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Yeast Genome-Scale Metabolic Models
for Simulating Genotype–Phenotype
Relations
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Abstract Understanding genotype–phenotype dependency is a universal aim for all
life sciences. While the complete genotype–phenotype relations remain challenging
to resolve, metabolic phenotypes are moving within the reach through genome-scale
metabolicmodel simulations.Genome-scalemetabolicmodels are available for com-
monly investigated yeasts, such as model eukaryote and domesticated fermentation
species Saccharomyces cerevisiae, and automatic reconstruction methods facilitate
obtaining models for any sequenced species. The models allow for investigating
genotype–phenotype relations through simulations simultaneously considering the
effects of nutrient availability, and redox and energy homeostasis in cells. Genome-
scale models also offer frameworks for omics data integration to help to uncover how
the translation of genotypes to the apparent phenotypes is regulated at different levels.
In this chapter, we provide an overview of the yeast genome-scale metabolic mod-
els and the simulation approaches for using these models to interrogate genotype–
phenotype relations. We review the methodological approaches according to the
underlying biological reasoning in order to inspire formulating novel questions and
applications that the genome-scale metabolic models could contribute to. Finally, we
discuss current challenges and opportunities in the genome-scale metabolic model
simulations.
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5.1 Introduction to Genome-Scale Metabolic Models

Since the early distinction of genotypes from phenotypes (Johannsen 1911) life sci-
ence research has sought for understanding their dependency. The dependency is
inherently complex and dynamic. Single genotype may manifest several phenotypes
(i.e., clonal heterogeneity) and different genotypes may translate to indistinguishable
observable phenotypes. While the complete genotype–phenotype dependencies are
challenging to resolve, metabolic phenotypes are moving within the reach through
genome-scale metabolic model simulations. A genome-scale metabolic model is a
description of the complete biochemical conversion potential encoded in an organ-
ism’s genome as a network of reactions (Fig. 5.1). The stoichiometries of these reac-
tions form mass conservation constraints of cellular metabolism. When a biological
optimality principle (e.g., fast cell growth) is additionally introduced, a steady-state
metabolic phenotype can be simulated using powerful linear programming solvers.
Such simulations holistically consider cellular resource, energy, and redox require-
ments for biochemical synthesis. A myriad of applications has been derived from
the original undecorated phenotype simulation. The applications vary from simu-
lating metabolic genotype–phenotype dependencies for finding cancer drug targets
to designing genotype manipulations for achieving desired phenotypes in microbial
hosts for industrial biotechnology needs.

Yeasts, unicellular eukaryotes, are suitable hosts for industrial biotechnology
owing to their robustness against harsh growth environments, established genetic
engineering tools for several species, and eukaryotic protein modification. They
have scientific relevance also as simpler model system for higher cells and some
yeasts are pathogenic causing difficult infections. Furthermore, yeasts,

Fig. 5.1 Metabolic capacity of cells represented as a network of reactions or further as stoichio-
metric matrix allows simulations of metabolic phenotypes using linear programming. Metabolic
steady-state assumption renders the system of metabolite mass balances linear. Reaction capacity
and thermodynamic constraints can be included and limit the space of feasiblemetabolic phenotypes
(i.e., metabolic fluxes)
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Saccharomyces cerevisiae, in particular, have been domesticated for food and bev-
erage fermentations and baking already since ancient times. While S. cerevisiae is
by far the most well studied and broadly used yeast in applications, several other
species attract considerable interest as well. For instance, Pichia pastoris is a widely
used protein production host, Kluyveromyces lactis is known for beta-galactosidase
synthesis, Yarrowia lipolytica is an oleaginous yeast attractive for lipid production,
Scheffersomyces stipitis is a naturally xylose-utilizing yeast, and pathogenic yeasts
Candida tropicalis and Candida glabrata cause difficult infections urging for more
efficient treatments to be developed. The variety of yeast species of scientific and
application interest can be expected to broaden following the rise of CRISPR/Cas9
and other generally applicable genetic engineering tools such as synthetic expression
system universal for fungi (Rantasalo et al. 2018). Genome sequences are already
available for a large variety of yeasts. Reference genomes for 98 yeast species are
available from NCBI (www.ncbi.nlm.nih.gov/genome).

