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Preface

The theory of open quantum systems, that is, quantum systems interacting with an
environment, is a fascinating and multifaceted field. It is guided by the demands
of models for the actual quantum physical experiments and their interpretational
questions, and it draws heavily upon many different mathematical areas in order
to merge and combine tools and methods to form a new theory. Of particular
importance are functional analysis, evolution equations, semigroups, C∗-algebras,
and probability theory.

The mathematical theory of open quantum systems is rather young and still in a
formative stage, with a few first streamlines emerging. An intensive and rich devel-
opment in future is to be expected. This book is a compilation of four articles by
internationally leading experts which provide an introduction to some fundamental
mathematical aspects relevant to understanding open quantum systems.

The article by Alexander Belton provides a self-contained introduction to Marko-
vian semigroups on both a classical and quantum-mechanical level, eventually
characterizing the generators of certain quantum Feller semigroups.

Dariusz Chruściński discusses non-Markovian quantum dynamics, with both
time-local and memory kernel master equations. It is mostly based on the example
of n-level quantum systems. A recurrent theme in both the articles of Alexander
Belton and Dariusz Chruściński is the concept of completely positive maps, which
is central to the theory of open quantum systems.

Niels Jacob and Elian Rhind study the generators of Feller semigroups by taking
advantage of techniques from microlocal analysis. Their article constitutes a first
attempt to include geometric aspects into the framework. It focuses on the classical
theory, and it is an interesting open problem to generalize this formalism to the
quantum case.

Also Vojkan Jaksic’s article focuses on the classical theory. It is the first part of
a series of articles devoted to the notion of entropy. He introduces and carefully
analyzes notions of classical entropy that allow for counterparts in quantum
information theory or quantum statistical mechanics. The forthcoming parts in this
series will be published elsewhere.

v



vi Preface

The original stimulus for this volume is a winter school on dynamical methods
in open quantum systems which was held at the Mathematical Institute of the
University of Göttingen in November 2016 and where Alexander Belton, Dariusz
Chruściński, Niels Jacob, and Vojkan Jaksic were lecturers.
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vii



Contributors

Alexander C. R. Belton Department of Mathematics and Statistics, Lancaster
University, Lancaster, UK
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Introduction to Classical and Quantum
Markov Semigroups

Alexander C. R. Belton

Abstract We provide a self-contained and fast-paced introduction to the theories of
operator semigroups, Markov semigroups and quantum dynamical semigroups. The
level is appropriate for well-motivated graduate students who have a background in
analysis or probability theory, with the focus on the characterisation of infinitesimal
generators for various classes of semigroups. The theorems of Hille–Yosida, Hille–
Yosida–Ray, Lumer–Phillips and Gorini–Kossakowski–Sudarshan–Lindblad are all
proved, with the necessary technical prerequisites explained in full. Exercises are
provided throughout.

1 Introduction

These notes are an extension of a series of lectures given at the Winter School on
Dynamical Methods in Open Quantum Systems held at Georg-August-Universität
Göttingen during November 2016. These lectures were aimed at graduate students
with a background in analysis or probability theory. The aim has been to make
the notes self-contained but brief, so that they are widely accessible. Exercises are
provided throughout.

We begin with the basics of the theory of operator semigroups on Banach spaces,
and develop this up to the Hille–Yosida and Lumer–Phillips theorems; these provide
characterisations for the generators of strongly continuous semigroups and strongly
continuous contraction semigroups, respectively. As those with a background in
probability theory may not be comfortable with all of the necessary material from
functional analysis, this is covered rapidly at the start. The reader can find much
more on these topics in Davies’s book [9].

After these fundamentals, we recall some key ideas from probability theory.
The correspondence between time-homogeneous Markov processes and Markov

A. C. R. Belton (�)
Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
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2 A. C. R. Belton

semigroups is explained, and we explore the concepts of Feller semigroups and Lévy
processes. We conclude with the Hille–Yosida–Ray theorem, which characterises
generators of Feller semigroups via the positive maximum principle. Applebaum
[3, Chapter 3] provides another view of much of this material, as do Liggett [20,
Chapter 3] and Rogers and Williams [26, Chapter III].

The final part of these notes addresses the theory of quantum Markov semi-
groups, and builds to the characterisation of the generators of uniformly continuous
conservative semigroups, and the Gorini–Kossakowski–Sudarshan–Lindblad form.
En route, we establish Stinespring dilation and Kraus decomposition for linear maps
defined on unital C∗ algebras and von Neumann algebras, respectively, which are
important results in the theories of open quantum systems and quantum information.
The lecture notes of Alicki and Lendi [2] provide a useful complement, and those
of Fagnola [14] study quantum Markov semigroups from the fruitful perspective of
quantum probability. There is much scope, and demand, for further developments
in this subject.

1.1 Acknowledgements

The author is grateful to the organisers of the winter school, Prof. Dr. Dorothea
Bahns (Göttingen), Prof. Dr. Anke Pohl (Jena) and Prof. Dr. Ingo Witt (Göttingen),
for the opportunity to give these lectures, and for their hospitality during his time in
Göttingen. He is also grateful to Mr. Jason Hancox, for his comments on a previous
version of these notes.

1.2 Conventions

The notation “P := Q” means that the quantity P is defined to equal Q.
The sets of natural numbers, non-negative integers, non-negative real numbers,

real numbers and complex numbers are denoted N := {1, 2, 3, . . . }, Z+ := {0} ∪N,
R+ := [0,∞), R and C, respectively; the square root of −1 is denoted i. Note that
we follow the Anglophone rather than Francophone convention, in that 0 is both
non-negative and non-positive but is neither positive nor negative.

The indicator function of the set A is denoted 1A, with the domain determined
by context. If f : A→ B and C ⊆ A, then f |C : C → B, the restriction of f to C,
takes the same value at any point in C as f does.

Inner products on complex vector spaces are taken to be linear on the right and
conjugate linear on the left. Given our final destination, we work with complex
vector spaces and complex-valued functions by default.
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2 Operator Semigroups

2.1 Functional-Analytic Preliminaries

Throughout their development, there has been a fruitful interplay between abstract
functional analysis and the theory of operator semigroups. Here we give a rapid
introduction to some of the basic ideas of the former. We cover a little more material
that will be used in the sequel, but the reader will find it useful for their further
studies in semigroup theory.

Definition 2.1 In these notes, a normed vector space V is a vector space with
complex scalar field, equipped with a norm ‖ · ‖ : V → R+ which is

(i) subadditive: ‖u+ v‖ � ‖u‖ + ‖v‖ for all u, v ∈ V ;

(ii) homogeneous: ‖λv‖ = |λ| ‖v‖ for all v ∈ V and λ ∈ C; and

(iii) faithful: ‖v‖ = 0 if and only if v = 0, for all v ∈ V .

The normed vector space V is complete if, whenever (vn)n∈N ⊆ V is a Cauchy
sequence, there exists v∞ ∈ V such that vn → v∞ as n→∞. A complete normed
vector space is called a Banach space. Thus Banach spaces are those normed vector
spaces in which every Cauchy sequence is convergent.

[Recall that a sequence (vn)n∈N ⊆ V is Cauchy if, for all ε > 0, there exists
N ∈ N such that ‖vm − vn‖ < ε for all m, n � N .]

Exercise 2.2 (Banach’s Criterion) Let ‖ · ‖ be a norm on the complex vector
space V . Prove that V is complete for this norm if and only if every absolutely
convergent series in V is convergent.

[Given (vn)n∈N ⊆ V , the series
∑∞

n=1 vn is said to be convergent precisely when
the sequence of partial sums (

∑n
j=1 vj )n∈N is convergent, and absolutely convergent

when (
∑n

j=1 ‖vj‖)n∈N is convergent.]

Example 2.3 If n ∈ N, then the finite-dimensional vector space C
n is a Banach

space for any of the �p norms, where p ∈ [1,∞] and

‖(v1, . . . , vn)‖p :=
⎧
⎨

⎩

(∑n
j=1 |vj |p

)1/p
if p <∞,

max{|vj | : j = 1, . . . , n} if p = ∞.

These norms are all equivalent: for all p, q ∈ [1,∞] there exists Cp,q > 1 such that

C−1
p,q‖v‖q � ‖v‖p � Cp,q‖v‖q for all v ∈ C

n.

Example 2.4 For all p ∈ [1,∞], let the sequence space

�p := {v = (vn)n∈Z+ ⊆ C : ‖v‖p <∞},
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where

‖v‖p :=
⎧
⎨

⎩

(∑∞
n=0 |vn|p

)1/p
if p ∈ [1,∞),

sup{|vn| : n ∈ Z+} if p = ∞,

and the vector-space operations are defined coordinate-wise: if u, v ∈ �p and λ ∈ C,
then

(u+ v)n := un + vn and (λv)n := λvn for all n ∈ Z+.

These are Banach spaces, with �p ⊆ �q if p, q ∈ [1,∞] are such that p � q .
If p ∈ [1,∞), then �p ⊆ c0 ⊆ �∞, where

c0 := {v = (vn)n∈Z+ ⊆ C : lim
n→∞ vn = 0}

is itself a Banach space for the norm ‖ · ‖∞.

Example 2.5 An inner product on the complex vector space V is a form

〈·, ·〉 : V × V → C; (u, v) �→ 〈u, v〉

which is

(i) linear in the second argument: the map V → C; v �→ 〈u, v〉 is linear for
all u ∈ V ;

(ii) Hermitian: 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ; and

(iii) positive definite: 〈v, v〉 � 0 for all v ∈ V , with equality if and only
if v = 0.

Any inner product determines a norm on V , by setting ‖v‖ := 〈v, v〉1/2 for all v ∈
V . Furthermore, the inner product can be recovered from the norm by polarisation:
if q : V × V → C is a sesquilinear form on V , so is conjugate linear in the first
argument and linear in the second, then

q(u, v) =
3∑

j=0

i−j q(u+ iv, u + iv) for all u, v ∈ V.

A Banach space with norm which comes from an inner product is a Hilbert space.
For example, the sequence space �2 is a sequence space, since setting

〈u, v〉 :=
∞∑

n=0

unvn for all u, v ∈ �2



Classical and Quantum Markov Semigroups 5

defines an inner product on �2 such that 〈v, v〉 = ‖v‖2 for all v ∈ �2. In any Hilbert
space H, the Cauchy–Schwarz inequality holds:

|〈u, v〉| � ‖u‖ ‖v‖ for all u, v ∈ H.

It may be shown that a Banach space V is a Hilbert space if and only if the norm
satisfies the parallelogram law:

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 for all u, v ∈ V.

Exercise 2.6 Let H be a Hilbert space. Given any set S ⊆ H , prove that its
orthogonal complement

S⊥ := {x ∈ H : 〈x, y〉 = 0 for all y ∈ S}

is a closed linear subspace of H . Prove further that L ⊆ H is a closed linear
subspace of H if and only if L = (L⊥)⊥.

Example 2.7 Let C(K) denote the complex vector space of complex-valued func-
tions on the compact Hausdorff space K , with vector-space operations defined
pointwise: if x ∈ K then

(f + g)(x) := f (x)+ g(x) and (λf )(x) := λf (x)

for all f , g ∈ C(K) and λ ∈ C. The supremum norm

‖ · ‖ : f �→ ‖f ‖∞ := sup{f (x) : |x| ∈ K}

makes C(K) a Banach space. [Completeness is the undergraduate-level fact that
uniform convergence preserves continuity.]

Example 2.8 Let (�,F , μ) be a σ -finite measure space, so that μ : F → [0,∞]
is a measure and there exists a countable cover of � with elements in F of finite
measure.

For all p ∈ [1,∞], the Lp space

Lp(�,F , μ) := {f : �→ C | ‖f ‖p <∞}

is a Banach space when equipped with the Lp norm

‖f ‖p :=
⎧
⎨

⎩

(∫
�
|f (x)|p μ(dx)

)1/p
if p ∈ [1,∞),

inf
{
sup{ |f (x)| : x ∈ � \ V } : V ⊆ � is a null set}} if p = ∞,
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and where functions are identified if they differ on a null set. [Note that if f ∈
Lp(�,F , μ) then ‖f ‖p = 0 if and only if f = 0 on a null set.]

The space L2(�,F , μ) is a Hilbert space, with inner product such that

〈f, g〉 :=
∫

�

f (x)g(x) μ(dx) for all f, g ∈ L2(�,F , μ).

If p, q , r ∈ [1,∞] are such that p−1 + q−1 = r−1, where ∞−1 := 0, then

‖fg‖r � ‖f ‖p ‖g‖q for all f ∈ Lp(�,F , μ) and g ∈ Lq(�,F , μ);
(2.1)

this is Hölder’s inequality. The subadditivity of theLp norm, known as Minkowski’s
inequality, may be deduced from Hölder’s inequality. When r = 1 and p = q = 2,
Hölder’s inequality is known as the Cauchy–Bunyakovsky–Schwarz inequality.

Example 2.9 Let d � 1. The space C∞c (Rd ) of continuous functions on R
d with

compact support is a subspace of Lp(Rd ) for all p ∈ [1,∞], and is dense for
p ∈ [1,∞), when R

d is equipped with Lebesgue measure.
Given a multi-index α = (α1, . . . , αd) ∈ Z

d+, let |α| := α1 + · · · + αd and

Dαf := ∂α1

∂x1
. . .

∂αd

∂xd
f for all f ∈ C∞c (Rd ).

Note that Dαf ∈ C∞c (Rd ) for all f ∈ C∞c (Rd) and α ∈ Z
d+.

Let f ∈ Lp(Rd ), where p ∈ [1,∞], and note that fg ∈ L1(Rd) for all g ∈
C∞c (Rd), by Hölder’s inequality. If there exists F ∈ Lp(Rd ) such that

∫

Rd

f (x)Dαg(x) dx = (−1)|α|
∫

Rd

F (x)g(x) dx for all g ∈ C∞c (Rd)

then F is the weak derivative of f , and we write F = Dαf . [It is a straightforward
exercise to verify that the weak derivative is unique, and that this agrees with the
previous definition if f ∈ C∞c (Rd).]

Given p ∈ [1,∞) and k ∈ Z+, the Sobolev space

Wk,p(Rd) := {f ∈ Lp(Rd) : Dαf ∈ Lp(Rd ) whenever |α| � k}

is a Banach space when equipped with the norm

f �→ ‖f ‖ :=
(∑

|α|�k

‖Dαf ‖pp
)1/p

and contains C∞c (Rd) as a dense subspace.
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The Sobolev space Wk,2(Rd) is usually abbreviated to Hk(Rd) and is a Hilbert
space, with inner product such that

〈f, g〉 :=
∑

|α|�k

〈Dαf,Dαg〉 for all f, g ∈ Hk(Rd ).

Exercise 2.10 Prove that the normed vector space Wk,p(Rd), as defined in Exam-
ple 2.9, is complete.

Example 2.11 Let U and V be normed vector spaces. A linear operator T : U → V

is bounded if

‖T ‖ := {‖T u‖ : u ∈ U} <∞.

If T is bounded, then ‖T u‖ � ‖T ‖ ‖u‖ for all u ∈ U , and ‖T ‖ is the smallest
constant with this property.

The set of all such linear operators is denoted by B(U ;V ), or B(U) if U and V
are equal.

This set is a normed vector space, with operator norm T �→ ‖T ‖ and algebraic
operations defined pointwise, so that

(S + T )u = Su+ T u and (λT )u := λT u

for all S, T ∈ B(U ;V ), λ ∈ C and U ∈ U . Furthermore, the space B(U ;V ) is a
Banach space whenever V is.

Exercise 2.12 Prove the claims in Example 2.11.

Exercise 2.13 Let V be a normed vector space. Prove that the norm on B(V ) is
submultiplicative: if S, T ∈ B(V ), then ST : v �→ S(T v) ∈ B(V ), with ‖ST ‖ �
‖S‖ ‖T ‖.

Exercise 2.14 Let U and V be normed vector spaces and let T : U → V be a
linear operator. Prove that T is bounded if and only if it is continuous when U and
V are equipped with their norm topologies.

Example 2.15 Given any normed space V , its topological dual or dual space is the
Banach space V ∗ := B(V ;C). An element of V ∗ is called a linear functional or
simply a functional.

If p, q ∈ (1,∞) are conjugate indices, so that such that p−1 + q−1 = 1, then
(�p)∗ is naturally isomorphic to �q via the dual pairing

[u, v] :=
∞∑

n=0

unvn for all u ∈ �p and v ∈ �q.



8 A. C. R. Belton

Hölder’s inequality shows that u �→ [u, v] is an element of (�p)∗ for any v ∈ �q ;
proving that every functional arises this way is an exercise. Furthermore, the same
pairing gives an isomorphism between (�1)∗ and �∞. [The dual of �∞ is much larger
than �1; it is isomorphic to the space M(βN) of regular complex Borel measures on
the Stone–Čech compactification of the natural numbers.]

Similarly, for conjugate indices p, q ∈ (1,∞), the dual of Lp(�,F , μ) is
identified with Lq(�,F , μ), and the dual of L1(�,F , μ) with L∞(�,F , μ), via
the pairing

[f, g] :=
∫

�

f (x)g(x) μ(dx).

In particular, �2 and L2(�,F , μ) are conjugate-linearly isomorphic to their dual
spaces. This is a general fact about Hilbert spaces, known as the Riesz–Fréchet
theorem: if H is a Hilbert space, then

H ∗ = {〈u| : u ∈ H
}
, where 〈u|v := 〈u, v〉 for all v ∈ H.

If K is a compact Hausdorff space, then the dual ofC(K) is naturally isomorphic
to the space M(K) of regular complex Borel measures on K , with dual pairing

[f,μ] :=
∫

K

f (x) μ(dx) for all f ∈ C(K) and μ ∈ M(K).

The Hahn–Banach theorem [25, Corollary 2 to Theorem III.6] implies that the
dual space separates points: if v ∈ V, then there exists φ ∈ V ∗ such that ‖φ‖ = 1
and φ(v) = ‖v‖.

Example 2.16 Duality makes an appearance at the level of operators. If U and V

are normed spaces and T ∈ B(U ;V ), then there exists a unique dual operator
T ′ ∈ B(V ∗;U∗) such that

(T ′ψ)(v) = ψ(T u) for all u ∈ U and ψ ∈ V ∗.

The map T �→ T ′ from B(U ;V ) to B(V ∗;U∗) is linear and reverses the order of
products: if S ∈ B(U ;V ) and T ∈ B(V ;W), then (T S)′ = S′T ′.

If H and K are Hilbert spaces, and we identify each of these with its dual via the
Riesz–Fréchet theorem, then the operator dual to T ∈ B(H;K) is identified with the
adjoint operator T ∗ ∈ B(K;H), since

(
T ′〈v|)u = 〈v, T u〉K = 〈T ∗v, u〉H = 〈T ∗v|u for all u ∈ H and v ∈ K.
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2.2 Semigroups on Banach Spaces

Definition 2.17 A family of operators T = (Tt )t∈R+ ⊆ B(V ) is a one-parameter
semigroup on V , or a semigroup for short, if

(i) T0 = I the identity operator and (ii) Ts Tt = Ts+t for all s, t ∈ R+.

The semigroup T is strongly continuous if

lim
t→0+‖Ttv − v‖ = 0 for all v ∈ V,

and is uniformly continuous if

lim
t→0+‖Tt − I‖ = 0.

Exercise 2.18 Prove that a uniformly continuous semigroup is strongly continuous.
[The converse is false: see Exercise 2.29.]

Theorem 2.19 Let T be a strongly continuous semigroup on the Banach space V .
There exist constants M � 1 and a ∈ R such that ‖Tt‖ � Meat for all t ∈ R+.

Proof See [9, Theorem 6.2.1]. ��
Remark 2.20 The semigroup T of Theorem 2.19 is said to be of type (M, a). A
semigroup of type (1, 0) is also called a contraction semigroup.

By replacing Tt with e−atTt , one can often reduce to the case of semigroups
with uniformly bounded norm. However, it is not always possible to go further and
reduce to contraction semigroups; see [9, Example 6.2.3 and Theorem 6.3.8].

Exercise 2.21 Prove that a strongly continuous semigroup is strongly continuous
at every point: if t � 0, then lim

h→0
‖Tt+hx − Ttx‖ = 0. Prove further that the same is

true if “strongly” is replaced by “uniformly”.

Exercise 2.22 Given any A ∈ B(V ), let exp(A) :=
∞∑

n=0

1

n!A
n.

(i) Prove that this series is convergent, so that exp(A) ∈ B(V ). Prove further
that ‖ exp(A)‖ � exp ‖A‖.

(ii) Prove that if B ∈ B(V ) commutes with A, so that that AB = BA, then
exp(A) and exp(B) also commute, with exp(A) exp(B) = exp(A+ B).
[Hint: consider the derivatives of

t �→ exp(tA) exp(−tA) and t �→ exp(tA) exp(tB) exp
(−t (A+B)).]

(iii) Prove that setting Tt := exp(tA) for all t ∈ R+ produces a uniformly
continuous one-parameter semigroup T .



10 A. C. R. Belton

The converse of Exercise 2.22(iii) is true, and we state it as a theorem.

Theorem 2.23 If T is a uniformly continuous one-parameter semigroup, then there
exists an operator A ∈ B(V ) such that Tt = exp(tA) for all t ∈ R+.

Proof By continuity at the origin, there exists t0 > 0 such that

‖Ts − I‖ < 1/2 for all s ∈ [0, t0].

Then

∥
∥
∥t−1

0

∫ t0

0
Ts ds − I

∥
∥
∥ = t−1

0

∥
∥
∥

∫ t0

0
Ts − I ds

∥
∥
∥ � 1/2 < 1.

Thus X := t−1
0

∫ t0
0 Ts ds ∈ B(V ) is invertible, because the Neumann series

∞∑

n=0

(I −X)n = I + (I −X)+ (I −X)2 + . . .

is absolutely convergent, so convergent, by Banach’s criterion. Furthermore,

h−1(Th − I)

∫ t0

0
Ts ds = h−1

∫ t0

0
Ts+h − Ts ds

= h−1
∫ t0+h

h

Ts ds − h−1
∫ t0

0
Ts ds

= h−1
∫ t0+h

t0

Ts ds − h−1
∫ h

0
Ts ds

→ Tt0 − I

as h→ 0+. Hence

A := lim
h→0+ h

−1(Th − I) = (Tt0 − I)(t0X)
−1.

Moreover, for any t ∈ [0, t0],

Tt0 = I + A

∫ t

0
Tt1 dt1 = I + A

(
tI +

∫ t

0

∫ t1

0
Tt2 dt2 dt1

)

= I + tA+ t2

2
A2 + . . .
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+ An

∫ t

0
. . .

∫ tn

0
Ttn+1 dtn+1 . . . dt1

→
∑

n�0

1

n! (tA)
n = exp(tA)

as n→∞, since

∥
∥
∥An

∫ t

0
. . .

∫ tn

0
Ttn+1 dtn+1 . . . dt1

∥
∥
∥ �

3tn+1‖A‖n
2(n+ 1)! .

This working shows that Tt = exp(tA) for any t ∈ [0, t0], so for all t ∈ R+, by the
semigroup property: there exists n ∈ Z+ and s ∈ [0, t0) such that t = nt0 + s, and

Tt = T n
t0
Ts = exp(nt0A+ sA) = exp(tA).

��
Remark 2.24 The integrals in the previous proof are Bochner integrals; they are
an extension of the Lebesgue integral to functions which take values in a Banach
space. We will only be concerned with continuous functions, so do not need to
concern ourselves with notions of measurability. All the standard theorems carry
over from the Lebesgue to the Bochner setting, such as the inequality ‖ ∫ f (t) dt‖ �∫ ‖f (t)‖ dt , and if T is a bounded operator then T

∫
f (t) dt = ∫ Tf (t) dt .

Definition 2.25 If T is a uniformly continuous semigroup, then the operator A ∈
B(V ) such that Tt = exp(tA) for all t ∈ R+ is the generator of the semigroup.

Exercise 2.26 Prove that the generator of a uniformly continuous one-parameter
semigroup T is unique. [Hint: consider the limit of t−1(Tt − I) as t → 0+.]

Example 2.27 Given t ∈ R+ and f ∈ V := Lp(R+), where p ∈ [1,∞), let

(Ttf )(x) := f (x + t) for all x ∈ R+.

Then Tt ∈ B(V ), with ‖Tt‖ = 1, and T = (Tt )t∈R+ is a one-parameter semigroup.
If f is continuous and has compact support, then an application of the Dominated
Convergence Theorem gives that Ttf → f as t → 0+; since such functions are
dense in V , it follows that T is strongly continuous.

Exercise 2.28 Prove the assertions in Example 2.27. Prove also that if f ∈ V =
Lp(R+) is absolutely continuous, with f ′ ∈ V such that

f (x) = f (0)+
∫ x

0
f ′(y) dy for all x ∈ R+,
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then

lim
t→0+ t

−1(Ttf − f ) = f ′,

where the limit exists in V . [Hint: show that

‖t−1(Ttf − f )− f ′‖pp = t−1
∫ t

0
‖Tyf ′ − f ′‖pp dy

and then use the strong continuity of T at the origin.]

Exercise 2.29 Prove that the semigroup of Example 2.27 is not uniformly continu-
ous. [Hint: let fn = λn1[n−1,2n−1], where the positive constant λn is chosen to make
fn a unit vector in V , and consider ‖Ttfn − fn‖ for n > t−1.]

2.3 Beyond Uniform Continuity

As shown above, uniformly continuous one-parameter semigroups are in one-to-one
correspondence with bounded linear operators. To move beyond this situation, we
need to introduce linear operators which are only partially defined on the ambient
Banach space V .

Definition 2.30 An unbounded operator in V is a linear transformation A defined
on a linear subspace V0 ⊆ V , its domain; we write domA = V0.

An extension of A is an unbounded operator B in V such that domA ⊆ domB

and the restriction B|domA = A. In this case, we write A ⊆ B.
An unbounded operator A in V is densely defined if domA is dense in V for the

norm topology.

Definition 2.31 Given operators A and B, let A+ B and AB be defined by setting

dom(A+ B) := domA ∩ domB, (A+ B)v := Av + Bv

and

domAB := {v ∈ domA : Av ∈ domB}, (AB)v := A(Bv).

Note that neither A+B nor AB need be densely defined, even if both A and B are.

Definition 2.32 Let T be a strongly continuous one-parameter semigroup on V . Its
generator A is an unbounded operator with domain

domA := {v ∈ V : lim
t→0+ t

−1(Tt v − v) exists in V
}
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and action

Av := d

dt
Ttv

∣
∣
∣
t=0

:= lim
t→0+ t

−1(Tt v − v) for all v ∈ domA.

It is readily verified that A is an unbounded operator.

Exercise 2.33 Prove that if v ∈ V and t ∈ R+ then

∫ t

0
Tsv ds ∈ domA and (Tt − I)v = A

∫ t

0
Tsv ds.

Deduce that domA is dense in V . [Hint: begin by imitating the proof of Theo-
rem 2.23.]

Lemma 2.34 Let the strongly continuous semigroup T have generator A. If v ∈
domA and t ∈ R+, then Ttv ∈ domA and TtAv = ATtv; thus, Tt (domA) ⊆
domA. Furthermore,

(Tt − I)v =
∫ t

0
TsAv ds =

∫ t

0
ATsv ds.

Proof First, note that

h−1(Th − I)Ttv = Tth
−1(Th − I)v → TtAv as h→ 0+,

by the boundedness of Tt , so Ttv ∈ domA and ATtv = TtAv, as claimed. For the
second part, let

F : R+ → V ; t �→ (Tt − I)v −
∫ t

0
TsAv ds.

Note that F is continuous and F(0) = 0; furthermore, if t > 0, then

h−1(F (t+h)−F(t)) = Tth
−1(Th−I)v−h−1

∫ h

0
Ts+tAv ds → TtAv−TtAv = 0

as h→ 0+, whence F ≡ 0. ��
Definition 2.35 An operator A in V is closed if, whenever (vn)n∈N ⊆ domA is
such that vn → v ∈ V and Avn → u ∈ V , it follows that v ∈ domA and Av = u.
Note that a bounded operator is automatically closed.

The operatorA is closable if it has a closed extension, in which case the closureA
is the smallest closed extension of A, where the ordering of operators is given in
Definition 2.30.
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Exercise 2.36 Prove that the graph

G(A) := {(v,Av) : v ∈ domA}

of an unbounded operator A in V is a normed vector space for the product norm

‖ · ‖ : (v,Av)‖ �→ ‖v‖ + ‖Av‖.

Prove further that A is closed if and only if G(A) is a Banach space, and that A is
closable if and only if the closure of its graph in V⊕V is the graph of some operator.
Finally, prove that if A is closable then G

(
A
)

is the intersection of the graphs of all
closed extensions of A.

Exercise 2.37 Let A be the generator of the strongly continuous one-parameter
semigroup T . Use Lemma 2.34 and Theorem 2.19 to show that A is closed.

Proof Suppose (vn)n∈N ⊆ domA is such that vn → v and Avn → u. Let t > 0 and
note that

Ttvn − vn =
∫ t

0
TsAvn ds for all n � 1.

Furthermore,

∥
∥
∥

∫ t

0
TsAvn ds −

∫ t

0
Tsu ds

∥
∥
∥ �

∫ t

0
Meas‖Avn − u‖ ds � Mtemax{a,0}t‖Avn − u‖ → 0

as n→∞, so

Ttv − v =
∫ t

0
Tsu ds.

Dividing both sides by t and letting t → 0+ gives that v ∈ domA and Av = u, as
required. ��
Definition 2.38 Let H be Hilbert space. If A is a densely defined operator in H ,
then the adjoint A∗ is defined by setting

domA∗ := {u ∈ H : there exists v ∈ H such that 〈u,Aw〉
= 〈v,w〉 for all w ∈ domA}

and

A∗u = v, where v is as in the definition of domA∗.
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When A is bounded, this agrees with the earlier definition. If A is not densely
defined, then there may be no unique choice for v, so this definition cannot
immediately be extended further.

It is readily verified that the adjoint A∗ is always closed: if (un)n∈N ⊆ domA∗ is
such that un → u ∈ H and A∗un → v ∈ H then

〈u,Aw〉 = lim
n→∞〈un,Aw〉 = lim

n→∞〈A
∗un,w〉 = lim

n→∞〈v,w〉 for all w ∈ domA,

so x ∈ domA∗ and A∗u = v.

Exercise 2.39 Prove that a densely defined operator A is closable if and only if its
adjoint A∗ is densely defined, in which case A = (A∗)∗ and A

∗ = A∗.

Definition 2.40 A densely defined operator A in a Hilbert space is self-adjoint if
and only if A∗ = A. This is stronger than the condition that

〈u,Av〉 = 〈Au, v〉 for all u, v ∈ domA,

which is merely the condition that A ⊆ A∗. An operator satisfying this inclusion is
called symmetric.

Exercise 2.41 Let A be a densely defined operator in the Hilbert space H. Prove
that A is self-adjoint if and only if A is symmetric and such that both A + iI and
A− iI are surjective, so that

{Av + iv : v ∈ domA} = {Av − iv : v ∈ domA} = H.

Proof Suppose first that A is symmetric and the range conditions hold. Let u, v ∈ H
be such that

〈u,Aw〉 = 〈v,w〉 for all w ∈ domA,

so that u ∈ domA∗ and A∗u = v. We wish to prove that u ∈ domA and Au = v.
Let x, y ∈ domA be such that (A− iI)x = v− iu and (A+ iI)y = u− x. Then

〈u, u− x〉 = 〈u, (A+ iI)y〉 = 〈v − iu, y〉
= 〈(A− iI)x, y〉 = 〈x, (A+ iI)y〉 = 〈x, u− x〉,

where the penultimate equality holds because A is symmetric and x, y ∈ domA. It
follows that ‖u− x‖2 = 0, so u = x ∈ domA and Au = Ax = v − iu+ ix = v.

Now suppose that A is self-adjoint, and note that it suffices to prove that A+ iI
is surjective, since −A is self-adjoint whenever A is.

Note first that

‖(A+ iI)v‖2 = ‖Av‖2 + ‖v‖2 for all v ∈ domA, (2.2)
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which implies that ran(A+ iI) is closed: if the sequence (vn)n∈N ⊆ domA is such
that

(
(A+ iI)vn

)
n∈N is convergent, then both (vn)n∈N and (Avn)n∈N are Cauchy, so

convergent, with vn → v ∈ H and Avn → u ∈ H. Since A is closed, it follows that
v ∈ domA and Av = u, from which we see that (A+ iI)vn → u+ iv = (A+ iI)v.

It is also follows from (2.2), with A replaced by−A, that A− iI is injective. As

u ∈ ker(A− iI) ⇐⇒ 〈(A− iI)u, v〉 = 0 for all v ∈ domA

⇐⇒ 〈u, (A+ iI)v〉 = 0 for all v ∈ domA = domA∗

⇐⇒ u ∈ ran(A+ iI)⊥,

so

ran(A+ iI) = (ran(A+ iI)⊥)⊥ = ker(A− iI)⊥ = {0}⊥ = H.

��
Definition 2.42 Let A be an unbounded operator in V . Its spectrum is the set

σ(A) := {λ ∈ C : λI − A has no inverse in B(V )}
and its resolvent is the map

C \ σ(A)→ B(V ); λ �→ (λI − A)−1.

In other words, λ ∈ C is not in the spectrum of A if and only if there exists a
bounded operator B ∈ B(V ) such that B(λI − A) = IdomA and (λI − A)B = IV ;
in particular, the operator λI − A is a bijection from domA onto V .

Remark 2.43 If the operator T : V → V is bounded, then its spectrum σ(T ) is
contained in the closed disc {λ ∈ C : |λ| � ‖T ‖} [22, Lemma 1.2.4].

Exercise 2.44 Let A be an unbounded operator in V and suppose λ ∈ C is such
that λI −A is a bijection from domA onto V . Prove that (λI −A)−1 is bounded if
and only if A is closed. [Thus algebraic invertibility of λI − A is equivalent to its
topological invertibility if and only if A is closed.]

The following theorem shows that the resolvent of a semigroup generator may
be thought of as the Laplace transform of the semigroup.

Theorem 2.45 Let A be the generator of a one-parameter semigroup T of
type (M, a) on V . Then σ(A) ⊆ {λ ∈ C : Re λ � a}. Furthermore, if Re λ > a,
then

(λI − A)−1v =
∫ ∞

0
e−λtTtv dt for all v ∈ V (2.3)

and ‖(λI − A)−1‖ � M(Re λ− a)−1.
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Proof Fix λ ∈ C with Re λ > a and note first that

R : V �→ V ; v �→
∫ ∞

0
e−λtTtv dt

is a bounded linear operator, with ‖R‖ � M(Re λ− a)−1.
If v ∈ V and u = Rv, then

Ttu =
∫ ∞

0
e−λsTs+tv ds =

∫ ∞

t

e−λ(r−t )Tuv dr = eλt
∫ ∞

t

e−λuTrv dr,

and therefore, if t > 0,

t−1(Tt − I)u = t−1eλt
∫ ∞

t

e−λsTsv ds − t−1
∫ ∞

0
e−λsTsv ds

= −t−1eλt
∫ t

0
e−λsTsv ds + t−1(eλt − 1)

∫ ∞

0
e−λsTsv ds

→−v + λu as t → 0+.

Thus u ∈ domA and (λI − A)u = v. It follows that ranR ⊆ domA and (λI −
A)R = IV .

However, since (Tt − I)R = R(Tt − I) and R is bounded, the same working
shows that

RAu = −u+ λRu ⇐⇒ R(λI − A)u = u for all u ∈ domA.

Thus R(λI − A) = IdomA and R = (λI − A)−1, as claimed. ��
The Laplace-transform formula of Theorem 2.45 allows one to recover a

semigroup from its resolvent.

Theorem 2.46 Let A be the generator of a one-parameter semigroup T of
type (M, a) on V , and let λ ∈ C with Re λ > a. Then

(λI − A)−nv =
∫ ∞

0

tn−1

(n− 1)!e
−λtTt v dt for all n ∈ N and v ∈ V,

and

Ttv = lim
n→∞(I − n−1tA)−nv

= lim
n→∞(n/t)

n
(
(n/t)I − A)−nv for all t > 0 and v ∈ V.
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Proof The first claim follows by induction, with Theorem 2.45 giving the case
n = 1.

As noted by Hille and Phillips [16, Theorem 11.6.6], the second follows from the
Post–Widder inversion formula for the Laplace transform. For all n ∈ N, let

fn : R+ → R+; t �→ nn

(n− 1)! t
ne−nt ,

and note that fn is strictly increasing on [0, 1] and strictly decreasing on [1,∞),
and its integral

∫∞
0 fn(t) dt = 1; this last fact may be proved by induction. If n is

sufficiently large, then a short calculation shows that

(n/t)n
(
(n/t)I − A)−nv = (1− n−1)−n

∫ ∞

0
fn−1(r)e

−rTtrv dr.

The result follows by splitting the integral into three parts. Fix ε ∈ (0, 1) and
note first that fn(r) � nenrne−nr for all r ∈ R+, with the latter function strictly
increasing on [0, 1], so

∥
∥
∥

∫ 1−ε
0

fn(r)e
−r Ttrv dr

∥
∥
∥ � n(1− ε)n+1enεM max{1, eat (1−ε)}‖v‖ → 0 as n→∞.

Similarly, if b := ε/(1+ ε), then fn(r)ebnr � nen(1+ ε)ne(b−1)n(1+ε) � n(1+ ε)n

for all r � 1+ ε, and so

∥
∥
∥

∫ ∞

1+ε
fn(r)e

−rTtrv dr
∥
∥
∥ � M‖v‖n(1 + ε)n

∫ ∞

1+ε
e(a−bn)r dr

� M‖v‖ n

bn− a
(1+ ε)ne(a−bn)(1+ε) → 0 as n→∞,

since b(1 + ε) = ε and (1 + ε)e−ε < 1. A standard approximation argument now
completes the proof. ��

We have now obtained enough necessary conditions on the generator of a
strongly continuous semigroup for them to be sufficient as well.

Theorem 2.47 (Feller–Miyadera–Phillips) A closed, densely defined operator A
in V is the generator of a strongly continuous semigroup of type (M, a) if and only
if

σ(A) ⊆ {λ ∈ C : Re λ � a}

and

‖(λI − A)−m‖ � M(λ− a)−m for all λ > a and m ∈ N. (2.4)
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Proof Let A be the generator of a strongly continuous semigroup T of type (M, a).
The spectral condition is a consequence of Theorem 2.45, and the norm inequality
follows from Theorem 2.46.

For the converse, let the operator A be closed, densely defined, such that (2.4)
holds and having spectrum not containing (a,∞). Setting Aλ := λA(λI − A)−1,
note that {Aλ : λ ∈ (a,∞)} is a commuting family of bounded operators such that
Aλv → Av as λ→∞, for all v ∈ domA; see Exercise 2.48 for more details.

With T λ
t := exp(tAλ), the inequalities (2.4) imply ‖T λ

t ‖ � M exp
(
aλt/(λ− a)

)

for all λ > a and t ∈ R+, so lim supλ→∞ ‖T λ
t ‖ � Meat . Since

(T λ
t − T

μ
t )v =

∫ t

0

d

ds

(
T λ
s T

μ
t−sv

)
ds =

∫ t

0
T λ
s T

μ
t−s(Aλ − Aμ)v ds,

if λ, μ > 2a+ = 2 max{a, 0} and v ∈ domA then

‖(T λ
t − T

μ
t )v‖ � tM2e2a+t‖(Aλ − Aμ)v‖ → 0 as λ,μ→∞,

locally uniformly in t . An approximation argument shows that Ttu = limλ→∞ T λ
t u

exists for all t ∈ R+ and u ∈ V , and that T = (Tt )t∈R+ is a strongly continuous
one-parameter semigroup of type (M, a).

To see that the generator of T is A, note that the previous working and
Lemma 2.34 imply that

Ttv − v = lim
λ→∞ T λ

t v − v = lim
λ→∞

∫ t

0
T λs Aλv ds =

∫ t

0
TsAv ds for all v ∈ domA;

dividing by t and letting t → 0 shows that the generator B of T is an extension of
A. Note that (a,∞) is not in the spectrum of B, by Theorem 2.45; it is a simple
exercise to show that (λI −A)−1 = (λI − B)−1 for λ > a, and since the ranges of
these operators are the domain of A and B, the result follows. ��
Exercise 2.48 Let A be an unbounded operator in V , with spectrum not containing
(a,∞) and such that ‖(λI − A)−1‖ � M(λ − a)−1 for all λ > a, where M and a
are constants. Prove that

Aλ := λA(λI − A)−1 = λ2(λI − A)−1 − λI

commutes with Aμ for all λ, μ > a. Prove also that

lim
λ→∞λ(λI − A)−1u = u for all u ∈ V,

by showing this first for the case u ∈ domA. Deduce that Aλv → Av when v ∈
domA.

For contraction semigroups, we have the following refinement of Theorem 2.47.
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Theorem 2.49 (Hille–Yosida) Let A be a closed, densely defined linear operator
in the Banach space V . The following are equivalent.

(i) A is the generator of a strongly continuous contraction semigroup.

(ii) σ(A) ⊆ {λ ∈ C : Re λ � 0} and

‖(λI − A)−1‖ � (Re λ)−1 whenever Re λ > 0.

(iii) σ(A) ∩ (0,∞) is empty and

‖(λI − A)−1‖ � λ−1 whenever λ > 0.

Proof Note that (i) implies (ii), by Theorem 2.45, and (ii) implies (iii) trivially. That
(iii) implies (i) follows from the extension of Theorem 2.47 noted in its proof. ��

In practice, verifying the norm conditions in Theorems 2.47 and 2.49 may prove
to be challenging. The next section introduces the concept of operator dissipativity,
which is often more tractable.

2.4 The Lumer–Phillips Theorem

Throughout this subsection, V denotes a Banach space and V ∗ its topological dual.

Definition 2.50 For all v ∈ V , let

TF(v) := {φ ∈ V ∗ : φ(v) = ‖v‖2 = ‖φ‖2}

be the set of normalised tangent functionals to v. The Hahn–Banach theorem [25,
Theorem III.6] implies that TF(v) is non-empty for all v ∈ V .

Exercise 2.51 Prove that if H is a Hilbert space then TF(v) = {〈v|} for all v ∈ H ,
where the Dirac functional 〈v| is such that 〈v|u := 〈v, u〉 for all u ∈ H . [Recall the
Riesz–Fréchet theorem from Example 2.15.]

Exercise 2.52 Prove that if f ∈ V = C(K) and x0 ∈ K is such that |f (x0)| =
‖f ‖ then setting φ(g) := f (x0)g(x0) for all g ∈ V defines a normalised tangent
functional for f . Deduce that TF(f ) may contain more than one element.

Definition 2.53 An unbounded operator A in V is dissipative if and only if there
exists φ ∈ TF(v) such that Reφ(Av) � 0, for all v ∈ domA. [Note that it suffices
to check this condition for unit vectors only.]

Exercise 2.54 Prove that an operator A in the Hilbert space H is dissipative if and
only if ‖(I + A)v‖ � ‖(I − A)v‖ for all v ∈ domA.

Exercise 2.55 Suppose T is a contraction semigroup with generator A. Prove that
A is dissipative.
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Proof If v ∈ domA and φ ∈ TF(v), then

Reφ(Av) = lim
t→0+ t

−1 Reφ(Ttv − v) � lim
t→0+ t

−1‖φ‖ ‖v‖ − ‖v‖2 = 0,

so A is dissipative. ��
We now seek to find a converse to the result of the preceding exercise.

Lemma 2.56 The unbounded operator A in V is dissipative if and only if

‖(λI − A)v‖ � λ‖v‖ for all λ > 0 and v ∈ domA. (2.5)

If A is dissipative and λI − A is surjective for some λ > 0, then λ �∈ σ(A) and
‖(λI − A)−1‖ � λ−1.

Proof Suppose first that (2.5) holds, let v ∈ domA be a unit vector and, for all
λ > 0, choose φλ ∈ TF

(
(λI − A)v

)
. Then φλ �= 0, so ψλ = ‖φλ‖−1φλ is well

defined, and

λ � ‖(λI − A)v‖ = ψλ(λv − Av) = λReψλ(v) − Reψλ(Av).

Since Reψλ(v) � 1 and −Reψλ(Av) � ‖Av‖, it follows that

Reψλ(Av) � 0 and Reψλ(v) � 1− λ−1‖Av‖.

The Banach–Alaoglu theorem [25, Theorem IV.21] implies that the unit ball of V ∗
is weak* compact, so the net (ψλ)λ>0 has a weak*-convergent subnet with limit in
the unit ball. Hence there exists ψ ∈ V ∗ such that

‖ψ‖ � 1, Reψ(Av) � 0 and Reψ(v) � 1.

In particular,

|ψ(v)| � ‖ψ‖ � 1 � Reψ(v) � |ψ(v)|,

so ψ ∈ TF(v) and A is dissipative.
Conversely, if λ > 0, v ∈ domA and φ ∈ TF(v) is such that Reφ(Av) � 0 then

‖v‖ ‖(λI − A)v‖ � |φ((λI − A)v
)| = |λ‖v‖2 − φ(Av)| � λ‖v‖2.

Thus (2.5) holds, and λI − A is injective.
If λI − A is also surjective, then (2.5) gives that ‖u‖ � λ‖(λI − A)−1u‖ for

all u ∈ V , whence the final claim. ��
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Exercise 2.57 Let A be dissipative. Prove that λI −A is surjective for some λ > 0
if and only if λI − A is surjective for all λ > 0. [Hint: for a suitable choice of λ
and λ0, consider the series Rλ :=∑∞

n=0(λ− λ0)
n(λ0I − A)−(n+1).]

Proof Suppose that λ0 > 0 is such that λ0I − A is surjective. It follows from
Lemma 2.56 that ‖(λ0I − A)−1‖ � λ−1

0 . The series

Rλ =
∞∑

n=0

(λ0 − λ)n(λ0I − A)−(n+1)

is norm convergent for all λ ∈ (0, 2λ0); if we can show that Rλ = (λI −A)−1, then
the result follows.

If C ∈ B(V ) is such that ‖C‖ < 1 then I − C is invertible, with (I − C)−1 =∑∞
n=0 C

n. Hence if C = (λ0 − λ)(λ0I − A)−1, then

Rλ = (λ0I − A)−1(I − C)−1 = (I − C)−1(λ0I − A)−1,

so ranRλ ⊆ dom(λ0I − A) = dom(λI − A),

(λI−A)Rλ =
(
(λ−λ0)I+(λ0I−A)

)
Rλ =

(
(λ−λ0)(λ0I−A)−1+I)(I−C)−1 = IV

and

Rλ(λI − A) = Rλ

(
(λ− λ0)I + (λ0I − A)

)

= (I − C)−1((λ− λ0)(λ0I − A)−1 + I
) = IdomA.

��
Theorem 2.58 (Lumer–Phillips) A closed, densely defined operator A generates
a strongly continuous contraction semigroup if and only if A is dissipative and λI −
A is surjective for some λ > 0.

Proof One implication follows from Exercise 2.57, Lemma 2.56 and Theorem 2.49.
The other implication follows from Theorem 2.49 and Exercise 2.55. ��
Example 2.59 Let V = L2[0, 1], and let Af := g, where

domA :=
{
f ∈ V : there exists g ∈ V such that f (t)

=
∫ t

0
g(s) ds for all t ∈ [0, 1]

}
.

Thus f ∈ domA if and only if f (0) = 0 and f is absolutely continuous on [0, 1],
with square-integrable derivative, and thenAf = f ′ almost everywhere. For such f ,
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note that

Re〈f,Af 〉 = Re
∫ 1

0
f (t)f ′(t) dt = 1

2

∫ t

0

(
f f
)′
(t) dt = 1

2
|f (1)|2 � 0,

so −A is a dissipative operator, but A is not.
Let g ∈ V and λ > 0; we wish to find f ∈ domA such that

(λI + A)f = g ⇐⇒ λf + f ′ = g ⇐⇒ f =
∫

(g − λf ).

We proceed by iterating this relation: given h ∈ {f, g}, let h0 := h and, for all
n ∈ Z+, let hn+1 ∈ V be such hn+1(t) =

∫ t
0 hn(s) ds for all t ∈ [0, 1]. Then

f = g1 − λ

∫

f = g1 − λ

∫ ∫

(g − λf ) = · · · =
n−1∑

j=0

(−λ)jgj+1 + (−λ)nfn

for all n ∈ N. The series
∑∞

j=0(−λ)jgj+1 is uniformly convergent on [0, 1], so
defines a function F ∈ domA, whereas (−λ)nfn → 0 as n→∞. Thus

(λI + A)F = −
∞∑

j=0

(−λ)j+1gj+1 +
∞∑

j=0

(−λ)j gj = g0 = g,

so λI +A is surjective. By the Lumer–Phillips theorem, the operator−A generates
a contraction semigroup.

Exercise 2.60 Fill in the details at the end of Example 2.59. [Hint: with the notation
of the example, show that if h ∈ {f, g} then |hn(t)|2 � tn‖h‖2

2/n! for all n ∈ N.]

Remark 2.61 We can explain informally why the operator A defined in Exam-
ple 2.59 does not generate a semigroup, and why−A does. Recall that each element
of a semigroup leaves the domain of the generator invariant, by Lemma 2.34, and A
would generate a left-translation semigroup, which does not preserve the boundary
condition f (0) = 0. Moreover, −A generates the right-translation semigroup, and
this does preserve the boundary condition.

If we let A0 be the restriction of A to the domain

domA0 := {f ∈ domA : f (1) = 0},

so adding a further boundary condition, then both A0 and −A0 are dissipative, but
neither generates a semigroup. We cannot solve the equation (λI ± A0)f = g for
all g when subject to the constraint that f ∈ domA0. [Take g ∈ L2[0, 1] such that
g(t) = t for all t ∈ [0, 1], construct F as in Example 2.59 and note that F(1) �= 0.]
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Example 2.62 Recall the weak derivativesDα and Sobolev spaces Hk(Rd ) defined
in Example 2.9, and let 2ej ∈ Z

d+ be the multi-index with 2 in the j th coordinate
and 0 elsewhere. The Laplacian

� :=
d∑

j=1

∂2

∂x2
j

=
d∑

j=1

D2ej

is a densely defined operator in L2(Rd) with domain dom� := H 2(Rd). It may be
shown that

〈�f, g〉L2(Rd) = −〈∇f,∇g〉L2(Rd) for all f, g ∈ H 2(Rd ), (2.6)

where

∇ := (De1 , . . . ,Ded ) : f �→
( ∂f

∂x1
, . . . ,

∂f

∂xd

)
;

consequently, the Laplacian � is dissipative. One way to establish (2.6) is to use the
Fourier transform. Fourier-theoretic results can also be used to prove that λI −� is
surjective for all λ > 0, essentially because the map x �→ 1/(λ + |x|2) is bounded
on R

d . Thus the Laplacian generates a contraction semigroup.

Exercise 2.63 Let A be a densely defined operator on the Hilbert space H. Prove
that if A is symmetric, so that

〈u,Av〉 = 〈Au, v〉 for all u, v ∈ domA,

then iA is dissipative. Deduce that if H is self-adjoint then iH and −iH are the
generators of contraction semigroups.

Prove, further, that if T = (Tt )t∈R+ has generator iH , with H self-adjoint, then
Tt is unitary, so that T ∗t Tt = I = TtT

∗
t , for all t ∈ R+.

Proof The first part is an immediate consequence of Theorem 2.58, the Lumer–
Phillips theorem, together with Exercise 2.41.

For the next part, fix u, v ∈ domH and t ∈ R+. If h > 0 then

h−1〈u, (T ∗t+hTt+h − T ∗t Tt )v〉 = 〈Tt+hu, h−1(Th − I)Tt v〉
+ 〈h−1(Th − I)Ttu, Ttv〉
→ 〈Ttu, iHTtv〉 + 〈iHTtu, Ttv〉 = 0

as h → 0+, since Ttu, Ttv ∈ domH and T is strongly continuous. A real-valued
function on R+ is constant if it is continuous and its right derivative is identically
zero, so this working shows that T ∗t Tt = I .
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Now let S = (St )t∈R+ be the strongly continuous semigroup with generator−iH .
The previous working shows that S∗t St = I for all t ∈ R+, so it suffices to let t > 0
and prove that St = T ∗t . To see this, let u, v ∈ domH and consider the function

F : [0, t] → C; s �→ 〈u, T ∗t−sSsv〉.

Working as above, it is straightforward to show that F ′ ≡ 0 on (0, t), so F(0) =
F(t) and the result follows. ��
Exercise 2.64 SupposeU is a strongly continuous one-parameter semigroup on the
Hilbert space H, with Ut unitary, so that U∗

t Ut = I = UtU
∗
t , for all t ∈ R+. Let A

be the generator of U .
Prove that U∗ = (U∗

t )t∈R+ is also a strongly continuous one-parameter
semigroup, with generator−A. Deduce that H := iA is self-adjoint.

Proof The semigroup property for U∗ is immediate, and strong continuity holds
because

‖(U∗
t − I)v‖2 = 〈(I − Ut )v, v〉 − 〈v, (Ut − I)v〉 � 2‖(Ut − I)v‖ ‖v‖ → 0

as t → 0+, for any v ∈ H.
Next, denote the generator of U∗ by B, and let v ∈ domA. Then

t−1(U∗
t − I)v = −U∗

t t
−1(Ut − I)v →−Av as t → 0+,

so −A ⊆ B. Since (U∗)∗ = U , applying this argument with U replaced by U∗
gives the reverse inclusion. Thus U∗ has generator B = −A, as claimed.

Finally, let H = iA and suppose first that u, v ∈ domH = domA. Then

〈−iHu, v〉 = lim
t→0+〈t

−1(Ut − I)u, v〉 = lim
t→0+〈u, t

−1(U∗
t − I)v〉 = 〈u, iHv〉,

so H ⊆ H ∗. For the reverse inclusion, note that

U∗
t v = v +

∫ t

0
U∗
s A

∗v ds for all v ∈ domA∗,

by Lemma 2.34 applied to U and properties of the adjoint. Thus A∗ ⊆ −A, the
generator of U∗, and therefore H ∗ = −iA∗ ⊆ iA = H . ��
Remark 2.65 Exercises 2.63 and 2.64 lead to Stone’s theorem, which gives a one-
to-one correspondence between self-adjoint operators and strongly continuous one-
parameter groups of unitary operators. This result has significant consequences for
the mathematical foundations of quantum theory; see [25, Section VIII.4].
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3 Classical Markov Semigroups

Throughout this section, the triple (�,F ,P) will denote a probability space, so
that P : F → [0, 1] is a probability measure on the σ -algebra F of subsets of �,
and E will denote a topological space, with E its Borel σ -algebra, generated by the
open subsets.

An E-valued random variable is a F -E-measurable mapping X : � → E. If X
is an E-valued random variable, then σ(X) is the smallest sub-σ -algebra F0 of F
such that X is F0-E measurable. More generally, if (Xi)i∈I is an indexed set of E-
valued random variables, then σ(Xi : i ∈ I) is the smallest sub-σ -algebra F0 of F
such that Xi is F0-E measurable for all i ∈ I .

3.1 Markov Processes

Definition 3.1 Given a real-valued random variable X which is integrable, so that

E
[|X|] :=

∫

�

|X(ω)|P(dω) <∞,

and a sub-σ -algebra F0 of F , the conditional expectation E[X|F0] is a real-valued
random variable Y which is F0-E measurable and such that

E[1AX] = E[1AY ] for all A ∈ F0.

The choice of Y is determined almost surely: if Y and Z are both versions of the
conditional expectation E[X|F0], then P(Y �= Z) = 0. The existence of Y is
guaranteed by the Radon–Nikodým theorem.

The fact that E[X|F0] is determined almost surely can be recast as saying
that E[·|F0] is a linear operator from L1(�,F ,P) to L1(�,F0,P|F0). In fact, the
map X �→ E[X|F0] is a contraction from Lp(�,F ,P) onto Lp(�,F0,P|F0), for
all p ∈ [1,∞].
Remark 3.2 Let X ∈ L2(�,F ,P). Informally, we can think of Y := E[X|F0]
as the best guess for X given the information in F0. In other words, the con-
ditional expectation Y of X with respect to F0 is the essentially unique choice
of F0-measurable random variable Z which minimises the least-squares distance
‖Z −X‖2.

Definition 3.3 Given a topological space E, let the Banach space

Bb(E) := {f : E → C | f is Borel measurable and bounded},
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with vector-space operations defined pointwise and supremum norm

‖f ‖ := sup{|f (x)| : x ∈ E}.

Exercise 3.4 Verify that Bb(E) is a Banach space. Show further that the norm
‖ · ‖ is submultiplicative, where multiplication of functions is defined pointwise, so
that Bb(E) is a Banach algebra. Show also that the Banach algebra Bb(E) is unital:
the multiplicative unit 1E is such that ‖1E‖ = 1. Show finally that the C∗ identity
holds:

‖f ‖2 = ‖f f ‖ for all f ∈ Bb(E),

where the isometric involution f �→ f is such that f (x) := f (x) for all x ∈ E.

Definition 3.5 (Provisional) A Markov process with state space E is a collection
of E-valued random variables X = (Xt)t∈R+ on a common probability space such
that, given any f ∈ Bb(E),

E[f (Xt) | σ(Xr : 0 � r � s)] = E[f (Xt ) | σ(Xs)]

for all s, t ∈ R+ such that s � t .
A Markov process is time homogeneous if, given any f ∈ Bb(E),

E[f (Xt) | Xs = x] = E[f (Xt−s) | X0 = x] (3.1)

for all s, t ∈ R+ such that s � t and x ∈ E.

Definition 3.5 is well motivated by Remark 3.2, but it is somewhat unsatisfactory;
for example, what should be the proper meaning of (3.1)? To improve upon it, we
introduce the following notion.

Definition 3.6 A transition kernel on (E,E) is a map p : E×E→ [0, 1] such that

(i) the map x �→ p(x,A) is Borel measurable for all A ∈ E and

(ii) the map A �→ p(x,A) is a probability measure for all x ∈ E.

We interpret p(x,A) as the probability that the transition ends in A, given that it
started at x.

Exercise 3.7 If p and q are transition kernels on (E,E), then the convolution p ∗ q
is defined by setting

(p ∗ q)(x,A) :=
∫

E

p(x, dy)q(y,A) for all x ∈ E and A ∈ E.

Prove that p ∗ q is a transition kernel. Prove also that convolution is associative:
if p, q and r are transition kernels then (p ∗ q) ∗ r = p ∗ (q ∗ r).
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Definition 3.8 A triangular collection {ps,t : s, t ∈ R+, s � t} of transition kernels
is consistent if ps,t ∗ pt,u = ps,u for all s, t , u ∈ R+ with s � t � u; that is,

ps,u(x,A) =
∫

E

ps,t (x, dy)pt,u(y,A) for all x ∈ E and A ∈ E. (3.2)

Equation (3.2) is the Chapman–Kolmogorov equation. We interpret ps,t (x,A) as
the probability of moving from x at time s to somewhere in A at time t .

Similarly, a one-parameter collection {pt : t ∈ R+} of transition kernels is
consistent if ps�pt = ps+t for all s, t ∈ R+. In this case, the Chapman–Kolmogorov
equation becomes

ps+t (x,A) =
∫

E

ps(x, dy)pt(y,A) for all x ∈ E and A ∈ E. (3.3)

We interpret pt (x,A) as the probability of moving from x into A in t units of time.

Definition 3.9 A family of E-valued random variables X = (Xt)t∈R+ on a
common probability space is a Markov process if there exists a consistent triangular
collection of transition kernels such that

E[1A(Xt) | σ(Xr : 0 � r � s)] = ps,t (Xs,A) almost surely

for all A ∈ E and s, t ∈ R+ such that s � t .
The family X is a time-homogeneous Markov process if there exists a consistent

one-parameter collection of transition kernels such that

E[1A(Xt) | σ(Xr : 0 � r � s)] = pt−s(Xs,A) almost surely

for all A ∈ E and s, t ∈ R+ such that s � t .

The connection between time-homogeneous Markov processes and semigroups
is provided by the following definition and theorem.

Definition 3.10 A Markov semigroup is a contraction semigroup T on Bb(E) such
that, for all t ∈ R+, the bounded linear operator Tt is positive: whenever f ∈ Bb(E)

is such that f � 0, that is, f (x) ∈ R+ for all x ∈ E, then Ttf � 0. [Note that we
impose no condition with respect to continuity at the origin.]

If Tt preserves the unit, that is, Tt1E = 1E for all t ∈ R+, then the Markov
semigroup T is conservative.

Remark 3.11 Positive linear maps preserve order: if T is such a map and f � g, in
the sense that f (x) � g(x) for all x ∈ E, then Tf � Tg. The image of a real-valued
function h under a positive linear map is real valued, since if h takes real values, then
h = h+ − h−, where h+ : x �→ max{h(x), 0} and h− := x �→ max{−h(x), 0}.
Consequently, positive linear maps also commute with the conjugation, in the sense
that T f = Tf .
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Exercise 3.12 Suppose the mapping T : Bb(E) → Bb(E) is linear and positive.
Show that |Tf |2 � T |f |2 T 1E for all f ∈ Bb(E), and deduce that T is bounded,
with norm ‖T ‖ � ‖T 1E‖.

Proof If f ∈ Bb(E), x ∈ E and λ ∈ R, then

0 � T
(|f − λ(Tf )(x)|2)(x) = λ2(T 1E)(x) |(Tf )(x)|2 − 2λ|(Tf )(x)|2 + (T |f |2)(x).

Inspecting the discriminant of this polynomial in λ gives the first claim, and the
second follows because.

|(Ttf )(x)|2 � (T |f |2)(x) (T 1E)(x) � ‖f ‖2(T 1E)
2(x) � ‖f ‖2‖T 1E‖2.

��
Theorem 3.13 Let p = {pt : t ∈ R+} be a family of transition kernels. Setting

(Ttf )(x) :=
∫

E

pt (x, dy)f (y) for all f ∈ Bb(E) and x ∈ E

defines a bounded linear operator on Bb(E) which is positive, contractive and unit
preserving. Furthermore, the family T = (Tt )t∈R+ is a Markov semigroup if and
only if p is consistent.

Proof If f ∈ Bb(E), x ∈ E and s, t ∈ R+, then the Chapman–Kolmogorov
equation (3.3) implies that

(Ts+tf )(x) =
∫

E

ps+t (x, dz)f (z) =
∫

E

∫

E

ps(x, dy)pt (y, dz)f (z)

=
∫

E

ps(x, dy)(Ttf )(y)

= (Ts(Ttf )
)
(x).

Verifying the remaining claims is left as an exercise. ��
If we have more structure on the semigroup T , then it is possible to provide a

converse to Theorem 3.13. This will be sketched in the following section.

3.2 Feller Semigroups

Definition 3.14 Let the topological space E be locally compact. Then

C0(E) := {f : E → C | f is continuous and vanishes at infinity} ⊆ Bb(E)
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is a Banach space when equipped with pointwise vector-space operations and the
supremum norm. [A function f : E → C vanishes at infinity if, for all ε > 0, there
exists a compact set K ⊆ E such that |f (x)| < ε for all x ∈ E \K .]

