of many resilience analysis
approaches is that they are too high level and the threat parameters are not treated
as additional functions during the functional decomposition process that creates
the CPS design. Therefore, this does not allow the traditional systems engineering
analyses to include functions and requirements that address cyber threat parameters
as inherent to the system functional design.

The accepted processes for non-functional requirements derivation are gener-
ally human-driven and involve scenario analysis and modeling to derive lower
level functions or requirements from higher-level architectural models. These are
facilitated processes using subject matter experts from the operational context
of the CPS, CPS designers, and the cyber experts with knowledge of potential
attacks. The facilitator starts at a mission/operational level with questions about
lost or changed functionality during operations. This creates shared understanding
of mission objectives and operational tasks related to the CPS. The process also
creates a set of information that can be used by CPS designers and cyber threat
experts to conduct the analysis of attack and countermeasure patterns.

One approach to manually derive these patterns is describing “critical cyber
assets” to link functional descriptions and early views of structural components. The
MITRE Mission Assured Engineering (MAE) process framework [17] is often used
in the context of defense assured systems, and is a starting point for the development
of our approach. MITRE defines three different assessment processes which we
can describe as mission analysis, cyber threat susceptibility assessment, and cyber
risk remediation assessment. Established IT guidance links cyber requirements to
“critical cyber assets” (crown jewels). DoD guidance links cyber requirements to
critical mission threads. In the CPS design one needs to assess vulnerability of both
critical information assets and critical control processes against criticality of the
mission segment of interest. The three assessment processes are:

• Mission analysis or “mission-based critical asset identification.” This process
takes critical mission objectives or operational tasks and associates them with
the critical system functions, creating an initial linking of functions to types of
cyber-physical assets.

• Creation of a functional dependency graph that hierarchically links high-level
mission objectives to operational tasks to information (or control) assets to
sets of system assets as shown in Fig. 6.3. This is a traditional mission to

6 System Assurance in the Design of Resilient Cyber-Physical Systems 157

Fig. 6.3 Functional dependency graph linking mission objectives to system assets (adapted from
[17])

function to structure decomposition approach, which can be captured in a model.
System assets are those structural components that mighty be exploited by a
cyberattacker.

• Creation of an equivalent failure model by tracing back up the graph. The
definition model is effectively a causal event chain: “if ‘asset’ is compromised,
then ‘function’ is compromised, then ‘mission objective’ is compromised.”

Various analysis tools can be then used to assess the resulting functional and
asset relationships. Three of particular interest are fault and attack tree analysis,
goal-structure notation, and system-theoretic process analysis.

6.3.2 System-Theoretic Accident Model and Process (STAMP)

To address the shortcomings of linear failure models, Leveson developed the
system-theoretic accident model and process (STAMP), and system-theoretic pro-
cess analysis (STPA). STAMP has been applied to accident analysis and prevention,
and also to general dependability and security design in CPS using a security
specific form of STPA called STPA-Sec [18]. In the STAMP framework, under-
standing system disruptions requires the analysts to determine why the control
structure was ineffective. STAMP replaces the concept of an event that results
from a control failure with the concept of a constraint that enforces appropriate
control. STAMP analyzes and imposes an equivalent structure of CPS information
and control feedback. This feedback extends hierarchically from a central control
structure to include larger feedback loops created by larger system dependencies.
The potential interactions between dependent systems are changed from assumed
trust to evidence of trust. This allows for the system to have adaptive feedback loops

158 T. A. McDermott et al.

that either maintain or fail to maintain system characteristics of dependability and
security [16].

The design of CPS resilience starts with the identifications of system hazards and
vulnerabilities. This is a human process that is naturally limited by the knowledge
of the human teams involved, so it should be an iterative process that evolves with
the system design and use. The first step in any design for safety program should
be the identification of the system hazards. To do this, accidents must be defined
for the particular system being developed. An accident need not involve loss of life,
but it does result in some loss that is unacceptable to the customers or users. For
practical reasons, a small set of high-level hazards should be identified first. Even
complex systems usually have fewer than a dozen high-level hazards. Starting with
too large a list at the beginning, usually caused by including refinements and causes
of the high-level hazards in the list, leads to a disorganized and incomplete hazard
identification and analysis process.

A system is a recursive concept, that is, a system at one level may be viewed as
a subsystem of a larger system. Unsafe behavior (hazards) at the system level can
be translated into hazardous behaviors at the component or subsystem level. Note,
however, that the reverse (bottom-up) process is not possible. Hazards can also
be related to the interaction between components such as the interaction between
attempts by air traffic control to prevent collisions and the activities of pilots to
maintain safe control over the aircraft. Due to the potential vulnerabilities (i.e.,
threats to a system’s intended safe function) stemming from an array of complex
interactions and sequences of events, STAMP views accidents—by analogy to the
CPS security case, threats—as a control problem. Vulnerabilities may consequently
be prevented by enforcing certain constraints on system component behaviors and
their interactions. In STAMP, a process model controls the actions to help expose
what are deemed unsafe control actions: control commands required for safety are
not given, unsafe control commands are given, commands are given too early or too
late, or the control action stops too soon or is applied for too long [16].

This view implies a modeling approach that is able to capture the functional
state space of a CPS and reveal whether that state space has been compromised
or preserved in the face of threats and applied protection patterns. The focus on
functional modeling espoused in this chapter is consequently synergistic with the
goals of STAMP. Further, the frameworks and methods discussed in this chapter may
serve as a direct compliment to existing model-based systems engineering processes
and tools and, in turn, themselves be executable within a toolset that enables systems
engineers to produce, navigate, and understand the complexity and scope of the
problem.

STPA-Sec takes the mission objectives and operational tasks developed in the
war-room setting and extends them down to dependability and security objectives.
The first step is identification of unacceptable losses in the mission/operational
context. This list is then used to derive a set of system hazards and associated system
constraints. Take, for example, a simple digital engine control loop in an aircraft.
Unacceptable losses would include loss of the aircraft, loss of human life or injury,
unacceptable delays in travel, and loss of trust in air travel. Three (of many) specific

6 System Assurance in the Design of Resilient Cyber-Physical Systems 159

hazards in an engine controller would include uncontrolled changes in engine thrust,
incorrect engagement of engine thrust reversers, and incorrectly reported engine
failures. An example system constraint would include a requirement such as “the
system shall prevent engagement of thrust reversers while the aircraft is in flight.”

This high-level descriptive model then can be used to create a functional model
of the control structure, leading to a set of expected control actions and potentially
hazardous control actions. The thrust reverser example is relatively simple. Two
control actions likely define the function: engage and disengage reversers. This
would be accompanied by several constraints defining functions such as “check
for weight on wheels before engaging . . . ” All of these would be typical system
functions in a system functional model. The STPA process recommends evaluating
the causes and effects associated with not providing the expected control action,
providing it in a way that causes hazard, providing it too soon or too late, and
providing it out of sequence. Detailed examples of STPA and STPA-Sec can be
further explored in open literature.

STPA-Sec extends the analysis to identification of hazardous control actions and
related security constraints, such as “thrust reversers shall not engage without direct
physical indications of aircraft weight on wheels” or “weight on wheels indicators
shall employ diverse redundancy.” This process leads to a set of scenarios that relate
hazardous CPS control actions to security related scenarios (and also dependability
related scenarios as a set of control constraints). These can be further explored in the
context of threat attacks and associated system loss of control (expressed as errors)
using tree or graph models.

6.3.3 Fault and Attack Tree Analysis

A basic approach used by designers of fault-tolerant systems is fault tree analysis. A
fault tree model is a graphical representation of the various parallel and sequential
combinations of errors that could reasonably contribute to the occurrence of a top
loss or hazard event. Because the fault tree focuses on its top event, the tree only
includes faults that contribute to this top event. This fault list is not exhaustive.
However, the STPA process helps to create a holistic model of these events and
associated errors. As this chapter is focused on the cyber-attack domain, a detailed
description of the system fault analysis is left to other references.

Fault tree analysis has been adapted for application in cyber physical security
in the form of attack trees. Like fault trees they begin with top events but then
analyze all steps an attacker might use to cause that event. A number of commercial
tools support the development of attack trees or their graphical equivalents, attack
graphs. In the attack tree analysis, the attacker’s main goal is the root of the
tree. In CPS this may be disruption of a control action but could be other effects
such as stealing information. Although this chapter is focused on the CPS control
actions, the analysis should cover all aspects of the system including its development
environment. Attack trees are built from the attacker perspective.

160 T. A. McDermott et al.

Most attack tree tools branch from the root node into attacker subgoals using
an AND/OR logic structure where the AND nodes imply the attacker must take
multiple actions to accomplish the attack and OR nodes signify one of several
alternative actions. As the tree is constructed it follows the structure of Fig. 6.3
where system control functions are decomposed into lower level system functions
and information assets, then into system assets which serve as threat entry points.

After the trees are constructed, analysis prunes the tree to the most likely attack
strategies. Most attack tree analysis tools support analysis capabilities that aid in
calculating cost measures and risk measures.

The attack tree analysis serves to add detail to the higher-level STPA analysis so
that more detailed models can be built to reflect countermeasure strategies. Actual
attacks and countermeasures occur within the system and information assets in the
accomplished design. It is important to gain this level of understanding in the CPS
design, but also to understand that the analysis will be limited to the knowledge and
experience of the subject matter experts used at the time of the analysis. Also, the
resulting attack models are static and do not capture the actual dynamic control
actions that are to be protected. For this, a functional modeling language and
simulation environment should be used. Thus, the analysis should be used to inform
the functional model of the protected system, not as a direct analysis of system
assurance.

In the dependability and security analysis, the holistic analysis process of STPA
is combined with more detailed fault and attack tree analyses to gain the detailed
awareness of how the CPS will remain resilient to both internal failures and
external threats. These come together in a functional modeling environment viewing
system functions, functional models of threat attacks, and functional models of
the countermeasure designs that become part of the overall CPS design. These are
explained in a more detailed example to follow.

6.4 High-Level Functional Modeling with Critical Cyber
Assets and Missions

This section provides a case study representing the modeling process for the case of
a Navy ship chilled water system that provides cooling flow to two ship board radar
systems [19, 20]. Figure 6.4 shows the functional diagram of the fluidic subsystem.
The system’s mission is to provide cold water from coolers (chillers) to heat loads
(e.g., radar and generators), in order to regulate their temperature and maintain it
within suitable operation conditions. There are four main component types: loads,
chiller plants, valves, and pipes. The nomenclature is explained as follows: Loads:
L01–L06, where L05 and L06 are vital loads and the remaining are non-vital loads;
Flow meters: FM01–FM10, which can indicate if the chilled water service is in
operation; Valves: V01–V26, which control the transport of water from chillers to
loads for cooling purposes; and Chillers/pumps: P01–P04, which provide a pumping

6 System Assurance in the Design of Resilient Cyber-Physical Systems 161

Fig. 6.4 Fluid subsystem of the navy ship chilled water distribution system

function as well as a cooling function. The plant has a total of four zones, with one
chiller plant per zone.

The control logic for the model (not shown) must maximize the operability
and the survivability of the system against kinetic attacks. The control logic must
also maximize the efficiency of system’s operation. Loads are a set of special
components that directly interact with the environment outside of the system, in
this case they are heat loads. One or more loads may combine to provide system
functions. For example, the identification of airborne threats using shipboard radars
requires effective functioning of the chilled water distribution system. It is through
these functions that the system’s purpose is realized. The primary goal for a
controller is to ensure that functions currently demanded by the mission are satisfied.
This use case will be used to explain concepts as relevant throughout the remainder
of the chapter.

A functional model describes what the system does in a formal, high-level
manner. This high level of abstraction allows CPS multidisciplinary engineering
because it formalizes the functional requirements, makes design intentions explicit,
and decouples intentions from implementation. Functional models can therefore be
used as a formal early representation of the system to reason about and to measure
the impact of cyber-resilience aspects at the system level. Functional modeling is
one of the most widely used concept design formalisms in industry, including ship
building, automotive, aerospace, robotics, and machine building.

A persistent challenge facing system engineers is the need to establish not
only a consistent functional vocabulary across design types and extent but also a
clear stopping point in the functional modeling process and a consistent level of
functional detail. The Functional Basis articulated by NIST [21, 22] provides a
vocabulary of eight function categories with a total of 32 elementary functions, three

162 T. A. McDermott et al.

flow categories, and a total of 18 flow types that can be used as a multidisciplinary,
formal model of early CPS design [23, 24]. The function and flow types specified
in the Functional Basis may be used as anchor points for analysis of cyber-
resilience. Concretely, attacks and countermeasures can be also expressed in terms
of the Functional Basis, and pattern matching (graph isomorphism) algorithms can
traverse the entire functional model.

A functional system model may be directly developed using a textual rep-
resentation or imported from functional model views expressed in a modeling
language like the Systems Modeling Language (SysML). In the latter case, there
may be multiple views that together comprise the functional representation of a
system. Prior research has shown that SysML activity diagrams [25–27] are best
suited to express flow-based functional models like the ones expressed in the
Functional Basis. This SysML diagram assists the design of CPS by enabling direct
computer-based modeling support needed for semi-automated design synthesis.
There are multiple approaches for converting a SysML model to an equivalent graph
representing the functional model. An important consideration in this process is the
proper definition of interrelationships used to create the graph based on various
system functional and structural models, attributes, and performance metrics. A
consistent approach appropriate to the level of abstraction is required either in terms
of extracting a functional representation from the SysML model or in setting up
front how the SysML functional representation should be described.

As per the MITRE MAE process, a functional model must be annotated with
critical cyber assets that will be evaluated for vulnerabilities and potential attack
surfaces. These assets can be logical or structural. For example, the signaling
in a communication system, the parameters of a controller, and a GPS receiver
device are examples of critical cyber assets. Assets are modeled as nodes in the
functional model connected to specific functions or information objects. Also,
system’s missions must be linked to the key functions in the functional model that
fulfill them. Missions are also modeled as nodes in the functional model connected
to specific functions.

Figure 6.5 shows a notional functional model for a navy ship chilled water
distribution system presented earlier where functions are represented by ovals,
assets by rectangles, and missions by diamonds. Consider two electrically powered,
water cooled “Radar 1” and “Radar 2” assets which provide a redundant capability
for the “Identify Airborne Threats” mission. Both radars have associated attributes
that represent their thermal state (current temperature) and the electrical power
provided to the unit and are linked to the “Radar Operation” function. Notice that
the “Identify Airborne Threats” mission can only be realized if the thermal state
of the radar load is below a certain specified temperature to prevent overheating,
and if sufficient electrical power is provided to the load. At this level of abstraction,
the redundancy of the function is represented by the number of assets associated to
a given function and how the function attributes combine their assets using AND,
OR, and XOR operators. For example, the “Operate Radar” function has an OR
attribute (not visible in the figure) and thus to operate requires the asset “Radar 1”
OR “Radar 2” operating. Similarly, the “Navigate” function is fulfilled if and only

6 System Assurance in the Design of Resilient Cyber-Physical Systems 163

Fig. 6.5 Functional model with capability of identifying airborne threats using radars as loads

if the “GPS Receiver” OR “Inertial Navigation System” assets are available. By
default, functions have AND-semantics.

6.4.1 Functional Modeling of Attacks and Countermeasures
in Libraries

Threats to a CPS in the form of attacks and the design patterns intended to
augment the original system to imbue it with secure, dependable ability to perform
its function(s) are also abstractions. This means that attacks reduce or disable
functionality, and countermeasures increase or enable functionality. Modeling the
original system together with these abstractions as a directed graph supportive of
simulation will reveal important behavioral dynamics across the CPS, threat, and
protection elements. The original system components, functional representation,
and assets critical to realizing those functions will derive from existing MBSE
system component models, functional architectures, and activity and/or N2 dia-
grams. However, graph theoretic measures based on aggregate statistics alone do
not adequately characterize a system in terms of its throughput, performance, and
vulnerabilities. Networks may have identical degree distributions, for example, and
yet also have fundamentally different structures functional performance [28]. Key
to the ability of a directed graph to elucidate CPS relationships and performance

164 T. A. McDermott et al.

behaviors will be its amenability to dynamic simulation (i.e., dynamic processes on
graphs).

For this approach to be efficient and scalable, it requires a method to effectively
extract necessary system threat and protection information from the respective
MBSE or attack tree structures in a way that enables repeatable, automated genera-
tion of a graph structure with the correct functional specification and relationships.
Semantic descriptions from each entity type (cyber system functional component or
asset, protection pattern functional capability or asset, threat functional capability)
to be included in the graphical model with respect to entity class, relationships with
other entities of any class, and type of relationship (e.g., logical flow, information
flow, and causal dependency) provide the basis for automatic extraction using
various tools or query-based languages.

One approach to creating a graph that represents the complete ecosystem of
system-attacks-countermeasures attaches attacks and countermeasures to the func-
tional model based on a specified pattern. A general graph-based representation for
CPS functional models, cyber-attack patterns, attack graphs, and countermeasures in
the form of defense function patterns makes it possible to employ a common graph
rewriting (transformation) technique [29–32] to perform modifications on the model
for two purposes: (1) identifying vulnerable parts of the model and adding individual
or complex cyber-attack patterns that target them, and (2) adding countermeasures
in the form of defense function patterns in order to neutralize these attacks.

The goal is to create a complete ecosystem model comprised of the original
(unprotected) CPS, the threat functional capabilities and attack vectors revealing the
critical cyber assets they will target, and the security functional architecture via one
or more security design patterns showing how (functional capabilities) and where
(cyber assets or threat assets) they will be applied. Such an ecosystem model is
contextual with respect to the threat and protection spaces. In its final, directed graph
form, nodes will represent the functional capabilities and their critical cyber assets,
while edges (links between nodes) will represent a logical flow, information flow,
or causal connectivity. Both direct and indirect connections can be consequential,
together producing cascading effects in the event of a disruption.

6.4.2 Attack Models

There are various types of adversary attacks possible against the functional elements
of a system that can interfere with the intended flow (and therefore capability) [13,
14]. In the static sense, these attacks can be either active or inactive, and can disable
the corresponding function in the functional model to which they are attached. In
the dynamic sense, these attacks are active or inactive over specific periods of time.
The five primary types of attacks on system function are listed in Table 6.2 and their
equations suitable for mathematical simulation are described in [14].

6 System Assurance in the Design of Resilient Cyber-Physical Systems 165

6.4.3 Countermeasure Models

Countermeasures are required to augment the initial designs of CPS to counteract
the static and dynamic effects of attacks against system functions. These counter-
measures may be thought of as protection patterns, also representable as functional
nodes and edges that preferentially attach to the relevant original CPS functional
graph nodes. Countermeasures are implementation dependent, that is, they require
an understanding of likely or most significant attack vectors and intended system
function as designed.

Scalability and generalization across different CPS require developing a library
of countermeasures and their corresponding graph patterns from which a systems
engineer can draw and augment the CPS-attack pattern graph to complete the
ecosystem perspective. One approach to effective selection of the appropriate
security protection patterns for a given attack pattern is to create a mapping between
these pattern groups in the form of a bipartite graph that a user may modify
as requirements evolve. Table 6.3 provided a listing of example countermeasure
models that may be transformed into graph protection patterns at the appropriate
level of abstraction for a given problem. While effects of attack–countermeasure
interactions cannot be directly assessed with respect to cost at this level of
abstraction, residual risk analyses already common in most attack graph tools can
help evaluate relative cost and likelihood functions that assist with ranking attack
and countermeasure patterns via multi-attribute or qualify function deployment
(QFD).

6.4.4 Generation of Cyber-Physical Attack Environments

Initial requirements documentation and functional models are useful but incomplete.
The requirements modeling starts with these artifacts, but one cannot trade maximal
attack coverage and minimal requirements without baselining a cyber risk assess-
ment process that relates risk of cyber “failures” to appropriate mission threads. The
combination of STPA and tree analysis discussed earlier begins the process.

Attack graph analysis [33, 34] extends and partially automates the manually
generated attack trees described earlier, and is the most widely accepted method to
assess how an attacker can gain access to these cyber assets and how that can be used
to exploit the system functions. In this section we use the attack graph formalism
to represent plausible attacks in the form of functional graphs. The process captures
the definition of cyber assets in terms of system functions as well as the attack
graph analysis that explores the dependent functions that can be exploited by the
attack. Future maturation of this process should include the consideration of threat
parameters as additional functions to be captured in the decomposition process.
This allows the traditional systems engineering capability/gap analyses to include

166 T. A. McDermott et al.

Fig. 6.6 Generated attack graph

functions and requirements that address the cyber threat parameters as inherent to
the system functional design, not just as component of the mission design.

The use of functional models for representing a high-level system view allows
automatic generation of attack graphs from functional system models. The gener-
ated attack graphs model coordinated attacks which target the system’s mission. The
attack surfaces that are exploited by these attacks are system functions and assets
for which there are corresponding cyber-attack patterns in the library. This approach
is extensible to new kinds of individual attacks and is able to generate complex
attack graphs for coordinated attacks that specifically target any system mission
in the model. In turn, this methodology allows the attack model to be accurate in
pinpointing the mission-critical portions of the system.

Figure 6.6 shows a generated attack graph that targets the “Identify Airborne
Threats” mission of the previously described navy use case. The attack graph is
generated by traversing the functional model starting from the mission node and
creating attack nodes and edges that correspond to the visited structure in the
functional model. The process ends at functions or assets that are directly vulnerable
to a CAP in the library, for which the specific individual attack is instantiated (filled
nodes in the figure) and linked to the vulnerable node. In this example, the mission
can be disrupted by affecting the system functions that are required for the proper
operation of the loads: the cold and hot water distribution and the electrical power.
The first two functions can be disrupted if the control system itself is compromised,
which can be done by attacking the signals and parameters of the controller. The
electrical power system can also be attacked directly. These cyber-attack patterns
are selected from a library, and the method shows how the functional model may be
traversed in order to generate attack nodes that target the capabilities of the system,
represented as critical cyber assets.

Statically, these attack graphs employ OR-semantics by default, meaning that
any successful child attack causes its parent attack to be successful. Regarding
temporal semantics, the model of attack graphs is non-deterministic. Generalizing
with respect to Boolean (AND/OR/XOR) and temporal (SEQUENCE, BEFORE,

6 System Assurance in the Design of Resilient Cyber-Physical Systems 167

Fig. 6.7 Attacked functional model

AFTER) operators used in current variations of attack graphs and graphs [35], the
attack graphs capture all possible interactions between the attack nodes, where the
attack nodes can activate and deactivate non-deterministically over time. Thus, the
attack graph semantics represent all possible behaviors of the coordinated attack
over the targeted functions of the system, including any specifically modeled attack
using temporal operators. This makes the approach more general and provides a
more complete coverage of coordinated attacks, by using a dynamic model that
tries all possible combinations of attacks.

The generated attack graph information can now be introduced into the functional
model using the graph rewriting mechanism described earlier, producing the
attacked functional model shown in Fig. 6.7. (For simplification, the intermediate
attack nodes are omitted.) The figure illustrates that the new function aiming to
disrupt the critical cyber asset is not affecting the asset directly, but rather indirectly
through the functional dependency graph. The chosen points of attack correspond
to those functions that are directly targetable through cyber-attack patterns found in
the library. The attack functions have a set of possible attacker modes (not shown
in the figure) as defined in the attack library. The attack graph model is linked to
the functional model with the new attack function, and the attack graph analysis
parameters can be maintained for multi-attribute tradeoff analyses.

168 T. A. McDermott et al.

6.4.5 Model Transformation Using Cyber Defense Functional
Patterns

With a good understanding of the functional model, cyber-attack patterns, and
the cyber assets to be protected, the complete functional representation of these
dimensions may be transformed into a directed graph for further analysis. The model
transformation process applies predefined protection patterns—in the form of graph
rewriting rules—to the attacked functional model of the system. The morphological
approach can be thought of a systematic “patching” of cybersecurity holes in the
system’s conceptual design. This will allow system engineers to “maximize attack
space coverage” while “minimizing number of requirements.”

There are three specific challenges with respect to model transformation:

1. How to effectively connect a functional model of a given threat vector to the
original system functional model representation we start with?

2. How to effectively connect the cybersecurity functional model associated with
our protection pattern with the system-threat intermediate functional representa-
tion?

3. How to connect the functional representations across the full functional represen-
tation of attack–countermeasure interactions in a way that produces meaningful
consequences within the model when executed upon—did our protection pattern
implementation work or not?

A key aspect of (1) and (2) above will be to automatically extract semantic
descriptions from each entity type (cyber system functional component or asset,
protection pattern functional capability or asset, and threat functional capability)
that will be included in the graphical model with respect to entity class, relation-
ships with other entities of any class, and type of relationship (i.e., logical flow,
information flow, and causal dependency). With these characteristics derived from
the aforementioned functional model extracted from the system description, attack
graphs (including temporal), and a library of cyber defense functional patterns,
this will serve as the basis for a repeatable, directly executable model modification
approach.

6.4.6 Countermeasure Analysis

The model transformation technique of graph rewriting can be applied to attacked
functional models, thereby adding protection patterns that mitigate or neutralize the
cyber-attack patterns. The outcome of this step is a “cyber-protected system model.”
A semantic mapping of security design patterns can be extracted with respect to
(a) their functional capabilities, (b) the cyber assets they require to achieve their
functional capabilities, (c) the critical cyber assets and/or functions they will protect,
and potentially, if applicable, and (d) the specific threat functional capabilities

6 System Assurance in the Design of Resilient Cyber-Physical Systems 169

Fig. 6.8 Cyber-protected functional model

and/or threat cyber assets they are designed to detect or counter through direct
connective action. An example of a protected functional model based on our navy
chill water system use case is shown in Fig. 6.8. Here, protection patterns are linked
to target design patterns in order to neutralize the threat functions associated with
the attacked functional model.

Techniques relevant to simulating dynamic processes on graphs may then be
used to assign various properties to the nodes and edges of the final graph that
will demonstrate the propagation of a threat impact and security impact, the latter
of which may compete directly with the former. For this to be scalable, this depends
on generalizing a library of micropatterns used to assign node and edge attributes
based on their extracted semantic description from the functional models. The result
will be a single, scalable, executable methodology for dynamic simulation of cyber
system graph models applicable to the cyber-physical system problem class.

Systems engineers can analyze the model and determine the effectiveness of the
protection patterns added to the system based on the static and dynamic semantics
of the modeling formalism. The functional models explicitly show dependencies
between system functions, assets, and missions, and link these via AND-semantics,
resulting in the assumption that all child functions are needed in order to realize
the parent function. The addition of OR and XOR nodes is allowed in order
to express different kinds of semantics for function dependencies, e.g., alternate
or redundant functions. In contrast to attack graphs, functional models exhibit

170 T. A. McDermott et al.

deterministic temporal semantics. All basic functions are active unless targeted by
an active cyber attack, and higher-level functions activate or deactivate based on
their logical dependencies. On the other hand, countermeasure models are defined
in the protection pattern library to provide different methods to protect asset nodes
and functions against attacks. Consequently, they employ static OR-semantics, such
that a parent countermeasure function can be realized through any one of its child
functions. Likewise, AND or XOR nodes can used in order to express different kinds
of relationships between countermeasure functions.

The logical relations between nodes in the functional model (system functions,
assets, missions, attacks, and countermeasures) enable analysis of the effectiveness
of countermeasures against attacks both statically and dynamically. In a static
analysis, the non-deterministic semantics of attack graphs can be used to compute all
possible attack situations of coordinated attacks, even combining multiple individual
and coordinated attacks at once. In all computed situations, effectiveness of the
cyber protection functionality can be assessed by evaluating the realization of the
mission objectives (represented by mission nodes). If situations can be identified
where the system is not properly protected, then the cyber protection functionality
needs to be improved. Also, multiple alternate protection strategies can be evaluated
and compared in this manner, allowing the system to select those successful
strategies with the least amount of required functionality.

This process has the potential to define a protection strategy for any class of
threat, at any level of the system. The selection of a protection function, or cyber
protection pattern, will in turn determine the requirements. The classes of threat
covered will be based on both the understanding of the threat tactics, techniques,
and procedures (TTPs) and the availability and cost function associated with various
design patterns. “Protect against many classes of threats” would be a requirement
evaluated through multi-attribute tradespace analyses methods.

In addition to the purely static analysis, it is possible to achieve greater accuracy
by performing an analysis of the system’s dynamic behavior. Relating to the notion
of security for CPS, the dynamic problem is to determine if the functional state
space of the original CPS system is preserved when attack patterns and protection
patterns have combined to create a new, expanded functional structure. This requires
node and edge functional/property motifs that make the ecosystem graph executable
and meaningful with respect to evaluating the preservation of the functional state
space. These motifs should be detailed enough to produce the needed overall system
behavior but generalizable enough by type to be reusable and allow us to produce
similarly executable graphs at much greater scale. Unlike the random or statistically
generated graphs studies in other fields, we must develop techniques best suited and
modifiable for simulating the impacts of highly correlated threats and protection
implementations on functional capabilities of a system. This research task will
develop ways to specify parameters in our graphical model that, when executed
via discrete simulation, produce “consequences” most relevant and meaningful to
the CPS security problem.

A key lesson from the science fields mentioned previously is that different
graph topologies radically alter the dynamics possible. Different graph topologies

6 System Assurance in the Design of Resilient Cyber-Physical Systems 171

may analogously alter the effectiveness of establishing security for a system under
threat(s). The difficulty in modeling CPS is the number of different node types
or classes more so than the number of nodes. To make executable models of
CPS scalable, motifs, algorithmic representations that represent the behaviors and
decision processes of each distinct class, will be required for reuse across different
problems. Various graph properties may be assigned in ways that capture dynamic
impact to best represent the problem, specifically node and/or edge state descriptions
and weights. These techniques will, together with the graph’s final structure, govern
the spreading dynamics of the impact of the threat(s) and security implementation(s)
and, consequently, the final state of the cyber system’s functional capability. Rules
governing node and edge states will derive from the node or edge type (i.e., node
class) and relational nodes defined by a Markov blanket [36]. A key aspect of the
work will be to simplify the relational state rules as much as possible to still reflect
an abstraction of the contextual cyber system behavior over time.

6.5 Assurance Test and Evaluation

Assurance testing within the software community has been a long-standing disci-
pline. In software, assurance cases have been developed to reason and communicate
the trustworthiness of systems as well as the development of policy to assess the
impact of security issues on safety regulation and the impact of cybersecurity.

Design assurance in engineering has sought to establish a sufficient, foundational
set of design assurance requirements and processes that are analogous to product
quality assurance. Aerospace in 2009 released a document that illustrated a cross-
discipline, multi-company team named Design Assurance Topic Team that worked
to formulate a risk-based design assurance process flow. The flow was to then serve
as a roadmap for aerospace programs’ design assurance activities [37]. In 1974,
Caslake submitted a paper on the update to the Standards development in the quality
assurance area by IEEE Nuclear Power Engineering Committee (IEEE/NPEC) [38].

With the onset of interconnectivity among devices, the boom of the IoT, and
development of CPS, there was an increase in scrutiny of quality assurance in both
hardware and software and the development of network assurance, which does differ
from the software assurance community. In 1991, the proposed workstations with
a shared computer/simulated environment were explored, and a key attribute was
the delivery of better-quality assurance for hardware and software design with a
more integrated, concurrent approach [39]. The networked reliability also had to be
present through secure solutions. IT network assurance has grown into a discipline
and is recognized for quantifying risk from an IT network perspective. It is the
engineering process of formal verification, which specifically contrasts with design
testing.

Embedded security and cyber-assurance also became clear disciplines and engi-
neering processes. Embedded security is not a new concept, and has, in fact, been
exhausted for engineered systems such as the IoT. Cyber-assurance is the justified

172 T. A. McDermott et al.

confidence that networked systems are adequately secure to meet operational needs,
even in the presence of attacks, failures, accidents, and unexpected events [40].
The internet-of-things (IoT) has the fundamental need and concept of embedded
security. There are several tests and evaluations that have been developed to
obtain embedded security and cyber-assurance. In fact, as discussed by Brooks,
cyber-assurance concepts will have to include embedded security solutions, and
information assurance for IoT networks to be resilient with confidence [41].

While all these are important to address in the components, the more holistic
picture is still needed to address the challenges and opportunities in system assur-
ance in the design for CPS, and therefore, the test and evaluation of such. System
assurance should ensure that the system meets its functional and performance
requirements, verify the ability of the system to perform at the limits of its design,
verify that all configuration items/modules work correctly with each other, and
design specifications for input, processing, and output are met. It should also
ensure compatibility of the software, hardware, and documentation. Several areas of
research attempt to argue system assurance through thorough model-based testing,
architectures, and system synthesis of the implementation of the CPS [42].

Attack vectors use specific features or design elements of CPS to their advantages
and are unparalleled in the traditional IT, and conventional computer security
techniques are not able to address CPS. Due to the nature of complexity within
these systems, a variety of guidelines and standards have been developed for the
design of reliable CPS. For instance, the DO-178C was created by the authorities
of FAA, EASA, and Transport Canada for commercial airborne software, which
defined design assurance levels (DALs) as: catastrophic, hazardous, major, minor,
and no safety effect. Each level defines a set of objectives to be satisfied and requires
document traceability between the certification artifacts [43]. Specifically, during
the last two decades, new standards have been defined to enable the development
of safety-critical systems, including CPS, and have advocated for model-based
development approaches.

6.5.1 Model-Based Assurance for Test and Evaluation

Hughues and Delange explore model-based design and automated validation of
differing aircraft architectures using the Architecture Analysis and Design Language
(AADL). In the research, model-based assurance is pursued through leveraging
AADL language to capture the system architecture [44]. The system architecture
captured is processed and validated against the system requirements; however, the
team found it challenging to analyze due to the large quantity of inter-dependent
results. Therefore, the team extended the analysis tool and auto-generated an
assurance case from the validation results. This, in turn, shows the interdependencies
of each requirement using a hierarchical notation and details which are not enforced.

In 2016, authors from Carnegie Mellon University proposed utilizing Mod-
elPlex, a method ensuring that verification results about models, to apply to

6 System Assurance in the Design of Resilient Cyber-Physical Systems 173

CPS implementation, utilized as a method of formal verification and validation
[45]. ModelPlex, according the authors, provides correctness guarantees for CPS
executions at runtime: combining offline verification of CPS models with runtime
validation of system executions for compliance with the model, and then initiates
provably safe fallback actions. The team also developed a systematic technique
to synthesize provably correct monitors automatically that form CPS proofs in
differential dynamic logic by a correct-by-construction approach. The ModelPlex
is a principle to build and verify high-assurance controllers for safety-critical com-
puterized systems that interact physically to their environment, and also monitors
relate states. The states are semantic objects and cannot be represented precisely in
a program, but the research team developed a systematic logical characterization as
syntactic expressions for the relations to monitor the conditions through computable
programs.

Researchers designed and implemented a novel intrusion detection and response
scheme to test, evaluate, and detect malicious anomalies that threaten unmanned
aerial vehicle (UAV) networks [46]. They propose detection and response tech-
niques to monitor the UAV behaviors and categorize them into the appropriate
list (normal, abnormal, suspect, and malicious) according to the detected cyber
attack. The team only focused on the most lethal cyber attacks that can target a
UAV network, which are false information dissemination, CPS spoofing, jamming,
and black hole and gray hole attacks. The hierarchical scheme relies on two
mechanisms: an intrusion detection mechanism running at the UAV node level and
an intrusion response mechanism running at the ground station level. The research
team analyzed the performance of the scheme using NS-3, and the proposed
hierarchical intrusion detection and response scheme demonstrated a high-level of
security with high detection rate (more than 93%) and low false positive rate (less
than 3%).