5.1.1 Genome-Scale Metabolic Model Reconstruction

Genome sequence is the starting point for reconstructing a genome-scale metabolic
model. Semi-automatic reconstruction methods are available for building the first
drafts of genome-scale metabolic models from the genome sequences (Swainston
et al. 2011; Agren et al. 2013; Pitkänen et al. 2014; Castillo et al. 2016; Dias et al.
2015). The quality of draft reconstructions after the semi-automatic processes is
strongly dependent on the comprehensiveness and quality of the source reaction
database used. The reaction database has to contain links from the reactions to corre-
sponding gene/protein sequences either within the database or by proving adequate
identifiers such as EC numbers for externalmapping. Reactions need to essentially be
atom balanced for mass conservation in the reconstructed model. Popular reaction
databases for genome-scale metabolic model reconstruction include Kegg (Kane-
hisa et al. 2017), Rhea (Morgat et al. 2017), MetaCyc (Caspi et al. 2014), BiGG
(Schellenberger et al. 2010), and Reactome (Fabregat et al. 2018). A confidence
score for the presence of a reaction from the reaction database in the metabolic
repertoire of the species is derived by most of the semi-automatic reconstruction
methods. Then, the high scoring reactions are pulled to the model after which gap
filling algorithms are used for introducing lower scoring reactions that are essential
for the in silico synthesis of biomass. Gap filling benefits greatly from experimental
data on the growth of the species under different nutrient environments (Tramon-
tano et al. 2018). Alternatively, to the two-phase process of introducing high scoring
reactions followed by gap filling for a functional model, a single step process of
carving out the organism-specific metabolic network from a universal gapless model
(CarveMe) has recently been proposed (Machado et al. 2018). When the universal
model is well curated, simulatable species-specific models are fast to reconstruct
using CarveMe (Machado et al. 2018). Further, using a universal model standard-
izes the quality of input reaction data for reconstructing different species models.

www.ncbi.nlm.nih.gov/genome
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However, there are also other sources of uncertainty in the model reconstruction
such as the quality of the genome and the annotations, and the availability of sim-
ilar annotated sequences in databases. Given the data, several models of a species
could score equally well in the automatic reconstruction. Therefore, an approach has
been suggested for simulating an ensemble of equally likely models simultaneously
instead of a single reconstruction (Biggs and Papin 2017). Yet, evaluating the qual-
ity of models reconstructed for less well-studied non-model species is challenging.
The reconstruction algorithms themselves can be evaluated against manually curated
models and experimental data on model organisms such as metabolic gene knockout
phenotypes. Metabolic gene knockout phenotypes can be simulated using the gene
annotations of the models. The genes are annotated to the reactions whose catalyzing
enzymes they encode. Preferably, the gene annotations include also Boolean rules
describing whether the genes annotated to the reaction encode isoenzymes (i.e., OR
rule) or whether they form a complex whose all components are required for activ-
ity (i.e., AND rule). Thereby, the Boolean rules allow propagating the genetic state
into reaction activity state for performing mutant phenotype simulations. Simulated
mutant phenotypes can be compared against experimental deletion mutant pheno-
types for validating models. Though many metrics have been proposed for assessing
the quality of reconstructed models (Sanchez and Nielsen 2015; Lopes and Rocha
2017), experimental growth and phenotype data are necessary for true evaluation
(Tramontano et al. 2018).

5.2 Yeast Genome-Scale Models

Several genome-scale metabolic models have been reconstructed for S. cerevisiae
during the last 15 years. The first S. cerevisiae model was created in 2003 by Föster
et al. 2003 and was named iFF708 after the main developers and the number of
genes supporting the reactions in the model. Slightly different and variable numbers
of genes were annotated to metabolic reactions in the three following S. cerevisiae
models (iND750, iLL672, and iIN800) derived directly from iFF708. Creating the
first consensus model for S. cerevisiae was a collaborative effort. It was built on
the iLL672 and iMM904 models (derived from iND750 model) and published in
2008 (Herrgård et al. 2008). After several updates of, in particular, lipid metabolism
and transport reactions, the consensus model version 7 was published in 2013 by
Aung et al. (2018). Since then the consensus yeast model has gone through sev-
eral smaller updates (https://github.com/SysBioChalmers/yeast-GEM).Heavner and
Price (2015) compared the 12 (S. cerevisiae) metabolic models created from 2003
until 2015. Though the coverage (i.e., number of genes annotated) and predictive
power (i.e., in terms of gene essentiality predictions) had increased over time, the
coverage of themodels does not always correlatewith the predictive ability. Extensive
models annotating higher number of genes do not necessarily have better essential-
ity prediction capabilities than simpler ones. Introducing additional minor activity
encoding genes may decrease the predictive capacity if the encoded enzymes cannot

https://github.com/SysBioChalmers/yeast-GEM
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alone sustain the corresponding reactions (Pereira et al. 2016). However, in addition
to using the models for predictive simulations of genotype–phenotype translation,
the genome-scale metabolic models can also be seen as knowledge bases contain-
ing all known biochemical conversion potential of the organism. Including the minor
activity encoding genes and the corresponding reactions in a model are valuable for a
knowledge base or a biochemical interaction network use. In conclusion, the several
genome-scale metabolic models of S. cerevisiae have been developed and evolved
independently for different purposes and none of them is generally the best.

