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Alexander C. R. Belton

Abstract We provide a self-contained and fast-paced introduction to the theories of
operator semigroups, Markov semigroups and quantum dynamical semigroups. The
level is appropriate for well-motivated graduate students who have a background in
analysis or probability theory, with the focus on the characterisation of infinitesimal
generators for various classes of semigroups. The theorems of Hille–Yosida, Hille–
Yosida–Ray, Lumer–Phillips and Gorini–Kossakowski–Sudarshan–Lindblad are all
proved, with the necessary technical prerequisites explained in full. Exercises are
provided throughout.

1 Introduction

These notes are an extension of a series of lectures given at the Winter School on
Dynamical Methods in Open Quantum Systems held at Georg-August-Universität
Göttingen during November 2016. These lectures were aimed at graduate students
with a background in analysis or probability theory. The aim has been to make
the notes self-contained but brief, so that they are widely accessible. Exercises are
provided throughout.

We begin with the basics of the theory of operator semigroups on Banach spaces,
and develop this up to the Hille–Yosida and Lumer–Phillips theorems; these provide
characterisations for the generators of strongly continuous semigroups and strongly
continuous contraction semigroups, respectively. As those with a background in
probability theory may not be comfortable with all of the necessary material from
functional analysis, this is covered rapidly at the start. The reader can find much
more on these topics in Davies’s book [9].

After these fundamentals, we recall some key ideas from probability theory.
The correspondence between time-homogeneous Markov processes and Markov
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semigroups is explained, and we explore the concepts of Feller semigroups and Lévy
processes. We conclude with the Hille–Yosida–Ray theorem, which characterises
generators of Feller semigroups via the positive maximum principle. Applebaum
[3, Chapter 3] provides another view of much of this material, as do Liggett [20,
Chapter 3] and Rogers and Williams [26, Chapter III].

The final part of these notes addresses the theory of quantum Markov semi-
groups, and builds to the characterisation of the generators of uniformly continuous
conservative semigroups, and the Gorini–Kossakowski–Sudarshan–Lindblad form.
En route, we establish Stinespring dilation and Kraus decomposition for linear maps
defined on unital C∗ algebras and von Neumann algebras, respectively, which are
important results in the theories of open quantum systems and quantum information.
The lecture notes of Alicki and Lendi [2] provide a useful complement, and those
of Fagnola [14] study quantum Markov semigroups from the fruitful perspective of
quantum probability. There is much scope, and demand, for further developments
in this subject.
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Bahns (Göttingen), Prof. Dr. Anke Pohl (Jena) and Prof. Dr. Ingo Witt (Göttingen),
for the opportunity to give these lectures, and for their hospitality during his time in
Göttingen. He is also grateful to Mr. Jason Hancox, for his comments on a previous
version of these notes.

1.2 Conventions

The notation “P := Q” means that the quantity P is defined to equal Q.
The sets of natural numbers, non-negative integers, non-negative real numbers,

real numbers and complex numbers are denoted N := {1, 2, 3, . . . }, Z+ := {0} ∪N,
R+ := [0,∞), R and C, respectively; the square root of −1 is denoted i. Note that
we follow the Anglophone rather than Francophone convention, in that 0 is both
non-negative and non-positive but is neither positive nor negative.

The indicator function of the set A is denoted 1A, with the domain determined
by context. If f : A → B and C ⊆ A, then f |C : C → B, the restriction of f to C,
takes the same value at any point in C as f does.

Inner products on complex vector spaces are taken to be linear on the right and
conjugate linear on the left. Given our final destination, we work with complex
vector spaces and complex-valued functions by default.
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2 Operator Semigroups

2.1 Functional-Analytic Preliminaries

Throughout their development, there has been a fruitful interplay between abstract
functional analysis and the theory of operator semigroups. Here we give a rapid
introduction to some of the basic ideas of the former. We cover a little more material
that will be used in the sequel, but the reader will find it useful for their further
studies in semigroup theory.

Definition 2.1 In these notes, a normed vector space V is a vector space with
complex scalar field, equipped with a norm ‖ · ‖ : V → R+ which is

(i) subadditive: ‖u + v‖ � ‖u‖ + ‖v‖ for all u, v ∈ V ;

(ii) homogeneous: ‖λv‖ = |λ| ‖v‖ for all v ∈ V and λ ∈ C; and

(iii) faithful: ‖v‖ = 0 if and only if v = 0, for all v ∈ V .

The normed vector space V is complete if, whenever (vn)n∈N ⊆ V is a Cauchy
sequence, there exists v∞ ∈ V such that vn → v∞ as n → ∞. A complete normed
vector space is called a Banach space. Thus Banach spaces are those normed vector
spaces in which every Cauchy sequence is convergent.

[Recall that a sequence (vn)n∈N ⊆ V is Cauchy if, for all ε > 0, there exists
N ∈ N such that ‖vm − vn‖ < ε for all m, n � N .]

Exercise 2.2 (Banach’s Criterion) Let ‖ · ‖ be a norm on the complex vector
space V . Prove that V is complete for this norm if and only if every absolutely
convergent series in V is convergent.

[Given (vn)n∈N ⊆ V , the series
∑∞

n=1 vn is said to be convergent precisely when
the sequence of partial sums (

∑n
j=1 vj )n∈N is convergent, and absolutely convergent

when (
∑n

j=1 ‖vj‖)n∈N is convergent.]

Example 2.3 If n ∈ N, then the finite-dimensional vector space C
n is a Banach

space for any of the �p norms, where p ∈ [1,∞] and

‖(v1, . . . , vn)‖p :=
⎧
⎨

⎩

(∑n
j=1 |vj |p

)1/p

if p < ∞,

max{|vj | : j = 1, . . . , n} if p = ∞.

These norms are all equivalent: for all p, q ∈ [1,∞] there exists Cp,q > 1 such that

C−1
p,q‖v‖q � ‖v‖p � Cp,q‖v‖q for all v ∈ C

n.

Example 2.4 For all p ∈ [1,∞], let the sequence space

�p := {v = (vn)n∈Z+ ⊆ C : ‖v‖p < ∞},
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where

‖v‖p :=
⎧
⎨

⎩

(∑∞
n=0 |vn|p

)1/p

if p ∈ [1,∞),

sup{|vn| : n ∈ Z+} if p = ∞,

and the vector-space operations are defined coordinate-wise: if u, v ∈ �p and λ ∈ C,
then

(u + v)n := un + vn and (λv)n := λvn for all n ∈ Z+.

These are Banach spaces, with �p ⊆ �q if p, q ∈ [1,∞] are such that p � q .
If p ∈ [1,∞), then �p ⊆ c0 ⊆ �∞, where

c0 := {v = (vn)n∈Z+ ⊆ C : lim
n→∞ vn = 0}

is itself a Banach space for the norm ‖ · ‖∞.

Example 2.5 An inner product on the complex vector space V is a form

〈·, ·〉 : V × V → C; (u, v) �→ 〈u, v〉

which is

(i) linear in the second argument: the map V → C; v �→ 〈u, v〉 is linear for
all u ∈ V ;

(ii) Hermitian: 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ; and

(iii) positive definite: 〈v, v〉 � 0 for all v ∈ V , with equality if and only
if v = 0.

Any inner product determines a norm on V , by setting ‖v‖ := 〈v, v〉1/2 for all v ∈
V . Furthermore, the inner product can be recovered from the norm by polarisation:
if q : V × V → C is a sesquilinear form on V , so is conjugate linear in the first
argument and linear in the second, then

q(u, v) =
3∑

j=0

i−j q(u + iv, u + iv) for all u, v ∈ V.

A Banach space with norm which comes from an inner product is a Hilbert space.
For example, the sequence space �2 is a sequence space, since setting

〈u, v〉 :=
∞∑

n=0

unvn for all u, v ∈ �2
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defines an inner product on �2 such that 〈v, v〉 = ‖v‖2 for all v ∈ �2. In any Hilbert
space H, the Cauchy–Schwarz inequality holds:

|〈u, v〉| � ‖u‖ ‖v‖ for all u, v ∈ H.

It may be shown that a Banach space V is a Hilbert space if and only if the norm
satisfies the parallelogram law:

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2 for all u, v ∈ V.

Exercise 2.6 Let H be a Hilbert space. Given any set S ⊆ H , prove that its
orthogonal complement

S⊥ := {x ∈ H : 〈x, y〉 = 0 for all y ∈ S}

is a closed linear subspace of H . Prove further that L ⊆ H is a closed linear
subspace of H if and only if L = (L⊥)⊥.

Example 2.7 Let C(K) denote the complex vector space of complex-valued func-
tions on the compact Hausdorff space K , with vector-space operations defined
pointwise: if x ∈ K then

(f + g)(x) := f (x) + g(x) and (λf )(x) := λf (x)

for all f , g ∈ C(K) and λ ∈ C. The supremum norm

‖ · ‖ : f �→ ‖f ‖∞ := sup{f (x) : |x| ∈ K}

makes C(K) a Banach space. [Completeness is the undergraduate-level fact that
uniform convergence preserves continuity.]

Example 2.8 Let (�,F , μ) be a σ -finite measure space, so that μ : F → [0,∞]
is a measure and there exists a countable cover of � with elements in F of finite
measure.

For all p ∈ [1,∞], the Lp space

Lp(�,F , μ) := {f : � → C | ‖f ‖p < ∞}

is a Banach space when equipped with the Lp norm

‖f ‖p :=
⎧
⎨

⎩

(∫
�

|f (x)|p μ(dx)
)1/p

if p ∈ [1,∞),

inf
{
sup{ |f (x)| : x ∈ � \ V } : V ⊆ � is a null set}} if p = ∞,
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and where functions are identified if they differ on a null set. [Note that if f ∈
Lp(�,F , μ) then ‖f ‖p = 0 if and only if f = 0 on a null set.]

The space L2(�,F , μ) is a Hilbert space, with inner product such that

〈f, g〉 :=
∫

�

f (x)g(x) μ(dx) for all f, g ∈ L2(�,F , μ).

If p, q , r ∈ [1,∞] are such that p−1 + q−1 = r−1, where ∞−1 := 0, then

‖fg‖r � ‖f ‖p ‖g‖q for all f ∈ Lp(�,F , μ) and g ∈ Lq(�,F , μ);
(2.1)

this is Hölder’s inequality. The subadditivity of the Lp norm, known as Minkowski’s
inequality, may be deduced from Hölder’s inequality. When r = 1 and p = q = 2,
Hölder’s inequality is known as the Cauchy–Bunyakovsky–Schwarz inequality.

Example 2.9 Let d � 1. The space C∞
c (Rd ) of continuous functions on R

d with
compact support is a subspace of Lp(Rd ) for all p ∈ [1,∞], and is dense for
p ∈ [1,∞), when R

d is equipped with Lebesgue measure.
Given a multi-index α = (α1, . . . , αd) ∈ Z

d+, let |α| := α1 + · · · + αd and

Dαf := ∂α1

∂x1
. . .

∂αd

∂xd

f for all f ∈ C∞
c (Rd ).

Note that Dαf ∈ C∞
c (Rd ) for all f ∈ C∞

c (Rd) and α ∈ Z
d+.

Let f ∈ Lp(Rd ), where p ∈ [1,∞], and note that fg ∈ L1(Rd) for all g ∈
C∞

c (Rd), by Hölder’s inequality. If there exists F ∈ Lp(Rd ) such that

∫

Rd

f (x)Dαg(x) dx = (−1)|α|
∫

Rd

F (x)g(x) dx for all g ∈ C∞
c (Rd)

then F is the weak derivative of f , and we write F = Dαf . [It is a straightforward
exercise to verify that the weak derivative is unique, and that this agrees with the
previous definition if f ∈ C∞

c (Rd).]
Given p ∈ [1,∞) and k ∈ Z+, the Sobolev space

Wk,p(Rd) := {f ∈ Lp(Rd) : Dαf ∈ Lp(Rd ) whenever |α| � k}

is a Banach space when equipped with the norm

f �→ ‖f ‖ :=
( ∑

|α|�k

‖Dαf ‖p
p

)1/p

and contains C∞
c (Rd) as a dense subspace.
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The Sobolev space Wk,2(Rd) is usually abbreviated to Hk(Rd) and is a Hilbert
space, with inner product such that

〈f, g〉 :=
∑

|α|�k

〈Dαf,Dαg〉 for all f, g ∈ Hk(Rd ).

Exercise 2.10 Prove that the normed vector space Wk,p(Rd), as defined in Exam-
ple 2.9, is complete.

Example 2.11 Let U and V be normed vector spaces. A linear operator T : U → V

is bounded if

‖T ‖ := {‖T u‖ : u ∈ U} < ∞.

If T is bounded, then ‖T u‖ � ‖T ‖ ‖u‖ for all u ∈ U , and ‖T ‖ is the smallest
constant with this property.

The set of all such linear operators is denoted by B(U ; V ), or B(U) if U and V

are equal.
This set is a normed vector space, with operator norm T �→ ‖T ‖ and algebraic

operations defined pointwise, so that

(S + T )u = Su + T u and (λT )u := λT u

for all S, T ∈ B(U ; V ), λ ∈ C and U ∈ U . Furthermore, the space B(U ; V ) is a
Banach space whenever V is.

Exercise 2.12 Prove the claims in Example 2.11.

Exercise 2.13 Let V be a normed vector space. Prove that the norm on B(V ) is
submultiplicative: if S, T ∈ B(V ), then ST : v �→ S(T v) ∈ B(V ), with ‖ST ‖ �
‖S‖ ‖T ‖.

Exercise 2.14 Let U and V be normed vector spaces and let T : U → V be a
linear operator. Prove that T is bounded if and only if it is continuous when U and
V are equipped with their norm topologies.

Example 2.15 Given any normed space V , its topological dual or dual space is the
Banach space V ∗ := B(V ;C). An element of V ∗ is called a linear functional or
simply a functional.

If p, q ∈ (1,∞) are conjugate indices, so that such that p−1 + q−1 = 1, then
(�p)∗ is naturally isomorphic to �q via the dual pairing

[u, v] :=
∞∑

n=0

unvn for all u ∈ �p and v ∈ �q.
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Hölder’s inequality shows that u �→ [u, v] is an element of (�p)∗ for any v ∈ �q ;
proving that every functional arises this way is an exercise. Furthermore, the same
pairing gives an isomorphism between (�1)∗ and �∞. [The dual of �∞ is much larger
than �1; it is isomorphic to the space M(βN) of regular complex Borel measures on
the Stone–Čech compactification of the natural numbers.]

Similarly, for conjugate indices p, q ∈ (1,∞), the dual of Lp(�,F , μ) is
identified with Lq(�,F , μ), and the dual of L1(�,F , μ) with L∞(�,F , μ), via
the pairing

[f, g] :=
∫

�

f (x)g(x) μ(dx).