Another rising schema for identification of failures and attacks has been merging
differing models that will assist in system assurance in the design of resilient
CPS. For instance, the six-step model was created for CPS safety and security
analysis, which incorporates six hierarchies of CPS. The six hierarchies include
functions, structure, failures, safety countermeasures, cyber attacks, and security
countermeasures. Relationship matrices are used to identify the interrelationships
between hierarchies and determine the effect of failures and cyber attacks on CPSs.
The SSM is based on two previously developed approaches: GTST-MLD and the
three-step model, established in 1999 and 2009, respectively [47, 48]. Research on
an approach for integrating six-step model (SSM) with informational flow diagrams
(IFDs) was proposed in 2017 since SSM, while useful for modeling CPS safety
and security, lacks guidance for identification of failures and attacks and selecting
adequate countermeasures [49]. IFDs are behavioral diagrams used for information
flow modeling and have been used for complex CPS safety analysis. While IFDs
were used for CPS confidentiality analysis, for instance, Akella et al. proposed
a formal method that expressed the information flow security semantics in CPS
[50], Sabaliauskaite proposed an extended IFD by converting connections into
information flows and adding flow direction, content, and transmission frequency.

174 T. A. McDermott et al.

The IFDs could be used for designing security countermeasures to achieve required
level of security as well, especially since the SSM step 6 often requires use of
additional information flows. While this strategy for comprehensive analysis of CPS
safety and security can provide guidance for identifying possible failures and cyber
attacks as well as selecting safety and security countermeasures, the applicability of
the approach is only expanded upon using one example.

6.5.2 Formal Methods Transfer to CPS

Rapid integration is currently going on between the formal methods community
and the control engineering community. The ERATO MMSD project, initiated in
2016 and proposed through 2022, funded by Japan Science and Technology Agency
(JST) aims at enhanced quality assurance measures for CPS, and to contribute by
taking a unique mathematical strategy to bridging gaps through finding a meta-level
theory by transferring formal methods for quality assurance originally developed
for software to quality assurance of the CPS in modern-day industry [51]. The
researchers provide a list of concrete challenges that one is likely to encounter when
solely following the V-model for software requirements. Some being the cost of
hardware testing/simulation, correctness of designs and requirements, management
of those designs and requirements, and optimization of complex systems. While
these challenges are already present in computer system, and formal methods have
already been developed to aid on the verification, synthesis, and specification, there
are still challenges in the broader discipline of CPS. The methodology aims to
provide a meta-mathematical transfer through nonstandard transfer from discrete
to continuous/hybrid and from automata to coalgebras to move formal methods to
heterogeneity. This includes coalgebraic model checking that unifies qualitative and
quantitative aspects, quantitative semantics for enhanced expressivity, simulation
and bi-simulation notions, compositionality, and collaboration and integration with
control theory and robotics.

Several methodologies and frameworks have been proposed for system assurance
test and evaluation in the design of resilient CPS. The amount of research into
rigorous design of CPS has extensively increased over the past decade; however,
a consistent and efficient model of the integration of the cyber and physical with
the right level of fidelity for system design in its totality is still being researched
[52]. The research states that we are far from reaching the desired degree of domain
integration for the state-of-the-art CPS design. The authors believe that there is still
the problem of writing “faithful and consistent models from networks of physical
components.” The paper attempted to perform a fair assessment for the CPS design
and concluded that there exist some basic theoretical difficulties to be overcome
by proposing methodologies adequately combining tool automation and designer
ingenuity [52].

6 System Assurance in the Design of Resilient Cyber-Physical Systems 175

6.6 Summary

New approaches to address cybersecurity in development and operational use of
CPS are an obvious concern and priority across many domains. Model-based
approaches to requirements, design, and evaluation, especially those that can lead
to use in the assurance process, must account for the complex interactions between
threats, well-intended countermeasure patterns, and the resultant system behaviors
that may or may not be what was intended. The overarching goal is to create methods
that link to existing processes and answer how well the original functional capabili-
ties of the cyber are preserved in the face of the threat(s) given the augmentation with
the security design pattern(s). A dynamic graphical model will permit exploration
and understanding of the structure–function relationships inherent in this ecosystem
that produce those outcomes and link security choices to a trade-based decision
process relating cost and level of security success. Additionally, such an approach
provides the structure to visibly or quantifiably reveal the inherent diseconomies of
scale that can result from overprotection.

The same functional model building activity dedicated to the analysis of counter-
measure pattern effectiveness can also be used to build a test framework, essentially
a separate functional harness that can be attached to portions of the functional
model. Here, specific attack patterns are replaced by actual test functions (fuzzers)
that evaluate vulnerabilities of the system. Threat patterns can be evaluated by
test inputs that actually propagate through the system, and the test framework can
simulate multiple attack inputs. In contrast to the system view, current methods
typically test only one software component at a time. While this will not sufficiently
address the inherent complexity of the system, it may provide a foundation from
which the community can gradually build libraries of more complex system tests.

References

1. NSF. (2013). Cyber-physical systems. National Science Foundation (NSF) program solicitation
16-549, NSF document number nsf16549, March 4, 2016. [online] Retrieved June 1, 2017,
from https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf16549

2. NIST. (2016). National Institute for Standards and Technology (NIST) Framework for Cyber-
Physical Systems Release 1.0: Cyber Physical Systems Public Working Group (Rep.). May
2016. Retrieved June 1, 2017, from https://pages.nist.gov/cpspwg/

3. Griffor, E. (Ed.). (2016). Handbook of system safety and security: Cyber risk and risk
management, cyber security, adversary modeling, threat analysis, business of safety, functional
safety, software systems, and cyber physical systems. Cambridge, MA: Syngress.

4. Avižienis, A., Laprie, J., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Computing,
1(1), 11–22.

5. DoDI. (2014). Department of Defense Instruction (DoDI) 8500.01, Cybersecurity. March 14,
2014.

6. Reed, M. (2016). DoD Strategy for Cyber Resilient Weapon Systems. In Paper presented at the
National Defense Industries Association, Annual Systems Engineering Conference, Alexandria
VA, October 2016.

https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf16549
https://pages.nist.gov/cpspwg/

176 T. A. McDermott et al.

7. Boehm, B., & Kukreja, N. (2015). An initial ontology for system qualities. INCOSE Interna-
tional Symposium, 25(1), 341–356.

8. Newman, M., Barabasi, A., & Watts, D. (2011). The structure and dynamics of networks.
Princeton, NJ: Princeton University Press.

9. Geard, N. (2010). In T. Gross & H. Sayama (Eds.), Adaptive networks: Theory, models and
applications. Berlin: Springer-Verlag.

10. NATO. (2010). North Atlantic Treaty Organization (NATO), engineering for system assurance
in NATO programs. Washington, DC: NATO Standardization Agency. DoD 5220.22M-
NISPOM-NATO-AEP-67, February 2010.

11. Hilburn, T., Ardis, M., Johnson, G., Kornecki, A., & Mead, N. (2013). Software assurance
competency model. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Univer-
sity. Technical Note CMU/SEI-2013-TN-004, 2013. Retrieved October 1, 2018, from http://
resources.sei.cmu.edu/library/asset-view.cfm?AssetID=47953

12. McDermott, T., & Horowitz, B. (2017). Human Capital Development – Resilient Cyber
Physical Systems. Systems Engineering Research Center (SERC) Technical Report
SERC-2017-TR-075, September 29, 2017. Retrieved October 1, 2018, from https://
sercuarc.org/publication/?id=163&pub-type=Technical-Report&publication=SERC-2017-
TR-113-Human+Capital+Development+%E2%80%93+Resilient+Cyber+Physical+Systems

13. Wan, J., Canedo, A., & Al Faruque, M. (2015). Security-aware functional modeling of cyber-
physical systems. In 2015 IEEE 20th International Conference on Emerging Technology &
Factory Automation (ETFA) 2015 (pp. 1–4).

14. Rashid, N., Wan, J., Quiros, G., Canedo, A., & Al Faruque, M. (2017). Modeling and
simulation of cyberattacks for resilient cyber-physical systems. In 13th IEEE Conference on
Automation Science and Engineering (CASE) 2017 (pp. 988–993).

15. Benner, L. (1975). Accident investigations: Multilinear events sequencing methods. Journal of
Safety Research, 7(2), 67–73. 3.

16. Leveson, N. (2012). Engineering a safer world: Systems thinking applied to safety (p. 13).
Cambridge, MA: MIT Press.

17. Goldman, H. (2010, November). Building secure, resilient architectures for cyber mission
assurance. McLean, VA: The MITRE Corporation.

18. Young, W., & Leveson, N. (2013). Systems thinking for safety and security. In Proceedings
of the 29th Annual Computer Security Applications Conference (ACSAC ’13) (pp. 1–8). New
York: ACM.

19. Lu, Y., Ferrese, F., & Labouliere, M. (2007) Anti-threat mobile agent-based ship freshwater
cooling system. In Automation & Controls Symposium.

20. Lu, Y., Kuruganty, R., Al Faruque, M. A., Ren, Q., Zhang, W., & Scheidt, P. R. D. (2012). Risk
based multi-agent chilled water control system for a more survivable naval ship. International
Journal of Intelligent Control and Systems, 17(4), 102–112. 14.

21. Hirtz, J., Stone, R. B., Szykman, S., McAdams, D. A., & Wood, K. L. (2001). Evolving a
functional basis for engineering design. In Proceedings of the ASME Design Engineering
Technical Conference: DETC2001, Pittsburgh, PA.

22. Hirtz, J., Stone, R., McAdams, D., Szykman, S., & Wood, K. L. (2002). A functional basis
for engineering design: Reconciling and evolving previous efforts. Research in Engineering
Design, 13, 65. https://doi.org/10.1007/s00163-001-0008-3.

23. Wan, J., Canedo, A., & Al Faruque, M. (2014, December). Functional model-based design
methodology for automotive cyber-physical systems. IEEE Systems Journal, 11(4), 2028–
2039.

24. Wan, J., Canedo, A., & Al Faruque, M. (2015). Cyber-physical co-design at the functional-level
for multi-domain automotive systems. IEEE Systems Journal, 11(4), 2949–2959.

25. Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical guide to SysML: The systems
modeling language. Amsterdam: Morgan Kaufmann.

26. Kruse, B., Gilz, T., Shea, K., & Eigner, M. (2014). Systematic comparison of functional models
in SysML for design library evaluation. Procedia CIRP, 21, 34–39.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=47953
https://sercuarc.org/publication/?id=163&pub-type=Technical-Report&publication=SERC-2017-TR-113-Human+Capital+Development+%E2%80%93+Resilient+Cyber+Physical+Systems
http://dx.doi.org/10.1007/s00163-001-0008-3

6 System Assurance in the Design of Resilient Cyber-Physical Systems 177

27. Weilkiens, T. (2011). Systems engineering with SysML/UML: Modeling, analysis, design.
Burlington, MA: Morgan Kaufmann.

28. Li, L. (2007). Topologies of complex networks: Functions and structures. Pasadena, CA:
California Institute of Technology.

29. Baresi, L., & Heckel, R. (2002). Tutorial introduction to graph transformation: A software engi-
neering perspective. In International Conference on Graph Transformation. Berlin: Springer.

30. Ehrig, H., Rozenberg, G., & Kreowski, H. (1999). Handbook of graph grammars and
computing by graph transformation (Vol. 3). London: World Scientific.

31. Karsai, G., Agrawal, A., Shi, F., & Sprinkle, J. (2003). On the use of graph transformation in
the formal specification of model interpreters. J. UCS, 9(11), 1296–1321.

32. Plasmeijer, R., Van Eekelen, M., & Plasmeijer, M. (1993). Functional programming and
parallel graph rewriting (Vol. 857). Reading, MA: Addison-Wesley.

33. Manadhata, P., Tan, K. M., Maxion, R. A., & Wing, J. M. (2007). An approach to measuring
a system’s attack surface. No. CMU-CS-07-146. Pittsburg, PA: Carnegie-Mellon University,
School of Computer Science.

34. Sheyner, O., Haines, J., Jha, S., Lippmann, R., & Wing, J. (2002). Automated generation and
analysis of attack graphs. In Proceedings of the 2002 IEEE Symposium on Security and Privacy
(SP ’02). Washington, DC: IEEE Computer Society.

35. Apvrille, L., & Roudier, Y. (2015). SysML-sec attack graphs: Compact representations
for complex attacks. In International Workshop on Graphical Models for Security. Cham:
Springer.

36. Luckett, B. (2013). Integration of graphical modeling techniques as a structural framework
for system-aware cyber security architecture selection. Thesis from http://libra.virginia.edu/
catalog/libra-oa:3720

37. Aguilar, J. (2009, June 4). Design assurance guide. aerospace.wpengine.netdna-cdn.com/wp-
content/uploads/2015/04/TOR-20098591-11-Design-Assurance-Guide.pdf. Accessed online
via DTIC, 12 Nov 2018.

38. Caslake, S. (1974). Quality assurance. IEEE Transactions on Nuclear Science, 21(1), 1974.
https://doi.org/10.1109/TNS.1974.4327589.

39. Rachowitz, B., Maue, R. K., Angrisano, N. P., & Abramson, B. (1991). A guide to
engineering workstations: Using workstations efficiently. IEEE Spectrum, 28(4), 38–40.
https://doi.org/10.1109/6.76301.

40. Alberts, C, Ellison, R, & Woody, C (2009). Cyber assurance. 2009 CERT Research
Report. Software Engineering Institute, Carnegie Mellon University. Available at http://
resources.sei.cmu.edu/library/asset-view.cfm?assetid=77638

41. Brooks, T. (2018). Cyber-assurance for the internet of things. New York: Wiley. Accessed
2018.

42. Wolf, M., & Dimitrios, S. (2018). Safety and security in cyber-physical
systems and internet-of-things systems. Proceedings of the IEEE, 106(1), 9–20.
https://doi.org/10.1109/JPROC.2017.2781198.

43. Pothon, F. (2012). DO-178C/ED-12C versus DO-178B/ED-12B Changes and Improve-
ments. www.adacore.com/uploads/books/pdf/DO178C-ED12C-Changes_and_Improvements-
Sep2012.pdf. Report generated from ACG Solution on the new update to the standards.

44. Nakajima, S., Talpin, J. P., Toyoshima, M., & Yu, H. (Eds.). (2018). Cyber-physical system
design from an architecture analysis viewpoint: Communications of NII Shonan meetings (Vol.
2017). Singapore: Springer.

45. Mitsch, S., & Platzer, A. (2016). Modelplex: Verified runtime validation of veri-
fied cyber-physical system models. Formal Methods in System Design, 49(1–2), 33–74.
https://doi.org/10.1007/s10703-016-0241-z.

46. Sedjelmaci, H., Senouci, S. M., & Ansari, N. (2018). A hierarchical detection and response
system to enhance security against lethal cyber attacks in UAV networks. IEEE Transactions
on Systems, Man & Cybernetics. Systems, 48(9), 1594–1606.

47. Brissaud, F., Barros, A., Be’renguer, C., & Charpentier, D. (2009). Reliability study of an
intelligent transmitter. In 15th IS- SAT International Conference on Reliability and Quality in
Design. (pp. 224–233). International Society of Science and Applied Technologies.

http://libra.virginia.edu/catalog/libra-oa:3720
http://aerospace.wpengine.netdna-cdn.com/wp-content/uploads/2015/04/TOR-20098591-11-Design-Assurance-Guide.pdf
http://dx.doi.org/10.1109/TNS.1974.4327589
http://dx.doi.org/10.1109/6.76301
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77638
http://dx.doi.org/10.1109/JPROC.2017.2781198
http://www.adacore.com/uploads/books/pdf/DO178C-ED12C-Changes_and_Improvements-Sep2012.pdf
http://dx.doi.org/10.1007/s10703-016-0241-z

178 T. A. McDermott et al.

48. Modarres, M., & Cheon, S. (1999). Function-centered modeling of engineering systems using
the goal tree–success tree technique and functional primitives. Reliability Engineering &
System Safety, 64(2), 181–200.

49. Sabaliauskaite, G., & Adepu, S. (2017). Integrating six-step model with information flow
diagrams for comprehensive analysis of cyber-physical system safety and security. In Proceed-
ings of IEEE International Symposium on High Assurance Systems Engineering (pp. 41–48).
https://doi.org/10.1109/HASE.2017.25.

50. Akella, R., Tang, H., & McMillin, B. (2010). Analysis of information flow security in cyber-
physical systems. International Journal of Critical Infrastructure Protection, 3(3–4), 157–173.

51. Hasuo, I. (2017). Metamathematics for systems design: Comprehensive transfer of formal
methods techniques to cyber-physical systems. New Generation Computing, 1-35, 1–35.
https://doi.org/10.1007/s00354-017-0023-1.

52. Bliudze, S., Furic, S., Sifakis, J., & Viel, A. (2017). Rigorous design of cyber-physical systems.
Software & Systems Modeling, 2(2), 1–24. https://doi.org/10.1007/s10270-017-0642-5.

http://dx.doi.org/10.1109/HASE.2017.25
http://dx.doi.org/10.1007/s00354-017-0023-1
http://dx.doi.org/10.1007/s10270-017-0642-5

Part III
Application-Specific Design Automation

Methodologies and Tools

Chapter 7
Optimal Design of Distributed
Controllers for Large-Scale
Cyber-Physical Systems

Amer Mešanović, Xiaofan Wu, Simone Schuler, Ulrich Münz, Florian Dörfler,
and Rolf Findeisen

7.1 Introduction

Cyber-Physical Systems (CPSs), such as power systems, can have thousands of
components and span large geographical areas, e.g., the whole of Europe, or the
western interconnection in the USA. Modern life as we know it today strongly
depends on such systems, and they are critical for the operation of many other
systems like transportation systems, factories, hospitals, etc. Centralized control of
large power systems is impractical and challenging due to the need for fast and
reliable communication between all components, possibly located far from each
other. Additionally, a centralized entity would need to be trusted by all participants,
thereby raising privacy concerns. Due to reliance on the centralized controller,

A. Mešanović (�)
Siemens AG, Munich, Germany
e-mail: amer.mesanovic@siemens.com

X. Wu · U. Münz
Siemens Corp., Princeton, USA
e-mail: xiaofan.wu@siemens.com; ulrich.muenz@siemens.com

S. Schuler
GE Renewable energy, Munich, Germany
e-mail: simone@schulers-post.de

F. Dörfler
ETH Zurich, Zurich, Germany
e-mail: doerfler@control.ee.ethz.ch

R. Findeisen
Otto-von-Guericke University Magdeburg, Magdeburg, Germany
e-mail: rolf.findeisen@ovgu.de

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_7

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_7&domain=pdf
mailto:amer.mesanovic@siemens.com
mailto:xiaofan.wu@siemens.com
mailto:ulrich.muenz@siemens.com
mailto:simone@schulers-post.de
mailto:doerfler@control.ee.ethz.ch
mailto:rolf.findeisen@ovgu.de
https://doi.org/10.1007/978-3-030-13050-3_7

182 A. Mešanović et al.

achieving satisfying robustness is also a challenge. Consequently, various dis-
tributed control methods are developed, which can cope with such large distributed
systems.

We specifically focus on the control of frequency oscillations in power systems
in the frequency range of 0.5–10 Hz between groups of power plants, which can
occur across large distances. Sufficient damping of these oscillations is necessary
for power system stability, resilience, as well as optimal operation [1]. Power oscil-
lations in power systems result from a complex interplay between heterogeneous
machine dynamics, sparsely connected grid topologies, and large inter-area power
transfers [1, 2]. They are currently handled by special controllers, so-called Power
System Stabilizers (PSSs). PSSs are local controllers, present in some power plants
to improve Power Oscillation Damping (POD). Currently in practice, PSSs are tuned
manually, without directly considering other power plants in the system. The process
of tuning is iterative and can last up to several months for a single PSS. Typically,
it is done during installation and not adapted until a problem in the system occurs.
Such manual tuning is successful as long as the network and power plants do not
change. Minor variations are present due to periodic load fluctuations, which are
predictable.

This is challenged by the increasing amount of renewable, “low-inertia” gen-
eration [3], leading to large fluctuations in power systems operation. Depending
on the weather conditions, renewable generation changes constantly and will shift
geographically across different areas. Furthermore, if the weather conditions are not
suitable for renewable generation, the percentage of conventional generation will
need to be increased. The constantly shifting mixture of renewable and conventional
generation leads to time-varying oscillatory modes in the system [4, 5]. If not
handled accordingly, the PSSs, which are tuned today for fixed oscillatory modes,
may become less and less effective, and the risk of a blackout increases [6]. Thus,
new control and operation methods are necessary in order to improve the robustness
of electric power systems.

Existing analysis and control methods of inter-area oscillations are based on the
different modal approaches. Typical methods are H∞ optimization, H2 optimiza-
tion, and pole placement for controller synthesis, see, e.g., [7–12]. Other approaches
are sensitivity analysis [13–15], sliding mode controller design [16], the use of
reference models [17], coordinated switching controllers [18], genetic algorithms
based tuning [19], and model predictive control [20]. An overview of different
methods for power oscillation damping can, for example, be found in [21].

We focus on three approaches using H∞ and H2 distributed controller synthesis
for POD in power systems and compare their performance and resulting controller
interconnections. Note that there are many other approaches for this purpose;
however, they cannot be included due to length limitations. The first approach [22]
is based on H∞ optimization to tune the parameters of existing local structured
controllers to the current system state, i.e., the local controllers do not exchange
information. The second [23–26] and third approach [27] allow for communication
between the controllers by introducing wide-area state-feedback controllers to the
system which are designed using H2 and H∞ optimization. They enable the

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 183

consideration of the trade-off between system performance and sparsity of the
required communication links for the control scheme.

The remainder of the chapter is organized as follows: first we introduce the
considered distributed control structures for large CPS in Sect. 7.2, followed by a
review of H∞ and H2 norms in Sect. 7.3. Section 7.4 outlines the three approaches
for distributed controller synthesis. Finally, the considered power system models
are outlined in Sect. 7.5. The three approaches are then applied and compared on an
exemplary power system in Sect. 7.6, before summarizing the chapter in Sect. 7.7.

7.2 Control Architectures in Large-Scale Cyber-Physical
Systems

We first introduce an abstract representation of the considered control problem. This
will be refined for power systems in Sect. 7.5. We consider linear time-invariant
systems H(s) consisting of Ns physical interconnected subsystems Si . The model
of the ith subsystem is given by

Si : ẋi = Aii(Kt i)xi +
Ns∑

j=1,
j �=i

Aij (Kt i , Ktj)xj + Bwi(Kt i)w+ Bui(Kt i)ui

(7.1a)

yi = Cixi +Dwiwi +Duiui , (7.1b)

where xi denotes the state vector of the ith subsystem, w is the disturbance input
vector acting on all subsystems through the physical interconnection, ui are the
control inputs of the ith subsystem, and yi is the performance output of the
ith subsystem. We consider that the subsystems already possess local structured
controllers, i.e., local controllers with a specified structure and which only exploit
local measurements. While the structure is fixed, the parameters of these controllers
can be tuned, and the vector of tunable controller parameters is denoted with
Kt i , leading to parameter-dependent state matrices Aii(Kt i). The interconnection
matrices Aij (Kt i , Ktj) between Si and Sj are, in general, functions of the local
controller parameter vectors Kt i and Ktj . Note that the Aij (Kt i , Ktj) are not
necessarily zero or sparse matrices, leading to possibly many interconnections
between the subsystems. Figure 7.1a shows an exemplary structure of the described
system consisting of three subsystems S1, S2, and S3. Combining the equations from
each subsystem, one obtains the model of the whole system

ẋ = A(Kt)x+ Bw(Kt)w+ Bu(Kt)u (7.2a)

y = Cx+Dww+Duu. (7.2b)

184 A. Mešanović et al.

S1(Kt1)

S2(Kt2)

S3(Kt3)

(u1
T u2

T u3
T)T = K (x1

T x2
T x3

T)T

x1u1 x2u2 x3u3

x1u1

x2

u2

x3u3x1u1 x3u3

u2

x2
u2= K22x2

u3= K33x3u1= K11x1

u2= K22x2+K23x3

u3= K31x1+K33x3u1= K11x1

S1(Kt1)

S2(Kt2)

S3(Kt3)

S1(Kt1)

S2(Kt2)

S3(Kt3) S1(Kt1)

S2(Kt2)

S3(Kt3)

Fig. 7.1 Considered control architectures with different levels of decentralization. Solid lines
between the systems refer to physical links. Dashed lines are communication links. (a) Decen-
tralized control with sole local structured controllers. (b) Fully centralized static control with
local control. (c) Partially decentralized (distributed) static control with local control. (d) Fully
decentralized static control with local control

Distributed control of system (7.2) can be separated into several levels of
decentralization. We explore these levels on the example of static state-feedback
controller synthesis for the control input u, i.e., only static controllers are introduced
to the system. These controllers do not have any internal states, and take as input the
state vector of the system x, whereas the output of the controller is the control input
vector to the system u given by

u =
(

uT
1 ... uT

Ns

)T = K
(

xT
1 ... xT

Ns

)T = K x, (7.3)

where K ∈ R
nu×nx is the distributed controller gain matrix, nu is the number of

controller inputs, and nx is the total number of system states. Thereby, we use the
calligraphic K to denote the gain matrix for distributed control, and the boldface K
to denote the parameter vector of local controllers. The term “static” originates from
the fact that K is a real-valued matrix, and not, e.g., a transfer matrix with internal
states. Centralized controller synthesis using the local control inputs ui is shown

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 185

in Fig. 7.1b. One obtains a centralized controller which uses the states from all
subsystems to calculate the control input for all subsystems, i.e., ui =∑NS

i=1 Kij xj ,
where Kij is the appropriate sub-matrix of K . If one wants to reduce the number
of necessary communication links between the subsystems, it is desirable to SET
some of the matrices Kij to zero. In this way, the technical requirements for the
realization of such a control law, in terms of required communication links, are
lowered, c.f. Fig. 7.1c. Such sparse and communication-based controllers are often
referred to as distributed controllers. In the limit, all off-diagonal elements Kij , with
i �= j , become zero, and one obtains a fully decentralized control law, as illustrated
in Fig. 7.1d combining local controllers consisting of Kt i and Kii . To summarize,
a distributed system can have decentralization levels ranging from fully distributed
control, as shown in Fig. 7.1a, d, various levels of partially distributed control, as
shown in Fig. 7.1c, to a fully centralized control solution, as shown in Fig. 7.1b.

The question arises, however, how the elements [K]ij of the distributed
controller K should be chosen and which should be set to zero to achieve a desired
performance with reduced communication. In general, this is a challenging problem.
Two methods presented in Sects. 7.4.2 and 7.4.3 give a (sub)optimal answer to this
question. We also improve the system performance by tuning only the parameters
of existing local controllers of the subsystems Kt i . For this purpose, the method in
Sect. 7.4.1 is introduced and all three methods are evaluated in Sect. 7.6.

7.3 Norms of Linear Systems

In order to objectively compare different methods for controller synthesis, we first
need numerical performance metrics which can be used as a minimization objective.
The methods presented subsequently in Sect. 7.4 minimize either the H∞ or the H2
norm of a linear system. For this reason, we briefly revise the definition of these two
norms on the linear time-invariant (LTI) system H defined as

H :
{
ẋ = AH x + BH w

y = CH x +DH w
, (7.4)

and H(s) = C(sI − A)−1B +D.
The H∞ norm of a linear system is defined as the maximal amplification of

amplitude of any harmonic input signal in any output direction. Thus, minimizing
the H∞ norm minimizes the amplitude amplification of all oscillation frequencies
after, e.g., a load step. Other interpretations of the H∞ norm for LTI systems are
that it represents the L2-gain or the power-gain of the system. It is defined as [28]

‖H(s)‖∞ = sup
ω∈R

σ (H(jω)) , (7.5)

186 A. Mešanović et al.

where σ (H(jω)) is the largest singular value of the transfer matrix H(jω) for a
given frequency ω. The so-called bounded real lemma provides a useful tool for the
determination of the H∞ norm of linear systems.

Lemma 7.1 ([29]) Consider the continuous-time transfer function H(s). The fol-
lowing statements are equivalent:

• The system H(s) is asymptotically stable and ‖H(s)‖∞ < γ .
• There exists a symmetric positive definite solution P � 0 to the linear matrix

inequality (LMI)

⎛
⎝

AT
H P + PAH PBH CT

H

BT
H P −γ I DT

H

CH DH −γ I

⎞
⎠ ≺ 0, (7.6)

where ≺ and � are used to denote the negative- and positive-definiteness of a
matrix, respectively.

The H2 norm is the second considered cost function for oscillation damping.
One interpretation of the H2 norm is that it represents the total output energy of the
system response after an impulse in the input. Another interpretation is that the H2
represents the amplification of white stochastic disturbances from the input to the
output. The H2 norm of a linear system is defined as

‖H(jω)‖2 =
√∫ ∞
−∞

trace (H(jω)∗H(jω)) dω =
√

trace(BT
H PBH), (7.7)

where P is the observability Gramian of H, see [28]. A more detailed discussion
about the use of the H2 norm, and its use in power systems, can be found in [23, 28].

In case of single-input single-output (SISO) systems, the H∞ norm is the maxi-
mum of the system Bode magnitude plot, i.e., the maximal amplitude amplification,
and the H2 norm graphically represents the area underneath the Bode magnitude
plot.

7.4 Distributed Controller Design Methods
for Large-Scale CPS

This section describes three optimal design methods for distributed controllers,
which are based on H∞ and H2 optimal control synthesis.

The first method, presented in [22], minimizes the H∞ norm of a linear system
by tuning the parameters of structured local controllers. This corresponds to tuning
the parameters Kt i in Fig. 7.1a. With this method, no new controllers are added to
the system, only the existing local controllers are used more efficiently. We call

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 187

this method “structured H∞ controller synthesis of local controllers” subsequently
(SHinf), and it is described in more detail in Sect. 7.4.1.

The second [23] and third [27] method introduce an additional higher-level
control layer. They use H2 and H∞ controller synthesis methods to design
optimal static and distributed state-feedback controllers. This additional control
layer requires fast communication of all system states to the controller, see Fig. 7.1b.
This can be challenging in large CPSs, such as power systems, because fast, reliable,
and time-synchronized communication across large distances is needed. In order to
minimize the dependency on fast communication, these methods also minimize the
number of communication links necessary for the state feedback. Depending on
the desired performance, they achieve a control architecture similar to the one in
Fig. 7.1c, or a fully decentralized architecture as in Fig. 7.1d. We call these methods
subsequently “sparsity-promoting H2 controller synthesis” (SPH2), presented in
Sect. 7.4.2, and “sparsity-promoting H∞ controller synthesis” (SPHinf), presented
in Sect. 7.4.3.

7.4.1 Structured H∞ Controller Synthesis of Local Controllers
(SHinf)

This section summarizes the controller tuning method presented in [22]. This
method minimizes the H∞ norm of system (7.2) by tuning the parameters of local
structured controllers Kt i , i = 1...NS . For this method, the additional control input
u is not used, and we can reduce (7.2) to

x = A(Kt)x+ Bw(Kt)w (7.8a)

y = Cx+Dww. (7.8b)

We denote this system with H1(s, Kt) = Dw + C (sI − A(Kt))
−1 Bw(Kt). We

drop the dependency on the complex variable s subsequently for notational ease
and only write H1(Kt). The controller tuning approach considered here is based on
the bounded real lemma (Lemma 7.1). It enables us to formulate the theorem for the
solution of the controller tuning problem of existing local controllers [22].

Theorem 7.1 Given the system H1(Kt), (7.8), and box constraints Kt,min and
Kt,max on the controller parameters Kt . Then ‖H1(Kt)‖∞ is minimized, while keep-
ing H1(Kt) asymptotically stable, by solving the following optimization problem:

min
P∈RNst×NS ,Kt∈RNt ,γ∈R

γ (7.9a)

s.t. �(γ, Kt , Pμ) =
⎛
⎝

AT (Kt)P + PA(Kt) PBw(Kt) CT

BT
w(Kt)P −γ I DT

w

C Dw −γ I

⎞
⎠ ≺ 0 (7.9b)

188 A. Mešanović et al.

Kt,min ≤ Kt ≤ Kt,max (7.9c)

P = P T � 0. (7.9d)

Note that (7.9) is non-convex due to the nonlinear parameter dependency in the
system matrices A(Kt) and Bw(Kt), and the non-convex term (7.9b). Standard
structured controller synthesis typically only considers linear parameter dependency
with no box constraints or structural constraints on the controller parameters. The
typical synthesis problem is solved by introducing a variable substitution [29];
however, this cannot be done in this case.

We now reformulate (7.9) in order to solve it iteratively in the linear matrix
inequality framework. This is done in the μth iteration by first setting the parameter
vector Kt in (7.9) to the value from the previous iteration Kt,μ−1. In this way, we
obtain the Lyapunov matrix Pμ in the μth iteration

min
Pμ,γ

γ (7.10a)

s.t. Φ(γ, Kt,μ−1, Pμ) ≺ 0 (7.10b)

Pμ = P T
μ � 0. (7.10c)

In order to obtain Kμ, we need to fix P in (7.9) to Pμ. This is conceptually similar
to the classic D-K-iteration. However, this problem is still non-convex due to the
nonlinear parameter dependency in A(Kt) and B(Kt). For this reason, we linearize
A(Kt) and B(Kt) around the parameter vector from the previous iteration Kt,μ−1

AL(Kt) = A(Kt,μ−1)+ ∂A(Kt)

∂Kt

∣∣∣∣
Kt,μ−1

(Kl −Kt,μ−1), (7.11)

and similarly for B(Kt) to obtain BL(Kt). The following convex optimization
problem results from these operations:

min
Kt,μ,γ

γ (7.12a)

s.t. ΦL(γ, Kt,μ, Pμ) ≺ 0 (7.12b)

Kt,min ≤ Kt,μ ≤ Kt,max (7.12c)
∣∣Kt,μ −Kt,μ−1

∣∣ ≤ ΔK, (7.12d)

where |.| is defined component-wise for vectors, and ML is defined as

ΦL(γ, Kt,μ, Pμ) =
⎛
⎝

AT
L(Kt)Pμ + PμAL(Kt) PμBw,L(Kt) CT

BT
w,L(Kt)Pμ −γ I DT

w

C Dw −γ I

⎞
⎠ .

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 189

1: procedure SHINF(H1(Kt),Kt,0)
2: = 1
3: while stopping criteria not satisfied do
4: (P ,) ← Solution of (7.10)
5: H1L(Kt) ← Linearization of H1(Kt) around Kt, −1
6: (Kt, ,) ← Solution of (7.12)
7: ← +1
8: end while
9: return (Kt, ,)
10: end procedure

m

m m

g

g

g

m

m

m

m

Fig. 7.2 Optimization algorithm for solving (7.9)

Constraint (7.12d) is added to (7.12) to define a trust region in which the lineariza-
tion accuracy is preserved by limiting how much one can move away from the
linearization point in one iteration.

Figure 7.2 presents the optimization algorithm for the iterative coordinate descent
method. The inputs are the system H1(Kt), and the initial parameter vector Kt,0.
The iteration is repeated until a stopping criterion is satisfied, e.g., the number of
iterations reaches the specified limit, or the improvement of the H∞ norm is smaller
than the specified limit, etc. Results of the numerical evaluation for this system are
presented in Sect. 7.6.

7.4.2 Sparsity-Promoting H2 Controller Synthesis (SPH2)

This section summarizes the sparsity-promoting optimal control design method
presented in [23, 24]. This method aims to minimize the H2 norm of system (7.2) by
introducing and designing the static state-feedback controller K2 using the sparsity-
optimal control approach introduced in [24, 30]. The trade-off between sparsity and
H2 performance is achieved by tuning of a sparsity emphasis parameter. When
the sparsity emphasis parameter is set to zero, the algorithm recovers the optimal
centralized controller, as shown in Fig. 7.1b. By appropriate selection of the sparsity
emphasis parameter, control structures as shown in Fig. 7.1c, d can be obtained.
For this method, we expand system (7.2) with the static state-feedback controller
u = K2x, and we obtain

ẋ = Ax+ Bww+ Buu (7.13a)

y = Cx+Duu (7.13b)

u = K2x, (7.13c)

where it is required that the matrix Dw is zero, because otherwise the H2 norm of
the system would not be finite. We denote this system as

190 A. Mešanović et al.

H2(s) = (C +DuK2) (sI − A− BuK2)
−1 Bw.