Exercise 3.15 Prove that C0(E) lies inside Bb(E) and is indeed a Banach space.
Prove that the multiplicative unit 1E is an element of C0(E) if and only if E is
compact.

Definition 3.16 A Markov semigroup T is Feller if the following conditions hold:

(i) Tt
(
C0(E)

) ⊆ C0(E) for all t ∈ R+ and

(ii) lim
t→0+‖Ttf − f ‖ = 0 for all f ∈ C0(E).

Remark 3.17 If a time-homogeneous Markov process X has Feller semigroup T ,
then

E
[
f (Xt+h)− f (Xt ) | σ(Xt)

] = (Thf − f )(Xt) = h (Af )(Xt)+ o(h),

so the generator A describes the change in X over an infinitesimal time interval.

Definition 3.18 An R
d -valued stochastic process X = (Xt)t∈R+ is a Lévy process

if and only if X

(i) has independent increments, so that Xt − Xs is independent of the past
σ -algebra σ(Xr : 0 � r � s) for all s, t ∈ R+ with s � t ,

(ii) has stationary increments, so that Xt − Xs has the same distribution
as Xt−s −X0, for all s, t ∈ R+ with s � t and

(iii) is continuous in probability at the origin, so lim
t→0+P

(|Xt −X0| � ε
) = 0

for all ε > 0.

Remark 3.19 Lévy processes are well behaved; they have cádlág modifications, and
such a modification is a semimartingale, for example.

Exercise 3.20 Prove that if X is a stochastic process with independent and sta-
tionary increments, and with cádlág paths, then X is continuous at the origin in
probability.

Theorem 3.21 Every Lévy process gives rise to a conservative Feller semigroup.

Proof (Sketch Proof) For all t ∈ R+, define a transition kernel pt by setting

pt(x,A) := E[1A(Xt −X0 + x)] for all x ∈ R
d and Borel A ⊆ R

d .

If s ∈ R+, then

pt(x,A) = E[1A(Xs+t −Xs + x)] = E[1A(Xs+t − Xs + x) | Fs], (3.4)
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where Fs := σ(Xr : 0 � r � s); the first equality holds by stationarity and the
second by independence. In particular,

pt (Xs,A) = E[1A(Xs+t ) | Fs],

so X is a Markov process with transition kernels {pt : t ∈ R+} if these are
consistent. For consistency, we use Theorem 3.13; let T be defined as there and
note that

(Ttf )(x) =
∫

E

pt (x, dy)f (y) = E[f (Xt −X0 + x)]. (3.5)

From the previous working, it follows that

(Ttf )(x) = E[f (Xs+t −Xs + x) | Fs],

and replacing x with the Fs-measurable random variable Xs −X0 + x gives that

(Ts+t f )(x) = E[f (Xs+t −X0 + x)] = E[(Ttf )(Xs −X0 + x)] = (Ts(Ttf )
)
(x),

as required. Equation (3.5) also shows that T is conservative.
If f ∈ C0(R

d ), then x �→ f (Xt−X0+x) ∈ C0(R
d) almost surely, and therefore

the Dominated Convergence Theorem gives that Ttf ∈ C0(R
d).

For continuity, let ε > 0 and note that f ∈ C0(R
d ) is uniformly continuous, so

there exists δ > 0 such that |f (x)− f (y)| < ε whenever |x − y| < δ. Hence

‖Ttf − f ‖ � sup
x∈Rd

E
[|f (Xt −X0 + x)− f (x)|]

= sup
x∈Rd

(
E
[
1|Xt−X0|<δ|f (Xt −X0 + x)− f (x)|]

+ E
[
1|Xt−X0|�δ|f (Xt −X0 + x)− f (x)|]

)

� ε + 2‖f ‖P(|Xt − X0| � δ
)

→ ε as t → 0+.

��
Theorem 3.22 Let T be a conservative Feller semigroup. If the state space E is
metrisable, then there exists a time-homogeneous Markov process which gives rise
to T .

Proof (Sketch Proof) For all t ∈ (0,∞), let

pt (x,A) := (Tt1A)(x) for all x ∈ E and A ∈ E.
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Then pt is readily verified to be a transition kernel.
Let μ be a probability measure on E. If tn � · · · � t1 � 0 and A1, . . .An ∈ E,

then

pt1,...,tn(A1 × · · · × An) =
∫

E

μ(dx0)

∫

A1

pt1(x0, dx1) . . .

∫

An

ptn−tn−1(xn−1, dxn).

By the Chapman–Kolmogorov equation (3.3), these finite-dimensional distributions
form a projective family. The Daniell–Kolmogorov extension theorem now yields a
probability measure on the product space

� := ER+ = {ω = (ωt )t∈R+ : ωt ∈ E for all t ∈ R+}

such the coordinate projections Xt : � → E; ω �→ ωt form a time-homogeneous
Markov process X with associated semigroup T . ��
Example 3.23 (Uniform Motion) If E = R and Xt = X0 + t for all t ∈ R+, then

(Ttf )(x) = f (x + t) =
∫

R

pt (x, dy)f (y) for all f ∈ C0(R) and x ∈ R,

where the transition kernel pt : (x,A) �→ δx+t (A). It follows that X gives rise to a
Feller semigroup with generator A such that Af = f ′ whenever f ∈ domA.

Example 3.24 (Brownian Motion) If E = R and X is a standard Brownian motion,
then Itô’s formula gives that

f (Xt ) = f (X0)+
∫ t

0
f ′(Xs) dXs + 1

2

∫ t

0
f ′′(Xs) ds for all f ∈ C2(R).

It follows that the Lévy process X has a Feller semigroup with the generatorA such
that Af = 1

2f
′′ for all f ∈ C2(R) ∩ domA. [Informally,

t−1(
E[f (Xt ) | X0 = x] − f (x)

) = 1

2t

∫ t

0
E[f ′′(Xs)|X0 = x] ds → 1

2
f ′′(x)

as t → 0+.]

Example 3.25 (Poisson Process) If E = R and X is a homogeneous Poisson
process with unit intensity and unit jumps, then

E[f (Xt )|X0 = x] = e−t
∞∑

n=0

tn

n!f (x + n) for all t ∈ R+.

Hence the Lévy process X has a Feller semigroup with the bounded generator A
such that (Af )(x) = f (x + 1) − f (x) for all x ∈ R and f ∈ C0(R). [To see this,
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note that

(Ttf − f )(x)

t
= e−t − 1

t
f (x)+ e−t f (x + 1)+O(t) as t → 0+,

uniformly for all x ∈ R.]

The following exercise and theorem show that it is possible to move from the
non-conservative to the conservative setting, and from a locally compact state space
to a compact one.

Exercise 3.26 Let T be a locally compact topology on E and let ∞ denote a point
not in E. Prove that Ê := E ∪ {∞} is compact when equipped with the topology

T̂ := T ∪ {(E \K) ∪ {∞} : K ∈ T is compact
}
,

and that T̂ is Hausdorff if and only if T is. [This is the Alexandrov one-point
compactification.] Prove further that C0(E) has co-dimension one in C(Ê).

Theorem 3.27 Let T be a Feller semigroup with locally compact state space E. If

T̂t f := f (∞)+ Tt
(
f |E − f (∞)

)
for all t ∈ R+ and f ∈ Bb(Ê),

then T̂ = (T̂t
)
t∈R+ is a conservative Feller semigroup with compact state space Ê.

Proof Fix t ∈ R+. The hardest step is to prove that T̂t is positive, that is, if λ ∈ R+
and g ∈ Bb(E) are such that λ + g(x) � 0 for all x ∈ E, then λ + (Ttg)(x) � 0
for all x ∈ E. Note that g is real valued, and Tt maps real-valued functions to real-
valued functions, by positivity. Let the function g− := x �→ max{−g(x), 0} and
note that λ � g−(x) for all x ∈ E. Hence

(Ttg
−)(x) � ‖Ttg−‖ � ‖g−‖ � λ

and (Ttg)(x) � (−Ttg−)(x) � −λ, as required.
It is immediate that T̂t preserves the unit, so T̂t is contractive, by Exercise 3.12.

The remaining claims are straightforward to verify. ��

3.3 The Hille–Yosida–Ray Theorem

As noted above, it can be difficult to show that the hypotheses of the Hille–Yosida
theorem, Theorem 2.49, hold. The Lumer–Phillips theorem gives an alternative for
contraction semigroups, via the notion of dissipativity. Here, we will show that the
additional structure available for Feller semigroups gives another possible approach.
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Throughout this subsection, E denotes a locally compact Hausdorff space. Here,
a Feller semigroup on C0(E) means a strongly continuous contraction semigroup
on C0(E) composed of positive operators. This is the restriction to C0(E) of the
Feller semigroups considered above.

Let

C0(E;R) :=
{
f : E → R | f ∈ C0(E)

}

denote the real subspace of C0(E) containing those functions which take only real
values.

Definition 3.28 A linear operator A in C0(E) is real if and only if

(i) f ∈ domA whenever f ∈ domA, so that the domain of A is closed
under conjugation, and

(ii) Af = Af for all f ∈ domA, so that A commutes with the conjugation.

Exercise 3.29 Show that (i) and (ii) are equivalent to

(i) f + ig ∈ domA implies f , g ∈ domA whenever f , g ∈ C0(E;R), and

(ii) A
(
domA ∩ C0(E;R)

) ⊆ C0(E;R),
respectively.

Exercise 3.30 Prove that T is real whenever T is positive.
Prove further that if T = (Tt )t∈R+ is a Feller semigroup on C0(E) and Tt is real

for all t ∈ R+ then the generator A of T is real.

Proof The first claim is an immediate consequence of Remark 3.11.
For the second, suppose A is the generator of the Feller semigroup T on C0(E),

with each Tt real, and let f ∈ domA. Then, since conjugation is isometric, if t > 0,
then

‖t−1(Ttf − t)− Af ‖ = ‖t−1(Ttf − f )− Af ‖ = ‖t−1(Ttf − f )− Af ‖,

and so f ∈ domA, with Af = Af . The result follows. ��
Definition 3.31 A linear operator A in C0(E) satisfies the positive maximum
principle if, whenever f ∈ domA ∩ C0(E;R) and x0 ∈ E are such that f (x0) =
‖f ‖, it holds that (Af )(x0) � 0.

Theorem 3.32 (Hille–Yosida–Ray) A closed, densely defined operator A in
C0(E) is the generator of a Feller semigroup on C0(E) if and only if A is real
and satisfies the positive maximum principle, and λI − A is surjective for some
λ > 0

Proof Suppose first that A generates a Feller semigroup on C0(E). By the Lumer–
Phillips theorem, Theorem 2.58, and Exercise 3.30, it suffices to prove that A
satisfies the positive maximum principle. For this, let f ∈ domA ∩ C0(E;R) and
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x0 ∈ E be such that f (x0) = ‖f ‖. Setting f+ := x �→ max{f (x), 0}, we see that

(Ttf )(x0) � (Ttf
+)(x0) � ‖Ttf+‖ � ‖f+‖ = f (x0).

Thus

(Af )(x0) = lim
t→0+

(Ttf − f )(x0)

t
� 0.

Conversely, suppose A is real and satisfies the positive maximum principle.
Given any f ∈ domA, there exist x0 ∈ E and θ ∈ R such that eiθf (x0) = ‖f ‖.
The real-valued function g := Re eiθf ∈ domA, since A is real, and ‖f ‖ =
g(x0) � ‖g‖ � ‖f ‖, so Re(Aeiθf )(x0) = (Ag)(x0) � 0, by the positive maximum
principle. If λ > 0, then

‖(λI − A)f ‖ = ‖(λI − A)eiθf ‖ � |λeiθf (x0)− (Aeiθf )(x0)|

� Re λeiθf (x0)− Re(Aeiθf )(x0) � λ‖f ‖,

so A is dissipative, by Lemma 2.56, and λI − A is injective. In particular, T is a
strongly continuous contraction semigroup, by the Lumer–Phillips theorem.

To prove that each Tt is positive, let λ > 0 be such that λI − A is surjective, so
invertible, let f ∈ C0(E) be non-negative, and consider g = (λI−A)−1f ∈ C0(E).
Either g does not attain its infimum, in which case g � 0 because g vanishes at
infinity, or there exists x0 ∈ E such that g(x0) = inf{g(x) : x ∈ E}. Then

λg − Ag = (λI − A)g = f ⇐⇒ λg − f = Ag,

so λg(x0) − f (x0) = (Ag)(x0) � 0, by the positive maximum principle applied
to −g. Thus if x ∈ E, then

λg(x) � λg(x0) � f (x0) � 0,

which shows that λ(λI − A)−1 is positive and therefore so is (λI − A)−1. Finally,
Theorem 2.46 gives that

Ttf = lim
n→∞(I − tn−1A)−nf

= lim
n→∞(t

−1n)n(t−1nI − A)−nf for all f ∈ C0(E), (3.6)

so each Tt is positive also. ��
Exercise 3.33 Prove that if the operator A is real then its resolvent (λI − A)−1 is
real for all λ ∈ R \ σ(A). Deduce with the help of Theorem 2.46 that the Feller
semigroup T is real if its generator A is.
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Proof Suppose A is real and λ ∈ R \ σ(A). If f ∈ C0(E), then f = (λI −A)g for
some g ∈ C0(E), and

f = (λI − A)g = λg − Ag = (λI − A)g.

Hence

(λI − A)−1f = g = (λI − A)−1f ,

as required. Since conjugation is isometric, the deduction is immediate. ��
Example 3.34 Let the linear operator A be defined by setting

domA := {f ∈ C0(R) ∩ C2(R) : f ′′ ∈ C0(R)
}

and Af = 1

2
f ′′.

It is a familiar result from elementary calculus thatA satisfies the positive maximum
principle

Remark 3.35 Courrège has classified the linear operators in C0(R
d) with domains

containing C∞c (Rd ) which satisfy the positive maximum principle. See [3, §3.5.1]
and references therein.

4 Quantum Feller Semigroups

To move beyond the classical, we need to replace the commutative domain C0(E)

with the correct non-commutative generalisation. This is what we introduce in the
following section.

4.1 C∗ Algebras

Definition 4.1 A Banach algebra is a complex Banach space and simultaneously
a complex associative algebra: it has an associative multiplication compatible with
the vector-space operators and the norm, which is submultiplicative. If the Banach
algebra is unital, so that it has a multiplicative identity 1, called its unit, then we
require the norm ‖1‖ to be 1.

An involution on a Banach algebra is an isometric conjugate-linear map which
reverses products and is self-inverse.

A Banach algebra with involution A is a C∗ algebra if and only if the C∗ identity
holds:

‖a∗a‖ = ‖a‖2 for all a ∈ A.
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Remark 4.2 The C∗ identity connects the algebraic and analytic structures in
a very rigid way. For example, there exists at most one norm for which an
associative algebra is a C∗ algebra, and ∗-homomorphisms between C∗ algebras
are automatically contractive [30, Proposition I.5.2].

Theorem 4.3 (Gelfand) Every commutative C∗ algebra is isometrically isomor-
phic to C0(E), where E is a locally compact Hausdorff space. The algebra is unital
if and only if E is compact, in which case C0(E) = C(E).

Theorem 4.4 (Gelfand–Naimark) Any C∗ algebra is isometrically ∗-isomorphic
to a norm-closed ∗-subalgebra of B(H) for some Hilbert space H, a so-called
concrete C∗ algebra.

Remark 4.5 Let A be a C∗ algebra. Given any n ∈ N, let Mn(A) be the complex
algebra of n × n matrices with entries in A, equipped with the usual algebraic
operations. By the Gelfand–Naimark theorem, we may assume that A ⊆ B(H) for
some Hilbert space H, and so Mn(A) ⊆ B(Hn), where matrices of operators act in
the usual manner on column vectors with entries in H. We equip Mn(A) with the
restriction of the operator norm on B(Hn), and then Mn(A) becomes a C∗ algebra.

Remark 4.5 is the root of the theory of operator spaces [10, 24].

Definition 4.6 A unital concrete C∗ algebra A ⊆ B(H) is a von Neumann algebra
if and only if any of the following equivalent conditions hold.

(i) Closure in the strong operator topology: if the net (ai) ⊆ A and a ∈
B(H) are such that aiv → av for all v ∈ H, then a ∈ A.

(ii) Closure in the weak operator topology: if the net (ai) ⊆ A and a ∈ B(H)
are such that 〈v, aiv〉 → 〈v, av〉 for all v ∈ H, then a ∈ A.

(iii) Equality with its bicommutant: letting

S′ := {a ∈ A : ab = ba for all b ∈ S}

denote the commutant of S ⊆ A, then A′′ := (A′)′ = A [von Neumann].

(iv) Existence of a predual: there exists a Banach space A∗ with (A∗)∗ = A
[Sakai].

Sakai’s characterisation (iv) prompts consideration of the predual of B(H). The
predual A∗ is naturally a subspace of A∗, and a bounded linear functional φ on B(H)
is an element of B(H)∗ if and only it is σ -weakly continuous: there exist square-
summable sequences (un)∞n=1 and (vn)∞n=1 ⊆ H such that

∞∑

n=1

(‖un‖2 + ‖vn‖2) <∞ and φ(T ) =
∞∑

n=1

〈un, T vn〉 for all T ∈ B(H).

(4.1)
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This yields a fifth characterisation of von Neumann algebras.

(v) Closure in the σ -weak topology: if the net (ai) ⊆ A and a ∈ B(H) are
such that φ(ai)→ φ(a) for all φ ∈ B(H)∗, then a ∈ A.

The predual A∗ consists of all those bounded linear functionals on A which are
continuous in the σ -weak topology; equivalently, they are the restriction to A of
elements of B(H)∗ as described in (4.1).

Example 4.7 Recall from Example 2.15 that L∞(�,F , μ) ∼= (L1(�,F , μ)
)∗, and

so every L∞ space is a commutative von Neumann algebra. Furthermore, every
commutative von Neumann algebra is isometrically ∗-isomorphic to L∞(�,F , μ)

for some locally compact Hausdorff space � and positive Radon measure μ; see
[30, Theorem III.1.18].

4.2 Positivity

Definition 4.8 In a C∗ algebra A we have the notion of positivity: we write a � 0
if and only if there exists b ∈ A such that a = b∗b. The set of positive elements in
A is denoted by A+, is closed in the norm topology and is a cone: it is closed under
addition and multiplication by non-negative scalars. Note that a positive element is
self-adjoint.

This notion of positivity agrees with that encountered previously.

Lemma 4.9 Let T ∈ B(H) be such that 〈v, T v〉 � 0 for all v ∈ H. There exists
a unique operator S ∈ B(H) such that 〈v, Sv〉 � 0 for all v ∈ H, and S2 = T .
Furthermore, S is the limit of a sequence of polynomials in T with no constant
term.

Proof This may be established with the assistance of the Maclaurin series for the
function z �→ (1− z)1/2. See [25, Theorem VI.9] for the details. ��
Corollary 4.10 If a ∈ A+, then there exists a unique element a1/2 ∈ A+, the
square root of a, such that (a1/2)2 = a. The square root a1/2 lies in the closed
linear subspace of A spanned by the set of monomials {an : n ∈ N}.
Proof This is a straightforward exercise. ��
Exercise 4.11 Prove that f ∈ C0(E)+ if and only if f (x) � 0 for all x ∈ E. Prove
also that if the C∗ algebra A ⊆ B(H), where H is a Hilbert space, then a ∈ A+ if
and only if 〈v, av〉 � 0 for all v ∈ H. [The existence of square roots is crucial for
both parts.]

Proposition 4.12 Let A by a C∗ algebra. Then any element a ∈ A may be written
in the form (a1 − a2)+ i(a3 − a4), where a1, . . . , a4 ∈ A+.
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Proof The self-adjoint elements Re a := (a + a∗)/2 and Im a := (a − a∗)/(2i) are
such that a = Re a + i Im a. Thus it suffices to show that any self-adjoint element
of A is the difference of two positive elements.

Let a ∈ A be self-adjoint and let A0 be the closed linear subspace of A spanned by
the set of monomials {an : n ∈ N}. As A0 is a commutativeC∗ algebra, Theorem 4.3
gives an isometric ∗-isomorphism j : A0 → C0(E), where E is a locally compact
Hausdorff space. Then f := j (a) is real valued, so

f+ := x �→ max{f (x), 0} and f− := x �→ max{−f (x), 0}

are well-defined elements of C0(E)+ such that f = f+−f−. Hence a = a+−a−,
where a+ := j−1(f+) and a− := j−1(f−) are positive, as desired. ��
Remark 4.13 The proof of Proposition 4.12 shows that if a ∈ A is self-adjoint, then
there exist a+, a− ∈ A+ such that a = a+ − a− and a+a− = 0.

Definition 4.14 The positive cone provides a partial order on the set of self-adjoint
elements of A. Given elements a, b ∈ A, we write a � b if and only if a = a∗,
b = b∗ and b − a ∈ A+.

This order respects the norm.

Proposition 4.15 Let a, b ∈ A+ be such that a � b. Then ‖a‖ � ‖b‖.

Proof Suppose without loss of generality that A ⊆ B(H). Then a � b � ‖b‖I ,
by transitivity, Exercise 4.11 and the Cauchy–Schwarz inequality. If A0 denotes the
unital commutative C∗ algebra generated by the set of monomials {an : n ∈ Z+},
then Theorem 4.3 gives an isometric ∗-isomorphism j : A0 → C(E), where E is a
compact Hausdorff space. Hence

0 � j (‖b‖I − a)(x) = ‖b‖ − j (a)(x) for all x ∈ E,

so 0 � j (a)(x) � ‖b‖ for all such x and ‖a‖ = ‖j (a)‖∞ � ‖b‖, as claimed. ��
Exercise 4.16 Prove that if a ∈ A+ and n ∈ Z+, then ‖an‖ = ‖a‖n. [Hint: work as
in the proof of Proposition 4.15.]

Definition 4.17 A linear map � : A → B between C∗ algebras is positive if and
only if �(A+) ⊆ B+.

Note that any algebra ∗-homomorphism is positive; this fact has been utilised in
the proof of Proposition 4.15.

Corollary 4.18 Let � : A → B be a positive linear map between C∗ algebras.
Then

(i) the map � commutes with the involution, so that �(a∗) = �(a)∗ for all
a ∈ A, and

(ii) the map � is bounded.
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Proof Part (i) is an exercise.
For (ii), it suffices to prove that � is bounded on A+; suppose otherwise for

contradiction. For all n ∈ N, let an ∈ An be such that ‖an‖ = 1 and ‖�(an)‖ > 3n.
If a :=∑n�1 2−nan ∈ A+, then a � 2−nan for all n ∈ N. Hence�(a) � 2−nφ(an)
and ‖φ(a)‖ � 2−n‖�(an)‖ > (3/2)n, by Proposition 4.15, which is a contradiction
for sufficiently large n. ��

We will now begin to investigate the generators of positive semigroups, following
in the footsteps of Evans and Hanche-Olsen [12].

Theorem 4.19 Let T = (Tt )t∈R+ be a uniformly continuous one-parameter
semigroup on the C∗ algebra A. If Tt is positive for all t ∈ R+, then the semigroup
generator L is bounded and ∗-preserving.

Proof The boundedness of L follows immediately from Theorem 2.23, and if a ∈
A, then

L(a)∗ = lim
t→0+ t

−1(Tt (a)− a)∗ = lim
t→0+ t

−1(Tt (a
∗)− a∗) = L(a∗),

by continuity of the involution and the fact that positive maps are ∗-preserving. ��
The following result is a variation on [12, Theorem 2]. The proof exploits an idea

of Fagnola [14, Proof of Proposition 3.10].

Theorem 4.20 Let L be a ∗-preserving bounded linear map on the C∗ algebra A.
The following are equivalent.

(i) If a, b ∈ A+ are such that ab = 0, then aL(b)a � 0.

(ii) (λI −L)−1 is positive for all sufficiently large λ > 0.

(iii) Tt = exp(tL) is positive for all t ∈ R+.

Proof Suppose (i) holds; we will show that (λI − L)−1 is positive if λ > ‖L‖. It
suffices to take a ∈ A such that (λI − L)(a) is positive, and prove that a ∈ A+.
Note that a is self- adjoint, so Remark 4.13 gives b and c ∈ A+ with a = b − c and
bc = 0. Thus (ii) holds if c = 0.

The condition bc = 0 implies that b1/2c = 0, so (i) gives that cL(b)c � 0. Hence

0 � c∗
(
λa −L(a)

)
c = λc(b − c)c− cL(b)c+ cL(c)c � −λc3 + cL(c)c,

and therefore 0 � λc3 � cL(c)c. It follows that λ‖c‖3 = λ‖c3‖ � ‖L‖ ‖c‖3,
which holds only when c = 0, as required.

That (ii) and (iii) are equivalent is a consequence of Theorems 2.45 and 2.46. To
see that (iii) implies (i), note that if a, b ∈ A+ are such that ab = 0, then

0 � t−1aTt(b)a = t−1a
(
b + tL(b)+O(t)

)
a = aL(b)a +O(t)→ aL(b)a

as t → 0+. ��
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In the quantum world, we can go beyond positivity to find a stronger notion,
complete positivity, which is of great importance to the theories of open quantum
systems and quantum information.

4.3 Complete Positivity

Recall from Remark 4.5 that matrix algebras over C∗ algebras are also C∗ algebras.

Definition 4.21 Let n ∈ N. A linear map � : A → B between C∗ algebras is
n-positive if and only if the ampliation

�(n) : Mn(A)→ Mn(B); (aij )ni,j=1 �→
(
�(aij )

)n
i,j=1

is positive. If � is n-positive for all n ∈ N, then � is completely positive.

Remark 4.22 Choi [6] produced examples of maps which are n-positive but not
n+ 1-positive.

Exercise 4.23 Let n ∈ N and let T = (Tt )t∈R+ be a one-parameter semigroup

on the C∗ algebra A. Prove that T (n) = (T
(n)
t )t∈R+ is a one-parameter semigroup

on Mn(A), Prove further that if T is uniformly continuous, with generator L, then
T (n) is also uniformly continuous, with generator L(n).

Proposition 4.24 (Paschke [23]) Let A = (aij )
n
i,j=1 ∈ Mn(A), where A is a

C∗ algebra. The following are equivalent.

(i) The matrix A ∈ Mn(A)+.

(ii) The matrix A may be written as the sum of at most n matrices of the
form (b∗i bj )

n
i,j=1, where b1, . . . , bn ∈ A.

(iii) The sum
∑n

i,j=1 c
∗
i aij cj ∈ A+ for any c1, . . . , cn ∈ A.

Proof To see that (iii) implies (i), we use the fact that any C∗ algebra has a faithful
representation which is a direct sum of cyclic representations [30, Theorem III.2.4].
Thus we may assume without loss of generality that A ⊆ B(H) and there exists a
unit vector u ∈ H such that {au : a ∈ H} is dense in H.

Given this and Exercise 4.11, let c1, . . . , cn ∈ A. Then (iii) implies that

0 �
n∑

i,j=1

〈u, c∗i aij cju〉H = 〈v,Av〉Hn ,

where v = (c1u, . . . , cnu)
T ∈ Hn. Vectors of this form are dense in Hn as c1, . . . ,

cn vary over A, so the result follows by another application of Exercise 4.11.
The other implications are straightforward to verify. ��
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Exercise 4.25 Let n ∈ N. Use Proposition 4.24 to prove that a linear map � : A→
B between C∗ algebras is n-positive if and only if

n∑

i,j=1

b∗i �(a∗i aj )bj � 0

for all a1, . . . , an ∈ A and b1, . . . , bn ∈ B. Deduce that any ∗-homomorphism
between C∗ algebras is completely positive, as is any map of the form

B(K)→ B(H); a �→ T ∗aT , where T ∈ B(H;K).

Theorem 4.26 A positive linear map � : A → B between C∗ algebras is
completely positive if A is commutative or B is commutative.

Proof The first result is due to Stinespring [29] and the second to Arveson [4]. We
will prove the latter.

We may suppose that B = C0(E), whereE is a locally compact Hausdorff space,
by Theorem 4.3. If a1, . . . , an ∈ A, b1, . . . , bn ∈ B and x ∈ E, then

( n∑

i,j=1

b∗i �(a∗i aj )bj
)
(x) =

n∑

i,j=1

bi(x)�(a
∗
i aj )(x)bj (x) = �

(
c(x)∗c(x)

)
(x) � 0,

where c(x) :=∑n
i=1 bi(x)ai ∈ A. Exercises 4.11 and 4.25 give the result. ��

Definition 4.27 A map � : A → B between unital algebras is unital if �(1A) =
1B, where 1A and 1B are the multiplicative units of A and B, respectively.

Theorem 4.28 (Kadison) A 2-positive unital linear map � : A → B between
unital C∗ algebras is such that

�(a)∗�(a) � �(a∗a) for all a ∈ A. (4.2)

Proof Note first that if a ∈ A then

A :=
[

1 a

a∗ a∗a

]

=
[

1 a

0 0

]∗ [
1 a

0 0

]

� 0,

so

0 � �(2)(A) =
[

1 �(a)

�(a)∗ �(a∗a)

]

.
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Suppose without loss of generality that B ⊆ B(H) for some Hilbert space H, and
note that, by Exercise 4.11, if u ∈ H and

v :=
[−�(a)u

u

]

∈ H2 then 0 � 〈v,�(2)(A)v〉 = 〈u, (�(a∗a)−�(a)∗�(a))u〉.

As u is arbitrary, the claim follows. ��
Remark 4.29 The inequality (4.2) is known as the Kadison–Schwarz inequality.

Exercise 4.30 Show that the inequality (4.2) holds if � is required only to be
positive as long as a is normal, so that a∗a = aa∗. [Hint: use Theorem 4.26.]

4.4 Stinespring’s Dilation Theorem

Exercise 4.25 gives two classes of completely positive maps. The following result
makes clear that these are, in a sense, exhaustive.

Theorem 4.31 (Stinespring [29]) Let � : A→ B(H) be a linear map, where A is
a unital C∗ algebra and H is a Hilbert space. Then � is completely positive if and
only if there exists a Hilbert space K, a unital ∗-homomorphism π : A→ B(K) and
a bounded operator T : H→ K such that

�(a) = T ∗π(a)T (a ∈ A).

Proof One direction is immediate. For the other, let K0 := A ⊗ H be the
algebraic tensor product of A with H, considered as complex vector spaces. Define
a sesquilinear form on K0 such that

〈a ⊗ u, b⊗ v〉 = 〈u,�(a∗b)v〉H for all a, b ∈ A and u, v ∈ H.

It is an exercise to check that this form is positive semidefinite, using the assumption
that � is completely positive, and that the kernel

K00 := {x ∈ K0 : 〈x, x〉 = 0}

is a vector subspace of K0. Let K be the completion of K0/K00 =
{[x] : x ∈ K0

}
.

If

π(a)[b⊗ v] := [ab⊗ v] for all a, b ∈ A and v ∈ H,

then π(a) extends by linearity and continuity to an element of B(K), denoted in the
same manner. Furthermore, the map a �→ π(a) is a unital ∗-homomorphism from
A to B(K).
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To conclude, let T ∈ B(H;K) be defined by setting T v = [1⊗ v] for all v ∈ H.
It is a final exercise to verify that �(a) = T ∗π(a)T , as required. ��

The following result extends the Kadison–Schwarz inequality, Theorem 4.28.

Corollary 4.32 If � : A→ B(H) is unital and completely positive then

n∑

i,j=1

〈vi,
(
�(a∗i aj )−�(ai)

∗�(aj )
)
vj 〉 � 0

for all n ∈ N, a1, . . . , an ∈ A and v1, . . . , vn ∈ H.

Proof Let π and T be as in Theorem 4.31. Then ‖T ‖2 = ‖T ∗π(1A)T ‖ =
‖�(1A)‖ = 1 and

n∑

i,j=1

〈vi,�(a∗i aj )vj 〉 =
n∑

i,j=1

〈T vi, π(a∗i aj )T vj 〉 =
∥
∥
∥

n∑

i=1

π(ai)T vi

∥
∥
∥

2

�
∥
∥
∥T ∗

n∑

i=1

π(ai)T vi

∥
∥
∥

2

=
∥
∥
∥

n∑

i=1

�(ai)vi

∥
∥
∥

2

=
n∑

i,j=1

〈vi,�(ai)∗�(aj )vj 〉.

��
Definition 4.33 A triple (K, π, T ) as in Theorem 4.31 is a Stinespring dilation of
�. Such a dilation is minimal if

K = lin{π(a)T v : a ∈ A, v ∈ H}.

Proposition 4.34 Any unital completely positive map � : A → B(H) has a
minimal Stinespring dilation.

Proof One may take (K, π, T ) as in Theorem 4.31 and restrict to the smallest closed
subspace of K containing {π(a)T v : a ∈ A, v ∈ H}. ��
Exercise 4.35 Prove that the minimal Stinespring dilation is unique in an appropri-
ate sense.

Definition 4.36 Let (ai) ⊆ A be a net in the von Neumann algebra A ⊆ B(H). We
write ai ↘ 0 if ai � aj � 0 whenever i � j and 〈v, aiv〉 → 0 for all v ∈ H.
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[It follows from Vigier’s theorem [22, Theorem 4.1.1.] that the decreasing net (ai)
converges in the strong operator topology to some element a ∈ A+.]

A linear map � : A → B(K) is normal if ai ↘ 0 implies that 〈v,�(ai )v〉 → 0
for all v ∈ K.

Proposition 4.37 Let A be a von Neumann algebra. If the linear map � : A →
B(H) is completely positive and normal, then the unital ∗-homomorphism π of
Theorem 4.31 may be chosen to be normal also.

Proof Let (K, π, T ) be a minimal Stinespring dilation for �. If v ∈ H, a ∈ A and
the net (ai) ⊆ A+ is such that ai ↘ 0, then

〈π(a)T v, π(ai)π(a)T v〉 = 〈v, T ∗π(a∗aia)T v〉 = 〈v,�(a∗aia)v〉 → 0,

since a∗aia ↘ 0. It now follows by polarisation and minimality that π(ai)↘ 0, as
required. ��
Proposition 4.38 A linear map � : A → B(H) is normal if and only if it is σ -
weakly continuous.

Proof It suffices to prove that if (bi) ⊆ B(K) is a norm-bounded net then bi → 0
in the σ -weak topology if and only if 〈v, biv〉 → 0 for all v ∈ K. Furthermore, by
polarisation, we need only consider σ -weakly continuous functionals of the form

φ : B(K)→ C; a �→
∞∑

n=1

〈xn, axn〉, where
∞∑

n=1

‖xn‖2 <∞.

The result now follows by a standard truncation argument. ��

4.5 Semigroup Generators

We will now introduce the class of quantum Feller semigroups, and proceed toward
a classification of the semigroup generators for a uniformly continuous subclass.
As above, we will first establish some necessary conditions that hold in greater
generality.

Definition 4.39 A quantum Feller semigroup T = (Tt )t∈R+ on a C∗ algebra A is a
strongly continuous contraction semigroup such that each Tt is completely positive.

If A is unital, with unit 1, and Tt1 = 1 for all t ∈ R+ then T is conservative.

Exercise 4.40 Let T be a quantum Feller semigroup on a unital C∗ algebra. Prove
that T is conservative if and only if 1 ∈ domL, with L(1) = 0. [Hint: Theorem 2.46
may be useful.]

To begin the characterisation of the generators of these semigroups, we introduce
a concept due to Evans [11].



46 A. C. R. Belton

Proposition 4.41 Let � : A → B(H) be a linear map on the unital concrete
C∗ algebra A ⊆ B(H). The following are equivalent.

(i) If n ∈ N and a ∈ Mn(A), then

�(n)(a∗a)+ a∗�(n)(1)a −�(n)(a∗)a − a∗�(n)(a) ∈ Mn

(
B(H)

)
+.

(ii) If n ∈ N and a1, . . . , an ∈ A, then

(
�(a∗i aj )+ a∗i �(1)aj −�(a∗i )aj − a∗i �(aj )

)n
i,j=1 ∈ Mn

(
B(H)

)
+.

(iii) If n ∈ N, a1, . . . , an ∈ A and v1, . . . , vn ∈ H are such that
∑n

i=1 aivi =
0, then

n∑

i,j=1

〈vi,�(a∗i aj )vj 〉 � 0.

(iv) If n ∈ N, a1, . . . , an ∈ A and b1, . . . , bn ∈ B(H) are such that∑n
i=1 aibi = 0, then

n∑

i,j=1

b∗i �(a∗i aj )bj � 0.

Proof Given a1, . . . , an ∈ A, let a = (aij ) ∈ Mn(A) be such that a1j = aj
and aij = 0 otherwise. Then

(
�(n)(a∗a)+ a∗�(n)(1)a −�(n)(a∗)a − a∗�(n)(a)

)
ij

= �(a∗i aj )+ ai�(1)aj −�(a∗i )aj − a∗i �(aj )

for all i, j = 1, . . . , n, so (i) implies (ii).
Conversely, let a = (aij ) ∈ Mn(A). Applying (ii) to ak1, . . . , akn and then

summing over k gives that

0 �
n∑

k=1

[
�(a∗kiakj )+ a∗ki�(1)akj −�(a∗ki)akj − a∗ki�(a∗ki)

]n
i,j=1

= �(n)(a∗a)− a∗�(n)(1)a −�(n)(a∗)a − a∗�(n)(a).

Thus (ii) implies (i).
The implication from (ii) to (iii) is clear, as is that from (iii) to (iv). For the final

part, let a1, . . . , an ∈ A and b1, . . . , bn ∈ B(H), let a0 = 1 and b0 = −∑n
i=1 aibi ,
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and note that
∑n

i=0 aibi = 0. Hence (iv) gives that

0 �
n∑

i,j=0

b∗i �(a∗i aj )bj =
n∑

i,j=1

b∗i
(
�(a∗i aj )+a∗i �(1)aj −a∗i �(aj )−�(a∗i )aj

)
bj .

Thus (ii) now follows from the first part of Exercise 4.25. ��
Definition 4.42 A linear map � : A → B(H) on the unital C∗ algebra A ⊆ B(H)
is conditionally completely positive if and only if any of the equivalent conditions
in Proposition 4.41 hold.

Exercise 4.43 Prove that the set of conditionally completely positive maps from A
to B(H) is a cone, that is, closed under addition and multiplication by non-negative
scalars. Prove also that this cone contains all completely positive maps and scalar
multiples of the identity map. Finally, prove that the cone is closed under pointwise
weak-operator convergence: the net �i → � if and only if 〈v,�i(a)v〉 →
〈v,�(a)v〉 for all a ∈ A and v ∈ H.

Exercise 4.44 Let A be as in Definition 4.42. A linear map δ : A → B(H) is a
derivation if and only if

δ(ab) = aδ(b)+ δ(a)b for all a, b ∈ A.

Prove that a derivation is conditionally completely positive. Prove also that the map

A→ B(H); a �→ G∗a + aG

is conditionally completely positive and normal for all G ∈ B(H).

Theorem 4.45 Let T be a uniformly continuous quantum Feller semigroup on the
unital C∗ algebra A ⊆ B(H). The semigroup generator L is bounded, ∗-preserving
and conditionally completely positive.

Proof The first two claims follow immediate from Theorem 4.19. For conditional
complete positivity, let a1, . . . , an ∈ A and v1, . . . , vn ∈ H. By Corollary 4.32, if
t > 0, then

t−1
n∑

i,j=1

〈vi,
(
Tt (a

∗
i aj )− Tt (ai)

∗Tt (aj )
)
vj 〉 � 0.

Letting t → 0+ gives that

n∑

i,j=1

〈vi,
(
L(a∗i aj )−L(ai)∗aj − a∗i L(aj )

)
vj 〉 � 0,

and if
∑n

i=1 aivi = 0 then the second and third terms vanish. ��
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Exercise 4.46 Use Exercise 4.43 to provide an alternative proof that L in Theo-
rem 4.45 is conditionally completely positive.

The following result is [11, Theorem 2.9] of Evans, who credits Lindblad [21].

Theorem 4.47 (Lindblad, Evans) Let L be a ∗-preserving bounded linear map
on the unital C∗ algebra A ⊆ B(H). The following are equivalent.

(i) L is conditionally completely positive.

(ii) (λI −L)−1 is completely positive for all sufficiently large λ > 0.

(iii) Tt = exp(tL) is completely positive for all t ∈ R+.

Proof The equivalence of (ii) and (iii) is given by Theorems 2.45 and 2.46, together
with Exercise 4.23. The solution to Exercise 4.46 gives that (iii) implies (i); to
complete the proof, it suffices to show that (i) implies (iii).

Suppose first that L(1) � 0. Then L(n)(1) � 0 for all n ∈ N, so if a ∈ Mn(A)
then

L(n)(a∗a) � a∗L(n)(a∗)a + a∗L(n)(a).

Thus if b, c ∈ Mn(A)+ are such that bc = 0 then b1/2c = 0 and

cL(n)(b)c � cL(n)(b1/2)b1/2c+ cb1/2L(n)(b)c = 0.

Theorem 4.20 now gives that T (n)
t = exp(tL(n)) is positive for all t ∈ R+, so (iii)

holds.
Finally, if L(1) > 0, then the conditionally completely positive map

L′ : A→ B(H); a �→ L(a)− ‖L(1)‖a

is such that L′(1) � 0, since 0 � L(1) � ‖L(1)‖I . It follows that T ′t = exp(tL′) is
completely positive for all t ∈ R+, and therefore so is Tt = exp

(‖L(1)‖t)T ′t . ��
Remark 4.48 Since completely positive unital linear maps between unital
C∗ algebras are automatically contractive, by Theorem 4.31 and the fact that
∗-homomorphisms between C∗ algebras are contractive, the previous result
characterises the generators of uniformly continuous conservative quantum Feller
semigroups.

4.6 The Gorini–Kossakowski–Sudarshan–Lindblad Theorem

In order to provide a more explicit description of the generators of quantum Feller
semigroups, we will establish some results of Lindblad and Christensen, and of
Kraus. The Kraus decomposition is a key tool in quantum information theory.
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Theorem 4.49 (Lindblad, Christensen) Let L be a ∗-preserving bounded linear
map on the von Neumann algebra A. Then L is conditionally completely positive
and normal if and only if there exists a completely positive, normal map � : A→ A
and an element g ∈ A such that

L(a) = �(a)+ g∗a + ag for all a ∈ A.

Proof The second part of Exercise 4.44 shows that L is conditionally completely
positive or normal if and only if � has the same property.

Given this, it remains to prove that if L is conditionally completely positive, then
there exists g ∈ A such that a �→ L(a)− g∗a − ag is completely positive. We will
show this under the assumption that A = B(H); see [14, Proof of Theorem 3.14].
The general case [7] requires considerably more work.

Given u, v ∈ H, let the Dirac dyad

|u〉〈v| : H→ H; w �→ 〈v,w〉u.

Fix a unit vector u ∈ H, and let G ∈ B(H) be such that

G∗ : H→ H; v �→ L
(|v〉〈u|)u − 1

2
〈u,L(|u〉〈u|)u〉v.

Given a1, . . .an ∈ A and v1, . . . , vn ∈ H, let v0 = u and a0 = −∑n
i=1 |aivi〉〈u|, so

that
∑n

i=0 aivi = 0. The conditional complete positivity of L implies that

0 �
n∑

i,j=1

(〈vi,L(a∗i aj )vj 〉 − 〈vi ,L
(
a∗i |ajvj 〉〈u|

)
u〉 − 〈u,L(|u〉〈aivi |aj

)
vj 〉

+ 〈u,L(|u〉〈aivi ||ajvj 〉〈u|
)
u〉)

=
n∑

i,j=1

〈vi,L(a∗i aj )vj 〉 − 〈vi,L
(|a∗i aj vj 〉〈u|

)
u〉 − 〈u,L(|u〉〈a∗j aivi |

)
vj 〉

+ 〈u,L(|u〉〈u|)u〉〈aivi , aj vj 〉

=
n∑

i,j=1

〈vi,
(
L(a∗i aj )−G∗a∗i aj − a∗i ajG

)
vj 〉.

The result follows. ��
Remark 4.50 If A is required only to be a C∗ algebra, then Christensen and Evans
[7] showed that Theorem 4.49 remains true if L and � no longer required to be
normal, but then g and the range of � must be taken to lie in the σ -weak closure
of A.
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Theorem 4.51 (Kraus [18]) Suppose A ⊆ B(H) is a von Neumann algebra. A
linear map � : A → B(K) is normal and completely positive if and only if there
exists a family of operators (Li)i∈I ⊆ B(K;H) such that

�(a) =
∑

i∈I
L∗i aLi for all a ∈ A,

with convergence in the strong operator topology. The cardinality of the index set I
may be taken to be no larger than dimK.

Proof If� has this form, then it is completely positive and normal. The first claim is
readily verified; for the second, let aj ↘ 0, fix j0 and note that 〈u, aj u〉 � 〈u, aj0u〉
for all u ∈ H and j � j0. Fix ε > 0 and v ∈ K, choose a finite set I0 ⊆ I such that
the sum

∑
i∈I0

〈Liv, aj0Liv〉 > 〈v,�(aj0)v〉 − ε, and note that

〈v,�(aj )v〉 �
∑

i∈I0

〈Liv, ajLiv〉 +
∑

i∈I\I0

〈Liv, aj0Liv〉 <
∑

i∈I0

〈Liv, ajLiv〉 + ε.

This shows that � is normal, as required.
For the converse, Theorem 4.31 shows it suffices to prove that if π : A→ B(K)

is a normal unital ∗-homomorphism, then π can be written as in the statement of the
theorem.

Let (ei)i∈I be an orthonormal basis for H, and consider the net (IH −∑
i∈I0

|ei〉〈ei |), where the index I0 runs over all finite subsets of I, ordered by
inclusion. Since π is normal and unital, we have that IK = ∑i∈I π

(|ei〉〈ei |
)

in the
weak-operator sense; thus, there exists some i0 ∈ I such that P := π

(|ei0〉〈ei0 |
)

is a
non-zero orthogonal projection.

Let u ∈ K be a unit vector such that Pu = u, let a ∈ A, and note that

‖π(a)u‖2 = 〈Pu, π(a∗a)Pu〉 = 〈u, π(|ei0〉〈ei0 |a∗a|ei0〉〈ei0 |
)
u〉 = ‖aei0‖2.

Hence there exists a partial isometry L0 : K → H with initial space K0, the norm
closure of {π(a)u : a ∈ A}, and final space H0, the norm closure of {ae0 : a ∈ A},
and such that L0π(a)u = ae0 for all a ∈ A. Note that K0 is invariant under the
action of π(a), for all a ∈ A, so

π(a)π(b)u = P0π(ab)u = L∗0L0π(ab)u = L∗0abe0 = L∗0aL0π(b)u for all b ∈ A.

Thus π(a)|K0 = L∗0aL0|K0 , and since L0(K⊥0 ) = {0}, it follows that π(a)P0 =
L∗0aL0 for all a ∈ A, where P0 := L∗0L0 is the orthogonal projection onto the initial
space K0.

Repeating this argument, but on K⊥0 , there exists a partial isometry L1 : K→ H
with initial projection P1 such that P0P1 = 0 and π(a)P1 = L∗1aL1 for all a ∈ A.
An application of Zorn’s lemma now gives the result. ��
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Remark 4.52 With � and (Li)i∈I as in Theorem 4.51, we may write

�(a) = L∗(a ⊗ IKI
)L for all a ∈ A,

where KI is the Hilbert space with orthonormal basis (ei)i∈I and L ∈ B(K;H⊗KI)

is such that

Lv =
∑

i∈I
Liv ⊗ ei for all v ∈ K.

Exercise 4.53 Use Theorem 4.51 and the second part of Theorem 4.26 to show that
every positive normal linear functional on the von Neumann algebra A has the form

a �→
∞∑

n=1

〈xn, axn〉, where
∞∑

n=1

‖xn‖2 <∞.

[Every bounded linear functional is the linear combination of four positive ones
[22, Theorem 3.3.10], and Grothendieck [15] observed that each of these may be
taken to be normal if the original is [17, Theorem 7.4.7]. Hence every normal linear
functional is of the form used to define the σ -weak topology in Definition 4.6.]

Lemma 4.54 Let T be a uniformly continuous semigroup on a von Neumann
algebra with generator L. Then L is normal if and only if Tt is normal for all
t ∈ R+.

Proof This holds because the limit of a norm-convergent sequence of normal maps
is normal. To see this, let �n, � : A → B(H) be such that ‖�n −�‖ → 0, let the
net (ai) ⊆ A+ be such that ai ↘ 0, and let v ∈ H. Fix i0 and note that ‖ai‖ � ‖ai0‖
whenever i � i0, so

|〈v,�(ai)v〉| � ‖v‖2‖ai0‖ ‖�n −�‖ + |〈v,�(ai )v〉| for all i � i0.

The claim follows. ��
Theorem 4.55 (Gorini–Kossakowski–Sudarshan, Lindblad) Let A ⊆ B(H) be
a von Neumann algebra. A bounded linear map L ∈ B(A) is the generator of a
uniformly continuous conservative quantum Feller semigroup composed of normal
maps if and only if

L(a) = −i[h, a] − 1

2

(
L∗La − 2L∗(a ⊗ I)L + aL∗L

)
for all a ∈ A,

where h = h∗ ∈ A and L ∈ B(H;H⊗ K) for some Hilbert space K.

Proof If L has this form, then it is straightforward to verify that the semigroup it
generates is as claimed.
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Conversely, suppose L is the generator of a semigroup as in the statement
of the theorem. Then Theorem 4.47 gives that L is conditionally completely
positive and L(1) = 0. Moreover, L is normal, by the preceding lemma, and so
Theorem 4.49 gives that

L(a) = �(a)+ g∗a + ag for all a ∈ A,

where � : A → A is completely positive and normal, and g ∈ A. Taking a = 1
in this equation shows that g∗ + g = −�(1), so g = − 1

2�(1)+ ih for some self-
adjoint element h ∈ A. The result now follows by Theorem 4.51. ��

The story of the previous theorem is very well told in [8]. Going beyond the case
of bounded generators is the subject of much interest. See the survey [28] for some
recent developments.

4.7 Quantum Markov Processes

We will conclude by giving a very brief indication of how a quantum process may
be defined.

Remark 4.56 Let E be a compact Hausdorff space. If X is an E-valued random
variable on the probability space (�,F ,P), then

jX : A→ B; f �→ f ◦X

is a unital ∗-homomorphism, where A = C(E) and B = L∞(�,F ,P).

Definition 4.57 A non-commutative random variable is a unital ∗-homomorphism
j between unital C∗ algebras.

A family (jt : A → B)t∈R+ of non-commutative random variables is a dilation
of the quantum Feller semigroup T on A if there exists a conditional expectation E

from B onto A such that Tt = E ◦ jt for all t ∈ R+.

The problem of constructing such dilations has attracted the interest of many
authors, including Evans and Lewis [13], Accardi et al. [1], Vincent-Smith [31],
Kümmerer [19], Sauvageot [27] and Bhat and Parthasarathy [5].

Essentially, one attempts to mimic the functional-analytic proof of Theorem 3.22.
Given the appropriate analogue of an initial measure, which is a state μ on the
C∗ algebra A, the sesquilinear form

A⊗n×A⊗n → C; (a1⊗· · ·⊗an, b1⊗· · ·⊗bn) �→ μ
(
Tt1(a

∗
1 . . . (Ttn−tn−1(a

∗
nbn)) . . . b1)

)

must be shown to be positive semidefinite. The key to this is the complete positivity
of the semigroup maps. There are many technical issues to be addressed; see [5] for
more details.
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Introduction to Non-Markovian
Evolution of n-Level Quantum Systems

Dariusz Chruściński

Abstract We analyze quantum dynamical maps and the corresponding master
equations beyond the celebrated quantum Markovian master equation derived by
Gorini, Kossakowski, Sudarshan, and Lindblad. In the Heisenberg picture such
maps are represented by completely positive and unital maps, whereas in the
Schrödinger picture by completely positive and trace-preserving maps. Both time-
local equations governed by time dependent generators and time non-local equations
of the Nakajima-Zwanzig form governed by the corresponding memory kernels
are considered. We use the Schrödinger picture to discuss time-local case and
Heisenberg picture for the non-local one. These equations describe quantum non-
Markovian evolution that takes into account memory effects. Our analysis is
illustrated by several simple examples.

1 Introduction

Open quantum systems are of paramount importance in the study of the interaction
between a quantum system and its environment [1–7] that leads to important
physical processes like dissipation, decay, and decoherence.Very often to describe
the evolution of a “small” system neglecting degrees of freedom of the “big”
environment one applies very successful Markovian approximation leading to the
celebrated quantum Markovian semigroup. This approximation usually assumes a
weak coupling between the system and environment and separation of system and
environment time scales (the system’s degrees of freedom are “slow” and that of
the environment are “fast”). A typical example is a quantum optical system where
Markovian approximation is often legitimate due to the weak coupling between a
system (atom) and the environment (electromagnetic field) [3]. Quantum Marko-
vian semigroups were fully characterized by Gorini et al. [8] and independently
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by Lindblad [9]. Current laboratory techniques and technological progress call,
however, for more refined approach taking into account non-Markovian memory
effects (see recent review papers [10–13]).

A mathematical representation of the evolution of open quantum system is
provided by a quantum dynamical map—a family of completely positive and trace-
preserving maps parameterized by time. Nowadays dynamical maps define one of
the basic ingredients of modern quantum theory. Being quantum channels they
define at the same time one of the most fundamental objects of quantum information
theory [14]. Completely positive maps in operator algebras [15–18] were invented
by Stinespring in 1955 [19] and found elegant application in physics already in
the 1960s with seminal papers of Kraus and collaborators (summarized in the
monograph [20]).

In this paper we analyze quantum evolution beyond the Markovian approxima-
tion. One usually assumes that such map satisfies linear differential equation either
in a time-local form

∂t�t = Lt�t , �0 = id, (1.1)

or a memory kernel master equation

∂t�t =
∫ t

0
Kt−τ�τ , �0 = id, (1.2)

with suitable time-local generator Lt and memory kernel Kt . We analyze the
properties of Lt and Kt which guarantee that (1.1) and (1.2) lead to completely
positive maps�t . Moreover, on the level of time-local equation (1.1) we analyze the
property of Markovianity based on the concept of divisibility of the corresponding
dynamical map. Our analysis is illustrated by several examples.

In this paper we consider mainly quantum systems living in a finite dimensional
Hilbert space (n-level quantum system). It turns out, however, that several results
presented in this paper can be generalized to infinite dimensional cases. Therefore,
in the next introductory section we recall some well-known results which hold for
the infinite dimensional case as well.

2 Preliminaries: Quantum States and Quantum Channels

We begin by introducing basic notation and terminology.

2.1 The Structure of Quantum States

In the Schrödinger picture to any quantum system one assigns a separable Hilbert
space H and normalized vector ψ ∈ H represents (up to a phase factor) a
pure state of the system. Mixed states are represented by density operators, that
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is, semi-positive trace-class operators ρ ∈ T (H) with additional normalization
condition Trρ = 1. Recall that T (H) defines a Banach space with the norm defined
by the trace-norm || · ||1. Hence density operators satisfy ||ρ||1 = 1. In this paper we
consider mainly a quantum system living in n-dimensional Hilbert space H . Fixing
an orthonormal basis {e1, . . . , en} in H any linear operator in H may be identified
with n× n complex matrix from Mn(C).

Clearly, a space of pure states correspond to complex projective space CPn−1.
Mixed states may be interpreted as convex combinations (mixtures) of pure states

ρ =
∑

k

wk|ψk〉〈ψk| , (2.1)

with wk > 0 and
∑

k wk = 1. It should be stressed that the above representation
is highly non-unique. This is actually one of the distinguished features of quantum
theory. To illustrate a concept of density operators let us consider the following.

Example 2.1 A 2-level system (qubit) living in C
2. Any hermitian operator ρ may

be decomposed as follows

ρ = 1

2

(

1+
3∑

k=1

xkσk

)

, (2.2)

where x = (x1, x2, x3) ∈ R
3 and {σ1, σ2, σ3} are Pauli matrices. It is, therefore,

clear that ρ is entirely characterized by the Bloch vector x. This representation
already guaranties that Trρ = 1. Hence, ρ represents density operator if and
only if the corresponding eigenvalues {λ−, λ+} are non-negative. One easily finds

λ± = 1
2 (1 ± |x|) and hence ρ ≥ 0 if and only if |x| =

√
x2

1 + x2
2 + x2

3 ≤ 1. This

condition defines a unit ball in R
3 known as a Bloch ball. A state is pure if ρ defines

rank-1 projector, i.e. λ− = 0 and λ+ = 1. It shows that pure states belong to Bloch
sphere corresponding to |x| = 1. Unfortunately, this simple geometric picture is
much more complicated if n > 2 (see, e.g., [21, 22]).

In the Heisenberg picture one assigns to a quantum system a unital C∗-algebraA.
Self-adjoint elements of A represent quantum observables. In this approach states
are represented by normalized positive functional ω : A → C, that is, ω(a) ≥ 0
for a ≥ 0, and ω(1) = 1. Very often A = B(H) for some Hilbert space H and
in this case one relates Schrödinger and Heisenberg picture using duality relation
T (H)∗ = B(H). One has ω(a) = Tr(aρ) for some density operator ρ ∈ T (H).
States corresponding to density operators are called normal states.
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2.2 Positive and Completely Positive Maps [15–18]

Consider a linear map � : A→ B between two unital C∗-algebras A and B.

Definition 2.2 � is positive if �(x∗x) ≥ 0 for any x ∈ A. � is unital if �(1A) =
1B.

Any positive map � is necessarily Hermitian, that is, �(x)∗ = �(x∗), and ||�|| =
||�(1A)||, where

||�|| = sup
x∈A

||�(x)||
||x|| . (2.3)

Hence unital positive map satisfies ||�|| = 1.

Definition 2.3 � is k-positive if

idk ⊗� : Mk(C)⊗ A→ Mk(C)⊗B (2.4)

is positive. � is completely positive (CP) if it is k-positive for all k = 1, 2, . . ..

If Pk(A,B) denotes a convex cone of k-positive maps, then we have

P1(A,B) ⊃ P2(A,B) ⊃ . . . ⊃ P∞(A,B) (2.5)

with P∞(A,B) = PCP(A,B).

Theorem 2.4 (Stinespring) A linear map � : A→ B(H) is CP if and only if there
exist a Hilbert space K and a ∗-homomorpism π : A→ B(K) and a linear operator
V : K → H such that

�(x) = V π(x)V ∗ . (2.6)

Moreover, � is unital if V is an isometry.

One proves

Proposition 2.5 ([15]) A linear map � : A→ B(H) is CP if and only if

n∑

i,j=1

〈ψi |�(aia∗j )|ψj 〉 ≥ 0, (2.7)

for any a1, . . . , an ∈ A and ψ1, . . . , ψn ∈ H , where n = 1, 2, 3, . . . .

Theorem 2.6 (Kraus) Any CP map � : B(H1)→ B(H2) is of the following form

�(X) =
∑

i

KiXK
∗
i , (2.8)
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where Ki : H1 → H2 are bounded operators and the sum converges in the
strong operator sense. Moreover,� is unital if in addition the following condition is
satisfied

∑
i KiK

∗
i = 1H2 .

Consider now a finite dimensional case corresponding to matrix algebras A =
Mn(C). In this case one has

Theorem 2.7 (Choi) A linear map � : Mn(C)→ B is CP if and only if the matrix

[�(eij )] ∈ Mn(B) (2.9)

is positive, where {eij } denote the matrix units in Mn(C). A linear map � :
Mn1(C)→ Mn2(C) is CP if and only if it is n-positive, where n = min{n1, n2}.
If � : Mn(C) → Mn(C) is a linear map, then its dual �∗ : Mn(C) → Mn(C) is
defined by

Tr[A�∗(B)] = Tr[�(A)B] , (2.10)

for all A,B ∈ Mn(C). � is unital if and only if �∗ is trace-preserving.

Definition 2.8 A quantum dynamical map (Heisenberg picture) is represented by a
family of CP and unital maps �t : B(H)→ B(H) (t ≥ 0). A quantum dynamical
map (Schrödinger picture) is represented by a family of CP and trace-preserving
(CPTP) maps �∗t : T (H)→ T (H) (t ≥ 0). One calls a CPTP map E∗ : T (H)→
T (H) a quantum channel [14].

3 Markovian Semigroup

A strongly continuous quantum dynamical semigroup is a one-parameter family
�t : B(H)→ B(H) for t ≥ 0 satisfying

1. �t is completely positive and unital,
2. �t+s = �t�s ,
3. the map t → �t is strongly continuous,
4. limt→0+�t(x) = x .

Such maps possess a densely defined generator

L(x) = lim
t→0+

�t(x)− x

t
. (3.1)

The structure of the generator is not known in the general case. However, the most
interesting cases are characterized due to the following theorems.
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Theorem 3.1 (Lindblad [9]) If L is bounded, then it defines a generator of a
strongly continuous semigroup if and only if

L(x) = i[H, x] +�(x)− 1

2
(�(1)x + x�(1)), (3.2)

where � is completely positive, H = H ∗, and [H, x] = Hx − xH .

Remark 3.2 In the unbounded case there are examples of generators which are not
of the standard Lindblad form (cf. [23]).

Consider now finite dimensional case dimH = n. One considers a dynamical
semigroup in the Schrödinger picture �∗t : Mn(C) → Mn(C) which satisfies the
following master equation

∂t�
∗
t = L∗�∗t , (3.3)

with initial condition �t=0 = id. The dynamical map �∗t = etL
∗

is completely
positive and trace-preserving (CPTP)

Theorem 3.3 (Gorini-Kossakowski-Sudarshan [8]) L∗ generates dynamical semi-
group in the Schrödinger picture if and only if L∗ has the following canonical form:

L∗(ρ) = −i[H,ρ] + 1

2

n2−1∑

i,j=1

cij

(
[Fiρ, F ∗j ] + [Fi, ρF ∗j ]

)
, (3.4)

where [cij ] is a semi-positive definite matrix and operatorsFi satisfy: TrFi = 0, and
Tr(FiF ∗j ) = δij for i, j = 1, 2, . . . , n2 − 1.

In the Heisenberg picture one has

L(X) = i[H,X] + 1

2

n2−1∑

i,j=1

cij

(
Fi [X,F ∗j ] + [Fi,X]F ∗j

)
. (3.5)

One usually calls the generator of a quantum dynamical semigroup a GKSL
generator (for both Heisenberg and Schrödinger pictures).