In particular, �2 and L2(�,F , μ) are conjugate-linearly isomorphic to their dual
spaces. This is a general fact about Hilbert spaces, known as the Riesz–Fréchet
theorem: if H is a Hilbert space, then

H ∗ = {〈u| : u ∈ H
}
, where 〈u|v := 〈u, v〉 for all v ∈ H.

If K is a compact Hausdorff space, then the dual of C(K) is naturally isomorphic
to the space M(K) of regular complex Borel measures on K , with dual pairing

[f,μ] :=
∫

K

f (x) μ(dx) for all f ∈ C(K) and μ ∈ M(K).

The Hahn–Banach theorem [25, Corollary 2 to Theorem III.6] implies that the
dual space separates points: if v ∈ V, then there exists φ ∈ V ∗ such that ‖φ‖ = 1
and φ(v) = ‖v‖.

Example 2.16 Duality makes an appearance at the level of operators. If U and V

are normed spaces and T ∈ B(U ; V ), then there exists a unique dual operator
T ′ ∈ B(V ∗; U∗) such that

(T ′ψ)(v) = ψ(T u) for all u ∈ U and ψ ∈ V ∗.

The map T �→ T ′ from B(U ; V ) to B(V ∗; U∗) is linear and reverses the order of
products: if S ∈ B(U ; V ) and T ∈ B(V ; W), then (T S)′ = S′T ′.

If H and K are Hilbert spaces, and we identify each of these with its dual via the
Riesz–Fréchet theorem, then the operator dual to T ∈ B(H;K) is identified with the
adjoint operator T ∗ ∈ B(K;H), since

(
T ′〈v|)u = 〈v, T u〉K = 〈T ∗v, u〉H = 〈T ∗v|u for all u ∈ H and v ∈ K.
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2.2 Semigroups on Banach Spaces

Definition 2.17 A family of operators T = (Tt )t∈R+ ⊆ B(V ) is a one-parameter
semigroup on V , or a semigroup for short, if

(i) T0 = I the identity operator and (ii) Ts Tt = Ts+t for all s, t ∈ R+.

The semigroup T is strongly continuous if

lim
t→0+ ‖Ttv − v‖ = 0 for all v ∈ V,

and is uniformly continuous if

lim
t→0+ ‖Tt − I‖ = 0.

Exercise 2.18 Prove that a uniformly continuous semigroup is strongly continuous.
[The converse is false: see Exercise 2.29.]

Theorem 2.19 Let T be a strongly continuous semigroup on the Banach space V .
There exist constants M � 1 and a ∈ R such that ‖Tt‖ � Meat for all t ∈ R+.

Proof See [9, Theorem 6.2.1]. ��
Remark 2.20 The semigroup T of Theorem 2.19 is said to be of type (M, a). A
semigroup of type (1, 0) is also called a contraction semigroup.

By replacing Tt with e−atTt , one can often reduce to the case of semigroups
with uniformly bounded norm. However, it is not always possible to go further and
reduce to contraction semigroups; see [9, Example 6.2.3 and Theorem 6.3.8].

Exercise 2.21 Prove that a strongly continuous semigroup is strongly continuous
at every point: if t � 0, then lim

h→0
‖Tt+hx − Ttx‖ = 0. Prove further that the same is

true if “strongly” is replaced by “uniformly”.

Exercise 2.22 Given any A ∈ B(V ), let exp(A) :=
∞∑

n=0

1

n!A
n.

(i) Prove that this series is convergent, so that exp(A) ∈ B(V ). Prove further
that ‖ exp(A)‖ � exp ‖A‖.

(ii) Prove that if B ∈ B(V ) commutes with A, so that that AB = BA, then
exp(A) and exp(B) also commute, with exp(A) exp(B) = exp(A + B).
[Hint: consider the derivatives of

t �→ exp(tA) exp(−tA) and t �→ exp(tA) exp(tB) exp
(−t (A+B)

)
.]

(iii) Prove that setting Tt := exp(tA) for all t ∈ R+ produces a uniformly
continuous one-parameter semigroup T .
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The converse of Exercise 2.22(iii) is true, and we state it as a theorem.

Theorem 2.23 If T is a uniformly continuous one-parameter semigroup, then there
exists an operator A ∈ B(V ) such that Tt = exp(tA) for all t ∈ R+.

Proof By continuity at the origin, there exists t0 > 0 such that

‖Ts − I‖ < 1/2 for all s ∈ [0, t0].

Then

∥
∥
∥t−1

0

∫ t0

0
Ts ds − I

∥
∥
∥ = t−1

0

∥
∥
∥

∫ t0

0
Ts − I ds

∥
∥
∥ � 1/2 < 1.

Thus X := t−1
0

∫ t0
0 Ts ds ∈ B(V ) is invertible, because the Neumann series

∞∑

n=0

(I − X)n = I + (I − X) + (I − X)2 + . . .

is absolutely convergent, so convergent, by Banach’s criterion. Furthermore,

h−1(Th − I)

∫ t0

0
Ts ds = h−1

∫ t0

0
Ts+h − Ts ds

= h−1
∫ t0+h

h

Ts ds − h−1
∫ t0

0
Ts ds

= h−1
∫ t0+h

t0

Ts ds − h−1
∫ h

0
Ts ds

→ Tt0 − I

as h → 0+. Hence

A := lim
h→0+ h−1(Th − I) = (Tt0 − I)(t0X)−1.

Moreover, for any t ∈ [0, t0],

Tt0 = I + A

∫ t

0
Tt1 dt1 = I + A

(
tI +

∫ t

0

∫ t1

0
Tt2 dt2 dt1

)

= I + tA + t2

2
A2 + . . .
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+ An

∫ t

0
. . .

∫ tn

0
Ttn+1 dtn+1 . . . dt1

→
∑

n�0

1

n! (tA)n = exp(tA)

as n → ∞, since

∥
∥
∥An

∫ t

0
. . .

∫ tn

0
Ttn+1 dtn+1 . . . dt1

∥
∥
∥ � 3tn+1‖A‖n

2(n + 1)! .

This working shows that Tt = exp(tA) for any t ∈ [0, t0], so for all t ∈ R+, by the
semigroup property: there exists n ∈ Z+ and s ∈ [0, t0) such that t = nt0 + s, and

Tt = T n
t0
Ts = exp(nt0A + sA) = exp(tA).

��
Remark 2.24 The integrals in the previous proof are Bochner integrals; they are
an extension of the Lebesgue integral to functions which take values in a Banach
space. We will only be concerned with continuous functions, so do not need to
concern ourselves with notions of measurability. All the standard theorems carry
over from the Lebesgue to the Bochner setting, such as the inequality ‖ ∫

f (t) dt‖ �∫ ‖f (t)‖ dt , and if T is a bounded operator then T
∫

f (t) dt = ∫
Tf (t) dt .

Definition 2.25 If T is a uniformly continuous semigroup, then the operator A ∈
B(V ) such that Tt = exp(tA) for all t ∈ R+ is the generator of the semigroup.

Exercise 2.26 Prove that the generator of a uniformly continuous one-parameter
semigroup T is unique. [Hint: consider the limit of t−1(Tt − I) as t → 0+.]

Example 2.27 Given t ∈ R+ and f ∈ V := Lp(R+), where p ∈ [1,∞), let

(Ttf )(x) := f (x + t) for all x ∈ R+.

Then Tt ∈ B(V ), with ‖Tt‖ = 1, and T = (Tt )t∈R+ is a one-parameter semigroup.
If f is continuous and has compact support, then an application of the Dominated
Convergence Theorem gives that Ttf → f as t → 0+; since such functions are
dense in V , it follows that T is strongly continuous.

Exercise 2.28 Prove the assertions in Example 2.27. Prove also that if f ∈ V =
Lp(R+) is absolutely continuous, with f ′ ∈ V such that

f (x) = f (0) +
∫ x

0
f ′(y) dy for all x ∈ R+,
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then

lim
t→0+ t−1(Ttf − f ) = f ′,

where the limit exists in V . [Hint: show that

‖t−1(Ttf − f ) − f ′‖p
p = t−1

∫ t

0
‖Tyf

′ − f ′‖p
p dy

and then use the strong continuity of T at the origin.]

Exercise 2.29 Prove that the semigroup of Example 2.27 is not uniformly continu-
ous. [Hint: let fn = λn1[n−1,2n−1], where the positive constant λn is chosen to make
fn a unit vector in V , and consider ‖Ttfn − fn‖ for n > t−1.]

2.3 Beyond Uniform Continuity

As shown above, uniformly continuous one-parameter semigroups are in one-to-one
correspondence with bounded linear operators. To move beyond this situation, we
need to introduce linear operators which are only partially defined on the ambient
Banach space V .

Definition 2.30 An unbounded operator in V is a linear transformation A defined
on a linear subspace V0 ⊆ V , its domain; we write dom A = V0.

An extension of A is an unbounded operator B in V such that dom A ⊆ dom B

and the restriction B|dom A = A. In this case, we write A ⊆ B.
An unbounded operator A in V is densely defined if dom A is dense in V for the

norm topology.

Definition 2.31 Given operators A and B, let A + B and AB be defined by setting

dom(A + B) := dom A ∩ dom B, (A + B)v := Av + Bv

and

dom AB := {v ∈ dom A : Av ∈ dom B}, (AB)v := A(Bv).

Note that neither A + B nor AB need be densely defined, even if both A and B are.

Definition 2.32 Let T be a strongly continuous one-parameter semigroup on V . Its
generator A is an unbounded operator with domain

dom A := {
v ∈ V : lim

t→0+ t−1(Tt v − v) exists in V
}
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and action

Av := d

dt
Ttv

∣
∣
∣
t=0

:= lim
t→0+ t−1(Tt v − v) for all v ∈ dom A.

It is readily verified that A is an unbounded operator.

Exercise 2.33 Prove that if v ∈ V and t ∈ R+ then

∫ t

0
Tsv ds ∈ dom A and (Tt − I)v = A

∫ t

0
Tsv ds.

Deduce that dom A is dense in V . [Hint: begin by imitating the proof of Theo-
rem 2.23.]

Lemma 2.34 Let the strongly continuous semigroup T have generator A. If v ∈
dom A and t ∈ R+, then Ttv ∈ dom A and TtAv = ATtv; thus, Tt (dom A) ⊆
dom A. Furthermore,

(Tt − I)v =
∫ t

0
TsAv ds =

∫ t

0
ATsv ds.

Proof First, note that

h−1(Th − I)Ttv = Tth
−1(Th − I)v → TtAv as h → 0+,

by the boundedness of Tt , so Ttv ∈ dom A and ATtv = TtAv, as claimed. For the
second part, let

F : R+ → V ; t �→ (Tt − I)v −
∫ t

0
TsAv ds.

Note that F is continuous and F(0) = 0; furthermore, if t > 0, then

h−1(F (t +h)−F(t)) = Tth
−1(Th−I)v−h−1

∫ h

0
Ts+tAv ds → TtAv−TtAv = 0

as h → 0+, whence F ≡ 0. ��
Definition 2.35 An operator A in V is closed if, whenever (vn)n∈N ⊆ dom A is
such that vn → v ∈ V and Avn → u ∈ V , it follows that v ∈ dom A and Av = u.
Note that a bounded operator is automatically closed.

The operator A is closable if it has a closed extension, in which case the closure A

is the smallest closed extension of A, where the ordering of operators is given in
Definition 2.30.
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Exercise 2.36 Prove that the graph

G(A) := {(v,Av) : v ∈ dom A}

of an unbounded operator A in V is a normed vector space for the product norm

‖ · ‖ : (v,Av)‖ �→ ‖v‖ + ‖Av‖.

Prove further that A is closed if and only if G(A) is a Banach space, and that A is
closable if and only if the closure of its graph in V ⊕V is the graph of some operator.
Finally, prove that if A is closable then G

(
A

)
is the intersection of the graphs of all

closed extensions of A.

Exercise 2.37 Let A be the generator of the strongly continuous one-parameter
semigroup T . Use Lemma 2.34 and Theorem 2.19 to show that A is closed.

Proof Suppose (vn)n∈N ⊆ dom A is such that vn → v and Avn → u. Let t > 0 and
note that

Ttvn − vn =
∫ t

0
TsAvn ds for all n � 1.

Furthermore,

∥
∥
∥

∫ t

0
TsAvn ds −

∫ t

0
Tsu ds

∥
∥
∥ �

∫ t

0
Meas‖Avn − u‖ ds � Mtemax{a,0}t‖Avn − u‖ → 0

as n → ∞, so

Ttv − v =
∫ t

0
Tsu ds.

Dividing both sides by t and letting t → 0+ gives that v ∈ dom A and Av = u, as
required. ��
Definition 2.38 Let H be Hilbert space. If A is a densely defined operator in H ,
then the adjoint A∗ is defined by setting

dom A∗ := {u ∈ H : there exists v ∈ H such that 〈u,Aw〉
= 〈v,w〉 for all w ∈ dom A}

and

A∗u = v, where v is as in the definition of dom A∗.
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When A is bounded, this agrees with the earlier definition. If A is not densely
defined, then there may be no unique choice for v, so this definition cannot
immediately be extended further.

It is readily verified that the adjoint A∗ is always closed: if (un)n∈N ⊆ dom A∗ is
such that un → u ∈ H and A∗un → v ∈ H then

〈u,Aw〉 = lim
n→∞〈un,Aw〉 = lim

n→∞〈A∗un,w〉 = lim
n→∞〈v,w〉 for all w ∈ dom A,

so x ∈ dom A∗ and A∗u = v.

Exercise 2.39 Prove that a densely defined operator A is closable if and only if its
adjoint A∗ is densely defined, in which case A = (A∗)∗ and A

∗ = A∗.

Definition 2.40 A densely defined operator A in a Hilbert space is self-adjoint if
and only if A∗ = A. This is stronger than the condition that

〈u,Av〉 = 〈Au, v〉 for all u, v ∈ dom A,

which is merely the condition that A ⊆ A∗. An operator satisfying this inclusion is
called symmetric.

Exercise 2.41 Let A be a densely defined operator in the Hilbert space H. Prove
that A is self-adjoint if and only if A is symmetric and such that both A + iI and
A − iI are surjective, so that

{Av + iv : v ∈ dom A} = {Av − iv : v ∈ dom A} = H.

Proof Suppose first that A is symmetric and the range conditions hold. Let u, v ∈ H
be such that

〈u,Aw〉 = 〈v,w〉 for all w ∈ dom A,

so that u ∈ dom A∗ and A∗u = v. We wish to prove that u ∈ dom A and Au = v.
Let x, y ∈ dom A be such that (A − iI)x = v − iu and (A + iI)y = u − x. Then

〈u, u − x〉 = 〈u, (A + iI)y〉 = 〈v − iu, y〉
= 〈(A − iI)x, y〉 = 〈x, (A + iI)y〉 = 〈x, u − x〉,

where the penultimate equality holds because A is symmetric and x, y ∈ dom A. It
follows that ‖u − x‖2 = 0, so u = x ∈ dom A and Au = Ax = v − iu + ix = v.