Note that A and B are also functions of the local controller parameters Kt .
These parameters, however, are not modified with this method and we drop this
dependency in this chapter for notational convenience.

The H2 norm of H2 can be calculated with [30]

J (K2) := ‖H2(s)‖2 = trace
(
X(CT C +K T

2 DT
u DuK2)

)
, (7.14)

where X is the solution to the equation

(A+ BcK2)X +X(A+ B2K2)
T = −BwBT

w. (7.15)

A desired trade-off between the system’s performance and the sparsity of K2 is
achieved by solving the optimal control problem [30]

min
K2

J (K2)+ α‖vec(K2)‖0, (7.16)

where the notation vec(K2) creates a vector from the elements of K2 by stacking
all the columns of K2, and ‖ · ‖0 denotes the 0-norm of a vector, i.e., the number
of nonzero elements in the vector.1 The first term of the objective function is
smooth and we can use gradient-based methods to solve it. The second term of the
objective function is non-smooth and non-convex, but has an explicit solution. The
alternating direction method of multipliers (ADMM) takes advantage of different
characteristics of the two terms. To obtain a smooth cost function, the problem is
reformulated into

min
K2

J (K2)+ αg(K2). (7.17)

The regularization term in (7.17) is given by the weighted �1-norm of K2,

g(K2) :=
∑
i, j

Wij |K2ij |,

which is an effective proxy for inducing element-wise sparsity [31]. This problem is
solved iteratively with ADMM. In each iteration, the weights Wij ’s are updated
with the values of K2 from the previous iteration, see Fig. 7.3 and [31] for
details. Problem (7.17) allows the synthesis of sparse state-feedback controllers.
The sparsity level of the matrix K2 depends on the value of the sparsity emphasis
parameter α. By varying α in (7.17), we can control the sparsity level which we want
to achieve in the system. A larger value for α results in more elements of K2 being

1The formulation of (7.16) has been extended to promote block-sparsity in [24].

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 191

1: procedure SPH2(H2)
2: = 1
3: Wi j = 1,∀i, j
4: 2,0 = dense feedback matrix
5: while stopping criteria not satisfied do
6: 2, ← solution of (1.17) via ADMM with 2, −1 as initial value.
7: Wi j ← 1/| 2, ,i j|,∀i, j
8: ← +1
9: end while

10: return (2,)
11: end procedure

m

m m

m m
m

m

Fig. 7.3 Optimization algorithm of the SPH2 method for solving (7.17)

set to zero, however, at the cost of a worse H2 performance. With this method, we
obtain a family of different distributed controllers with varying sparsity levels and
performance. The control designer can then select one with an appropriate sparsity-
performance trade-off.

The details of the sparsity-promoting optimal control algorithm can be found
in [23]. We will perform the numerical evaluation of the SPH2 method in Sect. 7.6.

7.4.3 Sparsity-Promoting H∞ Controller Synthesis (SPHinf)

In this section, we review the sparsity-promoting H∞ controller synthesis presented
in [27]. The objective of this method is to design a linear static feedback matrix K∞
with as many zero entries as possible. This is similar to the SPH2 method; however,
it achieves this with H∞ optimization.

We consider again system (7.2), which is extended by a static state-feedback
controller K∞

ẋ = Ax+ Bww+ Buu (7.18a)

y = Cx+Duu (7.18b)

u = K∞x. (7.18c)

Note that the matrix Dw needs to be set to zero in order for the method presented
here to be applicable to (7.2). We denote this system as

H3(s) = (C +DuK∞) (sI − A− BuK∞)−1 Bw.

The centralized controller, i.e., the K∞ matrix with all entries nonzero, shown in
Fig. 7.1b, uses all possible degrees of freedom and can be designed via convex
optimization [29]. In order to increase the sparsity of K∞, the following theorem is
presented in [27], which is also derived from Lemma 7.1.

192 A. Mešanović et al.

Theorem 7.2 ([27]) The following statements are equivalent:

• There exists a controller K∞ which asymptotically stabilizes the system (7.18),
such that the H∞ norm of (7.18) is smaller than β.

• There exist matrices P1 � 0, diagonal P2 � 0, and full block matrices L∞ and
U∞, such that

Π(P1, P2, L∞, U∞) :=

⎛
⎜⎜⎝

Δ P1Bu +DT
u LT P1Bw CT

BT
u P1 +DuL −P2 0 DT

u

BT
wP1 0 −βI 0
C Du 0 −βI

⎞
⎟⎟⎠ ≺ 0,

(7.19)

with

Δ = AT P1 + P1A− UT∞L∞ − LT∞U∞ + UT∞P2U∞.

In this case, the controller is given by

K∞ = P−1
2 L∞. (7.20)

We refer to [27] for proof of the given theorem. It gives the conditions when a
static state-feedback controller K∞ will achieve a defined H∞ performance β.
From (7.20), it follows that the sparsity pattern of K∞ is the same as the sparsity
pattern of L∞. Consequently, the theorem leads to the following optimization
problem for the sparsity improvement of K∞ under a constant performance
bound β:

min
P1,P2,L∞,U∞

‖vec(L∞)‖0 (7.21)

subject to Π(P1, P2, L∞, U∞) ≺ 0, (7.22)

where the notation vec(L∞) creates a vector from the elements of L∞ by stacking
the columns of L∞, and ‖ · ‖0 denotes the 0-norm of a vector, i.e., the number of
nonzero elements in the vector. The previous problem allows the synthesis of sparse
state-feedback controllers with a guaranteed performance bound; however, due to
the presence of the 0-norm in the cost function, it can be very challenging to solve.
In order to improve the computation time, analogously as in SPH2, the 0-norm is
relaxed into a weighted 1-norm, and we obtain the optimization problem

min
P1,P2,L∞,U∞

‖vec(M∞ ◦ L∞)‖1 (7.23)

subject to Π(P1, P2, L∞, U∞) ≺ 0, (7.24)

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 193

where ◦ denotes the Hadamard (element-wise) product of two matrices, and M∞ =
[mij] is a weighting matrix. If M∞ is chosen to be the element-wise inverse of
L∞ = [lij], i.e., mij = ∞ if lij = 0, and mij = 1/|lij | otherwise, then the weighted
1-norm and the 0-norm coincide. The same reformulation is proposed in the SPH2
method as well. Since the weights depend on the solution of the optimization
problem, this cost function cannot be used to obtain a convex optimization problem.
Thus, an iterative solution, similar to the one presented for the SPH2 method, is
proposed. However, even if the weights are set to a constant value in one iteration,
the term Π in (7.24) is still non-convex, because U∞ is multiplied with other
optimization variables in Π(P1, P2, L∞, U∞).

To solve this problem, the algorithm in Fig. 7.4 is proposed which gives the
SPHinf method its final form. The small positive number ν is introduced in the
algorithm to avoid bad conditioning of the problem when l

ij
k = 0. Step 10 is

introduced because the 1-norm penalizes large values in the cost term MkL∞,k ,
resulting in a controller with small gain values. In Step 10, there is no term
which minimizes these values, and the controller obtained previously can be further
polished. With this algorithm, the problem is reduced to a series of convex linear
matrix inequality problems. The convergence of weighted optimization with the 1-
norm to a local minimum is proven [32]. However, in Fig. 7.4, the constraints are
also changed in each step of the iteration. For this reason, convergence of the SPHinf

1: procedure SPHINF(G)
2: k = 1
3: U ,1 = ,cent , where ,cent is the fully centralized controller which can be obtained

with convex optimization.
4: Choose mi j

0 and a sufficiently small number > 0. Choose > 0
5: while k ≤ kmax or not converged do
6: For fixedU ,k solve the following convex optimization problem

{P∗
1k,P

∗
2k,L

∗
,k} = argmin

P1k
0, diagonal P2k
0,L ,k

∥
∥MkL ,k

∥
∥
1 (7.25a)

s.t. (U ,k,P1k,P2k,L ,k) ≺ 0. (7.25b)

7: UpdateU ,k+1 = P∗
2k

)−1
L∗

,k and mi j
k+1 = (|li jk |+)−1.

8: k ← k+1
9: end while
10: Solve the feasibility problem for the fixed controller structure obtained in Step 7

{P∗
1k,P

∗
2k,L

∗
,k} = argmin

P1k
0, diagonal P2k
0,L ,k

)a62.7(0

s.t. (U ,k,P1k,P2k,L ,k) ≺)b62.7(0

L ,k has fixed controller structure from Step 7. (7.26c)

11: ← (P∗
2k)

−1L∗
,k.

12: return
13: end procedure

b

Fig. 7.4 Optimization algorithm the SPHinf method [27]

194 A. Mešanović et al.

method to a local minimum cannot be guaranteed. However, fast convergence for
many numerical examples is reported in [27]. We perform the numerical evaluation
of the presented method in Sect. 7.6.

7.5 Power System Model

We compare these controller design algorithms for large-scale CPS for a power
system example. For this purpose, we first briefly summarize how power systems
are modeled. In general, power systems consist of power plants (PP) which
are interconnected through power flow equations. Figure 7.5 (left) illustrates the
structure of a power system model, which consists of N power plants PP1, ... PPN .
Each power plant can have an arbitrary structure. This figure has the same structure
as Fig. 7.1b, where PPi corresponds to subsystem Si , and the power flow represents
the interconnection between the subsystems.

7.5.1 Power Grid Model

Each power line and cable in a power grid has an inductance and capacitance which
give itself internal dynamic states. The time constant of these states is in the order
of milliseconds [1]. Since we consider interplant and inter-area oscillations, which
are in the order of several Hz [1], we can neglect the power line dynamics [33], and

Fig. 7.5 Left: Power plants PPi connected by the power flow equations. The vectors PL and QL

represent the active and reactive power of the loads, respectively. Right: Structure of one power
plant model. Each power plant PPi includes the synchronous generator SGi , the turbine and
governor (TGOVi), as well as the automatic voltage regulator (AVRi) and power system stabilizer
(PSSi)

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 195

we model the power grid, which consists of NB buses, with algebraic power flow
equations [1]

Pi =
∑NB

j=1
|Vi ||Vj |

(
Gij cos Δθij + Bij sin Δθij

)
(7.27a)

Qi =
∑NB

j=1
|Vi ||Vj |

(
Gij sin Δθij − Bij cos Δθij

)
, (7.27b)

where Pi = Ppi − PLi and Qi = Qpi − QLi are the injected active and reactive
net-power into the ith bus (node) in the grid by a power plant (PPi) or a load (PLi),
Vi and θi are the magnitude and angle of the voltage phasor at the ith bus, Δθij =
θi−θj , and Gij and Bij are the elements of the conductance and susceptance matrix
of the grid [1]. We assume that all buses with a zero net-power infeed are eliminated
from the system with Kron reduction [34].

We gather all active and reactive powers of the loads: PLi , and QLi , in the vectors
PL and QLi . The load power can change at unknown times, and is thus considered
as a disturbance input w for the system.

7.5.2 Power Plant Model

This section presents the model of a conventional power plant (PP), with the
structure shown in Fig. 7.5 (right). Each power plant has a synchronous generator
(SGi), which converts the mechanical power of the turbine into electrical power. The
rotational speed of the turbine and SGi is controlled by the governor. The coupled
governor and turbine model is denoted with TGOVi . Additionally, the automatic
voltage regulator (AVRi) controls the power plant voltage via the exciter. In order
to increase the system stability and improve power oscillation damping (POD), a
power system stabilizer (PSSi) is often connected to the AVRi .

We present in the following subsections the models used for the different power
plant components.

7.5.2.1 Synchronous Generator Model

The dynamics of the ith synchronous generator are given by 6th-order equations.
The full synchronous generator model is not presented because it is not important
for the subsequent numerical evaluation. The interested reader is referred to [1] for
a detailed explanation of the model.

196 A. Mešanović et al.

7.5.2.2 Controller and Actuator Models

In this subsection, we present exemplary models for the different PP controllers in
Fig. 7.5 (right).

We use in the numerical example the simple AVRi model shown in Fig. 7.7. This
model emulates the controllers and hardware which control the generator terminal
voltage Vi to a constant value via the field winding voltage Ef d,i . As inputs, it needs
the reference terminal voltage Vref,i , the actual/measured terminal voltage Vi , and
the input from the power system stabilizer VPSS,i . The gain parameter KA,i of this
model can be adjusted, marked red in Fig. 7.7. We define an additional input ui for
this model, marked blue in Fig. 7.7, which is used as a control input for the SPH2
and SPHinf methods.

The AVRi tries to achieve a (nearly) constant voltage Vt,i at the PP terminal.
However, this can degrade the POD in the system [1, 35]. This is the reason why
power system stabilizers (PSSi) are built into some PPs [36]. They are controllers
which take as input, e.g., the frequency deviation from the nominal frequency ωs

at the PP terminals, or the PP power infeed, etc. We use the PSS model described
in [1, 7], shown in Fig. 7.8. It consists of two lead-lag filters, a washout filter, and
a gain. All parameters in Fig. 7.8 are red, because every parameter can be freely
specified.

The governor controls the mechanical power Pm,i which the turbine produces
and transfers to the synchronous generator. It takes as input the frequency deviation
of the PP from the nominal frequency ωs . We model the standard IEEE turbine and
governor model TGOVi , c.f. Fig. 7.6. No parameter of the presented model can be
changed.

Summarizing, the controllers, TGOVi , AVRi , and the PSSi are described with
a total of six states, the same as the synchronous generator model. Therefore,
each power plant model comprises of a total of 12 states and 7 tunable controller
parameters. Other parameters cannot be changed in the considered controller
models.

Fig. 7.6 IEEE gas turbine
and governor model TGOV1

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 197

7.5.3 Coupled Linear Power System Model

When we combine the models of the N power plants, described in Sect. 7.5.2,
with the power flow equations (7.27), we obtain the differential-algebraic nonlinear
model

ẋ =f (x, w, Kt , u) 0 = h(x, w, Kt), (7.28)

where x ∈ R
·Nst combines all power plant states in the model, w is the vector of

disturbance inputs (here the active and reactive powers of the load), Kt ∈ R
·Nt is

the vector of tunable parameters of all power plants, i.e., of parameters marked red
in Figs. 7.7 and 7.8, u ∈ R

N is the vector of wide-area control inputs for each PP,
f describes the power plant dynamics, and h represents the algebraic equations
in (7.27). We are interested in rejecting small changes in w in the performance
output y (defined subsequently). Thus, we linearize the system (7.28) around the
steady-state value x0 obtained with the known input w0. After eliminating the
linearized algebraic equations in (7.28), we obtain a linear system of the form

ẋ = A(Kt)x+ Bw(Kt)w+ Bu(Kt)u. (7.29)

Note that the choice of the tunable controller parameters Kt is made such that they
do not change the steady-state of the system. This is done because the steady-state
of power systems results from trade in the electricity market and any deviations
cause additional costs for the power system operator. An additional consequence of
this choice is that the linearization accuracy is unchanged when Kt is tuned, as the
steady-state x0 is not a function of Kt .

Fig. 7.7 Dynamic model of a simple AVRi used, e.g., in [1]. It consists of a gain KA,i and a
transient gain reduction component with the time constants TA,i and TB,i . The gain KA,i , marked
red, is tunable. The input ui is additionally introduced, marked blue, which is used as a control
input for the methods presented in Sect. 7.4

Fig. 7.8 Dynamic model of the simple power system stabilizer (taken from [1, 7]), where KS,i is
the PSS gain, TW,i is the washout time constant, and T1,i–T4,i are the lead-lag filters time constants.
All of the PSS parameters are tunable

198 A. Mešanović et al.

We minimize active power oscillations, which manifest as oscillations in the
generator frequencies ω. Frequency oscillations, in turn, cause oscillations of
generator rotor angles δ relative to each other. Thus, power plant frequencies ωi , and
rotor angles δi are a suitable outputs for observing power oscillations. Additionally,
we want to avoid large control inputs into our system in order to avoid saturations
and hardware limitations. We obtain the following performance output

y = wcond

((
Lperfδ

ω

)
+ u

)
= Cx+Duu, (7.30)

where Lperf is a N × N Laplace matrix defined such that we obtain the difference
between the generator rotor angles [23, 27] as one of the system outputs: Lperf = I−
1
N

11T . An additional multiplication factor of wcond (e.g., wcond = 10) is introduced
to improve the conditioning of the optimization problems of the three methods. This
definition of C and D quantifies the potential and kinetic energy stored in the electro-
mechanical dynamics of the system [23, 27], leading to the overall system G(Kt , s)

ẋ = A(Kt)x+ Bw(Kt)w+ Bu(Kt)u (7.31a)

y = Cx+Duu. (7.31b)

Note that the obtained system has the same form as (7.2). By setting u = 0, or
u = K2x, or u = K∞x, we obtain the setup for the SPinf, SPH2, and SPHinf
method, respectively.

7.5.4 Adaptation of the Power System Model for H2
Optimization

In the power flow equations (7.27), all voltage phasor angles θi can be shifted by
δθ ∈ R without changing the power flow, i.e., by using θi+δθ , where δθ is identical
for all i, we do not change the power flow. Due to this property, the A-matrix
and Lperf have an eigenvalue at zero, which does not allow us to directly apply
the SPH2 optimization method. We introduce in this subsection a transformation
which eliminates the zero-eigenvalue and allows us to apply the SPH2 method. By
expressing the state vector as

x(t) :=
[

δ(t)

r(t)

]
∈ R

n,

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 199

where δ(t) ∈ R
N is the vector of generator rotor angles, and r(t) ∈ R

n−N represents
all other states in the system, we can define the structural properties of the matrices
in (7.31)

A

[
1
0

]
= 0, Lperf 1 = 0, K2

[
1
0

]
= 0.

To eliminate the zero pole from (7.31) we introduce the following coordinate
transformation [23]:

x =
[

δ

r

]
=

[
U 0
0 I

]

︸ ︷︷ ︸
T

ξ +
[
1

0

]
δ̄, (7.32)

where the matrix U ∈ R
N×(N−1) is chosen such that its columns form an

orthonormal basis that is orthogonal to span (1) [23]. The N − 1 eigenvectors that
correspond to the nonzero eigenvalues of Lperf in (7.30) can be used for the columns
of U . In the new set of coordinates, ξ(t) = T T x(t) ∈ R

n−1, the closed-loop system
takes the form

ξ̇ = (Ā+ B̄uF)ξ + B̄ww (7.33a)

y = (C̄ +DuF)ξ , (7.33b)

where

Ā := T T AT, B̄w := T T Bw, B̄u := T T Bu, C̄ := C T,

and F is the controller matrix in the new (ξ) coordinates. The controller matrices K2
and F are coupled by

F = K2 T ⇔ K2 = F T T .

We can use this relation to minimize the number of elements in the K2 matrix,
while at the same time using (7.5.4) to minimize the system H2 norm. This is
achieved by applying the optimization Problem (7.17) to the system (7.5.4), where
we introduce the additional constraint

minimize
F,K2

J (F) + α g(K2)

subject to F T T − K2 = 0,
(7.34)

where the equality constraint ensures the validity of the transformation, and the term
g(K2) increases the sparsity of the K2 matrix. This problem can be solved using
ADMM, as described in [23].

200 A. Mešanović et al.

7.6 Numerical Comparison

We now compare the three methods presented in Sect. 7.4 on a numerical example.
Since SPH2 uses the H2 norm as the performance metric, whereas SHinf and
SPHinf use the H∞ norm, a direct comparison between all three methods is not
straightforward. For this reason, we compare the methods in several aspects on a
numerical example:

• The achieved H∞ and H2 norms and how they correlate in the power system
example.

• The sparsity patterns in the K2 and K∞ matrices achieved by SPH2 and SPHinf,
respectively.

• Impact on the maximal singular value of the transfer function for all methods.
• Time-domain simulations achieved by a disturbance (load) step.

For the comparison, we consider the grid from [1, Example 12.6, p. 813] presented
in Fig. 7.9. The parameters of the transmission grid, as well as the parameters of
power plants, can be found in [1]. All power plants have controllers described in
Sect. 7.5.2.2. The parameters of the TGOV1 controller are T1 = 0.04 s, T2 = 1 s,
T3 = 2 s, kP = 150, and Dt = 0, while the voltage regulator time constants are
set to TA = 1s and TB = 10s, as in [1]. The initial value for the tunable voltage
regulator gain is KA = 200, and for all PSSs: KS = 50.5, T1 = 0.0037 s, T2 =
0.0079 s, T3 = 40.9 s, T4 = 2.1386 s, and TW = 3.9604 s.

As disturbance input w for the optimization, we consider the loads in buses 7 and
9, marked red in Fig. 7.9. All generators are equipped with PSSs in this example
because we consider them as equivalent models for several generators.

The system consists of 48 states and 28 tunable parameters described in
Sect. 7.5.2.2.

7.6.1 Analysis of the System with Initial Parameters

Figure 7.10 shows the simulation of generator frequencies with the initial parame-
ters after a load step in bus 7. In the first 20 s after a load step, poorly dampened
oscillations with a frequency of approx. 3 Hz are present. Afterwards, slow oscilla-

Fig. 7.9 A two-area system from [1, p. 813, Example 12.6]

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 201

0 20 40 60 80 100

59.9997

59.9999

60

60.0001

time(s) time(s)
1 2 3 4 5

59.9997

59.9999

60

60.0001

Fig. 7.10 (left) Generator frequency response after a 100 MW load step in bus 9. Strong
oscillations are present in the system. (right) Zoomed fast oscillations after the load step

Table 7.1 Poorly dampened
modes of the considered
system

Mode Frequency (rad/s) Damping ratio (%)

1 9.74 1.7

2 9.42 2.5

3 7.85 0.9

4 0.13 2.8

5 0.13 3.1

10−1 100 101
−60

−40

−20

20

log w

s
[d

B
]

0

Fig. 7.11 Largest singular value of G(Kt , ω)

tions are noticeable, which are not completely dampened even after 100 s. Table 7.1
presents the weakly dampened oscillatory modes of the system, with damping below
5%, which confirm the analysis of the step response plot.

The singular value plot of the system is shown in Fig. 7.11. The frequencies at
which the peaks occur in Fig. 7.11 correspond to the oscillatory modes in Table 7.1.
The initial system H∞ norm is 7.3, and the H2 norm is 1. Thus, the considered test
system is complex with slow and fast badly dampened oscillatory modes on which
we can test the methods presented in Sect. 7.4.

202 A. Mešanović et al.

7.6.2 Comparison of Optimization Results of SPinf, SPH2,
and SPHinf

We now compare the results of the optimization for the defined test system. The
numerical results are obtained as follows:

• The SPHinf method is only applied once, and an optimized parameter vector
Kt,opt is obtained. With this vector, an H∞ norm of 0.81 and H2 norm of
0.82 are achieved. The optimization problem was implemented in Matlab, using
SeDuMi [37] and Yalmip [38]. The computation time is approx. 120 s.

• For the SPH2 method, we first calculate the centralized controller K2,cent.
Then, we vary the weighting parameter α from 0.001 to approx. 1000 in
40 logarithmically spaced steps and obtain the matrices K2,a , a = 1...40
with increasing sparsity-degrees. With the completely centralized controller, we
obtain an H∞ norm of 0.6824, and an H2 norm of 0.4685. The computation
time for one α is approx. 4 s.

• For the SPHinf method, we also first calculate a centralized controller K∞,cent
which achieves an H∞ norm βcent. We then vary the performance bound β from
1% degradation to approx. 32% degradation in 30 steps, and from 32% to 1000%
compared to βcent in 10 steps.We obtain the matrices K∞,b, b = 1...40 matrices
with increasing sparsity-degrees. For the calculation of K∞,b, we use K∞,b−1 as
an initial value for the “hot-start.” For each controller, the iteration limit for the
1-norm weight update was set to 4 (i.e., kmax = 4 in the algorithm in Fig. 7.4). The
resulting optimization problem was implemented in Matlab, using SeDuMi [37]
and Yalmip [38]. With the completely centralized controller, we obtain an H∞
norm of 0.6653, and an H2 norm of 0.5018. The computation time for one β is
approx. 115 s.

Results obtained with the SPH2 method are shown in Fig. 7.12. The number of
nonzero elements as a function α is shown in Fig. 7.12a, and the achieved H2 and
H∞ norms are shown in Fig. 7.12b. Even though SPH2 does not explicitly optimize
the H∞ norm, it is interesting to see how they correlate for the given system. By
increasing α to approx. 0.003, we can decrease the number of nonzero elements
in K2 from 192 to 89 with only 3% performance degradation in the H2 norm
compared to the initial controller. We denote this controller with ˜K2. Afterwards,
the performance degradation is relatively steep, and by setting the α to 1.3, we obtain
an 85% performance degradation with 32 nonzero elements.

Results obtained with the SPHinf method are shown in Fig. 7.13. The number of
nonzero elements as a function β compared to βcent is shown in Fig.7.13a, and the
achieved H2 and H∞ norms are shown in Fig. 7.13b. SPHinf reduces the number
of nonzero elements to 26 with a 7% performance degradation in the H∞ norm;
however, the H2 norm is increased by 470%. We denote this controller as ˜K∞.
Thus, even though with the SPH2 optimization, the two norms seem to correlate,
this is not the case for the SPHinf method. The method, however, does not use
the full performance degradation available through the constraints, e.g., if a 1000%
degradation of the H∞ norm is allowed, the optimization achieves a degradation of

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 203

10−4 10−3 10−2 10−1 100 101 102 103 104

40

60

80

100

120

Weighting factor a

N
um

be
ro

fn
on

ze
ro

el
em

en
ts

nonzero elements

(a)

10−4 10−3 10−2 10−1 100 101 102 103 104

100

120

140

160

180

200

220

Weighting factor a

R
at

io
to

th
e

ce
nt

ra
liz

ed
co

nt
ro

lle
rn

or
m

(%
)

System H2 norm
System H norm

(b)

Fig. 7.12 Nonzero elements in K2 and the system norms as functions of the weighting γ with the
SPH2 method. (a) Number of nonzero elements in K2. The full controller has 192 elements. (b)
The H2 and H∞ system norms relative to their respective values with the completely centralized
controller

10−1 100 101 102 103
10−1 100 101 102 103

20

40

60

80

100

Max . allowed H norm degradation (%)

N
um

be
ro

fn
on

ze
ro

el
em

en
ts

nonzero elements

0

500

1,000

Max. allowed H norm degradation (%)

D
ec

re
as

e
in

th
e

sy
st

em
no

rm
 (

%
) System H2 norm

System H norm

(a) (b)

Fig. 7.13 Nonzero elements in K∞ and the system norms as functions of performance limit
with the SPHinf method. (a) Number of nonzero elements in K∞. The full controller has 192
elements. (b) The H2 and H∞ system norms relative to their respective values with the completely
centralized controller

Table 7.2 Comparison of
norms of the methods
SPHinf, SPH2, and SPHinf

Norm Initial Kt,opt K2,cent ˜K2 K∞,cent ˜K∞
H∞ 7.3 0.81 0.6824 0.6905 0.6653 0.7137

H2 1 0.82 0.4685 0.4825 0.5018 2.3513

300%. This suggests that it does not converge to a global optimum, as already noted
in [27]. The optimized norms for the different controller parameters are shown in
Table 7.2. Not surprisingly, the best H∞ norm is achieved with K∞,cent, and the
best H2 norm with K2,cent. Interestingly, the degradation of the H2 norm from
K2,cent to ˜K2 and of the H∞ norm from K∞,cent to ˜K∞ is very small, and ˜K2

achieves a better H∞ norm than ˜K∞.

204 A. Mešanović et al.

In summary, the two methods achieve very different results with regard to the
achieved system norms. The SPHinf optimization causes a large increase in the
system H2 norm, which the SPH2 method avoids, causing large differences in the
optimization results regarding the sparsity-performance trade-off. Finally, we also
compare the structures of K2 and K∞.

7.6.2.1 Sparsity of the Obtained Controllers

We first show the structure of the ˜K2 and ˜K∞ matrices in Fig. 7.14. Further
investigations show that SPH2 mostly uses the states of the AVR and PSS of all
generators, as well as the generator angles and frequencies for the state-feedback.
On the other hand, SPHinf mostly uses the states of the same PP for the controller:
e.g., the controller of PP1 uses mostly the states of PP1, with two additional states
from PP2 and PP4.

We also analyze the structures of K2 and K∞ when they both have a similar
number of elements. We chose the case where SPH2 achieves 32 nonzero elements
in the K2 matrix, a performance degradation of the H2 norm of 60%, and of the
H∞ norm of 85%. The SPHinf method achieves 33 nonzero elements in the K∞
matrix, a performance degradation of the H2 norm of 446%, and of the H∞ norm
of 0.2%. The results are presented in Fig. 7.15. SPH2 focuses in this case only on
the states of the PSSs of all PPs, whereas for WHinf, the choice of the necessary
states varies with the PP controller.

5 10 15 20 25 30 35 40 45

1

2

3

4

column number

ro
w

nu
m

be
r

Fig. 7.14 Comparison of nonzero entries of the ˜K2 (blue) and ˜K∞ (red) matrices

5 10 15 20 25 30 35 40 45

1

2

3

4

column number

ro
w

nu
m

be
r

Fig. 7.15 Comparison of nonzero entries of the K2,23 (blue) and K∞,8 (red) matrices which have
32 and 33 nonzero elements, respectively

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 205

10−2 10−1 100 101 102
−60

−40

−20

0

20

w

m
ax

.s
in

gu
la

rv
al

ue
(

)
w

s

Fig. 7.16 Comparison of the singular value plots obtained with the initial system, Kt,opt, K2,cent,
K∞,cent, ˜K∞, and ˜K2

7.6.2.2 Singular Value Plot

We now analyze the impact of the methods on the singular value plot of the system,
which is shown for the initial system in Fig. 7.11. We show the results obtained
with the initial system, Kt,opt, K2,cent, K∞,cent, ˜K∞, ˜K2 in Fig. 7.16. We see that
all methods were able to eliminate the largest peak in the low frequency range.
However, only SPHinf is able to eliminate the peak in the 3 Hz area as well. This
may be due to the fact that SPHinf only tunes the parameters of controllers which
were already designed that specific purpose. All other methods focused on reducing
the max. singular value in the very low frequency area (i.e., in the area of below
0.1 Hz), which cannot be achieved without significant control effort. Interestingly,
all controllers achieve different DC gains (in the low frequency area). Another
interesting observation is that the curve obtained with ˜K∞, which has the worst
H2 degradation of 446%, has also the largest area below the curve, which also
corresponds to the SISO interpretation of the H2 norm.

7.6.2.3 Time-Domain Comparison

Finally, we also compare the time-domain step responses after a load step in bus
7 for the parameterizations Kt,opt, K2,cent, and K∞,cent, shown in Fig. 7.17. Other
time-domain results with SPH2 and SPHinf are visually similar and are thus not
included here due to length limitations. Surprisingly, the SPHinf method achieved
the best POD result for the tested system. A possible cause for this is that external
controllers K cannot provide enough compensation if the internal controllers are

206 A. Mešanović et al.

0 10 20 30 40 50 60 70 80 90 100

59.9997

59.9999

60

60.0001

time(s)

time(s)

time(s)

PP 1
PP 2
PP 3
PP 4

(a)

0 10 20 30 40 50 60 70 80 90 100

59.9997

59.9999

60

60.0001

PP 1
PP 2
PP 3
PP 4

(b)

0 10 20 30 40 50 60 70 80 90 100

59.9997

59.9999

60

60.0001

fr
eq

ue
cy

 (
H

z)
fr

eq
ue

cy
 (

H
z)

fr
eq

ue
cy

 (
H

z)

PP 1
PP 2
PP 3
PP 4

(c)

Fig. 7.17 Time-domain simulation after a load step in bus 7 with the parameterizations Kt,opt,
K2,cent, and K∞,cent. (a) Kt,opt parameterization. (b) K2,cent parameterization. (c) K∞,cent
parameterization

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 207

Table 7.3 Overshoot and settling time to within ±0.004 mHz, which corresponds to a ±2%
bound of the initial steady-state deviation

Initial SHinf SPH2 SPHinf

Overshoot (mHz) 0.2762 0.336 0.2535 0.19

Settling time (s) 138 13 93 85

badly tuned. However, SPHinf also has the largest overshoot after a load step.
Better results with the SPH2 and SPHinf methods could possibly be obtained by
introducing shaping functions; however, this is out of the scope of this chapter. The
overshoot (in %) and the settling time are shown in Table 7.3. Even though SHinf
has the smallest settling time to within a 2% bound of the steady-state deviation,
it achieves the largest overshoot. On the other hand, SPHinf achieves the smallest
overshoot.

7.6.2.4 Computational Complexity

The three methods also have different computational complexities. Overall, the
SPH2 method achieves the fastest solution times, taking approx. 4 s for one α, as it
can be solved in a distributed fashion via ADMM. The SHinf and SPHinf methods,
on the other hand, need to find a positive definite matrices in each iteration using
a centralized optimization, thereby increasing the computation. Consequently, the
SHinf method needs approx. 120 s to find the optimal parameters, and the SPHinf
method needs approx. 115 s for one β.

7.6.2.5 Discussion

Overall, all three methods are able to improve the system behavior. As visible from
the singular value plot in Fig. 7.16, all methods eliminated the resonant peak at
approx. 1 Hz, whereas only SHinf also eliminated the second peak at approx. 3 Hz.
These results indicate that, in the considered system, external controllers may not be
able to compensate all internal resonances in a system, and that tuning of existing
controllers in the system may be necessary.

When comparing SPH2 and SPHinf, they achieved very different results regard-
ing the sparsity-performance trade-off. The cause of the difference is that the
SPHinf method, while minimizing the system H∞ norm, significantly increases
the H2 norm of the considered system. On the other hand, the SPH2 method,
while minimizing the H2 norm, also achieved a good H∞ norm. Consequently,
the sparsity patterns of the obtained controller matrices are also very different.

In the time domain, SHinf achieved the best settling time, however, at the cost
of an increased overshoot. SPH2 and SPHinf decreased both the settling time and
overshoot; however, the 3 Hz oscillation is still present. The presented methods can

208 A. Mešanović et al.

also be combined. Best results could possibly be obtained by combining SHinf with
SPH2 or SPHinf, this is, however, part of future work.

7.7 Conclusions

In this chapter, we reviewed distributed control concepts of cyber-physical systems
and presented three methods which create (sub-)optimal controllers for distributed
systems with varying degrees of decentralization. The first method [22] tunes the
parameters of local structured controllers with H∞ optimization, whereas the sec-
ond [23] and third [27] method create static state-feedback controllers using H2 and
H∞ optimization methods, respectively, with varying degrees of decentralization.
In the second part, we applied these methods for power oscillation damping in power
systems on a test system with four power plants. The chapter is concluded with the
comparison of the numerical results in the time and frequency domain with the
three presented methods, as well as the obtained sparsity results. Overall, the SPH2
method outperformed the SPHinf method regarding the computation time, while the
time-domain results look similar. On the other hand, the SHinf method achieved the
best results in the time domain, while having the longest computation time.

References

1. Kundur, P. (1993). Power system stability and control. New York: McGraw-Hill.
2. Sauer, P., & Pai, M. (2007). Power system dynamics and stability. Champaign, IL: Stipes

Publishing LLC.
3. REN21. (2018) Renewables 2018 global status report. [Online]. Available: http://www.ren21.

net/gsr-2018/
4. Al Ali, S., Haase, T., Nassar, I., & Weber, H. (2014). Impact of increasing wind power

generation on the north-south inter-area oscillation mode in the European ENTSO-E system.
IFAC Proceedings Volumes, 47(3), 7653–7658.