4 Open Quantum Systems: Beyond Markovian Semigroup

The standard approach to the dynamics of open quantum systems is based on the
scheme of the reduced dynamics [1, 5, 6]: one considers the unitary evolution of the
composed “system + environment” system governed by the von Neumann equation

∂tρSE(t) = −i[H, ρSE(t)], (4.1)
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and defines the evolution of the reduced density operator of the system via ρt :=
TrEρSE(t), where TrE denotes the partial trace over the environmental degrees
of freedom. The total Hamiltonian H = HS + HE + Hint obviously represents
the system Hamiltonian HS , environmental (or bath) Hamiltonian HE , and the
interaction Hamiltonian Hint but this splitting is not unique. If the initial system-
environment state factorizes ρSE(0) = ρ⊗ ρE , then the following formula

�∗t (ρ) := TrE[Ut ρ⊗ ρE U
∗
t ] , Ut = e−iHt , (4.2)

defines a family of CPTP maps. A system-environment density matrix ρSE(t)

satisfies von Neumann equation (4.1) with total Hamiltonian H. To find the
corresponding equation for the reduced density matrix ρt one applies the standard
Nakajima-Zwanzig projection operator technique [24] (see also [25] for more
general discussion) which shows that under fairly general conditions, and initial
product state the generalized master equation for ρt takes the form of the following
nonlocal equation:

∂t�
∗
t =

∫ t

0
K∗
t−τ�∗τ dτ ; �∗0 = id , (4.3)

where the super-operator K∗
t : T (H) → T (H) encodes all dynamical properties

of the system in question. The characteristic feature of Nakajima-Zwanzig equa-
tion (4.3) is the appearance of a memory kernel: this simply means that the rate
of change of the state represented by the density operator ρt at time t depends
on its history. It should be stressed that the structure of the memory kernel Kt is
highly nontrivial. It depends upon the total Hamiltonian and the initial state ρE(0).
In practice very often it turns out thatHint is sufficiently small (weak interaction) and
one tries various approximation schemes [1]. Approximating (4.3) is a delicate issue
[26, 27]. One often applies second order Born approximation which considerably
simplifies the structure of Kt . However, this approximation in general violates
basic properties of the generalized master equation, for example positivity of ρt
[28]. Due to the nontrivial structure of (4.3) one tries to replace time non-local
Nakajima-Zwanzig equation by the time-local one so-called time-convolutionless
(TCL) master equation

∂t�
∗
t = L∗t �∗t , �∗0 = id, (4.4)

This procedure, however, requires existence of the inverse of �∗t and leads to the
following formula for the generator L∗t = (∂t�

∗
t )�

∗
t
−1 [29, 30].

Example 4.1 Consider the evolution of 2-level system described by the following
dynamical map

�∗t (ρ) =
(

ρ11 cos tρ12

cos tρ21 ρ11

)

, (4.5)
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where ρij are matrix elements of the initial density matrix ρ. One easily checks that
this map is CPTP for any t ≥ 0. Indeed, its Kraus representation reads

�∗t (ρ) =
1+ cos t

2
ρ + 1− cos t

2
σ3ρσ3. (4.6)

Note, however, that for t = (2n + 1)π/2 it is not invertible and hence time-local
generator L∗t is singular. Suppose that (4.5) satisfies Nakajima-Zwanzig master
equation and let us look for the corresponding memory. Passing to the Laplace
transform domain

F̃s :=
∫ ∞

0
Fte

−stdt, (4.7)

one finds

s�̃∗s − id = K̃∗
s �̃

∗
s , (4.8)

and hence

K̃∗
s = s id− �̃∗−1

s . (4.9)

Using (4.5) one gets

K∗
t (ρ) =

1

2
k(t)(σ3ρσ3 − ρ), (4.10)

with k(t) = H(t) (Heaviside step function). Time-local generator L∗t has exactly
the same structure

L∗t (ρ) =
1

2
γ (t)(σ3ρσ3 − ρ), (4.11)

but now γ (t) = tan t (for t ≥ 0) is singular.

In this paper we analyze the structure of Eqs. (4.3) and (4.4). A natural question one
may ask is what are the properties of memory kernel K∗

t and time-local generator
L∗t which guarantee that solutions to (4.3) and (4.4) are physically legitimate, that
is, �∗t is CPTP. Note that the formal solution of (4.4) is given by

�∗t = T exp

(∫ t

0
L∗τ dτ

)

= id+
∫ t

0
dt1L∗t1 +

∫ t

0
dt1

∫ t1

0
dt2 L∗t1 L

∗
t2
+ . . . ,

(4.12)

where T stands for the time ordering operator. In practice, however, it is very hard
to compute T-product exponential formula defined via the infinite Dyson expansion.
One might be tempted to truncate the series (4.12) and to look for an approximate
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solution. Note, however, that any truncation immediately spoils complete positivity
of �∗t . The analysis simplifies in the commutative case, i.e. when [Lt ,Lτ ] = 0 for
any t, τ ≥ 0. In this case we have a simple sufficient condition.

Proposition 4.2 If the integral
∫ t

0 L∗τ dτ provides time dependent GKSL generator
for any t > 0, then L∗t is an admissible generator.

The converse however need not be true (cf. Sect. 6).

5 Non-Markovian Quantum Evolution

As is stresses in [13] the concept of quantum Markovianity is context dependent and
there is no universal approach to quantum Markovian process/evolution/map. The
name “Markovian” is borrowed from the theory of classical stochastic processes
[31]: a process is Markovian if the conditional probability satisfies

p(xt , tn|xn−1, tn−1; . . . ; x1, t1) = p(xt , tn|xn−1, tn−1). (5.1)

It implies that p(xt , tn|xn−1, tn−1) satisfies the celebrated Chapman-Kolmogorov
equation [31]

p(x3, t3|x1, t1) =
∑

x2

p(x3, t3|x2, t2)p(x2, t2|x1, t1). (5.2)

This definition cannot be used in the quantum theory due to the lack of a proper
definition of conditional probability. In the literature there are many different
approaches (see recent reviews [10–13]). One of the most influential approaches
is based on the following.

Definition 5.1 A dynamical map �∗t is divisible if for any t ≥ s there exists V ∗t,s :
T (H)→ T (H) such that

�∗t = V ∗t,s�∗s , (5.3)

for any t ≥ s. Moreover, �∗t is called CP-divisible if V ∗t,s is CPTP, and P-divisible
if V ∗t,s is positive and trace-preserving.

Note that if �∗t is invertible, then it is always divisible and V ∗t,s = �∗t �∗−1
s . In this

paper we accept the following.

Definition 5.2 ([32, 33]) Quantum evolution represented by a dynamical map �∗t
is Markovian if and only if the corresponding dynamical map �∗t is CP-divisible.

Actually, following [34] one calls �∗t k-divisible if V ∗t,s is k-positive (k =
1, 2, . . . , n). Let us recall the following well-known result.
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Proposition 5.3 ([15, 16]) Let � : B(H) → B(H) be a unital hermitian map.
Then � is positive if and only if

||�(X)|| ≤ ||X||, (5.4)

for any X = X∗. Equivalently let �∗ : T (H) → T (H) be a hermitian trace-
preserving map. Then �∗ is positive if and only if

||�∗(X)||1 ≤ ||X||1, (5.5)

for any X = X∗.

Now, if �∗t is P-divisible, then

d

dt
||�∗t (X)||1 ≤ 0, (5.6)

for any Hermitian X and t ≥ 0. Indeed, P-divisibility implies that �∗t+ε = V ∗t+ε,t�∗t
and hence

d

dt
||�∗t (X)||1 = lim

ε→0+
1

ε

(||�∗t+ε(X)||1 − ||�∗t (X)||1
)

= lim
ε→0+

1

ε

(||V ∗t+ε,t�∗t (X)||1 − ||�∗t (X)||1
) ≤ 0, (5.7)

due to the fact that V ∗t+ε,t is positive and trace-preserving. In particular if ρ and σ

are arbitrary density operators, then P-divisibility implies

d

dt
||�∗t (ρ − σ)||1 ≤ 0. (5.8)

The above property has an interesting physical interpretation [35]. Given two
density operators ρ1 and ρ2 one defines distinguishability

D[ρ, σ ] = 1

2
||ρ − σ ||1 . (5.9)

It is clear that D[ρ, σ ] = 0, i.e. ρ and σ are indistinguishable, if and only if ρ = σ .
Note that if ρ and σ are orthogonally supported, then

D[ρ, σ ] = 1

2
(||ρ||1 + ||σ ||1) = 1 ,

since ||ρ||1 = 1 for any density matrix ρ. In this case ρ and σ are perfectly
distinguishable. Hence 0 ≤ D[ρ, σ ] ≤ 1. Now, the authors of [35] call the
quantity d

dt
||�∗t (ρ − σ)||1 an information flow and the condition (5.8) shows that
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the information flows from the system into the environment. Hence the backflow of
information from the environment into the systems marks non-Markovian evolution
or the presence of memory effects [35].

Theorem 5.4 ([36]) Let �∗t be a dynamical map in T (H). If �∗t is invertible for all
t > 0, then it is CP-divisible if and only if

d

dt
||[id⊗�∗t ](X)||1 ≤ 0, (5.10)

for any Hermitian X in B(H ⊗H) and t ≥ 0.

Proof If �∗t is CP-divisible, then �∗t = V ∗t,s�s , with CPTP maps V ∗t,s . Hence

d

dt
||[id⊗�∗t ](X)||1 = lim

ε→0+
1

ε

(||[id⊗�∗t+ε](X)||1 − ||[id⊗�∗t ](X)||1
)

= lim
ε→0+

1

ε

(

||[id⊗ V ∗t+ε,t][id⊗�∗t ](X)||1

−||[id⊗�∗t ](X)||1
)

≤ 0,

due to ||[id ⊗ V ∗t+ε,t ](Y )||1 ≤ ||Y ||1. Now, suppose that (5.10) is satisfied. Since
id ⊗ �∗t is invertible, there always exists V ∗t,s = �∗t �∗−1

s . We show that V ∗t,s is
CPTP. The above calculation shows that

||[id⊗ V ∗t+ε,t ][id⊗�∗t ](X)||1 ≤ ||[id⊗�∗t ](X)||1
for any X = X∗ ∈ B(H ⊗H). Now, since �∗t is invertible, it implies that ||[id⊗
V ∗t+ε,t ](Y )||1 ≤ ||Y ||1 for any Y = Y ∗ ∈ B(H ⊗H) and due to Proposition 5.3 the
map V ∗t,s is CPTP. ��
Theorem 5.5 Suppose that �∗t satisfies time-local master equation (4.4). If �∗t is
invertible, it is CP-divisible if and only if the time-local generator L∗t has the
following standard form

L∗t (ρ) = −i[H(t), ρ] + 1

2

∑

α

γα(t)
([Vα(t), ρV ∗

α (t)] + [Vα(t)ρ, V ∗
α (t)]

)
,

(5.11)

with γα(t) ≥ 0.

Suppose now that �∗t is invertible and it is defined by

�∗t = exp

(∫ t

0
M∗

udu

)

= eM
∗
t , (5.12)
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where M
∗
t :=

∫ t
0 M

∗
udu defines GKSL generator for any t ≥ 0. It is clear that �t is

a legitimate dynamical map. Using Snider-Wilcox formula [37]

∂t e
M
∗
t =

∫ 1

0
ds esM

∗
t M∗

t e
(1−s)M∗

t , (5.13)

one finds the following formula for the corresponding time-local generator L∗t

L∗t = ∂t�
∗
t �

∗−1
t =

(∫ 1

0
ds esM

∗
t M∗

t e
(1−s)M∗

t

)

e−M∗
t =

∫ 1

0
ds esM

∗
t M∗

t e
−sM∗

t ,

(5.14)

where we used the fact that �∗t is invertible and

�∗−1
t = e−M∗

t . (5.15)

Note that in the commutative case, that is, [M∗
t ,M

∗
τ ] = 0, one finds L∗t = M∗

t .
However, in general case formula (5.14) provides highly nontrivial relation between
GKSL generator M∗

t and a legitimate time-local generator L∗t . Note that the above
construction guaranties that �∗t is divisible and

V ∗t,s = eM
∗
t e−M∗

s . (5.16)

If V ∗t,s is CP, then �∗t is CP-divisible and equivalently L∗t defined in (5.14) is of
GKSL form. Again, in the commutative case

V ∗t,s = eM
∗
t −M∗

s = exp

(∫ t

s

L∗udu
)

. (5.17)

and in general

V ∗t,s = eM
∗
t e−M∗

s = T exp

(∫ t

s

L∗udu
)

. (5.18)

6 CP- vs. P-Divisibility for Random Unitary Qubit Evolution

To illustrate the concepts of P- and CP-divisibility let us consider a qubit evolution
governed by the following time-local generator

L∗t (ρ) =
1

2

3∑

k=1

γk(t)(σkρσk − ρ). (6.1)
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The corresponding solution for �∗t reads

�∗t (ρ) =
3∑

α=0

pα(t)σαρσα, (6.2)

where σ0 = 1, and

pα(t) = 1

4

3∑

β=0

Hαβλβ(t), (6.3)

with Hαβ being a Hadamard matrix

H =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟
⎟
⎠ , (6.4)

and λβ(t) are time-dependent eigenvalues of �∗t

�∗t (σα) = λα(t)σα , (6.5)

defined as follows λ0(t) = 1 and

λ1(t) = exp(−�2(t)− �3(t)],
λ2(t) = exp(−�1(t)− �3(t)), (6.6)

λ3(t) = exp(−�1(t)− �2(t)),

with �k(t) = ∫ t
0 γk(τ )dτ . Now, the map (6.2) is CP iff pα(t) ≥ 0 which is

equivalent to the following set of conditions for λs [38, 39]

1+ λ1(t)+ λ2(t)+ λ3(t) ≥ 0 , (6.7)

and

λi(t)+ λj (t) ≤ 1+ λk(t), (6.8)

and {i, j, k} run over the cyclic permutations of {i, j, k}. Now, the map �∗t is
invertible if and only if �k(t) <∞. Being invertible it is CP-divisible if and only if
γk(t) ≥ 0. Finally, invertible CPTP map �∗t is P-divisible if and only if [38]

γ1(t)+ γ2(t) ≥ 0 , γ2(t)+ γ3(t) ≥ 0 , γ3(t)+ γ1(t) ≥ 0 . (6.9)
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Authors of [39] consider an interesting case corresponding to γ1(t) = γ2(t) = 1,
and γ3(t) = −tanh t . Note that γ3(t) is always negative, however, the condi-
tions (6.8) are satisfied and the map �∗t is CPTP. Clearly, it is not CP-divisible
but it is P-divisible due to the fact that conditions (6.9) are satisfied.

7 Quantum Jump Representation of the Markovian
Semigroup

In this section we present a suitable representation of dynamical semigroup which
will be used later for the construction of admissible memory kernels. Any GKSL
generator (Heisenberg picture) L : B(H)→ B(H) may be represented as follows

L = �− Z, (7.1)

where � is CP and Z : B(H)→ B(H) is defined as

Z(X) = −i(CX − XC∗), (7.2)

with C ∈ B(H) given by C = H + i
2�(1). The map �t is unital if and only if

L(1) = 0 which implies

�(1) = Z(1).

Now, let us denote by Nt a solution of the following equation

∂tNt = −ZNt , Nt=0 = id. (7.3)

One finds

Nt(X) = e−ZtX = eiCtXe−iC∗t , (7.4)

and hence Nt = e−Zt defines a semi-group of CP maps. Note, however, that it is not
unital. Interestingly, one has

Proposition 7.1 The map Nt satisfies

∂tNt (1) ≤ 0, (7.5)

for any t ≥ 0.

Proof One has

∂tNt (1) = eiCt(iC − iC∗)e−iC∗t = −Nt(�(1)) ≤ 0, (7.6)

due to the fact that Nt is CP and �(1) ≥ 0. ��
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Remark 7.2 In the Schrödinger picture the map N∗
t : T (H)→ T (H) satisfies

∂tTr[N∗
t (ρ)] ≤ 0, (7.7)

for any ρ ≥ 0. A CP map E∗ : T (H)→ T (H) such that

Tr[E∗(ρ)] ≤ Trρ,

is often called a quantum operation [14].

Theorem 7.3 The solution to (1.1)may be represented as follows

�t = Nt ∗ (id+Qt +Qt ∗Qt +Qt ∗Qt ∗Qt + . . .) . (7.8)

where At ∗ Bt :=
∫ t

0 AτBt−τ dτ , and Qt = �Nt .

Proof Passing to the Laplace transform of (3.3) and (7.3) one finds

�̃s = 1

s −�+ Z
, Ñs = 1

s + Z
(7.9)

and hence

�̃s = Ñs
1

id−�Ñs

. (7.10)

Now, introducing Q̃s := �Ñs one obtains

�̃s = Ñs

∞∑

k=0

Q̃n
s , (7.11)

with Q∗n
t := Qt ∗ . . . ∗ Qt (n factors). It implies the formula (7.8) in the time

domain. ��
Remark 7.4 Note that the series

∑∞
k=0 Q̃

n
s is convergent. To prove it we show that

||Q̃s || < 1. One has

||Q̃s || = ||Q̃s(1)|| = ||�Ñs(1)||.

Now

Ñs(1) = 1

s + Z(1)
= 1

s −�(1)
,
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which is defined for Re s > ||�(1)||. One has

||� Ñs(1)|| = ||
∫ ∞

0
e−st�Nt(1)dt || ≤

∫ ∞

0
|e−st |||�Nt(1)||dt ≤ 1

Re s
||�(1)||,

due to Nt(1) ≤ 1. Finally, ||Q̃s || < 1 for Re s > ||�(1)||. �
Note that formulae (7.9) allow also for another representation, that is, instead

of (7.10) one equivalently has

�̃s = 1

id− Ñs

Ñs , (7.12)

and hence introducing Pt := Nt� one finds the following representation

�t =
( ∞∑

k=0

P ∗nt

)

∗ Nt . (7.13)

Using the definition of the convolution formula (7.13) may be rewritten as follows

�t =
∞∑

k=1

∫ t

0
dtk

∫ tk

0
dtk−1 . . .

∫ t2

0
dt1Nt−tk�Ntk−tk−1� . . .�Nt2−t1 . (7.14)

Remark 7.5 Representations (7.8) and (7.13) are often called a quantum jump
representation of the dynamical map�t and the CP map� is interpreted as quantum
jump.

Remark 7.6 Representations (7.8) and (7.13) are complementary to the standard
exponential representation of Markovian semigroup

�t = etL =
∞∑

k=0

tk

k ! L
k. (7.15)

Note that (7.15) immediately implies that �t is unital but complete positivity is not
evident. On the other hand, both (7.8) and (7.13) imply that �t is CP but now the
preservation of unity is not evident. It shows that complete positivity and unitality
(or trace preservation in the Schrödinger picture) are complementary properties.

8 Memory Kernel Master Equation

In this section we generalize the quantum jump representation of the Markovian
semigroup to the solution of the memory kernel master equation (4.3). Any memory
kernel Kt has the following general structure

Kt = �t − Zt, (8.1)
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where maps �t ,Zt : B(H)→ B(H) are Hermitian and satisfy

�t(1) = Zt(1).

This condition guaranties that �t is unital.

Theorem 8.1 ([40]) Let {Nt ,Qt } be a pair of CP maps in B(H) such that

1. Nt=0 = id,
2. Qt(1)+ ∂tNt (1) = 0,
3. ||Q̃s || < 1.

Then the following map

�t = Nt ∗
∞∑

n=0

Q∗n
t , (8.2)

defines a legitimate dynamical map.

Proof Condition (3) guarantees that the series

�̃s = Ñs

∞∑

k=0

Q̃n
s = Ñs

1

id− Q̃s

,

is convergent and hence (8.2) defines a CP map. Condition (1) implies that �t=0 =
Nt=0 = id. Finally, condition (2) implies that the map �t is unital. Indeed, passing
the Laplace transform domain one finds

Q̃s(1)+ sÑs(1) = 1, (8.3)

which is equivalent to �̃s(1) = 1
s
1. ��

Remark 8.2 Note that

∂tNt (1) = −Qt(1) ≤ 0, (8.4)

sinceQt is CP. Hence, the dual mapN∗
t is trace non-increasing (quantum operation).

Theorem 8.1 may be immediately generalized as follows

Corollary 8.3 Let {Nt ,Qt } be a pair of k-positive maps in B(H) such that

1. Nt=0 = id,
2. Qt(1)+ ∂tNt (1) = 0,
3. ||Q̃s || < 1.

Then the map �t = Nt ∗∑∞
n=0 Q

∗n
t is k-positive and unital.
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In the same way one proves the following.

Proposition 8.4 Let {Nt , Pt } be a pair of CP maps such that

1. Nt=0 = id,
2. Pt (1)+ ∂tNt (1) = 0,
3. ||P̃s || < 1.

Then the following map

�t =
∞∑

n=0

P ∗nt ∗ Nt , (8.5)

defines a legitimate dynamical map.

In this case one has in the time domain

�t =
∞∑

k=1

∫ t

0
dtk

∫ tk

0
dtk−1 . . .

∫ t2

0
dt1Pt−tkPtk−tk−1 . . . Pt3−t2Nt2−t1, (8.6)

which generalizes (7.14).
Suppose now that {Nt,Qt } satisfy assumptions of Theorem 8.1 (i.e., conditions

(1)–(3)). Moreover, let us assume that Ñs is invertible. Then one proves the
following

Theorem 8.5 The operator Kt = �t − Zt , where

�̃s = Q̃sÑ
−1
s , Zs = id− sÑs

Ñs

, (8.7)

defines a legitimate memory kernel.

Proof Indeed, one has

�̃s = 1

s − �̃s + Z̃s

, Ñs = 1

s + Z̃s

(8.8)

which generalizes (7.9). Hence, the representation (8.2) easily follows. ��
Remark 8.6 This shows that knowing {Nt,Qt } one may construct a legitimate
memory kernel. Following [40] we call {Nt,Qt } a legitimate pair.

To illustrate the above construction let us consider the following.

Example 8.7 Let

Nt =
(

1−
∫ t

0
f (τ)dτ

)

id, (8.9)
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where the function f : R+ → R satisfies:

f (t) ≥ 0 ,
∫ ∞

0
f (τ)dτ ≤ 1.

Moreover, let Qt = f (t)E, where E is an arbitrary unital CP map. Then one finds
the following formula for the memory kernel

Kt = κ(t)(E− id), (8.10)

where the function κ(t) is defined in terms of f (t) as follows

κ̃(s) = sf̃ (s)

1− f̃ (s)
. (8.11)

In particular taking f (t) = γ e−γ t one finds Kt = δ(t)L, with

L = γ (E− id), (8.12)

being the standard GKSL generator.
Now, we show that conditions (1)–(3) from Theorem 8.1 are sufficient but not

necessary, that is, formula (8.2) may give rise to legitimate CPTP map even if these
conditions are not satisfied. Indeed, consider a CP unital map E such that EE = E.
Then one can easily find

�t = Nt +
∫ t

0
f (τ)dτ E = Nt +

∫ t

0
Qτdτ. (8.13)

Indeed, one has

∞∑

k=1

Q̃n
s =

∞∑

k=1

f̃ n(s)E = f̃ (s)

1− f̃ (s)
E

and hence

�̃s = Ñs

∞∑

k=0

Q̃n
s = Ñs + 1

s
f̃ (s)E = Ñs + 1

s
Q̃s,

which reproduces (8.13) in the time domain. I shows that the condition f (t) ≥ 0 is
not necessary. One needs only

∫ t
0 f (τ)dτ ∈ [0, 1]. Hence Qt = f (t)E need not be

CP and still (8.2) defines CPTP map.
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Example 8.8 (Quantum Semi-Markov Evolution [41–43]) Consider the following
pair {Nt,Qt } such that Qt is CP and satisfies

∫ t

0
Qτ (1)dτ ≤ 1. (8.14)

Define a CP map Nt by

Nt(X) = √gt X
√

gt , (8.15)

where gt := 1 − ∫ t0 Qτ(1)dτ . It is clear that Nt is CP, N0 = id, and Qt(1) +
∂tNt (1) = 0. Finally, for Re s > 0 one has

||Q̃s || = ||Q̃s(1)|| = ||
∫ ∞

0
e−stQt (1)dt|| < ||

∫ t

0
Qt(1)|| < 1

and hence {Nt,Qt } satisfies all conditions of Theorem 8.1. We stress that �t in
this case is defined entirely in terms of a single CP map Qt satisfying additional
condition (8.14).

For other approaches see also [44–46].

Proposition 8.9 For any pair of functions {Nt,Qt } satisfying conditions 1)-3) the
corresponding dynamical map (8.2) satisfies

∂t�t =
∫ t

0
Kt−τ�τdτ + ∂tNt , �0 = id, (8.16)

where the new memory kernel Kt is defined by

K̃s = sÑsQ̃sÑ
−1
s , (8.17)

provided Ñs is invertible.

Note that if [Nt ,Qτ ] = 0, then (8.17) reduces to

K̃s = sQ̃s, (8.18)

and implies the following relation in the time domain

Kt = δ(t)Q0 + ∂tQt , (8.19)

with δ(t) denoting Dirac δ-distribution. In this case the corresponding memory
kernel master equation has the following form

∂t�t = Q0�t +
∫ t

0
∂τQτ�t−τ dτ + ∂tNt , �0 = id, (8.20)
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and it incorporates three terms: local generator Q0, memory kernel ∂τQτ , and the
inhomogeneous term ∂tNt .

9 Conclusions

We analyzed the evolution of a quantum system represented by a quantum dynami-
cal map beyond Markovian semigroup. Due to the celebrated Gorini, Kossakowski,
Sudarshan, and Lindblad the structure of Markovian semigroup is fully charac-
terized on the level of generators. Interestingly, beyond Markovian semigroup
the problem is still open. Both time-local and memory kernel master equations
were analyzed. In the case of time-local description we introduced the notion of
divisibility and defined quantum evolution to be Markovian if the corresponding
dynamical map is CP-divisible. On the level of memory kernel master equation we
introduced a class of maps generated by the so-called legitimate pairs. Interestingly,
this class describes many examples considered recently in the literature including
semi-Markov evolution [42] and collision models [47].

Acknowledgement This paper was partially supported by the National Science Centre project
2018/30/A/ST2/00837.
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Aspects of Micro-Local Analysis
and Geometry in the Study of Lévy-Type
Generators

Niels Jacob and Elian O. T. Rhind

Abstract Generators of Feller processes are pseudo-differential operators with
negative definite symbols, thus they are objects of micro-local analysis. Continuous
negative definite functions (and symbols) give often raise to metrics and these
metrics are important to understand, for example, transition functions of certain
Feller processes. In this survey we outline some of the more recent results and ideas
while at the same time we long to introduce into the field.

1 Introduction

Stochastic processes are in general not objects associated with micro-local analysis
and the relations between (differential) geometry and diffusions is a relatively
recent subject of mathematical investigations. For non-diffusion Markov processes,
e.g. general Feller processes with discontinuous paths, relations with (differential)
geometry are essentially unexplored.

However, since the work of Courrège [17] in 1966 we know that generators
of Feller semigroups, i.e. Feller processes, are pseudo-differential operators but
their symbols are in general quite “exotic”. For fixed space coordinates they must
be a characteristic exponent of a Lévy process, i.e. satisfy a Lévy–Khinchine
formula, which is equivalently to say that they are a continuous negative definite
function. Hence they are in general neither smooth, nor do they admit some type
of homogeneity decomposition—in other words, they do not fit into any “classical”
symbol class. An invariantly defined principal symbol does in general not exist,
hence transferring results from micro-local analysis to these operators is a problem,
eventually micro-local analysis is an analysis of objects defined on the co-tangent
bundle.
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The Lévy–Khinchine formula allows a representation of these generators as
integro-differential operators and such operators had been studied intensively. In
a few cases, e.g. Komatsu [47] or Kochubei [46], aspects of classical pseudo-
differential operator theory were incorporated in the sense that symbols were
assumed to belong to some “classical” symbol classes while being also negative
definite in the co-variable.

It seems that in [35] for the first time general continuous negative definite
symbols were suggested to be the point of departure for constructing and studying
Markov processes. The monograph [38–40] summarizes these studies until ca. 2002,
a more recent survey is given by Schilling and coauthors in [12]. Since some time
the first named author and some of his (former) students make some attempts
to extend “classical” ideas from micro-local analysis and the analysis in metric
measure spaces to pseudo-differential operators with negative definite symbols, i.e.
generators of Feller processes. We are far away from a satisfactory theory, many
problems do so far resist approaches to transfer methods and results from established
theories, whether from micro-local analysis or the theory of (local) metric measure
spaces. However, some first results indicate that much more should be possible.
Hence in front of us we have a field worth to be investigated with maybe some new,
fresh ideas. By introducing such a topic to PhD students or postdocs it is possible to
add to their education and maybe to raise interest and to stimulate some research. In
this spirit our paper is written: explaining (partly new) concepts, discussing (some)
existing results, establishing the context to other fields, and indicating some open
research problems.

In Sect. 2 we set the scene by introducing strongly continuous and positivity
preserving contraction semigroups on some function spaces and identifying their
generators as pseudo-differential operators with negative definite symbols. Recall
that ψ : R

n −→ C is a continuous negative definite function if continuous,
ψ(0) ≥ 0 and ξ �→ e−tψ(ξ), t > 0, is a positive definite function in the sense
of Bochner. A symbol q(x, ξ) is called a negative definite symbol if for every x the
function ξ �→ q(x, ξ) is a continuous negative definite function. In order to exhibit
the main ideas and difficulties the translation invariant case is often sufficient, i.e.
the case of symbols ψ(ξ) and we often will concentrate on such symbols.

Hilbert space techniques are rather powerful and in our context this leads to
Dirichlet spaces. In Sect. 3 we show that an analysis in the associated extended
Dirichlet space is sometimes a more natural approach, for example in relation to
Nash-type inequalities, or more generally to functional inequalities. It might be
that for transient semigroups investigations in the corresponding extended Dirichlet
space may lead to better or more sharp results. The semigroups we are interested
in allow a kernel representation and often these kernels have a density with respect
to the Lebesgue measure. Thus we are interested to study these densities. It is now
common to make in such a study a distinction between the diagonal behaviour and
the off-diagonal decay. In the case of diffusions geometric interpretations using the
underlying Riemannian or sub-Riemannian geometry are natural and successful. In
[44] it was suggested to try such an approach also for the non-diffusion case.
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In Sect. 4 we handle for translation invariant semigroups (they correspond to
Lévy processes) the diagonal terms of densities. For this we use the fact that in many
cases the square root of a real-valued continuous negative definite function induces
a metric on R

n and we can express the diagonal term as in the case of diffusions as
a volume term with respect to this metric (and the Lebesgue measure). This metric
is measuring distances between co-variables. The doubling property plays a crucial
role, however it is not always satisfied. In general the geometry with respect to this
metric causes some difficulties: metric balls are in general not convex and they are
quite anisotropic. We added an appendix (written jointly with J. Harris) where we
discussed some properties of these metric balls. Finally, in Sect. 4, we introduce
subordination in the sense of Bochner as a tool to construct examples.

In Sect. 5 we turn to off-diagonal estimates. Here our results are rather modest. In
[44] we conjectured that the off-diagonal terms always decay “exponentially” with
respect to a (square of a) time dependent metric, but so far we have no proof, but
already in [44] we could provide non-trivial (classes of) examples. It seems that the
conjecture might be too general and some surprises may wait for us. One surprise is
that in some cases we can associate with a given Lévy process an additive process
the symbol of which induces a time dependent metric. The density of this additive
process has a diagonal term controlled by this time dependent metric while the off-
diagonal decay is controlled by the metric induced by the Lévy process we started
with. Moreover, the off-diagonal term of the Lévy process is controlled by the metric
induced by the additive process. Thus we have to use two metrics to control the
density. This type of duality is interesting and deserves further investigations, we
refer to [13] and [14].

While following Sects. 3–5 the reader will have developed some feeling for
the problems we want to approach and their difficulties when put in the context
of classical micro-local analysis. In Sect. 6 we indicate in more detail where
these difficulties are by outlining what we expect to achieve when dealing with
the classical situation and why we cannot transfer methods and techniques in a
straightforward way.

As a function on the co-tangent bundle every symbol can be viewed as a Hamilton
function and it is well known that the study of the corresponding Hamilton dynamics
may contribute much to our understanding of the corresponding pseudo-differential
operator. For this reason we started to look at the Hamilton dynamics associated
with some negative definite symbols. Here the situation is quite similar as in
micro-local analysis: in general, we cannot expect classical techniques to work.
For example, when switching to the corresponding Lagrange function we need a
(partial) Legendre transform, hence C1-regularity and convexity in the co-variable
is required. On the other hand, when studying the Feynman–Kac formula or related
spectral problems it is desirable to know the behaviour of the associated “classical”
dynamical system associated with a Schrödinger operator, say of typeψ(D)+V (q).
Section 7 gives first results of such an investigation, in the forthcoming thesis of the
second named author much more results will be discussed.

Section 8 returns to pseudo-differential operators and following [36] we intro-
duce some classes of operators which are perturbations of constant coefficient
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operators, i.e. generators of Lévy processes. We provide these results and ideas
here in order to indicate how in principle previously obtained results for translation
invariant operators can be extended by employing perturbation techniques. This
section serves more reference purposes on the one hand side, on the other hand it
can be seen as an invitation to add results for some state space dependent symbols,
we refer also to [75].

Pseudo-differential operators with negative definite symbols are studied because
they (may) generate Markov processes. Following [37], in particular R. Schilling
could work out that in many cases the symbol can be obtained in pure probabilistic
terms. Moreover in some pioneering papers he could demonstrate that the symbol
obtains a lot of probabilistic interesting information about the process, i.e. it is not
only a natural object, but it is also quite useful from the probabilistic point of view.
In our final section we have collected some of these results, partly for reasons of
“completeness”, partly however to raise the expectation that micro-local analysis
will contribute to our understanding of Feller processes.

A final remark of the first named author: A typical probabilist does not learn
much about pseudo-differential operators and micro-local analysis, and a typical
analyst working with pseudo-differential operators rarely works with stochastic
processes, symbol classes as strange as ours do not belong to their world. Still I
believe that both worlds belong together and their relations deserve more attention.
Many of the known results about which we could report here are due to my
(former) PhD students W. Hoh, R. Schilling, Victorya Knopova, B. Böttcher, Sandra
Landwehr, K. Evans, Y. Zhuang, Ran Zhang, L. Bray, J. Harris and E. Rhind,
and others contributed more indirectly. I consider it as a privilege to have had
the opportunity to work with so many highly talented young mathematicians from
different countries and cultures and to help them pursuing their careers. They all
contributed much to our field of interest.

Finally, I wish to express my gratitude to Professor Ingo Witt as well as to
Professor Dorothea Bahns and Professor Anke Pohl for inviting me to deliver these
lectures during the workshop and to contribute to this volume. The financial support
for N.J. and E.R. while attending the workshop is gratefully appreciated.

2 Auxiliary Results

This section serves to provide the reader with some background knowledge used in
the main text. We believe that most of the readers will know some of the material, but
parts might be less familiar. Given the mixed audience we do have and must have in
mind we also feel the need to supply a coherent presentation of background material
not least to fix notations. Our standard reference will be [38], a further text we want
to refer to is [12]. Since we are dealing with some common material we prefer to
keep the references on a minimal scale. Standard notations such as Lp (Rn), etc. are
taken for granted to be known and they will coincide with those in [38].
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Let (X, ‖.‖) be a Banach space. A family (Tt )t≥0 of linear operators Tt : X −→
X is called a strongly continuous contraction semigroup (of linear operators on
X) if

Tt ◦ Ts = Tt+s , T0 = id ; (2.1)

‖Tt‖ ≤ 1 ; (2.2)

lim
t→0

‖Ttu− u‖ = 0 ; (2.3)

where ‖Tt‖ denotes the operator norm of Tt . Note that the normalization T0 = id is
not always used.

A strongly continuous contraction semigroup on (C∞ (Rn) , ‖.‖∞), the space of
all continuous functions vanishing at infinity equipped with the sup-norm, is called
a Feller semigroup if it is also positivity preserving, i.e.

u ≥ 0 implies Ttu ≥ 0 . (2.4)

A consequence of the Riesz representation theorem is the existence of a kernel
pt(x, dy) which allows the representation

Ttu(x) =
∫

Rn

u(y) pt (x, dy) . (2.5)

In the case that pt (x, dy) admits a density with respect to the Lebesgue measure
λ(n) we write pt(x, dy) = pt(x, y)λ

(n)(dy) and we have

Ttu(x) =
∫

Rn

u(y)pt (x, y)dy . (2.6)

One of the main objectives is to study the density pt (x, y), more precisely the
transition function (t, x, y) �→ pt (x, y).

We call a strongly continuous contraction semigroup (Tt )t≥0 on Lp (Rn), 1 ≤
p <∞, an Lp-sub-Markovian semigroup if

0 ≤ u ≤ 1 a.e. implies 0 ≤ Tt ≤ 1 a.e. , (2.7)

where a.e. (almost everywhere) refers to the Lebesgue measure
(
or in the case a

space Lp(�,μ) is considered with respect to the measure μ
)
. Often we start with

a contraction semigroup of operators defined on a dense subset of C∞ (Rn) which
is also dense in Lp (Rn), for example the test functions C∞0 (Rn) or the Schwartz
space S (Rn). Hence we may extend by continuity this semigroup to C∞ (Rn) as
well as to Lp (Rn). In such a situation we will in general not introduce separate
notations for these extensions.
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For a strongly continuous contraction semigroup on a Banach space (X, ‖.‖), we
introduce the generator (A,D(A)) by

D(A) :=
{

u ∈ X

∣
∣
∣
∣ lim
t→0

Ttu− u

t
exists as strong limit

}

(2.8)

and

Au := lim
t→0

Ttu− u

t
, (2.9)

i.e.

lim
t→0

∥
∥
∥
∥
Ttu− u

t
− Au

∥
∥
∥
∥ = 0 . (2.10)

The generator is always densely defined, unique, and a closed operator. For a given
strongly continuous contraction semigroup (Tt )t≥0, the resolvent is defined for λ >
0 by

Rλu :=
∫ ∞

0
e−λtTtu dt , u ∈ X . (2.11)

It follows that

Rλu = (λ− A)−1u . (2.12)

The central result for generators is the Hille–Yosida theorem which we give in the
version of Phillips and Lumer:

Theorem 2.1 A linear closed operator (A,D(A)) on a Banach space (X, ‖.‖) is
the generator of a strongly continuous contraction semigroup (Tt )t≥0 on X if and
only if D(A) ⊂ X is dense, A is a dissipative operator in the sense that ‖(λ −
A)u‖ ≥ λ‖u‖ for all λ > 0 and u ∈ D(A), and for some λ > 0 we have R(λ −
A) = X.

Note that the range conditionR(λ−A) = X is equivalent to the statement that for
every f ∈ X there exists u ∈ D(A) such that λu−Au = f , i.e. verifying the range
condition is equivalent to solve for all f ∈ X the equation λu − Au = f . In most
interesting cases Theorem 2.1 cannot be applied. The more applicable version is

Theorem 2.2 A linear operator (A,D(A)) on a Banach space (X, ‖.‖) is closable
and its closure is the generator of a strongly continuous contraction semigroup
if and only if it is densely defined and dissipative and for some λ > 0 we have
R(λ− A) = X, i.e. the range of λ− A is dense in X.
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The generator (A,D(A)) of a Feller semigroup satisfies the positive maximum
principle: For u ∈ D(A) we have

u(x0) = sup
x∈Rn

u(x) ≥ 0 implies (Au)(x0) ≤ 0 . (2.13)

The positive maximum principle implies the dissipativity on C∞ (Rn) and we have

Theorem 2.3 (Hille–Yosida–Ray) A linear operator (A,D(A)) on C∞ (Rn) is
closable and its closure is the generator of a Feller semigroup if and only if D(A)
is dense in C∞ (Rn), (A,D(A)) satisfies the positive maximum principle and for
some λ > 0 we have R(λ − A) = C∞ (Rn) .

We will give below, see (2.41) and (2.42), a characterization of operators satisfy-
ing the positive maximum principle, hence of generators of Feller semigroups.

On L2 (Rn) we have a natural Hilbert space structure and except when discussing
spectral problems we will consider L2 (Rn) as a Hilbert space over R.

(
A standard

complexification procedure will link the real L2-space with the complex L2-space.
)

We need

Definition 2.4 A closed bilinear form (E,F ) is called a symmetric Dirichlet form
on L2 (Rn) if its domain F ⊂ L2 (Rn) is dense, E : F × F −→ R is a symmetric,
non-negative bilinear form, and for every u ∈ F it follows that ((0 ∨ u) ∧ 1) ∈ F
and

E((0 ∨ u) ∧ 1, (0 ∨ u) ∧ 1) ≤ E(u, u) . (2.14)

Here we use a ∨ b := max(a, b) and a ∧ b := min(a, b). Note that τ is called a
normal contraction on H ⊂ L2 (Rn) if τu ∈ H for u ∈ H and

|(τu)(x)− (τu)(y)| ≤ |u(x)− u(y)| and |(τu)(x)| ≤ |u(x)| . (2.15)

The mapping u �→ (0 ∨ u) ∧ 1 is a normal contraction on F and we can replace
in (2.14) this special normal contraction by any other normal contraction.

As a densely defined closed bilinear form (E,F ) admits a densely defined
generator (A,D(A)) which is a closed operator, D(A) ⊂ F , and for u ∈ D(A),
v ∈ F we have

E(u, v) = (−Au, v)L2 . (2.16)

The operator (A,D(A)) is in fact self-adjoint and the generator of a sub-Markovian
L2-semigroup (Tt )t≥0 which can be obtained by using the spectral theorem as

Ttu = eAtu . (2.17)
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Generators of symmetric Dirichlet forms are self-adjoint Dirichlet operators in the
sense that

∫

Rn

(Au)(u− 1)+ dx ≤ 0 (2.18)

for all u ∈ D(A). Here u+ = u ∨ 0. In fact, symmetric Dirichlet forms,
symmetric L2-sub-Markovian semigroups and self-adjoint Dirichlet operators are
in 1–1 correspondence. Note that (Tt )t≥0 is called symmetric if every Tt , t ≥ 0, is a
symmetric operator on L2 (Rn).

Given a symmetric Dirichlet form on L2 (Rn) we can introduce the scalar
products

Eλ(u, v) = E(u, v)+ λ(u, v)L2 , λ > 0 , (2.19)

and for λ > 0 these scalar products are all equivalent to each other. Moreover,
F equipped with E1 is a Hilbert space and we call (F ,E1) the Dirichlet space
associated with the Dirichlet form (E,F ). In the next section we will discuss in
more detail the extended Dirichlet space (Fe,E).

Before examining the structure of Feller generators we need some facts from
Fourier analysis, in particular in relation to convolution semigroups of sub-
probability measures. On the Schwartz space S (Rn) we define the Fourier
transform by

û(ξ) := (Fu)(ξ) := (2π)−n/2
∫

Rn

e−ix·ξu(x) dx (2.20)

which is a bi-continuous linear bijection from S (Rn) onto itself with inverse
Fourier transform

(
F−1u

)
(y) = (2π)−n/2

∫

Rn

eiη·yu(η) dη . (2.21)

The Fourier transform and its inverse have natural continuous extensions from
S (Rn) to the space S′ (Rn) of tempered distributions and therefore they are defined
for bounded continuous functions as well as bounded Borel measures. With our
normalization the Plancherel theorem reads as

‖û‖L2 = ‖u‖L2 (2.22)

and the Riemann–Lebesgue lemma is

‖û‖∞ ≤ (2π)−n/2‖u‖L1 . (2.23)
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For convolutions in S (Rn) or of bounded measures we have the convolution
theorem

(u ∗ v)∧(ξ) = (2π)n/2û(ξ)v̂(ξ) (2.24)

and whenever (u · v)∧ is defined

(u · v)∧(ξ) = (2π)−n/2(û ∗ v̂)(ξ) . (2.25)

The Fourier transform of a bounded Borel measure is given by

μ̂(ξ) = (2π)−n/2
∫

Rn

e−ix·ξ μ(dx) (2.26)

and it is a positive definite function, i.e. for all N ∈ N and all ξ1, . . . , ξN ∈ R
n the

matrix
(
μ̂
(
ξk − ξ l

))
k,l=1,...,N is positive semi-definite, i.e.

N∑

k,l=1

μ̂
(
ξk − ξ l

)
λkλl ≥ 0 (2.27)

for all λ1, . . . , λN ∈ C.
Bochner’s theorem states that the continuous positive definite functions on R

n

are in 1–1-correspondence to the Fourier transforms of bounded Borel measures
on R

n.
A convolution semigroup (μt )t≥0 is a family of sub-probability measures on R

n

(with the Borel σ -field) which is vaguely continuous, i.e.

lim
t→0

∫

Rn

u dμt = u(0) =
∫

Rn

u dε0 (2.28)

for all u ∈ C0 (R
n), the continuous functions on R

n with compact support, and
satisfies

μt ∗ μs = μt+s . (2.29)

Using the convolution theorem and Bochner’s theorem we can prove that for a
convolution semigroup (μt )t≥0 exists a unique continuous function ψ : Rn −→ C

such that

μ̂t (ξ) = (2π)−n/2e−tψ(ξ) . (2.30)
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The function ψ is a continuous negative definite function, a key notion in
our essay. The following equivalent assertions define continuous negative definite
functions ψ : Rn −→ C:

(i) ψ(0) ≥ 0 and (2π)−n/2e−tψ is for all t > 0 positive definite;
(ii) for all N ∈ N and all ξ1, . . . , ξN ∈ R

n the matrix

(
ψ
(
ξk
)
+ ψ

(
ξ l
)− ψ

(
ξk − ξ l

))

k,l=1,...,N
(2.31)

is positive semi-definite;
(iii) there exists a constant c ≥ 0, a vector d ∈ R

n, a positive semi-definite real
matrix (qkl)k,l=1,...,n, qkl = qlk, and a measure ν on R

n \ {0} integrating the
function y �→ 1 ∧ |y|2 (and called the Lévy measure of ψ) such that

ψ(ξ) = c + id · ξ +
n∑

k,l=1

qklξkξl (2.32)

+
∫

Rn\{0}

(

1− eiy·ξ − iy · ξ
1+ |y|2

)

ν(dy) .

Note that (2.32) implies immediately that the differentiability of ψ is determined
by the absolute moments of the Lévy measure, in particular continuous negative
definite functions need not be differentiable. The formula (2.32) is called the
Lévy–Khinchine formula. Here are some examples of continuous negative definite
functions

ψ(ξ) = c , c ≥ 0 ,

ψ(ξ) = id · ξ , i = √−1, d ∈ R
n ,

ψ(ξ) =
∑

qklξkξl
(
qkl = qlk, (qkl)k,l=1,...,n positive semi-definite

)
,

ψ(ξ) = 1− e−ia·ξ ,

ψ(ξ) = |ξ |2α , 0 < α ≤ 1 ,

ψ(ξ) =
(
|ξ |2 +m

)α −m , 0 < α ≤ 1 ,

ψ(ξ) = (iξ)α , 0 < α < 1 , ξ ∈ R ,

ψ(ξ) = ln cosh ξ , ξ ∈ R ,

more examples are discussed in the following sections.
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Since continuous negative definite functions are of utmost importance for our
investigations, here are some of their properties:

(i) The set of all continuous negative definite functions form a convex cone which
is closed under uniform convergence on compact sets.

(ii) We have

ψ(ξ) = ψ(−ξ) ; (2.33)

Re ψ(ξ) ≥ 0 ; (2.34)
√|ψ(ξ + η)| ≤ √|ψ(ξ)| +√|ψ(η)| ; (2.35)

and

1+ |ψ(ξ)|
1+ |ψ(η)| ≤ 2 (1+ |ψ(ξ − η)|) (Peetre’s inequality) . (2.36)

(iii) If ψ : Rn −→ R is a continuous negative definite function such that ψ(ξ) = 0
if and only if ξ = 0 then a metric is given on R

n by ψ1/2(ξ − η).
(iv) If ψ is a continuous negative definite function so are Re ψ and ψ(.)− ψ(0).
(v) If ψj : R

nj −→ C, j = 1, 2, are continuous negative definite functions,
then ψ : Rn −→ C, n = n1 + n2, defined by ψ(ξ, η) = ψ1(ξ) + ψ2(η),
(ξ, η) ∈ R

n = R
n1 × R

n2 , is also a continuous negative definite function.
(vi) The zeroes of ψ form a closed subgroup of (Rn,+).
Let (μt )t≥0 be a convolution semigroup on R

n. We define on S (Rn) the operators

(Ttu) (x) := (u ∗ μt) (x) =
∫

Rn

u(x + y) μt (dy) (2.37)

which are contractions on C∞ (Rn) as well as on L2 (Rn). In fact on C∞ (Rn) these
operators form a Feller semigroup and on L2 (Rn) they form an L2-sub-Markovian
semigroup. On S (Rn) we also obtain a representation as a pseudo-differential
operator

Ttu(x) = (2π)−n/2
∫

Rn

eix·ξe−tψ(ξ)û(ξ) dξ . (2.38)

We can use (2.38) to calculate on S (Rn) the Feller generator as well as the L2-
generator of (Tt )t≥0 and we find

lim
t→0

Ttu(x)− u(x)

t
= −ψ(D)u(x) := −(2π)−n/2

∫

Rn

eix·ξψ(ξ)û(ξ) dξ .

(2.39)
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Using the Lévy–Khinchine formula we obtain now

− ψ(D)u(x) = −cu(x)+
n∑

j=1

dj
∂u

∂xj
(x)+

n∑

k,l=1

qkl
∂2u

∂xk∂xl
(x) (2.40)

+
∫

Rn\{0}

⎛

⎝u(x + y)− u(x)−
n∑

j=1

yj
∂u
∂xj

(x)

1+ |y|2

⎞

⎠ ν(dy) .

The right-hand side of (2.40) is defined for all u ∈ C2
b (R

n) and for u ∈ C2
b (R

n)∩
C∞ (Rn) the operator−ψ(D) satisfies the positive maximum principle: If u(x0) =
supx∈Rn u(x) ≥ 0, then grad u(x0) = 0 and we find

−ψ(D)u(x0) = −cu(x0)+
n∑

k,l=1

qkl
∂2u

∂xk∂xl
(x0)

+
∫

Rn\{0}
(u(x0 + y)− u(x0)) ν(dy) ≤ 0 ,

since c ≥ 0, at x0 the term
∑n

k,l=1 qkl
∂2u

∂xk∂xl
(x0) ≤ 0 since u has at x0 a local

maximum, and of course u(x0 + y)− u(x0) ≤ 0 by the definition of x0.
From (2.40) we may derive more general operators satisfying the positive

maximum principle:

Au(x) := −c(x)u(x)+
n∑

j=1

dj (x)
∂u

∂xj
(x)+

n∑

k,l=1

qkl(x)
∂2u

∂xk∂xl
(x) (2.41)

+
∫

Rn\{0}

⎛

⎝u(x + y)− u(x)−
n∑

j=1

yj
∂u
∂xj

(x)

1+ |y|2

⎞

⎠ ν(x, dy) ,

and using the Lévy–Khinchine formula we get for u ∈ S (Rn)

Au(x) = −(2π)−n/2
∫

Rn

eix·ξq(x, ξ)û(ξ) dξ (2.42)

where

q(x, ξ) = c(x)+ i
n∑

j=1

dj (x)ξj +
n∑

k,l=1

qkl(x)ξkξl (2.43)

+
∫

Rn\{0}

(

1− eiy·ξ − iy · ξ
1+ |y|2

)

ν(x, dy) ,
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here c(.), dj (.) and qkl(.) = qlk(.) are continuous functions, c(x) ≥ 0, furthermore
we require

∑n
k,l=1 qkl(x)ξkξl ≥ 0 for all x ∈ R

n and ξ ∈ R
n, and ν(x, dy) is a

kernel such that for every x ∈ R
n the function y �→ 1∧|y|2 is integrable with respect

to ν(x, dy). Thus, operators defined by (2.41) or (2.42) with a symbol q(x, ξ)
which is with respect to ξ a continuous negative definite function are candidates
for Feller generators. Indeed, a theorem due to Courrège [17] states that every linear
operator from C∞0 (Rn) to Cb (R

n) satisfying the positive maximum principle is of
type (2.41), hence of type (2.42).

The operators (2.38), (2.39) or (2.42) are pseudo-differential operators. In our
essay we call any operator of type

h(x,D)u(x) = (2π)−n/2
∫

Rn

eix·ξh(x, ξ)û(ξ) dξ (2.44)

where h : Rn × R
n −→ C is a continuous function such that for x ∈ R

n fixed the
function ξ �→ h(x, ξ) has at most power growth a pseudo-differential operator
and h is called the symbol of h(x,D). We need to look at pseudo-differential
operators having a symbol which is with respect to ξ a continuous negative definite
function and this means that for our purposes in general the standard theory of
pseudo-differential operators is not applicable.

Continuous negative definite functions enter into our discussion also from quite a
different point of view: they are the characteristic exponents of Lévy processes. By
definition a Lévy process with state space R

n is a stochastic process (Xt)t≥0 with
stationary and independent increments which is stochastically continuous, i.e. if
(�,A, P ) is the underlying probability space for the random variables Xt : � −→
R
n we have

PXt−Xs = μt−s , 0 < s < t ; (2.45)

Xt1 −Xt0, . . . , XtN −XtN−1are independent random variables (2.46)

for any choice 0 ≤ t0 < t1 < . . . < tN ;
lim
s→0

P ({|Xt+s −Xt | ≥ ε}) = 0 for every ε > 0 . (2.47)

The distributions

μt := PXt−X0 , t ≥ 0 , (2.48)

form a convolution semigroup and we have

E
x (u (Xt)) = Ttu(x) (2.49)
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for u ∈ C∞ (Rn) where (Tt )t≥0 is the operator semigroup associated with (μt )t≥0.
In fact (2.49) holds for bounded Borel functions, and if we choose as u = χB the
characteristic function of a Borel set B we find

Pt (x, B) = TtχB(x) = Px {Xt ∈ B} , (2.50)

i.e. Pt (x, B) gives the probability to be at time t in the set B if at time 0 we were at
the point x. In the case where Pt (x, dy) has a density we have of course

Pt (x, B) =
∫

B

Pt (x, y) dy . (2.51)

3 Translation Invariant Extended Dirichlet Spaces

In this paragraph we recollect some material on translation invariant extended
Dirichlet spaces. We follow closely [39], however we emphasize that the presen-
tation in [39] depends much on [6, 28] and partly [69], and indirectly on [7] and
[21].

Let (Tt )t≥0 be a symmetric L2-sub-Markovian semigroup on L2 (Rn). It is
known that (Tt )t≥0 extends from L2 (Rn) ∩ Lp (Rn) to Lp (Rn) as sub-Markovian
semigroup, 1 ≤ p <∞, and under suitable regularity conditions it induces a Feller
semigroup on C∞ (Rn). For the operator

Stu :=
∫ t

0
Tsu ds , t > 0 , (3.1)

we have

‖Stu‖Lp ≤ t‖u‖Lp . (3.2)

Moreover, St is positivity preserving and for t < t ′ it follows for every u ≥ 0 a.e.
that Stu ≤ St ′u a.e.

Definition 3.1 The potential operator G associated with (Tt )t≥0 is defined for
u ∈ L1 (Rn), u ≥ 0 a.e., by

Gu(x) := lim
N→∞ SNu(x) = sup

N∈N
SNu(x) ≤ ∞ . (3.3)

Remark 3.2 Denoting by (Rλ)λ>0 the resolvent of (Tt )t≥0 we find almost every-
where

Gu = sup
λ>0

Rλu = lim
λ→0

Rλu . (3.4)
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Definition 3.3 If Gu <∞ a.e. for all u ∈ L1 (Rn), u ≥ 0 a.e., then we call (Tt )t≥0
transient. In the case that for all u ∈ L1 (Rn), u ≥ 0 a.e., we have Gu(x) ∈ {0,∞}
for almost all x ∈ R

n we call (Tt )t≥0 recurrent.

Theorem 3.4 Let (Tt )t≥0 be a symmetric L2-sub-Markovian semigroup with the
corresponding Dirichlet form (E,D(E)). The semigroup is transient if and only if
there exists a bounded function g ∈ L1 (Rn) which is strictly positive and satisfies
for all u ∈ D(E)

∫

|u|g dx ≤ E1/2(u, u) . (3.5)

Definition 3.5 Let (E,D(E)) be a symmetric Dirichlet space on L2 (Rn), i.e.
D(E) ⊂ L2 (Rn). The extended Dirichlet space Fe

(
or (Fe,Ee)

)
associated with

(E,D(E)) is the family of all measurable functions u : R
n −→ R, |u| < ∞

a.e., such that there exists a sequence (uk)k∈N, uk ∈ D(E), which converges
almost everywhere to u and which is a Cauchy sequence with respect to E, i.e.
E(uk − ul, uk − ul)→ 0 as k, l →∞.

For u ∈ Fe we call a sequence satisfying the conditions of Definition 3.5 an
approximating sequence for u.

Theorem 3.6 Let (E,D(E)), D(E) ⊂ L2 (Rn), be a symmetric Dirichlet space
with associated sub-Markovian semigroup (Tt )t≥0. For every u ∈ Fe and every
approximating sequence (uk)k∈N for u the limit limk→∞ E(uk, uk) exists and is
independent of the choice of (uk)k∈N . Moreover we have D(E) = Fe ∩L2 (Rn). In
particular we can extend E to Fe by

E(u, u) := lim
k→∞E(uk, uk) . (3.6)

Corollary 3.7 For u ∈ Fe we have

lim
t→0

E(Ttu− u, Ttu− u) = 0 (3.7)

and

E(Ttu, Ttu) ≤ E(u, u) . (3.8)

The following theorem summarizes the basic facts about extended Dirichlet spaces,
see [28], Theorem 1.5.3, or [39], Theorem 3.5.46.
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Theorem 3.8 Let (E,D(E)) be a symmetric transient Dirichlet space, D(E) ⊂
L2 (Rn), i.e. the semigroup (Tt )t≥0 associated with (E,D(E)) is transient. For the
extended Dirichlet space Fe with scalar product E the following holds:

(i) (Fe,E) is a Hilbert space.
(ii) There exists a bounded strictly positive function g ∈ L1 (Rn) such that

∫

|u(x)|g(x) dx ≤ E1/2(u, u) (3.9)

holds for all u ∈ Fe.
(iii) Fe ∩ L2 (Rn) is dense in L2 (Rn) and Fe.
(iv) For every normal contraction τ and all u ∈ Fe we have τu ∈ Fe and

E(τu, τu) ≤ E(u, u) . (3.10)

In addition we have Fe∩L2 (Rn) = D(E). Conversely, suppose that (H,E) satisfies
(i)–(iv). Then (H,E) is the extended Dirichlet space of the transient, symmetric
Dirichlet form (E,H ∩ L2 (Rn)).

We need also the notion of the abstract potential operator in the sense of
K. Yosida, see [74], and we give the definition here just for the case of a symmetric
sub-Markovian semigroup on L2 (Rn).

Definition 3.9 Let (Tt )t≥0 be a symmetric sub-Markovian semigroup on L2 (Rn)

with generator (A,D(A)), resolvent (Rλ)λ>0 and potential operator (G,D(G))
where

D(G) :=
{

u ∈ L2 (
R
n
)
∣
∣
∣
∣ lim
N→∞

∫ N

0
Ttu dt exists in L2 (

R
n
)
}

. (3.11)

The abstract potential operator or the resolvent at zero (R0,D(R0)) associated
with (Tt )t≥0 is the operator R0 defined on

D(R0) :=
{
u ∈ L2 (

R
n
) ∣∣
∣ lim
λ→0

Rλu exists in L2 (
R
n
) }

(3.12)

and we set

R0u = lim
λ→0

Rλu , u ∈ D(R0) . (3.13)

We have the following.

Proposition 3.10 Let (Tt )t≥0 be a symmetric transient sub-Markovian semigroup
on L2 (Rn) with generator (A,D(A)). In this case the corresponding potential
operator and the abstract potential operator coincide as L2-operators and we have
A = −G−1 as well as G = −A−1.
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With these general preparations we can start to study sub-Markovian semigroups
on L2 (Rn) associated with convolution semigroups of measures, or equivalently
with real-valued continuous negative definite functions.

Let (μt )t≥0 be a symmetric convolution semigroup on R
n with associated

negative definite function ψ : Rn −→ R. Later on we will require that ξ = 0 ∈ R
n

is a zero of ψ , in fact we will assume ψ(ξ) = 0 if and only if ξ = 0. It follows then
that all the measures μt are probability measures. We also assume that μt has no
Gaussian part which implies for the Lévy-Khinchine representation of ψ

ψ(ξ) =
∫

Rn\{0}

(
1− eiy·ξ) ν (dy) =

∫

Rn\{0}
(1− cos y · ξ) ν (dy) (3.14)

with a symmetric Lévy measure ν integrating the function y �→ 1 ∧ |y|2. The
relation between (μt )t≥0 and ψ is given by

μ̂t (ξ) = (2π)−n/2e−tψ(ξ) . (3.15)

Now we can define on Lp (Rn), 1 ≤ p <∞, or C∞ (Rn) the operators

T
ψ
t u(x) =

∫

Rn

u(x − y) μt (dy) . (3.16)

The convolution theorem implies further

(
T
ψ
t u
)∧

(ξ) = (2π)n/2û(ξ)μ̂t (ξ) = û(ξ)e−tψ(ξ) (3.17)

which yields the pseudo-differential operator representation of T ψ
t as

T
ψ
t u(x) = (2π)−n/2

∫

Rn

eix·ξe−tψ(ξ)û(ξ) dξ . (3.18)

The L2-generator of
(
T
ψ
t

)

t≥0
is
(
Aψ,D

(
Aψ
))

with

D(Aψ) = Hψ,2 (
R
n
)

(3.19)

where with

‖u‖2
ψ,s =

∫

Rn
(1+ ψ(ξ))s |û(ξ)|2 dξ (3.20)

we have for s ≥ 0

Hψ,s
(
R
n
) =

{
u ∈ L2 (

R
n
) ∣∣
∣ ‖u‖ψ,s <∞

}
, (3.21)
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and

Aψu(x) = −ψ(D)u(x) = (2π)−n/2
∫

Rn

eix·ξ (−ψ(ξ))û(ξ) dξ . (3.22)

Moreover for the resolvent (Rλ)λ>0 we have the representation

Rλu(x) = (2π)−n/2
∫

Rn

eix·ξ 1

λ+ ψ(ξ)
û(ξ) dξ . (3.23)

Note that the condition ψ(0) = 0 implies that (T ψ
t )t≥0 is a conservative semigroup,

i.e. T ψ
t 1 = 1 for all t > 0. Here we define T ψ

t 1 by (3.16).
The next result is taken in the formulation of [39], Theorem 3.5.51.

Theorem 3.11 Let (μt )t≥0 be a symmetric convolution semigroup of probability
measures on R

n with corresponding continuous negative definite function ψ :
R
n −→ R and symmetric Dirichlet form (Eψ,D(Eψ)) = (Eψ,Hψ,1 (Rn)), where

Eψ(u, v) =
∫

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ , (3.24)

and operator semigroup
(
T
ψ
t

)

t≥0
with T

ψ
t as in (3.16). The following statements

are equivalent

(i)
(
T
ψ
t

)

t≥0
is transient;

(ii) for every compact set K ⊂ R
n we have

K(K) :=
∫ ∞

0
μt(K) dt <∞ ; (3.25)

(iii) for all u ∈ C0 (R
n), u ≥ 0, it follows that

∫ ∞

0

(
T
ψ
t u, u

)

0
dt <∞ ; (3.26)

(iv) 1
ψ
∈ L1

loc (R
n) .

The equivalence of (i) and (iv) is the one of importance to us. First we state a
result which is mainly due to C. Berg and G. Forst, see [6].