Now suppose that A is self-adjoint, and note that it suffices to prove that A + iI
is surjective, since −A is self-adjoint whenever A is.

Note first that

‖(A + iI)v‖2 = ‖Av‖2 + ‖v‖2 for all v ∈ dom A, (2.2)
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which implies that ran(A + iI) is closed: if the sequence (vn)n∈N ⊆ dom A is such
that

(
(A+ iI)vn

)
n∈N is convergent, then both (vn)n∈N and (Avn)n∈N are Cauchy, so

convergent, with vn → v ∈ H and Avn → u ∈ H. Since A is closed, it follows that
v ∈ dom A and Av = u, from which we see that (A+ iI)vn → u+ iv = (A+ iI)v.

It is also follows from (2.2), with A replaced by −A, that A − iI is injective. As

u ∈ ker(A − iI) ⇐⇒ 〈(A − iI)u, v〉 = 0 for all v ∈ dom A

⇐⇒ 〈u, (A + iI)v〉 = 0 for all v ∈ dom A = dom A∗

⇐⇒ u ∈ ran(A + iI)⊥,

so

ran(A + iI) = (ran(A + iI)⊥)⊥ = ker(A − iI)⊥ = {0}⊥ = H.

��
Definition 2.42 Let A be an unbounded operator in V . Its spectrum is the set

σ(A) := {λ ∈ C : λI − A has no inverse in B(V )}
and its resolvent is the map

C \ σ(A) → B(V ); λ �→ (λI − A)−1.

In other words, λ ∈ C is not in the spectrum of A if and only if there exists a
bounded operator B ∈ B(V ) such that B(λI − A) = Idom A and (λI − A)B = IV ;
in particular, the operator λI − A is a bijection from dom A onto V .

Remark 2.43 If the operator T : V → V is bounded, then its spectrum σ(T ) is
contained in the closed disc {λ ∈ C : |λ| � ‖T ‖} [22, Lemma 1.2.4].

Exercise 2.44 Let A be an unbounded operator in V and suppose λ ∈ C is such
that λI − A is a bijection from dom A onto V . Prove that (λI − A)−1 is bounded if
and only if A is closed. [Thus algebraic invertibility of λI − A is equivalent to its
topological invertibility if and only if A is closed.]

The following theorem shows that the resolvent of a semigroup generator may
be thought of as the Laplace transform of the semigroup.

Theorem 2.45 Let A be the generator of a one-parameter semigroup T of
type (M, a) on V . Then σ(A) ⊆ {λ ∈ C : Re λ � a}. Furthermore, if Re λ > a,
then

(λI − A)−1v =
∫ ∞

0
e−λtTtv dt for all v ∈ V (2.3)

and ‖(λI − A)−1‖ � M(Re λ − a)−1.
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Proof Fix λ ∈ C with Re λ > a and note first that

R : V �→ V ; v �→
∫ ∞

0
e−λtTtv dt

is a bounded linear operator, with ‖R‖ � M(Re λ − a)−1.
If v ∈ V and u = Rv, then

Ttu =
∫ ∞

0
e−λsTs+tv ds =

∫ ∞

t

e−λ(r−t )Tuv dr = eλt

∫ ∞

t

e−λuTrv dr,

and therefore, if t > 0,

t−1(Tt − I)u = t−1eλt

∫ ∞

t

e−λsTsv ds − t−1
∫ ∞

0
e−λsTsv ds

= −t−1eλt

∫ t

0
e−λsTsv ds + t−1(eλt − 1)

∫ ∞

0
e−λsTsv ds

→ −v + λu as t → 0+.

Thus u ∈ dom A and (λI − A)u = v. It follows that ran R ⊆ dom A and (λI −
A)R = IV .

However, since (Tt − I)R = R(Tt − I) and R is bounded, the same working
shows that

RAu = −u + λRu ⇐⇒ R(λI − A)u = u for all u ∈ dom A.

Thus R(λI − A) = Idom A and R = (λI − A)−1, as claimed. ��
The Laplace-transform formula of Theorem 2.45 allows one to recover a

semigroup from its resolvent.

Theorem 2.46 Let A be the generator of a one-parameter semigroup T of
type (M, a) on V , and let λ ∈ C with Re λ > a. Then

(λI − A)−nv =
∫ ∞

0

tn−1

(n − 1)!e
−λtTt v dt for all n ∈ N and v ∈ V,

and

Ttv = lim
n→∞(I − n−1tA)−nv

= lim
n→∞(n/t)n

(
(n/t)I − A)−nv for all t > 0 and v ∈ V.
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Proof The first claim follows by induction, with Theorem 2.45 giving the case
n = 1.

As noted by Hille and Phillips [16, Theorem 11.6.6], the second follows from the
Post–Widder inversion formula for the Laplace transform. For all n ∈ N, let

fn : R+ → R+; t �→ nn

(n − 1)! t
ne−nt ,

and note that fn is strictly increasing on [0, 1] and strictly decreasing on [1,∞),
and its integral

∫ ∞
0 fn(t) dt = 1; this last fact may be proved by induction. If n is

sufficiently large, then a short calculation shows that

(n/t)n
(
(n/t)I − A)−nv = (1 − n−1)−n

∫ ∞

0
fn−1(r)e

−rTtrv dr.

The result follows by splitting the integral into three parts. Fix ε ∈ (0, 1) and
note first that fn(r) � nenrne−nr for all r ∈ R+, with the latter function strictly
increasing on [0, 1], so

∥
∥
∥

∫ 1−ε

0
fn(r)e−r Ttrv dr

∥
∥
∥ � n(1 − ε)n+1enεM max{1, eat (1−ε)}‖v‖ → 0 as n → ∞.

Similarly, if b := ε/(1 + ε), then fn(r)e
bnr � nen(1 + ε)ne(b−1)n(1+ε) � n(1 + ε)n

for all r � 1 + ε, and so

∥
∥
∥

∫ ∞

1+ε

fn(r)e
−rTtrv dr

∥
∥
∥ � M‖v‖n(1 + ε)n

∫ ∞

1+ε

e(a−bn)r dr

� M‖v‖ n

bn − a
(1 + ε)ne(a−bn)(1+ε) → 0 as n → ∞,

since b(1 + ε) = ε and (1 + ε)e−ε < 1. A standard approximation argument now
completes the proof. ��

We have now obtained enough necessary conditions on the generator of a
strongly continuous semigroup for them to be sufficient as well.

Theorem 2.47 (Feller–Miyadera–Phillips) A closed, densely defined operator A

in V is the generator of a strongly continuous semigroup of type (M, a) if and only
if

σ(A) ⊆ {λ ∈ C : Re λ � a}

and

‖(λI − A)−m‖ � M(λ − a)−m for all λ > a and m ∈ N. (2.4)
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Proof Let A be the generator of a strongly continuous semigroup T of type (M, a).
The spectral condition is a consequence of Theorem 2.45, and the norm inequality
follows from Theorem 2.46.

For the converse, let the operator A be closed, densely defined, such that (2.4)
holds and having spectrum not containing (a,∞). Setting Aλ := λA(λI − A)−1,
note that {Aλ : λ ∈ (a,∞)} is a commuting family of bounded operators such that
Aλv → Av as λ → ∞, for all v ∈ dom A; see Exercise 2.48 for more details.

With T λ
t := exp(tAλ), the inequalities (2.4) imply ‖T λ

t ‖ � M exp
(
aλt/(λ − a)

)

for all λ > a and t ∈ R+, so lim supλ→∞ ‖T λ
t ‖ � Meat . Since

(T λ
t − T

μ
t )v =

∫ t

0

d

ds

(
T λ

s T
μ
t−sv

)
ds =

∫ t

0
T λ

s T
μ
t−s(Aλ − Aμ)v ds,

if λ, μ > 2a+ = 2 max{a, 0} and v ∈ dom A then

‖(T λ
t − T

μ
t )v‖ � tM2e2a+t‖(Aλ − Aμ)v‖ → 0 as λ,μ → ∞,

locally uniformly in t . An approximation argument shows that Ttu = limλ→∞ T λ
t u

exists for all t ∈ R+ and u ∈ V , and that T = (Tt )t∈R+ is a strongly continuous
one-parameter semigroup of type (M, a).

To see that the generator of T is A, note that the previous working and
Lemma 2.34 imply that

Ttv − v = lim
λ→∞ T λ

t v − v = lim
λ→∞

∫ t

0
T λ
s Aλv ds =

∫ t

0
TsAv ds for all v ∈ dom A;

dividing by t and letting t → 0 shows that the generator B of T is an extension of
A. Note that (a,∞) is not in the spectrum of B, by Theorem 2.45; it is a simple
exercise to show that (λI − A)−1 = (λI − B)−1 for λ > a, and since the ranges of
these operators are the domain of A and B, the result follows. ��
Exercise 2.48 Let A be an unbounded operator in V , with spectrum not containing
(a,∞) and such that ‖(λI − A)−1‖ � M(λ − a)−1 for all λ > a, where M and a

are constants. Prove that

Aλ := λA(λI − A)−1 = λ2(λI − A)−1 − λI

commutes with Aμ for all λ, μ > a. Prove also that

lim
λ→∞ λ(λI − A)−1u = u for all u ∈ V,

by showing this first for the case u ∈ dom A. Deduce that Aλv → Av when v ∈
dom A.

For contraction semigroups, we have the following refinement of Theorem 2.47.
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Theorem 2.49 (Hille–Yosida) Let A be a closed, densely defined linear operator
in the Banach space V . The following are equivalent.

(i) A is the generator of a strongly continuous contraction semigroup.

(ii) σ(A) ⊆ {λ ∈ C : Re λ � 0} and

‖(λI − A)−1‖ � (Re λ)−1 whenever Re λ > 0.

(iii) σ(A) ∩ (0,∞) is empty and

‖(λI − A)−1‖ � λ−1 whenever λ > 0.

Proof Note that (i) implies (ii), by Theorem 2.45, and (ii) implies (iii) trivially. That
(iii) implies (i) follows from the extension of Theorem 2.47 noted in its proof. ��

In practice, verifying the norm conditions in Theorems 2.47 and 2.49 may prove
to be challenging. The next section introduces the concept of operator dissipativity,
which is often more tractable.

2.4 The Lumer–Phillips Theorem

Throughout this subsection, V denotes a Banach space and V ∗ its topological dual.

Definition 2.50 For all v ∈ V , let

TF(v) := {φ ∈ V ∗ : φ(v) = ‖v‖2 = ‖φ‖2}

be the set of normalised tangent functionals to v. The Hahn–Banach theorem [25,
Theorem III.6] implies that TF(v) is non-empty for all v ∈ V .

Exercise 2.51 Prove that if H is a Hilbert space then TF(v) = {〈v|} for all v ∈ H ,
where the Dirac functional 〈v| is such that 〈v|u := 〈v, u〉 for all u ∈ H . [Recall the
Riesz–Fréchet theorem from Example 2.15.]

Exercise 2.52 Prove that if f ∈ V = C(K) and x0 ∈ K is such that |f (x0)| =
‖f ‖ then setting φ(g) := f (x0)g(x0) for all g ∈ V defines a normalised tangent
functional for f . Deduce that TF(f ) may contain more than one element.

Definition 2.53 An unbounded operator A in V is dissipative if and only if there
exists φ ∈ TF(v) such that Re φ(Av) � 0, for all v ∈ dom A. [Note that it suffices
to check this condition for unit vectors only.]

Exercise 2.54 Prove that an operator A in the Hilbert space H is dissipative if and
only if ‖(I + A)v‖ � ‖(I − A)v‖ for all v ∈ dom A.

Exercise 2.55 Suppose T is a contraction semigroup with generator A. Prove that
A is dissipative.
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Proof If v ∈ dom A and φ ∈ TF(v), then

Re φ(Av) = lim
t→0+ t−1 Re φ(Ttv − v) � lim

t→0+ t−1‖φ‖ ‖v‖ − ‖v‖2 = 0,

so A is dissipative. ��
We now seek to find a converse to the result of the preceding exercise.

Lemma 2.56 The unbounded operator A in V is dissipative if and only if

‖(λI − A)v‖ � λ‖v‖ for all λ > 0 and v ∈ dom A. (2.5)

If A is dissipative and λI − A is surjective for some λ > 0, then λ �∈ σ(A) and
‖(λI − A)−1‖ � λ−1.

Proof Suppose first that (2.5) holds, let v ∈ dom A be a unit vector and, for all
λ > 0, choose φλ ∈ TF

(
(λI − A)v

)
. Then φλ �= 0, so ψλ = ‖φλ‖−1φλ is well

defined, and

λ � ‖(λI − A)v‖ = ψλ(λv − Av) = λ Re ψλ(v) − Re ψλ(Av).

Since Re ψλ(v) � 1 and − Re ψλ(Av) � ‖Av‖, it follows that

Re ψλ(Av) � 0 and Re ψλ(v) � 1 − λ−1‖Av‖.

The Banach–Alaoglu theorem [25, Theorem IV.21] implies that the unit ball of V ∗
is weak* compact, so the net (ψλ)λ>0 has a weak*-convergent subnet with limit in
the unit ball. Hence there exists ψ ∈ V ∗ such that

‖ψ‖ � 1, Re ψ(Av) � 0 and Re ψ(v) � 1.

In particular,

|ψ(v)| � ‖ψ‖ � 1 � Re ψ(v) � |ψ(v)|,

so ψ ∈ TF(v) and A is dissipative.
Conversely, if λ > 0, v ∈ dom A and φ ∈ TF(v) is such that Re φ(Av) � 0 then

‖v‖ ‖(λI − A)v‖ � |φ(
(λI − A)v

)| = |λ‖v‖2 − φ(Av)| � λ‖v‖2.

Thus (2.5) holds, and λI − A is injective.
If λI − A is also surjective, then (2.5) gives that ‖u‖ � λ‖(λI − A)−1u‖ for

all u ∈ V , whence the final claim. ��
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Exercise 2.57 Let A be dissipative. Prove that λI − A is surjective for some λ > 0
if and only if λI − A is surjective for all λ > 0. [Hint: for a suitable choice of λ

and λ0, consider the series Rλ := ∑∞
n=0(λ − λ0)

n(λ0I − A)−(n+1).]

Proof Suppose that λ0 > 0 is such that λ0I − A is surjective. It follows from
Lemma 2.56 that ‖(λ0I − A)−1‖ � λ−1

0 . The series

Rλ =
∞∑

n=0

(λ0 − λ)n(λ0I − A)−(n+1)

is norm convergent for all λ ∈ (0, 2λ0); if we can show that Rλ = (λI − A)−1, then
the result follows.