5. Preece, R., & Milanovic, J. (2014). Tuning of a damping controller for multiterminal VSC-
HVDC grids using the probabilistic collocation method. IEEE Transactions on Power Delivery,
29(1), 318–326.

6. Milano, F., Dörfler, F., Hug, G., Hill, D. J., & Verbič, G. (2018). Foundations and challenges
of low-inertia systems. In Power Systems Computation Conference (PSCC) (pp. 1–25).
Piscataway: IEEE.

7. Raoufat, M., Tomsovic, K., & Djouadi, S. (2016). Virtual actuators for wide-area damping
control of power systems. IEEE Transactions on Power Systems, 31(6), 4703–4711.

8. Pipelzadeh, Y., Chaudhuri, N., Chaudhuri, B., & Green, T. (2017). Coordinated control of
offshore wind farm and onshore HVDC converter for effective power oscillation damping.
IEEE Transactions on Power Systems, 32(3), 1860–1872.

9. Zhu, C., Khammash, M., Vittal, V., & Qiu, W. (2003). Robust power system stabilizer design
using H∞ loop shaping approach. IEEE Transactions on Power Systems, 18(2), 810–818.

10. Befekadu G., & Erlich, I. (2005). Robust decentralized structure-constrained controller design
for power systems: An LMI approach. In Conference on Power Systems Computation.

http://www.ren21.net/gsr-2018/
http://www.ren21.net/gsr-2018/

7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems 209

11. Mahmoudi, M., Dong, J., & Tomsovic, K. (2015). Application of distributed control to mitigate
disturbance propagations in large power networks. In North American Power Symposium
(NAPS), 2015 (pp. 1–6). Piscataway: IEEE.

12. Preece, R., Milanovic, J., Almutairi, A. M., & Marjanovic, O. (2013). Damping of inter-area
oscillations in mixed AC/DC networks using WAMS based supplementary controller. IEEE
Transactions on Power Systems, 28(2), 1160–1169.

13. Marinescu, B., Mallem, B., Bourles, H., & Rouco, L. (2009). Robust coordinated tuning
of parameters of standard power system stabilizers for local and global grid objectives. In
PowerTech, Bucharest. Piscataway: IEEE.

14. Rouco, L. (2001). Coordinated design of multiple controllers for damping power system
oscillations. International Journal of Electrical Power & Energy Systems, 23(7), 517–530.

15. Borsche, T., Liu, T., & Hill, D. J. (2015). Effects of rotational inertia on power system damping
and frequency transients. In 54th Annual Conference on Decision and Control (CDC) (pp.
5940–5946). Piscataway: IEEE.

16. Liao, K., He, Z., Xu, Y., Chen, G., Dong, Z., & Wong, K. (2017). A sliding mode based
damping control of DFIG for interarea power oscillations. IEEE Transactions on Sustainable
Energy, 8(1), 258–267.

17. Yaghooti, A., Buygi, M., & Shanechi, M. (2016). Designing coordinated power system
stabilizers: A reference model based controller design. IEEE Transactions on Power Systems,
31(4), 2914–2924.

18. Liu, Y., Wu, Q. H., & Zhou, X. X. (2016). Coordinated switching controllers for transient
stability of multi-machine power systems. IEEE Transactions on Power Systems, 31(5), 3937–
3949.

19. Taranto, J., do Bomfim, A., Falcao, D., & Martins, N. (1999). Automated design of multiple
damping controllers using genetic algorithms. In Proceedings of the IEEE Power Engineering
Society. Winter Meeting (pp. 539–544). Piscataway: IEEE.

20. Fuchs, A., Imhof, M., Demiray, T., & Morari, M. (2014). Stabilization of large power systems
using VSC-HVDC and model predictive control. IEEE Transactions on Power Delivery, 29(1),
480–488.

21. Obaid, Z. A., Cipcigan, L., & Muhssin, M. T. (2017). Power system oscillations and control:
Classifications and PSSs’ design methods: A review. Renewable and Sustainable Energy
Reviews, 79, 839–849.

22. Mešanović, A., Unseld, D., Münz, U., Ebenbauer, C., & Findeisen, R. (2018). Parameter tuning
and optimal design of decentralized structured controllers for power oscillation damping in
electrical networks. In American Control Conference (ACC) (pp. 3828–3833). Piscataway:
IEEE.

23. Wu, X., Dörfler, F., & Jovanović, M. R. (2016). Input-output analysis and decentralized optimal
control of inter-area oscillations in power systems. IEEE Transactions on Power Systems,
31(3), 2434–2444.

24. Wu, X., & Jovanović, M. R. (2017). Sparsity-promoting optimal control of systems with
symmetries, consensus and synchronization networks. Systems & Control Letters, 103, 1–8.

25. Dörfler, F., Jovanović, M., Chertkov, M., & Bullo, F. (2014). Sparsity-promoting optimal wide-
area control of power networks. IEEE Transactions on Power Systems, 29(5), 2281–2291.

26. Dörfler, F., Jovanović, M., Chertkov, M., & Bullo, F. (2013). Sparse and optimal wide-area
damping control in power networks. In American Control Conference (ACC) (pp. 4289–4294).
Piscataway: IEEE.

27. Schuler, S., Münz, U., & Allgöwer, F. (2014). Decentralized state feedback control for
interconnected systems with application to power systems. Journal of Process Control, 24(2),
379–388.

28. Scherer, C., & Weiland, S. (2015). Linear matrix inequalities in control, lecture notes.
[Online]. Available: http://www.mathematik.uni-stuttgart.de/opencms/opencms/fak8/imng/
lehrstuhl/lehrstuhl_fuer_mathematische_systemtheorie/lehre_/lecurenotes/LectureNotes.pdf

29. Gahinet, P. & Apkarian, P. (1994). A linear matrix inequality approach to H∞ control.
International Journal of Robust and Nonlinear Control, 4(4), 421–448.

http://www.mathematik.uni-stuttgart.de/opencms/opencms/fak8/imng/lehrstuhl/lehrstuhl_fuer_mathematische_systemtheorie/lehre_/lecurenotes/LectureNotes.pdf
http://www.mathematik.uni-stuttgart.de/opencms/opencms/fak8/imng/lehrstuhl/lehrstuhl_fuer_mathematische_systemtheorie/lehre_/lecurenotes/LectureNotes.pdf

210 A. Mešanović et al.

30. Lin, F., Fardad, M., & Jovanović, M. R. (2013). Design of optimal sparse feedback gains via the
alternating direction method of multipliers. IEEE Transactions on Automatic Control, 58(9),
2426–2431.

31. Candès, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted �1
minimization. Journal of Fourier Analysis and Applications, 14, 877–905.

32. Fazel, M., Hindi, H., & Boyd, S. P. (2003). Log-det heuristic for matrix rank minimization
with applications to Hankel and Euclidean distance matrices. In American Control Conference
(ACC) (Vol. 3, pp. 2156–2162). Piscataway: IEEE.

33. Schiffer, J., Zonetti, D., Ortega, R., Stanković, A. M., Sezi, T., & Raisch, J. (2016). A survey on
modeling of microgrids-from fundamental physics to phasors and voltage sources. Automatica,
74, 135–150.

34. Dörfler, F. & Bullo, F. (2013). Kron reduction of graphs with applications to electrical
networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 150–163.

35. Hanson, O., Goodwin, C., & Dandeno, P. (1968). Influence of excitation and speed control
parameters in stabilizing intersystem oscillations. IEEE Transactions on Power Apparatus and
Systems, 87(5), 1306–1313.

36. Kundur, P., Berube, G., Hajagos, L., & Beaulieu, R. (2003). Practical utility experience with
and effective use of power system stabilizers. In Power Engineering Society General Meeting,
IEEE (Vol. 3, pp. 1777–1785). Piscataway: IEEE.

37. Sturm, J. F. (2017). Using SeDuMi 1.05, A Matlab Toolbox for Optimization Over Symmetric
Cones. [Online]. Available: https://sedumi.ie.lehigh.edu/?page_id=58

38. Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In IEEE
International Conference on Robotics and Automation (pp. 284–289). Piscataway: IEEE.

https://sedumi.ie.lehigh.edu/?page_id=58

Chapter 8
Model-Driven Software Design
Automation for Complex Rehabilitation

Pranav Srinivas Kumar and William Emfinger

8.1 Introduction

Powered wheelchairs (PW) [14] are widely used around the world [68] by people
with motor, sensory, or cognitive impairments for their everyday mobility needs.
The speed and direction of the PW drive mechanism are controlled using inte-
grated joystick controllers. Traditional joystick-based PW control has numerous
drawbacks, e.g., along corridors, joystick jerks induced by uncontrolled motions
are a source of wall collisions. To address such issues, researchers have leveraged
technologies developed in the domain of mobile robotics to create smart and
autonomous wheelchairs using alternative control systems such as vision [59], head
joysticks [56], smart wearable devices [70], and natural language [72]. There is
an evident trend towards increased and higher-level autonomy in PW designs. The
trend is evident in mobile robotics in general, e.g., self-driving cars, unmanned aerial
vehicles, and warehouse robots. These robots are tasked with understanding the
world around them, planning actions, and in the case of PW, interacting with the
humans that also occupy that world.

Mobile robots cover many layers of the software stack: from low-level physical
dynamics, sensing, actuation, and control to high-level requirements such as goal
specification, coordination, and fault tolerance. While existing tools provide support
at different layers, e.g., Simulink [69], ROS [63], Gazebo [44], etc., designers are
often left to navigate a large set of independent tools, systems, and methods. The
ultimate challenge with software development is managing complexity, so that

P. S. Kumar (�)
Siemens Corporation, Princeton, NJ, USA
e-mail: pranav.kumar@siemens.com

W. Emfinger
Permobil, Lebanon, TN, USA
e-mail: william.emfinger@permobil.com

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_8

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_8&domain=pdf
mailto:pranav.kumar@siemens.com
mailto:william.emfinger@permobil.com
https://doi.org/10.1007/978-3-030-13050-3_8

212 P. S. Kumar and W. Emfinger

artifacts that satisfy some objectives, e.g., functionality, performance, resilience,
etc., can be produced with acceptable levels of effort. Increased autonomy in mobile
robotic systems has created increased complexity in software design and engi-
neering. These robots operate in homes, on roads, and in warehouses, performing
safety-critical missions such as transportation and medical surgery. The algorithms
that govern these mobile robots are also pushing the limits of theories and tools at
our disposal for design, implementation, and verification. Software implementation
is prompting the use of new and novel software architectures and components, e.g.,
neural networks. In order to reduce deployment surprises and enable rigorous testing
of robotic software, integrated robotics development platforms are being utilized.

Many of these platforms (discussed in Sect. 8.2) apply model-driven engineering
(MDE) [66]. Models represent requirements, structure, behavior, deployment, etc.,
of the engineered system. Communicating design decisions via models helps
engineers to develop a common understanding of the system. Following a model-
driven workflow for software has its challenges though, as there needs to be
consistency between models and implementation code. A number of platforms offer
code generation from models, but the generated code is just a skeleton for a full
implementation, i.e., a human needs to provide further details. Nevertheless, MDE
is useful as models can express properties of the software that are hard to discern
from the implementation. Understanding how a complex system operates is essential
to future changes, maintenance, and analysis. Thus, even if models are disconnected
from the implementation code, they are a valuable resource in the design process.

In this chapter, we present our experiences using MDE for the software engi-
neering of a domain-specific use-case: distributed, real-time embedded software for
the Permobil SmartDrive MX2+ PushTracker, shown in Fig. 8.1. This is a power-
assist drive system for manual wheelchairs and our system under test (SUT). We
present two MDE tools: ROSMOD [47] and HFSM Design Studio [18], used for

Fig. 8.1 The SmartDrive
MX2+ attached to a
rigid-frame manual
wheelchair

8 Model-Driven Software Design Automation for Complex Rehabilitation 213

engineering this SUT. In the next section, we discuss various state-of-the-art tools
and frameworks for MDE, focusing on robotic CPS. This is followed by sections
on ROSMOD and HFSM Design Studio. The next section introduces two example
complex rehabilitation systems and presents the MDE workflow. The final sections
summarize the observations and outline our vision for the next stage in design
automation.

8.2 Background and Related Research

The background and related research is divided into two subsections covering
different aspects of robotics software development: (1) MDE tools in robotics
and (2) middleware technologies in robotics. MDE tools cover the design-time
modeling aspect of robotics research and middleware technologies cover the run-
time distributed communications aspects of mobile robots. Both these areas are
equally important for PW and active areas of research. In later sections, we discuss
how both these aspects are considered in our own MDE tools.

8.2.1 Model-Driven Engineering in Robotics

In the last decade, the robotics community has seen a large number of libraries
and tools, developed by research labs and universities, providing modeling [69],
simulation (e.g., Gazebo [44]), and distributed run-time frameworks (e.g., ROS
[63]). To a large extent, frameworks like these help to rapid prototype robotic
systems. More recently, integrated system-level analysis methodologies are being
integrated into such frameworks [22, 45] that can help engineers and system
integrators at design-time to estimate properties such as trigger-to-response times,
deadline violations, and synchronization issues. MDE has been widely applied
in domains such as avionics and automotive engineering. Motivated by the gains
in workflow efficiency, correct-by-construction modeling, and rapid prototyping
that MDE provides, the software engineering community in robotics has gradually
moved in this direction [65].

MDE, however, cannot be directly applied to CPS like robotic systems due
to the highly changing, dynamic environments in which robots are deployed.
The unpredictability and non-determinism span various layers of the software
development life-cycle, from requirements, specification, design, implementation,
and deployment. The system cannot be realized fully with a unidirectional workflow
from requirements to deployment since neither the design space nor the run-time
environments can be modeled in its entirety as in traditional embedded systems.
So, the current trend in MDE for robotics is to generate containers where engineers
can insert hand-written code called business logic. The business logic provides the
core logic of the state machine of the robot, where engineers interface with external

214 P. S. Kumar and W. Emfinger

libraries to interact with sensors and actuators. The rest of the robot software, e.g.,
code for distributed communication, the build system, time-triggered operation,
etc., are fully generated based on the requirements specification of the engineers.
In this section, we describe a few model-driven development approaches, such as
ROSMOD, that have been developed for robotics.

The BRICS component model [6] is based on model-driven development and
separation of concerns. The syntax of the system model is represented by a
connector-port-connector (CPC) meta-model, and the semantics is mapped to
communication, computation, configuration, coordination, and composition. BRICS
components represent computation and can be composed. A composite component
contains a coordinator, a piece of software responsible for starting and stopping
the computational components. Ports represent types of communication and BRICS
allows ports for dataflow, events, service calls, etc. Connectors connect two
compatible ports.

RobotML [12] is a domain-specific modeling language for designing, simulating,
and deploying robotic applications. It is developed and integrated as part of the
PROTEUS [54] project. The domain model consists of architecture, communication,
behavior, and deployment meta-models. The architectural model defines (1) the sys-
tem structure using a CPC model, and (2) data types, mission, and platform-specific
properties. The communication model specifies the ports and port types—dataflow
or services. The behavioral model uses state machines. Specific tasks are associated
with states and transitions are mapped to specific algorithms. The deployment
model specifies the assignment of each component to a target robotic middleware or
simulator.

Similarly, the V3CMM [13] component model consists of different views of
a robotic system—structural, coordination, and algorithmic views. The structural
view provides a static view of the components in the system, the coordination
view describes event-driven behavior of the components, and the algorithmic view
describes the algorithms executed by each component based on its current state. The
coordination model is defined using UML state machines [48] and the algorithmic
view is specified using UML activity diagrams [16].

8.2.2 Middleware in Robotics

Middleware is a software that connects software components or applications.
Middleware consists of a set of services that allow multiple processes running
on one or more devices to interact with each other. This technology has evolved
to provide inter-operability in distributed applications. Middleware sits in the
“middle” between the applications that may be running on multiple operating
systems and could be imagined as a layer that operates between the application
code and the run-time infrastructure. Middleware generally consists of a library of
functions, and enables applications to use these functions from the common library
rather than re-implement them for each application. Middleware, for this reason,

8 Model-Driven Software Design Automation for Complex Rehabilitation 215

provides reusability, portability, reliability, and simplifies the development process
by managing the complexity.

Robotic systems middleware are a set of projects that all share the same basic
concepts and goals, help improve the development process for robotic software—
scenarios where many hardware and software components need to communicate and
collaborate to reach a common goal. Robotic software applications, through the use
of middleware technologies, have moved to a separation-of-concerns approach, e.g.,
“get sensor reading,” “apply edge detection algorithm,” “drive motor at speed x,”
etc. Components can exchange data using the common middleware communication
framework and remain consistent across applications. This enables code reuse
among different projects and applications.

Robot operating system (ROS) [63] is an open-source meta-operating system,
the most popular robotics middleware. ROS provides services expected from an
operating system, including hardware abstraction, low-level device control, imple-
mentation of commonly used functionality, message passing between processes and
package management. ROS is aimed at primarily enabling code reuse in robotics
for the development and release of software packages that perform a large set of
common robotic tasks. The ROSMOD communication middleware is based on ROS.

The OROCOS [4] project aims at becoming a general-purpose, robot control
software package that provides open-source software where developers can build
sub-systems and modules without needing to deal with the code for the entire
system. OROCOS is composed of C++ libraries provided through the OROCOS
real-time toolkit (RTT), enabling the development of real-time component-based
applications. This library allows designers to build configurable and interactive
control systems and scripting interfaces. The communication interface is CORBA
[67] and components can be configured using XML files. The OROCOS kinematics
and dynamics library (KDL) [5] provides an application-independent framework
for modeling and computation of kinematic chains, bio-mechanical human models,
machine tools, etc. Orca [49] is an open-source framework for the development
of component-based robotic software. Orca and OROCOS differ in the underlying
communication framework. While OROCOS uses CORBA, Orca uses ZeroC [76],
an Internet Communications Engine. Orca also provides some libraries for common
applications and tools to simplify component development.

BRICS [6] is a middleware initiative to identify and document best practices in
the development of complex robotic systems, refactoring existing components to
achieve reusability and robustness with support for well-structured tool chains and
configurable component code. This project aims to provide structure and formal-
ization for developing robots and for increasing inter-operability of robot hardware
and software components through well-defined interfaces on its component model
and by providing a BRICS integrated development environment (BRIDE) based
on the Eclipse [11] platform. BRICS, through BRIDE, supports model-based and
component-based code generation for various robotics libraries such as OROCOS
and ROS.

216 P. S. Kumar and W. Emfinger

8.3 ROSMOD

Component-based software engineering (CBSE) and development [8, 36, 60] has
become an accepted practice for tackling software complexity in large-scale embed-
ded robotic software. CBSE tackles escalated demands with respect to requirements
engineering, high-level design, error detection, tool integration, verification, and
maintenance. The widespread use of component technologies in the market has
made CBSE a focused field of research in the academic sectors. Applications are
built by assembling together small, tested component building blocks that imple-
ment a set of services. These building blocks are typically built from design models,
class diagrams, or imported from other projects/vendors and connected together via
exposed interfaces, providing a black box approach to software assembly.

ROSMOD [20, 21, 47] is a CBSE platform for distributed robotics using ROS.
ROSMOD consists of two parts: a modeling toolsuite and a run-time platform. The
modeling toolsuite, developed in WebGME [52], enables developers to graphically
model and implement their ROS applications. Coupling this with run-time tools
allows for cross-compilation, automated deployment on both desktop and embedded
platforms, and monitoring of these applications. In prior work, we have used
ROSMOD for design automation and analysis of various distributed CPS, e.g.,
fractionated spacecraft [15, 57], robotics [47], etc.

8.3.1 Component Model

The ROSMOD component model defines the basic software units that can be used
to assemble applications. An application can be distributed across several processes,
and each process has one or more components. Figure 8.2 shows the anatomy
of an application containing two processes created using ROSMOD components.

Fig. 8.2 Anatomy of a ROSMOD application

8 Model-Driven Software Design Automation for Complex Rehabilitation 217

Fig. 8.3 ROSMOD component

The first process hosts two components: planner and actuator, the second process
contains a single component: sensor. The components interact with each other via
the generated “glue” code that connects them to the middleware layer.

Figure 8.3 provides an overview of a component. A component can have four
different kinds of ports: publisher, subscriber, server (provided interface), and
client (required interface). Publisher ports publish messages, without blocking,
on a message topic. Subscriber ports subscribe to such topics and receive all
messages published on the topic. This interaction implements an anonymous topic-
driven publish–subscribe message passing scheme [26]. Server ports provide an
interface to a service. Client ports can use this interface to call such services,
exercising a blocking peer-to-peer synchronous remote method invocation [23].
Lastly, components can be triggered periodically or sporadically with timers.

A ROSMOD component is single-threaded; at most one thread can be active in
a component at any time. All component operations are serially scheduled based on
the associated triggers. Figure 8.4 shows the interaction between a periodic trigger,
the ROS middleware, and the component. The middleware launches the operations
associated with the trigger when the trigger becomes active. A time-based trigger
will generate timeout events at a specified rate. If the operation is not completed
within the time deadline specified, an anomaly is detected and reported.

Triggers may be used to realize the following interaction patters:

• Periodic Publisher (Time Trigger with Publisher): This pattern relies on an
operation in a component that publishes data at a periodic rate.

• Periodic Client (Time Trigger with Client): Similarly, a time-triggered client can
be specified. This enables a component to periodically refresh itself with new
data from another component.

• Periodic Subscriber (Time Trigger with Subscriber): This pattern can be used to
implement a “pull” subscriber operation that is triggered periodically.

• Aperiodic Subscriber (Event Trigger with Subscriber): This pattern will allow
the implementation of a “push” subscriber operation, which gets triggered only
when data is available.

218 P. S. Kumar and W. Emfinger

Fig. 8.4 Interaction of a time trigger and component

Inside a component, once a trigger has started an operation, it is possible to daisy-
chain the calls by directly invoking other operations as functions. However, care
should be taken because the deadline of the first operation must account for the
longest chain of other operations that can be called as part of the first operation
[45].

8.3.2 Model-Driven Development Toolsuite

The development process for ROSMOD applications can be realized in two ways:

1. The conventional process: The application developer constructs all the software
using an implementation language (e.g., C++) and using middleware libraries
to access the services provided by ROS. Technically, the developer can develop
applications using the core interfaces provided by ROS libraries, but this involves
tedious low-level coding and re-building functionality that is provided by the
middleware libraries. The developer delivers the application (as source or object
code) and the meta-data, as required by the system integrator.

2. The model-driven process: The application developer performs the system design
and the high-level specification of the application using model-based tools (e.g.,
an architecture modeling language with graphical tool support), uses the tools
to generate the infrastructure (“glue”) code needed to integrate the application
logic with ROS libraries, and adds the “business logic” of the application using
an interactive development environment. In this scheme, the developer uses the
well-established, conventional code development style for implementing the core
application functionality, and all the low-level, glue code is auto-generated from

8 Model-Driven Software Design Automation for Complex Rehabilitation 219

Fig. 8.5 Model-driven development for ROSMOD. The developer icon in this figure was made by
Vectors Market [30] from www.flaticon.com [29]

the models. The developer delivers the application (as source or object code) and
the models of the application (from which the glue code and the meta-data will
be re-generated by the system integrator).

The model-driven process is outlined in Fig. 8.5.
The ROSMOD toolsuite includes tools for MDE, including an extensible

domain-specific modeling language and its supporting visual modeling environ-
ment, the various software generators that produce code and other implementation
artifacts, and model-driven tools for model analysis and verification. Other model-
driven tools can be used as well. For instance, the business logic of applications
can be developed using Simulink/Stateflow and the resulting models (and the code
generated from them) integrated into the final application. In the next section, we
briefly discuss one such tool: a design environment for modeling hierarchical finite
state machines, called the HFSM Design Studio.

8.3.3 HFSM Design Studio

Finite state machines (FSM) [32] have long been used to model and analyze event-
driven reactive systems, e.g., embedded devices. Devices react to some kind of
external or internal stimuli which leads to an action and, eventually, to a change of
state. Due to their finite nature, FSM are more amenable to analysis and synthesis
than alternative control models, e.g., with FSM, a designer can enumerate the set
of reachable states of the system to determine that a particular unsafe state cannot
be reached. Most modern computer systems have both complex control flow and

www.flaticon.com

220 P. S. Kumar and W. Emfinger

concurrency. Thus, combining FSM with concurrent models of computation is a
popular design choice [1, 34, 50, 51, 74].

Plain FSM are flat and sequential, which is a major weakness. Most practical
systems have a very large number of states and transitions. Representation and
analysis become difficult. In a hierarchical FSM (HFSM), a state may be further
refined into another FSM. Harel’s statecharts [34] are an example of HFSM.
Composing FSM does not reduce the number of states nor does it add anything to the
model of computation. However, it significantly reduces the number of transitions,
enables more explicit code modularity, and makes FSM more intuitive and readable.

HFSM allow engineers to find defects early in the design phase. To decrease the
cost of poor software quality, it is important to find defects as early as possible in
the development process. During a software design cycle, it is typical to find defects
related to unclear, incomplete, or missing requirements. In embedded software such
defects can lead to very costly redesigns or even to the reconstruction of the entire
system. There is a definite need for early, integrated testing and simulation to
identify architectural and behavioral defects in embedded software.

It is easily possible to execute a state machine in a simulator and allow the
user to send events to the machine and observe how the HFSM reacts to the sent
stimuli. This way, the user can interactively test the model and improve it where
necessary. Depending on the embedded system, this type of testing may not be
possible with the actual target platform. Also, for UML state machines [48], the
OMG has specified a set of well-formedness rules within the UML specification
[62], e.g., “Final states must only have incoming transitions.” These rules as well as
a number of additional rules [33] can be automatically checked by a model checker
during the design phase.

Once a HFSM has been checked, the implementation can start. HFSM can be
tricky to code by hand, especially in highly composite cases. When new transitions
or states have been added to the HFSM, one wishes to have a generator at hand
taking over all the error-prone placement of entry, exit, and action code associated
with states or transitions. Automatic code generation has many benefits, especially
if a model checker is integrated in the generator and can perform a large number of
checks automatically. It must be said that automatic code generation does not make
source code analysis needless. Static code analysis tools have been evolving for
more than two decades [17]. Both model checking and code analysis complement
each other quite well and tools should make sure that the generated code is not in
conflict with code analysis tools.

ROSMOD has an integrated/HFSM Design Studio [18, 19], a WebGME applica-
tion for constructing UML state machines. The design studio includes a visualizer,
called HFSMViz, and a simulation environment. Figure 8.6 shows a toy example.
WebGME plugins are available for generating executable code directly from these
HFSM models. We discuss more about how this environment is used for our PW
software in the next section.

8 Model-Driven Software Design Automation for Complex Rehabilitation 221

Fig. 8.6 Example HFSM modeled in HFSM Design Studio

8.4 Case Studies

8.4.1 PushTracker

The PushTracker is a Bluetooth low-energy (BLE) wearable activity tracker for
manual wheelchair users. It is designed to be usable by people with varying degrees
of ability and allows the users to control a light-weight power-assist drive system
for their wheelchair—the SmartDrive. The SmartDrive easily attaches within the
footprint of both folding and rigid-frame manual wheelchairs. These two products,
collectively the SmartDrive MX2+ PushTracker (Fig. 8.7), operate together through
a BLE connection over which they transmit control and status information, and over-
the-air (OTA) software updates.

The PushTracker is comprised of the following functional components:

Bluetooth Radio/Processor The BLE radio is the only micro-processor on-board
the PushTracker and is the architecture for which the software is developed. It
provides the main function of the PushTracker—the connectivity and communica-
tion with the SmartDrive. Additionally, it also provides the connectivity to mobile
applications for data and OTA updates.

222 P. S. Kumar and W. Emfinger

Fig. 8.7 The SmartDrive
MX2+ PushTracker
power-assist drive system for
manual wheelchair users

OLED Display The OLED display provides the main interface to the user for
showing their activity measures for the day, the status of the SmartDrive, and the
configuration controls for both the PushTracker and SmartDrive.

Status LEDs Status LEDs are used to provide secondary visual feedback to the
user that can be viewed from different angles of the PushTracker. These lights are
designed to be visible while the PushTracker is worn and the user’s hands are on the
hand-rim of their PW. This allows users to maintain a position of control over their
PW while still being able to see important information, shown by different patterns
of color and blinks.

Push Buttons The two push buttons provide the primary means of input to the
PushTracker, controlling the PushTracker’s power, the connection to and control
of the SmartDrive, and the auxiliary interfaces to the configuration menu and
connectivity to the mobile applications. In addition to the tactile feedback from
pressing the buttons, status LEDs on the face of the PushTracker illuminate while
the user is pressing the buttons to inform them that the PushTracker is registering
their input.

Accelerometer The accelerometer is responsible for detecting the various actions
of the user, including when they (1) push their PW, (2) perform different types of
tap gestures, and (3) reorient their wrist. All of these actions make up the different
gestures that the user can use as various control inputs to the PushTracker, e.g., if
the user holds the PushTracker level, the status LEDs will turn blue indicating that
the user can then perform a double tap gesture to toggle the power-assist system.
While the PushTracker is running, it is constantly using the accelerometer to look
for these gestures and to count the number of pushes the user is performing. These
gestures provide a convenient control interface for the PushTracker for users with
limited hand and finger dexterity.

8 Model-Driven Software Design Automation for Complex Rehabilitation 223

Vibration Motor The vibration motor allows the PushTracker to provide non-
visual feedback to the user during critical periods of activity where the user must
pay attention, e.g., when they are engaging the SmartDrive while maneuvering their
PW. This feedback provides yet another level of support to the user and enables safe
and effective operation of the SmartDrive.

Real-Time Clock Finally, the real-time clock (RTC) provides a low-power reliable
time source for use with data logging and display to the user.

From the onset, the PushTracker software has been developed traditionally
(without MDE) and using an off-the-shelf proprietary scripting language called
BGScript (BGS) [3]. This language lends itself well to rapid development of event-
based software but has many limitations, e.g., limited stack size, limited reusability,
lack of tool-chain support, and advanced debugging. To keep up with the evolving
design of the PushTracker, the software design team transitioned into an MDE
approach, integrating these proprietary tools [3, 37] with open-source modeling
frameworks [18, 47, 52]. We discuss this design process in more detail in the
following subsections.

8.4.1.1 Structured Code Generation

The PushTracker software is designed as a FSM. BGS, however, lacks high-level
language features such as custom data types or object-oriented programming. The
language also has a very limited call stack size; factoring the code into a large set of
functions is not an option. As such, code reviews are tedious and the code does not
lend itself to readability.

To address these issues, we have integrated the HFSM Design Studio directly
into the design process. Figure 8.8 shows the HFSM model of the PushTracker,
as modeled in ROSMOD. Collaboratively editable, version-controlled, high-level
modeling like this facilitates robust and rapid software design and implementation.
The PushTracker code base, i.e., BGS, and all required execution files are now
fully generated through model transformation from these HFSM models. The
“glue code” generated from HFSM models is around 16,000 lines of code. The
engineer implements the core business logic for the HFSM states (9000 lines of
code). This hand-written code includes input/output and interrupt handling, and data
manipulation, e.g., enable_acc() to toggle power to the accelerometer component.

8.4.1.2 Switching Languages

Decoupling the system design from the implementation, even if not completely,
allows engineers to study the bottlenecks in the current implementation and
consider changes at the implementation level without any breaking changes at the
design level. HFSM-based modeling and code generation means that developers
can transition their implementation to a more suitable embedded programming

224 P. S. Kumar and W. Emfinger

Fig. 8.8 HFSM for PushTracker, modeled in ROSMOD

language, such as C, and only require changes to the code generators. The initial
engineering effort required for this transition may be high but the reward over the
long-term justifies the effort. In practice, our team had to develop 900 lines of code
transformation software to generate C code from HFSM models. Comparing the
model transformation from HFSM to BGS, this is a negligible amount of effort. The
reduction in code re-implementation allows the developers to focus their efforts on
properly translating the state machine business logic without having to worry about
aberrant HFSM behavior that might have come about from manually translating the
HFSM glue code.

8 Model-Driven Software Design Automation for Complex Rehabilitation 225

8.4.1.3 Process Control and Verification

Since the PushTracker controls the SmartDrive MX2+, it is classified in the USA
by the Food and Drug Administration (FDA) as a Class II medical device, just like
a PW. This classification imposes strict requirements on the pre-market approval
required to bring the device to market, the design control procedures for its devel-
opment, and the standards and tests to which it must conform. Currently, the FDA
approval process involves data tables linking risks, hazards, device requirements
for software and hardware, and tests performed to check the deployed software and
hardware for these risk scenarios. The controller software is not model-checked,
although code analysis is performed for quality control.

One of the planned improvements to the HFSM-based modeling is to integrate
with risk and system-level assurance analysis. For example, SEAM [38], also
developed with WebGME, supports the goal structuring notation (GSN) [43]
standard to build assurance case models. SEAM uses hierarchical models, as well as
cross-referencing to manage complexity in GSN models. SEAM also allows linking
assurance cases to system models to provide context to assurance case arguments.

8.4.2 Drive Assistance for Powered Wheelchairs

PW users want to live their lives without being defined by their injury. Unfortu-
nately, many activities of daily living (ADL) are difficult for complex PW users
[28, 73]. These include navigating complex environments, maneuvering through
tight spaces, and docking the chair in transport vehicles. Despite these challenges,
many users do not want a fully autonomous solution [58].

Mobility solutions on the market consist of traditional direct-drive joysticks
and a variety of alternative drive controls for users who lack the hand functions
required for operating a traditional joystick. Such products give the user full, direct
control over the chair. However, such direct control puts all of the navigation and
environmental awareness burden onto the user, causing fatigue [24, 27, 28] which
can impact the user’s mobility and increase risk of fall or injury [28].

Autonomous powered wheelchairs (AWC) comprise multiple functional require-
ments from chair status and health monitoring, user interaction and intent determi-
nation, and environmental awareness and navigation. Such requirements naturally
lend themselves to the design and development of a suite of software and hardware
components that implement a subset of these features and which can be composed
together through standard interfaces to produce the desired autonomous system.

One important requirement for the AWC software is the inter-operation of
ROSMOD with Unity [9]. In the AWC project, see Fig. 8.9, much of the high-level
path planning and environmental sensing, localization, and mapping are performed
on an off-the-shelf Microsoft HoloLens [7], using custom software developed in
Unity. The HoloLens is the SLAM device [39] for the AWC. It communicates
with the user interface wirelessly and controls a Unity application running on a

226 P. S. Kumar and W. Emfinger

Fig. 8.9 Overall design of autonomous powered wheelchair prototype. The virtual joystick
provides a wireless joystick interface to the powered wheelchair, translating the wireless control
commands from both the hand-held controller (manual) and the Microsoft HoloLens (autonomous)

tablet mounted to the AWC chair. To control the AWC base, the HoloLens software
communicates over WiFi with a Raspberry Pi [61]. The Raspberry Pi executes
code, generated from ROSMOD and HFSM, and controls the AWC via a CAN
bus [25]. The control is either manual or autonomous. Manual control is via a
Playstation DualShock 4 Controller [10] over Bluetooth. Autonomous control is
via the HoloLens. Additionally, a semi-autonomous mode is available whereby the
user controls the chair trajectory with the controller’s joystick and the Raspberry Pi
modulates the speed according to the proximity of obstacles that it receives from the
HoloLens.

8.4.2.1 Overview of System Design

The AWC is comprised of these interconnected sub-systems:

Environment Detection and Segmentation The most critical aspect of the AWC
platform is its capability to detect and segment the environment. In our prototype,
these functions are carried out by code developed in Unity, running on the HoloLens.
The HoloLens provides the ability to detect and remember surrounding geometry,
without any semantic meaning or segmentation—all data is stored as a single mesh
of points connected together by triangles. From this data, it is the responsibility
of the segmentation sub-system to determine what the salient features of the

8 Model-Driven Software Design Automation for Complex Rehabilitation 227

environment are for the AWC: the floor, drivable surface, the walls, bounds of the
drivable surface, and the objects or humans present on the drivable surface.