Theorem 3.12 Let
(
T
ψ
t

)

t≥0
be a transient symmetric L2-Markovian semigroup

associated with the convolution semigroup (μt )t≥0 and the corresponding negative
definite function ψ . In this case the potential operator G and the abstract potential
operatorR0 are both defined as L2-operators and coincide. Moreover R0 is densely
defined.
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We want to note that in the situation of Theorem 3.12 the operator Rλ, λ > 0,
admits the representation

Rλu = �λ ∗ u (3.27)

with

�λ =
∫ ∞

0
e−λtμt dt (3.28)

where

�λ(v) = 〈�λ, v〉 =
∫

Rn

v(x)�λ (dx)

=
∫ ∞

0
e−λt

∫

Rn

v(x) μt (dx)dt

=
∫ ∞

0
e−λt 〈μt, v〉 dt .

It follows that (T ψ
t )t≥0 is transient if and only if (μt )t≥0 is transient in the sense

that

K(u) := lim
λ→0

�λ(u) , u ∈ C0
(
R
n
)
, (3.29)

exists. We call K the potential kernel associated with (μt )t≥0.

Example 3.13 Let ψ : Rn −→ R be a continuous negative definite function such
that ψ(ξ) = 0 if and only if ξ = 0 and assume that 1/ψ ∈ L1

loc (R
n). Hence

the corresponding semigroup
(
T
ψ
t

)

t≥0
and Dirichlet form (Eψ,Hψ,1 (Rn)) are

transient. Recall that

Eψ(u, v) =
∫

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ . (3.30)

The corresponding extended Dirichlet space is given by

F ψ
e := Hψ,1

e

(
R
n
) :=

{
u ∈ S′

(
R
n
) ∣∣
∣ u ∈ L1

loc

(
R
n
)

and ûψ
1
2 ∈ L2 (

R
n
) }

(3.31)

and the extended form Eψe is again given (and often denoted) by Eψ . Note that F ψ
e

is a subspace of the weighted L2-space L2
(
R
n;ψλ(n)) with norm

‖u‖2
L2(Rn;ψλ(n)) =

∫

Rn

|û(ξ)|2ψ(ξ) dξ . (3.32)
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The Lévy–Khinchine representation gives further

∫

Rn

|û(ξ)|2ψ(ξ) dξ = 1

2

∫

Rn

(∫

Rn\{0}
(u(x + y)− u(x))2 ν (dy)

)

dx .

(3.33)

In general it is not known whether for some p ≥ 1 we can prove that Hψ,1
e (Rn) ⊂

Lp (Rn). However it can be shown, compare [21] that C0 (R
n)∩Hψ,1

e (Rn) is dense
in H

ψ,1
e (Rn) and in C0 (R

n). It follows further that in this case we achieve (3.5)
with a strictly positive function g ∈ C∞ (Rn) ∩ L1 (Rn).

Example 3.14 Consider ψα(ξ) = |ξ |α, 0 < α < 2, with corresponding operator
semigroup

T
ψα
t u(x) = T

(α)
t u(x) = (2π)−n/2

∫

Rn

eix·ξe−t |ξ |α û(ξ) dξ . (3.34)

The generator of
(
T
(α)
t

)

t≥0
is given by (−(−�)α/2,Hα (Rn)) where for s ∈ R

Hs
(
R
n
) =

{
u ∈ S′

(
R
n
) ∣∣
∣ ‖u‖2

s <∞
}

(3.35)

and

‖u‖2
s =

∫

Rn

(
1+ |ξ |2

)s |û(ξ)|2 dξ . (3.36)

Since

∫

BR(0)

1

|ξ |α dξ = cn

∫ R

0
rn−1−α dr

it follows that 1/ψα ∈ L1
loc (R

n) if and only if α < n, i.e.
(
T
(α)
t

)

t≥0
is transient

for all n ≥ 2 which we will assume in the following. The corresponding extended
Dirichlet space is given by (Hα/2

e (Rn) ,Eα) where

H
α/2
e

(
R
n
) =

{
u ∈ S′

(
R
n
) ∣∣
∣ u ∈ L1

loc

(
R
n
)

and |.|α/2û ∈ L2 (
R
n
) }

(3.37)

and

Eα(u, v) =
∫

Rn

|ξ |αû(ξ)v̂(ξ) dξ (3.38)

= c̃α,n

∫

Rn

∫

Rn

(u(x)− u(y))(v(x)− v(y))

|x − y|n−α dx dy ,
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where

c̃α,n = 2α−1α�
(
n+α

2

)

πn/2�
(

2−α
2

) .

For the potential operator G(α) we find for n ≥ 2 that

G(α)u(x) =
∫ ∞

0
T
(α)
t u(x)dt = (2π)−n/2

∫

Rn

eix·ξ 1

|ξ |α û(ξ) dξ , (3.39)

and with the Riesz-kernel R(α)(x) = cα,n|x|−n+α we have

G(α) = R(α) ∗ u =: Rαu , (3.40)

and

cα,n = �
(
n−α

2

)

2απn/2�
(
α
2

) .

This leads to the equivalent characterization of Hα/2
e (Rn) as

H
α/2
e

(
R
n
) =

{
u ∈ L1

loc

(
R
n
) ∣∣
∣ u = Rα/2f , f ∈ L2 (

R
n
) }

. (3.41)

Of importance for the following is now.

Theorem 3.15 (Sobolev’s Inequality) Let 1 < q < p < ∞, 0 < α < n and
1/p = 1/q − α/n > 0. Then we have

∥
∥R(α)u

∥
∥
Lp ≤ cα,p,q,n‖u‖Lq . (3.42)

As consequences we obtain

Corollary 3.16 For n ≥ 2 and 0 < α < 2 we can embed Hα/2
e (Rn) into Lp (Rn)

where p = 2n
n−α and the estimate

‖u‖2
Lp ≤ cE(α)(u, u) (3.43)

holds for all u ∈ H
α/2
e (Rn).

Corollary 3.17 Let ψ : Rn −→ R be a continuous negative definite function such
that for some c0 > 0 and 0 < α < 2 we have for all ξ ∈ R

n

c0|ξ |α ≤ ψ(ξ) . (3.44)
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If n ≥ 2, then the semigroup
(
T
ψ
t

)

t≥0
is transient and the extended Dirichlet space

H
ψ,1
e (Rn) is continuously embedded into Lp (Rn), p = 2n

n−α , and we have the
estimate

‖u‖2
Lp ≤ c̃Eψ(u, u) (3.45)

for all u ∈ H
ψ,1
e (Rn).

Example 3.18 This example will be taken up at several occasions later on. Consider
the continuous negative definite function ψER : R2 −→ R

ψER(ξ, η) =
(|ξ |α1 + |η|β1

)γ1 + (|ξ |α2 + |η|β2
)γ2 (3.46)

for 1 < α1, α2 < 2, 1 < β1, β2 < 2, 0 < γ1, γ2 < 1, α1γ1 = β2γ2, α2γ2 = β1γ1,
α1γ1 > α2γ2 and αiγi > 1, βiγi > 1 for i = 1, 2. Then for all (ξ, η) ∈ R

2

κ0

(
|ξ |2 + |η|2

) α1γ1
2 ≤ ψER(ξ, η) (3.47)

for some κ0 > 0. Since n = 2 we can apply Corollary 3.17 to the associated semi-

group
(
T
ψER
t

)

t≥0
which is transient and the extended Dirichlet space HψER,1

e

(
R

2
)

is continuously embedded into Lp
(
R

2
)
, p = 4

2−α1γ1
. Hence, by (3.45) we have

‖u‖2

L
4

2−α1γ1

≤ c̃EψER(u, u) (3.48)

for all u ∈ H
ψER,1
e

(
R

2
)
.

Note that for ψER we have also the upper bound

ψER(ξ, η) ≤ κ1

((
|ξ |2 + |η|2

) α1γ1
2 +

(
|ξ |2 + |η|2

) α2γ2
2
)

(3.49)

for some κ1 > 0.

4 On Diagonal Terms of Transition Functions

Let ψ : Rn −→ R be a continuous negative definite function associated with the
convolution semigroup (μt )t≥0 and such that ψ(ξ) = 0 if and only if ξ = 0. Then
a metric on R

n is given by

dψ(ξ, η) = ψ1/2(ξ − η) (4.1)
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and we assume that dψ induces on R
n the Euclidean topology, which is the case if

and only if lim inf|ξ |→∞ ψ(ξ) > 0, see [44]. In some situations it will be convenient
to consider instead dψ for t > 0 the family

dψ,t (ξ, η) =
√
tψ(ξ − η) . (4.2)

In addition we assume that e−tψ(.) ∈ L1 (Rn) for all t > 0. This assumption implies

that the associated semigroup of operators
(
T
ψ
t

)

t≥0
admits a representation

T
ψ
t u(x) =

∫

Rn

p
ψ
t (x − y)u(y) dy (4.3)

where

p
ψ
t (x) =

1

(2π)n

∫

Rn

eix·ξe−tψ(ξ) dξ . (4.4)

We call the function (t, x) �→ pt (x) := p
ψ
t (x) the transition density associated with

(T
ψ
t )t≥0 or (μt )t≥0, respectively. Clearly, pt (.) is nothing but the density of μt with

respect to the Lebesgue measure λ(n). Since by our assumption μt is a probability
measure we find for t > 0 fixed that

pt ∈ L1 (
R
n
) ∩ C∞

(
R
n
) ⊂

⋂

p≥1

Lp
(
R
n
) ∩ C∞

(
R
n
)

(4.5)

and

p̂t (ξ) = (2π)−n/2e−tψ(ξ) . (4.6)

Our general aim is to get a good understanding of pψt and hence of the operators
T
ψ
t , Aψ = −ψ(D) and Rψ

λ . In this chapter we concentrate on the term p
ψ
t (0), i.e.

on

p
ψ
t (0) =

1

(2π)n

∫

Rn

e−tψ(ξ) dξ . (4.7)

The following result is taken from Varopoulos et al. [71], see also Theorem 3.6.1 in
[39], and formulated for the case R

n only.

Theorem 4.1 Let (Tt )t≥0 be a symmetric Markovian semigroup on L2 (Rn) with
corresponding Dirichlet form (E,D(E)). Further let p > 2 and N := 2p

p−2 > 2.
The following estimates are equivalent

‖u‖2
Lp ≤ cE(u, u) , u ∈ D(E) ; (4.8)
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‖u‖2+4/N
L2 ≤ cE(u, u)‖u‖4/N

L1 , u ∈ D(E) ∩ L1 (
R
n
) ; (4.9)

‖Tt‖L1−L∞ ≤ c′t−N/2 for all t > 0 . (4.10)

From (4.3) it follows that

∥
∥T

ψ
t

∥
∥
L1−L∞ = p

ψ
t (0) . (4.11)

In light of Theorem 4.1 it is now clear why estimates for Eψ are of importance to
control pψt (0) or more generally p

ψ
t . Combining Theorem 4.1 and Corollary 3.17

we get

Theorem 4.2 For n ≥ 2 let ψ : R
n −→ R be a continuous negative definite

function satisfying our standard assumptions. We assume additionally that with
some c0 > 0 and 0 < α < 2 we have for all ξ ∈ R

n

c0|ξ |α ≤ ψ(ξ) . (4.12)

Then the estimate

p
ψ
t (0) ≤ Cψt

−n/α (4.13)

holds for all t > 0.

Proof By Corollary 3.17 we have

‖u‖2
Lp ≤ cEψ(u, u) (4.14)

for all u ∈ D(E) with p = 2n
n−α . This gives for N as defined in Theorem 4.1 the

value N = Nψ = 2n
α

. ��
Note that for ψα(ξ) = |ξ |α , 0 < α < 2, we can obtain estimate (4.13) by a direct

calculation using the homogeneity of ψα . In this case we obtain equality with Cψα

given by

Cψα =
�
(
n−α

2

)

2απn/2�
(
α
2

) . (4.15)

This opens the way to derive for the general case discussed in Theorem 4.2 the
estimate (4.13) directly from

e−tψ(ξ) ≤ e−c0t |ξ |α ,
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but the approach suggested by using Theorem 4.1 is still available when ψ(ξ) is
replaced by a continuous negative definite symbol q(x, ξ) while in that case the
direct comparison of symbols cannot be used for a “simple” calculation.

Example 4.3 Taking upψER from Example 3.18, we can investigate its correspond-
ing associated transition density using Theorem 4.2. Recalling that ψER satisfies an
estimate of the form (4.12), namely (3.47), we can deduce from (4.13) that

p
ψER
t (0) ≤ CψER t

−2/α1γ1

for all t > 0.
Using the upper bound (3.49) for ψER we first note that

p
ψER
t (0) = 1

(2π)2

∫

R2
e−tψER(ξ,η) dξdη

≥ 1

(2π)2

∫

R2
e
−tκ1

(
(|ξ |2+|η|2)

α1γ1
2 +(|ξ |2+|η|2)

α2γ2
2

)

dξdη

which implies with ψ̃(ξ, η) = (|ξ |2 + |η|2)
α1γ1

2 + (|ξ |2 + |η|2)
α2γ2

2 that

p
ψER
t (0) ≥ p

ψ̃
tκ1
(0) .

We want to investigate the integral (4.7) by using integration with respect to
the distribution function, see [64], Theorem 13.11, for a general formulation of the
result.

Theorem 4.4 ([44]) For a continuous negative definite function ψ : Rn −→ R

satisfying our standard assumptions we have

∫

Rn

e−tψ(ξ) dξ =
∫ ∞

0
λ(n)

(

Bdψ

(

0,

√
r

t

))

e−r dr (4.16)

where

Bdψ (x, r) := {y ∈ R
n | dψ(x, y) < r} (4.17)

is the open ball with centre x ∈ R
n and radius r > 0 with respect to the metric dψ .

Introducing the volume functions

Vψ(r) := λ(n)
(
Bdψ (0, r)

)
(4.18)
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and

Ṽψ(r) = Vψ
(√

r
)

(4.19)

we find, see [30] or [31],

Corollary 4.5 For ψ : Rn −→ R as in Theorem 4.4 we have

p
ψ
t (0) = (2π)−ntL

(
Ṽψ

)
(t) , (4.20)

where L denotes the Laplace transform.

Proof We need only observe that

∫ ∞

0
λ(n)

(

Bdψ

(

0,

√
r

t

))

e−r dr = t

∫ ∞

0
λ(n)

(
Bdψ

(
0,
√
�
))

e−t� d�

= tL
(
Ṽψ

)
(t) .

��
This corollary allows us to find for some cases the function t �→ p

ψ
t (0) explicitly.

However in most cases we depend on estimates. For this we introduce

Definition 4.6 Let d be a metric on R
n. We call

(
R
n, d, λ(n)

)
a metric measure

space with doubling property if for every r > 0 and all x ∈ R
n there exists a

constant γ > 0 independent of r and x such that

λ(n) (B2r (x)) ≤ γ λ(n) (Br(x)) , (4.21)

where Br(x) denotes the open ball with centre x and radius r with respect to d .

If
(
R
n, d, λ(n)

)
is a metric measure space with volume doubling, then the volume

function r �→ Vd(x, r) := λ(n) (Vd(x, r)) has at most power growth. In particular
if d is a translation invariant metric with the volume doubling property, then the
growth of r �→ λ(n) (Vd(x, r)) is independent of x and has at most power growth.

Note that if
(
R
n, dψ, λ

(n)
)

has the doubling property then it is a metric space of
homogeneous type in the sense of Coifman and Weiss [16].

Theorem 4.7 ([44]) Suppose that the continuous negative definite function ψ :
R
n −→ R satisfying our standard assumptions and in addition assume that the

metric measure space
(
R
n, dψ , λ

(n)
)

has the volume doubling property. Then we
have

p
ψ
t (0) % Ṽψ

(
1√
t

)

, t > 0 . (4.22)
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Here we used the notation a % b, 0 < a < b, for the two estimates

c0 ≤ b

a
≤ c (4.23)

to hold for some 0 < c0 ≤ c.

Example 4.8 It is not hard to see that we can improve (3.47) to

κ2

((
|ξ |2 + |η|2

) α1γ1
2 +

(
|ξ |2 + |η|2

) α2γ2
2
)

≤ ψER(ξ, η) (4.24)

and from (4.24) combined with (3.49) we obtain the estimates

κ̃0h(ξ, η) ≤ ψ
1/2
ER (ξ, η) ≤ κ̃1h(ξ, η)

where

h(ξ, η) = max
((
|ξ | γ1α1

2 + |η| γ1α1
2

)
,
(
|ξ | γ2α2

2 + |η| γ2α2
2

))
.

By h (ξ1 − ξ2, η1 − η2) a metric having the doubling property is induced on R
2

and using the concrete formulae for the volumes of the corresponding balls, we can
deduce the doubling property for ψER , see [55].

While our main interest is the study of generators of Feller semigroups i.e.
pseudo-differential operators with negative definite symbols, it is worth mentioning
that studying the case of L2-operator semigroups

(
T
g
t

)
t≥0 defined on S (Rn) by

T
g
t u(x) = (2π)−n/2

∫

Rn

eix·ξe−tg(ξ)û(ξ) dξ (4.25)

for a continuous function g : Rn −→ R, g ≥ 0, e−tg ∈ L1 (Rn) will lead to some
further insights for our problem. In [30], [31] we have discussed some results for(
T
g
t

)
t≥0.

In order to expand our reservoir of examples we need to introduce subordination
in the sense of Bochner and we refer to [38] as well as [67] as reference.

Definition 4.9 A real-valued function f ∈ C((0,∞)) is called a Bernstein
function if

f (x) ≥ 0 and (−1)k
dkf (x)

dxk
≤ 0 (4.26)

holds for all k ∈ N and x ∈ (0,∞).
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Theorem 4.10 If f is a Bernstein function, then there exist constants a, b ≥ 0 and
a measure μ on (0,∞) integrating s �→ s

1+s such that

f (x) = a + bx +
∫ ∞

0+

(
1− e−xs

)
μ (ds) , x > 0 . (4.27)

Furthermore, given a Bernstein function f then there exists a convolution semigroup
(ηt )t≥0 of sub-probability measures supported on [0,∞) such that

L (ηt ) (x) =
∫ ∞

0
e−sx ηt (ds) = e−tf (x) (4.28)

for all x > 0 and t > 0.

Remark 4.11 The integrability condition on μ in (4.27) yields that μ|(0,1] integrates
the function s �→ s and that μ|[1,∞) integrates the function s �→ 1. Since for z ∈ C,
Re z ≥ 0 and s > 0 we have the estimates |1 − e−sz| ≤ s|z| and |1 − e−zs | ≤ 2 it
follows that (4.27) admits a continuous extension to the half-plane Re z ≥ 0, i.e. f
admits an extension to Re z ≥ 0.

The fundamental result is

Theorem 4.12 If ψ : Rn −→ C is a continuous negative definite function with
associated convolution semigroup (μt )t≥0 and if f is a Bernstein function with
associated convolution semigroup (ηt )t≥0, then f ◦ψ is again a continuous negative

definite function and for the associated convolution semigroup
(
μ
f
t

)

t≥0
we find (as

a vague integral) the representation

μ
f
t =

∫ ∞

0
μs ηt (ds) , (4.29)

i.e. for all ϕ ∈ C0 (R
n) we have

∫

Rn

ϕ(x) μ
f
t (dx) =

∫ ∞

0

∫

Rn

ϕ(x) μs (dx) ηt (ds) . (4.30)

Definition 4.13 We call
(
μ
f
t

)

t≥0
the convolution semigroup subordinate (in the

sense of Bochner) to (μt )t≥0 with respect to (ηt )t≥0.

Subordination extends to operator semigroups. Let (Tt )t≥0 be a strongly contin-
uous contraction semigroup on the Banach space (X, ‖.‖). The family of operators
T
f
t , t ≥ 0, defined by

T
f
t u =

∫ ∞

0
Tsu ηt (ds) (4.31)
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is called the semigroup subordinate to (Tt )t≥0 with respect to (ηt )t≥0, compare [38],
Theorem 4.3.1.

Suppose that ψ : Rn −→ R is a continuous negative definite function satisfying
our standard assumptions and assume that f is a Bernstein function such that f ◦ψ
also satisfies our standard assumptions. In this case we have

p
f ◦ψ
t (0) = (2π)−ntL

(
Ṽf ◦ψ

)
(t) . (4.32)

In addition if 1
f ◦ψ ∈ L1

loc (R
n), then the Dirichlet form Ef ◦ψ and therefore the

semigroup
(
T
f ◦ψ
t

)

t≥0
is transient.

Let (Tt )t≥0 be a strongly continuous contraction semigroup on a Banach space
(X, ‖.‖) with generator (A,D(A)). Let f be a Bernstein function with represen-
tation (4.27) and corresponding convolution semigroup (ηt )t≥0. Then D(A) is an

operator core for the generator
(
Af ,D

(
Af
))

of
(
T
f
t

)

t≥0
and on D(A) we have

Af u = −au+ bAu+
∫ ∞

0+
(Tsu− u) μ (ds) , (4.33)

see [62] or [67], Theorem 13.6.
For the following it is convenient to rewrite (4.9) as

‖u‖2
L2h

(
‖u‖2

L2

)
≤ E(u, u) (4.34)

for all u ∈ D(E) ∩ L1 (Rn) with ‖u‖L1 = 1.
The following result due to Schilling and Wang [66] extends a result of Bendikov

and Maheux [4] and in [72] relations to the work of Tomisaki [70] were discussed.

Theorem 4.14 Let (Tt )t≥0 be a symmetric sub-Markovian semigroup on L2 (Rn)

and assume that Tt |L2∩L1 extends to an L1-contraction, i.e. ‖Ttu‖L1 ≤ ‖u‖L1 . If
the L2-generator (A,D(A)) of (Tt )t≥0 satisfies with an increasing function h :
(0,∞) −→ (0,∞)

‖u‖2
L2h

(
‖u‖2

L2

)
≤ (Au, u)L2 (4.35)

for all u ∈ D(A) such that ‖u‖L1 = 1, then we have

1

2
‖u‖2

L2f

(

h

(‖u‖2
L2

2

))

≤
(
Af u, u

)

L2
(4.36)

for all u ∈ D
(
Af
)
, ‖u‖L1 = 1.



106 N. Jacob and E. O. T. Rhind

In [67] plenty of examples of Bernstein functions are provided together with
more detailed information. We mention here just a few

f (s) = sα , 0 < α < 1 ,

f (s) = (s + 1)α − 1 , 0 < α < 1 ,

f (s) = √s
(

1− e−
√
s
)
,

f (s) = ln(1+ s) ,

f (s) = √s arctan
√
s ,

f (s) = s

1+ s

(
sα

sinαπ
− cot(απ)− 1

π
ln s

)

,

f (s) = arsinh(s) ,

f (s) = arcosh(s + 1) ,

f (s) = s1−νes�(ν, s) .

Example 4.15 We consider again the continuous negative definite function from
Example 3.18. Clearly ψER(ξ, η) = 0 if and only if ξ = η = 0 and by Theorem 4.4
it follows when taking (3.47) and (4.16) into account that

p
ψER
t (0) =

∫ ∞

0
λ(2)

(

BdψER

(

0,

√
r

t

))

e−r dr (4.37)

= (2π)−2tL
(
ṼψER

)
(t) .

From Example 4.8 we know that
(
R

2, dψER , λ
(2)
)

has the volume doubling
property and by Theorem 4.7 we obtain the following bounds

p
ψER
t (0) % ṼψER

(
1√
t

)

, t > 0 . (4.38)

5 Some Remarks on Off-Diagonal Results

Still we work within the frame of Chap. 4, i.e. we start with a continuous negative
definite function ψ satisfying our standard assumptions. Hence the associated
operator semigroup (T ψ

t )t≥0 has a representation

T
ψ
t u(x) =

∫

Rn

p
ψ
t (x − y)u(y) dy (5.1)
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where

p
ψ
t (x) = (2π)−n

∫

Rn

eix·ξe−tψ(ξ) dξ . (5.2)

The aim is to understand the behaviour of x �→ p
ψ
t (x). This is of course a

“classical” topic and we do not intend to summarize important developments here.
However a few words are in order. The seminal work of Davies [18] and [19], see
also [20], introduced a method to obtain for second order elliptic operators on a
Riemannian manifold off-diagonal estimates from diagonal estimates. In the much
quoted paper [15] an attempt was made to transfer this method to general (non-local)
Dirichlet forms. In this paper much use is made of the opérateur carré du champ
associated with the corresponding Dirichlet form which is natural since the studies
of Hörmander-type operators or more general second order sub-elliptic differential
operators have revealed that for local operators the associated opérateur carré du
champ contains much information, for example about the heat kernel. For this we
refer in particular to the monograph [1], the already mentioned monograph [71],
and to the work of Wang [72] and [73]. However, eventually [15] does not allow to
find concrete estimates for concrete non-local Dirichlet forms. This is much due to
the fact that for non-local operators the opérateur carré du champ is not anymore a
sum of products of derivations and Leibniz’ rule as well as the chain rule are not
available. Recall that for a symmetric second order sub-elliptic differential operator
in divergence form L(x,D) = ∑n

k,l=1
∂
∂xk

akl(x)
∂
∂xl

the corresponding opérateur
carré du champ is given by

�(u, v)(x) =
n∑

k,l=1

akl(x)
∂u

∂xk
(x)

∂v

∂xl
(x) , (5.3)

whereas for the Dirichlet form Eψ with ψ(ξ) =
∫

Rn\{0}
(1 − cos y · ξ) ν (dy) the

opérateur carré du champ has the form

�ψ(u, v)(x) = 1

2

∫

Rn\{0}
(u(x + y)− u(x))(v(x + y)− v(x)) ν (dy) . (5.4)

In [51] Meyer indicated how we can write (5.4) as an infinite sum of squares of
operators

(
having Hörmander-type operators

∑N
l=1 X

2
l u in mind with opérateur

carré du champ
∑N

l=1 XluXlv
)

but in his representation the operators are again not
derivations. As was pointed out in [44] Meyer’s proof has similarities with the proof
of Schoenberg’s theorem given in [5]. Schoenberg’s theorem reads for our purpose
as follows, compare with [44],
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Theorem 5.1 Let ψ be a continuous negative definite function and dψ the corre-
sponding metric. Then the metric space

(
R
n, dψ

)
can be isometrically embedded

into some Hilbert space (H , 〈., .〉H ). Conversely, if J : (Rn, d) −→ (H , 〈., .〉H )
is an isometric embedding of the metric space (Rn, d) into some Hilbert space
(H , 〈., .〉H ) such that 〈J (x), J (y)〉H = 〈J (x − y), J (0)〉H , then d = dψ for some
continuous negative definite function ψ : Rn −→ R.

A possible proof in case that the Lévy measure ν has a nice density ñ and using
the opérateur carré du champ starts with

�ψ(u, v)(x) = 1

2

∫

Rn\{0}
(u(x + y)− u(x))(v(x + y)− v(x)) ñ(y)dy (5.5)

and the observation that on

Cψ :=
{
u ∈ C2 (

R
n
) ∣
∣ �(u, u)(0) <∞}/{u ∈ C2 (

R
n
) ∣
∣ �(u, u)(0) = 0

}

(5.6)

a scalar product is given by

〈u, v〉H := �(u, v)(0). (5.7)

The space H is introduced as the completion of Cψ with respect to 〈., .〉H and the
Lévy-Khinchine formula yields with eξ (x) = eix·ξ that �

(
eξ , eξ

)
(0) = ψ(ξ).

This observation in mind, as well as some examples (see below), it was
conjectured that in general we can write or at least estimate pψt (.) according to

p
ψ
t (x − y) % p

ψ
t (0)e

−δ2
ψ,t (x,y) (5.8)

with p
ψ
t (0) % tL

(
Ṽψ

)
(t) and a suitable metric δψ,t on R

n. This approach differs

from that of many other authors as it is much more geometric in spirit and uses as
principal data the characteristic exponent ψ and not the Lévy measure.

Here are two examples for (5.8):

pCt (x − y) = π−
n+1

2 �

(
n+ 1

2

)
t

(
t2 + |x − y|2) n+1

2

(5.9)

= c1p
C
t (0)e

−δ2
C,t (x,y) ,

where

δ2
C,t (x, y) = − ln

(
1+ t2|x − y|2

)
, (5.10)
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and for n = 1

pMt (x − y) = 2t−1

π�(t)

∣
∣
∣
∣�

(
t + i(x − y)

2

) ∣
∣
∣
∣

2

(5.11)

= c2p
M
t (0)e−δ

2
M,t (x,y)

where

δ2
M,t (x, y) =

∞∑

j=0

ln

⎛

⎜
⎝1+ |x − y|2

(
1
t
+ 2j

)2

⎞

⎟
⎠ . (5.12)

Here pCt is the transition density corresponding to the Cauchy process with
ψC(ξ) = |ξ |, and pMt corresponds to the one-dimensional symmetric Meixner
process associated with ψM(ξ) = ln cosh ξ .

So far we do not have general results to ensure (5.8) to hold but in [44] some
classes of examples were discussed.

In [14], see also [13], an observation already made at the end of [44] was
investigated in more detail. Consider the convolution semigroup (μt )t≥0 associated
with ψ satisfying our standard assumptions. In particular we have

μ̂t (ξ) = (2π)−n/2e−tψ(ξ) (5.13)

and for the density we find

pt(x) = (2π)−n
∫

Rn

eix·ξe−tψ(ξ) dξ . (5.14)

The first observation is that

�t := e−tψ(.)

(2π)npt (0)
λ(n) (5.15)

is for t > 0 a symmetric probability measure on R
n and for

νt := �1/t = e− 1
t ψ(.)

(2π)np1/t (0)
λ(n) = πt,0(.)λ

(n) (5.16)

we find of course νt (Rn) = 1 and in addition

lim
n→0

νt = ε0 (weakly) , (5.17)
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compare [14] or [45]. With

σt (ξ) = p1/t (ξ)

p1/t (0)
(5.18)

we define
(
first on S (Rn)

)
the operators

Stu(x) = (2π)−n/2
∫

Rn

eix·ξσt (ξ)û(ξ) dξ (5.19)

which are symmetric, positivity preserving L2- and C∞-contractions and satisfy

lim
t→0

‖Stu− u‖L2 = lim
t→0

‖Stu− u‖∞ = 0 , (5.20)

i.e. they are strongly continuous at 0 in L2 (Rn) and C∞ (Rn), respectively. With

q(t, ξ) = − ∂

∂t
ln
p1/t (ξ)

p1/t (0)
(5.21)

it follows that (Stu)t>0 solves

∂

∂t
Stu(x)+ q(t,D)Stu(x) = 0 and lim

t→0
Stu = u (5.22)

either in L2 (Rn) or in C∞ (Rn). Here q(t,D) is the pseudo-differential operator

q(t,D)w(t, x) = (2π)−n/2
∫

Rn

eix·ξq(t, ξ)ŵ(t, ξ) dξ . (5.23)

The Eq. (5.22) we can handle in the following way: Define

γt,s = πt,s(.)λ
(n) (5.24)

with

πt,s(x) = (2π)−n/2
∫

Rn

eix·ξe−
∫ t
s q(τ,ξ) dτ dξ , (5.25)

i.e. we have

γ̂t,s(ξ) = (2π)−n/2e−
∫ t
s q(τ,ξ) dτ (5.26)

and with

Qt,s(ξ) =
∫ t

s

q(τ, ξ) dτ (5.27)
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we have

γ̂t,s(ξ) = (2π)−n/2e−Qt,s(ξ) . (5.28)

The operators

V (t, s)u(x) =
∫

Rn

u(x − y) γt,s (dy) (5.29)

=
∫

Rn

πt,s(x − y)u(y) dy

= (2π)−n/2
∫

Rn

eix·ξe−Qt,s (ξ)û(ξ) dξ

give a fundamental solution to

∂v

∂t
+ q(t,D)v = 0, lim

t→s
v(t, s) = v0 (5.30)

in the sense that

V (s, s)u = u ;
V (t, r) ◦ V (r, s)u = V (t, s)u , s < r < t ;
V (t, s)u→ u as s → t , s < t ;
V (t, s)u→ u as t → s , s < t .

Moreover, if in addition we assume that ξ �→ q(t, ξ) is a continuous negative
definite function then we have, see [13], [14], and compare with [56],

Theorem 5.2 We can associate with q(t, ξ), t > 0, ξ ∈ R
n, a canonical additive

process in law (Xt)t≥0 by the relations

PXt−Xs = γt,s , t > s > 0 . (5.31)

The assumption that ξ �→ q(t, ξ) is a continuous negative definite function is
crucial, recall that this assumption means that the function

ξ �→ − ∂

∂t
ln
p1/t (ξ)

p1/t (0)

is a continuous negative definite function. We will now see how this assumption
leads to a geometric interpretation of transition densities. First we note that this
assumption implies, see [13] or [14] that

dQt,s (ξ, η) := Q
1/2
t,s (ξ − η) , 0 < s < t , (5.32)
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is a metric on R
n and we find by calculations already known to us

πt,s(0) = (2π)−n
∫ ∞

0
λ(n)

({
ξ ∈ R

n
∣
∣ Qt,s(ξ) ≤ r

})
e−r dr . (5.33)

If we add further the assumption that the inequalities

β0q(t0, ξ) ≤ q(t, ξ) ≤ β1q(t0, ξ) , β0 > 0 , (5.34)

holds for all ξ ∈ R
n and all t > τ0, t0 > τ0, then an easy modification of the

calculation in the proof of Theorem 5.1 in [14] yields that if
(
R
n, dq(t0,.), λ

(n)
)

has
the volume doubling property then we have

πt,s(0) % λ(n)

(

BdQt,s

(

0,

√
β1

β0

))

(5.35)

for all t > s > τ0.
Returning to pt we observe that

pt (x − y) = pt (0)
pt(x − y)

pt (0)
= pt(0)e

− lnq(1/t,x−y) , (5.36)

and under the assumption that ξ �→ q(t, ξ) is a continuous negative definite function
we find with

δ2
ψ,t (x, y) = ln q (1/t, x − y) (5.37)

that

pt(x − y) = tL
(
Ṽψ

)
(t)e−δ

2
ψ,t (x,y) . (5.38)

In the case that the metric measure space
(
R
n, dψ, λ

(n)
)

has the volume doubling
property it follows further

pt (x − y) % λ(n)
(
Bdψ

(
0, 1/

√
t
))

e−δ
2
ψ,t (x,y) (5.39)

and when replacing dψ by dψ,t (x, y) = √
tψ(x − y) we arrive at

pt (x − y) % λ(n)
(
Bdψ,t (0, 1)

)
e−δ

2
ψ,t (x,y) . (5.40)

On the other hand, under the assumptions made above, we find for πt,s

πt,s(x − y) % λ(n)

(

BdQt,s

(

0,

√
β1

β0

))

e−
∫ t
s q(τ,x−y) dτ . (5.41)
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Since

∫ t

s

q(τ, ξ) dτ = − ln
p1/t (ξ)

p1/t (0)
+ ln

p1/s(ξ)

p1/s(0)
,

and since by Theorem 5.7 in [45]

lim
s→0

p1/s(ξ)

p1/s(0)
= 1

we find in the limit s → 0

πt,0(x − y) % λ(n)

(

Bδψ,1/t

(

0,

√
β1

β0

))

e−d2
ψ,1/t (x,y) . (5.42)

Comparing (5.40) with (5.42) we are reminded at the considerations starting with
Lewis [50] on “adjoint” or pairs of probability densities, see also [49] or [29].

6 Pseudo-Differential Operators with Negative Definite
Symbols: Ideas and Challenges

In Sects. 3–5 we have discussed translation invariant operators and related objects
such as translation invariant Dirichlet forms associated with convolution semigroups
(μt )t≥0 of (sub-)probability measures. As translation invariant operators they admit
a representation as convolution operator, for our purposes it is however more
important to represent the operators as (translation invariant) pseudo-differential
operators, i.e. to look at T ψ

t , Aψ and Rψ
λ as being given by

T
ψ
t u(x) = (2π)−n/2

∫

Rn

eix·ξe−tψ(ξ)û(ξ) dξ , t ≥ 0 , (6.1)

Aψu(x) = (2π)−n/2
∫

Rn

eix·ξ (−ψ(ξ))û(ξ) dξ (6.2)

and

Rλu(x) = (2π)−n/2
∫

Rn

eix·ξ 1

λ+ ψ(ξ)
û(ξ) dξ , λ > 0 . (6.3)

So far only for investigating the density pψt of T ψ
t , i.e. the function

p
ψ
t (x − y) = (2π)−n

∫

Rn

ei(x−y)·ξe−tψ(ξ) dξ , (6.4)
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the symbol of the generator Aψ was used. Properties of
(
T
ψ
t

)

t≥0
can be derived

from (μt )t≥0 and/or the Lévy–Khinchine triple (or quadruple), see Sect. 2.
It turns out that introducing “variable coefficients” is best achieved by starting

with the generator given in the form (6.2). A nice interpretation was given in [3]:
Let ψ = ψa,b,c,... be a continuous negative definite function depending on certain
parameters. Suppose now that these parameters become x-dependent (state space
dependent), i.e. we are dealing with functions x �→ a(x), x �→ b(x), x �→ c(x), . . .

having the property that for each x0 ∈ R
n fixed ξ �→ ψa(x0),b(x0),c(x0)...(ξ)

is a continuous negative definite function and hence determines (for x0 fixed)
a convolution semigroup with corresponding operator semigroup, generator and
resolvent. Formally we may consider

T̃tu(x) = (2π)−n/2
∫

Rn

eix·ξe−tψa(x),b(x),c(x),...(ξ )û(ξ) dξ (6.5)

and

R̃λu(x) = (2π)−n/2
∫

Rn

eix·ξ 1

λ+ ψa(x),b(x),c(x),...(ξ)
û(ξ) dξ , (6.6)

but neither we can expect
(
T̃t

)

t≥0
to be a semigroup nor

(
R̃λ

)

λ>0
to be a resolvent

on L2 (Rn) or C∞ (Rn). However, we may expect that

Au(x) = −(2π)−n/2
∫

Rn

eix·ξψa(x),b(x),c(x),...(ξ)û(ξ) dξ (6.7)

extends from S (Rn) to a generator of a strongly continuous, positivity preserving
contraction semigroup on C∞ (Rn) with generator (A,D(A)).

Indeed, let (Tt )t≥0 be a Feller semigroup, i.e. a strongly continuous, positivity
preserving contraction semigroup on C∞ (Rn) with generator (A,D(A)). A theo-
rem due to Courrège [17] states that if C∞0 (Rn) ⊂ D(A) then A is of type

Au(x) = −q(x,D)u(x) = (2π)−n/2
∫

Rn

eix·ξ (−q(x, ξ))û(ξ) dξ (6.8)

where q : Rn × R
n −→ C is a continuous function such that ξ �→ q(x, ξ) is

for every x ∈ R
n negative definite. We refer to [38] and in particular to [12] for

more details. We call a pseudo-differential operator q(x,D) a pseudo-differential
operator with negative definite symbol if its symbol q(x, ξ) is for every x ∈ R

n

with respect to the co-variable ξ a continuous negative definite function.
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Pseudo-differential operators with negative definite symbols can be obtained as
in (6.7). A further possibility is to look at variable order subordination, see [24, 33,
42] or [23], i.e. to look at operators of type

Au(x) = −(2π)−n/2
∫

Rn

eix·ξf (x,ψ(ξ))û(ξ) dξ (6.9)

where for x ∈ R
n fixed the function s �→ f (x, s) is a Bernstein function and ψ is

a continuous negative definite function. It is a highly non-trivial question whether
operators of type (6.7), (6.9) or (6.8) have an extension to a generator of a Feller
semigroup or an L2-sub-Markovian semigroup.

Let us agree to call any operator q(x,D) defined at least on S (Rn) a pseudo-
differential operator with symbol q(x, ξ) if it is of the form

q(x,D)u(x) := (2π)−n/2
∫

Rn

eix·ξq(x, ξ)û(ξ) dξ , (6.10)

where q : Rn × R
n −→ C is a continuous function such that ξ �→ q(x, ξ) is of at

most polynomial growth. If A is a pseudo-differential operator we denote its symbol
by σ(A)(x, ξ). For x-independent symbols, i.e. translation invariant operators we
have the simple rule

σ (q1(D) ◦ q2(D)) (x, ξ) = q1(ξ)q2(ξ) , (6.11)

and in the case that q1(D)
−1 exists and is a pseudo-differential operator we find

σ
(
q1(D)

−1
)
(x, ξ) = 1

q1(ξ)
. (6.12)

(Note that it is sometimes possible that û(.)/q1(.) is not integrable, i.e. (6.10) is not
defined, for all u ∈ S (Rn), however, one may find a subclass of functions in S (Rn)

for which F−1
(
û/q1

)
is defined.)

For pseudo-differential operators with symbols depending on x we cannot expect
the analogue to (6.11) or (6.12) to hold, i.e. we have in general

σ (q1(x,D) ◦ q2(x,D)) (x, ξ) �= q1(x, ξ)q2(x, ξ) (6.13)

or

σ
(
q1(x,D)

−1
)
(x, ξ) �= 1

q1(x, ξ)
. (6.14)

The basic idea is to develop a symbolic calculus which allows us to consider

q1(x,D) ◦ q2(x,D)− (q1 · q2) (x,D) (6.15)
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or

q−1
1 (x,D)−

(
1

q1

)

(x,D) (6.16)

as a “lower order” perturbation of q1(x,D) ◦ q2(x,D) and q−1
1 (x,D), respectively.

Here we used the notations

(q1 · q2) (x,D)u(x) = (2π)−n/2
∫

Rn

eix·ξq1(x, ξ)q2(x, ξ)û(ξ) dξ (6.17)

and
(

1

q1

)

(x,D)u(x) = (2π)−n/2
∫

Rn

eix·ξ 1

q1(x, ξ)
û(ξ) dξ . (6.18)

Perturbation should be understood in terms of suitable norm estimates which we
want to link to growth conditions of symbols with respect to the co-variable ξ . For
example, one might require for

r(x, ξ) := σ (q1(x,D) ◦ q2(x,D)) (x, ξ)− q1(x, ξ)q2(x, ξ)

q1(x, ξ)q2(x, ξ)
(6.19)

that uniformly for x in compact sets we have

lim|ξ |→∞ r(x, ξ) = 0 . (6.20)

The classical Kohn–Nirenberg and Hörmander calculus uses a grading of symbols
with respect to decreasing homogeneity or power growth, i.e. symbols are assumed
to admit an expansion

σ(A)(x, ξ) ∼

∞∑

k=−m
qk(x, ξ) (6.21)

where qk(x, ξ) is either with respect to ξ homogeneous of degree m− k, or qk(x, ξ)

satisfies |qk(x, ξ)| ≤ ck
(
1+ |ξ |2)mk/2

uniformly for x ∈ K ⊂ R
n compact and

mk > mk−1, limk→∞mk = −∞. For partial differential operators L(x,D) =∑
|α|≤m aα(x)Dα we have of course

σ(L(x,D))(x, ξ) =
∑

|α|≤m
aα(x)ξ

α =
m∑

k=0

∑

|α|=k
aα(x)ξ

k , (6.22)

i.e. an expansion as (6.21). For general symbols, obtaining (6.21) is non-trivial,
in fact not always possible, moreover, once such an expansion is given, it is non-
trivial to associate with it a symbol, i.e. an operator. We want to achieve in addition
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a deeper relation of an operator functional calculus and a calculus for symbols.
For example, for −q(x,D) being a generator of a Feller semigroup (Tt )t≥0 with
corresponding resolvent (Rλ)λ>0 we want to have

σ (Tt ) (x, ξ) = e−tq(x,ξ) (1+ perturbation) (6.23)

or

σ (Rλ) (x, ξ) = 1

λ+ q(x, ξ)
(1+ perturbation) . (6.24)

Typically, expressions such as (6.21), (6.23) or (6.24) will need smoothness of
symbols in x and in particular in ξ , often Taylor series or at least the Taylor formula
are the key tool. However, continuous negative definite functions are in general not
differentiable and do not admit decomposition into homogeneous terms. Therefore
classical calculi such as those based on symbol classes Sm or Sm�,δ are in general not
suitable. In Hoh [32] a quite successful symbolic calculus for pseudo-differential
operators with negative definite symbols was developed which could be used by
Böttcher in [9], see also [10] and [11], to construct a parametrix for certain evolution
equations, and by Evans [23] to study variable order subordination. But still it is
too restrictive for some of our problems, as is the Weyl-calculus approach taken
up in [2]. Nevertheless, once such a calculus is adapted as frame many results and
phenomena discussed in the following sections will have a more satisfactory form.
We will eventually avoid a symbolic calculus and use ad hoc calculations to outline
ideas, see also Sect. 8.

In addition to providing a symbolic calculus the theory of pseudo-differential
operators considered as micro-local analysis develops tools for an analysis of
operators based on an analysis of symbols, i.e. functions (sections) on the co-
tangent bundle. Typically this is put into the frame of global analysis and requires
symbols to admit an invariantly defined principal symbol. Spectral analysis or the
propagation of singularities of solutions of equations are key objects of this theory.
The Hamiltonian dynamics associated with the (principal) symbol is a tool of
great importance within these considerations. We will take ideas and some results
as guideline for our investigations, however for pseudo-differential operators with
negative definite symbols many key assumptions needed in the “classical” theory
do in general not hold: we can in general not define a principal symbol, we do not
work with smooth or invariantly defined symbols, etc. Still we can consider the full
symbol q(x, ξ) of a generator of a Feller semigroup as a function on the co-tangent
bundle to the manifold R

n and we can look at the corresponding Hamiltonian
dynamics. Such an approach allows us, for example, to give an answer to problems
when looking at Feynman–Kac formulae and semi-classical asymptotics: we can
define the corresponding “classical” objects.

To sum up: generators of Feller semigroups or L2-sub-Markovian semigroups
should be considered as pseudo-differential operators with negative definite sym-
bols. However these symbols do in general not allow us to apply the general,
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classical theory (micro-local analysis), hence there is a need to modify the classical
approach, even in the case of operators with constant coefficients, maybe with
a potential perturbation. Getting first results for non-trivial examples is our goal
and we do not investigate the indeed promising situation where a negative definite
symbol also belongs to a classical symbol class, for more recent results in this
direction we refer to [25] and [26].

7 Towards a Hamiltonian Dynamics Associated
with Continuous Negative Definite Symbols

As indicated in the Introduction the study of pseudo-differential operators often
makes use of the study of the Hamiltonian system which we can associate with the
(principal) symbol. In this section we describe some first investigations on some
Hamiltonian systems associated with negative definite symbols.

As a model we want to study pseudo-differential operators A(x,D) on R
n with

symbol A(x, ξ) = ψ(ξ) + V (x) which lead to a Hamilton function

H(q, p) = ψ(p) + V (q) (7.1)

where ψ : Rn −→ R is a continuous negative definite function and V : Rn −→ R

is a potential. Note that for potentials satisfying a so-called Kato–Feller condition
with respect to ψ(D) the semigroup associated with A(x,D) admits a Feynman–
Kac representation

Ttu(x) = E
x

⎛

⎜
⎝u
(
X
ψ
t

)
e
−
∫ t

0
V
(
Xψ
s

)
ds
⎞

⎟
⎠ , (7.2)

where
(
X
ψ
t

)

t≥0
is the Lévy process associated with ψ .

Let us first have a look at the free Hamilton function H(p) = ψ(p). In order
to satisfy some minimal conditions needed to apply results from the classical theory
we have to assume that ψ satisfies the following conditions:

Assumption 7.1 The function ψ : Rn −→ R is a continuous negative definite
function of class C1 which is convex and coercive.

Recall that a function ψ : Rn −→ R is coercive if

lim‖p‖→∞
ψ(p)

‖p‖ = +∞ . (7.3)
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The conjugate convex function ψ∗ is the Legendre transform of ψ , i.e. we have

ψ∗(η) := sup
p∈Rn

(〈η, p〉 − ψ(p)) . (7.4)

The following result is proved in [68], see also [41]:

Theorem 7.2 If ψ : Rn −→ R is a coercive convex function, then its conjugate
convex function exists and is a convex and coercive function. Moreover we have
(ψ∗)∗ = ψ .

Example 7.3

A. For 1 < α ≤ 2 the continuous negative definite function ψα(ξ) := 1
α
|ξ |α is of

class C1, convex and coercive. Its conjugate function is given by

ψ∗α(ξ) =
1

α∗
|ξ |α∗ , (7.5)

where 1
α
+ 1

α∗ = 1, i.e. α∗ = α
α−1 .

B. The continuous negative definite function ψER from Example 3.18 is convex
and coercive. The latter statement follows easily from (3.47), for a proof of the
convexity of ψER we refer to [55]. Note that ψER is C1 but not C2, i.e. we
cannot apply the standard criterion to check its convexity. The proof provided
in [55] uses an approximation of ψER by C2-functions which are convex and
coercive. We do not know ψ∗ER explicitly, however from (3.47) and (3.49) we
can conclude that

ψ∗ER(ξ, η) ≤ C
(
|ξ |2 + |η|2

)(α1γ1)
∗/2

. (7.6)

Moreover, using ideas from [22], Theorem 3 on page 87, we can deduce that
with ζ = (ξ, η) ∈ R

2 it follows that

ψ∗ER(ζ ) ≥ inf
ζ1+ζ2=ζ

(

c0‖ζ1‖
(γ1α1)

∗
2 + c1‖ζ2‖

(γ2α2)
∗

2

)

for some suitable constants c0 and c1, which implies

0 ≤ ψ∗ER(ξ, η) ≤ C
(
|ξ |2 + |η|2

) (α1γ1)
∗

2
. (7.7)
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Given a Hamilton function H(q, p) = ψ(p) + V (q) where ψ satisfies
Assumption 7.1 and V (q) is a potential which we assume to be of class C1, the
corresponding Hamilton system is given by

q̇i = ∂H

∂pi
(q, p) and ṗi = −∂H

∂qi
(q, p) (7.8)

or

q̇i = ∂ψ

∂pi
(p) and ṗi = − ∂V

∂qi
(q) . (7.9)

Under Assumption 7.1 the partial Legendre transform of H(q, p) with repsect to p
exists and leads to the Lagrange function L(q, η) associated with H(q, p):

L(q, η) := sup
p∈Rn

(〈η, p〉 −H(q, p)) (7.10)

ηi = Hpi (q, p) . (7.11)

Note that η �→ L(q, η) is a convex and coercive function, however in general
we cannot make a statement on its smoothness. Indeed, Example 7.3 extends to
ξ �→ 1

κ
|ξ |κ , κ > 1 with conjugate function ξ �→ 1

κ∗ |ξ |κ
∗
, which shows that for

1 < κ < 2 the conjugate function of ξ �→ 1
κ
|ξ |κ is more smooth, at least of class

C2, while for κ > 2 the conjugate function is less smooth, not even of class C2, an
observation which will become important later.

In the case that the Lagrange function is a C2-function, the Hamilton system (7.8)
(or (7.9)) is equivalent to the Euler–Lagrange equations

d

dt

∂L

∂ηi
− ∂L

∂qi
= 0 , (7.12)

and they are indeed the necessary conditions a smooth extremal of

inf
∫ t2

t1

L (q(t), q̇(t)) dt , q(t1) = a, q(t2) = b , (7.13)

has to satisfy.
Taking the structure (7.1) into account we find

L(q, η) = ψ∗(η)− V (q) (7.14)

and in order to form (7.12) we need ψ∗ ∈ C2 (Rn) and V ∈ C1 (Rn). Then we
obtain with ηj = q̇j

n∑

j=1

(
∂2ψ∗

∂ηj ∂ηi

)

(q̇)q̈j + ∂V

∂qi
= 0 for i = 1, . . . , n . (7.15)
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Furthermore, since H(q, p) is independent of t , i.e. the Hamilton system is
autonomous, we have “conservation of energy” along trajectories solving (7.8), i.e.
for solutions of the Hamilton system we find

dH(q(t), p(t))

dt
= 0 . (7.16)

Given initial data q0 = q(t0) and p0 = p(t0) this observation allows us to introduce
the “energy” of the system at t0 as E0(t0) = H(q0, p0) and thus we can find
integration constants for (7.8), see below.

Before continuing our considerations we would like to remind the reader of
our main problem: in general the functions ψ we are interested in are not C2-
functions (nor in general convex) and the standard textbook theory is not (in general)
applicable to our case and we have to take some care to transfer (parts of) the
standard theory.

Next we want to enlarge our reservoir of examples. The following result is taken
from [55]:

Theorem 7.4 Let f be a Bernstein function such that ξ �→ ψ(ξ) = f
(‖ξ‖2

)
is

convex and coercive. In this case ψ∗ is given by

ψ∗(ξ) = 2f ′
(
ζ−1
f

(
‖ξ‖2

))
ζ−1
f

(
‖ξ‖2

)
− f

(
ζ−1
f

(
‖ξ‖2

))
(7.17)

where ζf (s) = 4
(
f ′(s)

)2
s and we assume ζ−1

f to exist.

Note that ψ(ξ) = f
(‖ξ‖2

)
is coercive if and only if limr→∞ f (r)√

r
= ∞, the

convexity of ψ is non-trivial to check, recall that f is a Bernstein function, hence
f ′′ ≤ 0, i.e. f is concave.

Example 7.5 For f (s) = sβ , 0 < β < 1, we find ζf (s) = 4β2s2β−1 which yields

ζ−1
f (t) =

(
1

4β2

) 1
2β−1

t
1

2β−1 .

In the classical case, i.e. in classical dynamics, we have ψ(ξ) = ‖ξ‖2

2 and

H(q, p) = ‖p‖2

2 + V (q). Therefore it follows that L(q, η) = ‖η‖2

2 − V (q). Thus
with the kinetic energy Ekin = ‖p‖2/2 and the potential energy Epot = V (q) we
have H = Ekin + Epot and L = Ekin − Epot. For example, the harmonic oscillator

is modelled by H(q, p) = ‖p‖2

2 + ‖q‖2

2 and L(q, η) = ‖η‖2

2 − ‖q‖2

2 . For our case we
suggest as generalizations of the harmonic oscillator the Hamilton function

H(q, p) = ψ(p) + ψ∗(q) (7.18)

and as Coulomb potential VC(q) = ±F−1 (1/ψ) (q) where F−1 is the inverse
Fourier transform in S′ (Rn).
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The following considerations are taken from [55]. For n = 1 we consider the
Hamilton function

H(q, p) = 1

β
|p|β + 1

β∗
|q|β∗ , 1 < β < 2 , (7.19)

which gives the Hamiltonian system

q̇ = sgn(p)|p|β−1 (7.20)

and

ṗ = −sgn(q)|q|β∗−1 . (7.21)

We want to discuss this system under the initial conditions q(t0) = q0 and p(t0) =
p0 which leads to an initial energy E0 = H(q0, p0) > 0 which must be conserved,
i.e. for a solution to (7.20) and (7.21) we expect for all t > t0

1

β
|p(t)|β + 1

β∗
|q(t)|β∗ = E0 (7.22)

to hold. In the following we choose t0 = 0. Moreover, by requiring the solution to
be symmetric to the q-axis and the p-axis we may assume for the following that
q(t) > 0 and p(t) > 0, and (7.20), (7.21) reduces to the two non-coupled equations

q̇ = β
1
β∗
(

E0 − 1

β∗
qβ

∗
) 1

β∗
(7.23)

and

ṗ = −(β∗) 1
β

(

E0 − 1

β
pβ
) 1

β

. (7.24)

The solutions of these equations are obtained with the help of the Gaussian
hypergeometric function 2F1:

(E0β)
− 1

β∗ q 2F1

(
β − 1

β
,
β − 1

β
,

2β − 1

β
,
qβ

∗

E0β∗

)

= t + A1 (7.25)

where

A1 = (E0β)
− 1

β∗ q0 2F1

(
β − 1

β
,
β − 1

β
,

2β − 1

β
,
q
β∗
0

E0β∗

)

, (7.26)
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and

− (E0β
∗)−

1
β p 2F1

(
1

β
,

1

β
,
β + 1

β
,
pβ

E0β

)

= t + A2 (7.27)

where

A2 = −(E0β
∗)−

1
β p0 2F1

(
1

β
,

1

β
,
β + 1

β
,
p
β
0

E0β

)

. (7.28)

Note that the convergence of the hypergeometric series is in each case granted
by (7.22), i.e. by the conditions (recall we are assuming in the moment q > 0
and p > 0)

qβ
∗

E0β∗
< 1 and

pβ

E0β
< 1 . (7.29)

Replacing in (7.25) and (7.27) now q and p in the argument of 2F1 by |q| and |p|,
we obtain the solution for (7.20) and (7.21).

As pointed out in [55] for β → 2 the solution converges to the solution of
the Hamiltonian system corresponding to the classical harmonic oscillator with
Hamilton function H(q, p) = 1

2 |p|2 + 1
2 |q|2.

From the considerations made in this section it is clear that we can under
certain additional assumptions develop the Hamiltonian dynamics corresponding
to a pseudo-differential operator with negative definite symbols. Of course we do
not expect that every Hamiltonian system admits a solution which we can represent
by special functions, but at least we can consider the “classical” analogue to the
“Schrödinger operator” ψ(D) + V (q). Using the standard symplectic structure on
R
n ×R

n
(
the phase space corresponding to H(q, p)

)
we can develop the dynamics

further by introducing the Hamiltonian vector field

XH =
n∑

j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)

, (7.30)

by discussing flows or by studying the associated Hamilton–Jacobi theory, we refer
to first ideas in [55].

However, so far we lack a possibility to define on R
n looked at as state space

(manifold) an intrinsic metric by employing the length of curves connecting points.
In the case where H is with respect to p ∈ R

n a positive semi-definite quadratic
form this is possible with the help of sub-unit trajectories leading to sub-Riemannian
geometry and this allows us to study heat kernels in a metric or geometric context.
An attempt to develop such tools for certain pseudo-differential operators is due to
C. Fefferman and A. Parmeggiani, see [53], but so far this approach has not led to
full success, see also the remarks in Fefferman [27]. In this context it might be worth
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to observe that for the off-diagonal estimates discussed in Sect. 5 we have used two
families of balls, i.e. we worked with two different metrics.

8 Some Perturbation Techniques and Results

As explained in Sect. 6, symbolic calculi to handle pseudo-differential operators
with negative definite symbols are only under stronger regularity assumptions
available. The most far reaching of these calculi is due to Hoh [32], but it is still
for certain considerations too restrictive. In this section we want to sketch a direct
perturbation theory for symbols with constant coefficients or parameters which is
of zero order, i.e. the perturbation is of the same (growth) order as the original
term but small with respect to some norm estimates. In other words, we look at a
decomposition of a symbol by freezing the coefficients or parameters, i.e.

h(x, ξ) = h(x0, ξ)+ (h(x, ξ)− h(x0, ξ)) = h1(ξ)+ h2(x, ξ) . (8.1)

We follow essentially the ideas of [36], see also [39]. All considerations in this
section are made under the following assumptions:

A continuous negative definite symbol h : R
n × R

n −→ C is given with
decomposition h(x, ξ) = h1(ξ) + h2(x, ξ). Further ψ : R

n −→ R is a fixed
continuous negative definite reference function.

A.1. The function h1 is assumed to be itself a continuous negative definite function
and to satisfy

γ0ψ(ξ) ≤ Re h1(ξ) ≤ γ1ψ(ξ) for all |ξ | ≥ 1 , (8.2)

and

|Im h1(ξ)| ≤ γ2Re h1(ξ) for all ξ ∈ R
n . (8.3)

A.2.m For m ∈ N0 the function x �→ h2(x, ξ) belongs to Cm (Rn) and we have the
estimates

|∂αx h2(x, ξ)| ≤ ϕα(x)(1+ ψ(ξ)) (8.4)

for all α ∈ N
n
0, |α| ≤ m, with ϕα ∈ L1 (Rn).

In addition we assume that

ψ(ξ) ≥ c0|ξ |r0 (8.5)

for some c0 > 0, r0 > 0 and all ξ ∈ R
n with |ξ | ≥ R.
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Note that (8.5) implies that Hψ,s (Rn) is continuously embedded into C∞ (Rn)

provided s > n/r0, and we have the estimate

‖u‖∞ ≤ cs,r0,n‖u‖ψ,s . (8.6)

We associate with h(x, ξ) = h1(ξ)+h2(x, ξ) the corresponding pseudo-differential
operators h(x,D), h1(D) and h2(x,D), respectively, which are at least onC∞0 (Rn)

(or S (Rn)) well defined. The properties of h1 allows us to derive the following
estimates

‖h1(D)u‖ψ,s−2 ≤ τ1‖u‖ψ,s (8.7)

and

‖h1(D)u‖ψ,s−2 ≥ γ0,s‖u‖ψ,s − λ0,s‖u‖ψ,s−2 , (8.8)

which entails for every ε > 0 the estimate

‖h1(D)u‖ψ,s−2 ≥
(
γ0,s − ε

) ‖u‖ψ,s − λε,s‖u‖0 . (8.9)

Estimates for h2(x,D) are more difficult to derive since for calculating the norm
‖h2(x,D)u‖ψ,s we need to control the Fourier transform (h2(x,D)u)

∧ which of
course depends on x and the co-variable ξ . Under Assumption A.2.m we find for
m > n+ 2s that in the case s ≥ 1/2 it follows that

‖[(1+ ψ(D))s , h2(x,D)]u‖0 ≤ κn,m,s,ψ
∑

|α|≤m
‖ϕα‖L1‖u‖ψ,2s+1 , (8.10)

which extends to

‖[(1+ ψ(D))s , h2(x,D)]u‖ψ,2t ≤ c̃
∑

|α|≤m
‖ϕα‖L1‖u‖ψ,2s+2t+1 (8.11)

for s ≥ 0, t ≥ 1
2 , m > n + 2s + 2t and c̃ = c̃n,m,s,t,ψ , see Theorem 2.3.9 and

Corollary 2.3.10 in [39].
From (8.11) we can now deduce taking (8.8) and (8.9) into account that

‖h2(x,D)u‖ψ,t ≤ cn,m,t,ψ‖u‖ψ,t+2 (8.12)

with

cn,m,t,ψ = c̃n,m,t,ψ
∑

|α|≤m
‖ϕα‖L1 , (8.13)
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and

‖h(x,D)u‖ψ,t ≤ c‖u‖ψ,t+2 , t ≥ 1 , (8.14)

as well as

‖h(x,D)u‖ψ,t ≥ δ0‖u‖ψ,t+2 − γη,t‖u‖0 , (8.15)

where η ∈ (0, 1) and

δ0 = ηγ0 − c̃n,m,s,ψ
∑

|α|≤m
‖ϕα‖L1 > 0 (8.16)

and m > n + [s] + 1, s ≥ 1, where the claim that δ0 > 0 is achieved by assuming
for
∑
|α|≤m ‖ϕα‖L1 an appropriate smallness condition (the perturbation of h1(D)

shall be small).
We can now introduce the sesquilinear form

B(u, v) = (h(x,D)u, v)0 = (h1(D)u, v)0 + (h2(x,D)u, v)0 (8.17)

and for B we can derive, see again [39], the estimate

|B(u, v)| ≤ c‖u‖ψ,1‖v‖ψ,1 (8.18)

and more difficult to obtain is the Gårding inequality

Re B(u, u) ≥ δ1‖u‖2
ψ,1 − λ̃0‖u‖2

0 , (8.19)

provided A.2.m holds for m ≥ n+ 2 and we assume that

δ1 := γ0 − κ3

∑

|α|≤n+2

‖ϕα‖L1 > 0 , (8.20)

where κ3 is a constant coming from the estimate

| (h2(x,D)u, v)0 | ≤ κ3

∑

|α|≤n+2

‖ϕα‖L1‖u‖ψ,1‖v‖ψ,1 . (8.21)

The estimates (8.14), (8.15), (8.18), and (8.19) allow us now to find for λ ≥ λ0
variational solutions in Hψ,1 (Rn) to the equation h(x,D)u + λu = f provided
f ∈ L2 (Rn). Here we call u ∈ Hψ,1 (Rn) a variational solution to the equation
h(x,D)u+ λu = f if for all v ∈ Hψ,1 (Rn) we have

B(u, v) + λ(u, v)0 = (f, v)0. (8.22)
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In combination with some Friedrichs mollifier techniques we can conclude further
that for f ∈ Hψ,s (Rn) it follows that the variational solutions must belong to
Hψ,s+2 (Rn). Using the Hille–Yosida–Ray theorem as well as (8.5), i.e. (8.6), we
can prove, see [39] Theorem 2.6.4 and Theorem 2.6.6, that −h(x,D) extends to
the generator of a Feller semigroup and for λ sufficiently large, −hλ(x,D) :=
−h(x,D)− λid extends to the generator of a sub-Markovian semigroup.