If C ∈ B(V ) is such that ‖C‖ < 1 then I − C is invertible, with (I − C)−1 =∑∞
n=0 Cn. Hence if C = (λ0 − λ)(λ0I − A)−1, then

Rλ = (λ0I − A)−1(I − C)−1 = (I − C)−1(λ0I − A)−1,

so ran Rλ ⊆ dom(λ0I − A) = dom(λI − A),

(λI−A)Rλ = (
(λ−λ0)I+(λ0I−A)

)
Rλ = (

(λ−λ0)(λ0I−A)−1+I
)
(I−C)−1 = IV

and

Rλ(λI − A) = Rλ

(
(λ − λ0)I + (λ0I − A)

)

= (I − C)−1((λ − λ0)(λ0I − A)−1 + I
) = Idom A.

��
Theorem 2.58 (Lumer–Phillips) A closed, densely defined operator A generates
a strongly continuous contraction semigroup if and only if A is dissipative and λI −
A is surjective for some λ > 0.

Proof One implication follows from Exercise 2.57, Lemma 2.56 and Theorem 2.49.
The other implication follows from Theorem 2.49 and Exercise 2.55. ��
Example 2.59 Let V = L2[0, 1], and let Af := g, where

dom A :=
{
f ∈ V : there exists g ∈ V such that f (t)

=
∫ t

0
g(s) ds for all t ∈ [0, 1]

}
.

Thus f ∈ dom A if and only if f (0) = 0 and f is absolutely continuous on [0, 1],
with square-integrable derivative, and then Af = f ′ almost everywhere. For such f ,
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note that

Re〈f,Af 〉 = Re
∫ 1

0
f (t)f ′(t) dt = 1

2

∫ t

0

(
f f

)′
(t) dt = 1

2
|f (1)|2 � 0,

so −A is a dissipative operator, but A is not.
Let g ∈ V and λ > 0; we wish to find f ∈ dom A such that

(λI + A)f = g ⇐⇒ λf + f ′ = g ⇐⇒ f =
∫

(g − λf ).

We proceed by iterating this relation: given h ∈ {f, g}, let h0 := h and, for all
n ∈ Z+, let hn+1 ∈ V be such hn+1(t) = ∫ t

0 hn(s) ds for all t ∈ [0, 1]. Then

f = g1 − λ

∫

f = g1 − λ

∫ ∫

(g − λf ) = · · · =
n−1∑

j=0

(−λ)jgj+1 + (−λ)nfn

for all n ∈ N. The series
∑∞

j=0(−λ)jgj+1 is uniformly convergent on [0, 1], so
defines a function F ∈ dom A, whereas (−λ)nfn → 0 as n → ∞. Thus

(λI + A)F = −
∞∑

j=0

(−λ)j+1gj+1 +
∞∑

j=0

(−λ)j gj = g0 = g,

so λI + A is surjective. By the Lumer–Phillips theorem, the operator −A generates
a contraction semigroup.

Exercise 2.60 Fill in the details at the end of Example 2.59. [Hint: with the notation
of the example, show that if h ∈ {f, g} then |hn(t)|2 � tn‖h‖2

2/n! for all n ∈ N.]

Remark 2.61 We can explain informally why the operator A defined in Exam-
ple 2.59 does not generate a semigroup, and why −A does. Recall that each element
of a semigroup leaves the domain of the generator invariant, by Lemma 2.34, and A

would generate a left-translation semigroup, which does not preserve the boundary
condition f (0) = 0. Moreover, −A generates the right-translation semigroup, and
this does preserve the boundary condition.

If we let A0 be the restriction of A to the domain

dom A0 := {f ∈ dom A : f (1) = 0},

so adding a further boundary condition, then both A0 and −A0 are dissipative, but
neither generates a semigroup. We cannot solve the equation (λI ± A0)f = g for
all g when subject to the constraint that f ∈ dom A0. [Take g ∈ L2[0, 1] such that
g(t) = t for all t ∈ [0, 1], construct F as in Example 2.59 and note that F(1) �= 0.]
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Example 2.62 Recall the weak derivatives Dα and Sobolev spaces Hk(Rd ) defined
in Example 2.9, and let 2ej ∈ Z

d+ be the multi-index with 2 in the j th coordinate
and 0 elsewhere. The Laplacian

� :=
d∑

j=1

∂2

∂x2
j

=
d∑

j=1

D2ej

is a densely defined operator in L2(Rd) with domain dom � := H 2(Rd). It may be
shown that

〈�f, g〉L2(Rd) = −〈∇f,∇g〉L2(Rd) for all f, g ∈ H 2(Rd ), (2.6)

where

∇ := (De1 , . . . ,Ded ) : f �→
( ∂f

∂x1
, . . . ,

∂f

∂xd

)
;

consequently, the Laplacian � is dissipative. One way to establish (2.6) is to use the
Fourier transform. Fourier-theoretic results can also be used to prove that λI − � is
surjective for all λ > 0, essentially because the map x �→ 1/(λ + |x|2) is bounded
on R

d . Thus the Laplacian generates a contraction semigroup.

Exercise 2.63 Let A be a densely defined operator on the Hilbert space H. Prove
that if A is symmetric, so that

〈u,Av〉 = 〈Au, v〉 for all u, v ∈ dom A,

then iA is dissipative. Deduce that if H is self-adjoint then iH and −iH are the
generators of contraction semigroups.

Prove, further, that if T = (Tt )t∈R+ has generator iH , with H self-adjoint, then
Tt is unitary, so that T ∗

t Tt = I = TtT
∗
t , for all t ∈ R+.

Proof The first part is an immediate consequence of Theorem 2.58, the Lumer–
Phillips theorem, together with Exercise 2.41.

For the next part, fix u, v ∈ dom H and t ∈ R+. If h > 0 then

h−1〈u, (T ∗
t+hTt+h − T ∗

t Tt )v〉 = 〈Tt+hu, h−1(Th − I)Tt v〉
+ 〈h−1(Th − I)Ttu, Ttv〉
→ 〈Ttu, iHTtv〉 + 〈iHTtu, Ttv〉 = 0

as h → 0+, since Ttu, Ttv ∈ dom H and T is strongly continuous. A real-valued
function on R+ is constant if it is continuous and its right derivative is identically
zero, so this working shows that T ∗

t Tt = I .
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Now let S = (St )t∈R+ be the strongly continuous semigroup with generator −iH .
The previous working shows that S∗

t St = I for all t ∈ R+, so it suffices to let t > 0
and prove that St = T ∗

t . To see this, let u, v ∈ dom H and consider the function

F : [0, t] → C; s �→ 〈u, T ∗
t−sSsv〉.

Working as above, it is straightforward to show that F ′ ≡ 0 on (0, t), so F(0) =
F(t) and the result follows. ��
Exercise 2.64 Suppose U is a strongly continuous one-parameter semigroup on the
Hilbert space H, with Ut unitary, so that U∗

t Ut = I = UtU
∗
t , for all t ∈ R+. Let A

be the generator of U .
Prove that U∗ = (U∗

t )t∈R+ is also a strongly continuous one-parameter
semigroup, with generator −A. Deduce that H := iA is self-adjoint.

Proof The semigroup property for U∗ is immediate, and strong continuity holds
because

‖(U∗
t − I)v‖2 = 〈(I − Ut )v, v〉 − 〈v, (Ut − I)v〉 � 2‖(Ut − I)v‖ ‖v‖ → 0

as t → 0+, for any v ∈ H.
Next, denote the generator of U∗ by B, and let v ∈ dom A. Then

t−1(U∗
t − I)v = −U∗

t t−1(Ut − I)v → −Av as t → 0+,

so −A ⊆ B. Since (U∗)∗ = U , applying this argument with U replaced by U∗
gives the reverse inclusion. Thus U∗ has generator B = −A, as claimed.

Finally, let H = iA and suppose first that u, v ∈ dom H = dom A. Then

〈−iHu, v〉 = lim
t→0+〈t−1(Ut − I)u, v〉 = lim

t→0+〈u, t−1(U∗
t − I)v〉 = 〈u, iHv〉,

so H ⊆ H ∗. For the reverse inclusion, note that

U∗
t v = v +

∫ t

0
U∗

s A∗v ds for all v ∈ dom A∗,

by Lemma 2.34 applied to U and properties of the adjoint. Thus A∗ ⊆ −A, the
generator of U∗, and therefore H ∗ = −iA∗ ⊆ iA = H . ��
Remark 2.65 Exercises 2.63 and 2.64 lead to Stone’s theorem, which gives a one-
to-one correspondence between self-adjoint operators and strongly continuous one-
parameter groups of unitary operators. This result has significant consequences for
the mathematical foundations of quantum theory; see [25, Section VIII.4].
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3 Classical Markov Semigroups

Throughout this section, the triple (�,F ,P) will denote a probability space, so
that P : F → [0, 1] is a probability measure on the σ -algebra F of subsets of �,
and E will denote a topological space, with E its Borel σ -algebra, generated by the
open subsets.

An E-valued random variable is a F -E-measurable mapping X : � → E. If X

is an E-valued random variable, then σ(X) is the smallest sub-σ -algebra F0 of F
such that X is F0-E measurable. More generally, if (Xi)i∈I is an indexed set of E-
valued random variables, then σ(Xi : i ∈ I) is the smallest sub-σ -algebra F0 of F
such that Xi is F0-E measurable for all i ∈ I .

3.1 Markov Processes

Definition 3.1 Given a real-valued random variable X which is integrable, so that

E
[|X|] :=

∫

�

|X(ω)|P(dω) < ∞,

and a sub-σ -algebra F0 of F , the conditional expectation E[X|F0] is a real-valued
random variable Y which is F0-E measurable and such that

E[1AX] = E[1AY ] for all A ∈ F0.

The choice of Y is determined almost surely: if Y and Z are both versions of the
conditional expectation E[X|F0], then P(Y �= Z) = 0. The existence of Y is
guaranteed by the Radon–Nikodým theorem.

The fact that E[X|F0] is determined almost surely can be recast as saying
that E[·|F0] is a linear operator from L1(�,F ,P) to L1(�,F0,P|F0). In fact, the
map X �→ E[X|F0] is a contraction from Lp(�,F ,P) onto Lp(�,F0,P|F0), for
all p ∈ [1,∞].
Remark 3.2 Let X ∈ L2(�,F ,P). Informally, we can think of Y := E[X|F0]
as the best guess for X given the information in F0. In other words, the con-
ditional expectation Y of X with respect to F0 is the essentially unique choice
of F0-measurable random variable Z which minimises the least-squares distance
‖Z − X‖2.

Definition 3.3 Given a topological space E, let the Banach space

Bb(E) := {f : E → C | f is Borel measurable and bounded},
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with vector-space operations defined pointwise and supremum norm

‖f ‖ := sup{|f (x)| : x ∈ E}.

Exercise 3.4 Verify that Bb(E) is a Banach space. Show further that the norm
‖ · ‖ is submultiplicative, where multiplication of functions is defined pointwise, so
that Bb(E) is a Banach algebra. Show also that the Banach algebra Bb(E) is unital:
the multiplicative unit 1E is such that ‖1E‖ = 1. Show finally that the C∗ identity
holds:

‖f ‖2 = ‖f f ‖ for all f ∈ Bb(E),

where the isometric involution f �→ f is such that f (x) := f (x) for all x ∈ E.

Definition 3.5 (Provisional) A Markov process with state space E is a collection
of E-valued random variables X = (Xt)t∈R+ on a common probability space such
that, given any f ∈ Bb(E),

E[f (Xt) | σ(Xr : 0 � r � s)] = E[f (Xt ) | σ(Xs)]

for all s, t ∈ R+ such that s � t .
A Markov process is time homogeneous if, given any f ∈ Bb(E),

E[f (Xt) | Xs = x] = E[f (Xt−s) | X0 = x] (3.1)

for all s, t ∈ R+ such that s � t and x ∈ E.

Definition 3.5 is well motivated by Remark 3.2, but it is somewhat unsatisfactory;
for example, what should be the proper meaning of (3.1)? To improve upon it, we
introduce the following notion.

Definition 3.6 A transition kernel on (E,E) is a map p : E ×E → [0, 1] such that

(i) the map x �→ p(x,A) is Borel measurable for all A ∈ E and

(ii) the map A �→ p(x,A) is a probability measure for all x ∈ E.

We interpret p(x,A) as the probability that the transition ends in A, given that it
started at x.

Exercise 3.7 If p and q are transition kernels on (E,E), then the convolution p ∗ q

is defined by setting

(p ∗ q)(x,A) :=
∫

E

p(x, dy)q(y,A) for all x ∈ E and A ∈ E.

Prove that p ∗ q is a transition kernel. Prove also that convolution is associative:
if p, q and r are transition kernels then (p ∗ q) ∗ r = p ∗ (q ∗ r).
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Definition 3.8 A triangular collection {ps,t : s, t ∈ R+, s � t} of transition kernels
is consistent if ps,t ∗ pt,u = ps,u for all s, t , u ∈ R+ with s � t � u; that is,

ps,u(x,A) =
∫

E

ps,t (x, dy)pt,u(y,A) for all x ∈ E and A ∈ E. (3.2)

Equation (3.2) is the Chapman–Kolmogorov equation. We interpret ps,t (x,A) as
the probability of moving from x at time s to somewhere in A at time t .

Similarly, a one-parameter collection {pt : t ∈ R+} of transition kernels is
consistent if ps�pt = ps+t for all s, t ∈ R+. In this case, the Chapman–Kolmogorov
equation becomes

ps+t (x,A) =
∫

E

ps(x, dy)pt(y,A) for all x ∈ E and A ∈ E. (3.3)

We interpret pt (x,A) as the probability of moving from x into A in t units of time.

Definition 3.9 A family of E-valued random variables X = (Xt)t∈R+ on a
common probability space is a Markov process if there exists a consistent triangular
collection of transition kernels such that

E[1A(Xt) | σ(Xr : 0 � r � s)] = ps,t (Xs,A) almost surely

for all A ∈ E and s, t ∈ R+ such that s � t .
The family X is a time-homogeneous Markov process if there exists a consistent

one-parameter collection of transition kernels such that

E[1A(Xt) | σ(Xr : 0 � r � s)] = pt−s(Xs,A) almost surely

for all A ∈ E and s, t ∈ R+ such that s � t .

The connection between time-homogeneous Markov processes and semigroups
is provided by the following definition and theorem.

Definition 3.10 A Markov semigroup is a contraction semigroup T on Bb(E) such
that, for all t ∈ R+, the bounded linear operator Tt is positive: whenever f ∈ Bb(E)

is such that f � 0, that is, f (x) ∈ R+ for all x ∈ E, then Ttf � 0. [Note that we
impose no condition with respect to continuity at the origin.]

If Tt preserves the unit, that is, Tt1E = 1E for all t ∈ R+, then the Markov
semigroup T is conservative.

Remark 3.11 Positive linear maps preserve order: if T is such a map and f � g, in
the sense that f (x) � g(x) for all x ∈ E, then Tf � Tg. The image of a real-valued
function h under a positive linear map is real valued, since if h takes real values, then
h = h+ − h−, where h+ : x �→ max{h(x), 0} and h− := x �→ max{−h(x), 0}.
Consequently, positive linear maps also commute with the conjugation, in the sense
that T f = Tf .
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Exercise 3.12 Suppose the mapping T : Bb(E) → Bb(E) is linear and positive.
Show that |Tf |2 � T |f |2 T 1E for all f ∈ Bb(E), and deduce that T is bounded,
with norm ‖T ‖ � ‖T 1E‖.