This segmentation task is performed by customizing and composing several
Unity components in a model-driven fashion. For performance reasons, only the
volume within a 20-m rectangle that is 5-m tall centered around the HoloLens is
considered for environment segmentation and path planning. Therefore, a simple
segmentation method is chosen whereby an orthographic camera is placed as a child
of the user (HoloLens camera) looking down the world Y-axis (in Unity coordinate
frame) at the HoloLens and placed vertically 2.5-m above the HoloLens camera.
This orthographic camera renders its view to a render texture which runs a shader
pipeline as a post-process technique to perform the environment segmentation in
parallel on the graphics processing unit (GPU). The main criteria for segmentation
are both the per-pixel depth from the orthographic camera and the per-vertex
normal of the geometry being rendered. Using these criteria, we can project the
three-dimensional (3D) geometry into two dimensions and color them according to
whether they belong to the floor, boundary, or obstacle categories. The output of this
pipeline is a two-dimensional (2D) map of the surrounding area that can be viewed
by the user and used for path planning. Because this map is generated using this
Unity’s render-texture pipeline, it is updated automatically every time Unity’s entity
execution framework runs its Update event, which in this case is approximately
10–20 Hz.

The use of Unity for this development allows all of the rendering, containment,
shader setup, and GPU communications code to be generated, leaving only the
actual segmentation code (the business logic of this component) to be written by
hand according to the Unity software interfaces.

Path Planning Similarly to the segmentation sub-system, the path planning sub-
system consists of a collection of inter-operating components which receive inputs
from both the segmentation sub-system and the user interface sub-system. Creating
these as Unity components allows us to leverage Unity to generate the interaction
and communication code between these components as well as the event handling
and entity execution code for integrating with Unity’s run-time scheduling frame-
work. The path planning is composed of two different components, one which runs
every time the execution framework updates and re-renders and the other which
runs only when the user specifically inputs a desired goal location. The periodic
component, such as the segmentation component, is executed as a post-process
pixel shader to automatically perform a distance transform on the output of the
segmentation (the 2D segmented map). It does this by implementing the jump
flooding algorithm (JFA) [64] to first compute the Voronoi diagram of the input
and then apply the distance transform. This distance transform can then be used
immediately by a traditional path finding algorithm such as A* [35] when the user
provides a goal location as input (the start location is always the center of the map
since the map follows the AWC).

The glue code required to receive these inputs and execute on user input were
all generated according to the model defined in Unity, allowing much of the code

228 P. S. Kumar and W. Emfinger

outside of the actual distance transform and path finding business logic to be
generated entirely from Unity’s modeling environment.

Hand-held User Interface The hand-held user interface provides a 2D touch-
enabled wireless control and display to the user to inspect the AWC’s segmentation
of its environment, manage control over the autonomy, and inspect the generated
path to goal. Since much of the data being shown on the hand-held interface is the
same as what the HoloLens uses, much of the interface code is shared between these
components.

Augmented-Reality User Interface To prototype the system in both a safe and
decoupled manner, an augmented reality (AR) interface is developed and deployed
on the HoloLens. This interface allows the engineer to walk around their environ-
ment and evaluate how well the environmental segmentation and path planning
works from both a functional and a performance perspective. Because Unity is a
game development engine, integrating the map and distance transformation becomes
painless. Additionally, the Unity-based collision detection used during autonomous
navigation is able to be visualized in 3D in the real world which expedites the
iterative development process. Many of these components, especially the user
interface, are pre-built models from Unity’s and the HoloLens’ library which are
easily instantiated and configured to produce a rich user interface and debugging
experience with minimal effort.

Communications In order to tie the user interface, the segmentation/path plan-
ning, and the chair controls together, we needed a communications sub-system
which can interface between the Unity components running in the user inter-
face/segmentation/path planning components and the ROSMOD components that
handle manual control overrides and embedded interfaces to the PW. Since the
HoloLens does not support wired data connections and the user interface is designed
to be mobile, all communications are designed to use low-overhead wireless proto-
cols. Much of the code for the communications components across the different
sub-systems involve a mix of custom and library code for encoding/decoding
and compressing/decompressing the map image data to maximize the number
of image frames we could send/receive per second. To solve this challenge, all
Unity communications code resided in a single Unity component which could
be instantiated in all the Unity models. Similarly, a ROSMOD component is
responsible for acting as the adapter from the wireless communications to the ROS
communications between the low-level control components of the chair interface
module.

Manual and Alternative Control Input Since this is a semi-autonomous PW,
it supports manual control overrides and safety switches, in addition to chair-
level configuration controls. Additionally, by leveraging an off-the-shelf consumer
gaming controller, we are able to prototype other alternative manual drive controls
for the PW, e.g., a touchpad-based joystick and gyroscopic controls for the PW.
The interface to this controller is implemented as a ROSMOD component, acting

8 Model-Driven Software Design Automation for Complex Rehabilitation 229

as an adapter from the driver-specific Bluetooth interface to a ROS message topic
containing the input data.

Motion Planning and Execution Another ROSMOD component is used to com-
bine the manual and autonomous control inputs and plan the actual trajectory for the
PW. This component ensured the safety of the user by ensuring that manual control
inputs always had higher priority than the autonomous control inputs. Finally, this
component is responsible for transforming these inputs into a single virtual joystick
command.

PW Interface The final component for interfacing with the chair is a ROSMOD
component acting as an adaptation layer between the ROS communications and the
CAN bus on the chair.

The use of both ROSMOD and Unity for modeling the different components of
the AWC system allowed a team of only four software and hardware developers to
create a functional prototype of an autonomous powered wheelchair in 3 months.
Such design automation allowed the team to focus on the core algorithms they
wanted to evaluate for use in AWC, without having to focus on platform or glue
code—which as prototype code with off-the-shelf hardware would not be relevant
to the final system.

8.5 Future Work

The work we have shown thus far regarding design automation for both the
PushTracker and the AWC presents a work-in-progress for both a toolsuite and a
fully integrated MDE design process. Much of the work that has been done thus
far has been for the modeling of glue and interaction code in order to leverage
code generators and model checkers for correctly transforming abstract models
into executable code. However, much of the design process is still performed
traditionally, e.g., the creation of design, device, and hardware requirements,
the analysis of the system, and the test procedures required for verification and
validation. ROSMOD has been developed as a design studio which can function
within and alongside other design studios that will enable such systems engineering
and more formalized design procedures. The rest of this section will discuss some
of the possible extensions to this work along such a path.

8.5.1 Controller Synthesis

It is evident from our discussion in Sect. 8.4.1.1 that ROSMOD and HFSM do not
synthesize complete controllers. The HFSM Design Studio generates glue code for
the HFSM structure and it is still the responsibility of the engineer to hand-write
the business logic for these applications. This still leaves thousands of lines of

230 P. S. Kumar and W. Emfinger

software to be written by a human; software that is neither generated from “correct
by construction” models nor easily verifiable. Frameworks such as GASPARD [31]
have, in prior work, transformed OMG standard profile MARTE models [53] of
embedded applications into synchronous programs from which controllers can be
synthesized using formal techniques. Such synchronous models are very close to
source-code level in abstraction while constituting a verifiable representation. One
of our planned projects is to study state-of-the-art controller synthesis methods and
integrate such tools into ROSMOD if applicable.

8.5.2 Learning-Enabled Systems

One aspect where our current tools fall short, and where design specification as
well becomes more challenging is for a newer class of devices: learning-enabled
systems [2, 40, 55]. These systems are forming the core of new technologies which
allow embedded systems to adapt to unknown environments and to their user for
a more personalized experience. Such technologies have the potential to provide
great benefit to users in complex rehabilitation but the specification, development,
verification, and validation of such systems pose a significant challenge to ensuring
that these systems remain safe and effective for their intended use throughout the
life-cycle of the device.

To address these concerns, current modeling, synthesis, development, and testing
frameworks need to be extended to accommodate learning-enabled systems. These
are systems with learning-enabled components such as deep neural networks [71].
This is an active field of research [41, 42, 75] and so far no single paradigm has
shown such promise as to be the accepted standard. However, tools which allow
the designer to more formally describe the system and its environment provide a
path towards componentization of learning-enabled systems into compositions of
traditional software components and learning-enabled components, allowing for the
analysis and verification of such a composed system.

8.5.3 Simulation

As complex rehabilitation systems become autonomous, traditional software model
checking may prove an intractable problem for showing safety and effectiveness.
Such complex systems require holistic analysis including the addition of compre-
hensive simulated-based testing with high-fidelity hardware-in-the-loop simulation
environments [46]. These testbeds allow for automated, large-scale testing of a
battery of different environments, use-cases, and failure modes which would be
infeasible or potentially dangerous to perform in situ.

The integration of simulation tools for performing automated testing is not new,
but only recently have high-fidelity simulations of many complex physical systems,

8 Model-Driven Software Design Automation for Complex Rehabilitation 231

actors, and locations at once been readily available. The ROSMOD team has already
started working on integrating with various physical simulation tools, many of
which come from the video gaming community. But recently, vendors such as Unity
and NVIDIA have started releasing their own specific simulation tools to address
these problems. These new tools provide unparalleled simulation capability with
open, extensible interfaces which can dramatically help the automation of iterative
software development and testing.

8.6 Conclusions

In this work, we have covered many aspects of design automation for software
development in robotics, specifically as they relate to devices in complex rehabil-
itation such as power-assist devices for manual wheelchairs and drive-assistance
devices for powered wheelchairs. These devices were used to showcase the current
state of design automation for software engineering of complex rehabilitation
systems, as well as to motivate the need for continued research in this area.
The benefit of model-based software engineering was described with motivating
examples from different toolchains provided for free from different vendors. Finally,
some promising future work was presented which helps address current limitations
of existing tools for developing state-of-the-art complex rehabilitation systems.

Acknowledgements ROSMOD was partly supported by DARPA under contract NNA11AB14C
and USAF/AFRL under Cooperative Agreement FA8750-13-2-0050, and by the National Science
Foundation (CNS-1035655). The authors would like to thank Ben Hemkens, Liyun Guo, Kennth
Shafer, Dexter Watkins, and Devon Doebele for their work on the projects mentioned in this
chapter.

References

1. Benveniste, A., & Berry, G. (1991). The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE, 79(9), 1270–1282.

2. Beom, H. R., & Cho, H. S. (1995). A sensor-based navigation for a mobile robot using fuzzy
logic and reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, 25(3),
464–477.

3. BlueGiga. (2017). BGScript from Silicon Labs/BlueGiga. https://bluegiga.com. Accessed July
2018.

4. Bruyninckx, H. (2001). Open robot control software: The OROCOS project. In Proceedings
2001 ICRA. IEEE International Conference on Robotics and Automation, 2001 (Vol. 3,
pp. 2523–2528). Piscataway: IEEE.

5. Bruyninckx, H., Soetens, P., & Koninckx, B. (2003). The real-time motion control core of the
OROCOS project. In Proceedings. ICRA’03. IEEE International Conference on Robotics and
Automation, 2003 (Vol. 2, pp. 2766–2771). Piscataway: IEEE.

6. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G., Gherardi, L., &
Brugali, D. (2013). The BRICS component model: A model-based development paradigm for

https://bluegiga.com

232 P. S. Kumar and W. Emfinger

complex robotics software systems. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (pp. 1758–1764). New York: ACM.

7. Chen, H., Lee, A. S., Swift, M., & Tang, J. C. (2015). 3D collaboration method over HoloLens
and Skype end points. In Proceedings of the 3rd International Workshop on Immersive Media
Experiences (pp. 27–30). New York: ACM.

8. Clemens, S., Dominik, G., & Stephan, M. (1998). Component software: Beyond object-
oriented programming. Boston, MA: Addison-Wesley.

9. Creighton, R. H. (2010). Unity 3D game development by example: A seat-of-your-pants
manual for building fun, groovy little games quickly. Birmingham: Packt Publishing Ltd.

10. Davies, M., Read, H., Xynos, K., & Sutherland, I. (2015). Forensic analysis of a Sony
playstation 4: A first look. Digital Investigation, 12, S81–S89.

11. des Riviêres, J., & Wiegand, J. (2004). Eclipse: A platform for integrating development tools.
IBM Systems Journal, 43(2), 371–383.

12. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., & Ziane, M. (2012). RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In International
Conference on Simulation, Modeling, and Programming for Autonomous Robots (pp. 149–
160). Berlin: Springer.

13. Diego, A., Cristina, V. C., Francisco, O., Juan, P., & Bárbara, Á. (2010). V3cmm: A 3-view
component meta-model for model-driven robotic software development. Journal of Software
Engineering in Robotics, 1(1), 3–17.

14. Ding, D., & Cooper, R. A. (2005). Electric powered wheelchairs. IEEE Control Systems, 25(2),
22–34.

15. Dubey, A., Emfinger, W., Gokhale, A., Karsai, G., Otte, W. R., Parsons, J., et al. (2012). A
software platform for fractionated spacecraft. In 2012 IEEE Aerospace Conference (pp. 1–20).
Piscataway: IEEE.

16. Dumas, M., & Ter Hofstede, A. H. (2001). UML activity diagrams as a workflow specification
language. In International Conference on the Unified Modeling Language (pp. 76–90). Berlin:
Springer.

17. Emanuelsson, P., & Nilsson, U. (2008). A comparative study of industrial static analysis tools.
Electronic Notes in Theoretical Computer Science, 217, 5–21.

18. Emfinger, W. (2018). HFSM design studio. https://cps-vo.org/group/hfsm.
19. Emfinger, W. (2018). HFSM design studio on github. https://github.com/finger563/webgme-

hfsm.
20. Emfinger, W. (2018). ROSMOD design studio. https://cps-vo.org/group/rosmod.
21. Emfinger, W. (2018). ROSMOD github. https://github.com/rosmod.
22. Emfinger, W., Karsai, G., Dubey, A., & Gokhale, A. (2014). Analysis, verification, and man-

agement toolsuite for cyber-physical applications on time-varying networks. In Proceedings of
the 4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation of Cyber-
Physical Systems (pp. 44–47). New York: ACM.

23. Emmerich, W., & Kaveh, N. (2001). Component technologies: Java Beans, COM, CORBA,
RMI, EJB and the CORBA Component Model. In ACM SIGSOFT Software Engineering Notes
(Vol. 26, pp. 311–312). New York: ACM.

24. Erdogan, A., & Argall, B. D. (2017). The effect of robotic wheelchair control paradigm and
interface on user performance, effort and preference: An experimental assessment. Robotics
and Autonomous Systems, 94, 282–297.

25. Etschberger, K. (2001). Controller area network: Basics, protocols, chips and applications.
Weingarten: IXXAT Automation GmbH.

26. Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A. M. (2003). The many faces of
publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114–131.

27. Ezeh, C., Trautman, P., Devigne, L., Bureau, V., Babel, M., & Carlson, T. (2017). Probabilistic
vs linear blending approaches to shared control for wheelchair driving. In 2017 International
Conference on Rehabilitation Robotics (ICORR) (pp. 835–840). Piscataway: IEEE.

https://cps-vo.org/group/hfsm
https://github.com/finger563/webgme-hfsm
https://github.com/finger563/webgme-hfsm
https://cps-vo.org/group/rosmod
https://github.com/rosmod

8 Model-Driven Software Design Automation for Complex Rehabilitation 233

28. Fehr, L., Langbein, W. E., Skaar, S. B. (2000). Adequacy of power wheelchair control
interfaces for persons with severe disabilities: A clinical survey. Journal of Rehabilitation
Research and Development, 37(3), 353–360.

29. Flaticon. (2018). Flaticon. https://www.flaticon.com.
30. Flaticon. (2018). Vectors market. https://www.flaticon.com/authors/vectors-market.
31. Gamatié, A., Yu, H., Delaval, G., & Rutten, É. (2009). A case study on controller synthesis for

data-intensive embedded systems. In 2009 International Conference on Embedded Software
and Systems (pp. 75–82). Piscataway: IEEE.

32. Gill, A. (1962). Introduction to the theory of finite-state machines. New York: McGraw-Hill.
33. Gomez, M. (2004). Embedded state machine implementation: Turning a state machine into

a program can be straightforward if you follow the advice of a skilled practitioner. In The
firmware handbook (pp. 101–109). Burlington: Elsevier.

34. Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3), 231–274.

35. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–
107. https://doi.org/10.1109/TSSC.1968.300136.

36. Heineman, G. T., & Councill, W. T. (2001). Component-based software engineering. Putting
the pieces together (p. 5). London: Addison-Wesley.

37. IAR. (2017). Embedded Workbench from IAR. https://iar.com/products/iar-embedded-
workbench. Accessed July 2018.

38. ISDE. (2018). Systems engineering and assurance modeling. https://modelbasedassurance.
org/.

39. Ishikawa, R., Oishi, T., & Ikeuchi, K. (2018, preprint). Offline and online calibration of mobile
robot and slam device for navigation. arXiv:180404817.

40. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237–285.

41. Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An
efficient SMT solver for verifying deep neural networks. In International Conference on
Computer Aided Verification (pp. 97–117). Berlin: Springer.

42. Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017, preprint). Towards
proving the adversarial robustness of deep neural networks. arXiv:170902802.

43. Kelly, T., & Weaver, R. (2004). The goal structuring notation–A safety argument notation. In
Proceedings of the Dependable Systems and Networks 2004 Workshop on Assurance Cases,
Citeseer (p. 6).

44. Koenig, N. P., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In IROS, Citeseer (Vol. 4, pp. 2149–2154).

45. Kumar, P. S. (2016). Integrated Timing Analysis and Verification of Component-Based
Distributed Real-Time Systems. PhD thesis, Vanderbilt University.

46. Kumar, P. S., Emfinger, W., & Karsai, G. (2015). A testbed to simulate and analyze resilient
cyber-physical systems. In 2015 International Symposium on Rapid System Prototyping (RSP)
(pp. 97–103). Piscataway: IEEE.

47. Kumar, P. S., Emfinger, W., Karsai, G., Watkins, D., Gasser, B., & Anilkumar, A. (2016).
ROSMOD: A toolsuite for modeling, generating, deploying, and managing distributed real-
time component-based software using ROS. Electronics, 5(3), 53.

48. Lilius, J., & Paltor, I. P. (1999). The semantics of UML state machines. Turku: Turku Centre
for Computer Science.

49. Makarenko, A., Brooks, A., & Kaupp, T. (2006). Orca: Components for robotics. In Interna-
tional Conference on Intelligent Robots and Systems (IROS) (pp. 163–168).

50. Maraninchi, F. (1991). The Argos language: Graphical representation of automata and
description of reactive systems. In IEEE Workshop on Visual Languages, Citeseer (Vol. 3).

https://www.flaticon.com
https://www.flaticon.com/authors/vectors-market
https://doi.org/10.1109/TSSC.1968.300136
https://iar.com/products/iar-embedded-workbench
https://iar.com/products/iar-embedded-workbench
https://modelbasedassurance.org/
https://modelbasedassurance.org/

234 P. S. Kumar and W. Emfinger

51. Maraninchi, F. (1992). Operational and compositional semantics of synchronous automaton
compositions. In International Conference on Concurrency Theory (pp. 550–564). Berlin:
Springer.

52. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L., et al. (2014). Next
generation (meta) modeling: Web-and cloud-based collaborative tool infrastructure. MPM@
MoDELS, 1237, 41–60.

53. MARTE, O. (2007). Profile for modeling and analysis of real-time and embedded systems
(MARTE). Beta1 Google Scholar.

54. Martinet, P., & Patin, B. (2008). PROTEUS: A platform to organise transfer inside French
robotic community. In 3rd National Conference on Control Architectures of Robots (CAR).

55. Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. In Robot colonies
(pp. 73–83). New York: Springer.

56. Mazumder, O., Kundu, A. S., Chattaraj, R., & Bhaumik, S. (2014). Holonomic wheelchair
control using EMG signal and joystick interface. In 2014 Recent Advances in Engineering and
Computational Sciences (RAECS) (pp. 1–6). https://doi.org/10.1109/RAECS.2014.6799574.

57. Otte, W. R., Dubey, A., Pradhan, S., Patil, P., Gokhale, A., Karsai, G., et al. (2013). F6COM: A
component model for resource-constrained and dynamic space-based computing environments.
In 2013 IEEE 16th International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC) (pp. 1–8). Piscataway: IEEE.

58. Padır, T. (2015). Towards personalized smart wheelchairs: Lessons learned from discovery
interviews. In 2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (pp. 5016–5019). Piscataway: IEEE.

59. Pasteau, F., Krupa, A., & Babel, M. (2014). Vision-based assistance for wheelchair navigation
along corridors. In 2014 IEEE International Conference on Robotics and Automation (ICRA)
(pp. 4430–4435). Piscataway: IEEE.

60. Pastor, O., España, S., Panach, J. I., & Aquino, N. (2008). Model-driven development.
Informatik-Spektrum, 31(5), 394–407.

61. Pi, R. (2015). Raspberry Pi model B.
62. Prochnow, S., Schaefer, G., Bell, K., & von Hanxleden, R. (2006). Analyzing robustness of

UML state machines. In MARTES 2006 at MoDELS 2006, LCAV-CONF-2006-030 (pp. 61–
80).

63. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: An open-
source robot operating system. In ICRA Workshop on Open Source Software, Kobe (Vol. 3,
p. 5).

64. Rong, G., & Tan, T. S. (2006). Jump flooding in GPU with applications to Voronoi diagram
and distance transform. In Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games (pp. 109–116). New York: ACM.

65. Schlegel, C., Haßler, T., Lotz, A., & Steck, A. (2009). Robotic software systems: From code-
driven to model-driven designs. In International Conference on Advanced Robotics, 2009.
ICAR 2009 (pp. 1–8). Piscataway: IEEE.

66. Schmidt, D. C. (2006). Model-driven engineering. Computer IEEE Computer Society, 39(2),
25.

67. Siegel, J., & Frantz, D. (2000). CORBA 3 fundamentals and programming (Vol. 2). New York,
NY: Wiley.

68. Simpson, R. C., LoPresti, E. F., & Cooper, R. A. (2008). How many people would benefit from
a smart wheelchair? Journal of Rehabilitation Research & Development 45(1), 53–71.

69. Simulink, M., & Natick, M. (1993). The mathworks.
70. Sun, W., Liu, J., & Zhang, H. (2017). When smart wearables meet intelligent vehicles:

Challenges and future directions. IEEE Wireless Communications, 24(3), 58–65.
71. Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection. In

Advances in neural information processing systems (pp. 2553–2561).
72. Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S. J., et al. (2011).

Understanding natural language commands for robotic navigation and mobile manipulation. In
AAAI (Vol. 1, p. 2).

https://doi.org/10.1109/RAECS.2014.6799574

8 Model-Driven Software Design Automation for Complex Rehabilitation 235

73. Torkia, C., Reid, D., Korner-Bitensky, N., Kairy, D., Rushton, P. W., Demers, L., et al. (2015).
Power wheelchair driving challenges in the community: A user’s perspective. Disability and
Rehabilitation: Assistive Technology, 10(3), 211–215.

74. von der Beeck, M. (1994). A comparison of statecharts variants. In International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems (pp. 128–148). Berlin: Springer.

75. Yang, F., & Paindavoine, M. (2003). Implementation of an RBF neural network on embedded
systems: Real-time face tracking and identity verification. IEEE Transactions on Neural
Networks, 14(5), 1162–1175.

76. ZeroC I. (2003). The Internet communications engine.

Chapter 9
Design Automation Using Structural
Graph Convolutional Neural Networks

Sujit Rokka Chhetri, Jiang Wan, Arquimedes Canedo,
and Mohammad Abdullah Al Faruque

9.1 Introduction

A system design process consists of various steps such as problem definition, back-
ground research, requirement specification, brainstorming solutions, selecting the
best solution, developing a prototype, testing, and finally redesigning [19]. During
each of these steps, a wide variety of high volume and continuous data is generated.
These design steps are repeated throughout various systems such as mechanical,
electronic, and software. Due to the repetitive nature of these tasks, engineers can
save a large amount of time if they can compare existing similar designs that closely
match to the desired functionality while designing a new system. Rather than having
to redesign, they can find functionally similar designs and modify such designs to
fit their needs. Moreover, this can further lead to the creation of artificial intelligent
assistants that assist human experts to design new systems faster.

The engineering design data varies from domain to domain. In electronic design,
it consists of high-level design descriptions, register transfer level descriptions
in Verilog or VHDL, schematics, etc. In mechanical design, it consists of data
regarding structural designs, modeling, and analysis of components. Moreover,
there is a wealth of data generated throughout the supply chain of engineering
including computer-aided design (CAD) and computer-aided manufacturing (CAM)
tools. In order to perform meaningful learning from these data, we need to utilize
non-Euclidean or graph learning algorithms that are able to extract, categorize, and
label these sparse data.

S. Rokka Chhetri (�) · J. Wan · M. A. Al Faruque
University of California, Irvine, Irvine, CA, USA
e-mail: schhetri@uci.edu; jiangwan@uci.edu; alfaruqu@uci.edu

A. Canedo
Siemens Corporate Technology, München, Germany
e-mail: arquimedes.canedo@siemens.com

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_9

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_9&domain=pdf
mailto:schhetri@uci.edu
mailto:jiangwan@uci.edu
mailto:alfaruqu@uci.edu
mailto:arquimedes.canedo@siemens.com
https://doi.org/10.1007/978-3-030-13050-3_9

238 S. Rokka Chhetri et al.

In this chapter, we propose to utilize a structural graph learning algorithm to
abstract the detailed engineering data (such as configuration, code, hybrid equations,
geometry, and sensor data). This chapter expands the general view presented in
[43]. To achieve this, we first represent the engineering data using a knowledge
graph and then perform semi-supervised learning to be able to classify the sub-
graphs based on their structural property and the corresponding attributes. This will
allow engineers to compare and cluster functionally similar designs, configurations,
codes, geometry, sensor data, etc. This in return will allow engineers to automate
the process of quickly searching the required engineering designs available in their
library that meets the functional requirements presented in the specification.

9.2 Related Work

Design automation of engineering designs such as electronics and mechanics has
seen an influx in the usage of machine learning and artificial intelligence algorithms
[8, 23, 28, 33, 35]. These learning algorithms have helped the design automation by
making the design process easier, faster, and efficient. However, current approaches
are mostly limited in the utilization of Euclidean domain data and algorithms.

Research on more general non-Euclidean domain-based learning algorithms has
recently gained momentum [12]. Moreover, a significant amount of work has been
done in implementing the convolutional neural network on non-Euclidean structure
data and manifolds of 3D objects [5, 7, 10, 18, 21, 25, 37, 41]. These works
can be divided into two general directions in which the learning algorithms have
been implemented on non-Euclidean data (such as a graph). The first direction
is in the spectral domain, and the second direction is in the spatial or vertex
domain. In spectral domain-based analysis, just like how filter weight is learned
in the traditional 2-dimensional convolutional neural network, filter kernels are
learned. In order to do this, first, the graph is transformed to Fourier domain by
projecting the high-dimensional vertex domain graph to low-dimensional space
using Eigenbasis of the graph Laplacian operation [9]. There are works where the
various form of graph Laplacian operator and approximation methods for reducing
the size of the graph kernel and the Fourier transformation of the graphs have
been proposed [1, 10, 25, 27, 44]. In the second direction, first, the neighborhood
information of a vertex is gathered using various techniques. This aggregated
neighborhood information is then treated as features and different transformations
on these features are proposed [15–17, 20, 40]. The major contribution of this
work comes from the fact that the sampling and aggregation can focus on a
node’s neighborhood, thus not requiring the whole graph to be seen during
the sampling and aggregation steps. The sampling and aggregation can be used
by either using breadth-first [20] or utilizing both breadth-first and depth-first
search [17]. These algorithms can effectively extract the node features based on their
neighborhood which can be used to perform clustering and classification. Moreover,
it has been shown to be effective in generating the graph embedding using the

9 Design Automation Using SGCNN 239

auto-encoders [16]. Furthermore, some work [1] have even proposed to combine
the vertex domain and spectral domain approaches to utilize the strengths of each
domain.

Both the spectral domain and vertex domain-based approaches have shown
tremendous potential in generalizing the graph learning algorithms. However, each
of these algorithms has a major weakness. The spectral domain-based approach
relies highly on the Laplacian matrix. It filters the graph by using the eigenvalues
of the Laplacian operator. However, this Laplacian matrix is dependent on the
graph and the filter weights trained in one graph cannot be applied to another one.
On the other hand, the vertex domain approaches have shown high efficiency in
node-level clustering and classification. Although, there are algorithms such as sub-
graph2vec [31], struct2vec [36], a more general CNN-based approach for learning
rich features from a sub-graph is lacking. In engineering design automation, we
would require a more general graph learning algorithm that is able to learn sub-
graph or whole-graph property for providing more intuitive functional classification,
clustering, or even generation.

In addition, custom graph kernel modeling for mining the graph by measuring
the structural similarity between the pairs of graphs has also been proposed [42].
The major limitation of this approach is that they do not consider the features of
the individual nodes and only rely on the structural similarity of the graph. Hence,
it may be useful in mining structures from design engineering data; however, it
will not help if the similar structure have different node features (which normally
is the case in the engineering data). To address the existing limitation in the graph
learning algorithms, in this chapter we introduce the structural graph convolutional
neural network that is graph invariant (unlike spectral domain approaches), can learn
rich features from nodes, sub-graph, or the whole graph, and is able to use both the
structure and node features to learn rich features to classify and cluster different
engineering domain graphs to aid in design automation.

9.3 Graph Learning Using Convolutional Neural Network

Let us define some preliminary notations for explaining the graph structure. The
graph is denoted as G = (V, E), where the set of vertices of the graph is denoted
as V and the set of edges of the graph is denoted as E . The graph edges can be
weighted wij , i, j ∈ V and be directed. In this chapter, we will consider unweighted
graphs with wij = 1. However, we may easily expand the graph learning algorithm
for weighted graphs as well. When the engineering data is represented using such
graph structure, each of the vertices will have some features (such as design version
and mechanical properties). We represent such features for each vertices using
the symbol fi , where i ∈ V . fi consists of a vector whose dimension depends
on the amount of information present in the engineering data. The raw format of
features may vary from being a text, image, continuous or discrete signals, etc.
In such situation, these features need to be converted to its corresponding vector

240 S. Rokka Chhetri et al.

Aggregated
Subgraphs

Feature
Graph

Subgraph
Convolutional

Kernel

Graph Pooling
(Downsampling)

2D Convolution
on Attribute

Matrix

Non-linear
Activation

SGCNN Input Layer

Subgraph
Convolutional

Kernel

Graph Pooling
(Downsampling)

2D Convolution
on Attribute

Matrix

Non-linear
Activation

SGCNN Hidden Layers

Feature
Graph

Subgraph
Convolutional

Kernel

Graph Pooling
(Downsampling)

2D Convolution
on Attribute

Matrix

Non-linear
Activation

SGCNN Output Layer

Subgraph
Embedding

or Logits

Complex Engineering
System Design Data

Neighbor Node
Aggregation Layer

Node/Edge Attribute
Embedding

Append Node Attribute Embedding
and Neighbor Node embeddings

Knowledge Graph
Extraction

Fig. 9.1 Proposed graph learning algorithm for engineering design automation [43]

representation using auto-encoders. The adjacency matrix of the graph G is denoted
by Ā. The sub-graph of G is denoted as Gs = (Vs , Es), where Vs ⊆ V and
Es ⊆ E .

The proposed graph learning algorithm’s architecture is shown in Fig. 9.1. Before
the algorithm can be used, the raw engineering design data needs to be converted
into a knowledge-based graph [39]. The structure of the knowledge-based graph
should be tailored towards the engineering domain. The next step will involve
converting the high-dimensional information present in each of the vertices and
edges to a lower dimensional vector space embedding. These embedding will
form the features fi for all the vertices. The major contributions of the proposed
graph learning algorithm are: (1) neighbor node aggregation layer, (2) sub-graph
convolutional kernel, and (3) graph pooling algorithm. However, there are various
components of the proposed algorithm which enable it to function. Each of these
components is explained in the following subsections.

9.3.1 Knowledge Graph Extraction

The first task for utilizing the proposed graph learning algorithm is converting
the complex engineering domain data into a meaningful data structure which can
concisely and precisely represent the engineering domain data. For this purpose,

9 Design Automation Using SGCNN 241

we propose to utilize a knowledge graph. The knowledge graph stores information
between the various uniquely identifiable entities and their corresponding rela-
tionship. These relationships are stored in a form of a triple (node–edge–node)
relationship. This type of triples has previously been used to create knowledge
graphs such as DBPedia [3]. The main advantage of using such knowledge graphs
is that it can store rich engineering domain information and continuously evolve,
grow, and be linked to other engineering domain data as well.

9.3.2 Attribute Embedding

After the knowledge graph has been created, we will have the structure of the
graph ready to be utilized in the graph learning algorithm. However, in a knowledge
graph the node and edge may be in different data format (such as text and images).
This high-dimensional attribute of the nodes and edges needs to be converted
into a low-dimensional feature embedding. To embed such attributes we utilize
various state-of-the-art auto-encoders. For example, for encoding the text we will
utilize word2vec [29]. For embedding images, we will utilize existing deep auto-
encoder [11]. These vector embedding generated from the attribute of the nodes
and edges form the feature which is utilized in the attribute matrix described in
Sect. 9.3.4.1.

9.3.3 Neighbor Nodes Aggregation

One of the fundamental tasks in performing graph learning in engineering domain
data is being able to capture the features of the vertices with respect to its location in
the graph. Each of the vertices not only has special topology but also share a set of
attributes across the knowledge graph. Hence, it is necessary to capture each of the
unique structural and feature-based relation of vertices with respect to its neighbor.
In order to do this, in the proposed graph learning algorithm, we utilize concepts
similar to the vertex domain approach [20] (see Fig. 9.2). Before the neighbor node
aggregation is performed, a user-defined query or a schema is used to induce a sub-
graph. The process of defining the schema and inducing the sub-graph is domain
specific. Depending on the type of engineering data, the schema can be tailored to
extract only meaningful engineering design information. For example, the schema
can be used to induce graphs that contain certain keywords (such as engines, piston,
etc.) and has certain relations (such “has sub-components”). Based on this schema
various instances are generated by the sample generator. These induced samples are
then passed to two blocks in parallel. One block converts the node/edges attribute
to its corresponding vector form, whereas the other block is the neighbor node
aggregation layer. In the neighbor node aggregation layer, for the induced sub-graph
Gt = (Vt , Et), our algorithm performs both breadth-first and depth-first search to

242 S. Rokka Chhetri et al.

Conversion to
Knowledge Graph

Sample
Generator

Schema

Aggregated
Subgraphs

Convert Node
Attributes to
Embeddings

Neighbor Node Aggregation Layer

G
n

G
n

G
2G

1
G

1

Path length 4

Path length 3

Path length 4

Path length 3Finding neighbor nodes of the subgraphs

Co
nv

ol
ut

io
n

Po
ol

in
g

&

A
ct

iv
at

io
n

Append Node Attribute Embedding and
Neighbor Node embeddings

Subgraph G
1

Subgraph G
2

Subgraph G
n

Complex Engineering
System Design Data

Fig. 9.2 Proposed neighbor node aggregation layer architecture [43]

collect the neighbor nodes of the given sub-graph. We utilize the parameter d as
the depth to search in the graph, and n as the number of paths to be searched. The
neighbor nodes borrow concept from node2vec [17], where a balance is maintained
between the depth and the breadth for context generation. This balance helps us to
maintain a balance between the local and non-local neighbors to the sub-graph.