In this section our aim was so far to give the reader some ideas of the type of
estimates needed, not to provide all details. In particular we want to emphasize
the smallness conditions (8.16) and (8.20) which means essentially that h(x, ξ) −
h2(x, ξ) and certain derivatives with respect to x must be under control and small.
Nonetheless, non-trivial examples can be constructed, and in [43] also some bounds
for corresponding heat kernels were obtained.

In light of Sect. 7 we can now turn to the Hamilton function

H(q, p) = h(q, p) = h1(p)+ h2(q, p) , (8.23)

and try, for example, to study the corresponding Hamilton system

q̇i = ∂H

∂pi
(q, p) = ∂h1

∂pi
(p)+ ∂h2

∂pi
(q, p) , (8.24)

ṗi = −∂H

∂qi
(q, p) = −∂h2

∂qi
(q, p) . (8.25)

We may try to relate its solutions to those of the free or unperturbed Hamilton
system corresponding to h1(p). In fact we may even add a potential V (q). Under
suitable assumptions on h(x,D) and V (q) we may, by using the estimates from
above, establish the existence of a self-adjoint extension of h(x,D) + V (x) and
now we may turn to the corresponding spectral problems. For example, we can start
to study the operator−ψ(D)+h2(x,D)+ψ∗(x) for a suitable continuous negative
definite function ψ , a “small” perturbation h2(x,D) and the potential ψ∗(q).

9 The Symbol of a Feller Process

In the previous sections we have discussed pseudo-differential operators generating
sub-Markovian or Feller semigroups and we have indicated to which extent the
analysis of the symbol helps to understand the generator and the semigroup. The
specific structure of the symbol, i.e. being a continuous negative definite function
with respect to the co-variable ξ , does in general not allow us to use “standard”
results or methods developed for “classical” pseudo-differential operators, and a
larger part of our discussion is devoted to the “gap” of what we want to do in analogy
to the classical theory and what so far we can do. As mentioned in the introduction,
we do not pay here attention to an analysis of the generator (or the semigroup) based
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on the Lévy-triple associated with the symbol. Both approaches are complementary
and not antagonistic.

In this section we want to investigate how we can use the symbol to study the
process. The key observation is that given a “nice” Feller process we can define the
symbol by pure probabilistic means. For Lévy processes this is of course nothing but
a re-interpretation of the characteristic exponent. For other processes, to the best of
our knowledge, it was first suggested in [37] and then much extended by Schilling
in [58] and [59] how to define the symbol of a Feller process.

Let (Xt)t≥0 be a Feller process with state space R
n and generator (A,D(A)),

D(A) ⊂ C∞ (Rn), and corresponding Feller semigroup (Tt )t≥0. Each of the
operators Tt we can extend to Cb (R

n) and therefore we can define pointwisely

λt (x, ξ) := E
x
(

eiξ ·(Xt−x)
)
= (e−ξ Tteξ

)
(x) (9.1)

where eξ (x) = eix·ξ . For u ∈ C∞0 (Rn) it follows now that

Ttu(x) = λt (x,D)u(x) = (2π)−n/2
∫

Rn

eix·ξλt (x, ξ)û(ξ) dξ . (9.2)

A formal calculation yields now that with

− q(x, ξ) := d

dt
λt (x, ξ)

∣
∣
∣
t=0

(9.3)

on C∞0 (Rn) the generator A should be

Au = −q(x,D)u , (9.4)

i.e. the symbol of the generator is obtained at least formally in pure probabilistic
terms by

− q(x, ξ) = lim
t→0

E
x
(
eiξ ·(Xt−x))− 1

t
. (9.5)

The following result is taken from [12] and gives a precise formulation of the
statement when the symbol ofA is given by (9.5). Recall, see the introduction, that if
the generator A of a Feller semigroup maps C∞0 (Rn) into the continuous functions
then it is on C∞0 (Rn) a pseudo-differential operator −q(x,D) and ξ �→ q(x, ξ) is
a continuous negative definite function. Note further, see [12], Theorem 2.30, that if
x �→ q(x, 0) is continuous, then x �→ q(x, ξ) is for all ξ ∈ R

n continuous.

Theorem 9.1 ([12], Corollary 2.39) Let (Xt )t≥0 be a Feller process with state
space R

n. Assume that its generator maps C∞0 (Rn) into C∞ (Rn) and denote the
corresponding Feller semigroup by (Tt )t≥0 and the symbol by q(x, ξ). Assume that
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q(., .) is continuous in R
n × R

n. Let

τ := τxr := inf{s > 0 | |Xs − x| > r} (9.6)

be the first exit time of the ball Br(x) when (Xt)t≥0 starts at x, i.e. X0 = x. Then
we have

− q(x, ξ) = lim
t→0

E
x
(
eiξ ·(Xt∧τ−x))− 1

t
. (9.7)

The proof of Theorem 9.1 relies on first ideas given in [37], but mainly on
a combination of the results in [59] with those in [65]. From our point of view
the paper [65] has also the interesting feature that it allows us to find the symbol
of a process constructed by probabilistic techniques, i.e. solutions of stochastic
differential equations.

With Theorem 9.1 in mind we may ask which (probabilistic) results for (Xt)t≥0
we can derive from our knowledge of the symbol q(x, ξ). For symbols with variable
coefficients it was Schilling [57] who came up with first results and many further
results have been obtained since then. Here are a few. After earlier results in [37]
and [34], in [58] the following theorem was proved.

Theorem 9.2 Suppose that C∞0 (Rn) ⊂ D(q(x,D)) and that −q(x,D) generates
a Feller semigroup. If for all x ∈ R

n we have q(x, 0) = 0 and

lim sup
r→∞

sup
|x−y|≤2r

sup
|η|≤1/r

|q(y, η)| <∞ (9.8)

then the corresponding Feller semigroup (Tt )t≥0 is conservative, i.e. Tt1 = 1 for all
t > 0, and the associated Feller process has infinite life time.

Chapter 5 in [12] gives a lot of beautiful results relating properties of the symbol
of a Feller process to properties of its paths. To get a feeling of the type of results we
quote a result on the Hausdorff dimension of paths. Such results for Lévy processes
are due to Blumenthal and Getoor [8], Pruitt [54] and Millar [52]. Let q(x, ξ) be a
negative definite symbol and K ⊂ R

n be a compact set. We define

βK∞ := inf

⎧
⎪⎨

⎪⎩
λ > 0

∣
∣
∣
∣ lim|ξ |→∞

sup
x∈K

sup
|η|≤|ξ |

sup
|z−x|≤1/|ξ |

|q(z, η)|
|ξ |λ = 0

⎫
⎪⎬

⎪⎭
. (9.9)

The following result is essentially due to R. Schilling, see [60] and [61], and quoted
from [12].
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Theorem 9.3 Let (Xt)t≥0 be a Feller process with state space Rn. Assume that the
generator is a pseudo-differential operator −q(x,D) with the test functions in its
domain. For every bounded analytic time set E ⊂ [0,∞) we have

dimHX(E) ≤ min

(

n,

(

sup
K

βK∞
)

dimHE

)

, (9.10)

where dimHF denotes the Hausdorff dimension of F and the supremum is taken
overall compact subsets K ⊂ R

n.

One of the most striking results, again due to Schilling [61] and [63], is the fact
that paths of Feller processes generated by pseudo-differential operators belong to
weighted Besov spaces. We refer to [12], Section 8.5, for details.

We finish our short overview by a result on passage times. The interesting point
is here for us the simple re-interpretation of the result when considering the metric
induced by a continuous negative definite function.

Let us introduce the first passage time

σR := σxR := inf{t ≥ 0 | ‖Xt − x‖ > R} , (9.11)

but we do not require now that (Xt)t≥0 starts at x. In [61] the following estimates
for Ex (σR) were proved

C1

sup
‖x−y‖≤2R
‖ξ‖≤1

Re q(y, ξ/R)
≤ E

x (σR) ≤ C2

inf‖x−y‖≤2r
sup
‖ξ‖≤1

Re q (y, ξ/4κR)
(9.12)

where we assume that q(x, ξ) satisfies the sector condition

|Im q(y, ξ)| ≤ C0Re q(y, ξ) , (9.13)

κ is a suitable constant as are C1 and C2. In the case where (Xt)t≥0 is a symmetric
Lévy process with characteristic exponent ψ we deduce from (9.12) the estimates

C1

sup
‖ξ‖≤1

ψ (ξ/R)
≤ E

x (σR) ≤ C2

sup
‖ξ‖≤1

ψ

(
π

8

ξ

R

) . (9.14)

If we now add our standard assumptions on ψ we can rewrite (9.14) as

C1

sup
‖ξ‖≤1

d2
ψ (0, ξ/R)

≤ E
x (σR) ≤ C2

sup
‖ξ‖≤1

d2
ψ

(

0,
π

8

ξ

R

) (9.15)
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and we find that the estimates (9.14) have a metric or geometric interpretation: we
can look at dψ (0, ξ/R) as a natural (intrinsic) distance of ξ/R to 0 and the estimates
of Ex (σR) is determined by this distance when ξ runs through the Euclidean unit
ball.

Appendix: On the Metric Balls Bdψ (0, r)

Continuous negative definite functions are in general not smooth, in fact their
smoothness is determined by the moments of their Lévy measure. Moreover for

n ≥ 2 they can have rather anisotropic behaviour, i.e. in the case that ψ
1
2 gives

rise to a metric, the metric balls can be rather anisotropic. Both facts must be taken
into account in the analysis of the operator ψ(D) and the corresponding operator

semigroups
(
T
ψ
t

)

t≥0
.

The lack of smoothness has the effect that some “nice” looking estimates are not
suitable for our analysis. The following example is taken from [44]: In R

2 the two
functions ψ1(ξ, η) = |ξ | + |η| and ψ2(ξ, η) =

√
ψ2 + η2 are continuous negative

definite functions and the estimates

1√
2
(|ξ | + |η|) ≤

√

|ξ |2 + |η|2 ≤ |ξ | + |η| (A.1)

hold. The corresponding densities of
(
T
ψj

t

)

t≥0
are given by

p
ψ1
t (x, y) = 1

π2

t2

(x2 + t2)(y2 + t2)
(A.2)

and

p
ψ2
t (x, y) = 1

2π

t
(
(x2 + y2)+ t2

) 3
2

. (A.3)

If we choose x = 0 and consider the limit |y| → ∞ we find for t = 1

p
ψ1
1 (0, y) % |y|−2

and

p
ψ2
1 (0, y) % |y|−3.

Thus, although we have symbols which are comparable, the decay of the corre-
sponding semigroups is not. The different degrees of smoothness leads to a different
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decay of the Fourier transforms of e−tψj , j = 1, 2, as we do expect. However the
diagonal terms can be compared once we have an estimate such as (A.1). Indeed,
ψ1 % ψ2 leads to similar lower bounds of the corresponding Dirichlet forms:

Eψ1(u, u) =
∫

Rn

ψ1(ξ)
∣
∣û(ξ)

∣
∣2 dξ

≤ c1

∫

Rn

ψ2(ξ)
∣
∣û(ξ)

∣
∣2 dξ

= c1Eψ2(u, u),

and similarly we find Eψ2(u, u) ≤ c2Eψ1(u, u). Therefore, for example in the
transient case, we obtain with the same q > 2 the estimates

‖u‖2
Lq ≤ c̃1Eψ1(u, u) and ‖u‖2

Lq ≤ c̃2Eψ2(u, u).

This observation implies also that the diagonal behaviour of pt (·) alone cannot
determine the off-diagonal behaviour.

There are three classes of examples of continuous negative definite functions
which we often use and each is requiring some different considerations when
investigating the corresponding operator semigroups:

(i) On R
n we may look at the sum ψ = ψ1 + ψ2 of two continuous negative

definite functions ψ1 and ψ2. Our running example ψER is of this type. The
convolution theorem yields pψt = p

ψ1
t ∗ pψ2

t and from this we derive using
Young’s inequality that

p
ψ
t (0) =

∥
∥
∥p

ψ
t (0)

∥
∥
∥∞ ≤

∥
∥
∥p

ψ1
t

∥
∥
∥∞ ∧

∥
∥
∥p

ψ2
t

∥
∥
∥∞ = p

ψ1
t (0) ∧ p

ψ2
t (0). (A.4)

Now special properties of ψ1 and ψ2 are needed to get further results. In some
cases one can determine explicitly a time T > 0 such that for t < T we
have p

ψ1
t (0) ∧ p

ψ2
t (0) = p

ψ1
t (0) and for t > T it follows that pψ1

t (0) ∧
p
ψ2
t (0) = p

ψ2
t (0). This is, for example, possible for ψ(ξ) = ‖ξ‖α + ‖ξ‖β .

This observation shows now that making use of the full symbol and not only
the principal symbol gives more detailed information.

(ii) We may have a decomposition of Rn, Rn = R
n1×R

n2 , andψ(ξ, η) = ψ1(ξ)+
ψ2(η). In this case we have of course pψt (x, y) = p

ψ1
t (x)p

ψ2
t (y) and we can

reduce the study of pψt directly to investigations on p
ψj

t . In this case we should
work with Bdψ1 (0, r)× Bdψ2 (0, r) rather than with Bdψ (0, r).

(iii) The final class of examples is obtained by subordination, i.e. by considering
f ◦ ψ where f is a Bernstein function and ψ : Rn → R is a given continuous
negative definite function. For some questions, compare with Theorem 3.15
and Corollary 3.16, a type of (operator) functional calculus is available.
However, in general, subordination may destroy some structural properties: It
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may happen that for the symbolψ(ξ) = ψ1(ξ)+ψ2(ξ) we can considerψ1(ξ)

as a type of principal symbol, however f (ψ1(ξ)+ ψ2(ξ)) need not allow a
decomposition into a principal symbol and a “lower order” term with both
being continuous negative definite functions.

The first geometric question we want to discuss is that of the convexity of metric
balls. Note that two notions of convexity are possible, we may consider convexity
in the vector space R

n, and this notion is the important one for us, but we remind
the reader on

Definition A.1 A subset G of a metric space (X, d) is called metrically convex if
for every pair p, q ∈ G, p �= q , there exists a point r ∈ G such that d(p, q) =
d(p, r)+ d(r, q).

Using the Lévy-Khinchine representation of ψ , Harris and Rhind could prove,
see [30], that in general the metric space

(
R
n, dψ

)
is not metrically convex.

The following result is natural and we refer to [48] for a proof:

Proposition A.2 Let ψ : R
n → R be a continuous negative definite function

generating a metric on R
n and let f be a Bernstein function such that f ◦ ψ also

generates a metric on R
n. Then the ballsBdψ (0, r) are convex if and only if the balls

Bdf ◦ψ (0, r) are convex. In particular metric balls related to subordinate Brownian
motion are for appropriate Bernstein functions convex.

In general the metric balls Bdψ (0, r) will not be convex, examples are easily
constructed with the help of

ψ(ξ, η) = (‖ξ‖α + ‖η‖β)
1
2 , 0 < α < 1 or 0 < β < 1,

where ξ ∈ R
n1 and η ∈ R

n2 , see [48], or by looking at

ψ(ξ1, ξ2, ξ3) = arcosh
(
|ξ1|2 + 1

)
+ arsinh

(
|ξ2|2

)
+ |ξ3|α, 0 < α < 2,

see [30].
The following two examples do not only illustrate the failure of convexity of

metric balls Bdψ (0, r), they also illustrate the anisotropic behaviour of the balls.
These examples are taken from [30].

The first example is the continuous negative definite function defined on R
3 by

ψα(ξ) = |ξ1| 3
4 + arcosh

(
|ξ2|2 + 1

)
+ |ξ3|2α.

The following graphic shows the corresponding metric balls Bdψα (0, r) for r = 1
and α = 0.35, α = 0.5, α = 0.75 and α = 0.9, respectively.
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The second example is the continuous negative definite function

ψ(ξ) = arcosh
(
|ξ1|2 + 1

)
+ arsinh

(
|ξ2|2

)
+ |ξ3| 3

5 ,

and we consider the different radii r = 0.5, r = 1, r = 1.5 and r = 2.

In Sect. 4 we have introduced the doubling property for the metric ballsBdψ (0, r)
and in the case where

(
R
n, dψ, λ

(n)
)

is a metric measure space in which the doubling

property holds we could derive better estimates for pψt (0) and therefore we want to
study

(
R
n, dψ , λ

(n)
)

in relation to the doubling property.

First we note that the metric dψ = ψ
1
2 (ξ−η) is translation invariant which allows

us to reduce all studies to metric balls with centre 0 ∈ R
n. Thus the conditions

λ(n)
(
Bdψ (0, 2r)

)
≤ c0λ

(n)
(
Bdψ (0, r)

)
for all r > 0, (A.5)

and

λ(n)
(
Bdψ (x, 2r)

)
≤ c0λ

(n)
(
Bdψ (x, r)

)
for all r > 0, x ∈ R

n, (A.6)

with c0 independent of r and x are equivalent. The doubling property implies power
growth for R �→ λ(n)

(
Bdψ (0, R)

)
, i.e. we have

λ(n)
(
Bdψ (x,R)

)
≤ κRln c0, κ = λ(n)

(
Bdψ (0, 1)

)
. (A.7)



Aspects of Micro-Local Analysis and Geometry in the Study of Lévy-Type Generators 135

We say that
(
R
n, dψ , λ

(n)
)

has the local volume doubling property if (A.6) holds
for all r , 0 < r < r0. We often say dψ has the volume doubling property when we
mean that

(
R
n, dψ, λ

(n)
)

has this property.

Example A.3

A. The metric measure space
(
R
n, dψα , λ

(n)
)

with ψα(ξ) = |ξ |α, 0 < α ≤ 2, has

the volume doubling property since λ(n)
(
Bdψα (0, r)

) = cn,αr
2n
α .

B. The metric measure space
(
R
n, dψ, λ

(n)
)

with

ψ(ξ) = 1− e−γ |ξ |2, γ > 0, (A.8)

has the local volume doubling property for 0 < r < 1, but not the volume
doubling property.

From this observation we deduce that in general, if dψ has the volume doubling
property, df ◦ψ , where f is a Bernstein function, need not have the doubling
property. In [44] some conditions on f and ψ are discussed for df ◦ψ having the
doubling property, we just quote as one result Corollary 3.11 from [44].

Corollary A.4 If dψ has the volume doubling property and f is a Bernstein
function such that for some C > 1

lim inf
r→0

f (Cr)

f (r)
> 1 and lim inf

r→∞
f (Cr)

f (r)
> 1,

then df ◦ψ has the volume doubling property too.

Many of our examples are of type ψ(ξ) =∑N
j=1 ψj(ξj ) with ξ = (ξ1, . . . , ξN ),

ξj ∈ R
nj . Suppose that each of the continuous negative definite functions ψj

generates a metric dψj on R
nj . On R

n, n = n1 + . . . + nN , the natural choice

of a metric is d(1)ψ =∑N
j=1 dψj and the question arises whether d(1)ψ has the volume

doubling property
(

with respect to λ(n)
)

if each dψj has the doubling property with

respect to λ(nj )? The metric balls with respect to d
(1)
ψ are not as easy to treat as

the metric balls with respect to d
(∞)
ψ = max1≤j≤N dψj . It is helpful to note the

following result from [30].

Proposition A.5 Let d(p)ψ =
(∑N

j=1 d
p
ψj

) 1
p

, 1 ≤ p < ∞, and let d(∞)
ψ be defined

as above. If one of the metrics d(p)ψ , 1 ≤ p ≤ ∞ has the volume doubling property,
then they all have the volume doubling property.
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Corollary A.6 Suppose that each metric measure space
(
R
nj , dψj , λ

(nj )
)
, 1 ≤

j ≤ N , has the volume doubling property. Then the metric measure spaces(
R
n, d

(p)
ψ , λ(n)

)
, ψ =∑N

j=1 dψj , n =∑N
j=1 nj , has the volume doubling property

for all 1 ≤ p ≤ ∞.

Proof We prove the doubling property for p = ∞ and Proposition A.5 will imply
the result. Now we observe

λ(n)
(

B
d
(∞)
ψ (0, 2r)

)

=
N∏

j=1

λ(nj )
(
B
dψj (0, 2r)

)

≤
N∏

j=1

cj λ
(nj )
(
B
dψj (0, r)

)
≤ cλ(n)

(

B
d
(∞)
ψ (0, r)

)

.

��
Now let q : Rn × R

n → R be a continuous negative definite symbol, i.e. for all
x ∈ R

n the function q(x, ·) : Rn → R is negative definite and q as a function on
R
n×R

n is continuous. Assume that for a fixed continuous negative definite function
ψ we have the estimates

κ0ψ(ξ) ≤ q(x, ξ) ≤ κ1ψ(ξ) (A.9)

for all x ∈ R
n, ξ ∈ R

n, and 0 < κ0 ≤ κ1 are independent of x and ξ . Suppose that ψ
satisfies our standard assumptions and the corresponding metric dψ has the volume
doubling property. The following result taken from [30] is a first step to enable us
to use “freezing the coefficients techniques” to investigate the pseudo-differential
operator−q(x,D) and in the case it generates a sub-Markovian or Feller semigroup
to study associated transition densities with the help of the metric dq(x,·).

Proposition A.7 Let ψ : Rn → R be a fixed continuous negative definite function
satisfying our standard conditions and let q : R

n × R
n → R be a continuous

negative definite symbol. Further assume that uniformly in x the estimates (A.9)

hold. For every x ∈ R
n, now fixed,

(
R
n, (q(x, ·)) 1

2 , λ(n)
)

is a metric measure space

and the metrics (q(x, ξ−η)) 1
2 and dψ(ξ, η) = ψ

1
2 (ξ−η) are equivalent. Moreover,

if for some γ > 0 we can find two constants 0 < c0 < c1 such that

c0r
γ ≤ λ(n)

(
Bdψ (0, r)

)
≤ c1r

γ

holds, then for every x ∈ R
n the metric (q(x, ·)) 1

2 has the volume doubling property.

Example A.8 Choose 0 < α, β < 2 and ψ(ξ1, ξ2) = ‖ξ1‖α + ‖ξ2‖β , ξ1 ∈ R
n1 ,

ξ2 ∈ R
n2 . Further let q : Rn × R

n → R be a continuous negative definite symbol
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satisfying (A.9) with ψ as defined above. Since λ(n)
(
Bdψ (0, r)

) = cr
2
(
n1
α
+ n2

β

)

we
may apply Proposition A.7 to q(x,D).

For further results on the metric measure space
(
R
n, dψ, λ

(n)
)
, we refer to [30]

and [48]. We would like to mention once more that the Appendix is co-authored by
J. Harris.
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67. R.L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. De Gruyter Studies in Mathemat-

ics, vol. 37, 2nd edn. (De Gruyter, Berlin, 2012)
68. B. Simon, Convexity: An Analytic Viewpoint. Cambridge Tracts in Mathematics, vol. 187

(Cambridge University Press, Cambridge, 2011)
69. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathe-

matical Series, vol. 30 (Princeton University Press, Princeton, 1970)
70. M. Tomisaki, Comparison theorems on Dirichlet forms and their applications. Forum Math. 2,

277–295 (1990)



140 N. Jacob and E. O. T. Rhind

71. N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups. Cambridge
Tracts in Mathematics, vol. 100 (Cambridge University Press, Cambridge, 1992)

72. F.Y. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory. Mathematical
Monograph Series, vol. 4 (Science Press, Beijing, 2005)

73. F.Y. Wang, Analysis for Diffusion Processes on Riemannian Manifolds. Advanced Series on
Statistical Science of Applied Probability, vol. 18 (World Scientific, Singapore, 2014)

74. K. Yosida, Abstract potential operators on Hilbert spaces. Publ. R.I.M.S. 8, 201–205 (1972)
75. Y. Zhuang, Some Geometric Considerations Related to Transition Densities of Jump-Type

Markov Processes, PhD thesis, Swansea University, Swansea, 2012



Lectures on Entropy. I:
Information-Theoretic Notions

Vojkan Jakšić

Abstract These lecture notes concern information-theoretic notions of entropy.
They are intended for, and have been successfully taught to, undergraduate students
interested in research careers. Besides basic notions of analysis related to conver-
gence that are typically taught in the first or second year of undergraduate studies,
no other background is needed to read the notes. The notes might be also of interest
to any mathematically inclined reader who wishes to learn basic facts about notions
of entropy in an elementary setting.

1 Introduction

As the title indicates, this is the first in a planned series of four lecture notes. Part II
concerns notions of entropy in the study of statistical mechanics, and III/IV are the
quantum information theory/quantum statistical mechanics counterparts of I/II. All
four parts target a similar audience and are on a similar technical level. Eventually,
Parts I–IV together are intended to be an introductory chapter to a comprehensive
volume dealing with the topic of entropy from a certain point of view on which I
will elaborate below.

The research program that leads to these lecture notes concerns the elusive notion
of entropy in non-equilibrium statistical mechanics. It is for this pursuit that the
notes are preparing a research-oriented reader, and it is the pursuit to which the later
more advanced topics hope to contribute. Thus, it is important to emphasize that the
choice of topics and their presentation have a specific motivation which may not
be obvious until at least the Part II of the lecture notes is completed. Needless to
say, the lecture notes can be read independently of its motivation, as they provide
a concise, elementary, and mathematically rigorous introduction to the topics they
cover.
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The theme of this Part I is the Boltzmann–Gibbs–Shannon (BGS) entropy
of a finite probability distribution (p1, · · · , pn), and its various deformations
such as the Rényi entropy, the relative entropy, and the relative Rényi entropy.
The BGS entropy and the relative entropy have intuitive and beautiful axiomatic
characterizations discussed in Sects. 3.4 and 5. The Rényi entropies also have
axiomatic characterizations, but those are perhaps less natural, and we shall not
discuss them in detail. Instead, we shall motivate the Rényi entropies by the so-
called Large Deviation Principle (LDP) in probability theory. The link between the
LDP and notions of entropy runs deep and will play a central role in this lecture
notes. For this reason Cramér’s theorem is proven right away in the introductory
Sect. 2 (the more involved proof of Sanov’s theorem is given in Sect. 5.4). It is
precisely this emphasis on the LDP that makes this lecture notes somewhat unusual
in comparison with other introductory presentations of the information-theoretic
entropy.

The Fisher entropy and a related topic of parameter estimation are also an impor-
tant part of this lecture notes. The historical background and most of applications
of these topics are in the field of statistics. There is a hope that they may play an
important role in study of entropy in non-equilibrium statistical mechanics, and that
is the reason for including them in the lecture notes. Again, Sects. 6 and 7 can be read
independently of this motivation by anyone interested in an elementary introduction
to the Fisher entropy and parameter estimation.

These notes are work in progress, and additional topics may be added in the
future.

The notes benefited from the comments of numerous McGill undergraduate
students who attended the seminars and courses in which I have taught the presented
material. I am grateful for their help and for their enthusiasm which to a large
extent motivated my decision to prepare the notes for publication. In particular, I am
grateful to Sherry Chu, Wissam Ghantous, and Jane Panangaden whose McGill’s
undergraduate summer research projects were linked to the topics of the lecture
notes and whose research reports helped me in writing parts of the notes. I am also
grateful to Laurent Bruneau, Noé Cuneo, Tomas Langsetmo, Renaud Raquépas,
and Armen Shirikyan for comments and suggestions. I wish to thank Jacques
Hurtubise and David Stephens who, as the chairmans of the McGill Department
of Mathematics and Statistics, enabled me to teach the material of the notes in a
course format. Finally, I am grateful to Marisa Rossi for her exceptional hospitality
and support during the period when Sect. 7 was written.

A part of the material of these lecture notes was presented in Göttingen’s Second
Summer/Winter School on Dynamical Approaches in Spectral Geometry titled
“Dynamical Methods in Open Quantum Systems”. I am grateful to Dorothea Bahns,
Anke Pohl, and Ingo Witt for their invitation to lecture at this school and for their
hospitality.

This research that has led to this lecture notes was partly funded by NSERC,
Agence Nationale de la Recherche through the grant NONSTOPS (ANR-17-
CE40-0006-01, ANR-17-CE40-0006-02, ANR-17-CE40-0006-03), the CNRS col-
laboration grant Fluctuation theorems in stochastic systems, and the Initiative
d’excellence Paris-Seine.
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1.1 Notes and References

Shannon’s seminal 1948 paper [44], reprinted in [45], remains a must-read for
anyone interested in notions of entropy. Khintchine’s reworking of the mathematical
foundations of Shannon’s theory in the early 1950s, summarized in the monograph
[32], provides a perspective on the early mathematically rigorous developments
of the subject. For further historical perspective, we refer the reader to [52] and
the detailed list of references provided there. There are many books dealing with
entropy and information theory. The textbook [9] is an excellent introduction to
the subject, [4, 22, 46] are recommended to mathematically more advanced reader.
Another instructive reference is [11], where a substantial part of the material covered
in this lecture notes is left as an exercise for the reader!

Discussions of a link between information and statistical mechanics preceded
Shannon’s work. Although Weaver’s remark1 on page 3 of [45] appears to be
historically inaccurate, the discussions of the role of information in foundations
of statistical mechanics goes back at least to the work of Szillard [49] in 1929, see
also https://plato.stanford.edu/entries/information-entropy/, and remains to this day
a hotly disputed subject; see [21] for a recent discussion. An early discussion can be
found in [27, 28]. The textbook [39] gives an additional perspective on this topic.

In contrast to equilibrium statistical mechanics whose mathematically rigorous
foundations, based on the nineteenth century works of Boltzmann and Gibbs,
were laid in the 1960s and 1970s, the physical and mathematical theory of
non-equilibrium statistical mechanics remains in its infancy. The introduction of
non-equilibrium steady states and the discovery of the fluctuation relations in the
context of chaotic dynamical systems in the early 1990s (see [26] for references)
revolutionized our understanding of some important corners of the field, and have
generated an enormous amount of theoretical, experimental, and numerical works
with applications extending to chemistry and biology. The research program of
Claude-Alain Pillet and myself mentioned in the introduction is rooted in these
developments.2 In this program, the search for a notion of entropy for systems out
of equilibrium plays a central role. The planned four parts lecture notes are meant as
an introduction to this search, with this Part I focusing on the information-theoretic
notions of entropy.

1“Dr. Shannon’s work roots back, as von Neumann has pointed out, to Boltzmann’s observation,
in some of his work on statistical physics (1894), that entropy is related to “missing information,”
inasmuch as it is related to the number of alternatives which remain possible to a physical system
after all the macroscopically observable information concerning it has been recorded.”
2The references to results of this program are not relevant for this Part I of the lectures and they
will be listed in the latter installments.

https://plato.stanford.edu/entries/information-entropy/
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2 Elements of Probability

2.1 Prologue: Integration on Finite Sets

Let Ω be a finite set. Generic element of Ω is denoted by ω. When needed, we will
enumerate elements of Ω as Ω = {ω1, · · · , ωL}, where |Ω | = L.

A measure on Ω is a map

μ : Ω → R+ = [0,∞[.

The pair (Ω,μ) is called measurable space. The measure of S ⊂ Ω is

μ(S) =
∑

ω∈S
μ(ω).

By definition, μ(∅) = 0.
Let f : Ω → C be a function. The integral of f over S ⊂ Ω is defined by

∫

S

f dμ =
∑

ω∈S
f (ω)μ(ω).

Let Ω and E be two finite sets and T : Ω → E a map. Let μ be a measure on Ω .
For ζ ∈ E set

μT (ζ ) = μ(T −1(ζ )) =
∑

ω:T (ω)=ζ
μ(ω).

μT is a measure on E induced by (μ, T ). If f : E → C, then

∫

E
f dμT =

∫

Ω

f ◦ T dμ.

If f :Ω→C, we denote by μf the measure on the set of values E ={f (ω) |ω∈Ω}
induced by (Ω, f ). μf is called the distribution measure of the function f .

We denote by

ΩN = {ω = (ω1, · · · , ωN ) |ωk ∈ Ω},

μN(ω = (ω1, · · · , ωN )) = μ(ω1) · · ·μ(ωN),

the N-fold product set and measure of the pair (Ω,μ).
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Let Ωl/r be two finite sets and μ a measure on Ωl ×Ωr . The marginals of μ are
measures μl/r on Ωl/r defined by

μl(ω) =
∑

ω′∈Ωr

μ(ω,ω′), ω ∈ Ωl,

μr(ω) =
∑

ω′∈Ωl

μ(ω′, ω), ω ∈ Ωr.

If μl/r are measures on Ωl/r . we denote by μl ⊗μr the product measure defined by

μl ⊗ μr(ω,ω
′) = μl(ω)μr(ω

′).

The support of the measure μ is the set

suppμ = {ω |μ(ω) �= 0}.

Two measures μ1 and μ2 are mutually singular, denoted μ1 ⊥ μ2, iff
suppμ1 ∩ suppμ2 = ∅. A measure μ1 is absolutely continuous w.r.t.
another measure μ2, denoted μ1 ( μ2, iff suppμ1 ⊂ suppμ2, that is, iff
μ2(ω) = 0 ⇒ μ1(ω) = 0. If μ1 ( μ2, the Radon-Nikodym derivative of μ1
w.r.t. μ2 is defined by

Δμ1|μ2(ω) =
{
μ1(ω)
μ2(ω)

if ω ∈ suppμ1

0 if ω �∈ suppμ1.

Note that
∫

Ω

fΔμ1|μ2 dμ2 =
∫

Ω

f dμ1.

Two measures μ1 and μ2 are called equivalent iff suppμ1 = suppμ2.
Letμ, ρ be two measures onΩ . Then there exists a unique decomposition (called

the Lebesgue decomposition)μ = μ1+μ2, where μ1 ( ρ and μ2 ⊥ ρ. Obviously,

μ1(ω) =
{
μ(ω) if ω ∈ suppρ

0 if ω �∈ suppρ,
μ2(ω) =

{
0 if ω ∈ suppρ

μ(ω) if ω �∈ suppρ.

A measure μ is called faithful if μ(ω) > 0 for all ω ∈ Ω .

Proposition 2.1 Let f : Ω → R+, a > 0, and Sa = {ω | f (ω) ≥ a}. Then

μ(Sa) ≤ 1

a

∫

Ω

f dμ.
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Proof The statement is obvious is Sa = ∅. If Sa is non-empty,

μ(Sa) =
∑

ω∈Sa
μ(ω) ≤ 1

a

∑

ω∈Sa
f (ω)μ(ω) ≤ 1

a

∫

Ω

f dμ.

��
We recall the Minkowski inequality

(∫

Ω

|f + g|pdμ

)1/p

≤
(∫

Ω

|f |pdμ

)1/p

+
(∫

Ω

|g|pdμ

)1/p

,

where p ≥ 1, and the Hölder inequality

∫

Ω

fgdμ ≤
(∫

Ω

|f |pdμ

)1/p (∫

Ω

|g|qdμ

)1/q

,

where p, q ≥ 1, p−1 + q−1 = 1. For p = q = 2 the Hölder inequality reduces to
the Cauchy-Schwarz inequality.

If f : Ω →] − ∞,∞] or [−∞,∞[, we again set
∫
Ω f dμ = ∑

ω f (ω)μ(ω)

with the convention that 0 · (±∞) = 0.

2.2 Probability on Finite Sets

We start with a change of vocabulary adapted to the probabilistic interpretation of
measure theory.

A measure P on a finite set Ω is called a probability measure if
P(Ω) = ∑

ω∈Ω P(ω) = 1. The pair (Ω,P ) is called probability space. A set
S ⊂ Ω is called an event and P(S) is the probability of the event S. Points ω ∈ Ω

are sometimes called elementary events.
A perhaps most basic example of a probabilistic setting is a fair coin experiment,

where a coin is tossed N times and the outcomes are recorded as Head = 1 and
Tail = −1. The set of outcomes is

Ω = {ω = (ω1, · · · , ωN ) |ωk = ±1},

and

P(ω = (ω1, · · · , ωN )) = 1

2N
.
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Let S be the event that k Heads and N − k Tails are observed. The binomial formula
gives

P(S) =
(
N

k

)
1

2N
.

As another example, let

Sj =
{

ω = (ω1, · · · , ωN)
∣
∣
∑

k

ωk = j

}

,

where−N ≤ j ≤ N . P(Sj ) = 0 if N + j is odd. If N + j is even, then

P(Sj ) =
(

N
N+j

2

)
1

2N
.

A function X : Ω → R is called random variable.
The measure PX induced by (P,X) is called the probability distribution of X.

The expectation of X is

E(X) =
∫

Ω

XdP.

The moments of X are

Mk = E(Xk), k = 1, 2 · · · ,
and the moment generating function is

M(α) = E(eαX) =
∑

ω∈Ω
eαX(ω)P (ω),

where α ∈ R. Obviously,

Mk = dk

dαk
M(α)

∣
∣
α=0.

The cumulant generating function of X is

C(α) = logE(eαX) = log

(
∑

ω∈Ω
eαX(ω)P (ω)

)

.

The cumulants of X are

Ck = dk

dαk
C(α)

∣
∣
α=0, k = 1, 2, · · · .
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C1 = M1 = E(X) and

C2 = E(X2)− E(X)2 = E((X − E(X))2).

C2 is called the variance of X and is denoted by Var(X). Note that Var(X) = 0 iff X
is constant on suppP . When we wish to indicate the dependence of the expectation
and variance on the underlying measure P , we shall write EP (X), VarP (X), etc.

Exercise 2.1 The sequences {Mk} and {Ck} determine each other, i.e., there are
functions Fk and Gk such that

Ck = Fk(M1, · · · ,Mk), Mk = Gk(C1, · · · , Ck).

Describe recursive relations that determine Fk and Gk .

In probabilistic setup Proposition 2.1 takes the form

P({ω ∈ Ω | |X(ω)| ≥ a}) ≤ 1

a
E(|X|), (2.1)

and is often called Markov or Chebyshev inequality. We shall often use a shorthand
and abbreviate the l.h.s in (2.1) as P {|X(ω)| ≥ a}, etc.

2.3 Law of Large Numbers

Let (Ω,P ) be a probability space and X : Ω → R a random variable. On the
product probability space (ΩN,PN) we define

SN(ω = (ω1, · · · , ωN)) =
N∑

k=1

X(ωk).

We shall refer to the following results as the Law of large numbers (LLN).

Proposition 2.2 For any ε > 0,

lim
N→∞PN

{∣
∣
∣
∣
SN(ω)
N

− E(X)

∣
∣
∣
∣ ≥ ε

}

= 0.

Remark 2.3 An equivalent formulation of the LLN is that for any ε > 0,

lim
N→∞PN

{∣
∣
∣
∣
SN(ω)
N

− E(X)

∣
∣
∣
∣ ≤ ε

}

= 1.
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Proof Denote by EN the expectation w.r.t. PN . Define Xk(ω) = X(ωk) and note
that EN(Xk) = E(X), EN(X

2
k) = E(X2), EN(XkXj ) = E(X)2 for k �= j . Then

PN

{∣
∣
∣
∣
SN(ω)
N

− E(X)

∣
∣
∣
∣ ≥ ε

}

= PN

{(SN(ω)
N

− E(X)

)2

≥ ε2

}

≤ 1

ε2
EN

((SN(ω)
N

− E(X)

)2
)

= 1

N2ε2
EN

⎛

⎝
∑

k,j

(Xk − E(Xk))(Xj − E(Xj ))

⎞

⎠

= 1

Nε2
Var(X),

and the statement follows. ��

2.4 Cumulant Generating Function

Let (Ω,P ) be a probability space andX : Ω → R a random variable. In this section
we shall study in some detail the properties of the cumulant generating function

C(α) = logE(eαX).

To avoid discussion of trivialities, until the end of this chapter we shall assume that
X is not constant on suppP , i.e. that X assumes at least two distinct values on
suppP . Obviously, the function C(α) is infinitely differentiable and

lim
α→∞C′(α) = max

ω
X(ω),

lim
α→−∞C′(α) = min

ω
X(ω).

(2.2)

Proposition 2.4 C′′(α) > 0 for all α. In particular, the function C is strictly
convex.

Remark 2.5 By strictly convex we mean that C′ is strictly increasing, i.e., that the
graph of C does not have a flat piece.

Proof Set

Qα(ω) = eαX(ω)P (ω)
∑

ω eαX(ω)P (ω)
, (2.3)

and note that Qα is a probability measure on Ω equivalent to P .
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One easily verifies that

C′(α) = EQα(X), C′′(α) = VarQα(X).

The second identity yields the statement. ��
Proposition 2.6 C extends to an analytic function in the strip

|Imα| < π

2

1

maxω |X(ω)| . (2.4)

Proof Obviously, the function α �→ E(eαX) is entire analytic. If α = a + ib, then

E(eαX) =
∑

ω∈Ω
eaX(ω) cos(bX(ω))P (ω)+ i

∑

ω∈Ω
eaX(ω) sin(bX(ω))P (ω).

If |bX(ω)| < π/2 for allω, then the real part ofE(eαX) is strictly positive. It follows
that the function

LogE(eαX),

where Log is the principal branch of complex logarithm, is analytic in the strip (2.4)
and the statement follows. ��
Remark 2.7 Let Ω = {−1, 1}, P(−1) = P(1) = 1/2, X(1) = 1, X(−1) = −1.
Then

C(α) = log coshα.

Since cosh(π i/2) = 0, we see that Proposition 2.6 is an optimal result.

2.5 Rate Function

We continue with the framework of the previous section. The rate function of the
random variable X is defined by

I (θ) = sup
α∈R

(αθ − C(α)), θ ∈ R.

In the language of convex analysis, I is the Fenchel-Legendre transform of the
cumulant generating function C. Obviously, I (θ) ≥ 0 for all θ . Set

m = min
ω

X(ω), M = max
ω

X(ω),
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and recall the relations (2.2). By the intermediate value theorem, for any θ in ]m,M[
there exists unique α(θ) ∈ R such that

θ = C′(α(θ)).

The function

α(θ) = (C′)−1(θ)

is infinitely differentiable on ]m,M[, strictly increasing on ]m,M[, α(θ) ↓ −∞ iff
θ ↓ m, and α(θ) ↑ ∞ iff θ ↑ M .

Exercise 2.2 Prove that the function ]m,M[ , θ �→ α(θ) is real-analytic.
Hint: Apply the analytic implicit function theorem.

Proposition 2.8

(1) For θ ∈]m,M[,

I (θ) = α(θ)θ − C(α(θ)).

(2) The function I is infinitely differentiable on ]m,M[.
(3) I ′(θ) = α(θ). In particular, I ′ is strictly increasing on ]m,M[ and

lim
θ↓m I

′(θ) = −∞, lim
θ↑M I ′(θ) =∞.

(4) I ′′(θ) = 1/C′′(α(θ)).
(5) I (θ) = 0 iff θ = E(X).

Proof To prove (1), note that for θ ∈]m,M[ the function

d

dα
(αθ − C(α)) = θ − C′(α)

vanishes at α(θ), is positive for α < α(θ), and is negative for α > α(θ). Hence,
the function α �→ αθ − C(α) has the global maximum at α = α(θ) and Part (1)
follows. Parts (2), (3), and (4) are obvious. To prove (5), note that if I (θ) = 0 for
some θ ∈]m,M[, then, since I is non-negative, we also have 0 = I ′(θ) = α(θ),
and the relation θ = C′(α(θ)) = C′(0) = E(X) follows. On the other hand, if
θ = E(X) = C′(0), then α(θ) = 0, and I (θ) = −C(0) = 0. ��
Exercise 2.3 Prove that the function I is real-analytic in ]m,M[.

Let

Sm = {ω ∈ Ω |X(ω) = m}, SM = {ω ∈ Ω |X(ω) =M}.
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Proposition 2.9

(1) I (θ) = ∞ for θ �∈ [m,M].
(2)

I (m) = lim
θ↓m I (θ) = − logP(Sm),

I (M) = lim
θ↑M I (θ) = − logP(SM).

Proof

(1) Suppose that θ > M . Then

d

dα
(αθ − C(α)) = θ − C′(α) > θ −M.

Integrating this inequality over [0, α] we derive

αθ − C(α) > (θ −M)α,

and so

I (θ) = sup
α∈R

(αθ − C(α)) = ∞.

The case θ < m is similar.
(2) We shall prove only the second formula, the proof of the first is similar. Since

the function αM − C(α) is increasing,

I (M) = lim
α→∞(αM − C(α)).

Since

C(α) = αM + logP(SM)+ log(1+ A(α)), (2.5)

where

A(α) = 1

P(SM)

∑

ω �∈SM
eα(X(ω)−M)P (ω),

we derive that I (M) = − logP(SM).

Since C′(α(θ)) = θ , Part (1) of Proposition 2.8 gives that

lim
θ↑M I (θ) = lim

α→∞(αC
′(α)− C(α)).
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Write

C′(α) =M
1+ B(α)

1+ A(α)
, (2.6)

where

B(α) = 1

MP(SM)

∑

ω �∈SM
X(ω)eα(X(ω)−M)P (ω).

The formulas (2.5) and (2.6) yield

αC′(α)− C(α) = αM
B(α) − A(α)

1+ A(α)
− logP(SM)− log(1+ A(α)).

Since A(α) and B(α) converge to 0 as α→∞,

lim
θ↑M I (θ) = lim

α→∞(αC
′(α)− C(α)) = − logP(SM).

��
Proposition 2.10

C(α) = sup
θ∈R

(θα − I (θ)). (2.7)

Proof To avoid confusion, fix α = α0. Below, α(θ) = (C′)−1(θ) is as in
Proposition 2.8.

The supremum in (2.7) is achieved at θ0 satisfying

α0 = I ′(θ0).

Since I ′(θ0) = α(θ0), we have α0 = α(θ0), and

I (θ0) = θ0α(θ0)− C(α(θ0)) = θ0α0 − C(α0).

Hence

sup
θ∈R

(θα0 − I (θ)) = α0θ0 − I (θ0) = C(α0).

��
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Returning to the example of Remark 2.7, m = −1, M = 1, C(α) = log coshα,
and C′(α) = tanhα. Hence, for θ ∈] − 1, 1[,

α(θ) = tanh−1(θ) = 1

2
log

1+ θ

1− θ
.

It follows that

I (θ) = θα(θ)− C(α(θ)) = 1

2
(1+ θ) log(1+ θ)+ 1

2
(1− θ) log(1− θ).

2.6 Cramér’s Theorem

This section is devoted to the proof of Cramér’s theorem:

Theorem 2.11 For any interval [a, b],

lim
N→∞

1

N
logPN

{SN(ω)
N

∈ [a, b]
}

= − inf
θ∈[a,b] I (θ).

Remark 2.12 To prove this result without loss of generality we may assume that
[a, b] ⊂ [m,M].
Remark 2.13 Note that

inf
θ∈[a,b] I (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if E(X) ∈ [a, b]
I (a) if a > E(X)

I (b) if b < E(X),

and that

lim
N→∞

1

N
logPN

{SN(ω)
N

= M

}

= logP(SM) = −I (M),

lim
N→∞

1

N
logPN

{SN(ω)
N

= m

}

= logP(Sm) = −I (m).

We start the proof with

Proposition 2.14

(1) For θ ≥ E(X),

lim sup
N→∞

1

N
logPN

{SN(ω)
N

≥ θ

}

≤ −I (θ).
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(2) For θ ≤ E(X),

lim sup
N→∞

1

N
logPN

{SN(ω)
N

≤ θ

}

≤ −I (θ).

Remark 2.15 Note that if θ < E(X), then by the LLN

lim
N→∞

1

N
logPN

{SN(ω)
N

≥ θ

}

= 0.

Similarly, if θ > E(X),

lim
N→∞

1

N
logPN

{SN(ω)
N

≤ θ

}

= 0.

Proof For α > 0,

PN {SN(ω) ≥ Nθ} = PN

{
eαSN(ω) ≥ eαNθ

}

≤ e−αNθEN

(
eαSN(ω)

)

= e−αNθE
(

eαX
)N

= eN(C(α)−αθ).

It follows that

lim sup
N→∞

1

N
logPN

{SN(ω)
N

≥ θ

}

≤ inf
α>0

(C(α)− αθ) = − sup
α>0

(αθ − C(α)).

If θ ≥ E(X), then αθ − C(α) ≤ 0 for α ≤ 0 and

sup
α>0

(αθ − C(α)) = sup
α∈R

(αθ − C(α)) = I (θ).

This yields Part (1). Part (2) follows by applying Part (1) to the random variable
−X. ��
Exercise 2.4 Using Proposition 2.14 prove that for any ε > 0 there exist γε > 0
and Nε such that for N ≥ Nε ,

PN

{∣
∣
∣
∣
SN(ω)
N

− E(X)

∣
∣
∣
∣ ≥ ε

}

≤ e−γεN .
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Proposition 2.16

(1) For θ ≥ E(X),

lim inf
N→∞

1

N
logPN

{SN(ω)
N

≥ θ

}

≥ −I (θ).

(2) For θ ≤ E(X),

lim inf
N→∞

1

N
logPN

{SN(ω)
N

≤ θ

}

≥ −I (θ).

Remark 2.17 Note that Part (1) trivially holds if θ < E(X). Similarly, Part (2)
trivially holds if θ > E(X).

Proof We again need to prove only Part (1) (Part (2) follows by applying Part (1) to
the random variable−X). If θ ≥ M , the statement is obvious and so without loss of
generality we may assume that θ ∈ [E(X),M[. Fix such θ and choose s and ε > 0
such that θ < s − ε < s + ε < M .

Let Qα be the probability measure introduced in the proof of Proposition 2.4,
and let Qα,N be the induced product probability measure on ΩN . The measures PN
and Qα,N are equivalent, and for ω ∈ suppPN

ΔPN |Qα,N (ω) = e−αSN(ω)+NC(α).

We now consider the measure Qα,N for α = α(s). Recall that

C′(α(s)) = s = EQα(s)
(X).

Set

TN =
{

ω ∈ ΩN
∣
∣ SN(ω)

N
∈ [s − ε, s + ε]

}

,

and note that the LLN implies

lim
N→∞Qα(s),N(TN) = 1. (2.8)

The estimates

PN

{SN(ω)
N

≥ θ

}

≥ PN(TN) =
∫

TN

ΔPN |Qα(s),N
dQα(s),N

=
∫

TN

e−α(s)SN+NC(α(s))dQα(s),N

≥ eN(C(α(s))−sα(s)−ε|α(s)|Qα(s),N(TN)
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and (2.8) give

lim inf
N→∞

1

N
logPN

{SN(ω)
N

≥ θ

}

≥ C(α(s))− sα(s)− ε|α(s)| = −I (s)− ε|α(s)|.

The statement now follows by taking first ε ↓ 0 and then s ↓ θ . ��
Combining Propositions 2.14 and 2.16 we derive

Corollary 2.18 For θ ≥ E(X),

lim
N→∞

1

N
logPN

{SN(ω)
N

≥ θ

}

= −I (θ).

For θ ≤ E(X),

lim
N→∞

1

N
logPN

{SN(ω)
N

≤ θ

}

= −I (θ).

We are now ready to complete

Proof of Theorem 2.11 If E(X) ∈]a, b[ the result follows from the LLN. Suppose
that M > a ≥ E(X). Then

PN

{SN(ω)
N

∈ [a, b]
}

= PN

{SN(ω)
N

≥ a

}

− PN

{SN(ω)
N

> b

}

.

It follows from Corollary 2.18 that

lim
N→∞

1

N
log

⎡

⎣1−
PN

{SN(ω)
N

> b
}

PN

{SN(ω)
N

≥ a
}

⎤

⎦ = 0, (2.9)

and so

lim
N→∞

1

N
logPN

{SN(ω)
N

∈ [a, b]
}

= lim
N→∞

1

N
logPN

{SN(ω)
N

≥ a

}

= −I (a).

The case m < b ≤ E(X) is similar. ��
Exercise 2.5 Write down the proof of (2.9) and of the case m < b ≤ E(X).

Exercise 2.6 Consider the example introduced in Remark 2.7 and prove Cramér’s
theorem in this special case by using Stirling’s formula and a direct combinatorial
argument.
Hint: See Theorem 1.3.1 in [15].
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2.7 Notes and References

Although it is assumed that the student reader had no previous exposure to
probability theory, a reading of additional material could be helpful at this point.
Recommended textbooks are [8, 42, 43].

For additional information and original references regarding Cramer’s theorem,
we refer the reader to Chapter 2 of [13]. Reader interested to learn more about theory
of large deviations may consult classical references [13–15], and the lecture notes
of S.R.S. Varadhan https://math.nyu.edu/~varadhan/LDP.html.

It is possible to give a combinatorial proof of Theorem 2.11, as indicated in
the Exercise 2.6. The advantage of the argument presented in this chapter is that it
naturally extends to a proof of much more general results (such as the Gärtner-Ellis
theorem) which will be discussed in the Part II of the lecture notes.

3 Boltzmann–Gibbs–Shannon Entropy

3.1 Preliminaries

Let Ω be a finite set, |Ω | = L, and let P(Ω) be the collection of all probability
measures on Ω . P(Ω) is naturally identified with the set

PL =
{

(p1, · · · , pL) |pk ≥ 0,
L∑

k=1

pk = 1

}

(3.1)

(the identification map is P �→ (P (ω1), · · ·P(ωL)). We shall often use this
identification without further notice. A convenient metric on P(Ω) is the variational
distance

dV (P,Q) =
∑

ω∈Ω
|P(ω)−Q(ω)|. (3.2)

We denote by Pf(Ω) the set of all faithful probability measures on P(Ω) (recall
that P ∈ Pf(Ω) iff P(ω) > 0 for all ω ∈ Ω). Pf(Ω) coincides with the interior of
P(Ω) and is identified with

PL,f =
{

(p1, · · · , pL) |pk > 0,
L∑

k=1

pk = 1

}

.

Note that P(Ω) and Pf(Ω) are convex sets.
The probability measure P is called pure if P(ω) = 1 for some ω ∈ Ω . The

chaotic probability measure is Pch(ω) = 1/L, ω ∈ Ω .

https://math.nyu.edu/~varadhan/LDP.html
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We shall often make use of Jensen’s inequality. This inequality states that if
f : [a, b]→R is concave, then for xk∈ [a, b], k= 1, · · · , n, and (p1, · · · , pn)∈Pn,f
we have

n∑

k=1

pkf (xk) ≤ f

(
n∑

k=1

pkxk

)

. (3.3)

Moreover, if f is strictly concave the inequality is strict unless x1 = · · · = xn.
A similar statement holds for convex functions.

Exercise 3.1 Prove Jensen’s inequality.

3.2 Definition and Basic Properties

The entropy function (sometimes called the information function) of P ∈ P(Ω) is3

SP (ω) = −c logP(ω), (3.4)

where c > 0 is a constant that does not depend on P or Ω , and − log 0 = ∞. The
function SP takes values in [0,∞]. The Boltzmann–Gibbs–Shannon entropy (in the
sequel we will often call it just entropy) of P is

S(P ) =
∫

Ω

SP dP = −c
∑

ω∈Ω
P(ω) logP(ω). (3.5)

The value of the constant c is linked to the choice of units (or equivalently, the base
of logarithm). The natural choice in the information theory is c = 1/ log 2 (that is,
the logarithm is taken in the base 2). The value of c plays no role in these lecture

3Regarding the choice of logarithm, in the introduction of [44] Shannon comments: “(1) It is
practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to
the base 2 logarithm of this number. Doubling the time roughly squares the number of possible
messages, or doubles the logarithm, etc. (2) It is nearer to our intuitive feeling as to the proper
measure. This is closely related to (1) since we intuitively measure entities by linear comparison
with common standards. One feels, for example, that two punched cards should have twice the
capacity of one for information storage, and two identical channels twice the capacity of one for
transmitting information. (3) It is mathematically more suitable. Many of the limiting operations
are simple in terms of the logarithm but would require clumsy restatement in terms of the number
of possibilities.”
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notes, and from now on we set c = 1 and call

S(P ) = −
∑

ω∈Ω
P(ω) logP(ω)

the Boltzmann–Gibbs–Shannon entropy of P . We note, however, that the constant
c will reappear in the axiomatic characterizations of entropy given in Theorems 3.4
and 3.7.

The basic properties of entropy are:

Proposition 3.1

(1) S(P ) ≥ 0 and S(P ) = 0 iff P is pure.
(2) S(P ) ≤ logL and S(P ) = logL iff P = Pch.
(3) The map P(Ω) , P �→ S(P ) is continuous and concave, that is, if pk’s are as

in (3.3) and Pk ∈ P(Ω), then

p1S(P1)+ · · · + pnS(Pn) ≤ S(p1P1 + · · ·pnPn), (3.6)

with equality iff P1 = · · · = Pn.
(4) The concavity inequality (3.6) has the following “almost convexity” counter-

part:

S(p1P1 + · · · + pnPn) ≤ p1S(P1)+ · · · + pnS(Pn)+ S(p1, · · · , pn),
with equality iff suppPk ∩ suppPj = ∅ for k �= j .

Proof Parts (1) and (3) follow from the obvious fact that the function
[0, 1] , x �→ −x log x is continuous, strictly concave, non-negative, and vanishing
iff x = 0 or x = 1. Part (2) follows from Jensen’s inequality. Part (4) follows from
the monotonicity of logx:

S(p1P1 + · · · + pnPn) =
∑

ω∈Ω

n∑

k=1

−pkPk(ω) log

⎛

⎝
n∑

j=1

pjPj (ω)

⎞

⎠

≤
∑

ω∈Ω

n∑

k=1

−pkPk(ω) log (pkPk(ω))

=
n∑

k=1

pk

(
∑

ω∈Ω
−Pk(ω) logPk(ω)

)

−
n∑

k=1

(
∑

ω∈Ω
Pk(ω)

)

pk logpk

=
n∑

k=1

pkS(Pk)+ S(p1, · · · , pn).
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The equality holds if for all ω and k �= j , pkPk(ω) > 0 ⇒ pjPj (ω) = 0, which
is equivalent to suppPk ∩ suppPj = ∅ for all k �= j . ��

Suppose that Ω = Ωl × Ωr and let Pl/r be the marginals of P ∈ P(Ω). For a
given ω ∈ suppPl the conditional probability measure Pω

r |l on Ωr is defined by

Pω
r |l (ω

′) = P(ω,ω′)
Pl(ω)

.

Note that

∑

ω∈suppPl

Pl(ω)P
ω
r |l = Pr .

Proposition 3.2

(1)

S(P ) = S(Pl)+
∑

ω∈Ωl

Pl(ω)S(P
ω
r |l ).

(2) The entropy is strictly sub-additive:

S(P ) ≤ S(Pl)+ S(Pr ),

with the equality iff P = Pl ⊗ Pr .

Proof Part (1) and the identity S(Pl ⊗ Pr) = S(Pl) + S(Pr) follow by direct
computation. To prove (2), note that Part (3) of Proposition 3.1 gives

∑

ω∈suppPl

Pl(ω)S(P
ω
r |l ) ≤ S

⎛

⎝
∑

ω∈suppPl

Pl(ω)P
ω
r |l

⎞

⎠ = S(Pr ),

and so it follows from Part (1) that S(P ) ≤ S(Pl) + S(Pr) with the equality iff all
the probability measures Pω

r |l , ω ∈ suppPl , are equal. Thus, if the equality holds,
then for all (ω, ω′) ∈ Ωl ×Ωr , P(ω,ω′) = C(ω′)Pl(ω). Summing over ω’s gives
that P = Pl ⊗ Pr . ��
Exercise 3.2 The Hartley entropy of P ∈ P(Ω) is defined by

SH (P ) = log |{ω |P(ω) > 0}|.

1. Prove that the Hartley entropy is also strictly sub-additive:
SH (P ) ≤ SH (Pl)+ SH (Pr), with the equality iff P = Pl ⊗ Pr .

2. Show that the map P �→ SH (P ) is not continuous if L ≥ 2.
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3.3 Covering Exponents and Source Coding

To gain further insight into the concept of entropy, assume that P is faithful and
consider the product probability space (ΩN,PN). For given ε > 0 let

TN,ε =
{

ω = (ω1, · · · , ωN) ∈ ΩN
∣
∣
∣
∣
∣
∣
SP (ω1)+ · · ·SP (ωN )

N
− S(P )

∣
∣
∣
∣ < ε

}

=
{

ω ∈ ΩN
∣
∣
∣
∣
∣
∣−

logPN(ω)

N
− S(P )

∣
∣
∣
∣ < ε

}

=
{
ω ∈ ΩN

∣
∣ e−N(S(P )+ε) < PN(ω) < e−N(S(P )−ε)

}
.

The LLN gives

lim
N→∞PN(TN,ε) = 1.

We also have the following obvious bounds on the cardinality of TN,ε :

PN(TN,ε)eN(S(P )−ε) < |TN,ε | < eN(S(P )+ε).

It follows that

S(P ) − S(Pch)− ε ≤ lim inf
N→∞

1

N
log

|TN,ε |
|Ω |N

≤ lim sup
N→∞

1

N
log

|TN,ε |
|Ω |N ≤ S(P )− S(Pch)+ ε.

This estimate implies that if P �= Pch, then, as N → ∞, the measure PN is
“concentrated” and “equipartitioned” on the set TN,ε whose size is “exponentially
small” with respect to the size of ΩN .

We continue with the analysis of the above concepts. Let γ ∈]0, 1[ be fixed. The
(N, γ ) covering exponent is defined by

cN(γ ) = min
{
|A| |A ⊂ ΩN, PN(A) ≥ γ

}
. (3.7)

One can find cN(γ ) according to the following algorithm:

(a) List the events ω = (ω1, · · · , ωN ) in order of decreasing probabilities.
(b) Count the events until the first time the total probability is ≥ γ .
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Proposition 3.3 For all γ ∈]0, 1[,

lim
N→∞

1

N
log cN(γ ) = S(P ).

Proof Fix ε > 0 and recall the definition of TN,ε . For N large enough,
PN(TN,ε)≥ γ ,
and so for such N’s,

cN(γ ) ≤ |TN,ε | ≤ eN(S(P )+ε).

It follows that

lim sup
N→∞

1

N
log cN(γ ) ≤ S(P ).