Proof If f ∈ Bb(E), x ∈ E and λ ∈ R, then

0 � T
(|f − λ(Tf )(x)|2)(x) = λ2(T 1E)(x) |(Tf )(x)|2 − 2λ|(Tf )(x)|2 + (T |f |2)(x).

Inspecting the discriminant of this polynomial in λ gives the first claim, and the
second follows because.

|(Ttf )(x)|2 � (T |f |2)(x) (T 1E)(x) � ‖f ‖2(T 1E)2(x) � ‖f ‖2‖T 1E‖2.

��
Theorem 3.13 Let p = {pt : t ∈ R+} be a family of transition kernels. Setting

(Ttf )(x) :=
∫

E

pt (x, dy)f (y) for all f ∈ Bb(E) and x ∈ E

defines a bounded linear operator on Bb(E) which is positive, contractive and unit
preserving. Furthermore, the family T = (Tt )t∈R+ is a Markov semigroup if and
only if p is consistent.

Proof If f ∈ Bb(E), x ∈ E and s, t ∈ R+, then the Chapman–Kolmogorov
equation (3.3) implies that

(Ts+tf )(x) =
∫

E

ps+t (x, dz)f (z) =
∫

E

∫

E

ps(x, dy)pt (y, dz)f (z)

=
∫

E

ps(x, dy)(Ttf )(y)

= (
Ts(Ttf )

)
(x).

Verifying the remaining claims is left as an exercise. ��
If we have more structure on the semigroup T , then it is possible to provide a

converse to Theorem 3.13. This will be sketched in the following section.

3.2 Feller Semigroups

Definition 3.14 Let the topological space E be locally compact. Then

C0(E) := {f : E → C | f is continuous and vanishes at infinity} ⊆ Bb(E)
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is a Banach space when equipped with pointwise vector-space operations and the
supremum norm. [A function f : E → C vanishes at infinity if, for all ε > 0, there
exists a compact set K ⊆ E such that |f (x)| < ε for all x ∈ E \ K .]

Exercise 3.15 Prove that C0(E) lies inside Bb(E) and is indeed a Banach space.
Prove that the multiplicative unit 1E is an element of C0(E) if and only if E is
compact.

Definition 3.16 A Markov semigroup T is Feller if the following conditions hold:

(i) Tt

(
C0(E)

) ⊆ C0(E) for all t ∈ R+ and

(ii) lim
t→0+ ‖Ttf − f ‖ = 0 for all f ∈ C0(E).

Remark 3.17 If a time-homogeneous Markov process X has Feller semigroup T ,
then

E
[
f (Xt+h) − f (Xt ) | σ(Xt)

] = (Thf − f )(Xt) = h (Af )(Xt) + o(h),

so the generator A describes the change in X over an infinitesimal time interval.

Definition 3.18 An R
d -valued stochastic process X = (Xt)t∈R+ is a Lévy process

if and only if X

(i) has independent increments, so that Xt − Xs is independent of the past
σ -algebra σ(Xr : 0 � r � s) for all s, t ∈ R+ with s � t ,

(ii) has stationary increments, so that Xt − Xs has the same distribution
as Xt−s − X0, for all s, t ∈ R+ with s � t and

(iii) is continuous in probability at the origin, so lim
t→0+P

(|Xt − X0| � ε
) = 0

for all ε > 0.

Remark 3.19 Lévy processes are well behaved; they have cádlág modifications, and
such a modification is a semimartingale, for example.

Exercise 3.20 Prove that if X is a stochastic process with independent and sta-
tionary increments, and with cádlág paths, then X is continuous at the origin in
probability.

Theorem 3.21 Every Lévy process gives rise to a conservative Feller semigroup.

Proof (Sketch Proof) For all t ∈ R+, define a transition kernel pt by setting

pt(x,A) := E[1A(Xt − X0 + x)] for all x ∈ R
d and Borel A ⊆ R

d .

If s ∈ R+, then

pt(x,A) = E[1A(Xs+t − Xs + x)] = E[1A(Xs+t − Xs + x) | Fs], (3.4)
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where Fs := σ(Xr : 0 � r � s); the first equality holds by stationarity and the
second by independence. In particular,

pt (Xs,A) = E[1A(Xs+t ) | Fs],

so X is a Markov process with transition kernels {pt : t ∈ R+} if these are
consistent. For consistency, we use Theorem 3.13; let T be defined as there and
note that

(Ttf )(x) =
∫

E

pt (x, dy)f (y) = E[f (Xt − X0 + x)]. (3.5)

From the previous working, it follows that

(Ttf )(x) = E[f (Xs+t − Xs + x) | Fs],

and replacing x with the Fs-measurable random variable Xs − X0 + x gives that

(Ts+t f )(x) = E[f (Xs+t − X0 + x)] = E[(Ttf )(Xs − X0 + x)] = (
Ts(Ttf )

)
(x),

as required. Equation (3.5) also shows that T is conservative.
If f ∈ C0(R

d ), then x �→ f (Xt −X0+x) ∈ C0(R
d) almost surely, and therefore

the Dominated Convergence Theorem gives that Ttf ∈ C0(R
d).

For continuity, let ε > 0 and note that f ∈ C0(R
d ) is uniformly continuous, so

there exists δ > 0 such that |f (x) − f (y)| < ε whenever |x − y| < δ. Hence

‖Ttf − f ‖ � sup
x∈Rd

E
[|f (Xt − X0 + x) − f (x)|]

= sup
x∈Rd

(
E
[
1|Xt−X0|<δ|f (Xt − X0 + x) − f (x)|]

+ E
[
1|Xt−X0|�δ|f (Xt − X0 + x) − f (x)|]

)

� ε + 2‖f ‖P(|Xt − X0| � δ
)

→ ε as t → 0+.

��
Theorem 3.22 Let T be a conservative Feller semigroup. If the state space E is
metrisable, then there exists a time-homogeneous Markov process which gives rise
to T .

Proof (Sketch Proof) For all t ∈ (0,∞), let

pt (x,A) := (Tt1A)(x) for all x ∈ E and A ∈ E.
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Then pt is readily verified to be a transition kernel.
Let μ be a probability measure on E. If tn � · · · � t1 � 0 and A1, . . . An ∈ E,

then

pt1,...,tn(A1 × · · · × An) =
∫

E

μ(dx0)

∫

A1

pt1(x0, dx1) . . .

∫

An

ptn−tn−1(xn−1, dxn).

By the Chapman–Kolmogorov equation (3.3), these finite-dimensional distributions
form a projective family. The Daniell–Kolmogorov extension theorem now yields a
probability measure on the product space

� := ER+ = {ω = (ωt )t∈R+ : ωt ∈ E for all t ∈ R+}

such the coordinate projections Xt : � → E; ω �→ ωt form a time-homogeneous
Markov process X with associated semigroup T . ��
Example 3.23 (Uniform Motion) If E = R and Xt = X0 + t for all t ∈ R+, then

(Ttf )(x) = f (x + t) =
∫

R

pt (x, dy)f (y) for all f ∈ C0(R) and x ∈ R,

where the transition kernel pt : (x,A) �→ δx+t (A). It follows that X gives rise to a
Feller semigroup with generator A such that Af = f ′ whenever f ∈ dom A.

Example 3.24 (Brownian Motion) If E = R and X is a standard Brownian motion,
then Itô’s formula gives that

f (Xt ) = f (X0) +
∫ t

0
f ′(Xs) dXs + 1

2

∫ t

0
f ′′(Xs) ds for all f ∈ C2(R).

It follows that the Lévy process X has a Feller semigroup with the generator A such
that Af = 1

2f ′′ for all f ∈ C2(R) ∩ dom A. [Informally,

t−1(
E[f (Xt ) | X0 = x] − f (x)

) = 1

2t

∫ t

0
E[f ′′(Xs)|X0 = x] ds → 1

2
f ′′(x)

as t → 0+.]

Example 3.25 (Poisson Process) If E = R and X is a homogeneous Poisson
process with unit intensity and unit jumps, then

E[f (Xt )|X0 = x] = e−t

∞∑

n=0

tn

n!f (x + n) for all t ∈ R+.

Hence the Lévy process X has a Feller semigroup with the bounded generator A

such that (Af )(x) = f (x + 1) − f (x) for all x ∈ R and f ∈ C0(R). [To see this,
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note that

(Ttf − f )(x)

t
= e−t − 1

t
f (x) + e−t f (x + 1) + O(t) as t → 0+,

uniformly for all x ∈ R.]

The following exercise and theorem show that it is possible to move from the
non-conservative to the conservative setting, and from a locally compact state space
to a compact one.

Exercise 3.26 Let T be a locally compact topology on E and let ∞ denote a point
not in E. Prove that Ê := E ∪ {∞} is compact when equipped with the topology

T̂ := T ∪ {
(E \ K) ∪ {∞} : K ∈ T is compact

}
,

and that T̂ is Hausdorff if and only if T is. [This is the Alexandrov one-point
compactification.] Prove further that C0(E) has co-dimension one in C(Ê).

Theorem 3.27 Let T be a Feller semigroup with locally compact state space E. If

T̂t f := f (∞) + Tt

(
f |E − f (∞)

)
for all t ∈ R+ and f ∈ Bb(Ê),

then T̂ = (
T̂t

)
t∈R+ is a conservative Feller semigroup with compact state space Ê.

Proof Fix t ∈ R+. The hardest step is to prove that T̂t is positive, that is, if λ ∈ R+
and g ∈ Bb(E) are such that λ + g(x) � 0 for all x ∈ E, then λ + (Ttg)(x) � 0
for all x ∈ E. Note that g is real valued, and Tt maps real-valued functions to real-
valued functions, by positivity. Let the function g− := x �→ max{−g(x), 0} and
note that λ � g−(x) for all x ∈ E. Hence

(Ttg
−)(x) � ‖Ttg

−‖ � ‖g−‖ � λ

and (Ttg)(x) � (−Ttg
−)(x) � −λ, as required.

It is immediate that T̂t preserves the unit, so T̂t is contractive, by Exercise 3.12.
The remaining claims are straightforward to verify. ��

3.3 The Hille–Yosida–Ray Theorem

As noted above, it can be difficult to show that the hypotheses of the Hille–Yosida
theorem, Theorem 2.49, hold. The Lumer–Phillips theorem gives an alternative for
contraction semigroups, via the notion of dissipativity. Here, we will show that the
additional structure available for Feller semigroups gives another possible approach.
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Throughout this subsection, E denotes a locally compact Hausdorff space. Here,
a Feller semigroup on C0(E) means a strongly continuous contraction semigroup
on C0(E) composed of positive operators. This is the restriction to C0(E) of the
Feller semigroups considered above.

Let

C0(E;R) := {
f : E → R | f ∈ C0(E)

}

denote the real subspace of C0(E) containing those functions which take only real
values.

Definition 3.28 A linear operator A in C0(E) is real if and only if

(i) f ∈ dom A whenever f ∈ dom A, so that the domain of A is closed
under conjugation, and

(ii) Af = Af for all f ∈ dom A, so that A commutes with the conjugation.

Exercise 3.29 Show that (i) and (ii) are equivalent to

(i) f + ig ∈ dom A implies f , g ∈ dom A whenever f , g ∈ C0(E;R), and

(ii) A
(
dom A ∩ C0(E;R)

) ⊆ C0(E;R),

respectively.

Exercise 3.30 Prove that T is real whenever T is positive.
Prove further that if T = (Tt )t∈R+ is a Feller semigroup on C0(E) and Tt is real

for all t ∈ R+ then the generator A of T is real.

Proof The first claim is an immediate consequence of Remark 3.11.
For the second, suppose A is the generator of the Feller semigroup T on C0(E),

with each Tt real, and let f ∈ dom A. Then, since conjugation is isometric, if t > 0,
then

‖t−1(Ttf − t) − Af ‖ = ‖t−1(Ttf − f ) − Af ‖ = ‖t−1(Ttf − f ) − Af ‖,

and so f ∈ dom A, with Af = Af . The result follows. ��
Definition 3.31 A linear operator A in C0(E) satisfies the positive maximum
principle if, whenever f ∈ dom A ∩ C0(E;R) and x0 ∈ E are such that f (x0) =
‖f ‖, it holds that (Af )(x0) � 0.

Theorem 3.32 (Hille–Yosida–Ray) A closed, densely defined operator A in
C0(E) is the generator of a Feller semigroup on C0(E) if and only if A is real
and satisfies the positive maximum principle, and λI − A is surjective for some
λ > 0

Proof Suppose first that A generates a Feller semigroup on C0(E). By the Lumer–
Phillips theorem, Theorem 2.58, and Exercise 3.30, it suffices to prove that A

satisfies the positive maximum principle. For this, let f ∈ dom A ∩ C0(E;R) and
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x0 ∈ E be such that f (x0) = ‖f ‖. Setting f + := x �→ max{f (x), 0}, we see that

(Ttf )(x0) � (Ttf
+)(x0) � ‖Ttf

+‖ � ‖f +‖ = f (x0).

Thus

(Af )(x0) = lim
t→0+

(Ttf − f )(x0)

t
� 0.

Conversely, suppose A is real and satisfies the positive maximum principle.
Given any f ∈ dom A, there exist x0 ∈ E and θ ∈ R such that eiθf (x0) = ‖f ‖.
The real-valued function g := Re eiθf ∈ dom A, since A is real, and ‖f ‖ =
g(x0) � ‖g‖ � ‖f ‖, so Re(Aeiθf )(x0) = (Ag)(x0) � 0, by the positive maximum
principle. If λ > 0, then

‖(λI − A)f ‖ = ‖(λI − A)eiθf ‖ � |λeiθf (x0) − (Aeiθf )(x0)|

� Re λeiθf (x0) − Re(Aeiθf )(x0) � λ‖f ‖,

so A is dissipative, by Lemma 2.56, and λI − A is injective. In particular, T is a
strongly continuous contraction semigroup, by the Lumer–Phillips theorem.

To prove that each Tt is positive, let λ > 0 be such that λI − A is surjective, so
invertible, let f ∈ C0(E) be non-negative, and consider g = (λI −A)−1f ∈ C0(E).
Either g does not attain its infimum, in which case g � 0 because g vanishes at
infinity, or there exists x0 ∈ E such that g(x0) = inf{g(x) : x ∈ E}. Then

λg − Ag = (λI − A)g = f ⇐⇒ λg − f = Ag,

so λg(x0) − f (x0) = (Ag)(x0) � 0, by the positive maximum principle applied
to −g. Thus if x ∈ E, then

λg(x) � λg(x0) � f (x0) � 0,

which shows that λ(λI − A)−1 is positive and therefore so is (λI − A)−1. Finally,
Theorem 2.46 gives that

Ttf = lim
n→∞(I − tn−1A)−nf

= lim
n→∞(t−1n)n(t−1nI − A)−nf for all f ∈ C0(E), (3.6)

so each Tt is positive also. ��
Exercise 3.33 Prove that if the operator A is real then its resolvent (λI − A)−1 is
real for all λ ∈ R \ σ(A). Deduce with the help of Theorem 2.46 that the Feller
semigroup T is real if its generator A is.
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Proof Suppose A is real and λ ∈ R \ σ(A). If f ∈ C0(E), then f = (λI − A)g for
some g ∈ C0(E), and

f = (λI − A)g = λg − Ag = (λI − A)g.