Genome-scale metabolic models have been reconstructed, and manually curated,
also for other yeasts than S. cerevisiae (Fig. 5.2). The models have commonly been
reconstructed in a comparative manner using an S. cerevisiae model as a template.
The reconstruction tool RAVEN especially supports the comparative reconstruction
using an S. cerevisiae and CoReCo exploits species relatedness in scoring the reac-
tions (Pitkänen et al. 2014). The models for industrially relevant species K. lactis,
P. pastoris, S. stipitis, and Y. lipolytica, and for pathogenic C. glabrata have been
derived using S. cerevisiaemodels as templates. For pathogenic C. tropicalis and for

Fig. 5.2 Time line of genome-scale metabolic models for yeasts. Information partially extracted
from (Sanchez and Nielsen 2015; Lopes and Rocha 2017). The arrows start from the template
models used in reconstruction
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scientifically relevant S. pombemodel reconstructions no S. cerevisiae framework has
been reported. In addition, a large set of draft fungal models, including yeast models,
reconstructed using CoReCo (Pitkänen et al. 2014; Castillo et al. 2016) are avail-
able in the BioModels database (Chelliah et al. 2015). In addition to the BioModels
database and the developer’s specific sites, genome-scale metabolic models for var-
ious species can be downloaded from other public databases such as BiGG database
(http://bigg.ucsd.edu/) (King et al. 2016).

5.3 Methods for Metabolic Phenotype Simulations Derived
from Flux Balance Analysis (FBA)

A myriad of methods for performing phenotype simulations using genome-scale
metabolic models derived from Flux Balance Analysis (FBA) (Varma and Palsson
1994). FBA solves a linear programming problem of optimizing biologically rele-
vant objective function (typically growth) under metabolic steady-state mass conser-
vation, enzyme capacity, and thermodynamic constraints. Steady-state assumption
implies that the intracellular metabolite concentrations are constant (i.e., their time
derivatives are zero). Thus, the steady-state assumption renders the problem linear
(Fig. 5.2) and eliminates the need to describe the reaction kinetics that are functions
of reactant abundances often with several unknown parameters. The steady-state
assumption linearizing the problem iswell justified formanymetabolic states. Partic-
ularly well the steady-state assumption holds when microbial cells divide unlimited
by the external conditions or grow in continuous cultivations under constant con-
ditions. Under these conditions, FBA-optimized growth yields have been found to
closely match experimental observation in microbial species (Edwards et al. 2001).
Yet, other optimality principles than growth such as maximization of energy genera-
tion in terms of ATP have been suggested and evaluated (Schuetz et al. 2007). Model
simulations of optimizing defined objective functions take globally into account cel-
lular energy and redox balancing requirements when fulfillingmass balance, enzyme
capacity, and thermodynamic constraints in the whole metabolic network. Enzyme
capacity and thermodynamic constraints are introduced into the FBA problem as
flux upper and lower bounds. Commonly, the sign of flux value describes the net
flux direction of the reaction but alternatively forward and backward reactions can
be separately represented in the model. When thermodynamics do not allow for a
particular reaction direction under cellular conditions (Flamholz et al. 2012), the flux
bounds can be assigned accordingly for simulations.

Phenotype simulations with FBA and derived tools and genome-scale metabolic
model manipulations are facilitated with frameworks supporting method develop-
ment and/or tools with higher level interfaces for analysis (Table5.1). While Python-
based frameworks, relying on COBRApy (Ebrahim et al. 2013), are currently the
primary choice of developers, there are R (R Development Core Team 2018) (Sybil
(Gelius-Dietrich 2013)) and MATLAB (www.mathworks.com) (COBRA toolbox,

http://bigg.ucsd.edu/
www.mathworks.com
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(Schellenberger et al. 2011;Heirendt et al. 2017)) based frameworks available aswell.
The frameworks and tools commonly offer interfaces to external LP (and commonly
also Mixed-Integer Linear Programming (MILP) and Quadratic Programming (QP))
solvers (e.g., glpk (www.gnu.org/software/glpk/), cplex (www.ibm.com/analytics/
cplex-optimizer), gurobi (www.gurobi.com)) to be recruited for different applica-
tions. External libraries may also be engaged by the tools, in particular, for manip-
ulating models in common Systems Biology Markup Language (SBML) format
(Hucka et al. 2003) (SBML toolbox (Keating et al. 2006), libSBML (Bornstein et al.
2008)). Tools with higher level interfaces allow also experimental scientists analyz-
ing metabolism with genome-scale models and designing genotype manipulations,
as will be reviewed below.