To prove the lower bound, let AN,γ be a set for which the minimum in (3.7) is
achieved. Let ε > 0. Note that

lim inf
N→∞ PN(TN,ε ∩ AN,γ ) ≥ γ. (3.8)

Since for PN(ω) ≤ e−N(S(P )−ε) for ω ∈ TN,ε ,

PN(TN,ε ∩ AN,γ ) =
∑

ω∈TN,ε∩AN,γ

PN (ω) ≤ e−N(S(P )−ε)|TN,ε ∩ AN,γ |.

Hence,

|AN,γ | ≥ eN(S(P )−ε)PN(TN,ε ∩ AN,γ ),

and it follows from (3.8) that

lim inf
N→∞

1

N
log cN(γ ) ≥ S(P )− ε.

Since ε > 0 is arbitrary,

lim inf
N→∞

1

N
log cN(γ ) ≥ S(P ),

and the proposition is proven. ��
We finish this section with a discussion of Shannon’s source coding theorem.

Given a pair of positive integers N,M , the encoder is a map

FN : ΩN → {0, 1}M.
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The decoder is a map

GN : {0, 1}M → ΩN.

The error probability of the coding pair (FN,GN) is

PN {GN ◦ FN(ω) �= ω} .

If this probability is less than some prescribed 1 > ε > 0, we shall say that the
coding pair is ε-good. Note that to any ε-good coding pair one can associate the set

A = {ω |GN ◦ FN(ω) = ω}

which satisfies

PN(A) ≥ 1− ε, |A| ≤ 2M. (3.9)

On the other hand, if A ⊂ ΩN satisfies (3.9), we can associate to it an ε-good
pair (FN,GN) by setting FN to be one-one on A (and arbitrary otherwise), and
GN = F−1

N on FN(A) (and arbitrary otherwise).
In the source coding we wish to find M that minimizes the compression

coefficients M/N subject to an allowed ε-error probability. Clearly, the optimal
M is

MN =
[
log2 min

{
|A| |A ⊂ ΩN PN(A) ≥ 1− ε

}]
,

where [ · ] denotes the greatest integer part. Shannon’s source coding theorem now
follows from Proposition 3.3: the limiting optimal compression coefficient is

lim
N→∞

MN

N
= 1

log 2
S(P ).

3.4 Why is the Entropy Natural?

Set P = ∪ΩP(Ω). In this section we shall consider functions S : P → R that
satisfy properties that correspond intuitively to those of entropy as a measure of
randomness of probability measures. The goal is to show that those intuitive natural
demands uniquely specify S up to a choice of units, that is, that for some c > 0 and
all P ∈ P , S(P ) = cS(P ).

We describe first three basic properties that any candidate for S should satisfy.
The first is the positivity and non-triviality requirement: S(P ) ≥ 0 and this
inequality is strict for at least one P ∈ P . The second is that if |Ω1| = |Ω2| and
θ : Ω1 → Ω2 is a bijection, then for any P ∈ P(Ω1), S(P ) = S(P ◦ θ). In other
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words, the entropy of P should not depend on the labeling of the elementary events.
This second requirement gives that S is completely specified by its restriction
S : ∪L≥1PL → [0,∞[ which satisfies

S(p1, · · · , pL) = S(pπ(1), · · · , pπ(L)) (3.10)

for any L ≥ 1 and any permutation π of {1, · · · , L}. In the proof of Theorem 3.7
we shall also assume that

S(p1, · · · , pL, 0) = S(p1, · · · , pL) (3.11)

for all L ≥ 1 and (p1, · · · , pL) ∈ PL. In the literature, the common sense
assumption (3.11) is sometimes called expansibility.

Throughout this section we shall assume that the above three properties hold.
We remark that the assumptions of Theorem 3.7 actually imply the positivity and
non-triviality requirement.

Split Additivity Characterization

If Ω1,Ω2 are two disjoint sets, we denote by Ω1⊕Ω2 their union (the symbol⊕ is
used to emphasize the fact that the sets are disjoint). If μ1 is a measure on Ω1 and
μ2 is a measure on Ω2, then μ = μ1 ⊕ μ2 is a measure on Ω1 ⊕ Ω2 defined by
μ(ω) = μ1(ω) if ω ∈ Ω1 and μ(ω) = μ2(ω) if ω ∈ Ω2. Two measurable spaces
(Ω1, μ1), (Ω2, μ2) are called disjoint if the sets Ω1, Ω2, are disjoint.

The split additivity characterization has its roots in the identity

S(p1P1 + · · · + pnPn) = p1S(P1)+ · · · + pnS(Pn)+ S(p1, · · · , pn)

which holds if suppPk ∩ suppPj = ∅ for k �= j .

Theorem 3.4 Let S : P → [0,∞[ be a function such that:

(a) S is continuous on P2.
(b) For any finite collection of disjoint probability spaces (Ωj, Pj ), j = 1, · · · , n,

and any (p1, · · · , pn) ∈ Pn,

S

(
n⊕

k=1

pkPk

)

=
n∑

k=1

pkS(Pk)+S(p1, · · · , pn). (3.12)

Then there exists c > 0 such that for all P ∈ P ,

S(P ) = cS(P ). (3.13)
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Remark 3.5 If the positivity and non-triviality assumptions are dropped, then the
proof gives that (3.13) holds for some c ∈ R.

Remark 3.6 The split-additivity property (3.12) is sometimes called the chain rule
for entropy. It can be verbalized as follows: if the initial choices (1, · · · , n), realized
with probabilities (p1, · · · , pn), are split into sub-choices described by probability
spaces (Ωk, Pk), k = 1, · · · , n, then the new entropy is the sum of the initial entropy
and the entropies of sub-choices weighted by their probabilities.

Proof In what follows, Pn ∈ Pn denotes the chaotic probability measure

Pn =
(

1

n
, · · · , 1

n

)

,

and

f (n) = S(P n) = S

(
1

n
, · · · , 1

n

)

.

We split the argument into six steps.

Step 1 S(1) = S(0, 1) = 0.
Suppose that |Ω | = 2 and let P = (q1, q2) ∈ P2. Writing Ω = Ω1 ⊕Ω2 where

|Ω1| = |Ω2| = 1 and taking P1 = (1), P2 = (1), p1 = q1, p2 = q2, we get
S(q1, q2) = S(1)+S(q1, q2), and so S(1) = 0. Similarly, the relations

S(0, q1, q2) = q1S(0, 1)+ q2S(1)+S(q1, q2),

S(0, q1, q2) = 0 ·S(1)+ 1 ·S(q1, q2)+S(0, 1),

yield that S(0, 1) = q1S(0, 1) for all q1, and so S(0, 1) = 0.

Step 2 f (nm) = f (n)+ f (m).
Take Ω =Ω1 ⊕ · · · ⊕ Ωm with |Ωk| = n for all 1≤ k≤m, and set Pk =Pn,

pk= 1/m. It then follows from (3.12) thatf (nm)=m· 1
m
f (n)+f (m)=f (n)+f (m).

Step 3 limn→∞(f (n)− f (n− 1)) = 0.
In the proof of this step we shall make use of the following elementary result

regarding convergence of the Cesàro means: if (an)n≥1 is a converging sequence of
real numbers and limn→∞ an = a, then

lim
n→∞

1

n

n∑

k=1

ak = a.

As an exercise, prove this result.
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Set dn = f (n)− f (n− 1), δn = S( 1
n
, 1 − 1

n
). Since f (1) = S(1) = 0,

f (n) = dn + · · · + d2.

The relation (3.12) gives

f (n) =
(

1− 1

n

)

f (n− 1)+ δn,

and so

nδn = ndn + f (n− 1).

It follows that

n∑

k=2

kδk = nf (n) = n(dn + f (n− 1)) = n(nδn − (n− 1)dn),

which yields

dn = δn − 1

n(n− 1)

n−1∑

k=2

kδk.

By Step 1, limn→∞ δn = 0. Obviously,

0 ≤ 1

n(n− 1)

n−1∑

k=2

kδk ≤ 1

n

n−1∑

k=2

δk,

and we derive

lim
n→∞

1

n(n− 1)

n−1∑

k=2

kδk = 0.

It follows that limn→∞ dn = 0.

Step 4 There is a constant c such that f (n) = c logn for all n.
By Step 2, for any k ≥ 1,

f (nk)

log nk
= n

logn
.
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Hence, to prove the statement it suffices to show that the limit

c = lim
n→∞

f (n)

logn

exists. To prove that, we will show that g(n) defined by

g(n) = f (n)− f (2)

log 2
logn (3.14)

satisfies

lim
n→∞

g(n)

logn
= 0.

The choice of integer 2 in (3.14) is irrelevant, and the argument works with 2
replaced by any integer m ≥ 2.

Obviously, g(nm)= g(n)+g(m) and g(1)= g(2)= 0. Set ξm= g(m)−g(m−1)
if n is odd, ξm = 0 if m is even. By Step 3, limm→∞ ξm = 0. Let n > 1 be given.
Write n = 2n1 + r1, where r1 = 0 or r1 = 1. Then

g(n) = ζn + g(2n1) = ζn + g(n1),

where we used that g(2) = 0. If n1 > 1, write again n1 = 2n1 + r2, where r2 = 0
or r2 = 1, so that

g(n1) = ζn1 + g(n2).

This procedure terminates after k0 steps, that is, when we reach nk0 = 1. Obviously,

k0 ≤ logn

log 2
, g(n) =

k0−1∑

k=0

ζnk ,

where we set n0 = n. Let ε > 0 and mε be such that for m ≥ mε we have
|ξm| < ε/ log 2. Then

|g(n)|
logn

≤ 1

logn

(
∑

m≤mε

|ξm|
)

+ ε
k0 log 2

logn
≤ 1

logn

(
∑

m≤mε

|ξm|
)

+ ε.

It follows that

lim sup
n→∞

|g(n)|
logn

≤ ε.

Since ε > 0 is arbitrary, the proof is complete.
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Step 5 If c is as in Step 4, then

S(q1, q2) = cS(q1, q2).

Let Ω = Ω1 ⊕Ω2 with |Ω1| = m, |Ω2| = m− n. Applying (3.12) to P1 = Pn,
P2 = Pn−m, p1 = n

m
, p2 = m−n

m
, we derive

f (m) = n

m
f (n)+ m− n

m
f (m− n)+S

(
n

m
,
m− n

m

)

.

Step 4 gives that

S

(
n

m
,
m− n

m

)

= cS

(
n

m
,
m− n

m

)

.

Since this relation holds for any m < n, the continuity of S and S on P2 yields the
statement.

Step 6 We now complete the proof by induction on |Ω |. Suppose that
S(P ) = cS(P ) holds for all P ∈ P(Ω) with |Ω | = n − 1, where c is as in
Step 4. Let P = (p1, · · · , pn) be a probability measure on Ω = Ωn−1⊕Ω1, where
|Ωn−1| = n− 1, |Ω1| = 1. Without loss of generality we may assume that qn < 1.
Applying (3.12) with

P1 =
(

q1

1− qn
, · · · , qn−1

1− qn

)

,

P2 = (1), p1 = 1− qn, p2 = qn, we derive

S(P ) = cS(P1)+ cS(p1, p2) = cS(P ).

This completes the proof. The non-triviality assumption yields that c > 0.
��

Sub-additivity Characterization

The sub-additivity of entropy described in Proposition 3.2 is certainly a very
intuitive property. If the entropy quantifies randomness of a probability measure P ,
or equivalently, the amount of information gained by an outcome of a probabilistic
experiment described by P , than the product of marginals Pl ⊗Pr is certainly more
random then P ∈ P(Ωl ×Ωr). The Boltzmann–Gibbs–Shannon entropy S and the
Hartley entropy SH introduced in Exercise 3.2 are strictly sub-additive, and so is
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any linear combination

S = cS + CSH , (3.15)

where c ≥ 0, C ≥ 0, and at least one of these constants is strictly positive. It is a
remarkable fact that the strict sub-additivity requirement together with the obvious
assumption (3.11) selects (3.15) as the only possible choices for entropy. We also
note the strict sub-additivity assumption selects the sign of the constants in (3.15),
and that here we can omit the assumption (a) of Theorem 3.4.

Theorem 3.7 Let S : P → [0,∞[ be a strictly sub-additive map, namely if
Ω = Ωl ×Ωr and P ∈ P(Ω), then

S(P ) ≤ S(Pl)+S(Pr)

with equality iff P = Pl ⊗ Pr . Then there are constants c ≥ 0, C ≥ 0, c + C > 0,
such that for all P ∈ P ,

S(P ) = cS(P )+ CSH (P ). (3.16)

If in addition S is continuous on P2, then C = 0 and S = cS for some c > 0.

Proof We denote by Sn the restriction of S to Pn. Note that the sub-additivity
implies that

S2n(p11, p12, · · · , pn1, pn2) ≤ S2(p11 + · · · + pn1, p12 + · · · + pn2)

+Sn(p11 + p12, · · · , pn1 + pn2).

(3.17)

For x ∈ [0, 1] we set x = 1− x. The function

F(x) = S2(x, x) (3.18)

will play an important role in the proof. It follows from (3.10) that F(x) = F(x).
By taking Pl = Pr = (1, 0), we see that

2F(0) = S(Pl)+S(Pr) = S(Pl ⊗ Pr) = S(1, 0, 0, 0) = S(1, 0) = F(0),

and so F(0) = 0.
We split the proof into eight steps.
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Step 1 For all q, r ∈ [0, 1] and (p, p3, · · · , pn) ∈ Pn−1, n ≥ 3, one has

S2(q, q)−S2(p q + pr, pq + pr) ≤ Sn(pq, pq, p3, · · · , pn)
−Sn(pr, pr, p3, · · · , pn)

≤ S2(p r + pq, pr + rq)

−S2(r, r). (3.19)

By interchanging q and r , it suffices to prove the first inequality in (3.19). We
have

S2(q, q)+Sn(pr, pr, p3, · · · , pn)
= S2n(qpr, qpr, qpr, qpr, qp3, qp3, · · · , qpn, qpn)
= S2n(qpr, qpr, qpr, qpr, qp3, qp3, · · · , qpn, qpn)
≤ S2(qpr + qpr + q(p3 + · · · + pn), qpr + qpr + q(p3 + · · · + pn))

+Sn(qpr + qpr, qpr + qpr, qp3 + qp3, · · · , qpn + qpn)

= S2(p q + pr, pq + pr)+ Sn(pr, pr, p3, · · · , pn).

The first equality follows from (3.10) and the first inequality from (3.17). The final
equality is elementary (we used that p + p3 + · · ·pn = 1).

Step 2 The function F , defined by (3.18), is increasing on [0, 1/2], decreasing on
[1/2, 1], and is continuous and concave on ]0, 1[. Moreover, for q ∈]0, 1[ the left
and right derivatives

D+F(q) = lim
h↓0

F(q + h)− F(q)

h
, D−F(q) = lim

h↑0

F(q + h)− F(q)

h

exist, are finite, and D+F(q) ≥ D−F(q).
We first establish the monotonicity statement. Note that the inequality of Step 1

S2(q, q)−S2(p q+pr, pq+pr) ≤ S2(p r+pq, pr+rq)−S2(r, r) (3.20)

with r = q gives

2S2(q, q) ≤ S2((1− p)(1 − q)+ pq, (1− p)q + p(1− q))

+S2((1− p)q + p(1− q), (1− p)(1 − q)+ pq),

or equivalently, that

F(q) ≤ F((1− p)q + p(1 − q)). (3.21)



172 V. Jakšić

Fix q ∈ [0, 1/2] and note that [0, 1] , p �→ (1 − p)q + p(1 − q) is the
parametrization of the interval [q, 1 − q]. Since F(q) = F(1 − q), we derive that
F(q) ≤ F(x) for x ∈ [q, 1/2], and that F(x) ≥ F(1−q) for x ∈ [1/2, q]. Thus, F
is increasing on [0, 1/2] and decreasing on [1/2, 1]. In particular, for all x ∈ [0, 1],

F(1/2) ≥ F(x) ≥ 0, (3.22)

where we used that F(0) = F(1) = 0.
We now turn to the continuity and concavity, starting with continuity first. The

inequality (3.20) with p = 1/2 gives that for any q, r ∈ [0, 1],
1

2
F(q)+ 1

2
F(r) ≤ F

(
1

2
q + 1

2
r

)

. (3.23)

Fix now q ∈]0, 1[, set λn = 2−n and, starting with large enough n so that
q ± λn ∈ [0, 1], define

Δ+n (q) =
F(q + λn)− F(q)

λn
, Δ−n (q) =

F(q − λn)− F(−q)
−λn .

It follows from (3.23) that the sequence Δ+n (q) is increasing, that the sequence
Δ−n (q) is decreasing, and that Δ+n (q) ≤ Δ−n (q) (write down the details!). Hence,
the limits

lim
n→∞Δ+n (q), lim

n→∞Δ−n (q)

exist, are finite, and

lim
n→∞F(q ± λn) = F(q). (3.24)

The established monotonicity properties of F yield that the limits limh↓0 F(q + h)

and limh↑0 F(q + h) exist. Combining this observation with (3.24), we derive that

lim
h→0

F(q + h) = F(q),

and so F is continuous on ]0, 1[. We now prove the concavity. Replacing r with
(q + r)/2 in (3.23), we get that

λF(q)+ (1− λ)F (r) ≤ F (λq + (1− λ)r) (3.25)

holds for λ = 3/4, while replacing q with (q + r)/2 shows that (3.25) holds for
λ = 1/4. Continuing in this way shows that (3.25) holds for all dyadic fractions
λ = k/2n, 1 ≤ k ≤ 2n, n = 1, 2, · · · . Since dyadic fractions are dense in [0, 1], the
continuity of F yields that (3.25) holds for λ ∈ [0, 1] and q, r ∈]0, 1[. Finally, to
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prove the statement about the derivatives, fix q ∈]0, 1[ and for h > 0 small enough
consider the functions

Δ+(h) = F(q + h)− F(q)

h
, Δ−(h) = F(q − h)− F(q)

−h .

The concavity of F gives that the function h �→ Δ+(h) is increasing, that
h �→ Δ−(h) is increasing, and that Δ+(h) ≤ Δ−(h). This establishes the last
claim of Step 2 concerning left and right derivatives of F on ]0, 1[.
Step 3 There exist functions Rn : Pn → R, n ≥ 2, such that

Sn(pq, pq, p3, · · · , pn) = pF(q)+Rn−1(p, p3, · · · , pn) (3.26)

for all q ∈]0, 1[, (p, p3, · · · , pn) ∈ Pn−1 and n ≥ 2.
To prove this, note that Step 1 and the relation F(x) = F(x) give

F(pq +pq)−F(pq +pr)

q − r
≤ Sn(pq, pq, p3, · · · , pn)−Sn(pr, pr, p3, · · · , pn)

q − r

≤ F(pq + pr)− F(pr + pr)

q − r
(3.27)

for 0 < r < q < 1 and (p, p3, · · · , pn) ∈ Pn. Fix (p, p3, · · · , pn) ∈ Pn and set

L(q) = Sn(pq, pq, p3, · · · , pn).

Taking q ↓ r in (3.27) we get

pD−F(r) = D−L(r),

while taking r ↑ q gives

pD+F(q) = D+L(q).

Since D±F(q) is finite by Step 2, we derive that the function L(q) − pF(q) is
differentiable on ]0, 1[ with vanishing derivative. Hence, for q ∈]0, 1[,

L(q) = pF(q)+Rn−1(p, p3, · · · , pn),

where the constant Rn−1 depends on the values (p, p3, · · · , pn) we have fixed in
the above argument.

Step 4 There exist constants c ≥ 0 and C such that for all q ∈]0, 1[,

F(q) = cS(1− q, q)+ C. (3.28)
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We start the proof by taking (p1, p2, p3) ∈ P3,f. Setting

p = p1 + p2, q = p2

p1 + p2
,

we write

S3(p1, p2, p3) = S3(pq, pq, p3).

It then follows from Step 3 that

S3(p1, p2, p3) = (p1 + p2)S2

(
p1

p1 + p2
,

p2

p1 + p2

)

+R2(p1 + p2, p3).

(3.29)

By (3.10) we also have

S3(p1, p2, p3) = S3(p1, p3, p2) = (p1 + p3)S2

(
p1

p1 + p3
,

p3

p1 + p3

)

+R2(p1 + p3, p3). (3.30)

Setting G(x) = R2(x, x), x = p3, y = p2, we rewrite (3.29) = (3.30) as

(1− x)F

(
y

1− x

)

+G(x) = (1− y)F

(
x

1− y

)

+G(y), (3.31)

where x, y ∈]0, 1[ and x + y < 1. The rest of the proof concerns analysis of the
functional equation (3.31).

Since F is continuous on ]0, 1[, fixing one variable one easily deduces
from (3.31) that G is also continuous on ]0, 1[. Let 0 < a < b < 1 and fix
y ∈]0, 1− b[. It follows that (verify this!)

x

1− y
∈
]

a,
b

1− y

]

⊂ ]0, 1[, y

1− x
∈
]

y,
y

1− b

]

⊂ ]0, 1[.

Integrating (3.31) with respect to x over [a, b] we derive

(b − a)G(y) =
∫ b

a

G(y)dx

=
∫ b

a

G(x)dx +
∫ b

a

(1− x)F

(
y

1− x

)

dx

−(1− y)

∫ b

a

F

(
x

1− y

)

dx
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=
∫ b

a

G(x)dx + y2
∫ y/(1−b)

y/(1−a)
s−3F(s)ds

−(1− y)2
∫ b/(1−y)

a/(1−y)
F (t)dt, (3.32)

where we have used the change of variable

s = y

1− x
, t = x

1− y
. (3.33)

It follows that G is differentiable on ]0, b[. Since 0 < b < 1 is arbitrary, G is
differentiable on ]0, 1[.

The change of variable (3.33) maps bijectively {(x, y) | x, y > 0} to
{(s, t) | s, t ∈]0, 1[} (verify this!), and in this new variables the functional
equation (3.31) reads

F(t) = 1− t

1− s
F (s)+ 1− st

1− s

[

G

(
t − st

1− st

)

−G

(
s − st

1− st

)]

. (3.34)

Fixing s, we see that the differentiability of G implies the differentiability of F
on ]0, 1[. Returning to (3.32), we get that G is twice differentiable on ]0, 1[, and
then (3.34) gives that F is also twice differentiable on ]0, 1[. Continuing in this way
we derive that both F and G are infinitely differentiable on ]0, 1[. Differentiating
(3.31) first with respect to x and then with respect to y gives

y

(1− x)2
F ′′
(

y

1− x

)

= x

(1− y)2
F ′′
(

x

1− y

)

. (3.35)

The substitution (3.33) gives that for s, t ∈]0, 1[,

s(1− s)F ′′(s) = t (1− t)F ′′(t).

It follows that for some c ∈ R,

t (1− t)F ′′(t) = −c.

Integration gives

F(t) = cS(1− t, t)+ Bt + C.

Since F(t) = F(t), we have B = 0, and since F is increasing on [0, 1/2], we have
c ≥ 0. This completes the proof of Step 4. Note that as a by-product of the proof we
have derived that for some constant D,

G(x) = F(x)+D, x ∈]0, 1[. (3.36)
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To prove (3.36), note that (3.28) gives that F satisfies the functional equation

(1− x)F

(
y

1− x

)

+ F(x) = (1− y)F

(
x

1− y

)

+ F(y).

Combining this equation with (3.31) we derive that for x, y > 0, 0 < x + y < 1,

G(x)− F(x) = G(y)− F(y).

Hence, G(x)−F(x) = Dy for x ∈]0, 1− y[. If y1 < y2, we must have Dy1 = Dy2 ,
and so D = Dy does not depend on y, which gives (3.36).

Step 5 For any n ≥ 2 there exists constant C(n) such that for (p1, · · · , pn) ∈ Pn,f,

Sn(p1, · · · , pn) = cS(p1, · · · , pn)+ C(n), (3.37)

where c ≥ 0 is the constant from Step 4.
In Step 4 we established (3.37) for n = 2 (we set C(2) = C), and so we assume

that n ≥ 3. Set p = p1 +p2, q = p2/(p1 +p2). It then follows from Steps 3 and 4
that

Sn(p1, · · · , pn) = (p1 + p2)S2

(
p1

p1 + p2
,

p2

p1 + p2

)

+Rn−1(p1 + p2, p3, · · · , pn)

= (p1 + p2)cS

(
p1

p1 + p2
,

p2

p1 + p2

)

+R̂n−1(p1 + p2, p3, · · · , pn), (3.38)

where R̂n−1(p, p3, · · · , pn) = pC2+Rn−1(p, p3, · · · , pn). Note that since Rn−1
is invariant under the permutations of the variables (p3, · · · , pn) (recall (3.26)), so
is R̂n−1. The invariance of Sn under the permutation of the variables gives

Sn(p1, · · · , pn) = (p1 + p3)cS

(
p1

p1 + p3
,

p3

p1 + p3

)

+R̂n−1(p1 + p3, p2, p4 · · · , pn),

and so

(p1 + p2)cS

(
p1

p1 + p2
,

p2

p1 + p2

)

− (p1 + p3)cS

(
p1

p1 + p3
,

p3

p1 + p3

)

= R̂n−1(p1 + p2, p3, · · · , pn)− R̂n−1(p1 + p3, p2, p4 · · · , pn).
(3.39)
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Until the end of the proof when we wish to indicate the number of variables in
the Boltzmann–Gibbs–Shannon entropy we will write Sn(p1, · · · , pn). One easily
verifies that

Sn(p1, · · · , pn) = (p1 + p2)S2

(
p1

p1 + p2
,

p2

p1 + p2

)

+Sn−1(p1 + p2, p3, · · · , pn)

= (p1 + p3)S2

(
p1

p1 + p3
,

p3

p1 + p3

)

+Sn−1(p1 + p3, p2, p4, · · · , pn),

and so

(p1 + p2)S2

(
p1

p1 + p2
,

p2

p1 + p2

)

− (p1 + p3)S2

(
p1

p1 + p3
,

p3

p1 + p3

)

= Sn−1(p1 + p2, p3, · · · , pn)− Sn−1(p1 + p3, p2, p4 · · · , pn).
(3.40)

Since in the formulas (3.39) and (3.40) S = S2, we derive that the function

Tn−1(p, q, p4, · · · , pn) = R̂n−1(p, q, p4, · · · , pn)− cSn−1(p, q, p4, · · · , pn)

satisfies

Tn−1(p1 + p2, p3, p4, · · · , pn) = Tn−1(p1 + p3, p2, p4, · · · , pn) (3.41)

for all (p1, · · ·pn)∈Pn,f. Moreover, by construction, Tn−1(p, q, p4, · · · , pn)
is invariant under the permutation of the variables (q, p4, · · · , pn). Set
s = p1 + p2 + p3. Then (3.41) reads as

Tn−1(s − p3, p3, p4, · · · , pn) = Tn−1(s − p2, p2, p − p4, · · · , pn).

Hence, the map

]0, s[, p �→ Tn−1(s − p,p, p4, · · · , pn)

is constant. By the permutation invariance, the maps

]0, s[, p �→ Tn−1(s − p,p3, · · · , pm−1, p, pm+1, · · · )

are also constant. Setting s = p1 + p2 + p3 + p4, we deduce that the map

(p3, p4) �→ Tn−1(s − p3 − p4, p3, p4, · · · , pn)
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with domain p3 > 0, p4 > 0, p3 + p4 < s, is constant. Continuing inductively, we
conclude that the map

(p3, · · · , pn) �→ Tn−1(1− (p3 + · · · + pn), p3, p4, · · · , pn)

with domain pk > 0,
∑n

k=3 pk < 1 is constant. Hence, the map

Pn,f , (p1, · · · , pn) �→ Tn−1(p1 + p2, p3, · · · , pn)

is constant, and we denote the value it assumes by C(n). Returning now to (3.38),
we conclude the proof of (3.37):

Sn(p1, · · · , pn) = (p1 + p2)cS2

(
p1

p1 + p2
,

p2

p1 + p2

)

+R̂n−1(p1 + p2, p3, · · · , pn)

= (p1 + p2)cS2

(
p1

p1 + p2
,

p2

p1 + p2

)

+cSn−1(p1 + p2, p3, · · · , pn)+ C(n)

= cSn(p1, · · · , pn)+ C(n). (3.42)

Step 6 C(n+m) = C(n)C(m) for n,m ≥ 2, and

lim inf
n→∞ (C(n+ 1)− C(n)) = 0. (3.43)

If Pl ∈ Pn and Pr ∈ Pm, then the identity Snm(Pl × Pr) = Sn(Pl) + S(Pr)

and (3.37) give that C(n+m) = C(n)+C(m). To prove (3.43), suppose that n ≥ 3
and take in (3.19) q = 1/2, r = 0, p = p3 = · · · = pn = 1/(n − 1). Then,
combining (3.19) with Step 5, we derive

F

(
1

2

)

− F

(
n− 2

2(n− 1)

)

≤ Sn

(
1

2(n− 1)
,

1

2(n− 1)
,

1

n− 1
, · · · , 1

n− 1

)

−Sn

(
1

n− 1
, 0,

1

n− 1
, · · · 1

n− 1

)

= cSn

(
1

2(n− 1)
,

1

2(n− 1)
,

1

n− 1
, · · · , 1

n− 1

)

−cSn−1

(
1

n− 1
,

1

n− 1
, · · · 1

n− 1

)

+C(n)− C(n− 1)

= log 2

n− 1
+ C(n)− C(n− 1).
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The first inequality in (3.22) gives

0 ≤ log 2

n− 1
+ C(n)− C(n− 1),

and the statement follows.

Step 7 There is a constant C ≥ 0 such that for all n ≥ 2, C(n) = C logn.
Fix ε > 0 and n> 1. Let k ∈N be such that for all integers p≥ nk ,

C(p + 1)− C(p) ≥ −ε. It follows that for p ≥ pk and j ∈ N,

C(p + j)− C(p) =
j∑

i=1

(C(p + i)− C(p + i − 1)) ≥ −jε.

Fix now p ≥ nk and let m ∈ N be such that nm ≤ p < nm+1. Obviously, m ≥ k.
Write

p = amn
m + am−1n

m−1 + · · · + a1p + a0,

where ak’s are integers such that 1 ≤ am < n and 0 ≤ ak < n for k < m. It follows
that

C(p) > C(amn
m + · · · + a1n)− nε = C(n)+C(amn

m−1 + · · · + a2n+ a1)− nε.

Continuing inductively, we derive that

C(p) > (m−k+1)C(n)+C(amn
k−1+am−1n

k−2+· · ·+am−k+1)−(m−k+1)ε.

If M = max2≤j≤nk+1 |C(j)|, then the last inequality gives

C(p) > (m− k + 1)C(n)−M − (m− k + 1)ε.

By the choice of m, logp ≤ (m+ 1) logn, and so

lim inf
p→∞

C(p)

logp
≥ C(n)

logn
.

Since

lim inf
n→∞

C(p)

logp
≤ lim inf

j→∞
C(nj )

lognj
= C(n)

n
,

we derive that for all n ≥ 2,

C(n) = C logn,
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where

C = lim inf
p→∞

C(p)

p
.

It remains to show that C ≥ 0. Since

F(x) = cS2(1− x, x)+ C log 2,

we have limx↓0 F(x) = C log 2, and (3.22) yields that C ≥ 0.

Step 8 We now conclude the proof. Let P = (p1, · · · , pn) ∈ Pn. Write

P = (pj1, · · · , pjk , 0, · · · , 0),

where pjm > 0 for m = 1, · · · , k. Then

Sn(P ) = Sk(pj1, · · · , pjk ) = cSk(pj1, · · · , pjk )+C log k = cSn(P )+CSH (P ).

Since Sn is strictly sub-additive, we must have c + C > 0. The final statement is a
consequence of the fact that SH is not continuous on Pn for n ≥ 2.

��

3.5 Rényi Entropy

Let Ω be a finite set and P ∈ P(Ω). For α ∈]0, 1[ we set

Sα(P ) = 1

1− α
log

(
∑

ω∈Ω
P(ω)α

)

.

Sα(P ) is called the Rényi entropy of P .

Proposition 3.8

(1) limα↑1 Sα(P ) = S(P ).
(2) limα↓0 Sα(P ) = SH (P ).
(3) Sα(P ) ≥ 0 and Sα(P ) = 0 iff P is pure.
(4) Sα(P ) ≤ log |Ω | with equality iff P = Pch.
(5) The map ]0, 1[, α �→ Sα(P ) is decreasing and is strictly decreasing unless

P = Pch.
(6) The map P(Ω) , P �→ Sα(P ) is continuous and concave.
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(7) If P = Pl ⊗ Pr is a product measure on Ω = Ωl × Ωr , then
Sα(P ) = Sα(Pl)+ Sα(Pr).

(8) The map α �→ Sα(P ) extends to a real analytic function on R by the formulas
S1(P ) = S(P ) and

Sα(P ) = 1

1− α
log

⎛

⎝
∑

ω∈suppP

P (ω)α

⎞

⎠ , α �= 1.

Exercise 3.3 Prove Proposition 3.8.

Exercise 3.4 Describe properties of Sα(P ) for α �∈ ]0, 1[.
Exercise 3.5 Let Ω = {−1, 1} × {−1, 1}, 0 < p, q < 1, p + q = 1, p �= q , and

Pε(−1,−1) = pq + ε, Pε(−1, 1) = p(1 − q)− ε,

Pε(1,−1) = (1− p)q − ε, Pε(1, 1) = (1− p)(1− q)+ ε.

Show that for α �= 1 and small non-zero ε,

Sα(Pε) > Sα(Pε,l)+ Sα(Pε,r).

Hence, Rényi entropy is not sub-additive (compare with Theorem 3.7).

3.6 Why is the Rényi Entropy Natural?

In introducing Sα(P ) Rényi was motivated by a concept of generalized means. Let
wk > 0,

∑n
k=1 wk = 1 be weights and G :]0,∞[→]0,∞[ a continuous strictly

increasing function. We shall call such G a mean function. The G -mean of strictly
positive real numbers x1, · · · , xn is

SG(x1, · · · , xn) = G−1

(
n∑

k=1

wkG(xk)

)

.

Set Pf = ∪n≥1Pn,f.
One then has:

Theorem 3.9 Let S : Pf → [0,∞[ be a function with the following properties.
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(a) If P = Pl ⊗ Pr , then S(P ) = S(Pl)+S(Pr).
(b) There exists a mean functionG such that for all n≥ 1 and P = (p1, · · · , pn) ∈

Pn,f,

S(p1, · · · , pn) = G−1 (EP (G(SP ))) = G−1

(
n∑

k=1

pkG(− logpk)

)

.

(c) S(p, 1− p)→ 0 as p→ 0.

Then there exist α > 0 and a constant c ≥ 0 such that for all P ∈ Pf,

S(P ) = cSα(P ).

Remark 3.10 The assumption (c) excludes the possibility α ≤ 0.

Remark 3.11 If in addition one requires that the map Pn,f , P → S(P ) is concave
for all n ≥ 1, then S(P ) = cSα(P ) for some α ∈]0, 1].

Although historically important, we find that Theorem 3.9 (and any other
axiomatic characterization of the Rényi entropy) is less satisfactory than the
powerful characterizations of the Boltzmann–Gibbs–Shannon entropy given in
Sect. 3.4. Taking Boltzmann–Gibbs–Shannon entropy for granted, an alternative
understanding of the Rényi entropy arises through Cramér’s theorem for the entropy
function SP . For the purpose of this interpretation, without loss of generality we may
assume that P ∈ P(Ω) is faithful. Set

Ŝα(P ) = log

(
∑

ω∈Ω
[P(ω)]1−α

)

, α ∈ R. (3.44)

Obviously, for α ∈ R,

Ŝα(P ) = αS1−α(P ). (3.45)

The naturalness of the choice (3.44) stems from the fact that the function
α �→ Ŝα(P ) is the cumulant generating function of SP (ω) = − logP(ω) with
respect to P ,

Ŝα(P ) = logEP (eαSP ). (3.46)

Passing to the products (ΩN,PN ), the LLN gives that for any ε > 0,

lim
N→∞PN

{
ω = (ω1, · · · , ωN ) ∈ ΩN

∣
∣
∣
∣
∣
SP (ω1)+ · · · SP (ωN)

N

−S(P )
∣
∣
∣ ≥ ε

}
= 0. (3.47)
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It follows from Cramér’s theorem that the rate function

I (θ) = sup
α∈R

(αθ − Ŝα(P )), θ ∈ R, (3.48)

controls the fluctuations that accompany the limit (3.47):

lim
N→∞

1

N
logPN

{

ω = (ω1, · · · , ωN ) ∈ ΩN
∣
∣ SP (ω1)+ · · · SP (ωN)

N
∈ [a, b]

}

= − inf
θ∈[a,b] I (θ). (3.49)

We shall adopt a point of view that the relations (3.45), (3.48), and (3.49) constitute
the foundational basis for introduction of the Rényi entropy. In accordance with this
interpretation, the traditional definition of the Rényi entropy is somewhat redundant,
and one may as well work with Ŝα(P ) from the beginning and call it the Rényi
entropy of P (or α-entropy of P when there is a danger of confusion).

The basic properties of the map α �→ Ŝα(P ) follow from (3.46) and results
described in Sect. 2.4. Note that S0(P ) = 0 and S1(P ) = log |Ω |. The map
Pf(Ω) , P �→ Ŝα(P ) is convex for α �∈ [0, 1] and concave for α ∈]0, 1[.

3.7 Notes and References

The celebrated expression (3.5) for entropy of a probability measure goes back
to the 1870s and works of Boltzmann and Gibbs on the foundations of statistical
mechanics. This will be discussed in more detail in Part II of the lecture notes.
Shannon has rediscovered this expression in his work on foundations of mathemati-
cal information theory [44]. The results of Sects. 3.2 and 3.3 go back to this seminal
work. Regarding Exercise 3.2, Hartley entropy was introduced in [23]. Hartley’s
work has partly motivated Shannon’s [44].

Shannon was also first to give an axiomatization of entropy. The axioms in
[44] are the continuity of S on Pn for all n, the split-additivity (3.12), and the
monotonicity S(P n+1) < S(P n), where P k ∈ Pk is the chaotic probability
measures. Shannon then proved that the only functions S satisfying these properties
are cS, c > 0. Theorem 3.4 is in spirit of Shannon’s axiomatization, with the
monotonicity axiom S(P n+1) < S(P n) dropped and the continuity requirement
relaxed; see Chapter 2 in [1] for additional information and Theorem 2.2.3 in [50]
whose proof we roughly followed. We leave it as an exercise for the reader to
simplify the proof of Theorem 3.4 under additional Shannon’s axioms.
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Shannon comments in [44] on the importance of his axiomatization as

This theorem, and the assumptions required for its proof, are in no way necessary
for the present theory. It is given chiefly to lend a certain plausibility to some of our
later definitions. The real justification of these definitions, however, will reside in their
implications.

The others beg to differ on its importance, and axiomatizations of entropies
became an independent research direction, starting with early works of Khintchine
[32] and Faddeev [17]. Much of these efforts are summarized in the monograph [1],
see also [10].

The magnificent Theorem 3.7 is due to Aczél, Forte, and Ng [2]. I was not
able to simplify their arguments and the proof of Theorem 3.7 follows closely the
original paper. Step 7 is due to [31]. The proof of Theorem 3.7 can be also found in
[1, Section 4.4]. An interesting exercise that may elucidate a line of thought that has
led to the proof of Theorem 3.7 is to simplify various steps of the proof by making
additional regularity assumptions.

Rényi entropy has been introduced in [41]. Theorem 3.9 was proven in [12]; see
Chapter 5 in [1] for additional information.

4 Relative Entropy

4.1 Definition and Basic Properties

Let Ω be a finite set and P,Q ∈ P(Ω). If P ( Q, the relative entropy function of
the pair (P,Q) is defined for ω ∈ suppP by

cSP |Q(ω) = cSQ(ω)− cSP (ω) = c logP(ω)− c logQ(ω) = c logΔP |Q(ω),

where c > 0 is a constant that does not depend on Ω,P,Q. The relative entropy of
P with respect to Q is

S(P |Q) = c

∫

suppP
SP |QdP = c

∑

ω∈suppP

P (ω) log
P(ω)

Q(ω)
. (4.1)

If P is not absolutely continuous with respect to Q (i.e., Q(ω) = 0 and P(ω) > 0
for some ω), we set

S(P |Q) = ∞.

The value of the constant c will play no role in the sequel, and we set c = 1. As in
the case of entropy, the constant c will reappear in the axiomatic characterizations
of relative entropy (see Theorems 5.1 and 5.3).



Lectures on Entropy. I: Information-Theoretic Notions 185

Note that

S(P |Pch) = −S(P ) + log |Ω |.

Proposition 4.1 S(P |Q) ≥ 0 and S(P |Q) = 0 iff P = Q.

Proof We need to consider only the case P ( Q. By Jensen’s inequality,

∑

ω∈suppP

P (ω) log
Q(ω)

P(ω)
≤ log

⎛

⎝
∑

ω∈suppP

Q(ω)

⎞

⎠ ,

and so

∑

ω∈suppP

P (ω) log
Q(ω)

P(ω)
≤ 0

with equality iff P = Q. ��
The next result refines the previous proposition. Recall that the variational

distance dV (P,Q) is defined by (3.2).

Theorem 4.2

S(P |Q) ≥ 1

2
dV (P,Q)2. (4.2)

The equality holds iff P = Q.

Proof We start with the elementary inequality

(1+ x) log(1+ x)− x ≥ 1

2

x2

1+ x
3
, x ≥ −1. (4.3)

This inequality obviously holds for x = −1, so we may assume that
x > −1. Denote the l.h.s by F(x) and the r.h.s. by G(x). One verifies that
F(0) = F ′(0) = G(0) = G′(0) = 0, and that

F ′′(x) = 1

1+ x
, G′′(x) =

(
1+ x

3

)−3
.

Obviously,F ′′(x) > G′′(x) for x > −1, x �= 0. Integrating this inequality we derive
that F ′(x) > G′(x) for x > 0 and F ′(x) < G′(x) for x ∈]− 1, 0[. Integrating these
inequalities we get F(x) ≥ G(x) and that equality holds iff x = 0.
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We now turn to the proof of the theorem. We need only to consider the case
P ( Q. Set

X(ω) = P(ω)

Q(ω)
− 1,

with the convention that 0/0 = 0. Note that
∫
Ω XdQ = 0 and that

S(P |Q) =
∫

Ω

((X + 1) log(X + 1)−X) dQ.

The inequality (4.3) implies

S(P |Q) ≥ 1

2

∫

Ω

X2

1+ X
3

dQ, (4.4)

with the equality iff P = Q. Note that

∫

Ω

(

1+ X

3

)

dQ = 1,

and that Cauchy-Schwarz inequality gives

∫

Ω

X2

1+ X
3

dQ =
(∫

Ω

(

1+ X

3

)

dQ

)(∫

Ω

X2

1+ X
3

dQ

)

≥
(∫

Ω

|X|dQ
)2

= dV (P,Q)2. (4.5)

Combining (4.4) and (4.5) we derive the statement. ��
Exercise 4.1 Prove that the estimate (4.2) is the best possible in the sense that

inf
P �=Q

S(P |Q)

dV (P,Q)2
= 1

2
.

Set

A(Ω) = {(P,Q) |P,Q ∈ P(Ω), P ( Q}. (4.6)

One easily verifies that A(Ω) is a convex subset of P(Ω)× P(Ω). Obviously,

A(Ω) = {(P,Q) | S(P |Q) <∞}.

Note also that P(Ω)× Pf(Ω) is a dense subset of A(Ω).
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Proposition 4.3 The map

A(Ω) , (P,Q) �→ S(P |Q)

is continuous, and the map

P(Ω)× P(Ω) , (P,Q) �→ S(P |Q) (4.7)

is lower semicontinuous.

Exercise 4.2 Prove the above proposition. Show that if |Ω | > 1 and Q is a bound-
ary point of P(Ω), then there is a sequence Pn → Q such that limn→∞ S(Pn|Q) =
∞. Hence, the map (4.7) is not continuous except in the trivial case |Ω | = 1.

Proposition 4.4 The relative entropy is jointly convex: for λ ∈]0, 1[ and
P1, P2,Q1,Q2 ∈ P(Ω),

S(λP1+ (1−λ)P2|λQ1+ (1−λ)Q2) ≤ λS(P1|Q1)+ (1−λ)S(P2|Q2). (4.8)

Moreover, if the r.h.s. in (4.8) is finite, the equality holds iff for
ω ∈ suppQ1 ∩ suppQ2 we have P1(ω)/Q1(ω) = P2(ω)/Q2(ω).

Remark 4.5 In particular, if Q1 ⊥ Q2 and the r.h.s. in (4.8) is finite, then P1 ⊥ P2
and the equality holds in (4.8). On the other hand, if Q1 = Q2 = Q and Q is
faithful,

S(λP1 + (1− λ)P2|Q) ≤ λS(P1|Q)+ (1− λ)S(P2|Q).

with the equality iff P1 = P2. An analogous statement holds if P1 = P2 = P and
P is faithful.

Proof We recall the following basic fact: if g :]0,∞[→ R is concave, then the
function

G(x, y) = xg
(y

x

)
(4.9)

is jointly concave on ]0,∞[×]0,∞[. Indeed, for λ ∈]0, 1[,

G(λx1 + (1− λ)x2, λy1 + (1− λ)y2)

= (λx1 + (1− λ)x2)g

(
λx1

λx1 + (1− λ)x2

y1

x1
+ (1− λ)x2

λx1 + (1− λ)x2

y2

x2

)

≥ λG(x1, y1)+ (1− λ)G(x2, y2),

(4.10)

and if g is strictly concave, the inequality is strict unless y1
x1
= y2

x2
.
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We now turn to the proof. Without loss of generality we may assume thatP1(Q1
and P2 ( Q2. One easily shows that then also λP1+(1−λ)P2 ( λQ1+(1−λ)Q2.
For any ω ∈ Ω we have that

(λ1P1(ω)+ (1− λ)P2(ω)) log
λ1P1(ω)+ (1− λ)P2(ω)

λ1Q1(ω)+ (1− λ)Q2(ω)

≤ λP1(ω) log
P1(ω)

Q1(ω)
+ (1− λ)P2(ω)× log

P2(ω)

Q2(ω)
.

(4.11)

To establish this relation, note that if P1(ω) = P2(ω) = 0, then (4.11) holds
with the equality. If P1(ω) = 0 and P2(ω) > 0, the inequality (4.11) is strict
unless Q1(ω) = 0, and similarly in the case P1(ω) > 0, P2(ω) = 0. If
P1(ω) > 0 and P2(ω) > 0, then taking g(t) = log t in (4.9) and using the
joint concavity of G gives that (4.11) holds and that the inequality is strict unless
P1(ω)/Q1(ω) = P2(ω)/Q2(ω). Summing (4.11) over ω we derive the statement.
The discussion of the cases where the equality holds in (4.8) is simple and is left to
the reader. ��

The relative entropy is super-additive in the following sense:

Proposition 4.6 For any P and Q = Ql ⊗Qr in P(Ωl ×Ωr),

S(Pl |Ql)+ S(Pr |Qr) ≤ S(P |Q). (4.12)

Moreover, if the r.h.s. in (4.12) is finite, the equality holds iff P = Pl ⊗ Pr .

Proof We may assume that P ( Q, in which case one easily verifies that Pl ( Ql

and Pr ( Qr . One computes

S(P |Q) − S(Pl |Ql)− S(Pr |Qr) = S(Pl)+ S(Pr )− S(P ),

and the result follows from Proposition 3.2. ��
In general, for P,Q ∈ P(Ωl × Ωr) it is not true that

S(P |Q) ≥ S(Pl |Ql)+ S(Pr |Qr) even if P = Pl ⊗ Pr .

Exercise 4.3 Find an example of faithful P = Pl ⊗ Pr ,Q ∈ P(Ωl × Ωr) where
|Ωl| = |Ωr | = 2 such that

S(P |Q) < S(Pl |Ql)+ S(Pr |Qr).

Let Ω = (ω1, · · · , ωL), Ω̂ = {ω̂1, · · · , ω̂L̂} be two finite sets. A matrix of
real numbers [Φ(ω, ω̂)](ω,ω̂)∈Ω×Ω̂ is called stochastic if Φ(ω, ω̂) ≥ 0 for all
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pairs (ω, ω̂) and

∑

ω̂∈Ω̂
Φ(ω, ω̂) = 1

for all ω ∈ Ω . A stochastic matrix induces a map Φ : P(Ω)→ P(Ω̂) by

Φ(P)(ω̂) =
∑

ω∈Ω
P(ω)Φ(ω, ω̂).

We shall refer to Φ as the stochastic map induced by the stochastic matrix
[Φ(ω, ω̂)]. One can interpret the elements of Ω and Ω̂ as states of two stochastic
systems and P(ω) as probability that the state ω is realized. Φ(ω, ω̂) is interpreted
as the transition probability, i.e. the probability that in a unit of time the system
will make a transition from the state ω to the state ω̂. With this interpretation, the
probability that the state ω̂ is realized after the transition has taken place isΦ(P)(ω̂).

Note that if [Φ(ω, ω̂)](ω,ω̂)∈Ω×Ω̂ and [Φ̂(ω̂, ˆ̂ω)]
(ω̂, ˆ̂ω)∈Ω̂×̂̂Ω are stochastic matri-

ces, then their product is also stochastic matrix and that the induced stochastic map
is Φ̂ ◦Φ. Another elementary property of stochastic maps is:

Proposition 4.7 dV (Φ(P ),Φ(Q)) ≤ dV (P,Q).

Exercise 4.4 Prove Proposition 4.7. When the equality holds?

The following result is deeper.

Proposition 4.8

S(Φ(P)|Φ(Q)) ≤ S(P |Q). (4.13)

Remark 4.9 In information theory, the inequality (4.13) is sometimes called the
data processing inequality. We shall refer to it as the stochastic monotonicity.
If the relative entropy is interpreted as a measure of distinguishability of two
probability measures, then the inequality asserts that probability measures are less
distinguishable after an application of a stochastic map.

Proof We start with the so-called log-sum inequality: If aj , bj , j = 1, · · · ,M, are
non-negative numbers, then

M∑

j=1

aj log
aj

bj
≥

M∑

j=1

aj log

∑M
k=1 ak

∑M
k=1 bk

, (4.14)

with the usual convention that 0 log 0/x = 0. If bj = 0 and aj > 0 for some j ,
then l.h.s is ∞ and there is nothing to prove. If aj = 0 for all j again there is
nothing to prove. Hence, without loss of generality we may assume that

∑
j aj > 0,∑

bj > 0, and bj = 0 ⇒ aj = 0. Set p = (p1, · · · , pM), pk = ak/
∑

j aj ,
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q = (q1, · · · , qM), qk = bk/
∑

j bj . Then the inequality (4.14) is equivalent to

S(p|q) ≥ 0.

This observation and Proposition 4.1 prove (4.14).
We now turn to the proof. Clearly, we need only to consider the case P ( Q.

Then

S(Φ(P)|Φ(Q)) =
∑

ω̂∈Ω̂
Φ(P )(ω̂) log

Φ(P)(ω̂)

Φ(Q)(ω̂)

=
∑

ω̂∈Ω̂

∑

ω∈Ω
P(ω)Φ(ω, ω̂) log

∑
ω′∈Ω P(ω′)Φ(ω′, ω̂)

∑
ω′∈Ω Q(ω′)Φ(ω′, ω̂)

≤
∑

ω̂∈Ω̂

∑

ω∈Ω
P(ω)Φ(ω, ω̂) log

P(ω)

Q(ω)

= S(P |Q),

where the third step follows from the log-sum inequality. ��
Exercise 4.5 A stochastic matrix [Φ(ω, ω̂)] is called doubly stochastic if

∑

ω∈Ω
Φ(ω, ω̂) = |Ω |

|Ω̂|

for all ω̂ ∈ Ω̂ . Prove that S(P ) ≤ S(Φ(P)) for all P ∈ P(Ω) iff [Φ(ω, ω̂)] is
doubly stochastic.
Hint: Use that Φ(Pch) = P̂ch iff [Φ(ω, ω̂)] is doubly stochastic.

Exercise 4.6 Suppose that Ω = Ω̂ . Let γ = min(ω1,ω2) Φ(ω1, ω2) and suppose
that γ > 0.

1. Show that S(Φ(P)|Φ(Q)) = S(P |Q) iff P = Q.
2. Show that

dV (Φ(P ),Φ(Q)) ≤ (1− γ )dV (P,Q).

3. Using Part 2 show that there exists unique probability measure Q such that
Φ(Q) = Q. Show that Q is faithful and that for any P ∈ P(Ω),

dV (Φ
n(P ),Q) ≤ (1− γ )ndV (P,Q),

where Φ2 = Φ ◦Φ, etc.

Hint: Follow the proof of the Banach fixed point theorem.
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Exercise 4.7 The stochastic monotonicity yields the following elegant proof of
Theorem 4.2.

1. Let P,Q ∈ P(Ω) be given, where |Ω | ≥ 2. Let T = {ω : P(ω) ≥ Q(ω)} and

p = (p1, p2) = (P (T ), P (T c)), q = (q1, q2) = (Q(T ),Q(T c)),

be probability measures on Ω̂ = {1, 2}. Find a stochastic map
Φ : P(Ω)→ P(Ω̂) such that Φ(P) = p, Φ(Q) = q .

2. Since S(P |Q) ≥ S(p|q) and dV (P,Q) = dV (p, q), observe that to prove
Theorem 4.2 it suffices to show that for all p, q ∈ P(Ω̂),

S(p|q) ≥ 1

2
dV (p, q)

2. (4.15)

3. Show that (4.15) is equivalent to the inequality

x log
x

y
+ (1− x) log

1− x

1− y
≥ 2(x − y)2, (4.16)

where 0 ≤ y ≤ x ≤ 1. Complete the proof by establishing (4.16).

Hint: Fix x > 0 and consider the function

F(y) = x log
x

y
+ (1− x) log

1− x

1− y
− 2(x − y)2

on ]0, x]. Since F(x) = 0, it suffices to show that F ′(y) ≤ 0 for y ∈]0, x[. Direct
computation gives F ′(y) ≤ 0 ⇔ y(1− y) ≤ 1

4 and the statement follows.

The log-sum inequality used in the proof Proposition 4.8 leads to the following
refinement of Proposition 4.4.

Proposition 4.10 Let P1, · · · , Pn,Q1, · · · ,Qn ∈ P(Ω) and p = (p1, · · · , pn),
q = (q1, · · · , qn) ∈ Pn. Then

S(p1P1 + · · · +pnPn|q1Q1 + · · · + qnQn)≤p1S(P1|Q1)+ · · · +pnS(Pn|Qn)+ S(p|q).
(4.17)

If the r.h.s. in (4.17) is finite, then the equality holds iff for all j, k such that
qj > 0, qk > 0,

pjPj (ω)

qjQj (ω)
= pkPk(ω)

qkQk(ω)

holds for all ω ∈ suppQk ∩ suppQj .

Exercise 4.8 Deduce Proposition 4.10 from the log-sum inequality.
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4.2 Variational Principles

The relative entropy is characterized by the following variational principle.

Proposition 4.11

S(P |Q) = sup
X:Ω→R

(∫

Ω

XdP − log
∫

suppP
eXdQ

)

. (4.18)

If S(P |Q) < ∞, then the supremum is achieved, and each maximizer is equal to
SP |Q + const on suppP and is arbitrary otherwise.

Proof Suppose that Q(ω0) = 0 and P(ω0) > 0 for some ω0 ∈ Ω . Set Xn(ω) = n

if ω = ω0 and zero otherwise. Then

∫

Ω

XndP = nP(ω0),

∫

suppP
eXndQ = Q(suppP).

Hence, if P is not absolutely continuous w.r.t. Q the relation (4.18) holds since both
sides are equal to ∞.

Suppose now that P ( Q. For given X : Ω → R set

QX(ω) = eX(ω)Q(ω)
∑

ω′∈suppP eX(ω′)Q(ω′)

if ω ∈ suppP and zero otherwise. QX ∈ P(Ω) and

S(P |QX) = S(P |Q) −
(∫

Ω

XdP − log
∫

suppP
eXdQ

)

.

Hence,

S(P |Q) ≥
∫

Ω

XdP − log
∫

suppP
eXdQ

with equality iff P = QX . Obviously, P = QX iff X = SP |Q + const on suppP
and is arbitrary otherwise. ��
Exercise 4.9 Show that

S(P |Q) = sup
X:Ω→R

(∫

Ω

XdP − log
∫

Ω

eXdQ

)

. (4.19)
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When is the supremum achieved? Use (4.19) to prove that the map
(P,Q) �→ S(P |Q) is jointly convex.

Proposition 4.12 The following dual variational principle holds: for X : Ω → R

and Q ∈ P(Ω),

log
∫

Ω

eXdQ = max
P∈P(Ω)

(∫

Ω

XdP − S(P |Q)

)

.

The maximizer is unique and is given by

PX,Q(ω) = eX(ω)Q(ω)
∑

ω′∈Ω eX(ω′)Q(ω′)
.

Proof For any P ( Q,

log
∫

Ω

eXdQ−
∫

Ω

XdP + S(P |Q) = S(P |PX,Q),

and the result follows from Proposition 4.1. ��
Setting Q = Pch in Propositions 4.11 and 4.12, we derive the variational

principle for entropy and the respective dual variational principle.

Proposition 4.13

(1)

S(P ) = inf
X:Ω→R

(

log

(
∑

ω∈Ω
eX(ω)

)

−
∫

Ω

XdP

)

.

The infimum is achieved if P is faithful and X = −SP + const.
(2) For any X : Ω → R,

log

(
∑

ω∈Ω
eX(ω)

)

= max
P∈P(Ω)

(∫

Ω

XdP + S(P )

)

.

The maximizer is unique and is given by

P(ω) = eX(ω)
∑

ω′∈Ω eX(ω′)
.
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4.3 Stein’s Lemma

Let P,Q ∈ P(Ω) and let PN,QN be the induced product probability measures on
ΩN . For γ ∈]0, 1[ the Stein exponents are defined by

sN(γ ) = min
{
QN(T ) | T ⊂ ΩN, PN(T ) ≥ γ

}
. (4.20)

The following result is often called Stein’s Lemma.

Theorem 4.14

lim
N→∞

1

N
log sN(γ ) = −S(P |Q).

Remark 4.15 If Q = Pch, then Stein’s Lemma reduces to Proposition 3.3. In fact,
the proofs of the two results are very similar.

Proof We deal first with the case S(P |Q) < ∞. Set SP |Q(ω) = 0 for ω �∈ suppP
and

SN(ω = (ω1, · · · , ωN)) =
N∑

j=1

SP |Q(ωj ).

For given ε > 0 let

RN,ε =
{

ω ∈ ΩN
∣
∣ SN(ω)

N
≥ S(P |Q)− ε

}

.

By the LLN,

lim
N→∞PN(RN,ε) = 1,

and so for N large enough, PN(RN,ε) ≥ γ . We also have

QN(RN,ε) = QN

{
eSN(ω) ≥ eNS(P |Q)−Nε} ≤ eNε−NS(P |Q)

EQN (e
SN ).

Since

EQN (e
SN ) =

(∫

Ω

ΔP |QdQ

)N
= 1,
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we derive

lim sup
N→∞

1

N
log sN(γ ) ≤ −S(P |Q)+ ε.

Since ε > 0 is arbitrary,

lim sup
N→∞

1

N
log sN(γ ) ≤ −S(P |Q).

To prove the lower bound, let UN,γ be the set for which the minimum in (4.20) is
achieved. Let ε > 0 be given and let

DN,ε =
{

ω ∈ ΩN
∣
∣ SN(ω)

N
≤ S(P |Q)+ ε

}

.

Again, by the LLN,

lim
N→∞PN(DN,ε) = 1,

and so for N large enough, PN(DN,ε ) ≥ γ . We then have

PN(UN,γ ∩DN,ε) =
∫

UN,γ ∩DN,ε

ΔPN |QN dQN =
∫

UN,γ ∩DN,ε

eSN dQN

≤ eNS(P |Q)+NεQN(UN,γ ∩DN,ε)

≤ eNS(P |Q)+NεQN(UN,γ ).

Since

lim inf
N→∞ PN(UN,γ ∩DN,ε) ≥ γ,

we have

lim inf
N→∞

1

N
sN(γ ) ≥ −S(P |Q) − ε.

Since ε > 0 is arbitrary,

lim inf
N→∞

1

N
sN(γ ) ≥ −S(P |Q).

This proves Stein’s Lemma in the case S(P |Q) <∞.
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We now deal with the case S(P |Q) = ∞. For 0 < δ < 1 setQδ = (1−δ)Q+δP .
Obviously, S(P |Qδ) < ∞. Let sN,δ(γ ) be the Stein exponent of the pair (P,Qδ).
Then

sN,δ(γ ) ≥ (1− δ)NsN(γ ),

and

−S(P |Qδ) = lim
N→∞

1

N
log sN,δ(γ ) ≥ log(1− δ)+ lim inf

N→∞
1

N
log sN(γ ).

The lower semicontinuity of relative entropy gives limδ→0 S(P |Qδ) = ∞, and so

lim
N→∞

1

N
log sN(γ ) = ∞ = −S(P |Q).

��
Exercise 4.10 Prove the following variant of Stein’s Lemma. Let

s = inf
(TN )

{

lim inf
N→∞

1

N
QN(TN) | lim

N→∞PN(T
c
N) = 0

}

,

s = inf
(TN )

{

lim sup
N→∞

1

N
QN(TN) | lim

N→∞PN(T
c
N) = 0

}

,

where the infimum is taken over all sequences (TN)N≥1 of sets such that
TN ⊂ ΩN for all N ≥ 1. Then

s = s = −S(P |Q).

4.4 Fluctuation Relation

Let Ω be a finite set and P ∈ Pf(Ω). Let Θ : Ω → Ω be a bijection such that

Θ2(ω) = Θ ◦Θ(ω) = ω (4.21)

for all ω. We set PΘ(ω) = P(Θ(ω)). Obviously, PΘ ∈ Pf(Ω). The relative entropy
function

SP |PΘ (ω) = log
P(ω)

PΘ(ω)
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satisfies

SP |PΘ (Θ(ω)) = −SP |PΘ (ω), (4.22)

and so the set of values of SP |PΘ is symmetric with respect to the origin. On the other
hand,

S(P |PΘ) = EP (S(P |PΘ)) ≥ 0

with equality iff P = PΘ . Thus, the probability measureP “favours” positive values
of SP |PΘ . Proposition 4.16 below is a refinement of this observation.

Let Q be the probability distribution of the random variable S(P |PΘ) w.r.t. P .
We recall that Q is defined by

Q(s) = P
{
ω | SP |PΘ (ω) = s

}
.

Obviously, Q(s) �= 0 iff Q(−s) �= 0.
The following result is known as the fluctuation relation.

Proposition 4.16 For all s,

Q(−s) = e−sQ(s).

Proof For any α,

EP

(
e−αSP |PΘ

)
=
∑

ω∈Ω
[PΘ(ω)]α[P(ω)]1−α

=
∑

ω∈Ω
[PΘ(Θ(ω))]α[P(Θ(ω))]1−α

=
∑

ω∈Ω
[P(ω)]α[PΘ(ω)]1−α

= EP

(
e−(1−α)SP |PΘ

)
.