In order to find the neighbors, for all vi ∈ Vt , we search the original knowledge
graph G to find n paths of length d. Let us denote each of these paths by Pd

i ,
where d denotes the path length, and i denoted the ith path of length d. For the
path to be considered for aggregation, the nodes lying in the path must satisfy the
condition vi /∈ Vt . We acquire vector of paths Pd = {Pd

1 Pd
2 , . . .} for each of the

sub-graph Gt . However, finding and using all of such paths is non-trivial, hence we
then sample s paths of length d for each of the sub-graph. This sampling is done
randomly in the proposed algorithm. Hence, s is another input parameter to the
proposed graph learning algorithm. Using these randomly sampled paths, we form
a neighbor feature matrix N̄ . The bar is s by d matrix with each element having a
feature vector having extracted earlier. The number of paths found in Pd may be
smaller than s, Pd can be padded to make N̄ with at least s number of rows/paths.
The algorithm for neighbor node aggregation is presented in Algorithm 1.

The input to Algorithm 1 is the knowledge graph {G1,G2, . . . ,Gt } using the user-
defined schema, list of depth to search D = {d1, d2, . . . , dn}, list of sample numbers
per depth S = {s1, s2, . . . , sn}, and feature vector xn for the vertices. The output of

9 Design Automation Using SGCNN 243

Algorithm 1: Neighbor node aggregation [43]
Input: Induced Sub-graphs: G1,G2, . . . ,Gt

Input: A list of depth to search: D = d1, d2, . . . , dn

Input: A list of sample numbers per depth: S = s1, s2, . . . , sn
Output: A feature vector: xn

1 foreach di ∈ D do
2 foreach vj ∈ Vt do
3 Find all length di paths P

di

j

4 Remove paths containing nodes in Vt from P
di

j

5 Add P
di

j into P di

6 Construct N̄ by randomly selecting si paths from P di

7 Extract feature xdi from N̄

8 xn = f d
pool(xd1, xd1, . . . , xdn)

9 return xn

Algorithm 1 is the extracted feature to be appended to the vertices of the sub-graph
Gt . One of the challenges in extracting the features from the neighborhood nodes
as discussed in [20] is the fact that the non-Euclidean data has no natural ordering.
Which means that the feature extraction should be applied over un-ordered set of
paths to make sure that the arbitrary change in the order of rows of matrix N̄ still
results in the same feature being extracted. In order to achieve this in Algorithm 1,
we first apply a general 1-D convolution operation with trainable 1 by d weight
matrix W̄ on N̄ and then utilize a symmetric pooling function to extract the neighbor
nodes’ feature vector xn as follows:

xn = σ(fpool(W̄ � N̄)+ b) (9.1)

This equation is used in Line 8 of Algorithm 1. The b in Eq. (9.1) is a bias variable
and σ is an activation function (e.g., ReLU, LeakyRelu, Sigmoid, Tanh, etc.), and
fpool is a pooling function. As mentioned, the pooling function has to be invariant
to permutation of rows in N̄ . To achieve this, pooling function such as a mean
operator can be applied over all the rows in the matrix, or we may utilize a max pool
operator that extracts max values out of all the rows. The use of specific pooling
function is treated as a hyper-parameter in the graph learning algorithm and later
configured in the training and hyper-parameter tuning process. As shown in Fig. 9.2,
we extract various path length {d1, d2, d3, . . . , dk}. This path length will integrate
various topological and localized attributes of the engineering knowledge graph.
Hence, Algorithm 1 will return feature vector {xd1, xd2, xd3, . . . , xdk} depending
on total number of path lengths extracted from the graph. Each of these path lengths
is aggregated to the sub-graph. If the extracted path length number is large, we may
perform pooling to reduce the dimension of the extracted features as:

xn = f d
pool({xd1, xd2, xd3, . . . , xdk}) (9.2)

244 S. Rokka Chhetri et al.

The returned neighborhood feature vector is then concatenated to all the feature
vectors of the vertices vi ∈ Vt as xaggi

= {xi, xn}. Since the neighborhood
aggregation layer is part of the graph learning algorithm, all the parameters of
the neighborhood aggregation layer (such as weights of the 1-D convolution
neural network) are learned during training. This allows the algorithm to auto-
matically focus on relevant neighborhood node features to aggregate during the
training.

9.3.4 Structural Graph Convolutional Neural Network Layers

The structural graph convolutional neural network (SGCNN) layers are shown
in Fig. 9.3. The input of the SGCNN are the aggregated sub-graphs that were
generated by the neighbor node aggregation layer described in Sect. 9.3.3 earlier.
Each of these aggregated sub-graphs is passed in batches with individual vertices
having a feature matrix. The SGCNN layers consists of input, hidden and output
layers. These layers abstract the aggregated graph’s feature in each layer just like
the traditional 2D-convolutional neural networks. Each of the SGCNN consists of
various components: (1) sub-graph convolution kernel, (2) graph pooling, (3) 2D
convolution on adjacency matrix, (4) new adjacency matrix calculation, and (5) non-
linear activation. We will discuss each of these components in detail in the following
sections.

9.3.4.1 Sub-graph Convolution Kernel

The main block of the SGCNN is the sub-graph convolutional kernel. The task
of the sub-graph convolutional kernel is to abstract meaningful feature vectors
from the aggregated graph. The kernel receives the aggregated graph Gt with the

Class Probability

0.5

0.1

0.1

0.1

0.1

0.5

0.1

0.1

0.1

0.1

de
ta

ge
rg

g
A

sh
pa

rg
bu

S

Generate
convolutional

candidates

Perform
dropout
Perform
dropout

Convolution

Final Structural Graph Convolutional
Neural Network (SGCNN) Layer

A
ctivation

Kernel size=
Total Number

of Nodes

Output Layer
Calculate New

Adjacency Matrix

Generate
convolutional

candidates

Perform
dropout
Perform
dropout

Convolution

Calculate New
Adjacency Matrix

Structural Graph Convolutional
Neural Network (SGCNN) Layer 1

A
ctivation

Input Layer

Output
Feature
Graph of
Layer 1

SG
CN

N
Layer 2

Hidden Layers

Output
feature

Graph of
Layer 2

Output
Feature
Graph of
Layer 1

SG
CN

N
Layer 2

Hidden Layers

Output
feature

Graph of
Layer 2

Output Layer

Fig. 9.3 Proposed structural graph convolutional neural network architecture [43]

9 Design Automation Using SGCNN 245

corresponding feature matrix X̄, which consists of the aggregated features xaggi
=

{xi, xn} for vi ∈ Vt . It also receives the adjacency matrix Ā of the aggregated
graph Gt . With the adjacency matrix and the feature matrix, the first step the sub-
graph convolutional kernel block will do is to create the adjacency matrix Ār by
taking the Hadamard product between X̄ and Ā+ Ī as follows:

Ār = X̄ ◦ (Ā+ Ī) (9.3)

We have added the identity matrix Ī to make sure that the vertices do not lose
their feature information. This self-loop to each of the vertices in the sub-graph
makes sure that each vertex retain their own information while calculating the
Hadamard product. An example of an attribute matrix is shown in Fig. 9.4.

The attribute matrix Ār is used to define a graph convolutional kernel. The kernel
consists of a k by k weight matrix W̄ k . The size of the k can be varied just like the
2D-convolutional kernels. The convolutional is applied between the W̄ k and Ār . In
traditional 2D convolution, a kernel is slide from left to right and top-down in an
order to perform the 2D convolution. However, since there is no notion of 2D-grid
structure in the graph, we cannot perform convolution in a similar manner. Hence, in
our graph convolution, we propose a new method to perform convolution operation
for the graph data structure.

The algorithm for performing the graph convolution is presented in Algorithm 2.
The first step in performing the graph convolution involves generating candidate
graph kernels with size k by k, where we select the k vertices at a time. This
candidate graph is then convoluted with the weight matrix W̄ k . In order to generate
the candidate graph kernels, we use the fact that removing the ith row and ith column
in Ār is equivalent to removing the vertex i from Gt . Hence, assuming that the total
vertices in the induced aggregated sub-graph Gt , let it be denoted by n, is greater
than the size of the kernel k, we will remove n − k number of vertex from Gt . The
new sub-graph will be left with a new k by k attribute matrix Ār

k
. The drawback

of generating the attribute matrix like this is that there are O
(
n
k

)
possible ways to

generate the attribute matrix Ār
k
. This might be okay for an induced graph with a

X1 X2 … Xn-1 Xn

X1 X2 … Xn-1 Xn

X1 X2 … Xn-1 Xn

X1 X2 … Xn-1 Xn

...

1 1 … 1 0

1 1 … 0 0

1 1 … 1 0

0 0 … 0 1

...

X1 X2 … Xn-1 0

0 0 … 0 Xn

X1 X2 … 0 0

X1 X2 … Xn-1 0

...

Fig. 9.4 Example of an attribute matrix calculated using Hadamard product

246 S. Rokka Chhetri et al.

Algorithm 2: Graph convolution kernel [43]
Input: An input graph: Gt with n vertices
Input: A convolution kernel: W̄ k

Input: Sample size: s

Output: An output feature graph: G′
1 Generate adjacency matrix Ā from G

2 Using the same vertices order to generate list of features X
3 Create feature matrix X̄ with n rows, and each row being X
4 Ār = X̄ ◦ (Ā+ Ī)

5 m = (
n
k

)
6 CombList = Enumerating choice of n− k elements from 1, 2, . . . , n

7 foreach comb ∈ CombList do
8 Ārcomb = remove rows and columns list in cand from Ār

9 Add Ārcomb into CandList

10 if m > s then
11 Down-sample CandList to s elements
12 else if m < s then
13 Pad CandList to s elements
14 foreach cand ∈ CandList do
15 xk = W̄ k � cand + b

16 Add new vertex vk into G′
17 Add feature vector xk on vk

18 Connect vk based on cand’s connection in G

19 return G′

lower number of nodes, however for engineering data the induced graph size can
have a large number of nodes. And normally the size of the k << n, making the

complexity of generating the Ār
k

very high. Hence, to tackle this impractical Ār
k

generation step, we propose to relax it by only picking s number out of O
(
n
k

)
as a

convolution candidate. Hence, the total number of the possible Ār
k

is thus reduced

to O(s). By doing this, we make it feasible to generate the Ār
k

from the Gt as a
potential candidate of graph kernels to be convoluted with the k by k weight filter

matrix W̄ k . The procedure of down-sampling of O
(
n
k

)
possible Ār

k
values to just s

is explained in Sect. 9.3.4.2.
Algorithm 2 presents the graph convolution steps in detail. The input to the

graph is the induced aggregated graph Gt . The output of the algorithm is the new

graph where each node represents the merged vertices present in Ār
k
. In Line 1, we

first generate the adjacency matrix from the graph. In Line 4, the attribute matrix
is generated by performing the Hadamard product between the feature matrix and

the adjacency matrix. In Line 7, possible combination of Ār
k

is listed and down-

sampled in Line 10. In Line 14, a 2D convolution is performed between the Ār
k

and the filter weight matrix Wk . Finally, the new graph is returned in Line 19. Each
of the SGCNN layers will generate a new graph which progressively abstracts and
fuses the topological and attributes of the previous graph.

9 Design Automation Using SGCNN 247

9.3.4.2 Graph Pooling Algorithm

When we generate Ār
k
, there are O

(
n
k

)
possible in the beginning. After down-

sampling it to s number of Ār
k
, the next stage will have O

(
s
k

)
possible combination

of Ār
k
. One of the desired properties of convolutional neural networks is to be

able to perform the convolution over a deep number of layers. Hence, to be able
to perform the graph convolution in deeper layers, we need to perform down-

sampling or pooling at each layer to manage the size of possible Ār
k

matrices
generated from the graph. Without down-sampling, it will be unfeasible to perform

a large number of convolutional operation between Ār
k

and Wk . Hence, we propose
to perform the pooling operation before the convolution operation in each of
the SGCNN layers. The proposed down-sampling/pooling operation utilizes the

topology of the graph to remove samples from combinations of Ār
k
. For each of

the possible Ār
k
, we calculate the corresponding total degrees. The intuition behind

the proposed down-sampling algorithm is that out of O
(
n
k

)
, due to the sparsity of

the aggregated sub-graph, combination of various nodes will not have any edges or
lower number of edges among them. Hence, combining them together to perform

convolution will be less fruitful than selecting the combination of Ār
k

that have
higher connectivity among the vertices. The proposed down-sampling algorithm is
presented in Algorithm 3.

The input to Algorithm 3 is the graph G, the possible list of candidate combi-
nation Comb, the pooling sample size s, and the dropout rate d. The output of the
algorithm is the list of combination Comb

′′
which is down-sampled. To achieve

this, first in Line 1, it randomly samples Comb
′

by using the dropout rate d. This is

Algorithm 3: Graph pooling algorithm [43]
Input: An input graph: G
Input: The list of the candidate nodes combinations: Comb

Input: Sample size: s

Input: Dropout Rate: d

Output: The list of down-sampled candidate nodes: Comb′
1 Randomly sample Comb

′
from Comb using d

2 Generate adjacency matrix Ā from G for only Comb
′

3 foreach c ∈ Comb
′

do
4 dc = 0
5 foreach n ∈ c do
6 Calculate Degree of n as dn

7 dc = dc + dn

8 foreach c′ ∈ Comb
′

do
9 if c′ is connected with c in Ā then

10 dc = dc + 1

11 Keep the s number of nodes with the highest degrees and store in Comb
′′

12 return Comb
′′
;

248 S. Rokka Chhetri et al.

necessary because it is computationally unfeasible to calculate the adjacency matrix
in the next step for all the possible candidates in Comb. In Line 2, we generate the
adjacency matrix Ā for the new candidate combination of nodes. This adjacency
matrix carries the graph structural data and passes it through the deeper layers. This
step is important, as the different layers will be able to abstract the graph data in a
hierarchical manner. Lines 3–10 compute the total degrees of each candidate nodes
combination Comb

′
, which are combinations of the nodes in G that are generated

by the convolution kernel and these combinations will serve as the new nodes of
the output feature graph after the graph convolution kernel. Specifically, Lines 3–
7 compute the total degrees inside the combination, and Lines 8–10 compute the
degrees in between different combinations. Finally, we keep the s number of nodes
combinations which have the highest degree and remove the rest. We significantly
reduce the size of the graph convolution kernel by dropping the combinations in
the calculated degrees using the max pooling. Nevertheless, we ensure that the
convolution is performed on the graph structures with higher connectivity.

9.3.4.3 2D Convolutions on Attribute Matrix

After we have down-sample s possible candidate Ār
k

matrices, we apply simple 2D
convolution operation to extract the feature vector for the give combination of the

Ār
k
. The convolution operation can be written as follows:

xk = φ(W̄ k � Ār
k + b) (9.4)

where φ(.) is a non-linear activation function. We will have s extracted feature
vectors as: xk

1 , xk
2 , . . ., xk

s . We consider the extracted feature vectors xk
1 , xk

2 , . . .,
xk
s as a new feature graph G′ with s number of vertices, and xk

i as the feature vector
for node i. An example of this process is shown in Fig. 9.5.

9.3.4.4 New Adjacency Matrix Calculation

For the deep SGCNN architecture to work, we have to keep track of the adjacency
of the new G′ generated at each of the layers. This G′ is used as input to another sub-
graph convolution layer to form a deep SGCNN model. The constructed adjacency
matrix will allow the next SGCNN layer to recalculate the new attribute matrix and

the potential candidates of Ār
k

to be selected for convolution and down-sampling.
To calculate the new adjacency for the new graph, we check the edges between inter
and intra nodes of the graph convolution kernels. The edge between these intra and
inter nodes allows the graph structure to be propagated through the SGCNN layers,
making sure the topological information is being utilized to learn the filter weight
matrix Wk at each layer.

9 Design Automation Using SGCNN 249

A

B

C

DA

B

C

D

New
Adjacency
Calculation

Pooling

A

B

C

A

B

C

A

B

DA

B

D

B

C

D

B

C

D

A

B

C

A

B

D

B

C

D

Input Graph Potential Graph
Combinations

Down- sampled CombinationsOutput Graph

A

C

DA

C

DA

C

D
A

B

C

A

B

C

A

B

C

A

B

DA

B

DA

B

D

B

C

D

B

C

D

B

C

D

A

C

DA

C

D
A

B

C

A

B

C

A

B

DA

B

D

B

C

D

B

C

D

Fig. 9.5 Convolution kernel example: given the input graph with four vertices, a 3-by-3 convolu-
tion kernel is selected. As a result, four convolution candidates are generated, down-sampled, and
adjacency recalculated resulting in a new graph with three vertices

9.3.5 Classification for Engineering Design Abstraction

Given a large graph and labeled sub-graphs representing engineering design,
the SGCNN can be used to classify them. While classifying these sub-graphs,
various features regarding the design are learned by the graph convolutional
kernels. Once the design and the labels (which can be the function served
by the design) are trained, the design is abstracted based on their functions.
This classification is done by using a softmax function and cross-entropy of
the logits. In addition, the feature vectors (sub-graph embedding) generated
by the final SGCNN can also be used by clustering algorithms to identify
nearest neighbors sub-graphs that have an equivalent function in the graph
based on their node attributes and structure. In engineering, there are several
use-cases for sub-graph embedding including the identification of functionally
equivalent structures that engineers are unaware of, and to identify structures that
mislabeled.

9.3.6 Graph Learning Algorithm Hyper-Parameters

In deep learning convolutional neural networks, hyper-parameters play a crucial
role in improving the accuracy and convergence of the algorithm. These hyper-
parameters are difficult to derive during the training as it requires large resources.

250 S. Rokka Chhetri et al.

Hence, to ease the resources they are instead selected prior to training. Grid search
or other efficient approaches are utilized to fine-tune the hyper-parameter values.
For Euclidean domain, extensive study [6, 13] has been carried out to aid in the
hyper-parameter selection. Some of the hyper-parameters that even common to non-
Euclidean deep graph convolutional neural networks are activation function, hidden
layers, number of iteration, learning rate, and batch size. However, as the proposed
deep graph learning algorithm for the engineering design automation is relatively
new, there are few other hyper-parameters that need to be highlighted. These hyper-
parameters are as follows.

9.3.6.1 Path Length in Node Aggregation Layer

As mentioned in Sect. 9.3.3, the neighbor node aggregation layer utilizes a specific
path number of various length size. The path length determines how much of the
knowledge graph should be considered in embedding the feature for the given
induced sub-graph. If the length is small, then we will focus on the local structure
and attributes of the sub-graph, while selecting longer path length will allow the sub-
graph to be embedded with global features. Hence, this value needs to be optimized
and fine-tuned according to the specific engineering domain data.

9.3.6.2 Graph Convolution Kernel Size

The graph convolutional kernel size determines how many vertices to be considered
for convolution with the filter weight matrix at each layer. The smaller kernel size
means that each of the layers will abstract sub-graph feature by considering its
immediate neighbors. However, if the kernel size is small, while the number of
vertices in the induced sub-graph is large than deeper SGCNN layers may need
to be implemented. However, if we select larger kernel, the SGCNN layer may be
shallow. The size of the kernel may depend on the induced graph’s size and structure
and will require tuning before the training is performed.

9.3.6.3 Dropout of Candidate Kernels

As presented in Sect. 9.3.4.2, we have used dropout to make the deep graph learning
feasible. We have combined the random and degree-based dropout. If permitted by
the resource, taking a large number of candidate attribute matrix may be helpful
to better abstract the induced sub-graph. Due to sparse nature of the engineering
design data taking large combinations of attribute matrix for convolution may also
be a waste of resources. Hence, a number of candidate kernels to drop out before
the convolution is performed need to be tuned as a hyper-parameter.

9 Design Automation Using SGCNN 251

9.4 GrabCAD Dataset

To demonstrate the applicability of the proposed graph learning algorithm in
engineering design automation, we have selected the 3D engineering CAD models
as training and testing dataset for engineering design functionality classification.
We have extracted the dataset from GrabCAD,1 which is an online repository of
3D CAD models shared and maintained by an online community of designers,
engineers, and manufacturers. It consists of over 4 million members with over
2 million engineering design models. From this vast online dataset, we have
extracted meta-information from six functional categories of 3D CAD models.
These functional categories are Car, Engine, Robotic arm, Airplane, Gear, and
Wheel (see Fig. 9.6). Since these are engineering designs from the mechanical
domain, we have tailored a custom schema consisting of the properties such as 3D
model’s name, author of the design, description of the model, parts names, tags,
likes, time-stamps, and comments on the engineering design. With this schema we
have induced sub-graphs for each of the categories with 2271 samples for Car, 1597
samples for Engine, 2013 samples for Robotic arm, 2114 samples for Airplane,
1732 samples for Gear, and 2404 samples for Wheel. The induced sub-graph
consists of 17 nodes consisting of both social network data (such as user-to-user
interaction through comments and likes) and engineering data (such as model-
to-tags relationship and model-to-model relationships). By inducing a sub-graph

Fig. 9.6 Sample of the 3D CAD models (Engine [26], Robotic Arm [22], Car [30], Airplane [32],
Gear Setup [4], and Wheel [38]) extracted from GrabCAD repository

1https://grabcad.com/.

https://grabcad.com/

252 S. Rokka Chhetri et al.

in GrabCAD dataset, we aim to demonstrate that similar designs with functional
description represented by a knowledge graph can be efficiently classified using the
proposed supervised graph learning algorithm.

9.5 Results

In our experiment, the total number of induced graph from all the engineering
design is 14,131. From this sample, we have used 11,304 as training samples and
2827 samples for testing if the similar functional designs get classified accurately.
In order to make sure that proper hyper-parameters are selected and tuned, we
have used a grid search approach over the possible hyper-parameter values. The
result of hyper-parameter selection is shown in Table 9.1. In the table, we have
tested the accuracy for various hyper-parameters. The first hyper-parameter is the
learning rate of the optimization algorithm. We have used ADAM optimizer [24]
to adjust the filter weights. From the table, it can be seen that the learning rate
of 0.01 is able to achieve higher accuracy. The second hyper-parameter in the
table is the batch size. The batch size determines how many of the induced
sub-graph are passed together once for calculating the loss and updating the
gradient.

It can be seen the batch size of 32 is able to obtain the highest accuracy of 79.22%
classification accuracy. The next hyper-parameter is the hidden layer feature size.
Each of the SGCNN layers is able to determine the size to give as an output. It
can be noticed that higher feature size of 150 is able to achieve better accuracy.

Table 9.1 Accuracy for various hyper-parameters [43]

9 Design Automation Using SGCNN 253

With a larger feature size, we also increase the number of parameters in the filter
weight matrix. The nest hyper-parameter is the epoch (the total number of times
the training goes over the whole dataset). It can be seen that a higher epoch
number of 500 is able to achieve higher classification accuracy. The last hyper-
parameter shown in Table 9.1 is the output layer kernel size. The final output layer
of the SGCNN acts like a dense layer, which means that it will try to generate
probability values for each of the categories. The final layer of the kernel depends
on the dropout carried out earlier. From the table, it can be seen that lower dropout
or larger output kernel produces higher accuracy. Beside these hyper-parameters,
we have also tested other hyper-parameters which are presented in the following
sections.

9.5.1 Activation Functions

Activation functions are used before the output in each of the SGCNN layers.
Most of the operation before the activation function are mostly linear. However,
the activation function increases the capacity of the SGCNN layer by making it
non-linear. We have explored various activation functions which are well studied in
Euclidean domain. These activation functions are sigmoid, softplus, tanh, rectifier
linear unit, and leaky rectifier linear unit.

The training loss and engineering design classification accuracy during testing is
shown in Fig. 9.7. It can be seen that out of all activation functions, leaky rectifier
linear unit (f (x) = αx for x < 0 and f (x) = x for x >= 0) activation
function (with α = 0.2) is able to achieve lower loss and higher classification
accuracy compared to other activation functions. Although the accuracy is higher,
it introduces some noise in both the loss and the accuracy values. One of the
parameters that can be used in LeakyRelu is the alpha value. It determines the slope
to be used to cut off the values when x < 0. Further analysis is required to tune the
value of the α.

Epochs

Tr
ai

ni
ng

 L
os

s

Ac
cu

ra
cy

 (1
=1

00
%

)

Epochs

Fig. 9.7 (a) Training loss (Left) and (b) accuracy for different activation functions (layers = 2,
aggregate and graph embedding layers) (Right) [43]

254 S. Rokka Chhetri et al.

K=2 K=4 K=6 K=8 K=10 K=12 K=14
K=2 K=4 K=6 K=8 K=10 K=12 K=14

Ac
cu

ra
cy

Epochs

Tr
ai

ni
ng

 L
os

s

Fig. 9.8 Training loss and accuracy for different size of kernels (with random dropout, last
layer kernel size = 5, layers = 3, hidden layer activation = relu, final layer activation =
leaky relu) [43]

9.5.2 Kernel Size

One of the important hyper-parameters for the SGCNN layers is the size of the

kernel used to perform the convolution with the attribute matrix Ār
k
. The value of

k determines the total number of vertices that are considered at a time to perform
the convolution with the filter weights Wk . In our experiment, the total of nodes
available in the induced sub-graph is 17, hence we have selected kernel size as
2, 4, 6, 8, 10, 12, and 14. It can be seen from Fig. 9.8 that the kernel size has a
drastic effect on the classification accuracy of the engineering design data. For three
layers of SGCNN, larger kernel size is able to achieve higher testing accuracy and
lower training loss. However, having a larger kernel size in every hidden layer is
not feasible, as it increases the complexity of the training algorithm. In Sect. 9.5.4,
it can be seen that with deeper layers, a smaller kernel size is able to obtain higher
testing classification accuracy as well.

9.5.3 Dropout

As mentioned earlier, without dropout, it becomes unfeasible to create deep SGCNN
layers. To improve the scalability of the SGCNN layers, in the proposed graph
learning algorithm we utilized a combination of random and adjacency-based
dropout. In the adjacency-based dropout, we utilize the degree of the vertices to

select the candidate combination of Ār
k

for the convolution. The dropout rate
determines the size of the final kernel size. If the dropout rate is higher, the size

9 Design Automation Using SGCNN 255

Last K=5 Last K=10 Last K=15 Last K=20
Last K=5 Last K=10 Last K=15 Last K=20

Ac
cu

ra
cy

Epochs

Tr
ai

ni
ng

 L
os

s

Fig. 9.9 Training loss and accuracy for various random dropouts to match the last layer’s
kernel size (hidden layer kernel size=14, layers=3, hidden layer activation=relu, final layer
activation=leaky relu) [43]

of the kernel at the output SGCNN layer will be smaller and vice versa. The result
of the various size of the final layer’s kernel size as a result of changing the dropout
is shown in Fig. 9.9. It maybe noticed that if the dropout is less (resulting in larger
kernel size in the output layer), the testing accuracy is higher and training loss is
lower. The result is shown for just three layers of the SGCNN. The total number

of possible combination of Ār
k

with the kernel size of 14 for the first layer is(17
14

) = 680. We can notice that even when the total candidates have been drastically
dropped to just 5, 10, 15, and 20, the graph learning algorithm is able to perform
quite well in classifying the engineering designs. This may be due to the fact that
the induced graphs are sparse in nature and that the initial kernel size of 14 is able
to capture all of the node’s features during convolution.

In addition to random dropout, we have implemented the adjacency-based
dropout as well. The down-sampling algorithm first uses random dropout to initially

reduce the possible candidates of Ār
k
, and out of the remaining selects the ones with

higher connectivity. The result for the down-sampling combined with the random
dropout is shown in Fig. 9.10. It maybe noticed that adjacency-based dropout is able
to achieve the highest accuracy of around 90%.

9.5.4 Layers

The most advantageous property of the proposed graph learning algorithm is able
to have deeper layers that are able to abstract the features of the induced graph in
each iteration. To demonstrate this capability, we have selected a kernel size of 2
for the filter weights, and measure the accuracy of the graph learning algorithm for

256 S. Rokka Chhetri et al.

Fig. 9.10 Comparison between random dropout and adjacency-based dropout (hidden layer kernel
size=14, layers=3, hidden layer activation=relu, final layer activation=leaky relu) [43]

Fig. 9.11 Performance comparison between various layer sizes (hidden layer kernel size=2,
activation =leaky relu, lastk=30, Dropout=Random) [43]

layer size of 3, 4, 5, and 6. It can be noticed from Fig. 9.11 that layer size of 4
and 5 is able to achieve higher testing classification accuracy compared to shallow
three layers and deeper six layer size. The highest accuracy achieved was ≈91%
with four layers. The deep SGCNN layers are able to abstract the structural and
attribute properties of the induced sub-graph in a hierarchical manner by using a
smaller kernel size of 2. This means that in each layer smaller node size is fused and
the new combined features are learned. This property can be helpful in engineering
design data, where there is some form of hierarchy in terms of design.

9 Design Automation Using SGCNN 257

9.6 Discussion

The SGCNN’s capability to learn sub-graph structure embedded with attributes was
demonstrated in Sect. 9.5. It achieves very positive results on functional lifting using
the GrabCAD dataset. We have presented the GrabCAD dataset as an engineering
dataset to show the applicability of design automation. However, in our future
work, we will demonstrate the use of the SGCNN to electronic design dataset
as well. Although SGCNN was created to address the functional lifting problem
in engineering, we believe this is broadly applicable to other domains. In our
future work, we will compare the performance of SGCNN against the latest work
on graph convolutional networks targeting sub-graph-level embedding [2, 31, 36].
Currently, we have shown that SGCNN is able to perform supervised learning in
abstracting the design features and classifying them based on their functions. For
robust design automation, designers would be interested not only in classifying
the designs but being able to reproduce or generate designs that slightly vary in
functionality. In order to do this, the same structure of the SGCNN may be used
for generative learning algorithms such as variational auto-encoder (VAE) [34] or
generative adversarial networks (GAN) [14].

9.7 Conclusions

This chapter presents a novel structural graph convolutional neural network which
can be used to abstract the non-Euclidean graph or sub-graph dataset. These
graphs can be used to represent the engineering design data and allow designers to
effectively perform design automation by effectively clustering engineering designs
with similar functionality. This allows designers to search for designs that are similar
to the required functionality and aid in design automation.

References

1. Abu-El-Haija, S., Kapoor, A., Perozzi, B., & Lee, J. (2018). N-GCN: Multi-scale graph
convolution for semi-supervised node classification. arXiv preprint arXiv:1802.08888.

2. Adhikari, B., Zhang, Y., Ramakrishnan, N., & Prakash, B. A. (2018). Sub2vec: Feature learning
for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 170–
182). Cham: Springer.

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A
nucleus for a web of open data. In The semantic web (pp. 722–735). Berlin: Springer.

4. Bana. Differential gearbox. https://grabcad.com/library/differential-gearbox-speed-reducer-
worm-gear-with-spider-gears-1. Retrieved November 14, 2018.

5. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6), 1373–1396.

https://grabcad.com/library/differential-gearbox-speed-reducer-worm-gear-with-spider-gears-1
https://grabcad.com/library/differential-gearbox-speed-reducer-worm-gear-with-spider-gears-1

258 S. Rokka Chhetri et al.

6. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13, 281–305.

7. Cao, S., Lu, W., & Xu, Q. (2015). GraRep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management (pp. 891–900). New York: ACM.

8. Chen, X., Tao, Y., Wang, G., Kang, R., Grossman, T., & Coros, S. (2018). Forte: User-
driven generative design. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (p. 496). New York: ACM.

9. Chung, F. R. (1997). Spectral graph theory (Number 92). Providence: American Mathematical
Society.

10. Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems (pp. 3844–3852).

11. Garcia-Gasulla, D., Ayguadé, E., Labarta, J., Béjar, J., Cortés, U., & Suzumura, T. (2017).
A visual embedding for the unsupervised extraction of abstract semantics. Cognitive Systems
Research, 42, 73–81.

12. Geometric deep learning (2018). http://geometricdeeplearning.com/
13. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (pp. 249–256).

14. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., & Ozair, S. (2014).
Generative adversarial nets. In Advances in Neural Information Processing Systems (pp. 2672–
2680).

15. Goyal, P., Chhetri, S. R., & Canedo, A. (2018). dyngraph2vec: Capturing network dynamics
using dynamic graph representation learning. arXiv preprint arXiv:1809.02657.

16. Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance:
A survey. Knowledge-Based Systems, 151, 78–94.

17. Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 855–864). New York: ACM.

18. Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning an invariant
mapping. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2006 (Vol. 2, pp. 1735–1742). Piscataway: IEEE.

19. Haik, Y., Sivaloganathan, S., & Shahin, T. M. (2018). Engineering design process. Toronto:
Nelson Education.

20. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (pp. 1025–1035).

21. Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163.

22. Kapllanaj, E. (2018). 3D printed robotic arm with gripper. https://grabcad.com/library/3d-
printed-robotic-arm-with-gripper-1. Retrieved November 14, 2018.

23. Kazi, R. H., Grossman, T., Cheong, H., Hashemi, A., & Fitzmaurice, G. W. (2017). Dreams-
ketch: Early stage 3d design explorations with sketching and generative design. In UIST
(pp. 401–414).

24. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

25. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

26. Kumar, A. (2018). V6 car engine. https://grabcad.com/library/v6-car-engine-7. Retrieved
November 17, 2018.

27. Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2017). Cayleynets: Graph convolutional
neural networks with complex rational spectral filters. arXiv preprint arXiv:1705.07664.

http://geometricdeeplearning.com/
https://grabcad.com/library/3d-printed-robotic-arm-with-gripper-1
https://grabcad.com/library/3d-printed-robotic-arm-with-gripper-1
https://grabcad.com/library/v6-car-engine-7

9 Design Automation Using SGCNN 259

28. Li, B., & Franzon, P. D. (2016). Machine learning in physical design. In IEEE 25th Conference
on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2016 (pp. 147–150).
Piscataway: IEEE.

29. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13, USA (pp. 3111–
3119). New York: Curran Associates Inc.

30. Mohammad (2018). Go kart. https://grabcad.com/library/go-kart-123. Retrieved November
14, 2018.

31. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., & Saminathan, S. (2016). subgraph2vec:
Learning distributed representations of rooted sub-graphs from large graphs. arXiv preprint
arXiv:1606.08928.

32. Niazi, K. (2018). Pegasus UAV. https://grabcad.com/library/pegasus-uav-1. Retrieved Novem-
ber 14, 2018.

33. Pandey, M. (2018). Machine learning and systems for building the next generation of EDA
tools. In Proceedings of the 23rd Asia and South Pacific Design Automation Conference
(pp. 411–415). Piscataway: IEEE Press.

34. Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., & Stevens, A. (2016). Variational autoencoder for
deep learning of images, labels and captions. In Advances in Neural Information Processing
Systems (pp. 2352–2360).

35. Qi, W. (2017). IC Design Analysis, Optimization and Reuse via Machine Learning. Raleigh:
North Carolina State University.

36. Ribeiro, L. F. R., Saverese, P. H. P., & Figueiredo, D. R. (2017). struc2vec: Learning
node representations from structural identity. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 385–394). New York:
ACM.

37. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500), 2323–2326.

38. Samoilovskikh, P. (2018). Trailer wheel. https://grabcad.com/library/trailer-wheel-2
39. Schuhmacher, M., & Ponzetto, S. P. (2014). Knowledge-based graph document modeling.

In Proceedings of the 7th ACM International Conference on Web Search and Data Mining
(pp. 543–552). New York: ACM.

40. Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v., Mehlhorn, K., & Borgwardt, K. M. (2011).
Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12(Sep), 2539–
2561.

41. Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

42. Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010). Graph
kernels. Journal of Machine Learning Research, 11(Apr), 1201–1242.

43. Wan, J., Pollard, B. S., Chhetri, S. R., Goyal, P., Faruque, M. A. A., & Canedo, A. (2018).
Future automation engineering using structural graph convolutional neural networks. arXiv
preprint arXiv:1808.08213.