Genome-scale metabolic model simulations using FBA with alternative, other
than biological design principle mimicking, objectives can be used to explore an
organism’s metabolic potential, possible metabolic states it may have. For instance,
under the given mass balance, enzyme capacity, and thermodynamic constraints, the
optimal theoretical yields of biotechnologically relevant molecules can be solved
with simulations. The simulations can be done by assigning alternative nutritional
conditions mimicking different growth media or bioconversion substrates. In case
substrate utilization rates are available, they can be introduced to the models as
exchange fluxes between cells and the environment, and FBA can be used to predict
optimal steady-state growth (1/h) and specific production rates (mmol/(g cell dry
weight * h)) instead of yields.While the optimal value solved for the chosen objective
by FBA (i.e., yield or rate) is global and unique, the other fluxes (i.e., variables of
the optimization problem) may adopt different values under optimality. Thus, there
may be several, alternative, yet equally optimal metabolic phenotypes in terms of the
defined objective function.

5.3.1 Parsimonious Flux Balance Analysis (pFBA)

Parsimonious Flux Balance Analysis (pFBA) aims at reducing the set of alterna-
tive equally optimal flux states in a biologically relevant way (Lewis et al. 2010).
pFBA derives from FBA and includes a bi-level optimization where first the biolog-
ical design objective (e.g., growth) is optimized after which, under the optimality
condition, another linear programming problem is solved to minimize the sum of
the fluxes. The flux-sum minimization in pFBA can be seen biologically relevant in
optimizing the enzyme usage, and thereby the cellular resource utilization. Flux-sum
minimization efficiently omits futile flux cycle artifacts from the returned flux vector.
Yet, fluxes may adopt alternative values also under pFBA optimality.

www.gnu.org/software/glpk/
www.ibm.com/analytics/cplex-optimizer
www.ibm.com/analytics/cplex-optimizer
www.gurobi.com
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5.3.2 Flux Variability Analysis (FVA)

The ranges of possible values fluxes may adopt under particular optimality can be
assessedwith FluxVariability Analysis (FVA) (Burgard andMaranas 2001;Mahade-
van and Schilling 2003). FVA can be performed under the optimality of the assigned
objective (i.e., commonly growth) or different levels of it. The computation involves
solving two subsequent linear programming problems, minimization and maximiza-
tion, for each of the fluxes. The fluxes whose ranges do not pass zero are coupled to
the objective and can thus be considered essential for the particular objective. Gen-
eral analysis of flux coupling in a metabolic network is derived from FVA (Burgard
et al. 2004).

5.3.3 Simulating Mutant Cell Phenotypes

The above FBA-derived simulation approaches assume optimal distribution of flux
in the metabolic network. In case of FBA simulation with an objective function
mimicking biological optimality principle, the premise is justified by evolutionary
optimization of organism’s metabolism (Ibarra et al. 2002). However, mutant strains
engineered in laboratory cannot be assumed to function optimally. Minimization of
Metabolic Adjustment (MoMA) approach was developed to simulate the metabolic
state of such engineered mutant strains (Segrè et al. 2002). MoMA solves a quadratic
optimization problem ofminimizing the flux differences to a reference flux state (i.e.,
wild-type flux state) given the constraints arising from the engineered modifications
to the strain (e.g., gene deletions). There is also a linearized version, linear Mini-
mization of Metabolic Adjustment (lMoMA) of the algorithm (Burgard et al. 2003;
Becker et al. 2007). In biological sense MoMA and lMoMA assume that the wild-
type regulation is still driving the distribution of metabolic fluxes in engineered
but not evolutionarily streamlined strains. Wild-type regulation-driven flux distribu-
tion in engineered cells is also simulated with Minimization of Metabolites Balance
(MiMBl) algorithm (Brochado et al. 2012). In contrast to MoMA and lMoMA,
MiMBl is independent of the stoichiometric representation of the reactions. While
multiplicating the stoichiometric coefficients of particular reaction(s) (which does
not affect the reaction stoichiometry or elemental balance) would alter the output
of MoMA computation, MiMBl solution would be unaffected. MiMBl computation
minimizes the flux distribution difference to the wild-type state in terms of metabo-
lite turnovers instead of fluxes. Yet another approach for simulating the metabolic
state of engineered, but not evolved organisms is Regulatory On/Off Minimization
(ROOM) algorithm (Shlomi et al. 2005). ROOMminimizes the number of fluxes that
are changed in mutant cells compared to wild-type cells. The underlying premise in
ROOM is the same as inMoMA, lMoMA, andMiMBl in assuming that the wild-type
regulation drives the distribution of fluxes in a non-evolved mutant strain. In ROOM
simulations, it is further assumed that the mutant metabolic state is reached through
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only the necessary transient metabolic changes mediated by the regulatory network.
The necessary changes are simulated with ROOMby solving aMixed-Integer Linear
Programming (MILP) problem.