Hence, if S = {s |Q(s) �= 0},
∑

s∈S
e−αsQ(s) =

∑

s∈S
e−(1−α)sQ(s) =

∑

s∈S
e(1−α)sQ(−s),

and so

∑

s∈S
e−αs(Q(s)− esQ(−s)) = 0. (4.23)
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Since (4.23) holds for all real α, we must have that Q(s) − esQ(−s) = 0 for all
s ∈ S, and the statement follows. ��

Remark 4.17 The assumption that P is faithful can be omitted if one assumes in
addition that Θ preserves suppP . If this is the case, one can replace Ω with suppP ,
and the above proof applies.

Exercise 4.11 Prove that the fluctuation relation implies (4.22).

Exercise 4.12 This exercise is devoted to a generalization of the fluctuation
relation which has also found fundamental application in physics. Consider
a family {PX}X∈Rn of probability measures on Ω indexed by vectors
X = (X1, · · · ,Xn) ∈ R

n. Set

EX(ω) = log
PX(ω)

PX(ΘX(ω))
,

where ΘX satisfies (4.21). Suppose that E0 = 0 and consider a decomposition

EX =
n∑

k=1

XkFX,k, (4.24)

where the random variables FX,k satisfy

FX,k ◦ΘX = −FX,k. (4.25)

We denote by QX the probability distribution of the vector random variable
(FX,1, · · · ,FX,n) with respect to PX: for s = (s1, · · · , sn) ∈ R

n,

QX(s) = PX
{
ω ∈ Ω |FX,1 = s1, · · · ,FX,n = sn

}
.

We also denote S = {s ∈ R
n |QX(s) �= 0} and, for Y = (Y1, · · · , Yn) ∈ R

n, set

G(X, Y ) =
∑

s∈S
e−
∑

k skYkQX(s).

1. Prove that a decomposition (4.24) satisfying (4.25) always exists and that, except
in trivial cases, is never unique.

2. Prove that QX(s) �= 0 iff QX(−s) �= 0.
3. Prove that

G(X, Y ) = G(X,X − Y ).

4. Prove that

QX(−s) = e−
∑

k skXkQX(s).
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4.5 Jensen-Shannon Entropy and Metric

The Jensen-Shannon entropy of two probability measures P,Q ∈ P(Ω) is

SJS(P |Q) = S(M(P,Q)) − 1

2
S(P ) − 1

2
S(Q)

= 1

2
(S (P |M(P,Q)) + S (Q|M(P,Q))) ,

where

M(P,Q) = P +Q

2
.

The Jensen-Shannon entropy can be viewed as a measure of concavity of the
entropy. Obviously, SJS(P |Q) ≥ 0 with equality iff P = Q. In addition:

Proposition 4.18

(1)

SJS(P |Q) ≤ log 2,

with equality iff P ⊥ Q.
(2)

1

8
dV (P,Q)2 ≤ SJS(P |Q) ≤ dV (P,Q) log

√
2.

The first inequality is saturated iff P = Q and the second iff P = Q or P ⊥ Q.

Proof Part (1) follows from

SJS(P |Q) = 1

2

∑

ω∈Ω

(

P(ω) log

(
2P(ω)

P (ω) +Q(ω)

)

+Q(ω) log

(
2Q(ω)

P(ω)+Q(ω)

))

≤ 1

2

∑

ω∈Ω
(P(ω)+Q(ω)) log 2

= log 2.
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To prove (2), we start with the lower bound:

SJS(P |Q) = 1

2
S(P |M(P,Q)) + 1

2
S(Q|M(P |Q))

≥ 1

4
dV (P,M(P,Q))2 + 1

4
dV (Q,M(P,Q))2

= 1

8

(
∑

ω∈Ω
|P(ω)−Q(ω)|

)2

= 1

8
dV (P |Q)2,

where the inequality follows from Theorem 4.2.
To prove the upper bound, set S+ = {ω |P(ω)≥Q(ω)}, S− = {ω |P(ω)<Q(ω)}.

Then

SJS(P |Q) = 1

2

∑

ω∈S+

(

P(ω) log

(
2P(ω)

P (ω)+Q(ω)

)

−Q(ω) log

(
P(ω)+Q(ω)

2Q(ω)

))

+1

2

∑

ω∈S−

(

Q(ω) log

(
2Q(ω)

P(ω) +Q(ω)

)

−P(ω) log

(
P(ω) +Q(ω)

2P(ω)

))

≤ 1

2

∑

ω∈S+
(P (ω) −Q(ω)) log

(
2P(ω)

P (ω)+Q(ω)

)

+1

2

∑

ω∈S−
(Q(ω)− P(ω)) log

(
2Q(ω)

P(ω)+Q(ω)

)

≤ 1

2

∑

ω∈S−
(P (ω) −Q(ω)) log 2+ 1

2

∑

ω∈S−
(Q(ω)− P(ω)) log 2

= dV (P,Q) log
√

2.

In the first inequality we have used that for P(ω) �= 0 and Q(ω) �= 0,

P(ω)+Q(ω)

2P(ω)
≥ 2Q(ω)

P(ω) +Q(ω)
,

and the same inequality with P and Q interchanged.
The cases where equality holds in Parts (1) and (2) are easily identified from the

above argument and we leave the formal proof as an exercise for the reader. ��
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Set

dJS(P,Q) = √SJS(P,Q).

Theorem 4.19 dJS is a metric on P(Ω).

Remark 4.20 If |Ω | ≥ 2, then SJS is not a metric on P(Ω). To see that, pick
ω1, ω2 ∈ Ω and define P,Q,R ∈ P(Ω) by P(ω1) = 1, Q(ω2) = 1,
R(ω1) = R(ω2) = 1

2 . Then

SJS(P |Q) = log 2 >
3

2
log

4

3
= SJS(P |R) + SJS(R|Q).

Remark 4.21 In the sequel we shall refer to dSJ as the Jensen-Shannon metric.

Proof Note that only the triangle inequality needs to be proved. Set R+ =]0,∞[.
For p, q ∈ R+ let

L(p, q) = p log

(
2p

p + q

)

+ q log

(
2q

p + q

)

.

Since the function F(x) = x log x is strictly convex, writing

L(p, q) = (p + q)

[
1

2
F

(
2p

p + q

)

+ 1

2
F

(
2q

p + q

)]

and applying the Jensen inequality to the expression in the brackets, we derive that
L(p, q) ≥ 0 with equality iff p = q . Our goal is to prove that for all p, q, r ∈ R+,

L(p, q) ≤ √L(p, r) +√L(r, q). (4.26)

This yields the triangle inequality for dJS as follows. If P,Q,R ∈ Pf(Ω), (4.26)
and Minkowski’s inequality give

dJS(P,Q) =
(
∑

ω∈Ω

√
L(P(ω),Q(ω))

2
) 1

2

≤
(
∑

ω∈Ω

(√
L(P(ω),R(ω)) +√L(R(ω),Q(ω))

)2
) 1

2

≤
(
∑

ω∈Ω

√
L(P(ω),R(ω))

2
) 1

2

+
(
∑

ω∈Ω

√
L(R(ω),Q(ω))

2
) 1

2

= dJS(P,R) + dJS(R,Q).
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This yields the triangle inequality on Pf(Ω). Since the map (P,Q) �→ dJS(P,Q)

is continuous, the triangle inequality extends to P(Ω).
The proof of (4.26) is an elaborate calculus exercise. The relation is obvious if

p = q . Since L(p, q) = L(q, p), it suffices to consider the case p < q . We fix such
p and q and set

f (r) = √L(p, r) +√L(r, q).

Then

f ′(r) = 1

2
√
L(p, r)

log

(
2r

p + r

)

+ 1

2
√
L(r, q)

log

(
2r

r + q

)

.

Define g : R+ \ {1} → R by

g(x) = 1√
L(x, 1)

log

(
2

x + 1

)

,

One easily verifies that

f ′(r) = 1

2
√
r

(
g
(p

r

)
+ g

(q

r

))
. (4.27)

We shall need the following basic properties of g, clearly displayed in the graph
below:

1 3 5 7 9

−1

1

x

g(x)

(a) g > 0 on ]0, 1[, g < 0 on ]1,∞[.
(b) limx↑1 g(x) = 1, limx↓1 g(x) = −1. This follows from limx→1[g(x)]2 = 1,

which can be established by applying l’Hopital’s rule twice.
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(c) g′(x) > 0 for x ∈ R+ \ {1}. To prove this one computes

g′(x) = − h(x)

(x + 1)L(x, 1)3/2 ,

where

h(x) = 2x log

(
2x

x + 1

)

+2 log

(
2

x + 1

)

+(x+1) log

(
2x

x + 1

)

log

(
2

x + 1

)

.

One further computes

h′(x) = log

(
2x

x + 1

)

log

(
2

x + 1

)

+ log

(
2x

x + 1

)

+ 1

x
log

(
2

x + 1

)

,

h′′(x) = − 1

x + 1
log

(
2x

x + 1

)

− 1

x2(x + 1)
log

(
2

x + 1

)

.

Note that h(1) = h′(1) = h′′(1) = 0. The inequality log t ≥ (t − 1)/t , which
holds for all t > 0, gives

h′′(x) ≤ − 1

x + 1

(

1− x + 1

2x

)

− 1

x2(x + 1)

(

1− x + 1

2

)

= − (x − 1)2

2x2(x + 1)
.

Hence h′′(x) < 0 for x ∈ R+ \ {1}, and the statement follows.
(d) Note that (a), (b), and (c) give that 0 < g(x) < 1 on ]0, 1[ and −1 < g(x) < 0

on ]1,∞[.
If follows from (a) that f ′(r) < 0 for r ∈]0, p[, f ′(r) > 0 for r > q , and so

f (r) is decreasing on ]0, p[ and increasing on ]q,∞[. Hence, for r < p and r > q ,
f (r) > f (p), which gives (4.26) for those r’s. To deal with the case p < r < q , set
m(r) = g(p/r)+ g(q/r). It follows from (b) that m′(r) < 0 for p < r < q , while
(b) and (d) give m(p+) = 1 + g(q/p) > 0, m(q−) = −1 + g(p/q) < 0. Hence
f ′(r) has precisely one zero rm in the interval ]p, q[. Since f ′(p+)>0, f ′(q−)>0,
f (r) is increasing in [p, rm] and decreasing on [rm, q]. On the first interval,
f (r) ≥ f (p), and on the second interval f (r) ≥ f (q), which gives that (4.26)
also holds for p < r < q . ��



204 V. Jakšić

The graph of r �→ f (r) is plotted below for p = 1
10 and q = 2

3 . In this case
rm ≈ 0.28.

0.28 0.5

0.5

0.6

f(0.279237) ≈ 0.495861

p = 1/10 q = 2/3
r

f(r)

4.6 Rényi’s Relative Entropy

Let Ω be a finite set and P,Q ∈ P(Ω). For α ∈]0, 1[ we set

Sα(P |Q) = 1

α − 1
log

(
∑

ω∈Ω
P(ω)αQ(ω)1−α

)

.

Sα(P |Q) is called Rényi’s relative entropy of P with respect to Q. Note that

Sα(P |Pch) = Sα(P )+ log |Ω |.

Proposition 4.22

(1) Sα(P |Q) ≥ 0.
(2) Sα(P |Q) = ∞ iff P ⊥ Q and Sα(P |Q) = 0 iff P = Q.
(3)

Sα(P |Q) = α

1− α
S1−α(Q|P).

(4)

lim
α↑1

Sα(P |Q) = S(P |Q).
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(5) Suppose that P �⊥ Q. Then the function ]0, 1[, α �→ Sα(P |Q) is strictly
increasing

(6) The map (P,Q) �→ Sα(P |Q) ∈ [0,∞] is continuous and jointly convex.
(7) Let Φ : P(Ω)→ P(Ω̂) be a stochastic map. Then for all P,Q ∈ P(Ω),

Sα(Φ(P )|Φ(Q)) ≤ Sα(P |Q).

(8) If S(P |Q) <∞, then α �→ Sα(P |Q) extends to a real-analytic function on R.

Proof Obviously, Sα(P |Q) = ∞ iff P ⊥ Q. In what follows, if P �⊥ Q, we set

T = suppP ∩ suppQ.

An application of Jensen’s inequality gives

∑

ω∈Ω
P(ω)αQ(ω)1−α = Q(T )

∑

ω∈T

(
P(ω)

Q(ω)

)α
Q(ω)

Q(T )

≤ Q(T )

(
∑

ω∈T

P (ω)

Q(ω)

Q(ω)

Q(T )

)α

= Q(T )1−αP (T )α.

Hence,
∑

ω∈Ω P(ω)αQ(ω)1−α ≤ 1 with the equality iff P = Q, and Parts (1), (2)
follow.

Part (3) is obvious. To prove (4), note that

lim
α↑1

∑

ω

P(ω)αQ(ω)1−α = P(T ),

and that P(T ) = 1 iff P ( Q. Hence, if P is not absolutely continuous with
respect to Q, then limα↑1 Sα(P |Q) = ∞ = S(P |Q). If P ( Q, an application of
L’Hopital rule gives limα↑1 Sα(P |Q) = S(P |Q).

To prove (5), set

F(α) = log

(
∑

ω∈Ω
P(ω)αQ(ω)1−α

)

,

and note that R , α �→ F(α) is a real-analytic strictly convex function satisfying
F(0) ≤ 0, F(1) ≤ 0. We have

dSα(P |Q)

dα
= F ′(α)(α − 1)− (F (α)− F(1))

(α − 1)2
− F(1)

(α − 1)2
.
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By the mean-value theorem, F(α) − F(1) = (α − 1)F ′(ζα) for some ζα ∈]α, 1[.
Since F ′ is strictly increasing, F ′(α) < F ′(ζα) and

dSα(P |Q)

dα
> 0

for α ∈]0, 1[.
The continuity part of (6) is obvious. The proof of the joint convexity is the same

as the proof of Proposition 4.4 (one now takes g(t) = tα) and is left as an exercise
for the reader.

We now turn to Part (7). First, we have

[
Φ(P)(ω̂)

]α [
Φ(Q)(ω̂)

]1−α ≥
∑

ω

P(ω)αQ(ω)1−αΦ(ω, ω̂).

This inequality is obvious if the r.h.s. is equal to zero. Otherwise, let

R = {ω |P(ω)Q(ω)Φ(ω, ω̂) > 0}.

Then

[
Φ(P)(ω̂)

]α [
Φ(Q)(ω̂)

]1−α ≥
(
∑

ω∈R
P(ω)Φ(ω, ω̂)

)α (
∑

ω∈R
Q(ω)Φ(ω, ω̂)

)1−α

=
(∑

ω∈R P(ω)Φ(ω, ω̂)∑
ω∈R Q(ω)Φ(ω, ω̂)

)α ∑

ω∈R
Q(ω)Φ(ω, ω̂)

≥
∑

ω

P(ω)αQ(ω)1−αΦ(ω, ω̂),

where in the last step we have used the joint concavity of the function
(x, y) �→ x(y/x)α (recall proof of Proposition 4.4). Hence,

∑

ω̂

[
Φ(P)(ω̂)

]α [
Φ(Q)(ω̂)

]1−α ≥
∑

ω̂

∑

ω

P(ω)αQ(ω)1−αΦ(ω, ω̂)

=
∑

ω

P(ω)αQ(ω)1−α,

and Part (7) follows.
It remains to prove Part (8). For α ∈ R \ {1} set

Sα(P |Q) = 1

α − 1
log

(
∑

ω∈T
P (ω)αQ(ω)1−α

)

.
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Obviously, α �→ Sα(P |Q) is real-analytic on R \ {1}. Since

lim
α↑1

Sα(P |Q) = lim
α↓1

Sα(P |Q) = S(P |Q),

α �→ Sα(P |Q) extends to a real-analytic function on R with S1(P |Q) = S(P |Q).
Finally, Part (8) follows from the observation that Sα(P |Q) = Sα(P |Q) for
α ∈]0, 1[.

��
Following on the discussion at the end of Sect. 3.6, we set

Ŝα(P |Q) = log

(
∑

ω∈T
P (ω)αQ(ω)1−α

)

, α ∈ R.

If P ( Q, then

Ŝα(P |Q) = logEQ(eαSP |Q), (4.28)

and so Ŝα(P |Q) is the cumulant generating function for the relative entropy function
SP |Q defined on the probability space (T , P ). The discussion at the end of Sect. 3.6
can be now repeated verbatim (we will return to this point in Sect. 5.1). Whenever
there is no danger of the confusion, we shall also call Ŝα(P |Q) Rényi’s relative
entropy of the pair (P,Q). Note that

Ŝα(Pch|P) = Ŝα(P ) − α log |Ω |. (4.29)

Some care is needed in transposing the properties listed in Proposition 4.22 to
Ŝα(P |Q). This point is discussed in the Exercise 4.14.

Exercise 4.13

1. Describe the subset of P(Ω) × P(Ω) on which the function
(P,Q) �→ Sα(P |Q) is strictly convex.

2. Describe the subset of P(Ω) × P(Ω) on which
Sα(Φ(P )|Φ(Q)) < Sα(P |Q).

3. Redo the Exercise 4.2 in Sect. 4.1 and reprove Proposition 4.8 following the
proofs of Parts (7) and (8) of Proposition 4.22. Describe the subset of P(Ω)

on which

S(Φ(P)|Φ(Q)) < S(P |Q).

Exercise 4.14 Prove the following properties of Ŝα(P |Q).

1. Ŝα(P |Q) = −∞ iff P ⊥ Q.
In the remaining statements we shall suppose that P �⊥ Q.
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2. The function R , α �→ Ŝα(P |Q) is real-analytic and convex. This function
is trivial (i.e., identically equal to zero) iff P = Q. If P/Q not constant on
T = suppP ∩ suppQ, then the function α �→ Ŝα(P |Q) is strictly convex.

3. If Q( P , then

dŜα(P |Q)

dα

∣
∣
α=0 = −S(Q|P).

If P ( Q, then

dŜα(P |Q)

dα

∣
∣
α=1 = S(P |Q).

4. If P and Q are mutually absolutely continuous, then
Ŝ0(P |Q) = Ŝ1(P |Q) = 0, Ŝα(P |Q) ≤ 0 for α ∈ [0, 1], and Ŝα(P |Q) ≥ 0 for
α �∈ [0, 1]. Moreover,

Ŝα(P |Q) ≥ max{−αS(Q|P), (α − 1)S(P |Q)}.

5. For α ∈]0, 1[ the function (P,Q) �→ Ŝα(P |Q) is continuous and jointly
concave. Moreover, for any stochastic matrix Φ,

Ŝα(Φ(P )|Φ(Q)) ≥ Ŝα(P |Q).

Exercise 4.15 Prove that the fluctuation relation of Sect. 4.4 is equivalent to the
following statement: for all α ∈ R,

Ŝα(P |PΘ) = Ŝ1−α(P |PΘ).

4.7 Hypothesis Testing

Let Ω be a finite set and P,Q two distinct probability measures on Ω . We shall
assume that P and Q are faithful.

Suppose that we know a priori that a probabilistic experiment is with prob-
ability p described by P and with probability 1 − p by Q. By performing an
experiment we wish to decide with minimal error probability what is the correct
probability measure. For example, suppose that we are given two coins, one fair
(P(Head) = P(Tail) = 1/2) and one unfair (Q(Head) = s,Q(Tail) = 1 − s,

s > 1/2). We pick coin randomly (hence p = 1/2). The experiment is a coin toss.
After tossing a coin we wish to decide with minimal error probability whether we
picked the fair or the unfair coin. The correct choice is obvious: if the outcome is
Head, pick Q, if the outcome is Tail, pick P.
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The following procedure is known as hypothesis testing. A test T is a subset of
Ω . On the basis of the outcome of the experiment with respect to T one chooses
between P or Q. More precisely, if the outcome of the experiment is in T , one
choosesQ (Hypothesis I:Q is correct) and if the outcome is not in T , one chooses P
(Hypothesis II: P is correct). P(T ) is the conditional error probability of accepting
I if II is true and Q(T c) is the conditional error probability of accepting II if I is
true. The average error probability is

Dp(P,Q, T ) = pP(T )+ (1− p)Q(T c),

and we are interested in minimizing Dp(P,Q, T ) w.r.t. T . Let

Dp(P,Q) = inf
T
Dp(P,Q, T ).

The Bayesian distinguishability problem is to identify tests T such that
Dp(P,Q, T ) = Dp(P,Q). Let

Topt = {ω |pP(ω) ≤ (1− p)Q(ω)}.

Proposition 4.23

(1) Topt is a minimizer of the function T �→ Dp(P,Q, T ). If T is another
minimizer, then T ⊂ Topt and pP(ω) = (1− p)Q(ω) for ω ∈ Topt \ T .

(2)

Dp(P,Q) =
∫

Ω

min{1− p,pΔP |Q(ω)}dQ.

(3) For α ∈]0, 1[,

Dp(P,Q) ≤ pα(1− p)1−αeŜα(P |Q).

(4)

Dp(P,Q) ≥
∫

Ω

pΔP |Q
1+ p

1−pΔP |Q
dQ.

Remark 4.24 Part (1) of this proposition is called Neyman-Pearson lemma. Part (3)
is called Chernoff bound.
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Proof

Dp(P,Q, T ) = 1− p −
∑

ω∈T
((1− p)Q(ω)− pP(ω))

≥ 1− p −
∑

ω∈Topt

((1− p)Q(ω)− pP(ω)) ,

and Part (1) follows. Part (2) is a straightforward computation. Part (3) follows from
(2) and the bound min{x, y} ≤ xαy1−α that holds for x, y ≥ 0 and α ∈]0, 1[. Part
(4) follows from (2) and the obvious estimate

min{1− p,pΔP |Q(ω)} ≥ pΔP |Q
1+ p

1−pΔP |Q
.

��
Obviously, the errors are smaller if the hypothesis testing is based on repeated

experiments. Let PN and QN be the respective product probability measures on
ΩN .

Theorem 4.25

lim
N→∞

1

N
logDp(PN ,QN) = min

α∈[0,1] Ŝα(P |Q).

Proof By Part (2) of the last proposition, for any α ∈]0, 1[,

Dp(PN ,QN) ≤ pα(1− p)1−αeŜα(PN |QN) = pα(1− p)1−αeNŜα(P |Q),

and so

1

N
logDp(PN,QN) ≤ min

α∈[0,1] Ŝα(P |Q).

This yields the upper bound:

lim sup
N→∞

1

N
logDp(PN |QN) ≤ min

α∈[0,1] Ŝα(P |Q).

To prove the lower bound we shall make use of the lower bound in Cramér’s theorem
(Corollary 2.18). Note first that the function

x �→ px

1+ p
1−p x
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is increasing on R+. Let θ > 0 be given. By Part (4) of the last proposition,

Dp(PN ,QN) ≥ peNθ

1+ p
1−p eNθ

QN

{
ω ∈ ΩN |ΔPN |QN (ω) ≥ eNθ

}
.

Hence,

lim inf
N→∞

1

N
logDp(PN |QN)

≥ lim inf
N→∞

1

N
logQN

{
ω ∈ ΩN | logΔPN |QN (ω) ≥ Nθ

}
. (4.30)

Let X = logΔP |Q and SN(ω) = ∑N
k=1 X(ωk). Note that SN = logΔPN |QN . The

cumulant generating function of X w.r.t. Q is

logEQ(eαX) = Ŝα(P |Q).

Since EQ(X) = −S(Q|P) < 0 and θ > 0, it follows from Corollary 2.18 that

lim
N→∞

1

N
logQN

{
ω ∈ ΩN | logΔPN |QN (ω) ≥ Nθ

}
≥ −I (θ) (4.31)

Since

dŜα
dα

∣
∣
α=0 = −S(Q|P) < 0,

dŜα
dα

∣
∣
α=1 = S(P |Q) > 0,

the rate function I (θ) is continuous around zero, and it follows from (4.30)
and (4.31) that

lim inf
N→∞

1

N
logDp(PN |QN) ≥ −I (0) = − sup

α∈R
(−Ŝα(P |Q)).

Since Ŝα(P |Q) ≤ 0 for α ∈ [0, 1] and Ŝα(P |Q) ≥ 0 for α �∈ [0, 1],

− sup
α∈R

(−Ŝα(P |Q)) = min
α∈[0,1] Ŝα(P |Q),

and the lower bound follows:

lim inf
N→∞

1

N
logDp(PN |QN) ≥ min

α∈[0,1] Ŝα(P |Q).

��
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4.8 Asymmetric Hypothesis Testing

We continue with the framework and notation of the previous section. The asymmet-
ric hypothesis testing concerns individual error probabilities PN(TN) (type I-error)
and QN(T

c
N) (type II-error). For γ ∈]0, 1[ the Stein error exponents are defined by

sN(γ ) = min
{
P(TN)

∣
∣ TN ⊂ ΩN, Q(T c

N ) ≤ γ
}
.

Theorem 4.14 gives

lim
N→∞

1

N
log sN(γ ) = −S(Q|P).

The Hoeffding error exponents are similar to Stein’s exponents, but with a tighter
constraint on the family (TN)N≥1 of tests which are required to ensure exponential
decay of type-II errors with a minimal rate s > 0. They are defined as

h(s) = inf
(TN )

{

lim sup
N→∞

1

N
logPN(TN)

∣
∣
∣
∣ lim sup

N→∞
1

N
logQN(T

c
N) ≤ −s

}

,

h(s) = inf
(TN )

{

lim inf
N→∞

1

N
logPN(TN)

∣
∣
∣
∣ lim sup

N→∞
1

T
logQN(T

c
N) ≤ −s

}

,

h(s) = inf
(TN )

{

lim
N→∞

1

N
logPN(TN)

∣
∣
∣
∣ lim sup

N→∞
1

N
logQN(T

c
N) ≤ −s

}

,

where in the last case the infimum is taken over all sequences of tests (TN)N≥1 for
which the limit

lim
N→∞

1

N
logPN(TN)

exists. The analysis of these exponents is centred around the function

ψ(s) = inf
α∈[0,1[

sα + Ŝα(Q|P)
1− α

, s ≥ 0.

We first describe some basic properties of ψ .

Proposition 4.26

(1) ψ is continuous on [0,∞[, ψ(0) = −S(Q|P) and ψ(s) = 0 for s ≥ S(P |Q).
(2) ψ is strictly increasing and strictly concave on [0, S(P |Q)], and real analytic

on ]0, S(P |Q)[.
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(3)

lim
s↓0

ψ ′(s) = ∞, lim
s↑S(P |Q)

ψ ′(s) = [Ŝ′′α(Q|P)
∣
∣
α=0

]−1
.

(4) For θ ∈ R set

ϕ(θ) = sup
α∈[0,1]

(
θα − Ŝα(Q|P)

)
, ϕ̂(θ) = ϕ(θ)− θ.

Then for all s ≥ 0,

ψ(s) = −ϕ(ϕ̂−1(s)). (4.32)

Proof Throughout the proof we shall often use Part 3 of the Exercise 4.14.
We shall prove Parts (1)–(3) simultaneously. Set

F(α) = sα + Ŝα(Q|P)
1− α

.

Then

F ′(α) = G(α)

(1− α)2
,

where G(α) = s + Ŝα(Q|P) + (1 − α)Ŝ′α(Q|P). Furthermore,
G′(α) = (1 − α)Ŝ′′α(Q|P) and so G′(α) > 0 for α ∈ [0, 1[. Note that
G(0) = s − S(P |Q) and G(1) = s. It follows that if s = 0, then G(α) < 0
for α ∈ [0, 1[ and F(α) is decreasing on [0, 1[. Hence,

ψ(0) = lim
α→1

Ŝα(Q|P)
1− α

= −S(Q|P).

On the other hand, if 0 < s < S(P |Q), then G(0) < 0, G(1) > 0, and so there
exists unique α∗(s) ∈]0, 1[ such that

G(α∗(s)) = 0. (4.33)

In this case,

ψ(s) = sα∗(s)+ Ŝα∗(s)(Q|P)
1− α∗(s)

= −s − Ŝ′α∗(s)(Q|P). (4.34)

If s ≥ S(P |Q), then G(α) ≥ 0 for α ∈ [0, 1[, and ψ(s) = F(0) = 0. The analytic
implicit function theorem yields that s �→ α∗(s) is analytic on ]0, S(P |Q)[, and so
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ψ is real-analytic on ]0, S(P |Q)[. The identity

0 = G(α∗(s)) = s + Ŝα∗(s)(Q|P) + (1− α∗(s))Ŝ′α∗(s)(Q|P), (4.35)

which holds for s ∈ ]0, S(P |Q)[, gives that

α′∗(s) = − 1

(1− α∗(s))G′(α∗(s))
, (4.36)

and so α′∗(s) < 0 for s ∈]0, S(P |Q)[. One computes

ψ ′(s) = α∗(s)− sα′∗(s)
(1− α∗(s))2

, (4.37)

and so ψ is strictly increasing on ]0, S(P |Q)[ and hence on [0, S(P |Q)]. Since
α∗(s) is strictly decreasing on ]0, S(P |Q)[, the limits

lim
s↓0

α∗(s) = x, lim
s↑S(P |Q)

α∗(s) = y,

exist. Obviously, x, y ∈ [0, 1], x > y, and the definition of G and α∗ give that

Ŝx(Q|P)+ (1− x)Ŝ′x(Q|P) = 0, S(P |Q) + Ŝy(Q|P) + (1− y)Ŝ′y(Q|P) = 0.
(4.38)

We proceed to show that x = 1 and y = 0. Suppose that x < 1. The mean value
theorem gives that for some z ∈ ]x, 1[

−Ŝx(Q|P) = Ŝ1(Q|P)− Ŝx(Q|P) = (1− x)Ŝ′z(Q|P) > (1− x)Ŝ′z(Q|P),
(4.39)

where we used that α �→ Ŝ′α(Q|P) is strictly increasing. Obviously, (4.39)
contradicts the first equality in (4.38), and so x = 1. Similarly, if y > 0,

S(P |Q) + Ŝy(Q|P)+(1− y)Ŝ′y(Q|P) > S(P |Q) + Ŝy(Q|P)+(1− y)Ŝ′0(Q|P)

= Ŝy(Q|P)− yŜ′0(Q|P) > 0,

contradicting the second equality in (4.38). Since x = 1 and y = 0, (4.36) and (4.37)
yield Part (3). Finally, to prove that ψ is strictly concave on [0, S(P |Q)] (in view of
real analyticity of ψ on ]0, S(P |Q)[), it suffices to show that ψ ′ is not constant
on ]0, S(P |Q)[. That follows from Part (3), and the proofs of Parts (1)–(3) are
complete.

We now turn to Part (4). The following basic properties of the “restricted
Legendre transform” ϕ are easily proven following the arguments in Sect. 2.5 and
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we leave the details as an exercise for the reader: ϕ is continuous, non-negative, and
convex on R, ϕ(θ) = 0 for θ ≤ −S(P |Q), ϕ is real analytic, strictly increasing,
and strictly convex on ] − S(P |Q), S(Q|P)[, and ϕ(θ) = θ for θ ≥ S(Q|P). The
properties of ϕ̂ are now deduced from those of ϕ and we mention the following:
ϕ̂ is convex, continuous, and decreasing, ϕ̂(θ) = θ for θ ≤ −S(P |Q), and
ϕ(θ) = 0 for θ ≥ S(Q|P). Moreover, the map ϕ̂ :] − ∞, S(Q|P)] → [0,∞[
is a bijection, and we denote by ϕ̂−1 its inverse. For s ≥ S(P |Q), ϕ̂−1(s) = −s
and ϕ(−s) = 0, and so (4.32) holds for s ≥ S(P |Q). Since ϕ̂−1(0) = S(Q|P) and
ϕ(S(Q|P)) = S(Q|P), (4.32) also holds for s = 0.

It remains to consider the case s ∈ ]0, S(P |Q)[. The map ϕ̂ : ] − S(P |Q),
S(Q|P)[→]0, S(P |Q)[ is a strictly decreasing bijection. Since

−ϕ(ϕ̂−1(s)) = −s − ϕ̂−1(s),

it follows from (4.34) that it suffices to show that

ϕ̂−1(s) = Ŝ′α∗(s)(Q|P),

or equivalently, that

ϕ(Ŝ′α∗(s)(Q|P)) = −s − Ŝ′α∗(s)(Q|P)). (4.40)

Since on ]−S(P |Q), S(Q|P)[ the function ϕ coincides with the Legendre transform
of Ŝα(P |Q), it follows from Part (1) of Proposition 2.8 that

ϕ(Ŝ′α∗(s)(Q|P)) = α∗(s)Ŝ′α∗(s)(Q|P) − Ŝα∗(s)(Q|P),

and (4.40) follows from (4.35). ��
Exercise 4.16 Prove the properties of ϕ and ϕ̂ that were stated and used in the proof
of Part (4) of Proposition 4.26.

The next result sheds additional light on the function ψ . For α ∈ [0, 1] we define
Rα ∈ P(Ω) by

Rα(ω) = Q(ω)αP (ω)1−α
∑

ω′ Q(ω′)αP (ω′)1−α
.

Proposition 4.27

(1) For all s ≥ 0,

ψ(s) = − inf {S(R|P) |R ∈ P(Ω), S(R|Q) ≤ s} . (4.41)
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(2) For any s ∈ ]0, S(P |Q)[,

S(Rα∗(s)|Q) = s, S(Rα∗(s)|P) = −ψ(s),

where α∗(s) is given by (4.33).

Proof Denote by φ(s) the r.h.s. in (4.41). Obviously,φ(0)=−S(Q|P) and φ(s)= 0
for s ≥ S(P |Q). So we need to prove that ψ(s) = φ(s) for s ∈ ]0, S(P |Q)[.

For any R ∈ P(Ω) and α ∈ [0, 1],

S(R|Rα) = αS(R|Q) + (1− α)S(R|P) + Ŝα(Q|P).

If R is such that S(R|Q) ≤ s and α ∈ [0, 1[, then

S(R|Rα)

1− α
≤ αs + Ŝα(Q|P)

1− α
+ S(R|P).

Since S(R|Rα) ≥ 0,

inf
α∈[0,1[

αs + Ŝα(Q|P)
1− α

+ S(R|P) ≥ 0.

This gives that φ(s) ≤ ψ(s). If Part (2) holds, then also φ(s) ≥ ψ(s) for all
s ∈ ]0, S(P |Q)[, and we have the equality φ = ψ . To prove Part (2), a simple
computation gives

S(Rα|Q) = −(1−α)Ŝ′α(Q|P)− Ŝα(Q|P), S(Rα |Q) = S(Rα|P)+ Ŝ′α(Q|P).

After setting α = α∗(s) in these equalities, Part (2) follows from (4.35) and (4.34).
��

The main result of this section is

Theorem 4.28 For all s > 0,

h(s) = h(s) = h(s) = ψ(s). (4.42)

Proof Note that the functions h, h, h are non-negative and increasing on ]0,∞[ and
that

h(s) ≤ h(s) ≤ h(s) (4.43)

for all s > 0.
We shall prove that for all s ∈ ]0, S(P |Q)[,

h(s) ≤ ψ(s), h(s) ≥ ψ(s). (4.44)



Lectures on Entropy. I: Information-Theoretic Notions 217

In view of (4.43), that proves (4.42) for s ∈ ]0, S(P |Q)[. Assuming that (4.44)
holds, the relations h(s) ≤ h(S(P |Q)) ≤ 0 for s ∈]0, S(P |Q)[ and

lim
s↑S(P |Q)

h(s) = lim
s↑S(P |Q)

ψ(s) = 0

give that h(S(P |Q)) = 0. Since h is increasing, h(s) = 0 for s ≥ S(P |Q) and so
h(s) = ψ(s) for s ≥ S(P |Q). In the same way one shows that h(s) = h(s) = ψ(s)

for s ≥ S(P |Q).
We now prove the first inequality in (4.44). Recall that the map

ϕ̂ : ] − S(P |Q), S(Q|P)[→]0, S(P |Q)[ is a bijection. Fix s ∈ ]0, S(P |Q)[ and
let θ ∈] − S(P |Q), S(Q|P [ be such that ϕ̂(θ) = s. Let

TN(θ) =
{
ω ∈ ΩN |QN(ω) ≥ eNθPN(ω)

}
. (4.45)

Then

PN(TN(θ)) = PN

⎧
⎨

⎩
ω = (ω1, · · · , ωN ) ∈ ΩN | 1

N

N∑

j=1

SQ|P (ωj ) ≥ θ

⎫
⎬

⎭
.

Since the cumulant generating function for SQ|P with respect to P is Ŝα(Q|P),
and the rate function I for SQ|P with respect to P coincides with ϕ on
]S(P |Q), S(Q|P)[, it follows from Part (1) of Corollary 2.18 that

lim
N→∞

1

N
logPN(TN(θ)) = −ϕ(θ). (4.46)

Similarly,

QN([TN(θ)]c) = QN

⎧
⎨

⎩
ω = (ω1, · · · , ωN) ∈ ΩN | 1

N

N∑

j=1

SQ|P (ωj ) < θ

⎫
⎬

⎭
.

The cumulant generating function for SQ|P with respect to Q is Ŝα+1(Q|P), and
the rate function for SQ|P with respect to Q on ]S(P |Q), S(Q|P)[ is ϕ̂. Part (2) of
Corollary 2.18 yields

lim
N→∞

1

N
logQN([TN(θ)]c) = −ϕ̂(θ). (4.47)

The relations (4.46) and (4.47) yield that h(ϕ̂(θ)) ≤ −ϕ(−θ). Since ϕ̂(θ) = s, the
first inequality (4.44) follows from Part (4) of Proposition 4.26.
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We now turn to the second inequality in (4.44). For θ ∈ ] − S(P |Q), S(Q|P)[
and TN ⊂ ΩN we set

DN(TN, θ) = QN([TN ]c)+ eθNPN(TN).

Arguing in the same way as in the proof of Parts (1)–(3) of Proposition 4.23, one
shows that for any TN ,

DN(TN, θ) ≥ DN(TN(θ), θ).

The relations (4.46) and (4.47) yield

lim
N→∞

1

N
logDN(TN(θ), θ)) = −ϕ̂(θ).

Fix now s ∈ ]0, S(P |Q)[ and let θ ∈ ] − S(P |Q), S(Q|P)[ be such that ϕ̂(θ) = s.
Let (TN)N≥1 be a sequence of tests such that

lim sup
N→∞

1

N
logQN(T

c
N) ≤ −s.

Then, for any θ ′ satisfying θ < θ ′ < S(Q|P) we have

−ϕ̂(θ ′) = lim
N→∞

1

N
log
(
QN([TN(θ ′)]c)+ eθ

′NPN(TN(θ ′)
)

≤ lim inf
N→∞

1

N
log
(
QN(T

c
N)+ eθ

′NPN(TN)
)

≤ max

(

lim inf
N→∞

1

N
logQN(T

c
N), θ

′ + lim inf
N→∞

1

N
logPN(TN)

)

≤ max

(

−ϕ̂(θ), θ ′ + lim inf
N→∞

1

N
logPN(TN)

)

.

(4.48)

Since ϕ̂ is strictly decreasing on ] − S(P |Q), S(Q|P)[ we have that
−ϕ̂(θ ′) > −ϕ(θ), and (4.48) gives

lim inf
N→∞

1

N
logPN(TN) ≥ −θ ′ − ϕ̂(θ ′) = −ϕ(θ ′).

Taking θ ′ ↓ θ , we derive

lim inf
N→∞

1

N
logPN(TN) ≥ −ϕ(θ) = −ϕ(ϕ̂−1(s)) = ψ(s),

and so h(s) ≥ ψ(s). ��
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Remark 4.29 Theorem 4.28 and its proof give the following. For any sequence of
tests (TN)N≥1 such that

lim sup
N→∞

1

N
logQN(T

c
N) ≤ −s (4.49)

one has

lim inf
N→∞

1

N
logPN(TN) ≥ ψ(s).

On the other hand, if s ∈]0, S(P |Q)[, ϕ̂(θ) = s, and TN(θ) is defined by (4.45),
then

lim sup
N→∞

1

N
logQN([TN(θ)]c) = −s and lim

N→∞
1

N
logPN(TN(θ)) = ψ(s).

Exercise 4.17 Set

h(0) = inf
(TN )

{

lim sup
N→∞

1

N
logPN(TN)

∣
∣
∣
∣ lim sup

N→∞
1

N
logQN(T

c
N) < 0

}

,

h(0) = inf
(TN )

{

lim inf
N→∞

1

N
logPN(TN)

∣
∣
∣
∣ lim sup

N→∞
1

N
logQN(T

c
N) < 0

}

,

h(0) = inf
(TN )

{

lim
N→∞

1

N
logPN(TN)

∣
∣
∣
∣ lim sup

N→∞
1

N
logQN(T

c
N) < 0

}

,

where in the last case the infimum is taken over all sequences of tests (TN)N≥1 for
which the limit

lim
N→∞

1

N
logPN(TN)

exists. Prove that

h(0) = h(0) = h(0) = −S(Q|P).

Compare with Exercise 4.10.
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4.9 Notes and References

The relative entropy S(P |Pch) already appeared in Shannon’s work [44]. The
definition (4.1) is commonly attributed to Kullback and Leibler [33], and the
relative entropy is sometimes called the Kullback-Leibler divergence. From a
historical perspective, it is interesting to note that the symmetrized relative entropy
S(P |Q) + S(Q|P) was introduced by Jeffreys in [29] (see Equation (1)) in 1946.

The basic properties of the relative entropy described in Sect. 4.1 are so well-
known that it is difficult to trace the original sources. The statement of Proposi-
tion 4.1 is sometimes called Gibbs’s inequality and sometimes Shannon’s inequality.
For the references regarding Theorem 4.2 and Exercise 4.7 see Exercise 17 in
Chapter 3 of [11] (note the typo regarding the value of the constant c).

The variational principles discussed in Sect. 4.2 are of fundamental importance
in statistical mechanics and we postpone their discussion to Part II of the lecture
notes.

The attribution of Theorem 4.14 to statistician Charles Stein appears to be
historically inaccurate; for a hilarious account of the events that has led to this,
see the footnote on the page 85 of [30]. Theorem 4.14 was proven by Hermann
Chernoff in [7]. To avoid further confusion, we have used the usual terminology.
To the best of my knowledge, the Large Deviations arguments behind the proof of
Stein’s Lemma, which were implicit in the original work [7], were brought to the
surface for the first time in [3, 47], allowing for a substantial generalization of the
original results.4 Our proof follows [47].

The Fluctuation Relation described in Sect. 4.4 is behind the spectacular devel-
opments in non-equilibrium statistical mechanics mentioned in the Introduction. We
will return to this topic in Part II of the lecture notes.

The choice of the name for Jensen-Shannon entropy (or divergence) and metric
is unclear; see [37]. To the best of my knowledge, Theorem 4.19 was first proven in
[16, 40]. Our proof follows closely [16]. For additional information, see [20].

The definition of the Rényi relative entropy is usually attributed to [41], although
the “un-normalized” Ŝα(P |Q) already appeared in the work of Chernoff [7] in 1952.

The hypothesis testing is an essential procedure in statistics. Its relevance to
modern developments in non-equilibrium statistical mechanics will be discussed
in Part II of the lecture notes. Theorem 4.25 is due to Chernoff [7]. As in the case of
Stein’s Lemma, the LDP based proof allows to considerably generalize the original
result. The Hoeffding error exponents were first introduced and studied in [25] and
the previous remarks regarding the proof applies to them as well. For additional
information about hypothesis testing, see [35].

4By this I mean that essentially the same argument yields the proof of Stein’s Lemma in a very
general probabilistic setting.
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5 Why is the Relative Entropy Natural?

5.1 Introduction

This chapter is a continuation of Sect. 3.4 and concerns naturalness of the relative
entropy.

1. Operational Interpretation Following on Shannon’s quote in Sect. 3.7, Stein’s
Lemma gives an operational interpretation of the relative entropy S(P |Q). Chernoff
and Hoeffding error exponents, Theorems 4.25 and 4.28, give an operational
interpretation of Rényi’s relative entropy Ŝα(P |Q) and, via formula (4.29), of
Rényi’s entropy Ŝα(P ) as well. Note that this operational interpretation of Rényi’s
entropies is rooted in the LDPs for respective entropy functions which are behind
the proofs of Theorems 4.25 and 4.28.

2. Axiomatic Characterizations Recall that A(Ω) = {(P,Q) ∈ P(Ω) |P ( Q}.
Set A = ∪ΩA(Ω). The axiomatic characterizations of relative entropy concern
choice of a function S : A → R that should qualify as a measure of entropic
distinguishability of a pair (P,Q) ∈ A. The goal is to show that intuitive natural
demands uniquely specify S up to a choice of units, namely that for some c > 0
and all (P,Q) ∈ A, S(P,Q) = cS(P |Q).

We list basic properties that any candidate S for relative entropy should satisfy.
The obvious ones are

S(P, P ) = 0, S(P,Q) ≥ 0, ∃ (P,Q) such that S(P,Q) > 0.
(5.1)

Another obvious requirement is that if |Ω1| = |Ω2| and θ : Ω1 → Ω2 is a bijection,
then for any (P,Q) ∈ A,

S(P,Q) = S(P ◦ θ,Q ◦ θ).

In other words, the distinguishability of a pair (P,Q) should not depend on the
labeling of the elementary events. This requirement gives that S is completely
specified by its restriction S : ∪L≥1AL → [0,∞[, where

AL = {((p1, · · · , pL), (q1, · · · , qL)) ∈ PL × PL | qk = 0 ⇒ pk = 0},

and that this restriction satisfies

S((p1, · · · , pL), (q1, · · · , qL))) = S((pπ(1), · · · , pπ(L)), (qπ(1), · · · qπ(L)))
(5.2)

for any L ≥ 1 and any permutation π of {1, · · · , L}. In the proofs of Theorems 5.1
and 5.3 we shall assume that (5.1) and (5.2) are satisfied.
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Split Additivity Characterization This axiomatic characterization is the relative
entropy analog of Theorem 3.4, and has its roots in the identity (recall Proposi-
tion 4.10)

S(p1P1 + · · · + pnPn|q1Q1 + · · · + qnQn) = p1S(P1|Q1)+ · · · + pnS(Pn|Qn)

+S((p1, · · · , pn)|(q1, · · · qn))

which holds if (suppPj ∪ suppQj) ∩ (suppPk ∪ suppQk) = ∅ for all j �= k.

Theorem 5.1 Let S : A→ [0,∞[ be a function such that:

(a) S is continuous on A2.
(b) For any finite collection of disjoint setsΩj , j = 1, · · ·, n, any (Pj ,Qj )∈A(Ωj ),

and any p = (p1, · · · , pn), q = (q1, · · · , qn) ∈ Pn,

S

(
n⊕

k=1

pkPk,

n⊕

k=1

qkQk

)

=
n∑

k=1

pkS(Pk,Qk)+S(p|q). (5.3)

Then there exists c > 0 such that for all (P,Q) ∈ A,

S(P,Q) = cS(P |Q). (5.4)

Remark 5.2 If the positivity and non-triviality assumptions are dropped, then the
proof gives that (5.4) holds for some c ∈ R.

Exercise 5.1 Following on Remark 3.6, can you verbalize the split-additivity
property (5.3)?

We shall prove Theorem 5.1 in Sect. 5.2. The vanishing assumption S(P, P ) = 0
for all P plays a very important role in the argument. Note that

S(P,Q) = −
∑

ω

P(ω) logQ(ω)

satisfies (a) and (b) of Theorem 5.1 and assumptions (5.1) apart from S(P, P ) = 0.

Stochastic Monotonicity + Super Additivity Characterization This characterization
is related to Theorem 3.7, although its proof is both conceptually different and
technically simpler. The characterization asserts that two intuitive requirements, the
stochastic monotonicity (Proposition 4.8) and super-additivity (Proposition 4.12)
uniquely specify relative entropy.
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Theorem 5.3 Let S : A→ [0,∞[ be a function such that:

(a) S is continuous on AL for all L ≥ 1.
(b) For any P,Q ∈ A(Ω) and any stochastic map Φ : P(Ω)→ P(Ω̂) (note that

(Φ(P ),Φ(Q)) ∈ A(Ω̂)),

S(Φ(P ),Φ(Q)) ≤ S(P,Q). (5.5)

(c) For any P and Q = Ql ⊗Qr in A(Ωl ×Ωr),

S(Pl,Ql)+S(Pr ,Qr) ≤ S(P,Q), (5.6)

with the equality iff P = Pl ⊗ Pr .

Then there exists c > 0 such that for all (P,Q) ∈ A,

S(P,Q) = cS(P |Q). (5.7)

We shall prove Theorem 5.3 in Sect. 5.3. Note that neither assumptions (a) ∧ (b)
nor (a) ∧ (c) are sufficient to deduce (5.7): (a) and (b) hold for the Rényi relative
entropy (P,Q) �→ Sα(P,Q) if α ∈]0, 1[ ((c) fails here), while (a) and (c) hold for
the entropy (P,Q) �→ S(P ) ((b) fails here, recall Exercise 4.5).

4. Sanov’s Theorem This result is a deep refinement of Crámer’s theorem and
the basic indicator of the central role the relative entropy plays in the theory of
Large Deviations. We continue with our framework: Ω is a finite set and P a given
probability measure on Ω . We shall assume that P is faithful.

To avoid confusion, we shall occasionally denote the generic element of Ω with
a letter a (and list the elements of Ω as Ω = {a1, · · · , aL}). For ω ∈ Ω we denote
by δω ∈ P(Ω) the pure probability measure concentrated at ω: δω(a) = 1 if a = ω

and zero otherwise. For ω = (ω1, · · · , ωN ) we set

δω = 1

N

N∑

k=1

δωk .

Obviously, δω ∈ P(Ω) and

δω(a) = the number of times a appears in the sequence ω = (ω1, · · · , ωN )
N

.

Sanov’s theorem concerns the statistics of the map ΩN , ω �→ δω ∈ P(Ω) w.r.t.
the product probability measure PN . The starting point is the corresponding law of
large numbers.
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Proposition 5.4 For any ε > 0,

lim
N→∞PN

{
ω ∈ ΩN | dV (δω, P ) ≥ ε

}
= 0.

Sanov’s theorem concerns fluctuations in the above LLN, or more precisely, for a
given Γ ⊂ P(Ω), it estimates the probabilities

PN

{
ω ∈ ΩN | δω ∈ Γ

}

in the limit of large N .

Theorem 5.5 For any closed set Γ ⊂ P(Ω),

lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≤ − inf

Q∈Γ S(Q|P),

and for any open set Γ ⊂ P(Ω),

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ − inf

Q∈Γ S(Q|P).

We shall prove Proposition 5.4 and Theorem 5.5 in Sect. 5.4 where the reader can
also find additional information about Sanov’s theorem.

5.2 Proof of Theorem 5.1

The function

F(t) = S((1, 0), (t, 1− t)), t ∈]0, 1],

will play an important role in the proof. Obviously, F is continuous on ]0, 1] and
F(1) = 0.

We split the proof into five steps.

Step 1 Let (P,Q)∈A(Ω), where Ω ={ω1, · · · , ωn}, and suppose that P(ωj )= 0
for j > k. Set Ω1 = {ω1, · · · , ωk}, P1(ωj ) = P(ωj ), and

Q1(ωj ) = Q(ωj )

Q(ω1)+ · · · +Q(ωk)
.



Lectures on Entropy. I: Information-Theoretic Notions 225

It is obvious that (P1,Q1) ∈ A(Ω1). We then have

S(P,Q) = F(q1 + · · · + qk)+S(P1,Q1). (5.8)

Note that if k = n, then (5.8) follows from F(1) = 1. Otherwise, write
Ω = Ω1 ⊕Ω2, with Ω2 = {ωk+1, · · · , ωn}. Take any P2 ∈ P(Ω2), write

(P,Q) = (1 · P1 ⊕ 0 · P2, tQ1 ⊕ (1− t)Q2),

where t = q1 + · · · + qk, Q2 is arbitrary if t = 1, and Q2(ωj ) = Q(ωj )/(1− t) if
t < 1, and observe that the statement follows from (5.5).

Step 2 F(ts) = F(t)+ F(s) for all s, t ∈]0, 1].
Consider S((1, 0, 0), (ts, t (1− s), 1− t)). Applying Step 1 with k = 1 we get

S((1, 0, 0), (ts, t (1− s), 1 − t)) = F(ts)+S((1), (1)) = F(ts).

Applying Step 1 with k = 2 gives

S((1, 0, 0), (ts, t (1− s), 1− t)) = F(t)+S((1, 0), (s, 1− s)) = F(t)+ F(s),

and the statement follows.

Step 3 For some c ∈ R, F(t) = −c log t for all t ∈]0, 1].
Set H(s) = F(e−s ). Then H is continuous on [0,∞[ and satisfies

H(s1+ s2) = H(s1)+H(s2). It is now a standard exercise to show that H(s) = cs

where c = H(1). Setting t = e−s gives F(t) = −c log t .
This is the only point where the regularity assumption (a) has been used

(implying the continuity of F ), and so obviously (a) can be relaxed.5 Note that (5.1)
implies c ≥ 0.

Step 4 We now prove that for any n ≥ 2 and any pair (p, q) ∈ An of faithful
probability measures,

S(p, q) = cS(p|q), (5.9)

where c is the constant from Step 3.
Let p = (p1, · · · , pn), q = (q1, · · · , qn), and choose t ∈]0, 1] such that

qk − tpk ≥ 0 for all k. Set

K = S((p1, · · · , pn, 0, · · · , 0), (tp1, · · · , tpn, q1 − tp1, · · · , qn − tpn)).

5It suffices that F is Borel measurable.
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It follows from Steps 1 and 3 that

K = F(t)+S(p, p) = −c log t . (5.10)

On the other hand, (5.2) and (5.3) yield

K = S((p1, 0, · · · , pn, 0), (tp1, q1 − tp1, · · · , tpn, qn − tpn))

= S ((p1(1, 0), · · · , pn(1, 0)),
(

q1

(
tp1

q1
, 1 − tp1

q1

))

, · · · , qn
(
tpn

qn
, 1 − tpn

qn

))

=
n∑

k=1

pkF

(
tpk

qk

)

+S(p, q),

and it follows from Step 3 that

K = −c log t − cS(p|q)+S(p, q). (5.11)

Comparing (5.10) and (5.11) we derive (5.9).

Step 5 We now show that (5.9) also holds for non-faithful p’s and complete the
proof of Theorem 5.1. By (5.2) we may assume that pj > 0 for j ≤ k and pj = 0
for j > k, where k < n. Then, setting s = q1 + · · · qk, Steps 1 and 3 yield

S(p, q) = −c log s +S((p1, · · · , pk), (q1/s, · · · , qk/s)),

and it follows from Step 4 that

S(p, q) = −c log s + cS((p1, · · · , pk)|(q1/s, · · · , qk/s)).

On the other hand, a direct computation gives

S(p|q) = − log s + S((p1, · · · , pk)|(q1/s, · · · , qk/s)),

and so S(p, q) = cS(p|q).
The non-triviality assumption that S is not vanishing on A gives that c > 0.

5.3 Proof of Theorem 5.3

We shall need the following preliminary result which is of independent interest and
which we will prove at the end of this section. Recall that if P is a probability
measure on Ω , then PN = P ⊗ · · · ⊗ P is the product probability measure on
ΩN = Ω × · · · ×Ω .
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Proposition 5.6 Suppose that (P,Q) ∈ A(Ω) and (P̂ , Q̂) ∈ A(Ω̂) are such that
S(P |Q) > S(P̂ |Q̂). Then there exists a sequence of stochastic maps (ΦN)N≥1,
ΦN : P(ΩN)→ P(Ω̂N) such that ΦN(QN) = Q̂N for all N ≥ 1 and

lim
N→∞ dV (ΦN(PN), P̂N ) = 0.

We now turn to the proof of Theorem 5.3. Recall our standing assumptions (5.1).
Let (P (0),Q(0)) ∈ A be such that S(P (0),Q(0)) > 0, and let c > 0 be such that

S(P (0),Q(0)) = cS(P (0)|Q(0)).

Let (P,Q) ∈ A, P �= Q, be given and let L,M,L′,M ′ be positive integers such
that

L′

M ′ S(P
(0)|Q(0)) < S(P |Q) <

L

M
S(P (0)|Q(0)). (5.12)

We work first with the r.h.s. of this inequality which can be rewritten as

S(PM |QM) < S(P
(0)
L |Q(0)

L ).

It follows from Proposition 5.6 that there exists a sequence of stochastic maps
(ΦN)N≥1 such that ΦN(Q

(0)
LN) = QMN and

lim
N→∞ dV (ΦN(P

(0)
L ), PMN) = 0. (5.13)

We now turn to S(P,Q) and note that

MS(P,Q) = S(PM,QM) = 1

N
S(PMN ,QMN)

= 1

N

[
S(PMN,QMN)−S(ΦN(P

(0)
L ),QMN)

]

+ 1

N
S(ΦN(P

(0)
L ),ΦN(Q

(0)
LN))

≤ 1

N

[
S(PMN,QMN)−S(ΦN(P

(0)
L ),QMN)

]

+ 1

N
S(P

(0)
LN,Q

(0)
LN)

= 1

N

[
S(PMN,QMN)−S(ΦN(P

(0)
L ),QMN)

]

+LS(P
(0)
L ,Q(0)). (5.14)
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Write QMN = QM ⊗· · ·⊗QM and denote by Rk,N the marginal of ΦN(P
(0)
L ) with

the respect to the k-th component of this decomposition. Assumption (c) gives

1

N

[
S(PMN,QMN)−S(ΦN(P

(0)
L ),QMN)

]
≤ 1

N

N∑

k=1

[S(PM,QM)

−S(Rk,N,QM)
]
. (5.15)

One easily shows that (5.13) implies that for any k,

lim
N→∞ dV (Rk,N , PM) = 0. (5.16)

It then follows from (5.15) that

lim sup
N→∞

1

N

[
S(PMN,QMN)−S(ΦN(P

(0)
L ),QMN)

]
≤ 0. (5.17)

Returning to (5.14), (5.17) yields

S(P,Q) ≤ L

M
S(P (0),Q(0)) = L

M
cS(P (0)|Q(0)). (5.18)

Since the only constraint regarding the choice of L and M is that (5.12) holds, we
derive from (5.18) that

S(P,Q) ≤ cS(P |Q).

Starting with the l.h.s. of the inequality (5.12) and repeating the above argument one
derives that S(P,Q) ≥ cS(P |Q). Hence, S(P,Q) = cS(P |Q) for all (P,Q) ∈ A
with P �= Q. Since this relation holds trivially for P = Q, the proof is complete. �
Exercise 5.2 Prove that (5.13) implies (5.16).

Proof of Proposition 5.6 The statement is trivial if P̂ = Q̂, so we assume that
P̂ �= Q̂ (hence S(P̂ |Q̂) > 0). Let t, t̂ be such that

S(P̂ |Q̂) < t̂ < t < S(P |Q).

It follows from Stein’s Lemma that one can find a sequence of sets
(TN)N≥1, TN ⊂ ΩN , such that

lim
N→∞PN(TN) = 1, QN(TN) ≤ C1e−Nt ,
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for some constant C1 > 0. Let ΨN : P(Ω) → P({0, 1}) be a stochastic map
induced by the matrix

ΨN(ω, 0) = χTN (ω), ΨN(ω, 1) = χT c
N
(ω),

where χTN and χT c
N

are the characteristic functions of TN and its complement T c
N .

It follows that

ΨN(PN) = (pN, pN), Ψ (QN) = (qN, qN),

where

pN = PN(TN), qN = Q(TN).

Obviously pN = 1− pN , qN = 1− qN .
It follows again from Stein’s Lemma that one can find a sequence of sets

(T̂N)N≥1, T̂N ⊂ Ω̂N , such that

lim
N→∞ P̂N (T̂N) = 1, QN(T̂

c
N ) > C2e−Nt̂ ,

for some constant C2 > 0. We now construct a stochastic map
Ψ̂N :P({0, 1})→ P(Ω̂) as follows. Let δ0 = (1, 0), δ1 = (0, 1). We set first

Ψ̂N (δ0)(ω) = P̂N (ω)
∑

ω′∈T̂N P̂N (ω′)
if ω ∈ T̂N ,

Ψ̂N (δ0)(ω) = 0 otherwise, and observe that

dV (Ψ̂N(δ0), P̂N ) ≤ P̂N (T̂
c
N )+

1− P̂N (T̂N )

P̂N (T̂N )
.

Hence,

lim
N→∞ dV (Ψ̂N(δ0), P̂N ) = 0.

Let

DN(ω) = Q̂N(ω)− qNΦN(δ0)(ω).

If ω �∈ T̂N , then obviously DN(ω) = Q̂N (ω) ≥ 0, and if ω ∈ T̂N ,

DN(ω) ≥ C−t̂N2 − c1e−tN .
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Since 0 < t̂ < t , there is N0 such that for N ≥ N0 and all ω ∈ Ω̂ , DN(ω) ≥ 0.
From now on we assume that N ≥ N0, set

Ψ̂N (δ1) = 1

qN
(QN − qNΦN(δ0)),

and define Ψ̂N : P({0, 1})→ P(Ω̂) by

Ψ̂N(p, q) = pΨ (δ0)+ qΨ (δ1).

The map Ψ̂N is obviously stochastic and

Ψ̂N (qN , qN) = Q̂N .

Moreover,

dV (Ψ̂N (pN, pN), P̂N ) ≤ dV (Ψ̂N (pN, pN), Ψ̂N (δ0))+ dV (Ψ̂N (δ0), P̂N )

≤ 2(1− pN)+ dV (Ψ̂N (δ0), P̂N ),

and so

lim
N→∞ dV (Ψ̂N(pN, pN), P̂N ) = 0.

For N < N0 we take for ΦN an arbitrary stochastic map satisfying ΦN(QN) = Q̂N

and for N ≥ N0 we set ΦN = Ψ̂N ◦ ΨN . Then ΦN(QN) = Q̂N for all N ≥ 1 and

lim
N→∞ dV (ΦN(PN), P̂N ) = 0,

proving the proposition. ��
Exercise 5.3 Write down the stochastic matrix that induces Ψ̂N .

5.4 Sanov’s Theorem

We start with

Proof of Proposition 5.4. Recall that L = |Ω |. We have

dV (δω, P ) =
∑

a∈Ω

∣
∣
∣
∣
∣

∑N
k=1 δωk (a)

N
− P(a)

∣
∣
∣
∣
∣
,
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and

{
ω ∈ ΩN | dV (δω, P ) ≥ ε

}
⊂
⋃

a∈Ω

{

ω ∈ ΩN
∣
∣

∣
∣
∣
∣
∣

∑N
k=1 δωk (a)

N
− P(a)

∣
∣
∣
∣
∣
≥ ε

L

}

.

Hence,

PN

{
ω ∈ ΩN | dV (δω, P )≥ ε

}
≤
∑

a∈Ω
PN

{

ω ∈ ΩN
∣
∣

∣
∣
∣
∣
∣

∑N
k=1 δωk (a)

N
− P(a)

∣
∣
∣
∣
∣
≥ ε

L

}

.

(5.19)

For given a ∈ Ω , consider a random variable X : Ω → R defined by
X(ω) = δω(a). Obviously, E(X) = P(a) and the LLN yields that

lim
N→∞PN

{

ω ∈ ΩN
∣
∣

∣
∣
∣
∣
∣

∑N
k=1 δωk (a)

N
− P(a)

∣
∣
∣
∣
∣
≥ ε

L

}

= 0.