44. Yi, L., Su, H., Guo, X., & Guibas, L. J. (2017). SyncSpecCNN: Synchronized spectral CNN
for 3D shape segmentation. In CVPR (pp. 6584–6592).

https://grabcad.com/library/go-kart-123
https://grabcad.com/library/pegasus-uav-1
https://grabcad.com/library/trailer-wheel-2

Chapter 10
Design Automation for Energy Storage
Systems

Swaminathan Narayanaswamy, Sangyoung Park, Sebastian Steinhorst,
and Samarjit Chakraborty

10.1 Electrical Energy Storage (EES) Systems

Global warming and associated climate change have already had observable serious
effect on the environment. NASA’s analysis in [1] says that 2017 was the second
hottest year on the record where the average global temperature increased by 0.9 ◦C
above the average value from 1951 to 1980. With similar trends global temperatures
could break the internationally agreed upper 1.5 ◦C limit within the next 5 years
as predicted by [2]. Effects of such increased global warming can be observed by
extreme weather events and natural calamities causing floods, hurricanes, famines,
and water scarcity all over the world. Towards this, both developed and also
developing countries like China and India have created joint road maps to address
the problem of climate change.

Power and transportation sectors are identified as the major sources of CO2 and
other greenhouse gas emissions resulting in increased global warming. For instance,
71% of CO2 emissions in India is from the energy sector which is predominantly
dominated by coal-based thermal power plants [3]. Similarly, the transportation
sectors account for nearly 28.5% of greenhouse gas emissions in the USA in 2016,
predominantly from the passenger cars [4]. Towards this multiple steps have been
planned to minimize the dependency on the usage of fossil fuels. In the power sector,
renewable energy sources generating green electricity from natural resources such as
solar, wind, and hydro have been proposed. Likewise, Electric vehicles (EVs) and
Hybrid electric vehicles (HEVs) are considered as a pollution-free transportation

S. Narayanaswamy (�) · S. Steinhorst · S. Chakraborty (�)
Technical University of Munich, Munich, Germany
e-mail: swaminathan.narayanaswamy@tum.de; sebastian.steinhorst@tum.de; samarjit@tum.de

S. Park
Technical University of Berlin, Einstein Center Digital Future, Berlin, Germany
e-mail: sangyoung.park@tu-berlin.de

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3_10

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13050-3_10&domain=pdf
mailto:swaminathan.narayanaswamy@tum.de
mailto:sebastian.steinhorst@tum.de
mailto:samarjit@tum.de
mailto:sangyoung.park@tu-berlin.de
https://doi.org/10.1007/978-3-030-13050-3_10

262 S. Narayanaswamy et al.

option compared to the gasoline driven cars. This is evident with the increasing
deployment trend of renewable energy sources and sales rate of EVs [5].

10.1.1 Challenges with Alternative Green Technologies

The major challenge towards successful integration of different renewable energy
sources into the electricity grid is their volatility. Their high dependence on
favorable weather conditions to generate electrical energy makes them unpredictable
and increases the complexity of grid control leading to instability. For instance,
rooftop solar Photovoltaic (PV) panels generate majority of their electricity during
the middle of the day when the sunshine is at maximum. However, the electricity
demand of a typical household peaks during the early morning and late evening
periods creating a mismatch between the generation and usage time frames. This
results in significant economic losses for large-scale renewable energy systems. For
instance, the Comptroller and Auditor General of India estimated approximately 2.4
billion INR losses due to lack of power evacuation from the wind farms during the
period 2007–2014 [6]. In addition, the electricity grid in many of the developing
countries such as India and China is not fully mature, resulting in several challenges
to integrate the renewable energy sources from different geographical locations.
Therefore, Electrical energy storage (EES) systems become necessary to store the
electrical energy produced during favorable weather conditions and reuse them
whenever required.

On the other hand, EVs and HEVs are also facing similar challenges with their
energy storage technologies. The battery pack, which is the main source of power in
these new green transportation systems, is highly expensive constituting nearly half
of the overall vehicle cost. Long charging times and limited driving ranges are the
major concerns for these new technologies to capture the market of gasoline-driving
Internal combustion engine (ICE) vehicles. Moreover, the battery packs used in EVs
and HEVs have to be replaced once their lifetime reaches 70% of their initial value,
since they cannot guarantee the same range specifications as a fresh battery pack.
Methods for extending this threshold and techniques to reuse these retired battery
packs from automotive applications into other less critical domains are required.
Furthermore, techniques to minimize the cost of the battery packs and improve the
performance in terms of charging time and driving range are crucial.

10.1.2 Electrochemical Battery Packs

There are different forms of EES systems available depending upon the specific
requirements of each application [7]. For very high power storage, in the range of
several MW to few GW, pumped hydro storage can be used, where the electrical
energy is stored by pumping water from a lower reservoir to an upper reservoir

10 Design Automation for Energy Storage Systems 263

during off peak periods. On the other hand, EES formed by double-layer capacitors
also called as supercapacitors is mainly used in applications where the stored energy
has to be retrieved within short time periods in the range of seconds to minutes.
Similarly, the electrical energy generated during the low demand time is used to
electrolyze water molecule and the released H2 is used in a fuel cell EES to support
the high demand during peak periods.

Among the many types of EES, batteries are widely used to store the electrical
energy due to their high energy and power density. Higher energy and power
density correlates to lower installation volume required for storing the electrical
energy. Moreover, batteries can be tailored to meet the specific requirements of the
application such as fast charging or long life or higher power capability or higher
energy density. Therefore, they are widely used as EES in the kW and MW power
range. In addition, they dominate other technologies in the field of mobile EES such
as EVs and HEVs due to their highly compact nature with high specific energy and
power.

Batteries are electrochemical storage devices meaning their chemical reaction
is coupled with an electron transfer. In general, the battery chemistry is broadly
classified into primary (non-rechargeable) and secondary (rechargeable). The pri-
mary, non-rechargeable batteries are designed to be used once and are discarded
when the active chemical materials of the battery generating electricity are fully
utilized. By contrast, the secondary rechargeable battery types can be charged and
discharged multiple times. They perform a reversible chemical reaction, which
allows them to store electrical energy (charging) and release the stored electrical
energy by performing the opposite reactions (discharging). In case of EES systems,
the secondary, rechargeable battery chemistry is preferred since it allows to store and
extract the electrical energy without the necessity for replacing the battery itself.

The secondary rechargeable batteries are further classified based on the chem-
ical composition of the anode, cathode, and the electrolyte materials used for
construction. For example, a Nickel-metal hydride (NiMH) rechargeable battery
chemistry consists of nickel cathode, a hydrogen absorbing anode, and a potassium
hydroxide electrolyte. Similarly, the lead-acid battery chemistry is made of lead-
dioxide cathode, a metallic lead anode, and an electrolyte of sulfuric acid solution.
Compared to all the secondary rechargeable battery chemistries, the Lithium-ion
(Li-Ion) based batteries provide superior performance in terms of energy and power
densities, since the electrochemical potential of lithium is higher compared to other
materials. Therefore, the cells can be manufactured with smaller size and weight
for the same required energy and power requirements. Moreover, the flexibility in
designing the cell for high specific energy (energy cell) or to design with a high
specific power (power cell) provides a wide range of applications for this battery
chemistry. In addition, long cycle life with low self-discharge and having high
coulombic efficiency make these Li-Ion cells the most appropriate option of high
power EES applications.

264 S. Narayanaswamy et al.

10.1.2.1 High Voltage Battery Packs

The current capacity of a single Li-Ion cell depends upon the geometry of the cell.
For instance, a Li-Ion cell of “18650” form factor (18 mm in diameter and 65 mm
length) has typically a capacity in the range of 3 A h, whereas the large format pouch
cells have a capacity in the range of 60 A h. Moreover, the operating voltage of a
single Li-Ion cell is in the range of 2.7–4 V. Nevertheless, the voltage and capacity
of a single Li-Ion is insufficient to support high power EV and HEV requirements
of 450 V and 200 A h. Therefore, battery packs are formed with a number of series-
and parallel-connected individual Li-Ion cells. In order to have a higher current
capability, multiple Li-Ion cells are connected in parallel and the required higher
operating voltage can be obtained by series connection of individual cells. For
example, with a single Li-Ion cell with a capacity of 3 A h and a nominal voltage
of 4 V, connecting five cells in parallel will result in a capacity of 15 A and then
connecting twelve of these parallel-connected cells in series will yield a voltage of
48 V for the battery pack corresponding to a 720 W h EES system.

Example High Voltage Automotive Battery Packs The Tesla Model-S full EV
consists of a battery pack of 85 kW h. It is made up of Panasonic “18650” Li-Ion
cells each having a capacity of 3.2 W h. The battery pack is divided into 16
series-connected modules and each module has six series-connected groups of 74
parallel-connected individual Li-Ion cells as shown in Fig. 10.1a. The battery pack
configuration is represented as 74P6S16S with a total of 7104 individual Li-Ion

M1

M2

M3

M15

M16

G1

G2

G6

B1 B2 B74

+

-

M1

M2

M3

M15

M16

16S

6S

74P

(a)

M1

M2

M3

M47

M48

+

-

M1

M2

M3

M47

M48

48S

G1

G2

B1 B2

2P2S

(b)

M1

M2

M3

M7

M8

+

-

M1

M2

M3

M7

M8

8S

12S

(c)

B1

B2

B3

B12

Fig. 10.1 High voltage battery packs. (a) Tesla Model-S 85 kW h battery pack, consisting of 96
series-connected modules with 74 parallel-connected individual Li-Ion cells in each module. (b)
Nissan leaf battery pack with 96 series-connected modules each having 2 sheet shaped 32.5 A h
Li-Ion cells in parallel. (c) BMW i3 EV battery pack having 96 series-connected 60 A h cells

10 Design Automation for Energy Storage Systems 265

cell. On the other hand, the battery pack in the Nissan leaf EV is formed by 48
series-connected modules as shown in Fig. 10.1b. Each module consists of 4 cells
that are configured in 2P2S fashion, 2 series-connected groups and in each group 2
sheet shaped 32.5 A h Li-Ion cells are connected in parallel. The entire battery pack
configuration is represented as 2P2S48S. The BMW i3 EV has 12 series-connected
60 A h prismatic Li-Ion cells forming a module and the battery pack consists of 8
modules connected in series (Fig. 10.1c).

10.1.3 Battery Pack Challenges

The benefits of high energy and power densities offered by Li-Ion cells do not
come for free. A comprehensive overview of issues associated with battery packs
consisting of Li-Ion cells is provided in [8]. The critical challenges pertaining to
high voltage battery packs consisting of multiple series-connected Li-Ion cells are
its safety and energy output.

10.1.3.1 Safety

Li-Ion cells have a defined set of safe operating conditions in terms of voltage,
current, and temperature. The minimum and maximum operating voltage of most
Li-Ion cells are in the range of 2.7 V and 4.2 V, respectively. Charging a Li-Ion cell
with a voltage higher than that specified causes excessive current flows inside the
cell and increases the internal temperature leading to fire or explosion by thermal
runaway. Similarly, discharging a Li-Ion cell below its minimum threshold voltage
(over-discharging) results in a gradual breakdown of the internal cell electrodes,
reducing their lifetime. Similar constraints also hold for the operating current of a
Li-Ion cell. Charging with high currents (fast charging), especially in terms of EV
applications, is gaining more importance, since a regular charging of an EV battery
pack might take hours. However, increasing the charging current significantly
increases the temperature of the cell and if adequate control measures are not
taken to regulate the battery pack temperature, the lifetime of the battery pack
will significantly be reduced. Likewise, discharging the cell with higher currents
results in an inherent capacity loss, due to the rate capacity effect, which is defined
as the reduction in the battery capacity due to the increased discharge current.
Finally, temperature of a Li-Ion battery pack is a critical parameter that needs to
be maintained within a specific operating range to ensure safety and increase the
usable capacity. With very low temperatures the speed of the chemical reactions is
very slow and therefore results in a reduced current carrying capacity, both in terms
of charging and discharging. Prolonged operation of the battery pack at reduced
temperatures, below 0 ◦C, will result in a premature capacity loss of the battery
pack. By contrast, increased temperatures will result in catastrophic effects causing
fire or explosion due to thermal runaway. Moreover, with increased temperature

266 S. Narayanaswamy et al.

exothermic side reactions take place inside the cell that will severely damage them
and reduce their lifetime. Therefore, the operating parameters of all the cells in a
Li-Ion battery pack must be accurately monitored and closely controlled to ensure
safe operation.

10.1.3.2 Energy Output

As shown in Fig. 10.1, battery packs for high power applications such as EVs,
HEVs are formed by multiple series-connected Li-Ion cells to achieve the required
operating voltage. The discharging or charging process of such a series-connected
battery pack must be stopped when any cell in the pack reaches the lower or upper
operating thresholds, respectively. In an ideal case all cells forming the battery pack
are required to be uniform, thereby reaching the top and bottom threshold limits at
the same time to fully utilize the available capacity of the battery pack. However,
in reality, manufacturing differences and varying temperature distribution along the
battery pack lead to variations in the State-of-charge (SoC) of individual cells in the
pack. As a result, the usable capacity of the battery pack is reduced since a series-
connected pack can only be discharged till any cell in the pack reaches its lower
SoC threshold. Subsequently, the charging process is also affected by the charge
variations since any cell reaching the top threshold will halt the charging process.

+

-

B1

B2

B3

B4

100
90
80
70
60
50
40
30
20
10

B1 B2 B3 B4

Max

Min

t0 Time [s]

SoC [%]

(a) (b) (c)
t1

Fig. 10.2 (a) Motivating example consisting of four series-connected Li-Ion cells to show the
impact of cell-to-cell SoC variations. (b) While discharging, cell B4 with a lower SoC compared
to others will stop the discharging process as soon as it reaches the bottom threshold value. (c)
While charging, cell B1 with a higher SoC compared to others will stop the charging process once
the top threshold is reached

10 Design Automation for Energy Storage Systems 267

Figure 10.2 shows the impact of such cell-to-cell variations with an example
of 4 cells connected in series. Due to manufacturing variations and temperature
distribution, the SoC of cell B1 is at 70% and that of cell B4 is at 50%. As
soon as a load current is drawn from the battery pack at time 0, the SoC of all
cells start to decrease depending upon the load current value. A series-connected
battery pack can only be discharged till the SoC of any cell in the pack reaches the
bottom threshold value. In this example, cell B4 is the weakest cell compared to
others and will reach the lower threshold value faster than other cells in the pack.
Therefore, once cell B4 is discharged to the lower threshold value, see Fig. 10.2b,
the discharging process has to be stopped, even though other cells in the pack have
active energy stored in them. Similar loss in usable capacity is observed during the
charging process which starts at time t0. Since all cells are connected in series, the
same charging current flows through all of them and their SoC starts to increase
depending upon the current value. The charging process continues till any one cell
in the pack reaches the top threshold value. In the example here, cell B1 is the
strongest cell and therefore reaches the top SoC threshold earlier than other cells
in the pack. Once cell B1 is fully charged (at time t1), the charging process has to
be stopped (see Fig. 10.2c), even though remaining cells in the pack are not fully
charged. This results in a battery pack consisting of cells that are unevenly charged.
Repeated charging and discharging of such an imbalanced battery pack will result in
a situation where the cell with the low SoC value (B4) stops the discharging process
and the cell with the high SoC (B1) halts the charging process. This leads to an
unusable battery pack and therefore it is required to equalize the SoC of individual
cells in the battery pack in order to fully utilize the usable capacity.

10.2 Battery Management System

In order to address the above-mentioned challenges associated with high voltage
battery packs, a sophisticated Battery management system (BMS) is required to
maintain safe operating conditions and to maximize the usable capacity of the
battery pack [9]. The BMS monitors the parameters such as voltage, current, and
temperature of individual cells and controls them within their safe operating limits.
In addition, the BMS accurately calculates the cell states such as SoC and State-of-
health (SoH), which are required to estimate the driving range and lifetime of the
battery pack, respectively. Moreover, the BMS controls the cell balancing, which
is the process of equalizing the charge levels of the individual cells in the series-
connected battery pack and thereby improves its usable capacity.

268 S. Narayanaswamy et al.

(a)

+ -

Central master controller

A

SBM SBM SBM SBM SBM CS

(b)

+

PMU

SBM

MMU MMU MMU

A

CS

(c)

+ -

PMU

A

SBM SBM SBM SBM SBM CS

µC µC µC µC µC

D
E

C
E

N
T

R
A

L
IZ

A
T

IO
N

(d)

+ -
A

SBM SBM SBM SBM SBM CS

µC µC µC µC µC

CMU

SBM SBM

Fig. 10.3 Trends in BMS topologies. (a) Centralized, (b) hierarchical, (c) partially distributed,
and (d) fully decentralized (smart cells) [10]

10.2.1 BMS Topologies

Topology of a BMS is defined as the electrical and logical arrangement of
modules that perform sensing of cell parameters such as voltage and temperature,
computation of cell states such as SoC and SoH and control of balancing circuits.
Figure 10.3 shows the trend of the BMS topologies in the literature.

10.2.1.1 Conventional BMS Topologies

Conventional approaches are either centralized or hierarchical as shown in
Fig. 10.3a, b, respectively. In the centralized system, each cell is associated with a
Sensing and balancing module (SBM) as shown in Fig. 10.3a measuring the voltage
and temperature of each cell [11]. A single Current sensor (CS) either at the positive

10 Design Automation for Energy Storage Systems 269

or at the negative terminal of the pack can be used to measure the pack current
since the current flowing through all the cells will be equal as they are connected
in series. The balancing part of the SBM will typically be a simple high power
resistor in series with a power transistor realizing a passive balancing approach.
The individual SBMs are controlled by a single master controller, which in addition
to maintaining safe operation of each cell also implements the pack-level functions
such as pack SoC and SoH calculations. Alternatively, the hierarchical approach
groups typically four to six series-connected cells as a module and multiplexes a
single SBM with each cell in the module as shown in Fig. 10.3b [9]. Additionally,
an intermediate control layer in the form of Module management unit (MMU) is
introduced to individually manage the respective module and uses the master Pack
management unit (PMU) controller for only pack-level functions. The BMS of a
Tesla Model-S is an example for this type of BMS topology.

Challenges Even though the centralized BMS topology is cost effective to imple-
ment, there are significant challenges faced by this approach due to the growing
complexity of battery packs and a huge demand to reduce the time-to-market
especially in terms of EV applications.

• Modularity and Scalability: Scalability of these conventional approaches is
significantly limited. The design of the electrical architecture of the SBM and
the MMU is highly integrated with the underlying cell and its parameter spec-
ifications. Similar dependence is also observed in the management algorithms
of the master controller in both centralized and hierarchical approaches, which
have to be modified depending upon the application scenario. Moreover, addition
of new cells to the pack will not be easily supported and requires a complete
redesign since the computational capability and the input/output performance of
the master and the MMUs are limited that do not scale with the number of cells.

• Wiring and Control: With a central master controller monitoring parameters
of each individual cells, there exists a huge amount of wiring between cells
and the controller. This significantly increases the wiring harness and weight,
which in EV and HEV applications directly impacts the driving range. In
addition, the balancing capability of these BMS topologies is often limited
to energy-inefficient, dissipative passive techniques, since the energy-efficient
active equalization approaches consist of a dense switching network requiring
a complex control scheme that cannot be satisfied by a single master controller
while performing other critical pack-level BMS functions.

• Reliability: The master controller in these conventional approaches represents
a potential single point of failure in the system. Any fault in the controller
will isolate the battery pack from the application unit and improper isolation in
certain scenarios might lead to catastrophic accidents, especially in terms of EVs.
Moreover, the excessive wiring from the cell sensors to the master controller in
the centralized topology also increases the probability of failures in the system. It
is highly difficult for the central master controller to distinguish between a fault
in sensor cable from a fault in the cell. If a signal wire from the sensors of any

270 S. Narayanaswamy et al.

cell breaks, the master controller will shut down the application unit by isolating
the battery pack.

10.2.1.2 Emerging Decentralized BMS Topologies

With increasing applications of battery packs and the demand for shorter time
to market of the applications using these high power battery packs, the system
integration aspects of battery systems are gaining more attention. Here methods
for customization-free plug-and-play integration providing high degree of scala-
bility and reliability are of paramount importance. At the same time, the system
architecture must enable implementation of energy-efficient active cell balancing
approaches and should consist of homogeneous modules at all abstraction-levels
supporting mass production. This trend resulted in distributing the control and
computational units close to each cell adding more intelligence at the cell-level.

First approaches for decentralization were proposed in [12] as shown in
Fig. 10.3c, where each cell is monitored with a dedicated cell-level control unit that
is in turn connected to a light-weight master controller. Here, the local controllers
perform the cell-level functions of the BMS such as cell voltage, temperature
measurements, SoC and SoH calculations, and control of the individual balancing
units, while the light-weight master only performs system-level BMS functions.
By contrast, Steinhorst et al. [13] proposes a fully decentralized system topology
as shown in Fig. 10.3d, where the local cell-level controllers together with the
SBM form an autonomous Cell management unit (CMU), thereby managing all the
parameters of the cell it is attached to. The cell along with this CMU is termed as
the smart cell, and the battery pack is formed by interconnection of these individual
smart cells that perform all the pack-level functions such as cell balancing or pack
SoC calculation in a cooperative fashion adopting techniques from the domain of
self-organizing distributed systems.

Benefits of Decentralization Having homogeneous electrical circuit architecture
and algorithms for the cell-level controller favors mass production and
customization-free integration thereby, significantly increases the scalability of
the system. Furthermore, adding more intelligence to each cell enables accurate
monitoring and control of cell parameters within their allowable limit and timely
reaction to faults in the system. Moreover, the decentralized approaches do not
suffer from single point of failures commonly experienced in the conventional
architectures. Failure of a single cell-level controller will only render the associated
cell unusable and failure of the master controller in case of partially distributed
topology will not be catastrophic since the individual cell-level controllers can still
function without the supervision of the master. Finally, increasing the computational
and controlling capability at the cell-level promotes the realization of complex
active cell balancing approaches and reconfigurable interconnection schemes that
vastly improve the overall usable capacity of the battery pack. Owing to these
benefits, decentralized BMS approaches are gaining more importance and in the
remainder of this chapter we will focus on their design challenges and introduce

10 Design Automation for Energy Storage Systems 271

our hardware/software development platform that will help in faster design and
verification of decentralized circuit architectures and distributed algorithms.

10.2.1.3 Distributed BMS Challenges

Even though distributed BMS topologies significantly address the challenges
associated with the centralized approach, they require a paradigm shift in their
design methodology. Design challenges in distributed BMSs that has to be addressed
for an efficient implementation are classified into three levels as follows.

Cell-Level Low-power consumption is the key design criteria for the cell-level
controllers in a distributed BMS as they are powered from the battery cell itself.
Moreover, in a series-connected battery pack, the DC potential of each cell varies
with respect to the negative terminal of the battery pack. For instance, the voltage
across the terminals of cell 2 is 4 and 8 V and that of cell 100 would be 396
and 400 V, with respect to the negative terminal of the battery pack, respectively.
Since the individual cell controllers are powered directly from their respective
battery cells, the ground potential of each controller varies while charging and
discharging the pack. As a result, the sensing module in each cell-level controller
has to be designed in such a way to overcome the measurement inaccuracies and
the high level of common-mode noise introduced by the varying DC potential. In
addition, conventional approaches have a fixed electrical interconnection between
the cells to form a battery pack. Recently, reconfiguration architectures have
been proposed where the electrical interconnection scheme of the battery pack
can be modified at runtime to improve the performance [14]. Even though the
decentralized topologies can support the additional complexity introduced by these
reconfiguration approaches, the high power dissipation across the switches used
in these reconfiguration architectures is still a challenge that requires sophisticated
power electronic design.

Module-Level The module-level comprises of the balancing circuit architectures
that are required to equalize the SoC of each cell in the pack. Compared to
conventional passive techniques [15], where the excess charge in cells with high
SoC is dissipated as heat across a resistor, energy-efficient active cell balancing
techniques are an emerging alternative. Here, the SoC variation among cells is
minimized by performing charge transfers using temporary energy storage elements
such as inductors, transformers, and capacitors coupled with a power Metal-
oxide-semiconductor field-effect transistor (MOSFET) switching network [16, 17].
Moreover, decentralization of the BMS topology enables implementation of com-
plex energy-efficient active cell balancing approaches that require sophisticated
control scheme with multiple high frequency Pulse width modulated (PWM) signals
having strict timing requirements. However, this decentralization shifts the focus
now towards the electrical architecture design and their verification in order to
satisfy the modularity and homogeneity requirements of the decentralized BMS
topologies [18]. The active cell balancing modules must have a homogeneous

272 S. Narayanaswamy et al.

electrical architecture that can be modularized into identical units that can be
attached with each cell and a system-level balancing architecture can be easily
formed by extending them without requiring custom modifications. Moreover, all
high frequency control signals required for performing charge transfers must be
generated locally from the cell-level controller without requiring any high frequency
synchronization with other controllers. Verifying the switching scheme for such
complex active cell balancing architectures becomes a non-trivial task and cannot
be performed manually, requiring automated design techniques. Finally, optimal
component selection for these active cell balancing architectures is an essential task
to ensure high energy efficiency, lower installation volume, and faster equalization.

Pack-Level The computation, control, and communication aspects of the
distributed BMS constitute the pack-level. Computation of cell states such as
SoC, SoH, and cell aging are the main tasks performed by the BMS. This involves
solving complex analytical equations and applying sophisticated filtering techniques
such as Kalman filtering or Extended Kalman filtering (EKF) [19]. While the cell-
level controller in a distributed BMS topology is typically a microcontroller with
limited computational capability, software implementation of these mathematical
tasks become challenging. There exists a trade-off in selecting this computational
platform since increasing the computation capability of the cell-level controller
improves the efficient implementation of complex state estimation techniques,
while on the other hand will also increase their power consumption from the cell.
Moreover, as the individual cell-level controllers are only responsible for monitoring
the status of their associated cells, the system-level properties of the battery pack
such as pack SoC and pack voltage are calculated by communicating with other
cell-level controllers. Therefore, the communication channel must support high
bandwidth and also the protocol must enable the individual controllers with high
priority to access the communication channel to quickly broadcast in case of any
fault in the cell. The controlling aspect of the BMS involves the control of the
underlying active cell balancing architectures. Here complex switching schemes
with multiple high frequency PWM signals having strict timing requirements must
be generated by the cell-level controller, requiring a sophisticated timing module
and sufficient input/output port performance. Moreover, the strategy for balancing
the SoC variations in the pack, that is identifying the source and destination cells for
the charge transfer, is a complex task. Finding an optimal strategy that will minimize
both the energy dissipation and the time to equalize the pack is a non-trivial
optimization problem that requires sophisticated design automation techniques.
Moreover, developing these energy-efficient strategies for a decentralized BMS is
significantly challenging since there is no master controller with a global knowledge
is present in such systems.

10 Design Automation for Energy Storage Systems 273

Ta
bl

e
10

.1
C

el
l-

le
ve

la
nd

pa
ck

-l
ev

el
fu

nc
tio

ns
of

a
di

st
ri

bu
te

d
B

M
S

to
po

lo
gy

In
pu

t

C
el

l
Pa

ck

O
ut

pu
t

V
ol

ta
ge

Te
m

pe
ra

tu
re

So
C

So
H

R
es

is
ta

nc
e

B
al

an
ci

ng
cu

rr
en

t
Pa

ck
cu

rr
en

t
So

C
So

H

C
el

l

C
al

cu
la

te
:S

oC
∗
∈R

�
�

�
�

C
al

cu
la

te
:S

oH
∗
∈R

�
�

�
C

al
cu

la
te

:R
es

is
ta

nc
e∗
∈R

�
�

D
et

ec
t:

Fa
ul

t∈
{0,

1}
�

�
�

�
�

D
et

ec
t:

O
ve

r
ch

ar
ge

or
di

sc
ha

rg
e
∈{

0,
1}

�
�

Pa
ck

C
al

cu
la

te
:S

oC
∗ {m

in
,
m

ax
}∈
{R
×

R
}

�
C

al
cu

la
te

:S
oH
∗
∈R

�
Pe

rf
or

m
:B

al
an

ci
ng
∈{

0,
1}

�
�

�
�

C
al

cu
la

te
:{m

ax
Po

w
er

,
m

ax
T

im
e}
∈R
×

R
�

�
�

�
�

�
�

In
pu

ts
sp

ec
ifi

ed
in

th
e

co
lu

m
ns

ar
e

us
ed

to
ca

lc
ul

at
e

ce
ll

an
d

pa
ck

-l
ev

el
ou

tp
ut

s
m

en
tio

ne
d

in
th

e
ro

w
s.

O
ut

pu
to

f
ce

rt
ai

n
fu

nc
tio

ns
th

at
ar

e
m

ar
ke

d
w

it
h
∗

is
us

ed
as

in
pu

ts
fo

r
ca

lc
ul

at
io

ns
in

ot
he

r
fu

nc
tio

ns

274 S. Narayanaswamy et al.

10.2.2 Need for Design Automation

In order to address the above-mentioned challenges associated with the decen-
tralized BMS topologies novel design automation techniques are required to be
developed [20]. In contrast to the well-established design automation techniques
for designing integrated circuits, the tools required for efficient design of BMSs are
significantly different. The BMS falls under the domain of cyber-physical systems,
where the measurement of parameters such as voltage, temperature, and current
of the battery cells forms the physical part and the cyber part is constituted with
the computation and control functionalities. For instance, Table 10.1 shows typical
functions that are performed in a distributed BMS topology. Inputs to the functions
are specified in the columns and the functions along with their outputs are specified
in the rows of the table.

Cell-Level Functions Cell-level functions are implemented in their respective
local control units since these functions are independent of other cells, meaning
the status and parameters of other cells in the battery pack are not required to be
communicated to implement these cell-level functions. The inputs required for each
function calculation are marked with �along the respective columns in Table 10.1.
For example, the function that calculates the SoC of the individual cell requires
the cell voltage, temperature, balancing current, and pack current as inputs. For
calculating the individual cell SoC, the local controller does not require data from
other cells in the battery pack.

Pack-Level Functions In contrast to cell-level functions that are independently
implemented in each cell-level control unit, pack-level functions are realized in a
distributed fashion. Here all individual cell controllers collectively exchange their
cell data through the communication channel, to compute the pack parameters in
a cooperative manner. They can either be a measured parameter such as voltage
and temperature or a computed result of a certain cell-level function such as SoC
and SoH. Outputs of such cell-level functions that are in turn used as inputs for
calculating battery pack-level parameters are marked with a ∗ in Table 10.1. For
example, to calculate the minimum and maximum SoC of the battery pack, the
individual SoC of each cell has to be communicated to other cells through the
communication channel.

Therefore, special set of design automation methods and tools are required for
efficient design of these complex cyber-physical systems where the modeling of the
physical process and the design of control algorithms that control these processes
are all performed in an integrated fashion.

10.3 Design Automation Techniques

In this section, we present an overview of our hardware and software development
platform that are available to assist in solving the challenges associated with

10 Design Automation for Energy Storage Systems 275

distributed BMSs. Such a platform can be used to perform Hardware-in-the-loop
(HIL) studies for evaluating different decentralized circuit architectures, active cell
balancing topologies, and distributed algorithms. All design files of the development
platform are made open source by uploading them in an online repository [21]
along with detailed instructions for duplicating them. This enables the scientific
community to kick start their work on developing distributed algorithms by
providing a testbed where they can evaluate their developed algorithms, saving the
time and effort to develop custom prototyping platforms.

10.3.1 Hardware Development Platform

A major step towards the development of decentralized BMS algorithms and novel
active cell balancing architectures and their control strategy is prototyping. This
involves several steps such as the development of hardware implementations for
the BMS controller, active cell balancing architecture, their integration, software
development, hardware and software verification, leading to a huge overhead in
terms of time and cost. Towards this we propose a distributed BMS hardware
development platform as shown in Fig. 10.4. With minor adjustments to their
connection scheme, the proposed platform could be reconfigured to emulate
different types of BMS topologies, thereby enabling rapid prototyping and fast
development and validation of BMS algorithms. Here each cell is associated with
an individual cell-level controller and an active cell balancing module. The cell-
level controllers monitor the parameters of the associated cell and maintain them
within safe operating range and the active cell balancing modules perform charge
transfers between the cells to minimize the SoC variation among them. As such
this development platform directly emulates the fully decentralized smart cell BMS
topology shown in Fig. 10.3d. Moreover, by making one of the cell-level controllers
as a master control unit, the partially distributed BMS topology shown in Fig. 10.3c
is obtained.

10.3.1.1 Cell-Level Controller

With the functions performed in a typical distributed BMS as listed in Table 10.1,
the necessary modules that are required in the cell-level controller are as follows:

• Sensing: The sensing module is used to measure the cell parameters such as
cell voltage, temperature, balancing current, and pack current, which are used as
inputs for calculating the cell and pack-level functions of the BMS.

• Computation: The computation module implements all the cell-level and
pack-level functions of the distributed BMS topologies. It takes the measured
parameters from the sensing module as inputs for calculating the cell-level
functions and the pack-level functions are performed by communicating with
other cell-level controllers.

276 S. Narayanaswamy et al.

Fig. 10.4 A development platform for distributed BMSs consisting of 5 series-connected Li-Ion
cells and their respective control units. Each unit consists of 3 parallel-connected Li-Ion cells that is
monitored and controlled by the dedicated cell-level controller and individual active cell balancing
unit

• Communication: Data exchange between the individual cell-level controllers or
to the master controller is facilitated by the communication module.

• Cell balancing: Equalization of individual cell capacities is performed by the
cell balancing module to improve the usable capacity of the battery pack.

• Power supply: Power supply module provides a constant regulated supply
voltage, which is required for efficient functioning of other modules in the cell-
level controller unit.

Figures 10.5 and 10.6 show the top and bottom side of the cell-level controller
board. Implementation of each individual module was performed using commercial
off-the-shelf components that are combined in a custom designed Printed circuit
board (PCB) that can be directly powered from a battery cell. The design of the PCB
was focused towards facilitating extensive debugging and obtaining high accuracy
measurements. Inputs to each module can be actuated with test signals and their
corresponding outputs can be measured separately without involving other modules.
This facilitates functional verification of each module and also enables to character-
ize their performance individually in terms of energy consumption. Communication
between the individual cell controllers is established using an isolated Controller
area network (CAN) bus topology through which the functions of a distributed BMS
are performed by negotiations between the individual cell controllers. Since the cell-
level controllers are powered by their respective battery cells, a galvanically isolated
communication channel is used to avoid potential short circuits between cells.
In addition to the bus-based communication architecture, a galvanically isolated
daisy chain communication topology between the individual cell-level controllers
is also provided. This enables performance comparison of different communication
architectures with respect to evaluating the pack-level functions.

10 Design Automation for Energy Storage Systems 277

The modular design of the development platform enables easy interfaces with
external test equipment and Data acquisition (DAQ) systems. This facilitates
functional verification of different distributed BMS functions and also to obtain high
accuracy measurements for model validation purposes. Moreover, the isolated CAN
communication bus can also be tapped and connected to a PC using suitable adapter.
This enables the individual cell-level controllers to be operated using a system-
level algorithm that is running on the PC, thereby facilitating HIL simulations. All
hardware design files and the firmware of the cell-level controller are uploaded
in an online repository [21] and made publicly accessible. Details regarding the
implementation of each module in the cell-level controller and techniques to
fabricate multiple copies of the controller can be found in [21]. Such an open
source implementation enables easy reproduction of the development platform
with minimal integration efforts and facilitate the scientific community in rapid
development of distributed BMS functions and algorithms.