5.4 Examples of Genotype–Phenotype Simulations: Single
and Double Gene KOs

The above-introduced simulation tools using genome-scale metabolic models allow
predicting phenotype effects following from gene deletions (Förster et al. 2003). In
silico metabolic gene deletions are propagated through the Boolean gene-reaction
rules into reaction activities. If a regulatory model is integrated as in rFBA approach
(Covert et al. 2001; Herrgård et al. 2006), the regulatory gene deletions can be first
propagated to the status of metabolic genes through the regulatory Boolean rules,
and then through the metabolic model’s gene-reaction rules into reaction activity
states. The phenotype simulation is then performed with updated reaction activity
states. FBA or another simulation algorithm, not assuming the metabolism in mutant
could necessarily become optimized, can be used. In case the simulated growth is
negligible, the deleted gene is predicted essential. Double gene deletion simulations
predict in silico synthetic lethal gene pairs (Suthers et al. 2009). Since experimental
screens of gene deletion mutants in model organisms are available in genome-scale,
comparison to in silicomodel predicted essentialities and synthetic lethalities can be
used for validating metabolic model reconstruction algorithms.

5.5 In Silico Metabolic Engineering—Strain Design

Since the genome-scale metabolic models allow predicting translation of genotype to
phenotype, they can be used to design genotypemanipulations leading to desired phe-
notypes. Overproducer phenotypes are especially sought for industrial biotechnology
applications. While native strains are evolved to distribute the available resources for
growth and survival, feasible industrial production using a microbial fermentation
process requires cells to divert substantial resources to product synthesis. Divert-
ing cellular resources toward production is the aim of metabolic engineering of
the industrial biotechnology host organisms, like yeasts, in addition to introducing
the production pathways in case of heterologous products. Strategies to achieve the
desired metabolic flux re-regulation diverting resources efficiently to the production
pathway can be computationally designed using genome-scale metabolic models.
An elegant solution for the inherent competition of growth and product synthesis
for resources is to align those objectives through metabolic network modifications.
Aligning the growth and production objectives in cells can be achieved with spe-
cific metabolic gene deletions resulting in growth-coupled production. The specific
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metabolic gene deletions reduce the metabolic network in such a way that the cells
cannot grow (optimally or at all) unless they simultaneously synthesize the product.
In other words, some growth essential pathway produces the desired product as an
unavoidable side stream. OptKnock was the pioneering method for finding growth–
product coupling creating deletion targets using metabolic models (Burgard et al.
2003). It was implemented as a bi-level MILP. An alternative implementation of in
silico growth–product coupling design is OptGene in which the phenotype simu-
lation is embedded in a genetic algorithm allowing for nonlinear design objectives
and searching larger target gene sets (Patil et al. 2005; Asadollahi et al. 2009). Opt-
Gene has been used successfully to design, for example, succinate and terpenoid
overproducing S. cerevisiae strains (Otero et al. 2013; Asadollahi et al. 2009). For
vanillin production in S. cerevisiae (in form of vanillin glycoside to reduce toxicity),
OptGene was used to identify deletion targets out of which GDH1 (glutamate dehy-
drogenase encoding) and PDC1 (pyruvate decarboxylase encoding) deletions were
experimentally implemented and evaluated (Brochado et al. 2010). Single deletion
mutants, a double deletion mutant, and a double deletion mutant with GDH2 over-
expression to improve nitrogen assimilation defect in gdh1� were constructed. The
mutant strains except single gdh1� mutant showed 1.5 fold increase in vanillin glu-
coside yield in batch cultures compared to the non-host metabolism optimized strain.
Furthermore, optimizing the synthetic, four-step, production pathway of vanillin glu-
coside in S. cerevisiae did not improve the production, before the OptGene identified
targets to optimize the host metabolism were implemented (Brochado et al. 2010;
Brochado and Patil 2013). Later, Tepper and Shlomi (2010) released their Robust-
Knock version for extracting such growth–product coupling creating deletions that
force product synthesis with an additional optimization step (Tepper and Shlomi
2010). Growth–product coupling creating manipulations to genome fix the relative
yields of biomass and target product. However, the rates are amenable for improve-
ment through Adaptive Laboratory Evolution (ALE) of the mutant strains. While
faster growing cells are selected for, the coupled production rate is improved on the
side (Otero et al. 2013). If the growth–product coupling relies on a carbon–carbon
bond cleaving reaction splitting a precursor for growth and production, the coupling
is likely to be very robust in ALE. An Anchor reaction producing an essential precur-
sor for growth and another product convertible to the target product is biochemically
essential for a growth–product coupled reduced metabolic network (Jouhten et al.
2017). Carbon–carbon bond cleaving Anchor reactions are a subset of all possible
Anchors. Growth-coupled succinate production in S. cerevisiae relies on carbon–
carbon bond cleaving isocitrate lyase as an Anchor reaction (Otero et al. 2013). The
initial production rate after themetabolic network reduction for growth–product cou-
pling was substantially improved with ALE along with relieving glycine auxotrophy
(Table 5.2).