The proposition follows by combining this observation with inequality (5.19). ��
We now turn to the proof of Sanov’s theorem. Recall the assumption that P is

faithful. We start with the upper bound.

Proposition 5.7 Suppose that Γ ⊂ P(Ω) is a closed set. Then

lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≤ − inf

Q∈Γ S(Q|P).

Remark 5.8 Recall that the map P(Ω) , Q �→ S(Q|P) ∈ [0,∞[ is continuous
(P is faithful). Since Γ is compact, there exists Qm ∈ P(Ω) such that

inf
Q∈Γ S(Q|P) = S(Qm|P).

Proof Let ε > 0 be given. Let Q ∈ Γ . By Exercise 4.9,

S(Q|P) = sup
X:Ω→R

(∫

Ω

XdQ− log
∫

Ω

eXdP

)

.

Hence, we can find X such that

S(Q|P) − ε <

∫

Ω

XdQ− log
∫

Ω

eXdP.
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Let

Uε(Q) =
{

Q′ ∈ P(Ω)
∣
∣
∣
∣
∣
∣

∫

Ω

XdQ−
∫

Ω

XdQ′
∣
∣
∣
∣ < ε

}

.

Since the map P(Ω) , Q′ �→ ∫
Ω XdQ′ is continuous, Uε(Q) is an open subset of

P(Ω). We now estimate

PN {δω ∈ Uε(Q)} = PN

{∣
∣
∣
∣

∫

Ω

XdQ−
∫

Ω

Xdδω

∣
∣
∣
∣ < ε

}

≤ PN

{∫

Ω

Xδω >

∫

Ω

XdQ− ε

}

= PN

{
N∑

k=1

X(ωk) > N

∫

Ω

XdQ−Nε

}

= PN

{
e
∑N

k=1 X(ωk) > eN
∫
Ω XdQ−Nε}

≤ e−N
∫
Ω XdQ+Nε

E(eX)N

= e−N
∫
Ω XdQ+N log

∫
Ω eXdP+Nε

≤ e−NS(Q|P)+2Nε

Since Γ is compact, we can find Q1, · · · ,QM ∈ Γ such that

Γ ⊂
M⋃

j=1

Uε(Qj ).

Then

PN {δω ∈ Γ } ≤
M∑

j=1

PN
{
δω ∈ Uε(Qj )

}

≤ e2Nε
M∑

j=1

e−NS(Qj |P)

≤ e2NεMe−N infQ∈Γ S(Q|P).
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Hence

lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≤ − inf

Q∈Γ S(Q|P) + 2ε.

Since ε > 0 is arbitrary, the statement follows. ��
We now turn to the lower bound.

Proposition 5.9 For any open set Γ ⊂ P(Ω),

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ − inf

Q∈Γ S(Q|P).

Proof Let Q ∈ Γ be faithful. Recall that SQ|P = logΔQ|P and

∫

Ω

SP |Qdδω = SQ|P (ω1)+ · · · + SQ|P (ωN )
N

.

Let ε > 0 and

RN,ε =
{

δω ∈ Γ
∣
∣
∣
∣
∣
∣

∫

Ω

SQ|P dδω − S(Q|P)
∣
∣
∣
∣ < ε

}

.

Then

PN {δω ∈ Γ } ≥ PN(RN,ε) =
∫

RN,ε

ΔPN |QN dQN =
∫

RN,ε

Δ−1
QN |PN dQN

=
∫

RN,ε

e−
∑N

k=1 SQ|P (ωk)dQN

≥ e−NS(Q|P)−NεQN(RN,ε).

Note that for ε small enough (Γ is open!)

RN,ε ⊃
{
ω ∈ ΩN | dV (Q, δω) < ε

}

∩
{

ω ∈ ΩN
∣
∣
∣
∣
∣
∣
SQ|P (ω1)+ · · · + SQ|P (ωN)

N
− S(Q|P)

∣
∣
∣
∣ < ε

}

.

By the LLN,

lim
N→∞QN(RN,ε) = 1.
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Hence, for any faithful Q ∈ Γ ,

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ −S(Q|P). (5.20)

Since Γ is open and the map P(Ω) , Q→ S(Q|P) is continuous,

inf
Q∈Γ∩Pf(Ω)

S(Q|P) = inf
Q∈Γ S(Q|P). (5.21)

The relations (5.20) and (5.21) imply

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ − inf

Q∈Γ S(Q|P). ��
Exercise 5.4 Prove the identity (5.21).

A set Γ ∈ P(Ω) is called Sanov-nice if

inf
Q∈intΓ

S(Q|P) = inf
Q∈clΓ

S(Q|P),

where int/cl stand for the interior/closure. If Γ is Sanov-nice, then

lim
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
= − inf

Q∈Γ S(Q|P).

Exercise 5.5 1. Prove that any open set Γ ⊂ P(Ω) is Sanov-nice.
2. Suppose that Γ ⊂ P(Ω) is convex and has non-empty interior. Prove that Γ is

Sanov-nice.

We now show that Sanov’s theorem implies Cramér’s theorem. The argument
we shall use is an example of the powerful contraction principle in theory of Large
Deviations.

Suppose that in addition toΩ and P we are given a random variableX : Ω → R.
C and I denote the cumulant generating function and the rate function of X. Note
that

SN(ω)
N

= X(ω1)+ · · · +X(ωN)

N
=
∫

Ω

Xdδω.

Hence, for any S ⊂ R,

SN(ω)
N

∈ S ⇔ δω ∈ ΓS,
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where

ΓS =
{

Q ∈ P(Ω)
∣
∣
∫

Ω

XdQ ∈ S

}

.

Exercise 5.6 Prove that

intΓS = ΓintS, clΓS = ΓclS.

Sanov’s theorem and the last exercise yield

Proposition 5.10 For any S ⊂ R,

− inf
Q∈ΓintS

S(Q|P) ≤ lim inf
N→∞

1

N
logPN

{

ω ∈ ΩN
∣
∣ SN(ω)

N
∈ S

}

≤ lim sup
N→∞

1

N
logPN

{

ω ∈ ΩN
∣
∣ SN(ω)

N
∈ S

}

≤ − inf
Q∈ΓclS

S(Q|P),

To relate this result to Cramér’s theorem we need:

Proposition 5.11 For any S ⊂ R,

inf
θ∈S I (θ) = inf

Q∈ΓS
S(Q|P). (5.22)

Proof LetQ ∈ P(Ω). An application of Jensen’s inequality gives that for all α ∈ R,

C(α) = log

(
∑

ω∈Ω
eαX(ω)P (ω)

)

≥ log

⎛

⎝
∑

ω∈suppQ

eαX(ω)
P (ω)

Q(ω)
Q(ω)

⎞

⎠

≥
∑

ω∈suppQ

Q(ω) log

[

eαX(ω)
P (ω)

Q(ω)

]

.

Hence,

C(α) ≥ α

∫

Ω

XdQ− S(Q|P). (5.23)
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If Q is such that θ0 =
∫
Ω XdQ ∈ S, then (5.23) gives

S(Q|P) ≥ sup
α∈R

(αθ0 − C(α)) = I (θ0) ≥ inf
θ∈S I (θ),

and so

inf
Q∈ΓS

S(Q|P) ≥ inf
θ∈S I (θ). (5.24)

On the other hand, if θ ∈]m,M[, where m = minω∈Ω X(ω) and
M = maxω∈Ω X(ω), and α = α(θ) is such that C′(α(θ)) = θ , then, with Qα

defined by (2.3) (recall also the proof of Cramer’s theorem), θ = ∫
Ω
XdQα and

S(Qα|P) = αθ − C(α) = I (θ). Hence, if S ⊂ ]m,M[, then for any θ0 ∈ S,
infQ∈ΓS S(Q|P) ≤ I (θ0), and so

inf
Q∈ΓS

S(Q|P) ≤ inf
θ∈S I (θ). (5.25)

It follows from (5.24) and (5.25) that (5.22) holds for S ⊂ ]m,M[. One checks
directly that

I (m) = inf
Q:∫Ω XdQ=m

S(Q|P), I (M) = inf
Q:∫Ω XdQ=M

S(Q|P). (5.26)

If S ∩ [m,M] = ∅, then both sides in (5.22) are ∞ (by definition, inf∅ = ∞).
Hence,

inf
θ∈S I (θ) = inf

θ∈S∩[m,M] I (θ) = inf
Q∈ΓS∩[m,M]

S(Q|P) = inf
Q∈ΓS

S(Q|P),

and the statement follows. ��
Exercise 5.7 Prove the identities (5.26).

Propositions 5.10 and 5.11 yield the following generalization of Cramér’s
theorem:

Theorem 5.12 For any S ⊂ R,

− inf
θ∈intS

I (θ) ≤ lim inf
N→∞

1

N
logPN

{

ω ∈ ΩN
∣
∣ SN(ω)

N
∈ S

}

≤ lim sup
N→∞

1

N
logPN

{

ω ∈ ΩN
∣
∣ SN(ω)

N
∈ S

}

≤ − inf
θ∈clS

I (θ).
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A set S is called Cramer-nice if

inf
θ∈intS

I (θ) = inf
θ∈clS

I (θ).

Obviously, if S is Cramer-nice, then

lim
N→∞

1

N
logPN

{

ω ∈ ΩN
∣
∣ SN(ω)

N
∈ S

}

= − inf
θ∈S I (θ).

Exercise 5.8

1. Is it true that any open/closed interval is Cramér-nice?
2. Prove that any open set S ⊂]m,M[ is Cramér-nice.
3. Describe all open sets that are Cramér-nice.

5.5 Notes and References

Theorem 5.1 goes back to the work of Hobson [24] in 1969. Following in Shannon’s
steps, Hobson has proved Theorem 5.1 under the additional assumptions that S is
continuous on AL for all L ≥ 1, and that the function

(n, n0) �→ S

((
1

n
, · · · , 1

n
, 0, · · · , 0

)

,

(
1

n0
, · · · , 1

n0

))

,

defined for n ≤ n0, is an increasing function of n0 and a decreasing function of n.
Our proof of Theorem 5.1 follows closely [36] where the reader can find additional
information about the history of this result.

The formulation and the proof of Theorem 5.3 are based on the recent works
[38, 53].

For additional information about axiomatizations of relative entropy, we refer the
reader to Section 7.2 in [1].

Regarding Sanov’s theorem, for the original references and additional infor-
mation, we refer the reader to [9, 13]. In these monographs one can also find a
purely combinatorial proof of Sanov’s theorem and we urge the reader to study this
alternative proof. As in the case of Cramér’s theorem, the proof presented here has
the advantage that it extends to a much more general setting that will be discussed
in the Part II of the lecture notes.
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6 Fisher Entropy

6.1 Definition and Basic Properties

Let Ω be a finite set and [a, b] a bounded closed interval in R. To avoid trivialities,
we shall always assume that |Ω | = L > 1. Let {Pθ }θ∈[a,b], Pθ ∈ Pf(Ω), be a family
of faithful probability measures on Ω indexed by points θ ∈ [a, b]. We shall assume
that the functions [a, b] , θ �→ Pθ(ω) are C2 (twice continuously differentiable)
for all ω ∈ Ω . The expectation and variance with respect to Pθ are denoted by Eθ

and Varθ . The entropy function is denoted by Sθ = − logPθ . The derivatives w.r.t.
θ are denoted as ḟ (θ) = ∂θf (θ), f̈ (θ) = ∂2

θ f (θ), etc. Note that

Ṡθ = − Ṗθ

Pθ
, S̈θ = − P̈θ

Pθ
+ Ṗ 2

θ

P 2
θ

, Eθ (Ṡθ ) = 0.

The Fisher entropy of Pθ is defined by

I(θ) = Eθ ([Ṡθ ]2) =
∑

ω∈Ω

[Ṗθ (ω)]2
Pθ (ω)

.

Obviously,

I(θ) = Varθ (Ṡθ ) = Eθ (S̈θ ).

Example 6.1 Let X : Ω → R be a random variable and

Pθ (ω) = eθX(ω)
∑

ω′ eθX(ω′)
.

Then

I(θ) = Varθ (X).

The Fisher entropy arises by considering local relative entropy distortion of Pθ . Fix
θ ∈ I and set

L(ε) = S(Pθ+ε |Pθ ), R(ε) = S(Pθ |Pθ+ε).

The functions ε �→ L(ε) and ε �→ R(ε) are well-defined in a neighbourhood of θ
(relative to the interval [a, b]). An elementary computation yields:
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Proposition 6.2

lim
ε→0

1

ε2L(ε) = lim
ε→0

1

ε2R(ε) =
1

2
I(θ).

In terms of the Jensen-Shannon entropy and metric we have

Proposition 6.3

lim
ε→0

1

ε2 SJS(Pθ+ε , Pθ ) = 1

4
I(θ),

lim
ε→0

1

|ε|dJS(Pθ+ε , Pθ ) = 1

2

√
I(θ).

Exercise 6.1 Prove Propositions 6.2 and 6.3.

Since the relative entropy is stochastically monotone, Proposition 6.2 implies
that the Fisher entropy is also stochastically monotone. More precisely, let
[Φ(ω, ω̂)]

(ω,ω̂)∈Ω×Ω̂ be a stochastic matrix and Φ : P(Ω) → P(Ω̂) the induced
stochastic map. Set

P̂θ = Φ(Pθ ),

and note that P̂θ is faithful. Let Î(θ) be the Fisher entropy of P̂θ . Then

Î(θ) = lim
ε→0

1

ε2 S(P̂θ+ε |P̂θ ) ≤ lim
ε→0

1

ε2 S(Pθ+ε |Pθ ) = I(θ).

The inequality Î(θ) ≤ I(θ) can be directly proven as follows. Since the function
x �→ x2 is convex, the Jensen inequality yields

(
∑

ω

Φ(ω, ω̂)Ṗθ (ω)

)2

=
(
∑

ω

Φ(ω, ω̂)Pθ (ω)
Ṗθ (ω)

Pθ (ω)

)2

≤
(
∑

ω

Φ(ω, ω̂)
[Ṗθ (ω)]2
Pθ(ω)

)(
∑

ω

Φ(ω, ω̂)Pθ (ω)

)

.
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Hence,

Î(θ) =
∑

ω̂

(
∑

ω

Φ(ω, ω̂)Pθ (ω)

)−1 (
∑

ω

Φ(ω, ω̂)Ṗθ (ω)

)2

≤
∑

ω̂

∑

ω

Φ(ω, ω̂)Pθ (ω)
[Ṗθ (ω)]2
Pθ(ω)

= I(θ).

6.2 Entropic Geometry

We continue with the framework of the previous section. In this section we again
identify Pf(Ω) with

PL,f =
{

(p1, · · · , pL) ∈ R
L |pk > 0,

∑

k

pk = 1

}

.

We view PL,f as a surface in R
L and write p = (p1, · · · , pL). The family

{Pθ }θ∈[a,b] is viewed as a map (we will also call it a path)

[a, b] , θ �→ pθ = (pθ1, · · · , pθL) ∈ PL,f,

where pθk = Pθ (ωk). For the purpose of this section it suffices to assume that
all such path are C1 (that is, continuously differentiable). The tangent vector
ṗθ = (ṗθ1, · · · , ṗθL) satisfies

∑
k ṗθk = 0 and hence belongs to the hyperplane

TL =
{

ζ = (ζ1, · · · , ζL) |
∑

k

ζk = 0

}

.

The tangent space of the surface PL,f is TL = PL,f × TL.
A Riemannian structure (abbreviated RS) on PL,f is a family

gL = {gL,p(·, ·)}p∈PL
of real inner products on TL such that for all ζ, η ∈ TL

the map

PL , p �→ gL,p(ζ, η) (6.1)

is continuous. The geometric notions (angles, length of curves, curvature, etc.) on
PL are defined with respect to the RS (to define some of them one needs additional
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regularity of the maps (6.1)). For example, the energy of the path θ �→ pθ is

E([pθ ]) =
∫ b

a

gL,pθ (ṗθ , ṗθ )dθ,

and its length is

L([pθ ]) =
∫ b

a

√
gL,pθ (ṗθ , ṗθ )dθ.

Jensen’s inequality for integrals (which is proven by applying Jensen’s inequality to
Riemann sums) gives that

L([pθ ]) ≥ [(b − a)E([pθ ])]1/2 . (6.2)

The Fisher Riemannian structure (abbreviated FRS) is defined by

gFp (ζ, η) =
∑

k

1

pk
ζkηk.

In this case,

gFp(θ)(ṗθ , ṗθ ) = I(θ),

where I(θ) is the Fisher entropy of Pθ . Hence.

E([pθ ]) =
∫ b

a

I(θ)dθ, L([pθ ]) =
∫ b

a

√
I(θ)dθ.

We have the following general bounds:

Proposition 6.4

∫ b

a

I(θ)dθ ≥ 1

b − a
dV (pa, pb)

2,

∫ b

a

√
I(θ)dθ ≥ dV (pa, pb), (6.3)

where dV is the variational distance defined by (3.2).

Remark 6.5 The first inequality in (6.3) yields the “symmetrized” version of
Theorem 4.2. Let p, q ∈ PL,f and consider the path pθ = θp+ (1− θ)q , θ ∈ [0, 1].
Then

∫ 1

0
I(θ)dθ = S(p|q)+ S(q|p),
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and the first inequality in (6.3) gives

S(p|q)+ S(q|p) ≥ dV (p, q)
2.

Proof To prove the first inequality, note that Jensen’s inequality gives

I(θ) =
L∑

k=1

ṗ2
θk

pθk
=

L∑

k=1

[
ṗθk

pθk

]2

pθk ≥
(

L∑

k=1

|ṗθk|
)2

. (6.4)

Hence,

∫ b

a

I(θ)dθ ≥
∫ b

a

(
L∑

k=1

|ṗθk|
)2

dθ ≥ 1

b − a

(
L∑

k=1

∫ b

a

|ṗθk|dθ
)2

,

where the second inequality follows from Jensen’s integral inequality. The last
inequality and

∫ b

a

|ṗθk|dθ ≥
∣
∣
∣
∣

∫ b

a

ṗθkdθ

∣
∣
∣
∣ = |pbk − pak| (6.5)

yield the statement.
Note that the first inequality in (6.3) and (6.2) implies the second. Alternatively,

the second inequality follows immediately from (6.4) and (6.5). ��
The geometry induced by the FRS can be easily understood in terms of the

surface

SL = {s = (s1, · · · , sL) ∈ R
L | sk > 0,

∑

k

s2
k = 1}.

The respective tangent space is SL × R
L−1 which we equip with the Euclidian RS

es(ζ, η) =
∑

k

ζkηk.

Note that es(ζ, η) does not depend on s ∈ SL and we will drop the subscript s.
Let now θ �→ pθ = (pθ1, · · · , pθL) be a path connecting p = (p1, · · · , pL) and
q = (q1, · · · , qL) in PL,f. Then,

θ �→ sθ = (
√
pθ1 , · · · ,

√
pθL)

is a path in SL connecting s = (
√
p1, · · · ,√pL) and u = (

√
q1, · · · ,√qL).

The map [pθ ] �→ [sθ ] is a bijective correspondences between all C1-paths in PL,f
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connecting p and q and all C1-paths in SL connecting s and u. Since

e(ṡθ , ṡθ ) = 1

4
gFp(θ)(ṗθ , ṗθ ) =

1

4
I(θ),

the geometry on PL,f induced by the FRS is identified with the Euclidian geometry
of SL via the map [pθ ] �→ [sθ ].
Exercise 6.2 The geodesic distance between p, q ∈ PL,f w.r.t. the FRS is defined
by

γ (p, q) = inf
∫ b

a

√
gFp(θ)(ṗθ , ṗθ )dθ, (6.6)

where inf is taken over all C1-paths [a, b] , θ �→ pθ ∈ PL,f such that pa = p and
pb = q . Prove that

γ (p, q) = arccos

(
L∑

k=1

√
pkqk

)

.

Show that the r.h.s. in (6.6) has a unique minimizer and identify this minimizer.

The obvious hint for a solution of this exercise is to use the correspondence
between the Euclidian geometry of the sphere and the FRS geometry of PL,f. We
leave it to the interested reader familiar with basic notions of differential geometry
to explore this connection further. For example, can you compute the sectional
curvature of PL,f w.r.t. the FRS?

6.3 Chentsov’s Theorem

Let (gL)L≥2 be a sequence of RS, where gL is a RS on PL,f. The sequence (gL)L≥2
is called stochastically monotone if for any L, L̂ ≥ 2 and any stochastic map
Φ : PL,f → PL̂,f,

gL̂,Φ(p)(Φ(ζ ),Φ(ζ )) ≤ gL,p(ζ, ζ )

for all p ∈ PL,f and ζ ∈ TL. Here we used that, in the obvious way, Φ defines a
linear map Φ : RL �→ R

L̂ which maps TL to TL̂.

Proposition 6.6 The sequence (gFL )L≥1 of the FRS is stochastically monotone.

Proof The argument is a repetition of the direct proof of the inequality I(θ) ≤ Î(θ)
given in Sect. 6.1. The details are as follows.
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Let [Φ(i, j)]1≤i≤L,1≤j≤L̂ be a stochastic matrix defining Φ : PL,f → PL̂,f, i.e.,

for any v = (v1, · · · , vL) ∈ R
L, Φ(v) ∈ R

L̂ is given by

(Φ(v))j =
L∑

i=1

Φ(i, j)vi .

For p ∈ PL and ζ ∈ TL the convexity gives

(
∑

i

Φ(i, j)ζi

)2

=
(
∑

i

Φ(i, j)pi
ζi

pi

)2

≤
(
∑

i

Φ(i, j)
ζ 2
i

pi

)(
∑

i

Φ(i, j)pi

)

=
(
∑

i

Φ(i, j)
ζ 2
i

pi

)

(Φ(p))j .

Hence,

gF
L̂
(Φ(ζ ),Φ(ζ )) =

∑

j

1

(Φ(p))j

(
∑

i

Φ(i, j)ζi

)2

≤
∑

j

∑

i

Φ(i, j)
ζ 2
i

pi
=
∑

i

ζ 2
i

pi
= gFL,p(ζ, ζ ).

��
The main result of this section is:

Theorem 6.7 Suppose that a sequence (gL)L≥2 is stochastically monotone. Then
there exists a constant c > 0 such that gL = cgFL for all L ≥ 2.

Proof We start the proof by extending each gL,p to a bilinear mapGL,p on R
L×R

L

as follows. Set νL = (1, · · · , 1) ∈ R
L and note that any v ∈ R

L can be uniquely
written as v = aνL+ζ , where a ∈ R and ζ ∈ TL. If v = aνL+ζ andw = a′νL+ζ ′,
we set

GL,p(v,w) = gL,p(ζ, ζ
′).

The map GL,p is obviously bilinear, symmetric (GL,p(v,w) = GL,p(w, v)), and
non-negative (GL,p(v, v) ≥ 0). In particular, the polarization identity holds:

GL,p(v,w) = 1

4

(
GL,p(v +w, v +w)−GL,p(v −w, v −w)

)
. (6.7)

Note however that GL,p is not an inner product since GL,p(νL, νL) = 0.
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In what follows pL,ch denotes the chaotic probability distribution in PL,
i.e., pL,ch = (1/L, · · · , 1/L). A basic observation is that if the stochastic map
Φ : PL,f → PL̂,f is stochastically invertible (that is, there exists a stochastic map
Ψ : PL̂,f → PL,f such that Φ ◦ Ψ (p) = p for all p ∈ PL,f) and Φ(pL,ch) = pL̂,ch,
then for all v,w ∈ R

L,

GL̂,pL̂,ch
(Φ(v),Φ(w)) = GL,pL,ch(v,w). (6.8)

To prove this, note that since Φ preserves the chaotic probability distribution, we
have that Φ(νL) = LL̂−1νL̂. Then, writing v = aνL + ζ , we have

GL,pL,ch(v, v) = gL,pL,ch(ζ, ζ ) ≥ gL̂,pL̂,ch
(Φ(ζ ),Φ(ζ ))

= GL̂,pL̂,ch

(
aLL̂−1νL̂ +Φ(ζ ), aLL̂−1νL̂ +Φ(ζ )

)

= GL̂,pL̂,ch
(aΦ(νL)+Φ(ζ ), aΦ(νL)+Φ(ζ ))

= GL̂,pL̂,ch
(Φ(v),Φ(v)).

(6.9)

If Ψ : PL̂,f → PL,f is the stochastic inverse of Φ, then Ψ (pL̂,ch) = pL,ch and so by
repeating the above argument we get

GL̂,pL̂,ch
(Φ(v),Φ(v)) ≥ GL,pL,ch(Ψ (Φ(v)), Ψ (Φ(v)) = GL,pL,ch(v, v).

(6.10)

The inequalities (6.9) and (6.10) yield (6.8) in the case v = w. The polarization
identity (6.7) then yields the statement for all vectors v and w.

We proceed to identifyGL̂,pL̂,ch
and gL̂,pL̂,ch

. The identity (6.8) will play a central

role in this part of the argument. Let eL,k, k = 1, · · · , L, be the standard basis of
R
L. Let π be a permutation of {1, · · · , L}. Then for all 1 ≤ j, k ≤ L,

GpL,ch (eL,j , eL,k) = GpL,ch (eL,π(j), eL,π(k)). (6.11)

To establish (6.11), we use (6.8) with Φ : PL,f → PL,f defined by

Φ((p1, · · ·pL)) = (pπ(1), · · · , pπ(L)).

Note that Φ is stochastically invertible with the inverse

Ψ ((p1, · · ·pL)) = (pπ−1(1), · · · , pπ−1(L)),
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and that Φ(pL,ch) = pL,ch. An immediate consequence of the (6.11) is that for all
k, j ,

GpL,ch(eL,j , eL,j ) = GpL,ch(eL,k, eL,k), (6.12)

and that for all pairs (j, k), (j ′, k′) with j �= j ′ and k �= k′,

GpL,ch (eL,j , eL,k) = GpL,ch(eL,j ′, eL,k′). (6.13)

We introduce the constants

cL = GpL,ch(eL,j , eL,j ), bL = GpL,ch(eL,j , eL,k),

where j �= k. By (6.12) and (6.13), these constants do not depend on the choice
of j, k. We now show that there exist constants c, b ∈ R such that for all L ≥ 2,
cL = cL + b and bL = b. To prove this, let L,L′ ≥ 2 and consider the stochastic
map Φ : PL,f → PLL′,f defined by

Φ((p1, · · · , pL)) =
(p1

L′
, · · · , p1

L′
, · · · , pL

L′
, · · · , pL

L′
)
,

where each term pk/L
′ is repeated L′ times. This map is stochastically invertible

with the inverse

Ψ
(
(p

(1)
1 , · · · , p(1)

L′ , · · · , p(L)1 , · · · , p(L)
L′ )
)
=
⎛

⎝
L′∑

k=1

p
(1)
k , · · · ,

L′∑

k=1

p
(L)
k

⎞

⎠ .

Since Φ(pL,ch) = pLL′,ch, (6.8) holds. Combining (6.8) with the definition bL, we
derive that

bL = bLL′ = bL′.

Set b = bL. Then, for L,L′ ≥ 2, (6.8) and the definition of cL give

cL = 1

L′
cLL′ + L′(L′ − 1)

(L′)2
bLL′ = 1

L′
cLL′ + L′(L′ − 1)

(L′)2
,

and so

cL − b = 1

L′
(cLL′ − b).

Hence,

1

L
(cL − b) = 1

LL′
(cLL′ − b) = 1

L′
(cL′ − b),
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and we conclude that

cL = cL+ b

for some c ∈ R. It follows that for v,w ∈ R
L,

GpL,ch (v,w) = cL

L∑

k=1

vkwk + b

(
L∑

k=1

vk

)(
L∑

k=1

wk

)

,

and that for ζ, η ∈ TL,

gpL,ch (ζ, η) = cL

L∑

k=1

ζkηk. (6.14)

The last relation implies in particular that c > 0. Note that (6.14) can be written
as gL,pL,ch = cgFL,pch

, proving the statement of the theorem for the special values
p = pL,ch.

The rest of the argument is based on the relation (6.14). By essentially repeating
the proof of the identity (6.8) one easily shows that if Φ : PL,f → PL̂,f is
stochastically invertible, then for all p ∈ PL,f and ζ, η ∈ TL,

gL,Φ(p)(Φ(ζ ),Φ(η)) = gL,p(ζ, η). (6.15)

Let now p = (p1, · · · , pL) ∈ PL,f be such that all pk’s are rational numbers.
We can write

p =
(
�1

L′
, · · · , �L

L′

)

.

where all �k’s are integers ≥ 1 and
∑

k �k = L′. Let Φ : PL,f → PL′,f be a
stochastic map defined by

Φ((p1, · · · , pL)) =
(
p1

�1
, · · · , p1

�1
, · · · , pL

�L
, · · · , pL

�L

)

,

where each term pk/�k is repeated �k times. The map Φ is stochastically invertible
and its inverse is

Ψ ((p
(1)
1 , · · · , p(1)�1

, · · · , p(�L)1 , · · · , p(�L)�L
)) =

(
�1∑

k=1

p
�1
k , · · · ,

�L∑

k=1

p
(�L)
k

)

.
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Note that Φ(p) = pL′,ch, and so

gL,p(ζ, η) = gL′,pL′,ch
(Φ(ζ ),Φ(η)) = c

L∑

k=1

L′

�k
ζkηk = cgFL,p(ζ, η). (6.16)

Since the set of all p’s in PL,f whose all components are rational is dense in PL,f
and since the map p �→ gL,p(ζ, η) is continuous, it follows from (6.16) that for all
L ≥ 2 and all p ∈ PL,f,

gL,p = cgFL,p.

This completes the proof of Chentsov’s theorem. ��

6.4 Notes and References

The Fisher entropy (also often called Fisher information) was introduced by Fisher
in [18, 19] and plays a fundamental role in statistics (this is the topic of the next
chapter). Although Fisher’s work precedes Shannon’s by 23 years, it apparently
played no role in the genesis of the information theory. The first mentioning of
the Fisher entropy in the context of information theory goes back to [33] where
Proposition 6.2 was stated.

The geometric interpretation of the Fisher entropy is basically built in its
definition. We shall return to this point in the Part II of the lecture notes where
the reader can find references to the vast literature on this topic.

Chentsov’s theorem goes back to [6]. Our proof is based on the elegant arguments
of Campbel [5].

7 Parameter Estimation

7.1 Introduction

Let A be a set and {Pθ }θ∈A a family of probability measures on a finite set Ω .
We shall refer to the elements of A as parameters. Suppose that a probabilistic
experiment is described by one unknown member of this family. By performing a
trial we wish to choose the unknown parameter θ such that Pθ is the most likely
description of the experiment. To predict θ one chooses a function θ̂ : Ω → A
which, in the present context, is called an estimator. If the outcome of a trial is
ω ∈ Ω , then the value θ = θ̂ (ω) is the prediction of the unknown parameter
and the probability. Obviously, a reasonable estimator should satisfy a reasonable
requirements, and we will return to this point shortly.
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The hypothesis testing, described in Sect. 4.7, is the simplest non-trivial example
of the above setting with A = {0, 1}, P0 = P and P1 = Q (we also assume that the
priors are p = q = 1/2.) The estimators are identified with characteristic functions
θ̂ = χT , T ⊂ Ω . With an obvious change of vocabulary, the mathematical theory
described in Sect. 4.7 can be viewed as a theory of parameter estimation in the case
where A has two elements.

Here we shall assume that A is a bounded closed interval [a, b] and we shall
explore the conceptual and mathematical aspects the continuous set of parameters
brings to the problem of estimation. The Fisher entropy will play an important role
in this development. We continue with the notation and assumptions introduced in
the beginning of Sect. 6.1, and start with some preliminaries.

A loss function is a map L : R × [a, b] → R+ such that L(x, θ) ≥ 0 and
L(x, θ) = 0 iff x = θ . To a given loss function and the estimator θ̂ , one associates
the risk function by

R(θ̂, θ) = Eθ(L(θ̂ , θ)) =
∑

ω∈Ω
L(θ̂(ω), θ)Pθ (ω).

Once a choice of the loss function is made, the goal is to find an estimator that will
minimize the risk function subject to appropriate consistency requirements.

We shall work only with the quadratic loss function L(x, θ) = (x − θ)2. In this
case, the risk function is

Eθ((θ̂ − θ)2) = Varθ (θ̂).

7.2 Basic Facts

The following general estimate is known as the Cramér-Rao bound.

Proposition 7.1 For any estimator θ̂ and all θ ∈ [a, b],

[Ėθ (θ̂ )]2
I(θ) ≤ Eθ((θ̂ − θ)2).

Proof

Ėθ (θ̂ ) =
∑

ω∈Ω
θ̂(ω)Ṗθ (ω) =

∑

ω∈Ω
(θ̂(ω)− θ)Ṗθ (ω).
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Writing Ṗθ (ω) = Ṗθ (ω)
√
Pθ (ω)/

√
Pθ (ω) and applying the Cauchy-Schwartz

inequality one gets

|Ėθ (θ̂ )| ≤
(
∑

ω∈Ω
(θ̂(ω)− θ)2Pθ (ω)

)1/2 (
∑

ω∈Ω

[Ṗθ (ω)]2
Pθ (ω)

)1/2

=
(
Eθ((θ̂ − θ)2)

)1/2√
I(θ).

��
As in the case of hypothesis testing, multiple trials improve the errors in the

parameter estimation. Passing to the product space ΩN and the product probability
measure PθN , and denoting by EθN the expectation w.r.t. PθN , the Cramér-Rao
bound takes the following form.

Proposition 7.2 For any estimator θ̂N : ΩN → [a, b] and all θ ∈ [a, b],

1

N

[ĖNθ (θ̂N)]2
I(θ) ≤ EθN((θ̂N − θ)2).

Proof

ĖθN(θ̂N ) =
∑

ω=(ω1,··· ,ωN )∈ΩN

N∑

k=1

(θ̂N (ω)− θ)Pθ (ω1) · · · Ṗθ (ωk) · · ·Pθ(ωN )

=
∑

ω=(ω1,··· ,ωN )∈ΩN

(
N∑

k=1

Ṗθ (ωk)

Pθ (ωk)

)

(θ̂N(ω)− θ)PθN(ω).

Applying the Cauchy-Schwarz inequality

∫

ΩN

fgdPθN ≤
(∫

ΩN

f 2dPθN

)1/2(∫

ΩN

g2dPθN

)1/2

with

f (ω) =
N∑

k=1

Ṗθ (ωk)

Pθ (ωk)
, g(ω) = θ̂N (ω)− θ,
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one gets

|ĖθN (θ̂)| ≤
⎛

⎝
∑

ω∈ΩN

(θ̂N(ω)− θ)2PθN (ω)

⎞

⎠

1/2

⎛

⎝
∑

ω=(ω1,··· ,ωN)

N∑

k=1

[Ṗθ (ωk)]2
[Pθ(ωk)]2PθN(ω)

⎞

⎠

1/2

=
(
EθN((θ̂N − θ)2)

)1/2√
NI(θ).

��
We now describe the consistency requirement. In a nutshell, the consistency

states that if the experiment is described byPθ , then the estimator should statistically
return the value θ . An ideal consistency would be EθN(θ̂N ) = θ for all θ ∈ [a, b].
However, it is clear that in our setting such estimator cannot exist. Indeed, using
that θ̂ takes values in [a, b], the relations EaN(θ̂N ) = a and EbN(θ̂N) = b give
that θ̂N (ω) = a and θ̂N (ω) = b for all ω ∈ ΩN . Requiring EθN(θ̂N ) = θ only for
θ ∈]a, b[ does not help, and the remaining possibility is to formulate the consistency
in an asymptotic setting.

Definition 7.3 A sequence of estimators θ̂N : ΩN → [a, b], N = 1, 2, · · · , is
called consistent if

lim
N→∞EθN(θ̂N ) = θ

for all θ ∈ [a, b], and uniformly consistent if

lim
N→∞ sup

θ∈[a,b]
EθN(|θ̂ − θ |) = 0.

Finally, we introduce the notion of efficiency.

Definition 7.4 Let θ̂N : ΩN → [a, b], N = 1, 2, · · · be a sequence of estimators.
A continuous function E : ]a, b[→ R+ is called the efficiency of (θ̂N)N≥1 if

lim
N→∞NEθN

(
(θ̂ − θ)2

)
= E(θ) (7.1)

for all θ ∈ ]a, b[. The sequence (θ̂N)N≥1 is called uniformly efficient if in addition
for any [a′, b′] ⊂ ]a, b[,

lim sup
N→∞

sup
θ∈[a′,b′]

∣
∣
∣NEθN

(
θ̂ − θ)2

)
− E(θ)

∣
∣
∣ = 0. (7.2)
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To remain on a technically elementary level, we will work only with uniformly
efficient estimators. The reason for staying away from the boundary points a and
b in the definition of efficiency is somewhat subtle and we will elucidate it in
Remark 7.12.

Proposition 7.5 Let (θ̂N )N≥1 be a uniformly efficient consistent sequence of
estimators. Then its efficiency E satisfies

E(θ) ≥ 1

I(θ)

for all θ ∈ ]a, b[.
Proof Fix θ1, θ2 ∈ ]a, b[, θ1 < θ2. The consistency gives

θ2 − θ1 = lim
N→∞

[
Eθ2N(θ̂N )− Eθ1N(θ̂N)

]
. (7.3)

The Cramér-Rao bound yields the estimate

Eθ2N(θ̂N )− Eθ1N(θ̂N) =
∫ θ2

θ1

ĖθN(θ̂N )dθ ≤
∫ θ2

θ1

|ĖθN (θ̂N)|dθ

≤
∫ θ2

θ1

[
NI(θ)EθN

(
(θ̂N − θ)2)

)]1/2
dθ.

(7.4)

Finally, the uniform efficiency gives

lim
N→∞

∫ θ2

θ1

[
NI(θ)EθN

(
(θ̂N − θ)2)

)]1/2
dθ

=
∫ θ2

θ1

lim
N→∞

[
NI(θ)EθN

(
(θ̂N − θ)2)

)]1/2
dθ

=
∫ θ2

θ1

√
I(θ)E(θ)dθ. (7.5)

Combining (7.3)–(7.5), we derive that

θ2 − θ1 ≤
∫ θ2

θ1

√
I(θ)E(θ)dθ

for all a ≤ θ1 < θ2 ≤ b. Hence,
√
I(θ)E(θ) ≥ 1 for all θ ∈ ]a, b[, and the statement

follows. ��
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In Sect. 7.4 we shall construct a uniformly consistent and uniformly efficient
sequence of estimators whose efficiency is equal to 1/I(θ) for all θ ∈ ]a, b[. This
sequence of estimators saturates the bound of Proposition 7.5 and in that sense is
the best possible one. In Remark 7.12 we shall also exhibit a concrete example of
such estimator sequence for which the limit (7.1) also exists for θ = a and satisfies
E(a) < 1/I(a). This shows that Proposition 7.5 is an optimal result.

7.3 Two Remarks

The first remark is that the existence of a consistent estimator sequence obviously
implies that

θ1 �= θ2 ⇒ Pθ1 �= Pθ2 . (7.6)

In Sect. 7.4 we shall assume that (7.6) holds and refer to it as the identifiability
property of our starting family of probability measures {Pθ }θ∈[a,b].

The second remark concerns the LLN adapted to the parameter setting, which
will play a central role in the proofs of the next section. This variant of the LLN is
of independent interest, and for this reason we state it and prove it separately.

Proposition 7.6 Let Xθ : Ω → R, θ ∈ [a, b], be random variables such that the
map [a, b] , θ �→ Xθ(ω) is continuous for all ω ∈ Ω . Set

SθN (ω = (ω1, · · · , ωN )) =
N∑

k=1

Xθ(ωk).

Then for any ε > 0,

lim
N→∞ sup

θ∈[a,b]
PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

= 0. (7.7)

Moreover, (7.7) can be refined as follows. For any ε > 0 there are constants Cε > 0
and γε > 0 such that for all N ≥ 1,

sup
θ∈[a,b]

PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

≤ Cεe−γεN . (7.8)

Remark 7.7 The point of this result is uniformity in θ and θ ′. Note that

lim
N→∞PθN

{

ω ∈ ΩN |
∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

= 0
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is the statement of the LLN, while

PθN

{

ω ∈ ΩN |
∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

≤ Cεe−γεN ,

with Cε and γε depending on θ, θ ′, is the statement of the strong LLN formulated
in Exercise 2.4.

Proof By uniform continuity, there exists δ > 0 such that for all u, v ∈ [a, b]
satisfying |u− v| < δ one has

sup
u′∈[a,b]

|Eu′(Xu)− Eu′(Xv)| < ε

4
and sup

ω∈Ω
|Xu(ω)−Xv(ω)| < ε

4
.

Let a = θ ′0 < θ ′1 < · · · < θ ′n = b be such that θ ′k − θ ′k−1 < δ. Then, for all
θ ∈ [a, b],

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

⊂
n⋃

k=1

{

ω ∈ ΩN |
∣
∣
∣
∣
∣

Sθ ′kN (ω)
N

− Eθ(Xθ ′k )

∣
∣
∣
∣
∣
≥ ε

2

}

. (7.9)

It follows that (recall the proof of the LLN, Proposition 2.2)

PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N
N

− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

≤
n∑

k=1

PθN

{

ω ∈ ΩN |
∣
∣
∣
∣
∣

Sθ ′kN (ω)
N

− Eθ(Xθ ′k )

∣
∣
∣
∣
∣
≥ ε

2

}

≤ 4

ε2

n∑

k=1

EθN

⎛

⎝

∣
∣
∣
∣
∣

Sθ ′kN
N

− Eθ(Xθ ′k )

∣
∣
∣
∣
∣

2
⎞

⎠

≤ 4

ε2

1

N

n∑

k=1

Eθ

(
|Xθ ′k − Eθ(Xθ ′k )|2

)
. (7.10)

Setting

C = max
1≤k≤n max

θ,θ ′∈[a,b]
Eθ

(
|Xθ ′ − Eθ(Xθ ′)|2

)
,
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we derive that

sup
θ∈[a,b]

PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

≤ 4

ε2

Cn

N
,

and (7.7) follows.
The proof of (7.8) also starts with (7.9) and follows the argument of Proposi-

tion 2.14 (recall the Exercise 2.4). The details are as follows. Let α > 0. Then for
any θ and k,

PθN

{

ω ∈ ΩN | Sθ
′
kN
(ω)

N
− Eθ(Xθ ′k ) ≥

ε

2

}

= PθN

{
ω ∈ ΩN |Sθ ′kN (ω) ≥ N

ε

2
+ NEθ(Xθ ′k )

}

= PθN

{
ω ∈ ΩN | eαSθ ′kN (ω) ≥ eαNε/2e

αNEθ (Xθ ′
k
)
}

≤ e−αNε/2e
−αNEθ (Xθ ′

k
)
EθN

(
e
αSθ ′

k
N

)

≤ e−αNε/2e
−αNEθ (Xθ ′

k
)
eNC

(k)
θ (α),

(7.11)

where

C
(k)
θ (α) = logEθ

(
e
αXθ ′

k

)
.

We write

C
(k)
θ (α)− αEθ(Xθ ′k ) =

∫ α

0

[(
C
(k)
θ

)′
(u)− Eθ(Xθ ′k )

]

du,

and estimate

|C(k)
θ (α)− αEθ (Xθ ′k )| ≤ α sup

u∈[0,α]

∣
∣
∣
∣

(
C
(k)
θ

)′
(u)− Eθ(Xθ ′k )

∣
∣
∣
∣ .

Since
(
C
(k)
θ

)′
(0) = Eθ(Xθ ′k ), the uniform continuity gives

lim
α→0

sup
θ∈[a,b]

sup
u∈[0,α]

∣
∣
∣
∣

(
C
(k)
θ

)′
(u)− Eθ(Xθ ′k )

∣
∣
∣
∣ = 0.
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It follows that there exists α+ε > 0 such that for all k = 1, · · · , n,

sup
θ∈[a,b]

∣
∣
∣C

(k)
θ (α+ε )− α+ε Eθ (Xθ ′k )

∣
∣
∣ ≤ ε

4
,

and (7.11) gives that for all k,

sup
θ∈[a,b]

PθN

{

ω ∈ ΩN | Sθ
′
kN
(ω)

N
− Eθ(Xθ ′k ) ≥

ε

2

}

≤ e−α+ε Nε/4.

Going back to first inequality in (7.10), we conclude that

sup
θ∈[a,b]

PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

(
Sθ ′N(ω)

N
− Eθ(Xθ ′)

)

≥ ε

}

≤ ne−α+ε Nε/4.

(7.12)

By repeating the above argument (or by simply applying the final estimate (7.12) to
the random variables −Xθ ), one derives

sup
θ∈[a,b]

PθN

{

ω ∈ ΩN | inf
θ ′∈[a,b]

(
Sθ ′N(ω)

N
− Eθ(Xθ ′)

)

≤ −ε
}

≤ ne−α−ε Nε/4

(7.13)

for a suitable α−ε > 0. Finally, since

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− Eθ(Xθ ′)

∣
∣
∣
∣ ≥ ε

}

⊂
{

ω ∈ ΩN | sup
θ ′∈[a,b]

(
Sθ ′N(ω)

N
− Eθ(Xθ ′)

)

≥ ε

}

∪
{

ω ∈ ΩN | inf
θ ′∈[a,b]

(
Sθ ′N(ω)

N
− Eθ(Xθ ′)

)

≤ −ε
}

,

(7.8) follows from (7.12) and (7.13). ��
Exercise 7.1 Prove the relation (7.9).
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7.4 The Maximum Likelihood Estimator

For each N and ω = (ω1, · · · , ωN ) ∈ ΩN , consider the function

[a, b] , θ �→ PθN(ω1, · · · , ωN ) ∈]0, 1[. (7.14)

By continuity, this function achieves its global maximum on the interval [a, b].
We denote by θ̂ML,N(ω) a point where this maximum is achieved (in the case
where there are several such points, we select one arbitrarily but always choosing
θ̂ML,N(ω) ∈ ]a, b[whenever such possibility exists). This defines a random variable

θ̂ML,N : ΩN → [a, b]

that is called the maximum likelihood estimator (abbreviated MLE) of order N . We
shall also refer to the sequence (θ̂ML,N)N≥1 as the MLE.

Note that maximizing (7.14) is equivalent to minimizing the entropy function

[a, b] , θ �→ SθN(ω) =
N∑

k=1

− logPθ (ωk).

Much of our analysis of the MLE will make use of this elementary observation and
will be centred around the entropy function SθN . We set

S(θ, θ ′) = Eθ(Sθ ′) = −
∑

ω∈Ω
Pθ (ω) logPθ ′(ω).

Obviously, S(θ, θ) = S(Pθ ) and

S(θ, θ ′)− S(θ, θ) = S(Pθ |Pθ ′). (7.15)

The last relation and the identifiability (7.6), which we assume throughout, give that

S(θ, θ ′) > S(θ, θ) for θ �= θ ′. (7.16)

Applying Proposition 7.6 to Xθ = − logPθ , we derive

Proposition 7.8 For any ε > 0,

lim
N→∞ sup

θ∈[a,b]
PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− S(θ, θ ′)

∣
∣
∣
∣ ≥ ε

}

= 0.
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Moreover, for any ε > 0 there is Cε > 0 and γε > 0 such that for all N ≥ 1,

sup
θ∈[a,b]

Pθ ′N

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− S(θ, θ ′)

∣
∣
∣
∣ ≥ ε

}

≤ Cεe−γεN .

The first result of this section is:

Theorem 7.9 For any ε > 0,

lim
N→∞ sup

θ∈[a,b]
PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)− θ | ≥ ε

}
= 0.

Moreover, for any ε > 0 there exists Cε > 0 and γε > 0 such that for all N ≥ 1,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)− θ | ≥ ε

}
≤ Cεe−γεN .

Proof Let

Iε = {(u, v) ∈ [a, b] × [a, b] | |u− v| ≥ ε} .

It follows from (7.16) and continuity that

δ = sup
(u,v)∈Iε

[S(u, v) − S(u, u)] > 0. (7.17)

Fix θ ∈ [a, b] and set Iε(θ) = {θ ′ ∈ [a, b] | |θ − θ ′| ≥ ε}. Let

A =
{

ω ∈ ΩN | sup
θ ′∈Iε (θ)

∣
∣
∣
∣
Sθ ′N(ω)

N
− S(θ, θ ′)

∣
∣
∣
∣ <

δ

2

}

,

B =
{

ω ∈ ΩN | sup
θ ′∈[a,b]\Iε(θ)

∣
∣
∣
∣
Sθ ′N(ω)

N
− S(θ, θ ′)

∣
∣
∣
∣ <

δ

2

}

.

For ω ∈ A and θ ′ ∈ Iε(θ),

Sθ ′N(ω)

N
< S(θ, θ ′)+ δ

2
≤ S(θ, θ)− δ

2
. (7.18)

On the other hand, for ω ∈ B and θ ∈ [a, b] \ Iε(θ),
Sθ ′N(ω)

N
> S(θ, θ ′)− δ

2
≥ S(θ, θ)− δ

2
. (7.19)
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Since θ̂ML,N(ω) minimizes the map [a, b] , θ ′ �→ Sθ ′N(ω),

ω ∈ A ∩ B ⇒ |θ̂ML,N(ω)− θ | < ε.

It follows that

{
ω ∈ ΩN | |θ̂ML,N(ω) − θ | ≥ ε

}
⊂Ac∪Bc=

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− S(θ, θ ′)

∣
∣
∣
∣≥

δ

2

}

,

and so

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)− θ | ≥ ε

}

≤ sup
θ∈[a,b]

PθN

{

ω ∈ ΩN | sup
θ ′∈[a,b]

∣
∣
∣
∣
Sθ ′N(ω)

N
− S(θ, θ ′)

∣
∣
∣
∣ ≥

δ

2

}

.

Since δ depends only on the choice of ε (recall (7.17)), the last inequality and
Proposition 7.8 yield the statement. ��

Theorem 7.9 gives that the MLE is consistent in a very strong sense, and in
particular that is uniformly consistent.

Corollary 7.10

lim
N→∞ sup

θ∈[a,b]
EθN(|θ̂ML,N − θ |) = 0.

Proof Let ε > 0. Then

EθN(|θ̂ML,N − θ |) =
∫

ΩN

|θ̂ML,N − θ |dPθN

=
∫

|θ̂ML,N−θ |<ε
|θ̂ML,N − θ |dPθN

+
∫

|θ̂ML,N−θ |≥ε
|θ̂ML,N − θ |dPθN

≤ ε + (b − a)PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)− θ | ≥ ε

}
.
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Hence,

sup
θ∈[a,b]

EθN(|θ̂ML,N−θ |) ≤ ε+(b−a) sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)−θ | ≥ ε

}
,

and the result follows from Proposition 7.9. ��
We note that so far all results of this section hold under the sole assumptions

that the maps [a, b] , θ �→ Pθ (ω) are continuous for all ω ∈ Ω and that the
identifiability condition (7.6) is satisfied.

We now turn to study of the efficiency of the MLE and prove the second main
result of this section. We strengthen our standing assumptions and assume that the
maps [a, b] , θ �→ Pθ (ω) are C3 for all ω ∈ Ω .

Theorem 7.11 Suppose that [a′, b′] ⊂ ]a, b[. Then

lim
N→∞ sup

θ∈[a′,b′]

∣
∣
∣
∣NEθN(|θ̂ML,N − θ |2)− 1

I(θ)

∣
∣
∣
∣ = 0.

Proof Recall that

[a, b] , θ �→ SθN (ω = (ω1, · · · , ωN)) = −
N∑

k=1

logPθ(ωk)

achieves its minimum at θ̂ML,N(ω) and that θ̂ML,N(ω) ∈ ]a, b[ unless a strict
minimum is achieved at either a or b. Let

BN(a) =
{
ω ∈ ΩN | θ̂ML,N(ω) = a

}
, BN(b) =

{
ω ∈ ΩN | θ̂ML,N(ω) = b

}
,

and

ζ = min

(

inf
θ∈[a′,b′]

S(Pθ |Pa), inf
θ∈[a′,b′]

S(Pθ |Pb)
)

.

Since the maps θ �→ S(Pθ |Pa), θ �→ S(Pθ |Pb) are continuous, the identifiabil-
ity (7.6) yields that ζ > 0. Then, for θ ∈ [a′, b′],

PθN (BN(a)) ≤ PθN

{

ω ∈ ΩN | 1

N

N∑

k=1

log
Pθ (ωk)

Pa(ωk)
< 0

}

≤ PθN

{

ω ∈ ΩN | 1

N

N∑

k=1

log
Pθ (ωk)

Pa(ωk)
− S(Pθ |Pa) ≤ −ζ

}

,



Lectures on Entropy. I: Information-Theoretic Notions 261

and similarly,

PθN(BN(b)) ≤ PθN

{

ω ∈ ΩN | 1

N

N∑

k=1

log
Pθ (ωk)

Pb(ωk)
− S(Pθ |Pb) ≤ −ζ

}

.

Proposition 7.7 now yields that for some constants Kζ > 0 and kζ > 0,

sup
θ∈[a′,b′]

PθN(BN(a) ∪ BN(b)) ≤ Kζ e−kζN

for all N ≥ 1. A simple but important observation is that if ω �∈ BN(a) ∪ BN(b),
then θ̂ML,N(ω) ∈]a, b[ and so

Ṡ
θ̂ML,N (ω)N

(ω) = 0. (7.20)

The Taylor expansion gives that for any ω ∈ ΩN and θ ∈ [a, b] there is θ ′(ω)
between θ̂ML,N(ω) and θ such that

Ṡ
θ̂ML,N (ω)N

(ω)− ṠθN (ω) = (θ̂ML,N(ω)− θ)

[

S̈θN + 1

2
(θ̂ML,N(ω)− θ)

...
S θ ′(ω)N

]

.

(7.21)

Write

EθN

((
Ṡ
θ̂ML,N (ω)N

(ω)− ṠθN (ω)
)2
)

= LN(θ)+ EθN

([
ṠθN

]2
)
,

where

LN(θ) = EθN

([
Ṡ
θ̂ML,N (ω)N

]2
)

+ 2EθN

(
Ṡ
θ̂ML,N (ω)N

ṠθN

)
. (7.22)

It follows from (7.20) that in (7.22)EθN reduces to integration overBN(a)∪BN(b),
and we arrive at the estimate

sup
θ∈[a′,b′]

|LN(θ)| ≤ KN2 sup
θ∈[a′,b′]

PθN(BN(a)∪BN(b)) ≤ KN2Kζ e−kζ N (7.23)

for some uniform constant K > 0, where by uniform we mean that K does not
depend on N . It is easy to see that one can take

K = 3 sup
θ∈[a,b],ω∈Ω

(
Ṗθ (ω)

Pθ (ω)

)2

.



262 V. Jakšić

In Exercise 7.2 the reader is asked to estimate other uniform constant that will appear
in the proof.

Squaring both sides in (7.21), taking the expectation, and dividing both sides
with N2, we derive the identity

1

N2LN(θ)+ 1

N2EθN

([
ṠθN

]2
)

= EθN

(

(θ̂ML,N − θ)2 ×
[
S̈θN

N
+ 1

2N
(θ̂ML,N − θ)

...
S θ ′N

]2)

.

(7.24)

An easy computation gives

1

N2EθN

([
ṠθN

]2
)
= 1

N
I(θ).

Regarding the right hand side in (7.24), we write it as

EθN

(

(θ̂ML,N − θ)2
[
S̈θN

N

]2)

+ RN(θ),

where the remainder RN(θ) can be estimated as

|RN(θ)| ≤ C1EθN

(
|θ̂ML,N − θ |3

)
(7.25)

for some uniform constant C1 > 0.
With these simplifications, an algebraic manipulation of the identity (7.24) gives

NEθN

(
(θ̂ML,N − θ)2

)
− 1

I(θ) = −DN(θ)− NRN(θ)

I(θ)2 + 1

N

LN(θ)

I(θ)2 , (7.26)

where

DN(θ) = NEθN

(

(θ̂ML − θ)2

([
S̈θN

N

]2
1

I(θ)2
− 1

))

. (7.27)

Writing

[
S̈θN

N

]2
1

I(θ)2
− 1 = 1

I(θ)2

(
S̈θN

N
+ I(θ)

)(
S̈θN

N
− I(θ)

)
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and using that I(θ) is continuous and strictly positive on [a, b], we derive the
estimate

|DN(θ)| ≤ C2NEθN

(

(θ̂ML − θ)2
∣
∣
∣
∣
S̈θN

N
− I(θ)

∣
∣
∣
∣

)

(7.28)

for some uniform constant C2 > 0.
Fix ε > 0, and choose Cε > 0 and γε > 0 such that

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)− θ | ≥ ε

}
≤ Cεe−γεN , (7.29)

sup
θ∈[a,b]

PθN

{

ω ∈ ΩN |
∣
∣
∣
∣
S̈θN

N
− I(θ)

∣
∣
∣
∣ ≥ ε

}

≤ Cεe−γεN . (7.30)

Here, (7.29) follows from Theorem 7.9, while (7.30) follows from Proposition 7.7

applied to Xθ = − d2

dθ2 logPθ (recall that Eθ(Xθ) = I(θ)).
Let δ = infu∈[a,b] I(u). Then, for all θ ∈ [a, b],

N |RN(θ)|
I(θ)2 ≤ C1N

δ2

∫

ΩN

|θ̂ML,N − θ |3dPθN

= C1N

δ2

∫

|θ̂ML,N−θ |<ε
|θ̂ML,N − θ |3dPθN

+C1N

δ2

∫

|θ̂ML,N−θ |≥ε
|θ̂ML,N − θ |3dPθN

≤ ε
C1

δ2 NEθN

(
(θ̂ML,N − θ)2

)
+ C1(b − a)3N

δ2 Cεe−γεN .

(7.31)

Similarly, splitting the integral (that is, EθN ) on the r.h.s. of (7.28) into the sum of
integrals over the sets

∣
∣
∣
∣
S̈θN

N
− I(θ)

∣
∣
∣
∣ < ε,

∣
∣
∣
∣
S̈θN

N
− I(θ)

∣
∣
∣
∣ ≥ ε,

we derive that for all θ ∈ [a, b],

|DN(θ)| ≤ εC2NEθN

(
(θ̂ML,N − θ)2

)
+ C2C3NCεe−γεN , (7.32)

where C3 > 0 is a uniform constant. Returning to (7.26) and taking ε = ε0 such
that

ε0
C1

δ2 <
1

4
, ε0C2 <

1

4
,
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the estimates (7.23), (7.31), and (7.32) give that for all θ ∈ [a′, b′],

NEθN

(
(θ̂ML,N − θ)2

)
≤ 2

I(θ) + C′ε0
Ne−γε0N + 2K

δ2 Kζ e−kζN ,

where C′ε0
> 0 is a uniform constant (that of course depends on ε0). It follows that

C′ = sup
N≥1

sup
θ∈[a′,b′]

NEθN

(
(θ̂ML,N − θ)2

)
<∞. (7.33)

Returning to (7.31), (7.32), we then have that for any ε > 0,

sup
θ∈[a′,b′]

N |RN(θ)|
I(θ)2 ≤ ε

C1

δ2 C
′ + C1(b − a)3N

δ2 Cεe−γεN , (7.34)

sup
θ∈[a′,b′]

|DN(θ)| ≤ εC2C
′ + C2C3NCε.e

−γεN . (7.35)

Finally, returning once again to (7.26), we derive that for any ε > 0,

sup
θ∈[a′,b′]

∣
∣
∣
∣NEθN

(
(θ̂ML,N − θ)2

)
− 1

I(θ)

∣
∣
∣
∣ ≤ sup

θ∈[a′,b′]
|DN(θ)| + sup

θ∈[a′,b′]
N |RN(θ)|
I(θ)2

+ sup
θ∈[a′,b′]

|LN(θ)|
NI(θ)2 ≤ εC′′ + C′′ε Ne−γεN +KKζ e−kζN ,

where C′′ > 0 is a uniform constant and C′′ε > 0 depends only on ε. Hence,

lim sup
N→∞

sup
θ∈[a′,b′]

∣
∣
∣
∣NEθN

(
(θ̂ML,N − θ)2

)
− 1

I(θ)

∣
∣
∣
∣ ≤ εC′′.

Since ε > 0 is arbitrary, the result follows. ��
Exercise 7.2 Write an explicit estimate for all uniform constants that have appeared
in the above proof.

Remark 7.12 The proof of Theorem 7.11 hints at the special role the boundary
points a and b of the chosen parameter interval may play in study of the efficiency.
The MLE is selected with respect to the [a, b] and θ̂ML,N(ω) may take value a

or b without the derivative Ṡ
θ̂ML,N (ω)N

(ω) vanishing. That forces the estimation of
the probability of the set BN(a) ∪ BN(b) and the argument requires that θ stays
away from the boundary points. If the parameter interval is replaced by a circle,
there would be no boundary points and the above proof then gives that the uniform
efficiency of the MLE holds with respect to the entire parameter set. One may
wonder whether a different type of argument may yield the same result in the case
of [a, b]. The following example shows that this is not the case.
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Let Ω = {0, 1} and let Pθ(0) = 1 − θ , Pθ (1) = θ , where θ ∈ ]0, 1[. One
computes I(θ) = (θ−θ2)−1. If [a, b] ⊂ ]0, 1[ is selected as the estimation interval,
the MLE θML,N takes the following form:

θ̂ML,N(ω1, · · · , ωN) = ω1 + · · · + ωN

N
if

ω1 + · · · + ωN

N
∈ [a, b],

θ̂ML,N(ω1, · · · , ωN) = a if
ω1 + · · · + ωN

N
< a,

θ̂ML,N(ω1, · · · , ωN ) = b if
ω1 + · · · + ωN

N
> b.

We shall indicate the dependence of θ̂ML,N on [a, b] by θ̂
[a,b]
ML,N . It follows from

Theorem 7.11 that

lim
N→∞NE(θ=1/2)N

((

θ̂
[ 1

3 ,
2
3 ]

ML,N −
1

2

)2
)

=
[

I
(

1

2

)]−1

= 1

4
.

On the other hand, a moment’s reflection shows that

1

2
E(θ=1/2)N

((

θ̂
[ 1

3 ,
2
3 ]

ML,N −
1

2

)2
)

= E(θ=1/2)N

((

θ̂
[ 1

2 ,
2
3 ]

ML,N −
1

2

)2
)

,

and so

lim
N→∞NE(θ=1/2)N

((

θ̂
[ 1

2 ,
2
3 ]

ML,N −
1

2

)2
)

= 1

8
.

Thus, in this case even the bound of Proposition 7.5 fails at the boundary point 1/2
at which the MLE becomes “superefficient”. In general, such artificial boundary
effects are difficult to quantify and we feel it is best that they are excluded from the
theory. These observations hopefully elucidate our definition of efficiency which
excludes the boundary points of the interval of parameters.

7.5 Notes and References

For additional information and references about parameter estimation the reader
may consult [34, 51]. For additional information about the Cramér-Rao bound and
its history, we refer the reader to the respective Wikipedia and Scholarpedia articles.
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The modern theory of the MLE started with the seminal work of Fisher [18]; for
the fascinating history of the subject, see [48]. Our analysis of the MLE follows the
standard route, but I have followed no particular reference. In particular, I am not
aware whether Theorem 7.11 as formulated has appeared previously in the literature.
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