Hence

(λI − A)−1f = g = (λI − A)−1f ,

as required. Since conjugation is isometric, the deduction is immediate. ��
Example 3.34 Let the linear operator A be defined by setting

dom A := {
f ∈ C0(R) ∩ C2(R) : f ′′ ∈ C0(R)

}
and Af = 1

2
f ′′.

It is a familiar result from elementary calculus that A satisfies the positive maximum
principle

Remark 3.35 Courrège has classified the linear operators in C0(R
d) with domains

containing C∞
c (Rd ) which satisfy the positive maximum principle. See [3, §3.5.1]

and references therein.

4 Quantum Feller Semigroups

To move beyond the classical, we need to replace the commutative domain C0(E)

with the correct non-commutative generalisation. This is what we introduce in the
following section.

4.1 C∗ Algebras

Definition 4.1 A Banach algebra is a complex Banach space and simultaneously
a complex associative algebra: it has an associative multiplication compatible with
the vector-space operators and the norm, which is submultiplicative. If the Banach
algebra is unital, so that it has a multiplicative identity 1, called its unit, then we
require the norm ‖1‖ to be 1.

An involution on a Banach algebra is an isometric conjugate-linear map which
reverses products and is self-inverse.

A Banach algebra with involution A is a C∗ algebra if and only if the C∗ identity
holds:

‖a∗a‖ = ‖a‖2 for all a ∈ A.
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Remark 4.2 The C∗ identity connects the algebraic and analytic structures in
a very rigid way. For example, there exists at most one norm for which an
associative algebra is a C∗ algebra, and ∗-homomorphisms between C∗ algebras
are automatically contractive [30, Proposition I.5.2].

Theorem 4.3 (Gelfand) Every commutative C∗ algebra is isometrically isomor-
phic to C0(E), where E is a locally compact Hausdorff space. The algebra is unital
if and only if E is compact, in which case C0(E) = C(E).

Theorem 4.4 (Gelfand–Naimark) Any C∗ algebra is isometrically ∗-isomorphic
to a norm-closed ∗-subalgebra of B(H) for some Hilbert space H, a so-called
concrete C∗ algebra.

Remark 4.5 Let A be a C∗ algebra. Given any n ∈ N, let Mn(A) be the complex
algebra of n × n matrices with entries in A, equipped with the usual algebraic
operations. By the Gelfand–Naimark theorem, we may assume that A ⊆ B(H) for
some Hilbert space H, and so Mn(A) ⊆ B(Hn), where matrices of operators act in
the usual manner on column vectors with entries in H. We equip Mn(A) with the
restriction of the operator norm on B(Hn), and then Mn(A) becomes a C∗ algebra.

Remark 4.5 is the root of the theory of operator spaces [10, 24].

Definition 4.6 A unital concrete C∗ algebra A ⊆ B(H) is a von Neumann algebra
if and only if any of the following equivalent conditions hold.

(i) Closure in the strong operator topology: if the net (ai) ⊆ A and a ∈
B(H) are such that aiv → av for all v ∈ H, then a ∈ A.

(ii) Closure in the weak operator topology: if the net (ai) ⊆ A and a ∈ B(H)

are such that 〈v, aiv〉 → 〈v, av〉 for all v ∈ H, then a ∈ A.

(iii) Equality with its bicommutant: letting

S′ := {a ∈ A : ab = ba for all b ∈ S}

denote the commutant of S ⊆ A, then A′′ := (A′)′ = A [von Neumann].

(iv) Existence of a predual: there exists a Banach space A∗ with (A∗)∗ = A
[Sakai].

Sakai’s characterisation (iv) prompts consideration of the predual of B(H). The
predual A∗ is naturally a subspace of A∗, and a bounded linear functional φ on B(H)

is an element of B(H)∗ if and only it is σ -weakly continuous: there exist square-
summable sequences (un)

∞
n=1 and (vn)

∞
n=1 ⊆ H such that

∞∑

n=1

(‖un‖2 + ‖vn‖2) < ∞ and φ(T ) =
∞∑

n=1

〈un, T vn〉 for all T ∈ B(H).

(4.1)
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This yields a fifth characterisation of von Neumann algebras.

(v) Closure in the σ -weak topology: if the net (ai) ⊆ A and a ∈ B(H) are
such that φ(ai) → φ(a) for all φ ∈ B(H)∗, then a ∈ A.

The predual A∗ consists of all those bounded linear functionals on A which are
continuous in the σ -weak topology; equivalently, they are the restriction to A of
elements of B(H)∗ as described in (4.1).

Example 4.7 Recall from Example 2.15 that L∞(�,F , μ) ∼= (
L1(�,F , μ)

)∗, and
so every L∞ space is a commutative von Neumann algebra. Furthermore, every
commutative von Neumann algebra is isometrically ∗-isomorphic to L∞(�,F , μ)

for some locally compact Hausdorff space � and positive Radon measure μ; see
[30, Theorem III.1.18].

4.2 Positivity

Definition 4.8 In a C∗ algebra A we have the notion of positivity: we write a � 0
if and only if there exists b ∈ A such that a = b∗b. The set of positive elements in
A is denoted by A+, is closed in the norm topology and is a cone: it is closed under
addition and multiplication by non-negative scalars. Note that a positive element is
self-adjoint.

This notion of positivity agrees with that encountered previously.

Lemma 4.9 Let T ∈ B(H) be such that 〈v, T v〉 � 0 for all v ∈ H. There exists
a unique operator S ∈ B(H) such that 〈v, Sv〉 � 0 for all v ∈ H, and S2 = T .
Furthermore, S is the limit of a sequence of polynomials in T with no constant
term.

Proof This may be established with the assistance of the Maclaurin series for the
function z �→ (1 − z)1/2. See [25, Theorem VI.9] for the details. ��
Corollary 4.10 If a ∈ A+, then there exists a unique element a1/2 ∈ A+, the
square root of a, such that (a1/2)2 = a. The square root a1/2 lies in the closed
linear subspace of A spanned by the set of monomials {an : n ∈ N}.
Proof This is a straightforward exercise. ��
Exercise 4.11 Prove that f ∈ C0(E)+ if and only if f (x) � 0 for all x ∈ E. Prove
also that if the C∗ algebra A ⊆ B(H), where H is a Hilbert space, then a ∈ A+ if
and only if 〈v, av〉 � 0 for all v ∈ H. [The existence of square roots is crucial for
both parts.]

Proposition 4.12 Let A by a C∗ algebra. Then any element a ∈ A may be written
in the form (a1 − a2) + i(a3 − a4), where a1, . . . , a4 ∈ A+.
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Proof The self-adjoint elements Re a := (a + a∗)/2 and Im a := (a − a∗)/(2i) are
such that a = Re a + i Im a. Thus it suffices to show that any self-adjoint element
of A is the difference of two positive elements.

Let a ∈ A be self-adjoint and let A0 be the closed linear subspace of A spanned by
the set of monomials {an : n ∈ N}. As A0 is a commutative C∗ algebra, Theorem 4.3
gives an isometric ∗-isomorphism j : A0 → C0(E), where E is a locally compact
Hausdorff space. Then f := j (a) is real valued, so

f + := x �→ max{f (x), 0} and f − := x �→ max{−f (x), 0}

are well-defined elements of C0(E)+ such that f = f + −f −. Hence a = a+ −a−,
where a+ := j−1(f +) and a− := j−1(f −) are positive, as desired. ��
Remark 4.13 The proof of Proposition 4.12 shows that if a ∈ A is self-adjoint, then
there exist a+, a− ∈ A+ such that a = a+ − a− and a+a− = 0.

Definition 4.14 The positive cone provides a partial order on the set of self-adjoint
elements of A. Given elements a, b ∈ A, we write a � b if and only if a = a∗,
b = b∗ and b − a ∈ A+.

This order respects the norm.

Proposition 4.15 Let a, b ∈ A+ be such that a � b. Then ‖a‖ � ‖b‖.

Proof Suppose without loss of generality that A ⊆ B(H). Then a � b � ‖b‖I ,
by transitivity, Exercise 4.11 and the Cauchy–Schwarz inequality. If A0 denotes the
unital commutative C∗ algebra generated by the set of monomials {an : n ∈ Z+},
then Theorem 4.3 gives an isometric ∗-isomorphism j : A0 → C(E), where E is a
compact Hausdorff space. Hence

0 � j (‖b‖I − a)(x) = ‖b‖ − j (a)(x) for all x ∈ E,

so 0 � j (a)(x) � ‖b‖ for all such x and ‖a‖ = ‖j (a)‖∞ � ‖b‖, as claimed. ��
Exercise 4.16 Prove that if a ∈ A+ and n ∈ Z+, then ‖an‖ = ‖a‖n. [Hint: work as
in the proof of Proposition 4.15.]

Definition 4.17 A linear map � : A → B between C∗ algebras is positive if and
only if �(A+) ⊆ B+.

Note that any algebra ∗-homomorphism is positive; this fact has been utilised in
the proof of Proposition 4.15.

Corollary 4.18 Let � : A → B be a positive linear map between C∗ algebras.
Then

(i) the map � commutes with the involution, so that �(a∗) = �(a)∗ for all
a ∈ A, and

(ii) the map � is bounded.
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Proof Part (i) is an exercise.
For (ii), it suffices to prove that � is bounded on A+; suppose otherwise for

contradiction. For all n ∈ N, let an ∈ An be such that ‖an‖ = 1 and ‖�(an)‖ > 3n.
If a := ∑

n�1 2−nan ∈ A+, then a � 2−nan for all n ∈ N. Hence �(a) � 2−nφ(an)

and ‖φ(a)‖ � 2−n‖�(an)‖ > (3/2)n, by Proposition 4.15, which is a contradiction
for sufficiently large n. ��

We will now begin to investigate the generators of positive semigroups, following
in the footsteps of Evans and Hanche-Olsen [12].

Theorem 4.19 Let T = (Tt )t∈R+ be a uniformly continuous one-parameter
semigroup on the C∗ algebra A. If Tt is positive for all t ∈ R+, then the semigroup
generator L is bounded and ∗-preserving.

Proof The boundedness of L follows immediately from Theorem 2.23, and if a ∈
A, then

L(a)∗ = lim
t→0+ t−1(Tt (a) − a)∗ = lim

t→0+ t−1(Tt (a
∗) − a∗) = L(a∗),

by continuity of the involution and the fact that positive maps are ∗-preserving. ��
The following result is a variation on [12, Theorem 2]. The proof exploits an idea

of Fagnola [14, Proof of Proposition 3.10].

Theorem 4.20 Let L be a ∗-preserving bounded linear map on the C∗ algebra A.
The following are equivalent.

(i) If a, b ∈ A+ are such that ab = 0, then aL(b)a � 0.

(ii) (λI − L)−1 is positive for all sufficiently large λ > 0.

(iii) Tt = exp(tL) is positive for all t ∈ R+.

Proof Suppose (i) holds; we will show that (λI − L)−1 is positive if λ > ‖L‖. It
suffices to take a ∈ A such that (λI − L)(a) is positive, and prove that a ∈ A+.
Note that a is self- adjoint, so Remark 4.13 gives b and c ∈ A+ with a = b − c and
bc = 0. Thus (ii) holds if c = 0.

The condition bc = 0 implies that b1/2c = 0, so (i) gives that cL(b)c � 0. Hence

0 � c∗(λa − L(a)
)
c = λc(b − c)c − cL(b)c + cL(c)c � −λc3 + cL(c)c,

and therefore 0 � λc3 � cL(c)c. It follows that λ‖c‖3 = λ‖c3‖ � ‖L‖ ‖c‖3,
which holds only when c = 0, as required.

That (ii) and (iii) are equivalent is a consequence of Theorems 2.45 and 2.46. To
see that (iii) implies (i), note that if a, b ∈ A+ are such that ab = 0, then

0 � t−1aTt(b)a = t−1a
(
b + tL(b) + O(t)

)
a = aL(b)a + O(t) → aL(b)a

as t → 0+. ��
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In the quantum world, we can go beyond positivity to find a stronger notion,
complete positivity, which is of great importance to the theories of open quantum
systems and quantum information.

4.3 Complete Positivity

Recall from Remark 4.5 that matrix algebras over C∗ algebras are also C∗ algebras.

Definition 4.21 Let n ∈ N. A linear map � : A → B between C∗ algebras is
n-positive if and only if the ampliation

�(n) : Mn(A) → Mn(B); (aij )
n
i,j=1 �→ (

�(aij )
)n

i,j=1

is positive. If � is n-positive for all n ∈ N, then � is completely positive.

Remark 4.22 Choi [6] produced examples of maps which are n-positive but not
n + 1-positive.

Exercise 4.23 Let n ∈ N and let T = (Tt )t∈R+ be a one-parameter semigroup

on the C∗ algebra A. Prove that T (n) = (T
(n)
t )t∈R+ is a one-parameter semigroup

on Mn(A), Prove further that if T is uniformly continuous, with generator L, then
T (n) is also uniformly continuous, with generator L(n).

Proposition 4.24 (Paschke [23]) Let A = (aij )
n
i,j=1 ∈ Mn(A), where A is a

C∗ algebra. The following are equivalent.

(i) The matrix A ∈ Mn(A)+.

(ii) The matrix A may be written as the sum of at most n matrices of the
form (b∗

i bj )
n
i,j=1, where b1, . . . , bn ∈ A.

(iii) The sum
∑n

i,j=1 c∗
i aij cj ∈ A+ for any c1, . . . , cn ∈ A.

Proof To see that (iii) implies (i), we use the fact that any C∗ algebra has a faithful
representation which is a direct sum of cyclic representations [30, Theorem III.2.4].
Thus we may assume without loss of generality that A ⊆ B(H) and there exists a
unit vector u ∈ H such that {au : a ∈ H} is dense in H.

Given this and Exercise 4.11, let c1, . . . , cn ∈ A. Then (iii) implies that

0 �
n∑

i,j=1

〈u, c∗
i aij cju〉H = 〈v,Av〉Hn ,

where v = (c1u, . . . , cnu)T ∈ Hn. Vectors of this form are dense in Hn as c1, . . . ,
cn vary over A, so the result follows by another application of Exercise 4.11.