Metabolic network manipulations for achieving growth–product coupling are
identifiable also with elementary-mode analysis methods (Schuster and Hilgetag
1994; Schuster et al. 2000; Trinh and Srienc 2009; Unrean et al. 2010; Hädicke
and Klamt 2011). Elementary modes are minimal sets of reactions allowing a
steady-state operation (Heinrich and Schuster 1998). Engineering strategies are
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Table 5.2 Examples of reported overproducer yeast strains whose development has been involved
using genome-scale metabolic model simulation tools
Product Species Tools Year Ref.

Ethanol S. cerevisiae in house script
(FBA)

2006 Bro et al. (2006)

Sesquiterpene S. cerevisiae MOMA, OptGene 2009 Asadollahi et al.
(2009)

Vanillin S. cerevisiae MOMA, OptGene,
OptKnock

2010 Brochado et al.
(2010)

2,3-butanediol S. cerevisiae OptKnock 2012 Ng et al. (2012)

Fummaric acid S. cerevisiae FBA 2012 Xu et al. (2012)

Succinic acid S. cerevisiae OptGene 2013 Otero et al. (2013)

Tyrosine S. cerevisiae OptKnock 2013 Cautha et al. (2013)

Dihydroartemisinic
acid

S. cerevisiae MOMA, OptStrain,
OptForce, OptKnock

2013 Misra et al. (2013)

Muconic acid S. cerevisiae FBA 2013 Curran et al. (2013)

Malate C. glabrata FBA 2013 Chen et al. (2013)

Triacetic acid
lactone

S. cerevisiae OptKnock 2014 Cardenas and Da
Silva (2014)

Human recombinant
protein

P. pastoris FSEOF, MOMA 2014 Nocon et al. (2014)

Ethanol S. cerevisiae FBA, EMA 2014 Toro et al. (2014)

Acetoin C. glabrata FBA 2014 Li et al. (2014)

Amorphadiene S. cerevisiae MOMA, FBA 2014 Sun et al. (2014)

Succinate S. cerevisiae FBA 2014 Rosdi and Abdullah
(2014)

3-hydroxypropionic
acid

S. cerevisiae FBA 2015 Borodina et al.
(2015)

Patchoulol S. cerevisiae EMA 2015 Gruchattka and
Kayser (2015)

Lipid Y. lipopytica FBA 2015 Kavscek et al. (2015)

Tyrosine S. cerevisiae OptKnock 2015 Gold et al. (2015)

β-Farnesene S. cerevisiae pFBA 2016 Meadows et al.
(2016)

3-hydroxypropionic
acid

S. cerevisiae pFBA 2016 Kildegaard et al.
(2016)

Muconic acid S. cerevisiae FBA 2016 Suastegui et al.
(2016)

Biomass S. stipitis FBA 2016 Unrean et al. (2016)

Growth on Methanol
or glycerol

P. pastoris FBA 2017 Tomas-Gamisans
et al. (2018)

Polymalic acid A. pullulans FBA 2017 Feng et al. (2017)

Ethanol S. stipitis FBA 2017 Acevedo et al.
(2017)

Triacylglycerol Y. lipopytica FBA 2018 Koivuranta et al.
(2018)

Lipid R. toruloides FBA 2018 Castañeda et al.
(2018)
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designed for disabling undesired elementary modes while retaining the desired ones
(Hädicke and Klamt 2011). Introducing flux capacity constraints to the elementary-
mode framework, as in FBA-derivedmethods, is enabled using Elementary FluxVec-
tors (EFVs) allowing also designing growth–product coupling strategies (Urbanczik
2007; Klamt andMahadevan 2015). The scalability of searchingmetabolic engineer-
ing strategies in silico using elementary-modes-based approaches has been limited
but is improving through algorithmic developments (von Kamp and Klamt 2014).
Currently, minimum sets of genetic engineering targets can be exhaustively identified
enabling evaluations also in yeast hosts. Beyond identifying growth–product cou-
pling strategies, genome-scale metabolic models allow designing also other kinds of
engineering strategies for improving production. While the methods for designing
strategies to optimize the cellular fluxes for production are broadly reviewed else-
where (e.g., Maia et al. (2016)) many of them are yet to be evaluated for yeasts.
Among the variety of approaches, there are methods for identifying not only knock-
outs but also up- and downregulation targets for improving production. OptReg
identifies combined strategies of deletions, overexpressions, and downregulations
for host optimization as bi-level MILP solutions (Pharkya and Maranas 2006). Sim-
ilarly, OptForce identifies combined strategies in a comparative manner against the
wild-type flux status by classifying reactions based on the type of manipulation they
require for optimizing production (Ranganathan et al. 2010). Flux Scanning based
on Enforced Objective Flux (FSEOF) considers the wild-type flux status by identi-
fying upregulation engineering targets as genes annotated to reactions whose flux is
increased in silicowhen the production objective is enforced while biological objec-
tive (i.e., growth) prevails (Choi et al. 2010). FSEOF-identified targets have success-
fully been implemented inP. pastoris yeast for improving protein production (Nocon
et al. 2014). The strain improvement strategies may also benefit from augmenting
metabolic models with additional information on metabolic enzymes or wild-type
phenotype. For instance, k-OptForce integrates available enzyme kinetic information
to improve predictions by considering metabolite concentration effects on the dis-
tribution of fluxes (Chowdhury et al. 2014). OptFlux allows using gene expression
data for using a comparative approach against the wild type for identifying over-
expression and downregulation targets in a metaheuristic optimization framework
(Gonçalves et al. 2012). Importantly, considering the wild-type gene expression data
allows relieving the optimality assumption from the native operation of cells allowing
a comparative strain design also in secondary metabolic pathways (Kim et al. 2016).
Accordingly, transcriptomics-based Strain Optimization Tool (tSOT) identifies the
metabolic engineering targets by considering the wild-type flux regulatory status
inferred from gene expression data (Kim et al. 2016). However, a word of caution
though, the gene expression status of central metabolic enzymes may not very well
reflect the actual flux status in yeast cells as (Machado and Herrgård 2014) observed
when integrating gene expression data to genome-scale metabolic models.
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5.6 Integrating Omics Data into Models