10.3.1.2 Active Balancing Unit

In addition to the cell-level controller, development boards for evaluating different
active cell balancing architectures are also available. Active cell balancing involves

Fig. 10.5 Top side of the cell-level controller board

278 S. Narayanaswamy et al.

Fig. 10.6 Bottom side of the cell-level controller board

equalization of the SoC variations among cells by performing charge transfers using
temporary energy storage elements such as capacitors, inductors, and transformers.
Even though capacitor-based approaches [22–24] have a simpler control scheme
and reduced installation area, they can only achieve a maximum of 50% energy
efficiency, due to the inherent energy dissipation of the capacitor being charged
by a voltage source. Moreover, the equalization speed of these capacitor-based
approaches is significantly smaller, since the balancing current value depends upon
the difference between the cell voltages, which in case of Li-Ion cells is very small.
Therefore, active cell balancing techniques that use inductors and transformers are
typically preferred due to their high energy efficiency and balancing speed.

Figure 10.7 shows a development platform that will be attached to each cell for
evaluating the performance of different inductor-based active cell balancing archi-
tectures. The battery cell is connected at the top of the board and connections for
exchanging charge between the adjacent cells in the pack are provided on both left
and right sides. The development platform consists of 12 power MOSFETs and their
corresponding high frequency gate drivers. The gate drivers are directly controlled
by the cell-level controller of the respective cell. With minor adjustments to the
control scheme the development platform shown in Fig. 10.7 can be reconfigured to
emulate different inductor-based active cell balancing architectures proposed in the
literature such as [25–28]. Similarly, the development platform shown in Fig. 10.8
can be used to emulate different types of transformer-based active cell balancing

10 Design Automation for Energy Storage Systems 279

architectures proposed in [18, 29]. These reconfigurations are facilitated by the high
speed gate driver arrangement, which forms a crucial part of the active cell balancing
unit as explained in the following.

High Frequency Gate Drive Power MOSFETs in the active cell balancing
architectures are connected with the power line of the battery pack and therefore
they cannot be actuated directly from the computation module. Moreover, the
voltage of the control signals from the computation module is in the order of 3–5
V which is less compared to the higher gate drive voltage required for actuating the
power MOSFETs. Therefore, external gate drive units are required to interface the
MOSFETs to the computation module. Gate drive for MOSFETs that are actuated
with either ON or OFF DC signals can be accomplished using a photovoltaic gate
drive units. However, the turn-ON and turn-OFF times of the photovoltaic gate drive
components are relatively slow compared to the requirements of the high frequency
actuation signals used in active cell balancing purposes that are in the range of
10–100 kHz. Therefore, they cannot be employed as gate drive units for actuating
MOSFETs that are actuated with high frequency control signals. As a result, special
type of gate drive arrangement is required for actuating MOSFETs that are operated
with high frequency control signals.

An optocoupler-based MOSFET gate drive unit is used to boost the low voltage
control signals that are generated from the computation module of the cell-level

Fig. 10.7 Inductor-based active cell balancing development platform

280 S. Narayanaswamy et al.

Fig. 10.8 Transformer-based active cell balancing development platform

controller. Moreover, the optocoupler gate drive unit isolates the high voltage battery
and active cell balancing circuitries from the low voltage computation units. In
addition, an isolated power supply unit powered from the battery cell is used to
obtain a higher supply voltage required for the optocoupler-based MOSFET gate
drive unit. The high frequency control signals from the computation module actuate
the input Light emitting diode (LED) of the optocoupler gate drive unit and the
illumination created by the LED makes the output phototransistors to conduct,
thereby controlling the actuation of the associated power MOSFET switch.

10.3.2 Software Development Platform

In this section, we provide an overview of the software tools that are available to
interact with the hardware development platform explained above. This includes the
firmware that is implemented on the individual cell-level controllers and the CAN
controller framework that is used to visualize, control, and record the status of the
individual cells in the development platform.

10.3.2.1 Real-Time Operating System

µC/OS-III from Micrium [30] is used as a real-time operating system on which both
cell-level and pack-level functions performed by each smart cell are implemented as
tasks. We provide a brief explanation regarding the µC/OS-III real-time operating
system, current tasks that are implemented on the hardware platform and discuss
its scheduling policy. The objective of using a real-time operating system is to
split each function into different tasks, which are then scheduled to run on the

10 Design Automation for Energy Storage Systems 281

Table 10.2 List of tasks
implemented in the µC/OS-III
real-time operating system

Task ID Task name Priority Trigger type

T 0 ProcessCANMsg 1 Event

T 1 PackMonitoring 2 Periodic

T 2 ChargeRequesting 2 Periodic

T 3 ChargeAcknowledge 2 Periodic

T 4 CurrentSampling 3 Periodic

T 5 VoltageAverage 3 Periodic

T 6 StatusMessage 3 Periodic

The priority and the type of trigger for each task are also
specified

computational unit depending upon their priority-levels. The µC/OS-III real-time
operating system supports multi-tasking, a process of scheduling and switching
the computational module between several tasks. This facilitates an application
programmer to implement a complex function into multiple modular tasks that are
then periodically executed by the operating system. Moreover, by assigning different
priorities to the individual tasks, we ensure that the critical functions of the BMS
are executed with high priority, in a timely manner meeting their deadlines, which
would have been difficult to implement in other software programming architectures
such as super-loop.

Tasks Table 10.2 provides the list of tasks that are currently implemented in the
µC/OS-III operating system, along with their priority-level and the type of trigger.
All tasks can be broadly classified into periodic and event-driven tasks. The periodic
tasks are executed in a time-triggered manner while the event-driven tasks are
performed on occurrence of a certain event. The functions performed by each task
are as follows:

• ProcessCANMsg: This task is the highest priority compared to all the other
implemented tasks and it is triggered with an incoming CAN message through
the communication channel. It processes the received CAN message and executes
certain functions or calls other tasks depending upon the type of message.

• PackMonitoring: In this task, the individual smart cell monitors its own SoC
with the SoC of other cells and triggers a balancing request if the deviation in the
SoC is above a certain threshold.

• ChargeRequesting: This task pertains to active cell balancing. The smart cell
checks its own SoC with other cells and requests charge if its SoC is lower
compared to other cells.

• ChargeAcknowledge: In contrast to the ChargeRequesting task, in this task, the
smart cell decides to give charge to other cells if its SoC is higher than other cells.

• CurrentSampling: Measured balancing and pack currents from the sensing
module are obtained periodically in this task.

• VoltageAverage: Multiple readings of the cell voltage are taken from the sensing
module and are filtered using a digital Infinite impulse response (IIR) filter to
obtain the cell voltage accurately.

282 S. Narayanaswamy et al.

T0

E0Event

µC/OS-III

Priority #1

Priority #2

Priority #3

T1 T2 T3

T5 T6

T0

T6 T4 T5 T6T4

Fig. 10.9 Preemptive, round-robin scheduling algorithm in µC/OS-III implementing the individ-
ual tasks. High-priority tasks are executed until they are done and the low priority tasks can be
interrupted by the high-priority tasks when the specific events occur [30]

• StatusMessage: The smart cell periodically broadcasts its individual cell voltage
and SoC through the communication channel to other smart cells in the battery
pack. Also the received information from other smart cells is used to update the
battery pack parameters.

Scheduling Policy µC/OS-III follows a preemptive, priority-based scheduling,
meaning the high-priority tasks if it’s ready-to-run will preempt the execution of the
low-priority tasks. Moreover, for tasks with equal priority, a round-robin scheduling
algorithm is employed, where each ready-to-run task of the same priority is executed
for a defined time period. After this time period, the operating system executes the
next ready-to-run task at the same priority. Figure 10.9 shows the timing diagram
of the scheduling process of the µC/OS-III operating system. The entire scheduling
process can be visualized as a state diagram consisting of states representing the
status of each task (for the complete state diagram, please refer to page 95 of [30]).

The tasks that are ready-to-run are placed in the ready state from where they are
moved to running state in order to be executed. If it is an event-driven task and if
the corresponding event has not occurred, it will move from the ready state to the
pending state, where it waits for the event to take place. Tasks while waiting for an
event in the pending state do not consume any controller operation time. As soon
as an event occurs, the corresponding task in the pending state moves to the ready
state, notifying the operating system. The µC/OS-III operating system checks the
priority-level of the newly readied task and preempts the currently running task, if
the ready-to-run task is of higher priority.

This is shown in Fig. 10.9, where the higher priority task T 0 (ProcessCANMsg)
gets executed preempting the low priority task T 6 (StatusMessage) as soon as the
event E0 occurs, which in this case is an incoming CAN message. The preempted
low priority task moves to the ready state and begins execution from the same point
where it was preempted, only after the processing of high-priority task is finished.
Moreover, Fig. 10.9 also shows the round-robin scheduling example, where equal
priority tasks T 4 (CurrentSampling), T 5 (VoltageAverage), and T 6 (StatusMessage)

10 Design Automation for Energy Storage Systems 283

do not run for completion once executed. Instead, each task runs for the same
amount of time period and then the next ready-to-run equal priority task is executed.
This maintains equal resource utilization for all tasks that are at the same priority-
levels.

10.3.2.2 CAN Visualization Framework

Interactions with the hardware development platform shown in Fig. 10.4 are facil-
itated with a software framework. The isolated CAN communication bus in the
hardware development platform is connected to an external PC through a CAN
adapter. A custom-designed CAN visualization framework is developed in Python
environment. Figure 10.10 shows the screenshot of the visualization framework
that is used to control, record, and analyze the communication messages and in
turn the behavior of the distributed BMS hardware development platform. A live
view of the transmitted cell parameters is shown on the right side, while update
rate and a list of the sent messages are displayed in the mid and left sections,
respectively. The framework can be used to visualize and record CAN messages that
are sent between the controllers in the hardware development platform. Moreover,
the recorded messages can be exported to a database for structured storage and
analysis at a later point in time. In addition to the CAN messages, the framework
can also be used to measure and store the cell status with high precision that can be
used for model validation purposes.

The lower part of the framework is used for controlling the parameters for
broadcasting and monitoring, active balancing status, sending debug-messages,
and recording messaging sessions. The control part of the framework shown on
the bottom side involves setting of timing parameters for the balancing control
signals, initiating a charge transfer between any two cells in the platform. Active
balancing can be enabled and disabled globally and single forced transactions to
test the transfer of charge between specified cells can also be triggered. In addition,
the framework also comes with predefined active cell balancing strategies (bottom
right) proposed in [31]. The hardware platform can be controlled using the CAN
visualizing framework to perform any of the predefined strategies thereby enabling
to compare the performance of the individual algorithms. In combination with the
hardware platform, the CAN visualization framework facilitates in performing HIL
simulation studies to evaluate the performance of different balancing architectures,
equalization strategies, and several distributed battery management algorithms.

10.4 Summary

There is a huge overhead involved in terms of time and cost to develop circuit
architectures and software algorithms for distributed BMSs, as it requires custom
development platforms to verify each of the interested functionality. In this chapter,

284 S. Narayanaswamy et al.

Fig. 10.10 Screenshot of the CAN visualization framework that is used to control the distributed
BMS hardware development platform

10 Design Automation for Energy Storage Systems 285

we presented a hardware/software development platform for accelerating the design
and verification of distributed BMSs. The hardware development platform can be
flexibly reconfigured to emulate different types of distributed BMS topologies.
Moreover, development boards for evaluating active cell balancing functionality are
also introduced. Interactions with the hardware development platform are supported
by the proposed software framework, which facilitates to visualize, control, and
record the status of the individual cells in the development platform. Together these
hardware and software development platforms enable to perform HIL simulation
studies for functional verification of active cell balancing architectures, model
validation and evaluation of distributed active cell balancing algorithms. All design
files regarding the hardware development platform and the software framework are
uploaded in an online repository [21] and made publicly available. This enables
easy replication of the development platforms with minimal integration efforts and
facilitates the scientific community in rapid development of distributed BMS circuit
architectures, active cell balancing topologies, and their equalization algorithms.

References

1. Wendel, J. (2018). Global average temperatures in 2017 continued upward trend. https://
eos.org/articles/global-average-temperatures-in-2017-continued-upward-trend, January 2018.
Last accessed 16 July 2018.

2. Guardian. (2018). Met office warns of global temperature rise exceeding 1.5c limit. https://
www.theguardian.com/science/2018/jan/31/met-office-warns-of-global-temperature-rise-
exceeding-15c-limit, January 2018. Last accessed 16 July 2018.

3. Shearer, C., Fofrich, R., & Davis, S. J. (2017). Future CO2 emissions and electricity generation
from proposed coal-fired power plants in India. Earth’s Future, 5(4), 408–416.

4. EPA. (2018). Inventory of US greenhouse gas emissions and sinks: 1990–2016 (pp. 1–655).
Washington, DC: EPA.

5. Cazzola, P., Gorner, M., Munuera, L., Schuitmaker, R., Maroney, E., & Gorner, M. (2017).
Global EV outlook 2017 (pp. 1–71). Paris: International Energy Agency.

6. Business Standard. (2015, December). Revenue loss of Rs 2,040 cr in Tamil Nadu due
to backing down of wind power, says CAG. https://www.business-standard.com/article/
economy-policy/revenue-loss-of-rs-2-040-cr-in-tamil-nadu-due-to-backing-down-of-wind-
power-says-cag-115120800923_1.html. Last accessed 16 July 2018.

7. International Electrotechnical Commission. (2010). Electrical energy storage. IEC White
papers and Technology reports (pp. 1–78).

8. Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion
battery management in electric vehicles. Journal of Power Sources, 226, 272–288.

9. Brandl, M., Gall, H., Wenger, M., Lorentz, V., Giegerich, M., Baronti, F., et al. (2012, March).
Batteries and battery management systems for electric vehicles. In Proceedings of Design,
Automation Test in Europe Conference Exhibition (DATE) (pp. 971–976).

10. Narayanaswamy, S., Park, S., Steinhorst, S., & Chakraborty, S. (2018). Design automation for
battery systems. In Proceedings of the International Conference on Computer-Aided Design
(ICCAD’18) (pp. 27:1–27:7).

11. Andrea, D. (2010). Battery management systems for large lithium ion battery packs. Boston:
Artech House.

12. Baronti, F., Fantechi, G., Roncella, R., & Saletti, R. (2012). Intelligent cell gauge for a
hierarchical battery management system. In Proceedings of Transportation Electrification
Conference and Expo (ITEC) (pp. 1–5). Piscataway: IEEE.

https://eos.org/articles/global-average-temperatures-in-2017-continued-upward-trend
https://eos.org/articles/global-average-temperatures-in-2017-continued-upward-trend
https://www.theguardian.com/science/2018/jan/31/met-office-warns-of-global-temperature-rise-exceeding-15c-limit
https://www.theguardian.com/science/2018/jan/31/met-office-warns-of-global-temperature-rise-exceeding-15c-limit
https://www.theguardian.com/science/2018/jan/31/met-office-warns-of-global-temperature-rise-exceeding-15c-limit
https://www.business-standard.com/article/economy-policy/revenue-loss-of-rs-2-040-cr-in-tamil-nadu-due-to-backing-down-of-wind-power-says-cag-115120800923_1.html
https://www.business-standard.com/article/economy-policy/revenue-loss-of-rs-2-040-cr-in-tamil-nadu-due-to-backing-down-of-wind-power-says-cag-115120800923_1.html
https://www.business-standard.com/article/economy-policy/revenue-loss-of-rs-2-040-cr-in-tamil-nadu-due-to-backing-down-of-wind-power-says-cag-115120800923_1.html

286 S. Narayanaswamy et al.

13. Steinhorst, S., Lukasiewycz, M., Narayanaswamy, S., Kauer, M., & Chakraborty, S. (2014,
August). Smart cells for embedded battery management. In Proceedings of Cyber-Physical
Systems, Networks, and Applications (CPSNA) (pp. 59–64).

14. Ci, S., Lin, N., & Wu, D. (2016). Reconfigurable battery techniques and systems: A survey.
IEEE Access, 4, 1175–1189.

15. Cao, J., Schofield, N., & Emadi, A. (2008, September). Battery balancing methods: A
comprehensive review. In Proceedings of IEEE Vehicle Power and Propulsion Conference
(VPPC) (pp. 1–6).

16. Moore, S. W., & Schneider, P. J. (2001). A review of cell equalization methods for lithium ion
and lithium polymer battery systems. SAE Publication, 2001-01-0959.

17. Daowd, M., Omar, N., Bossche, P. V. D., & Mierlo, J. V. (2011, September). Passive and active
battery balancing comparison based on MATLAB simulation. In Proceedings of IEEE Vehicle
Power and Propulsion Conference (VPPC) (pp. 1–7).

18. Narayanaswamy, S., Kauer, M., Steinhorst, S., Lukasiewycz, M., & Chakraborty, S. (2017,
March). Modular active charge balancing for scalable battery packs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25, 974–987.

19. Plett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB-based
HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources, 134(2),
277–292.

20. Chang, N., Faruque, M. A. A., Shao, Z., Xue, C. J., Chen, Y., & Baek, D. (2018). Survey of
low-power electric vehicles: A design automation perspective. IEEE Design Test, 35(6), 44–70.

21. Hardware/software design files of the smart cell development platform. (2015). https://github.
com/Swaminara/Smart-Cell-Development-Platform.git.

22. Pascual, C., & Krein, P. (1997, February). Switched capacitor system for automatic series
battery equalization. In Proceedings of Applied Power Electronics Conference (APEC) (Vol. 2,
pp. 848–854).

23. Fukui, R., & Koizumi, H. (2013, November). Double-tiered switched capacitor battery charge
equalizer with chain structure. In Proceedings of Annual Conference of IEEE Industrial
Electronics Society (IECON) (pp. 6715–6720).

24. Baughman, A., & Ferdowsi, M. (2008, June). Double-tiered switched-capacitor battery charge
equalization technique. IEEE Transactions on Industrial Electronics, 55, 2277–2285.

25. Kauer, M., Naranayaswami, S., Steinhorst, S., Lukasiewycz, M., Chakraborty, S., & Hedrich,
L. (2013, May). Modular system-level architecture for concurrent cell balancing. In Proceed-
ings of Design Automation Conference (DAC) (pp. 1–10).

26. Lukasiewycz, M., Steinhorst, S., & Narayanaswamy, S. (2014). Verification of balancing
architectures for modular batteries. In Proceedings of the 12th International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS 2014) (pp. 1–10).

27. Kauer, M., Narayanaswamy, S., Steinhorst, S., Lukasiewycz, M., & Chakraborty, S. (2015).
Many-to-many active cell balancing strategy design. In Proceedings of the 20th Asia and South
Pacific Design Automation Conference (ASP-DAC 2015) (pp. 267–272).

28. Kutkut, N. H. (1998). A modular nondissipative current diverter for EV battery charge
equalization. In Proceedings of Applied Power Electronics Conference (APEC) (Vol. 2,
pp. 686–690).

29. L. Technology. (2013, April). LTC3300-1 high efficiency bidirectional multicell battery
balancer. http://www.linear.com/product/LTC3300-1. Last accessed 16 July 2018.

30. Labrosse, J. J. (2011). uC/OS-III: The real-time kernel for the STM32 ARM Cortex-M3.
Micrium.

31. Steinhorst, S., Kauer, M., Meeuw, A., Narayanaswamy, S., Lukasiewycz, M., & Chakraborty,
S. (2016). Cyber-physical co-simulation framework for smart cells in scalable battery packs.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 21, 1–26.

https://github.com/Swaminara/Smart-Cell-Development-Platform.git
https://github.com/Swaminara/Smart-Cell-Development-Platform.git
http://www.linear.com/product/LTC3300-1

Index

A
Advanced driver assistance systems (ADAS),

22, 33, 37, 108, 130
Artificial intelligence, 69, 238
Attack graphs, 150, 152, 164–167, 169,

170
Attack trees, 150, 157, 159–160, 164, 165
Automotive hardware, 22, 24, 25, 28–39
Automotive physical layout, 24, 25, 37–39
Automotive software, 22, 24, 25, 27–37,

39
Autonomous intersection, 24, 26
Autonomous systems, 108, 225

B
Battery management system (BMS), 267–277,

281, 283–285

C
CACC. see Cooperative adaptive cruise control
CAN. see Controller area network
Code generation, 45, 46, 212, 215, 220, 223
Complex rehabilitation, 211–231
Concept design, vi, 3–18, 161
Connected vehicles, 22–27, 38
Contraction metric, 115, 116
Controller area network (CAN), 22, 29–30,

33–35, 226, 229, 276, 277, 280–284
Cooperative adaptive cruise control (CACC),

22, 24, 26
Cross-layer CPS design, 42, 46

Cyber-physical systems (CPS), v–vii, 3–18,
22–39, 41–64, 69–97, 107–138,
143–175, 181–208, 213, 274

design specification language, 43, 46,
49–64

Cyber-resilience, 161

D
Design automation, v–vii, 3–18, 38, 211–231,

237–257, 261–285
Differential equations, 9, 75, 76, 81, 89, 95,

108, 117, 122, 125, 127, 135, 136
Distributed controllers, vii, 181–208
Domain-specific modeling languages

(DSMLs), 42, 43, 45, 47, 48, 214, 219

E
Electrical energy storage (EES), 261–267
Electric power networks, 137, 182
Electric vehicle (EV), 261
Embedded control systems, 41, 42, 44, 45, 52,

89, 138
Energy storage systems (ESS), 261–285

F
Falsification, 70, 71, 74, 75, 78, 91–97, 108
Formal specifications, 70, 75, 78–80, 91, 97
Formal verification, 49, 55, 70, 73, 97, 107,

130, 134, 171, 173
Functional modeling, 4–5, 158, 160–171

© Springer Nature Switzerland AG 2019
M. A. Al Faruque, A. Canedo (eds.), Design Automation of Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-13050-3

287

https://doi.org/10.1007/978-3-030-13050-3

288 Index

G
Graph convolutional neural network, 237–257
Graphical modeling, 125, 159, 164, 168, 170,

175, 216, 218

H
Hierarchical finite state machines (HFSM),

212, 213, 219–221, 223–226, 229
Hourglass-shaped architecture, vii, 41–64
Hybrid systems, 42, 48, 76–77, 80–83, 85–87,

89, 95, 97, 107–109, 122–127, 132,
133, 135–137

Hypervisor, 30, 32–33

I
Interval matrices, 109–110, 116–118, 120
Invariant(s), 71, 73, 77, 88–91, 111, 122, 124,

125, 138, 239, 243

K
Knowledge graphs, 240–243, 250, 252

L
Linear separators, 108, 127–129

M
Mapping, 6, 7, 9–11, 17, 18, 22, 24–38, 43,

47–49, 56, 59, 71, 93, 122, 124, 165,
168, 225

Matrix measures, 117, 138
Mobile robotics, 211
Model-based assurance, vii, 148–152, 172–174
Model-based development, 41–64, 172
Model-driven engineering, 212–214
Modeling, 3–18, 26, 27, 30, 44, 46, 70, 75, 80,

125, 130, 137, 138, 147, 148, 150, 156,
160, 162, 163, 165, 169, 171, 173, 213,
215, 216, 218, 219, 223, 225, 228–230,
237, 239, 274

N
Neural networks, 72, 86, 95–97, 212, 230,

238–250
Nonlinear dynamics, 85, 133

P
Platform-based design, 8, 22–39
Platform-independent models (PIM), 42, 45

Powered wheelchairs, 211, 225–229, 231
Power oscillation damping (POD), 182, 195,

196, 205, 208
Power system stabilizers (PSS), 182, 194–197,

200, 204
Powertrain control, 134–136

R
Reachability, 71, 81–88, 129
Reachability analysis, vii, 71, 73, 80–88, 97,

138
Robot operating system (ROS), 211, 213,

215–218, 228, 229

S
Safety

analysis, 173
proofs, 89

Semidefinite program (SDP), 118–120
Sensitivity analysis, 108, 109, 112, 114, 136,

182
Signal temporal logic (STL), 79, 80, 91, 93,

97
Simulation, vii, 3–18, 26, 27, 41, 44, 49, 78,

87, 88, 90, 96, 97, 108, 111–114, 116,
119, 121, 125, 127–129, 136, 138, 146,
148, 160, 163, 164, 169, 170, 174, 200,
206, 213, 220, 230–231, 277, 283, 285

Spacecraft rendezvous, 109, 132–134, 136
Sparsity-promoting H∞ controller synthesis

(SPHinf), 187, 191–194, 196, 198
Sparsity-promoting H2 controller synthesis

(SPH2), 187, 189–193, 196, 198, 200,
202–208

Synthesis, vi, 3–18, 26, 28, 73, 138, 162, 172,
174, 182–190, 192, 219, 229–230

System assurance, vii, 143–175
Systematic testing, 71, 85, 89, 97
Systems engineering, 4, 148, 156, 165, 229

T
Task allocation, 28, 30, 31
Task generation, 27, 28
Task scheduling, 28, 29, 31

V
Vehicle functionality, 24, 25, 27–28
Vehicle-to-X (V2X), 23, 24, 27

	Introduction: Research Challenges in the Des ign Automation of Cyber-Physical Systems
	Part I: Design and Engineering
	Part II: Testing and Operation
	Part III: Application-Specific Design Automation Methodologies and Tools

	Contents
	Part I Design and Engineering
	1 Concept Design: Modeling and Synthesis from Requirements to Functional Models and Simulation
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Functional Modeling
	1.1.3 Simulation in CPS

	1.2 Functional Model Synthesis Tool
	1.2.1 Feedback Function
	1.2.2 Synthesizing Architecture Models
	1.2.2.1 Contextualization Based on Input/Output Flows
	1.2.2.2 Contextualization Based on Components
	1.2.2.3 Context-Sensitive Mapping of Functions to Components
	1.2.2.4 Function to Architecture Synthesis

	1.2.3 Architecture to Simulation Model Synthesis
	1.2.4 Process of Refinement
	1.2.4.1 Top-down Refinement Process
	1.2.4.2 Bottom-up Refinement Process

	1.3 Evaluation of Functional Model Synthesis Tool
	1.3.1 Architecture Model Synthesis
	1.3.2 Simulation Model Synthesis
	1.3.3 Feedback Function's Usability
	1.3.4 Refinement Process Analysis

	1.4 Conclusion
	References

	2 Platform-Based Design for Automotive and Transportation Cyber-Physical Systems
	Acronyms
	2.1 Platform-Based Design Methodology for Connected Vehicles
	2.1.1 Design Challenges for Connected Vehicles
	2.1.2 Mapping Problems for Connected Vehicles

	2.2 Mapping Connected Vehicle Applications to Vehicle Functionality
	2.3 Mapping Vehicle Functionality to Software Tasks
	2.4 Mapping Software Tasks to Hardware Components
	2.4.1 Conventional CAN-Bus Systems
	2.4.2 Advanced Architecture: TDMA-Based Systems
	2.4.3 Advanced Architecture: OS-Hypervisor-Based Systems
	2.4.4 Heterogeneous Communication Architectures

	2.5 Mapping Hardware Components to Physical Layouts
	2.6 Summary
	References

	3 An Hourglass-Shaped Architecture for Model-Based Development of Networked Cyber-Physical Systems
	3.1 Introduction
	3.2 Related Work
	3.3 Hourglass-Shaped Architecture for Model-Based CPS Development
	3.3.1 Platform-Imperfection-Aware Feedback Controller Design
	3.3.2 CPS Design Specification
	3.3.3 Constraints-Aware Platform Mapping

	3.4 Requirements for Standardized CPS Design Specification Language
	3.4.1 Physical Plant Parameter Specification
	3.4.2 Networked Controller Specification
	3.4.3 Specification of Controller Adaptation Strategies
	3.4.4 Interface Between Control Systems Engineer and Real-Time Computer Systems Engineer
	3.4.5 Formal Semantics

	3.5 A Proposed CPS Design Specification Language: Overview
	3.5.1 Physical System Elements
	3.5.2 Cyber-Physical Interface Elements
	3.5.3 Cyber System Elements

	3.6 Proposed CPS Design Specification Language: Concrete Syntax
	3.7 Proposed CPS Design Specification Language: Abstract Syntax
	3.8 Proposed CPS Design Specification Language: Semantics
	3.8.1 Manna-Pnueli Transition System
	3.8.1.1 Computations

	3.8.2 Manna–Pnueli Transition System-Based Representation of CPS-DSL

	3.9 Conclusion
	References

	Part II Testing and Operation
	4 Formal Techniques for Verification and Testingof Cyber-Physical Systems
	4.1 Introduction
	4.1.1 Motivating Examples
	4.1.1.1 Autonomous Driving
	4.1.1.2 Artificial Pancreas

	4.2 Mathematical Models and Specifications
	4.2.1 Mathematical Models
	4.2.1.1 Hybrid Systems

	4.2.2 Specifications
	4.2.2.1 Temporal Logics for Trace Properties

	4.3 Reachability Analysis
	4.3.1 Decidability of Reachability
	4.3.2 Reachability Using Over-Approximations
	4.3.2.1 Approximate Reachability: Overview
	4.3.2.2 Abstractions
	4.3.2.3 Flowpipe Computation
	4.3.2.4 Constraint Solvers and Reachability
	4.3.2.5 Simulation-Guided Reachability Analysis

	4.4 Techniques Based on Safety Invariants
	4.5 Falsification Techniques
	4.5.1 Falsifying Temporal Specifications Using Optimization
	4.5.2 Falsification Using Trajectory Splicing

	4.6 Challenge Problem: Verification of AI-Based Systems
	4.7 Conclusion
	References

	5 Data-Driven Safety Verification of Complex Cyber-PhysicalSystems
	5.1 Introduction
	5.2 Mathematical Preliminaries
	5.3 Overview of Data-Driven Verification
	5.3.1 Simulations and Reachable States
	5.3.2 Discrepancy Functions
	5.3.3 Verification Algorithm

	5.4 Computing Discrepancy
	5.4.1 Linear Models
	5.4.2 Nonlinear Models: Optimization-Based Approaches
	5.4.3 Nonlinear Models: Local Discrepancy
	5.4.4 Algorithm to Compute Local Optimal Reach Set

	5.5 Hybrid System Verification
	5.5.1 Hybrid Model
	5.5.2 Hybrid System Verification Algorithm

	5.6 Verification of Models with Black-Box Components
	5.6.1 A Hybrid Formalism Accommodating Black-Boxes
	5.6.2 Learning Discrepancy from Simulations
	5.6.3 Discrepancy Functions as Linear Separators

	5.7 Verification Case Studies
	5.7.1 Automatic Braking and Forward Collision Avoidance System
	5.7.2 Autonomous Spacecraft Rendezvous
	5.7.3 Powertrain Control System

	5.8 Conclusions
	5.9 Further Reading
	References

	6 System Assurance in the Design of Resilient Cyber-PhysicalSystems
	6.1 Background on Dependable and Secure Computing and the Cyber-Physical System Context
	6.1.1 General Concepts of Resilience with Respect to CPS
	6.1.2 Basis for a Functional Approach to Analysis of Dependability and Security

	6.2 Model-Based Assurance of CPS
	6.2.1 CPS Threat Patterns
	6.2.2 CPS Countermeasure Patterns

	6.3 Tools to Evaluate Threat and Countermeasure Patterns
	6.3.1 Mission/Operational Resilience Analysis
	6.3.2 System-Theoretic Accident Model and Process (STAMP)
	6.3.3 Fault and Attack Tree Analysis

	6.4 High-Level Functional Modeling with Critical Cyber Assets and Missions
	6.4.1 Functional Modeling of Attacks and Countermeasures in Libraries
	6.4.2 Attack Models
	6.4.3 Countermeasure Models
	6.4.4 Generation of Cyber-Physical Attack Environments
	6.4.5 Model Transformation Using Cyber Defense Functional Patterns
	6.4.6 Countermeasure Analysis

	6.5 Assurance Test and Evaluation
	6.5.1 Model-Based Assurance for Test and Evaluation
	6.5.2 Formal Methods Transfer to CPS

	6.6 Summary
	References

	Part III Application-Specific Design Automation Methodologies and Tools
	7 Optimal Design of Distributed Controllers for Large-Scale Cyber-Physical Systems
	7.1 Introduction
	7.2 Control Architectures in Large-Scale Cyber-Physical Systems
	7.3 Norms of Linear Systems
	7.4 Distributed Controller Design Methods for Large-Scale CPS
	7.4.1 Structured H∞ Controller Synthesis of Local Controllers (SHinf)
	7.4.2 Sparsity-Promoting H2 Controller Synthesis (SPH2)
	7.4.3 Sparsity-Promoting H∞ Controller Synthesis (SPHinf)

	7.5 Power System Model
	7.5.1 Power Grid Model
	7.5.2 Power Plant Model
	7.5.2.1 Synchronous Generator Model
	7.5.2.2 Controller and Actuator Models

	7.5.3 Coupled Linear Power System Model
	7.5.4 Adaptation of the Power System Model for H2 Optimization

	7.6 Numerical Comparison
	7.6.1 Analysis of the System with Initial Parameters
	7.6.2 Comparison of Optimization Results of SPinf, SPH2, and SPHinf
	7.6.2.1 Sparsity of the Obtained Controllers
	7.6.2.2 Singular Value Plot
	7.6.2.3 Time-Domain Comparison
	7.6.2.4 Computational Complexity
	7.6.2.5 Discussion

	7.7 Conclusions
	References

	8 Model-Driven Software Design Automation for Complex Rehabilitation
	8.1 Introduction
	8.2 Background and Related Research
	8.2.1 Model-Driven Engineering in Robotics
	8.2.2 Middleware in Robotics

	8.3 ROSMOD
	8.3.1 Component Model
	8.3.2 Model-Driven Development Toolsuite
	8.3.3 HFSM Design Studio

	8.4 Case Studies
	8.4.1 PushTracker
	8.4.1.1 Structured Code Generation
	8.4.1.2 Switching Languages
	8.4.1.3 Process Control and Verification

	8.4.2 Drive Assistance for Powered Wheelchairs
	8.4.2.1 Overview of System Design

	8.5 Future Work
	8.5.1 Controller Synthesis
	8.5.2 Learning-Enabled Systems
	8.5.3 Simulation

	8.6 Conclusions
	References

	9 Design Automation Using Structural Graph Convolutional Neural Networks
	9.1 Introduction
	9.2 Related Work
	9.3 Graph Learning Using Convolutional Neural Network
	9.3.1 Knowledge Graph Extraction
	9.3.2 Attribute Embedding
	9.3.3 Neighbor Nodes Aggregation
	9.3.4 Structural Graph Convolutional Neural Network Layers
	9.3.4.1 Sub-graph Convolution Kernel
	9.3.4.2 Graph Pooling Algorithm
	9.3.4.3 2D Convolutions on Attribute Matrix
	9.3.4.4 New Adjacency Matrix Calculation

	9.3.5 Classification for Engineering Design Abstraction
	9.3.6 Graph Learning Algorithm Hyper-Parameters
	9.3.6.1 Path Length in Node Aggregation Layer
	9.3.6.2 Graph Convolution Kernel Size
	9.3.6.3 Dropout of Candidate Kernels

	9.4 GrabCAD Dataset
	9.5 Results
	9.5.1 Activation Functions
	9.5.2 Kernel Size
	9.5.3 Dropout
	9.5.4 Layers

	9.6 Discussion
	9.7 Conclusions
	References

	10 Design Automation for Energy Storage Systems
	10.1 Electrical Energy Storage (EES) Systems
	10.1.1 Challenges with Alternative Green Technologies
	10.1.2 Electrochemical Battery Packs
	10.1.2.1 High Voltage Battery Packs

	10.1.3 Battery Pack Challenges
	10.1.3.1 Safety
	10.1.3.2 Energy Output

	10.2 Battery Management System
	10.2.1 BMS Topologies
	10.2.1.1 Conventional BMS Topologies
	10.2.1.2 Emerging Decentralized BMS Topologies
	10.2.1.3 Distributed BMS Challenges

	10.2.2 Need for Design Automation

	10.3 Design Automation Techniques
	10.3.1 Hardware Development Platform
	10.3.1.1 Cell-Level Controller
	10.3.1.2 Active Balancing Unit

	10.3.2 Software Development Platform
	10.3.2.1 Real-Time Operating System
	10.3.2.2 CAN Visualization Framework

	10.4 Summary
	References

	Index