The other implications are straightforward to verify. ��
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Exercise 4.25 Let n ∈ N. Use Proposition 4.24 to prove that a linear map � : A →
B between C∗ algebras is n-positive if and only if

n∑

i,j=1

b∗
i �(a∗

i aj )bj � 0

for all a1, . . . , an ∈ A and b1, . . . , bn ∈ B. Deduce that any ∗-homomorphism
between C∗ algebras is completely positive, as is any map of the form

B(K) → B(H); a �→ T ∗aT , where T ∈ B(H;K).

Theorem 4.26 A positive linear map � : A → B between C∗ algebras is
completely positive if A is commutative or B is commutative.

Proof The first result is due to Stinespring [29] and the second to Arveson [4]. We
will prove the latter.

We may suppose that B = C0(E), where E is a locally compact Hausdorff space,
by Theorem 4.3. If a1, . . . , an ∈ A, b1, . . . , bn ∈ B and x ∈ E, then

( n∑

i,j=1

b∗
i �(a∗

i aj )bj

)
(x) =

n∑

i,j=1

bi(x)�(a∗
i aj )(x)bj (x) = �

(
c(x)∗c(x)

)
(x) � 0,

where c(x) := ∑n
i=1 bi(x)ai ∈ A. Exercises 4.11 and 4.25 give the result. ��

Definition 4.27 A map � : A → B between unital algebras is unital if �(1A) =
1B, where 1A and 1B are the multiplicative units of A and B, respectively.

Theorem 4.28 (Kadison) A 2-positive unital linear map � : A → B between
unital C∗ algebras is such that

�(a)∗�(a) � �(a∗a) for all a ∈ A. (4.2)

Proof Note first that if a ∈ A then

A :=
[

1 a

a∗ a∗a

]

=
[

1 a

0 0

]∗ [
1 a

0 0

]

� 0,

so

0 � �(2)(A) =
[

1 �(a)

�(a)∗ �(a∗a)

]

.
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Suppose without loss of generality that B ⊆ B(H) for some Hilbert space H, and
note that, by Exercise 4.11, if u ∈ H and

v :=
[−�(a)u

u

]

∈ H2 then 0 � 〈v,�(2)(A)v〉 = 〈u,
(
�(a∗a)−�(a)∗�(a)

)
u〉.

As u is arbitrary, the claim follows. ��
Remark 4.29 The inequality (4.2) is known as the Kadison–Schwarz inequality.

Exercise 4.30 Show that the inequality (4.2) holds if � is required only to be
positive as long as a is normal, so that a∗a = aa∗. [Hint: use Theorem 4.26.]

4.4 Stinespring’s Dilation Theorem

Exercise 4.25 gives two classes of completely positive maps. The following result
makes clear that these are, in a sense, exhaustive.

Theorem 4.31 (Stinespring [29]) Let � : A → B(H) be a linear map, where A is
a unital C∗ algebra and H is a Hilbert space. Then � is completely positive if and
only if there exists a Hilbert space K, a unital ∗-homomorphism π : A → B(K) and
a bounded operator T : H → K such that

�(a) = T ∗π(a)T (a ∈ A).

Proof One direction is immediate. For the other, let K0 := A ⊗ H be the
algebraic tensor product of A with H, considered as complex vector spaces. Define
a sesquilinear form on K0 such that

〈a ⊗ u, b ⊗ v〉 = 〈u,�(a∗b)v〉H for all a, b ∈ A and u, v ∈ H.

It is an exercise to check that this form is positive semidefinite, using the assumption
that � is completely positive, and that the kernel

K00 := {x ∈ K0 : 〈x, x〉 = 0}

is a vector subspace of K0. Let K be the completion of K0/K00 = {[x] : x ∈ K0
}
.

If

π(a)[b ⊗ v] := [ab ⊗ v] for all a, b ∈ A and v ∈ H,

then π(a) extends by linearity and continuity to an element of B(K), denoted in the
same manner. Furthermore, the map a �→ π(a) is a unital ∗-homomorphism from
A to B(K).
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To conclude, let T ∈ B(H;K) be defined by setting T v = [1 ⊗ v] for all v ∈ H.
It is a final exercise to verify that �(a) = T ∗π(a)T , as required. ��

The following result extends the Kadison–Schwarz inequality, Theorem 4.28.

Corollary 4.32 If � : A → B(H) is unital and completely positive then

n∑

i,j=1

〈vi,
(
�(a∗

i aj ) − �(ai)
∗�(aj )

)
vj 〉 � 0

for all n ∈ N, a1, . . . , an ∈ A and v1, . . . , vn ∈ H.

Proof Let π and T be as in Theorem 4.31. Then ‖T ‖2 = ‖T ∗π(1A)T ‖ =
‖�(1A)‖ = 1 and

n∑

i,j=1

〈vi,�(a∗
i aj )vj 〉 =

n∑

i,j=1

〈T vi, π(a∗
i aj )T vj 〉 =

∥
∥
∥

n∑

i=1

π(ai)T vi

∥
∥
∥

2

�
∥
∥
∥T ∗

n∑

i=1

π(ai)T vi

∥
∥
∥

2

=
∥
∥
∥

n∑

i=1

�(ai)vi

∥
∥
∥

2

=
n∑

i,j=1

〈vi,�(ai)
∗�(aj )vj 〉.

��
Definition 4.33 A triple (K, π, T ) as in Theorem 4.31 is a Stinespring dilation of
�. Such a dilation is minimal if

K = lin{π(a)T v : a ∈ A, v ∈ H}.

Proposition 4.34 Any unital completely positive map � : A → B(H) has a
minimal Stinespring dilation.

Proof One may take (K, π, T ) as in Theorem 4.31 and restrict to the smallest closed
subspace of K containing {π(a)T v : a ∈ A, v ∈ H}. ��
Exercise 4.35 Prove that the minimal Stinespring dilation is unique in an appropri-
ate sense.

Definition 4.36 Let (ai) ⊆ A be a net in the von Neumann algebra A ⊆ B(H). We
write ai ↘ 0 if ai � aj � 0 whenever i � j and 〈v, aiv〉 → 0 for all v ∈ H.
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[It follows from Vigier’s theorem [22, Theorem 4.1.1.] that the decreasing net (ai)

converges in the strong operator topology to some element a ∈ A+.]
A linear map � : A → B(K) is normal if ai ↘ 0 implies that 〈v,�(ai )v〉 → 0

for all v ∈ K.

Proposition 4.37 Let A be a von Neumann algebra. If the linear map � : A →
B(H) is completely positive and normal, then the unital ∗-homomorphism π of
Theorem 4.31 may be chosen to be normal also.

Proof Let (K, π, T ) be a minimal Stinespring dilation for �. If v ∈ H, a ∈ A and
the net (ai) ⊆ A+ is such that ai ↘ 0, then

〈π(a)T v, π(ai)π(a)T v〉 = 〈v, T ∗π(a∗aia)T v〉 = 〈v,�(a∗aia)v〉 → 0,

since a∗aia ↘ 0. It now follows by polarisation and minimality that π(ai) ↘ 0, as
required. ��
Proposition 4.38 A linear map � : A → B(H) is normal if and only if it is σ -
weakly continuous.

Proof It suffices to prove that if (bi) ⊆ B(K) is a norm-bounded net then bi → 0
in the σ -weak topology if and only if 〈v, biv〉 → 0 for all v ∈ K. Furthermore, by
polarisation, we need only consider σ -weakly continuous functionals of the form

φ : B(K) → C; a �→
∞∑

n=1

〈xn, axn〉, where
∞∑

n=1

‖xn‖2 < ∞.

The result now follows by a standard truncation argument. ��

4.5 Semigroup Generators

We will now introduce the class of quantum Feller semigroups, and proceed toward
a classification of the semigroup generators for a uniformly continuous subclass.
As above, we will first establish some necessary conditions that hold in greater
generality.

Definition 4.39 A quantum Feller semigroup T = (Tt )t∈R+ on a C∗ algebra A is a
strongly continuous contraction semigroup such that each Tt is completely positive.

If A is unital, with unit 1, and Tt 1 = 1 for all t ∈ R+ then T is conservative.

Exercise 4.40 Let T be a quantum Feller semigroup on a unital C∗ algebra. Prove
that T is conservative if and only if 1 ∈ domL, with L(1) = 0. [Hint: Theorem 2.46
may be useful.]

To begin the characterisation of the generators of these semigroups, we introduce
a concept due to Evans [11].
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Proposition 4.41 Let � : A → B(H) be a linear map on the unital concrete
C∗ algebra A ⊆ B(H). The following are equivalent.

(i) If n ∈ N and a ∈ Mn(A), then

�(n)(a∗a) + a∗�(n)(1)a − �(n)(a∗)a − a∗�(n)(a) ∈ Mn

(
B(H)

)
+.

(ii) If n ∈ N and a1, . . . , an ∈ A, then

(
�(a∗

i aj ) + a∗
i �(1)aj − �(a∗

i )aj − a∗
i �(aj )

)n

i,j=1 ∈ Mn

(
B(H)

)
+.

(iii) If n ∈ N, a1, . . . , an ∈ A and v1, . . . , vn ∈ H are such that
∑n

i=1 aivi =
0, then

n∑

i,j=1

〈vi,�(a∗
i aj )vj 〉 � 0.

(iv) If n ∈ N, a1, . . . , an ∈ A and b1, . . . , bn ∈ B(H) are such that∑n
i=1 aibi = 0, then

n∑

i,j=1

b∗
i �(a∗

i aj )bj � 0.

Proof Given a1, . . . , an ∈ A, let a = (aij ) ∈ Mn(A) be such that a1j = aj

and aij = 0 otherwise. Then

(
�(n)(a∗a) + a∗�(n)(1)a − �(n)(a∗)a − a∗�(n)(a)

)
ij

= �(a∗
i aj ) + ai�(1)aj − �(a∗

i )aj − a∗
i �(aj )

for all i, j = 1, . . . , n, so (i) implies (ii).
Conversely, let a = (aij ) ∈ Mn(A). Applying (ii) to ak1, . . . , akn and then

summing over k gives that

0 �
n∑

k=1

[
�(a∗

kiakj ) + a∗
ki�(1)akj − �(a∗

ki)akj − a∗
ki�(a∗

ki)
]n
i,j=1

= �(n)(a∗a) − a∗�(n)(1)a − �(n)(a∗)a − a∗�(n)(a).

Thus (ii) implies (i).
The implication from (ii) to (iii) is clear, as is that from (iii) to (iv). For the final

part, let a1, . . . , an ∈ A and b1, . . . , bn ∈ B(H), let a0 = 1 and b0 = − ∑n
i=1 aibi ,
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and note that
∑n

i=0 aibi = 0. Hence (iv) gives that

0 �
n∑

i,j=0

b∗
i �(a∗

i aj )bj =
n∑

i,j=1

b∗
i

(
�(a∗

i aj )+a∗
i �(1)aj −a∗

i �(aj )−�(a∗
i )aj

)
bj .

Thus (ii) now follows from the first part of Exercise 4.25. ��
Definition 4.42 A linear map � : A → B(H) on the unital C∗ algebra A ⊆ B(H)

is conditionally completely positive if and only if any of the equivalent conditions
in Proposition 4.41 hold.

Exercise 4.43 Prove that the set of conditionally completely positive maps from A
to B(H) is a cone, that is, closed under addition and multiplication by non-negative
scalars. Prove also that this cone contains all completely positive maps and scalar
multiples of the identity map. Finally, prove that the cone is closed under pointwise
weak-operator convergence: the net �i → � if and only if 〈v,�i(a)v〉 →
〈v,�(a)v〉 for all a ∈ A and v ∈ H.

Exercise 4.44 Let A be as in Definition 4.42. A linear map δ : A → B(H) is a
derivation if and only if

δ(ab) = aδ(b) + δ(a)b for all a, b ∈ A.

Prove that a derivation is conditionally completely positive. Prove also that the map

A → B(H); a �→ G∗a + aG

is conditionally completely positive and normal for all G ∈ B(H).

Theorem 4.45 Let T be a uniformly continuous quantum Feller semigroup on the
unital C∗ algebra A ⊆ B(H). The semigroup generator L is bounded, ∗-preserving
and conditionally completely positive.

Proof The first two claims follow immediate from Theorem 4.19. For conditional
complete positivity, let a1, . . . , an ∈ A and v1, . . . , vn ∈ H. By Corollary 4.32, if
t > 0, then

t−1
n∑

i,j=1

〈vi,
(
Tt (a

∗
i aj ) − Tt (ai)

∗Tt (aj )
)
vj 〉 � 0.

Letting t → 0+ gives that

n∑

i,j=1

〈vi,
(
L(a∗

i aj ) − L(ai)
∗aj − a∗

i L(aj )
)
vj 〉 � 0,

and if
∑n

i=1 aivi = 0 then the second and third terms vanish. ��
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Exercise 4.46 Use Exercise 4.43 to provide an alternative proof that L in Theo-
rem 4.45 is conditionally completely positive.

The following result is [11, Theorem 2.9] of Evans, who credits Lindblad [21].

Theorem 4.47 (Lindblad, Evans) Let L be a ∗-preserving bounded linear map
on the unital C∗ algebra A ⊆ B(H). The following are equivalent.

(i) L is conditionally completely positive.

(ii) (λI − L)−1 is completely positive for all sufficiently large λ > 0.

(iii) Tt = exp(tL) is completely positive for all t ∈ R+.

Proof The equivalence of (ii) and (iii) is given by Theorems 2.45 and 2.46, together
with Exercise 4.23. The solution to Exercise 4.46 gives that (iii) implies (i); to
complete the proof, it suffices to show that (i) implies (iii).

Suppose first that L(1) � 0. Then L(n)(1) � 0 for all n ∈ N, so if a ∈ Mn(A)

then

L(n)(a∗a) � a∗L(n)(a∗)a + a∗L(n)(a).

Thus if b, c ∈ Mn(A)+ are such that bc = 0 then b1/2c = 0 and

cL(n)(b)c � cL(n)(b1/2)b1/2c + cb1/2L(n)(b)c = 0.

Theorem 4.20 now gives that T
(n)
t = exp(tL(n)) is positive for all t ∈ R+, so (iii)

holds.
Finally, if L(1) > 0, then the conditionally completely positive map

L′ : A → B(H); a �→ L(a) − ‖L(1)‖a

is such that L′(1) � 0, since 0 � L(1) � ‖L(1)‖I . It follows that T ′
t = exp(tL′) is

completely positive for all t ∈ R+, and therefore so is Tt = exp
(‖L(1)‖t)T ′

t . ��
Remark 4.48 Since completely positive unital linear maps between unital
C∗ algebras are automatically contractive, by Theorem 4.31 and the fact that
∗-homomorphisms between C∗ algebras are contractive, the previous result
characterises the generators of uniformly continuous conservative quantum Feller
semigroups.