Genome-scale metabolic models offer frameworks for integrating omics data since
they connect metabolic genes/proteins to reaction fluxes through which biochemical
conversion ofmetabolites occurs. Fluxes togetherwithmetabolite abundances are the
metabolic phenotype determined by and reciprocally regulating the underlying tran-
scriptional and translational states in a cell. Evolutionarily shaped cellular regulation
can vary the metabolic phenotypes within the ultimate limits of the laws of mass con-
servation and chemical thermodynamics. Therefore, transcriptomics, proteomics, or
metabolomics data have been integrated to the models for shrinking the space of
feasible metabolic states to improve flux estimation outcomes. Indeed, flux predic-
tions would often benefit from specific constraints representing the regulation of the
metabolic network utilization under particular conditions (e.g., repression of respira-
tion in S. cerevisiae on high glucose). Several methods have been developed for infer-
ring the flux states from gene expression data, the most abundantly available omics
data type. iMAT (Shlomi et al. 2008), GiMME (Becker and Palsson 2008), GIM3E
(Schmidt et al. 2013), RELATCH (Kim andReed 2012), and INIT (Agren et al. 2012)
methods derive expected or allowable flux states from the gene expression data. How-
ever, flux estimation could also be misled by gene expression data (Machado and
Herrgård 2014) as post-transcriptional regulation of metabolic phenotypes is preva-
lent. Consequently, additional constraints derived from proteomics data integrated
with enzyme-specific turnover numbers (kcat) (Sanchez et al. 2017;Vazquez andOlt-
vai 2016) have allowed reproducing, usingmodel simulations, metabolic phenotypes
(e.g., overflow metabolism) that are not well captured with plain FBA or apparent in
gene expression data. Further, time derivatives of extracellular metabolites in a cell
culture (i.e., rates of consumption and production) can readily be integrated into the
models as bounds on exchange fluxes between cells and environment, allowing sim-
ulations of consistent intracellular flux states (Mo et al. 2009). However, while the
exchange flux, gene expression, and proteomics data derived constraints can directly
be assigned to the fluxes in models, integration of intracellular metabolite abundance
data to steady-state simulations is less straightforward.Metabolite concentrations can
be used to refine reaction thermodynamics for resolving feasible reaction directions
(Henry et al. 2007; Kümmel et al. 2006). Further, constraints for flux changes have
been derived from relativemetabolomics data through the connectivity ofmetabolites
with several reactions in the metabolic network (Sajitz-Hermstein et al. 2016). Vice
versa, metabolite concentration changes can be predicted using gene expression data
and the network neighborhood (Zelezniak et al. 2014). When the metabolite concen-
tration change prediction from gene expression data and network connectivity fails,
the particularmetabolite is likely to be connected to a post-transcriptionally regulated
enzyme (Zelezniak et al. 2014). Likely post-transcriptionally regulated enzymes can
similarly be identified in disagreements of gene expression data and flux estimates
(Shlomi et al. 2008). Thus, omics data integration with model simulations allows
also uncovering how the cells have achieved the observed metabolic phenotypes.
Recently, (Strucko et al. 2018) uncovered in molecular detail how S. cerevisiae
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achieved an efficiently glycerol-utilizing phenotype through Adaptive Laboratory
Evolution (ALE). Classical genetic crossing, genome-scale metabolic model simu-
lations, whole genome sequencing, and omics analyses revealed involvement of all
levels of cellular regulation, in a pathway-dependent manner, in achieving the glyc-
erol utilization trait. The ALE for glycerol utilization was performed for a laboratory
strain of S. cerevisiae, commonly lacking the ability to grow on glycerol in absence of
amino acid supplementation. Interestingly, some wild S. cerevisiae strains can grow
on glycerol as the sole carbon source, and the metabolic network structure of S. cere-
visiae does not object the conversion of glycerol to biomass evenwithout amino acids
being provided. By gradually decreasing the amino acid supplementation, evolved
lineages growing on glycerol as the sole carbon source were obtained (Strucko et al.
2018). Whole genome sequencing of evolved lineages revealed mutations that arose
during the ALE. Few metabolic genes and genes involving osmoregulation control-
ling glycerol accumulation in cells had been repeatedly hit by mutations. A lin-
eage not having loss-of-function mutations in osmoregulation involved genes was
characterized in controlled bioreactors and analyzed on different omics levels (i.e.,
RNA sequencing, proteomics, and metabolomics). Further, genome-scale metabolic
model simulations were run for identifying the necessary but minimum re-regulation
of wild-type metabolic fluxes for achieving an optimally glycerol-utilizing pheno-
type. The identified necessary flux changes were overlaid with the mutated genes
and the omics data on the metabolic network. The model simulations had revealed
a necessary downregulation of TCA cycle activity while maintaining respiratory
function for glycerol utilization which was in perfect concordance with the other-
wise obscureKGD1 (encoding alpha-ketoglutarate dehydrogenase in the TCA cycle)
loss-of-function mutation gained repeatedly in ALE. Further, the model simulations
predicted also an activation of GABA shunt bypass of the TCA cycle for optimizing
glycerol utilization. Indeed, reactant ratios from metabolomics data were in agree-
ment with the GABA shunt activation. In addition, gene/protein expression changes
were in agreement with the model simulated prediction of decreased TCA cycle flux.
In conclusion, the flux change predictions with model simulations effectively recon-
ciliated the separate observations in omics data and the genes repeatedly mutated in
ALE.