4.6 The Gorini–Kossakowski–Sudarshan–Lindblad Theorem

In order to provide a more explicit description of the generators of quantum Feller
semigroups, we will establish some results of Lindblad and Christensen, and of
Kraus. The Kraus decomposition is a key tool in quantum information theory.
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Theorem 4.49 (Lindblad, Christensen) Let L be a ∗-preserving bounded linear
map on the von Neumann algebra A. Then L is conditionally completely positive
and normal if and only if there exists a completely positive, normal map � : A → A
and an element g ∈ A such that

L(a) = �(a) + g∗a + ag for all a ∈ A.

Proof The second part of Exercise 4.44 shows that L is conditionally completely
positive or normal if and only if � has the same property.

Given this, it remains to prove that if L is conditionally completely positive, then
there exists g ∈ A such that a �→ L(a) − g∗a − ag is completely positive. We will
show this under the assumption that A = B(H); see [14, Proof of Theorem 3.14].
The general case [7] requires considerably more work.

Given u, v ∈ H, let the Dirac dyad

|u〉〈v| : H → H; w �→ 〈v,w〉u.

Fix a unit vector u ∈ H, and let G ∈ B(H) be such that

G∗ : H → H; v �→ L
(|v〉〈u|)u − 1

2
〈u,L

(|u〉〈u|)u〉v.

Given a1, . . . an ∈ A and v1, . . . , vn ∈ H, let v0 = u and a0 = − ∑n
i=1 |aivi〉〈u|, so

that
∑n

i=0 aivi = 0. The conditional complete positivity of L implies that

0 �
n∑

i,j=1

(〈vi,L(a∗
i aj )vj 〉 − 〈vi ,L

(
a∗
i |ajvj 〉〈u|)u〉 − 〈u,L

(|u〉〈aivi |aj

)
vj 〉

+ 〈u,L
(|u〉〈aivi ||ajvj 〉〈u|)u〉)

=
n∑

i,j=1

〈vi,L(a∗
i aj )vj 〉 − 〈vi,L

(|a∗
i aj vj 〉〈u|)u〉 − 〈u,L

(|u〉〈a∗
j aivi |

)
vj 〉

+ 〈u,L
(|u〉〈u|)u〉〈aivi , aj vj 〉

=
n∑

i,j=1

〈vi,
(
L(a∗

i aj ) − G∗a∗
i aj − a∗

i ajG
)
vj 〉.

The result follows. ��
Remark 4.50 If A is required only to be a C∗ algebra, then Christensen and Evans
[7] showed that Theorem 4.49 remains true if L and � no longer required to be
normal, but then g and the range of � must be taken to lie in the σ -weak closure
of A.
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Theorem 4.51 (Kraus [18]) Suppose A ⊆ B(H) is a von Neumann algebra. A
linear map � : A → B(K) is normal and completely positive if and only if there
exists a family of operators (Li)i∈I ⊆ B(K;H) such that

�(a) =
∑

i∈I
L∗

i aLi for all a ∈ A,

with convergence in the strong operator topology. The cardinality of the index set I
may be taken to be no larger than dimK.

Proof If � has this form, then it is completely positive and normal. The first claim is
readily verified; for the second, let aj ↘ 0, fix j0 and note that 〈u, aj u〉 � 〈u, aj0u〉
for all u ∈ H and j � j0. Fix ε > 0 and v ∈ K, choose a finite set I0 ⊆ I such that
the sum

∑
i∈I0

〈Liv, aj0Liv〉 > 〈v,�(aj0)v〉 − ε, and note that

〈v,�(aj )v〉 �
∑

i∈I0

〈Liv, ajLiv〉 +
∑

i∈I\I0

〈Liv, aj0Liv〉 <
∑

i∈I0

〈Liv, ajLiv〉 + ε.

This shows that � is normal, as required.
For the converse, Theorem 4.31 shows it suffices to prove that if π : A → B(K)

is a normal unital ∗-homomorphism, then π can be written as in the statement of the
theorem.

Let (ei)i∈I be an orthonormal basis for H, and consider the net (IH −∑
i∈I0

|ei〉〈ei |), where the index I0 runs over all finite subsets of I, ordered by
inclusion. Since π is normal and unital, we have that IK = ∑

i∈I π
(|ei〉〈ei |

)
in the

weak-operator sense; thus, there exists some i0 ∈ I such that P := π
(|ei0〉〈ei0 |

)
is a

non-zero orthogonal projection.
Let u ∈ K be a unit vector such that Pu = u, let a ∈ A, and note that

‖π(a)u‖2 = 〈Pu, π(a∗a)Pu〉 = 〈u, π
(|ei0〉〈ei0 |a∗a|ei0〉〈ei0 |

)
u〉 = ‖aei0‖2.

Hence there exists a partial isometry L0 : K → H with initial space K0, the norm
closure of {π(a)u : a ∈ A}, and final space H0, the norm closure of {ae0 : a ∈ A},
and such that L0π(a)u = ae0 for all a ∈ A. Note that K0 is invariant under the
action of π(a), for all a ∈ A, so

π(a)π(b)u = P0π(ab)u = L∗
0L0π(ab)u = L∗

0abe0 = L∗
0aL0π(b)u for all b ∈ A.

Thus π(a)|K0 = L∗
0aL0|K0 , and since L0(K⊥

0 ) = {0}, it follows that π(a)P0 =
L∗

0aL0 for all a ∈ A, where P0 := L∗
0L0 is the orthogonal projection onto the initial

space K0.
Repeating this argument, but on K⊥

0 , there exists a partial isometry L1 : K → H
with initial projection P1 such that P0P1 = 0 and π(a)P1 = L∗

1aL1 for all a ∈ A.
An application of Zorn’s lemma now gives the result. ��
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Remark 4.52 With � and (Li)i∈I as in Theorem 4.51, we may write

�(a) = L∗(a ⊗ IKI
)L for all a ∈ A,

where KI is the Hilbert space with orthonormal basis (ei)i∈I and L ∈ B(K;H⊗KI)

is such that

Lv =
∑

i∈I
Liv ⊗ ei for all v ∈ K.

Exercise 4.53 Use Theorem 4.51 and the second part of Theorem 4.26 to show that
every positive normal linear functional on the von Neumann algebra A has the form

a �→
∞∑

n=1

〈xn, axn〉, where
∞∑

n=1

‖xn‖2 < ∞.

[Every bounded linear functional is the linear combination of four positive ones
[22, Theorem 3.3.10], and Grothendieck [15] observed that each of these may be
taken to be normal if the original is [17, Theorem 7.4.7]. Hence every normal linear
functional is of the form used to define the σ -weak topology in Definition 4.6.]

Lemma 4.54 Let T be a uniformly continuous semigroup on a von Neumann
algebra with generator L. Then L is normal if and only if Tt is normal for all
t ∈ R+.

Proof This holds because the limit of a norm-convergent sequence of normal maps
is normal. To see this, let �n, � : A → B(H) be such that ‖�n − �‖ → 0, let the
net (ai) ⊆ A+ be such that ai ↘ 0, and let v ∈ H. Fix i0 and note that ‖ai‖ � ‖ai0‖
whenever i � i0, so

|〈v,�(ai)v〉| � ‖v‖2‖ai0‖ ‖�n − �‖ + |〈v,�(ai )v〉| for all i � i0.

The claim follows. ��
Theorem 4.55 (Gorini–Kossakowski–Sudarshan, Lindblad) Let A ⊆ B(H) be
a von Neumann algebra. A bounded linear map L ∈ B(A) is the generator of a
uniformly continuous conservative quantum Feller semigroup composed of normal
maps if and only if

L(a) = −i[h, a] − 1

2

(
L∗La − 2L∗(a ⊗ I)L + aL∗L

)
for all a ∈ A,

where h = h∗ ∈ A and L ∈ B(H;H ⊗ K) for some Hilbert space K.

Proof If L has this form, then it is straightforward to verify that the semigroup it
generates is as claimed.
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Conversely, suppose L is the generator of a semigroup as in the statement
of the theorem. Then Theorem 4.47 gives that L is conditionally completely
positive and L(1) = 0. Moreover, L is normal, by the preceding lemma, and so
Theorem 4.49 gives that

L(a) = �(a) + g∗a + ag for all a ∈ A,

where � : A → A is completely positive and normal, and g ∈ A. Taking a = 1
in this equation shows that g∗ + g = −�(1), so g = − 1

2�(1) + ih for some self-
adjoint element h ∈ A. The result now follows by Theorem 4.51. ��

The story of the previous theorem is very well told in [8]. Going beyond the case
of bounded generators is the subject of much interest. See the survey [28] for some
recent developments.

4.7 Quantum Markov Processes

We will conclude by giving a very brief indication of how a quantum process may
be defined.

Remark 4.56 Let E be a compact Hausdorff space. If X is an E-valued random
variable on the probability space (�,F ,P), then

jX : A → B; f �→ f ◦ X

is a unital ∗-homomorphism, where A = C(E) and B = L∞(�,F ,P).

Definition 4.57 A non-commutative random variable is a unital ∗-homomorphism
j between unital C∗ algebras.

A family (jt : A → B)t∈R+ of non-commutative random variables is a dilation
of the quantum Feller semigroup T on A if there exists a conditional expectation E

from B onto A such that Tt = E ◦ jt for all t ∈ R+.

The problem of constructing such dilations has attracted the interest of many
authors, including Evans and Lewis [13], Accardi et al. [1], Vincent-Smith [31],
Kümmerer [19], Sauvageot [27] and Bhat and Parthasarathy [5].

Essentially, one attempts to mimic the functional-analytic proof of Theorem 3.22.
Given the appropriate analogue of an initial measure, which is a state μ on the
C∗ algebra A, the sesquilinear form

A⊗n×A⊗n → C; (a1⊗· · ·⊗an, b1⊗· · ·⊗bn) �→ μ
(
Tt1(a

∗
1 . . . (Ttn−tn−1(a

∗
nbn)) . . . b1)

)

must be shown to be positive semidefinite. The key to this is the complete positivity
of the semigroup maps. There are many technical issues to be addressed; see [5] for
more details.



Classical and Quantum Markov Semigroups 53

References

1. L. Accardi, A. Frigerio, J.T. Lewis, Quantum stochastic processes. Publ. Res. Inst. Math. Sci.
18(1), 97–133 (1982)

2. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications. Lecture Notes in
Physics, vol. 717, 2nd edn. (Springer, Berlin, 2007)

3. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge University
Press, Cambridge, 2009)

4. W.B. Arveson, Subalgebras of C∗-algebras. Acta Math. 123, 141–224 (1969)
5. B.V.R. Bhat, K.R. Parthasarathy, Kolmogorov’s existence theorem for Markov processes in

C∗ algebras. Proc. Indian Acad. Sci. Math. Sci. 104(1), 253–262 (1994)
6. M.-D. Choi, Positive linear maps on C∗-algebras. Can. J. Math. 24(3), 520–529 (1972)
7. E. Christensen, D.E. Evans, Cohomology of operator algebras and quantum dynamical

semigroups. J. Lond. Math. Soc. 20(2), 358–368 (1979)
8. D. Chruściński, S. Pascazio, A brief history of the GKLS equation. Open Syst. Inf. Dyn. 24(3),

1740001, 20pp. (2017)
9. E.B. Davies, Linear Operators and Their Spectra (Cambridge University Press, Cambridge,

2007)
10. E.G. Effros, Z.-J. Ruan, Operator Spaces. London Mathematical Society Monographs, vol. 23

(Oxford University Press, Oxford, 2000)
11. D.E. Evans, Conditionally completely positive maps on operator algebras. Q. J. Math. 28(3),

271–283 (1977)
12. D.E. Evans, H. Hanche-Olsen, The generators of positive semigroups. J. Funct. Anal. 32, 207–

212 (1979)
13. D.E. Evans, J.T. Lewis, Dilations of Irreversible Evolutions in Algebraic Quantum Theory.

Communications of the Dublin Institute for Advanced Studies Series A, vol. 24 (Dublin
Institute for Advanced Studies, Dublin, 1977), v+104 pp.

14. F. Fagnola, Quantum Markov semigroups and quantum flows. Proyecciones 18(3), 144 pp.
(1999)

15. A. Grothendieck, Un résultat sur le dual d’une C∗-algèbre. J. Math. Pures Appl. (9) 36(2),
97–108 (1957)

16. E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups. AMS Colloquium Publications,
vol. 31, third printing of the revised 1957 edition (American Mathematical Society, Rhode
Island, 1974)

17. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras II. Advanced
Theory. Graduate Studies in Mathematics, vol. 16. (American Mathematical Society, Provi-
dence, 1997)

18. K. Kraus, General state changes in quantum theory. Ann. Phys. 64(2), 311–335 (1971)
19. B. Kümmerer, Markov dilations on W∗-algebras. J. Funct. Anal. 63(2), 139–177 (1985)
20. T.M. Liggett, Continuous Time Markov Processes (American Mathematical Society, Provi-

dence, 2010)
21. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys.

48(2), 119–130 (1976)
22. G.J. Murphy, C∗-Algebras and Operator Theory (Academic, New York, 1990)
23. W.L. Paschke, Inner product modules over B∗-algebras. Trans. Am. Math. Soc. 182, 443–468

(1973)
24. V. Paulsen, Completely Bounded Maps and Operator Algebras. Cambridge Studies in

Advanced Mathematics, vol. 78 (Cambridge University Press, Cambridge, 2002)
25. M. Reed, B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis, revised

and enlarged edition (Academic, New York, 1980)
26. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales I. Foundations,

2nd edn. (Cambridge University Press, Cambridge, 2000)



54 A. C. R. Belton

27. J.-L. Sauvageot, Markov quantum semigroups admit covariant Markov C∗-dilations. Commun.
Math. Phys. 106(1), 91–103 (1986)

28. I. Siemon, A.S. Holevo, R.F. Werner, Unbounded generators of dynamical semigroups. Open
Syst. Inf. Dyn. 24(4), 1740015, 24pp. (2017)

29. W.F. Stinespring, Positive functions on C∗-algebras. Proc. Am. Math. Soc. 6(2), 211–216
(1955)

30. M. Takesaki, Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences,
vol. 124 (Springer, Berlin, 2002)

31. G.F. Vincent-Smith, Dilation of a dissipative quantum dynamical system to a quantum Markov
process. Proc. Lond. Math. Soc. 49(1), 58–72 (1984)


	Introduction to Classical and Quantum Markov Semigroups
	1 Introduction
	1.1 Acknowledgements
	1.2 Conventions

	2 Operator Semigroups
	2.1 Functional-Analytic Preliminaries
	2.2 Semigroups on Banach Spaces
	2.3 Beyond Uniform Continuity
	2.4 The Lumer–Phillips Theorem

	3 Classical Markov Semigroups
	3.1 Markov Processes
	3.2 Feller Semigroups
	3.3 The Hille–Yosida–Ray Theorem

	4 Quantum Feller Semigroups
	4.1 C* Algebras
	4.2 Positivity
	4.3 Complete Positivity
	4.4 Stinespring's Dilation Theorem
	4.5 Semigroup Generators
	4.6 The Gorini–Kossakowski–Sudarshan–Lindblad Theorem
	4.7 Quantum Markov Processes

	References