5.7 Regulation of Yeast Metabolism: Key Nodes and Their
Impact on Flux Distribution—Future Directions
of Reincorporating These into Models

While metabolic models have greatly improved our ability to systematically map
genotype–phenotype relations, they have also brought forward key gaps in the under-
standing of the complex interactions between different metabolic pathways and
betweenmetabolic and regulatory processes. This becomes evidentwhen considering
the dramatically reduced performance of genome-scale metabolic models from well
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predicting the essentiality of single genes to the low accuracy in predicting genetic
interactions (Brochado et al. 2012). A major limitation of the models, especially
when tackling higher order complex interactions, is the large degrees of freedom,
i.e., multiple ways that the resource (carbon and other elemental) fluxes can be dis-
tributed in the cell. Without considering additional constraints imposed by protein
abundance and activity status (e.g., phosphorylation), metabolite concentrations, and
allosteric regulations, the models will not be able to narrow down the predictions
on the actual routes operating in cells. Different approaches have been proposed
toward constraining the solution space of metabolic models for improving the accu-
racy of predictions in a biologically sound manner. These include knowledge-based
heuristics imposing constraints on flux distribution at key branch points (Pereira et al.
2016), constraining the fraction of protein resources allocated to metabolic processes
(Sanchez et al. 2017), imposing a constraint on maximum Gibbs energy dissipation
from cells (Niebel et al. 2019), and large-scale kinetic models that include metabolite
concentrations and enzymekinetic parameters (Chakrabarti et al. 2013; Stanford et al.
2013; Smallbone et al. 2010). The last mentionedwould be an ideal approach encom-
passing various complexities in their mechanistic detail. Yet, the lack of reliable in
vivo data on enzyme kinetics, metabolite concentrations, and enzyme/metabolite dis-
tributions within a cell limit the use of kinetic modeling to well-studied conditions
and relatively small perturbations. Further, introducing a constraint on Gibbs energy
dissipation to the metabolic models is computationally demanding as it results into
nonlinear and non-convex model. Thus, the first two approaches are likely to be the
most fruitful in the near future. Indeed, the distribution of major metabolic fluxes
in yeast cells are tied to the redox and energy cofactor balance, which, in turn, are
closely coupled with the flux distribution in pentose phosphate pathway and pyru-
vate nodes. The former largely determines the NADPH production and the latter
affects NADH and ATP turnover. Indeed, a recent study (Yu et al. 2018) elegantly
demonstrates this by replacing ethanol production by fatty acid production. Given
that ethanol accumulation is a hallmark of yeast metabolism, this is a remarkable
feat and yet can be understood in terms of redox balance rewiring. Along similar
lines, an approach considering protein allocation constraint has suggested that lower
protein requirement of ATP generation through fermentation is the trade-off factor
underlying the switch from respirative to fermentative metabolism at higher glucose
utilization rates in yeast (Nilsson and Nielsen 2016). The ongoing efforts in expand-
ing the models to incorporate transcriptional and translational processes (Yang et al.
2018) are likely to complement the abovementioned approaches in expanding the
scope of metabolic models as well as in improving their accuracy which is capturing
complex metabolic traits.
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